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Abstract. In the 1-in port model, every vertex of a synchronous network
can receive each time unit at most one message. We consider simulta-
neous broadcasting of multiple messages from the same source in such
networks with an additional restriction that every received message can
be sent out to neighbors only in the next time unit and never to already
informed vertex. We use a general concept of level-disjoint partitions
developed for this scenario. Here we introduce a subgraph extension
technique for efficient spreading information within this concept. Sur-
prisingly, this approach with so called biwheels leads to simultaneous
broadcasting of optimal number of messages on a wide class of graphs
in optimal time. In particular, we provide tight results for bipartite tori,
meshes, hypercubes. Several problems and conjectures are proposed.

Keywords: Simultaneous broadcasting · Multiple message broadcast-
ing · Level-disjoint partitions · Torus · Mesh · Hypercube

1 Introduction

A massive amount of traffic in communication networks that flows from providers
of large data (such as video streaming services) to many clients at once leads
to various optimization problems for broadcasting of multiple messages. Similar
types of problems arise in master/workers parallel computations on specific net-
works when multiple tasks are simultaneously distributed from one node (mas-
ter) to all other nodes (workers). This has been subject of research for many
years. For surveys on broadcasting and other communication protocols in vari-
ous kinds of networks see e.g. [8,9,12–14].
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We restrict ourselves to synchronous networks, where at each time unit mes-
sages can be sent from nodes to all their neighbors in one unit of time. A network
is modeled by a graph. As an example we consider namely tori, meshes, and
hypercubes, perhaps the most popular and extensively studied networks [15],
but our approach is more general.

Since networks have limited capacity of links, any larger data to be broadcast
needs to be split into multiple messages and sent individually. This leads to a
more general variant of broadcasting in which several different messages need to
be simultaneously transmitted from one source node, called the originator. The
problem of multiple broadcasting was first defined in [5] and previously studied
under several different models in [1,2,10]. The minimal overall time needed for
simultaneous broadcasting and the maximal number of messages that can be
simultaneously broadcast were considered in [1,6,10,16–18], respectively.

Here we consider a scenario when each message (or task) needs to be handled
(or processed) at each node in a time unit before it is sent out further to other
selected neighbors. It is reasonable to demand that each node has to handle at
each time unit only a single message (task). Equivalently, each node receives at
most one message in each time unit. We call this restriction a 1-in-port model.
Furthermore, every received message is send out only in the next time unit and no
message is sent to already informed vertex. In other words, nodes have no buffers
to store messages for delayed transmission. This simplification is motivated by
memory or security restrictions, or a need for uninterrupted data flow. As usual,
we also assume full-duplex mode.

For this scenario, the concept of level-disjoint partitions was developed in [6]
to study how many messages and in what time they can be simultaneously
broadcast from a given originator vertex in a given graph, see the definitions in
the next section. The same concept was further developed in [7] where results on
existence of optimal number of level-disjoint partitions in general graphs were
obtained. It was also shown in [7] that the problem of simultaneous broadcasting
in a graph G can be solved locally on a suitable subgraph H of G and then
extended to a solution for the whole graph G (c.f. Proposition 2), but without
guarantee of optimality.

In this paper, the latter result is improved in the terms of optimality by
showing that if H satisfies additional properties, namely if H contains all neigh-
bours of the originator vertex v and preserves distances to v, then simultaneous
broadcasting from v on H with optimal time for each destination vertex can be
extended to simultaneous broadcasting from v on G again with optimal time for
each destination vertex (Theorem 1).

Furthermore, we identify particular subgraphs, namely wheels and biwheels,
that play a key role for simultaneous broadcasting. We show (Theorems 2–4)
that they can be used for simultaneous broadcasting (of optimal number) of
messages in optimal time for a wide class of graphs.

In particular, since biwheels naturally occur in Cartesian products
(Propositions 3 and 4), we obtain tight results for bipartite tori, meshes, and
hypercubes. For these graphs we also provide an explicit description how optimal
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simultaneous broadcasting can be realized (Sect. 4). We also answer affirmatively
a conjecture from [6] asserting that the n-dimensional hypercube admits simul-
taneous broadcasting of n messages in optimal time 3n − 2. We conclude with
summary of open problems and conjectures (Sect. 5).

2 Concept of Level-Disjoint Partitions

In this paper we use the concept of level-disjoint partitions, introduced in [6],
to capture broadcasting under the considered communication model. We use
standard graph terminology and notation. An open neighborhood of a vertex
u in a graph G is denoted by NG(u), the degree of u by degG(u), the distance
between vertices u and v by dG(u, v). The eccentricity of a vertex u, i.e. the
maximal distance from u to other vertices, is denoted by eccG(u). The subscript
G is omitted whenever the graph is clear from context.

