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Abstract. This paper examines the capture time of a planar graph in a
pursuit-evasion games’ variant called the cops and robbers game. Since
any planar graph requires at most three cops, we study the capture time
of a planar graph G of n vertices using three cops, which is denoted by
capt3(G). We present a new capture strategy and show that capt3(G) ≤
2n. This is the first result on capt3(G).
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1 Introduction

Pursuit-evasion games are turn-based ones in which one player, controlling the
“evader”, tries to avoid being captured by the “pursuers” controlled by another
player. In each round, two players take turns to move their pieces. The games
have many versions, varied through many means; such as environments, knowl-
edge of terrain and the opponent’s locations, or movements. The pursuers win if
they can capture the evader, and the evader wins if he can avoid being captured
indefinitely.

There are two well-known variants of pursuit-evasion games in a graph set-
ting. In a variant where the pursuers do not know the location of the evader
(see Gal [6], and Parsons [12,13]), the problem is similar to “graph searching
problem”. The difference is that in the pursuit-evasion game, the evader may
move from an unexplored area to some areas that had been visited or cleared
by the pursuers. To prevent such recontaminations, some pursuers are required
to stand guard while others are searching. Finding the number of pursuers to
successfully clear the graph has been the main focus of the problem. There are
two approaches in finding the number of pursuers, based on searching strategy;
non-monotonic search, which allows recontaminations (Kehagias et al.’s [7]),
and monotonic search, which does not (such as Bienstock’s [4], LaPaugh’s [8]
and many in Alspach’s survey [2]).
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Another variant is often called a “cops and robbers game”. In this variant,
both players have full knowledge of the terrain and the opponent’s locations.
The earlier researches focused on cop number or how many cops are needed to
win the game in a given setting (such as Nowakowski and Winkler’s [11] and
Quilliot’s [14]). In a graph setting, Aigner and Fromme [1] proved that some
instances of this game can be won by the cop player controlling one cop; such
instances are called cop-win graphs. Also, they proved that for a planar graph,
three cops always suffice to win. So, the cop number for a planar graph is at
most three. Maurer et al. provided a report about the cops and robbers game
on many different planar graphs [9].

The length of the game, or the capture time of a graph by j cops, denoted
as captj(G), has been studied recently. In 2009, Bonato et al. [5] considered the
capture time of various cop-win graphs, and concluded that while the capture
time of a cop-win graph of n vertices is bounded above by n−3, half the number
of vertices is sufficient for a large class of graphs including chordal graphs. For
the graphs with multiple cops required to win, the capture time can be calculated
by a polynomial-time algorithm if the number of cops is fixed. They also proved
that the problem of determining the minimum number of cops needed to win
under the time constraint is NP-complete. In 2011, Mehrabian [10] showed that
the capture time of grids, whose cop number is known to be two, is half the
diameter of the graph, or capt2(G) ≤ �m+n

2 � − 1 for m × n grid.
Aigner and Fromme [1] have proved that any planar graph requires at most

three cops. In their proof, they introduced two concepts which can be used in
actual capture strategy. One concept is the assignment of a stage i in the capture
strategy to a certain subgraph Ri ⊂ G, which contains all the vertices that the
robber can safely enter. The graph Ri is called the robber territory. Another is a
concept called the guarded path, which is the shortest path between two vertices
such that a cop can capture the robber if the robber ever enters any vertex on the
path. After one cop successfully controlled a path, the robber territory changes
such that Ri+1 � Ri. Their method is to repeatedly find a new guarded path
that differs from previous ones, until the robber territory is eventually reduced
to one vertex. However, the capture time of their strategy is not examined in [1].

In this paper, we focus on the capture time of the cops and robbers game on
a planar graph in general, which has not yet been studied well. We present a new
capture strategy by refining the work of Aigner and Fromme in the following two
sides: (i) a new guarded path introduced at a stage shares only its end vertices
with any current path, and (ii) the end vertices of a newly introduced guarded
path are on or very close to some outer cycle, whose all vertices belong to the
infinite face of the robber territory. These two refinements are involved, specially
the second needs some deep observations. All guarded paths in our strategy are
chosen so that they are almost distinct, excluding their end vertices and a special
situation in which two new paths are simultaneously introduced at a stage.
A strategy with capture time less than 2n can then be obtained. The capture
time using our strategy is provably faster than 2n.
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In Sect. 2 of this paper, we introduce the definitions and notations for the
Cops and Robbers game. In Sect. 3 we review the known results from Aigner and
Fromme’s research. We introduce the new concepts for our strategy in Sect. 4.
Section 5 describes how to choose the guarded paths, so as to make our refini-
tions. The correctness and completeness of the capture strategy are provided in
Sect. 6, and the capture time of our strategy is analyzed in Sect. 7. The conclusion
is given in Sect. 8.

