oN
q—
o
o
w
O
=
—l

T-H. Hubert Chan
Minming Li
Lusheng Wang (Eds.)

Combinatorial Optimization
and Applications

10th International Conference, COCOA 2016
Hong Kong, China, December 16-18, 2016
Proceedings

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Zurich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

10043

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

T-H. Hubert Chan - Minming Li
Lusheng Wang (Eds.)

Combinatorial Optimization
and Applications

10th International Conference, COCOA 2016
Hong Kong, China, December 16-18, 2016
Proceedings

@ Springer

Editors

T-H. Hubert Chan Lusheng Wang
University of Hong Kong City University of Hong Kong
Hong Kong Hong Kong

China China

Minming Li

City University of Hong Kong

Hong Kong

China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-319-48748-9 ISBN 978-3-319-48749-6 (eBook)

DOI 10.1007/978-3-319-48749-6
Library of Congress Control Number: 2016955504
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer International Publishing AG 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 10th Annual International Conference on Combinatorial Optimization and
Applications (COCOA 2016) was held during December 1618, 2016, in Hong Kong,
SAR China. COCOA 2016 provided a forum for researchers working in the area
of theoretical computer science and combinatorics.

The technical program of the conference included 60 contributed papers selected by
the Program Committee from 122 full submissions received in response to the call for
papers. All the papers were peer reviewed by Program Committee members or external
reviewers. The topics cover most aspects of theoretical computer science and combi-
natorics related to computing, including classic combinatorial optimization, geometric
optimization, complexity and data structures, graph theory, games, and miscellaneous.
Some of the papers were selected for publication in special issues of Algorithmica,
Theoretical Computer Science, and Journal of Combinatorial Optimization. It is
expected that the journal version of the papers will appear in a more complete form.

We thank everyone who made this meeting possible: the authors for submitting
papers, the Program Committee members, and external reviewers for volunteering their
time to review conference papers. We would also like to extend special thanks to the
publicity chairs, web chair, and financial chair for their work in making COCOA 2016
a successful event.

September 2016 T-H. Hubert Chan
Minming Li
Lusheng Wang

General Chair

Lusheng Wang

Publicity Chairs

Hongwei Du

Ke Yi

Financial Chair

Yingchao Zhao

Web Chair

Ken C.K. Fong

Program Chairs

Hubert Chan
Minming Li

Program Committee

Wolfgang Bein
Gruia Calinescu
Yixin Cao

Kun-Mao Chao
Vincent Chau
Jing Chen

Xujin Chen
Zhi-Zhong Chen
Ovidiu Daescu

Organization

City University of Hong Kong, Hong Kong,
SAR China

Harbin Institute of Technology Shenzhen Graduate
School, China

Hong Kong University of Science and Technology,
Hong Kong, SAR China

Caritas Institute of Higher Education, Hong Kong,
SAR China

City University of Hong Kong, Hong Kong,
SAR China

University of Hong Kong, Hong Kong, SAR China
City University of Hong Kong, Hong Kong, SAR
China

University of Nevada, Las Vegas, USA

[linois Institute of Technology, USA

Hong Kong Polytechnic University, Hong Kong,
SAR China

National Taiwan University, Taiwan

Hong Kong Baptist University, SAR China

Stony Brook University, USA

Academy of Mathematics and Systems Science, China

Tokyo Denki University, Japan
University of Texas at Dallas, USA

VI Organization

Bhaskar DasGupta
Thang Dinh
Zhenhua Duan
Thomas Erlebach
Neng Fan

Bin Fu

Stanley Fung
Xiaofeng Gao
Qianping Gu
Juraj Hromkovic
Sun-Yuan Hsieh
Hejiao Huang

Kazuo Iwama
Naoki Katoh
Jie Li
Xiaowen Liu

Bin Ma
Mitsunori Ogihara
Sheung-Hung Poon

Xian Qiu
Xiaowei Wu
Boting Yang
Hsu-Chun Yen
Zhao Zhang
Fay Zhong
Yugqing Zhu

University of Illinois at Chicago, USA

Virginia Commonwealth University, USA

Xidian University, China

University of Leicester, UK

University of Arizona, USA

University of Texas- Rio Grande Valley, USA

University of Leicester, UK

Shanghai Jiao Tong University, China

Simon Fraser University, Canada

ETH Zurich, Switzerland

National Cheng Kung University, Taiwan

Harbin Institute of Technology Shenzhen Graduate
School, China

Kyoto University, Japan

Kwasnei gakuin University, Japan

University of Tsukuba, Japan

Indiana University-Purdue University Indianapolis,
USA

University of Waterloo, Canada

University of Miami, USA

Brunei Technological University, Brunei Darussalam,
Brunei

Zhejiang University, China

The University of Hong Kong, SAR China

University of Regina, Canada

National Taiwan University, Taiwan

Zhejiang Normal University, China

California State University, East Bay, USA

California State University, Los Angeles, USA

Additional Reviewers

Susanne Albers

James Andro-Vasko
Bogdan Armaselu

Harish Babu Arunachalam
Doina Bein

Hans-Joachim Bockenhauer
Yi-Jun Chang

Li-Hsuan Chen

Xujin Chen

Zhiyin Chen

Yongxi Cheng

Yukun Cheng

Vladimir Deineko

Ye Du

Martin Fiirer

Tomas Gavenciak

Jiong Guo

Yike Guo

Xin Han

Yuya Higashikawa

Ling-Ju Hung
Johann Hurink
Hiro Ito

Taisuke Izumi
Mong-Jen Kao
Asem Kasem
Yasushi Kawase
Dennis Komm
Dimitrios Letsios
Chun-Cheng Lin
Jiaxi Liu

Tian Liu

Rashika Mishra
Tobias Momke
Atsuki Nagao
Shin-ichi Nakano
Yoshio Okamoto
Maurizio Patrignani
Marcel Roeloffzen
Toshiki Saitoh

Organization IX

Feng Shan
Yongtang Shi
Suguru Tamaki
Shinichi Tanigawa
Changjun Wang
Fengmin Wang
Yinling Wang
Derek Williams
Hsiang-Yun Wu
Weiwei Wu
Mingyu Xiao
Yuan Xue
Xiaotian You
Fang Yu

Tian-Li Yu
Yong Zhang
Rong Zhou
Martin Zsifkovits

Contents

Graph Theory

On the Capture Time of Cops and Robbers Game on a Planar Graph 3
Photchchara Pisantechakool and Xuehou Tan

The Mixed Evacuation Problem 18
Yosuke Hanawa, Yuya Higashikawa, Naoyuki Kamiyama, Naoki Katoh,
and Atsushi Takizawa

A Comprehensive Reachability Evaluation for Airline Networks

with Multi-constraints 33
Xiaotian You, Xiaofeng Gao, Yaru Dang, Guihai Chen,
and Xinglong Wang

Approximation and Hardness Results for the Max k-Uncut Problem 49
Peng Zhang, Chenchen Wu, Dachuan Xu, and Xinghe Zhang

On Strong Tree-Breadth. 62
Arne Leitert and Feodor F. Dragan

Computing a Tree Having a Small Vertex Cover 77
Takuro Fukunaga and Takanori Maehara

On the Approximability of PARTIAL VC DIMENSION. 92
Cristina Bazgan, Florent Foucaud, and Florian Sikora

Improved Precise Fault Diagnosis Algorithm for Hypercube-Like Graphs. ... 107
Tai-Ling Ye, Dun-Wei Cheng, and Sun-Yuan Hsieh

Finding Disjoint Paths on Edge-Colored Graphs:
A Multivariate Complexity Analysis 113
Riccardo Dondi and Florian Sikora

Total Dual Integrality of Triangle Covering 128
Xujin Chen, Zhuo Diao, Xiaodong Hu, and Zhongzheng Tang

Time-Optimal Broadcasting of Multiple Messages in 1-in Port Model 144
Petr Gregor, Riste Skrekovski, and Vida VukaSinovié

Fast Searching on Complete k-partite Graphs 159
Yuan Xue, Boting Yang, Farong Zhong, and Sandra Zilles

http://dx.doi.org/10.1007/978-3-319-48749-6_1
http://dx.doi.org/10.1007/978-3-319-48749-6_2
http://dx.doi.org/10.1007/978-3-319-48749-6_3
http://dx.doi.org/10.1007/978-3-319-48749-6_3
http://dx.doi.org/10.1007/978-3-319-48749-6_4
http://dx.doi.org/10.1007/978-3-319-48749-6_5
http://dx.doi.org/10.1007/978-3-319-48749-6_6
http://dx.doi.org/10.1007/978-3-319-48749-6_7
http://dx.doi.org/10.1007/978-3-319-48749-6_8
http://dx.doi.org/10.1007/978-3-319-48749-6_9
http://dx.doi.org/10.1007/978-3-319-48749-6_9
http://dx.doi.org/10.1007/978-3-319-48749-6_10
http://dx.doi.org/10.1007/978-3-319-48749-6_11
http://dx.doi.org/10.1007/978-3-319-48749-6_12

XII Contents

Cliques in Regular Graphs and the Core-Periphery Problem
in Social Networks 175
Ulrik Brandes, Eugenia Holm, and Andreas Karrenbauer

Constant Factor Approximation for the Weighted Partial Degree
Bounded Edge Packing Problem. 187
Pawan Aurora, Monalisa Jena, and Rajiv Raman

An Introduction to Coding Sequences of Graphs. 202
Shamik Ghosh, Raibatak Sen Gupta, and M.K. Sen

Minimum Eccentricity Shortest Path Problem: An Approximation
Algorithm and Relation with the k-Laminarity Problem 216
Etienne Birmelé, Fabien de Montgolfier, and Léo Planche

On the Complexity of Extracting Subtree with Keeping Distinguishability . . . 230
Xianmin Liu, Zhipeng Cai, Dongjing Miao, and Jianzhong Li

Safe Sets in Graphs: Graph Classes and Structural Parameters 241
Raquel Agueda, Nathann Cohen, Shinya Fujita, Sylvain Legay,
Yannis Manoussakis, Yasuko Matsui, Leandro Montero, Reza Naserasr,
Yota Otachi, Tadashi Sakuma, Zsolt Tuza, and Renyu Xu

On Local Structures of Cubicity 2 Graphs 254
Sujoy Bhore, Dibyayan Chakraborty, Sandip Das, and Sagnik Sen

Approximability of the Distance Independent Set Problem on Regular
Graphs and Planar Graphs 270
Hiroshi Eto, Takehiro Ito, Zhilong Liu, and Eiji Miyano

Algorithmic Aspects of Disjunctive Total Domination in Graphs. 285
Chin-Fu Lin and Sheng-Lung Peng

Instance Guaranteed Ratio on Greedy Heuristic for Genome Scaffolding 294
Clément Dallard, Mathias Weller, Annie Chateau,
and Rodolphe Giroudeau

Geometric Optimization

Performing Multicut on Walkable Environments: Obtaining a Minimally

Connected Multi-layered Environment from a Walkable Environment 311
Arne Hillebrand, Marjan van den Akker, Roland Geraerts,
and Han Hoogeveen

Minimum Weight Polygon Triangulation Problem in Sub-Cubic
Time Bound. e 326
Sung Eun Bae, Tong-Wook Shinn, and Tadao Takaoka

http://dx.doi.org/10.1007/978-3-319-48749-6_13
http://dx.doi.org/10.1007/978-3-319-48749-6_13
http://dx.doi.org/10.1007/978-3-319-48749-6_14
http://dx.doi.org/10.1007/978-3-319-48749-6_14
http://dx.doi.org/10.1007/978-3-319-48749-6_15
http://dx.doi.org/10.1007/978-3-319-48749-6_16
http://dx.doi.org/10.1007/978-3-319-48749-6_16
http://dx.doi.org/10.1007/978-3-319-48749-6_17
http://dx.doi.org/10.1007/978-3-319-48749-6_18
http://dx.doi.org/10.1007/978-3-319-48749-6_19
http://dx.doi.org/10.1007/978-3-319-48749-6_20
http://dx.doi.org/10.1007/978-3-319-48749-6_20
http://dx.doi.org/10.1007/978-3-319-48749-6_21
http://dx.doi.org/10.1007/978-3-319-48749-6_22
http://dx.doi.org/10.1007/978-3-319-48749-6_23
http://dx.doi.org/10.1007/978-3-319-48749-6_23
http://dx.doi.org/10.1007/978-3-319-48749-6_24
http://dx.doi.org/10.1007/978-3-319-48749-6_24

The Mixed Center Location Problem. 340
Yi Xu, Jigen Peng, and Yinfeng Xu

Constrained Light Deployment for Reducing Energy Consumption
in Buildings 350
Huamei Tian, Kui Wu, Sue Whitesides, and Cuiying Feng

On the 2-Center Problem Under Convex Polyhedral Distance Function 365
Sergey Bereg

Algorithms for Colourful Simplicial Depth and Medians in the Plane 378
Olga Zasenko and Tamon Stephen

Realizability of Graphs as Triangle Cover Contact Graphs 393
Shaheena Sultana and Md. Saidur Rahman

A Quadratic Time Exact Algorithm for Continuous Connected 2-Facility
Location Problem in Trees (Extended Abstract) 408
Wei Ding and Ke Qiu

Complexity and Data Structure

On the (Parameterized) Complexity of Recognizing Well-Covered

(P 0)-graphis . . . oot 423
Sancrey Rodrigues Alves, Konrad K. Dabrowski, Luerbio Faria,
Sulamita Klein, Ignasi Sau, and Uéverton dos Santos Souza

Algorithmic Analysis for Ridesharing of Personal Vehicles 438
Qian-Ping Gu, Jiajian Leo Liang, and Guochuan Zhang

On the Complexity of Bounded Deletion Propagation 453
Dongjing Miao, Yingshu Li, Xianmin Liu, and Jianzhong Li

On Residual Approximation in Solution Extension Problems 463
Mathias Weller, Annie Chateau, Rodolphe Giroudeau,
Jean-Claude Kénig, and Valentin Pollet

On the Parameterized Parallel Complexity and the Vertex Cover Problem ... 477
Faisal N. Abu-Khzam, Shouwei Li, Christine Markarian,
Friedhelm Meyer auf der Heide, and Pavel Podlipyan

A Linear Potential Function for Pairing Heaps 489
John lacono and Mark Yagnatinsky

Amortized Efficiency of Ranking and Unranking Left-Child Sequences
in Lexicographic Order 505
Kung-Jui Pai, Ro-Yu Wu, Jou-Ming Chang, and Shun-Chieh Chang

http://dx.doi.org/10.1007/978-3-319-48749-6_25
http://dx.doi.org/10.1007/978-3-319-48749-6_26
http://dx.doi.org/10.1007/978-3-319-48749-6_26
http://dx.doi.org/10.1007/978-3-319-48749-6_27
http://dx.doi.org/10.1007/978-3-319-48749-6_28
http://dx.doi.org/10.1007/978-3-319-48749-6_29
http://dx.doi.org/10.1007/978-3-319-48749-6_30
http://dx.doi.org/10.1007/978-3-319-48749-6_30
http://dx.doi.org/10.1007/978-3-319-48749-6_31
http://dx.doi.org/10.1007/978-3-319-48749-6_31
http://dx.doi.org/10.1007/978-3-319-48749-6_32
http://dx.doi.org/10.1007/978-3-319-48749-6_33
http://dx.doi.org/10.1007/978-3-319-48749-6_34
http://dx.doi.org/10.1007/978-3-319-48749-6_35
http://dx.doi.org/10.1007/978-3-319-48749-6_36
http://dx.doi.org/10.1007/978-3-319-48749-6_37
http://dx.doi.org/10.1007/978-3-319-48749-6_37

X1V Contents

Combinatorial Optimization

Optimal Speed Scaling with a Solar Cell (Extended Abstract). 521
Neal Barcelo, Peter Kling, Michael Nugent, and Kirk Pruhs

An Approximation Algorithm for the k-Median Problem with Uniform
Penalties via Pseudo-Solutions 536
Chenchen Wu, Donglei Du, and Dachuan Xu

On-Line Pattern Matching on Uncertain Sequences and Applications. 547
Carl Barton, Chang Liu, and Solon P. Pissis

Scheduling with Interjob Communication on Parallel Processors. 563
Jiirgen Konig, Alexander Mdcker, Friedhelm Meyer auf der Heide,
and Soren Riechers

Cost-Efficient Scheduling on Machines from the Cloud 578
Alexander Mdcker, Manuel Malatyali, Friedhelm Meyer auf der Heide,
and Soren Riechers

Strategic Online Facility Location 593
Maximilian Drees, Bjorn Feldkord, and Alexander Skopalik

An Efficient PTAS for Parallel Machine Scheduling
with Capacity ConStraints.o vttt e it i 608
Lin Chen, Klaus Jansen, Wenchang Luo, and Guochuan Zhang

A Pseudo-Polynomial Time Algorithm for Solving the Knapsack Problem
in Polynomial Space 624
Noriyuki Fujimoto

Game Theory

An Incentive Mechanism for Selfish Bin Covering 641
Weian Li, Qizhi Fang, and Wenjing Liu

Congestion Games with Mixed Objectives 655
Matthias Feldotto, Lennart Leder, and Alexander Skopalik

An Optimal Strategy for Static Black-Peg Mastermind with Two Pegs. 670
Gerold Jiger

Miscellaneous

The Incentive Ratio in Exchange Economies 685

Ido Polak

http://dx.doi.org/10.1007/978-3-319-48749-6_38
http://dx.doi.org/10.1007/978-3-319-48749-6_39
http://dx.doi.org/10.1007/978-3-319-48749-6_39
http://dx.doi.org/10.1007/978-3-319-48749-6_40
http://dx.doi.org/10.1007/978-3-319-48749-6_41
http://dx.doi.org/10.1007/978-3-319-48749-6_42
http://dx.doi.org/10.1007/978-3-319-48749-6_43
http://dx.doi.org/10.1007/978-3-319-48749-6_44
http://dx.doi.org/10.1007/978-3-319-48749-6_44
http://dx.doi.org/10.1007/978-3-319-48749-6_45
http://dx.doi.org/10.1007/978-3-319-48749-6_45
http://dx.doi.org/10.1007/978-3-319-48749-6_46
http://dx.doi.org/10.1007/978-3-319-48749-6_47
http://dx.doi.org/10.1007/978-3-319-48749-6_48
http://dx.doi.org/10.1007/978-3-319-48749-6_49

Contents

w-Centroids and Least (w, [)-Central Subtrees in Weighted Trees
Erfang Shan and Liying Kang

Solving Dynamic Vehicle Routing Problem with Soft Time Window
by iLNS and hPSO
Xiaohan He, Xiaoli Zeng, Liang Song, Hejiao Huang, and Hongwei Du

Convex Independence in Permutation Graphs
Wing-Kai Hon, Ton Kloks, Fu-Hong Liu, and Hsiang-Hsuan Liu

The Connected p-Center Problem on Cactus Graphs
Chunsong Bai, Liying Kang, and Erfang Shan

Comparison of Quadratic Convex Reformulations to Solve the Quadratic
Assignment Problem L L
Sourour Elloumi and Amélie Lambert

Using Unified Model Checking to Verify Heaps.
Xu Lu, Zhenhua Duan, and Cong Tian

A Filtering Heuristic for the Computation of Minimum-Volume
Enclosing Ellipsoids
Linus Kdllberg and Thomas Larsson

Relaxations of Discrete Sets with Semicontinuous Variables.
Gustavo Angulo

Unfolding the Core Structure of the Reciprocal Graph of a Massive
Online Social Network.
Braulio Dumba and Zhi-Li Zhang

Tackling Common Due Window Problem with a Two-Layered Approach . . .
Abhishek Awasthi, Jorg Ldssig, Thomas Weise, and Oliver Kramer

A Polynomial Time Solution for Permutation Scaffold Filling.
Nan Liu, Peng Zou, and Binhai Zhu

Author Index e

http://dx.doi.org/10.1007/978-3-319-48749-6_50
http://dx.doi.org/10.1007/978-3-319-48749-6_51
http://dx.doi.org/10.1007/978-3-319-48749-6_51
http://dx.doi.org/10.1007/978-3-319-48749-6_52
http://dx.doi.org/10.1007/978-3-319-48749-6_53
http://dx.doi.org/10.1007/978-3-319-48749-6_54
http://dx.doi.org/10.1007/978-3-319-48749-6_54
http://dx.doi.org/10.1007/978-3-319-48749-6_55
http://dx.doi.org/10.1007/978-3-319-48749-6_56
http://dx.doi.org/10.1007/978-3-319-48749-6_56
http://dx.doi.org/10.1007/978-3-319-48749-6_57
http://dx.doi.org/10.1007/978-3-319-48749-6_58
http://dx.doi.org/10.1007/978-3-319-48749-6_58
http://dx.doi.org/10.1007/978-3-319-48749-6_59
http://dx.doi.org/10.1007/978-3-319-48749-6_60

Graph Theory

On the Capture Time of Cops and Robbers
Game on a Planar Graph

Photchchara Pisantechakool®) and Xuehou Tan

School of Science and Technology, School of Information Science and Technology,
Tokai University, 4-1-1 Kitakaname, Hiratsuka 259-1292, Japan
3btad008@mail.tokai-u. jp

Abstract. This paper examines the capture time of a planar graph in a
pursuit-evasion games’ variant called the cops and robbers game. Since
any planar graph requires at most three cops, we study the capture time
of a planar graph G of n vertices using three cops, which is denoted by
capts(G). We present a new capture strategy and show that capts(G) <
2n. This is the first result on capts(G).

Keywords: Pursuit-evasion game + Cops and robber game - Capture
time + Game length

1 Introduction

Pursuit-evasion games are turn-based ones in which one player, controlling the
“evader”, tries to avoid being captured by the “pursuers” controlled by another
player. In each round, two players take turns to move their pieces. The games
have many versions, varied through many means; such as environments, knowl-
edge of terrain and the opponent’s locations, or movements. The pursuers win if
they can capture the evader, and the evader wins if he can avoid being captured
indefinitely.

There are two well-known variants of pursuit-evasion games in a graph set-
ting. In a variant where the pursuers do not know the location of the evader
(see Gal [6], and Parsons [12,13]), the problem is similar to “graph searching
problem”. The difference is that in the pursuit-evasion game, the evader may
move from an unexplored area to some areas that had been visited or cleared
by the pursuers. To prevent such recontaminations, some pursuers are required
to stand guard while others are searching. Finding the number of pursuers to
successfully clear the graph has been the main focus of the problem. There are
two approaches in finding the number of pursuers, based on searching strategy;
non-monotonic search, which allows recontaminations (Kehagias et al.’s [7]),
and monotonic search, which does not (such as Bienstock’s [4], LaPaugh’s [§]
and many in Alspach’s survey [2]).

This work was partially supported by JSPS KAKENHI Grant Number 15K00023.

© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 3-17, 2016.
DOI: 10.1007/978-3-319-48749-6_1

4 P. Pisantechakool and X. Tan

Another variant is often called a “cops and robbers game”. In this variant,
both players have full knowledge of the terrain and the opponent’s locations.
The earlier researches focused on cop number or how many cops are needed to
win the game in a given setting (such as Nowakowski and Winkler’s [11] and
Quilliot’s [14]). In a graph setting, Aigner and Fromme [1] proved that some
instances of this game can be won by the cop player controlling one cop; such
instances are called cop-win graphs. Also, they proved that for a planar graph,
three cops always suffice to win. So, the cop number for a planar graph is at
most three. Maurer et al. provided a report about the cops and robbers game
on many different planar graphs [9)].

The length of the game, or the capture time of a graph by j cops, denoted
as capt;(G), has been studied recently. In 2009, Bonato et al. [5] considered the
capture time of various cop-win graphs, and concluded that while the capture
time of a cop-win graph of n vertices is bounded above by n — 3, half the number
of vertices is sufficient for a large class of graphs including chordal graphs. For
the graphs with multiple cops required to win, the capture time can be calculated
by a polynomial-time algorithm if the number of cops is fixed. They also proved
that the problem of determining the minimum number of cops needed to win
under the time constraint is NP-complete. In 2011, Mehrabian [10] showed that
the capture time of grids, whose cop number is known to be two, is half the
diameter of the graph, or capty(G) < [24| — 1 for m x n grid.

Aigner and Fromme [1] have proved that any planar graph requires at most
three cops. In their proof, they introduced two concepts which can be used in
actual capture strategy. One concept is the assignment of a stage ¢ in the capture
strategy to a certain subgraph R; C G, which contains all the vertices that the
robber can safely enter. The graph R; is called the robber territory. Another is a
concept called the guarded path, which is the shortest path between two vertices
such that a cop can capture the robber if the robber ever enters any vertex on the
path. After one cop successfully controlled a path, the robber territory changes
such that R;y1 € R;. Their method is to repeatedly find a new guarded path
that differs from previous ones, until the robber territory is eventually reduced
to one vertex. However, the capture time of their strategy is not examined in [1].

In this paper, we focus on the capture time of the cops and robbers game on
a planar graph in general, which has not yet been studied well. We present a new
capture strategy by refining the work of Aigner and Fromme in the following two
sides: (i) a new guarded path introduced at a stage shares only its end vertices
with any current path, and (ii) the end vertices of a newly introduced guarded
path are on or very close to some outer cycle, whose all vertices belong to the
infinite face of the robber territory. These two refinements are involved, specially
the second needs some deep observations. All guarded paths in our strategy are
chosen so that they are almost distinct, excluding their end vertices and a special
situation in which two new paths are simultaneously introduced at a stage.
A strategy with capture time less than 2n can then be obtained. The capture
time using our strategy is provably faster than 2n.

On the Capture Time of Cops and Robbers Game on a Planar Graph 5

In Sect. 2 of this paper, we introduce the definitions and notations for the
Cops and Robbers game. In Sect. 3 we review the known results from Aigner and
Fromme’s research. We introduce the new concepts for our strategy in Sect. 4.
Section 5 describes how to choose the guarded paths, so as to make our refini-
tions. The correctness and completeness of the capture strategy are provided in
Sect. 6, and the capture time of our strategy is analyzed in Sect. 7. The conclusion
is given in Sect. 8.

2 Preliminaries

The game of Cops and Robbers in this research is played on a planar graph,
and both players know the locations of one another’s pieces [1]. The cop player
controls three cops, and the robber player controls one robber. The game starts
by letting the cop player choose the vertices to occupy, or place her cops first, and
then the robber player occupies his vertex. Such a cop-robber turn is often called
a Round. The first cop-robber turn is considered as Round 0. For simplicity, we
assume that all cops occupy the same vertex in Round 0. In one’s turn or a
round, a player can move his/her piece to only an adjacent vertex of that piece,
and he/she can choose not to move as well. In her turn, the cop player can move
up to three cops at the same time.

Let capts(G) denote the capture time of the cops and robber game on a
planar graph G. Clearly, if there is a capture strategy on G such that after a
finite number k (>0) of rounds, the robber is captured (i.e., the vertex occupied
by the robber is also occupied by a cop), then capts(G) < k.

In order to capture the robber, the cop player may employ a cop to prevent
the robber from crossing a certain line, like a goalkeeper preventing a ball from
entering the goal in soccer. Once she moved to the right spot on that line, she
is occupied with moving along the line in reaction to the robber’s movement.
This kind of actions limits the robber’s movement to one side of the line, and
thus diminishes the area the robber can safely enter. For this purpose, we define
below stages and robber territories as well.

Definition 1. The stage i, 0 < i < t, is the assignment of a subgraph R; which
has all the vertices the robber can still safely enter. The assignment of R; is done
after the cop player has fixed her pieces at the end of stage i — 1, and we assume
Ry = G. The subgraph R; is called the robber territory.

We assume that stage 0 exactly coincides with Round 0, and thus R; =
G — {e} where e denotes the vertex initially occupied by the cops. At a stage
i (>0), the cop player constructs one or two new guarded paths so that R; is
reduced to R;11 C R;. Thus, stage ¢ may consist of several rounds. The length of
stage 7 is then defined as the number of rounds it takes for the cop player to fix
her pieces, and the length of stage 0 is assumed to be zero. If we have a strategy
that ends after ¢ stage, the capture time of the strategy is equal to 2221 length
of stage i. We will focus on the movements of cops because the length of a stage

6 P. Pisantechakool and X. Tan

is actually decided by the cop whose number of movements is the largest among
three cops.

A graph G = (V, E) is defined as a set V(G) of vertices which are connected
by a set E(G) of edges. We assume the graph is planar and undirected. A cut
vertex v € (G is a vertex such that when removed, the graph G has the increased
number of connected components. By the nature of our problem, graph G must
be connected; otherwise the cops may not be on the same connected component
as the robber and thus it may not be cop-win.

Denoted by m(u,v) a shortest path between v € V(G) and v € V(G), and
|7 (u,v)| the length of m(u,v), measured by the number of edges in 7(u,v). The
distance between two vertices u and v is then defined as |m(u,v)|. A cycle,
denoted by C, is a path whose start vertex and end vertex are the same. The
diameter of a graph G is the greatest distance among all pairs of vertices in G.

For a vertex v € V(G), N(v) is defined as the set of the vertices adjacent
to v. For a vertex set S C V(G), G[S] is defined as the subgraph of G that
is induced by the vertex set S, i.e., an edge e € E(G) belongs to G[S] if two
vertices of e belong to S.

3 Known Results

In this section, we review some known results from Aigner and Fromme’s work

[1].

Lemma 1 (1-cop win [Aigner and Fromme]). Graph G is a 1-cop-win if and
only if by successively removing pitfalls, G can be reduced to a single vertex.

A pitfall is a vertex v € V(G) such that there exists a vertex v € N(v) and
N(v) C N(u). Lemmal can be applied to any tree, since we can simply chase
down the robber from some vertex to a dead end at some leaf.

Lemma 2 (Planar Graph Cop Number [Aigner and Fromme]). For any planar
graph G, the cop number of G is at most three.

Their proof of Lemma 2 provided a series of concepts and tools that can be
used in the actual strategy. One is the concept of the robber territory, which
we introduced in Definition 2. The other concept, of guarded paths, is devoted to
diminishing the area of the robber territory.

Lemma 3 (Guarded Shortest Path [Aigner and Fromme]). Let G be any graph,
u,v € V(GQ), u # v and P = w(u,v). We assume that at least two cops are
in the play. Then a single cop ¢ on P can, after the movements no more than
twice the diameter of G, prevents the robber r from entering P. That is, r will
immediately be caught if he moves into P.

It is imperative that we provide the proof of Lemma 3 as well, particularly
for the new claim that “a single cop ¢ on P can, after the movements no more
than twice the diameter of G, prevents r from entering P”.

On the Capture Time of Cops and Robbers Game on a Planar Graph 7

Modified Proof of Lemma 3. Suppose the cop c is on vertex i € P and the robber
r is on vertex j € V(G). Assume Vz € P,|n(z,5)| > |m(z,4)|; denote this as (*).

Claim A. No matter what the robber does, the cop, by moving in the appropriate
direction on P, can preserve condition (*). If the r» does not move, then neither
does ¢, and (*) holds. If » moves to a new vertex k, then Vz € P, |m(k,z)| >
|7(4,2)] =1 > |n(i,2)| — 1. If i’ € P exists with |w(k,")| > |m(i,i')| — 1, then ¢,
by moving on P toward 4, also reduces the distance by 1 and (*) still holds. Sup-
pose there exist vertices z,y € P such that they are on the different sides of ¢z on
the path P, and [x(k, 2)| = |(i,2)—1, I(k,y)| < |n(i,y)| or |k,)| < |0,)],
|7 (k,y)| = |7(¢,y)| — 1. This is impossible, since by the triangle inequality and
minimality of P;

m(,y)| < [k,)| + w(k, y)| < (i,)] + (i, y)] — 1 = |m(z,y)| — 1 a contra-
diction.

Claim B. It takes a number of movements no more than twice the diameter of
G for ¢ to enforce (*). First, ¢ moves to some i € P, which takes at most the
diameter of G. By the same argument as described above, |7(j,2)| < |7 (i, 2)]
only holds for z’s on P on one side of . By moving in the direction of z which
takes at most |P| or the diameter of G moves, (*) is eventually forced. O

At a single stage, an unoccupied (free) cop ¢ will move to position herself on
some vertex of a guarded path P so as to enforce the condition (*), i.e., be on
the vertex such that she takes less time than the robber to move to any other
vertex on P. Until (*) is enforced by ¢, the robber r may cross P safely. Once
(*) is enforced and constantly preserved by ¢, r can no longer cross P without
being captured. The location satisfying (*) on P changes as the robber moves,
but there always exists at least one at a given time.

Corollary 1. If a cop c is already on P, then the number of rounds it take for
¢ to eventually enforce (*) is bounded above by the length of P.

Corollary 2. When a cop successfully controls (i.e., enforce (*) on) a shortest
path, all vertices of that path do not belong to the robber territory.

From Lemma 3, capturing the robber can be done by letting the cops alterna-
tively take the role of a free cop and guard a new shortest path within the robber
territory. Once the free cop successfully guards the path, she becomes occupied
and another cop, whose guarded path no longer interacts with the robber ter-
ritory, becomes the free cop at the next stage. At stage i, the path guarded at
stage i — 1 by a now-free cop is called an obsolete path.

Remark. From Lemma3, the length of each stage of Aigner and Fromme’s
strategy is bounded by twice the diameter of R;, or loosely by 2|V(R;)|, as
their guarded paths are usually not distinct [1]. Suppose each stage only reduces
one vertex in the worst case. Then, the capture time of Aigner and Fromme’s
strategy can roughly be bounded by > | 2i = n(n — 1). Their capture time
may actually be much faster than O(n?), but it needs a careful calculation (such
as more detailed evaluation on how paths with shared vertices interact with the
movements of the cops at each stage).

8 P. Pisantechakool and X. Tan

4 New Concepts

In order to establish a better upper bound on capts(G), we make two refinitions
over [1]. The first one is that a new path shares only its end vertices with any
current path. It is worth pointing out that in our strategy, two new paths may
also be introduced at a stage. As we will see, the guarded paths in our strategy are
almost distinct, excluding their starting/ending vertices. (In [1], a new path may
share more than just end vertices with a current path.). Our second refinition
is to choose the end vertices of the new guarded path to be on or very close to
the infinite face of robber territory. To precisely define where to choose the end
vertices, we need a new concept called outer cycles.

2y 8 o, s

: Robber Territory R; : Outer cycles C(R;)

Fig. 1. A robber territory (a) and its outer cycles (b).

Fig. 2. In (a) the current guarded path P} is shown in thick black line, and the outer
cycle of R; (C(R;)) is shown in thick shaded cycle. (b) shows the subgraph induced on
G by the vertex set V(R; U P}), drawn in black lines and dots. The thick cycle in (c)
represents the graph B(R;) = C(G[V(R; U P))).

On the Capture Time of Cops and Robbers Game on a Planar Graph 9

Definition 2. The subgraph C(R;) of R; is defined as the set of the outer cycles,
whose all the vertices and edges belong to the infinite (exterior) face of R;
(Fig. 1). In the case of a polyhedral graph, where all of its faces can be con-
sidered as interior ones, we can choose any face as the infinite face. For graphs
with multiple planar embeddings, outer cycles are made from the infinite face of
the planar straight line drawing.

Suppose that at the beginning of stage ¢, one or two current paths are guarded
by the cops so as to prevent the robber from leaving R;. These paths will be
denoted by P! and P?. Since P} and P? are assigned at the end of R;_1, P! N
R; =0 and P? N R; = (. We assume that P} always exists, i.e., R; (i > 0) can
NEVER be assigned without P!. The newly introduced path(s) at stage i will
be denoted by P or/and Q.

For two end vertices of a new guarded path, one may consider to choose
them from C(R;). But, it is difficult or even impossible in some cases for the
new path to share a common vertex with P! or P?. To overcome this difficulty,
we will select the end vertices from the outer cycle of the subgraph induced by

the vertices of the union of R;, P! and P?.

Definition 3. Let S = V(R; U P} U P?). The graph B(R;) (of enlarged outer
cycles) is defined as C(GS]).

Note that B(R;) consists of only cycles, and thus not all vertices of R;, P}

and P? belong to B(R;). For instance, the vertex a of P} (Fig.2(a)) does not
belong to B(R;). See Fig. 2(c).

5 Capture Strategy

This section focuses on how to choose the guarded paths at each stage of our
strategy. The analysis on the capture time of our strategy will be given in Sect. 7.
We first give two propositions which we use throughout our capture strategy.

Proposition 1: At the end of each stage i, we have at least one free cop.

Proposition 2: During our strategy, any guarded path introduced at stage @
shares only its end vertices with each of the current paths. For the two guarded
paths introduced at the same stage, they have a common end vertex, and may
share a subpath starting from that common vertex.

Before we begin, keep in mind that at some stage the robber territory may
become a tree; in this case, only one cop suffices (Lemma1). The main idea
of our strategy is to let at most two cops guard two different paths, and then
employ the free cop(s) to guard the new path(s), which makes one of the current
guarded paths obsolete and thus reduces the robber territory.

Our capture strategy consists of two phases.

1. Initial Phase: We first find a location to place the cops, based on the structure
of the graph G. This phase also establishes the very first pair of the guarded
paths, and thus goes from the start to the end of stage 1. When it is over, Ry
is reduced to Rs.

10 P. Pisantechakool and X. Tan

2. Recursive Phase: At a stage i (>2), we construct new guarded path(s) using
a case-analysis method. At the end of stage i, R; is reduced to R;+1. We do
this recursively until R; becomes the tree case.

Before describing the initial and recursive phases, we first give a procedure,
called TwoCopsStart, which is used when we have two free cops at stage ¢ (hence
P? does not exist). The procedure takes two inputs: a cycle C' of B(R;) and a
starting vertex u € C'. The procedure TwoCopsStart finds the other end vertex
for either of the two new paths. It is done by first setting the pointers x and y
such that |7(u,)| and |7(u,y)| on C are at L%j Recall that a portion of P}
may be included in C C B(R;), but P'NR; = (). Thus P! NC is the only portion
of C' that is not in R;. Since Pi1 as well as Pi1 N C are shortest paths in R;_1,
the length of the path C' — (P! N C), which is in R;, is at least |P} N C|. Hence,
at least a half of C' is in R;, and either x or y is initially in R;. TwoCopsStart
then repeatedly checks whether the pointer x (or y) belongs to R;; if not, z (y)
is moved on C' further away from wu, until z (y) belongs to R;. Finally, and y
are returned as vy and wvs, respectively. The outputs v; and ve will be used to
construct the new paths m(u,v1) and m(u,v2) in the graph G[V(R;) + u).

Procedure: TwoCopsStart
Input: a cycle C' C B(R;) and a vertex u € C.
Output: two vertices vy and vy for the new guarded paths 7(u,v1) and 7(u, ve).

1. Set a pointer x at u, move x clockwise along C' for (%1 vertices.

While z is not in R;, do move x to the next vertex on C' clockwise.

Set a pointer y at u, move y counterclockwise along C for [%] vertices.
While y is not in R;, do move y to the next vertex on C' counterclockwise.

Return v; «— x and vy «— y.

G

5.1 Initial Phase

The initial phase has the following two objectives: (i) find a vertex to place the
cops at stage 0, and (ii) establish the first pair of the guarded paths at stage 1
or in R;.

At stage 0, if B(Ry) is empty, then we know that the graph is a tree, which
can be easily dealt with as stated in Lemmal. In the case that B(Ry) is not
empty, we choose a vertex ey € B(Rg) such that eg is not a cut vertex (for the
simplicity of assigning R;). We place all cops ¢1,c2 and c3 at eg, and then wait
for the robber player to place his piece r on the graph.

Suppose r is now located at some vertex in Ry — eg. At stage 1, we have
Ry = Ro—eg and B(R1) = B(Ry) (as P} is the vertex eg and P? = (). Note that
eo € B(Ry) is on some cycle C; of B(Ry). Using Ry, we execute TwoCopsStart
by letting C' < C7 and u <« ¢g. After obtaining the outputs v; and vg, we find
the shortest paths P = 7(eg,v1) and Q = w(eg,v2) in G[V(Ry) + eg] and send
c1 and ¢ to guard P and @, respectively. Note that the length of stage 1 is
mainly determined by the operation of moving a cop to a vertex on the shortest
path and then enforcing condition (*) on that path, which can be done without
concerning the movements of r.

On the Capture Time of Cops and Robbers Game on a Planar Graph 11

At the end of the initial phase, if P and () separate R; into two or more
components, Ry is then the connected component containing the robber r. Oth-
erwise, Ry = G[V(R; — P — @)]. The reduced robber territory Ry is either a
subgraph with at least one outer cycle, or a tree. If it is the tree case, the robber
can simply be captured (Lemma 1). Otherwise, we enter Recursive Phase.

5.2 Recursive Phase

In this phase, we recursively reduce the robber territory R; into R;y1, until R;
is a tree. The reduction of R; into R;;1 is done by constructing and controlling
one or two new guarded paths (Corollary 2).

Recall that the current paths P! and P? were given at the end of stage
i — 1, and R; can never be assigned without P!. We distinguish the following

situations.

Case (a): B(R;) N P! has at most one vertex.

Fig. 3. An example of case (a); P}, shown in thick dashed line, with the unique path
7(z,w), x € P} and w € B(R;). The new paths P and Q, with the common end vertex
w, are shown in thick dark line.

Note that P? =) in this case. If B(R;)NP}! = (), we find a vertex x € P} and
a vertex w € B(R;) such that |7(z,w)| is minimum among the shortest paths
from a vertex of P} to the other of B(R;). Since B(R;) N P! = (), the pair (z,w)
is unique, and all vertices of 7(z, w) are cut vertices, see Fig. 3(b). We first move
all three cops ¢1, ¢2 and c3 to z, and then along 7(x,w) to u. In the case that
B(R;) N P} has one vertex, we let w be that vertex, see Fig. 3(c).

Let C; C B(R;) be the cycle containing w. Since one cop can simply guard
vertex w, two cops are free in this case. We execute TwoCopsStart procedure
by letting C' «— C; and u < w. Note that w has some neighbors in R; (two of
them are on C;). After obtaining the outputs v; and ve (which belong to R;),
we find the shortest paths P = 7w(w,v1) and Q@ = 7(w,v2) in G[V(R;) + w],
and then send the free cops, say, ¢; and co to guard P and @, respectively.
In GIV(R; — P — Q)], the component containing r is then R; ;.

12 P. Pisantechakool and X. Tan

Fig. 4. An example of case (b); P} is shown in thick line, and C; C B(R;) is shown in a
combination of thick black line and thick gray lines. P(m,v1) is shown in thick dotted
line, and Q(m,v2) in thick dashed line. P and @ may share some subpath 7(m,n),
which is shown in thick dash dotted line.

Case (b): B(R;) N P! has more than one vertex and P? = ().

Suppose P! = 7(e, f). Let N(R;) denote the set of all vertices u, where
u € N(v) for some v € R;. We find m € N(R;)NP;} such that |7(m, f)|—|7(e,m)|
(> 0) is minimal. Since m € P}, we also have m € B(R;). Again, let C; C B(R;)
be the cycle containing m.

Since B (Ri)ﬂPi2 = (), only one cop, say, c1, needs to guard P}. Thus two cops
are free. We execute TwoCopsStart procedure by letting C' «— C; and u «— m.
After we obtain the outputs v; and ve, we find the paths P = m(m,v;) and
Q = m(m,vz) in G[V(R;) + m] and then send free cops ¢y and c¢3 to guard P
and @, respectively. Note also that P and () may share a common subpath if m
has only one neighbor in R;. See Fig.4(a). In G[V(R; — P — Q)], the component
containing r is then R;;1.

Case (c): B(R;) N P! has more than one vertex and P? # .

Fig. 5. An example of case (c); P} = (e, f), is shown in thick dark gray line, P? =
m(e, g) in thick dark line, and P = 7(z,y) in thick black line. C; C B(R;) is shown in
a combination of thick dashed lines and thick lines.

In this case, two cops have to guard P} and P?, and thus we have only one
free cop, say c3. It can be deduced from Proposition 2 that P! and P? have a
common vertex, say e. Let f (g) be the other end vertex of P! (P?). By the
denotations, P! = 7(e, f) and P? = m(e,g). Note that f or g may not belong to

B(R;) because f (g) may not be on any outer cycle of G[V(R;) U P} U P?].

On the Capture Time of Cops and Robbers Game on a Planar Graph 13

Next, we find two vertices € N(R;) N P? and y € B(R;) N P} such that

z and y are the vertices of P? and P!, which are closest to e and f along P?
and P}, respectively. See Fig. 5 for example. Note that x has to be chosen from
N(R;), instead of B(R;), because we want it to have some neighbor in R;. It
is also possible for x = e in the case that e € N(R;), and for y = f when
f € B(R;). Finally, we find the shortest path P = 7(z,y) in G[V(R;) + x + y],
and send the free cop c3 to guard P. Again, R;; is the component containing
r in G[V(R; — P)].

6 Correctness and Completeness

In this section we show that our capture strategy is correct and complete.
Theorem 1. Proposition 1 is upheld for the whole of capture strategy.

Proof. In case (a) and initial phase, two new paths are introduced and both start
from a common vertex. Therefore, at least one cop is free at the next stage.

In case (b), as shown in Fig.4(b), the new guarded paths P and @ may
partition R; into three components; each of them is a candidate of R; 1, which
is guarded by two cops at the next stage. Therefore, at least one cop is free at
the next stage.

Similarly in case (c), as shown in Fig.5(b), no matter which component
becomes R;,1, either P! or P? becomes obsolete and its cop is free at the next

K3

stage. ([l
Theorem 2. At the end of each stage i of the robber territory, R;11 € R;.

Proof. It simply follows from the definition of the robber territory and
Corollary 2. O

Theorem 3. Proposition 2 is upheld for the whole of capture strategy.

Proof. Using TwoCopsStart procedure, the two paths introduced in the initial
phase, case (a) and case (b) always have a common vertex. For case (b), the
newly introduced paths share exactly one vertex m with P!, and two new paths
may also share a subpath (e.g., w(m, n) in Fig.4).

In case (c), the newly introduced path P = 7(x,y) shares at most two com-
mon vertices = (when z=e € P!') and y with P!, and exactly one common vertex
x with P2 O

The correctness of our strategy follows from Theorem 2, and the completeness
follows from Theorems 1 and 3.

14 P. Pisantechakool and X. Tan

7 Capture Time of Our Strategy

In this section we describe in detail the movements of the cops during our strat-
egy so as to get a better understanding of the capture time. We first introduce
another concept, called the active paths.

Definition 4. Active Path: Let P = 7(a,b) be a current guarded path at stage 1,
m and n the first vertex of P from a and b that has a neighbor in R;, respectively.
The subpath P(m,n), from m to n, is called an active path of P.

Sometimes a path P as whole may be an active path if both end vertices are
in N(R;). If the path persists through many stages without becoming obsolete,
the active portion may become smaller due to the change in robber territory.
This active path can be represented as B(R;) NP (j > i), since P is still a
current path and thus the active portion of P at stage j belongs to B(R;).

Lemma 4. Suppose path P is guarded by some cop c. Then it suffices for c to
guard the active subpath of P.

Proof. Let P(m,n) be the active path of P in current stage i. By Definition 4,
the robber territory R; has no vertex adjacent to any vertices on P — P(m,n).
Suppose the robber r wants to travel to some vertex v € P — P(m,n). But u
cannot be reached in R; without traversing through P. The robber has to enter
P(m,n) first, which is a subpath of P, and by Lemma 3, he will get captured. O

The guarding action of a cop requires three types of movements; (i) moving
into the path, (ii) moving along the path to satisfy (*), and (iii) moving along the
path while keeping to preserve (*). The length of a stage is mainly determined
by the action of the free cop trying to control a new path. When a free cop
successfully controls a path by enforcing (*) (i.e., be on the position that can
move to any vertices on that path in smaller number of movements than the
robber), the stage is then over. So (iii) movements can safely be ignored. In the
following, we give a method to count the movements (i) and (ii) taken by the
free cops.

In the initial phase, the cops are already on their own paths. The length of
stage 1 involves only (ii) movements, which takes at most maz{|P|,|Q|}. In the
recursive phase, assume every stage ¢ > 1 does not have any path that separates
subgraph R; into multiple components. This is the worst case because none of
the vertices that do not belong to any guarded paths is removed from the robber
territory.

When a path, say, U = 7(p, q), is introduced at stage ¢ (>1), it is traversed
by a cop ¢ at most |U| (ii) movements (Lemma3). See Fig.6(a). As discussed
above, the introduction of U makes one of the current paths, say W, obsolete
at the end of stage i. At the next stage i + 1, a new free cop (differing from
'), say, ¢'T1, must move out of her obsolete path W (made obsolete by U) to
a newly introduced path, say X. It might be faster to move ¢'*! directly from
W to X. But, for simplicity, we do the following: move to the common vertex of

On the Capture Time of Cops and Robbers Game on a Planar Graph 15

W and U, and then (i.1) move along the intermediate path, which is a portion of
the path (U), to reach destination path (X). See Fig.6(b). At some later stage
i+ j (j > 1), U becomes obsolete by the introduction of some new path Y (at
stage i +j — 1) and the cop ¢/*t7, who was guarding U and labeled as ¢!, moves
to guard another new path Z. Note that Y can be X if U is obsolete at stage
i+ 2. The cop ¢‘*7 must first move out of the obsolete path (U) by (i.2) moving
along the obsolete path to its vertex that is common with the current path (Y)
at stage ¢ + j, and then travels to Z using the method described above. See
Fig.6(c).

In summary, a path U is traversed by the free cops in three separate occasions:
(ii) movements when being introduced at stage i, (i.1) movements when being a
current guarded path at stage i+ 1, and (i.2) movements after becoming obsolete
at stage i + j.

~o - T A,i
p ¢
T

(a) Newly introduced U is traversed by ¢ at stage i

(c) Obsolete path U is traversed by ¢/ (= ¢') at stage i + j

Fig. 6. A single path U is traversed by free cops on three separate occasions. At each
stage, an obsolete path is shown in dotted line, a current path in normal heavy line,
and a new path in dashed line. The portion of U traversed by a free cop is shown in
thick line.

Let U(r, s) be the active subpath of U. Following from Lemma4, the cop ¢!
stops somewhere between r and s after she perform type (ii) movements. Thus,
U is traversed by a free cop for at most |U(p, s)| or |U(r,q)| (ii) movements. In

16 P. Pisantechakool and X. Tan

order for ¢!*! to move from obsolete path (W) to newly introduce path (X) at
stage i+ 1, at most |U(p,r)| or |U(s,q)| (i.1) movements are made on U. At the
beginning of stage i + j, U is made obsolete by Y, and the cop ¢/ must be
somewhere between r and s on U. At stage i+j—1, the path Y is introduced, and
the active portion of the current path U is B(R;4j—1) NU. Thus, an end vertex
of Y coincides with an end vertex, say, ¢ of B(R;4;—1)NU (Proposition 2). From
the discussion made above, t is somewhere between r and s on U. Therefore, U
is traversed by the cop ¢/ for at most |U(r,t)| or |U(t,s)| (i.2) movements to
move out of obsolete path U.

In conclusion, the number of the movements (i.1), (i.2) and (ii) on U is no
more than 2|U|. Hence, we have the following result.

Lemma 5. In our capture strategy, each guarded path is traversed no more than
twice of its length.

Theorem 4. In our capture strategy, all the paths used in evaluating the lengths
of stages are distinct, excluding their end vertices.

Proof. Supposed the guarded paths P; and P;y; are introduced during stage i
and stage i + 1, respectively. It follows from Theorem 3 that, excluding their
end vertices, P; is distinct from P;;;. When two paths are introduced at the
same stage and they may share a subpath (case (b)), only one of them (i.e., the
one traversed by the free cop whose number of movements is larger) is used in
evaluating the length of that stage. Therefore, the theorem follows. O

For completeness, in a tree case, the length of the chase on a tree is simply
bounded above by the diameter of the tree.

Theorem 5. For the cops and robbers game on a planar graph G of n vertices
with three cops, capts(G) < 2n.

Proof. The theorem directly follows from Theorem 4 and Lemma 5.]

8 Conclusion

We have presented a new capture strategy for the Cops and Robbers Game on a
planar graph with three cops, and shown that the capture time of our strategy
is no more than 2n. This gives the first linear result on capts(G).

An extension for future work is to apply our new concepts to improve a
capture strategy in a polygonal environment; a problem researched by Bhadauria
and Isler [3]. Their strategy, which is used to prove that three cops suffice in the
polygonal environment with obstacles, is also based on the concepts given by
Aigner and Fromme. The upper bound on the capture time is suggested to be
as large as 2nA, where A is the area and n is the number of vertices of the
environment. In a geometric setting, even if all the paths are distinct, the sum
of their lengths is still bounded above by A. It is rather loose as a large portion
of the given environment is removed from the robber territory at the end of a
stage. This thus suggests that by applying our strategy we may obtain a smaller
upper bound, say, 2A. We are working in this direction.

On the Capture Time of Cops and Robbers Game on a Planar Graph 17

References

10.

11.

12.

13.

14.

Aigner, M., Fromme, M.: A game of cops and robbers. Discrete Appl. Math. 8(1),
1-12 (1984)

Alspach, B.: Searching and sweeping graphs: a brief survey. Le Mathematiche 59,
2 (2004)

Bhaduaria, D., Klein, K., Isler, V., Suri, S.: Capturing an evader in polygonal
environments with obstacles: the full visibility case. Int. J. Robot. Res. 31(10),
1176-1189 (2012)

Bienstock, D., Seymour, P.: Monotonicity in graph searching. J. Algorithm 12,
239-245 (2011)

Bonato, A., Golovach, P., Hahn, G., Kratochvil, J.: The capture time of a graph.
Discrete Math. 309, 5588-5595 (2009)

Gal, I.: Search Games. Addison-Wesley, Reading (1982)

Kehagias, A., Hollinger, G.A., Singh, S.: A graph search algorithm for indoor
pursuit-evasion. Math. Comput. Model. 50(9-10), 1305-1317 (2008)

LaPaugh, A.S.: Recontamination does not help to search a graph. J. ACM 40,
224-245 (1993)

Maurer, A., McCauley, J., Valeva, S.: Cops and robbers on planar graphs. In: Sum-
mer 2010 Interdisciplinary Research Experience for Undergraduates. University of
Minnesota (2010)

Mehrabian, A.: The capture time of grids. Discrete Math. 311, 102-105 (2011)
Nowakowski, R., Winkler, R.P.: Vertex-to-vertex pursuit in a graph. Discrete Math.
43, 235-239 (1983)

Parsons, T.D.: Pursuit-evasion in a graph. In: Alavi, Y., Lick, D.R. (eds.) Theory
and Applications of Graphs. Lecture Notes in Mathematics, vol. 642, pp. 426-441.
Springer, Heidelberg (1978)

Parsons, T.D.: The search number of a connected graph. In: Proceedings of 9th
South-Eastern Conference on Combinatorics Graph Theory and Computing, pp.
549-554 (1978)

Quilliot, A.: Some results about pursuit games on metric spaces obtained through
graph theory techniques. Eur. J. Comb. 7(1), 55-66 (1986)

The Mixed Evacuation Problem

Yosuke Hanawa!, Yuya Higashikawa??, Naoyuki Kamiyama*>®)

Naoki Katoh®®, and Atsushi Takizawa3"

1 Kyoto University, Kyoto, Japan
yosuke.hanawa@gmail.com
2 Chuo University, Tokyo, Japan
higashikawa.874@g.chuo-u.ac. jp
3 JST, CREST, Saitama, Japan
4 Kyushu University, Fukuoka, Japan
kamiyama@imi.kyushu-u.ac.jp
5 JST, PRESTO, Saitama, Japan
6 Kwansei-Gakuin University, Hyogo, Japan
naoki.katoh@gmail.com
7 Osaka City University, Osaka, Japan
takizawa@arch.eng.osaka-cu.ac. jp

Abstract. A dynamic network introduced by Ford and Fulkerson is a
directed graph with capacities and transit times on its arcs. The quick-
est transshipment problem is one of the most fundamental problems in
dynamic networks. In this problem, we are given sources and sinks. Then,
the goal of this problem is to find a minimum time limit such that we
can send exactly the right amount of flow from sources to sinks. In this
paper, we introduce a variant of this problem called the mixed evacuation
problem. This problem models an emergent situation in which people can
evacuate on foot or by car. The goal is to organize such a mixed evacu-
ation so that an efficient evacuation can be achieved. In this paper, we
study this problem from the theoretical and practical viewpoints. In the
first part, we prove the polynomial-time solvability of this problem in
the case where the number of sources and sinks is not large, and also
prove the polynomial-time solvability and computational hardness of its
variants with integer constraints. In the second part, we apply our model
to the case study of Minabe town in Wakayama prefecture, Japan.

1 Introduction

The coastal area facing the Pacific Ocean in Japan ranging from Shizuoka pre-
fecture to Miyazaki prefecture has a high risk of a tsunami. In particular, it

This research was the result of the joint research with CSIS, the University of Tokyo
(No. 573) and used the following data: Digital Road Map Database extended version
2013 provided by Sumitomo Electric Industries, Ltd and Zmap TOWN II 2008/09
Shapefile Wakayama prefecture provided by Zenrin Co. Ltd.

Y. Higashikawa, N. Katoh and A. Takizawa—This work was partially supported by
JSPS Grant-in-Aid for Scientific Research(A) (25240004).

N. Kamiyama—This work was supported by JST, PRESTO.

© Springer International Publishing AG 2016

T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 18-32, 2016.
DOT: 10.1007/978-3-319-48749-6_2

The Mixed Evacuation Problem 19

is predicted that Nankai Trough Earthquake will occur with 70 % probability
within thirty years, and it will trigger a tsunami of the huge size which will
quickly arrive at the coast (see, e.g., [1]). Based on several assumptions and esti-
mated data, Wakayama prefecture recently designated several areas in which it
is difficult for all people in the area to evacuate to safety places such as tsunami
evacuation buildings before a tsunami arrives when Nankai Trough Earthquake
occurs. For example, it is predicted that in Kushimoto town located at the
south end of the main land of Japan, a tsunami arrives at earliest within ten
minutes. One of assumptions the prefecture used is that the evacuation is done
only by walking. In principle, it used to be not allowed to use cars for evacuation
because the usage of cars in such an emergent situation may block evacuation
of pedestrians which was observed at the time of Tohoku-Pacific Ocean Earth-
quake. However, if it is allowed to use cars and the smooth evacuation by car is
organized, then the evacuation completion time may be shortened. The aim of
this paper is to propose a mathematical model for making such a good “mixed”
evacuation plan.

In this paper, we use a dynamic network flow introduced by Ford and
Fulkerson [2,3] for modeling such a mixed evacuation. A dynamic network is a
directed graph with capacities and transit times on its arcs. The quickest trans-
shipment problem is one of the most fundamental problems in dynamic networks.
In this problem, we are given a dynamic network with several sources and sinks.
Furthermore, we are given a supply for each source and a demand for each sink.
Then, the goal of this problem is to find the minimum time limit such that we
can send exactly the right amount of flow from sources to sinks. Hoppe and
Tardos [4] proved that this problem can be solved in polynomial time. In this
paper, we introduce a variant of the quickest transshipment problem called the
mixed evacuation problem. This problem models an emergent situation in which
people can evacuate on foot or by car. The goal of this problem is to organize
such a mixed evacuation so that an efficient evacuation can be achieved. In the
first part of this paper, we study the mixed evacuation problem from the theoret-
ical viewpoint. First we prove that if the number of sources and sinks is at most
C'logyn (n is the number of vertices) for some constant C', then mixed evacua-
tion problem can be solved in polynomial time (Sect. 3). In addition, we consider
variants of the mixed evacuation problem with integer constraints (Sect.4). In
the second part of this paper, we study the mixed evacuation problem from the
practical viewpoint. In this part, we apply our model to the case study in Japan
(Sect. 5). More precisely, we apply our model for Minabe town in Wakayama pre-
fecture, which was designated as a city in which safe evacuation from a tsunami
is difficult when Nankai Trough Earthquake occurs.

Let R, Ry, Z, Z4, and Z_ be the sets of reals, non-negative reals, integers,
non-negative integers, and non-positive integers, respectively. For each finite set
U, each vector 2 in RY, and each subset W of U, we define 2(W) := > o z(u).
Furthermore, for each finite set U and each pair of vectors x,y in RY, we define

(@,y) =2 yev v(Wy(u).

20 Y. Hanawa et al.

2 Preliminaries

The MIXED EVACUATION problem is defined as follows. We are given a directed
graph D = (V, A) and two disjoint subsets S, T of V. Define n := |V|. The subset
S (resp., T) is the set of source vertices (resp., sink vertices) in V. We assume
that no arc in A enters (resp., leaves) a vertex in S (resp., T'). In addition, we
are given an arc capacity vector ¢ in Zﬁ a supply vector b in Z;gr, a sink capacity
vector u in ZT, transit time vectors 7, 7o in Zf, and fluid coefficients ¢1, g2 in
Z. In our application, 7 represents the speed of walking, and ¢; represents the
number of people that can walk in the one unit of the arc capacity. The values
Ta, g2 represent the information for cars. Lastly, we are given a time limit © in
Z. . Define [0] :={0,1,...,0}.

For each integer 4 in {1,2}, each function f: A x [0] — R, each vertex v
in V, and each integer 6 in [0], we define

0—7i(a)
- % Srea ¥ 3 e
a€d(v;A) t= aco(v;A) t=0

where 0(v; A) (resp., o(v; A)) represents the set of arcs in A leaving (resp., enter-
ing) v. A vector d in R9YT is called an allocation, if d(v) > 0 for every vertex
vin S and d(v) < 0 for every vertex v in T. For each integer ¢ in {1,2}, each
allocation d in R%YT, and each vector w in Rﬁ, d is said to be (i, w)-feasible, if
there exists a function f: A x [0] — R satisfying the following conditions.

(D1) Let a and 6 be an arc in A and an integer in [O], respectively.
-If 6 <O —1i(a), then f(a,0) < g; - w(a).
-If 0 > © — 7;(a), then f(a,d) = 0.
(D2) Let v and 6 be a vertex in V and an integer in [0], respectively.
-IfveV\(SUT), then 9;f(v,0) < 0.
-If v e S (resp., T), then 9, f(v,0) < d(v) (resp., 0;f(v,0) > d(v)).
(D3) Let v be a vertex in V.
“Ifve V\(SUT), then 8;f(v,0) = 0.
-Ifv e S, then 9;f(v,©) = d(v).

For each integer i in {1,2} and each vector w in R%, let F;(w) be the set of
(i, w)-feasible allocations in RSYT. An assignment is a tuple (dy, dz, w;, ws) such
that dq, dy are allocations in RSYT and wq, wy € Rf. Furthermore, an assignment
(d1,da, w1, ws) is said to be feasible, if it satisfies the following conditions.

(F1) For every vertex v in S (resp., T), dy(v) + da(v) = b(v) (resp., > u(v)).
(F2) For every arc a in A, we have wi(a) + wa(a) < ¢(a).
(F3) We have d; € F1(wy) and dy € Fa(ws).

The goal of MIXED EVACUATION (ME for short) is to decide whether there
exists a feasible assignment. Notice that we can straightforwardly formulate ME
as a linear programming problem (in Sect.5, we use an algorithm based on the
linear programming). However, since the input size of © is log, ©, its size is not
bounded by a polynomial in the input size of ME.

The Mixed Evacuation Problem 21

3 Mixed Evacuation with Few Sources and Sinks

In this section, we prove that if |S U T| < Clog,n for some constant C, then
ME can be solved in polynomial time. Assume that we are given an integer i in
{1,2}, a vector w in R%, and a subset X of S UT. Define D¥(X) as the set of
functions f: A x [0©] — R satisfying (D1) and the following conditions.

(D4) Let v and 6 be a vertex in V and an integer in [©], respectively.
-If v e V\X, then 9;f(v,0) <O0.
-If v € X, then 0;f(v,0) > 0.

(D5) For every vertex v in V\(SUT), we have 0; f(v,0) = 0.

Recall that no arc in A enters (resp., leaves) a vertex in S (resp., T'). Thus, for
every function f in DY (X) and every vertex v in (S\X) U (T'N X), we have
0;f(v,0) = 0. Furthermore, we define a function o : 2597 — R, by

o¥(X) = max{ 3 0./ (v,0) ‘ fe D;U(X)}.
veX

Theorem 1 (Klinz [4, Theorem 5.1]). Assume that we are given an integer
i in {1,2}, an allocation d in R%YT | and a vector w in]R_‘ﬁ. Then, d € F;(w) if
and only if d(X) < 0¥ (X) for every subset X of SUT.

For each pair of vertices s in S and ¢ in T, we denote by a(t, s) an arc from
t to s. Define E := AU {a(t,s) | s € S,t € T'}. Furthermore, we define H as the
directed graph with the vertex set V and the arc set E. Then, for each integer
i in {1,2}, each vector w in Rf, each subset X of SUT, and each vector £ in
Rf, & is called a feasible static flow with respect to i, w, and X, if it satisfies
the following conditions (S1), (S2), and (S3).

(S1) For every arc a in A, we have £(a) < ¢; - w(a).

(S2) For every pair of vertices s in S and ¢ in T, if at least one of s € S\ X and
t € X holds, then &(a(t,s)) = 0.

(S3) For every vertex v in V', we have {(6(v; E)) = &(o(v; E)).

For each integer i in {1,2}, each vector w in Rf, and each subset X of SUT,
we denote by S¥(X) the set of feasible static flows with respect to i, w, and X.
In addition, for each integer i in {1,2}, we define a vector k; in RF as follows.
For each arc a in E\ A (resp., A), we define k;(a) := © + 1 (resp., —7;(a)).

Theorem 2 (Ford and Fulkerson [2,3]). For every integeri in {1,2}, every
vector w in Rf, and every subset X of SUT, o’(X) is equal to the optimal
objective value of the problem of maximizing (k;,&) such that & € S¥(X).

Define P as the set of assignments (dy, ds2, w1, ws) such that it satisfies (F2)
and (F3), and the following condition.

(F171) For every vertex v in S (resp., T'), d1(v) + da(v) < b(v) (resp., > u(v)).

22 Y. Hanawa et al.

Let P1 be the problem of maximizing d; (S)-+dz(S) such that (dy, da, wi,ws2) € P.
If the optimal objective value of P1 is equal to b(.S), then we can conclude that
there exists a feasible assignment. Otherwise, we can conclude that there exists
no feasible assignment. This observation implies that if we can formulate P1 by a
linear programming problem whose size is bounded by a polynomial in the size of
ME, then the polynomial-time solvability of ME follows from the polynomial-time
solvability of the linear programming problem [5]. Theorems 1, 2 imply that P1
can be formulated as follows. Define a vector b° in R%YT by b°(v) := b(v) for
each vertex v in S and b°(v) := 0 for each vertex v in T'. Define a vector u° in
RSYT by u°(v) := 0 for each vertex v in S and u°(v) := u(v) for each vertex v
inT.
Maximize d;p(S) 4 dz2(5)
subject to di(v) >0, da(v) >0 (veES)
dl(v)gO, dg()SO (’UGT)
w®(v) < dj(v) +da(v) <b°(w) (weSUT)
(ki,&x) > di(X) (1e{l,2},X CSUT)
&x €SY(X) (ief{1,2,,XCSUT)
wi(a) + wa(a) < cla) (a€A)
di,ds €]RSUT, w1, W € Rf

If |SUT| < Clogy n for some constant C, then it is not difficult to see that the
size of this linear programming problem is bounded by a polynomial of the input
size of ME. This completes the proof.

4 Mixed Evacuation with Integer Constraints

4.1 Integral Arc Capacities, Supplies, and Sink Capacities

Here we consider INTEGRAL MIXED EVACUATION (IME for short). This problem
is a variant of ME in which a feasible assignment (dy,ds, w1y, ws) must satisfy
that dy,dy € Z°YT and wy,wy € Zj‘_. We prove the NP-completeness of IME by
reduction from DISJOINT PATHS WITH DIFFERENT COSTS [6] (DPDC for short)
defined as follows. In what follows, we do not distinguish a simple directed path
in a directed graph and the set of arcs contained in this directed path. We are
given a directed graph G = (N, L), a source vertex v* in N, and a sink vertex
v~ in N. Furthermore, we are given cost vectors ¢1, ¢ in Zf_ and a non-negative
integer h in Z,. The goal of DPDC is to decide whether there exist arc-disjoint
simple directed paths Pj, P, from v* to v~ such that £1(P;) + €o(P2) < h.

Theorem 3 (Li, McCormick, and Simchi-Levi [6]). The problem DPDC is
NP-complete even if h = 0 and ¢;(a) € {0,1} for every integer i in {1,2} and
every arc a in L.!

! In [6, Theorem 1], although the condition that A = 0 and ¢;(a) € {0,1} for every
integer ¢ in {1,2} and every arc a in L is not explicitly stated, the reduction in their
proof satisfies this condition.

The Mixed Evacuation Problem 23

For proving the fact that IME is in NP, we need the following theorems. For
each finite set U and each function g: 2V — R, g is said to be submodular, if
g(X)+9g(Y) > g(XUY)+g(XNY) for every pair of subsets X,Y of U.

Theorem 4 (E.g., [7,8]). Assume that we are given a finite set U and a sub-
modular function g: 2V — R. Then, we can find a subset X of U minimizing
9(X) among all subsets of U in time bounded by a polynomial in |U| and EO,
where EO is the time required to compute g(X) for a subset X of U.