A level partition of a graph G is a partition S = (S0, . . . , Sh) of V (G) into a
tuple of sets, called levels, such that Si ⊆ N(Si−1) for every 1 ≤ i ≤ h; that is,
every vertex has a neighbor from previous level. The number h = h(S) = |S|−1
is called the height of S. The broadcasting starts at all vertices from the level S0,
at each time unit the same message is sent from all vertices of the current level
to all vertices in the next level through edges of the graph, till the hth time unit,
when the message is spread to all vertices of G. Note that we do not care which
particular edges are used. In the case when the starting level S0 is a singleton,
say S0 = {v}, we say that the level partition is rooted at v (or v-rooted) and the
vertex v is called the root of S.

A level partition (S0, . . . , Sh) of G with Si = {u ∈ V (G) | dG(u, S0) = i}
for every 0 ≤ i ≤ h is called a distance level partition. Clearly, a distance level
partition is determined by the choice of the starting level S0 and it has minimal
height among all level partitions with the same starting level. If, moreover, it is
rooted at a vertex v, it corresponds to the breadth-first-search tree from v (up to
the choice of edges).

Two level partitions S = (S0, . . . , Sh(S)) and T = (T0, . . . , Th(T )) are said
to be level-disjoint if Si ∩ Ti = ∅ for every 1 ≤ i ≤ min(h(S), h(T )). Note that
we allow S0 ∩ T0 �= ∅ since we consider the case when different messages have
the same originator. Level partitions S1, . . . ,Sk are said to be (mutually) level-
disjoint if each two partitions are level-disjoint. Then we say that S1, . . . ,Sk

are level-disjoint partitions, shortly LDPs. If every partition is rooted in the
same vertex v and they are level-disjoint (up to the starting level {v}), we say
that S1, . . . ,Sk are level-disjoint partitions with the same root v, shortly v-rooted
LDPs. For an example of four v-rooted LDPs of a circulant graph, see Fig. 2.
Note that the 4-tuple at a vertex denotes its levels in each partition.

Let S1, . . . ,Sk be level partitions of G, not necessarily level-disjoint. The set
of levels {l | u ∈ Si

l for some 1 ≤ i ≤ k} in which a given vertex u occurs is
called the range of u with respect to S1, . . . ,Sk, denoted by R(u).

The number of level-disjoint partitions determines how many messages can
be broadcast simultaneously while their maximal height determines the overall
time of the broadcasting. Hence a general aim is to construct for a given graph



Time-Optimal Broadcasting of Multiple Messages in 1-in Port Model 147

– as many as possible (mutually) level-disjoint partitions; and
– with as small maximal height as possible.

In [7] some necessary conditions on the number of v-rooted LDPs as well as
on their maximal height were given. Assume that S1, . . . ,Sk are v-rooted LDPs
of G. Clearly, for every vertex u except v, max(R(u)) ≥ d(u, v) + k − 1 since u
cannot appear in a level smaller than the distance to the root v and |R(u)| = k.
If equality holds, we say that u has perfect range; that is,

R(u) = {d(u, v), d(u, v) + 1, . . . , d(u, v) + k − 1}.

This means that all k messages will be delivered to the vertex u in the best time
possible for this vertex. If all vertices (up to the root v) have perfect range, we
say that level-disjoint partitions S1, . . . ,Sk are perfect.

Furthermore, the above definition is adjusted for bipartite graphs. If G is
bipartite, then for any same-rooted LDPs of G, the range of each vertex contains
elements of the same parity. It follows that no vertex can have perfect range as
defined above (except the trivial case of a single partition). So the concept of
perfect range is relaxed for bipartite graphs as follows. In a bipartite graph G,
for every vertex u except v, max(R(u)) ≥ d(u, v) + 2k − 2. If equality holds, we
say that u has biperfect range; that is,

R(u) = {d(u, v), d(u, v) + 2, . . . , d(u, v) + 2k − 2}.

If all vertices (up to the root v) have biperfect range, we say that level-disjoint
partitions S1, . . . ,Sk are biperfect. Further, the following necessary conditions
on same-rooted LDPs were proven in [7].

Proposition 1 ([7]). Let S1, . . . ,Sk be level-disjoint partitions of a graph G
with the same root v. Then,

k ≤ deg(v) (1)

max
1≤i≤k

h(Si) ≥
{

ecc(v) + k − 1 if G is not bipartite,

ecc(v) + 2k − 2 if G is bipartite.
(2)

2.1 Subgraph Extension Technique

In [7] it was shown that it suffices to find v-rooted LDPs on some suitable
subgraph H of G and then extend them to v-rooted LDPs of the whole graph
G as stated by the following proposition. Let G − v denote the graph obtained
by removing a vertex v and all incident edges from a G.