2 Preliminaries

The game of Cops and Robbers in this research is played on a planar graph,
and both players know the locations of one another’s pieces [1]. The cop player
controls three cops, and the robber player controls one robber. The game starts
by letting the cop player choose the vertices to occupy, or place her cops first, and
then the robber player occupies his vertex. Such a cop-robber turn is often called
a Round. The first cop-robber turn is considered as Round 0. For simplicity, we
assume that all cops occupy the same vertex in Round 0. In one’s turn or a
round, a player can move his/her piece to only an adjacent vertex of that piece,
and he/she can choose not to move as well. In her turn, the cop player can move
up to three cops at the same time.

Let capt3(G) denote the capture time of the cops and robber game on a
planar graph G. Clearly, if there is a capture strategy on G such that after a
finite number k (>0) of rounds, the robber is captured (i.e., the vertex occupied
by the robber is also occupied by a cop), then capt3(G) ≤ k.

In order to capture the robber, the cop player may employ a cop to prevent
the robber from crossing a certain line, like a goalkeeper preventing a ball from
entering the goal in soccer. Once she moved to the right spot on that line, she
is occupied with moving along the line in reaction to the robber’s movement.
This kind of actions limits the robber’s movement to one side of the line, and
thus diminishes the area the robber can safely enter. For this purpose, we define
below stages and robber territories as well.

Definition 1. The stage i, 0 ≤ i ≤ t, is the assignment of a subgraph Ri which
has all the vertices the robber can still safely enter. The assignment of Ri is done
after the cop player has fixed her pieces at the end of stage i− 1, and we assume
R0 = G. The subgraph Ri is called the robber territory.

We assume that stage 0 exactly coincides with Round 0, and thus R1 =
G − {e} where e denotes the vertex initially occupied by the cops. At a stage
i (>0), the cop player constructs one or two new guarded paths so that Ri is
reduced to Ri+1 � Ri. Thus, stage i may consist of several rounds. The length of
stage i is then defined as the number of rounds it takes for the cop player to fix
her pieces, and the length of stage 0 is assumed to be zero. If we have a strategy
that ends after t stage, the capture time of the strategy is equal to

∑t
i=1 length

of stage i. We will focus on the movements of cops because the length of a stage



6 P. Pisantechakool and X. Tan

is actually decided by the cop whose number of movements is the largest among
three cops.

A graph G = (V,E) is defined as a set V (G) of vertices which are connected
by a set E(G) of edges. We assume the graph is planar and undirected. A cut
vertex v ∈ G is a vertex such that when removed, the graph G has the increased
number of connected components. By the nature of our problem, graph G must
be connected; otherwise the cops may not be on the same connected component
as the robber and thus it may not be cop-win.

Denoted by π(u, v) a shortest path between u ∈ V (G) and v ∈ V (G), and
|π(u, v)| the length of π(u, v), measured by the number of edges in π(u, v). The
distance between two vertices u and v is then defined as |π(u, v)|. A cycle,
denoted by C, is a path whose start vertex and end vertex are the same. The
diameter of a graph G is the greatest distance among all pairs of vertices in G.

For a vertex v ∈ V (G), N(v) is defined as the set of the vertices adjacent
to v. For a vertex set S ⊆ V (G), G[S] is defined as the subgraph of G that
is induced by the vertex set S, i.e., an edge e ∈ E(G) belongs to G[S] if two
vertices of e belong to S.

3 Known Results

In this section, we review some known results from Aigner and Fromme’s work
[1].

Lemma 1 (1-cop win [Aigner and Fromme]). Graph G is a 1-cop-win if and
only if by successively removing pitfalls, G can be reduced to a single vertex.

A pitfall is a vertex v ∈ V (G) such that there exists a vertex u ∈ N(v) and
N(v) ⊂ N(u). Lemma 1 can be applied to any tree, since we can simply chase
down the robber from some vertex to a dead end at some leaf.