Theorem 5 (Hoppe and Tardos [4]). For every integer i in {1,2} and every
vector w in Rﬁ, the function o’ is a submodular function.

Theorem 6 (E.g., [9]). For every integer i in {1,2} and every subset X of
SUT, we can compute o0;"*(X) in polynomial time.

Assume that we are given an integer i in {1,2}, an allocation d in RSYT
and a vector w in R%. Then, Theorem 1 implies that d € F;(w) if and only if
o¥(X) —d(X) > 0 for a subset X of S UT minimizing o (X) — d(X) among
all subsets of S UT'. Thus, since Theorem 5 implies that o}” — d is submodular,

Theorems 4, 6 imply that we can check whether d € F;(w) in polynomial time.?
Theorem 7. The problem IME is NP-complete.

Proof. Theorems 1, 4, 5, and 6 imply that IME is in NP. We prove that IME is
NP-complete by reduction from DPDC. Assume that we are given an instance of
DPDC such that & = 0 and £;(a) € {0, 1} for every integer ¢ in {1, 2} and every arc
a in L. Then, we construct an instance of IME as follows. Define V' := N U {s*},
where s* is a new vertex. Define A := LU{a1,as}, where a; and ay are new arcs
from s* to v*. Define S := {s*} and T := {v~}. Define c(a) := 1 for each arc a
in A. For each arc a in A, we define

li(a) fael ly(a) fael
71(a):=<¢ 0 if a =ay To(a) =<1 if a =ay
1 if a =as 0 if a = as.

Define b(s*) := 2 and u(v~) := —2. Define ¢; :=1, g2 := 1, and © := 0.
Assume that there are arc-disjoint simple directed paths Py, P» in G from vt
to v~ such that ¢1(Py) + ¢2(P2) < 0. Since ¢;(a) > 0 for every integer 7 in {1, 2}
and every arc a in L, we have ¢1(Py) = {2(P,) = 0. For each integer ¢ in {1, 2},
we define a directed path Pi+ in D as the directed path obtained by adding a; to
P;. Since P; and P, are arc-disjoint, Pf and P; are arc-disjoint. Furthermore,
for every integer i in {1, 2}, since £;(P;) = 0 and 7;(a;) = 0, we have 7;(P;") = 0.
For each integer 7 in {1,2}, we define d;(s*) := 1 and d;(v~) := —1. In addition,
for each integer 4 in {1,2}, we define a vector w; in Z4 as follows. If a € P;", then
we define w;(a) := 1. Otherwise, we define w;(a) := 0. Since P;" and Py are

2 This proof is the same as the proof of the polynomial-time solvability of the decision
version of the quickest transshipment problem in [4].

24 Y. Hanawa et al.

arc-disjoint, wq(a) +wa(a) < 1 = ¢(a) for every arc a in A. Thus, (dy,ds, w1, ws)
is a feasible assignment.

Next we assume that there exists a feasible assignment (d;,ds, w7, ws) such
that dy,do € Z°°T and wy, wy € Zf. Since 71(a2) = m2(a1) =1, c(a1) = c(az) =
1, and © = 0, we have d;(s*) = da(s*) = 1. Since ¢(a) = 1 for every arc a in A,
we have wi(a), wa(a) € {0,1} and at most one of wy(a) and wo(a) is equal to
1 for every arc a in A. For each integer 7 in {1,2}, we denote by L; the sets of
arcs a in A such that w;(a) = 1. Then, L; and Lo are disjoint. For every integer
i in {1,2}, since d;(s*) = 1 and © = 0, L; contains a simple directed path L}
from s* to v~ such that 7;(L}) = 0 as a subset. Furthermore, for every integer ¢
in {1, 2}, the definition of 7;, we have a; € L;. For each integer ¢ in {1, 2}, let P,
be the directed path obtained by removing a; from L}. Then, for every integer i
in {1, 2}, we have ¢;(P;) = 0. This completes the proof. O

4.2 Integral Supplies and Sink Capacities

Here we consider problems of finding an integral allocation of supplies and sink
capacities. We consider INTEGRAL MIXED EVACUATION WITH ARC CAPACITIES
(IMEAC for short) defined as follows. We are given vectors wy,ws € Z such that
wi(a) + wa(a) < c(a) for every arc a in A. Then, the goal is to decide whether
there exists a feasible assignment (d1,ds, w1y, w2) such that di,dy € Z5YT . We
prove that IMEAC can be solved in polynomial time. In the rest of this section, we
define o; := o’ for each integer i in {1,2}. For each finite set U, each function
g: 2V — R, and each pair of subsets P;, P, of RV, we define P(g) := {x € RY |
2(X) < g(X) (VX CU)yand P+ P, :={x+y |z € P,y € Po}. Then,
Theorem 1 implies that IMEAC can be formulated as the following problem P2.

1(5) + d2(S)
(0) 20, da(0) 20 (v€S)
dl(v)SO dg()<0 (UET)
(v) < di(v) +da(v) <b°(v) (veESUT)
d, € P() do € P(), dl,dg S Z5vT,

Maximize
subject to

If the optimal objective value is equal to b(.S), then we can conclude that there
exists a desired assignment. Otherwise, there exists no such an assignment.
Assume that we are given an integer i in {1,2}. Define o; : 257 — Ry by
setting o; (X) to be the minimum value of 0,(Y") over all subsets ¥ of X such
that X NS CY. Let X be a subset of SUT. Define a function o; x: 22X\ R
by setting 0; x (V) := 0;(Y U(X NS)) —0;(X NS). It is not difficult to see that
0;,x is submodular and o; (X) = min{o; x(Y) | Y C X\S} + 0,(X N S). That
is, we can evaluate o; (X) by evaluating the value of o; and using the algorithm
for submodular function minimization. It is known [10, Eq. (3.10)] that o; is a
submodular function. Furthermore, it is known [10, Theorem 3.3] that P(o;) is
equal to the set of vectors d in P(o;) such that d(v) < 0 for every vertex v in T'.

The Mixed Evacuation Problem 25

Thus, P2 is equivalent to the following problem.

Maximize dy(S) + d2(S)

subject to di(v) >0, da(v) >0 (veS)
u®(v) < di(v) +dao(v) <b°(v) (veSUT)
d, € P(Ol_), do € P(O;), dl,dg S 75T,

We consider the following problem P3.

Maximize dq(S) + d2(S)
subject to u®(v) < dj(v) +d2(v) <b°(v) (veSUT)
d, € P(O;), dy € P(O;), dy,dy € Z75YT,

Lemma 1. The optimal objective values of P2 and P3 are the same.

Proof. For each optimal solution (dy, d3) of P3, we define v(d;, d2) as the number
of pairs (i,v) of an integer ¢ in {1,2} and a vertex v in S such that d;(v) < 0.
Let (dy,d2) be an optimal solution of P3 minimizing y(d;, d2) among all optimal
solutions of P3. If «(dy,d2) = 0, then since P3 is a relaxation problem of P2,
(d1,ds) is clearly an optimal solution of P2, and thus the proof is done. Assume
that v(dy,ds) > 1. Let (é,v) be a pair of an integer ¢ in {1,2} and a vertex v
in S such that d;(v) < 0. We assume that ¢ = 1 (we can treat the case of i = 2
in the same way). For proving this lemma by contradiction, we prove that there
exists an optimal solution (dj,d}) of P3 such that v(di,d2) > ~(d},d5). This
contradicts the definition of (dy,ds), and thus this completes the proof.

Define vectors d}, dj in Z5YT as follows. Define d} (v') := dy(v') and dj(v') :=
da(v") for each vertex o' in (S UT)\{v}. Furthermore, define dj(v) := 0 and
d5(v) := min{da(v), b(v)}. We first prove that d(v) + d2(v) < dj(v) + d5(v). If
d5(v) = da(v), then since d; (v) < 0, this clearly holds. If dy(v) = b(v), then since
dq(v) + da(v) < b(v), this clearly holds. This implies that the objective value of
(d},db) is no less than that of (dj,d2). Thus, what remains is to prove that
(d},db) is a feasible solution of P3. The above inequality implies that (df,d5)
satisfies the first constraint of P3. In addition, d} clearly belongs to P(o5). Thus,
it suffices to prove that d} € P(o7). Assume that this does not hold. Then, there
exists a subset of X of SUT such that v € X and o] (X) — di1(X) < —di(v).
Since it is not difficult to see that o1 (Y \{v}) < 01(Y) for every subset Y of X
such that X NS C Y, o7 (X\{v}) < o7 (X). Thus, o (X\{v}) < d1(X\{v}),
which contradicts that d; € P(o7). This completes the proof. O

Lemma 2. For every integer i in {1,2} and every subset X of SUT, we have
0;(X) € Z, which implies that o; (X) € Z.

Proof. This lemma follows from Theorem 2 and [11, Theorem 12.8]. O

26 Y. Hanawa et al.

Theorem 8 (E.g., [11, Corollary 46.2c]). Assume that we are given a finite
set U and submodular functions o,7: 2V — Z such that o()) = 7(()) = 0. Then,
we have (P(0) NZY) + (P(r)NZY) = (P(o) + P(m)) NZY 3

Lemmas 1, 2 and Theorem 8 imply that P2 is equivalent to the following problem.

Maximize d(S)
subject to u°(v) <d(v) <b°(v) (veSUT)
d € P(oy) +P(oy), d e Z5"T.

Theorem 9 (E.g., [11, Theorem 44.6]). Assume that we are given a finite
set U and submodular functions o,7: 2Y — 7 such that o(0) = 7(0)) = 0. Then,
we have P(o) + P(nr) = P(o +).

Theorem 9 implies that P2 is equivalent to the following problem.

Maximize d(S5)
subject to u°(v) <d(v) <b°(v) (veSUT)
d € Po] +0y), deZ5T.

We consider the following relaxation problem LP2 of P2.

Maximize d(S)
subject to u°(v) <d(v) <b°(v) (veSUT)
deP(o] +03).

Lemma 3. The optimal objective values of P2 and LP2 are the same.

Proof. Since o] , 05 are submodular functions, o] +o05 is a submodular function.
Furthermore, Lemma 2 implies that o] (X) + o5 (X) € Z for every subset X of
S UT. Thus, this lemma follows from [11, Corollary 44.3¢c] (i.e., the box-total
dual integrality of the constraints corresponding to P(o] + 05)). |

Theorem 10. The problem IMEAC can be solved in polynomial time.

Proof. In the same way as the algorithm described after Theorem 6, we can
check in polynomial time whether d € P(o] + 05) for a given vector d in RSVT
by minimizing the submodular function o] + 05 — d. In addition, we can check
in polynomial time whether a given vector d in R°V7 satisfies the first constraint
of LP2. Thus, we can solve the separation problem for LP2 by using Theorem 4
in polynomial time (if d ¢ P(o] + o,), then a separating hyperplane can be
obtained from a minimizer of 0] +o05 —d). This implies that we can solve IMEAC
in polynomial time by using the results of [12] (see also [13, Theorem 6.36]). O

3 Precisely speaking, [11, Corollary 46.2c] considers P(¢) N RY. However, the similar
result holds for P(o) (see the paragraph after the proof of [11, Theorem 44.6]).

4In [11, Theorem 44.6], the monotonicity of functions are assumed. However, even if
functions are not monotone, this theorem holds. See also [10, Eq. (3.32)].

The Mixed Evacuation Problem 27

4.3 Unsplittable Supplies and Sink Capacities

Here we consider the following variant of IMEAC called UNSPLITTABLE MIXED
EvACUATION WITH ARC CAPACITIES (UMEAC for short). In this problem, we are
given vectors wi, ws € Z4 such that wy(a) + wa(a) < c¢(a) for every arc a in A.
The goal is to decide whether there exists a feasible assignment (dy,ds, w1, ws)
such that di(v),da(v) € {0,b(v)} for every vertex v in S and di(v),d2(v) €
{0,u(v)} for every vertex v in T. In what follows, we prove that UMEAC is NP-
complete. Notice that if |[S UT| < Clogyn for some constant C, then it follows
from Theorems 1, 4, 5, and 6 that UMEAC can be solved in polynomial time by
enumerating all subsets of SUT. We will prove the NP-completeness of UMEAC
by reduction from PARTITION. In this problem, we are given a finite set I and
a vector 7 in Zi such that 7(I) is even. Then, the goal is to decide whether
there exists a subset J of I such that 7(J) = w(I\J). It is well known [14] that
PARTITION is NP-complete.

Theorem 11. The problem UMEAC is NP-complete.

Proof. In the same ways as the proof of Theorem 7, we can prove that UMEAC is
in NP. We prove that the NP-completeness of UMEAC by reduction from PARTI-
TION. Assume that we are given an instance of PARTITION, and then we construct
an instance of UMEAC as follows. Define V := {v; | i € I} U {v°,v*,v},v5} and
A = {(v;,v°), (v;,v®) | i € I} U{(v°,v]), (v*,v3)}. Define S := {v; | i € I}
and T := {v},v3}. Define c(a) := 1, 11(a) := 0, and 7(a) := 0 for each arc a
in A. Define b(v;) := 7(i) for each element ¢ in I. Define u(v}) := —n(I) and
u(vy) := —m(I). Define ¢; := 1 and ¢z := 1. Define © := (w(I)/2) — 1. Lastly, we
define vectors wy, ws in Zﬂ as follows. For each arc a = (z,y) in A, we define

1 ifz=v°ory=o° 1 ifz=0v*ory=1o*
wi(a) :== . wa(a) = .
0 otherwise 0 otherwise.

Assume that there exists a subset J of I such that w(J) = 7(I\J). Then, we
define vectors dy, dy in Z°YT by

7(i) (resp., 0) if v =v; for some i € J

0 (resp., 7(4)) if v = v; for some ¢ € I\ J
—n(I) (resp., 0) if v =1oF

0 (resp., —n(I)) if v =v3.

dy(v) (resp., da(v)) :=

Since w(J) = w(I\J) = w(I)/2, (d1,ds, w1, ws) is a feasible assignment.
Conversely, we assume that there exists a feasible assignment (dy, da, w1, ws)
such that di(v),da(v) € {0,b(v)} for every vertex v in S and di(v),d2(v) €
{0, u(v)} for every vertex v in T. Since © = (7(I)/2)—1, we have d;(S) = n(I)/2
and do(S) = 7(I)/2. Thus, if we define J as the set of elements ¢ in I such that
dq(v;) = b(v;), then 7(J) = 7(I\J). This completes the proof. O

28 Y. Hanawa et al.

5 Case Study

Here we apply our model to the case study of Minabe town in Wakayama pre-
fecture, which was designated as those in which safe evacuation from tsunami
is difficult when Nankai Trough Earthquake occurs. The population of Minabe
town is about 12000. According to the census data of 2013, the number of peo-
ple living in the tsunami inundation area of this town is 4745. The left figure of
Fig. 1 shows the map of this area and the expected height of the tsunami caused
by Nankai Trough Earthquake. The town is surrounded by mountains of height
ranging from 100 to 200 m.

iH

buiding 2 N
tsize=2000) buildiflg3
R

Fig. 1. (Left) The target area and its inundation depth. (Right) The road network in
the target areas and evacuation sites.

It is predicted that in twelve minutes after that earthquake occurs, the first
tsunami of height 1 m arrives, and then that of height 5m (and of 10 m, respec-
tively) will arrive after 15 min (and 24 min, respectively). Since people usually
start evacuation five minutes after the earthquake occurs, the actual time remain-
ing for evacuation is from five to fifteen minutes depending on where they live.
Since there are not enough evacuation buildings in the center of the town, most
of the people will have to go to the outside of the tsunami inundation area, and
thus some of them may not succeed to evacuate to a safety place.

Under this circumstance, we consider the following experiments. Our
computational experiment aims at the inundation area of Minabe town whose

The Mixed Evacuation Problem 29

population is 4745. We prepare two scenarios. The first one is that people should
have to evacuate to the outside of the inundation area. The second is that peo-
ple should have to evacuate to the outside of the inundation area or to tsunami
evacuation buildings located inside of the inundation area. There exist six evac-
uation buildings inside the inundation area (numbered from 1 through 6 in the
right figure of Fig.1) whose sizes (i.e., the maximum number of evacuees that
can be accommodated) are 1472, 2000, 1128, 3014, 654 and 454, respectively.
We constructed a model of a dynamic network by using the GIS databases: the
fundamental map information (1/2500, the Geospatial Information Authority of
Japan), the population census (2010, the Ministry of Internal Affairs and Com-
munications of Japan), and the Japan digital road map (Japan Digital Road
Map Association). The road network has 860 nodes and 1,106 arcs.

We assign to a sink vertex the capacity of the evacuation site located at the
vertex, i.e., the maximum number of evacuees that the site accommodates. In our
experiment, the capacity of a building was computed based on the available floor
space, assuming that two persons per m? can be accommodated. The capacity
of an evacuation site which is outside the tsunami inundation area is assumed to
be infinity. However, since a hill top may have an upper limit on the number of
evacuees that can be accommodated, its capacity is estimated based on an aerial
photograph. Evacuation by cars is only possible to the outside of the tsunami
inundation area, and thus is assumed to be not allowed to tsunami evacuation
buildings or hill tops. Since there are not enough tsunami evacuation buildings,
the delay of evacuation is predicted. (In our experiment, we solve ME by using a
linear programming solver. Thus, we can add additional constraints to our model.
Furthermore, the minimum evacuation completion time can be computed by the
binary search.)

5.1 Computational Results

We use Gurobi Optimizer (see http://www.gurobi.com/) as the solver to solve
linear programs corresponding to our experimental data.

As seen from Tablel, in each scenario, the result for the case where cars
are allowed to use is much better in the minimum evacuation completion time
than the one where they are not allowed. Comparing the scenario 2 with the sce-
nario 1, the number of evacuees who walked to the evacuation site increased since
evacuation buildings located in the town center can be used in the scenario 2.

Table 1. Computational results of each scenario.

Scenario | Evacuation time | Percentage of car usage | Pedestrians only
1 9m40s 68.1% 18m00s
2 9m05s 31.4% 17m30s

http://www.gurobi.com/

30 Y. Hanawa et al.

vehicle evacuees —— total pedestrian evacuees vehicle evacuees —— total

pedestrian evacuees

5000

g a0
g / //
2 &
5 g m /v
€ 5o // //
RED
£ 8 a4
s ¢ —
E 2 1000
#E p— d’

o o

elapsed time (sec) elapsed time (sec)

Fig. 2. (Left) The transition of the accumulated number of evacuees that completed
evacuation in the scenario 1. (Right) The transition of the accumulated number of
evacuees that completed evacuation in the scenario 2.

Now let us look at Fig.2 that shows how the number of evacuees that have
completed evacuation increases as time proceeds since the evacuation starts. It
is observed that in the latter half for the whole time period, the number of
evacuees that completed evacuation rapidly increases in both scenarios. Ideally,
it is desired that the number of evacuees that completed evacuation is large in
the early stage. This point should be taken into account in order to improve the
current model.

Percentage of vehicle evacuation)n
A d

//m
Percentage of vehicle evacuation @

0% 100% / 0% 100%

o S0 T \ 0 So0m Tem

Fig. 3. (Left) Distribution of evacuees that used cars in the scenario 1. (Right) Distri-
bution of evacuees that used cars in the scenario 2. (Color figure online)

The Mixed Evacuation Problem 31

Legend
‘ number of evacuees
. e
ees
]
|

er of
cuees by walking

Fig. 4. (Left) The number of evacuees that arrived at each evacuation site, and the
ratio of evacuees who arrived at the site by walking and those who arrived there by a
car in the scenario 1 (Right) The number of evacuees that arrived at each evacuation
site, and the ratio of evacuees who arrived at the site by walking and those who arrived
there by a car in the scenario 2.

Let us look at the way of evacuation (by walking or a car) at each vertex.
In Fig. 3, if the color at each vertex is close to blue, it means that a majority of
people used cars for evacuation while on the other hand, if it is close to red, a
majority of people walked for evacuation. Comparing the scenarios 1 and 2, the
car usage significantly decreased in the scenario 2 near the coast since there are
evacuation buildings nearby.

Figure4 shows the number of evacuees that arrived at each evacuation site,
and the ratio of evacuees who arrived at the site by walking and those who
arrived there by a car. In the scenario 1, for most of evacuation sites, the number
of evacuees who arrived by cars exceeds that of evacuees who arrived by walking.
On the other hand in the scenario 1, many evacuees living near the town center
evacuated to evacuation buildings inside the inundation area.

6 Conclusion

In this paper, we introduce the mixed evacuation problem that is motivated
by making an evacuation plan in an emergent situation in which people can
evacuation on foot or by car. We study this problem from the theoretical and
practical viewpoints. An apparent future work from the theoretical viewpoint

32 Y. Hanawa et al.

is to reveal the computational complexity of the mixed evacuation problem in
the general case. From the practical viewpoint, it is a future work to apply our
model to areas other than Minabe town. There exist many small towns on the
coastal area facing the Pacific Ocean whose local governments are faced with a
serious problem that they have to spend a significant percentage of their budget
for building a tsunami evacuation buildings in order to reduce the loss of human
lives from tsunami triggered by Nankai Trough Earthquake that are expected to
occur with 70 % within the coming 30 years [1]. In this respect, we hope that the
methods developed for facility location problems will help to reduce the budget
to be used for such disaster prevention.

References

1. The Headquarters for Earthquake Research Promotion: Evaluation of Long-Term
Probability of Active Fault and Subduction-Zone Earthquake Occurrence (in
Japanese) (2016). http://www.jishin.go.jp/main/choukihyoka/ichiran.pdf

2. Ford Jr., L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from stat-
icflows. Oper. Res. 6(3), 419-433 (1958)

3. Ford Jr., L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press,
Princeton (1962)

4. Hoppe, B., Tardos, E.: The quickest transshipment problem. Math. Oper. Res.
25(1), 36-62 (2000)

5. Khachiyan, L.G.: Polynomial algorithms in linear programming. USSR Comput.
Math. Math. Phys. 20(1), 53-72 (1980)

6. Li, C., McCormick, S.T., Simchi-Levi, D.: Finding disjoint paths with different
path-costs: complexity and algorithms. Networks 22(7), 653-667 (1992)

7. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. J. Comb. Theor. Ser. B 80(2), 346-355 (2000)

8. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algo-
rithm for minimizing submodular functions. J. ACM 48(4), 761-777 (2001)

9. Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Oper. Res.
41(2), 338-350 (1993)

10. Fujishige, S.: Submodular Functions and Optimization. Annals of Discrete Math-
ematics, vol. 58, 2nd edn. Elsevier, Amsterdam (2005)

11. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24.
Springer, Heidelberg (2003)

12. Grotschel, M., Lovész, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization, 2nd edn. Springer, Heidelberg (1993)

13. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial
Optimization. Wiley, Hoboken (1998)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H Freeman and Company, New York (1979)

http://www.jishin.go.jp/main/choukihyoka/ichiran.pdf

A Comprehensive Reachability Evaluation
for Airline Networks with Multi-constraints

Xiaotian You!, Xiaofeng Gao!, Yaru Dangz(&),

Guihai Chen?!, and Xinglong Wang?

! Shanghai Key Laboratory of Scalable Computing and Systems,
Department of Computer and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China
sjtuyxt@gmail.com, {gao-xf,gchen}@cs.sjtu.edu.cn
2 Civil Aviation University of China, Tianjin 300300, China
yarudang@cauc.edu.cn, xinglongl979@163.com

Abstract. Airline network, including airports as network nodes and
flight routes as directed network edges, has a lot of special features such
as departure and arrival times, air ticket budget, flight capacity, trans-
portation cost, etc. Thus, analyzing network behavior and service per-
formance for such a network is much more difficult than that for many
other networks. In this paper, taking China domestic airline network as
a representative, we try to discuss the reachability issue for each airport
respectively, which could reflect its regional connectivity level and ser-
vice quality of civil aviation. More specifically, we evaluate reachability
through many features including node degree, betweenness, closeness,
etc. To get the values of some features, we design a fast Dijkstra-based
all-pair shortest path algorithm with both time and budget requirements,
then use Fenwick Tree to further improve the time efficiency. Finally, we
implement Analytic Hierarchy Process (AHP) to convert the reachabil-
ity feature into numerical values for all airports to measure their ser-
vice qualities precisely. Our results for China domestic airline network
with 210 airports and 69,160 flight routes will definitely become a guide
to airline companies and civil aviation administration for their further
development and management.

1 Introduction

Reachability and connectivity have been widely used as a measure to evaluate
networks and for graph there are also many widely used features to benchmark.
However, when it comes to the airline network, things will change. We consider
an airline network as a graph including airports as nodes and flight routes as
directed edges, which has a lot of differences from other networks. For instance,
the graph may have hundreds or even thousands of parallel edges. Every edge
in the graph has its own time window, which corresponds to the departure and
arrival time of the flight route, and only in the time window can the edge be
valid. What’s more, every node has its own values such as ground transportation
cost, which makes all nodes essentially different. Since an airline network is a

© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 33-48, 2016.
DOI: 10.1007/978-3-319-48749-6_3

34 X. You et al.

graph with a lot of distinctive features, it can hardly be measured by one or
more explicit numerical indicators.

In this paper, we introduce a new definition of reachability, which is closely
related to centrality and capacity. Centrality identifies how influential and impor-
tant the node is in the graph, indicating the level of the corresponding airport.
Capacity identifies the own value of the node itself regardless of the form of
the graph. When it comes to centrality, we mainly consider degree centrality,
betweenness centrality, and closeness centrality with time and budget require-
ments. For capacity, we consider flight frequency, seating capacity, and flight
duration as auxiliary features. Then taking China airline network as a repre-
sentative, we try to compute the reachability issue for each airport respectively
through Analytic Hierarchy Process (AHP), which could indicate its rationality
and superiority and be a guide to service improvement.

To figure out all the feature values, we design an algorithm to calculate the
betweenness and closeness centrality, which is the most complicated part. There
has been a fast algorithms for betweenness centrality [3], requiring O(n + m)
space and running in O(nm +n?logn) on weighted graph. However as is stated
above, airline network is a network with many realistic features, so we should
compromise to some realistic constraints. We presume the time of transfers is at
most 7 and the total journey will take the passenger at most 7 days, otherwise
the journey is hardly seen in the realistic world. To meet the two demands, we
convert the original graph to a new three-dimensional graph, of which the three
ordinates denote the airport, the time of transfers and the time of that moment
respectively. After adding the corresponding edges to the new graph, we use
Dijkstra algorithm with min-priority queue [3] to solve the all-pair shortest path
problem. Considering some unnecessary cases, we use Fenwick Tree to reduce
the size of the status, which seemingly makes the time complexity worse but
actually accelerate it a lot.

To summarize, in this paper we propose a novel way to measure the reach-
ability issue of an airport in airline networks. Taking China Airline Network
as a representative, we define eight features for evaluation, and use Analytic
Hierarchy Process (AHP) with expert grading matrix to quantitatively evaluate
the reachability of airports. We further design a fast detection method using
Dijkstra-based algorithm with min-priority queue and Fenwick tree to calculate
the betweenness and closeness features in this network. Our results for China
domestic airline network with 210 airports and 69,160 flight routes will denitely
become a guide to airline companies and civil aviation administration.

The rest of this paper is organized as follows: Sect. 2 summarizes the related
works in this area. Section 3 introduces the definitions and requirements of the
problem. Section4 design a fast algorithm to detect the betweenness and close-
ness centrality. Next, Sect. 5 discusses the rating procedure to evaluate the reach-
ability issue of an airport. Finally, Sect. 6 gives the conclusion.

Reachability Evaluation for Airline Networks with Multi-constraints 35

2 Related Work

As for airline networks, Barros [1] used DEA two-stage procedure to evaluate
operational performance of European airlines, considering number of employees,
number of planes and operational cost; Tsaur [13] evaluated airline service qual-
ity by fuzzy MCDM considering tangibility, reliability, responsiveness, assurance
and empathy; Yu [15] used the SBM-NDEA model to assess the performance
of airports considering the airside service and landside service; Bowen [2] used
Airline Quality Rating (AQR) Methodology to evaluate the US airline industry.

As for centrality, Brandes [3] designed a fast algorithm for betweenness cen-
trality requiring O(n + m) space and running in O(nm + n?logn) time on
weighted networks; Kourtellis [10] proposed a randomized algorithm for estimat-
ing betweenness centrality to identify nodes with high betweenness centrality;
Lee [11] constructed tourism-management strategies for villages by evaluating
spatial centrality; Guimera [9] claimed that nodes with high betweenness tend
to play a more important role than those with high degree in the world-wide
airport network.

3 Definitions and Features

In this paper, we take China airline network as a representative to discuss the
reachability issue for each airport. First, we construct China airline network
according to weekly domestic flight statistics with 210 airports and 69,160 flight
routes (data are collected from July 1st, 2016 to July 7th, 2016). Figure 1 exhibits
the connections between airports in mainland China with the help of JavaScript
Visualization libraries like D3.js. In this figure, the blue nodes represent airports,
while the grey links represent flight routes. Note that: (1) We focus on civil
aviation and do not consider service aviation or cargo airline. Thus we do not
plot Nanhai area. (2) We only record domestic flight routes and do not count
flights from/to Taiwan, Hong Kong, and Macao. (3) Links in the figure only
represents connectivity situation between airports (we omit the link direction
for clarity), which do not reflect the real flight routes, since the domestic routes
should be arcs within the territory of China. (4) We focus on regular flight routes,
so we do not record the other irregular flight routes such as extra section flights.

Correspondingly, We construct a directed graph G = (V, E). Every node in
V' denotes an airport while every edge in E corresponds to a flight route. For
each e € F, we denote the average air ticket price of this flight route as pe, the
number of seats on this flight (according to its aircraft type) as s., its departure
time as d., and arrival time as a.. For each v € V', we denote its average ground
transportation budget as b, (denoting the average cost that city residents should
spend to the airport) and the average ground transportation time as t,.

To evaluate the reachability of an airport, we always need to detect the short-
est path from one airport u to another v through graph G. In airline network,
a path {u — v — w} not only represents the connectivity property from u to
w, but also denotes a valid flight transfer schedule for a passenger. Additionally,

36 X. You et al.

Fig. 1. A diagrammatic sketch to show the China airline network

when considering a valid schedule, people care about the travel duration as well
as the total budget. Thus, we denote the shortest path from airport w to airport
v under the time and budget requirements respectively as follows.

Definition 1 (Shortest Path with Minimum Time). A valid path from
node u to v in an airline network G with Minimum time is a path P =
{e1, -+ ,en}, where the tail of e; should be the head of e;—1 and e; goes out
of u, e, goes into v respectively. Additionally, de, > Ge,_, +t, fori=2,---,n
and t is a flight transfer time. The shortest path with minimum time is a valid
path such that the total time duration a., — de, is minimized.

Let SPT(u,v) denote the shortest path with minimum time for v and v. Easy
to know, |SPT (u,v)| is the path length (or cardinality of the edges) and to be
realistic, |SPT(u,v)| < K where K is the maximum transfer number (usually
K <7), and usually ¢t > 90 min according to a regular flight transfer procedure.
For convenience, we denote the time on the path SPT(u,v) i.e. a., — de, as
spt(u,v).

Similarly, if we consider the shortest path with minimum budget for u and
v, instead of computing a., — d.,, we want to minimize Y., pe, with a., —
de, < T where T is the upper bound of total travel time duration (usually T' <

Reachability Evaluation for Airline Networks with Multi-constraints 37

7 days = 10080 min) and we use SPB(u,v) to denote such a path and spb(u, v)
to denote the budget i.e. Y ;| pe,.

To analyze the reachability of a node u, we need to comprehensively consider
the connectivity and importance of this airport. With the help of complex net-
work theory, we select several features of u and evaluate the level of reachability
quantitatively. These features are explained as follows.

Definition 2 (Clustering Coefficient [14]). The clustering coefficient of a
node u (CC,) in an airline network is the portion of the pairs of connected
nodes (of which the number is k,) within its neighborhood divided by the mazimal
possible edges (k,(k, — 1)) between them, written as:

1
co, = T Z Zw: I(w,)T (u, w)I (v, w)I(w,v), (1)
where I(u,v) is presented as an indicator:

(2)

_J1,3e€ E,s.t. eis fromu to v;
I(u,v) = {0, otherwise.

Degree centrality [8], betweenness centrality [7] and closeness centrality [12]
are used as three major measures to evaluate a network node. Degree centrality
symbolizes the importance of the node in a network, while betweenness centrality
measures the extent to which a particular node lies between other nodes in a
network and closeness centrality indicates the distance from all other nodes.
Their definitions are represented as follows.

Definition 3 (Degree Centrality). Degree centrality of a node v (DC,,) in
an airline network is the portion of connected nodes by all the other nodes. In
other words, it is the ratio of through-flight, written as:

> I(u,v)

D = —_—
C= T

3)
Definition 4 (Betweenness Centrality with Time and Budget Require-
ments). Betweenness centrality of a node u (BC,) in an airline network is
defined as the ratio of all shortest paths (with time and budget requirements)
passing through it and reflects its transitivity. More formally,

> > (It(u,v,w) +Ib(u,v,w))

veE EAv#u we EAwH#u#v

B = 2 (V- (V|- 2) ’

(4)

where Ii(u,v,w) and Iy(u,v,w) are indicators defined as Egs. 5 and 6.

1, de; € SPT(v,w), s.t. e; is from u;
0, otherwise.

Ii(u,v,w) = { (5)

1, Je; € SPB(v,w), s.t. e; is from u;
0, otherwise.

B o.) = § (6)

38 X. You et al.

Definition 5 (Closeness Centrality of Time). Closeness Centrality of
Time of a node uw (CCT,) is the sum of the average time needed on SPT(u,v)
(spt(u,v)) for v among all the other nodes and the ground transportation time.

More formally,
> spt(u,v)

+ tu. (7)

Definition 6 (Closeness Centrality of Budget). Closeness Centrality of
Time of a node u (CCB,,) is the sum of the average budget needed on SPB(u,v)
(spb(u,v)) for v among all the other nodes and the ground transportation budget.

More formally,
> spb(u,v)

veEV Av#u
V-1

CCB, = + by, (8)

Considering a node u, we define the centrality feature of u (C'T,) comprehen-
sively in Eq. 9, combining clustering coefficient, degree centrality, betweenness
centrality, and closeness centrality together.

cT, = fer(CC,,BC,,DC,,CCT,,CCB,). (9)

Next, we consider the specific features for airline networks and give
Definitions 7-9.

Definition 7 (Flight Frequency). The Flight Frequency of a node v (FF,)
is the amount of the edges from/to u. More formally,
FF, =Y (Im(u, €) + Lot (u, e)), (10)
ecE

where Iy (u, e) and Loy (u,e) are defined as follows:

1, e is from u;
0, otherwise.

1, e is to u;
0, otherwise.

Iin(u,e) = { Loui(u,e) = { (11)

Definition 8 (Seating Capacity). The Seating capacity of a node u (SC,,)
1s the average number of the seats on the flight from the airport. More formally,

Z Iout(”v E)Se
SC, =L —— 12
Z Iout(uae) ()
eck
Definition 9 (Flight Duration). The Flight Duration of a node u (FD,,) is
the average duration of the flight routes from the airport. More formally,

S Lout(u,€)(ae — do)

FD, = <E . 1
“ Z Iout(uve) (3)

eckE

Reachability Evaluation for Airline Networks with Multi-constraints 39

For a node u, we can define the capacity property of u (C'P,) comprehensively
as shown in Eq. 14.
CP, = fep(FF,,SC,, FD,). (14)

Finally we can define the reachability of a node u (R,,) as follows:
R, = fr(CT,,CP,). (15)

Note that functions fer in Eq. 9, fop in Eq. 14 and fgr in Eq. 15 can be
customized according to different airline network architectures and requirements.

4 Fast Detection of Betweenness and Closeness

To figure out betweenness centrality and closeness centrality, we must solve the
all-pair shortest path problem for not only the optimal spt(u,v) and spb(u,v)
but also the trajectory of all the paths. As we mentioned above, G is a graph
with multiple edges and loops and every edge has a time window so that the
existing algorithms such as Dijkstra Algorithm cannot solve the problem with
the transfer and duration constraints.

To implement Dijkstra-based algorithm, we need to first convert the airline
network G into a simple directed graph G’. Note that a valid path links one edge
to another only when the two edges are connected and their corresponding flight
route can be transferred successfully. Thus the connection in the new generated
graph should not only represent the connectivity issues, but also reflect the
time and transfer hop information. Motivated by this observation, we introduce
duplicated graph generated from G as follows:

Definition 10 (Duplicated Graph). The duplicated graph of G is a simple
directed graph G' = (V' E") where a node in V' is denoted as (v, k, t) and an edge
in E" from v{ to v} is denoted as (vi,v}). If there is a node v’ = (v, k,t) € V', it
means that at time t (take minutes as the unit) the passenger reach the airport v
after the k' transfer. Ve € E (from u tov), there is an edge €’ = ((u, k,t), (v, k-+
1,ae)) with weight we = pe (with k + 1 < transfer constraints and t < d, — 90).

In G’, k reflects the transfer number, while ¢ reflects the time information.
In reality, we usually set k < K and t < T.

Obviously every path in G’ corresponds to a valid path in G and for every
valid path in G, there must exist at least one corresponding path in G’. If we solve
the all-pair shortest path problem on G’, we can easily figure out betweenness
centrality and closeness centrality in the original graph.

Figure2 is an example to illustrate this conversion. Figure2(a) is a simple
flight network G with two nodes A and B, as well as two flight routes both
departure on Monday. One is flight A — B with duration 09:00-11:00, and
another is B — A during 14:00-16:00. We set k < 2 (means we only allow less
than two transfers), and 0 < ¢t < 1440 (means the trip should be finished within
one day). Figure 2(b) is the converted graph G’. Since the first flight departures
at 09:00, nodes (A,0,0) to (A,0,450) are all valid to reach (B,1,660) since

40 X. You et al.

the flight departures at 09:00, so the latest valid boarding time should be 9 x
60 — 90=450. Next, the flight takes 120 min and reaches B at 11:00, so the ¢
value at B part should be 660. (There are totally 451 nodes if we count per
minutes.) Each of the edge has weight ¥500 as ticket cost. Similarly, nodes
labeled (B,0,0) to (B,0,750) all link to (A4,1,960) if we departure at 14 x
60 min — 90 min = 750 min.

Easy to see, G’ has two connected components depicting all the possible
transfer plans. |V/| = 2 x 3 x 1441 = 8646 and |E’| = (451 4+ 751) x 2 = 2404
edges (but obviously there are only 4 vertices with positive in-degree, which is
the key observation to reduce the algorithm complexity).

¥500

CAEMM 09:00~11:oo K<=2; t<=1440;
¥600 IVI=2; E]=2

Mon. 14:00~16:00

(a) Original Airline Network G

...... (A,2,960)

...... (B,2,660)

[B1o |... [[(B1660) | [1750 ... [w0 |... [[Aa14s0)] (A,1,960) |

(b) Duplicated Graph G'

Fig. 2. An example duplicated graph G’ generated from G

The next step is to solve the shortest path problem in the new graph. As
a simple graph with non-negative weights (on edges as budget), we implement
Dijkstra algorithm [4]. Initially we choose a v € V/ and start from this specific
source. At each step, we pick the closest node in the set of undiscovered nodes,
update the shortest path to each undiscovered node and remove the node from
the set. We keep doing it until every node is picked. Here we use array path[u]
to record the in-edge of the shortest path from the starting node to u, and use
array prev]u| to record u’s previous hop along the path.

The final step is to find the corresponding shortest path in the original graph.
We have got the minimum distance from the source to all other nodes with
specific time and specific transfer numbers, so we can easily get the minimum
duration and the minimum budget needed from the source to all the nodes.
By tracing down pathl[-] and prev[-] arrays, we can easily get the corresponding
shortest paths in original graph G.

Note that for G’, there are only O(|E|) nodes with positive in-degree (can be
found from Fig. 2), so there are O(|E|) valid nodes, i.e. |V'| = O(|E|). For each
node, there are at most O(| E|) edges from it, so there are O(|E|?) edges i.e. |E'| =

Reachability Evaluation for Airline Networks with Multi-constraints 41

O(|E|?). If we compute all-pair shortest path with Dijkstra algorithm, the total
time complexity is O(|V'[?) = O(|E|?). Apparently, for China airline network,
the algorithm can hardly hit the upper bound of the time complexity. However, it
still works with extremely low efficiency as a matter of fact. We choose to invoke
min-priority queue [6] to improve the time efficiency. The detailed description is
shown in Algorithm 1. Here dist[u] is the array to record the minimum distance
from the starting node to u. Actually, we need to run Algorithm 1 on G’ for |E)|
times to compute all-pair shortest path (starting from the representative of the
departure point of each flight route in G).

Algorithm 1. Dijkstra Algorithm with Priority Queue

Input: the graph G’, the source s.
Output: the set of minimum distance dist[-], the set of previous nodes prev[-],
the set of previous path pathl[-].
Create vertex min-distance priority queue Q;
foreach vertezr v in V' do
dist[v] < +o0; prev[v] « 0; path[v] — 0 ; // initialization
Q — push(Q,v) ; // push v into queue @

1
2
3
4
5 dist[s] < 0;
6
7
8
9

while @ is not empty do
u — pop(Q) ; // pop out the first vertex from @
foreach edge e from u to v do
alt «— dist[u] + we;
10 if alt < dist[v] then
11 L dist[v] < alt; prev[v] < u; path[v] — e;

After adding min-priority queue, the time complexity (with Fibonacci heap)
is still O(|V']21log [V'| + |[V'||E'|) = O(|EJ?), but later we will show how it
improves the time efficiency via numerical experiments. Actually, we can further
optimize the efficiency of this algorithm. Now we focus on the distribution of the
shortest distances to give the following lemma:

Lemma 1. Yo € V, Vk < K, Yty < T, if 31 < to s.t. dist[(v,k,t1)] <
dist[(v, k,t2)], then all the results (minimum time/budget path) will not change
if we delete the node (v, k,t3).

Proof. To simplify the problem, assume now we are exploring the shortest paths
from a source (s, -, -) to all other nodes with time and budget requirements. Let
x,y € [0,1], then what we want to minimize is a linear combination of flight time
and budget, shown as z - time + y - budget. Especially in this paper we choose
=0, y =1 (as minimum budget) and =1, y = 0 (as minimum time).

Now, given a to, if t; < to < T, we have dist[(v, k,t1)] < dist[(v, k,t2)], then
we can get that

x -t +y-dist[(v,k,t1)] < x -t +y-dist[(v, k, t2)],

42 X. You et al.

which means the path starting from (s, -,-) and ending up at node (v, k,t3) can
never be an answer to any requirement.

Next, let us check other paths passing through (v, k, t2). Assume there is a
shortest path starting from (s,-,-) and passing from (v, k,t2) to (v, k + 1,t3),
denoted as P, = {(s,-,) — -+ — (v,k,t2) — (v, k+ 1,¢3) — ---}, then we
can change it to P, = {(s,-,*) — -+ — (v,k,t1) — (v, k + 1,t3) — ---}. By
Definition 10, we know that there must exist an edge from (v, k,t1) to (v/, k +
1,t3) with the same weight as (v, k, t2)’s and dist[(v, k, t1)] < dist[(v, k,t2)]. Then
the length of P, is shorter then that of P;, which violates the shortest property
of Py, a contradiction! Hence node (v, k,t2) will not be involved in any shortest
path starting from (s,-,-). Additionally, since dist[(v,k, t1)] < dist[(v,k,t2)],
(v, k,t1) can be picked earlier than (v, k, t3) in Algorithm 1. Therefore, (v, k, t2)
can never be used to update the dist[-] value for all other nodes.

In conclusion, (v, k, t3) can never be an answer to any requirement and it can
never be used to update the dist[-] value of all other nodes, so it is safe to remove
node (v, k, t3) when exploring the shortest path from starting point (s,-,-). O

Inspired by Lemma 1, whenever we select a node (v, k,t) € V', we can first
check whether there exists another node v' with earlier ¢’ and smaller dist[v']
value. To achieve this purpose, we use a Fenwick tree [5] to calculate the prefix
minimum value as F[v][k][-], which is defined in Definition 11.

Definition 11 (Fenwick Tree [5]). A Fenwick Tree (in our algorithm),
denoted as F[[][-], is a data structure to calculate the prefiz minimum value.
More formally, Vv e V. VEk < K, Vt <T,

Flk][t] = OIéll_iISlt dist[(v, k,1)].

There are two operations on the Fenwick Tree: insert a new value (alt) into
the old minimum prefix (denoted as F'[v][k][t] < alt) and calculate the minimum
prefix (just denoted as F'[v][k][t]). Both of them occupies O(logT') time, where
T is the time range (in our examples T' = 10080).

For a node (v, k,t) in G’, whenever we plan to update the dist[-] of all its
neighbors (like Line 8 to Line 11 in Algorithm 1), we will compare dist[(v, k, t)] to
the prefix minimum value of F'[v][k][t]. If dist[(v, k,t)] > F[v][k][t], it means we
meet a case satisfying Lemma 1, and thus (v, k,t) is redundant for the shortest
path exploration. We can safely remove this node without influencing the final
result, which will obviously reduce the intermediate operations for computation.
Note that once we change a dist[-] value, we need to modify the Fenwick tree in
O(logT) time. Thus we get an optimized algorithm shown in Algorithm 2.

Theorem 1. The if statement in Line 9 of Algorithm 2 will not change the
minimum time or minimum budget we finally calculate.

Proof. When dist[u] < Fv1][k1][t1] is false, we can get

dist](v1, k1,t1)] > oin, dist](v1, k1,1)].

Reachability Evaluation for Airline Networks with Multi-constraints 43

Algorithm 2. Dijkstra Algorithm with Priority Queue and Fenwick Tree

Input: the graph G’, the source s.
Output: the set of minimum distance dist[-], the set of previous node prev[-],
the set of previous path path[].

1 create vertex min-distance priority queue Q;

2 create min-prefix Fenwick tree F[-][-]['];

3 foreach vertex v in V' do

4 dist[v] < +o0; prev[v] « 0; path[v] « 0;

5 Q — push(Q,v) ; // push v into queue @
6 dist[s] « 0;

7 while @ is not empty do

8 u = (v1,k1,t1) — pop(Q) ; // pop out the first vertex from Q)
9 if dist[u] < Flv1][k1][t1] then // Compare u with the min value in F

and decide whether to update dist[] for u’s neighbors

10 foreach edge e from u to v = (v2, ka2, t2) do
11 alt — dist[u] + we;
12 if alt < dist[v] then
13 L dist[v] <« alt; Flva][k2][t2] < alt; prev[v] « u; pathlv] < e;

That means 3ty < t1 s.t. dist[(v1, k1,t0)] < dist[(v1,k1,t1)] and by Lemma 1, all
the results will not change if we delete u. O

By Theorem 1, Algorithm 2 turns out the right answers. After adding
Fenwick tree, the complexity of the algorithm seemingly turns even worse to
O(|E]3log T). However, in practice we find that Fenwick tree improves the algo-
rithm more than ten times faster, and Fig.3 exhibits this phenomenon. We
randomly choose 2 nodes as the sources and randomly choose different scales of
edges, use these three algorithms to detect the shortest paths to all the other
nodes, repeat three times, record the average elapsed time, and plot a chart for
comparison. The z-axis denotes the scale of edges, while the y-axis is the log-
arithmic value of computing time. From this figure we can see clearly that the
two optimization strategies improve the practical performance efficiency greatly.

5 AHP-Based Reachability Evaluation

Now, we implement Analytic Hierarchy Process (AHP) to convert the reachabil-
ity feature into numerical values for all airports to measure their service qualities
precisely. Figure4 shows our AHP model with 2 layers and 8 indices (defined in
Sect. 3). At first, we need to normalize these data into [0, 1] range. The nor-
malization methods are summarized in Table 1. Table 2 shows some sample data
triples after the normalization.

We then survey and get expert grading matrix for these indices. Table3 is
an example matrix for centrality with 5 indices. Next, we use the matrix to

44 X. You et al.

10k

1k 553.78 677.31
— 382.45
K
)
£ 149.97 7692
= .
- 100
@
(%2}
Q
<
L

10 a1 473 5.2 5.82

1/8 2/8 3/8 4/8

726 805.59 868.4 913.18
159.14
97.12 116.69 136.25 7%
5.89 6.35 6.59 7.1
5/8 6/8 7/8 8/8

Scale of Edges

original Dijkstra algorithm

-~ with priority queue

with priority queue and Fenwick Tree

Fig. 3. A comparison among three algorithms

0.6

Centrality

Reachability

0.4

Capacity

Clustering Coefficient

0.1659

Degree Centrality

0.1440

Betweenness
Centrality

0.1400

Closeness Centrality
of Time

0.0622

Closeness Centrality
of Budget

0.0879

Flight Frequency

0.1650

Seating Capacity

0.1310

Flight Duration

0.1040

Fig. 4. AHP properties for reachability evaluation (Color figure online)

grade and calculate the weights of these features, with properties values and
Consistency Ratio (CR). Since here CR = CI/RI = 0.0469 < 0.1, meaning
the value of Consistency Ratio is smaller or equal to 10 %, the inconsistency is
acceptable. Finally, we get all the properties for indices, shown in Fig. 4 as blue

numbers next to each block.

Finally, we calculate the reachability value of all the airports. Table4 is a
sample of accurate results and we also provide a visualization map to show the

distribution of the reachability in Fig. 5.

Reachability Evaluation for Airline Networks with Multi-constraints

Table 1. Normalization methods for indices

Index

Normalization methods

Clustering Coefficient (CC)

Min-max normalization

Degree Centrality (DC)

Min-max normalization

Betweenness Centrality (BC)

Min-max normalization

Closeness Centrality of Time

(CCT)

Reciprocal + min-max normalization

Closeness Centrality of Budget
(CCB)

Reciprocal + min-max normalization

Flight Frequency (FF)

Log of the minimum + min-max normalization

Seating Capacity (SC)

Min-max normalization

Flight Duration (FD)

Reciprocal + min-max normalization

Table 2. Data after normalization

IATA | City cC |DC |BC |CCT |CCB |FF |SC |FD

XIY | Xi’an 0.298 | 0.811 | 1.000 | 0.920 | 0.996 | 0.932 | 0.781 | 0.175

PEK | Beijing 0.240 | 1.000 | 0.632 | 1.000 | 0.792 | 1.000 | 1.000 | 0.063

CTU | Chengdu 0.312]0.803 | 0.527 1 0.992 | 0.821 | 0.928 | 0.861 | 0.122

CKG | Chongging | 0.338 | 0.724 | 0.544 | 0.923 | 0.979 | 0.919 | 0.767 | 0.164

KMG | Kunming | 0.364 |0.717 | 0.557 | 0.856 | 0.814 | 0.945 | 0.716 | 0.177

SHF | Shihezi 0.000 | 0.016 | 0.004 | 0.172 | 0.419 | 0.095 | 0.498 | 0.000

EJN | Ejina 0.000 | 0.008 | 0.000 | 0.216 | 0.165 | 0.116 | 0.081 | 0.221

RHT | Alxa Yougqi | 0.000 | 0.008 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.606

Table 3. Pairwise comparison matrix for centrality

CC | DC|BC | CCT | CCB | Properties | CR
cc |1 |1 |2 |3 1 0.2765
DC |1 1 1 2 2 0.2400
BC |1/2]1 1 |3 2 0.2333 0.0469
CCT|1/3]1/2]1/2 |1 1 0.1037
CCB|1 [1/2/1/2/1 |1 0.1465

45

46

X. You et al.
Table 4. Reachability results
TIATA | City CC |DC |BC |CCT |CCB|FF |SC |FD |R
XIY |Xi’an 0.298 | 0.811 | 1.000 | 0.920 | 0.996 | 0.932 | 0.781 | 0.175 | 0.725
PEK | Beijing 0.240 | 1.000 | 0.632 | 1.000 | 0.792 | 1.000 | 1.000 | 0.063 | 0.707
CTU | Chengdu |0.3120.803|0.527 | 0.992 | 0.821 | 0.928 | 0.861 | 0.122 | 0.654
CKG | Chongging |0.338 1 0.724 | 0.544 | 0.923 | 0.979 | 0.919 | 0.767 | 0.164 | 0.649
KMG | Kunming |0.364 | 0.717|0.557 | 0.856 | 0.814 | 0.945 | 0.716 | 0.177 | 0.635
NGQ | Gunsa 0.000 | 0.016 | 0.000 | 0.207 | 0.114 | 0.150 | 0.540 | 0.343 | 0.156
RKZ | Shigatse 0.000 | 0.008 | 0.000 | 0.270 | 0.205 | 0.116 | 0.535 | 0.115 | 0.137
SHF | Shihezi 0.000 | 0.016 | 0.004 | 0.172 | 0.419 | 0.095 | 0.498 | 0.000 | 0.131
EJN | Ejina 0.000 | 0.008 | 0.000 | 0.216 | 0.165 | 0.116 | 0.081 | 0.221 | 0.082
RHT | Alxa Youqi | 0.000 | 0.008 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.606 | 0.064
[]
e ©
[}
(] °.
° oo [) .. °
° [] [] ‘ [)
e o ° ® o
L . ®
® o ® ° ®
° ° () ’
@ ° %. o
® o @ ([
° SA oo ® @ ©
N e @ 0,80 o ®
. ® '8 e ©9%
O .. LYY ® .. ° Q.
: °* ¢ ®% 0 oo
P o
(]
Y o o, ey e © &, Je0
[} ‘) ‘ [] ‘
.0 PP) g 5 % .
Ce Teg00. o o0 ®
o0 0 $0
° o o ®, 0‘9
é ®a ¢
%o
o
([

Fig. 5. Visualization results for reachability of airports in China

Reachability Evaluation for Airline Networks with Multi-constraints 47

Obviously, in Fig.5 a lighter and bigger circle represents an airport with
higher reachability. It is apparently that the top two airports are Xi’an and
Beijing. It is seemingly surprising that Xi’an airport is with higher reachability
than Beijing, but noting that what we discuss about is reachability. Considering
the location of Xi’an in China and the fact that almost 15% shortest paths
passing through it, the conclusion is meaningful to some extent.

6 Conclusion

In this paper, we take China airline network as a representative and try to
discuss the reachability issue for each airport respectively, which could reflect its
regional connectivity level and service quality of civil aviation. More specifically,
we evaluate reachability through many features including node degree, closeness,
betweenness, etc. To get some feature values, we design a fast Dijkstra-based
all-pair shortest path algorithm with both time and budget requirements, using
priority Queue and Fenwick Tree to improve the time efficiency. Finally, we
implement Analytic Hierarchy Process (AHP) to convert the reachability feature
as numerical values for all airports to measure their service qualities precisely.
We not only give a algorithm design and an AHP evaluation, but also prove
theoretically the correctness of our method. Such methodology can be easily
extended to other airline networks or any arbitrary network with transfer and
duration constraints. Our results for China domestic airline network with 210
nodes and 69,160 flight routes will definitely become guide and reference to
airline companies and civil aviation administration for their further development
and management.

Acknowledgement. This work has been supported in part by the China 973 project
(2014CB340303), the National Natural Science Foundation of China (No. 61571441,
61672353, 61472252, 61133006), and the Opening Project of Key Lab of Informa-
tion Network Security of Ministry of Public Security (The Third Research Institute of
Ministry of Public Security) Grant number C15602.

References

1. Barros, C.P., Peypoch, N.: An evaluation of European airlines’s operational per-
formance. Int. J. Prod. Econ. 122(2), 525-533 (2009)

2. Bowen, B.D., Headley, D.E.: Evaluation of the US airline industry: the airline
quality rating 2012 (2013)

3. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2),
163-177 (2001)

4. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1(1), 269-271 (1959)

5. Fenwick, P.M.: A new data structure for cumulative frequency tables. Softw. Pract.
Experience 24(3), 327-336 (1994)

6. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM (JACM) 34(3), 596615 (1987)

48

10.

11.

12.

13.

14.

15.

X. You et al.

Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry
40, 35-41 (1977)

Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw.
1(3), 215-239 (1978)

Guimera, R.,; Amaral, L.A.N.: Modeling the world-wide airport network. Eur. Phys.
J. B-Condens. Matter Complex Syst. 38(2), 381-385 (2004)

Kourtellis, N., Alahakoon, T., Simha, R., lamnitchi, A., Tripathi, R.: Identifying
high betweenness centrality nodes in large social networks. Soc. Netw. Anal. Min.
3(4), 899-914 (2013)

Lee, S.H., Choi, J.Y., Yoo, S.H., Oh, Y.G.: Evaluating spatial centrality for inte-
grated tourism management in rural areas using GIS and network analysis. Tourism
Manag. 34, 14-24 (2013)

Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581-603
(1966)

Tsaur, S.H., Chang, T.Y., Yen, C.H.: The evaluation of airline service quality by
fuzzy MCDM. Tourism Manag. 23(2), 107-115 (2002)

Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature
393(6684), 440-442 (1998)

Yu, M.M.: Assessment of airport performance using the SBM-NDEA model. Omega
38(6), 440-452 (2010)

Approximation and Hardness Results
for the Max k-Uncut Problem

Peng Zhang!, Chenchen Wu?, Dachuan Xu?*®™) and Xinghe Zhang?

1 School of Computer Science and Technology,
Shandong University, Jinan 250101, China

algzhang@sdu.edu.cn

2 College of Science, Tianjin University of Technology, Tianjin 300384, China
3 Department of Information and Operations Research,
College of Applied Sciences, Beijing University of Technology,
Beijing 100124, China
xudc@bjut.edu.cn

4 Shandong Experimental High School (East Campus), Jinan 250109, China

Abstract. In this paper, we propose the Max k-Uncut problem. Given
an n-vertex undirected graph G = (V, E) with nonnegative weights
{we | e € E} defined on edges, and a positive integer k, the Max k-Uncut
problem asks to find a partition {Vi, V2, -+, Vi} of V such that the
total weight of edges that are not cut is maximized. This problem is just
the complement of the classic Min k-Cut problem. We get this problem
from the study of complex networks. For Max k-Uncut, we present a
randomized (1 — £)*-approximation algorithm, a greedy (1 — @)—
approximation algorithm, and an Q(%a)-approximation algorithm by
reducing it to Densest k-Subgraph, where « is the approximation ratio
for the Densest k-Subgraph problem. More importantly, we show that
Max k-Uncut and Densest k-Subgraph are in fact equivalent in approxima-
bility up to a factor of 2. We also prove a weak approximation hardness
result for Max k-Uncut under the assumption P # NP.

1 Introduction

In this paper, we investigate the Max k-Uncut problem, which is obtained from
the study of the homophyly law [8, Chap. 4] of large scale networks. Being one of
the basic laws governing the structures of large scale networks, the homophyly
law states that edges in a network tend to connect nodes with the same or similar
attributes, just as an old proverb says, “birds of a feather flock together”. For
example, in a paper citation network, papers are more likely to cite papers with
which they have the same or similar keywords.

While it is common to list keywords in a paper by its authors, in a paper
citation network there are still many papers whose keywords are not explicitly
given. Consequently, it is natural to predict keywords for these papers using

P. Zhang—Part of the author’s work was done while he was visiting at the University
of California - Riverside, USA, and Beijing University of Technology, China.
© Springer International Publishing AG 2016

T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 49-61, 2016.
DOT: 10.1007/978-3-319-48749-6_4

50 P. Zhang et al.

the homophyly law. Inspired by this observation, Zhang (the first author of
this paper) and Li [21] proposed the Maximum Happy Edges (MHE) problem. In
the MHE problem, we are given an undirected graph G = (V, E) and a color
set C = {1,2,--- ,k}. Only part of vertices are given colors in C. An edge is
happy if its two endpoints share the same color. The goal of MHE is to color
all the uncolored vertices such that the number of happy edges is maximized.
Here, vertices correspond to papers, edges correspond to citations (neglecting
directions), and colors correspond to keywords.

A natural variant of MHE is that in the input graph all vertices are uncolored
and the problem just asks to color them in & colors such that the number (or total
weight) of happy edges is maximized. This suggests the Max k-Uncut problem
we investigate in this paper.

Definition 1. The Max k-Uncut Problem

(Instance). We are given an undirected graph G = (V, E) with nonnegative edge
weights {w, | e € E}, and a positive integer k.

(Goal). The problem asks to find a partition {V1,Va,--- , Vi, } of V (i.e., to find
a k-coloring of vertices) such that the total weight of happy edges is maximized.

In the definition of Max k-Uncut, by k-coloring we mean a coloring scheme
that uses ezactly k colors, which results in a k-partition {Vi,Va, -, Vi }, where
V; is the set of vertices whose color is i. In the paper we will interchangeably
use k-coloring and k-partition. Note that the requirement of exactly k colors
is necessary, otherwise we can color all vertices in one color and all edges are
happy.

In the Max k-Uncut problem, if £ = 1 or k = n, the problem becomes trivial.
The optimum would be respectively the number of all edges and 0 in these
two cases. So, throughout the paper we always assume 2 < k < n — 1 for the
Max k-Uncut problem.

Note that Max k-Uncut is not a special case of MHE. In MHE, if all vertices
are un-colored, then the problem becomes trivial: Just color all vertices in one
color, then all edges will become happy. In contrast, if all vertices in Max k-Uncut
are uncolored, we cannot color them in one color. In Max k-Uncut, we must figure
out a k-coloring.

Two problems that are closely related to Max k-Uncut have already appeared
in literature. Choudhurya et al. [7] proposed the capacitated Max k-Uncut prob-
lem. Given an undirected graph G and k integers si, s2,- - , Sk, this problem is
to partition V(G) into k subsets of sizes s, s2,- - - , S respectively, such that the
total weight of happy edges is maximized. Very recently, Wu et al. [18] studied
the balanced Max 3-Uncut problem, in which an input graph is partitioned into
3 equal-sized parts so that the total weight of happy edges is maximized.

Notations and Terms. Some common notations and terms are listed here.
Given a graph G, let n be the number of its vertices. Given an optimization
problem, let OPT denote the value of its optimal solution. By r-clique for some
integer r, we mean a clique (i.e., a complete subgraph) that contains exactly r
vertices.

Approximation and Hardness Results for the Max k-Uncut Problem 51

1.1 Related Work

To the best of our knowledge, the general Max k-Uncut problem is new and has
not been studied in literature. Though it is new, Max k-Uncut has rich connection
to the classic and existing problems.

Max k-Uncut is just the complement of the classic Min k-Cut problem. The
Min Ek-Cut problem asks for a k-partition such that the total weight of cut
edges is minimized. The Min k-Cut problem is strongly NP-hard [12], so is the
Max k-Uncut problem. The best approximation ratio for Min k-Cut is 2 [17].
When £ is a constant, the Min k-Cut problem can be optimally solved in polyno-
mial time [12]. Obviously, Max k-Uncut with constant k is also polynomial time
solvable. In a word, Max k-Uncut is strongly NP-hard (when k is given in the
input), and is polynomial time solvable when k is a constant.

Previously we have pointed out two closely related variants of Max k-Uncut,
i.e., the capacitated Max k-Uncut problem and the balanced Max 3-Uncut prob-
lem. Using the heuristic of local search, Choudhurya et al. [7] gave a m—
approximation algorithm for capacitated Max k-Uncut, where d is the ratio of the
largest size and the smallest size in the partition. This ratio is somewhat poor
and cannot extend to the Max k-Uncut problem studied in this paper. Using the
semidefinite programming technique, Wu et al. [18] gave a 0.3456-approximation
algorithm for the balanced Max 3-Uncut problem.

The cut problems are classic and rich. They play an important role in the
study of approximation algorithms and operations research. In literature, the
“uncut” problems are also been studied. Besides Max k-Uncut, three examples
are Min Uncut [1], Multiway Uncut [15,20], and the complement of Min Bisection
[19]. Min Uncut is the complement of the classic Max Cut problem. Agarwal et
al. [1] gave an O(y/logn)-approximation algorithm for Min Uncut, where n is
the number of vertices in the input graph. Multiway Uncut is the complement
of the classic Multiway Cut problem [5,6]. Langberg et al. [15] proposed the
Multiway Uncut problem. The current best approximation ratio for Multiway
Uncut is £ + %f(k:) > 0.8535 [20], where f(k) > 1 is a function of k. Ye and
Zhang [19] gave a 0.602-approximation algorithm for the complement of the Min
Bisection problem.

Due to the close relation of Max k-Uncut to Multiway Uncut, we have to say
more about Multiway Uncut. Given a graph G = (V, E) with edge weights and a
terminal set {s1, s2,-- -, sx} C V, the Multiway Uncut problem asks a partition of
V' that separates the k terminals from each other and maximizes the total weight
of happy edges. (Multiway Uncut is a special case of MHE.) Both Max k-Uncut and
Multiway Uncut ask for a k-partition. The only difference is that in Max k-Uncut,
there is no terminal, and in Multiway Uncut, there are terminals.

Another closely related problem is Max k-Cut, which is the problem to
find a k-partition such that the total weight of cut edges is maximized. When
k = 2, Max k-Cut (namely, Max Cut) is already NP-hard. The current best
approximation ratio for Max Cut is 0.87856, given by Goemans and Williamson
[11] using the semidefinite programming technique. Frieze and Jerrum [10]
extended Goemans-Williamson’s technique to the Max k-Cut problem, obtained

52 P. Zhang et al.

the approximation ratio oy = 1 — 1 + (1 + €(k)) 23% for Max k-Cut, where €(k)
is a function of k£ which tends to zero as k — oo. When k = 3,4, 5, a4 is no less
than 0.800217, 0.850304, and 0.874243, respectively.

1.2 Our Results

In this paper, we give three approximation algorithms for the Max k-Uncut prob-
lem and prove a (weak) approximation hardness result of Max k-Uncut. These
three algorithms share the same idea, which is simple but powerful: To find a
k-partition with many happy edges, one may just find a dense subgraph as large
as possible. The subgraph is used as one part of the k-partition. The larger and
denser the subgraph is, the more happy edges we will get. Along this line, we
finally find that Max k-Uncut is in fact equivalent to the Densest k-Subgraph
problem in approximability (up to a factor of 2). Note that Densest k-Subgraph
is one of the current hot topics in approximation algorithms. This may be our
most important find in this paper.

The first algorithm is a randomized algorithm (Algorithm 2.1) whose approx-
imation ratio is (1 — %)2 This algorithm can be derandomized in polynomial
time. The second algorithm is a greedy algorithm (Algorithm 2.2) whose approx-

@. While the ratios of these two algorithms are very close,

they are still incomparable. Specifically, when k£ < +/2n, the ratio 1 — 2k=1) g

n

better than the ratio (1 — £)2. Otherwise (when k > v/2n), the latter is better
than the former.

The ratio p = max{(1 — £)2,1 — } for Max k-Uncut we obtain so far
is already good when k is not too large. For example, if k¥ < n/2, then p > 1/4.
However, when k approaches n—1, p becomes worse and worse, and equals to #
finally. This observation suggests that the most difficult case of approximating
Max k-Uncut should be the case when k is close to n, say, k = n — O(logn).
And in this case (i.e., when k is large), we may make use of the connection to
Densest k-Subgraph.

Therefore, in the third algorithm (Algorithm 2.3), we reduce Max k-Uncut
to Densest k-Subgraph (for some suitable k) by exploring the structure of opti-
mal solutions to Max k-Uncut. It is convenient to define the Densest k-Subgraph
problem here.

imation ratiois 1—

2(k—1)

Definition 2. The Densest k-Subgraph Problem

(Instance). We are given an undirected graph G = (V, E) with nonnegative edge
weights {w, | e € E}, and a positive integer k.

(Goal). The problem asks to find a k-vertex subgraph G’ such that the total weight
of edges in E(G") is mazimized.

The reduction used in Algorithm 2.3 is nontrivial. Let a be the approximation
ratio for Densest k-Subgraph. Then Algorithm 2.3 approximates Max k-Uncut
within 1o in polynomial time. The current best value of « is Q(1/nite) [4].

Approximation and Hardness Results for the Max k-Uncut Problem 53

Consequently, Algorithm 2.3 repairs the deficiencies of Algorithms 2.1 and 2.2.
Now, the approximation ratio we obtain for Max k-Uncut is max{p, %oz}.

Surprisingly and interestingly, our technique in the analysis of Algorithm 2.3
also implies that if Max k-Uncut can be approximated within a factor of 3, then
Densest k-Subgraph can be approximated within %ﬁ. Therefore, Max k-Uncut
and Densest k-Subgraph are equivalent in approximability up to a factor of 2.
This reveals the strong connection between Max k-Uncut and Densest k-Subgraph,
and may open a new viewpoint in tackling the Densest k-Subgraph problem, since
this problem is known as a notorious hard problem in approximation algorithms.
(There is a wide gap between its best approximation factor and its best hardness
factor).

Next, we prove an approximation hardness result for Max k-Uncut: For any
small constant € > 0, Max k-Uncut cannot be approximated within 1 — 2:# in
polynomial time, where n is the number of vertices in the input graph. This is
proved via a gap-preserving reduction from the hardness result of the Max Clique
problem [3,13]. As a result, the hardness 1 — 5+ for any small constant ¢ > 0
implies that Max k-Uncut does not admit FPTAS.