Proposition 2 ([7]). Let v be a vertex of a graph G and H be a subgraph of
G containing v and some vertex from each component of G − v. Then any k
v-rooted level-disjoint partitions of H can be extended to k v-rooted level-disjoint
partitions of G.
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Our first result in this paper extends Proposition 2 in terms of preserving
(bi)perfectness. It shows that it suffices to find (bi)perfect LDPs locally on a
subgraph H of G that covers all neighbors of the root v and preserves distances
to v. Then they can be extended to (bi)perfect, respectively, LDPs with the same
root to the whole graph G. We say that a subgraph H of a graph G preserves
distances to a vertex v ∈ V (H) if dH(u, v) = dG(u, v) for every u ∈ V (H). If
a subgraph H ⊆ G does not contain a vertex v of G, we denote by H + v the
subgraph of G obtained by adding v and all incident edges from G to H.

Theorem 1. Let v be a vertex of a graph G and H be a subgraph of G containing
N(v) ∪ {v} and preserving distances to v. Then any k (bi)perfect v-rooted level-
disjoint partitions of H can be extended to k (bi)perfect, respectively, v-rooted
level-disjoint partitions of G.

Proof. Let S1, . . . ,Sk be (bi)perfect level-disjoint partitions of H rooted in v and
assume V (H) � V (G); for otherwise we are done. We show that they can be
extended to (bi)perfect, respectively, v-rooted level-disjoint partitions of H ′ =
H+u for some vertex u of G uncovered by H such that H ′ preserves distances to
v. Then, by incremental extension until no uncovered vertex remains, we obtain
(bi)perfect v-rooted level-disjoint partitions of G.

Let u be a vertex of G that is not in H but has a neighbor w in H distinct
from v such that w belongs to some shortest path in G between u and v. Note
that such u exist since N(v) ⊆ V (H). Since H preserves distances to v, for
H ′ = H + u we have

dH′(u, v) = dH(w, v) + 1 = dG(w, v) + 1 = dG(u, v),

and thus H ′ preserves distances to v as well.
Let us denote by li the level of w in Si; that is, w ∈ Si

li
for every 1 ≤ i ≤ k.

Then, we extend S1, . . . ,Sk to H ′ by adding u to the (li + 1)-th level of Si

for every 1 ≤ i ≤ k. Clearly, such extended partitions are level partitions of
H ′. Moreover, they are level-disjoint since u was added into distinct levels of
level-disjoint partitions S1, . . . ,Sk. Finally, if S1, . . . ,Sk are perfect, then

R(w) = {li | 1 ≤ i ≤ k} = {dH(w, v), dH(w, v) + 1, . . . , dH(w, v) + k − 1},
and therefore the vertex u has perfect range as well:

R(u) = {li + 1 | 1 ≤ i ≤ k} = {dH′(u, v), dH′(u, v) + 1, . . . , dH′(u, v) + k − 1}.
Similarly, if S1, . . . ,Sk are biperfect, then

R(w) = {li | 1 ≤ i ≤ k} = {dH(w, v), dH(w, v) + 2, . . . , dH(w, v) + 2k − 2},
and therefore the vertex u has biperfect range as well:

R(u) = {li + 1 | 1 ≤ i ≤ k} = {dH′(u, v), dH′(u, v) + 2, . . . , dH′(u, v) + 2k − 2}.

�

The above theorem is applied in the next section to obtain (bi)perfect level-
disjoint partitions of a wide class of graphs, including particular Cartesian
products.
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3 Simultaneous Broadcasting in Cartesian Products

A Cartesian product of graphs G and H is the graph G � H with the vertex
set V (G � H) = V (G) × V (H) and the edge set E(G � H) = {(u, v)(u′, v) |
uu′ ∈ E(G), v ∈ V (H)} ∪ {(u, v)(u, v′) | u ∈ V (G), vv′ ∈ E(H)}. As an exam-
ple, consider the hypercube. The n-dimensional hypercube Qn is the graph on
vertices V (Qn) = {0, 1}n and edges between vertices that differ in precisely
one coordinate. Observe that Qn can be viewed as the n-fold Cartesian product
of K2.

In [6] we developed a concept of composing level-disjoint partitions with
certain properties of graphs G and H into level-disjoint partitions of G�H. Here
we present a different approach of so called biwheels. We define biwheels in the
next Subsect. 3.1 and show that they naturally occur in Cartesian products. Then
in the Subsect. 3.2 we show how they can be used for construction of optimal
number of same-rooted level-disjoint partitions of optimal height in Cartesian
products. Finally, in the Subsect. 4 we consider particular Cartesian products:
meshes, tori, hypercubes and we present optimal constructions for them also
explicitly.