Lemma 2 (Planar Graph Cop Number [Aigner and Fromme]). For any planar
graph G, the cop number of G is at most three.

Their proof of Lemma 2 provided a series of concepts and tools that can be
used in the actual strategy. One is the concept of the robber territory, which
we introduced in Definition 2. The other concept, of guarded paths, is devoted to
diminishing the area of the robber territory.

Lemma 3 (Guarded Shortest Path [Aigner and Fromme]). Let G be any graph,
u, v ∈ V (G), u �= v and P = π(u, v). We assume that at least two cops are
in the play. Then a single cop c on P can, after the movements no more than
twice the diameter of G, prevents the robber r from entering P . That is, r will
immediately be caught if he moves into P .

It is imperative that we provide the proof of Lemma 3 as well, particularly
for the new claim that “a single cop c on P can, after the movements no more
than twice the diameter of G, prevents r from entering P”.
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Modified Proof of Lemma 3. Suppose the cop c is on vertex i ∈ P and the robber
r is on vertex j ∈ V (G). Assume ∀z ∈ P, |π(z, j)| ≥ |π(z, i)|; denote this as (*).

Claim A. No matter what the robber does, the cop, by moving in the appropriate
direction on P , can preserve condition (*). If the r does not move, then neither
does c, and (*) holds. If r moves to a new vertex k, then ∀z ∈ P, |π(k, z)| ≥
|π(j, z)| − 1 ≥ |π(i, z)| − 1. If i′ ∈ P exists with |π(k, i′)| ≥ |π(i, i′)| − 1, then c,
by moving on P toward i′, also reduces the distance by 1 and (*) still holds. Sup-
pose there exist vertices x, y ∈ P such that they are on the different sides of i on
the path P , and |π(k, x)| = |π(i, x)−1|, |π(k, y)| ≤ |π(i, y)| or |π(k, x)| ≤ |π(i, x)|,
|π(k, y)| = |π(i, y)| − 1. This is impossible, since by the triangle inequality and
minimality of P ;
|π(x, y)| ≤ |π(k, x)| + |π(k, y)| ≤ |π(i, x)| + |π(i, y)| − 1 = |π(x, y)| − 1; a contra-
diction.

Claim B. It takes a number of movements no more than twice the diameter of
G for c to enforce (*). First, c moves to some i ∈ P , which takes at most the
diameter of G. By the same argument as described above, |π(j, z)| < |π(i, z)|
only holds for z’s on P on one side of i. By moving in the direction of z which
takes at most |P | or the diameter of G moves, (*) is eventually forced. �

At a single stage, an unoccupied (free) cop c will move to position herself on
some vertex of a guarded path P so as to enforce the condition (*), i.e., be on
the vertex such that she takes less time than the robber to move to any other
vertex on P . Until (*) is enforced by c, the robber r may cross P safely. Once
(*) is enforced and constantly preserved by c, r can no longer cross P without
being captured. The location satisfying (*) on P changes as the robber moves,
but there always exists at least one at a given time.

Corollary 1. If a cop c is already on P , then the number of rounds it take for
c to eventually enforce (*) is bounded above by the length of P .

Corollary 2. When a cop successfully controls (i.e., enforce (*) on) a shortest
path, all vertices of that path do not belong to the robber territory.

From Lemma 3, capturing the robber can be done by letting the cops alterna-
tively take the role of a free cop and guard a new shortest path within the robber
territory. Once the free cop successfully guards the path, she becomes occupied
and another cop, whose guarded path no longer interacts with the robber ter-
ritory, becomes the free cop at the next stage. At stage i, the path guarded at
stage i − 1 by a now-free cop is called an obsolete path.

Remark. From Lemma 3, the length of each stage of Aigner and Fromme’s
strategy is bounded by twice the diameter of Ri, or loosely by 2|V (Ri)|, as
their guarded paths are usually not distinct [1]. Suppose each stage only reduces
one vertex in the worst case. Then, the capture time of Aigner and Fromme’s
strategy can roughly be bounded by

∑n
i=1 2i = n(n − 1). Their capture time

may actually be much faster than O(n2), but it needs a careful calculation (such
as more detailed evaluation on how paths with shared vertices interact with the
movements of the cops at each stage).
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4 New Concepts

In order to establish a better upper bound on capt3(G), we make two refinitions
over [1]. The first one is that a new path shares only its end vertices with any
current path. It is worth pointing out that in our strategy, two new paths may
also be introduced at a stage. As we will see, the guarded paths in our strategy are
almost distinct, excluding their starting/ending vertices. (In [1], a new path may
share more than just end vertices with a current path.). Our second refinition
is to choose the end vertices of the new guarded path to be on or very close to
the infinite face of robber territory. To precisely define where to choose the end
vertices, we need a new concept called outer cycles.

