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Abstract. This paper concerns weighted triangle covering in undirected
graph G = (V, E), where a nonnegative integral vector w = (w(e) : e ∈
E)T gives weights of edges. A subset S of E is a triangle cover in G if S
intersects every triangle of G. The weight of a triangle cover is the sum
of w(e) over all edges e in it. The characteristic vector x of each triangle
cover in G is an integral solution of the linear system

π : Ax ≥ 1,x ≥ 0,

where A is the triangle-edge incidence matrix of G. System π is totally
dual integral if max{1Ty : ATy ≤ w,y ≥ 0} has an integral optimum
solution y for each integral vector w ∈ Z

E
+ for which the maximum

is finite. The total dual integrality of π implies the nice combinatorial
min-max relation that the minimum weight of a triangle cover equals
the maximize size of a triangle packing, i.e., a collection of triangles in
G (repetitions allowed) such that each edge e is contained in at most
w(e) of them. In this paper, we obtain graphical properties that are
necessary for the total dual integrality of system π, as well as those for the
(stronger) total unimodularity of matrix A and the (weaker) integrality
of polyhedron {x : Ax ≥ 1,x ≥ 0}. These necessary conditions are
shown to be sufficient when restricted to planar graphs. We prove that
the three notions of integrality coincide, and are commonly characterized
by excluding odd pseudo-wheels from the planar graphs.

Keywords: Triangle packing and covering · Totally dual integral
system · Totally unimodular matrix · Integral polyhedron · Planar
graph · Hypergraph

1 Introduction

Covering and packing triangles in graphs has been extensively studied for decades
in graph theory [6,7,14] and optimization theory [2,9]. In this paper, we study the
problem from both a polyhedral perspective and a graphical persective – charac-
terizing polyhedral integralities of triangle covering and packing with graphical
structures.
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Graphs considered in this paper are undirected, simple and finite. A weighted
graph (G,w) consists of a graph G (with vertex set V (G) and edge set E(G))
and an edge weight (function) w ∈ Z

E(G)
+ . The weight of any edge subset S

is w(S) =
∑

e∈S w(e). By a triangle cover of G we mean an edge subset S
(⊆ E(G)) whose removal from G leaves a triangle-free graph. Let τw(G) denote
the minimum weight of a triangle cover of (G,w). By a triangle packing of (G,w)
we mean a collection of triangles in G (repetition allowed) such that each edge
e ∈ E(G) is contained in at most w(e) of them. Let νw(G) denote the maximum
size of a triangle packing of (G,w). In case of w = 1, we write τw(G) and νw(G)
as τ(G) and ν(G), respectively.

Tuza’s Conjecture and Variants. A vast literature on triangle covering and
packing concerns Tuza’s conjecture [14] that τ(G) ≤ 2ν(G) for all graphs G
and its weighted version [2] that τw(G) ≤ 2νw(G) for all graphs G and all
w ∈ Z

E(G)
+ . Both conjectures remain wide open. The best known general results

τ(G) ≤ 2.87ν(G) and τw(G) ≤ 2.92νw(G) are due to Haxell [7] and Chapuy
et al. [2], respectively. Many researchers have pursued the conjectures by showing
the conjectured inequalities hold for certain special class of graphs. In particu-
lar, Tuza [15] and Chapuy et al. [2] confirmed their own conjectures for planar
graphs. Haxell et al. [6] proved the stronger inequality τ(G) ≤ 1.5ν(G) if G is
planar and K4-free, where K4 denotes the complete graph on 4 vertices.

Along a different line, Lakshmanan et al. [10] proved that the equation
τ(G) = ν(G) holds whenever G is (K4, gem)-free or G’s triangle graph is
odd-hole-free. A natural question arises for the weighted version: When does
τw(G) = νw(G) hold? This question is closely related to the notion of total dual
integrality from the theory of polyhedral combinatorics.

Total Dual Integrality. A rational system {Ax ≥ b,x ≥ 0} is called totally dual
integral (TDI) if the maximum in the LP duality equation

min{cTx : Ax ≥ b,x ≥ 0} = max{bTy : ATy ≤ c,y ≥ 0}
has an integral optimum solution y for each integral vector c for which the
maximum is finite. The model of TDI systems introduced by Edmonds and
Galies [5] plays a crucial role in combinatorial optimization and serves as
a general framework for establishing many important combinatorial min-max
relations [3,4,11,12]. Schrijver and Seymour [13] derived the following useful
tool for proving total dual integrality.

Theorem 1 [13]. The rational system Ax ≥ b,x ≥ 0 is TDI, if and only if

max{bTy : ATy ≤ c,y ≥ 0, 2y is integral}
has an integral optimum solution y for each integral vector c for which the max-
imum is finite.

Edmonds and Giles [5] showed that total dual integrality implies primal inte-
grality as specified by the following theorem.
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Theorem 2 [5]. If rational system Ax ≥ b,x ≥ 0 is TDI and b is integral, then
the polyhedron {x : Ax ≥ b,x ≥ 0} is integral, i.e., min{cTx : Ax ≥ b,x ≥ 0}
is attained by an integral vector for each integral vector c for which the minimum
is finite.