3.1 Biwheels in Cartesian Products

First we formally define wheels and biwheels. A k-wheel Wk for k ≥ 0 centered
at a vertex v is the graph on vertices v, w1, . . . , wk with edges joining v to all
wi’s and edges joining wi and wi+1 for every 1 ≤ i ≤ k where wk+1 is identified
as w1. Note that for technical reasons we allow k ≤ 2. A k-wheel for k ≥ 3 is a
join of a k-cycle and a vertex.

A k-biwheel Ŵk for k ≥ 0 centered at a vertex v is the subdivision of Wk

centered at v obtained by inserting a new vertex xi to the edge between wi and
wi+1 for every 1 ≤ i ≤ k. Clearly, k-biwheel is bipartite for every k whereas k-
wheel is bipartite only for k = 0, 1. See Fig. 1 for an illustration of small wheels
and biwheels.

v

v

W0 = W0 W2 W3

w1 w2

w1
w2

w3

v v v

v

w1 w1 w2

w1
w2

w3

x1 = x2
x1

x2x3

W1 = W1 W2 W3

Fig. 1. k-wheels and k-biwheels centered at v for k = 0, 1, 2, 3.

Biwheels naturally occur in Cartesian products of graphs as stated by the
following proposition.
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Proposition 3. Let u, v be vertices in graphs G,H respectively. Then G � H
has a 2k-biwheel centered at (u, v) for any 0 ≤ k ≤ min(degG(u),degH(v)).

Proof. It suffices to prove the statement for k = degG(u) = degH(v) for oth-
erwise we may use subgraphs G′ of G and H ′ of H such that k = degG′(u) =
degH′(v) as G′ �H ′ is a subgraph of G�H. For 1 ≤ i ≤ k let us denote the i-th
neighbor of u, v by ui, vi, respectively. We define the vertices of a 2k-biwheel in
G � H as follows:

w2i−1 = (ui, v), x2i−1 = (ui, vi),
w2i = (u, vi), x2i = (ui+1, vi)

for every 1 ≤ i ≤ k where uk+1 is identified as u1.
Note that all vertices w2i−1, x2i−1, w2i, x2i are distinct, vertices w2i−1, w2i

are adjacent to (u, v), and w2i−1x2i−1, x2i−1w2i, w2ix2i, x2iw2i+1 are edges in
G � H for every 1 ≤ i ≤ k. Hence these vertices form a 2k-biwheel in G � H
centered at (u, v). 
�

In particular, if degG(u) = degH(v) then G�H has a degG�H((u, v))-biwheel
centered at (u, v); that is, the largest possible biwheel at (u, v). For example,
P2 �P2 contains a 2-biwheel (with center in any vertex) or P3 �P3 contains a 4-
biwheel centered in the degree-4 vertex. In fact, P2�P2 � Ŵ2 and P3�P3 � Ŵ4.

For another example, by recursive applications we obtain an n-biwheel in the
hypercube Qn for every n = 2m where m is an integer since Q2m � Q2m−1 �
Q2m−1 . However, we would like to have n-biwheel in Qn for any n. For this
purpose we need a more general result as follows.

Proposition 4. Let u, v be vertices in graphs G,H respectively, with degG(u) ≥
degH(v) ≥ 1 and l = max(2,degG(u) − degH(v) + 1). If G has at least l-biwheel
centered at u, then G � H has a k-biwheel centered at (u, v) for any 0 ≤ k ≤
degG(u) + degH(v) = degG�H((u, v)).

Proof. Let k = 2k′ + l′ where k′ is the maximal integer such that k′ ≤ degH(v)
and l′ ≥ 0. It follows that l′ ≤ l−1. Indeed, if k′ < degH(v) then l′ = 0 or l′ = 1,
and if k′ = degH(v) then

l′ ≤ degG(u) + degH(v) − 2k′ = degG(u) − degH(v) ≤ l − 1.

(The first inequality holds since k = 2k′ + l′ ≤ degG(u) + degH(v) and the last
inequality holds since degG(u) − degH(v) + 1 ≤ l.)

Let us denote by ui for 1 ≤ i ≤ degG(u) the i-th neighbor of u,
and by vj for 1 ≤ j ≤ degH(v) the j-th neighbor of v. Furthermore, let
(u1, y1, . . . , ul′ , yl′ , ul′+1) be a subpath of the at least l-biwheel of G centered
at u where dG(u, yi) = 2 for all 1 ≤ i ≤ l′. We define the vertices of a k-biwheel
in G � H as follows:

wi = (ui, v), xi = (yi, v) for all i = 1, . . . , l′,
wl′+2j−1 = (ul′+j , v), xl′+2j−1 = (ul′+j , vj) for all j = 1, . . . , k′,

wl′+2j = (u, vj), xl′+2j = (ul′+j+1, vj) for all j = 1, . . . , k′ − 1,
wl′+2j = (u, vj), xl′+2j = (u1, vj) for j = k′.
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Note that all vertices wi, xi are distinct, vertices wi are adjacent to (u, v), and
wixi, xiwi+1 are edges in G � H for every 1 ≤ i ≤ k = 2k′ + l′. Hence these
vertices form a k-biwheel in G � H centered at (u, v). 
�

3.2 (Perfect) Level-Disjoint Partitions from Wheels and Biwheels

Both k-wheels and k-biwheels (except for k = 2) have obvious k perfect, respec-
tively biperfect, level-disjoint partitions rooted in their centers. Indeed, let the
i-th level partition Si for 1 ≤ i ≤ k of Wk where k ≥ 1 be

Si = ({v}, {wi}, {wi+1}, . . . , {wi+k−1})

with the indices taken cyclically; that is, modulo (k + 1) plus 1. Clearly, Si

and Sj are level-disjoint up to the root v for any distinct i, j. Similarly for a
k-biwheel where k ≥ 3, let the i-th level partition T i for 1 ≤ i ≤ k of Ŵk be

T i = ({v}, {wi}, {xi}, {wi+1}, {xi+1}, . . . , {wi+k−1}, {xi+k−1})

with the indices taken cyclically; that is, modulo (k + 1) plus 1. Clearly, T i and
T j are level-disjoint up to the root v for any distinct i, j.

Note that the above level-disjoint partitions of Wk and Ŵk are perfect,
respectively biperfect. Hence their maximal height is optimal in the sense of
Proposition 1. Also their number is optimal. Indeed, k = degWk

(v) = deg
̂Wk

(v),

Wk is non-bipartite, Ŵk is bipartite, and the maximal heights are

max
1≤i≤k

h(Si) = k = eccWk
(v) + k − 1, max

1≤i≤k
h(T i) = 2k = ecc

̂Wk
(v) + 2k − 2.

The above partitions together with Proposition 2 lead to following sufficient
conditions on existence of k level-disjoint partitions with the same root. A vertex
v is a cut-vertex in a graph G if G − v is disconnected.

Theorem 2. If a graph G has a k-wheel for k ≥ 1 or k-biwheel for k ≥ 3
centered at a vertex v and v is not a cut-vertex, then G has k level-disjoint
partitions rooted at v.

Note that the above theorem can be easily generalized for a vertex v that is
not a cut-vertex and is adjacent to k vertices on an arbitrarily large cycle in G.
Theorem 2 together with Propositions 3 and 4 applies in particular for Cartesian
products of (nontrivial) connected graphs as they are 2-connected.

Furthermore, applying Theorem 1 we obtain a sufficient condition on
existence of optimal number of (bi)perfect level-disjoint partitions with the
same root.

Theorem 3. Let v be a vertex of degree k ≥ 1 in a graph G. If G has a k-wheel
centered at v, then G has k perfect level-disjoint partitions rooted at v. If G is
bipartite, k ≥ 3, and G has a k-biwheel centered at v, then G has k biperfect
level-disjoint partitions rooted at v.
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Proof. Let H denote the k-wheel resp. k-biwheel centered at v. All neighbors
of v in G are also in H. In addition, distances to v from G are preserved in H.
(Note that in the case of k-biwheel we have dG(v, xi) = dH(v, xi) = 2 for every
1 ≤ i ≤ k since G is bipartite.) Hence we may apply Theorem 1 to extend the
above (bi)perfect level-disjoint partitions of H to G. 
�

Theorem 3 can be applied to obtain perfect or biperfect level-disjoint par-
titions for various graphs. For an example, see the four biperfect level-disjoint
partitions of the circulant graph in Fig. 2. Further examples are provided in the
next subsection.

(0, 0, 0, 0)

(7, 5, 3, 1)

(8, 6, 4, 2)

(5, 3, 1, 7)

(6, 4, 2, 8)

(7, 5, 3, 9)
(4, 2, 8, 6)

(5, 3, 9, 7)

(4, 2, 8, 6)

(3, 1, 7, 5)

(2, 8, 6, 4)

(1, 7, 5, 3) v
w1

w2 w3

w4

x1

x2

x3

x4

Fig. 2. Four perfect level-disjoint partitions of a circulant graph rooted at v obtained
from a 4-biwheel.