Honestly speaking, this hardness result is weak since Max k-Uncut is indeed
strongly NP-hard, and the strong NP-hardness already rules out FPTAS. How-
ever, we make twofold contribution in proving the approximation hardness of
Max k-Uncut. First, we give an explicit expression of the approximation hard-
ness factor of Max k-Uncut, instead of just speaking that it is strongly NP-hard.
Second, we prove a technical lemma (Lemma 2), which gives an upper bound of
the number of happy edges that can be produced by any k-partition on a graph
with no (r + 1)-clique. The technical lemma is of independent interest and may
find more applications in related problems. In fact, the upper bound is obtained
by a special k-partition which consists of £ — 1 singletons and one subset of size
n—(k—1). This again hints the connection of Max k-Uncut to Densest k-Subgraph
and Max Clique.

2 Approximation Algorithms

2.1 A Randomized Algorithm

A straightforward idea for Max k-Uncut is to color vertices randomly. However,
if we color every vertex randomly, we may not get an approximation algorithm
with good ratio. (We can prove that an algorithm of this type has approximation
ratio % — % The details are omitted here.)

In graphs with only unit weight on edges, to maximize the total weight
of happy edges is equivalent to leave as many as possible edges uncut. So, a
clever randomized strategy is to randomly color k — 1 vertices only, making the
remaining vertices as many as possible. Intuitively, these many vertices would
induce many happy edges. Algorithm R below is a randomized algorithm for
Max k-Uncut of this idea.

Let Wit be the total weight of edges in graph G.

54 P. Zhang et al.

Algorithm 2.1. (Algorithm R for Max k-Uncut)

1 Pick randomly k£ — 1 vertices from V', and color them respectively in colors
1tok—1.
2 Color all the remaining vertices in color k.

Theorem 1. Algorithm R is a randomized (1 — %)2—appmximation algorithm

for the Max k-Uncut problem.

Proof. First note that Algorithm R runs in polynomial time. Let V; be the set
of vertices of color i. Take any edge e = (u,v). Then, e is happy (uncut) if and
only if both u and v are not chosen in the first £ — 1 random choices (step 1).
This means that

n—2 n— n— n— 9 2
Prledge e is happy] = Ek:; = (fb(; 1_)(1) k) > (an) = (1 — S))
k—1

Let SOL be the solution value obtained by Algorithm R. Therefore, we have

2
E[SOL] = Z we - Prledge e is happy] > (1 — :) Wiot.
eeE

On the other hand, the optimum OPT is obviously at most Wy,. So, the
approximation ratio of Algorithm R is at least (1 - %)2 O

Algorithm R can be derandomized by the conditional expectation method in
polynomial time. This is sketched as follows in rounds. In the first round we
determine the first vertex to be removed. We remove each vertex v; (1 <i <n)
from G to obtain G;. That is, V1 < ¢ < n, G; = G\ v;. For each G;, we compute
the expected solution value a; of Algorithm R for the Max(k—1)-Uncut problem.
We find the largest expected value in this round, say a;. Then, v; is the first
vertex we pick and is colored in color 1. The next round begins from G with v;
removed. Repeating the above procedure for k£ — 1 rounds, we obtain a solution
whose value is at least as better as the expected value of Algorithm R.

2.2 A Greedy Algorithm

The idea in Sect. 2.1 can be restated as finding a subgraph of size n — k + 1 as
dense as possible, where by dense subgraph we mean a subgraph whose total
weight of edges is as much as possible. This leads to a greedy algorithm for
Max k-Uncut, shown as Algorithm G below. For the sake of description, we define
the weighted degree d,,(v) of a vertex v as the sum of weights of edges incident
to v. By definition, the weight of vertex v is equal to the capacity of the cut
({v},V \ {v}). Obviously, when each edge in the graph has unit weight, the
weighted degree of a vertex is simply its degree.

Approximation and Hardness Results for the Max k-Uncut Problem 55

Algorithm 2.2. (Algorithm G for Max k-Uncut)
1 Pick vertices from V' with the first k£ — 1 smallest weighted degrees, and color
them in colors 1 to k — 1, respectively.
2 Color all the remaining vertices in color k.

Theorem 2. Algorithm G is a (1 — @) -approximation algorithm for the
Max k-Uncut problem.

Proof. Algorithm G obviously runs in polynomial time. Let vy, -+ ,v5_1 be the
vertices picked in the first step of Algorithm G. By the algorithm, only edges
incident to vertices in {v1, -+ ,vk—1} would be unhappy. So, the total weight of
unhappy edges is at most

Zdw(vi) < Bl Zdw(v) = ywtot-

Therefore, the total weight of happy edges is at least

2k — 1
W, 2k=1

Wtot~
Since OPT < Wy, this means the approximation ratio of Algorithm G is at
least 1 — @ O

The approximation ratios (1 — £)2 and 1 — @ behave well when k is not

kN2 1 .
too large. For example, (1 —)% > 7 when k < 7. However, when k is large

enough, say, k = n—0O(logn), the approximation ratio max{(1— %)2, 1-— @}
we obtained so far becomes bad. To remedy this deficiency, we design another
approximation algorithm for Max k-Uncut, that is, Algorithm 7 in Sect.2.3.
Actually, our subsequent study on Max k-Uncut in this paper makes us realize
that the hard core of Max k-Uncut just lies in the case when k is large.

2.3 Reduces to Densest k-Subgraph

In this section, we reduce Max k-Uncut to Densest k-Subgraph for some suitable
k. For clarity, when the instance of Densest k-Subgraph is given as, e.g., (G, w, k),
we call it the instance of the Densest k-Subgraph problem. The reader should be
aware of that Densest k-Subgraph and Densest k-Subgraph are the same problem.
This usage also happens to the Max k-Uncut problem.

Given a vertex subset S of an edge-weighted graph G, let w(S) denote
the total weight of happy edges induced by S. Given a k-partition P =
{1, Va, -+, V&} of V(G), let w(P) denote the total weight of happy edges
induced by P, ie., w(P) =Y, w(V;).

First we prove a technical lemma.

56 P. Zhang et al.

Lemma 1. Let P = {V1, Vs, -+, Vi.} be a k-partition of graph G with weights
defined on edges. Then in polynomial time (in terms of |V (G)|) we can construct
a k-partition P = {V{,V3,--- ,V/} which satisfies

(i) [Vi|=--= |Vkl—1‘ =1, |V]cl| =n—k+1, and

(i) w(P) = Lu(P).

Proof. We renumber the vertex subsets in P according to the non-decreasing

order of their w(-) values, and rewrite P as {Ry, Ro, -+, R4, 51,52, --+, Sp},
where we assume that in P there are a singletons Rj,---,R,, and b non-
singletons S, - - - , Sy (that is, each S; has size at least two). So, we have a+b = k,

w(R) <+ S w(Ry) Sw(Sh) < -+ <w(Sy),

and
w(P) = U)(Sl) + -+ w(Sb)
Note that a may be zero.
If b = 1, then the theorem is proved by just letting P’ = P. So, in the follow-
ing we assume that b > 2. We shall convert Si,---,Sp-1,Sy to S1,---,5;_1,5}

such that the first b — 1 S]’s are singletons. This is done as follows.
We pick the unique ¢ € [1,[251]] such that

|S1] + [Sa| + -+ [Se| >b—1

and
[S1] 4 |S2| + -+ 4 |Se—1] < b—1. (1)

Note that it may be the case that ¢ = 1, and in this case we do not need the
condition (1). Also note that since b > 2 and V1 < i < b, |S;| > 2, £ must be at

most [251].

Initially Sj is empty. We merge all vertices in S¢i1,---, S into S;. Then
we pick arbitrarily b — 1 vertices from Si, ---, S¢ to make b — 1 singletons S,
Sh, -+, S{_;. If there are still remaining vertices in Sy, ---, Sy (in case that

|S1]|+[S2|+ -+]Se] > b—1), we then move all of them to Sj. This finishes the
construction of S7, ---, S;_, S}.

Since £ < (”_Tl] < %b, the number of subsets Spy1, -+, Sp is at least half of
b. In the above construction, all the happy edges in these subsets are kept in Sj.
Since S7, -+, Sp are in the non-decreasing order of the total weights of happy
edges they contain, we know that

w(Sy) > %(w(Sl) + -+ w(Sp))

The desired k-partition P’ is just {Rq,--- , Rq,S1, -+, S} }. O

Algorithm 7 is the algorithm reducing Max k-Uncut to Densest k-Subgraph. Since
the subgraph G’ found in step 2 contains k vertices, there are exactly n—k = k—1
vertices in V(G) \ V(G’). So, in step 4 we can color them in colors 1,--- , k — 1,
respectively.

Approximation and Hardness Results for the Max k-Uncut Problem 57

Algorithm 2.3. (Algorithm 7 for Max k-Uncut)

Input: An instance (G, w, k) of Max k-Uncut.
Output: A k-partition of V(G).
1ken—(k—1).
2 Find a subgraph G’ of G by an approximation algorithm for Densest k-
Subgraph on instance (G, w, k).
3 Color all vertices in V(G’) in color k.
4 Color all vertices in V/(G) \ V(G’) in colors 1,--- , k — 1, respectively.

Theorem 3. Let « be the approximation ratio of Densest k-Subgraph. Then
Algorithm T is a §-approxvimation algorithm for the Max k-Uncut problem.

By [4], a can be 2(1/n'/4*+€) for every small constant ¢ > 0. (The ratio in
[4] is for unweighted Densest k-Subgraph. Using the technique in [9], this ratio
can be extended to weighted Densest k-Subgraph.) This means that Max k-Uncut
can be approximated within 1o = £2(1/n/4+€) in polynomial time.

Proof (of Theorem 3). Let OPTy\yu be the optimal value of Max k-Uncut on
instance (G, w, k). Let P* = {V;,Va,--- , Vi } be the corresponding optimal solu-
tion. By Lemma 1, we can build a k-partition P’ = {V{,V5,--- ,V/} from P*
such that V{, ---, V/_, are singletons. This means that |V}/| =n — (k —1). So,
V. is a feasible solution to Densest k-Subgraph on instance (G, w, k) satisfying

w(Vy) =w(P') > ~w(P*) = %OPTMkU, (2)

N

where the inequality is by Lemma 1.

Note that G’ is the subgraph found in step 2 by the approximation algorithm
for Densest k-Subgraph. There are k — 1 vertices in V(G) \ V(G’). Then, step
4 builds k — 1 singletons using the vertices in V(G) \ V(G’). These singletons,
together with V(G’), constitute a k-partition, denoted by P, which is a feasible
solution to Max k-Uncut. We have

w(P) = w(V(G')) = a- OPTpys = a-w(V) =

% - OPTwmpv,

—~
=

where the first inequality holds since G’ is an a-approximate solution to the
Densest k-Subgraph instance (G, w, k), and the second inequality holds since %4
is a feasible solution to (G, w, k). The theorem is proved. O

Note that the running time of Algorithm 7 does not depend on the construction
time of the k-partition in Lemma 1. Lemma 1 is only used in the analysis of
Algorithm 7. (This construction time is useful in the following Algorithm C.)

Interestingly and somewhat surprisingly, Lemma 1 also implies the converse
of Theorem 3: Densest k-Subgraph reduces to Max k-Uncut. This is shown in
Algorithm C and Theorem 4.

58 P. Zhang et al.

Algorithm 2.4. (Algorithm C for Densest k-Subgraph)

Input: An instance (G, w, k) of Densest k-Subgraph.
Output: A vertex subset V' C V(G) containing exactly k vertices.
lke—n—Fk+1
2 Find a k-partition P = {V}, Vs, -+, V;} of V(G) by an approximation algo-
rithm for Max k-Uncut on instance (G,w, k).
3 Convert P to a k-partition P’ = {V/,V3,---,V/} by Lemma 1, where |[V}| =
n—(k—1)=k.
4 return V' V.

Theorem 4. If Max k-Uncut can be approximated within a factor of «, then
Densest k-Subgraph can be approximated within a factor of a /2.

Proof. We design Algorithm C as the approximation algorithm for
Densest k-Subgraph. Step 2 calls the supposed a-approximation algorithm for
Max k-Uncut. By Lemma 1, step 3 can be finished in polynomial time. There-
fore, the overall running time of Algorithm C is polynomial.

Let V* be an optimal solution to the Densest k-Subgraph instance (G, w, k),
whose value is denoted by OPTpgs. Note that in Algorithm C we have k = n—k+
1. By viewing each vertex in V(G)\ V* as a singleton, we can build a k-partition
Pe ={Vy,Vy, -+, V2}, where V2 = V*. Obviously we have w(P°) = OPTpys.
A crucial observation is that P° is a feasible solution to the Max k-Uncut instance
(G,w, k). This helps us get the connection

where OPTyzy is the optimal value of the instance (G, w, k) of Max k-Uncut.
For the two k-partitions P and P’, we have w(P’) > 1w(P) by Lemma 1.

Since Max k-Uncut can be approximated within «, we have w(P) > a- OPT -

These facts, together with (3), conclude the theorem. O

Theorems 3 and 4 show that Max k-Uncut and Densest k-Subgraph are in fact
equivalent in approximability up to a factor of two.

3 Approximation Hardness

3.1 Ruling Out Constant Factor Approximation

The approximability equivalence (up to a factor of two) of Max k-Uncut and
Densest k-Subgraph naturally suggests that the approximation hardness results
of Densest k-Subgraph may extend to Max k-Uncut. In particular, the following
conditional hardness result holds.

Corollary 1. If Densest k-Subgraph cannot be approximated within any con-
stant factor, then so do Max k-Uncut.

Approximation and Hardness Results for the Max k-Uncut Problem 59

Under some appropriate complexity assumptions, people indeed proved
that Densest k-Subgraph cannot be approximated within any constant factor.
Raghavendra and Steurer [16] proved that assuming that the Unique Games
with Small Set Expansion conjecture is true, it is NP-hard to approximate the
Densest k-Subgraph problem within any constant factor. Alon et al. [2] also ruled
out constant approximation factor for Densest k-Subgraph, under an average case
hardness assumption. For the exact meaning of these complexity assumptions,
we refer the reader to [2,16].

Khot [14] proved that assuming NP ¢ NoBPTIME(2"), Densest
k-Subgraph has no PTAS. However, this result cannot be extended to
Max k-Uncut directly, since the approximability equivalence of Max k-Uncut and
Densest k-Subgraph proved above omits a constant factor 2.

3.2 An Explicit Hardness Factor

The approximation hardness results for Densest k-Subgraph mentioned above all
use stronger complexity assumptions than the general assumption P # NP. In
the following, we shall prove an approximation hardness result for Max k-Uncut,
assuming that P # NP. The proved hardness factor is 1 — Tllé, where € > 0 is an
arbitrarily small constant, and n is the vertex number of the input graph. This
result implies that, if P # NP, Max k-Uncut does not admit FPTAS.

The hardness result 1 — 27115 for Max k-Uncut is rather weak since Max k-Uncut
is strongly NP-hard, and this (the strong NP-hardness) already rules out FPTAS.
However, we make twofold contribution in proving such a result. First, we give an
explicit expression of the approximation hardness factor of Max k-Uncut, instead
of just speaking that it is strongly NP-hard. Second, we prove a technical lemma
(Lemma 2), which gives an upper bound of the number of happy edges that
can be produced by any k-partition on a graph with no (r + 1)-clique. The
technical lemma is of independent interest and may find more applications in

related problems.

Lemma 2. Any k-partition on an n-verter undirected graph with no (r + 1)-
clique can produce at most %(1 - %)u2 happy edges, where u =mn — (k —1).

Hastad [13] proved the following remarkable approximation hardness result
for the Max Clique problem: For any € > 0, unless P = NP, there is no polynomial
time algorithm that approximates Max Clique within a factor of n'/2=¢, where
n is the vertex number of the input graph. By this result and Lemma 2, we can
prove that

Theorem 5. For any € > 0, unless P = NP, there is no polynomial time algo-
1/2—e
s the vertex number of the input graph. The hardness factor is < 1 — ﬁ for

sufficiently large n.

rithm that approximates Max k-Uncut within a factor of 1 — where n

The proof of Lemma 2 is rather complicated. Due to space limitation, the
proofs of Lemma 2 and Theorem 5 are omitted here and will be given in the
journal version of the paper.

60 P. Zhang et al.

Hastad [13] also proved that assuming ZPP # NP, Max Clique cannot be
approximated within n!~¢ for any small constant e > 0. However, for technical
reasons, this stronger hardness factor cannot improve the result of Theorem 5
accordingly.

A corollary of Theorem 5 is that Max k-Uncut has no FPTAS, if P £ NP.

Corollary 2. Max k-Uncut does not admit FPTAS, if P # NP.

Proof. Suppose for contradiction that there is an FPTAS for Max k-Uncut which
for any small ¢ > 0, gets a (1—¢’)-approximation to Max k-Uncut instance I, with
running time poly(Z, |I]), where || denotes the length of instance I, and poly()
denotes some polynomial. Given any small constant € > 0, if we set ¢’ = 27116 and
run the FPTAS, where n is the number of vertices in the input graph, then we
can get a (1— 5)-approximation to instance I in time poly(2n<, |I|) = poly(|1]),

contradicting Theorem 5. a

Acknowledgements. We thank Marek Chrobak for the initial helpful discussion on
this topic. Peng Zhang is supported by the National Natural Science Foundation of
China (61672323), the State Scholarship Fund of China, the Natural Science Foun-
dation of Shandong Province (ZR2013FMO030 and ZR2015FMO008), and the Funda-
mental Research Funds of Shandong University (2015JC006). Chenchen Wu is sup-
ported by the National Natural Science Foundation of China (11501412). Dachuan
Xu is supported by the National Natural Science Foundation of China (11371001 and
11531014) and Collaborative Innovation Center on Beijing Society-Building and Social
Governance.

References

1. Agarwal, A., Charikar, M., Makarychev, K., Makarychev, Y.: O(y/logn) approxi-
mation algorithms for min uncut, min 2CNF deletion, and directed cut problems.
In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing
(STOC), pp. 573-581 (2005)

2. Alon, N., Arora, S., Manokaran, R., Moshkovitz, D., Weinstein, O.: Inapproxima-
bility of densest k-subgraph from average case hardness. Manuscript (2011)

3. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs and non-approximability —
towards tight results. SIAM J. Comput. 27(3), 804-915 (1998)

4. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting
high log-densities: an O(nl/ 1) approximation for densest k-subgraph. In: Proceed-
ings of the 42nd Annual ACM Symposium on Theory of Computing (STOC), pp.
201-210 (2010)

5. Buchbinder, N., Naor, J., Schwartz, R.: Simplex partitioning via exponential clocks
and the multiway cut problem. In: Proceedings of the Annual ACM Symposium
on Theory of Computing (STOC), pp. 535-544 (2013)

6. Calinescu, G., Karloff, H., Rabani, Y.: An improved approximation algorithm for
multiway cut. J. Comput. Syst. Sci. 60(3), 564-574 (2000)

7. Choudhurya, S., Gaurb, D.R., Krishnamurtic, R.: An approximation algorithm for
max k-uncut with capacity constraints. Optimization 61(2), 143-150 (2012)

8. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge University Press, Cambridge (2010)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Approximation and Hardness Results for the Max k-Uncut Problem 61

Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica
29, 410-421 (2001)

Frieze, A., Jerrum, M.: Improved approximation algorithms for max k-cut and max
bisection. Algorithmica 18, 67-81 (1997)

Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM
42(6), 1115-1145 (1995)

Goldschmidt, O., Hochbaum, D.: A polynomial algorithm for the k-cut problem
for fixed k. Math. Oper. Res. 19(1), 24-37 (1994)

Hastad, J.: Clique is hard to approximate within n'~¢. Acta Math. 182, 105-142
(1999)

Khot, S.: Ruling out PTAS for graph min-bisection, densest subgraph and bipartite
clique. In: Proceedings of the 44th Annual IEEE Symposium on the Foundations
of Computer Science (FOCS), pp. 136-145 (2004)

Langberg, M., Rabani, Y., Swamy, C.: Approximation algorithms for graph homo-
morphism problems. In: Dfaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.)
APPROX/RANDOM -2006. LNCS, vol. 4110, pp. 176-187. Springer, Heidelberg
(2006). doi:10.1007,/11830924_18

Raghavendra, P., Steurer, D.: Graph expansion and the unique games conjecture.
In: Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC),
pp. 755-764 (2010)

Saran, H., Vazirani, V.: Finding k-cuts within twice the optimal. STAM J. Comput.
24, 101-108 (1995)

Wu, C.,; Xu, D., Du, D.; Xu, W.: A complex semidefinite programming round-
ing approximation algorithm for the balanced max-3-uncut problem. In: Cai, Z.,
Zelikovsky, A., Bourgeois, A. (eds.) COCOON 2014. LNCS, vol. 8591, pp. 324-335.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-08783-2_28

Ye, Y., Zhang, J.: Approximation of dense-n/2-subgraph and the complement of
min-bisection. J. Global Optim. 25(1), 55-73 (2003)

Zhang, P., Jiang, T., Li, A.: Improved approximation algorithms for the maximum
happy vertices and edges problems. In: Xu, D., Du, D., Du, D. (eds.) COCOON
2015. LNCS, vol. 9198, pp. 159-170. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-21398-9_13

Zhang, P., Li, A.: Algorithmic aspects of homophyly of networks. Theoret. Comput.
Sci. 593, 117-131 (2015)

http://dx.doi.org/10.1007/11830924_18
http://dx.doi.org/10.1007/978-3-319-08783-2_28
http://dx.doi.org/10.1007/978-3-319-21398-9_13
http://dx.doi.org/10.1007/978-3-319-21398-9_13

On Strong Tree-Breadth

Arne Leitert®™) and Feodor F. Dragan

Department of Computer Science, Kent State University, Kent, OH, USA
{aleitert,dragan}@cs.kent.edu

Abstract. In this paper, we introduce and investigate a new notion of
strong tree-breadth. We say that a graph G has strong tree-breadth p if
there is a tree-decomposition 7" for G such that each bag B of T is equal
to the complete p-neighbourhood of some vertex v in G, i.e., B = N&[v].
We show that

— it is NP-complete to determine if a given graph has strong tree-
breadth p, even for p = 1;

— if a graph G has strong tree-breadth p, then we can find a tree-
decomposition for G with tree-breadth p in O(n*m) time;

— with some additional restrictions, a tree-decomposition with strong
breadth p can be found in polynomial time;

— some graph classes including distance-hereditary graphs have strong
tree-breadth 1.

1 Introduction

Decomposing a graph into a tree is an old concept. It was introduced already
by Halin [14]. However, a more popular introduction was given by Robertson
and Seymour [15,16]. The idea is to decompose a graph into multiple induced
subgraphs, usually called bags, where each vertex can be in multiple bags. These
bags are combined to a tree in such a way that the following requirements are
fulfilled: Each vertex is in at least one bag, each edge is in at least one bag, and,
for each vertex, the bags containing it induces a subtree. We will give formal
definitions in the next section.

For a given graph, there can be up to exponentially many different tree-
decompositions. The easiest is to have only one bag containing the whole graph.
To make the concept more interesting, it is necessary to add additional restric-
tions. The most known is called tree-width. A decomposition has width w if each
bag contains at most w + 1 vertices. Then, a graph G has tree-width w if there
is a tree-decomposition for G which has width w.

In the last years, a new perspective on tree-decompositions was invested.
Instead of limiting the number of vertices in each bag, the distance between
vertices inside a bag is limited [8,9]. In this paper, we are interested in a variant
called tree-breadth. It was introduced by Dragan and Kéhler in [9]. The breadth
of a tree-decomposition is p, if, for each bag B, there is a vertex v such that
each vertex in B has distance at most p to v. Accordingly, we say the tree-
breadth of a graph G is p (written as tb(G) = p) if there is a tree-decomposition

© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 62-76, 2016.
DOI: 10.1007/978-3-319-48749-6_5

On Strong Tree-Breadth 63

for G with breadth p and there is no tree-decomposition with smaller breadth.
This new concept of tree-breadth played a crucial role in designing an efficient
and best to the date approximation algorithm for the well-known tree ¢t-spanner
problem (see [9] for details). Recently, Ducoffe et al. [13] have shown that it is
NP-complete to determine if a graph has tree-breadth p for all p > 1. On the
other hand, for a given graph G, a tree-decomposition of breadth at most 3 tb(G)
can be computed in linear time [1].

By definition, a tree-decomposition has breadth p if each bag B is the subset
of the p-neighbourhood of some vertex v, i. e., the set of bags is the set of subsets
of the p-neighbourhoods of some vertices. Tree-breadth 1 graphs contain the
class of dually chordal graphs which can be defines as follows: A graph G is
dually chordal if it admits a tree-decomposition T such that, for each vertex v
in G, T contains a bag B = N¢[v] [4]. That is, the set of bags in T is the set of
complete neighbourhoods of all vertices.

In this paper, we investigate the case which lays between dually chordal
graphs and general tree-breadth p graphs. In particular, tree-decompositions are
considered where the set of bags are the complete p-neighbourhoods of some ver-
tices. We call this strong tree-breadth. The strong breadth of a tree-decomposition
is p, if, for each bag B, there is a vertex v such that B = Ng[v]. Accord-
ingly, a graph G has strong tree-breadth smaller than or equal to p (written as
stb(G) < p) if there is a tree-decomposition for G with strong breadth at most p.

Dually chordal graphs and their powers are exactly the graphs admitting a
tree-decomposition where the set of bags is equal to the set of complete neigh-
bourhoods (complete p-neighbourhoods) of all vertices. It is a known fact that
the dually chordal graphs (the powers of dually chordal graphs) can be recog-
nised in linear time (respectively, polynomial time) [4]. General tree-breadth p
graphs cannot be recognised in polynomial time unless P = NP [13]. It remained
an interesting open question if the graphs with strong tree-breadth p can be
recognised in polynomial time.

In this paper we show that it is NP-complete to determine if a given graph
has strong tree-breadth p, even for p = 1. Furthermore, we demonstrate that:
if a graph G has strong tree-breadth p, then we can find a tree-decomposition
for G with tree-breadth p in O(n?m) time; with some additional restrictions, a
tree-decomposition with strong breadth p can be found in polynomial time; some
graph classes including distance-hereditary graphs have strong tree-breadth 1.
Our future research plans are to investigate algorithmic implications of the
existence for a graph of a tree-decomposition with small strong tree-breadth.
Can some algorithmic problems that remain NP-complete on general tree-
breadth p graphs be solved/approximated efficiently on the graphs with strong
tree-breadth p? Recall that, for example, greedy routing with aid of a spanning
tree [12], (connected) r-domination [3], Steiner tree [3], and (weighted) efficient
domination [5,6] can be efficiently solved on dually chordal graphs and their
powers.

64 A. Leitert and F.F. Dragan

2 Preliminaries

All graphs occurring in this paper are (if not stated or constructed otherwise)
connected, finite, unweighted, undirected, without loops, and without multiple
edges. For a graph G = (V, E), we use n = |V| and m = |E| to denote the
cardinality of the vertex set and the edge set of G. The length of a path from a
vertex v to a vertex u is the number of edges in the path. The distance dg(u,v)
of two vertices v and v is the length of a shortest path connecting v and v.
The distance between a vertex v and a set S C V is defined as dg(v,S) =
ming,es da(u, v).

For a vertex v of G, Ng(v) = {u € V | uv € E} is called the open neighbor-
hood of v. Similarly, for a set S C V, we define Ng(S) = {u eV | dg(u,S) = 1}.
The r-neighbourhood of a vertex v in G is N&[v] = {u | dg(u,v) < r};if r is not
specified, then r = 1. Two vertices u and v are true twins if Nglu] = Nglv] and
are false twins if they are non-adjacent and Ng(u) = Ng(v).

For a vertex set S, let G[S] denote the subgraph of G induced by S. With
G — S, we denote the graph G[V\S]. A vertex set S is a separator for two
vertices v and v in G if each path from u to v contains a vertex s € S; in this
case we say S separates u from v. If a separator S contains only one vertex s,
i.e., S = {s}, then s is an articulation point. A block is a maximal subgraph
without articulation points.

A chord in a cycle is an edge connecting two non-consecutive vertices of the
cycle. A cycle is called induced if it has no chords. For each k > 3, an induced
cycle of length k is called as Ci. A subgraph is called clique if all its vertices
are pairwise adjacent. A mazimal clique is a clique that cannot be extended by
including any additional vertex.

A tree-decomposition of a graph G = (V,E) is a tree T with the vertex
set B where each vertex of T, called bag, is a subset of V such that: (i) V =
Uper B, (ii) for each edge uv € E, there is a bag B € B with u,v € B, and
(iii) for each vertex v € V, the bags containing v induce a subtree of T. A
tree-decomposition 1" of G has breadth p if, for each bag B of T, there is a
vertex v in G with B C NZ[v]. The tree-breadth of a graph G is p, written as
tb(G) = p, if p is the minimal breadth of all tree-decomposition for G. Similarly,
a tree-decomposition T of G has strong breadth p if, for each bag B of T', there
is a vertex v in G with B = N4 [v]. The strong tree-breadth of a graph G is the
minimal p for which G admits a tree-decomposition with strong breadth p. This
is written as stb(G) = p.

3 NP-Completeness

In this section, we will show that it is NP-complete to determine if a given graph
has strong tree-breadth p even if p = 1. To do so, we will first show that, for
some small graphs, the choice of possible centers is restricted. Then, we will use
these small graphs to construct a reduction.

On Strong Tree-Breadth 65

Lemma 1. Let C = {vy,v2,v3,v4} be an induced Cy in a graph G with the
edge set {vivg, vaUs, V3V, v4v1 }. If there is no vertexr w ¢ C with Nglw] 2 C,
then Ng[v1] and Nglva] cannot both be bags in the same tree-decomposition with
strong breadth 1.

Proof. Assume that there is a decomposition T with strong breadth 1 containing
the bags By = Ng[v1] and By = Ng[va]. Because vy and vy are adjacent, there is
a bag Bs O {v3,v4}. Consider the subtrees T7, Ty, T3, and Ty of T induced by vy,
va, v3, and vy, respectively. These subtrees pairwise intersect in the bags By, B,
and Bj3. Because pairwise intersecting subtrees of a tree have a common vertex,
T contains a bag Ng[w] 2 C. Note that there is no v; € C with Ng[v;] 2 C.
Thus, w ¢ C. This contradicts with the condition that there is no vertex w ¢ C
with Ng[’w] o C. O

Let C = {v1,...,v5} be a C5 with the edges E5 = {viva, vavs, ..., v5v1 }. We
call the graph H = (C' U {u}, E5 U {uv1, uvs,uvs}), with u ¢ C, an extended Cj
of degree 1 and refer to the vertices u, vy, vo, and vy as middle, top, right, and
left vertex of H, respectively. Based on H = (Vi, Ey), we construct an extended
Cs of degree p (with p > 1) as follows. First, replace each edge xy € Ey by a
path of length p. Second, for each vertex w on the shortest path from vs to vy,
connect u with w using a path of length p. Figure 1 gives an illustration.

U1

U1

Vs V2

V4 U3 V4 U3

(a) Degree 1 (b) Degree 3

Fig. 1. Two extended C5 of degree 1 and degree 3. We refer to the vertices u, v1, va,
and vs as middle, top, right, and left vertex, respectively.

Lemma 2. Let B be a bag of a tree-decomposition T for a graph G and let C' be
a connected component in G— B. Then, T contains a bag Bc with Bo 2 Ng(C)
and Bc N C # 0.

Proof. Let B¢ be the bag in T for which Bo N C # () and the distance between
B and B¢ in T is minimal. Additionally, let B’ be the bag in T adjacent to B¢o
which is closest to B and let S = BN B’. Note that SNC =) and, by properties
of tree-decompositions, S separates C from all vertices in B\S. Assume that
there is a vertex u € Ng(C)\S. Because u € Ng(C), there is a vertex v € C
which is adjacent to u. This contradicts with S being a separator for v and v.
Therefore, Ng(C) C S C Be. O

66 A. Leitert and F.F. Dragan

Lemma 3. Let H be an extended Cs of degree p in a graph G as defined above.
Additionally, let H be a block of G and its top vertex vy be the only articulation
point of G in H. Then, there is no vertex w in G with dg(w,v1) < p which is
the center of a bag in a tree-decomposition for G with strong breadth p.

Proof. Let T be a tree-decomposition for G with strong breadth p. Assume that
T contains a bag B,, = N&[w] with dg(w,v1) < p. Note that the distance from
v1 to any vertex on the shortest path from vz to vs is 2p. Hence, G — By, has a
connected component C' containing the vertices vs and v4. Then, by Lemma 2,
there has to be a vertex w’ # w in G and a bag B], = N4[w'] in T such that
(i) Bl, 2 Ng(C) and (ii) B., N C # (). Thus, if we can show, for a given w, that
there is no such w’, then w cannot be center of a bag.

First, consider the case that w is in H. We will construct a set X = {x,y} C
N¢(C) such that there is a unique shortest path from x to y in G passing w. If
w = vy, let x = vg9 and y = vs. If w is on the shortest path from vy to u, let x
and y be on the shortest path from vy to vy and from v4 to u, respectively. If w
is on the shortest path from v; to va, let and y be on the shortest path from
v1 to vy and from vy to vs, respectively. In each case, there is a unique shortest
path from x to y passing w. Note that, for all three cases, dg(v1,y) > p. Thus,
each w’ with dg(w’,y) < p is in H. Therefore, w is the only vertex in G with
X C N4 [w], i.e., there is no vertex w’ # w satisfying condition (i). This implies
that w cannot be center of a bag in T'.

Next, consider the case that w is not in H. Without loss of generality, let w
be a center for which dg (vy,w) is minimal. As shown above, there is no vertex w’
in H with dg(v1,w’) < p which is center of a bag. Hence, w’ is not in H either.
However, because v; is an articulation point, w’ has to be closer to v; than w to
satisfy condition (ii). This contradicts with dg(v1,w) being minimal. Therefore,
there is no vertex w’ satisfying condition (ii) and w cannot be center of a bag
inT. a

Theorem 1. It is NP-complete to decide, for a given graph G, if stb(G) = 1.

Proof. Clearly, the problem is in NP: Select non-deterministically a set S of
vertices such that their neighbourhoods cover each vertex and each edge. Then,
check deterministically if the neighbourhoods of the vertices in S give a valid
tree-decomposition. This can be done in linear time [18]. The algorithm in [18]
also creates the corresponding tree.

To show that the problem is NP-hard, we will make a reduction from 1-in-3-
SAT [17]. That is, you are given a boolean formula in CNF with at most three
literals per clause; find a satisfying assignment such that, in each clause, only
one literal becomes true.

Let Z be an instance of 1-in-3-SAT with the literals £ = {p1,...,p,}, the
clauses C = {c1,...,¢m}, and, for each ¢ € C, ¢ C L. We create a graph G =
(V, E) as follows. Create a vertex for each literal p € £ and, for all literals p;
and p; with p; = —p;, create an induced Cy = {p;, p;, ¢;, ¢; } with the edges p;p;,
4i4;, Pigi, and p;q;. For each clause ¢ € C with ¢ = {p;, pj, pr }, create an extended
C5 with ¢ as top vertex, connect ¢ with an edge to all literals it contains, and

On Strong Tree-Breadth 67

make all literals in ¢ pairwise adjacent, i.e., the vertex set {c,p;, pj, px} induces
a maximal clique in G. Additionally, create a vertex v and make v adjacent to
all literals. Figure 2a gives an illustration for the construction so far.

T (kilj) S(jkli)

S(kilj) T'(jkli)

pi Pj
T'(ijlk) S(ij|k)

(b)

Fig. 2. Illustration to the proof of Theorem 1. The graphs shown are subgraphs of G
as created by a clause ¢ = {p;,p;,pr} and a literal p; with p; = —p;.

Next, for each clause {p;, p;, px} and for each (zy|z) € {(ij|k), (jk|9), (kilj)},
create the vertices r(;y.) and $(;y|.), make r(,y.) adjacent to s(4y.) and py,
and make 5.,y adjacent to p, and p.. See Fig. 2b for an illustration. Note that
7(ij|k) and sk are specific for the clause {p;,p;, px}. Thus, if p; and p; are
additionally in a clause with p;, then we also create the vertices r(;;;) and 5.
For the case that a clause only contains two literals p; and p;, create the vertices
(i) and s(;;), make r(;;) adjacent to p; and s(;;), and make s(;;) adjacent to p;,
i.e., {pi,pj, 7)), 5} induces a Cy in G.

For the reduction, first, consider the case that 7 is a yes-instance for
1-in-3-SAT. Let f: P — {T, F'} be a satisfying assignment such that each clause
contains only one literal p; with f(p;) = T. Select the following vertices as centers
of bags: v, the middle, left and right vertex of each extended Cs, p; if f(p;) =T,
and ¢; if f(p;) = F. Additionally, for each clause {p;,p;,pr} with f(p;) = T,
select the vertices s(ijik), T(jk}i), and r(;;). The neighbourhoods of the selected
vertices give a valid tree-decomposition for G. Therefore, stb(G) = 1.

Next, assume that stb(G) = 1. Recall that, for a clause ¢ = {p;,pj, px}, the
vertex set {c, p;,pj, px} induces a maximal clique in G. By Lemma 3, ¢ cannot
be center of a bag because it is top of an extended C5. Therefore, at least one
vertex in {p;, p;, pr} must be center of a bag. Without loss of generality, let p;
be a center of a bag. By construction, p; is adjacent to all p € {p;, pr, 1}, where
p; = —p;. Additionally, p and p; are vertices in an induced Cjy, say C, and there
is no vertex w in G with Ng[w] 2 C. Thus, by Lemmal, at most one vertex
in {p;,pj,px} can be center of a bag. Therefore, the function f: L — {T,F}
defined as

T if p; is center of a bag,
f(pi) =
F else

is a satisfying assignment for Z. O

68 A. Leitert and F.F. Dragan

In [13], Ducoffe et al. have shown how to construct a graph G, based on a
given graph G such that tb(G) = 1 if and only if tb(G) < p. We will slightly
extend their construction to achieve a similar result for strong tree-breadth.

Consider a given graph G' = (V, E) with stb(G) = p. We will construct G/,
as follows. Let V = {v1,va,...,v,}. Add the vertices U = {uj,us,...,u,} and
make them pairwise adjacent. Additionally, make each vertex u;, with 1 < i < n,
adjacent to all vertices in N&[v;]. Last, for each v; € V, add an extended Cs of
degree 1 with v; as top vertex.

Lemma 4. stb(G) < p if and only if sth(G],) = 1.

Proof. First, consider a tree-decomposition T for G with strong breadth p. Let
T, be a tree-decomposition for G, created from 7' by adding all vertices in U
into each bag of T and by making the center, left, and right vertices of each
extended Cjy centers of bags. Because the set U induces a clique in G; and
N¢[vi] = Nt [u;] NV, each bag of T}, is the complete neighbourhood of some
vertex.

Next, consider a tree-decomposition 7} for G/, with strong breadth 1. Note
that each vertex v; is top vertex of some extended C5. Thus, v; cannot be center
of a bag. Therefore, each edge v;v; is in a bag By = NG% [ug]. By construction
of G, BNV = N&Jvg]. Thus, we can construct a tree-decomposition T' for G
with strong breadth p by creating a bag B; = N.[v;] for each bag Ne;, [us]
of T}, O

Next, consider a given graph G = (V,E) with V = {v1,vs,...,v,} and
sth(G) = 1. For a given p > 1, we obtain the graph G} by doing the following
for each v; € V:

— Add the vertices u; 1, ..., u; 5, z;, and y;.
— Add an extended Cs of degree p with the top vertex z;.
— Connect

e u; 1 and x; with a path of length |p/2] — 1,
u;2 and y; with a path of length |p/2],
u; 3 and v; with a path of length [p/2] — 1,
u;,4 and v; with a path of length |p/2|, and
e u; 4 and z; with a path of length [p/2] — 1.
— Add the edges U, 1U;,2, Ui, 1U 3, Wi 2U5.3, Ui 2U4 4, and Us,3Uj 4-

Note that, for small p, it can happen that v; = w;4, ©; = w; 1, ¥i = u; 2, Or
z; = u; 5. Figure 3 gives an illustration.

Lemma 5. stb(G) = 1 if and only if stb(G}) = p.

Proof. First, assume that stb(G) = 1. Then, there is a tree-decomposition T'
for G with strong breadth 1. We will construct for G;r a tree-decomposition Tp+
with strong breadth p. Make the middle, left, and right vertex of each extended
C’5 center of a bag. For each v; € V| if v; is center of a bag of T, make x; a center
of a bag of T,f. Otherwise, make y; center of a bag of T,f. The distance in G}

On Strong Tree-Breadth 69

Fig. 3. llustration for the graph Gj. The graph shown is a subgraph of G; as con-
structed for each v; in G.

from v; to x; is p— 1. The distances from v; to y;, from x; to z;, and from y; to z;
are p. Thus, N/, [2;] NV = Ng[vi], N, [y:]NV = {v;}, and there is no conflict
P p

with Lemma 3. Therefore, the constructed Tp+ is a valid tree-decomposition with
strong breadth p for G} .

Next, assume that stb(Gj) = p and there is a tree-decomposition Tp“‘ with
strong breadth p for G,‘)“. By Lemma 3, no vertex in distance less than p to any
z; can be a center of a bag in T;r . Therefore, because the distance from v; to z;
in Gj is p— 1, no v; € V can be a center of a bag in T;. The only vertices with
a large enough distance to z; to be a center of a bag are x; and y;. Therefore,
either z; or y; is selected as center. To construct a tree-decomposition T" with
strong breadth 1 for G, select v; as center if and only if z; is a center of a bag
in T, . Because Ng;r [#;] NV = Ng[v;] and NéI [yi] NV = {v;}, the constructed
T is a valid tree-decomposition with strong breadth 1 for G. a

Constructing G, can be done in O(n?) time and constructing G can be done
in O(p - n + m) time. Thus, combining Lemmas4 and 5 allows us, for a given
graph G, some given p, and some given p’, to construct a graph H in O(p - n?)
time such that stb(G) < p if and only if stb(H) < p’. Additionally, by combining
Theorem 1 and Lemma 3, we get:

Theorem 2. [t is NP-complete to decide, for a graph G and a given p, if
stb(G) = p.

4 Polynomial Time Cases

In the previous section, we have shown that, in general, it is NP-complete to
determine the strong tree-breadth of a graph. In this section, we will investigate
cases for which a decomposition can be found in polynomial time.

70 A. Leitert and F.F. Dragan

4.1 General Graphs

Let G be a graph with strong tree-breadth p and let T" be a corresponding
tree-decomposition. For a given vertex u in G, we denote the set of connected
components in G — N£[u] as Ci[u]. We say that a vertex v is a potential partner
of u for some C € Cqu] if N&[v] D Ng(C) and NE[v]NC # 0.

Lemma 6. Let C be a connected component in G — B,, for some B, C Né [u].
Also, let C € Cglu] and v be a potential partner of uw for C. Then, for all
connected components C,, in G[C] — N&[v], C, € Calv].

Proof. Consider a connected component C, in G[C] — Nf[v]. Clearly, C, C C
and there is a connected component C’ € C[v] such that C' D C,,.

Let x be an arbitrary vertex in C’. Then, there is a path P C C’ from x
to Cy. Because Ng(C) C B, and v is a potential partner of u for C', Ng(C) C
B, N NE[v]. Also, N (C) separates all vertices in C' from all other vertices in G.
Therefore, z € C and ¢’ C C; otherwise, P would intersect N/ [v]. It follows
that each vertex in P is in the same connected component of G[C] — N4 [v] and,
thus, C, = C". O

From Lemma 2, it directly follows:

Corollary 1. If N.[u] is a bag in T, then T contains a bag NE[v] for each
C € Cglu] such that v is a potential partner of u for C.

Because of Corollary 1, there is a vertex set U such that each v € U has a
potential partner v € U for each connected component C' € Cg[u]. With such a
set, we can construct a tree-decomposition for G with the following approach:
Pick a vertex u € U and make it center of a bag B,,. For each connected compo-
nent C' € Cglu], u has a potential partner v. NZ[v] splits C' in more connected
components and, because v € U, v has a potential partner w € U for each of
these components. Hence, create a bag B, = N£&[v]N (B, UC) and continue this
until the whole graph is covered. Algorithm 1 will determine such a set of vertices
with their potential partners (represented as a graph H) and then construct a
decomposition as described above.

Theorem 3. Algorithm 1 constructs, for a given graph G with strong tree-
breadth p, a tree-decomposition T with breadth p in O(n?m) time.

Proof (Correctness). The Algorithm 1 works in two parts. First, it creates a
graph H with potential centers (line 1 to line 6). Second, it uses H to create
a tree-decomposition for G (line 9 to line 15). To show the correctness of the
algorithm, we will, first, show that centers of a tree-decomposition for G are
vertices in H and, then, show that a tree-decomposition created based on H is
a valid tree-decomposition for G.

A vertex u is added to H (line 4) if, for at least one connected component C' €
Cqu], u has a potential partner v. Later, u is kept in H (line 5 and 6) if it has a
potential partner v for all connected components in C' € Cg[u]. By Corollary 1,

On Strong Tree-Breadth 71

Algorithm 1. Constructs, for a given graph G = (V, E) with strong
tree-breadth p, a tree-decomposition 7" with breadth p.

1 Create an empty directed graph H = (Vi, Er). Let ¢ be a function that maps
each edge (u,v) € Eg to a connected component C' € Cgu].
2 foreach u,v €V and all C € Cglu] do
3 if v is a potential parter of u for C then
Add the directed edge (u,v) to H and set ¢(u,v) := C. (Add u and v to
L H if necessary.)

5 while there is a vertex u € Vg and some C € Calu| such that there is no
(u,v) € Eg with ¢(u,v) =C do
L Remove v from H.

if H is empty then
L Stop. stb(G) > p.

Create an empty tree-decomposition 7'

10 Let G — T be the subgraph of G that is not covered by T and let ¥ be a
function that maps each connected component in G — T to a bag By C N&[u].

11 Pick an arbitrary vertex u € Vi, add B, = NZ&[u] as bag to T, and set
¥(C) := B, for each connect component C' in G — T.

12 while G — T is non-empty do

13 Pick a connected component C in G — T', determine the bag B, := (C)

and find an edge (v, w) € Ex with ¢(v,w) = C.
14 Add By, = N&w] N (B, UC) to T, and make B, and B, adjacent in T

© ® =]

15 For each new connected component C’ in G — T with ¢’ C C, set
7/}(Czu) = Bw-
16 Output 7.

each center of a bag in a tree-decomposition 7" with strong breadth p satisfies
these conditions. Therefore, after line 6, H contains all centers of bags in 7T, i.e.,
if G has strong tree-breadth p, H is non-empty.

Next, we show that T created in the second part of the algorithm (line 9 to
line 15) is a valid tree-decomposition for G with breadth p. To do so, we will
show the following invariant for the loop starting in line 12: (i) T is a valid tree-
decomposition with breadth p for the subgraph covered by T and (ii) for each
connected component C in G —T, the bag B, = ¢¥(C) isin T, N¢(C) C B,,, and
C € Cg[v]. After line 11, the invariant clearly holds. Assume by induction that
the invariant holds each time line 12 is checked. If T' covers the whole graph, the
check fails and the algorithm outputs 7. If T" does not cover G' completely, there
is a connected component C' in G — T. By condition (ii), the bag B, = (C) is
in T, Ng(C) C B,, and C € Cg[v]. Because of the way H is constructed and
C € Cgv], there is an edge (v,w) € Eg with ¢(v,w) = C, i.e., w is a potential
partner of v for C. Thus, line 13 is successful and the algorithm adds a new
bag B, = Ni[w] N (B, UC) (line 14). Because w is a potential partner of v
for C, i.e., Ng(C) C N4[w], and Ng(C) C B,, By, 2 Ng(C). Therefore, after
adding B,, to T, T still satisfies condition (i). Additionally, B,, splits C in a

72 A. Leitert and F.F. Dragan

set C' of connected components such that, for each C’ € ', Ng(C') C B,, and,
by Lemma6, C" € Cgw]. Thus, condition (ii) is also satisfied. O

Proof (Complexity). First, determine the pairwise distance of all vertices. This
can be done in O(nm) time and allows to check the distance between vertices in
constant time.

For a vertex u, let Mu] = {Ng(C) | C € Cglu]}. Note that, for some
C € Cglu] and each vertex x € Ng(C), there is an edge zy with y € C. There-
fore, INTu]| := > cceyp [Ne(C)] < m. To determine, for some vertex w, all its
potential partners v, first, compute A[u]. This can be done in O(m) time. Then,
check, for each vertex v and each Ng(C) € Nu|, if Ng(C) C N£[v] and add
the edge (u,v) to H if successful. For a single vertex v this requires O(m) time
because [N [u]| < m and distances can be determined in constant time. Therefore,
the total runtime for creating H (line 1 to line 4) is O(n(m + nm)) = O(n?*m).

Assume that, for each ¢(u,v) = C, C is represented buy two values: (i) a
characteristic vertex x € C' (for example the vertex with the lowest index) and
(ii) the index of C' in Cg[u]. While creating H, count and store, for each vertex u
and each connected component C' € Cglu], the number of edges (u,v) € Eg
with ¢(u,v) = C. Note that there is a different counter for each C € Cglu].
With this information, we can implement line 5 and 6 as follows. First check,
for every vertex v in H, if one of its counters is 0. In this case, remove v from H
and update the counters for all vertices u with (u,v) € Eg using value (ii)
of ¢(u,v). If this sets a counter for v to 0, add u to a queue @ of vertices to
process. Continue this until each vertex is checked. Then, for each vertex u in @,
remove u form H and add its neighbours into @ if necessary until) is empty.
This way, a vertex is processed at most twice. A single iteration runs in at most
O(n) time. Therefore, line 5 and 6 can be implemented in O(n?) time.

Assume that 1 uses the characteristic vertex z to represent a connected
component, i.e., value (i) of ¢. Then, finding an edge (v,w) € Ey (line 13) can
be done in O(m) time. Creating B,, (line 14), splitting C' into new connected
components C’; finding their characteristic vertex, and setting (C’) (line 15)
takes O(m) time, too. In each iteration, at least one more vertex of G is covered
by T. Hence, there are at most n iterations and, thus, the loop starting in line
12 runs in O(mn) time.

Therefore, Algorithm 1 runs in total O(n?m) time. O

Algorithm 1 creates for each graph G with stb(G) < p a tree-decomposition T'
with breadth p. Next, we will invest a case where we can construct a tree-
decomposition for G with strong breadth p.

We say that two vertices u and v are perfect partners if (i) w and v are
potential partner of each other for some C,, € Cg[u] and some C,, € Cg[v], (ii) Cy,
is the only connected component in Cg[u] which is intersected by NZ[v], and
(iii) Cy is the only connected component in Cg[v] which is intersected by NZ[u].
Accordingly, we say that a tree-decomposition T" has perfect strong breadth p if
it has strong breadth p and, for each center u of some bag and each connected
component C' € Cglu], there is a center v such that v is a perfect partner of u
for C.

On Strong Tree-Breadth 73

Theorem 4. A tree-decomposition with perfect strong breadth p can be con-
structed in polynomial time.

Proof. To construct such a tree-decomposition, we can modify Algorithm 1.
Instead of checking if u has a potential partner v (line 3), check if w and v
are perfect partners.

Assume by induction that, for each bag B, in T, B, = N&[v]. By definition
of perfect partners v and w, N/ [w] intersects only one C € Cg[v], i.e., N&w] C
NZw]UC. Thus, when creating the bag B,, (line 14), B,, = Ni[w]N(B,UC) =
NZw] N (NE[v]UC) = N&[w]. Therefore, the created tree-decomposition 7" has
perfect strong tree-breadth p. a

We conjecture that there are weaker cases than perfect strong breadth which
allow to construct a tree-decomposition with strong-breadth p. For example,
if the centers of two adjacent bags are perfect partners, but a center u does
not need to have a perfect partner for each C € Cg[u]. However, when using a
similar approach as in Algorithm 1, this would require a more complex way of
constructing H.

4.2 Special Graph Classes

A graph G is distance-hereditary if, in any connected induced subgraph, the
distances are the same as in G.

Theorem 5. Distance-hereditary graphs have strong tree-breadth 1. An accord-
g decomposition can be computed in linear time.

Proof. Let ¢ = (v1,va,...,v,) be an ordering for the vertices of a graph G,
Vi = {v1,v9,...,v;}, and G; denote the graph G[V;]. An ordering o is called a
pruning sequence for G if, for 1 < ¢ < n, each v; satisfies one of the following
conditions in Gj;:

(i) v; is a pendant vertex,
(ii) v, is a true twin of some vertex v;, or
(ili) v; is a false twin of some vertex v;.

A graph G is distance-hereditary if and only if there is a pruning sequence
for G [2].

Assume that we are given such a pruning sequence. Additionally, assume
by induction over ¢ that G; has a tree-decomposition 7; with strong breadth 1.
Then, there are three cases:

(i) viy1 s a pendant vertex in Giyq. If the neighbour u of v;41 is a center of
a bag B,, add v;11 to By. Thus, T;; is a valid decomposition for G;4;.
Otherwise, if u is not a center, make v; 1 center of a bag. Because u is an
articulation point, T;11 = T; + Ng[v] is a valid decomposition for G;41.

(il) viy1 18 a true twin of a verter u in G;y1. Simply add v;41 into any bag
containing u. The resulting decomposition is a valid decomposition for G; .

74 A. Leitert and F.F. Dragan

(iil) vi41 48 a false twin of a verter u in G;y1. If w is not center of a bag, add
v;4+1 into any bag w is in. Otherwise, make a new bag B; 11 = N¢[v;y1] and
make it adjacent to the bag Ng[u]. Because no vertex in Ng(u) is center of
a bag, the resulting decomposition is a valid decomposition for G, .

Therefore, distance-hereditary graphs have strong tree-breadth 1.

Next, we will show how to compute an according tree-decomposition in lin-
ear time. The argument above already gives an algorithmic approach. First, we
compute a pruning sequence for G. This can be done in linear time with an algo-
rithm by Damiand et al. [7]. Then, we determine which vertex becomes a center
of a bag. Note that we can simplify the three cases above with the following
rule: If v; has no neighbour in G; which is center of a bag, make v; center of
a bag. Otherwise, proceed with v;11. This can be easily implemented in linear
time with a binary flag for each vertex. O

Algorithm 2 formalizes the method described in the proof of Theorem 5.

Algorithm 2. Computes, for a given distance-hereditary graph G, a tree-
decomposition T" with strong breadth 1.

1 Compute a pruning sequence (vi,va,...,Un) (see [7]).

2 Create a set C := 0.

3 for i:=1tondo

4 if Ng[viiNV;NC =0 then

5 L L Add v; to C.

6 Create a tree-decomposition T with the vertices in C' as centers of its bags.

A bipartite graph is chordal bipartite if each cycle of length at least 6 has
a chord. In [11], it was shown that any chordal bipartite graph G = (X,Y, E)
admits a tree-decomposition with the set of bags B = {B1, Ba, ..., B x|}, where
B; = Ng[zi], x; € X. As far as we can tell, there is no linear time algorithm
known to recognise chordal bipartite graphs. However, we can still compute a
tree-decomposition in linear time with three steps. First, compute a 2-colouring.
Second, select a colour and make the neighbourhood of all vertices with this
colour bags. Third, use the algorithm in [18] to check if the selected bags give a
valid tree-decomposition.

Theorem 6 [11]. Fach chordal bipartite graph has strong tree-breadth 1. An
according tree-decomposition can be found in linear time.

Consider two parallel lines (upper and lower) in the plane. Assume that
each line contains n points, labelled 1 to n. Each two points with the same label
define a segment with that label. The intersection graph of such a set of segments
between two parallel lines is called a permutation graph. In [10], an algorithm
was presented that finds, for a given permutation graph, a path-decomposition
with strong breadth 1 in linear time.

On Strong Tree-Breadth 75

Theorem 7 [10]. Permutation graphs have strong tree-breadth 1. An according
tree-decomposition can be found in linear time.

5 Conclusion

We have shown that, in general, it is NP-complete to determine if a given graph G
admits a tree-decomposition with strong breadth p for all p > 1. Consider the
case that a vertex v is center of a bag. Part of the hardness of finding a decompo-
sition, even for p = 1, lays in determining which connected component C' € Cg[v]
will be covered by which neighbouring bag Ng[u]. If, for two vertices v and w,
N¢(u] and Ng[w] intersect C' and are bags in the same decompositions T', both
cannot be separated in T' by N¢[v]. Additionally, if u is adjacent to v, it might
happen that Ng[u| intersects multiple connected components. This leads to a
potentially exponential number of combinations.

A path-decomposition of graph is a tree-decomposition with the restriction
that the bags form a path instead of a tree with multiple branches. Accordingly, a
graph has (strong) path-breadth p if it admits a path-decomposition with (strong)
breadth p. In [10], it was shown that, for graphs with bounded path-breadth, a
constant factor approximation for the bandwidth problem and the line-distortion
problem can be found in polynomial time.

Now, consider the case that we want to compute if a given graph admits a
path-decomposition P with strong breadth 1. In this case, there can be at most
two bags adjacent to a bag Ng[v] in P. Hence, for each v, there is at most a
quadratic number of combinations. This leads to the following conjecture.

Conjecture. The strong path-breadth of a graph can be computed in polynomial
time.

Another question is if a bounded strong tree-breadth leads to a lower bound
for the tree-breadth of a graph. That is, is there a constant ¢ such that, for any
graph G, stb(G) < ¢ - tb(G@). Using Algorithm 1, a small constant might lead to
a new approach for approximating the tree-breadth of a graph.

References

1. Abu-Ata, M., Dragan, F.F.: Metric tree-like structures in real-life networks: an
empirical study. Networks 67(1), 49-68 (2016)

2. Bandelt, H.-J., Mulder, H.M.: Distance-hereditary graphs. J. Comb. Theory Ser.
B 41, 182-208 (1986)

3. Brandstadt, A., Chepoi, V.D., Dragan, F.F.: The algorithmic use of hypertree
structure and maximum neighborhood orderings. Discret. Appl. Math. 82, 43-77
(1998)

4. Brandstadt, A., Dragan, F.F., Chepoi, V.D., Voloshin, V.: Dually chordal graphs.
SIAM J. Discret. Math. 11(3), 437-455 (1998)

5. Brandstadt, A., Ficur, P., Leitert, A., Milani¢, M.: Polynomial-time algorithms
for weighted efficient domination problems in AT-free graphs and dually chordal
graphs. Inf. Process. Lett. 115(2), 256-262 (2015)

76

10.

11.

12.

13.

14.
15.

16.

17.

18.

A. Leitert and F.F. Dragan

Brandstadt, A., Leitert, A., Rautenbach, D.: Efficient dominating and edge domi-
nating sets for graphs and hypergraphs. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.)
ISAAC 2012. LNCS, vol. 7676, pp. 267-277. Springer, Heidelberg (2012)
Damiand, G., Habib, M., Paul, C.: A simple paradigm for graph recognition: appli-
cation to cographs and distance hereditary graphs. Theoret. Comput. Sci. 263(1—
2), 99-111 (2001)

Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter.
Discret. Math. 307(16), 2008-2029 (2007)

Dragan, F.F., Kohler, E.: An approximation algorithm for the tree t-spanner prob-
lem on unweighted graphs via generalized chordal graphs. Algorithmica 69, 884—
905 (2014)

Dragan, F.F., Kohler, E., Leitert, A.: Line-distortion, bandwidth and path-length
of a graph. Algorithmica (in print)

Dragan, F.F., Lomonosov, I.: On compact and efficient routing in certain graph
classes. Discret. Appl. Math. 155, 1458-1470 (2007)

Dragan, F.F., Matamala, M.: Navigating in a graph by aid of its spanning tree.
SIAM J. Discret. Math. 25(1), 306-332 (2011)

Ducoffe, G., Legay, S., Nisse, N.: On computing tree and path decompositions with
metric constraints on the bags. CoRR abs/1601.01958 (2016)

Halin, R.: S-functions for graphs. J. Geom. 8(1-2), 171-186 (1976)

Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb.
Theory Ser. B 35(1), 39-61 (1983)

Robertson, N.; Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.
Theory Ser. B 36(1), 49-64 (1984)

Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the
Tenth Annual ACM Symposium on Theory of Computing (STOC 1978), pp. 216—
226 (1978)

Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput. 13(3), 566-579 (1984)

Computing a Tree Having a Small Vertex Cover

Takuro Fukunaga'?®™) and Takanori Maehara?

! National Institute of Informatics, Tokyo, Japan
takuro@nii.ac. jp
2 JST, ERATO, Kawarabayashi Large Graph Project, Tokyo, Japan
3 Department of Mathematical and Systems Engineering,
Shizuoka University, Shizuoka, Japan
maehara.takanori@shizuoka.ac. jp

Abstract. In this paper, we consider a new Steiner tree problem. This
problem defines the weight of a Steiner tree as the minimum weight
of vertex covers in the tree, and seeks a minimum-weight Steiner tree
in a given vertex-weighted undirected graph. Since it is included by
the Steiner tree activation problem, the problem admits an O(logn)-
approximation algorithm in general graphs with n vertices. This approx-
imation factor is tight because it is known to be NP-hard to achieve
an o(logn)-approximation for the problem with general graphs. In this
paper, we present constant-factor approximation algorithms for the prob-
lem with unit disk graphs and with graphs excluding a fixed minor.

1 Introduction

The problem of finding a minimum-weight tree in a graph has been extensively
studied in the field of combinatorial optimization. A typical example is the
Steiner tree problem in edge-weighted graphs; it has a long history of approx-
imation algorithms, culminating in the currently best approximation factor of
1.39 [1,2]. The Steiner tree problem has also been studied in vertex-weighted
graphs, where the weight of a Steiner tree is defined as the total weight of the
vertices spanned by the tree. We call this problem the wvertex-weighted Steiner
tree problem while the problem in the edge-weighted graphs is called the edge-
weighted Steiner tree problem. There is an O(log k)-approximation algorithm for
the vertex-weighted Steiner tree problem with & terminals, and it is NP-hard to
improve this factor because the problem includes the set cover problem [3].

In this paper, we present a new variation of the Steiner tree problem. Our
problem is motivated by the following situation in communication networks. We
assume that messages are exchanged along a tree in a network; this is the case
in many popular routing protocols such as the spanning tree protocol [4]. We
consider locating devices that will monitor the traffic in the tree. If a device
is located at a vertex, it can monitor all the traffic that passes through links
incident to that vertex. How many devices do we need for monitoring all of
the traffic in the tree? Obviously, it depends on the topology of the tree. If the
tree is a star, it suffices to locate one device at the center. If the tree is a path
© Springer International Publishing AG 2016

T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 77-91, 2016.
DOT: 10.1007/978-3-319-48749-6_6

78 T. Fukunaga and T. Maehara

on n vertices, then it requires [n/2] devices, because any vertex cover of the
path consists of at least [n/2] vertices. Our problem is to compute a tree that
minimizes the number (or, more generally, the weight) of devices required to
monitor all of the traffic.

More formally, our problem is defined as follows. Let G = (V, E') be an undi-
rected graph associated with nonnegative vertex weights w € RK. Throughout
this paper, we will denote |V| by n. Let T'C V be a set of vertices called termi-
nals. The problem seeks a pair comprising a tree F' and a vertex set U C V(F)
such that (i) F'is a Steiner tree with regard to the terminal set T' (i.e., T C V(F)),
and (ii) U is a vertex cover of F' (i.e., each edge in F is incident to at least one
vertex in U). The objective is to find such a pair (F, U) that minimizes the weight
w(U) := >,y w(v) of the vertex cover. We call this the verter-cover-weighted
(VC-weighted) Steiner tree problem. We call the special case in which V. =T
the vertez-cover-weighted (VC-weighted) spanning tree problem. The aim of this
paper is to investigate these fundamental problems.

Besides the motivation from the communication networks, there is another
reason for the importance of the VC-weighted Steiner tree problem. The VC-
weighted Steiner tree problem is a special case of the Steiner tree activation
problem, which was formulated by Panigrahi [5]. In the Steiner tree activation
problem, we are given a set W of nonnegative real numbers, and each edge uv
in the graph is associated with an activation function fy,: W x W — {T, 1},
where T indicates that an edge uv is activated, and L indicates that it is not.
A solution for the problem is defined as a |V|-dimensional vector € W". We
say that a solution z activates an edge uv if fi,(x(u),z(v)) = T. The problem
seeks a solution x that minimizes x(V') := Y ., x(v) subject to the constraint
that the edges activated by x include a Steiner tree. In previous studies of this
problem, an algorithm is allowed to run in polynomial time of |W|, and it is
assumed that the activation function is monotone (i.e., if fu,(i,7) = T, i < ¢/,
and j < j', then fy,(i',5') = T). The Steiner tree activation problem models
various natural settings in design of wireless networks [5]. To see that the Steiner
tree activation problem includes the VC-weighted Steiner tree problem, define
W as {w(v): v € V}, and let fy,(i,7) = T if and only if i > w(u) or j > w(v)
for each edge uv. Under this setting, if = is a minimal vector that activates an
edge set F, the objective (V) is equal to the minimum weight of vertex covers
of the subgraph induced by F'. Hence the Steiner tree activation problem under
this setting is equivalent to the VC-weighted Steiner tree problem.

The Steiner tree activation problem also contains the vertex-weighted Steiner
tree problem. Indeed, vertex-weighted Steiner tree problem corresponds to the
activation function f,, such that f,,(¢,7) = T if and only if i > w(u) and
J > w(v) for each edge uv. Notice that the similarity of the activation functions
for the VC-weighted and the vertex-weighted Steiner tree problems. Thus the
VC-weighted Steiner tree problem is an interesting variant of the vertex-weighted
Steiner tree and the Steiner tree activation problems, which are studied actively
in the literature.

Computing a Tree Having a Small Vertex Cover 79

It is known that the Steiner tree activation problems admits an O(logk)-
approximation algorithm when |T'| = k. Indeed, there is an approximation-
preserving reduction from the problem to the vertex-weighted Steiner tree prob-
lem, and hence the O(logk)-approximation algorithm for the latter problem
implies that for the former problem. This approximation factor is proven to be
tight even in the spanning tree variant of the problem [5].

Since the VC-weighted Steiner tree problem is included by the Steiner tree
activation problem, the O(log k)-approximation algorithm can also be applied to
the VC-weighted problem. Moreover, Angel et al. [6] presented a reduction from
the dominating set problem to the VC-weighted spanning tree problem with
uniform vertex-weights. This reduction implies the it is NP-hard to approximate
the VC-weighted spanning tree problem within a factor of o(logn) even if the
given vertex weights are uniform.

1.1 Owur Contributions

Because of the hardness of the VC-weighted spanning tree problem on general
graphs, we will consider restricted graph classes. We show that the VC-weighted
Steiner tree problem admits constant-factor approximation algorithms for unit
disk graphs (Corollary 3) and graphs excluding a fixed minor (Theorem 5). Note
that the later graph class contains planar graphs. For these graphs, it is known
that the vertex-weighted Steiner tree problem admits constant-factor approxi-
mation algorithms [7-9]. Hence it is natural to ask whether the VC-weighted
Steiner tree problem in these graph classes admits constant-factor approxima-
tion algorithms. Moreover, unit disk graphs are regarded as a reasonable model
of wireless networks, and the vertex-weighted Steiner tree problem in unit disk
graphs has been actively studied in this context (see, e.g., [8-12]). Since our prob-
lem is motivated by an application in communication networks, it is reasonable
to investigate the problem in unit disk graphs.

Our algorithm for unit disk graphs is based on a novel reduction to another
optimization problem. The problem used in the reduction is similar to the con-
nected facility location problem studied in [13,14], but it is slightly different. In
the connected facility location problem, we are given sets C, D C V of clients
and facilities with an edge-weighted undirected graph G = (V, E). If a facility
f € D is opened by paying an associated opening cost, any client i € C can
be allocated to f by paying the allocation cost, which is defined as the shortest
path length from ¢ to f multiplied by the demand of i. The opened facilities
must be spanned by a Steiner tree, which incurs a connection cost defined as the
edge weight of the tree. The objective is to find a set of opened facilities and a
Steiner tree connecting them, that minimizes the sum of the opening cost, the
allocation cost, and the connection cost. Our problem differs from the connected
facility location problem in the fact that each client ¢ can be allocated to an
opened facility f only when i is adjacent to f in G, and there is no cost for the
allocation. It can be regarded as a combination of the dominating set and the
edge-weighted Steiner tree problems. Hence we call this the connected dominat-
ing set problem, although in the literature, this name is usually reserved for the

80 T. Fukunaga and T. Maehara

case where the connection cost is defined by vertex weights and all vertices in the
graph are clients. From a geometric property of unit disk graphs, we show that
our reduction preserves the approximation guarantee up to a constant factor if
the graph is a unit disk graph (Theorem 1). To solve the connected dominating
set problem, we present a linear programming (LP) rounding algorithm. This
algorithm relies on an idea presented by Huang et al. [11], who considered a
variant of the connected dominating set problem in unit disk graphs. Although
their algorithm is only for minimizing the number of vertices in a solution, we
prove that it can be extended to our problem.