(a): Robber Territory Ri (b): Outer cycles C(Ri)

Fig. 1. A robber territory (a) and its outer cycles (b).

P 1
i

C(Ri)

(a) P 1
i and C(Ri)

(c) B(Ri) = C(G[S])

(b) G[S] where S = V (Ri ∪ P 1
i )

a

a

Fig. 2. In (a) the current guarded path P 1
i is shown in thick black line, and the outer

cycle of Ri (C(Ri)) is shown in thick shaded cycle. (b) shows the subgraph induced on
G by the vertex set V (Ri ∪ P 1

i ), drawn in black lines and dots. The thick cycle in (c)
represents the graph B(Ri) = C(G[V (Ri ∪ P 1

i )]).
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Definition 2. The subgraph C(Ri) of Ri is defined as the set of the outer cycles,
whose all the vertices and edges belong to the infinite (exterior) face of Ri

(Fig. 1). In the case of a polyhedral graph, where all of its faces can be con-
sidered as interior ones, we can choose any face as the infinite face. For graphs
with multiple planar embeddings, outer cycles are made from the infinite face of
the planar straight line drawing.

Suppose that at the beginning of stage i, one or two current paths are guarded
by the cops so as to prevent the robber from leaving Ri. These paths will be
denoted by P 1

i and P 2
i . Since P 1

i and P 2
i are assigned at the end of Ri−1, P 1

i ∩
Ri = ∅ and P 2

i ∩ Ri = ∅. We assume that P 1
i always exists, i.e., Ri (i > 0) can

NEVER be assigned without P 1
i . The newly introduced path(s) at stage i will

be denoted by P or/and Q.
For two end vertices of a new guarded path, one may consider to choose

them from C(Ri). But, it is difficult or even impossible in some cases for the
new path to share a common vertex with P 1

i or P 2
i . To overcome this difficulty,

we will select the end vertices from the outer cycle of the subgraph induced by
the vertices of the union of Ri, P 1

i and P 2
i .

Definition 3. Let S = V (Ri ∪ P 1
i ∪ P 2

i ). The graph B(Ri) (of enlarged outer
cycles) is defined as C(G[S]).

Note that B(Ri) consists of only cycles, and thus not all vertices of Ri, P 1
i

and P 2
i belong to B(Ri). For instance, the vertex a of P 1

i (Fig. 2(a)) does not
belong to B(Ri). See Fig. 2(c).

5 Capture Strategy

This section focuses on how to choose the guarded paths at each stage of our
strategy. The analysis on the capture time of our strategy will be given in Sect. 7.
We first give two propositions which we use throughout our capture strategy.

Proposition 1: At the end of each stage i, we have at least one free cop.

Proposition 2: During our strategy, any guarded path introduced at stage i
shares only its end vertices with each of the current paths. For the two guarded
paths introduced at the same stage, they have a common end vertex, and may
share a subpath starting from that common vertex.

Before we begin, keep in mind that at some stage the robber territory may
become a tree; in this case, only one cop suffices (Lemma 1). The main idea
of our strategy is to let at most two cops guard two different paths, and then
employ the free cop(s) to guard the new path(s), which makes one of the current
guarded paths obsolete and thus reduces the robber territory.

Our capture strategy consists of two phases.

1. Initial Phase: We first find a location to place the cops, based on the structure
of the graph G. This phase also establishes the very first pair of the guarded
paths, and thus goes from the start to the end of stage 1. When it is over, R1

is reduced to R2.
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2. Recursive Phase: At a stage i (≥2), we construct new guarded path(s) using
a case-analysis method. At the end of stage i, Ri is reduced to Ri+1. We do
this recursively until Ri becomes the tree case.