Next we generalize Theorem 3. If l divides k, then the above k (bi)perfect
level-disjoint partitions of Wk or Ŵk can be compressed into l (bi)perfect level-
disjoint partitions. Let k = pl for some integers l, p and let the i-th level partition
of Wk for 1 ≤ i ≤ l be U i = (U i

0 = {v}, U i
1, . . . , U

i
l ) where

U i
j = {wi+j−1+l, wi+j−1+2l, . . . , wi+j−1+pl}

for 1 ≤ j ≤ l and the indices are taken cyclically; that is, modulo (k + 1) plus 1.
Clearly, U i and U j are level-disjoint for any distinct 1 ≤ i, j ≤ l. Similarly for
a k-biwheel with k = pl, let the i-th level partition of Ŵk for 1 ≤ i ≤ l be
Vi = ({v}, U i

1,X
i
1, . . . , U

i
l ,X

i
l ) where U i

j is as above and

Xi
j = {xi+j−1+l, xi+j−1+2l, . . . , xi+j−1+pl}

for 1 ≤ j ≤ l and the indices are taken cyclically; that is, modulo (k + 1) plus 1.
Clearly, Vi and Vj are level-disjoint for any distinct 1 ≤ i, j ≤ l.

These partitions lead to generalization of Theorem 3 as follows. Additional
properties of these partitions, called partitions modulo p, have been studied in [6].
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Theorem 4. Let v be a vertex in a graph G of degree k ≥ 1 divisible by an
integer l ≥ 1. If G has a k-wheel centered at v, then G has l perfect level-disjoint
partitions rooted at v. If G is bipartite, k ≥ 3, and G has a k-biwheel centered
at v, then G has l biperfect level-disjoint partitions rooted at v.

4 Particular Networks

In this section we consider particular examples of Cartesian products and pro-
vide explicit constructions for them. We also propose several problems and
conjectures.

4.1 Torus C2n � C2m

First we consider a bipartite 2-dimensional torus; that is, the graph C2n � C2m

where n,m ≥ 2. By Proposition 3, it has a 4-biwheel centered at any vertex r.
Hence by Theorem 3, it has four level-disjoint partitions rooted at r of (optimal)
height

eccC2n�C2m(r) + 6 = n + m + 6.
Explicitly, let us denote the vertices of cycles C2n, C2m by C2n =

(u1, . . . , u2n), C2m = (v1, . . . , v2m) and assume r = (u1, v1). We define a function
f(i, j, k) for 1 ≤ i ≤ 2n, 1 ≤ j ≤ 2m, 1 ≤ k ≤ 4 determining the level of each
vertex (ui, vj) in the k-th level partition by

f(i, j, k) = d(i, j) +

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2((k − 1) mod 4) if 1 < i ≤ n and 1 ≤ j ≤ m,

2(k mod 4) if i = 1 or n < i ≤ 2n, and 2 ≤ j ≤ m,

2((k + 1) mod 4) if n < i ≤ 2n, and j = 1 or m < j ≤ 2m,

2((k + 2) mod 4) if 1 ≤ i ≤ n and m < j ≤ 2m

and f(1, 1, k) = 0, where d(i, j) = dC2n�C2m((ui, vj), (u1, v1)) is

d(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i + j − 2 if 1 ≤ i ≤ n and 1 ≤ j ≤ m,

2n − i + j if n < i ≤ 2n and 1 ≤ j ≤ m,

2n − i + 2m − j + 2 if n < i ≤ 2n and m < j ≤ 2m,

i + 2m − j if 1 ≤ i ≤ n and m < j ≤ 2m.

Then it is easy to verify that Sk = (Sk
0 , . . . , S

k
h) for k = 1, . . . , 4 where h =

n + m + 6 and

Sk
l = {(ui, vj) | f(i, j, k) = l, 1 ≤ i ≤ 2n, 1 ≤ j ≤ 2m}

for every 0 ≤ l ≤ h are biperfect level-disjoint partitions of C2n � C2m. For
example see Fig. 3.

Furthermore, by applying Theorem 4 we obtain two same-rooted level-
disjoint partitions of C2n � C2m of (optimal) height n + m + 2. Trivially, a
single distance partition from the root has (optimal) height n+m as well. Hence
it remains a question whether C2n � C2m has three same-rooted level-disjoint
partitions of (optimal) height n+m+ 4, which is perhaps easy to resolve. More
interestingly, this can be generalized for higher dimensions as follows.
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v4

v1

v2

v3

u6 u1 u2 u3 u4 u5

r

(0, 0, 0, 0) (1, 3, 5, 7)

(2, 4, 6, 8)(3, 5, 7, 1)(4, 6, 8, 2)

(5, 7, 1, 3)

(6, 8, 2, 4) (7, 1, 3, 5) (8, 2, 4, 6)

4-biwheel

(2, 4, 6, 8)

(3, 5, 7, 9) (5, 7, 9, 3)(6, 8, 10, 4)

(9, 3, 5, 7)

(8, 2, 4, 6) (9, 3, 5, 7) (10, 4, 6, 8)

(6, 8, 2, 4)

(7, 9, 3, 5)

(7, 9, 3, 5)

(7, 9, 3, 5)

(8, 10, 4, 6)

(8, 10, 4, 6)(9, 11, 5, 7)

r

Fig. 3. Four biperfect level-disjoint partitions of C6 � C4 rooted at r = (u1, v1) of
maximal height 11. The eccentric vertex to r, denoted by r, is in the (last) 11th level of
the second partition. The arrows denote how these LDPs are constructed from LDPs
of the 4-biwheel centered at r.