For graphs excluding a fixed minor, we solve the VC-weighted Steiner tree
problem by presenting a constant-factor approximation algorithm for the Steiner
tree activation problem. Our algorithm simply combines the reduction to the
vertex-weighted Steiner tree problem and the algorithm of Demaine et al. [7]
for the vertex-weighted Steiner tree problem in graphs excluding a fixed minor.
However, analyzing it is not straightforward, because the reduction does not
preserve the minor-freeness of the input graphs. Nevertheless, we show that the
algorithm of Demaine et al. achieves a constant-factor approximation for the
graphs constructed by the reduction (Sect.4).

1.2 Organization

Section 2 introduces the notation and preliminary facts used throughout the
paper. Sections3 and 4 provide constant-factor approximation algorithms for
unit disk graphs and for graphs excluding a fixed minor, respectively. Section 5
concludes the paper.

2 Preliminaries

We first define the notation used in this paper. Let G = (V| E) be a graph with
the vertex set V and the edge set E. We sometimes identify the graph G with
its edge set E and by V(G) denote the vertex set of G. When G is a tree, L(G)
denotes the set of leaves of G.

Let U be a subset of V. Then G — U denotes the subgraph of G obtained
by removing all vertices in U and all edges incident to them. G[U] denotes the
subgraph of G induced by U.

We denote a singleton vertex set {v} by v. An edge joining vertices u and
v is denoted by uv. For a vertex v, Ng(v) denotes the set of neighbors of v in
a graph G, i.e., Ng(v) = {u € V: w € E}. N¢[v] indicates Ng(v) Uv. We let
dg(v) denote [Ng(v)|. For a set U of vertices, Ng(U) denotes (|, ey Na(v))\U.
When the graph G is clear from the context, we may remove the subscripts from
our notation. We say that a vertex set U dominates a vertex v if v € U, or U
contains a vertex u that is adjacent to v. If a vertex set U dominates each vertex
v in another vertex set W, then we say that U dominates W.

A graph G is a unit disk graph when there is an embedding of the vertex set
into the Euclidean plane such that two vertices v and v are joined by an edge if

Computing a Tree Having a Small Vertex Cover 81

and only if their Euclidean distance is at most 1. If G is a unit disk graph, we
call such an embedding a geometric representation of G.

Let G and H be undirected graphs. We say that H is a minor of G if H is
obtained from G by deleting edges and vertices and by contracting edges. If H is
not a minor of G, G is called H-minor-free. By Kuratowski’s theorem, a graph
is planar if and only if it is Ks-minor-free and K3 s-minor-free.

As mentioned in Sect. 1, the Steiner tree activation problem contains both
the VC-weighted and the vertex-weighted Steiner tree problems. In addition, the
Steiner tree activation problem can be reduced to the vertex-weighted Steiner
tree problem, as summarized in the following theorem:.

Theorem 1. There is an approzimation-preserving reduction from the Steiner
tree activation problem to the verter-weighted Steiner tree problem. Hence, if the
latter problem admits an a-approximation algorithm, the former problem does
also.

Proof. Recall that an instance I of the Steiner tree activation problem consists
of an undirected graph G = (V, E), a terminal set T, a range W C R, and
an activation function fu,: W x W — {T, L} for each uwv € E. We define a
copy v; of a vertex v for each v € V and ¢ € W, and associate v; with the
weight w(v;) := i¢. We join u; and v; by an edge if uv € E and fu,(i,j) = T.
In addition, we join each terminal ¢t € T" with its copies ¢;, « € W. The weight
w(t) of t is defined to be 0. Let G’ be the obtained graph on the vertex set
TU{v;: v € V,i € W}. Let I’ be the instance of the vertex weighted Steiner tree
problem that consists of the graph G’, the vertex weights w, and the terminal set
T. From an inclusion-wise minimal Steiner tree F' feasible to I’, define a vector
x € WY by x(v) = max{i € W: v; € V(F)} for each v € V. Then z activates a
Steiner tree in the original instance I, and z(V') is equal to the vertex weight of
F'. Hence there is a one-to-one correspondence between a minimal Steiner tree
in I’ and a feasible solution in I, and they have the same objective values in
their own problems. Hence the above reduction is an approximation-preserving
reduction from the Steiner tree activation problem to the vertex-weighted Steiner
tree problem. a

We do not claim the originality of Theorem 1; we believe that this reduction has
been already known although we are aware of no previous study describing this
reduction explicitly.

We note that the reduction claimed in Theorem 1 transforms the input graph,
and hence it may not be closed in a graph class. In fact, we can observe that the
reduction is not closed in unit disk graphs or planar graphs.

3 VC-weighted Steiner Tree Problem in Unit Disk
Graphs

This section presents a constant-factor approximation algorithm for the VC-
weighted Steiner tree problem in unit disk graphs. Our algorithm consists of

82 T. Fukunaga and T. Maehara

two steps. In the first step, we reduce the VC-weighted Steiner tree problem
to another optimization problem, which is called the connected dominating set
problem. Combined with a constant-factor approximation algorithm for the con-
nected dominating set problem, the reduction gives the required algorithm for
the VC-weighted Steiner tree problem.

Let us discuss the reduction. As noted in Theorem 1, the Steiner tree activa-
tion problem can be reduced to the vertex-weighted Steiner tree problem. Since
the VC-weighted Steiner tree problem is included in the Steiner tree activation
problem, the reduction also applies to the VC-weighted Steiner tree problem.
Since there is a constant-factor approximation algorithm for the vertex-weighted
Steiner tree problem in unit disk graphs, this reduction gives a constant-factor
approximation for the VC-weighted problem if the graph constructed by the
reduction is a unit disk graph. However, the constructed graph may not be a
unit disk graph even if the original graph is a unit disk graph.

Our idea is to reduce the VC-weighted Steiner tree problem to another opti-
mization problem. This is inspired by a constant-factor approximation algorithm
for the vertex-weighted Steiner tree problem on a unit disk graph [8,9]. This algo-
rithm is based on a reduction from the vertex-weighted to the edge-weighted
Steiner tree problems. The reduction is possible because the former problem
always admits an optimal Steiner tree in which the maximum degree is a con-
stant if the graph is a unit disk graph. Even in the VC-weighted Steiner tree
problem, if there is an optimal solution (F,U) such that the maximum degree
of vertices in the vertex cover U is a constant in the Steiner tree F', then we can
reduce the problem to the edge-weighted Steiner tree problem. However, there
is an instance of the VC-weighted Steiner tree problem that admits no such
optimal solution. For example, if the vertex weights are uniform, and the graph
includes a star in which all of the terminals are its leaves, then the star is the
Steiner tree in the optimal solution, and its minimum vertex cover consists of
only the center of the star. The degree of the center of the star is not bounded by
a constant. Hence it seems that it would be difficult to reduce the VC-weighted
Steiner tree problem to the edge-weighted problem.

We reduce the VC-weighted Steiner tree problem to a problem similar to
the connected facility location problem. The reduction is based on a geometric
property of unit disk graphs, and we will begin by proving this property. The
following lemma gives a basic claim about geometry. For two points 7 and j on
the plane, we denote their Euclidean distance by [;;.

Lemma 1. Let i be a point on the Euclidean plane, and let o € (1/2,3/4]. Let
P be a set of points on the plane such that o < l/li; < 1/« holds for all
J,k € P. If |P| > 2w/ arccos(a/2 + 3/(8ax)), then there exist j, k € P such that
ljk < max{lij, lik}/Q.

Proof. Since |P| > 2w/ arccos(c/2 + 3/(8a)), there exist j,k € P such that
0 = Zjik < arccos(a/2 + 3/(8a)). We note that 12, = I7; + I3 — 2li;lix cos .
Without loss of generality, we assume l;; > ljz. Then, (max{l;;,l;x})? = l?j.

Hence it suffices to show that —413 — 317, + 8l;;l:. cos > 0.

Computing a Tree Having a Small Vertex Cover 83

Let 8 := lix;/l;j. Then, oo < 8 < 1. maxa<p<148 + 3/8 = 4a + 3/« holds,
where the maximum is attained by § = «. Hence the required inequality is
verified by

_4l12k — 3l12j + 81ijlik cost = lijlik <—4ﬁ — § 8 cos 9)

w @

Z lijlik (—40[— — 4+ 8cos 9)

e

=0. O

Our reduction requires the assumption that there is an optimal solution (F,U)
for the VC-weighted Steiner tree problem such that the degree of each vertex
v € U is bounded by a constant « in the tree F' — (L(F') \ U). The following
lemma proves that the unit disk graph satisfies this assumption with a = 29.

Lemma 2. If the input graph G = (V, E) is a unit disk graph, the VC-weighted
Steiner tree problem admits an optimal solution consisting of a Steiner tree F

and a vertex cover U of F' such that the degree of each vertex in U is at most 29
in F— (L(F)\U).

Proof. For two vertices u,v € V, let I, denote the Euclidean distance between
u and v in the geometric representation of G. Let (F,U) be an optimal solution
for the VC-weighted Steiner tree problem. Without loss of generality, we can
assume that (F,U) satisfies the following conditions:

(a) (F,U) maximizes |L(F) \ U| over all optimal solutions;

(b) F minimizes) . l. over all optimal solutions subject to (a);

(¢) (F,U) minimizes the number of vertices v € U such that [{u € U: wv €
F'}| > 6 over all optimal solutions subject to (a) and (b).

LetveU.Let M, :={u € U: wv € F} and M) := {u € V\(UUL(F)): uv € F}.
The lemma can be proven by showing that |M,| <5 and |M]| < 24.

Let us prove | M, | < 5. We first prove | M, | < 6, and then prove |M,| # 6. Sup-
pose that there are two distinct vertices 4, j € M, such that [;; < max{ly;, lvj}.
Let l,; = max{ly;,ly;}, and denote F'\ {vi} U {ij} by F’. Then F' is a Steiner
tree, U is a vertex cover of F', L(F)\U = L(F')\ U, and) ./ le <> .cple-
Since the existence of such an F” contradicts the condition (b), M, contains no
such vertices ¢ and j. If |M,| > 7, there must be two vertices i, j € M, such that
Zivg < /3, and l;; < max{ly;,{y;} holds for these vertices. Hence |M,| < 6
holds.

Suppose that [M,| = 6. In this case, M, = {u1,...,us}, and lyy, = lyu,,, =
lujupy, holds for all k =1,...,6, where ury denotes u; for notational convenience.
If My, | <4, we define F’ as F'\ {vua} U{ujus}. Then, F’ is a Steiner tree, U is
a vertex cover of F', L(F')\U = L(F)\U, and }___p le = > cple. Replacing
F by F’ decreases the number of vertices v € U such that |M,| > 6, which
contradicts the condition (c). If |M,,| > 5, then (i) there exist i,j5 € My, \ v
such that I;; < max{ly,;,ly,;}, or (il) there exist i € M,, \ v and j € {v,u2, ugs}

84 T. Fukunaga and T. Maehara

such that l;; < max{ly,, ., ;}. Case (i) contradicts the condition (b) as observed
above. In case (ii), we define F” as F'\ {vq3} U {ij} if max{ly,s,0u,;} = luyi, and
as F'\ {uqv} U {ij} if max{ly,s,lu,;} = lu,;. In either case, F’ is a Steiner tree,
U is a vertex cover of I, L(F')\U = L(F)\U, and) . ple > > cps le, which
contradicts the condition (b). Hence |M,| < 5 holds.

=)

v v

Fig. 1. Transformation of F' when 1, < 1 for all ' € A,

We now prove |M,| < 24. Let u € M. Since u is not a leaf, u has a neighbor
other than v. We denote by A, the set of neighbors of u other than v. Since
u & U, each vertex in A, is included in U. If I, < 1 holds for all vertices
u' € Ay, consider F' := F \ (vuU{uv: v € A,}) U {vu: v’ € A,}. Then, F’
is a Steiner tree, U is a vertex cover of F', and L(F')\U = (L(F)\ U) U {u}
(Fig. 1). Since the existence of such an F’ contradicts condition (a), there is at
least one vertex v’ € A, with l,,+ > 1. We choose one of these vertices for each
uw € M), and let B denote the set of those chosen vertices (hence B includes
exactly one vertex in A, for each u € M)).

Suppose there exist two vertices 4,j € B such that {;; < max{l,;,1,;}/2.
Let l; = max{l,;,l,;}. Let u denote the common neighbor of v and i. Then
lyw O Ly; is at least 1,;/2. If 1, > l;/2, then replace edge vu by ij in F (see
Fig.2(a)). Otherwise, replace edge ui by ij in F (see Fig.2(b)). Let F’ denote
the tree obtained by this replacement. F” is a Steiner tree, U is a vertex cover of
F', LF)\U C L(F')\U, and) _cp le < cple hold. Since this contradicts
condition (a) or (b), there exists no such pair of vertices i, j € B’'.

We divide B into B’ := {i € B | l,; < 1.41} and B" := {i € B | 141 < l,;}.
Notice that 1/1.41 < ,;/l,; < 1.41 holds for any 4,5 € B’. Hence, by Lemma,
|B’| < |2m/ arccos(1/2.82 4+ 4.23/8)] = 12. Moreover, 3/5 < l,;/l,; < 5/3 holds
for any ¢, € B”. Hence, by Lemmal, |B”| < |2/ arccos(3/10 + 5/8)] = 12.
Since |M/| < |B| = |B'| + |B”| < 24, this proves the lemma. O

In the remainder of this section, we assume that G is not necessarily a unit disk
graph, but there is an optimal solution (F,U) for the VC-weighted Steiner tree
problem such that the degree of each vertex v € U is at most a constant « in
the tree F' — (L(F) \ U). Based on this assumption, we reduce the VC-weighted
Steiner tree problem to another optimization problem. First, let us define the
problem used in the reduction.

Computing a Tree Having a Small Vertex Cover 85

(a) l?)u 2 l?n‘,/2 (b) lui 2 lvi/z

Fig. 2. Transformation of a tree F' when l;; < max{ly;,lv;}/2

Definition 1 (Connected Dominating Set Problem). Let G = (V, E) be an
undirected graph, and let T C 'V be a set of terminals. Fach edge e is associated
with the length l(e) € Ry, each vertex v is associated with the weight w(v) € Ry,
and l(e) < min{w(u),w(v)} holds for each edge e = uwv € E. The problem seeks
a pair of a tree F C E and a vertex set S CV such that S dominates T and F
spans S. Let [(F') denote) . 1(e). The objective is to minimize w(S) + I(F).

Theorem 2. Suppose that the VC-weighted Steiner tree problem with input
graph G admits an optimal solution (F,U) such that the degree of each vertex in
U is at most v in the tree F — (L(F)\ U). If there is a B-approzimation algo-
rithm for the connected dominating set problem in G, then there is an (a+ 1)5-
approzimation algorithm for the VC-weighted Steiner tree problem with G.

Proof. Suppose that an instance I of the VC-weighted Steiner tree problem
consists of an undirected graph G = (V| E), a terminal set T C V, and vertex
weights w € RY. We define the edge length I(e) as min{w(u), w(v)} for each
e =uv € E, and define an instance I’ of the connected dominating set problem
from G, T, w, and I. We show that the optimal objective value of I’ is at most
a + 1 times that of I, and a feasible solution for I can be constructed from the
one for I’ without increasing the objective value.

First, we prove that the optimal objective value of I’ is at most « + 1 times
that of I. Let (F,U) be an optimal solution for I. Then, the optimal objective
value of I is w(U). Since F spans T and U is a vertex cover of F'; U dominates T'.
Define F' := F — (L(F)\ U). Since F’ is a tree spanning U, (F',U) is a feasible
solution for I'. If e = wv € F’, then u or v is included in U, and I(e) is at most
w(u) and w(v). Hence [(F') < Y, w(v)dp/ (v). By assumption, dps(v) < a
holds for each v € U. Hence [(F’) < aw(U). Since the objective value of (F’,U)
in I is I[(F") + w(U), the optimal objective value of I’ is at most (o + 1)w(U).

Next, we prove that a feasible solution (F, S) for I’ provides a feasible solution
for I, and its objective value is at most that of (F,S). Since S dominates T, if a
terminal ¢ € T is not spanned by F', there is a vertex v € S with tv € E. We let
I’ be the set of such edges tv. Notice that FUF” is a Steiner tree of the terminal
set T'. For each edge e € F, choose an end vertex v of e such that I(e) = w(v).
Let S’ denote this set of chosen vertices. Then, S’ U S is a vertex cover of F'UF".

86 T. Fukunaga and T. Maehara

Hence (F U F',S" U S) is feasible for I. Since w(S’ U S) < w(S) + I(F), the
objective value of (F'U F’, 5" U S) is at most that of (F,S). O

By Lemma 2 and Theorem 2, a constant-factor approximation algorithm for the
connected dominating set problem gives that for the VC-weighted Steiner tree
problem. We note that there are several previous studies of the connected dom-
inating set problem [10,12,15,16]. However, the algorithms in those studies do
not apply to our setting because they consider only the case T = V. Indeed, if
T =V, the connected dominating set problem can be solved by a simple algo-
rithm as follows; compute an approximate solution S for the minimum weight
dominating set of the graph, and then compute a tree spanning S by an approx-
imation algorithm for the edge-weighted Steiner tree problem. We note that the
dominating set problem admits a constant-factor approximation algorithm if the
graph is a unit disk graph [12,19]. This achieves a constant-factor approxima-
tion for the connected dominating set problem with 7' = V. However, this simple
algorithm does not work for the case of T'C V.

We can observe through an example that computing a dominating set and a
Steiner tree for connecting it separately does not give a good approximate solu-
tion for the connected dominating set problem. Motivated by this observation,
we consider an LP rounding algorithm. Our key idea is to use an LP relaxation
for coordinating a dominating set and a Steiner tree. The same idea was pre-
viously given by Huang et al. [11] for a problem, which is a special case of the
connected dominating set problem. We can prove that their algorithm can be
extended to the connected dominating set problem. In the present paper, we
omit its detail due to the space limitation. We will present it in the full version.

Theorem 3. The VC-weighted Steiner tree problem admits a constant-factor
approximation algorithm in unit disk graphs.

4 Steiner Tree Activation Problem in Graphs Excluding
a Fixed Minor

In this section, we present a constant-factor approximation algorithm for the
Steiner tree activation problem in graphs excluding a fixed minor. In particular,
our algorithms is a 11-approximation for planar graphs.

Our algorithm is based on the reduction mentioned in Theorem 1. We reduce
the problem to the vertex-weighted Steiner tree problem by using that reduc-
tion, and we solve the obtained instance by using the constant-factor approxi-
mation algorithm proposed by Demaine et al. [7] for the vertex-weighted Steiner
tree problem in graphs excluding a fixed minor. We prove that this achieves a
constant-factor approximation for the Steiner tree activation problem when the
input graph is H-minor-free for some graph H such that |V (H)| is a constant.
This seems to be an easy corollary to Demaine et al., but it is not because the
reduction does not preserve the H-minor-freeness of the input graph. In spite
of this, we can prove that the approximation guarantee given by Demaine et al.
extends to the graphs constructed from a H-minor-free graph by the reduction.

Computing a Tree Having a Small Vertex Cover 87

We recall that the reduction constructs a graph G’ on the vertex set T U
{vi: v € V,i € W} from the input graph G = (V, E') and the monotone activation
functions fu,: WxW — {T, L}, uv € E. We denote the vertex set {v;: i € W}
defined from an original vertex v € V by U,. Let U denote |,y Us.

First, let us illustrate how the algorithm of Demaine et al. behaves for G'.
The algorithm maintains a vertex set X C T'UU, where X is initialized to T at
the beginning. Let A(X) C 2% denote the family of connected components that
include some terminals in the subgraph of G'[X]. We call each member of A(X)
an active set. The algorithm consists of two phases, called the increase phase and
the reverse-deletion phase. In the increase phase, the algorithm iteratively adds
vertices to X until |A(X)] is equal to one. This implies that, when the increase
phase terminates, the subgraph induced by X connects all of the terminals. In the
reverse-deletion phase, X is transformed into an inclusion-wise minimal vertex
set that induces a Steiner tree. This is done by repeatedly removing vertices
from X in the reverse of the order in which they were added.

Let X be the vertex set X when the algorithm terminates, and let X be the
vertex set at some point during the increase phase. We denote X \ X by X’. Note
that X’ is a minimal augmentation of X such that X UX’ induces a Steiner tree.
Each Y € A(X) is disjoint from X', because Y C X. Demaine et al. showed the
following analysis of their algorithm.

Theorem 4 ([7]). Let X be a vertex set maintained at some moment in the
increase phase, and let X' be a minimal augmentation of X so that X U X'
induces a Steiner tree. If there is a number vy such that 32y ¢ 4x) | X' NN(Y)| <

Y A(X)| holds for any X and X', the algorithm of Demaine et al. achieves an
approximation factor ~y.

In G'X' U (Uyeacx)Y)]s contract each Y € A(X) into a single vertex,
discard all edges induced by X’ and all isolated vertices in X’, and replace
multiple edges by single edges. This gives us a simple bipartite graph with the
bipartition {A, B} of the vertex set, where each vertex in A corresponds to an
active set, and B is a subset of X’. Let D denote this graph. This construction
of D is illustrated in Fig. 3. We note that >0y 4(x) X' N N(Y)| is equal to the
number of edges in D. Hence, by Theorem 4, if the number of edges is at most a
constant factor of |A|, the algorithm achieves a constant-factor approximation.

Demaine et al. proved that |B| < 2|A|, and D is H-minor-free if G is H-
minor-free. By [17,18], these two facts imply that the number of edges in D is

O(|A||V(H)|\/log |V (H)|). When G is planar, together with Euler’s formula and
the fact that D is blpartlte they imply that the number of edges in D is at most
6| Al.

The proof of Demaine et al. for |B| < 2|A| can be carried to our case. How-
ever, D is not necessarily H-minor-free even if G is H-minor-free. Nevertheless,
we can bound the number of edges in D, as follows.

Lemma 3. Suppose that the given activation function is monotone IfG is H-
minor-free, the number of edges in D is O(|A||V (H)|\/log|V (H)|). If G is pla-
nar, the number of edges in D is at most 11| A|.

88 T. Fukunaga and T. Maehara

The following theorem is immediate from Theorem 4 and Lemma 3.

Theorem 5. If an input graph is H-minor-free for some graph H, then the
Steiner tree activation problem with a monotone activation function admits
an O(|V(H)|\/log |V (H)|)-approzimation algorithm. In particular, if the input
graph is planar, then the problem admits a 11-approximation algorithm.

In the rest of this section, we prove Lemma 3. We first provide several prepara-
tory lemmas.

Lemma 4. If G’ includes an edge w;v; for some u,v € V and i,j € W, then G’
also includes an edge uyvj for any i',j € W with i’ > i and j' > j.

Proof. The lemma is immediate from the construction of G’ and the assumption
that each edge in G is associated with a monotone activation function. a

Lemma 5. X does not contain any two distinct copies of an original vertes.

Proof. For the sake of a contradiction, suppose that v;,v; € X for some v € V
and ¢,j € W with ¢ < j. If an edge ugv; exists in G', then another edge uyv; also
exists by Lemma4. This means that X \ v; induces a Steiner tree in G’, which
contradicts the minimality of X. O

Lemma 6. Let Y)Y’ € A(X) withY £Y'. If Y NU, # 0 for some v € V, then
Y'nU, =0.

Proof. Suppose that YNU, # 0 # Y'NU,. Let v; € Y and v; € Y withi < j. A
vertex adjacent to v; is also adjacent to v; in G’ by Lemma 4. By the definition, Y
induces a connected component of G'[X] that includes a terminal ¢. Hence v; has
at least one neighbor in Y. This implies that v; and v; are connected in G'[X].
This contradicts the fact that Y and Y’ are different connected components of

G'X]. O

Consider Y € A(X) and v € V such that Y NU,, # 0. Let v; be the vertex that has
the largest subscript in Y N U, (i.e., i = max{i’ € W: v;; € Y NU,}). Then, from
Y, we remove all vertices in Y N U, but v;. Moreover, if a copy v; of v is included
in B, we replace v; by v;. Notice that j > 4 holds in this case by Lemma4, and
B does not include more than one copy of v because of Lemma 5. Let Y denote
the vertex set obtained from Y by doing these operations for each v € V with
Y NU, # (. Y induces a connected subgraph of G’ because of Lemma 4.

We let Vg denote {v € V: BNU, # 0}, and let Vg y denote {v €
Vp: Y NU, # 0} for each Y € A(X). Moreover, let B’ denote BN {U,: v €
Uveax)Va.y}, and B” denote B\ B'. In other words, each vertex v; € B
belongs to B’ if and only if some copy v; of the same original vertex v € V is
contained by an active set in A(X).

If k:=|Vgy| > 2, we divide Y into k subsets such that the copies of the
vertices in Vp y belong to different subsets, and each subset induces a connected
subgraph of G'. Let A’(X) denote the family of vertex sets obtained by doing

Computing a Tree Having a Small Vertex Cover 89

vj Uj
B
A
ap as as ay4
D

1
1
; B
/
az as
A
ay as (e 7]
D

Fig. 3. An example of G'[X’ U (Uyeax)Y)], D, and D’; in construction of D', Y3
is divided into two subsets, one of which contains u; and the other contains v;; the
former is shrunken into as and the later is shrunken into aj}

these operations to all active sets in A(X). Notice that |[A'(X)| = |A(X)| +
>y eax)max{0,[Vpy|-1}. Lemma 6 indicates that, if a vertex v € Vi belongs
to Vpy for some Y € A(X), then it does not belong to Vg y: for any Y’ €
AX)\{Y}. Thus, >y 4 Ve y| < |B'[, and hence |A'(X)| < [A(X)] + |B'|.

We shrink each Z € A'(X) into a single vertex in the induced subgraph
G'|B"U (Uzea(x) 2)] of G’, and convert the obtained graph into a simple graph
by removing all self-loops and by replacing multiple edges with single edges. Let
A" denote the set of vertices obtained by shrinking vertex sets in A'(X), and
let D’ denote the obtained graph (with the vertex set A’ U B”). See Fig. 3 for
an illustration of this construction. We observe that D’ is H-minor-free in the
following lemma.

Lemma 7. If G is H-minor-free, then D’ is H-minor-free.

Proof. By Lemmab and the construction of A’(X), each vertex in V has at
most one copy in B U(Uzeca(x) Z)- If G'[B"U(Uzea (x) Z)] includes an edge
w;v; for u; € U, and vj € U,, then G also includes an edge uv. Thus G'[B" U
(Uzea(x) Z)] is isomorphic to a subgraph of G. Since each Z € A'(X) induces a
connected subgraph of G', the graph D’ (constructed from G'[B"U(U z¢ a/(x) Z)]
by shrinking each Z € A’(X)) is a minor of G. Hence if G is H-minor-free, D’
is also H-minor-free. O

The following lemma gives a relationship between D and D’.

Lemma 8. If is the number of edges in D', then D contains at most | + |B’|
edges.

Proof. Let av; be an edge in D that joins vertices a € A and v; € B. Suppose
that a is a vertex obtained by shrinking Y € A(X), and v; is a copy of v € V.
Remember that v; belongs to either B’ or B”. If v; € B’, it is contained by a
vertex set in A’(X), denoted by Z,. We consider the following three cases:

90 T. Fukunaga and T. Maehara

1. vjEB’andZUQ):’
2.v,eB and Z, Y
3. UjGBH

In the second case, an edge in D’ joins vertices obtained by shrinking Z, and
a subset of Y. In the third case, vj exists in D', and D’ includes an edge that
joins v; and the vertex obtained by shrinking a subset of Y. Thus D’ includes an
edge corresponding to av; in these two cases. We can also observe that no edge
in D’ corresponds to more than two such edges av;. This is because Z,, # Z, for
any distinct vertices u; and v; in B’ by the construction of A’(X).

In the first case, D’ may not contain an edge corresponding to av;. How-
ever, the number of such edges is at most |B’| in total because Y are uniquely
determined from v; in this case. Therefore, the number of edges in D is at most
I+ |B. O

We now prove Lemma 3.

Proof (Lemma3). The number of vertices in D’ is at most | A (X)| + |B"| <
|[A(X)|+|B’|+|B"| = |A|+|B|. As we mentioned, we can prove | B| < 2|A| similar
to Demaine et al. [7]. Hence D’ contains at most 3|A| vertices. By Lemma 7, D’
is H-minor-free. It is known [17,18] that the number of edges in an H-minor-free

graph with n vertices is O(n|V (H |\/ log |V (H)|). Therefore, the number of edges
in D" is O(|A||V(H)|y/log|V (H)|). By LemmaS this implies that the number

of edges in D is |B’| + O(|A||V |\/log\V O(|A||V(H)|+/log |V (H
If G is planar, by Euler’s formula, the number of edges in D’ is at most
3(JA| + |B|). Hence, by Lemma 8, the number of edges in D is at most 3(|A| +

|B|) + |B| < 3|A| +4|B| < 11]A|. O

5 Conclusion

In this paper, we formulate the VC-weighted Steiner tree problem, a new vari-
ant of the vertex-weighted Steiner tree and the Steiner tree activation problems.
We proved that it is NP-hard to achieve an o(logn)-approximation for the VC-
weighted spanning tree problem in general graphs, and we presented constant-
factor approximation algorithms for the VC-weighted Steiner tree problem with
unit disk graphs and for the Steiner tree activation problem with graphs exclud-
ing a fixed minor. Finding a constant-factor approximation algorithm for the
Steiner tree activation problem with unit disk graphs remains an open problem.

References

1. Byrka, J., Grandoni, F., Rothvof}; T., Sanita, L.: Steiner tree approximation via
iterative randomized rounding. J. ACM 60, 6 (2013)

2. Goemans, M.X., Olver, N., Rothvo}, T., Zenklusen, R.: Matroids and integrality
gaps for hypergraphic steiner tree relaxations. In: STOC, pp. 1161-1176 (2012)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Computing a Tree Having a Small Vertex Cover 91

Klein, P.N., Ravi, R.: A nearly best-possible approximation algorithm for node-
weighted Steiner trees. In: IPCO, pp. 323-332 (1993)

Perlman, R.J.: An algorithm for distributed computation of a spanningtree in an
extended LAN. In: SIGCOMM, pp. 44-53 (1985)

Panigrahi, D.: Survivable network design problems in wireless networks. In: SODA,
pp. 1014-1027 (2011)

Angel, E., Bampis, E., Chau, V., Kononov, A.: Min-power covering problems. In:
Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 367-377.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48971-0_32

Demaine, E.D., Hajiaghayi, M., Klein, P.N.: Node-weighted Steiner tree and group
Steiner tree in planar graphs. ACM Trans. Algorithms 10, 13 (2014)

Zou, F., Li, X., Gao, S., Wu, W.: Node-weighted Steiner tree approximation in
unit disk graphs. J. Comb. Opt. 18, 342-349 (2009)

Zou, F., Li, X., Kim, D., Wu, W.: Two constant approximation algorithms for
node-weighted steiner tree in unit disk graphs. In: Yang, B., Du, D.-Z., Wang,
C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 278-285. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-85097-7-26

Ambiihl, C.,; Erlebach, T., Mihaldk, M., Nunkesser, M.: Constant-factor approxi-
mation for minimum-weight (connected) dominating sets in unit disk graphs. In:
Diaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX/RANDOM -2006.
LNCS, vol. 4110, pp. 3-14. Springer, Heidelberg (2006). doi:10.1007/11830924_3
Huang, L., Li, J., Shi, Q.: Approximation algorithms for the connected sensor cover
problem. In: Xu, D.; Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol. 9198, pp.
183-196. Springer, Heidelberg (2015). do0i:10.1007/978-3-319-21398-9_15

Zou, F., Wang, Y., Xu, X., Li, X., Du, H., Wan, P., Wu, W.: New approximations for
minimum-weighted dominating sets and minimum-weighted connected dominating
sets on unit disk graphs. Theor. Comp. Sci. 412, 198-208 (2011)

Eisenbrand, F., Grandoni, F., Rothvof}, T., Schéfer, G.: Connected facility location
via random facility sampling and core detouring. J. Comp. Sys. Sci. 76, 709-726
(2010)

Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location prob-
lems. Algorithmica 40, 245-269 (2004)

Cheng, X., Huang, X., Li, D., Wu, W., Du, D.: A polynomial-time approximation
scheme for the minimum-connected dominating set in ad hoc wireless networks.
Networks 42, 202-208 (2003)

Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets.
Algorithmica 20, 374-387 (1998)

Kostochka, A.V.: Lower bound of the Hadwiger number of graphs by their average
degree. Combinatorica 4, 307-316 (1984)

Thomason, A.: The extremal function for complete minors. J. Comb. Theory Ser.
B 81, 318-338 (2001)

Fonseca, G.D., S, V.G.P., Figueiredo, C.M.H.: Linear-time approximation algo-
rithms for unit disk graphs. In: Bampis, E., Svensson, O. (eds.) WAOA
2014. LNCS, vol. 8952, pp. 132-143. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-18263-6_12

http://dx.doi.org/10.1007/978-3-662-48971-0_32
http://dx.doi.org/10.1007/978-3-540-85097-7_26
http://dx.doi.org/10.1007/11830924_3
http://dx.doi.org/10.1007/978-3-319-21398-9_15
http://dx.doi.org/10.1007/978-3-319-18263-6_12
http://dx.doi.org/10.1007/978-3-319-18263-6_12

On the Approximability of PARTIAL VC
DIMENSION

Cristina Bazgan', Florent Foucaud?, and Florian Sikora!(®)

! Université Paris-Dauphine, PSL Research University, CNRS, LAMSADE,
Paris, France
{cristina.bazgan,florian.sikora}@dauphine.fr
2 Université Blaise Pascal - CNRS UMR 6158 -LIMOS, Clermont-Ferrand, France
florent.foucaud@gmail.com

Abstract. We introduce the problem PARTIAL VC DIMENSION that
asks, given a hypergraph H = (X, E) and integers k and ¢, whether one
can select a set C C X of k vertices of H such that the set {eNC,e € E}
of distinct hyperedge-intersections with C' has size at least ¢. The sets
e N C define equivalence classes over E. PARTIAL VC DIMENSION is a
generalization of VC DIMENSION, which corresponds to the case £ = 2%,
and of DISTINGUISHING TRANSVERSAL, which corresponds to the case
¢ = |E| (the latter is also known as TEST COVER in the dual hyper-
graph). We also introduce the associated fixed-cardinality maximization
problem MAX PARTIAL VC DIMENSION that aims at maximizing the
number of equivalence classes induced by a solution set of k vertices. We
study the approximation complexity of MAX PARTIAL VC DIMENSION
on general hypergraphs and on more restricted instances, in particular,
neighborhood hypergraphs of graphs.

1 Introduction

We study identification problems in discrete structures. Consider a hypergraph
(or set system) H = (X, E), where X is the vertex set and F is a collection
of hyperedges, that is, subsets of X. Given a subset C' C X of vertices, we say
that two hyperedges of E are distinguished (or separated) by C' if some element
in C belongs to exactly one of the two hyperedges. In this setting, one can tell
apart the two distinguished hyperedges simply by comparing their intersections
with C'. Following this viewpoint, one may say that two hyperedges are related if
they have the same intersection with C. This is clearly an equivalence relation,
and one may determine the collection of equivalence classes induced by C': each
such class corresponds to its own subset of C. Any two hyperedges belonging to
distinct equivalence classes are then distinguished by C. We call these classes
neighborhood equivalence classes. In general, one naturally seeks to distinguish
as many pairs of hyperedges as possible, using a small set C.

It is a well-studied setting to ask for a maximum-size set C' such that C
induces all possible 2/€! equivalence classes. In this case, C' is said to be shat-
tered. The maximum size of a shattered set in a hypergraph H is called its

C. Bazgan—Institut Universitaire de France.

© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 92-106, 2016.
DOI: 10.1007/978-3-319-48749-6_7

On the Approximability of PARTIAL VC DIMENSION 93

Vapnis-Cervonenkis dimension (VC dimension for short). This notion,
introduced by Vapnis and Cervonenkis [40] arose in the context of statistical
learning theory as a measure of the structural complexity of the data. It has
since been widely used in discrete mathematics; see the references in the the-
sis [9] for more references. We have the following associated decision problem.

VC DIMENSION
Input: A hypergraph H = (X, E), and an integer k.
Question: Is there a shattered set C' C X of size at least k in H?

The complexity of VC DIMENSION was studied in e.g. [17,21,34]; it is a
complete problem for the complexity class LOGNP defined in [34] (it is therefore
a good candidate for an NP-intermediate problem). VC DIMENSION remains
LOGNP-complete for neighborhood hypergraphs of graphs [30] (the neighborhood
hypergraph of G has V(G) as its vertex set, and the set of closed neighborhoods
of vertices of G as its hyperedge set).

In another setting, one wishes to distinguish all pairs of hyperedges (in other
words, each equivalence class must have size 1) while minimizing the size of the
solution set C. Following [26], we call the associated decision problem, DISTIN-
GUISHING TRANSVERSAL.

DISTINGUISHING TRANSVERSAL

Input: A hypergraph H = (X, E), and an integer k.

Question: Is there a set C' C X of size at most k that induces |E| distinct
equivalence classes?

There exists a rich literature about DISTINGUISHING TRANSVERSAL. It was
studied under different names, such as TEST SET in Garey and Johnson’s
book [25, SP6]; other names include TEST COVER [18-20], DISCRIMINATING
CODE [16] or SEPARATING SYSTEM [7,37].1 A celebrated theorem of Bondy [§]
also implicitely studies this notion. A version of DISTINGUISHING TRANSVERSAL
called IDENTIFYING CODE was defined for graphs instead of hypergraphs [23,27].
Similarly as for the well-known relation between the classic graph problem DoM-
INATING SET and the hypergraph problem HITTING SET, it is easy to check that
an identifying code in graph G is the same as a distinguishing transversal in the
neighborhood hypergraph of G.

The goal of this paper is to introduce and study the problem PARTIAL
VC DIMENSION, that generalizes both DISTINGUISHING TRANSVERSAL and VC
DIMENSION, and defined as follows.

! Technically speaking, in TEST SET, TEST COVER and SEPARATING SYSTEM, the
goal is to distinguish the wvertices of a hypergraph using a set C' of hyperedges, and
in DISCRIMINATING CODE the input is presented as a bipartite graph. Nevertheless,
these formulations are equivalent to DISTINGUISHING TRANSVERSAL by considering
either the dual hypergraph of the input hypergraph H = (X, E) (with vertex set F
and hyperedge set X, and hyperedge x contains vertex e in the dual if hyperedge
e contains vertex x in H), or the bipartite incidence graph (defined over vertex set
X U E, and where z and e are adjacent if they were incident in H).

94 C. Bazgan et al.

PARTIAL VC DIMENSION

Input: A hypergraph H = (X, E), and two integers k and /.

Question: Is there a set C' C X of size k that induces at least ¢ distinct
equivalence classses?

PARTIAL VC DIMENSION belongs to the category of partial versions of com-
mon decision problems, in which, instead of satisfying the problem’s constraint
task for all elements (here, all 2¥ equivalence classes), we ask whether we can sat-
isfy a certain number, ¢, of these constraints. See for example the papers [22,29]
that study some partial versions of standard decision problems, such as SET
COVER or DOMINATING SET.

When ¢ = |E|, PARTIAL VC DIMENSION is precisely the problem DISTIN-
GUISHING TRANSVERSAL. When ¢ = 2*, we have the problem VC DIMENSION.
Hence, PARTIAL VC DIMENSION is NP-hard, even on many restricted classes.
Indeed, DISTINGUISHING TRANSVERSAL is NP-hard [25], even on hypergraphs
where each vertex belongs to at most two hyperedges [20], or on neighborhood
hypergraphs of graphs that are either: unit disk graphs [32], planar bipartite
subcubic [23], graphs that are interval and permutation [24], split graphs [23].
MIN DISTINGUISHING TRANSVERSAL cannot be approximated within a factor
of o(logn) on hypergraphs of order n [20], even on hypergraphs without 4-
cycles [10], and on neighborhood hypergraphs of bipartite, co-bipartite or split
graphs [23].

When ¢ = 2F, PARTIAL VC DIMENSION is equivalent to VC DIMENSION
and unlikely to be NP-hard (unless all problems in NP can be solved in quasi-
polynomial time), since |X| < 2¥ and a simple brute-force algorithm has quasi-
polynomial running time. Moreover, VC DIMENSION (and hence PARTIAL VC
DIMENSION) is W[1]-complete when parameterized by k [21].

Recently, the authors in [12] introduced the notion of («, 3)-set systems, that
is, hypergraphs where, for any set S of vertices with |S| < a, S induces at most 3
equivalence classes. Using this terminology, if a given hypergraph H is an («, §)-
set system, (H,k,¢) with k = « is a YES-instance of PARTIAL VC DIMENSION
if and only if ¢ < 3.

We will also study the approximation complexity of the following fixed-
cardinality maximization problem associated to PARTIAL VC DIMENSION.

MAX PARTIAL VC DIMENSION

Input: A hypergraph H = (X, E), and an integer k.

Output: A set C' C X of size k that maximizes the number of equivalence
classes induced by C.

Similar fized-cardinality versions of classic optimization problems such as
SET COVER, DOMINATING SET or VERTEX COVER, derived from the “partial”
counterparts of the corresponding decision problems, have gained some attention
in the recent years, see for example [13,14,29].

MAX PARTIAL VC DIMENSION is clearly NP-hard since PARTIAL VC
DIMENSION is NP-complete; other than that, its approximation complexity is

On the Approximability of PARTIAL VC DIMENSION 95

completely unknown since it cannot be directly related to the one of approxi-
mating MIN DISTINGUISHING TRANSVERSAL or MAX VC DIMENSION (the min-
imization and maximization versions of DISTINGUISHING TRANSVERSAL and VC
DIMENSION, respectively).

Our Results. Our focus is on the approximation complexity of MAX PARTIAL
VC DIMENSION. We give positive results in Sect. 3. We first provide polynomial-
time approximation algorithms using the VC-dimension for the maximum degree
or for the maximum edge-size of the input hypergraph. We apply these to obtain
approximation ratios of the form n° (for § < 1 a constant) in certain special
cases, as well as a better approximation ratio but with exponential time. For
neighbourhood hypergraphs of planar graphs, MAX PARTIAL VC DIMENSION
admits a PTAS (this is also shown for MIN DISTINGUISHING TRANSVERSAL). In
Sect. 4, we give hardness results. We show that any 2-approximation algorithm
for MAX PARTIAL VC DIMENSION implies a 2-approximation algorithm for MAX
VC DIMENSION. Finally, we show that MAX PARTIAL VC DIMENSION is APX-
hard, even for graphs of maximum degree at most 7.

2 Preliminaries

Twin-free Hypergraphs. In a hypergraph H, we call two equal hyperedges twin
hyperedges. Similarly, two vertices belonging to the same set of hyperedges are
twin vertices.

Clearly, two twin hyperedges will always belong to the same neighborhood
equivalence classes. Similarly, for any set 7" of mutually twin vertices, there is
no advantage in selecting more than one of the vertices in 7" when building a
solution set C.

Observation 1. Let H = (X, E) be a hypergraph and let H' = (X', E’) be the
hypergraph obtained from H by deleting all but one of the hyperedges or vertices
from each set of mutual twins. Then, for any set C C X, the equivalence classes
induced by C in H are the same as those induced by C N X' in H'.

Therefore, since it is easy to detect twin hyperedges and vertices in an input
hypergraph, in what follows, we will always restrict ourselves to hypergraphs
without twins. We call such hypergraphs twin-free.

Degree conditions. In a hypergraph H, the degree of a vertex x is the number
of hyperedges it belongs to. The mazimum degree of H is the maximum value
of the degree of a vertex of H; we denote it by A(H).

The next theorem gives an upper bound on the number of neighborhood
equivalence classes that can be induced when the degrees are bounded.

Theorem 2 ([18,20,27]). Let H = (X, FE) be a hypergraph with maximum

degree A and let C be a subset of X of size k. Then, C' cannot induce more

than w + 1 neighborhood equivalence classes.

96 C. Bazgan et al.

The Sauer-Shelah lemma. The following theorem is known as the Sauer-Shelah
Lemma [38,39] (it is also credited to Perles in [39] and a weaker form was stated
by Vapnik and Cervonenkis [40]). It is a fundamental tool in the study of the
VC dimension.

Theorem 3 (Sauer-Shelah Lemma [38,39]). Let H = (X, E) be a hyper-

graph with strictly more than Z?:_ol ('fl) distinct hyperedges. Then, S has VC-
dimension at least d.

Theorem 3 is known to be tight. Indeed, the system that consists of consid-
ering all subsets of {1,...,n} of cardinality at most d — 1 has VC-dimension
equal to d — 1. Though the original proofs of Theorem 3 were non-constructive,
Ajtai [1] gave a constructive proof that yields a (randomized) polynomial-time
algorithm, and an easier proof of this type can be found in Miccianio [31].

The following direct corollary of Theorem 3 is observed for example in [10].

Corollary 4. Let S = (X, E) be a hypergraph with VC dimension at most d.
Then, for any subset X' C X, there are at most Z?:o (l)g/‘) < | X'+ 1 equiva-
lence classes induced by X'.

Approximation. An algorithm for an optimization problem is a c-approximation
algorithm if it returns a solution whose value is always at most a factor of ¢
away from the optimum. The class APX contains all optimization problems that
admit a polynomial-time c-approximation algorithm for some fixed constant c.
A polynomial-time approzimation scheme (PTAS for short) for an optimization
problem is an algorithm that, given any fixed constant € > 0, returns in polyno-
mial time (in terms of the instance and for fixed €) a solution that is a factor of
1+ € away from the optimum. An optimization problem is APX-hard if it admits
no PTAS (unless P=NP).

Given an optimization problem P, an instance I of P, we denote by optp(I)
(or opt(I) if there is no ambiguity) the value of an optimal solution for I.

Definition 5 (L-reduction [33]). Let A and B be two optimization problems.
Then A is said to be L-reducible to B if there are two constants o, 3 > 0 and
two polynomial time computable functions f, g such that: (i) f maps an instance
I of A into an instance I' of B such that optp(I') < o -opta(I), (i1) g maps
each solution S" of I' into a solution S of I such that ||S|—opta(I)] < B-]15'|—
optp(1')].

L-reductions are useful in order to apply the following theorem.

Theorem 6 [33]. Let A and B be two optimization problems. If A is APX-hard
and L-reducible to B, then B is APX-hard.

On the Approximability of PARTIAL VC DIMENSION 97

3 Positive Approximation Results for Max Partial VC
Dimension

We start with a greedy polynomial-time procedure that always returns (if it
exists), a set | X'| that induces at least | X'| + 1 equivalence classes.

Lemma 7. Let H = (X, E) be a twin-free hypergraph and let k < |X|—1 be an
integer. One can construct, in time O(k(|X|+ |E|)), a set C C X of size k that
produces at least min{|E|, k + 1} neighborhood equivalence classes.

Proof. We produce C in an inductive way. First, let C; = {z} for an arbitrary
vertex z of X for which there exists at least one hyperedge of E with « ¢ E (if
such hyperedge does not exist, then all edges are twin edges; since H is twin-free,
|E| < 1 and we are done). Then, for each ¢ with 2 < ¢ < k, we build C; from
Ci_1 as follows: select vertex z; as a vertex in X \ C;_1 such that C;_; U {x}
maximizes the number of equivalence classes.

We claim that either we already have at least |E| equivalence classes, or C;
induces at least one more equivalence class than C;_1. Assume for a contradiction
that we have strictly less than |E| equivalence classes, but C; has the same
number of equivalence classes as C;_;. Since we have strictly less than | E| classes,
there is an equivalence class consisting of at least two edges, say e; and es. But
then, since H is twin-free, there is a vertex z that belongs to exactly one of e;
and ey. But C;_1 U {z} would have strictly more equivalence classes than C;, a
contradiction since C; was maximizing the number of equivalence classes.

Hence, setting C' = C}, finishes the proof. a

Proposition 8. MAX PARTIAL VC DIMENSION is -approzimable in
polynomial time. For hypergraphs with VC dimension at most d, MAX PARTIAL
VC DIMENSION is k% -approzimable. For hypergraphs with mazimum degree A,

MAX PARTIAL VC DIMENSION is %-appmm'mable.

min{2",| B}
k+1

Proof. By Lemma 7, we can always compute in polynomial time, a solution with
at least k + 1 neighborhood equivalence classes (if it exists; otherwise, we solve
the problem exactly). Since there are at most min{2*, |E|} possible classes, the
first part of the statement follows. Similarly, by Corollary4, if the hypergraph
has VC dimension at most d, there are at most k% + 1 equivalence classes, and
k41 < k971, Finally, if the maximum degree is at most A, by Theorem 2 there

e () ()
k(A+1)+2 k(A+1)4+2 A+1
LS e MoTDI2 LA g

are at most possible classes (and when A > 1, ShiD . S T2

Corollary 9. For hypergraphs of VC' dimension at most d, MAX PARTIAL VC
DIMENSION is |E|(4=D/e_gpprozimable.

Proof. By Proposition 8, we have a min{k?~!,|E|/k})-approximation. If k4! <
|E|(@=1)/4 we are done. Otherwise, we have k%1 > |E|(?=1/? and hence k >
|E|'/4, which implies that % < |E|@-D/d, O

98 C. Bazgan et al.

For examples of concrete applications of Corollary 9, hypergraphs with no 4-
cycles in its bipartite incidence graph? have VC-dimension at most 3 and hence
we have an |E|2/ 3_approximation for this class. Hypergraphs with maximum
edge-size d also have VC dimension at most d. Other examples, arising from
graphs, are neighborhood hypergraphs of: Kg4yi-minor-free graphs (that have
VC dimension at most d [11]); graphs of rankwidth at most r (VC dimension at
most 227" [11]); interval graphs (VC dimension at most 2 [10]); permutation
graphs (VC dimension at most 3 [10]); line graphs (VC dimension at most 3);
unit disk graphs (VC dimension at most 3) [10]; Cy-free graphs (VC dimension at
most 2); chordal bipartite graphs (VC dimension at most 3 [10]); undirected path
graphs (VC dimension at most 3 [10]). Typical graph classes with unbounded
VC dimension are bipartite graphs and their complements, or split graphs.

In the case of hypergraphs with no 4-cycles in its bipartite incidence graph
(for which MAX PARTIAL VC DIMENSION has an |E|?/3-approximation algo-
rithm by Corollary9), we can also relate MAX PARTIAL VC DIMENSION to
MAX PARTIAL DOUBLE HITTING SET, defined as follows.

MAX PARTIAL DOUBLE HITTING SET

Input: A hypergraph H = (X, E), an integer k.

Output: A subset C' C X of size kK maximizing the number of hyperedges
containing at least two elements of C'.

Theorem 10. Any a-approximation algorithm for MAX PARTIAL DOUBLE
HITTING SET on hypergraphs without 4-cycles in its bipartite incidence graph
can be used to obtain a 4a-approximation algorithm for MAX PARTIAL VC
DIMENSION on hypergraphs without 4-cycles in its bipartite incidence graph.

Proof. Let H = (X, E) be a hypergraph without 4-cycles in its bipartite inci-
dence graph, and let C' C X be a subset of vertices. Since H has no 4-cycles in
its bipartite incidence graph, note that if some hyperedge contains two vertices
of X, then no other hyperedge contains these two vertices. Therefore, the num-
ber of equivalence classes induced by C' is equal to the number of hyperedges
containing at least two elements of C, plus the number of equivalence classes
corresponding to a single (or no) element of C. Therefore, the maximum num-
ber opt(H) of equivalence classes for a set of size k is at most optogs(H)+k+1,
where optop g (H) is the value of an optimal solution for MAX PARTIAL DOUBLE
HITTING SET on H. Observing that optoys(H) > % (since one may always iter-
atively select pairs of vertices covering a same hyperedge to obtain a valid double
hitting set of H), we get that opt(H) < 3optapgs(H)+1 < 4optaps(H). Moreover,
in polynomial time we can apply the approximation algorithm of MAX PAR-
TIAL DOUBLE HITTING SET to H to obtain a set C' inducing at least W%S(H)
neighborhood equivalence classes. Thus, C induces at least 22 t(H) neighborhood
equivalence classes. a

2 In the dual hypergraph, this corresponds to the property that each pair of hyperedges
have at most one common element, see for example [2].

On the Approximability of PARTIAL VC DIMENSION 99

Unfortunately, the complexity of approximating MAX PARTIAL DOUBLE
HiTTING SET seems not to be well-known, even when restricted to hypergraphs
with no 4-cycles in its bipartite incidence graph. In fact, the problem MAX
DENSEST SUBGRAPH (which, given an input graph, consists of maximizing the
number of edges of a subgraph of order k) is precisely MAX PARTIAL DOUBLE
HITTING SET restricted to hypergraphs where each hyperedge has size at most 2
(that is, to graphs), that can be assumed to contain no 4-cycles in its bipartite
incidence graph (a 4-cycle would imply the existence of two twin hyperedges).
Although MAX DENSEST SUBGRAPH (and hence MAX PARTIAL DOUBLE HiT-
TING SET for hypergraphs with no 4-cycles in its bipartite incidence graph)
is only known to admit no PTAS [28], the best known approximation ratio
for it is O(|E|'/*) [5].> We deduce from this result, the following corollary of
Theorem 10 for hypergraphs of hyperedge-size bounded by 2. This improves on
the O(|E|'/?)-approximation algorithm given by Corollary 9 for this case.

Corollary 11. Let « be the best approrimation ratio in polynomial time for
MAX DENSEST SUBGRAPH. Then, MAX PARTIAL VC DIMENSION can be 3a-
approzimated in polynomial time on hypergraphs with hyperedges of size at
most 2. In particular, there is a polynomial-time O(\E|1/4)-approm'mation algo-
rithm for this case.

We will now apply the following result from [4].

Lemma 12 ([4]). If an optimization problem is r1(k)-approzimable in fpt-time
with respect to parameter k for some strictly increasing function r1 depending
solely on k, then it is also ro(n)-approximable in fpt-time w.r.t. parameter k for
any strictly increasing function ro depending solely on the instance size n.

Using Proposition 8 showing that MAX PARTIAL VC DIMENSION is kz—fl—
approximable and Lemma 12, we directly obtain the following.

Corollary 13. For any strictly increasing function r, MAX PARTIAL VC
DIMENSION parameterized by k is r(n)-approzimable in FPT-time.

In the following we establish polynomial time approximation schemes for MIN
DISTINGUISHING TRANSVERSAL and MAX PARTIAL VC DIMENSION on planar
graphs using the layer decomposition technique introduced by Baker [3].

Given a planar embedding of an input graph, we call the vertices which are
on the external face level 1 vertices. By induction, we define level ¢t vertices as
the set of vertices which are on the external face after removing the vertices of
levels smaller than ¢ [3]. A planar embedding is t-level if it has no vertices of
level greater than t. If a planar graph is t-level, it has a t-outerplanar embedding.

Theorem 14. MAX PARTIAL VC DIMENSION on neighborhood hypergraphs of
planar graphs admits a PTAS.

3 Formally, it is stated in [5] as an O(|V|'/*)-approximation algorithm, but we may
assume that the input graph is connected, and hence |V| = O(|E)).

100 C. Bazgan et al.

Proof. Let G be a planar graph with a t-level planar embedding for some
integer ¢. We aim to achieve an approximation ratio of 1 +¢. Let A = [1] — 1.

Let G; (0 < i < A) be the graph obtained from G by removing the vertices
on levels i mod (A+1). Thus, graph G; is the disjoint union of several subgraphs
Gi; (0 < j < pwith p = ff\i‘l]) where G;o is induced by the vertices on
levels 0,...,7 — 1 (note that Gyo is empty) and G;; with j > 1 is induced
by the vertices on levels (j — 1)(A+ 1)+ ¢+ 1,...5(A+ 1) +4 — 1. In other
words, each subgraph G;; is the union of at most A consecutive levels and is
thus A-outerplanar. Hence, G; is also A-outerplanar and it has treewidth at
most 3\ — 1 [6]. Using Courcelle’s theorem*, for any integer ¢ and any subgraph
Gij, we can efficiently determine an optimal set Sfj of t vertices of G;; that
maximizes the number of (nonempty) induced equivalence classes in G;;. We
then use dynamic programming to construct a solution for G;. Denote by S;(q, y)
a solution corresponding to the maximum feasible number of equivalence classes
induced by a set of y vertices of G; (0 < y < k) among the first ¢ subgraphs
Git,...,Gig (1 < g < p). We have Si(q,y) = maxoga<y (S5, + 5i(q — 1,y — 1)).
Let Si = Si(p, k‘)

Among Sy, ..., Sy, we choose the best solution, that we denote by S. We
now prove that S is an (1 + €)-approximation of the optimal value opt(G) for
MAX PARTIAL VC DIMENSION on G. Let S,, be an optimal solution of G.
Then, there is at least one integer r such that at most 1/(A+1) of the equivalent
classes induced by S,,: in G are lost when we remove vertices on the levels
congruent to r mod (A + 1).

Thus, val(S) > val(S,) = opt(G) — 01;\:(?) = %ﬂopt(G) > (1 - Hopt(G),
which completes the proof.

The overall running time of the algorithm is A times the running time for
graphs of treewidth at most 3A — 1, that is, O(An). O

As a side result, using the same technique, we provide the following theorem
about MIN DISTINGUISHING TRANSVERSAL, which is an improvement over the
7-approximation algorithm that follows from [36] (in which it is proved that any
YES-instance satisfies £ < 7k) and solves an open problem from [23]. Due to
space constraints, its proof is omitted.

Theorem 15. MIN DISTINGUISHING TRANSVERSAL on neighborhood hyper-
graphs of planar graphs (equivalently, MIN IDENTIFYING CODE on planar
graphs) admits a PTAS.

4 Hardness of Approximation Results for Max Partial
VC Dimension

We define MAaxX VC DIMENSION as the maximization version of VC DIMENSION.

4 We can indeed encode the decision version of our problem in MSOL as follows:

(2)

31‘17..‘.,l‘k,y1,...,yl,SLS%,..,,Sﬁ_l, z = \/};:1 xlﬁ\/i,j:o(sg S yl/\sg ¢ y])\/(sz ¢
Yyi \si € yj).

On the Approximability of PARTIAL VC DIMENSION 101

MAX VC DIMENSION
Input: A hypergraph H = (X, E).
Output: A maximum-size shattered subset C' C X of vertices.

Not much is known about the complexity of MAX VC DIMENSION: it is
trivially log, | E|-approximable by returning a single vertex; a lower bound on
the running time of a potential PTAS has been proved [17]. It is mentioned as
an outstanding open problem in [15]. In the following we establish a connection
between the approximability of Max VC DIMENSION and MAX PARTIAL VC
DIMENSION.

Theorem 16. Any 2-approximation algorithm for MAX PARTIAL VC DIMEN-
SION can be transformed into a randomized 2-approximation algorithm for MAX
VC DIMENSION with polynomial overhead in the running time.

Proof. Let H be a hypergraph on n vertices that is an instance for MAx VC
DIMENSION, and suppose we have a c-approximation algorithm & for MAX
PARTIAL VC DIMENSION.

We run & with k =1,...,log, | X|, and let kg be the largest value of k such
that the algorithm outputs a solution with at least % neighborhood equivalence
classes. Since &/ is a c-approximation algorithm, we know that the optimum
for MAX PARTIAL VC DIMENSION for any k > kg is strictly less than 2. This
implies that the VC-dimension of S is at most kg.

Now, let X be the solution set of size ky computed by &7, and let Hx be
the sub-hypergraph of H induced by X. By our assumption, this hypergraph
has at least ? distinct edges. We can now apply the Sauer-Shelah Lemma
(Theorem 3).

We have ¢ = 2, and we apply the lemma with |X| = kg and d = % + 1; it
follows that the VC dimension of Hx (and hence, of H) is at least % +1. By the
constructive proof of Theorem 3, a shattered set Y of this size can be computed
in (randomized) polynomial time [1,31]. Set Y is a 2-approximation, since we
saw in the previous paragraph that the VC dimension of H is at most k. a

We note that the previous proof does not seem to apply for any other con-
stant than 2, because the Sauer-Shelah Lemma would not apply. Though the
approximation complexity of MAX VC DIMENSION is not known, our result
shows that MAX PARTIAL VC DIMENSION is at least as hard to approximate.

Before proving our next result, we first need an intermediate result for MAX
PARTIAL VERTEX COVER (also known as MAX k-VERTEX COVER [14]), which
is defined as follows.

MAX PARTIAL VERTEX COVER
Input: A graph G = (V, E), an integer k.
Output: A subset S C V of size k covering the maximum number of edges.

102 C. Bazgan et al.

Proposition 17 ([35]). MAX PARTIAL VERTEX COVER is APX-hard, even for
cubic graphs.

Theorem 18. MAX PARTIAL VC DIMENSION is APX-hard, even for graphs of
mazimum degree 7.

Proof. We will give an L-reduction from MAX PARTIAL VERTEX COVER (which
is APX-hard, by Proposition 17) to MAX PARTIAL VC DIMENSION. The result
will then follow from Theorem 6. Given an instance I = (G, k) of MAX PARTIAL
VERTEX COVER with G = (V, E) a cubic graph, we construct an instance I’ =
(G',k") of Max PARTIAL VC DIMENSION with G’ = (V',E’) of maximum
degree 7 in the following way. For each vertex v € V| we create a gadget P, with
twelve vertices where four among these twelve vertices are special: they form the
set B, = {fL, f2 f3, f*}. The other vertices are adjacent to the subsets {f4},
U3, 050 A B3 AR fods A0, Bb A L 15 A 2 Fo UL 130 10, 1o
respectively. We also add edges between f! and f2, between f2 and f2 and
between f3 and f. Since G is cubic, for each vertex v of G, there are three
edges e1, e5 and e incident with v. For each edge e; (1 < i < 3), the endpoint
v is replaced by fi. Moreover, each of these original edges of G is replaced in
G’ by two edges by subdividing it once (see Fig.1 for an illustration). We call
the vertices resulting from the subdivision process, edge-vertices. Finally, we set
kK = 4k.

Fig. 1. a) Vertex-gadget P, and b) illustration of the reduction.

From any optimal solution S with |S| = k covering opt(I) edges of G, we
construct a set C' = {f7 : 1 < j < 4,v € S} of size 4k. By construction, C
induces 12 equivalence classes in each vertex gadget. Moreover, for each covered

On the Approximability of PARTIAL VC DIMENSION 103

edge e = zy in G, the corresponding edge-vertex v, in G’ forms a class of
size 1 (which corresponds to one or two neighbor vertices f7 and fJ of v, in C).
Finally, all vertices in G’ corresponding to edges not covered by S in G, as well
as all vertices in vertex gadgets corresponding to vertices not in S, belong to the
same equivalence class (corresponding to the empty set). Thus, C induces in G’
12k + opt(I) + 1 equivalence classes, and hence we have

opt(I') = 12k + opt(I) + 1. (1)

Conversely, given a solution C” of I' with |C’| = 4k, we transform it into a
solution for I as follows. First, we show that C’ can be transformed into another
solution C” such that (1) C” only contains vertices of the form fi, (2) each
vertex-gadget contains either zero or four vertices of C”, and (3) C” does not
induce less equivalence classes than C’. To prove this, we proceed step by step
by locally altering C’ whenever (1) and (2) are not satisfied, while ensuring (3).

Suppose first that some vertex-gadget P, of G’ contains at least four vertices
of C’. Then, the number of equivalence classes involving some vertex of V(P,) N
C’ is at most twelve within P, (since there are only twelve vertices in P,), and at
most three outside P, (since there are only three vertices not in P, adjacent to
vertices in P,). Therefore, we can replace V(P,) NC’ by the four special vertices
of the set F,, in P,; this choice also induces twelve equivalence classes within P,,,
and does not decrease the number of induced classes.

Next, we show that it is always best to select the four special vertices of F,
from some vertex-gadget (rather than having several vertex-gadgets containing
less than four solution vertices each). To the contrary, assume that there are two
vertex-gadgets P, and P, containing respectively a and b vertices of C’, where
1 < b < a<3. Then, we remove an arbitrary vertex from C’ NV (P,); moreover
we replace C' NV (P,) with the subset {fi,1 < i < a + 1}, and similarly we
replace C' NV (P,) with the subset {f{,1 < i < b—1}. Before this alteration, the
solution vertices within V(P,) UV (P,) could contribute to at most 2% + 2> — 2
equivalence classes. After the modification, one can check that this quantity is
at least 241 4+ 2071 _ 2 classes. Observing that 2011 4201 —2 > 29 4 20 _ 2 gince
2¢ — 20=1 > yields our claim. Hence, by this argument, we conclude that all
vertex-gadgets (except possibly at most one) contain either zero or four vertices
from the solution set C”.

Suppose that there exists one vertex-gadget P, with ¢ solution vertices, 1 <
1 < 3. We show that we may add 4 — i solution vertices to it so that C'NV (P,) =
F,. Consider the set of edge-vertices belonging to C’. Since we had |C'| = 4k
and all but one vertex-gadget contain exactly four solution vertices, there are at
least 4 —i edge-vertices in the current solution set. Then, we remove an arbitrary
set of 4 — i edge-vertices from C’ and instead, we replace the set V(P,) N C’ by
the set F), of special vertices of P,. We now claim that this does not decrease the
number of classes induced by C’. Indeed, any edge-vertex, since it has degree 2,
may contribute to at most three equivalence classes, and the ¢ solution vertices
in P, can contribute to at most 2’ classes. Summing up, in the old solution set,
these four vertices contribute to at most 3(4 — i) + 2¢ classes, which is less than

104 C. Bazgan et al.

12 since 1 < 7 < 3. In the new solution, these four vertices contribute to at least
12 classes, which proves our above claim.

We now know that there are 47 edge-vertices in C’, for some ¢ < k. All
other solution vertices are special vertices in some vertex-gadgets. By similar
arguments as in the previous paragraph, we may select any four of them and
replace them with some set F, of special vertices of some vertex-gadget P,.
Before this modification, these four solution vertices may have contributed to at
most 3-4 = 12 classes, while the new four solution vertices now contribute to at
least 12 classes.

Applying the above arguments, we have proved the existence of the required
set C” that satisfies conditions (1)—(3).

Therefore, we may now assume that the solution C” contains no edge-
vertices, and for each vertex-gadget P,, C" NV (P,) € {0, F,}. We define as
solution S for I the set of vertices v of G for which P, contains four ver-
tices of C”. Then, val(S) = val(C') — 12k — 1. Considering an optimal solu-
tion C” for I', we have opt(I) > opt(I') — 12k — 1. Using (1), we conclude that
opt(I') = opt(I) + 12k + 1 < opt(I) + 24opt(I) + 1 since k < 20pt(I) and thus
opt(I') < 260pt(I).

Moreover, we have opt(I) —val(S) = opt(I') — 12k — 1 — (val(C") - 12k —1) =
opt(I') — val(C").

Thus, our reduction is an L-reduction with o = 26 and 3 = 1. a

Proposition 8 and Theorem 18 give the following corollary:

Corollary 19. MAX PARTIAL VC DIMENSION is APX-complete for bounded
degree graphs.

5 Conclusion

In this paper, we defined and studied generalization of DISTINGUISHING
TRANSVERSAL and VC DIMENSION. The probably most intriguing open ques-
tion seems to be the approximation complexity of MAX PARTIAL VC DIMEN-
SION. In particular, does the problem admit a constant-factor approximation
algorithm? As a first step, one could determine whether such an approxima-
tion algorithm exists in superpolynomial time, or on special subclasses such as
neighbourhood hypergraphs of specific graphs. We have seen that there exist
polynomial-time approximation algorithms with a sublinear ratio for special
cases; does one exist in the general case?