Given a weighted graph (G,w), let Λ(G) denote the set of triangles in G.
To see the relation between the equation τw(G) = νw(G) and TDI systems, let
us consider the hypergraph HG = (E(G), Λ(G)) of triangles in G. We assume
Λ(G) �= ∅ to avoid triviality. The edge-vertex incidence matrix AG of HG is
exactly the triangle-edge incidence matrix of G, whose rows and columns are
indexed by triangles and edges of G, respectively, such that for any � ∈ Λ(G) and
e ∈ E(G), A�,e = 1 if e ∈ � and A�,e = 0 otherwise. In standard terminologies
from the theory of packing and covering [4,12], we write

τw(HG) = min{wTx : AGx ≥ 1,x ∈ Z
E(G)
+ }, (1.1)

νw(HG) = max{1Ty : AT
Gy ≤ w,y ∈ Z

Λ(G)
+ }, (1.2)

τ∗
w(HG) = min{wTx : AGx ≥ 1,x ≥ 0}, (1.3)

ν∗
w(HG) = max{1Ty : AT

Gy ≤ w,y ≥ 0}. (1.4)

Combinatorially, each feasible 0–1 solution x of (1.1) is the characteristic vector
of a triangle cover of G, and vice versa. Thus such an x is also referred to as
a triangle cover (or an integral triangle cover to emphasis the integrality) of G.
Moreover the minimality of τw(HG) implies that

τw(HG) = τw(G).

Similarly, each feasible solution y of (1.2) is regarded as a triangle packing (or
an integral triangle packing) which contains, for each � ∈ Λ(G), exactly y(�)
copies of �. In particular,

νw(HG) = νw(G).

Usually, feasible solutions of (1.3) and (1.4) are called fractional triangle covers
and fractional triangle packings of G, respectively. Writing τ∗

w(G) = τ∗
w(HG) and

ν∗
w(G) = ν∗

w(HG), the LP-duality theorem gives

τw(G) ≥ τ∗
w(G) = ν∗

w(G) ≥ νw(G).

It is well known (see e.g., page 1397 of [12]) that

τw(G) = νw(G) holds for eachw ∈ Z
E(G)
+ if and only ifAGx ≥ 1,x ≥ 0 is TDI.

Total Unimodularity. A matrix A is totally unimodular (TUM) if each subde-
terminant of A is 0, 1 or −1. Total unimodular matrices often imply stronger
integrality than TDI systems (see e.g., [8]).

Theorem 3. An integral matrix A is totally unimodular if and only if the system
Ax ≥ b,x ≥ 0 is TDI for each vector b.
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The 0–1 TUM matrices are connected to balanced hypergraphs. Let H =
(V, E) be a hypergraph with vertex set V and edge set E . Let k ≥ 2 be an
integer. In H, a cycle of length k is a sequence v1e1v2e2 . . . vkekv1 such that
v1, . . . , vk ∈ V are distinct, e1, . . . , ek ∈ E are distinct, and {vi, vi+1} ⊆ ei for
each i = 1, . . . , k, where vk+1 = v1. Hypergraph H is called balanced if every odd
cycle, i.e., cycle of odd length, has an edge that contains at least three vertices
of the cycle.

Theorem 4 (Berge [1]). Let H be a hypergraph such that every edge consists
of at most three vertices. Then the vertex-edge incidence matrix of H is TUM if
and only if H is balanced.

Our Results. Let B, M, and I be the sets of graphs G such that the triangle-
edge incidence matrices AG are TUM, systems AGx ≥ 1,x ≥ 0 are TDI, and
polyhedra {x|AGx ≥ 1,x ≥ 0} are integral, respectively. In terminologies of
hypergraph theory (see e.g., Part VIII of [12]),

G ∈ B ⇔ HG is balanced (by Theorem 4because HG is 3-uniform).

G ∈ M ⇔ HG is Mengerian, i.e., τw(G) = νw(G) holds for each w ∈ Z
E(G)
+ .

G ∈ I ⇔ HG is ideal, i.e., τw(G) = τ∗
w(G) holds for each w ∈ Z

E(G)
+ .

Recalling Theorems 2 and 3, given any graph G, the total modularity (balanced-
ness): G ∈ B implies the total dual integrality (Mengerian property): G ∈ M,
while G ∈ M implies primal integrality: G ∈ I. It follows that

B ⊆ M ⊆ I. (1.5)

In Sect. 2, first we strengthen (1.5) to B � M � I (Theorem 5). Then we
obtain necessary conditions for a graph to be a member of I (Lemma 4) or a
minimal graph outside B (Theorem 6 and its corollaries) in terms of the pattern
of the so-called odd triangle-cycles (Definition 1). Building on these conditions,
we establish in Sect. 3 the following characterization for total dual integrality of
covering triangle in planar graphs G (Theorem 9):

G ∈ M ⇔ G ∈ B ⇔ G ∈ I is K4-free ⇔ G is K4-free & odd pseudo-wheel-free,

where odd pseudo-wheels correspond to odd induced cycles in the triangle graph
of G (Definition 2). We conclude in Sect. 4 with remarks on characterizing general
graphs G ∈ M and general graphs G ∈ I. For easy reference, Appendix gives a
list of mathematical symbols used in the paper.