Before describing the initial and recursive phases, we first give a procedure,
called TwoCopsStart, which is used when we have two free cops at stage i (hence
P 2
i does not exist). The procedure takes two inputs: a cycle C of B(Ri) and a

starting vertex u ∈ C. The procedure TwoCopsStart finds the other end vertex
for either of the two new paths. It is done by first setting the pointers x and y

such that |π(u, x)| and |π(u, y)| on C are at � |C|
3 �. Recall that a portion of P 1

i

may be included in C ⊆ B(Ri), but P 1
i ∩Ri = ∅. Thus P 1

i ∩C is the only portion
of C that is not in Ri. Since P 1

i as well as P 1
i ∩ C are shortest paths in Ri−1,

the length of the path C − (P 1
i ∩ C), which is in Ri, is at least |P 1

i ∩ C|. Hence,
at least a half of C is in Ri, and either x or y is initially in Ri. TwoCopsStart
then repeatedly checks whether the pointer x (or y) belongs to Ri; if not, x (y)
is moved on C further away from u, until x (y) belongs to Ri. Finally, x and y
are returned as v1 and v2, respectively. The outputs v1 and v2 will be used to
construct the new paths π(u, v1) and π(u, v2) in the graph G[V (Ri) + u].

Procedure: TwoCopsStart
Input: a cycle C ⊆ B(Ri) and a vertex u ∈ C.
Output: two vertices v1 and v2 for the new guarded paths π(u, v1) and π(u, v2).

1. Set a pointer x at u, move x clockwise along C for � |C|
3 � vertices.

2. While x is not in Ri, do move x to the next vertex on C clockwise.
3. Set a pointer y at u, move y counterclockwise along C for � |C|

3 � vertices.
4. While y is not in Ri, do move y to the next vertex on C counterclockwise.
5. Return v1 ← x and v2 ← y.

5.1 Initial Phase

The initial phase has the following two objectives: (i) find a vertex to place the
cops at stage 0, and (ii) establish the first pair of the guarded paths at stage 1
or in R1.

At stage 0, if B(R0) is empty, then we know that the graph is a tree, which
can be easily dealt with as stated in Lemma 1. In the case that B(R0) is not
empty, we choose a vertex e0 ∈ B(R0) such that e0 is not a cut vertex (for the
simplicity of assigning R1). We place all cops c1, c2 and c3 at e0, and then wait
for the robber player to place his piece r on the graph.

Suppose r is now located at some vertex in R0 − e0. At stage 1, we have
R1 = R0−e0 and B(R1) = B(R0) (as P 1

1 is the vertex e0 and P 2
1 = ∅). Note that

e0 ∈ B(R1) is on some cycle C1 of B(R1). Using R1, we execute TwoCopsStart
by letting C ← C1 and u ← e0. After obtaining the outputs v1 and v2, we find
the shortest paths P = π(e0, v1) and Q = π(e0, v2) in G[V (R1) + e0] and send
c1 and c2 to guard P and Q, respectively. Note that the length of stage 1 is
mainly determined by the operation of moving a cop to a vertex on the shortest
path and then enforcing condition (*) on that path, which can be done without
concerning the movements of r.
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At the end of the initial phase, if P and Q separate R1 into two or more
components, R2 is then the connected component containing the robber r. Oth-
erwise, R2 = G[V (R1 − P − Q)]. The reduced robber territory R2 is either a
subgraph with at least one outer cycle, or a tree. If it is the tree case, the robber
can simply be captured (Lemma 1). Otherwise, we enter Recursive Phase.

5.2 Recursive Phase

In this phase, we recursively reduce the robber territory Ri into Ri+1, until Ri

is a tree. The reduction of Ri into Ri+1 is done by constructing and controlling
one or two new guarded paths (Corollary 2).

Recall that the current paths P 1
i and P 2

i were given at the end of stage
i − 1, and Ri can never be assigned without P 1

i . We distinguish the following
situations.

Case (a): B(Ri) ∩ P 1
i has at most one vertex.

P

Q

v1

v2

x
P 1

i

x

v1

v2

P

Q
P 1

i

(a)

(b)

w

w

Ri

Ri

w

v1

v2

P

Q
P 1

i

(c)

Ci

Ci

Ci

Fig. 3. An example of case (a); P 1
i , shown in thick dashed line, with the unique path

π(x, w), x ∈ P 1
i and w ∈ B(Ri). The new paths P and Q, with the common end vertex

w, are shown in thick dark line.