References

1. Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reductions.
In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing
(STOC 1998), pp. 10-19 (1998)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

On the Approximability of PARTIAL VC DIMENSION 105

Kumar, V.S.A., Arya, S., Ramesh, H.: Hardness of set cover with intersection 1.
In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853,
pp. 624-635. Springer, Heidelberg (2000)

Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. ACM 41(1), 153-180 (1994)

Bazgan, C., Chopin, M., Nichterlein, A., Sikora, F.: Parameterized approximability
of maximizing the spread of influence in networks. J. Discrete Algorithms 27, 54-65
(2014)

Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting
high log-densities: an O(nl/ *) approximation for densest k-subgraph. In: Proceed-
ings of the 42nd Annual ACM Symposium on Theory of Computing (STOC 2010),
pp. 201-210 (2010)

Bodlaender, H.: A partial k-arboretum of graphs with bounded treewidth. Theoret.
Comput. Sci. 209(12), 1-45 (1998)

Bollobas, B., Scott, A.D.: On separating systems. Eur. J. Comb. 28, 1068-1071
(2007)

Bondy, J.A.: Induced subsets. J. Comb. Theory, Ser. B 12(2), 201-202 (1972)
Bousquet, N.: Hitting sets: VC-dimension and multicut. Ph.D. thesis, Université
Montepellier II, France (2013). http://tel.archives-ouvertes.fr/tel-01012106/
Bousquet, N., Lagoutte, A., Li, Z., Parreau, A., Thomassé, S.: Identifying codes
in hereditary classes of graphs and VC-dimension. STAM J. Discrete Math. 29(4),
2047-2064 (2015)

Bousquet, N., Thomassé, S.: VC-dimension and Erdés-Pésa property of graphs.
Discrete Math. 338(12), 2302-2317 (2015)

Bringmann, K., Kozma, L., Moran, S., Narayanaswamy, N.S.: Hitting Set in hyper-
graphs of low VC-dimension. Manuscript (2015). http://arxiv.org/abs/1512.00481
Bruglieri, M., Ehrgott, M., Hamacher, H.W., Maffioli, F.: An annotated bibliog-
raphy of combinatorial optimization problems with fixed cardinality constraints.
Discrete Appl. Math. 154(9), 1344-1357 (2006)

Cai, L.: Parameterized complexity of cardinality constrained optimization prob-
lems. Comput. J. 51(1), 102-121 (2007)

Cai, L., Juedes, D., Kanj, I.: The inapproximability of non-NP-hard optimization
problems. Theoret. Comput. Sci. 289(1), 553-571 (2002)

Charbit, E., Charon, I., Cohen, G., Hudry, O., Lobstein, A.: Discriminating codes in
bipartite graphs: bounds, extremal cardinalities, complexity. Adv. Math. Commun.
2(4), 403-420 (2008)

Chen, J., Huang, X., Kanj, I.A., Xia, G.: On the computational hardness based on
linear FPT-reductions. J. Comb. Optim. 11(2), 231-247 (2006)

Crowston, R., Gutin, G., Jones, M., Muciaccia, G., Yeo, A.: Parameterizations of
test cover with bounded test sizes. Algorithmica 74(1), 367-384 (2016)
Crowston, R., Gutin, G., Jones, M., Saurabh, S., Yeo, A.: Parameterized study
of the test cover problem. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS
2012. LNCS, vol. 7464, pp. 283-295. Springer, Heidelberg (2012)

De Bontridder, K.M.J., Halldérsson, B.V., Halldérsson, M.M., Hurkens, C.A.J.,
Lenstra, J.K., Ravi, R., Stougie, L.: Approximation algorithms for the test cover
problem. Math. Program. Ser. B 98, 477-491 (2003)

Downey, R.G., Evans, P.A., Fellows, M.R.: Parameterized learning complexity. In:
Proceedings of the 6th Annual Conference on Computational Learning Theory
(COLT 1993), pp. 51-57 (1993)

Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Subexponential algorithms
for partial cover problems. Inf. Process. Lett. 111(16), 814-818 (2011)

http://tel.archives-ouvertes.fr/tel-01012106/
http://arxiv.org/abs/1512.00481

106

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

C. Bazgan et al.

Foucaud, F.: Decision and approximation complexity for identifying codes and
locating-dominating sets in restricted graph classes. J. Discrete Algorithms 31,
48-68 (2015)

Foucaud, F., Mertzios, G.B., Naserasr, R., Parreau, A., Valicov, P.: Algorithms
and complexity for metric dimension and location-domination on interval and per-
mutation graphs. In: Mayr, E-W. (ed.) WG 2015. LNCS, vol. 9224, pp. 456-471.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53174-7_32

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. W. H. Freeman, New York (1979)

Henning, M.A., Yeo, A.: Distinguishing-transversal in hypergraphs and identifying
open codes in cubic graphs. Graphs Comb. 30(4), 909-932 (2014)

Karpovsky, M.G., Chakrabarty, K., Levitin, L.B.: On a new class of codes for
identifying vertices in graphs. IEEE Trans. Inf. Theory 44, 599-611 (1998)

Khot, S.: Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipar-
tite clique. STAM J. Comput. 36(4), 1025-1071 (2006)

Kneis, J., Molle, D., Rossmanith, P.: Partial vs. complete domination: t~-dominating
set. In: Proceedings of the 33rd Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM 2007), pp. 367-376 (2007)

Kranakis, E., Krizanc, D., Ruf, B., Urrutia, J., Woeginger, G.J.: The VC-dimension
of set systems defined by graphs. Discrete Appl. Math. 77(3), 237-257 (1997)
Micciancio, D.: The shortest vector in a lattice is hard to approximate to within
some constant. SITAM J. Comput. 30(6), 2008-2035 (2001)

Miiller, T., Sereni, J.-S.: Identifying and locating-dominating codes in (random)
geometric networks. Comb. Probab. Comput. 18(6), 925-952 (2009)
Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. Comput. Syst. Sci. 43(3), 425-440 (1991)

Papadimitriou, C.H., Yannakakis, M.: On limited nondeterminism and the com-
plexity of the V-C dimension. J. Comput. Syst. Sci. 53(2), 161-170 (1996)
Petrank, E.: The hardness of approximation: gap location. Comput. Complex. 4,
133-157 (1994)

Slater, P.J., Rall, D.F.: On location-domination numbers for certain classes of
graphs. Congr. Numerantium 45, 97-106 (1984)

Rényi, A.: On random generating elements of a finite Boolean algebra. Acta Sci.
Math. Szeged 22, 75-81 (1961)

Sauer, N.: On the density of families of sets. J. Comb. Theory Ser. A 13, 145-147
(1972)

Shelah, S.: A combinatorial problem; stability and order for models and theories
in infinitary languages. Pac. J. Math. 41, 247-261 (1972)

Vapnik, V.N., Cervonenkis, A.J.: The uniform convergence of frequencies of the
appearance of events to their probabilities. Akademija Nauk SSSR 16, 264279
(1971)

http://dx.doi.org/10.1007/978-3-662-53174-7_32

Improved Precise Fault Diagnosis Algorithm
for Hypercube-Like Graphs

Tai-Ling Ye!®™), Dun-Wei Cheng’, and Sun-Yuan Hsieh®-?

! Department of Computer Science and Information Engineering,
National Cheng Kung University, Tainan 701, Taiwan
{p78991016,hsiehsy}@mail .ncku.edu.tw, dunwei.ncku@gmail.com
2 TInstitute of Medical Informatics,

National Cheng Kung University, Tainan 701, Taiwan

Abstract. The system reliability is an important issue for
multiprocessor systems. The fault diagnosis has become crucial for
achieving high reliability in multiprocessor systems. In the comparison-
based model, it allows a processor to perform diagnosis by contrasting the
responses from a pair of neighboring processors through sending the iden-
tical assignment. Recently, Ye and Hsieh devised an precise fault diagno-
sis algorithm to detect all faulty processors for hypercube-like networks
by using the MM* model with O(N (log, N)?) time complexity, where N
is the cardinality of processor set in multiprocessor systems. On the basis
of Hamiltonian cycle properties, we improve the aforementioned results
by presenting an O (N)-time precise fault diagnosis algorithm to detect all
faulty processors for hypercube-like networks by using the MM* model.

1 Introduction

In the semiconductor technology, the system reliability is crucial for multiproces-
sor systems. To maintain high reliability, multiprocessor systems should differ-
entiate between fault-free and faulty processors, that is, each faulty processor
in this system ought to be substituted by a fault-free processor. Determining
all faulty processors is known as fault diagnosis. When all faulty processors
can be evaluated precisely, and ¢ is the upper bound of the faulty processors,
we called the multiprocessor system as t-diagnosable. The largest cardinality
of the faulty set is named as the diagnosability of this multiprocessor system.
Numerous fault diagnosis algorithms have been presented for different topolo-
gies [2,5,6,12,13,17,18].

In self-diagnosable systems, there are several approaches which have been
proposed to detect faulty processors. The PMC model [11] allows each proces-
sor to perform diagnosis by testing the neighboring processors and observing
their responses. In the PMC model, a test syndrome collects all test results. The
MM model [7] is a comparison-based model and it allows a processor to perform
diagnosis by contrasting the responses from a pair of neighboring processors
through sending the identical assignment. In the MM model, a comparison syn-
drome collects all comparison results. In [13], Sengupta and Dahbura modified

© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 107-112, 2016.
DOI: 10.1007/978-3-319-48749-6_8

108 T.-L. Ye et al.

the comparison-based model and put forward the MM* model. Under this model,
any processor w (comparator) detects two processors x and y if w has direct com-
munication links to them. In the MM* model, provided that w is a fault-free
processor and z, y are two neighbors of w; an agreement of the comparison
results means that processors x and y are fault-free processors. Conversely, a
disagreement of the comparison results means that at least one of z, y, and w
must be faulty.

In self-diagnosable systems, there are two basic strategies for fault diagno-
sis. The first one is named as the precise diagnositic strategy, which detects all
processors correctly [7,11]. The second one is named as the pessimistic diag-
nositic strategy, which isolated all faulty processors in a faulty set such that no
more than two processors which are faulty-free processors [4].

In a multiprocessor system, using a simple graph G = (Vig, E¢) depicts the
topology, where every vertex in Vi depicts a processor and every edge in Eg
depicts a communication link between two processors. In [14], Vaidya et al.
proposed a class of hypercube-like networks.

Recently, Ye and Hsieh [15] devised an O(N (log, N)?)-time precise fault
diagnosis algorithm to detect all faulty processors for hypercube-like networks
on the basis of the MM* model, where N is the cardinality of the vertex set in
this system.

In order to reduce the time complexity, we present an O(N)-time precise fault
diagnosis algorithm to detect all faulty processors for hypercube-like networks
based on the MM* model, where N = 2" is the cardinality of the vertex set in
this topology. Therefore, our precise fault diagnosis algorithm is better than the
Ye-Hsieh algorithm [15] for hypercube-like networks.

Next, we introduce the basic concept in self-diagnosable systems through
Sect. 2. In Sect. 3, we investigate several definitions and lemmas, then propose
the precise fault diagnosis algorithm to detect all faulty processors for hypercube-
like networks. Finally, we provide some concluding remarks in Sect. 4.

2 Preliminaries

We first present some fundamental definitions and notations and introduce the
background of fault diagnosis.

2.1 Definitions and Notations from Graph Theory

Use a simple graph G = (V, Eg) to describe the link situation for a simple
multiprocessor system. The processors in this system are denoted by an vertex
set Vo and the links between each pair of processors are denoted by an edge
set Eg. When there exists an edge between two processors (z and y) such that
the processor x is adjacent to the processor y, x is a neighbor of y. Use Ng(x)
= {y € V| y is adjacent to x} to denote the neighbors of z. The degree of a
processor x is the cardinality of the edge set incident to « in a simple graph G.
Use degg(z) to denote the degree of a processor z, that is, degg(x) = |Ng(z)].

Improved Precise Fault Diagnosis Algorithm for Hypercube-Like Graphs 109

We say a simple graph is k-regular when each processor has exactly k neighbors.
In this research, we consider the diagnosability of the hypercube-like network,
and the structure of hypercube-like network contains the property of k-regular.

In a simple graph, a path is constructed by a sequence of distinct processors.
We use Pxg, k] = (20,21, ..., 2) to represent a path with k distinct processors,
such that the processor x; and the processor x; 1 are adjacent to each other for
0 < i < k — 1. The processors xg and x; are the two end processors of this
path. A subpath is denoted by P[z;, x;], which is a sequence of processors within
the original path Plzo,zi] = (zo,21,..., %1, Plzs, 2], 241, ..., 2%). A path
in a simple graph that visits each processor of G exactly once is named as
a Hamiltonian path. We also denote a cycle by a sequence of processors in a
simple graph of the form (zg,z1,...,2:) for t > 2, where xg,x1,...,x; are all
distinct processors such that any two consecutive processors are adjacent and
the two processors xg and x; are also adjacent to each other. A cycle in a simple
graph that visits each processor of G exactly once is named as a Hamiltonian
cycle. When a graph contains a Hamiltonian cycle, it is called a Hamiltonian.

A matching in a simple graph is an edge subset Mg C FEg, which contains
the non-loop edges without any common processor. If a matching Mq saturates
a processor x € Vi, then x is said to be Mg-saturated; otherwise, = is Mg-
unsaturated. When a matching saturates every processor of the graph, we say
this matching is a perfect matching.

Definition 1. The class of n -dimensional hypercube-like networks, denoted by
HL,, can be recursively defined as follows:

1. HLy is a trivial graph that contains only one vertex.

2. For¢v > 1, HL; = {G| G = PM(G(), G1), where Go,Gy € HL;_;, and
PM(Gy,G1) is a graph which is connected by a perfect matching PM between
Vi, and Vg, , and every edge in this perfect matching is labeled by i — 1. For
agraph G € HL,, Vg = Vg, UVg, and Eg = Eg, JUEqg, U PM.

An n-dimensional hypercube-like graph is an n-regular graph with 2™ vertices
and n2"~1 edges [14], denoted by HL,,.

2.2 System Diagnostic Models

Observing those responses from the two neighbors x and y, the set of comparison
results can be used to construct a comparison multigraph Mg = (Vig, Lg). In
a comparison multigraph, the processor set Vg is the set of all processors and
L is the set of labeled edges that denote which processor is used to compare
the two processors of this edge. A labeled edge (z,y), € Lg means that the
processor w compares processor & and processor y.

In the MM* model, for the pair of processors z and y such that (w,x) € Eg
and (w,y) € Eg, we say that w is a comparator. Let (z,y), € Lg; the output
is denoted by o((x,y)). We use o((x,y),) = 1 to denote a disagreement of the
output result and o((z,y),) = 0 to denote an agreement of the output result.
The MM* model collects all the comparison results as a set and names it as

110 T.-L. Ye et al.

a comparison syndrome of the self-diagnosable systems. The comparison result
o((z,y)w) = 0 indicates that the compared processors = and y are fault-free
processors provided that the comparator processor w is a fault-free vertex. The
comparison result o((z,y),) = 1 means that at least one of z, y, and w must be
faulty.

3 A Precise Fault Diagnosis Algorithm in HL,,

In this section, we use a Hamiltonian cycle in HL,, to detect all faulty vertices.

3.1 Comparison Syndrome Properties in HL,,

Definition 2. Assume that o be a comparison syndrome of G € HL,. If
o((z,9)w) = 0, a vertex w is named as a o -zero vertex, where x and y are
adjacent to w. If o((z,y)w) = 1), a vertex w is named as a o -one vertex, where
z and y are adjacent to w.

Definition 3. Assume that o be a comparison syndrome of G € HL,,. A path
Plzo, xi] = (zo,21,...,2Tk) in G is a o-zero path if o((z;-1, iy1)s;) = 0 for any
three consecutive vertices with 1 <7 <k — 1.

According to previous definitions, we can use the following Lemma to detect
all the vertices in a o-zero path.

Lemma 1 [16]. All vertices in a o-zero path must be in the same state. The
vertices in this path are either all fault-free vertices or all faulty vertices.

Lemma 2 [3]. Provided that there exists at most | faulty vertices in a path P
and o is a syndrome on this path. Let P* denotes a o-zero subpath of P and the
length of this subpath is k. Then,

1. When k > 1, we assume that all vertices in P* must be fault-free. Meanwhile,
the o-one neighbors of the two end vertices in P* are also fault-free.

2. When k <1, we assume that the o-one neighbors of the two end vertices and
all vertices in P* are fault-free. Otherwise, we assume that all vertices in P*
are faulty.

Lemma 3 [10]. Every graph in HL,, for n > 2 is Hamiltonian.

Since the diagnosability of an n-dimensional hypercube-like network is
bounded by n [1] on the basis of the MM* model for n > 5, we assume that there
are no more than ¢ faulty vertices in an n-dimensional hypercube-like network
with ¢ = n. According to Lemma 2, a o-zero subpath with more than ¢ vertices
can be located if the cardinality of the faulty set existing in an N-vertex cycle
does not exceed t. Let Plvg,, vn] = (U, Umt1, - - - Un—1,Un) be a o-zero subpath
with n —m + 1 vertices and n —m+1 > t. Then, according to Lemmas 1 and 2,
we can identify vertices from v,,_1 to v,+1 as fault-free vertices, and v,,,_2 and
Un4o as faulty vertices. If v,,_2 or v,42 is adjacent to another o-zero subpath,
then identify all vertices in this o-zero subpath as faulty vertices.

Improved Precise Fault Diagnosis Algorithm for Hypercube-Like Graphs 111

3.2 A Precise Fault Diagnosis Algorithm

A precise fault diagnosis algorithm is described in this subsection.

Algorithm 1. Algorithm HL
Input : An integer n > 5, and a graph G € H L,,, where 2" is the cardinality
of the vertex set in G.
Output: The state of all vertices are diagnosed as either fault-free or faulty.

Step 1: Construct a Hamiltonian cycle in H L.

Step 2: Obtain its cycle syndrome by o((zi—1,Zit1)s;) for 0 <7 < 2™ — 1.

Step 3: Let Plvm,vn] = (Um, Um+1,.--,VUn—1,Un) be a o-zero subpath with
n—m+ 1 verticesand n —m + 1 > ¢.

Step 4: Identify all vertices in Plvm,vy] as fault-free, and vpm—1, vp41 as fault-
free and vp,—2, vn+2 as faulty.

Step 5: For each unknown o-zero subpath, if it has a vertex = that has an
identified fault-free neighbor w that in turn has an identified fault-free
neighbor y, then diagnose (x,y)w; if this o-zero vertex z is identified as
faulty, then identify other vertices in this o-zero subpath as faulty.

4 Conclusion

For hypercube-like networks, when the cardinality of the vertex set is N = 2"
for n > 5, we have designed an O(N)-time precise fault diagnosis algorithm on
the basis of the MM* model. Moreover, our previous result presented in [15] an
N(logy N)2-time algorithm for the hypercube-like networks for n > 11. There-
fore, the proposed precise fault diagnosis algorithm can run in O(N) time com-
plexity for n > 5, which is superior to the previous algorithms for the class of
hypercube-like networks.

References

1. Chiang, C.F., Tan, J.M.: A novel approach to comparison-based diagnosis for
hypercube-like systems. J. Inf. Sci. Eng. 24(1), 1-9 (2008)

2. Duarte Jr., E.P., Ziwich, R.P., Albini, L.C.: A survey of comparison-based system-
level diagnosis. ACM Comput. Surv. 43(22), 1-56 (2011)

3. Hsu, H.C., Lai, P.L.: Adaptive diagnosis for grids under the comparison model, 26th
International Conference on Advanced Information Networking and Applications
Workshops, pp. 152-159 (1987)

4. Kavianpour, A., Friedman, A.D.: Efficient design of easily diagnosable system. In:
Proceedings of the 3th IEEE Computer Society’s USA-Japan Computer Confer-
ence, pp. 173-181 (1978)

5. Khanna, S., Fuchs, W.K.: A linear time algorithm for sequential diagnosis in hyper-
cubes. J. Parallel Distrib. Comput. 26, 48-53 (1995)

6. Khanna, S., Fuchs, W.K.: A graph partitioning approach to sequential diagnosis.
IEEE Trans. Comput. 46(1), 39-47 (1997)

112

10.

11.

12.

13.

14.

15.

16.

17.

18.

T.-L. Ye et al.

. Maeng, J., Malek, M.: A Comparison connection assignment for self-diagnosis of

multiprocessor systems. In: Proc. 11th International Symposium Fault-Tolerant
Computing, pp. 173-175 (1981)

. Park, J.H.: Panconnectivity and edge-pancyclicity of faulty recursive circulant

G(2™,4). Theoret. Comput. Sci. 390(1), 70-80 (2008)

. Park, J.H., Chwa, K.Y.: Recursive circulant: a new topology for multicomputer

networks. In: Proceedings of Internation Symposium Parallel Architectures. Algo-
rithms and Networks (ISPAN 1994), pp. 73-80. IEEE press, New York (1994)
Park, J.H., Kim, H.C., Lim, H.S.: Fault-hamiltonicity of hypercube-like intercon-
nection networks. In: Proceedings of the 19th IEEE International Parallel and Dis-
tributed Prcessing Symposium (IPDPS 2005), Denver, CA, USA, IEEE Computer
Society, April 2005

Preparata, F.P., Metze, G., Chien, R.T.: On the connection assignment problem
of diagnosable systems. IEEE Trans. Comput. 16(12), 448-454 (1967)

Sullivan, G.: An O(t* 4 |E|) fault identification algorithm for diagnosable systems.
IEEE Trans. Comput. 37(4), 388-397 (1988)

Senqupta, A., Dahbura, A.T.: On self-diagnosable multiprocessor systems: diagno-
sis by the comparison approach. IEEE Trans. Comput. 41(11), 1386-1396 (1992)
Vaidya, A.S., Rao, P.S.N., Shankar, S.R.: A class of hypercube-like networks. In:
Proceedings of Fifth IEEE symposium Parallel and Distributed Processing(SPDP),
pp. 800-803 (1993)

Ye, T.L., Hsieh, S.Y.: A scalable comparison-based diagnosis algorithm for
hypercube-like networks. IEEE Trans. Reliab. 62(4), 789-799 (2013)

Yang, X.F., Megson, G.M., Evans, D.J.: A comparison-based diagnosis algorithm
tailored for crossed cube multiprocessor systems. Microprocess. Microsyst. 29(4),
169-175 (2005)

Yang, C.L., Masson, G.M., Leonetti, R.A.: On fault isolation and identification in
t1/t1-diagnosable systems. IEEE Trans. Comput. 35(6), 639-643 (1986)

Zhao, J., Meyer, F.J., Park, N., Lombardi, F.: Sequential diagnosis of processor
array systems. IEEE Trans. Reliab. 53(4), 487-498 (2004)

Finding Disjoint Paths on Edge-Colored Graphs:
A Multivariate Complexity Analysis

Riccardo Dondi' and Florian Sikora?™)

! Dipartimento di Lettere e Comunicazione,
Universita degli Studi di Bergamo, Bergamo, Italy
riccardo.dondi@unibg.it
2 Université Paris-Dauphine, PSL Research University,
CNRS, LAMSADE, Paris, France
florian.sikora@dauphine.fr

Abstract. The problem of finding the maximum number of vertex-
disjoint uni-color paths in an edge-colored graph (MAXCDP) has been
recently introduced in literature, motivated by applications in social net-
work analysis. In this paper we investigate how the complexity of the
problem depends on graph parameters (distance from disjoint paths and
size of vertex cover), and that is not FPT-approximable. Moreover, we
introduce a new variant of the problem, called MAXCDDP, whose goal
is to find the maximum number of vertex-disjoint and color-disjoint uni-
color paths. We extend some of the results of MAXCDP to this new vari-
ant, and we prove that unlike MAXCDP, MAXCDDP is already hard on
graphs at distance two from disjoint paths.

1 Introduction

The analysis of social networks and social media has introduced several inter-
esting problems from an algorithmic point of view. Social networks are usually
viewed as graphs, where vertices represent the elements of the network, and edges
represent a binary relation between the represented elements. One of the most
relevant properties to analyze social network is the vertex connectivity of two
given vertices. Indeed, a relevant property of social networks is how information
flows from one vertex to the other, and vertex connectivity is considered as a
measure of the information flow. Furthermore, two relevant structural proper-
ties of a social network, group cohesiveness and centrality, can be identified via
vertex connectivity [8,12]. Vertex connectivity has been widely investigated in
graph theory; Menger’s theorem shows that vertex connectivity is equivalent to
the maximum number of disjoint paths between two given vertices.

Usually social networks analyses focus on a single type of relation. However,
due to the availability of several social networks, a natural goal is to integrate
the information into a single network. Wu [13] introduced a model to consider
multi-relational social networks, where different kinds of relations are considered.
In the proposed model colors are associated with edges of the graph to distin-
guish different kinds of relations. Given such an edge-colored graph, a natural

© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 113-127, 2016.
DOI: 10.1007/978-3-319-48749-6_9

114 R. Dondi and F. Sikora

combinatorial problem to compute vertex connectivity introduced in [13], called
Mazimum Colored Disjoint Paths (MAXCDP), asks for the maximum number of
vertex-disjoint paths consisting of edges of the same colors (also called uni-color
paths) in the input graph.

The complexity of MAXCDP has been investigated in [3,13]. MAXCDP
is polynomial time solvable when the input graph contains exactly one color,
while it is NP-hard when the edges of the graph are associated with at least
two colors. On general instance, MAXCDP is shown to be not approximable
with factor O(n?), where n is the number of vertices of the input graph, for
any constant 0 < d < 1, and W[l]-hard if the parameter if the number of
paths in the solution [3]. Moreover, MAXCDP is approximable within factor
q, where ¢ is the number of colors of the edges of the input graph, but not
approximable within factor 2 — €, for any ¢ > 0, when ¢ is a fixed constant.
Moreover, in [13] it is considered a variant of the problem where the length of
the paths in the solution are (upper) bounded by an integer { > 1, as in many
real social networks the diameter of the graph is bounded by a constant and we
are interesting in short paths connecting two vertices. When [> 4 MAXCDP is
NP-hard, while it is polynomial time solvable for I < 4 [13]. The bounded length
variant of the problem is approximable within factor (I — 1)/2 + € [13], and it
is fixed-parameter tractable for the combined parameter number of paths in the
solution and [[3]. Moreover, this variant does not admit a polynomial kernel
unless NP C coNP/Poly, as it follows from the results in [7].

In this paper, we further investigate the complexity of MAXCDP and of a
related problem that we introduce, called MAXCDDP, whose goal is to find
the maximum number of vertex-disjoint and color-disjoint (that is having differ-
ent colors) uni-color paths. The color disjointness of paths can be interesting to
characterize how different relations in a network connects two vertices. In this
case, we are not interested to have more paths of a single color, but rather to
compute the maximum number of color-disjoint paths between two vertices. We
study how the complexity of MAXCDP and MAXCDDP depends on several
parameters, in the spirit of a multivariate complexity analysis [9]. As described
in the previous paragraph, it has already been studied how the complexity of
MAXxCDP depends on different constraints (number of colors of each edge, max-
imum length of a path). We believe that it is interesting to take into account
the structure of the input graph when studying the complexity of these two
problems, since real-life networks exhibit properties that leads to graphs with a
specific structure. For example, it is widely believed that social networks have
a “small-world phenomenon” property, and thus information on the structure
of the corresponding graphs can be derived. Moreover, such a study is also of
theoretical interest, since it helps to better understand the complexity of the two
problems.

First, we investigate how the complexity of the two problems depends on
two graph parameters: distance from disjoint paths and size of vertex cover. In
Sect. 3 we show that on graphs at distance bounded by a constant from disjoint
paths MAXCDP admits a polynomial-time algorithm, whereas MAXCDDP is

Finding Disjoint Paths on Edge-Colored Graphs 115

NP-hard. Then, in Sect.4 we show that MAXCDP is fixed-parameter tractable
when parameterized by the size of the vertex cover of the input graph. In Sect. 5
we consider the parameterized complexity of the bounded length version of MAX-
CDDP, where the parameters are the number of vertex and color-disjoint paths
of a solution and the maximum length of a path, and we extend the FPT algo-
rithm for MAXCDP to MAXCDDP. Finally, we show in Sect. 6 that both prob-
lems are not p-approximable in FPT time, for any function p.

2 Definitions

In this section we present some definitions as well as the formal definition of
the two combinatorial problems we are interested in. First, notice that in this
paper, we will consider undirected graphs. Given a graph G = (V, E) and a
vertex v € V, we denote by N(v) the vertex adjacent to v in G. Consider a set
of colors C' = {c1,...,cq}, where ¢ represents cardinality of C. A C-edge-colored
graph (or simply an edge-colored graph when the set of colors is clear from the
context) is defined as G = (V, E, f¢), where V denotes the set of vertices of G
and E denotes the set of edges, and fc : E — 2¢ is a coloring of each edge with
a set of colors in C' = {c1,...,¢4}. In the paper, we denote by n the size of V'
and by m the size of F.

A path 7 in G is said to be colored by c; € C if all the edges of 7 are colored
by ¢;. A path 7 in G is called a uni-color path if there is a color ¢; € C such
that all the edges of 7 are colored by c;.

Given two vertices x,y € V, an xy-path is a path between vertices x and
y. Two paths 7" and n” are internally disjoint (or, simply, disjoint) if they do
not share any internal vertex, while a set P of paths is internally disjoint if the
paths in P are pairwise internally disjoint. Two uni-color paths 7’ and ©” are
color disjoint if they are disjoint and they have different colors.

Next, we introduce the formal definitions of the problems we deal with.

Max COLORED DIsJOINT PATH (MAXCDP)

e Input: a set C of colors, a C-edge-colored graph G = (V, E, f¢) and two
vertices s, t € V.
e Output: the maximum number of disjoint uni-color st-paths.

Max CoLORED DouBLy DisjoINT PaTH (MAxXCDDP)

e Input: a set C of colors, a C-edge-colored graph G = (V, E, f¢), and two
vertices s,t € V.
e Output: the maximum number of color disjoint uni-color st-paths.

We will consider a variant of the two problems where the length of the paths
in the solution is (upper) bounded by an integer { > 1, that is we are interested
only in paths bounded by [. These variants will be denoted by I-MAXCDP and
[-MaAxXCDDP.

116 R. Dondi and F. Sikora

Notice that in the versions of these problems parameterized by the natural
parameter, we are also given an integer k£ > 0 and we look whether there exists
at least k (color) disjoint uni-color st-paths.

A parameterized problem (I, k) is said fized-parameter tractable (or in the
class FPT) with respect to a parameter k if it can be solved in f(k)-|I|¢ time (in
fpt-time), where f is any computable function and c is a constant. The class XP
contains problems solvable in time |I|7(*), where f is an unrestricted function.
We defer the reader to the recent monographs of Downey and Fellows or Cygan
et al. for additional information around parameterized complexity [5,6].

The natural notion of parameterized approximation was introduced quite
recently (see the survey of Marx for an overview [10]). Informally, it aims at
giving more time than polynomiality to achieve better approximation ratio. We
give the definition of fpt cost p-approximation algorithm, as in Sect.6 we will
rule out the existence of such an algorithm for MAXCDP and MAXCDDP. This
is a weaker notion than fpt-approximation, but notice that we will prove negative
result (which will thus be stronger).

An NP-optimization problem @Q is a tuple (Z, Sol,val, goal), where T is the
set of instances, Sol(I) is the set of feasible solutions for instance I, val(1,S) is
the value of a feasible solution S of I, and goal is either max or min.

Definition 1 (fpt cost p-approximation algorithm, Chen et al. [4]). Let
Q be an optimization problem and p: N — R be a function such that p(k) > 1 for
every k > 1 and k-p(k) is nondecreasing (when goal = min) or ﬁ is unbounded
and nondecreasing (when goal = mazx). A decision algorithm A is an fpt cost
p-approzimation algorithm for Q (when p satisfies the previous conditions) if for
every instance I of Q and integer k, with Sol(I) # 0, its output satisfies the
following conditions:

1. If opt(I) > k (when goal = min) or opt(I) < k (when goal = mazx), then A
rejects (I, k).

2. If k = opt(I) - p(opt(I)) (when goal = min) or k < p(of;t((ll))) (when goal =
maz), then A accepts (I, k).

Moreover the running time of A on input (I,k) is f(k) - [I|°M. If such a
decision algorithm A exists then Q is called fpt cost p-approrimable.

3 Complexity of MaxCDDP and MaxCDP on Graphs at
Bounded Distance from Disjoint Paths

In this section we consider the complexity of MAXCDP and MAXCDDP on
graphs having distance bounded by a constant from disjoint paths. The distance
to disjoint paths is the minimum number of vertices to remove to make the graph
a set of disjoint paths.

We show that MAXCDDP is NP-hard for graphs at distance two from dis-
joint paths, while MAXCDDP is polynomial time solvable when the input graph
has distance bounded by a constant from disjoint paths.

Finding Disjoint Paths on Edge-Colored Graphs 117

3.1 Complexity of MaxCDDP on Graphs at Distance Two from
Disjoint Paths

In this section, we show that if the input graph G has distance two from a set
of disjoint path, then MAXCDDP is NP-hard.

We give a reduction from Maximum Independent Set on Cubic graphs
(MAXISC)!. We recall the definition of MAXISC:

MAXIMUM INDEPENDENT SET ON CUBIC GRAPHS (MAXISC)

e Input: a cubic graph G; = (Vr, Ey).
e Output: a subset V] C V; of maximum cardinality, such that for each
Vg, Uy € V] it holds {vg,v,} ¢ E

We build a graph G = (V, E, f¢) from G; = (V;, Er) by defining a gadget
GV, for each vertex v; € V7, and connecting the gadget to vertices s and t.

Given v; € Vi, define a gadget GV consisting of a set V; of 4 vertices (see
Fig. 1): V; = {vj, v ; 1 v; € V1,1 < j < 3}

Moreover, define the set C' of colors as follows: C' = {¢; : v; € V;} U {¢;; :
{’Ui,l}j} € E]}.

We assume that, given a vertex v;, the vertices adjacent to v; (that is the
vertices in N (v;)) are ordered, i.e. if vj,vp, v, € N(v;) with 1 < j < h < z, then
v; is the first vertex adjacent to v;, vy, is the second and v, is the third.

We define the edges of G be means of the following paths:

— a path colored ¢; that consists of s, v}, v}, v}, v} 5, t, with 1 <i < |V
— if, according to the ordering, v; is the p-th vertex incident on v;, 1 < p < 3,

then there exists a path colored ¢; ; that passes through s, v;)p, t

First, we prove that the graph G has distance two from disjoint paths.

- | - @

Fig. 1. Gadget GV; associated with vertex v; € V;. Vertices v;, v, v, are three vertices
of Vi, with N(v;) = {vj,vn,v:} and j < h < z. v; is the first vertex adjacent to v; in
G and thus there exists a path in G colored by c¢;,; that passes through s, v 1, ¢; v is
the second vertex adjacent to v; in Gy (hence there exists a path in G colored by ¢;,n
that passes through s, v; 5, t); v. is the third vertex adjacent to v; in G; (hence there
exists a path in G colored by c;,. that passes through s, v; 3, t).

Ci
Cij

L A graph is cubic when each of its vertices has degree 3.

118 R. Dondi and F. Sikora

Lemma 2. Given a cubic graph Gy, let G be the corresponding graph input of
MAXCDDP. Then G has distance two from disjoint paths.

Proof. After the removal of s and ¢, the paths left in the resulting graph are the
paths colored by ¢;, with 1 < i < |V;], that pass through v}, v} ;, v} 5, v; 5. Since
these paths are pairwise vertex disjoint, the lemma holds. a

Next, we prove the main results of the reduction.

Lemma 3. Let Gj be a cubic graph and G be the corresponding graph input
of MAXCDDP. Given an independent set V] of G, then we can compute in
polynomial time |E| + |V/| disjoint uni-color color paths in G.

Proof. Consider an independent set V] C V; of G, we define a set P of uni-color
disjoint paths as follows. P contains a path s, v}, v} 1, ;] 5, v; 3, colored by ¢;, for
each v; € V]. Moreover, for cach {v;,v;} € Ey, assume w.l.o.g. that v; € Vi \ V]
and that v; is the h-th vertex, 1 < h < 3, adjacent to v;. Then P contains the
path s, vg’ n» U colored by ¢; ;. Notice that these paths, since V/ is an independent
set, are by construction color disjoint. a

Lemma 4. Let G be a cubic graph and G be the corresponding graph input of
MaXCDDP. Given |E| +t color disjoint uni-color paths in G, we can compute
in polynomial time an independent set of size t for Gy.

Proof. Consider a solution P of the instance of MAXCDDP consisting of |E|+1¢
color disjoint uni-color paths. First, we can assume that P contains, for each
color ¢;;, a path colored by c; ;. Assume this is not the case. Then, we can
replace a path colored by ¢; or a path colored by ¢; with a path p’ colored by
ci,; that passes through the vertices of gadget V'G; or VG, without decreasing
the number of path in P. Moreover, notice that by replacing a path color ¢; with
p’, the set P still contains color disjoint uni-color paths.

Now, starting from P, we can compute an independent set V/ as follows. If
P contains a path s, v}, v} 1,v;5,v; 3, colored by ¢;, then v; € V7. Notice that
V] is an independent set, since, if v;, v, with {v;,v;} € E, are both in V/, this
implies that there is no ¢; j-path in P, contradicting our assumption. a

Hence, we can prove the NP-hardness of MAXCDDP on graphs at distance
two from disjoint paths.

Theorem 5. MAXCDDP is NP-hard, even if the graph G has distance two
from disjoint paths.

Proof. MAXISC is NP-hard [1]. Hence Lemmas 2, 3 and 4 imply that MAX-
CDDP is NP-hard, even if the graph G has distance two from disjoint
paths. |

The previous result implies that MAXCDDP cannot be solved in n/(®) time
unless P=NP (it is not in the class XP), where k is the distance to disjoint
paths of G, but also for “stronger” parameters like pathwidth or treewidth [9]

Finding Disjoint Paths on Edge-Colored Graphs 119

3.2 A Polynomial-Time Algorithm for MaxCDP on Graphs at
Constant Distance from Disjoint Paths

In this section, we show that, contrary to MAXCDDP, MaXCDP is polynomial-
time solvable when the input graph G has distance bounded by a constant d from
a set P of disjoint paths (that is, it is in the class XP for the parameter distance
to disjoint paths).

Next, we present the algorithm. Notice that we assume that a set X C V is
given, such that after the removal of X U {s,t} the resulting graph consists of a
set P of disjoint paths?. We assume that X and P are defined so that s,t ¢ X
and that no path in P contains s and ¢. Denote by V(P) the set of vertices that
belong to a path of P, it holds V = V(P) U X U {s,t}.

Since G has distance d, where d > 0 is constant, from the set of disjoint paths
P, it follows that | X| < d. Let P’ = {p1,...,pp}, with 1 <4 < b < d, such that
V(P’) C V is the set of paths of an optimal solution of MAXCDP such that p;
contains a non-empty subset of X.

The algorithm computes each p;, with 1 < ¢ < b, by iterating through sub-
paths of size at most d in P and a subset of X. More precisely, p; is computed
as follows. Each path p; contains at most d + 1 disjoint subpaths that belong
to paths in P, that are connected through a subset of at most d vertices of X.
In time O(n?(@*tY), we compute the at most d + 1 disjoint subpaths p,[j1, jo] of
P, € P that belong to p;; in time O(2%) we compute the subset X; C X that
belong to each p;. Let V; = V(p;) U X;, that is the set of vertices that belong to
p; and to subset X;. Notice that the subsets V;, with 1 < ¢ < b, are computed
so that they are pairwise disjoint.

The algorithm computes in polynomial time if there exists a uni-color path
from s to t that passes through the vertices V;. If for each ¢ with 1 < ¢ < b such
a path exists, then the algorithm computes the maximum number of uni-color
disjoint paths in the subgraph G’ of G induced by V' = V\Uf:1 V;. Notice that,
since V' N X = (), it follows that, if we remove s and ¢ from V', G’ consists of
a set of disjoint paths {p},...,p.}. The maximum number of uni-color disjoint
paths in the subgraph G’ can be computed in polynomial time, as shown in the
following lemma.

Lemma 6. Let G = (V, E, f.) be an edge colored graph such that V* = V\{s,t}
induces a set of disjoint paths. Then MAXCDP on G can be solved in polynomial
time.

Proof. Let P = {p},...,p.} be the set of disjoint paths induced by V*. Since
there is no st-path in G containing a vertex of p and a vertex of p;, with i #£ j,
we compute a solution of MAXCDP independently on each path p;. Let P; be
the set of uni-color st-paths that contains only vertices of p}. For each i with
1 <7 < r, we compute a shortest uni-color st-path p that contains only vertices
of p}, we add it to P;, and we remove the vertices of p from p}. We iterate this
procedure, until there exists no st-path that contains only vertices of pj.

2 Notice that, since | X| < d, X can be computed in time O(n?).

120 R. Dondi and F. Sikora

We claim that P; is a set of uni-color st-paths of maximum size. Consider
a shortest path p added to P;. Let x be the vertex of p adjacent to s and y be
the vertex of p adjacent to t. Notice that each vertex in p, except for z and y,
is not connected to s or t, otherwise p would not be a shortest path between s
and t. Now, assume that there is an optimal solution Q of MAXCDP that does
not contain p and that, moreover, contains an st-path that passes through some
vertex of p, otherwise we can add p to @ and @ would not be optimal. Then
by construction, since P is a set of disjoint paths, Q@ must contain a path p’
that contains p as a subpath. But then we can replace p’ with p in Q, without
decreasing the size of the optimal solution. O

Now, we give the main result of this section.

Theorem 7. MAXCDP is in XP when the distance to disjoint paths is bounded
by a constant.

Proof. Notice that for each 7 with 1 < i < b < d, we compute the set V; in
time O(anQ(d“)); hence the d disjoint sets Vi,...,V; are computed in time
O(2d2 n24(@+1)) Since the existence of a uni-color path that passes through the
vertices V; can be computed in polynomial time and since by Lemma 6 we
compute in polynomial time the maximum number of uni-color disjoint paths in
the subgraph G, the theorem holds. a

4 FPT Algorithm Parameterized by Vertex Cover for
MaxCDP

In this section, we will show that MAXCDP is FPT when parameterized by the
size of the vertex cover of the input graph.

Theorem 8. MAXCDP is in FPT when parameterized by the size of the vertex
cover of the input graph.

Proof. First, consider uni-color paths of length three s,v,t, for some v € V.
Uni-color path of length three are greedily added to a solution of MAXCDP.
Since any solution of MAXCDP contains at most one uni-color path that passes
through v, it follows that there exists an optimal solution of MAXCDP that
contains path s, v,t. Hence, we add such path to our solution P, and we remove
vertex v from G.

Let V'’ be a vertex cover of the resulting graph G = (V. E, fo), |[V'| = k
(which can be computed in FPT-time). Since in G there is no uni-color path of
length three connecting s and t, the following property holds. Consider a uni-
color path p of G, then p either consists of vertices in V' or each vertex of V'\ V’
that belongs to p is adjacent in p to vertices of V' U {s} U {¢}. This is true since
V' is a vertex cover (and thus V' \ V' is an independent set in G).

A consequence of this property is that each uni-color path has length at most
2k. Moreover, there can be at most k uni-color paths in a solution (since each

Finding Disjoint Paths on Edge-Colored Graphs 121

path must contain a vertex of V’ and |V’| < k). Since both the number of paths
and the length of paths are bounded by £ and MAXCDP is known to be in FPT
w.r.t. the combination of these two parameters [3], the claimed result follows. O

This algorithm does not easily extend to MAXCDDP. The main difference
between MAXCDDP and MAXCDP, when considering as parameter the vertex
cover of the input graph, is that in the latter we can safely add a uni-color path
s, v, t of length three to a solution, while in the former we are not allowed to do it.
Consider for example the uni-color path s, v, t of length three colored by c; if this
path belongs to a solution of MAXCDDP, it prevents any other uni-color path
p’ that passes through v (colored by some color ¢’), but also any path p” colored
by ¢ (that does not pass through v) to be part of the solution. So, by adding the
path s,v,t to the solution we are computing, we may get a suboptimal solution,
since by removing p and by adding p’ and p”, we possibly compute a larger set
of disjoint color uni-color paths.

5 A Fixed-Parameter Algorithm for I-MaxCDDP

In this section, we give a fixed-parameter algorithm for -MAXCDDP, the length-
bounded version of MAXCDDP, parameterized by the number k of uni-color
color disjoint st-paths of a solution. Notice that MAXCDDP is W[1]-hard when
parameterized by k, as the reduction that prove the W[1]-hardness of MaAxCDP
parameterized by k consists of paths having distinct colors [3].

Next, we present a parameterized algorithm based on the color coding
technique [2]. The algorithm is inspired by the one for MAXCDP [3]. However,
in this case we must combine two different labelings, one to label the vertices
that belong to a uni-color path, one to label the color associated with a uni-color
path of MAXCDDP.

First, we introduce the definition of perfect hash function on which our algo-
rithm is based. A family F' of hash functions from a set U (the vertex set in
the traditional applications of color coding) to the set {l1,...,lx} of labels is
k-perfect if, for each subset U’ of U with |U’| = k, there exists a hash function
f € F such that f assigns a distinct label to each element of U’. Function f is
called a labelling function.

Let f, € Fy be a labelling function that assigns to each vertex v € V' \ {s,¢}
a label f,(v) € L, = {14,...,hy}, where h, = |L,| < lk.

Consider a second labelling function f. € F¢ that assigns to each color ¢ € C
a label f.(v) € L, = {1¢,...,he}, where h, = |L.| < k.

By the property of perfect hash functions, we assume that each vertex that
belongs to a solution of MAXCDDP is assigned a distinct label by f, and that
each color d, such that there exists a uni-color path of MAXCDDP colored by
d, is associated with distinct label f..

A simple path p in G is perfect for a set L, of labels assigned to V if and
only if for each vertex v of p, with v ¢ {s,t}, f,(v) € L,, and for each pair of
distinct vertices u, v of p, f,(u) # f,(v). A set {p1,...,pr} of uni-color paths is

122 R. Dondi and F. Sikora

perfect for the set L, and L. of labels if and only if: (1) there exists a partition
{Ly1,..., Ly} of L, such that each p; is perfect for L;; (2) each path p;, with
1 < i <k, is colored by ¢ € C associated with a distinct label in L.. We combine
two dynamic-programming recurrences to compute, given the labelling functions
fv and f,., whether there exists a set of perfect uni-color paths in G.

First, consider the function S[L],u,A], with L! C L,, u € V and X\ € C.
S[L!,u,A] = 1 if and only if there exists a path from s to vertex u # ¢, such
that the path is perfect for L! and p is colored by A.

We consider a second function II[L!, M,z], with L}, C L, and M C L.,
0<z<k I[L,, M,z =1if and only if there exist a set of labels L! C L, and
a set of labels M C L., such that there exists a set of z uni-color paths perfect
for L and M.

S[L,,,u, A is defined as follows (we recall that W represents the disjoint union

operator). In the base case, when u = s, S[L],u,A\] = 1 if L] = 0, otherwise
(when L/ # (), S[L,u,\] = 0.
When u # s:

S[L! u,\] = max {S[Ly, w, Al | L, = L & { fu(u)} A {w,u} is colored by A}
weN (u

Next, we give the recurrence, IT[L!, M, z]. In the base case, that is when
z =0, then IT[L, M,0] = 1if L! = 0 and M = 0, else II[L!, M,0] = 0. Recall
that [is the bound on the length of each path, L! C L,, M C C and 0 < z < k,
II[L],, M, z] is defined as follows:

max {II[L), M\ {fc(\)},z—1] A S[L},u, A |
L, M, z] = L=LIYL;N |[L*|<I—1 AN XECAfe(N\) €M A
{u,t} € E is colored by A}
(1)

Next, we prove the correctness of the two recurrences.

Lemma 9. Given a labelling f, of the vertices of G, a color A € C, a vertex u
and a set L) C L, there exists a simple path p in G from s to u perfect for L,
if and only if S[L.,u,\] = 1.

Proof. We prove the lemma by induction on the length of the path p. First, we
consider the base case, that is u = s. Since s is not associated with a label in
L,, it holds S[L),u,] = 1 if and only if L] = 0.

Consider now the general case and assume that there exists a path p in G
perfect for L! such that p is colored by A. Consider the last vertex u of p, and
let w be the vertex adjacent to w in p. By induction hypothesis, it follows that
S[LY,w,\] = 1, where L, = L & {f,(u)}. By the definition of the recurrence,
then S[L),u, A\l = 1.

Assume that S[L!, u, \] = 1. By the definition of the recurrence it holds that
S[LY,w,\] = 1, where L, = L7 & {f,(u)} and there is an edge {u,w} € E

Finding Disjoint Paths on Edge-Colored Graphs 123

colored by A. By induction hypothesis, since S[L!, w, \] = 1, there exists a path
p’ from s to w perfect for L! such that p’ is colored by A. Since {u,w} € E is
colored by A, it follows that there exists a simple path p in G from s to u perfect
for L!. O

Lemma 10. Given a labelling f, of the vertices of G and a labelling f. of the
set C' of colors, a set L), C L,, a set M C L., and integer z with 0 < z < k,
there exists a set {p1,...,p.} of uni-color paths which is perfect for L. and M
if and only if IT[L),, M, z] = 1.

Proof. We prove the lemma by induction on the number of uni-color paths. First,
we consider the base case, that is z = 0. Then there is no uni-color path perfect
for L), = 0§ and M = () if and only if I7[,0,0] = 1.

Consider now that there exist z disjoint color uni-color paths. Consider one of
such paths, denoted by p, which is colored by A and whose vertices are associated
with set of labels L} and such that the vertex of p adjacent to ¢ is u, hence
{u,t} € E is colored by A. Then, by Lemma 9 S[L%,u,\] = 1. Moreover, by
induction hypothesis it holds II[L), M \ {f.(\)},z — 1] = 1, where L/ = L} &
L) and f.(\) € M. Hence, by the definition of the recurrence for I, it holds
oL, M, 2] = 1.

Consider the case that II[L!, M, z] = 1. By the definition of function II, it
follows that there exists a color A € C, with f.(\) € M, and a set of labels
L} C L,, such that IT[L), M\ {f.(\)},z —1] = 1, where L] = L7 W L, and
S[LE,u, \] = 1. By induction hypothesis, since II[L), M \ {fc(A\)},z — 1] = 1,
there exists a set P’ of z — 1 paths perfect for the sets L{, and M \ {f.(A\)}.
By Lemma 9 there exists a path p’ from s to u colorful for L! and that has
color \. Moreover, since IT[L), M, z] = 1, {u,t} € E is colored by A. By the
property of labelling f., no path of P’ has label f.(\), hence P’ Up is perfect for
L/ and M. O

We can now state the main result.

Theorem 11. I-MAXCDDP can be solved in time 2°) poly(n).

Proof. An optimal solution of [-MAXCDDP consisting of k& color disjoint paths
exists if and only if IT[L,, M, k] = 1. The correctness of the recurrence to com-
pute IT follows from Lemma 10. Now, we discuss the time complexity to com-
pute IT[L!, M, z] and S[L’,u, \]. First, consider S[L’,u, \]. It consists of 2/*nq
entries and each entry can be computed in time O(n), as we consider each vertex
w € N(u).

Now, consider IT[L, M, z]. Tt consists of 280+ D entries. In order to compute
II[L!, M, z], at most 2¥'k entries must be considered, since IT[L*, M\{f.(v)}, z—
1] is considered, where we have 2* subsets L* C L! and k labels f.(v). Given
two labelling functions f, and f., the time complexity to compute the entries
ML, M,z] is O(28C*+DEn). By the property of color-coding [2], a function
fs € F, and a function f, € F, can be computed in time 2°U%) poly(n) and
20(0) poly(n), respectively, hence in time 2°¢) poly(n). O

124 R. Dondi and F. Sikora

6 FPT Inapproximation

Since MAXCDP and MAXCDDP are hard to approximate in poly-time and
do not admit fixed-parameterized algorithm for parameter number of paths,
it is worth to investigate approximation in FPT time, i.e. find approximate
solution with additional time. Unfortunately, in this section, we show that both
MAXCDP and MAXCDDP do not admit an FPT cost p-approximation, for
any function p of the optimum, unless FPT =W/[1]. We will show the result by
giving a reduction from the THRESHOLD SET problem. Marx [11] showed that
the THRESHOLD SET problem does not admit a fpt cost p-approximation, for
any function p of the optimum, unless FPT = W[1].
First, we introduce the definition of the THRESHOLD SET problem.

THRESHOLD SET

e Input: a set U of elements, a collection & = {S1,...,5,} of subsets of U
and a positive integer weight w(S;) for each S; € S, with 1 <1 < q.

e Output: a set T C U of maximum cardinality such that |T'NS;| < w(S;) for
every S; € S.

The cost of a solution of THRESHOLD SET is denoted by |T'|. Notice that
this problem can be seen as a generalization of the INDEPENDENT SET problem;
indeed, for a graph G = (V, E), we can define U =V, S = E and w(S) =1 for
every set S € S.

We will reduce THRESHOLD SET to MAXCDP in polynomial time such that
there is a “one-to-one” correspondence between the solutions of the two problem,
therefore the inapproximability result transfers to MAXCDP, and then to MAX-
CDDP. The reduction is inspired by the one in [3], that shows inapproximability
in polynomial time and W[1]-hardness of MAXCDP.

First, we design the reduction for the MAXCDP problem. Notice that we
assume that we are given an ordering over the sets in & (i.e. S; < Sj,i < j).
Consider an instance (U, S,w) of THRESHOLD SET, we define a corresponding
instance (G = (V, E, fc), s,t) of MAXCDP. The set V of vertices is defined as
follows:

V= {s,t}U{sili € [UN}U {87} € [IS]],1 < < w(S))}

The set of colors C' is defined as follows: C = {¢; : i € U}.
Now, we define the set FE of edges.

~ foralli € [|U[], define an edge {s, s;} colored by ¢; and an edge {s;, 57} colored
by ¢;, for all 1 < j < w(Sy), where ¢ is the smallest index of a set S; € S such
that i € S,

— from each Sg, define an edge {SZ, Sg:} colored by ¢;, for all 1 < j' < w(Sy),
such that ¢ € Sq, ¢ € Sy, ¢ > ¢q and, for each ¢ <1 < ¢/, it holds ¢ ¢ S,

— from each 5’27 define an edge {Sg, t} colored by c;, where i € S, and for each
¢ >qwith Sy € S,i¢ Sy.

Finding Disjoint Paths on Edge-Colored Graphs 125

=R W N

Fig. 2. Sample construction of an instance of MAXCDP from an instance of THRESH-
oLb SET with § = {{1,2,3},{1,4},{2,3,4}},w(S1) = 2,w(S2) = 1,w(S3) = 2.
A solution for this instance of THRESHOLD SET could be 7" = {1,2}, and we drawn
with dark edges the corresponding disjoint paths for MAXCDP.

See Fig. 2 for an example. Now, we prove the main properties of the reduction.

Lemma 12. Given an instance (U,S,w) of THRESHOLD SET, let (G =
(V,E, fc), s,t) be the corresponding instance of MAXCDP. Then, given a solu-
tion T' of THRESHOLD SET on instance (U,S,w), we can compute in polynomial
time a set of |T'| disjoint uni-color paths in (G = (V, E, fc), s,t).

Proof. Consider a solution T’ of THRESHOLD SET on instance (U, S,w), and
define a set P of |T”| disjoint uni-color paths in (G = (V, E, fc), s,t) as follows.
For each i € T’, define a uni-color path p colored by ¢; that starts in s, passes
through s;, and for each S, € S, if 7 is the j-th element of 7" in Sy, 1 < j < w(Sy),
passes through vertex Sg. It follows that the path defined are disjoints, as at most
one element can be the j-th element of 77 in S, and [T N Sy| < w(Sy). O

Lemma 13. Given an instance (U,S,w) of THRESHOLD SET, let (G =
(V,E, fc), s,t) be the corresponding instance of MAXCDP. Then, given a set of
q disjoint uni-color paths in (G = (V, E, fc), s,t), we can compute in polynomial
time a solution of size ¢ of THRESHOLD SET on instance (U, S, w).

Proof. Consider a set P of disjoint uni-color paths in (G = (V, E, fc), s, t). First,
we claim that each path in P has a distinct color. Indeed, the paths in P must
be disjoint and, by construction, for each color ¢; each path must pass trough
vertex s;.

Now, starting from P, we define a solution 7" of of THRESHOLD SET on
instance (U, S, w). For each path p € P colored by ¢;, elements u; belongs to T”.
We show that T” is a a solution of THRESHOLD SET on instance (U, S, w).

Consider a set S; € S, then there exists a most w(S;) elements in 7”. Indeed,
notice that, by construction, there exists at most w(S;) vertices S?, hence by

126 R. Dondi and F. Sikora

construction there exist at most w(S;) paths in P that passes through vertices
of S, hence at most w(S;) elements in T” belong to S;. As a consequence T” is
a feasible solution of THRESHOLD SET on instance (U, S,w). By construction,
IT'| = q. O

Theorem 14. MAXCDP and MAXCDDP cannot be approximated in FPT-
time within any function p of the optimum, unless FPT = W[1].

Proof. The theorem holds for MAXCDP since THRESHOLD SET cannot be
approximated within any function p of the optimum, unless FPT =W|1] [11],
and from the properties of the polynomial time reduction proved in Lemmas 12
and 13.

For MAxXxCDDP, it holds from the fact that in the described reduction all
the paths have a distinct color. a

7 Conclusion

In this paper, we continued the complexity analysis of MAXCDP and deepen
the hardness analysis according to the structure of the input graph. We also
introduced a new variant, called MAXCDDP, asking for a solution with vertex
and disjoint colors.

In the future, we would like to further deepen the analysis on the the struc-
tural complexity of MAXCDP and MAXCDDP. For example is MAXCDP in
XP when the parameter if the size of the Feedback Vertex Set of the input graph?
Is MAXCDP FPT when the parameter if the distance to disjoint paths of the
input graph? We would also like to improve the running time of our algorithms
and to match them with some lower bounds under widely believed assumptions
in order to have a fine-grained complexity analysis of these problems.

References

1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theor.
Comput. Sci. 237(1-2), 123-134 (2000)

2. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844-856 (1995)

3. Bonizzoni, P.,; Dondi, R., Pirola, Y.: Maximum disjoint paths on edge-colored
graphs: approximability and tractability. Algorithms 6(1), 1-11 (2013)

4. Chen, Y., Grohe, M., Griiber, M.: On parameterized approximability. In:
Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 109—
120. Springer, Heidelberg (2006). doi:10.1007/11847250-10

5. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015)

6. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer, London (2013)

7. Golovach, P.A.) Thilikos, D.M.: Paths of bounded length and their cuts: parame-
terized complexity and algorithms. Discrete Optim. 8(1), 72-86 (2011)

http://dx.doi.org/10.1007/11847250_10

10.

11.

12.

13.

Finding Disjoint Paths on Edge-Colored Graphs 127

Hanneman, R., Riddle, M.: Introduction to social network methods. In: Scott,
J., Carrington, P.J. (eds.) The SAGE Handbook of Social Network Analysis, pp.
340-369. SAGE Publications Ltd, Thousand Oaks (2011)

Komusiewicz, C., Niedermeier, R.: New races in parameterized algorithmics. In:
Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp.
19-30. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32589-2_2

Marx, D.: Parameterized complexity and approximation algorithms. Comput. J.
51(1), 60-78 (2008)

Marx, D.: Completely inapproximable monotone and antimonotone parameterized
problems. J. Comput. Syst. Sci. 79(1), 144-151 (2013)

Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.
Structural Analysis in the Social Sciences. Cambridge University Press, Cambridge
(1994)

Wu, B.Y.: On the maximum disjoint paths problem on edge-colored graphs. Dis-
crete Optim. 9(1), 50-57 (2012)

http://dx.doi.org/10.1007/978-3-642-32589-2_2

Total Dual Integrality of Triangle Covering

Xujin Chen®™), Zhuo Diao, Xiaodong Hu, and Zhongzheng Tang

Institute of Applied Mathematics, AMSS,
Chinese Academy of Sciences, Beijing 100190, China
{xchen,diaozhuo,xdhu, tangzhongzheng}@amss.ac.cn

Abstract. This paper concerns weighted triangle covering in undirected
graph G = (V, E), where a nonnegative integral vector w = (w(e) : e €
E)T gives weights of edges. A subset S of E is a triangle cover in G if S
intersects every triangle of G. The weight of a triangle cover is the sum
of w(e) over all edges e in it. The characteristic vector x of each triangle
cover in G is an integral solution of the linear system

T:Ax>1,x >0,

where A is the triangle-edge incidence matrix of G. System = is totally
dual integral if max{lTy ATy < w,y > 0} has an integral optimum
solution y for each integral vector w € Z%¥ for which the maximum
is finite. The total dual integrality of = implies the nice combinatorial
min-max relation that the minimum weight of a triangle cover equals
the maximize size of a triangle packing, i.e., a collection of triangles in
G (repetitions allowed) such that each edge e is contained in at most
w(e) of them. In this paper, we obtain graphical properties that are
necessary for the total dual integrality of system 7, as well as those for the
(stronger) total unimodularity of matrix A and the (weaker) integrality
of polyhedron {x : Ax > 1,x > 0}. These necessary conditions are
shown to be sufficient when restricted to planar graphs. We prove that
the three notions of integrality coincide, and are commonly characterized
by excluding odd pseudo-wheels from the planar graphs.

Keywords: Triangle packing and covering - Totally dual integral
system - Totally unimodular matrix - Integral polyhedron - Planar
graph + Hypergraph

1 Introduction

Covering and packing triangles in graphs has been extensively studied for decades
in graph theory [6,7,14] and optimization theory [2,9]. In this paper, we study the
problem from both a polyhedral perspective and a graphical persective — charac-
terizing polyhedral integralities of triangle covering and packing with graphical
structures.

Research supported in part by NNSF of China under Grant No. 11531014 and
11222109.
© Springer International Publishing AG 2016

T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 128-143, 2016.
DOI: 10.1007/978-3-319-48749-6_10

Total Dual Integrality of Triangle Covering 129

Graphs considered in this paper are undirected, simple and finite. A weighted
graph (G, w) consists of a graph G (with vertex set V(G) and edge set E(G))
and an edge weight (function) w € ZE(G). The weight of any edge subset S
is w(S) = > . cqw(e). By a triangle cover of G we mean an edge subset S
(C E(G)) whose removal from G leaves a triangle-free graph. Let 7,,(G) denote
the minimum weight of a triangle cover of (G, w). By a triangle packing of (G, w)
we mean a collection of triangles in G (repetition allowed) such that each edge
e € E(G) is contained in at most w(e) of them. Let v,(G) denote the maximum
size of a triangle packing of (G, w). In case of w = 1, we write 7,(G) and v4,(G)
as 7(G) and v(G), respectively.

Tuza’s Conjecture and Variants. A vast literature on triangle covering and
packing concerns Tuza’s conjecture [14] that 7(G) < 2v(G) for all graphs G
and its weighted version [2] that 7,(G) < 2v,(G) for all graphs G and all

w € ZE(G). Both conjectures remain wide open. The best known general results

7(G) < 2.87v(G) and 7,(G) < 2.92v,,(G) are due to Haxell [7] and Chapuy
et al. [2], respectively. Many researchers have pursued the conjectures by showing
the conjectured inequalities hold for certain special class of graphs. In particu-
lar, Tuza [15] and Chapuy et al. [2] confirmed their own conjectures for planar
graphs. Haxell et al. [6] proved the stronger inequality 7(G) < 1.5v(G) if G is
planar and K,-free, where K, denotes the complete graph on 4 vertices.

Along a different line, Lakshmanan et al. [10] proved that the equation
7(G) = v(G) holds whenever G is (K4, gem)-free or G’s triangle graph is
odd-hole-free. A natural question arises for the weighted version: When does
Tw(G) = v4(G) hold? This question is closely related to the notion of total dual
integrality from the theory of polyhedral combinatorics.

Total Dual Integrality. A rational system {Ax > b,x > 0} is called totally dual
integral (TDI) if the maximum in the LP duality equation

min{c’x : Ax > b,x > 0} = max{b’y: ATy <c,y > 0}

has an integral optimum solution y for each integral vector c¢ for which the
maximum is finite. The model of TDI systems introduced by Edmonds and
Galies [5] plays a crucial role in combinatorial optimization and serves as
a general framework for establishing many important combinatorial min-max
relations [3,4,11,12]. Schrijver and Seymour [13] derived the following useful
tool for proving total dual integrality.

Theorem 1 [13]. The rational system Ax > b,x > 0 is TDI, if and only if
max{bTy : ATy <c,y > 0,2y isintegral}

has an integral optimum solution 'y for each integral vector ¢ for which the max-
imum s finite.

Edmonds and Giles [5] showed that total dual integrality implies primal inte-
grality as specified by the following theorem.

130 X. Chen et al.

Theorem 2 [5]. If rational system Ax > b,x > 0 is TDI and b is integral, then
the polyhedron {x : Ax > b,x > 0} is integral, i.e., min{c’x : Ax > b,x > 0}
18 attained by an integral vector for each integral vector ¢ for which the minimum
is finite.

Given a weighted graph (G, w), let A(G) denote the set of triangles in G.
To see the relation between the equation 7,(G) = v, (G) and TDI systems, let
us consider the hypergraph Hg = (E(G), A(G)) of triangles in G. We assume
A(G) # 0 to avoid triviality. The edge-vertex incidence matrix Ag of Hg is
exactly the triangle-edge incidence matrix of G, whose rows and columns are
indexed by triangles and edges of G, respectively, such that for any A € A(G) and
e€ E(G), Ape =1ife € A and Aa . = 0 otherwise. In standard terminologies
from the theory of packing and covering [4,12], we write

Tw(Hg) = min{w x: Agx > 1,x € ZE(G)}, (1.1)
vw(He) = max{17y : ALy <w,y ¢ Zﬁ(c)}, (1.2)
7 (He) = min{w’x : Agx > 1,x > 0}, (1.3)
vi(Hg) = max{17y : ALy < w,y > 0}. (1.4)

Combinatorially, each feasible 0-1 solution x of (1.1) is the characteristic vector
of a triangle cover of GG, and vice versa. Thus such an x is also referred to as
a triangle cover (or an integral triangle cover to emphasis the integrality) of G.
Moreover the minimality of 7,(H¢) implies that

Tw(Ha) = 7w(G).

Similarly, each feasible solution y of (1.2) is regarded as a triangle packing (or
an integral triangle packing) which contains, for each A € A(G), exactly y(A)
copies of A. In particular,

vw(He) = vy (G).
Usually, feasible solutions of (1.3) and (1.4) are called fractional triangle covers
and fractional triangle packings of G, respectively. Writing 7. (G) = 7.5 (H¢) and
vi(G) = vi(Ha), the LP-duality theorem gives

Tw(G) 2 74, (G) = vy (G) = v (G).
It is well known (see e.g., page 1397 of [12]) that

Tw(G) = vy(G) holds for each w € ZE(G) if and only if Agx > 1,x > 0is TDI.

Total Unimodularity. A matrix A is totally unimodular (TUM) if each subde-
terminant of A is 0, 1 or —1. Total unimodular matrices often imply stronger
integrality than TDI systems (see e.g., [8]).

Theorem 3. An integral matriz A is totally unimodular if and only if the system
Ax > b,x > 0 is TDI for each vector b.

Total Dual Integrality of Triangle Covering 131

The 0-1 TUM matrices are connected to balanced hypergraphs. Let ‘H =
(V,€) be a hypergraph with vertex set V and edge set £. Let k& > 2 be an
integer. In 'H, a cycle of length k is a sequence viejvqes ... viepv1 such that
v1,...,v € V are distinct, e1,...,e, € £ are distinet, and {v;,v;41} C e; for
eachi=1,...,k, where vg41 = v1. Hypergraph H is called balanced if every odd
cycle, i.e., cycle of odd length, has an edge that contains at least three vertices
of the cycle.

Theorem 4 (Berge [1]). Let H be a hypergraph such that every edge consists
of at most three vertices. Then the vertez-edge incidence matriz of H is TUM if
and only if H is balanced.

Our Results. Let B, 9, and J be the sets of graphs G such that the triangle-
edge incidence matrices Ag are TUM, systems Agx > 1,x > 0 are TDI, and
polyhedra {x|Agx > 1,x > 0} are integral, respectively. In terminologies of
hypergraph theory (see e.g., Part VIII of [12]),

G € B < H is balanced (by Theorem 4 because H¢ is 3-uniform).
G € M & Hg is Mengerian, i.e., 7,(G) = v, (G) holds for each w € ZE(G).
Ge T & Heisideal, ie., 7,(G) = 775(G) holds for cach w € Z7(?).

Recalling Theorems 2 and 3, given any graph G, the total modularity (balanced-
ness): G € B implies the total dual integrality (Mengerian property): G € I,
while G € 9t implies primal integrality: G € J. It follows that

BCMCI. (1.5)

In Sect.2, first we strengthen (1.5) to B & 9 & J (Theorem 5). Then we
obtain necessary conditions for a graph to be a member of J (Lemma 4) or a
minimal graph outside B (Theorem 6 and its corollaries) in terms of the pattern
of the so-called odd triangle-cycles (Definition 1). Building on these conditions,
we establish in Sect. 3 the following characterization for total dual integrality of
covering triangle in planar graphs G (Theorem 9):

GeMe GeB G eTJisKyfree & Gis Ky-free & odd pseudo-wheel-free,

where odd pseudo-wheels correspond to odd induced cycles in the triangle graph
of G (Definition 2). We conclude in Sect. 4 with remarks on characterizing general
graphs G € 9t and general graphs G € 7. For easy reference, Appendix gives a
list of mathematical symbols used in the paper.

2 General Graphs

In this section, we study TUM, TDI and integral properties for covering and
packing triangle in general graphs. We often identify a graph G with its edge set
E(QG). The following definition is crucial to our discussions.

132 X. Chen et al.

Definition 1. A triangle-cycle in G is a sequence C = e;/\jes - - - e, Ape; with
k > 3 such that ey, - , e are distinct edges, Ay, - -+, A\ are distinct triangles,
and {e;,e;41} C A, for each i € {1,2,--- ,k}, where ex1 = e;. In UX_; A, the
edges e, ea,...,¢e are join edges and other edges are non-join edges.

Let C = e1Aqes - epArer be a triangle-cycle. We call C' odd if its length k
is odd. By abusing notations, we identify C' with the graph U¥_; A;, whose edge
set we denote as E(C). We write Jo = {e1,- - , e} for the set of join edges, and
N¢ = E(C)\Je for the set of non-join edges. Let J denote the set of triangles
in C. A triangle in J¢ is basic if it belongs to Bo = {1, -+, Ak }. Two basic
triangles A; and A; are consecutive if |i — j| € {1,k — 1}. Triangles in J¢ can
be classified into four categories:

Toi={L e To:|ANJc| =i}, i=0,1,2,3.

It is clear from Definition 1 that Zc C Jr 2 U 3. We will establish a
strengthening B ¢ 9 ¢ J of the inclusion relations (1.5). The proof needs the
following equivalence implied by hypergraph theory.