2 General Graphs

In this section, we study TUM, TDI and integral properties for covering and
packing triangle in general graphs. We often identify a graph G with its edge set
E(G). The following definition is crucial to our discussions.
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Definition 1. A triangle-cycle in G is a sequence C = e1�1e2 · · · ek�ke1 with
k ≥ 3 such that e1, · · · , ek are distinct edges, �1, · · · ,�k are distinct triangles,
and {ei, ei+1} ⊆ �i for each i ∈ {1, 2, · · · , k}, where ek+1 = e1. In ∪k

i=1�i, the
edges e1, e2, . . . , ek are join edges and other edges are non-join edges.

Let C = e1�1e2 · · · ek�ke1 be a triangle-cycle. We call C odd if its length k
is odd. By abusing notations, we identify C with the graph ∪k

i=1�i, whose edge
set we denote as E(C). We write JC = {e1, · · · , ek} for the set of join edges, and
NC = E(C)\JC for the set of non-join edges. Let TC denote the set of triangles
in C. A triangle in TC is basic if it belongs to BC = {�1, · · · ,�k}. Two basic
triangles �i and �j are consecutive if |i − j| ∈ {1, k − 1}. Triangles in TC can
be classified into four categories:

TC,i = {� ∈ TC : |� ∩ JC | = i}, i = 0, 1, 2, 3.

It is clear from Definition 1 that BC ⊆ TC,2 ∪ TC,3. We will establish a
strengthening B � M � I of the inclusion relations (1.5). The proof needs the
following equivalence implied by hypergraph theory.

Lemma 1. Let G be a graph. Then G ∈ B if and only if every odd triangle-cycle
C in G (if any) contains a basic triangle that belongs to TC,3;

Proof. Recall that G ∈ B if and only if hypergraph HG = (E(G), Λ(G)) is
balanced. By definition, the balance condition amounts to saying that every odd
triangle-cycle C in G (if any) has a triangle � which contains at least 3 joins.
It must be the case that � is formed by exactly 3 joins, giving � ∈ TC,3. �

Observe that the balanced, Mengerian, and integral properties are all closed
under taking subgraphs (see, e.g., Theorems 78.2 and 79.1 of [12]).

Lemma 2. Let G be a graph and H a subgraph of G. If G ∈ X for some X ∈
{B,M,I}, then H ∈ X. �
Lemma 3. K4 ∈ I \ M.

Proof. Note that K4 �∈ M follows from the fact that τ(K4) = 2 and ν(K4) = 1.
To see K4 = (V,E) ∈ I, for any x ∈ Q

E , let F (x) = {e ∈ E : 0 < x(e) < 1}
consist of “fractional” edges w.r.t x. Taking arbitrary w ∈ Z

E
+, we consider an

optimal fractional triangle cover x∗ for (K4,w) such that

F (x∗) is as small as possible.

We are done by showing that x∗ is integral. Suppose it were not the case. The
optimality says that wTx∗ = τ∗

w(K4) and x∗ ≤ 1. Thus F (x∗) �= ∅.
If x∗(e) = 1 for some e ∈ E, then x∗|E\{e} is a fractional triangle cover for

K4 \ e such that (w|E\{e})Tx∗|E\{e} = τ∗
w(K4) − w(e). Since K4 \ e ∈ B ⊆ I,

there is a triangle cover S of K4\e with minimum weight w(S) ≤ τ∗
w(K4)−w(e).

So S∪{e} is a triangle cover of K4 with weight w(S)+w(e) ≤ τ∗
w(K4), and hence

the incidence vector x ∈ {0, 1}E of S ∪{e} is an optimal fractional triangle cover
for (K4,w) with F (x) = ∅ � F (x∗) contradicting the minimality of F (x∗).
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Therefore x∗(e) < 1 for all e ∈ E, and AK4x
∗ ≥ 1 enforces that every

triangle of K4 intersects F (x∗) with at least 2 edges. Thus F (x∗) contains four
edges e1, e2, e3, e4 that induce a cycle of K4, where {e1, e3} and {e2, e4} are
two matchings of K4. Without loss of generality we may assume that x∗(e1) =
min4

i=1 x∗(ei). Let x ∈ Q
E
+ be defined by x(ei) = x∗(ei) + (−1)ix∗(e1) for i =

1, 2, 3, 4 and x(e) = x∗(e) for e ∈ E \ {e1, e2, e3, e4}. It is straightforward that

wTx = wTx∗ andF (x) ⊆ F (x∗) \ {e1}.

Since every triangle of K4 intersects each of {e1, e3} and {e2, e4} with exactly
one edge, we have AK4x = AK4x

∗ ≥ 1, which along with wTx = wTx∗ says
that x ∈ {0, 1}E is an optimal fractional triangle cover for (K4,w). However,
F (x) � F (x∗) gives a contradiction. �
Theorem 5. B � M � I.