Note that P 2
i = ∅ in this case. If B(Ri)∩P 1

i = ∅, we find a vertex x ∈ P 1
i and

a vertex w ∈ B(Ri) such that |π(x,w)| is minimum among the shortest paths
from a vertex of P 1

i to the other of B(Ri). Since B(Ri)∩P 1
i = ∅, the pair (x,w)

is unique, and all vertices of π(x,w) are cut vertices, see Fig. 3(b). We first move
all three cops c1, c2 and c3 to x, and then along π(x,w) to u. In the case that
B(Ri) ∩ P 1

i has one vertex, we let w be that vertex, see Fig. 3(c).
Let Ci ⊆ B(Ri) be the cycle containing w. Since one cop can simply guard

vertex w, two cops are free in this case. We execute TwoCopsStart procedure
by letting C ← Ci and u ← w. Note that w has some neighbors in Ri (two of
them are on Ci). After obtaining the outputs v1 and v2 (which belong to Ri),
we find the shortest paths P = π(w, v1) and Q = π(w, v2) in G[V (Ri) + w],
and then send the free cops, say, c1 and c2 to guard P and Q, respectively.
In G[V (Ri − P − Q)], the component containing r is then Ri+1.
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e

fP 1
i

m

n v1

v2

P

Q

f

e

m
v1

v2

P

Q

(a) (b)

P 1
i Ci

Ci

π(m,n)

n

Fig. 4. An example of case (b); P 1
i is shown in thick line, and Ci ⊆ B(Ri) is shown in a

combination of thick black line and thick gray lines. P (m, v1) is shown in thick dotted
line, and Q(m, v2) in thick dashed line. P and Q may share some subpath π(m, n),
which is shown in thick dash dotted line.

Case (b): B(Ri) ∩ P 1
i has more than one vertex and P 2

i = ∅.
Suppose P 1

i = π(e, f). Let N(Ri) denote the set of all vertices u, where
u ∈ N(v) for some v ∈ Ri. We find m ∈ N(Ri)∩P 1

i such that |π(m, f)|−|π(e,m)|
(≥ 0) is minimal. Since m ∈ P 1

i , we also have m ∈ B(Ri). Again, let Ci ⊆ B(Ri)
be the cycle containing m.

Since B(Ri)∩P 2
i = ∅, only one cop, say, c1, needs to guard P 1

i . Thus two cops
are free. We execute TwoCopsStart procedure by letting C ← Ci and u ← m.
After we obtain the outputs v1 and v2, we find the paths P = π(m, v1) and
Q = π(m, v2) in G[V (Ri) + m] and then send free cops c2 and c3 to guard P
and Q, respectively. Note also that P and Q may share a common subpath if m
has only one neighbor in Ri. See Fig. 4(a). In G[V (Ri − P − Q)], the component
containing r is then Ri+1.

Case (c): B(Ri) ∩ P 1
i has more than one vertex and P 2

i �= ∅.

y

x

e

fP 1
i

P 2
i

P e

f

g

x

y
P 1

i

P 2
i

P

(a) (b)

Ci

g

Ci

Fig. 5. An example of case (c); P 1
i = π(e, f), is shown in thick dark gray line, P 2

i =
π(e, g) in thick dark line, and P = π(x, y) in thick black line. Ci ⊆ B(Ri) is shown in
a combination of thick dashed lines and thick lines.

In this case, two cops have to guard P 1
i and P 2

i , and thus we have only one
free cop, say c3. It can be deduced from Proposition 2 that P 1

i and P 2
i have a

common vertex, say e. Let f (g) be the other end vertex of P 1
i (P 2

i ). By the
denotations, P 1

i = π(e, f) and P 2
i = π(e, g). Note that f or g may not belong to

B(Ri) because f (g) may not be on any outer cycle of G[V (Ri) ∪ P 1
i ∪ P 2

i ].
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Next, we find two vertices x ∈ N(Ri) ∩ P 2
i and y ∈ B(Ri) ∩ P 1

i such that
x and y are the vertices of P 2

i and P 1
i , which are closest to e and f along P 2

i

and P 1
i , respectively. See Fig. 5 for example. Note that x has to be chosen from

N(Ri), instead of B(Ri), because we want it to have some neighbor in Ri. It
is also possible for x = e in the case that e ∈ N(Ri), and for y = f when
f ∈ B(Ri). Finally, we find the shortest path P = π(x, y) in G[V (Ri) + x + y],
and send the free cop c3 to guard P . Again, Ri+1 is the component containing
r in G[V (Ri − P )].