Lemma 1. Let G be a graph. Then G € B if and only if every odd triangle-cycle
C in G (if any) contains a basic triangle that belongs to T 3;

Proof. Recall that G € B if and only if hypergraph He = (E(G), A(Q)) is
balanced. By definition, the balance condition amounts to saying that every odd
triangle-cycle C' in G (if any) has a triangle A which contains at least 3 joins.
It must be the case that A is formed by exactly 3 joins, giving A € J¢ 3. O

Observe that the balanced, Mengerian, and integral properties are all closed
under taking subgraphs (see, e.g., Theorems 78.2 and 79.1 of [12]).

Lemma 2. Let G be a graph and H a subgraph of G. If G € X for some X €
{B,0M, 7}, then H € X. O

Lemma 3. K, € 7\ M.

Proof. Note that K4 ¢ 9t follows from the fact that 7(K,) = 2 and v(K4) = 1.
To see Ky = (V,E) € 7, for any x € QF, let F(x) = {e € E: 0 < z(e) < 1}
consist of “fractional” edges w.r.t x. Taking arbitrary w € Zf , we consider an
optimal fractional triangle cover x* for (K4, w) such that

F(x*)is as small as possible.

We are done by showing that x* is integral. Suppose it were not the case. The
optimality says that wlx* = 7 (K;) and x* < 1. Thus F(x*) # 0.

If 2%(e) = 1 for some e € E, then X*|p\ e} is a fractional triangle cover for
K4 \ e such that (w|py (1) "X |p\(e} = Ty (K4) — w(e). Since Ky \ e € B C 7,
there is a triangle cover S of K4\ e with minimum weight w(S) < 7.5 (K4) —w(e).
So SU{e} is a triangle cover of K4 with weight w(S)4w(e) < 7. (K4), and hence
the incidence vector x € {0,1}F of SU{e} is an optimal fractional triangle cover
for (K4, w) with F(x) = 0 & F(x*) contradicting the minimality of F'(x*).

Total Dual Integrality of Triangle Covering 133

Therefore z*(e) < 1 for all e € E, and Ag,x* > 1 enforces that every
triangle of Ky intersects F'(x*) with at least 2 edges. Thus F(x*) contains four
edges e1,eq,e3,e4 that induce a cycle of Ky, where {e1,es3} and {ea,eq4} are
two matchings of K. Without loss of generality we may assume that z*(e;) =
min?_; 2*(e;). Let x € QF be defined by x(e;) = 2*(e;) + (—1)'a*(e;) for i =
1,2,3,4 and z(e) = z*(e) for e € E \ {e1, ea,€3,e4}. It is straightforward that

wlix =wlx*and F(x) C F(x*)\ {e1}.

Since every triangle of K4 intersects each of {e1,es} and {es,es} with exactly
one edge, we have Ax,x = Ag,x* > 1, which along with w/'x = w’x* says
that x € {0,1}¥ is an optimal fractional triangle cover for (K,,w). However,

F(x) & F(x*) gives a contradiction. O
Theorem 5. B ¢ M ¢ J.

Proof. In view of Lemma 3, it suffices to show that the graph G = (V, E) depicted
in Fig. 1 belongs to M \ B. Note that G = e;Aes - - - ez Arey is an odd triangle-
cycle of length 7, where B = {A1,09,...,7} and A = AG) = T =
{Aq,..., 7, s}

€1 Al Z,
€7 Aq Ay es
A Ay
Az
€g €5
Aj AVIRD

Fig. 1. Graph G € 9\ ‘B.

It is routine to check that none of G’s basic triangles A1, As, ..., A7 belongs
to Ja,3. Hence Lemma 1 asserts that G ¢ 8. To prove G € 9, by Theorem 1, it
suffices to prove that, for any w € Zf and an optimal solution y* of max{17y :
Agy < w,y > 0,2y € Zf_}, there is an integral triangle packing z € Zﬁ of
(G, w) such that 17z > 17y*.

Let y' € {0,1/2}4 be defined by y'(A) = y*(A) — |y*(A)] for each A € A,
and let w’ € Z% be defined by w'(e) = w(e) =Y A g p.cen [Y(A)] for each e € E.
Then y’ is a fractional triangle packing of (G, w’) such that

1Ty/ _ 1T x ZAEA y*(A)

If there is an integral packing z’ of (G,w’) such that 17z’ > 17y’ then z
with z(A) = |y*(A)] + 2/ (A) for each A € A is an integral packing of (G, w)
satisfying 17z > > ., y*(A) + 17y’ = 1Ty* as desired. We next show such
a 2z’ does exist by distinguishing two cases for integral weight w’'.

134 X. Chen et al.

In case of w'(e) > 1 for each e € E, we observe that z’ with z/(A;) =1 for
1=1,3,6,8 and 2'(A;) =0 for i = 2,4,5,7 is a triangle packing of (G, w’) with
172/ =4 =4]/2 > 1Ty

In case of w'(e) = 0 for some e € G, the restriction y” of y’ to A(G \ e) is a
fractional triangle packing of (G'\ e, W'|g\.) with 17y"” =17y’. Using Lemma 1,
it is routine to check that G \ e € B, which along with B C 91 gives an integral
triangle packing z” of (G'\e, W'| g\) with 172" > 17y". For each triangle A € A,
set 2/(A) to 0 if e € A and to 2”(A) otherwise. It follows that z' € ZZ is an
integral triangle packing of (G, w’) with 172z’ = 172" > 1Ty’ as desired. O

Lemma 4. If C is an odd triangle-cycle of graph G € J, then C contains either
a basic triangle belonging to Tc 3 or a non-basic triangle belonging to Too0UJc 1.

Proof. By contradiction, suppose that graph G € J and its odd triangle-cycle C'
of length 2k + 1 form a counterexample, i.e., o C Je2 and Jo \ Beo C
Tc.2UJc 3. By Observation 2, we have C' € J. Let w € {1, 00} () be defined by
w(e) =1 for all e € Jo and w(e) = oo for all e € N¢. On one hand, B C Ti o
implies that each join edge of C exactly belongs to two basic triangles. To break
all 2k + 1 basic triangles, we have to delete at least k + 1 join edges unless we
use some non-join edge (with infinity weight). Thus 7,(C) > k + 1.

On the other hand, note that every triangle of C' contains at least two join
edges in Jo. Thus x € {1/2,0}7(©) with x(e) = 1/2 if e € Jo and z(e) = 0
otherwise is a fractional triangle cover of C. This along with |J¢| = 2k + 1 and
w|j, = 1 shows that 75(C) < |Je|/2 = k + 1/2. However, 7,(C) > 75(C)
contradicts C' € 7. O

The concept of triangle graph provides an efficient tool for studying triangle
covering. Suppose that G is a graph with at least a triangle. Its triangle graph,
denoted as T'(G), is a graph whose vertices are named as triangles of G such that
A;A; is an edge in T'(G) if and only if A; and A; are distinct triangles in G
which share a common edge. For example, the graph G in Fig. 1 has its triangle
graph as depicted in Fig. 2.

Ay

Ag

A5 A4

Fig. 2. The triangle graph T'(G) of G in Fig. 1.

Total Dual Integrality of Triangle Covering 135

A graph G ¢ B is called minimal if every proper subgraph H of G belongs
to B. Let 91 denote the set of these minimal graphs.

Theorem 6. If G € N, then G is either K4 or an odd triangle-cycle with length
at least 5 such that Be C Jg.2 and Io \ Ba C Ta1 U Ta.3.

Proof. Clearly, K4 € M. So we consider G # K,4. Since G ¢ B is minimal, G is
Ky-free, and by Lemma 1, G = e;A\jes - - - e Aper is an odd triangle-cycle such
that ¢ C Jc,2, where k > 5 is odd. Observe that triangle-cycle G corresponds
to a cycle C = é1/\1é9 - e/ \kE1 in triangle graph T'(G). We first present a
series of useful properties.

Property 1. If ;A\ is a chord of C, then the common edge of A; and Ajis an
non-join edge.

Since {A;, A;} € Ja 2 and they are not consecutive in G, A; N Jg and A; N Jg
are disjoint. |

Property 2. 1f both A;Aj and A; Ay, are chords of C, then A\, Aj, Ay share the
same non-join edge in G, and A\;/A\ is a chord of C.

It follows from Property 1 that each of A;, A;, Ay has only one non-join edge.l

Property 3. If A;,i,,...,/\;, are all basic triangles in % that contain
e € Ng, where t > 2 and iy < is < -+ < 4, then for each j = 1,2,...,¢,
HAG, DNijp1 oo DNy —1, DNiyyy f] s even (where 4441 = 41 in case of j =t).

Otherwise, C; = e/ e, 110,41+ DNij 1€, D, € is an odd triangle-cycle
of G for some 1 < j < t. Observe that every basic triangle of C; belongs to J¢; 2.
Thus Lemma 1 says that C; € 9B, which along with the minimality of G € 91
enforces that C'; = G. However this is absurd because C; does not contain the
join edge e;, , € Jg of G. |

Property 4. For each e € Ng, there are exactly an odd number of basic triangles
in %¢ that contain e.

Since G is the union of its basic triangles, e is contained by some basic triangle
of G. The property is instant from Property 3 and the odd length k of the
triangle-cycle G.]

We now proceed to prove I\ Be C Jg,1UJq, 3. Suppose for a contradiction
that there exists A € Jo\ PBa with A € Ji . Then A consists of three non-join
edges p,q,r € Ng. Let

By ={Ne€Be:peN},Byg={Le€Be:qe N}, B, ={LN € Bg:re}

denote the sets of basic triangles (of G) that contain p, ¢, r, respectively. Notice
from Property 4 that

| B, |, | %B,| and | %,.| are odd numbers.

136 X. Chen et al.

We distinguish between two cases depending on whether all of %,, %,, %, are
singletons or not.

Case 1. |Bp| = |%B,| = |%-| = 1. We may assume without loss of generality that
Bj ={L,} for j € {p,q,r} and i), < ig < i,. Note that

CP‘I - pAipeip""lAip"‘l T eiq AquAp’
Cor = qli eigr1 D11 €5, 0, 1Aq,
Crp = T‘Ai’y.ei".J’,lAirJrl R AippAT‘
are triangle-cycles of G whose basic triangles each contain exactly two join edges.

Observe that the sum of lengths of Cpq, Cyr, Crp equals k + 6, which is odd. So
at least one of Cpq, Cypr, Crp, say Cpg, has an odd length. It follows from %¢,, C

Jc,,.2 and Lemma 1 that Cp, ¢ B. Now the minimality of G € 91 enforces
Cpq = G. Hence the join edge e;, 2 € Jg must be one of ¢; ,e;,41,...,¢€;, -1,
from which we deduce that e; 42 = e;, (and iq +1 =). As e; 4o has a

common vertex with e;_, it follows that €i,, €i,+1 and r form a triangle, and
D, q, 7€, €i,11, €, +1 induce a Ky, contradicting the fact that G is Ky-free.

Case 2. max{|%By|,|B,|, |-} > 3. Suppose without loss of generality that %, =
{Ly, -+, A, } where t > 3 and i1 < ig--- < 4. Setting 4441 = 41, since %, N
By =0, we have [By| = Y {Ai,, Nijy1-+ L, } N By|. Recall that |2,]
is odd. So there exists j € {1,...,t} such that {A;, A1+, 0, } N %y
consists of

an odd number s of basic triangles Ay, ..., Ay,

where i; < hy < .-+ < hg < ij41. By Property 3, {Ai, Aiqp1.. ., D} 18
even, and {Ap,, Apyg1,.-., Dnyyy H s even for each ¢ € {1,...,5 — 1}. Note
that

HAG, Dijrr 5 Dy 3

s—1

= HAijv AijJrl) Ah1}| + (Z |{Ahev Ahe+1’) Ahfa-¢—1}|>
/=1
+|{Ah5’AhS+1 ceey Aij+1}| -S

= (h1 — Z]) + (ij+1 — hs) — S (mod 2)

Since s is odd, either hy —i; or i;41 — h, is odd. Suppose by symmetry that
hy —i; is odd. Tt follows that C' = pA; e;, 114,41+ en, Dp, gAp is a triangle-
cycle of G such that o C Jp 2. As the length hy — i; + 2 is odd, we deduce
from Lemma 1 that C' € B. In turn G € 9 enforces C = G. Similar to Case 1,
en,+2 € Jo C C implies that Ay, , Ay, A form a Ky, a contradiction to the
K y-freeness of G. The contradiction shows that (¢ \ Ba) N Tao = 0.

It remains to prove (I \ Ba) N Jg,2 = (. Suppose on the contrary that
there exists A € J5 \ B¢ which consists of two join edges p,q € Jg and one
non-join edge r € Ng. Again we set B, = {A € Bo :p € A}, B, = {L €
Ba g€ A} and B, = {A € B : v € A}. Recalling Bg C T2, we derive

Total Dual Integrality of Triangle Covering 137

|B,| = |%,| = 2. Suppose without loss of generality that %, = {A;,, N, 41},
%q = {Aiquiq-‘rl} and ip < ip +1< iq < iq +1 (note pP=eéi,+1,4 = Biq+1).
Recall from Property 4 that |%,| is an odd number. Observe that both C' =
PO p1€5, 420 o e, DN qAp and C" = g\ 14,420, 12+ i, N, pAq are
triangle-cycles whose basic triangles each contain exactly 2 join edges. Because
the length of G is odd, exactly one of C and C’, say C, whose length is odd.
By Lemma 1(i), C € B. In turn G € N gives C = G. Since neither A;, nor
A, 41 is a basic triangle of C and A; # A, 41, we derive that e; 12 € G\ C,
a contradiction to C' = G. This completes the proof of Theorem 6. O
Let X € {9, 3}. If graph G € X\ B is minimal in the sense that every proper
subgraph H of G is outside X \ B, then H € X (by Lemma 2) enforces H € B.
Hence G € 91. Conversely, if G € X NI, then every subgraph H of G satisfies
He®B C X, giving H ¢ X\ B. Thus the set of minimal graphs in X\ B is

{GeX\B:HgX\B forevery HG G} =NNX, where X € {9, J}. (2.1)

Corollary 1. If G e MN7TJ (i.e., G € T\ B is minimal) , then G is either K,
or an odd triangle-cycle such that Ba C Ja2, Ja \ Ba € Jai1 U Ja3, and
Te1=Ja1 \ Ba # 0.

Proof. In view of Theorem 6, it suffices to consider G being an odd triangle-cycle
such that B C Jg2 and Jg \ Be C Jo1 U Jg,3. In turn, Lemma 4 implies
the existence of at least a non-basic triangle of G' that belongs to J 1. g

Corollary 2. If G € MNIM (i.e., G C M\ B is minimal) , then G is an
odd triangle-cycle such that Bc C Ja2, o\ Ba C To1 U Ta3, and Tg1 =
T\ Ba # 0.

Proof. Note from G € M that G # K. As 9 C 7, the conclusion is immediate
from Corollary 1. O

3 Planar Graphs

In this section, we study the planar case more closely, and characterize planar
graphs in 9 by excluding pseudo-wheels defined as follows.

Definition 2. A triangle-cycle C is a pseudo-wheel if it has length at least 4,
Jo = B¢ and each pair of non-consecutive basic triangles of C is edge-disjoint.

It is easy to see that a triangle-cycle C' is a pseudo-wheel if and only if its
triangle graph T'(C') is an induced cycle with length at least 4. Thus every wheel
other than K, is a pseudo-wheel. Two pseudo-wheels that are not wheels are
shown in Fig. 3.

Lemma 5. If C is an odd pseudo-wheel, then C &€ 7.

138 X. Chen et al.

Fig. 3. Examples of pseudo-wheels.

Proof. Suppose the length of C'is 2k+1. Let w € Z%(C) be defined by w(e) = 1
for all e € Jo and w(e) = oo for all e € N¢. Then 7,(C) = k + 1. On the other
hand x € {0,1/2}F(®) with 2(e) = 1/2 for alle € Jo and z(e) = 0 for all e € N¢
is a fractional triangle cover of C, showing 7;(C) < wix =k +1/2 < 7,(C). DO

If A', A° A are distinct triangles of plane graph G such that A‘ is inside A
and A° is outside A, then we say that A is a separating triangle of A and A°,
or A separates A* from A°.

A triangle-path in graph G is a sequence P = Aje;---exNgyq with £ > 1

such that ey, - - - , ex are distinct edges, A1, -+, Agy1 are distinct triangles of G,
and {e1} € Ay, {ex} C Dgy1,{eiseir1} C Ajqq foreach i € [k —1]. In UfillAi,
the edges e, eq,..., e, are called join edges and other edges are called non-join

edges. Let Jp denote the set of join edges of P. The length of P is defined as k.
We often say that P is a triangle-path from A; to Agyq.

Lemma 6. Let G be a plane graph in which A is a separating triangle of trian-
gles A' and A°. Then A\ contains at least one join edge of every triangle-path
from A to A° in G.

Proof. Consider an arbitrary triangle-path P = Aje1 - - - e Ag41 in G from Ay =
N to Ngyp1 = A°. We prove AN {eq,...,ex} # 0 by induction on k. The basic
case of k = 1 is trivial. We consider k£ > 2 and assuming that the lemma holds
when triangle-path involved has length at most & — 1. If Ay = A, then we are
done. If Ay # A, then either A separates A from A, or separates Ay and Ak 1.
Observe that Aje; s is a triangle-path of length 1 < k, and Asgesy ..., e N4 is
a triangle-path of length k& — 1. From the induction hypothesis, we derive e; € A
in the former case, and e; € A for some j = 2,...,k in the latter case. O

Lemma 7. Let C = ey Njeg---epAgey with k > 3 be a triangle-cycle. If C is
plane and Bo C Jg 2, then Ay does not separate XN; from A for any distinct
hyi,j€{1,...,k}.

Proof. Note that C contains a triangle-path P from A; and A; with Jp C
Jo \ Ap. The triangle-path P along with Lemma 6 implies the result. a

Total Dual Integrality of Triangle Covering 139

Theorem 7. If C is a planar triangle-cycle such that Bc C T2, then To C
yc"o U ng.

Proof. Suppose that C = e;Ajes - - - epApey with k > 3 is plane, and there exists
A € o with A € yC,l U yc73.

Case 1. A € J¢ 3 consists of three join edges ey, e;,e;, where 1 < h <i < j <k.
The structure of the triangle graph T'(C) is illustrated in the left part of Fig. 4.

Ahfl Ah

Fig. 4. The triangle graph 7'(C) in the two cases of the proof for Theorem 7.

For each pair (s,t) € {(h,i—1),(i,j — 1), (j,h — 1)}, there is a triangle-path
in C from A, to Ay whose set of join edges is disjoint from {ep, e;,e;} = A. It
follows from Lemma 6 that

A does not separate A\ from A, for each
(s,t) € {(h,i—1),(i,5—1),(4j,h—1)}.

Suppose that A separates Ap_q from A, and separates A;_; from A;.
Without loss of generality let A\, _; and Ay, sit inside and outside A\, respectively.
Then (3.1) implies that A; and A;_; are inside and outside A, respectively. In
turn, i is inside A, and (3.1) says that A;_; is inside A. Now Aj;_; and A; are
both inside A, i.e., A does not separate A;_; from A;. Hence, by symmetry we

(3.1)

€n €h

Fig.5. Ap—1 and Ay are both inside A.

140 X. Chen et al.

may assume that /A does not separate Ap_1 from A, and further that Ay, _4
and A, are both inside A. as illustrated in Fig. 5.

As e, € Ap_1 N Ay, it is easy to see that either A, _; separates /A, from
A; or Ay separates A\p,_1 from /\;. The contradiction to Lemma 7 finishes our
discussion on Case 1.

Case 2. A\ € 1 consist of join edge e, of C' (shared with Ap_1,Ap), non-join
edge f (shared with A;) and non-join edge g (shared with A;), where h, 1, j are
distinct. See the right part of Fig.4. Similar to Case 1, it can be derived from
Lemma 6 that

A does not separate/\ from A, for each(s,t) € {(h,1), (¢,7), (j,h — 1)}.

Therefore /A does not separate Ap_1 and Aj. Suppose without loss of generality
that both Ap_1 and A, are inside A. Then C has one of the structures as
illustrated in Fig. 5 with f in place of e; and g in place of e;. Again, either A,
separating Ay, from A; or /Ay separating Ay _; from A; contradicts to Lemma 7.
This completes the proof. O

Theorem 8. Let G be a planar graph. Then G € N if and only if G is K4 or
an odd pseudo-wheel.

Proof. Sufficiency: Clearly K4 € 9. If GG is an odd pseudo-wheel C, then G is an
odd triangle-cycle such that ¢ C Jg 2. By Lemma 1, G ¢ ®B. Since the triangle
graph T'(C) is an induced cycle, every proper subgraph of C is triangle-cycle-free,
and hence belongs to B, giving G € M.

Necessity: Suppose that G € M and G # Ky. By Theorem 6, an odd triangle-
cycle with length at least 5 such that Bg C Jg 2 and I \ Ba C To1 U Ta.3.
In turn, Theorem 7 enforces

To = Be.

Suppose for a contradiction that there exists non-consecutive triangles A;, A; €
ABq that share a common non-join edge e, where i < j — 1. Then G contains two
triangle-cycles C1 = eAjeir10i41--e;0je and Co = eljejp1lji1---e;DNe.
Because G is odd, one of C'; and Cj, say C1, is odd. As (] is a proper subgraph of
G €M, we have (' € B. By Lemma 1, there exists a basic triangle Ay in Zc, N
Ty 3. Because Ay, € T2, it must be the case that e € Ay, Thus Ay, Ay, Ay
share a common non-join edge e of G. However in any planar embedding for G,
there is one triangle in {A;, A;, Ay}, which is a separating triangle of the other
two. This is a contradiction to Lemma 7. Thus each pair of non-consecutive basic
triangles of G is edge-disjoint, and G is an odd pseudo-wheel. O

Theorem 9. Let G be a planar graph, then the following are equivalent:

(i) G € B;
(ii) G € M;

Total Dual Integrality of Triangle Covering 141

(iti) G € T is Ky-free; and
(iv) G is Ky-free and odd pseudo-wheel free.

Proof. Recalling (1.5) and Lemma 3, B C 9 C J and K4 € J\ 9 imply the
relation (¢) = (i1) = (i4i). If G contains an odd pseudo-wheel H, then H ¢ J by
Lemma 5, which along with Lemma 2 would give G ¢ J. So we have (iii) = (iv).

It remains to prove (iv) = (i). If G ¢ B, we take H C G to be minimal,
i.e., H € M. Theorem 8 says that H is K4 or an odd pseudo-wheel, i.e., G is not
Ky-free and G is not odd pseudo-wheel free. a

4 Remarks

Lemma4 provides us a necessary condition for G € J as follows:
(BcNTe3)U(TeoUTen)\PBe) # 0 for any odd triangle-cycle C of G. (4.1)

It would be interesting to see if the condition is sufficient for G € J. A supporting
evidence is the following.

Remark 1. Condition (4.1) is a necessary and sufficient condition for Ky-free
planar graph G to be a member of J.

Proof. By Theorem 9, a K,-free planar graph G € J implies G € B, and thus
Bc N Toz # 0 for every odd triangle-cycle C' in G. On the other hand, given
a Ky-free planar graph G satisfying (4.1), we see from Definition 2 that G does
not contain any odd pseudo-wheel. It follows from Theorem 8 that G does not
contain any subgraph in 91, which implies G € B C 7. a

As 9 C 7, condition (4.1) is also necessary for G € 9, but it is not sufficient
for the total dual integrality. This can be seen from Ky ¢ 9, which satisfies
(4.1): K4 has four odd triangle-cycles with length 3 each containing a triangle
without any join edge, and for each odd triangle-cycle C, there is a triangle in
e\ B that belongs to I . This motivates us to ask about the necessity and
sufficiency of the following conditions for G € IM:

(Be N Te3)U(Teq \ Be) # 0 for any odd triangle-cycle C of G. (4.2)

Note that condition (4.2) implies G contains neither K, nor odd pseudo-wheels.
Similar to Remark 1, Theorems 8 and 9 provide the following fact.

Remark 2. Condition (4.2) is a necessary and sufficient condition for planar
graph G to be a member of 9. O

142 X. Chen et al.

Appendix: A List of Mathematical Symbols

. — - E(G)
(G,w) | Weighted graph G = (V(G), E(G)) with w € Z

Tw(G) | The minimum weight of an integral triangle cover in (G, w)
vw(G) | The maximum size of an integral triangle packing in (G, w)
T (G) | The minimum weight of a fractional triangle cover in (G, w)
vy (G) | The maximum size of a fractional triangle packing in (G, w)

) | 7w(G) when w =1
G) | vw(G) when w=1
Ag The triangle-edge incidence matrix of graph G
A(G) | The set of triangles in graph G
B The set of graphs G such that Ag are TUM
m The set of graphs G such that systems Agz > 1,2 > 0 are TDI
J
N

The set of graphs G such that {x: Agx > 1,x > 0} are intergal
The set of minimal graphs not belonging to %

To The set of triangles in triangle-cycle C'=e;Ajes- - -epAper =U A,

Be The set of basic triangles in triangle-cycle C, i.e., {A1, -+, Ak}

Je The set of join edges in triangle-cycle C, i.e., {e1, -+ ,er}

N¢ The set of nonjoin edges in triangle-cycle C, i.e., E(C)\Jc
oy D€ T |ANJe|=i},i=0,1,2,3

References

1. Berge, C.: Hypergraphs: Combinatorics of Finite Sets. Elsevier, Amsterdam (1989)

2. Chapuy, G., DeVos, M., McDonald, J., Mohar, B., Scheide, D.: Packing triangles
in weighted graphs. SIAM J. Discret. Math. 28(1), 226-239 (2014)

3. Chen, X., Hu, X., Zang, W.: Dual integrality in combinatorial optimization. In:
Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Opti-
mization, pp. 995-1063. Springer, New York (2013)

4. Cornuéjols, G.: Combinatorial optimization: packing and covering. In: Society for
Industrial and Applied Mathematics (2001)

5. Edmonds, J., Giles, R.: A min-max relation for submodular functions on graphs.
Ann. Discret. Math. 1, 185-204 (1977)

6. Haxell, P., Kostochka, A., Thomassé, S.: Packing and covering triangles in K4-free
planar graphs. Graphs Comb. 28(5), 653-662 (2012)

7. Haxell, P.E.: Packing and covering triangles in graphs. Discret. Math. 195(1),
251-254 (1999)

8. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms.
Springer, Berlin (2012)

9. Kirivelevich, M.: On a conjecture of Tuza about packing and covering of triangles.
Discret. Math. 142(1), 281-286 (1995)

10.

11.
12.

13.

14.

15.

Total Dual Integrality of Triangle Covering 143

Lakshmanan, S.A., Bujtds, C., Tuza, Z.: Small edge sets meeting all triangles of a
graph. Graphs Comb. 28(3), 381-392 (2012)

Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer,
Berlin (2003)

Schrijver, A., Seymour, P.: A proof of total dual integrality of matching polyhedra.
Stichting Mathematisch Centrum. Zuivere Wiskunde (ZN 79/77), pp. 1-12 (1977)
Tuza, Z.: Conjecture in: finite and infinite sets. In: Proceedings of Colloque Math-
ematical Society Jnos Bolyai, p. 888, Eger, Hungary, North-Holland (1981)

Tuza, Z.: A conjecture on triangles of graphs. Graphs Comb. 6(4), 373-380 (1990)

Time-Optimal Broadcasting of Multiple
Messages in 1-in Port Model

Petr Gregor' ™9, Riste Skrekovski®?, and Vida Vukaginovi¢*

! Department of Theoretical Computer Science and Mathematical Logic,
Charles University, Malostranské nam. 25, 11800 Prague, Czech Republic
gregor@ktiml.mff.cuni.cz
2 Department of Mathematics, University of Ljubljana,

Jadranska 19, 1000 Ljubljana, Slovenia
3 Faculty of Information Studies, Ljubljanska cesta 31A, 8000 Novo Mesto, Slovenia
skrekovski@gmail.com
4 Computer Systems Department, Jozef Stefan Institute,

Jamova 39, 1000 Ljubljana, Slovenia
vida.vukasinovic@ijs.si

Abstract. Inthe 1-in port model, every vertex of a synchronous network
can receive each time unit at most one message. We consider simulta-
neous broadcasting of multiple messages from the same source in such
networks with an additional restriction that every received message can
be sent out to neighbors only in the next time unit and never to already
informed vertex. We use a general concept of level-disjoint partitions
developed for this scenario. Here we introduce a subgraph extension
technique for efficient spreading information within this concept. Sur-
prisingly, this approach with so called biwheels leads to simultaneous
broadcasting of optimal number of messages on a wide class of graphs
in optimal time. In particular, we provide tight results for bipartite tori,
meshes, hypercubes. Several problems and conjectures are proposed.

Keywords: Simultaneous broadcasting - Multiple message broadcast-
ing - Level-disjoint partitions + Torus - Mesh - Hypercube

1 Introduction

A massive amount of traffic in communication networks that flows from providers
of large data (such as video streaming services) to many clients at once leads
to various optimization problems for broadcasting of multiple messages. Similar
types of problems arise in master/workers parallel computations on specific net-
works when multiple tasks are simultaneously distributed from one node (mas-
ter) to all other nodes (workers). This has been subject of research for many
years. For surveys on broadcasting and other communication protocols in vari-
ous kinds of networks see e.g. [8,9,12-14].

This research was supported by the Czech Science Foundation grant GA14-10799S,
ARRS Program P1-0383, and by ARTEMIS-JU project “333020 ACCUS”.
© Springer International Publishing AG 2016

T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 144-158, 2016.
DOT: 10.1007/978-3-319-48749-6_11

Time-Optimal Broadcasting of Multiple Messages in 1-in Port Model 145

We restrict ourselves to synchronous networks, where at each time unit mes-
sages can be sent from nodes to all their neighbors in one unit of time. A network
is modeled by a graph. As an example we consider namely tori, meshes, and
hypercubes, perhaps the most popular and extensively studied networks [15],
but our approach is more general.

Since networks have limited capacity of links, any larger data to be broadcast
needs to be split into multiple messages and sent individually. This leads to a
more general variant of broadcasting in which several different messages need to
be simultaneously transmitted from one source node, called the originator. The
problem of multiple broadcasting was first defined in [5] and previously studied
under several different models in [1,2,10]. The minimal overall time needed for
simultaneous broadcasting and the maximal number of messages that can be
simultaneously broadcast were considered in [1,6,10,16-18], respectively.

Here we consider a scenario when each message (or task) needs to be handled
(or processed) at each node in a time unit before it is sent out further to other
selected neighbors. It is reasonable to demand that each node has to handle at
each time unit only a single message (task). Equivalently, each node receives at
most one message in each time unit. We call this restriction a I-in-port model.
Furthermore, every received message is send out only in the next time unit and no
message is sent to already informed vertex. In other words, nodes have no buffers
to store messages for delayed transmission. This simplification is motivated by
memory or security restrictions, or a need for uninterrupted data flow. As usual,
we also assume full-duplex mode.

For this scenario, the concept of level-disjoint partitions was developed in [6]
to study how many messages and in what time they can be simultaneously
broadcast from a given originator vertex in a given graph, see the definitions in
the next section. The same concept was further developed in [7] where results on
existence of optimal number of level-disjoint partitions in general graphs were
obtained. It was also shown in [7] that the problem of simultaneous broadcasting
in a graph G can be solved locally on a suitable subgraph H of G and then
extended to a solution for the whole graph G (c.f. Proposition 2), but without
guarantee of optimality.

In this paper, the latter result is improved in the terms of optimality by
showing that if H satisfies additional properties, namely if H contains all neigh-
bours of the originator vertex v and preserves distances to v, then simultaneous
broadcasting from v on H with optimal time for each destination vertex can be
extended to simultaneous broadcasting from v on G again with optimal time for
each destination vertex (Theorem 1).

Furthermore, we identify particular subgraphs, namely wheels and biwheels,
that play a key role for simultaneous broadcasting. We show (Theorems 2—4)
that they can be used for simultaneous broadcasting (of optimal number) of
messages in optimal time for a wide class of graphs.

In particular, since biwheels naturally occur in Cartesian products
(Propositions 3 and 4), we obtain tight results for bipartite tori, meshes, and
hypercubes. For these graphs we also provide an explicit description how optimal

146 P. Gregor et al.

simultaneous broadcasting can be realized (Sect. 4). We also answer affirmatively
a conjecture from [6] asserting that the n-dimensional hypercube admits simul-
taneous broadcasting of n messages in optimal time 3n — 2. We conclude with
summary of open problems and conjectures (Sect. 5).

2 Concept of Level-Disjoint Partitions

In this paper we use the concept of level-disjoint partitions, introduced in [6],
to capture broadcasting under the considered communication model. We use
standard graph terminology and notation. An open neighborhood of a vertex
w in a graph G is denoted by Ng(u), the degree of u by degq(u), the distance
between vertices v and v by dg(u,v). The eccentricity of a vertex u, i.e. the
maximal distance from u to other vertices, is denoted by eccg (u). The subscript
G is omitted whenever the graph is clear from context.

A level partition of a graph G is a partition S = (Sy, ..., S,) of V(G) into a
tuple of sets, called levels, such that S; C N(S;_1) for every 1 < i < h; that is,
every vertex has a neighbor from previous level. The number h = h(S) = |S| -1
is called the height of S. The broadcasting starts at all vertices from the level Sy,
at each time unit the same message is sent from all vertices of the current level
to all vertices in the next level through edges of the graph, till the Ath time unit,
when the message is spread to all vertices of G. Note that we do not care which
particular edges are used. In the case when the starting level Sy is a singleton,
say So = {v}, we say that the level partition is rooted at v (or v-rooted) and the
vertex v is called the root of S.

A level partition (Sp,...,S) of G with S; = {u € V(G) | dg(u, Sp) = i}
for every 0 < i < h is called a distance level partition. Clearly, a distance level
partition is determined by the choice of the starting level Sy and it has minimal
height among all level partitions with the same starting level. If, moreover, it is
rooted at a vertex v, it corresponds to the breadth-first-search tree from v (up to
the choice of edges).

Two level partitions S = (So,...,Sks)) and T = (Tp, ..., Th(1)) are said
to be level-disjoint if S; NT; = O for every 1 < i < min(h(S),h(7)). Note that
we allow Sg N Ty # O since we consider the case when different messages have
the same originator. Level partitions 8!, ..., S* are said to be (mutually) level-
disjoint if each two partitions are level-disjoint. Then we say that S!,...,S*
are level-disjoint partitions, shortly LDPs. If every partition is rooted in the
same vertex v and they are level-disjoint (up to the starting level {v}), we say
that S',...,S* are level-disjoint partitions with the same root v, shortly v-rooted
LDPs. For an example of four v-rooted LDPs of a circulant graph, see Fig. 2.
Note that the 4-tuple at a vertex denotes its levels in each partition.

Let S',...,S* be level partitions of G, not necessarily level-disjoint. The set
of levels {l | u € S} for some 1 < i < k} in which a given vertex u occurs is
called the range of u with respect to S*,...,S*, denoted by R(u).

The number of level-disjoint partitions determines how many messages can
be broadcast simultaneously while their maximal height determines the overall
time of the broadcasting. Hence a general aim is to construct for a given graph

Time-Optimal Broadcasting of Multiple Messages in 1-in Port Model 147

— as many as possible (mutually) level-disjoint partitions; and
— with as small maximal height as possible.

In [7] some necessary conditions on the number of v-rooted LDPs as well as
on their maximal height were given. Assume that S',...,S* are v-rooted LDPs
of G. Clearly, for every vertex u except v, max(R(u)) > d(u,v) + k — 1 since u
cannot appear in a level smaller than the distance to the root v and |R(u)| = k.
If equality holds, we say that u has perfect range; that is,

R(u) = {d(u,v),d(u,v) + 1,...,d(u,v) + k — 1}.

This means that all £ messages will be delivered to the vertex u in the best time
possible for this vertex. If all vertices (up to the root v) have perfect range, we
say that level-disjoint partitions S',...,S* are perfect.

Furthermore, the above definition is adjusted for bipartite graphs. If G is
bipartite, then for any same-rooted LDPs of G, the range of each vertex contains
elements of the same parity. It follows that no vertex can have perfect range as
defined above (except the trivial case of a single partition). So the concept of
perfect range is relaxed for bipartite graphs as follows. In a bipartite graph G,
for every vertex u except v, max(R(u)) > d(u,v) + 2k — 2. If equality holds, we
say that u has biperfect range; that is,

R(u) = {d(u,v),d(u,v) +2,...,d(u,v) + 2k — 2}.

If all vertices (up to the root v) have biperfect range, we say that level-disjoint
partitions S',...,S* are biperfect. Further, the following necessary conditions
on same-rooted LDPs were proven in [7].

Proposition 1 ([7]). Let S,...,S* be level-disjoint partitions of a graph G
with the same root v. Then,

k < deg(v) (1)

max h(S") >

1<i<k

{ ecc(v)+k—1 if Gisnotbipartite, @)

ecc(v) +2k —2 if Gisbipartite.

2.1 Subgraph Extension Technique

In [7] it was shown that it suffices to find v-rooted LDPs on some suitable
subgraph H of G and then extend them to v-rooted LDPs of the whole graph
G as stated by the following proposition. Let G — v denote the graph obtained
by removing a vertex v and all incident edges from a G.

Proposition 2 ([7]). Let v be a vertex of a graph G and H be a subgraph of
G containing v and some vertex from each component of G —v. Then any k
v-rooted level-disjoint partitions of H can be extended to k v-rooted level-disjoint
partitions of G.

148 P. Gregor et al.

Our first result in this paper extends Proposition 2 in terms of preserving
(bi)perfectness. It shows that it suffices to find (bi)perfect LDPs locally on a
subgraph H of G that covers all neighbors of the root v and preserves distances
to v. Then they can be extended to (bi)perfect, respectively, LDPs with the same
root to the whole graph G. We say that a subgraph H of a graph G preserves
distances to a vertex v € V(H) if dy(u,v) = dg(u,v) for every v € V(H). If
a subgraph H C G does not contain a vertex v of G, we denote by H + v the
subgraph of GG obtained by adding v and all incident edges from G to H.

Theorem 1. Letv be a vertezx of a graph G and H be a subgraph of G containing
N(v)U{v} and preserving distances to v. Then any k (bi)perfect v-rooted level-
disjoint partitions of H can be extended to k (bi)perfect, respectively, v-rooted
level-disjoint partitions of G.

Proof. Let S!,...,S* be (bi)perfect level-disjoint partitions of H rooted in v and
assume V(H) C V(G); for otherwise we are done. We show that they can be
extended to (bi)perfect, respectively, v-rooted level-disjoint partitions of H' =
H +wu for some vertex u of G uncovered by H such that H’ preserves distances to
v. Then, by incremental extension until no uncovered vertex remains, we obtain
(bi)perfect v-rooted level-disjoint partitions of G.

Let u be a vertex of G that is not in H but has a neighbor w in H distinct
from v such that w belongs to some shortest path in G between u and v. Note
that such u exist since N(v) C V(H). Since H preserves distances to v, for

H' = H + u we have
di (u,v) =dg(w,v) + 1 =dg(w,v) + 1 = dg(u,v),
and thus H’ preserves distances to v as well.

Let us denote by I; the level of w in S%; that is, w € Slii for every 1 <i < k.
Then, we extend S!,...,S* to H' by adding u to the (I; + 1)-th level of S°
for every 1 < i < k. Clearly, such extended partitions are level partitions of
H'. Moreover, they are level-disjoint since u was added into distinct levels of
level-disjoint partitions S',...,S*. Finally, if S',...,S* are perfect, then

Rw)={l; |1 <i<k}={dg(w,v),dg(w,v)+1,...,dg(w,v) +k—1},
and therefore the vertex u has perfect range as well:

Ru)={l; +1]1<i<k}={dg(u,v),dg (u,v)+1,...,dg (u,v) +k—1}.
Similarly, if S*,...,S* are biperfect, then

Rw)={l; |1 <i<k}={dg(w,v),dg(w,v)+2,...,dg(w,v) + 2k — 2},
and therefore the vertex u has biperfect range as well:
Ru)={lL;i+1|1<i<k}={dg(u,v),dg (u,v)+2,...,dg (u,v) + 2k — 2}.

O

The above theorem is applied in the next section to obtain (bi)perfect level-
disjoint partitions of a wide class of graphs, including particular Cartesian
products.

Time-Optimal Broadcasting of Multiple Messages in 1-in Port Model 149

3 Simultaneous Broadcasting in Cartesian Products

A Cartesian product of graphs G and H is the graph G [0 H with the vertex
set V(GO H) = V(G) x V(H) and the edge set E(G O H) = {(u,v)(v,v) |
wy' € E(G),v e V(H)}U{(u,v)(u,v") | w € V(G), v € E(H)}. As an exam-
ple, consider the hypercube. The n-dimensional hypercube @, is the graph on
vertices V(Q,) = {0,1}™ and edges between vertices that differ in precisely
one coordinate. Observe that), can be viewed as the n-fold Cartesian product
of Kg.

In [6] we developed a concept of composing level-disjoint partitions with
certain properties of graphs G and H into level-disjoint partitions of GLJH. Here
we present a different approach of so called biwheels. We define biwheels in the
next Subsect. 3.1 and show that they naturally occur in Cartesian products. Then
in the Subsect. 3.2 we show how they can be used for construction of optimal
number of same-rooted level-disjoint partitions of optimal height in Cartesian
products. Finally, in the Subsect.4 we consider particular Cartesian products:
meshes, tori, hypercubes and we present optimal constructions for them also
explicitly.

3.1 Biwheels in Cartesian Products

First we formally define wheels and biwheels. A k-wheel Wy, for k > 0 centered
at a vertex v is the graph on vertices v, wq,...,w, with edges joining v to all
w;’s and edges joining w; and w; 1 for every 1 <1 < k where wy41 is identified
as wi. Note that for technical reasons we allow k < 2. A k-wheel for k > 3 is a
join of a k-cycle and a vertex.

A k-biwheel Wy, for k > 0 centered at a vertex v is the subdivision of W
centered at v obtained by inserting a new vertex x; to the edge between w; and
w;41 for every 1 <4 < k. Clearly, k-biwheel is bipartite for every k& whereas k-
wheel is bipartite only for kK = 0, 1. See Fig. 1 for an illustration of small wheels
and biwheels.

Ty = T2
wq wq (] w1y Wa
I : ; ; ; wq
.
1 v v

v v

Wo=W, Wi=W, W, W,

Fig. 1. k-wheels and k-biwheels centered at v for £k =0, 1, 2, 3.

Biwheels naturally occur in Cartesian products of graphs as stated by the
following proposition.

150 P. Gregor et al.

Proposition 3. Let u,v be vertices in graphs G, H respectively. Then G O H
has a 2k-biwheel centered at (u,v) for any 0 < k < min(degq (u),deg(v)).

Proof. Tt suffices to prove the statement for k = degq(u) = degy(v) for oth-
erwise we may use subgraphs G’ of G and H’ of H such that k = degq/ (u) =
degy/(v) as G’ H' is a subgraph of GO H. For 1 < i < k let us denote the i-th
neighbor of u, v by u;, v;, respectively. We define the vertices of a 2k-biwheel in
GO H as follows:

W2i—1 = (ui,v), XT2i—1 = (Ui,vz‘)7
wy; = (u,v;), Toi = (Uit1,V;)

for every 1 <14 < k where uy41 is identified as .

Note that all vertices wo;_1, T9;_1, Wi, To; are distinct, vertices wo;_1, wa;
are adjacent to (U,U), and W2;—1T25—1, T2i—1W25, W2;T2;, T2;W2i41 aAre edges in
G O H for every 1 < i < k. Hence these vertices form a 2k-biwheel in GO0 H
centered at (u,v). O

In particular, if degs(u) = degy (v) then GOH has a degany (v, v))-biwheel
centered at (u,v); that is, the largest possible biwheel at (u,v). For example,
P, P, contains a 2-biwheel (with center in any vertex) or P3 (] P3 contains a 4-
biwheel centered in the degree-4 vertex. In fact, Po[0 Py =~ Wg and P31 P; ~ W4

For another example, by recursive applications we obtain an n-biwheel in the
hypercube @, for every n = 2" where m is an integer since Qam ~ Qom-1
@Qom-1. However, we would like to have n-biwheel in @), for any n. For this
purpose we need a more general result as follows.

Proposition 4. Let u,v be vertices in graphs G, H respectively, with degq (u) >
degy(v) > 1 and | = max(2,degq(u) — degy(v) +1). If G has at least I-biwheel
centered at u, then GO H has a k-biwheel centered at (u,v) for any 0 < k <
degq(u) + degy (v) = degaop ((u,v)).

Proof. Let k = 2k’ + 1’ where k' is the maximal integer such that k' < degy (v)
and I’ > 0. It follows that I’ <1—1. Indeed, if k' < degy(v) then!’ =0or! =1,
and if k' = degy (v) then

' <dege(u) + degy(v) — 2k = deg(u) — degy (v) <1 —1.

(The first inequality holds since k = 2k’ + I’ < deg(u) + degy (v) and the last
inequality holds since degq (u) — degy(v) +1 <1.)

Let us denote by w; for 1 < i < degg(u) the i-th neighbor of u,
and by v; for 1 < j < degy(v) the j-th neighbor of v. Furthermore, let
(u1,y1,...,ur,yr,uy+1) be a subpath of the at least [-biwheel of G centered
at u where dg(u,y;) = 2 for all 1 <4 <1’. We define the vertices of a k-biwheel
in GO H as follows:

w; = (u4,v), z; = (y;,v) foralli=1,...,0,
wyg2j—1 = (Urgj,v), Tryoio1 = (Wig,vy) forall j =1,... K,
w25 = (W, v5), Tyg2; = (Wpgjyr,v;) foralj=1,. .k —1,
wy 195 = (u,v;), Ty o5 = (u1,v5) for j = k'.

Time-Optimal Broadcasting of Multiple Messages in 1-in Port Model 151

Note that all vertices w;, x; are distinct, vertices w; are adjacent to (u,v), and
w;T;, Tyw;4q are edges in GO H for every 1 < i < k = 2k’ +I’. Hence these
vertices form a k-biwheel in G O H centered at (u,v). O

3.2 (Perfect) Level-Disjoint Partitions from Wheels and Biwheels

Both k-wheels and k-biwheels (except for k = 2) have obvious k perfect, respec-
tively biperfect, level-disjoint partitions rooted in their centers. Indeed, let the
i-th level partition S* for 1 < i < k of W), where k > 1 be

S = ({v} {wi}, {wis1}, . {wigr—1})

with the indices taken cyclically; that is, modulo (k + 1) plus 1. Clearly, S°
and S7 are level-disjoint up to the root v for any distinct i, j. Similarly for a
k-biwheel where k > 3, let the i-th level partition 7°¢ for 1 <14 < k of W}, be

T' = ({v} {wi} {zih, {wip b {zia b - {wign—1 b {zigr1})

with the indices taken cyclically; that is, modulo (k + 1) plus 1. Clearly, 7°¢ and
T7 are level-disjoint up to the root v for any distinct i, j. -

Note that the above level-disjoint partitions of W) and W) are perfect,
respectively biperfect. Hence their maximal height is optimal in the sense of
Proposition 1. Also their number is optimal. Indeed, k = degyy, (v) = degg; (v),

W} is non-bipartite, Wk is bipartite, and the maximal heights are

A — — i = = e —
Jnax h(S*) =k = eccw, (v) + k — 1, Jax hT") = 2k = eccy, (v) +2k — 2.
The above partitions together with Proposition 2 lead to following sufficient
conditions on existence of k level-disjoint partitions with the same root. A vertex
v is a cut-vertezr in a graph G if G — v is disconnected.

Theorem 2. If a graph G has a k-wheel for k > 1 or k-biwheel for k > 3
centered at a vertex v and v is not a cut-vertex, then G has k level-disjoint
partitions rooted at v.

Note that the above theorem can be easily generalized for a vertex v that is
not a cut-vertex and is adjacent to k vertices on an arbitrarily large cycle in G.
Theorem 2 together with Propositions 3 and 4 applies in particular for Cartesian
products of (nontrivial) connected graphs as they are 2-connected.

Furthermore, applying Theorem 1 we obtain a sufficient condition on
existence of optimal number of (bi)perfect level-disjoint partitions with the
same root.

Theorem 3. Let v be a vertex of degree k > 1 in a graph G. If G has a k-wheel
centered at v, then G has k perfect level-disjoint partitions rooted at v. If G is
bipartite, k > 3, and G has a k-biwheel centered at v, then G has k biperfect
level-disjoint partitions rooted at v.

152 P. Gregor et al.

Proof. Let H denote the k-wheel resp. k-biwheel centered at v. All neighbors
of v in GG are also in H. In addition, distances to v from G are preserved in H.
(Note that in the case of k-biwheel we have dg (v, z;) = dg(v,z;) = 2 for every
1 <4 < k since G is bipartite.) Hence we may apply Theorem 1 to extend the
above (bi)perfect level-disjoint partitions of H to G. O

Theorem 3 can be applied to obtain perfect or biperfect level-disjoint par-
titions for various graphs. For an example, see the four biperfect level-disjoint
partitions of the circulant graph in Fig. 2. Further examples are provided in the
next subsection.

(0,0,0,0)

Fig. 2. Four perfect level-disjoint partitions of a circulant graph rooted at v obtained
from a 4-biwheel.

Next we generalize Theorem 3. If [divides k, then the above k (bi)perfect
level-disjoint partitions of W}, or W can be compressed into [(bi)perfect level-

disjoint partitions. Let k = pl for some integers [, p and let the i-th level partition
of Wy for 1 <i <lbelU' = (Uj={v},U},...,U}) where

i
Uj = {Witj—141, Witj—1420 - - s Witj—14pl}

for 1 < j <1 and the indices are taken cyclically; that is, modulo (k+ 1) plus 1.
Clearly, U* and U7 are level-disjoint for any distinct 1 < 1,5 < l. Similarly for
a k-biwheel with k& = pl, let the i-th level partition of Wy for 1 < ¢ < [be
Vi= ({v},Uf, X{,..., U}, X]) where U} is as above and

i
Xi = A{Tigj140, Titj—1420 - - - Tikj—14pl }

for 1 < j <1 and the indices are taken cyclically; that is, modulo (k + 1) plus 1.
Clearly, V* and V7 are level-disjoint for any distinct 1 <4,j <.

These partitions lead to generalization of Theorem 3 as follows. Additional
properties of these partitions, called partitions modulo p, have been studied in [6].

Time-Optimal Broadcasting of Multiple Messages in 1-in Port Model 153

Theorem 4. Let v be a vertex in a graph G of degree k > 1 divisible by an
integer | > 1. If G has a k-wheel centered at v, then G has | perfect level-disjoint
partitions rooted at v. If G is bipartite, k > 3, and G has a k-biwheel centered
at v, then G has | biperfect level-disjoint partitions rooted at v.

4 Particular Networks

In this section we consider particular examples of Cartesian products and pro-
vide explicit constructions for them. We also propose several problems and
conjectures.

4.1 Torus Cs,, O Cs,,

First we consider a bipartite 2-dimensional torus; that is, the graph Cs, O Cs,,
where n,m > 2. By Proposition 3, it has a 4-biwheel centered at any vertex r.
Hence by Theorem 3, it has four level-disjoint partitions rooted at r of (optimal)
height

ecce,, 0y, (1) +6 =n+m+ 6.

Explicitly, let us denote the vertices of cycles Cs,,Csy by Co, =
(up,...,u2p), Com = (v1,...,V3yn) and assume r = (up,v1). We define a function
fli,5,k) for 1 <i<2n,1<j<2m,1 <k <4 determining the level of each
vertex (u;,v;) in the k-th level partition by

2((k—1)mod4) ifl<i<nmnandl<j<m,

2(k mod 4) ifi=lorn<i<2n, and 2<j<m,
2((k+1)mod4) ifn<i<2n,andj=1o0rm<j<2m,
2((k+2)mod4) ifl<i<nandm<j<2m

[, 3, k) = d@,) +

and f(1,1,k) =0, where d(¢,j) = de,, 0c,,, (4, v;), (w1, v1)) is

i+j—2 if1<i<nand1<j<m,
d(i, j) = 2n—i+j ifn<i<2nand1<j<m,

m—i+2m—j+2 ifn<i<2nand m<j<2m,

1+2m—j ifl<i<nand m<j<2m.

Then it is easy to verify that S¥ = (S(’)“,...,S,’f) for Kk = 1,...,4 where h =
n+m + 6 and

for every 0 < [< h are biperfect level-disjoint partitions of Cs, (O Cy,,. For
example see Fig. 3.

Furthermore, by applying Theorem 4 we obtain two same-rooted level-
disjoint partitions of Cy, O Cs, of (optimal) height n + m + 2. Trivially, a
single distance partition from the root has (optimal) height n+m as well. Hence
it remains a question whether Cs, O Cy,, has three same-rooted level-disjoint
partitions of (optimal) height n + m + 4, which is perhaps easy to resolve. More
interestingly, this can be generalized for higher dimensions as follows.

154 P. Gregor et al.

U ul ug us Uy Uus

A A A I I I

1 1 1 I I I

1 4-biwheel 1 1 I I I
Vi e mp g o

1(6,8,2,4)|(7,1,3,5) |:(8,2,4,6) | (9,3,5,7) ((8,10,4,6)| (7,9,3,5)
, ‘ r :
U1 g—-—-: ‘ -

1| (5.7,1,3)|(0,0,0,0) | (1,3,5,7) | (2,4,6,8) | (7.9.3,5) | (6,8,2,4)
(IS S C— e -

(4,6,8,2)|(3,5,7,1)|(2,4,6,8)|(3,5,7,9)((6,8,10,4)| (5,7,9,3)

U3 P p—— T

$(7,9,3,5)%(8,2,4,6)%(9,3,5,7) (10,4,6,8) (9, 11,5,7)' (8, 10, 4,6)

I I I l l l

Fig. 3. Four biperfect level-disjoint partitions of Cs O C4 rooted at r = (u1,v1) of
maximal height 11. The eccentric vertex to r, denoted by 7, is in the (last) 11th level of
the second partition. The arrows denote how these LDPs are constructed from LDPs
of the 4-biwheel centered at 7.

Congecture 1. The (bipartite) generalized torus Cyy,, O Cap, O+ - - O Cay,, where
d > 2 and nq,...,ng > 2 has [same-rooted level-disjoint partitions of optimal
height for every 1 <[< 2d.

We only know from Theorem 4 that Conjecture 1 holds if [divides 2d. Note
that by (2), an optimal height of four r-routed level-disjoint partitions of a non-
bipartite torus is ecc(r) + 3 instead of ecc(r) + 6 for bipartite case. This leads
us to pose the following problem. Clearly, if Conjecture 1 holds, this problem
reduces only to non-bipartite cases.

Problem 1. Which of generalized tori C,,, O Cy,, O --- 0O Cyy,, admit 2d same-
rooted level-disjoint partitions of optimal height?

4.2 Mesh P, 0P,

For 2-dimensional meshes P, (0 P,, where n,m > 3 we obtain similar results as
for tori, up to choice of the root. Let us denote the vertices of paths P,, P, by
P, = (u1,...,up), Py = (v1,...,0m). A vertex (u;,v;) of P, 0P, is an inner
vertex if 1 <i <m and 1 < j < m; and a border vertex otherwise.

By Proposition 3, the mesh P, O P,, has a 4-biwheel centered at any inner
vertex. Hence by Theorem 3 it has four level-disjoint partitions rooted at the
same inner vertex r = (u;,v;) of (optimal) height eccp op,, () + 6 where

eccp,0p,, (Wi, uj)) = max(i+j —2,i+m—j—1,n—i+m—jn—i+j—1).

For example, see Fig. 4.

Time-Optimal Broadcasting of Multiple Messages in 1-in Port Model 155

uy U2 u3 Uy us Ug
V] g lligiiiiiie

166.8.2,0)[(7,1,3,5) [(8.2,4,6) | (9,3,5,7) (10,4,6,8)] (11,5,7,9)

- | 4-biwheel
v siwheel | . ‘

16,7,1,3)] (0,0,0,0)[(1,3,5,7) | (2,4.6,8) [(3,5,7,9) | (4,6,8, 10)
173:>777 VVVVVV

(4.6,8,2)] (3,5.7.1) [(2.4,6,8)] (3,5.7,9) [4,6,8,10)[(5,7,9,11)
Uy T

(5,7,9,3) (4,6,8,2) (3,5,7,9) (4,6,8,10) (5,7,9,11) (6,8,10,12)

Fig. 4. Four biperfect level-disjoint partitions of Ps O Py rooted at r = (ug2,v2) of
maximal height 12. The eccentric vertex to r, denoted by 7, is in the (last) 12th level
of the fourth partition. The arrows denote how these LDPs are constructed from LDPs
of the 4-biwheel centered at r.

Furthermore, by applying Theorem 4 we obtain two level-disjoint partitions
rooted at the same inner vertex r of (optimal) height ecc(r) + 2. Explicit con-
structions of such level-disjoint partitions can easily be derived in a similar way
as for torus. We leave them out as they are merely technical. Similarly as for
bipartite tori, we propose the following conjecture.

Congecture 2. The generalized mesh P, O P,,, O--- 0O P,,, where d > 2 and
my,...,mgq > 3 hasl r-rooted level-disjoint partitions of optimal height for every
1 <1 < 2d and every inner vertex r.

Note that Conjecture 2 implies Conjecture 1 since a bipartite torus contains a
mesh with the same parameters 2nq,...,2n, as a spanning subgraph, and the
mesh has an inner vertex with eccentricity equal to the eccentricity of any vertex
of the torus. We only know from Theorem 4 that Conjecture 2 holds if [divides
2d. Note that we considered only inner vertices as roots since for border vertices
in 2-dimensional meshes there are no k-biwheels with & > 3.

Problem 2. Determine the maximal number of r-rooted level-disjoint partitions
of optimal height in the generalized mesh P,,, O P,,,, O - - 0O P,,, for all vertices
r and all parameters d > 2, mqy,...,mqg > 2.

4.3 Hypercube Q,

We view the n-dimensional hypercube @, for n > 3 as the Cartesian product
of Cy ~ Wy and the (n — 2)-fold Cartesian product of Ko; that is, @, ~ Cy O
(K3)"~2. By recursive application of Proposition 4, we obtain that @,, for any
n > 3 has an n-biwheel centered at any vertex v. Explicitly, let us assume that
v = 0" = (0,...,0). Then an n-biwheel centered at v is formed (for example)

156 P. Gregor et al.

by vertices w; = e; fori =1,...,n, z; = ¢; Bejq4q1 for i =1,...,n—1, and
T, = e1 ® ey, where e; denotes the vector with 1 exactly in the ith coordinate.

Hence by Theorem 3 we obtain the following result, answering affirmatively
a conjecture from [6] where only the case when n = 3-2¢ or n = 4 - 2! for some
integer i > 0 was shown. See examples for n = 3 and n = 4 on Fig. 5.

Corollary 1. For every n > 3 there exist n level-disjoint partitions of Q, with
the same root and with the mazimal height 3n — 2.

(

8,10, 4,6)

Fig. 5. (a) Three biperfect level-disjoint partitions of Q3 rooted at v of maximal height
7. (b) Four biperfect level-disjoint partitions of Q4 rooted at v of maximal height 10.

Explicitly, we define a function f(u, k) for u € V(Q,), 1 < k < n determining
the level of each vertex u in the k-th level partition as

0 ifu=v(=0"),
fu, k) = ¢ 2((n+k)modn) +2 ifu=u=x, (=e Dey),
2((i+ k) mod n)+j otherwise

where 7 is the position of the leftmost 1 in » and j is the number of 1’s in u. Then
it is easy to verify that S* = (S§,...,SF) for k =1,...,n where h = 3n — 2 and
Sk ={ueV(Qy) | flu, k) =1} for every 0 < 1 < h are biperfect level-disjoint
partitions of Q,,.

Note that the above definition of f(u, k) is based on the fact that each vertex
u except v or x, has a shortest path to the root v that goes through w; = e;
and avoids x,,, where i is the position of the leftmost 1 in u. Indeed, from w
by consecutively changing the rightmost 1 to 0 we obtain all vertices of such
a path. Furthermore, from z; we go to w; = e; along these paths for each
i=1,...,n—1 which agrees with the partition of the n-biwheel W,,. Therefore,
we may extend the canonical biperfect level-disjoint partitions of W, along these
paths to biperfect level-disjoint partitions of @,, by applying Theorem 1, which
corresponds to the above prescription for f(u, k).

Time-Optimal Broadcasting of Multiple Messages in 1-in Port Model 157

Furthermore, from Theorem 4 we obtain that @,, for any n > 3 has k biperfect
level-disjoint partitions rooted at the same vertex (of maximal height n+ 2k —2)
if k divides n. We propose that it holds for any k& > 1.

Conjecture 3. For any 1 < k < n, n > 3, the hypercube @Q,, has k same-rooted
level-disjoint partitions of optimal height.

5 Conclusions

In this work the concept of level-disjoint partitions which was originally intro-
duced in [6] is employed to describe simultaneous broadcasting of multiple mes-
sages from the same originator in the considered communication model.

It is shown that a local solution on a suitable subgraph can be extended
to the whole graph without loss of optimality. In this paper we use specifically
wheels and biwheels as local subgraphs. This could be further generalized for
other subgraphs such as subdivisions of wheels.

This approach leads to simultaneous broadcasting in optimal time on partic-
ular Cartesian products of graphs. However, it can be applied for a much larger
class of graphs. For example, for some circulant graphs or Knédel graphs that
have been previously studied in the context of broadcasting [3,4,11].

For bipartite tori, meshes, and hypercubes we provided tight results based
on construction of optimal number of biperfect level-disjoint partitions from
biwheels. We believe that simultaneous broadcasting can be achieved in opti-
mal time for any number of messages on generalized bipartite tori, generalized
meshes, and hypercubes (Conjectures 1-3). The problem of simultaneous broad-
casting in optimal time remains open for general tori (Problem 1) and meshes
with border originator vertices (Problem 2).

References

1. Bar-Noy, A., Kionis, S., Schieber, B.: Optimal multiple message broadcasting in
telephone-like communication systems. Discrete Appl. Math. 100, 1-15 (2000)

2. Bruck, J., Cypher, R., Ho, C.T.: Multiple message broadcasting with generalized
Fibonacci trees. In: Proceedings of the 4th Symposium on Parallel and Distributed
Processing, pp. 424-431 (1992)

3. Chang, F.-H., Chen, Y.-M., Chia, M.-L., Kuo, D., Yu, M.-F.: All-to-all broadcast
problem of some classes of graphs under the half duplex all-port model. Discrete
Appl. Math. 173, 28-34 (2014)

4. Fertin, G., Raspaud, A.: A survey on Kndédel graphs. Discrete Appl. Math. 137,
276-289 (2013)

5. Farley, A.: Broadcast time in communication networks. STAM J. Appl. Math. 39,
385-390 (1980)

6. Gregor, P., Skrekovski, R., Vukasinovi¢, V.: Rooted level-disjoint partitions of
Cartesian products. Appl. Math. Comput. 266, 244-258 (2015)

7. Gregor, P., Skrekovski, R., Vukaginovi¢, V.: Modelling simultaneous broadcasting
by level-disjoint partitions. Preprint arXiv:1609.01116

http://arxiv.org/abs/1609.01116

158

10.

11.

12.

13.

14.

15.

16.

17.

18.

P. Gregor et al.

Grigoryan, H.: Problems related to broadcasting in graphs. Ph.D. thesis, Concordia
University, Montreal, Quebec, Canada (2013)

Grigoryan, H., Harutyunyan, H.A.: Diametral broadcast graphs. Discrete Appl.
Math. 171, 53-59 (2014)

Harutyunyan, H.A.: Minimum multiple message broadcast graphs. Networks 47,
218-224 (2006)

Harutyunyan, H.A.: Multiple message broadcasting in modified Knédel graphs. In:
Proceedings of the 7th International Colloquium on Structural Information and
Communication Complexity, pp. 157-165 (2000)

Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and
broadcasting in communication networks. Networks 18, 319-349 (1988)
Hromkovic, J., Klasing, R., Monien, B., Piene, R., Du, D.-Z., Hsu, D.F.: Dissemina-
tion of information in communication networks (broadcasting and gossiping). Com-
binatorial Network Theory. Applied Optimization, vol. 1, pp. 125-212. Springer,
New York (1996)

Hromkovi¢, J., Klasing, R., Pelc, A., Ruzicka, P., Unger, W.: Dissemination of
Information in Communication Networks: Broadcasting, Gossiping, Leader Elec-
tion, and Fault-Tolerance. Texts in Theoretical Computer Science. Springer, Berlin
(2005)

Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann, San Mateo (1992)

Sun, C.M., Lin, C.K., Huang, H.M., Hsu, L.H.: Mutually independent Hamiltonian
cycles in hypercubes. In: Proceedings of 8th Symposium on Parallel Architectures,
Algorithms and Networks (2005)

Vukaginovié, V., Gregor, P., Skrekovski, R.: On the mutually independent Hamil-
tonian cycles in faulty hypercubes. Inform. Sci. 236, 224-235 (2013)

Wu, K.-S., Juan, JS.-T.: Mutually independent Hamiltonian cycles of C,, x C),
when m, n are odd. In: Proceedings of 29th Workshop on Combinatorial Mathe-
matics and Computation Theory, pp. 165-170 (2012)

Fast Searching on Complete k-partite Graphs

Yuan Xue!®™) | Boting Yang!, Farong Zhong?, and Sandra Zilles'

! Department of Computer Science, University of Regina, Regina, Canada
{xue228,boting,zilles}@cs.uregina.ca
2 College of Math, Physics and Information Technology,
Zhejiang Normal University, Jinhua, China
zfr@zjnu.edu.cn

Abstract. Research on graph searching has recently gained interest in
computer science, mathematics, and physics. This paper studies fast
searching of a fugitive in a graph, a model that was introduced by Dyer,
Yang and Yagar in 2008. We provide lower bounds and upper bounds on
the fast search number (i.e., the minimum number of searchers required
for capturing the fugitive) of complete k-partite graphs. We also investi-
gate some special classes of complete k-partite graphs, such as complete
bipartite graphs and complete split graphs. We solve the open problem
of determining the fast search number of complete bipartite graphs, and
present upper and lower bounds on the fast search number of complete
split graphs.

1 Introduction

Graph searching, also called Cops and Robbers games or pursuit-evasion prob-
lems, has many models, such as edge searching, node searching, mixed searching,
fast searching, etc. [1,3,4,7-10]. Let G denote an undirected graph. In the fast
search model, a fugitive hides either on vertices or on edges of G. The fugitive
can move at a great speed at any time from one vertex to another along a path
that contains no searchers. We call an edge contaminated if it may contain the
fugitive, and we call an edge cleared if we are certain that it does not contain
the fugitive. In order to capture the fugitive, one launches a set of searchers on
some vertices of the graph; these searchers then clear the graph edge by edge
while at the same time guarding the already cleared parts of the graph. This idea
is modelled by rules that describe the searchers’ allowed moves, as explained in
Sect. 2. A fast search strategy of a graph is a sequence of actions of searchers that
clear all contaminated edges of the graph. The fast search number of G, denoted
by fs(G), is the smallest number of searchers needed to capture the fugitive in G.

Stanley and Yang [11] presented a linear time algorithm for computing the
fast search number of Harlin graphs and their extensions, as well as a quadratic
time algorithm for computing the fast search number of cubic graphs. Yang [13]
proved that the problem of finding the fast search number of a graph is NP-
complete; and it remains NP-complete for Eulerian graphs. He also proved that
the problem of determining whether the fast search number of G equals to a
© Springer International Publishing AG 2016

T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 159-174, 2016.
DOTI: 10.1007/978-3-319-48749-6_12

160 Y. Xue et al.

half of the number of odd vertices in G is NP-complete for planar graphs with
maximum degree 4. Dereniowski et al. [5] gave characterizations of graphs for
which 2 or 3 searchers are sufficient in the fast search model. Xue and Yang [12]
investigated Cartesian products of graphs, and proved an explicit formula for
computing the fast search number of the Cartesian product of an Eulerian graph
and a path. They also presented upper and lower bounds on the fast search
number of hypercubes.

The fast search problem has a close relationship with the edge search
problem [6]. Alspach et al. [2] presented a formula for the edge search num-
ber of complete k-partite graphs. Dyer et al. [6] proved the fast search number
of complete bipartite graphs K, , when m is even. They also presented lower
and upper bounds respectively on the fast search number of K,,, when m is
odd. However, the gap between the lower and upper bounds can be arbitrarily
large, and this open problem remains unsolved for eight years.

In this paper, we provide lower and upper bounds on the fast search number
of complete k-partite graphs. Further, we investigate some special classes of k-
partite graphs, such as complete bipartite graphs and complete split graphs.
We solve the open problem of determining the fast search number of complete
bipartite graphs. We also present lower and upper bounds on the fast search
number of complete split graphs.

2 Preliminaries

Throughout this paper, we only consider finite undirected graphs that have no
loops or multiple edges. Let G = (V, E) denote a graph with vertex set V' and
edge set E. We also use V(@) and E(G) to denote the vertex set and edge set
of G respectively. Let uv be an edge with two endpoints u and v. For a vertex
v € V, the degree of v is the number of edges incident on v, denoted by deg (v).
We say a vertex is odd if its degree is odd, and we say a vertex is even if its degree
is even. An odd graph is a graph in which all vertices are odd. An even graph is
a graph in which all vertices are even. Define Voqq(G) = {v € V : v is odd}.