Proof. In view of Lemma 3, it suffices to show that the graph G = (V,E) depicted
in Fig. 1 belongs to M \B. Note that G = e1�1e2 · · · e7�7e1 is an odd triangle-
cycle of length 7, where BG = {�1,�2, . . . ,�7} and Λ = Λ(G) = TG =
{�1, . . . ,�7,�8}.

Fig. 1. Graph G ∈ M \ B.

It is routine to check that none of G’s basic triangles �1,�2, . . . ,�7 belongs
to TG,3. Hence Lemma 1 asserts that G �∈ B. To prove G ∈ M, by Theorem 1, it
suffices to prove that, for any w ∈ Z

E
+ and an optimal solution y∗ of max{1Ty :

AT
Gy ≤ w,y ≥ 0, 2y ∈ Z

Λ
+}, there is an integral triangle packing z ∈ Z

Λ
+ of

(G,w) such that 1T z ≥ 1Ty∗.
Let y′ ∈ {0, 1/2}Λ be defined by y′(�) = y∗(�) − �y∗(�)� for each � ∈ Λ,

and let w′ ∈ Z
E
+ be defined by w′(e) = w(e)−∑

�∈Λ:e∈��y(�)� for each e ∈ E.
Then y′ is a fractional triangle packing of (G,w′) such that

1Ty′ = 1Ty∗ −
∑

�∈Λ
y∗(�).

If there is an integral packing z′ of (G,w′) such that 1T z′ ≥ 1Ty′, then z
with z(�) = �y∗(�)� + z′(�) for each � ∈ Λ is an integral packing of (G,w)
satisfying 1T z ≥ ∑

�∈Λ y∗(�) + 1Ty′ = 1Ty∗ as desired. We next show such
a z′ does exist by distinguishing two cases for integral weight w′.



134 X. Chen et al.

In case of w′(e) ≥ 1 for each e ∈ E, we observe that z′ with z′(�i) = 1 for
i = 1, 3, 6, 8 and z′(�i) = 0 for i = 2, 4, 5, 7 is a triangle packing of (G,w′) with
1T z′ = 4 = |Λ|/2 ≥ 1Ty′.

In case of w′(e) = 0 for some e ∈ G, the restriction y′′ of y′ to Λ(G \ e) is a
fractional triangle packing of (G\e,w′|E\e) with 1Ty′′ = 1Ty′. Using Lemma 1,
it is routine to check that G \ e ∈ B, which along with B ⊆ M gives an integral
triangle packing z′′ of (G\e,w′|E\e) with 1T z′′ ≥ 1Ty′′. For each triangle � ∈ Λ,
set z′(�) to 0 if e ∈ � and to z′′(�) otherwise. It follows that z′ ∈ Z

Λ
+ is an

integral triangle packing of (G,w′) with 1T z′ = 1T z′′ ≥ 1Ty′ as desired. �
Lemma 4. If C is an odd triangle-cycle of graph G ∈ I, then C contains either
a basic triangle belonging to TC,3 or a non-basic triangle belonging to TC,0∪TC,1.

Proof. By contradiction, suppose that graph G ∈ I and its odd triangle-cycle C
of length 2k + 1 form a counterexample, i.e., BC ⊆ TC,2 and TC \ BC ⊆
TC,2∪TC,3. By Observation 2, we have C ∈ I. Let w ∈ {1,∞}E(C) be defined by
w(e) = 1 for all e ∈ JC and w(e) = ∞ for all e ∈ NC . On one hand, BC ⊆ TC,2

implies that each join edge of C exactly belongs to two basic triangles. To break
all 2k + 1 basic triangles, we have to delete at least k + 1 join edges unless we
use some non-join edge (with infinity weight). Thus τw(C) ≥ k + 1.

On the other hand, note that every triangle of C contains at least two join
edges in JC . Thus x ∈ {1/2, 0}E(C) with x(e) = 1/2 if e ∈ JC and x(e) = 0
otherwise is a fractional triangle cover of C. This along with |JC | = 2k + 1 and
w|JC

= 1 shows that τ∗
w(C) ≤ |JC |/2 = k + 1/2. However, τw(C) > τ∗

w(C)
contradicts C ∈ I. �

The concept of triangle graph provides an efficient tool for studying triangle
covering. Suppose that G is a graph with at least a triangle. Its triangle graph,
denoted as T (G), is a graph whose vertices are named as triangles of G such that
�i�j is an edge in T (G) if and only if �i and �j are distinct triangles in G
which share a common edge. For example, the graph G in Fig. 1 has its triangle
graph as depicted in Fig. 2.

Fig. 2. The triangle graph T (G) of G in Fig. 1.
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A graph G �∈ B is called minimal if every proper subgraph H of G belongs
to B. Let N denote the set of these minimal graphs.

Theorem 6. If G ∈ N, then G is either K4 or an odd triangle-cycle with length
at least 5 such that BG ⊆ TG,2 and TG \ BG ⊆ TG,1 ∪ TG,3.