Conjecture 1. The (bipartite) generalized torus C2n1 �C2n2 � · · · �C2nd
where

d ≥ 2 and n1, . . . , nd ≥ 2 has l same-rooted level-disjoint partitions of optimal
height for every 1 ≤ l ≤ 2d.

We only know from Theorem 4 that Conjecture 1 holds if l divides 2d. Note
that by (2), an optimal height of four r-routed level-disjoint partitions of a non-
bipartite torus is ecc(r) + 3 instead of ecc(r) + 6 for bipartite case. This leads
us to pose the following problem. Clearly, if Conjecture 1 holds, this problem
reduces only to non-bipartite cases.

Problem 1. Which of generalized tori Cm1 � Cm2 � · · · � Cmd
admit 2d same-

rooted level-disjoint partitions of optimal height?

4.2 Mesh Pn � Pm

For 2-dimensional meshes Pn � Pm where n,m ≥ 3 we obtain similar results as
for tori, up to choice of the root. Let us denote the vertices of paths Pn, Pm by
Pn = (u1, . . . , un), Pm = (v1, . . . , vm). A vertex (ui, vj) of Pn � Pm is an inner
vertex if 1 < i < n and 1 < j < m; and a border vertex otherwise.

By Proposition 3, the mesh Pn � Pm has a 4-biwheel centered at any inner
vertex. Hence by Theorem 3 it has four level-disjoint partitions rooted at the
same inner vertex r = (ui, vj) of (optimal) height eccPn�Pm

(r) + 6 where

eccPn�Pm
((ui, uj)) = max(i + j − 2, i + m − j − 1, n − i + m − j, n − i + j − 1).

For example, see Fig. 4.
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v4

v1

v2

v3

u1 u2 u3 u4 u5 u6

r

(0, 0, 0, 0) (1, 3, 5, 7)

(2, 4, 6, 8)(3, 5, 7, 1)(4, 6, 8, 2)

(5, 7, 1, 3)

(6, 8, 2, 4) (7, 1, 3, 5) (8, 2, 4, 6)

4-biwheel

(2, 4, 6, 8)

(3, 5, 7, 9) (5, 7, 9, 11)(4, 6, 8, 10)

(9, 3, 5, 7)

(4, 6, 8, 2) (3, 5, 7, 9) (4, 6, 8, 10)

(4, 6, 8, 10)

(11, 5, 7, 9)

(3, 5, 7, 9)

(5, 7, 9, 3)

(10, 4, 6, 8)

(6, 8, 10, 12)(5, 7, 9, 11)

r

Fig. 4. Four biperfect level-disjoint partitions of P6 � P4 rooted at r = (u2, v2) of
maximal height 12. The eccentric vertex to r, denoted by r, is in the (last) 12th level
of the fourth partition. The arrows denote how these LDPs are constructed from LDPs
of the 4-biwheel centered at r.

Furthermore, by applying Theorem 4 we obtain two level-disjoint partitions
rooted at the same inner vertex r of (optimal) height ecc(r) + 2. Explicit con-
structions of such level-disjoint partitions can easily be derived in a similar way
as for torus. We leave them out as they are merely technical. Similarly as for
bipartite tori, we propose the following conjecture.

Conjecture 2. The generalized mesh Pm1 � Pm2 � · · · � Pmd
where d ≥ 2 and

m1, . . . ,md ≥ 3 has l r-rooted level-disjoint partitions of optimal height for every
1 ≤ l ≤ 2d and every inner vertex r.

Note that Conjecture 2 implies Conjecture 1 since a bipartite torus contains a
mesh with the same parameters 2n1, . . . , 2nd as a spanning subgraph, and the
mesh has an inner vertex with eccentricity equal to the eccentricity of any vertex
of the torus. We only know from Theorem 4 that Conjecture 2 holds if l divides
2d. Note that we considered only inner vertices as roots since for border vertices
in 2-dimensional meshes there are no k-biwheels with k ≥ 3.

Problem 2. Determine the maximal number of r-rooted level-disjoint partitions
of optimal height in the generalized mesh Pm1 �Pm2 � · · · �Pmd

for all vertices
r and all parameters d ≥ 2, m1, . . . ,md ≥ 2.