For a subset V' C V', we use G[V’] to denote the subgraph induced by V’,
which consists of all vertices of V'’ and all the edges of G between vertices in
V’. We use G — V' to denote the induced subgraph G[V \ V']. For a subset
E' C E, we use G — E’ to denote the subgraph (V, E\ E’). Let G; = (V1, E})
and Go = (Va, E3) be two subgraphs of G. The union of two graphs G and G»
is the graph G UGy = (V1 UV, By U Es). We use G + Va to denote the induced
subgraph G[V; U V3.

A walk is a list vy, €1, v1, - . ., ex, v of vertices and edges such that each edge
e;, 1 <1 <k, has endpoints v;_1 and v;. A path is a walk that does not contain
the same vertex twice, except that its first vertex might be the same as its last
vertex. We use vgvy...vx to denote a path with ends vy and vi. A trail is a
walk in which no edge occurs multiple times. For a connected subgraph G’ with
at least one edge, an Eulerian trail of G’ is a trail that traverses every edge
of G’ exactly once. A circuit is a trail whose first vertex is the same as its last.

Fast Searching on Complete k-partite Graphs 161

An FEulerian circuit is an Eulerian trail that begins and ends on the same vertex.
A graph is called Eulerian if it contains an Eulerian circuit that traverses all its
edges. Note that we only consider finite graphs with no loops or multiple edges
in this paper. So, throughout this paper, we assume that an Eulerian circuit or
Eulerian subgraph contains at least three edges.

In the fast search model, initially every vertex in V' and every edge in F is
considered contaminated. We call a vertex v € V cleared if all edges incident
on v are cleared, and we call v partially cleared if v has both contaminated
and cleared incident edges. A fast search strategy proceeds as follows. First, it
places some number of searchers on some vertices in V. Then, it performs sliding
actions along contaminated edges until either every edge in FE is cleared or no
more sliding actions are possible. A searcher on vertex u can slide along the
edge e = wv if e is contaminated and (1) u contains one additional searcher or
(2) e is the only contaminated edge incident on u. After sliding along e, the
searcher then resides on v and e is cleared. Intuitively, the sliding rules ensure
that the searchers guard the already cleared parts of the graph, so that the
fugitive cannot hide there. The following lemmas give two known lower bounds
on the fast search number.

Lemma 1 [6]. For any connected graph G, fs(G) > 3|Voaa(G)|.

Lemma 2 [11]. For any connected graph G with no leaves, fs(G) >
31Voua(G)| +2.

Let Ky,,...ne = (V1,..., Vi, E) denote a complete k-partite graph, where
WVi,..., Vi are disjoint independent sets, |V;| = n; and n; < n;ypq forall 1 <i <
k — 1. Each vertex in V; is adjacent to all the vertices in V (K, . n.) \ Vi. We
use Ky, = (V1, V2, E) to denote a complete bipartite graph, where |V1| = m,
[Vo| =n and 1 < m < n. We use Sy, , = (V1, V2, E) to denote a complete split
graph, where V; and V5 are disjoint sets, V; induces a clique with m vertices and
Vs is an independent set with n vertices. In S, ,,, each vertex in V; is adjacent
to all the other vertices in V; U V5.

Note that for any connected graph G, the fast search number of G is always
at least the edge search number of G. From Theorem 2 in [2], we have the next
lemma.

Lemma 3. For any connected graph G that contains a clique K,, of order m,
where m > 4, we have fs(G) > m.

3 Complete k-partite Graphs

In the following, we give lower bounds and upper bounds on the fast search
number of complete k-partite graphs. Throughout this section, in order to better
describe our proof ideas, we assume that placing actions of searchers can be
inserted after sliding actions of searchers in a fast search strategy. If we want
all placing actions to happen before all sliding actions in a fast search strategy,
then we can simply move all placing actions before all sliding actions in that fast
search strategy.

162 Y. Xue et al.

IA

Lemma 4. For a complete k-partz’te gmph Ko,....n,, where k > 2 and ny
- < ng, we have fs(Kp, . ny) > E 1 n;.

Lemma 5. For a complete k-partite graph K., .. n,, where k > 3 and n; <
g, if 0 > 3 and g > 3, then 5(Kn, . ny) = 24 S0 .

Proof. For any graph G, fs(G) is greater than or equal to the edge search number
of G. Thus, it follows from Theorem 6 in [2] that fs(K,,,. . n,) > 2+ ZZ 1 i

Theorem 1. For a complete k-partite graph K,,, . pn,, wherek >3, nqg <--- <
ng andzl 1N =, zle 1y > ng =3, then fs(Ky, . n,) =n— 1.

Proof. From Lemmab, we have fs(Kp,, . n,) > n—np+2 = n — 1. We will
show that n — 1 searchers can clear the graph. Let Vi = {v1,v9,v3} and X =
Kn,,...n, — Vi. Place n — 3 searchers on v; and slide them to each vertex of X.
Since k > 3, X is connected. We have three cases for the graph X.

Case 1. X is Eulerian. The following fast search strategy can clear all edges
of the graph K, . n, — {v1} using n — 1 searchers.

.....

1. Place a searcher on a vertex u of X.
2. Slide one of the two searchers on u along the Eulerian circuit of X to clear
all its edges.
Slide the two searchers on u to vy and v3 respectively.
4. Place a searcher on vy. Let Y be the graph formed by all the remaining
contaminated edges of K, . n,.
(a) If degy (v2) is even (Y is Eulerian in this case), then slide one of the two
searchers on vy along the Eulerian circuit of Y to clear all its edges.
(b) If degy (v2) is odd (Y has an Eulerian trail in this case), then slide one
of the two searchers on vy to vs along the Eulerian trail of Y to clear all
its edges.

@

Case 2. X is odd. So X + {v2} is Eulerian. We first place two searchers
on ve. Then slide one of the two searchers on vs along the Eulerian circuit of
X + {va} to clear all its edges. Finally, slide all searchers on X to vz to clear all
the remaining contaminated edges of Ky, . n,-

Case 3. X has both even and odd vertices. Suppose that X has 2h odd
vertices. Let a; and by be two odd vertices of X such that there is a path P;
between them which does not contain any vertex in Vogq(X) as an internal
vertex. Let Hy = X — E(Py). For i =2,... h, let a; and b; be two odd vertices
of H;_1 such that there is a path P; between them which does not contain any
vertex in Voqa(H;—1) as an internal vertex. Let H; = H;_1 — E(P;). It is easy to
see that Hj, contains no odd vertices. In particular, we select P; in the following
manner:

(1) If X contains at least two even vertices, say u and v/, then fori = 1,..., h,
let P, = a;u'b;.

(2) If X contains only one even vertex, say u, then we first show that V7 =
{u}. Note that all vertices in V;, 1 < j < k — 1, have the same degree in X.

Fast Searching on Complete k-partite Graphs 163

Therefore, we know |V3| = 1 and u is the only vertex in V;. Further, if there
is a vertex set V;, 2 < j < k — 1, which contains three vertices, then each of
the three vertices is even in X. This is a contradiction. Hence, |V;| = 2 for all
2 < j <k —1. We have two subcases for k.

(2.1) If k > 3, then we can find a matching for all odd vertices of X . Note that
there are 2k — 4 odd vertices on X. Let V2 = {a1,bx—2} and V; = {a;_1,b;_2},
3<j<k—1 Forl<i<k-—2, itiseasy to see that a; is adjacent to b;. Hence,
we can let P; = a;b;. Clearly, u is not included in P;.

(2.2) If k = 3, then we have |V;| =1, |V2| = 2 and |V3| = 3. Further, a; and
by are the only two odd vertices of X. Let V(X) = {u,a1,b1} and P; = ajub;.

If X contains at least two even vertices or X contains only one even vertex
and k > 3, then similar to Case 1, we clear all edges of the graph K,,, . ,, —{v1}
using the following fast search strategy. Let U be a connected component in Hy,
that contains u.

1. Place a searcher on the vertex wu.

2. Slide one of the two searchers on u along the Eulerian circuit of U to clear all
its edges. Note that all edges of X incident on u are cleared after this step.

3. Slide the two searchers on u to vo and wvs respectively.

4. Place a searcher on vy. Let H be the graph formed by all the remaining
contaminated edges of K,,, ., except edges in UleE(Pi).

(a) If degy (v2) is even (so H is Eulerian), then slide one of the two searchers
on v along the Eulerian circuit of H to clear all its edges.

(b) If degy(v2) is odd (so H has an Eulerian trail), then slide one of the two
searchers on vy from vy to vs along the Eulerian trail of H to clear all its
edges.

5. Let Gp be the graph formed by the paths Pi,..., P, (E(Gp) is the set of
all the remaining contaminated edges of Ky, . n,). Note that aj and b, are
two vertices of degree one on G p. Slide the searcher on aj along Pj, to by.
Then ap—1 and b,_1 are two vertices of degree one on Gp — E(FP}). Slide
the searcher on aj_1 along P,_1 to by_1. Continuing like this we see that all
edges of Gp can be cleared.

If X contains only one even vertex and k = 3, then similar to Case 1, we
clear all edges of the graph Kj 2 3 — {v1} using the following fast search strategy.
Place a searcher on a; and vy respectively. Slide one of the two searchers on a
along P; to by. Slide the two searchers on b; to vo and v respectively. Note that
the graph formed by all the remaining contaminated edges of K; 5 3 is Eulerian.
Slide one of the searchers on vy along the path vouvsajvs to clear all its edges.
Then, K 23 is cleared.

Theorem 2. For a complete k-partite graph Ky, ... n,, if there isann;, 1 < j

k, such that Zle n; —n; >4 and Zf:l n; — n; is even, then fs(Kn,, n,
k

Yo ni —nj+ 3.

Proof. If n; < 3, from Theorem 5.1 in [13], we see that the claim holds. If k = 2
and Ele n; —n; > 6, from Lemma 5 in [6], we know that the claim holds.

164 Y. Xue et al.

If k=2 and Zle n; —n; = 4, similar to Lemma 5 in [6], we can show that the
claim also holds. So we assume that n; > 4 and k£ > 3 in the rest of the proof.
Let Vj = {v1,va,...,05,} and X = K, . n, — Vj. Let Zle n; —n; = m and
V(X) = {u1,uz,...,un}. If n; is odd, then place m searchers on v, and slide
them to each vertex of X. If n; is even, then place m searchers on each vertex of
X. Without loss of generality, we assume that n; is even. Place three additional
searchers on ui, us and wug respectively.

Since k > 3, we know that X is a complete (k — 1)-partite graph. So X is
connected. If X is Eulerian, then slide a searcher from wu; along the Eulerian
circuit of X to clear all its edges. Without loss of generality, we assume that
X is not Eulerian. Suppose that X has 2h odd vertices. Let Hy = X. Similar
to Case 3 in the proof of Theorem 1, let a; and b; be two odd vertices of H;_1
such that there is a path P; between them which does not contain any vertex in
Voad(H;—1) as an internal vertex. Let H; = H;_1 — E(FP;), 1 < i < h. We now
describe a fast search strategy that can clear all edges of Ky, .. n, using m + 3
searchers.

k

1. In the following procedure, at any moment when a vertex u; (1 < i < m)
contains two searchers, if H, has a connected component that contains u; and
no edges of the component are cleared, then slide a searcher from u; along
the Eulerian circuit of the component to clear all its edges.

2. Slide a searcher from u; to vy along ujv1, slide a searcher from us to v1 along
uov1 and slide a searcher from ugz to vo along usvs.

3. Note that the subgraph induced by all the edges across {us,...,um,} and
{v1, v2} has an Eulerian trail (since m is even). Slide a searcher from v; to vy
along the Eulerian trail to clear all its edges.

4. Slide a searcher from v; to ug along vyus, slide a searcher from vy to u; along
vouy and slide a searcher from vy to us along vous. After this step, vy and vg
are cleared.

5. Similar to Steps 2, 3 and 4, we can clear v3 and vy, and then clear vs and vg
(if they exist), and so on, until v,,—; and v, are cleared.

6. Let Gp be the graph formed by the paths Py, ..., P, (E(Gp) is the set of all
the remaining contaminated edges of K,,, . n,). Similar to Step 5 in Case 3
of the proof of Theorem 1, we can clear all edges of G p.

Theorem 3. For a complete k-partite graph Ky, . n,, if there is an n;, 1
j <k, such that Zle n;—n; >3 and Zle n; —n; s odd, then fs(K,, . n,)
Zf:l ni — L%J :
Proof. If n; < 3, similar to Theorem 5.1 in [13], we can prove the claim. If
k = 2, from Lemma 7 in [6], we see that the claim holds. So we assume that
n; > 4 and k > 3 in the remainder of the proof. Let V; = {v1,v2,...,vy,,} and
X =Kp,, ., —Vj Let Zle n; —n; =m and V(X) = {u1,ug, ..., un}. Note
that X is connected since k > 3. Suppose that X has 2h odd vertices. Similar to
Case 3 in the proof of Theorem 1, we can define a;, b;, P; and H; for 1 <i < h.
Case 1. n; = 40 + 1. Place m searchers on v;, place one searcher on each of
u1, v and vs. Place one searcher on each of vg;42 and vg;43 fori=1,...,0—1

INIA

Fast Searching on Complete k-partite Graphs 165

(i.e., we place two searchers for every four vertices in V; \ {v1}). In total we use
m+ 1+ %1 searchers.

1. In the following process, at any moment when a vertex u; (1 < ¢ < m)
contains two searchers, if Hj has a connected component that contains u;
and no edges of the component are cleared, then slide a searcher from wu;
along the Eulerian circuit of the component to clear all its edges.

2. Slide m searchers from wv; to each vertex of X. Slide one of the two
searchers on wu; along the Eulerian circuit induced by all the edges across
{ui,ug, ..., um—1} and {ve,v3} to clear all its edges.

3. Slide a searcher from vy to vy along vou.,,vs and slide a searcher from wvs to
us along vsu,,vs to clear vy and v3. Slide a searcher on u; along the Eulerian

circuit induced by all the edges across {u1, ua, ..., um—1} and {vg, v5} to clear
all its edges.

4. Repeat the above step for all of vy; 2 and vg; 43 where ¢ =1,...,¢ — 1. First
clear the Eulerian circuit induced by all the edges across {u1,ug, ..., Um—1}

and {vgiy2,v4i43} with a searcher on u;. Slide the searcher on wv4;1o along
Vgi+2UmUsitra and the searcher on wvy;43 along v4;4+3um,vai45. Then clear the
Eulerian circuit induced by all the edges across {uj,us,..., Um—1} and
{v4i44,v4515} with a searcher on u.

5. Let Gp be the graph formed by the paths Py, ..., P,. Similar to Step 5 in
Case 3 of the proof of Theorem 1, we can clear all edges of Gp.

’I’L]'72

Case 2. nj = 40+2. Place the searchers as in Case 1. So m+1+ 5= = m—i—%
searchers are placed on the graph. Clear all vertices in V; \ {vy, } with the same
strategy used in Steps 1-4 in Case 1. Note that the only contaminated edges are
the ones incident on v, and the edges of Gp. We can arrange the vertices of X
before placing actions such that u; = aj,, which is a vertex of degree one on Gp.
Since m is odd, there is at least one vertex u such that degy (u) is even. For each
vertex u € V(X) whose degy(u) is even, if u ¢ V(Gp), then slide a searcher
on u to vy, along uvy,;. Slide a searcher from uq to vy, along ujvy,;; slide the
other searcher on u; (i.e., ap) along Py, to by, during which, when a vertex u; of
Py, has only one contaminated edge (i.e., u;v,;), incident on it, slide a searcher
on u,; along UiVp,; $O Vp,. Then ap_1 and bp_1 are two vertices of degree one
on Gp — E(Py). Slide a searcher from v, to aj—1 along v, a1, and slide this
searcher along Pj_1 to by_1, during which, when a vertex u; of P,_; has only
one contaminated edge incident on it, slide a searcher on w; along u;v,; to vy;.
Continuing like this we can clear all edges of G'p and all edges incident on vy, .

Case 3. n; = 4¢ + 3. Place the searchers as in Case 1. Place another searcher
on u,,. Hence we use m + 1 + nJT% +1=m+ "JTH searchers. Use the same
strategy as in Steps 1-4 in Case 1 to clear every vertex in V; \ {vpn, 1, Un, }. Now
there is one searcher on every vertex of X except u; and u,, on which there
are two searchers. We can arrange the vertices of X before placing actions such
that u,, = ap. Slide one of the two searchers on u,, along P} to by to clear all
its edges. Then, b, contains two searchers. Slide a searcher on b, along brvn; 1
and by vy, respectively. Slide a searcher on u; to clear the Eulerian circuit induced

166 Y. Xue et al.

by all the edges across V(X) \ {b1} and {v,,_1,vn, }. Finally, similar to Step 5
in Case 1, we can clear all edges of Gp — E(Py).

Case 4. n; = 4l Place a searcher on every vertex in {uq,uo,...,
Upm—1,V1,Va, ...,V } and place a second searcher on u;. Hence we use m + %J
searchers. We can arrange the vertices of X before placing actions such that
degy (uy,) is even and uy = ap,. Let P; = a;umb;, 1 < i < h.

1. Slide the searcher from u; along the Eulerian circuit induced by all the edges

across {ui,us,...,Um—1} and {v1,va,...,vee}. Then slide each searcher on
v; € {v1,v9,...,v9} along v;u,, to clear {vy,ve, ..., var}.

2. Slide a searcher on u,, to each vertex in {vopi1,v2042,...,Vs0—2}. Slide a
searcher on u; to clear the Eulerian circuit induced by all the edges across
{uy,ug, ..., um-1} and {vori1, Varya, ..., vae—2}. Slide a searcher on uy to by
along Pj,.

3. In the following process, at any moment when a vertex u; (1 < ¢ < m)
contains two searchers, if Hj has a connected component that contains u;
and no edges of the component are cleared, then slide a searcher from wu;
along the Eulerian circuit of the component to clear all its edges.

4. Slide a searcher on by, along bpv4r—1 and bpvye respectively and by, is cleared.
Then, slide a searcher on u,, to clear the Eulerian circuit induced by all the
edges across V(X) \ {bn} and {var—1,v40}.

5. Finally, similar to Step 5 in Case 1, we can clear all edges of Gp — E(Py,).

Corollary 1. For a complete k-partite graph Ky, ... n,, define aj, 1 < j <k,
as

k
k k
Zni —nj+3, if Zi_l n; —n; 15 even andzi_l n; —nj > 4,
i=1
k ’I’Lj . k . k
aj = Zni—{—J, zf24 n; —n; is odd and Z n; —n; > 3,
—1 2 i=1 i=1
im

k
E n;, else.
i=1

Then fS(Knlw.,n;J S minlgjgk Q.

4 Complete Bipartite Graphs

In Sects. 4 and 5, we focus on some special classes of complete k-partite graphs.
When k = 2, K, . n, is a complete bipartite graph. Dyer et al. [6] proved
several results on the fast search number of K, ,. The fast search problem on
K, » has been solved when m is even. However, the fast search problem remains
open when m is odd, and they only gave lower and upper bounds on fs(X, ,,)
in [6]:

Fast Searching on Complete k-partite Graphs 167

— When m is odd, n is even and 3 < m < n, we have max{m + 2,5} <
fs(Km,n) < min{n + 3, m + %}
— When m and n are odd and 3 < m < n, we have max{m + 2, m;‘"} <

In the following, we will prove that for a complete bipartite graph K,, ,
with 3 < m < n, if m is odd, then fs(K,,) equals to the upper bounds given
above. Let Sk, , denote an optimal fast search strategy for K, ,, which uses
the minimum number of sliding actions to clear the first cleared vertex of K, ,,
among all optimal fast search strategies for K, ,. We use w; to denote the first
cleared vertex of K, ,,. Let t1 denote the moment at which w, is cleared (see
Fig.1(1)). Note that vertices of K, ,, are partitioned into two vertex sets V4 and
Va. We use wy to denote the first cleared vertex in another vertex set of K, ,
which does not contain wy. That is, if w; € Vi, then wy € Va; if wy € V5, then
wy € V. Let to denote the moment after which the next sliding action clears
wy (see Fig. 1(2)). Without loss of generality, we first assume that w; € V2. In a
similar way, we can prove the lower bound on fs(X,,) when w; € V;.

O Contaminated vertex
@ Fartially cleared vertex

B Cleared vertex

Contaminated edge

= = = Cleared edge

(1) ()

Fig. 1. (1) After searcher X slides from v1 to w1, v1 becomes the first cleared vertex
of K3,3. Let this moment be denoted by t1, and we have w1 = v1. (2) Searcher A will
slide from us to vs in the next step. After that, us becomes the first cleared vertex in
Vi. Let t2 denote this moment, and we have wa = us.

Throughout this section, we assume m is odd. We use A; to denote the set of
all vertices in V5 \ {w; } which contain a searcher at ¢; and have cleared incident
edges at t2. We use A, to denote the set of all vertices in Vo \ {w; } which contain
a searcher and have cleared incident edges at t5. Let a1 = |A;| and ag = |As], it
is easy to see that a; + ag > |A; U As|. Figures2 and 3 illustrate A; and As.

Note that at the moment ¢, all vertices in Ay \ {A; N A2} are contaminated
and contain no searchers, and hence contain no searchers at the beginning of
Sk, cither. Since m is odd, we know all vertices in Az are odd. Therefore,
each vertex in As \ {4; N A2} must contain a searcher at the end of Si

m,n "’

Lemma 6. For a complete bipartite graph K, , with m,n > 3, let Sk be an

m,n

optimal fast search strategy for clearing K, . Suppose that w1 € Vo in Sk
then we have a1 + ag > |A1 U Ag| > n — 2.

m,n’

168 Y. Xue et al.

O Contaminated vertex
@ Partially cleared vertex

B Clearedvertex

Contaminated edge

= = = Cleared edge

Fig. 2. At the moment ¢, each vertex in A; contains a searcher. Further, each vertex
in A; has cleared incident edges at t2 (see Fig.3). In this case, A1 = {v2,v3}.

Q Contaminated vertex
@ Partially cleared vertex

B Cleared vertex

—— Contaminated edge

= = Cleared edge

Fig. 3. At the moment t2, each vertex in Ay contains a searcher, and all vertices in A;
and Az have cleared incident edges. In this case, A2 = {v4}.

Lemma 7. For a complete bipartite graph K, », with m,n > 3, let Sk, , be an
optimal fast search strategy for clearing Ky, . Suppose that wy € Vo in Sk, . If
(1) each vertex in V1UA; contains exactly one searcher at ty, and (2) wy contains
no searchers at t1, then each vertex in Ay has at least two contaminated incident
edges at t1.

4.1 Both m and n Are Odd

Lemma 8. For a complete bipartite graph K, , with 3 < m < n, suppose that
both m and n are odd. If wy € Va, then fs(Kp,) = m+ %5,

Proof. If 3 =m < n, then it follows from Lemma2 that fs(Kp,) > 5% 42 =

"T“ +3 = m+"T+1. So we only need to consider 5 < m < n in the following. Since

wy € Vo and wy is cleared at t1, we know each vertex in V3 must be guarded by

a searcher at the moment ¢1. If max{ay, a2} > "T'H, then fs(Kp,) > m + "T'H
-1

Suppose that max{a;,as} < "7=. Note that a; +az > n — 2 and both m and n

are odd. We know min{a,as} > ”7_3 Further, a; and as cannot both equal to
"?*3; otherwise, a1 + as = n — 3 < n — 2. Hence, there are two cases.

Case 1. a1 = an If wy contains a searcher at ¢, then fs(K,,) > |Vi| +
|[Ai]+1=m+a1+1=m+ "T'H If wy contains no searchers at ¢1, then for the
sake of contradiction, we assume that m + "T_l searchers can clear K, ,. Since
[VIUA | = m+ "7_17 we know each vertex in V3 UA; contains exactly one searcher

at t1, and no searchers are located on other vertices. Consider the moment

Fast Searching on Complete k-partite Graphs 169

t1. From Lemma 7, we know each vertex in A; has at least two contaminated
incident edges at ¢1. Further, since |[Vo\{4; U{w:}}| = n— 252 —1 > 2, there are
at least two vertices in V5 which have no cleared incident edges. Therefore, each
vertex in V; has at least two contaminated incident edges. Observe that every
vertex in V3 UA; contains exactly one searcher and has at least two contaminated
incident edges. Therefore, all searchers get stuck at ¢1, which contradicts that
m—+ an searchers can clear K, ,. Hence, fs(K,,) > m + "7“

Case 2. a1 = "T_?’ Since max{ay,az} < %5L and a; + az > n — 2, we know

as = ”T_l Further, since a1 + a, = n — 2, V\2Ie know A; N Ay = 0, and hence
each vertex in A should always contain a searcher after t5. For the sake of
contradiction, assume that m + ”Tfl searchers can clear K, ,,. Recall that at the
moment ¢y, each vertex in As U V; is occupied by a searcher and |A; U Vi| =
m+ %’1, we know each vertex in As UV} is occupied by exactly one searcher at
to. Let x129 denote the last cleared edge before to, which is cleared by sliding
a searcher from x; to x. Note that each vertex in V; is occupied by a searcher
between t; and t5. We know x5 must be in A,, and zo contains no searchers
before xy1xo is cleared. Thus, zi29 is the only cleared edge incident on x, at
to. Recall that a1 + as = n — 2, it is easy to see that there is still a vertex
in Vs, say x3, which has no cleared incident edges at t5. Hence, wexzs must be
cleared by the next sliding action after t5. When ws is cleared, we know both
of zo and x3 have exactly one cleared incident edge, and the two edges must be
woXo and woxsz. Therefore, when ws is cleared, each vertex in V; except ws has
at least two contaminated incident edges. Note that each vertex in Ay should
be guarded by a searcher after to. Hence, every searcher gets stuck after wo
is cleared. This contradicts that m + ”T_l searchers can clear K, ,. Therefore,
f8(Kpn) > m+ 2L

Corollary 2. For a complete bipartite graph K, , with 3 < m < n, suppose
that both m and n are odd. If wy € Vi, then fs(K,,n) > m + ”TH when m = 3,
and fs(Kp, n) > n+ mTH when m > 5.

From Lemma 8 and Corollary 2, we are ready to present the lower bound on
fs(Ky,) when both m and n are odd. Note that since m < n, min{m+ "7“, n-—+
m;—l} = m+ n-2i-1 .

Theorem 4. Given a complete bipartite graph Ky, , with 3 <m < n, if both m
and n are odd, then fs(Kp,) > m + “EL.

4.2 m is Odd and n is Even

Lemma 9. For a complete bipartite graph K, ,, with 3 < m < n, suppose that
m is odd and n is even. If wy € Vo, then fs(Kp) > m + 5.

Proof. If max{ai,as} > %, then it is easy to see that fs(K,, ,,) > m+ 5. Suppose

that max{ay,az} < %. Since a; + a2 > n — 2 and n is even, we know a; =
as = "T_Q and A; N Ay = 0. Consider the moment t;. We know each vertex

in V7 U Ay contains a searcher. For the sake of contradiction, we assume that

170 Y. Xue et al.

m+ "772 searchers can clear K, ,. Then each vertex in V; U A; contains exactly
one searcher at t;. From Lemma?7, we know each vertex in A; has at least
two contaminated incident edges. Further, since A3 N Ay = @ and |V5 \ {4; U
{wi}} =n— 252 —1 > 2, we know there are at least two vertices in V5 which
have no cleared incident edges at t;. Thus, each vertex in V; has at least two
contaminated incident edges at t1, and hence, all searchers get stuck at ¢;. This
contradicts that m+”T’2 searchers can clear Ky, ,. Therefore, fs(Ky, ,,) > m+5.

In the following, we consider the case when w; € V.

Lemma 10. For a complete bipartite graph K, , with 3 < m < n, suppose that
m is odd and n is even. If wy € Vi, then fs(K,,,) > n+ 1 when m = 3, and
ts(Kom n) > n+ 3 when m > 5.

Proof. If wy € Vi, then wy € V5. At the moment ¢7, since w; is the first cleared
vertex, each vertex in V5 is occupied by a searcher. Let ws denote the second
cleared vertex of Ky, ,,. If wz € V3, then we know each vertex of K, ,, except w;
and ws must be occupied by a searcher before ws is cleared. Hence, fs(K,,) >
m +n — 2. If wy € V7, then we have two cases:

Case 1. m = 3. Assume that n searchers can clear K, ,,. Consider the moment
t1. Note that |Vo| = n and each vertex in Vs is occupied by a searcher at ;.
Hence, each vertex in V5 contains exactly one searcher at ¢; and no searchers
are located on other vertices. Since there are still two vertices in V; which have
no cleared incident edges, then each vertex in V5 has two contaminated incident
edges. Thus, it is impossible to move any of the searchers located on V5 after
t1. This contradicts our assumption that n searchers can clear K,, . Therefore,
ts(Kom.n) > n+ 1 when m = 3.

Case 2. m > 5. For the sake of contradiction, we assume that n + 2 searchers
are sufficient to clear K, ,,. We have three subcases:

Case 2.1. w3 contains no searchers after it is cleared. Then the last two
cleared edges incident on ws are both cleared by sliding a searcher from ws
to Vo. After ws is cleared, all searchers will get stuck within five steps. This
contradicts the assumption that n + 2 searchers are sufficient to clear K, .
Therefore, fs(Kp,) > n+ 3.

Case 2.2. w3 contains exactly one searcher after it is cleared. Note that ws
has degree at least 6, we know the last cleared edge incident on ws has to be
cleared by sliding a searcher from ws to V5. Consider the moment when ws is
cleared. Note that each vertex in V5 is occupied by a searcher between ¢; and
to, and there are at least m — 2 > 3 vertices in V; which contain no searchers
and have no cleared incident edges. Since we assume that n + 2 searchers are
sufficient to clear K, ,,, hence, there is only one vertex in V5 which contains two
searchers. It is easy to see that all searchers get stuck within one step after ws
is cleared, which is a contradiction. Therefore, fs(K,, ,) > n+ 3.

Case 2.3. ws contains exactly two searchers after it is cleared. Consider the
moment at which ws is cleared. Note that there are still at least m — 2 > 3
vertices in V; which contain no searchers and have no cleared incident edges.

Fast Searching on Complete k-partite Graphs 171

Further, each vertex in V5 is occupied by exactly one searcher. Hence, it is easy
to see that all searchers get stuck after ws is cleared. Therefore, fs(K,, ,,) > n+3.

From the above cases, if wy € Vi, then fs(K,,) > min{m +n—2,n+1} =
n+1 when m = 3, and fs(K,,) > min{m+n —2,n+ 3} =n+3 when m > 5.

From Lemmas9 and 10, we know: (1) when m = 3, fs(K,,) > min{m +
5,n+1} =m+ % ; (2) when m > 5, fs(K,, n) > min{m + 4,7 + 3}. Hence,
we are now ready to give the lower bound on fs(K,,) when m is odd, n is even
and 3 <m <n.

Theorem 5. For a complete bipartite graph K, , with 3 <m <n, if m is odd
and n is even, then fs(K,) > min{n +3,m + 5 }.

From Theorems4 and 5 above, in combination with Lemma 4 and Theorem
4 in [6], we have a complete solution to fs(K,, .).

Theorem 6. For a complete bipartite graph K, , with 3 <m < n,

FiE m=1,
2, m=n=2,
3, m=2andn >3,
n+1
fs(Kmn) =4 m+ 5 3 <m < n, bothm and n are odd,

min{n + 3, m + g}, 3<m<n, mis odd and n is even,

6, m=4 and n > 4,

m + 3, 6 <m <n andm is even.

5 Complete Split Graphs

In this section, we consider complete split graphs S,,, , with m,n > 1, which also
form a special class of k-partite graphs K,,,, . n, When 1 =n; = - =ng_; <
ng. We start with some initial cases.

Lemma 11. For a complete split graph Sy, n, if n =1, then

1, m=1,
fS(Smyl) = 2, m = 2,
m+1, m>3.

In the following, we consider the fast search number of S,,, ,, when n > 2. Let
Ss,, . denote an optimal fast search strategy for clearing Sy, . Let w] denote
the first cleared vertex in Sg and let ¢} denote the moment at which wj is
cleared.

m,n

172 Y. Xue et al.

51 mis Odd and n > 2

When m =1 and n > 2, S, is a star with n leaves. It is easy to see that
S1,n can be cleared with [%] searchers. Further, it follows from Lemma 1 that
fs(S1,n) = £|Voda(S1,n)| = [%]. Hence, we have the next lemma.

Lemma 12. For a complete split graph with m =1, if n > 2, then £s(S1,,) =
[51.

Lemma 13. For a complete split graph Sy, with m > 3 and n > 2, if m is
odd, then fs(Spmn) =m + [5].

Proof. If wy € V1, then each vertex of Sy, , except w] should be guarded by a
searcher at the moment t;. Hence, fs(Syn.n) > m — 1+ n. If w] € Vs, then we
have two cases:

Case 1. n is even. If n = 2, then it follows from Lemma3 that £s(S,,.,) >
m+1=m+ 5. If n> 4, then similar to the proof of Lemma9, we can show
that fs(Sp,n) > m + 3.

Case 2. n is odd. If n = 3, then it follows from Lemmab that fs(Sy,) >
24+m=m-+ ”T'H If n = 5, then similar to the proof of Lemma8 when n > 5,
we can show that fs(Sp,) > m + 2.

From the above cases, when m > 3 and n > 2, £8(S,, ,,) > min{m—1+n, m+
[5]} =m+[5]. In combination with Theorem 3, we have fs(S,) =m +[F],
when m > 3 and n > 2.

From Lemmas 12 and 13, we are ready to give the fast search number of S, ,,
when m is odd and n > 2.

Theorem 7. For a complete split graph Sy, n, if m is odd, then

[gw m=1n2>2,
£8(Smn) = n
m-l—{g-‘, m>3,n>2

5.2 m is Even and n > 2

Now we consider the complete split graph S,, , where m is even and n > 2. We
first give the following upper bound on (S,).

Lemma 14. For a complete split graph Sy, , with m = 2 and n > 2, we have
fS(SQ’n) S 3.

Proof. Let Vi = {uy,u2} and Vo = {v1,v2,...,v,}. Place a searcher on u; and
us respectively. Place a second searcher, say A, on u;. Hence we use 3 searchers.
Let A clear vy by sliding along the path wjvius. Next let A clear ve by sliding
along the path usvou;. Repeat this process to clear all the other vertices of .Sy, .

Lemma 15. For a complete split graph Sy, ,, with m =4 and n > 3, we have
fS(S4,n) S 6.

Fast Searching on Complete k-partite Graphs 173

Lemma 16. For a complete split graph Sy, ,, with m > 4 and n = 2, we have
fS(SnL,Q) S m + 1.

Theorem 8. For a complete graph Sy, n,

3, m=2,n2>2,
6 m=4 3
men —)) —_
Ema) =4 i1 msa =2
m+2, m>6,n=

Proof.

(1) m=2andn > 2. If wy € V4, then £5(S2,) > |V1UV|—1=24+n—-12>3.If
w] € Va, then let wjz; denote the last sliding action at ;. Suppose that two
searchers are sufficient to clear S, ,,. When w] is cleared, each vertex in V3
should be occupied by a searcher. Therefore, at the moment #/, each vertex in
V1 is occupied by exactly one searcher and no searchers are located on other
vertices. Hence, x; has no cleared incident edges before wjz; is cleared.
Further, the only edge between two vertices in V; is contaminated when
wjxy is cleared. Since there is at least one vertex in V5 which has no cleared
incident edges, we know each vertex in V; has at least two contaminated
incident edges. Therefore, no searchers can move after w] is cleared. This is
a contradiction. Thus, when m = 2 and n > 2, £s(S2,,) > 3.

(2) m =4andn > 3. It follows from Lemmas 5 and 15 that £s(Sy,,) = m+2 = 6.

(3) m > 4 and n = 2. Clearly, S, 2 contains a clique K,,41. From Lemmas 3
and 16, we have fs(Sy,2) =m + 1.

(4) m > 6 and n = 3. It follows from Theorem 1 that fs(S,,3) =m+n—1=
m+ 2.

From Lemma5 and Theorem 2, we give a lower bound and an upper bound
on fs(Sy,,n) when m > 6 and n > 4.

Theorem 9. For a complete split graph Sy, ,, with m > 6 and n > 4, if m is
even, then m + 2 < £s(Sy,.,) < m+ 3.

6 Conclusion and Open Problems

We established both lower bounds and upper bounds on the fast search number
of complete k-partite graphs. For k = 2, in combination with existing upper
bounds, we completely resolved the open question of determining the fast search
number of complete bipartite graphs. In addition, we presented some new and
nontrivial bounds on the fast search number of complete split graphs.
State-of-the-art knowledge and intuition about the fast search model is not
developed as well as for most other search models. Our lower bounds required
new proof approaches compared to the existing results in the literature; thus our
results shed light on the general problem of finding optimal fast search strategies.
The following problems are left open which we consider worth to investigate:

174 Y. Xue et al.

(1) For complete split graphs Sy, , with m > 6 and n > 4, resolve the gap of 1
between the upper bound and lower bound on the fast search number when
m is even.

(2) Determine the fast search number of K, ., for general values of ng, ...,
ng. We conjecture that in Corollary 1, if Zle n; —n; is odd and Zle n; —

n; > 3, then fs(Ky, .. n,) = minj<;<y a;, where a; = Zle n; — L%]J

References

1. Alspach, B.: Sweeping and searching in graphs: a brief survey. Matematiche 59,
5-37 (2006)

2. Alspach, B., Dyer, D., Hanson, D., Yang, B.: Lower bounds on edge searching. In:
Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp.
516-527. Springer, Heidelberg (2007)

3. Bienstock, D.: Graph searching, path-width, tree-width and related problems (a
survey). DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 5, 33-49 (1991)

4. Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. Amer-
ican Mathematical Soc., Philadelphia (2011)

5. Dereniowski, D., Diner, O, Dyer, D.: Three-fast-searchable graphs. Discrete Appl.
Math. 161(13), 1950-1958 (2013)

6. Dyer, D., Yang, B., Yasar, O.: On the fast searching problem. In: Fleischer, R., Xu,
J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 143—-154. Springer, Heidelberg (2008)

7. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph
searching. Theoret. Comput. Sci. 399(3), 236-245 (2008)

8. Hahn, G.: Cops, robbers and graphs. Tatra Mt. Math. Publ. 36(163), 163-176
(2007)

9. Makedon, F.S., Papadimitriou, C.H., Sudborough, I.H.: Topological bandwidth.
SIAM J. Algebraic Discrete Methods 6(3), 418-444 (1985)

10. Megiddo, N., Hakimi, S.L., Garey, M.R., Johnson, D.S., Papadimitriou, C.H.: The
complexity of searching a graph. J. ACM 35(1), 18-44 (1988)

11. Stanley, D., Yang, B.: Fast searching games on graphs. J. Comb. Optim. 22(4),
763-777 (2011)

12. Xue, Y., Yang, B.: Fast searching on cartesian products of graphs. In: The 14th
Annual Conference on Theory and Applications of Models of Computation (2017,
accepted)

13. Yang, B.: Fast edge searching and fast searching on graphs. Theoret. Comput. Sci.
412(12), 1208-1219 (2011)

Cliques in Regular Graphs
and the Core-Periphery Problem in Social
Networks

Ulrik Brandes', Eugenia Holm', and Andreas Karrenbauer?®™)
! Department of Computer & Information Science,
University of Konstanz, Konstanz, Germany
{ulrik.brandes,eugenia.holm}@uni-konstanz.de
2 Max Planck Institute for Informatics, Saarbriicken, Germany
andreas.karrenbauer@mpi-inf .mpg.de

Abstract. The existence of a densely knit core surrounded by a loosely
connected periphery is a common macro-structural feature of social net-
works. Formally, the COREPERIPHERY problem is to partition the nodes
of an undirected graph G = (V, E) such that a subset X C V, the
core, induces a dense subgraph, and its complement V'\ X, the periph-
ery, induces a sparse subgraph. Split graphs represent the ideal case in
which the core induces a clique and the periphery forms an independent
set. The number of missing and superfluous edges in the core and the
periphery, respectively, can be minimized in linear time via edit distance
to the closest split graph.

We show that the COREPERIPHERY becomes intractable for standard
notions of density other than the absolute number of misclassified pairs.
Our main tool is a regularization procedure that transforms a given graph
with maximum degree d into a d-regular graph with the same clique num-
ber by adding at most d - n new nodes. This is of independent interest
because it implies that finding a maximum clique in a regular graph is
NP-hard to approximate to within a factor of n'/27¢ for all € > 0.

1 Introduction

In the COREPERIPHERY problem, we are given a graph G = (V,E) and our
goal is to find a bipartition of V into a tightly knit core and a loosely connected
periphery. To formalize the COREPERIPHERY problem, we compare the given
graph with the class of split graphs, i.e., graphs that admit a bipartition into
a complete induced subgraph and a set of mutually non-adjacent vertices. Our
aim is now to minimize the error, i.e., the deviation from the ideal case.

To this end, we want to simultaneously maximize the density in the core and
minimize the density in the periphery.

We gratefully acknowledge financial support from Deutsche Forschungsgemeinschaft
(DFG) under grants Br 2158/6-1 and Ka 3042/3-1. This work is partially supported
by the Zukunftskolleg of the University of Konstanz, and the Max Planck Center for
Visual Computing and Communication (www.mpc-vce.org).

© Springer International Publishing AG 2016

T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 175-186, 2016.
DOI: 10.1007/978-3-319-48749-6_13

www.mpc-vcc.org

176 U. Brandes et al.

The COREPERIPHERY problem is highly relevant for the analysis of social net-
works [2,21] in various domains [1,5,6,8,9,15,16,18-20,22-25]. The most com-
mon formalizations are due to Borgatti and Everett [2] and heuristic algorithms
are used [3,4] to separate a core from its periphery. Rombach et al. [21] present
a method for identifying multiple cores in a network. Holme [12] introduced a
core-periphery-coefficient to measure if the network can be bisected in core and
periphery. Zhang et al. [26] developed a statistically principled method, where
they use a maximum-likelihood fit, for detecting a core-periphery-decomposition.

The COREPERIPHERY is closely related to other problems in graph theory.
For example, if we omit the condition of a bipartition, we get the problem of
finding a densest subgraph in a given graph. Goldberg [10] shows that this prob-
lem can be solved in polynomial time for the linear density by using an algorithm
based on a network flow computation. The problem to find a vertex partition
with maximal sum of the densities of the subsets is known to be NP-hard [7].
Khuller and Saha [14] give 2-approximation algorithms for computing a densest
subgraph with at least k vertices for a given k.

The problems of finding large cliques and independent sets are notoriously
difficult: it is NP-hard to approximate the size of the largest clique/independent
set within a factor of n!=¢ for all € > 0 [13,27]. Mathieson and Szeider [17]
showed that the clique problem remains W([1]-hard even in regular graphs. To
this end, they proposed a gadget to regularize a given graph, which yields n'/3¢-
hardness for approximating the size of the largest clique in regular graphs. To
the best of our knowledge, this was the best previously known lower bound for
the hardness of approximation of cliques in regular graphs.

1.1 Owur Contribution

We propose a novel regularization procedure that transforms a given graph with
n nodes and maximum degree d into a d-regular graph by adding O(d - n) nodes
and O(d?n) edges without increasing the size of the largest clique provided that
the given graph was not already triangle-free. This improves the construction
n [17], which uses O(d?*n) extra nodes. Furthermore, we show that this implies
that it is NP-hard to approximate the size of the largest clique in a regular
graph within a factor of O(n'/?=¢) for all £ > 0. Finally we show by a new
proof technique that the COREPERIPHERY problem is NP-hard for linear and
quadratic densities.

1.2 Preliminaries

We start by a formal treatment of our problems. A graph G = (V, E) is d-regular
if all nodes in V' have exactly d neighbors, i.e., all nodes in V have the same
degree deg(v) = d.

We say that a graph G’ = (V/, E’) is an induced subgraph of the graph G,
G' CG,if V' CV and E’ consists of all edges in F, which have both endnodes
in V'. We also write G’ = G[V’]. If we consider the number of adjacent nodes of
v € V' in a subgraph G’ = (V', E'), we express this by degg (v).

The Core-Periphery Problem 177

The complement edge set E = {{v,w} CV : {v,w} ¢ E,v # w} of G =
(V, E) cousists of all edges which are not included in E. The complement graph
G = (V, E) of G is a graph with the same set of vertices and the complement
edge set of G.

An {-clique Ky is an induced complete subgraph of G with ¢ nodes, i.e., every
pair of nodes in the node set of Ky is connected by an edge. A famous problem
in the graph theory is the MAXCLIQUE problem. The goal of it is to find a
maximum clique in the given graph G, i.e., a clique with the biggest number of
nodes. We call this number the cligue number w(G) of the graph G. If G is a
regular graph, we call the problem of computing w(G) REGULARCLIQUE.

A graph G = (V, E) is called bipartite if the node set V' can be partitioned
into two not empty subsets V7 and V5 so that every edge in E has one endnode
in V4 and one endnode in V. A bipartite subgraph K, = (V/ UV,,E’) in G
with |V{| = a and |V5] = b is called biclique, if every node of V} is adjacent to
every node of V4. A set of edges in the graph G that are mutually disjoint is
called matching in G. If every node in G is incident to one edge of the matching
then it is a perfect matching. A complete bipartite graph with 2n nodes from
which the edges of a perfect matching have been removed is called crown graph.

2 RegularClique is NP-Hard to Approximate

To prove the hardness result, we first describe a polynomial-time algorithm to
regularize a given graph G = (V, E) with |[V| = n and |E| = m and maximum
degree d.

2.1 Regularization Procedure

Our goal is to augment a graph G = (V, E) with maximum degree d by additional
nodes and edges to obtain a d-regular graph G4 = (Vy, E4) such that G C Gy
and w(G) = w(Gy). We assume w.lo.g. that |[V| = 2z with x € Z': If the
number of nodes is odd, we add an isolated node to V. This does not change
w(@) and increases n to n + 1, which does not harm the asymptotic statements
later on.

Since we will not remove any edges, we must fill up the degree of each node
until it reaches d. Then the regularized graph G4 = (Vy, E4) will contain exactly
y :=d-n —2m new edges, each with exactly one incident node in V. We choose
7,8 € L>q so that m =d-s —r with 0 <r < d. Thus,

y=2d-x—2d-s+2r=2d-(x—s)+ 2r

Now we consider a crown graph with 2d nodes, i.e., biclique K4 4 without a
perfect matching. Every node of it has degree equal to d — 1. We add = — s such
graphs to G and connect every node of them with one of the nodes in V with
degree less than d. Thereby, we may connect one node in V' with one or several
nodes of these auxiliary graphs until its degree is equal to d.

178 U. Brandes et al.

For the 2r remaining required new edges we add a further biclique Ky gq
without a matching with r edges. This auxiliary graph contains 2r nodes with
degree d — 1. We connect those nodes with the nodes in V' whose degree is still

smaller than d (Fig. 1).
'\/ °

Fig.1. A graph G with n =7, m = 8 and d = 3. We add an auxiliary node a, set
x =4, s =3 and r = 1. Then we construct G4 by adding one K33 without a perfect
matching (on the right side of the figure) and one K33 without the matching with
r = 1 edges. Finally we create new edges according to the above description.

Theorem 1. The graph G contains a k-cligue with k > 4, if and only if its
reqularized version G4 contains a k-clique.

Proof. Let k > 4. Assume that G contains a k-clique. As the regularization
procedure only adds nodes and edges and does not remove any of the original
nodes or edges, G is an induced subgraph of GG; and thus G4 contains the same
k-clique.

On the other hand, if G4 contains a k-clique K with k£ > 4, at most two
of its nodes may be contained in V;\V because the added bipartite graphs are
triangle-free. But if K contains exactly two nodes from V;\ V', then these two
nodes can have at most one common neighbor in K because each of them is
only incident to exactly one node in V', a contradiction to the assumption that
K is a clique with at least 4 nodes. Similarly, if exactly one node from Vz\V
is contained in K, then it is incident to exactly one other node in K, again a
contradiction. Thus, K is completely contained in V', which proves the claim.O

2.2 Hardness of Approximation
The REGULARCLIQUE problem is formally defined as follows.

Problem 1 (REGULARCLIQUE). Given a regular graph G and an integer k,
decide whether G contains a clique of size k.

This problem is not only NP-hard, but also very hard to approximate.
To prove this, we recall the situation for MAXCLIQUE in general graphs.
Zuckerman [27] derandomized a construction of Hastad [13] to obtain the fol-
lowing theorem.

The Core-Periphery Problem 179

Theorem 2 ([13,27]). Let e > 0. Given a graph G = (V,E), it is NP-hard to
approzimate MAXCLIQUE to within a factor of |V (G)|* .

From this, we derive a similar hardness result, where we lose a +/n-factor
due to the blow-up of O(dn) in the number of nodes with our regularization
procedure. We restrict ourselves to the case k > 4 because we can decide whether
there is a K3 by enumerating all triples of nodes in O(n?3) time and because the
cases for k € {1,2} are trivial.

Theorem 3. It is NP-hard to approximate REGULARCLIQUE within a factor of
1
n2"¢ for all e > 0.

Proof. Let G = (V, E) be a given undirected graph with n := |V| and m := |E|,
and let G4 = (Vg, E4) denote its regularized version. For our considerations, we
can assume that the graph G is a connected graph and therefore m > n —1 <
2m > 2n — 2 and hence 2m > n for all n > 2. By the regularizing construction
we get

N:=|Vy=n+2d-(x—s)+2d=n+d-n—2m—2r+2d<d-n<n?

Suppose that there exists an approximation algorithm Agegciique for regular
clique within a factor of NV 3% for an £ > 0. Then we can find a k-clique K in
Ggq with k > w(Gd)/Nl%E nodes. According to the Theorem 1, K is contained
in G and w(Gq) = w(G). Thus, k& > w(G)/Nl%E > w(G)/nt~¢. Thus, we would

have an n'~®-approximation for MAXCLIQUE. Theorem 2 proves the statement
above. O
For the sake of presentation, we further restrict the range for k to {4,...,d}.

This is w.l.o.g. because d-regular graphs cannot have a clique with more than
d+1 nodes, the cases for k € {1, 2,3} can be decided in polynomial time, as well
as the case for k = d 4 1 as the following Lemma shows.

Lemma 1. A d-regular graph G = (V, E) contains a clique K441, if and only if
G contains a connected component with d 4+ 1 nodes.

Proof. Let K C V be a clique in G with d 4+ 1 nodes. Since degk (v) = d for
all v € K every node in K is adjacent to all other nodes in K. Because G is a
d-regular graph, there cannot be an edge {v,w} with v € K and w ¢ K.

On the other hand, let G contain a connected component V' C V with d + 1
nodes. Because G is a d-regular graph, every node in V' is adjacent to d nodes.
This means that every node in V' is adjacent to all nodes in V’. Thus, G[V'] is
a clique with d + 1 nodes. O

3 Application to CorePeriphery

We apply the results from the previous section to prove NP-hardness of two
versions of the COREPERIPHERY problem. Generally speaking our aim is to

180 U. Brandes et al.

decompose a given graph G = (V, E) into a core, i.e., nodes that are tightly
connected, and a periphery, i.e., vertices that are loosely connected. The ideal
case is a so called split graph. This is a graph for which there exists a bipartition
of its vertices into a clique and an independent set, i.e., a set of nodes that not
induce any edge. Hammer and Simeone [11] showed that the split graphs can be
recognized in linear time.

Theorem 4 (Hammer and Simeone, 1981 [11]). Let G = (V,E) be an
undirected graph with |V| = n and the degree sequence di > --- > d,. Define
k:=max{i : d; >i—1}. Then, G is a split graph if and only if the splittance

k n

1

3 k(k=1) =Y di+ Y d; | =0.
i=1 j=k+1

Furthermore, if this is the case, then k is the clique number of G.

For all other graphs we try to minimize the deviation from this ideal case, i.e.,
to minimize the splittance. Observe that 3 (k(k -1) - Zle di+ 304 dj)
edges have to be added/deleted to make G a split graph. That is, the splittance
is the number of edges that have to be added or to be deleted to obtain a
bipartition of a given graph into a clique as a core and the independent set as
periphery. Furthermore, Hammer and Simeone showed in [11] that the splittance
of any graph can be determined in linear time.

]] o @

®&—9© &—0

Fig. 2. Here we see two different cores (black nodes) in the Petersen graph. The split-
tance of the graph is always equal to 9 if the core consists of 4 nodes, although the
core induces no edges.

The fact that the splittance of a d-regular graph is equal for all cores with
d + 1 nodes, illustrates that the splittance is not able to discriminate certain
situations. For example, Fig. 2 shows two cores in the Petersen graphs that are
both optimal w.r.t. the splittance, but one of them even induces an independent
set — the opposite of a clique. So it is natural to ask for the size normalized
deviation like how many edges on average per node must be added in the core

The Core-Periphery Problem 181

and be deleted in the periphery to obtain a split graph. Analogously, we can
consider the problem so that we ask which fraction of edges of the clique is to
be added to the core and which fraction of potential edges in periphery is to be
deleted to obtain the ideal case.

To facilitate the comparison of further objective functions, we introduce the
following notations. Let G = (V, E) be a graph and X C V a candidate for the
core of G. The number of edges and non-edges in the core X are denoted by

ca(X):=|{e€E : eCX}|, q(X):=|{e€c E : eC X}
and similarly in the periphery V\ X:
p(X)=|{e€cE :enX =0}, po(X):=|{e€E : enX =0}

We write ¢, ¢, p1, or pg if X is clear from the context. Using our notion the
splittance is equal to ¢g + p;.

Our aim is to decompose the nodes of the graph into the core X and periphery
V' \ X such that the density of the subgraph induced by X is maximal and
the density of the subgraph induced by V'\ X is minimal. To combine these
criteria in a single objective function that mimics the splittance, we minimize
sparsitya (X)) + densitys (V' \ X), where sparsity-(X) := densitys(X), i.e., the
sparsity is defined as density in the complement graph.

Popular density functions are the linear and the quadratic density. The linear
density di(X) of X C V in a graph G = (V, E) is defined as the average degree
in the subgraph induced by X. That is,

1 2c
di(X) = X > degx (v) = ﬁ
veX

The quadratic density da(X) of X CV in a graph G = (V, E) is the ratio of
existent edges to the number of all possible edges in the subgraph induced by
X. That is,

_ 1 _ 2cq1
(C) = FxEn ~ XX =D
2

To facilitate the discussion, we split the contribution of the sparsity of the
core X and the density of the periphery V\X into two functions f(X) and g(X),
respectively, such that their sum defines the objective function h(X). This is
summarized in the Table 1.

The function f(X) counts non-edges in X, in relation to the size of X and
g(X) counts edges having both incident nodes in the set V'\ X, in relation to
the size of V'\ X. These quantities yield the deviation of the core X and the
periphery V\ X to a perfect core-periphery structure, i.e., the average number
of edges per node to be added to the core or to be deleted from the periphery
in the case of linear density, and the percentage of missing edges in the core or
surplus edges in the periphery, respectively, to make X a clique and V\ X an
independent set.

182 U. Brandes et al.

Table 1. The decomposition of the objective function into contributions of the core
and the periphery for splittance, linear, and quadratic normalization.

Deviation Absolute Linear Quadratic
Core X co(X) f(X):= 2¢0(X) F(X) = 2¢0(X)

0 [X] X[X—1]
Periphery VAX | p1(X) 9(X) := F5 | 9(X) = R AED
Total deviation | co(X) + p1(X) | h(X) = f(X) + g(X)

We will show in the following that the COREPERIPHERY problem is NP-hard
for both of these densities. For this we will use the hardness result for REGU-
LARCLIQUE from the previous section. The main idea of our proof is that we
augment the graph by isolated nodes such that any reasonably good solution will
take a clique as the core. That is, all solutions that have an incomplete subgraph
as a core will have a worse objective value than taking the two endpoints of any
edge as the core. It is important for our argument that the input graph is regular
and therefore we will make use of our regularization procedure.

3.1 Linear Density

First we show that if the core-candidate X is not a clique, then the value of the
density of X never falls below a certain value.

Lemma 2. If a non-empty set X C V does not induce a clique, then f(X) >
% for any d > 2.

Proof. We first consider the case | X| < d+ 1. Since X does not induce a clique,
the induced subgraph misses at least one edge from being complete, i.e., cog > 1.

Thus, we have
_ 2co 2 2

X)=22> 2 > 2
J(X) |X] ~ | X] ~d+1
If | X| >d+ 2, we have | X| —1>d+ 1 and so X must miss more than
(XIX =1 dX]_ [X[(d+1) —dX] _ |X]
2 2 - 2 2

edges, i.e., co > 5. Thus, f(X) = %4 >1>2/(d+1) for all d > 2. O

The idea for proving NP-hardness is to augment a given graph by isolated nodes
such that h(X) is at most 1/d < 2/(d + 1) whenever X induces a clique (even if
it induces single edge) in a graph with d > 2.

Lemma 3. A d-regular graph G contains a clique of size k < d, if and only if,
G' = (V', E) with the node set V' consisting of the n nodes of V and q additional
isolated nodes (i.e., |V'| =n+ q) contains a core X C V' with

h(X) < nd — 2dk + k(k — 1)
- n+q—~k

for all ¢ > d?n.

The Core-Periphery Problem 183

Proof. Let X be a k-clique in G and thus also in G’. Note that f(X) = 0.
Moreover, the total number of edges is %d due to the regularity and the number

of edges incident to nodes in X is given by kd — (¥). Hence,

- o (dk— (%) nd —2dk + k(k — 1)
o) =) =22l A2 2R RS

=:g(k)

To prove the converse direction, we show that g(k) is decreasing in the range of
1 < k < d. To this end, we consider the first derivative of g(k), i.e.,

(2k —2d — 1)q + 2kn — dn — n — k?

/
g(k) =
(k) ntq—F)
_q—dn+n+1
(n+q—k)?
(d>—d+1)n+1

< —
- (n+q—k)? <0

Thus, g(k) < g(1) = (dn —2d)/(n+q—1) < (dn —2d)/(n + d?*n — 1) < 1/d <
2/(d+1) for all d > 2. Hence, G contains a k-clique if and only if there is an
X C V' with

h(x) < = 2k £ k(= 1)
- qg+n—k ’
(]

As a consequence, we obtain a reduction to prove NP-hardness of linear
COREPERIPHERY.

Theorem 5. Solving the problem COREPERIPHERY with linear density is NP-
complete.

Proof. Given a d-regular graph G = (V, E) and an integer k € {1,...,d}, we wish
to decide whether G contains a k-clique (by Lemma 1 it is sufficient to consider
k-cliques with k& < d). We add g = nd? isolated nodes to G' and thereby obtain
G' = (V', E') for which we compute the COREPERIPHERY problem. Combining
Lemmas 2 and 3, the reported core will be a clique. a

3.2 Quadratic Density
Lemma 4. If X CV does not induce a clique, then f(X) > d% ford > 2.

Proof. We again consider the case |X| < d + 1 first. Since X does not induce a
clique, it contains at least one non-edge in E' and thereby

2 2 1

X 2 FIXI= D Zasnd = &

184 U. Brandes et al.

If | X| = d+ ¢ with 2 < £ € Z, than there are (d+¢)(d+¢—1)/2—d(d+¢)/2
non-edges and thus

(d+0)(d+0—1)—d(d+0)

X) >
Fx) 2 (d+O)(d+0—1)
_d4l—-1-d d
Cod+l—-1 d+¢—-1
d 1
>1—- —— =——
= d+1 d+1

O

For proving NP-hardness for the quadratic density, we augment a given graph
by ¢ isolated nodes analogous to the case of linear density such that h(X) is
strictly less than 1/d?> whenever X induces a clique (even if it induces single
edge).

Lemma 5. A d-regular graph G contains a clique of size k < d, if and only if,
G' = (V', E) with the node set V' consisting of the n nodes of V and q additional
isolated nodes (i.e., |V'| =n+ q) contains a core X C V' with

nd — 2dk + k(k — 1)
(n+q—k)(n+qg—k—-1)

h(X) <

for all ¢ > dn.

Proof. At first we assume that X is a k-clique in G and also in G’. Analogous
to the proof for the linear density we obtain

nd — 2dk + k(k — 1)

MX) = 9(X) = (n+q—kK)(n+q—k-1)
=:g(k)
nd—k(2d—k+1) nd

:q2—|—k2—|—n(n—2kj—1)—|—q(2n—2k—1)+k <q7'

For ¢ > dn we get g(X) < 4 and therefore h(X) < 4 < . Recall that
h(X) > 4 if X is not a clique by Lemma 4.

Now we have to prove that a larger clique is preferred instead of a smaller
one. To this end, we show that the function g(k) decreases for increasing k by
considering the difference

—2(1—dk—k—n—q+d—dqg+ kn+ kq)

gtk = 1) =9k = e Dt g =B+ q—F—1)

It is easy to verify that the denominator of this difference is positive. So we have
to investigate the numerator only.

—2(1—dk—k—n—q+d—dq+kn+kq) =2(qg(d—k+1)+dk+k—kn—d+n—1)

The Core-Periphery Problem 185

We show that for ¢ > dn this term is positive.

20 d—k+1)+dk+k—kn—d+n—1)
>2(dn(d—k+1)+dk+k—kn—d+n—1)
>2(dn(d—k+1)+d+1—kn—d+n—1)
>2(dn(d—d+1)+d+1—-dn—d+n-—1)
=2n>0

As a consequence a minimizer for the COREPERIPHERY problem for quadratic
density is a clique X C V. m|

Theorem 6. Solving the problem COREPERIPHERY with quadratic demsity is
NP- complete.

Proof. Given a d-regular graph G = (V, E) and an integer k € {1,...,d}. The
question is again whether G contains a clique with &£ nodes. We construct a graph
G' = (V',E’') by adding q = nd isolated nodes to G analogous to the case of
linear density. Then we solve the COREPERIPHERY problem on G’. Combining
Lemmas 4 and 5, we obtain a clique as the core. a

References

1. Alba, R.D., Moore, G.: Elite social circles. Sociol. Methods Res. 7(2), 167188
(1978)

2. Borgatti, S.P., Everett, M.G.: Models of core/periphery structures. Soc. Netw.
21(4), 375-395 (2000)

3. Borgatti, S.P., Everett, M.G., Freeman, L.C.: Ucinet for windows: software for
social network analysis (2002)

4. Boyd, J.P., Fitzgerald, W.J., Beck, R.J.: Computing core/periphery structures and
permutation tests for social relations data. Soc. Netw. 28(2), 165-178 (2006)

5. Chase-Dunn, C.K.: Global Formation: Structures of the World-Economy. Rowman
& Littlefield, Lanham (1998)

6. Corradino, C.: Proximity structure in a captive colony of Japanese monkeys
(macaca fuscata fuscata): an application of multidimensional scaling. Primates
31(3), 351-362 (1990)

7. Darlay, J., Brauner, N., Moncel, J.: Dense and sparse graph partition. Discrete
Appl. Math. 160(16), 2389-2396 (2012)

8. Doreian, P.: Structural equivalence in a psychology journal network. J. Am. Soc.
Inf. Sci. 36(6), 411-417 (1985)

9. Faulkner, R.R.: Music on Demand. Transaction Publishers, Piscataway (1983)

10. Goldberg, A.V.: Finding a maximum density subgraph. University of California
Berkeley, CA (1984)

11. Hammer, P.L., Simeone, B.: The splittance of a graph. Combinatorica 1(3), 275—
284 (1981)

12. Holme, P.: Core-periphery organization of complex networks. Phys. Rev. E 72(4),
046111 (2005)

13. Hastad, J.: Clique is hard to approximate within n'~¢. Acta Math. 182, 105-142
(1999)

186

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

U. Brandes et al.

Khuller, S., Saha, B.: On finding dense subgraphs. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part
I. LNCS, vol. 5555, pp. 597-608. Springer, Heidelberg (2009)

Krugman, P.: The self-organizing economy. Number 338.9 KRU 1996. CIMMYT
(1996)

Laumann, E.O., Pappi, U.: Networks of collective actions, New York (1976)
Mathieson, L., Szeider, S.: The parameterized complexity of regular subgraph prob-
lems andgeneralizations. In: Proceedings of the Fourteenth Symposium on Comput-
ing: The Australasian Theory - Volume 77, CATS 2008, pp. 79-86, Darlinghurst,
Australia. Australian Computer Society Inc. (2008)

Mintz, B., Schwartz, M.: Interlocking directorates and interest group formation.
Am. Sociol. Rev. 46, 851-869 (1981)

Mullins, N.C., Hargens, L.L., Hecht, P.K., Kick, E.L.: The group structure of coc-
itation clusters: a comparative study. Am. Sociol. Rev. 42, 552-562 (1977)
Nemeth, R.J., Smith, D.A.: International trade and world-system structure: a mul-
tiple network analysis. Rev. (Fernand Braudel Center) 8(4), 517-560 (1985)
Rombach, M.P., Porter, M.A., Fowler, J.H., Mucha, P.J.: Core-periphery structure
in networks. STAM J. Appl. Math. 74(1), 167-190 (2014)

Smith, D.A., White, D.R..: Structure and dynamics of the global economy: network
analysis of international trade 1965-1980. Soc. Forces 70(4), 857-893 (1992)
Snyder, D., Kick, E.L.: Structural position in the world system, economic growth,
1955-1970: a multiple-network analysis of transnational interactions. Am. J. Sociol.
84, 1096-1126 (1979)

Steiber, S.R.: The world system and world trade: an empirical exploration of con-
ceptual conflicts. Sociol. Q. 20(1), 23-36 (1979)

Wallerstein, I.: The Modern World-System I: Capitalist Agriculture and the Origins
of the European World-Economy in the Sixteenth Century, with a New Prologue,
vol. 1. University of California Press, Berkeley (2011)

Zhang, X., Martin, T., Newman, M.E.: Identification of core-periphery structure
in networks. Phys. Rev. E 91(3), 032803 (2015)

Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. In: Proceedings of the Thirty-Eighth Annual ACM Sympo-
sium on Theory of Computing, STOC 2006, pp. 681-690. ACM, New York (2006)

Constant Factor Approximation
for the Weighted Partial Degree Bounded Edge
Packing Problem

Pawan Aurora'®™) | Monalisa Jena?, and Rajiv Raman®?
L 1ISER, Bhopal, India
paurora@iiserb.ac.in

2 IIIT-Delhi, Delhi, India

{monalisaj,rajiv}@iiitd.ac.in

3 NYU, Abu Dhabi, UAE

Abstract. In the partial degree bounded edge packing problem
(PDBEP), the input is an undirected graph G = (V, E) with capac-
ity c¢v € N on each vertex. The objective is to find a feasible subgraph
G' = (V, E') maximizing |E’|, where G’ is said to be feasible if for each
e = {u,v} € E', degg (u) < ¢y or deger (v) < ¢p. In the weighted version
of the problem, additionally each edge e € E has a weight w(e) and we
want to find a feasible subgraph G’ = (V, E') maximizing) ., w(e).
The problem is already NP-hard if ¢, = 1 for all v € V' [Zhang, FAW-
AAIM 2012].

In this paper, we introduce a generalization of the PDBEP problem.
We let the edges have weights as well as demands, and we present the first
constant-factor approximation algorithms for this problem. Our results
imply the first constant-factor approximation algorithm for the weighted
PDBEP problem, improving the result of Aurora et al. [FAW-AAIM
2013] who presented an O(logn)-approximation for the weighted case.

We also present a PTAS for H-minor free graphs, if the demands on
the edges are bounded above by a constant, and we show that the prob-
lem is APX-hard even for cubic graphs and bounded degree bipartite
graphs with ¢, =1, Vv € V..

1 Introduction

Packing problems are central objects of study in the theory of algorithms.
Quintessential examples of such problems are the Independent Set problem [4]
in graphs, Maximum Matchings in graphs [10,12], and the Knapsack Problem
[16]. Due to their fundamental nature, and wide applicability, these problems
and variants thereof have been studied intensively over several decades. In this
paper, we study a variant of the matching problem that is called the Partial
Degree Bounded Edge Packing problem (PDBEP for short).

In the most basic version of this problem, the input is an undirected graph
G = (V, E), with unit capacities on the vertices, and unit weight on the edges.

M. Jena—The author is supported by a TCS Scholarship.

© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 187-201, 2016.
DOI: 10.1007/978-3-319-48749-6_14

188 P. Aurora et al.

The goal is to pack a maximum cardinality set £/ C F of edges such that in the
resulting sub-graph G’ = (V, E’), each edge e = {u,v} € E' is satisfied, where
an edge is said to be satisfied if either of its end-points has degree at most 1 in
the sub-graph G, i.e., dege/ (u) <1 or degq (v) < 1.

The Maximum Matching problem, phrased as above would be to find a sub-
graph G’ = (V, E’) with maximum number of edges E’ such that each edge is
satisfied, where an edge is said to be satisfied if both of its end-points have degree
at most 1 in the sub-graph G’, i.e., dege (u) <1 and dege (v) < 1.