Proof. Clearly, K4 ∈ N. So we consider G �= K4. Since G �∈ B is minimal, G is
K4-free, and by Lemma 1, G = e1�1e2 · · · ek�ke1 is an odd triangle-cycle such
that BG ⊆ TC,2, where k ≥ 5 is odd. Observe that triangle-cycle G corresponds
to a cycle C̃ = ẽ1�1ẽ2 · · · ẽk�kẽ1 in triangle graph T (G). We first present a
series of useful properties.

Property 1. If �i�j is a chord of C̃, then the common edge of �i and �j is an
non-join edge.

Since {�i,�j} ⊆ TG,2 and they are not consecutive in G, �i ∩JG and �j ∩JG

are disjoint. �

Property 2. If both �i�j and �j�k are chords of C̃, then �i,�j ,�k share the
same non-join edge in G, and �i�k is a chord of C̃.

It follows from Property 1 that each of �i,�j ,�k has only one non-join edge.�

Property 3. If �i1 ,�i2 , . . . ,�it
are all basic triangles in BG that contain

e ∈ NG, where t ≥ 2 and i1 < i2 < · · · < it, then for each j = 1, 2, . . . , t,
|{�ij

,�ij+1 . . . ,�ij+1−1,�ij+1}| is even (where it+1 = i1 in case of j = t).

Otherwise, Cj = e�ij
eij+1�ij+1 · · · �ij+1−1eij+1�ij+1e is an odd triangle-cycle

of G for some 1 ≤ j ≤ t. Observe that every basic triangle of Cj belongs to TCj ,2.
Thus Lemma 1 says that Cj �∈ B, which along with the minimality of G ∈ N
enforces that Cj = G. However this is absurd because Cj does not contain the
join edge eij+2 ∈ JG of G. �

Property 4. For each e ∈ NG, there are exactly an odd number of basic triangles
in BG that contain e.

Since G is the union of its basic triangles, e is contained by some basic triangle
of G. The property is instant from Property 3 and the odd length k of the
triangle-cycle G. �

We now proceed to prove TG\BG ⊆ TG,1∪TG,3. Suppose for a contradiction
that there exists � ∈ TG\BG with � ∈ TG,0. Then � consists of three non-join
edges p, q, r ∈ NG. Let

Bp = {� ∈ BG : p ∈ �},Bq = {� ∈ BG : q ∈ �},Br = {� ∈ BG : r ∈ �}

denote the sets of basic triangles (of G) that contain p, q, r, respectively. Notice
from Property 4 that

|Bp|, |Bq| and |Br| are odd numbers.
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We distinguish between two cases depending on whether all of Bp,Bq,Br are
singletons or not.

Case 1. |Bp| = |Bq| = |Br| = 1. We may assume without loss of generality that
Bj = {�ij

} for j ∈ {p, q, r} and ip < iq < ir. Note that

Cpq = p�ip
eip+1�ip+1 · · · eiq

�iq
q�p,

Cqr = q�iq
eiq+1�iq+1 · · · eir

�ir
r�q,

Crp = r�ir
eir+1�ir+1 · · · eip

�ip
p�r

are triangle-cycles of G whose basic triangles each contain exactly two join edges.
Observe that the sum of lengths of Cpq, Cqr, Crp equals k + 6, which is odd. So
at least one of Cpq, Cqr, Crp, say Cpq, has an odd length. It follows from BCpq

⊆
TCpq,2 and Lemma 1 that Cpq �∈ B. Now the minimality of G ∈ N enforces
Cpq = G. Hence the join edge eiq+2 ∈ JG must be one of eip

, eip+1, . . . , eiq−1,
from which we deduce that eiq+2 = eip

(and iq + 1 = ir). As eiq+2 has a
common vertex with eiq

, it follows that eip
, eiq+1 and r form a triangle, and

p, q, r, eip
, eip+1, eiq+1 induce a K4, contradicting the fact that G is K4-free.

Case 2. max{|Bp|, |Bq|, |Br|} ≥ 3. Suppose without loss of generality that Bp =
{�i1 , · · · ,�it

} where t ≥ 3 and i1 < i2 · · · < it. Setting it+1 = i1, since Bp ∩
Bq = ∅, we have |Bq| =

∑t
j=1 |{�ij

,�ij+1 · · · ,�ij+1} ∩ Bq|. Recall that |Bq|
is odd. So there exists j ∈ {1, . . . , t} such that {�ij

,�ij+1 · · · ,�ij+1} ∩ Bq

consists of
an odd number s of basic triangles �h1 , . . . ,�hs

,

where ij < h1 < · · · < hs < ij+1. By Property 3, |{�ij
,�ij+1 . . . ,�ij+1}| is

even, and |{�h�
,�h�+1, . . . ,�h�+1}| is even for each � ∈ {1, . . . , s − 1}. Note

that

|{�ij
,�ij+1 . . . ,�ij+1}|

= |{�ij
,�ij+1 . . . ,�h1}| +

(
s−1∑

�=1

|{�h�
,�h�+1, . . . ,�h�+1}|

)

+|{�hs
,�hs+1 . . . ,�ij+1}| − s

≡ (h1 − ij) + (ij+1 − hs) − s (mod 2)

Since s is odd, either h1 − ij or ij+1 − hs is odd. Suppose by symmetry that
h1 − ij is odd. It follows that C = p�ij

eij+1�ij+1 · · · eh1�h1q�p is a triangle-
cycle of G such that BC ⊆ TC,2. As the length h1 − ij + 2 is odd, we deduce
from Lemma 1 that C �∈ B. In turn G ∈ N enforces C = G. Similar to Case 1,
eh1+2 ∈ JG ⊆ C implies that �h1 ,�ij+1 ,� form a K4, a contradiction to the
K4-freeness of G. The contradiction shows that (TG \ BG) ∩ TG,0 = ∅.