6 Correctness and Completeness

In this section we show that our capture strategy is correct and complete.

Theorem 1. Proposition 1 is upheld for the whole of capture strategy.

Proof. In case (a) and initial phase, two new paths are introduced and both start
from a common vertex. Therefore, at least one cop is free at the next stage.

In case (b), as shown in Fig. 4(b), the new guarded paths P and Q may
partition Ri into three components; each of them is a candidate of Ri+1, which
is guarded by two cops at the next stage. Therefore, at least one cop is free at
the next stage.

Similarly in case (c), as shown in Fig. 5(b), no matter which component
becomes Ri+1, either P 1

i or P 2
i becomes obsolete and its cop is free at the next

stage. �

Theorem 2. At the end of each stage i of the robber territory, Ri+1 � Ri.

Proof. It simply follows from the definition of the robber territory and
Corollary 2. �

Theorem 3. Proposition 2 is upheld for the whole of capture strategy.

Proof. Using TwoCopsStart procedure, the two paths introduced in the initial
phase, case (a) and case (b) always have a common vertex. For case (b), the
newly introduced paths share exactly one vertex m with P 1

i , and two new paths
may also share a subpath (e.g., π(m,n) in Fig. 4).

In case (c), the newly introduced path P = π(x, y) shares at most two com-
mon vertices x (when x=e ∈ P 1

i ) and y with P 1
i , and exactly one common vertex

x with P 2
i . �

The correctness of our strategy follows from Theorem 2, and the completeness
follows from Theorems 1 and 3.
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7 Capture Time of Our Strategy

In this section we describe in detail the movements of the cops during our strat-
egy so as to get a better understanding of the capture time. We first introduce
another concept, called the active paths.

Definition 4. Active Path: Let P = π(a, b) be a current guarded path at stage i,
m and n the first vertex of P from a and b that has a neighbor in Ri, respectively.
The subpath P (m,n), from m to n, is called an active path of P .

Sometimes a path P as whole may be an active path if both end vertices are
in N(Ri). If the path persists through many stages without becoming obsolete,
the active portion may become smaller due to the change in robber territory.
This active path can be represented as B(Rj) ∩ P (j > i), since P is still a
current path and thus the active portion of P at stage j belongs to B(Rj).

Lemma 4. Suppose path P is guarded by some cop c. Then it suffices for c to
guard the active subpath of P .

Proof. Let P (m,n) be the active path of P in current stage i. By Definition 4,
the robber territory Ri has no vertex adjacent to any vertices on P − P (m,n).
Suppose the robber r wants to travel to some vertex u ∈ P − P (m,n). But u
cannot be reached in Ri without traversing through P . The robber has to enter
P (m,n) first, which is a subpath of P , and by Lemma 3, he will get captured. �

The guarding action of a cop requires three types of movements; (i) moving
into the path, (ii) moving along the path to satisfy (*), and (iii) moving along the
path while keeping to preserve (*). The length of a stage is mainly determined
by the action of the free cop trying to control a new path. When a free cop
successfully controls a path by enforcing (*) (i.e., be on the position that can
move to any vertices on that path in smaller number of movements than the
robber), the stage is then over. So (iii) movements can safely be ignored. In the
following, we give a method to count the movements (i) and (ii) taken by the
free cops.

In the initial phase, the cops are already on their own paths. The length of
stage 1 involves only (ii) movements, which takes at most max{|P |, |Q|}. In the
recursive phase, assume every stage i > 1 does not have any path that separates
subgraph Ri into multiple components. This is the worst case because none of
the vertices that do not belong to any guarded paths is removed from the robber
territory.

When a path, say, U = π(p, q), is introduced at stage i (>1), it is traversed
by a cop ci at most |U | (ii) movements (Lemma 3). See Fig. 6(a). As discussed
above, the introduction of U makes one of the current paths, say W , obsolete
at the end of stage i. At the next stage i + 1, a new free cop (differing from
ci), say, ci+1, must move out of her obsolete path W (made obsolete by U) to
a newly introduced path, say X. It might be faster to move ci+1 directly from
W to X. But, for simplicity, we do the following: move to the common vertex of
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W and U , and then (i.1) move along the intermediate path, which is a portion of
the path (U), to reach destination path (X). See Fig. 6(b). At some later stage
i + j (j > 1), U becomes obsolete by the introduction of some new path Y (at
stage i + j − 1) and the cop ci+j , who was guarding U and labeled as ci, moves
to guard another new path Z. Note that Y can be X if U is obsolete at stage
i + 2. The cop ci+j must first move out of the obsolete path (U) by (i.2) moving
along the obsolete path to its vertex that is common with the current path (Y )
at stage i + j, and then travels to Z using the method described above. See
Fig. 6(c).