4.3 Hypercube Qn

We view the n-dimensional hypercube Qn for n ≥ 3 as the Cartesian product
of C4 � Ŵ2 and the (n − 2)-fold Cartesian product of K2; that is, Qn � C4 �
(K2)n−2. By recursive application of Proposition 4, we obtain that Qn for any
n ≥ 3 has an n-biwheel centered at any vertex v. Explicitly, let us assume that
v = 0n = (0, . . . , 0). Then an n-biwheel centered at v is formed (for example)
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by vertices wi = ei for i = 1, . . . , n, xi = ei ⊕ ei+1 for i = 1, . . . , n − 1, and
xn = e1 ⊕ en, where ei denotes the vector with 1 exactly in the ith coordinate.

Hence by Theorem 3 we obtain the following result, answering affirmatively
a conjecture from [6] where only the case when n = 3 · 2i or n = 4 · 2i for some
integer i ≥ 0 was shown. See examples for n = 3 and n = 4 on Fig. 5.

Corollary 1. For every n ≥ 3 there exist n level-disjoint partitions of Qn with
the same root and with the maximal height 3n − 2.

v

x1 x3 x2

w1 w2 w3

x1 x2

w1 w2 w3

v

w4

x3x4

(0, 0, 0)

(5, 1, 3) (1, 3, 5) (3, 5, 1)

(2, 4, 6)(4, 6, 2)

(0, 0, 0, 0)

(5, 7, 1, 3) (7, 1, 3, 5) (1, 3, 5, 7)

(7, 3, 5)

(3, 5, 7, 1)

(6, 8, 2, 4) (2, 4, 6, 8)(4, 6, 8, 2) (8, 2, 4, 6)

(7, 9, 3, 5) (7, 9, 3, 5) (7, 9, 3, 5) (9, 3, 5, 7)

(8, 10, 4, 6)

(8, 2, 4, 6)(6, 8, 2, 4)(6, 2, 4)

Fig. 5. (a) Three biperfect level-disjoint partitions of Q3 rooted at v of maximal height
7. (b) Four biperfect level-disjoint partitions of Q4 rooted at v of maximal height 10.

Explicitly, we define a function f(u, k) for u ∈ V (Qn), 1 ≤ k ≤ n determining
the level of each vertex u in the k-th level partition as

f(u, k) =

⎧⎪⎨
⎪⎩

0 if u = v (= 0n),
2((n + k) mod n) + 2 if u = xn (= e1 ⊕ en),
2((i + k) mod n) + j otherwise

where i is the position of the leftmost 1 in u and j is the number of 1’s in u. Then
it is easy to verify that Sk = (Sk

0 , . . . , S
k
h) for k = 1, . . . , n where h = 3n− 2 and

Sk
l = {u ∈ V (Qn) | f(u, k) = l} for every 0 ≤ l ≤ h are biperfect level-disjoint

partitions of Qn.
Note that the above definition of f(u, k) is based on the fact that each vertex

u except v or xn has a shortest path to the root v that goes through wi = ei
and avoids xn, where i is the position of the leftmost 1 in u. Indeed, from u
by consecutively changing the rightmost 1 to 0 we obtain all vertices of such
a path. Furthermore, from xi we go to wi = ei along these paths for each
i = 1, . . . , n− 1 which agrees with the partition of the n-biwheel Ŵn. Therefore,
we may extend the canonical biperfect level-disjoint partitions of Ŵn along these
paths to biperfect level-disjoint partitions of Qn by applying Theorem 1, which
corresponds to the above prescription for f(u, k).
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Furthermore, from Theorem 4 we obtain that Qn for any n ≥ 3 has k biperfect
level-disjoint partitions rooted at the same vertex (of maximal height n+2k−2)
if k divides n. We propose that it holds for any k ≥ 1.

Conjecture 3. For any 1 ≤ k ≤ n, n ≥ 3, the hypercube Qn has k same-rooted
level-disjoint partitions of optimal height.

5 Conclusions

In this work the concept of level-disjoint partitions which was originally intro-
duced in [6] is employed to describe simultaneous broadcasting of multiple mes-
sages from the same originator in the considered communication model.

It is shown that a local solution on a suitable subgraph can be extended
to the whole graph without loss of optimality. In this paper we use specifically
wheels and biwheels as local subgraphs. This could be further generalized for
other subgraphs such as subdivisions of wheels.

This approach leads to simultaneous broadcasting in optimal time on partic-
ular Cartesian products of graphs. However, it can be applied for a much larger
class of graphs. For example, for some circulant graphs or Knödel graphs that
have been previously studied in the context of broadcasting [3,4,11].

For bipartite tori, meshes, and hypercubes we provided tight results based
on construction of optimal number of biperfect level-disjoint partitions from
biwheels. We believe that simultaneous broadcasting can be achieved in opti-
mal time for any number of messages on generalized bipartite tori, generalized
meshes, and hypercubes (Conjectures 1–3). The problem of simultaneous broad-
casting in optimal time remains open for general tori (Problem 1) and meshes
with border originator vertices (Problem 2).
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