It remains to prove (TG \ BG) ∩ TG,2 = ∅. Suppose on the contrary that
there exists � ∈ TG \ BG which consists of two join edges p, q ∈ JG and one
non-join edge r ∈ NG. Again we set Bp = {� ∈ BG : p ∈ �}, Bq = {� ∈
BG : q ∈ �} and Br = {� ∈ BG : r ∈ �}. Recalling BG ⊆ TG,2, we derive
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|Bp| = |Bq| = 2. Suppose without loss of generality that Bp = {�ip
,�ip+1},

Bq = {�iq
,�iq+1} and ip < ip + 1 < iq < iq + 1 (note p = eip+1, q = eiq+1).

Recall from Property 4 that |Br| is an odd number. Observe that both C =
p�ip+1eip+2�ip+2 · · · eiq

�iq
q�p and C ′ = q�iq+1eiq+2�iq+2 · · · eip

�ip
p�q are

triangle-cycles whose basic triangles each contain exactly 2 join edges. Because
the length of G is odd, exactly one of C and C ′, say C, whose length is odd.
By Lemma 1(i), C �∈ B. In turn G ∈ N gives C = G. Since neither �ip

nor
�iq+1 is a basic triangle of C and �ip

�= �iq+1, we derive that eiq+2 ∈ G \ C,
a contradiction to C = G. This completes the proof of Theorem 6. �

Let X ∈ {M,I}. If graph G ∈ X\B is minimal in the sense that every proper
subgraph H of G is outside X \ B, then H ∈ X (by Lemma 2) enforces H ∈ B.
Hence G ∈ N. Conversely, if G ∈ X ∩ N, then every subgraph H of G satisfies
H ∈ B ⊆ X, giving H �∈ X \ B. Thus the set of minimal graphs in X \ B is

{G ∈ X \ B : H �∈ X \ B for every H � G} = N ∩ X, where X ∈ {M,I}. (2.1)

Corollary 1. If G ∈ N ∩ I (i.e., G ∈ I \ B is minimal) , then G is either K4

or an odd triangle-cycle such that BG ⊆ TG,2, TG \ BG ⊆ TG,1 ∪ TG,3, and
TG,1 = TG,1 \ BG �= ∅.
Proof. In view of Theorem 6, it suffices to consider G being an odd triangle-cycle
such that BG ⊆ TG,2 and TG \ BG ⊆ TG,1 ∪ TG,3. In turn, Lemma 4 implies
the existence of at least a non-basic triangle of G that belongs to TG,1. �
Corollary 2. If G ∈ N ∩ M (i.e., G ⊆ M \ B is minimal) , then G is an
odd triangle-cycle such that BG ⊆ TG,2, TG \ BG ⊆ TG,1 ∪ TG,3, and TG,1 =
TG,1 \ BG �= ∅.
Proof. Note from G ∈ M that G �= K4. As M ⊆ I, the conclusion is immediate
from Corollary 1. �

3 Planar Graphs

In this section, we study the planar case more closely, and characterize planar
graphs in M by excluding pseudo-wheels defined as follows.

Definition 2. A triangle-cycle C is a pseudo-wheel if it has length at least 4,
TC = BC and each pair of non-consecutive basic triangles of C is edge-disjoint.

It is easy to see that a triangle-cycle C is a pseudo-wheel if and only if its
triangle graph T (C) is an induced cycle with length at least 4. Thus every wheel
other than K4 is a pseudo-wheel. Two pseudo-wheels that are not wheels are
shown in Fig. 3.

Lemma 5. If C is an odd pseudo-wheel, then C �∈ I.
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Fig. 3. Examples of pseudo-wheels.

Proof. Suppose the length of C is 2k+1. Let w ∈ Z
E
+(C) be defined by w(e) = 1

for all e ∈ JC and w(e) = ∞ for all e ∈ NC . Then τw(C) = k + 1. On the other
hand x ∈ {0, 1/2}E(C) with x(e) = 1/2 for all e ∈ JC and x(e) = 0 for all e ∈ NC

is a fractional triangle cover of C, showing τ∗
w(C) ≤ wTx = k + 1/2 < τw(C). �

If �i,�o,� are distinct triangles of plane graph G such that �i is inside �
and �o is outside �, then we say that � is a separating triangle of �i and �o,
or � separates �i from �o.