In summary, a path U is traversed by the free cops in three separate occasions:
(ii) movements when being introduced at stage i, (i.1) movements when being a
current guarded path at stage i+1, and (i.2) movements after becoming obsolete
at stage i + j.

W

T

U

q

s

ci

Y

ci+j

(a) Newly introduced U is traversed by ci at stage i

(c) Obsolete path U is traversed by ci+j (= ci) at stage i + j

X

q

s
ci+1

(b) Current path U is traversed by ci+1 (= ci) at stage i + 1

W

T

T

U

p

p

r

r

W

X

q
s

T

p

r
U

Z

t

Fig. 6. A single path U is traversed by free cops on three separate occasions. At each
stage, an obsolete path is shown in dotted line, a current path in normal heavy line,
and a new path in dashed line. The portion of U traversed by a free cop is shown in
thick line.

Let U(r, s) be the active subpath of U . Following from Lemma 4, the cop ci

stops somewhere between r and s after she perform type (ii) movements. Thus,
U is traversed by a free cop for at most |U(p, s)| or |U(r, q)| (ii) movements. In
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order for ci+1 to move from obsolete path (W ) to newly introduce path (X) at
stage i + 1, at most |U(p, r)| or |U(s, q)| (i.1) movements are made on U . At the
beginning of stage i + j, U is made obsolete by Y , and the cop ci+j must be
somewhere between r and s on U . At stage i+j−1, the path Y is introduced, and
the active portion of the current path U is B(Ri+j−1) ∩ U . Thus, an end vertex
of Y coincides with an end vertex, say, t of B(Ri+j−1)∩U (Proposition 2). From
the discussion made above, t is somewhere between r and s on U . Therefore, U
is traversed by the cop ci+j for at most |U(r, t)| or |U(t, s)| (i.2) movements to
move out of obsolete path U .

In conclusion, the number of the movements (i.1), (i.2) and (ii) on U is no
more than 2|U |. Hence, we have the following result.

Lemma 5. In our capture strategy, each guarded path is traversed no more than
twice of its length.

Theorem 4. In our capture strategy, all the paths used in evaluating the lengths
of stages are distinct, excluding their end vertices.

Proof. Supposed the guarded paths Pi and Pi+1 are introduced during stage i
and stage i + 1, respectively. It follows from Theorem 3 that, excluding their
end vertices, Pi is distinct from Pi+1. When two paths are introduced at the
same stage and they may share a subpath (case (b)), only one of them (i.e., the
one traversed by the free cop whose number of movements is larger) is used in
evaluating the length of that stage. Therefore, the theorem follows. �

For completeness, in a tree case, the length of the chase on a tree is simply
bounded above by the diameter of the tree.

Theorem 5. For the cops and robbers game on a planar graph G of n vertices
with three cops, capt3(G) ≤ 2n.

Proof. The theorem directly follows from Theorem 4 and Lemma 5. �

8 Conclusion

We have presented a new capture strategy for the Cops and Robbers Game on a
planar graph with three cops, and shown that the capture time of our strategy
is no more than 2n. This gives the first linear result on capt3(G).

An extension for future work is to apply our new concepts to improve a
capture strategy in a polygonal environment; a problem researched by Bhadauria
and Isler [3]. Their strategy, which is used to prove that three cops suffice in the
polygonal environment with obstacles, is also based on the concepts given by
Aigner and Fromme. The upper bound on the capture time is suggested to be
as large as 2nA, where A is the area and n is the number of vertices of the
environment. In a geometric setting, even if all the paths are distinct, the sum
of their lengths is still bounded above by A. It is rather loose as a large portion
of the given environment is removed from the robber territory at the end of a
stage. This thus suggests that by applying our strategy we may obtain a smaller
upper bound, say, 2A. We are working in this direction.
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