A triangle-path in graph G is a sequence P = �1e1 · · · ek�k+1 with k ≥ 1
such that e1, · · · , ek are distinct edges, �1, · · · ,�k+1 are distinct triangles of G,
and {e1} ⊆ �1, {ek} ⊆ �k+1, {ei, ei+1} ⊆ �i+1 for each i ∈ [k − 1]. In ∪k+1

i=1 �i,
the edges e1, e2, . . . , ek are called join edges and other edges are called non-join
edges. Let JP denote the set of join edges of P . The length of P is defined as k.
We often say that P is a triangle-path from �1 to �k+1.

Lemma 6. Let G be a plane graph in which � is a separating triangle of trian-
gles �i and �o. Then � contains at least one join edge of every triangle-path
from �i to �o in G.

Proof. Consider an arbitrary triangle-path P = �1e1 · · · ek�k+1 in G from �1 =
�i to �k+1 = �o. We prove � ∩ {e1, . . . , ek} �= ∅ by induction on k. The basic
case of k = 1 is trivial. We consider k ≥ 2 and assuming that the lemma holds
when triangle-path involved has length at most k − 1. If �2 = �, then we are
done. If �2 �= �, then either � separates �1 from �2 or separates �2 and �k+1.
Observe that �1e1�2 is a triangle-path of length 1 < k, and �2e2 . . . , ek�k+1 is
a triangle-path of length k −1. From the induction hypothesis, we derive e1 ∈ �
in the former case, and ej ∈ � for some j = 2, . . . , k in the latter case. �
Lemma 7. Let C = e1�1e2 · · · ek�ke1 with k ≥ 3 be a triangle-cycle. If C is
plane and BC ⊆ TC,2, then �h does not separate �i from �j for any distinct
h, i, j ∈ {1, . . . , k}.
Proof. Note that C contains a triangle-path P from �i and �j with JP ⊆
JC \ �h. The triangle-path P along with Lemma 6 implies the result. �
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Theorem 7. If C is a planar triangle-cycle such that BC ⊆ TC,2, then TC ⊆
TC,0 ∪ TC,2.

Proof. Suppose that C = e1�1e2 · · · ek�ke1 with k ≥ 3 is plane, and there exists
� ∈ TC with � ∈ TC,1 ∪ TC,3.

Case 1. � ∈ TC,3 consists of three join edges eh, ei, ej , where 1 ≤ h < i < j ≤ k.
The structure of the triangle graph T (C) is illustrated in the left part of Fig. 4.

Fig. 4. The triangle graph T (C) in the two cases of the proof for Theorem 7.

For each pair (s, t) ∈ {(h, i − 1), (i, j − 1), (j, h − 1)}, there is a triangle-path
in C from �s to �t whose set of join edges is disjoint from {eh, ei, ej} = �. It
follows from Lemma 6 that

� does not separate �s from �t for each
(s, t) ∈ {(h, i − 1), (i, j − 1), (j, h − 1)}.

(3.1)

Suppose that � separates �h−1 from �h, and separates �i−1 from �i.
Without loss of generality let �h−1 and �h sit inside and outside �, respectively.
Then (3.1) implies that �j and �i−1 are inside and outside �, respectively. In
turn, i is inside �, and (3.1) says that �j−1 is inside �. Now �j−1 and �j are
both inside �, i.e., � does not separate �j−1 from �j . Hence, by symmetry we

Fig. 5. �h−1 and �h are both inside �.
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may assume that � does not separate �h−1 from �h, and further that �h−1

and �h are both inside �. as illustrated in Fig. 5.
As eh ∈ �h−1 ∩ �h, it is easy to see that either �h−1 separates �h from

�i or �h separates �h−1 from �i. The contradiction to Lemma 7 finishes our
discussion on Case 1.

Case 2. � ∈ TC,1 consist of join edge eh of C (shared with �h−1,�h), non-join
edge f (shared with �i) and non-join edge g (shared with �j), where h, i, j are
distinct. See the right part of Fig. 4. Similar to Case 1, it can be derived from
Lemma 6 that

� does not separate�s from �t for each(s, t) ∈ {(h, i), (i, j), (j, h − 1)}.

Therefore � does not separate �h−1 and �h. Suppose without loss of generality
that both �h−1 and �h are inside �. Then C has one of the structures as
illustrated in Fig. 5 with f in place of ei and g in place of ej . Again, either �h−1

separating �h from �i or �h separating �h−1 from �i contradicts to Lemma 7.
This completes the proof. �
Theorem 8. Let G be a planar graph. Then G ∈ N if and only if G is K4 or
an odd pseudo-wheel.

Proof. Sufficiency: Clearly K4 ∈ N. If G is an odd pseudo-wheel C, then G is an
odd triangle-cycle such that BG ⊆ TG,2. By Lemma 1, G �∈ B. Since the triangle
graph T (C) is an induced cycle, every proper subgraph of C is triangle-cycle-free,
and hence belongs to B, giving G ∈ N.

Necessity: Suppose that G ∈ N and G �= K4. By Theorem 6, an odd triangle-
cycle with length at least 5 such that BG ⊆ TG,2 and TG \ BG ⊆ TG,1 ∪ TG,3.
In turn, Theorem 7 enforces

TC = BC .

Suppose for a contradiction that there exists non-consecutive triangles �i,�j ∈
BG that share a common non-join edge e, where i < j −1. Then G contains two
triangle-cycles C1 = e�iei+1�i+1 · · · ej�je and C2 = e�jej+1�j+1 · · · ei�ie.
Because G is odd, one of C1 and C2, say C1, is odd. As C1 is a proper subgraph of
G ∈ N, we have C1 ∈ B. By Lemma 1, there exists a basic triangle �h in BC1 ∩
TC1,3. Because �h ∈ TG,2, it must be the case that e ∈ �h. Thus �i,�j ,�h

share a common non-join edge e of G. However in any planar embedding for G,
there is one triangle in {�i,�j ,�h}, which is a separating triangle of the other
two. This is a contradiction to Lemma 7. Thus each pair of non-consecutive basic
triangles of G is edge-disjoint, and G is an odd pseudo-wheel. �
Theorem 9. Let G be a planar graph, then the following are equivalent:

(i) G ∈ B;
(ii) G ∈ M;



Total Dual Integrality of Triangle Covering 141

(iii) G ∈ I is K4-free; and
(iv) G is K4-free and odd pseudo-wheel free.

Proof. Recalling (1.5) and Lemma 3, B ⊆ M ⊆ I and K4 ∈ I \ M imply the
relation (i) ⇒ (ii) ⇒ (iii). If G contains an odd pseudo-wheel H, then H �∈ I by
Lemma 5, which along with Lemma 2 would give G �∈ I. So we have (iii) ⇒ (iv).

It remains to prove (iv) ⇒ (i). If G �∈ B, we take H ⊆ G to be minimal,
i.e., H ∈ N. Theorem 8 says that H is K4 or an odd pseudo-wheel, i.e., G is not
K4-free and G is not odd pseudo-wheel free. �

4 Remarks

Lemma 4 provides us a necessary condition for G ∈ I as follows:

(BC ∩TC,3)∪((TC,0∪TC,1)\BC) �= ∅ for any odd triangle-cycle C of G. (4.1)

It would be interesting to see if the condition is sufficient for G ∈ I. A supporting
evidence is the following.

Remark 1. Condition (4.1) is a necessary and sufficient condition for K4-free
planar graph G to be a member of I.

Proof. By Theorem 9, a K4-free planar graph G ∈ I implies G ∈ B, and thus
BC ∩ TC,3 �= ∅ for every odd triangle-cycle C in G. On the other hand, given
a K4-free planar graph G satisfying (4.1), we see from Definition 2 that G does
not contain any odd pseudo-wheel. It follows from Theorem 8 that G does not
contain any subgraph in N, which implies G ∈ B ⊆ I. �

As M ⊆ I, condition (4.1) is also necessary for G ∈ M, but it is not sufficient
for the total dual integrality. This can be seen from K4 �∈ M, which satisfies
(4.1): K4 has four odd triangle-cycles with length 3 each containing a triangle
without any join edge, and for each odd triangle-cycle C, there is a triangle in
TC \BC that belongs to TC,0. This motivates us to ask about the necessity and
sufficiency of the following conditions for G ∈ M:

(BC ∩ TC,3) ∪ (TC,1 \ BC) �= ∅ for any odd triangle-cycle C of G. (4.2)

Note that condition (4.2) implies G contains neither K4 nor odd pseudo-wheels.
Similar to Remark 1, Theorems 8 and 9 provide the following fact.

Remark 2. Condition (4.2) is a necessary and sufficient condition for planar
graph G to be a member of M. �
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Appendix: A List of Mathematical Symbols

(G,w) Weighted graph G = (V (G), E(G)) with w ∈ Z
E(G)
+

τw(G) The minimum weight of an integral triangle cover in (G,w)

νw(G) The maximum size of an integral triangle packing in (G,w)

τ∗
w(G) The minimum weight of a fractional triangle cover in (G,w)

ν∗
w(G) The maximum size of a fractional triangle packing in (G,w)

τ(G) τw(G) when w = 1

ν(G) νw(G) when w = 1

AG The triangle-edge incidence matrix of graph G

Λ(G) The set of triangles in graph G

B The set of graphs G such that AG are TUM

M The set of graphs G such that systems AGx ≥ 1, x ≥ 0 are TDI

J The set of graphs G such that {x : AGx ≥ 1,x ≥ 0} are intergal

N The set of minimal graphs not belonging to B

TC The set of triangles in triangle-cycle C =e1�1e2· · ·ek�ke1 =∪k
i=1�i

BC The set of basic triangles in triangle-cycle C, i.e., {�1, · · · , �k}
JC The set of join edges in triangle-cycle C, i.e., {e1, · · · , ek}
NC The set of nonjoin edges in triangle-cycle C, i.e., E(C)\JC

TC,i {� ∈ TC : |� ∩ JC | = i}, i = 0, 1, 2, 3
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