The difference between the Maximum Matching problem and the PDBEP
problem is only in the definition of when an edge is satisfied. While in the case
of Maximum Matching, we require that the degree condition at both end-points
be satisfied, we only require a weaker condition to be satisfied for the PDBEP
problem, namely that for each edge, the degree condition be satisfied at at least
one end-point. One can immediately observe that despite the seeming similarity
with the maximum matching problem, the solutions to the two problems can
be vastly different. For example, consider a star K ,. The maximum matching
problem has a solution of size 1, whereas the PDBEP problem on the same
instance has a solution of size n. In fact, while the Maximum Matching problem
admits a polynomial time algorithm [10], our problem is NP-hard [19] even in
the case of unit capacities.

Motivated by an application in computing on binary strings by Bu et al. [6],
Zhang introduced the PEPD problem in [19]. The problem he studied is called
the Maximum Expressive Independent Set (MEIS for short) problem where the
objective is to find a subset X of maximum cardinality from a set of binary
strings W such that no string ¢t € X is expressible from X \ {t}, where a binary
string s is expressible from a set of binary strings S, if it can be obtained by
combining the strings in S using bitwise AND and OR operators. He studied
a restricted version of this problem where each string is 2-regular which means
that it has exactly two ones. This he posed as a graph problem where the graph
has a vertex for every bit position and an edge {3, j} corresponds to a string that
has ones at positions 4, j. Now a solution to the PDBEP problem with uniform
¢y, = 2 corresponds to a subset of strings such that for any string in the subset
with ones at positions i, j, at most one other string can have a 1 at one of these
two positions which means that the subset of edges gives a solution to the MEIS
problem (this follows from Lemma2.4 in [19]).

Another natural application of the PDBEP problem is in resource allocation.
Here, we are given |V types of resources and |E| jobs. Each job needs two types
of resources. A job u can be accomplished if either one of its necessary resources
is shared by no more than ¢, other jobs. The problem then asks to finish as
many jobs as possible.

The rest of the paper is organized as follows. In Sect. 2, we present the nota-
tion used, give a formal definition of the problems studied, and present prelim-
inary results. Section 3 describes related work. We study the PDBEP problem
with unit capacities in Sect.4, and then present results for the general setting
in Sect. 5. We give a PTAS for the weighted PDBEP problem on H-minor free
graphs in Sect. 6. In Sect. 7, we prove that the PDBEP problem is APX-hard.

Constant Factor Approximation for the Weighted PDBEP Problem 189

2 Preliminaries

Let G = (V,E) denote an undirected graph. In our setting, the graphs come
equipped with a weight function w : E — N and a demand function d : £ — N
on the edges, and a capacity function ¢ : V' — N on the vertices. We also consider
the special case when all vertices have unit capacity. In this setting, we assume
that the demand of each edge is also 1, and that the graphs are simple. When
we consider the general problem, the graph is no longer assumed to be simple.

We also consider directed graphs, denoted D = (V, A). Each edge (u,v) € A
with head v and tail u is said to be entering v, and exiting u. We use in(v), out(v)
respectively to denote the edges entering and exiting v.

For a vertex v, we let N.(v) = {e = {u,v} € E} denote the set of edges
incident on v. In the weighted setting, we let Npax(v) = {e € N.(v) : w(e) >
w(f) Vf € Ne(v)}. Thus, Npyax(v) is the set of heaviest weighted edges incident
on v. For aset I' C E of edges, we let w(F) =3 pw(e), and d(F) =" _pde.

We now formally define the Weighted Partial Degree Bounded Edge Pack-
ing Problem with Demands, denoted PEPD: The input is an undirected
(multi-)graph, with w,d : E — N, the weights and demands respectively, on
the edges, and ¢ : V — N the capacity on the vertices. We want to compute a
sub-graph G’ = (V, E’) such that w(FE’) is maximized, and each edge is satisfied.
We say that an edge is satisfied if at least one of its end-points is not overloaded.
Thus, we want for each e = {u,v} € E’, d(N.(u)) < ¢, or d(N.(v)) < ¢,. For
an edge e = {u,v} an end-point that is not overloaded, we call a good end-point
of e. If neither end-point is overloaded, we pick a good end-point arbitrarily. We
also consider the unit-capacity case, i.e., ¢, = 1, Vv € V. In this case, we assume
d. =1, Ve € E. We use PEP to denote the unit-capacity problem.

We also consider in this paper, two graph orientation problems. The Max-
imum Degree-Bounded Orientation Problem with Demands (ORD) is defined
as follows: The input is identical to the PEPD problem, namely an undirected
graph G = (V,E), w,d : E — Nand c: V — N. The goal is to select a maximum

weight subset of edges £’ C E, and compute an orientation E of the edges in
E’ such that the total demand of in(v) is at most its capacity for each v € V,
ie., Zeein('u) de < ¢, for all v € V. When all vertex capacities are 1, we assume
d. =1, Ye € E, and use OR to denote this problem with unit capacity and
demands.

A solution to PEPD yields a solution to the ORD problem on the same
instance. To see this, each edge e in a feasible PEPD solution has a good end-
point, and orienting e towards its good end-point is a feasible solution to ORD of
the same weight. It would be tempting to hope that the reverse might be true;
and if so, this would be cause for cheer as we will show that the ORD problem
is tractable. Unfortunately, this is not the case even in the unit-capacity case.
Consider for example, a triangle with unit capacity on the vertices, and unit
weight on the edges. Any feasible solution to the PEP problem consists of at
most 2 edges, but orienting the three edges in a cycle is feasible for OR. In fact,
it is known that the PEP problem is NP-hard [19].

190 P. Aurora et al.

Our approximation algorithms for the PEPD problem nevertheless use a
solution to the ORD problem as a starting point, and in fact, any solution to
the ORD problem can be transformed into one for the PEPD problem on the
same instance at the loss of a small constant factor. The relation between the
two problems is useful, and we capture this in the following proposition.

Proposition 1. For any instance I, OPTpgep () < OPTorp(I).

We show that OR problem can be reduced in polynomial time to the b-
matching problem in bipartite graphs, which can be solved in polynomial time
[17]. Hence, OR can be solved in polynomial time. Similarly, the ORD problem
with demands can be reduced to the demand matching problem in bipartite
graphs [18], and hence, 2-approximation follows.

Lemma 1. The OR problem can be solved in polynomial time.

Proof. We prove this by giving a polynomial time reduction from OR to b-
matching in bipartite graphs. The reduction is as follows: Given an instance
G=(V,E),c:V =N, w: E— N of the OR problem, we construct a bipartite
graph H = (E UV, F), with capacities b, = 1 for all e € E and b, = ¢, for all
v € V. The edges F are defined as follows: For each edge e = {u,v}, add two
edges {e,u}, {e,v} to F, each of weight w(e).

Suppose E' C E is a feasible solution to OR, where E’ denotes a feasible
orientation of E’. We claim that E’ yields a feasibE> matching M in H of the
same weight. Corresponding to each e = (u,v) € E’, pick {e,v} in M. Then,
exactly one edge is chosen in M for each e € E’, and for each v, at most ¢, edges
in M are incident on it. Thus, M is feasible and has weight w(M) = w(E").

Let M be a maximum weight b-matching in H. Let E/ C E be the set of
edges of G covered by M. We claim that E’ is a feasible solution to OR. To see
this, since b, = 1 for all e € E, for each e = {u,v}, at most one of {e,u} or
{e,v} is in M. This defines an orientation of e in the graph G. If {e,u} € M,
let e € E' and € = (v,u). Else, if {e,v} € M, let e € E’ and let € = (u,v).
Since edges {e,v} and {e,u} have the same weight as that of e, it follows that

w(E") = w(M).
Since b-matching in bipartite graphs admits a polynomial time algorithm
[17], it follows that OR can be solved in polynomial time. O

A similar reduction, imples that ORD has a 2-approximation algorithm.
Lemma 2. The ORD problem has a 2-approzimation algorithm.

Proof. We use a reduction similar to that in Lemma 1. The only difference is that
the edges in F inherit both the weight as well as demand of the corresponding
edge, and in the bipartite graph H, we set b, = d. for e € E, and b, = ¢, for
each v € V. Since demand-matching on bipartite graphs has a 2-approximation
algorithm [15], the lemma follows. |

Constant Factor Approximation for the Weighted PDBEP Problem 191

3 Related Work

The PDBEP problem was introduced by Zhang [19] motivated by a problem of
resource allocation as well as a problem of finding large independent sets. This
is the unit demand and unit weight version of our problem, namely PEPD with
the additional constraint that w(e) = d, = 1 for all e € E. As mentioned earlier,
Zhang proved that unit capacity version of PDBEP i.e., PEpP with unit edge
weights is NP-hard. This result follows from the fact that for a graph G = (V, E),
a solution of size k for PEP implies a dominating set of size |V| — k. Since the
Dominating Set problem is NP-hard [11], this implies PEP is NP-hard. Zhang
also presented a 2-approximation algorithm for PEP, with unit edge weights, and
a 32/11-approximation algorithm, again with unit edge-weights and a uniform
capacity of 2 for all vertices. Dehne et al. [8] studied a parameterized version of
the PDBEP problem (with vertex capacity 1 and edge demands 1), and obtained
algorithms that are exponential in the size of the PEP solution.

A related problem is the problem of packing vertex disjoint T-stars where a
T-star is a complete bipartite graph K5 ; for some 1 < ¢ <T'. In [3] the authors
gave a %Tiﬂ—approximation for this problem. When T > |V| — 1, the T-star
packing in an edge weighted graph where the objective is to maximize the total
weight of the edges in the stars is exactly the PEP problem.

Aurora et al. [2] presented a simple 2-approximation algorithm for PEP with
arbitrary vertex capacity, but unit demands and unit weights on the edges.
In the setting with weighted edges, but unit demands on the edges, they pre-
sented only an O(logn)-approximation algorithm. We introduce the version of
the PEP problem with demands on the edges, and present the first constant-
factor approximation for this general case.

The PEP problem, as stated earlier is similar to the Maximum weight match-
ing problem, for which several polynomial time algorithms are known [10,13].
The demand version of the problem, PEPD is similar to the demand match-
ing problem introduced by Shepherd and Vetta [18]. For the demand match-
ing problem, Shepherd and Vetta presented a 3.264-approximation for general
graphs and a 2.764-approximation for bipartite graphs. These results have since
been improved using the technique of iterative rounding to a factor 3 for general
graphs, and a factor of 2 for bipartite graphs [14,15].

The degree-bounded orienting problem OR is a classic combinatorial opti-
mization problem. However, it has mostly received attention in terms of main-
taining connectivity. See [17] for more details.

4 A 2-Approximation Algorithm for Unit Capacity
Instances

In this section, we present a 2-approximation algorithm for PEP. In this setting,
recall that ¢, = 1 for all v € V. Earlier, a 2-approximation algorithm was known
only for the unweighted case by Zhang [19], i.e., when w(e) =1 for all e € E.

192 P. Aurora et al.

Our algorithm is combinatorial. We show that we can carefully select a subset
of edges such that an upper bound on OPTpg, can be constructed from this
subset. Recall that for a vertex v € V| Nyax(v) denotes the set of edges of
maximum weight incident on v, and we use eyax (v) to denote an edge in Nyax (v).

The set of edges Enax € FE is constructed as follows: Let vq,...,v, be an
arbitrary ordering of the vertices. Starting with EL = E?__ = (), for each i
from 1,...,n, if an edge from Np.x(v;) has not been chosen, pick an arbitrary

edge e = {v;,v;} from Nuyax(v;). If € € Npax(v;) and no edges from Nyax(v;)
have been chosen yet we add e to EZ2,., otherwise add e to E} . We denote
the set Epnax = EL.. UFE2 . Observe that by the way we choose the edges in
E2 .. at most one edge from Nyax(v) is chosen for each vertex. This is encoded

in the Proposition below.

Proposition 2. For each v € V, |E2, N Npax(v)] < 1

ax

Lemma 3. OPTpgr <), oy w(emax(v))

Proof. We show that » i w(emax(v)) is an upper-bound on the Max-
orientation problem OR on the same instance. Then, the lemma follows from
Proposition 1. Let F' C E be a feasible solution to the OR problem in G. Since
the vertices have unit capacity, for any vertex v € V', there is at most one edge
of F in-coming to v. Let w(in(v)) denote the weight of this edge if any, and zero

otherwise. Then, 3°, yerw(u,v) =3,y w(in(v)) < 3, ey w(emax(v)). O

Note that in order to obtain an upper bound, we require that we sum up
w(emax(v)) over all vertices as w(Enax) by itself does not constitute an upper
bound. For example consider the graph G = ({a,b,c¢,d},{{a,b},{b,c},{c, d},
{a,d},{b,d}}). Let the weights on the edges be {5,3,4,1,2} in the same order.
In this example, > . w(e) = w(a,b) + w(d,c) = 9. However, OPTpg, =
w(a, b) +w(b, c) + w(b,d) = 10.

In order to obtain our claimed approximation, we construct an orientation of
the edges in Ep,ax such tgiit (—}'>max = (V, E}max) is acyclic, and show that each

connected component of G .y iS an out-tree.

Lemma 4. There exists an orientation of the edges in Enax such that each
— —
connected component of Gmax = (V, Emax) 18 an out-tree.

Proof. We suggest a natural orientation of the edges in Fy.x. Suppose the ver-
tices are considered in the order of vy,...,v, during the construction of Eyax.
In iteration i of the construction, if an edge is added to either E} or E2_
then orient that edge towards v;. Since in each iteration at most one edge can be
added to Fp.x, our orientation ensures that for any vertex v; € V, at most one
edge in E)max is oriented towards v;, which implies the in-degree of any vertex
is at most 1. Note that this shows the set E,, .« is in fact a feasible solution to

the OR problem.
_
To show that each connected component of Gpax is an out-tree, we also
—
require that the graph G . is acyclic. In contrary, let C = vg, vy, ..., vk, v9 be

Constant Factor Approximation for the Weighted PDBEP Problem 193

a directed cycle in 6max. Our orientation ensures that if an edge e is oriented
towards v, then e € Ny (v). Thus, the weight of an in-coming edge into a vertex
v has weight at least as large as any out-going edge. Thus, following the cycle
from vg, the weight of the edges can not increase. Therefore, the only possibility
is that all edges in C have equal weight. However, we add an edge e incident
on a vertex v into Epax only if no edge in Nyyqq(v) is present in Epay when v
is processed, and we then orient e towards v. If, without loss of generality, the
vertex vy was the first to be processed during the construction of Fy,.x, then
the edge {vk,vo} is already present in the solution when we process vg. Since
{Vk, 00} € Nmax(vk), no edge is added during the processing of vi. This implies
no edge is oriented towards vy, which is a contradiction. Hence, E’)mam is acyclic.

Thus, we have 5max is acyclic and each vertex has in-degree at most 1. This
ensures each connected component of Gp,ax iS an out-tree. (]

The example discussed above shows that w(Fmax) is not an upper bound on
OPTpgp. However, we can re-write the upper bound by distinguishing the con-
tribution from the edges of El _ and E?

max max"*

Lemma 5. OPTpg, < w(EL,,) + 2w(E2,,)

Proof. Consider the above oriented graph E’)max = (V, Emax). We claim that for
any vertex v;, if no edge is oriented towards v;, then there is exactly one edge
in F2, . incident on v;. To see this, note that if no edge is oriented towards v;,
then before iteration i, we have already added at least one edge from Nypax(v;)
t0 Emax. Let j be the minimal iteration such that an edge from the set Nyax(v;)
is added to Emax. Then according to our construction, the edge {v;,v;} is the

only edge added to the set E2_ . among all the edges incident on v; in Epax.

max
N
Let v be any vertex towards which no edge is oriented in G .. Then there

is exactly one edge in E2, incident on v. Let e = {u,v} be that edge. We
—

add another edge of weight w(e) between v and v to Gax, and orient this
— — —
edge towards v. Let the resulting multi-graph be G, .. = (V, E! ..). In G!

max max max’
exactly one edge from Ny.x(v) is oriented towards v for each vertex v. Thus,

Ty wleman(V) = 3o, 00E) = Toeg, w(e) 25 epy_wle). Using
Lemma 3, we get OPTpgp < w(EL,,) + 2w(E2,.). O

max max

Theorem 1. There exists a 2-approximation algorithm for PEP.

Proof. Since each connected component of the graph 6max is an out-tree, we
can partition the vertices into two sets such that all the edges in E)max crosses
the partition. To see this, for any tree T in E*’max, label the vertices with distance
from the root. Since T is a tree, a vertex with odd label is only adjacent to vertices
with even label, and vice-versa. Therefore, we can partition V into two sets X
and Y, where X consists of odd-labeled vertices, and Y consists of even-labeled
vertices. The set of edges between X and Y consists of all the edges.

Now consider the cut (X,Y) in Gax, and orient the edges in E,,,, as follows:

_>
Orient all the edges in E}na in the same way it is oriented in G ax, and orient

X

194 P. Aurora et al.

each edge e € E?

max’

towards both the end-points. Note that Zeg?(X) w(e) +
Zee?(y) w(e) = w(EL,,) + 2w(E2,,), since each edge in E?, is present in
both ?(X) and ?(Y), where for any Z, ?(Z) denotes the set of out-going
— -
edges from Z. Therefore, max{ § (X), 6 (Y)} > (w(E},.)+2w(E?,.))/2. Thus,
—

by returning the maximum among ¢ (X), and ?(Y), we guarantee a solution
of weight at least OPTpgp/2 (Using Lemma5).
— —
Now it remains to prove the feasibility of 6 (X), and § (V). Note that the

in-degree of any vertex is at most 1 in the oriented graph, which ensures both
— —
0 (X) and ¢ (Y) are individually feasible for PEPp. O

Note that our 2-approximation algorithm for PEP improves the result of
Babenko and Gusakov [3] for the special case of T-star packing when T' = |V|—1.
They proposed a %Tiﬂ—approximation algorithm for this problem.

5 A Constant-Factor Approximation Algorithm

In this section, we obtain a (44 ¢)-approximation algorithm for any ¢ > 0 for the
PEPD problem on general graphs, and a (2 + €)-approximation algorithm for
the PEPD problem on bipartite graphs. Our algorithm holds for a slightly more
general problem. Instead of demands on the edges, we let each edge e = {u, v}
have possibly different demands d(e,u), d(e,v) at its end-points. It is possible
that d(e,u) exceeds the capacity ¢, of vertex u, and yet, e could be in our
solution since its other end-point, namely v could be its good end-point.

Given a graph G = (V, E), our algorithm finds an oriented multi-graph G =
(v, E’)’) having w(E’) almost equal to the optimal PEPD solution such that for
all the vertices, in-degree constraint is satisfied. Next, by finding a directed cut
of weight at least w(E’)/4 in fel , we guarantee a (4 + €)-approximate solution
for PEPD in G.

Lemma 6. Given a graph G = (V, E), weights w: E — N, demands d : E — N
on the edges, and capacities ¢ : V. — N on the vertices, there exists a directed
multi-graph G = (v, E’)’) with w(E') at least (1 — €)OPTpgpp such that
ZeGin(v) de < ¢y, for allveV.

Proof. Let OPTpgpp denote an optimal solution for the PEPD problem, and
F C FE be the edges picked in this solution. For any vertex wv;, if the degree
condition is satisfied in F, then we set OPThp,p to be the total weight of the
edges incident on v; in F, otherwise we set OPThy,p, to be 0. Since for any
edge in F', the degree condition is satisfied at at least one end-point, we have
> iz OPThpp > OPTrpen.

For all v; € V| we consider the problem of picking a maximum weight sub-set
of edges from N, (v;) such that the degree condition is satisfied. Observe that at
each vertex, this amounts to solving an independent Knapsack problem. Since
Knapsack admits an FPTAS [16], we obtain a solution A; of weight at least

Constant Factor Approximation for the Weighted PDBEP Problem 195

(1 —€)OPT;, where OPT; is the optimal solution to this problem w.r.t. vertex
v;. Therefore, we have

f:w(Ai) >(1- e)f:opTi
i=1

=1

>(1-¢) Z OPThppp

i=1

Z (1 - e)OPTPEPD-

The second inequality is true because OPThp,p, is a feasible solution to the
knapsack problem w.r.t. v;.

Observe that in a similar way, we can show that Y ., w(A;) is at least
(1 —€e)OPTorp. The set of edges in U ; A; is in fact a feasible solution to the
ORD problem. To see this, for each vertex v;, orient the edges in A; \ U;;llAj
towards the vertex v;. This ensures that for any vertex, the total demand of the
incoming edges is at most its capacity. Since, each edge can appear at most twice
in the sum Y. w(A;), we have a (24 ¢)-approximation algorithm for the ORD
problem.

However, the set of edges in U ;.A; may not be a feasible solution for the
PEPD problem. In order to obtain the (4 + ¢)-approximation, we construct a
directed multi-graph G = (v, E) as follows: Pick an arbitrary ordering of the
vertices, say v1,...,v,. Starting with E’ = (), for each ¢ from 1,...n, add the
edges in A; to the multi-set of edges £’ and orient the edges in A; towards v;.
By doing this, we ensure that Y . w(e) = 37 w(A;) > (1 — €)OPTpgep.

Theorem 2. For any € > 0, there exists a (2 + €)-approximation algorithm for
PEPD on bipartite graphs.

Proof. Given a bipartite graph G = (U UV, E), using Lemma 6, we can find the
directed multi-graph G = (U UV, E’) with w(E') > (1 — €)OPTpgpp, for any
€ > 0 such that total demand of the in-coming edges to any vertex is at most
its capacity. So, the set of incoming edges to U and the set of in-coming edges to

Vin 5)’ are separately feasible for the PEPD problem on GG, and the maximum
of both has weight at least (1 — ¢)OPTpgep/2. Choosing € = €¢/(2 + ¢€), we
obtain a solution of weight at least OPTpgpp /(2 + €) for the PEPD problem on
bipartite graphs.

In order to get the desired approximation ratio for general graphs, we find a
—
directed cut (DICUT) of weight at least w(E’)/4 in G'. Given a directed multi-

graph E')m and an edge weight function w : E(G,,) — N, a DICUT is defined
to be the set of out-going edges from some vertex subset X (we denote it by

?(X)). Note that any directed cut in G’ is a feasible PEPD solution. Lemma 7
captures this.

Lemma 7. Any directed cut of the directed multi-graph G is a feasible PEPD
solution of G.

196 P. Aurora et al.

Proof. Let 7(X) be a DICUT of G'. This implies for all v € V\ X, out(v) = 0,
—
and for any edge (u,v) in ¢ (X) directed towards v, the degree condition of v is
-
satisfied in G. This ensures ¢ (X) is a feasible PEPD solution.

Lemma 8. Given a directed multi-graph G = (v, E’), weights w : B — N,
there exists a directed cut of size at least w(E')/4.

Proof. Consider the trivial randomized algorithm which adds any vertex in V'
to the set X with probability 1/2. Any directed edge e = (u,v) is a cut if u € X
and v € V'\ X. This happens with probability 1/4. So, the expected weight of
the DICUT is

IE(Z w(e)) = Z w(e) - Pr(e € ?(X)) = Z w(e) -

— — —
e€ s (X) ecE’ ecE’

w(E')
-

o~ =

This ensures, there exists a DICUT of weight at least w(E’)/4. To find it, de-
randomize this by using the method of conditional expectations.

Armed with Lemmas6, 7, and 8 we can now complete the proof.

Theorem 3. There exists a (4+¢€)-approzimation algorithm for PEPD, for any
e>0.

Proof. Given an instance of PEPD, let OPTpgpsp be an optimal solution to
PEPD. Lemma 6 shows that we can obtain an oriented graph G = (v, E)
having w(E’) > (1 — ¢)OPTpgep, for any ¢ > 0 such that Zeem(v) d, <
¢y, for all v € V. Combining this with Lemma7 and Lemma8 we obtain
a PEPD solution in G of weight at least w(E’)/4 which is at least (1 —
€ YOPTpgpp/4. Using ¢ = €/(4+¢€), we obtain a PEPD solution of weight at least
OPTPEPD/(4 + 6).

6 PTAS for PEpD on Minor-free Graphs

In this section, we obtain a PTAS for PEPD in H-minor-free graphs. Our result
follows the standard procedure for proving a PTAS for such graphs. We present a
polynomial time algorithm for graphs of bounded-treewidth. However, the algo-
rithm only work in the setting where the demands on the edges are bounded by a
constant. Then, a PTAS for H-minor-free graphs then follows from the results of
Demaine et al. [9]. For ease of exposition, we only describe the polynomial time
algorithm for bounded tree-width graphs with d, = 1 for all e € E. However,
the extension to arbitrary, but constant demands is straight forward.

6.1 A Polynomial Time Algorithm for Bounded-Treewidth Graphs

For the sake of completeness, we give a definition of a tree-decomposition. See
[5] for a description and results on tree-decompositions.

Constant Factor Approximation for the Weighted PDBEP Problem 197

Definition 1. A tree decomposition of a graph G = (V,E) is a pair (T,X),
where T = (I, F) is a tree and X = {X;| i € I} is a set with X; C'V satisfying

-Jxi=v.

iel
— for any edge e = (u,v) € E, there exists an i € I withu € X; and v € X;.
— for allv € V, the set of nodes {i € I| v € X;} forms a connected subtree of T.

We refer to the vertices of T' as nodes and the corresponding X;’s as bags in order

to distinguish them from the vertices of G. The width of any tree decomposition

T=(IF)is max |X;| — 1 and the tree-width of a graph G, denoted as tw(G)
1€

is the minimum width among all possible tree decompositions of G. Let G be a
graph with tw(G) = ¢t — 1, for constant ¢ > 0, and let (T, X) with T = (I, F)
and X = {X;| ¢ € I} be a tree decomposition of G of width ¢ — 1. It is also well
known that without loss of generality we can assume that T is a rooted binary
tree [5].

Define for all i € I, Y; = {v € Xj| jis a descendant of i}. Let G[X;] =
(Xi, E;), and G[Y;] = (Y3, F;) denote the vertex induced subgraphs of G with
vertices in X; and Y; respectively. Let G’ = (V, E’) be an optimal solution for
PEPD, and F/ = F; N E', El = E; N E’. For any bag X;, let d; be the degree
sequence of the vertices in X; in the subgraph G = (V, F/ U E}). Suppose f be a
vector representing whether degq, (v) < ¢y, or degq (v) > ¢,. For any v € V, we
set £(v) = ¢y, if dege (v) < ¢y, and f(v) = 0o, otherwise. The vector f; denotes
the vector f with restriction to the vertices in X;.

We now describe our dynamic program. The dynamic program works bottom-
up. Each DP cell C(i, El,d;, f;) represents the subproblem of choosing a set
of edges F!/ C F; with maximum total weight, such that F} U E/ are feasible
assuming the degrees on vertices of X; in the subgraphs (V, E’) and (V, F/ U E})
are bounded above by vectors f; and d; respectively.

We calculate each DP cell as follows: for each node i, we guess the set of
edges E!, and the vectors fj, d; < f;, where d; < f; denotes that the vector d;
is component-wise less than or equal to the vector fj. Since f provides an upper
bound on the degree of any vertex in G’, edges in any subgraph of G’ must satisfy
the feasibility constraint assuming degree of vertex v can be at most f(v). Let
W(i, E., fi,d;) be the weight of the DP cell C(i, E., fi,d;). For any leaf node 1,
we compute W(i, E/, f;, d;) as follows:

Wi, B £, di) — w(E]), if V{u&;} € El, fi(u) <c¢, or fi(v) < e,

—00, otherwise.
For any internal node i, with children j and k for which we have already com-
puted the DP cells, we can compute the DP cell as follows:

A(W(i,El’-,fi,di)), if V{u,v} € Ef, fi(u) < ¢, or fi(v) < ¢,

—00

W(i, B}, f;,d;) = { .
otherwise.

)

198 P. Aurora et al.

Where, A(W(z’, Elf;, di)) can be computed as follows:

W(i, E. £, d;)) = W(j, EL f dy) + W(k, B, fie, d
AW EL) = e (WG 6.)+ Wik Ef S dh)

Ej fic,dic < fic

+w(E; \ (E} U Ey)) —w(E; N Ey)

Vo € {X; N X; N X} fi(v) = £5(v) = fi(v),
Vo e {X; N X;}, fi(v) = £(v),

Yo € {X; N Xk}, fi(v) = fi(v),

Yo € X;,di(v) > dj(v) + dk(v)+

deg g\ (51uEy) (V) — degpnpy (U)}’

Where, degE;\(EéuEé)(v) and degEng;c (v) denote the degrees of v in the sub-
graphs (V, E} \ (£} U E})) and (V, B} N E}) respectively. Note that if v ¢ X,
then dj(v) = 0 and if v ¢ X}, then dk(v) = 0.

The optimal solution is the max{W(r, E., ., f.)}, where r is the root node
of the tree T

The number of nodes in the tree-decomposition T of G is at most O(nt) [5].
For any node i € I, | X;| <t, so E! can take at most 2t” values, and f; can take
at most 2! values. For any vertex v € X;, d;(v) can take at most n values. d;(v)
can take at most n values. So, total number of cells in the DP can be at most
O(nt)-2%* .2t .nt = O(nt). Each DP cell takes O(n%') computation time. So the
running time of the DP is bounded by O(n?!).

Theorem 4. The PEPD problem, on graphs with bounded tree-width can be
solved in polynomial time if the demand of any edge is bounded above by a con-
stant.

6.2 Partition into Bounded Treewidth Graphs

We use the following result of Demaine et al. [9] on the structure of H-minor-free
graphs.

Lemma 9 [9]. For a fived graph H, there is a constant cg such that, for any
integer k > 1 and for every H-minor-free graph G, the vertices of G (or the
edges of G) can be partitioned into k + 1 sets such that any k of the sets induce
a graph of tree-width at most cyk. Furthermore, such a partition can be found
i polynomial time.

Theorem 5. In H-minor free graphs, there is a PTAS for the PEPD problem
if the demand of any edge is bounded above by a constant.

Constant Factor Approximation for the Weighted PDBEP Problem 199

Proof. Let G = (V,E) be any H-minor-free graph. We apply lemma9 with
k = 1/e¢ to partition E into sets Fy, Fy,--- E141/.. Let E' be the edges in the

optimal solution, and E{ = E'NEy,E), = E'N Ey,--- 7E1+1/e =E'NEiq..
Let Ej, be the set with minimum weight among {E%, E3,---, E{,, , }. Since,
w(E,) <) this implies w(E' \ E},) > (1 - 1/k + Lw(E").

Let G; be the subgraph of G with edge set E; = Uj»iE;. Each G; has
tree-width bounded by cyk for which we can get the optimal solution OPT;
by using theorem 4. Since the set E’'\ E! is a feasible solution to G;, we have
OPT, > w(E'\ E)).

max{OPTy,--- ,OPTj11} > OPT,, > w(E'\ E.)

1
Hence, the maximum weighted solution among the solutions for Gy, Ga, - - - Gi41
gives a PTAS.

7 APX-Hardness

In this section, we prove that PEP problem is APX-hard even for unweighted
cubic graphs, and unweighted bipartite graphs of bounded degree. Earlier, only
NP-hardness was known. This was proved by Zhang [19] by showing that for a
graph G = (V, E), a solution to unweighted PEP of size k implies a Dominating
Set in G of size |V| — k. Our result follows from the following facts: Cubic graphs
and bipartite graphs of bounded degree have large dominating set, and the fact
that the Dominating set problem is APX-hard on cubic graphs and bounded
degree bipartite graphs. We show that a PTAS for the unweighted PEP would
imply a PTAS for the Dominating set problem.

Proposition 3. Let G = (UUV, E) be bipartite graph with degree bounded by B.
Then, any dominating set in G has size at least [U UV|/(1+ B).

Proof. Let [UUV| = n and suppose there is a dominating set S C U UV of size
< n/(14+B). Since each v € S can dominate at most B vertices in {UUV }\ S, all
vertices in S together can dominate < nB/(1 4 B) vertices. Since any vertex in
G either belongs to S or is dominated by a vertex in S, we have the total number
of vertices in G < n/(1+ B) + nB/(1 4+ B) = n contradicting our assumption
that [UU V| = n.

We use the following result of Zhang [19] on the relation between Dominating
Sets and PEP on unweighted graphs. Following which, our result on bipartite
graphs follows by using the result of Chlebik and Chlebikov4 [7] that Dominating
Set on bounded degree bipartite graphs is APX-hard.

Lemma 10 [19]. Let G = (V,E) be a graph without isolated vertices having
w(e) =1, for all e € E. In G, there is a mazimal solution of size k to the
PEP if and only if there is a solution of size |V| — k to the Dominating Set
problem.

200 P. Aurora et al.

Theorem 6 [7]. It is NP-hard to approzimate the Dominating Set problem in
bipartite graphs of degree at most B > 3 within a factor of In B — C'lnln B for
some absolute constant C.

Theorem 7. The PEP problem is APX-hard for unweighted bipartite graphs
having degree at most B > 3.

Proof. We prove that an existence of a PTAS for the PEP problem on bounded
degree bipartite graphs implies a PTAS for the Dominating Set problem on the
same class of graphs, contradicting Theorem 6.

Let G = (U UV, E) be a bipartite graph with degree bounded by B and
|[U U V| = n. By Proposition3, OPTps(G) > n/(1 + B). Lemma 10 implies
that OPTpgrs(G) = n — OPTpg(G). If there exists a PTAS for PEP, this
implies that for every ¢ > 0, we can find a sub-graph G’ = (V| E’) such that
|E'| > (1—€)(n—OPTps(G)). We can assume that G’ is a collection of disjoint
stars with no isolated vertices as a PEP solution with isolated vertices can always
be transformed into one without isolated vertices. Therefore G’ is a collection
of stars spanning V' and the set C' of central vertices form a dominating set
(Lemma 10). |C| = n — |E’|. Therefore,

[Cl=n—|E'|<n—(1-¢(n—-0PTps(Q))
< (14 B)eOPTps(G) + (1 —€)OPTps(G)
< (1 + Be)OPTps(Q).

Therefore, PEP is APX-hard, even on unweighted bipartite graphs of
bounded degree.

Remark: The APX-hardness result on cubic graphs can be obtained by using a
similar argument and the result of Alimonti and Kann [1] that Dominating Set
on cubic graphs is APX-hard.

8 Conclusion

To obtain better than 2-approximation for PEPp, (24¢)-approximation for PEpD
on bipartite graphs, and (4 + €)-approximation for PEPD on general graphs, we
need to find better upper bounds on OPTpgp, OPTpgep on bipartite graphs,
and OPTpgpp on general graphs respectively. For example consider the graph Cy
(cycle on 4 vertices) with unit weight on all the edges. In this case OPTpgp = 2,
whereas the upper bound is } .y w(emax(v)) = 4. So we cannot expect to get
a better than 2-approximation with this upper bound.

References

1. Alimonti, P., Kann, V.: Hardness of approximating problems on cubic graphs. In:
Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203,
pp. 288-298. Springer, Heidelberg (1997)

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

Constant Factor Approximation for the Weighted PDBEP Problem 201

Aurora, P., Singh, S., Mehta, S.K.: Partial degree bounded edge packing problem
with arbitrary bounds. In: Tan, X., Zhu, B., Fellows, M. (eds.) FAW-AAIM 2013.
LNCS, vol. 7924, pp. 24-35. Springer, Heidelberg (2013)

Babenko, M. A., Gusakov, A.: New exact and approximation algorithms for the star
packing problem in undirected graphs. In: 28th International Symposium on Theo-
retical Aspects of Computer Science, STACS 2011, 10-12 March 2011, Dortmund,
Germany, pp. 519-530 (2011)

Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. ACM 41(1), 153-180 (1994)

Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor.
Comput. Sci. 209(1-2), 1-45 (1998)

Bu, T.-M., Yuan, C., Zhang, P.: Computing on binary strings. Theoret. Comput.
Sci. 562, 122-128 (2015)

Chlebik, M., Chlebikova, J.: Approximation hardness of dominating set problems
in bounded degree graphs. Inf. Comput. 206(11), 1264-1275 (2008)

Dehne, F., Fellows, M.R., Fernau, H., Prieto, E., Rosamond, F.A.: NONBLOCKER:
parameterized algorithmics for MINIMUM DOMINATING SET. In: Wiedermann, J.,
Tel, G., Pokorny, J., Bielikov4, M., Stuller, J. (eds.) SOFSEM 2006. LNCS, vol.
3831, pp. 237-245. Springer, Heidelberg (2006)

Demaine, E.D., Hajiaghayi, M.T., Kawarabayashi, K.-i.: Algorithmic graph minor
theory: decomposition, approximation, and coloring. In: Proceedings of the 46th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23—
25 October 2005, Pittsburgh, PA, USA, pp. 637-646 (2005)

Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17(3), 449467 (1965)
Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D., et al. (eds.) Complexity of Computer Computa-
tions. The IBM Research Symposia Series, pp. 85-103. Springer, Heidelberg (1972)
Lovész, L., Plummer, M.D.: Matching Theory, vol. 367. American Mathematical
Soc., Providence (2009)

Micali, S., Vazirani, V.V.: An O(\/m|E|) algoithm for finding maximum match-
ing in general graphs. In: 21st Annual Symposium on Foundations of Computer
Science, pp. 17-27. IEEE (1980)

Parekh, O.: Iterative packing for demand and hypergraph matching. In:
Ginlik, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 349-361.
Springer, Heidelberg (2011)

Parekh, O., Pritchard, D.: Generalized hypergraph matching via iterated packing
and local ratio. In: Bampis, E., Svensson, O. (eds.) WAOA 2014. LNCS, vol. 8952,
pp. 207-223. Springer, Heidelberg (2015)

Sahni, S.K.: On the knapsack and other computationally related problems (1973)
Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24.
Springer Science & Business Media, Heidelberg (2003)

Shepherd, B., Vetta, A.: The demand matching problem. In: Cook, W.J., Schulz,
A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 457-474. Springer, Heidelberg (2002)
Zhang, P.: Partial degree bounded edge packing problem. In: Snoeyink, J., Lu, P.,
Su, K., Wang, L. (eds.) AAIM 2012 and FAW 2012. LNCS, vol. 7285, pp. 359-367.
Springer, Heidelberg (2012)

An Introduction to Coding Sequences of Graphs

Shamik Ghosh!®™), Raibatak Sen Gupta', and M.K. Sen?

! Department of Mathematics, Jadavpur University,
Kolkata 700032, India
sghosh@math. jdvu.ac.in, raibatak2010@gmail.com
2 Department of Pure Mathematics, University of Calcutta,
Kolkata 700019, India
senmk6@yahoo.com

Abstract. In this paper, we introduce a new representation of simple
undirected graphs in terms of set of vectors in finite dimensional vec-
tor spaces over Zs which satisfy consecutive 1’s property, called a cod-
ing sequence of a graph G. Among all coding sequences we identify the
one which is unique for a class of isomorphic graphs, called the code
of a graph. We characterize several classes of graphs in terms of coding
sequences. It is shown that a graph G with n vertices is a tree if and only
if any coding sequence of G is a basis of the vector space Z5 ™" over Z.
Moreover, considering coding sequences as binary matroids, we obtain
a characterization for simple graphic matroids. Introducing concepts of
segment binary matroid and strong isomorphisms we show that two
simple undirected graphs are isomorphic if and only if their canonical
sequences are strongly isomorphic simple segment binary matroids.

AMS Subject Classifications: 05C62, 05C50, 05B35.

Keywords: Simple undirected graph - Graph representation - Graph
isomorphism -+ Incidence matrix - Consecutive 1’s property - Binary
matroid - Graphic matroid

1 Introduction

There are various representations of simple undirected graphs in terms of adja-
cency matrices, adjacency lists, incidence matrices, unordered pairs etc. In this
paper, we introduce another representation of a simple undirected graph with
n vertices in terms of certain vectors in the vector space Z5 ! over Zy. We call
the set of vectors representing a graph G as a coding sequence of G and denote
it by S(G,n). Among all such coding sequences we identify the one which is
unique for a class of isomorphic graphs. We call it the code of the graph. We
find characterizations of graphs which are connected, acyclic, bipartite, FEulerian
or Hamiltonian in terms of 5(G,n). We prove that a graph G with n vertices is
a tree if and only if any coding sequence of G is a basis of the vector space Zg_l
over Zs.

© Springer International Publishing AG 2016

T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 202-215, 2016.
DOT: 10.1007/978-3-319-48749-6_15

An Introduction to Coding Sequences of Graphs 203

In his pioneering paper [9] on matroids in 1935, Whitney left the problem
of characterizing graphic matroid open by making the following comment: “The
problem of characterizing linear graphs from this point of view is the same as that
of characterizing matroids which correspond to matrices (mod 2) with exactly
two ones in each column.” In 1959, Tutte obtained a characterization of graphic
matroids in terms of forbidden minors [6]. But it is clear that Whitney indicated
about incidence matrices of simple undirected graphs. In this paper, we use a
variation of incidence matrix for the same characterization.

In Sect. 3, we introduce the concept of a segment binary matroid which cor-
responds to matrices over Zs that has the consecutive 1’s property (i.e., 1’s are
consecutive) for columns and a characterization of graphic matroids is obtained
by considering (G, n) as a segment binary matroid. We introduce the concept
of a strong isomorphism for segment binary matroids and show that two simple
graphs G and H (with n vertices each) are isomorphic if and only if 8(G,n) and
G(H,n) are strongly isomorphic segment binary matroids.

For graph theoretic concepts, see [8] and for matroid related terminologies,
one may consult [5].

2 Coding Sequences

Definition 1. Let G = (V, E) be a simple undirected graph with n vertices and
m edges. Let V = {vg,v1,...,vn_1}. Define a map f : V. — N by f(v;) = 10
and another map f* : E — N by f*(viv;) = |f(vi) — f(v;)], if E # 0. Let
o(G,n) be the sequence {f*(e) | e € E} sorted in the increasing order. If E = (),
then o(G,n) = 0. It is worth noticing that for e = v;v; € E, f*(e) = |10° — 107|
uniquely determines the pair (i,7) as it is a natural number with i digits, starting
with i — j number of 9’s and followed by j number of 0’s, when i > j. Thus the
m entries of o(G,n) are all distinct.

Now for E # 0, we define a map f# : E — Z537' by f#(e) =
(21,T2,...,2n_1), where x; = 1, if the (n — i)™ digit of f*(e) from the right
is 9, otherwise x; = 0 for ¢ = 1,2,...,n — 1. For convenience we write the
field Zy as {0,1} instead of {0,1}. Let 3(G,n) be the sequence {f#(e) | e € E}
sorted in the same order as in o(G,n). If E =0, then 8(G,n) = 0. The sequence
B(G,n) is called a coding sequence of the graph G.

Naturally, B(G,n) is not unique for a graph G as it depends on the labeling f
of vertices. Now there are n! such labellings and consequently we have at most n!
different o(G,n) for a graph G. Among which we choose the one, say, o.(G,n)
which is the minimum in the lexicographic ordering of N™. The corresponding
B(G,n) is called the code of the graph G and is denoted by B.(G,n). Clearly
B.(G,n) is unique for a class of isomorphic graphs with n vertices, though it is
not always easy to determine generally.

Ezample 1. Consider the graph G in Fig. 1 (left). We have

o(G,4) = (9,90,900,990) and B(G,4) = {(0,0,1),(0,1,0),(1,0,0),(1,1,0)}

204 S. Ghosh et al.

900

Fig. 1. The graph G in Example 1 with different labellings

according to the labeling of vertices given in Fig. 1 (left). One may verify that
o.(G,4) = (9,90,99,900) and B.(G,4) = {(0,0,1),(0,1,0),(0,1,1),(1,0,0)}

according to the labeling of vertices shown in Fig. 1 (right).

Remark 1. An incidence matrix of a (simple undirected) graph G = (V, E) is
obtained by placing its vertices in rows and edges in columns and an entry in a
row corresponding to a vertex v and in a column corresponding to an edge e of
the matrix is 1 if and only if v is an end point of e, otherwise it is 0. It is important
to note that a coding sequence of a graph has a similarity with the incidence
matrix of the graph. In fact, given a coding sequence of a graph G, one can
easily obtain the incidence matrix of G and vice-versa. Also cut-set and circuit
subspaces of a vector space of dimension |E| over Zs constructed from edges of G
are well known [1,3]. For studying various matrix representations of graphs, one
may see [2,4,8]. Now, as we mentioned in the introduction, Whitney expected
the characterization of graphic matroids would be obtained from the incidence
matrix. Here we consider a variation of it with a consecutive 1’s representation
as it helps us to build a very natural interplay between graph theory, matroids
and linear algebra which is evident from Theorem 1, Corollary 8 and Theorem 4.

Throughout this section by a graph we mean a simple undirected graph.

Definition 2. A non-null vector e = (x1,xa,...,Tp_1) € ngl 18 said to satisfy
the consecutive 1’s property if 1’s appear consecutively in the sequence of
coordinates of e. Let

C(n—1)={veZy " | v satisfies the consecutive 1's property} .

Clearly, |C(n—1)| = (5) = % and G is a complete graph with n vertices if
and only if B(G,n) = C(n—1). In fact, for every S C C(n—1), there is a unique
graph G(S) of n vertices such that 8(G,n) = S. If S = 0, then G is the null
graph with n vertices and no edges. If S # (), each member e of S represents an
edge of G(S) = (V, E) with end points 10"~ and 10"~7~1 where the consecutive

An Introduction to Coding Sequences of Graphs 205

stretch of 1’s in e starts from the it entry and ends at the j™* entry from the

left and 'V = {1, 10,10%,..., 10"’1}. Also it is clear that C(n — 1) \ B(G,n) is
a coding sequence of the complement G of a graph G with n vertices.

Let) # S C C(n—1). Let G(S) be the subgraph of G(S) obtained by removing
all isolated vertices (if there is any) from G(S). Then G(S) is the subgraph of
the complete graph of n vertices induced by the edges represented by the vectors

msS.

We denote the null vector in the vector space Z5 ™! by 0 for any n € N and write
Z9 for the zero-dimensional space {0}. Let S = {e,eq,...,ex} C Z5~ ! < {0},
(k € N, k < 2"71). As ¢;’s are distinct, we have e; + e; # 0 for all i # j,

i,j € {1,2,...,k}. Thus S is a set of linearly dependent vectors in Z;‘fl over
Zs if and only if there exists A C S, |A| > 3 such that > e = 0. In other
ecA

words, S C ngl is linearly independent over Z, if and only if S = () or S =

{e1,€2,...,ex} forsome k € N, k < 2" tand Y. e#0forall) #ACS. We
ecA

denote the linear span (over Zy) of a subset S of Z5~* by Sp (S), i.e., Sp (S) is
the smallest subspace of Z5 ™! containing S.

Proposition 1. Let S = {e1,e2,e3} C C(n—1) for somen € N, n > 3. Then
G(S) is a 3-cycle if and only if e1 + e2 + e3 = 0.

Proof. First suppose that G(S) is the 3-cycle shown in Fig.2, where o, 3,7 €
{0,1,...,n — 1}. Without loss of generality we assume a > 3 > 7. Then

er = (0,0,...,0,1,1,...,1,0,0,...,0,0,0,...,0)
—— —

n—a—1 a—0 B
es = (0,0,...,0,1,1,...,1,1,1,...,1,0,0,...,0)
—— S——
n—a—1 a—y vy
63:(0707 7030a07 '70a1717"'71700a ,0)
——
n—p-1 B— v

Clearly e; 4+ e5 +e3 = 0.

Conversely, let e; + e3 + e3 = 0. Consider the matrix M = | ez |, where we
e3
represent each e; as a row matrix consisting of n — 1 columns for i = 1,2, 3.
Since €1 + es + e3 = 0, in each column where 1’s appear, they appear exactly in
two rows. Let ¢ be the least column number of M that contains 1. Without loss
of generality we assume that 1’s appear in the first two rows in the i*" column
(otherwise we rearrange rows of M). Also suppose that the number of zeros after
the stretch of 1’s in the first row, say, 8 is more than that of the second, say, =y
(otherwise again we rearrange rows of M). Let & = n — 4. Then the end points
of the edge of G(S) corresponding to e; are 10* and 10° and those of the edge
corresponding to es are 10% and 107. Since 8 > v and e; + es + e3 = 0, we have

es =e1 +ey=(0,0,...,0,1,1,...,1,0,0,...,0).
—_—— —— ——

n—B3-1 B=v v

206 S. Ghosh et al.

Fig. 2. A 3-cycle

Thus the end points of the edge of G(S) corresponding to ez are 10° and 10”. So
the vertices labeled by 10%,10% and 107 form a 3-cycle with edges corresponding
to e, €9, €3, as required.

Definition 3. A set S # 0 of non-null vectors in ngl 1s called reduced if
Y.e#0 forall) £#AGS.

ecA

Lemma 1. Let S = {ey,e,...,ex} € C(n —1) for some k,n € N, 3 <k < n.
Then G(S) is a k-cycle if and only if S is reduced and e; + ea + -+ + e = 0.

Proof. We prove by induction on k. By Proposition 1, the result is true for &k = 3.
Suppose the result is true for k =r—1 > 3. Let S = {e1,ea,...,e,} CC(n—1)
for some r,n € N, 3 < r < n form the r-cycle shown in Fig. 3 (we renumber e;’s,
if necessary). Consider the chord e so that ej,es and e form a triangle. Then
e1 +ea+e =0 by Proposition 1. So e = e1 +e2. Also {e, e3,€eq4,...,¢e,} forms an
(r — 1)-cycle. So by induction hypothesis e+ e3+e4 + - - - + e, = 0 which implies
e1+es+e3+eq4+ -+ e. =0. Moreover, since S is a cycle, no proper subset
of S forms a cycle. Thus S is reduced by induction hypothesis.

Conversely, let S = {e1,e9,...,6,} CC(n —1) for some r,n € N, 3 <r <n be
€1

reduced and e; +e3 + -+ -+ e, = 0. Consider the matrix M = €2 , where we
Er

represent each e; as a row matrix consisting of n — 1 columns for i =1,2,...,r.

Let i be the least column number of M that contains 1. Since the row sum
of M is zero (the null vector), the i*" column contains even number of 1’s. So
there are at least two rows with 1 in the i*" column. Rearrange rows of M such
that e; and es be two such rows. Since both of these rows begin with 1 in the
i*® column, the edges corresponding to them have a common end point with
label 10"~%. Join the other end points of e; and ey by an edge, say, e to form a
triangle with edges eq, es,e. Then e; 4+ e3 + e = 0 which implies e = e; + e3. So
et+es+es+---+e.=0.

We claim that S; = {e,e3,e4,..., €.} is reduced. Suppose A G Sy, [A] > 3

besuchthat a = Y x=0.Ife ¢ A, then a # 0 as S is reduced. So e € A. Then
z€A
replacing e by e; + e2 in a would again contradict the fact that S is reduced.

So S} is reduced. Hence by induction hypothesis, Sy form an (r — 1)-cycle. Now

An Introduction to Coding Sequences of Graphs 207

Fig. 3. An r-cycle

replacing the edge e by the path consisting of edges e; and ey gives us an r-cycle
formed by S.

The following two corollaries follow immediately from the above lemma.

Corollary 1. A graph G with n > 3 vertices (n € N) is Hamiltonian if and
only if for any coding sequence B(G,n) of G, there exists S = {e1,ea,...,en} C
B(G,n) such that S is reduced and ey +e3+ -+ + €, = 0.

Corollary 2. A graph G with n vertices (n € N) is acyclic if and only if any
coding sequence B(G,n) of G is linearly independent over Zs.

Corollary 3. A graph G with at most one non-trivial component and with n
vertices (n € N) is Eulerian if and only if Z e = 0 for any coding sequence

e€fB(G,n)
B(G,n) of G.

Proof. Follows from Lemmal and the fact that a circuit in a graph can be
decomposed into edge-disjoint cycles.

Corollary 4. A graph G with n > 2 vertices (n € N) is bipartite if and only if
for any coding sequence 5(G,n) of G, Z e # 0 for every S C B(G,n) where |S)|

ecS
1s odd.

Proof. Follows from Lemma 1 and the fact that a graph is bipartite if and only
if it does not contain any odd cycle.

Theorem 1. A graph G with n vertices (n € N) is a tree if and only if any
coding sequence B(G,n) of G is a basis of the vector space Zg_l over the field
Zs.

Proof. Suppose G is a tree. Then G is acyclic which implies §(G,n) is linearly
independent over Zy by Corollary 2. Again since G is a tree, the number of entries
in B(G,n) is n — 1, we have n — 1 linearly independent vectors in ngl over Zs.
Thus 3(G,n) is a basis of Z5 ™! over Z,.

208 S. Ghosh et al.

Conversely, suppose 3(G,n) is a basis of ZY~! over Zs. Then B(G,n) is
linearly independent over Zs and so G is acyclic by Corollary 2. Also since 3(G, n)
is a basis of Zj~* over Zy, the number of entries in 3(G,n) is n— 1 which implies
G has n — 1 edges. Thus G is a tree.

Corollary 5. A graph G with n vertices (n € N) is connected if and only if for
any coding sequence 3(G,n) of G, Sp (3(G,n)) = Z5~*.

Proof. We first note that a graph G is connected if and only if G has a spanning
tree. Suppose G = (V, E) has a spanning tree H = (V, E;). Then G(H,n) C
B(G, n) with the same vertex labeling. But S(H,n) is a basis of Z;“l over Zs by
Theorem 1. Thus Sp (8(G,n)) 2 Sp (B(H,n)) = Z5~ . So Sp (B(G,n)) = Z3~*.

Conversely, if Sp (3(G,n)) = Z5~', then B(G,n) contains a basis, say B
of Z2™! over Z,. Then G(B) is a spanning tree of G by Theorem1 as B =
B(G(B),n). Thus G is connected.

Corollary 6. Let G be a connected graph with n vertices and S C 3(G,n). Then
G(S) is a spanning tree of G if and only if S is a basis of the vector space Z5 ™"
over the field Z.

3 Matroid Representation

Whitney introduced the concept of a matroid in [9]. There are several ways of
defining matroids. We take the one that will serve our purpose. A matroid M is
an ordered pair (E, %) consisting of a finite set E of elements and a nonempty
collection A of subsets of E, called bases which satisfies the properties: (i) no
proper subset of a base is a base and (ii) if By, By € £ and e € By \ Bs, then
there exists f € By~ Bj such that (B \ {e})U{f} € B. Independent sets of M
are subsets of bases and minimal dependent sets are circuits. The cycle matroid
M]|G] of graph G is the matroid whose elements are edges of G and circuits are
cycles of G. Independent sets and bases of M[G] are forests and maximal forests
of G respectively. A matroid is graphic (simple graphic) if it is a cycle matroid
of a graph (respectively, simple graph).

Let E be the set of column labels of an n X m matrix A over a field F,
and Z be the set of maximal subsets X of E for which the multiset of columns
labeled by X is linearly independent in the vector space F over F'. Then the
pair (E, %) is the column (vector) matroid of A and is denoted by M[A]. In
particular, if F' = Zo, then M[A] is a binary matroid. A binary matroid M[A] is
simple if A does not contain zero columns and no two columns of A are identical
(i.e., columns of A are non-zero and distinct).

Definition 4. A binary matroid M[A] is called a segment binary matroid if
A satisfies the consecutive 1’s property for columns. Moreover, if it is simple, then
we call it a simple segment binary matroid. For any () # S C Z3~', M([S]
denotes the column (vector) matroid of the matriz whose columns are precisely
the elements of S. Clearly, M[S] is a binary matroid.

An Introduction to Coding Sequences of Graphs 209

Remark 2. In particular, when) # S C C(n — 1), M[S] becomes a simple
segment binary matroid. So for any simple graph G with n vertices, M[3(G,n)]
is a simple segment binary matroid. Conversely, every simple segment binary
matroid M[A] with n — 1 rows is same as M|[S], where S is the set of column
vectors of A over Zs. Also in this case S C C(n — 1).

Two matroids My = (E1, %) and My = (Ea, %2) are isomorphic if there is a
bijection ¥ from F; onto Fs such that for all X C F7, X is independent in M; if
and only if ¢(X) is independent in My (or, equivalently, X is a circuit in M if
and only if (X)) is a circuit in My). In this case, we denote by M; = M,. Also
abusing notations we sometimes identify elements of M[A] with its correspond-
ing column vector representation. Thus a simple binary matroid M[A] may be
considered as the set of column vectors of A. The following theorem characterizes
isomorphisms of simple binary matroids in terms of linear transformations.

Theorem 2. Let M[A] and M[A;1] be two simple binary matroids such that both
A and Ay are of same order n x m, (m,n € N). Then M[A] = M[A4{] if and
only if there exists a bijective linear operator T on Z5 such that T restricted on
MTJA] is a bijective map from M[A] onto M[A;].

Proof. Let 9 be an isomorphism from M[A] onto M[A;]. Let B be a base in
MT[A]. Then B is linearly independent over Zy. We extend B to a basis B; (say)
of Z% over Zs. Now since 1 is an isomorphism, t(B) is also a base in M[A;]
and |¢(B)| = |B|. We also extend ¢(B) to Ba, a basis of Z} over Zs. Then
|By \ B| = |B2 ~ ¥(B)| = n — |B|. Let f be a bijection from B; \ B onto
Bs \ ¢(B). Now define a map Ty : By — By by

Y(e),e € B
Tife) = {f(e), e€ Bi\B

We next verify that « is ‘linear’ on M[A], i.e., if e, e5 are columns of A such that
e1 + es is also a column of A, then ¥(e; + e3) =1 (e1) + (e2). Let e = e1 + ea.
Then e 4+ e; + e2 = 0 which implies that {e,e1,es} is a circuit of M[A]. Again
since ¢ is an isomorphism, {¥(e), 1 (e1), 9 (e2)} is also a circuit in M[A;]. Hence
v(e)+y(e1)+4(e2) =0, ie., P(e1+e2) = Y(e) = ¥(e1) +¢(e2). This completes
the verification. We extend 73 linearly to obtain a linear operator 1" on Z% over
Zs. Then T is bijective as 11 maps a basis bijectively to another basis of Z3 over
Zs and the restriction of T on M[A] is ¢ due to the above verification.
Conversely, let T' be a bijective linear operator on Z5 such that the map 1,
the restriction of T' on M[A] is a bijective map from M[A] onto M[A;]. Let X
be a circuit in M[A]. Then ZezO and Ze;é() for all) # A & X. Now
eeX ecA
since T is bijective and linear, we have Z e = 0 if and only if Z T(e) =0 for
ecA ecA
all) # A C X. Thus X is a circuit in M[A] if and only if ¥(X) is a circuit in
MT[A;]. Hence % is an isomorphism from M [A] onto M[A;].

210 S. Ghosh et al.

Corollary 7. Let M[A] and M[A] be two simple binary matroids such that
both A and Ay are of same order n x m, (m,n € N). Then M[A] &2 M[A1] if
and only if there exist a non-singular matrix P of order n xn and a permutation
matriz Q of order m x m such that PAQ = A;.

Proof. If M[A] =2 M[A,], then following the proof of the direct part of the above
theorem, consider two bases By and By of Z§ over Zs and the bijective linear
operator T that maps By onto By. Let P be the matrix representation of T with
respect to these bases. Then P is a non-singular matrix and PA = A, where A,
is obtained from A; by rearranging columns such that i** column of A, is the
image of the i*" column of A under T. Thus PAQ = A; for some permutation
matrix Q.

Conversely, let A; = PAQ for some non-singular matrix P and some permu-
tation matrix Q. Let Ay = A;Q~!. Then PA = A,. Since P is non-singular, it
corresponds to a bijective linear operator T on Z% (over Zs) defined by T'(e) = Pe
(considering elements of Z% as column matrices) such that the restriction of T
on M[A] is a bijective map from M[A] onto M[As]. Then M[A] = M[As] by the
above theorem. Since M[A;] = M[A3], we have M[A] = M[A4].

Now we proceed to characterize simple graphic matroids.

Lemma 2. Let G be a simple graph with n vertices. Then M[G] = M[B(G,n)]
for any coding sequence B(G,n) of G.

Proof. 1t follows from Lemma 1 that cycles of G are precisely the circuits of the
matroid M[3(G,n)]. So M[G] =2 M|[B(G,n)] as matroids.

Theorem 3. A matroid is simple graphic if and only if it is isomorphic to a
simple segment binary matroid.

Proof. Let M be a simple graphic matroid. Then M = M[G] for a simple graph
G. By Lemma 2, we have M[G] = M[3(G,n)] where n is the number of vertices
of G. Thus M is isomorphic to a simple segment binary matroid by Remark 2.

Conversely, let M[A] be a simple segment binary matroid. Then we may
consider M[A] as M[S] where S is the set of columns of A. By Remark 2, we
have S C C(n — 1), where A € M,,_1 (Z2). Then by Definition 2, there is a
unique simple graph G such that S = 3(G,n). Therefore, by Lemma 2, M[S] =
M[B(G,n)] 2 M|G]. Thus, M[A4] is a simple graphic matroid.

Corollary 8. A simple binary matroid M[A] (where A is of order (n—1) x m)
s simple graphic if and only if m < (g) and there exists a non-singular matriz
P such that PA satisfies the consecutive 1’s property for columns.

Proof. Follows from Theorem 3 and Corollary 7.

Remark 3. Since any non-singular matrix is obtained from identity matrix by
finite number of elementary row operations, a simple binary matroid M[A] is
simple graphic if and only if the consecutive 1’s property for columns can be
obtained from A by finite number of elementary row operations.

An Introduction to Coding Sequences of Graphs 211

It is well known [5] that an ordinary matroid isomorphism does not guarantee
the corresponding graph isomorphism for graphic matroids. We now introduce
the concept of a strong isomorphism of simple segment binary matroids.

Definition 5. Two simple segment binary matroids M[A,] and M[As] are called
strongly isomorphic if

(1) A1, Ay € My_1.m(Z2) for some m,n € N, n > 2.
(2) There exists a bijective linear operator T on Z4~' such that:
(i) T restricted on C(n —1) is a bijection onto itself.
(11) T restricted on M[A1] is a bijective map from M[A;] onto M[As].

We write M[A1] =, M[As] to denote that M[A1] is strongly isomorphic to
M][A,].

Note that, if M[A;] =, M[As], then the restriction of T on M[A;] is a matroid
isomorphism onto M[As] and the restriction of 7' on C(n — 1) is a matroid
automorphism. These follow from the fact that T is linear and injective, as

then for any subset X of the set of columns of A;, > e = 0 if and only if
ecX

> T(e) = 0. In the sequel, we show that strong isomorphism of simple segment

ecX

binary matroids would guarantee the corresponding graph isomorphism.

Let G = (V,E) be a (simple undirected) graph with |V| = n. Then for
any e € FE, we use the symbol p ~, |10% — 10Y| if f*(e) = |10® — 10¥| and
p= f#(e) € B(G,n).

Lemma 3. Let p1,p2 be distinct elements in (G,n) for any coding sequence
B(G,n) of a graph G with n vertices. If py ~y |10* —10Y| and pa ~, |10° — 107,
then p1 + pa ~p |10Y — 107].

Proof. Let p3 = p1 + p2. So p1 + p2 + p3 = 0. From the converse part of the
proof of Proposition 1, we have that ps corresponds to the end points 10Y and
10%. Thus, p1 + p2 ~n, |10Y — 107|.

Lemma 4. Let S = {ey,e,...,er} C B(G,n) for any coding sequence B(G,n)
of a graph G with n vertices. Then G(S) induces a path in G if and only if

k
>e; € C(n—1) and S is reduced.
j=1

Proof. If ey, eq, ..., e, induce a path (in that order) then it is easy to see that

we have e; ~, [10%i+1 — 10%] for some distinct z1, 3,..., 211 € NU {0}. By
k k
applying Lemma 3 repetitively, we have) e; ~, [10%++1 —10"1|. Thus) e; €
j=1 j=1
k
C(n—1).Let e =) e;. Then elements of SU{e} form a cycle. Then by Lemma 1,

j=1
S U {e} is reduced and so S is reduced.

212 S. Ghosh et al.

k k
Conversely, let Y~ e; € C(n — 1) and S is reduced. Let > e; = e. So e +
j=1 j=1

k
>~ e; = 0 and since S is reduced, S U {e} is also reduced. Now consider the
j=1
graph G’ such that 3(G’',n) = B(G,n) U {e}. Clearly, S U {e} induces a cycle
in B(G’,n) by Lemma 1. One edge of that cycle corresponds to e, all the other
edges correspond precisely to the members of S. Hence, G(S) induces a path in

G.

Corollary 9. Suppose p ~, |10° — 107],q ~, |10" — 10°| where p # q and
i,5,r,8 € {0,1,2,...,n — 1}. Then we have p+ q € C(n — 1) if and only if
{i, 7} N{r,s}| = 1. Moreover, p+ q ~y |10* — 10Y|, where = € {i,j}, y € {r, s}
and z,y ¢ {i,j} N{r, s}.

Proof. Consider a graph G with n vertices such that p,q € B(G,n) for some
coding sequence 3(G,n) of G. Clearly, p corresponds to end-points 10° and 107,
and ¢ corresponds to end-points 10" and 10°. First, let p+ ¢ € C(n —1). So by
Lemma 4, it follows that G({p,q}) induces a path in G. This implies that the
two edges corresponding to p and ¢ have a common vertex. Since p # ¢, this
gives that |[{é,7} N{r, s} =1.

Conversely, let |{i,7} N{r,s}| = 1. Suppose j = r, without loss of generality.
Then by Lemma 3, p+ ¢ ~,, |10° — 10%| (which proves the next part also). Thus,
p+qel(n—1).

Lemma 5. Suppose p1 ~p, |10 —107|,py ~y, [10% — 10|, p3 ~,, |10" —10%|, where
i,k l,r,s€40,1,2,...,n—1} and p1, ps, ps are distinct. If p1 +pa, p2+p3, 01+
P3 S C(TL - 1)7 then Eitherpl +p2 +p3 =0 or {’Lv]} N {kvl} = {7’5]} n {’I‘,S} =

{k, 03 0 {r, s}

Proof. Consider a graph G with n vertices such that py, p2, ps € 5(G,n) for some
coding sequence 3(G,n) of G. Clearly, p; corrsponds to end-points 10° and 107,
po corresponds to end-points 10* and 10! and p3 corresponds to end-points 10"
and 10°. Now since p1 +ps € C(n—1), by Corollary 9 we have |{i, j}n{k,l}| = 1.
Without loss of generality, let 5 = k. Then 107 is the common end-point between
edges corresponding to p; and ps. Since we also have that p; + ps € C(n — 1)
and py + p3 € C(n — 1), it follows that the edge corresponding to p3 has a
common end-point with the edge corresponding to p; and a common end-point
with the edge correponding to po. If the common end-point in both the cases is
107 (= 10*) then we have {7, j}N{k, 1} = {i,7}N{r, s} = {k,1}N{r, s}. Otherwise,
the common end-point between p; and ps must be 10° and the common end-
point between py and p; must be 10'. Thus, edges corresponding to pi, p2, 3
form a cycle involving the vertices 10%,107,10'. So by Proposition 1, we have
p1+p2+p3=0.

Lemma 6. Let G, H be two simple graphs with n vertices each and suppose
M[B(G,n)] =, M[B(H,n)]. Let T be any bijective linear operator on 745~ giving
a strong isomorphism between M[B3(G,n)] and M[B(H,n)]. Then for ej,es €
C(n—1), we have e; + ea € C(n — 1) if and only if T(e1) + T'(e2) € C(n —1).

An Introduction to Coding Sequences of Graphs 213

Proof. Let e1,es € B(G,n). First, let e; + e5 € C(n — 1). Now T'(e1) + T(e2) =
T(ey +e2) € T(C(n—1)) = C(n — 1) as restriction of T maps C(n — 1) onto
itself. Conversely, let T'(e1) + T (e2) € C(n—1). So T'(e1 +e2) € C(n—1). Again
since restriction of T' maps C(n — 1) onto itself, there exists some e in C(n — 1)
such that T'(e) = T'(e1 + e2). Finally, since T is injective, we have e = e1 + es.
Soe; +eyeC(n—1).

Now we prove the theorem which gives a necessary and sufficient condition for
two simple graphs to be isomorphic.

Theorem 4. Let G and H be two simple graphs of n vertices each. Then G &£ H
if and only if M[B(G,n)] =2, M[B(H,n)] for any coding sequences B(G,n) and
B(H,n) of G and H, respectively.

Proof. We consider vertices of both G and H are labeled by 1,10,102,...,10" .
First, let G = H. So there exists a permutation g on the set {0,1,2,...,n — 1}
such that for any r,s € {0,1,2,...,n — 1}, we have 10" and 10° are adjacent in
G if and only if 109(") and 109(*) are adjacent in H. We consider the graphs
KO K® where K& = GUG and K® = H U H, where G and H are
complements of graphs G and H respectively. Now for each e € C(n — 1), if
e ~p |10° — 107|, we define T'(e) ~, [109() — 109)|. Clearly, T is a well-defined
mapping from C(n— 1) into itself, since |10P — 107| uniquely determines the pair
{p, q} for any p, q.

Now g, being a permutation, is a bijection. Suppose e, es are distinct ele-
ments of C(n — 1). Let e; ~, [10® — 10°| and ey ~, [10° — 10%|. Clearly,
{a,b} # {c,d}. Bijectiveness of g implies that {g(a),g(b)} # {g(c),g(d)}. This
shows that T'(e1) # T'(ez2). So we have that T is one-to-one. Since T is a mapping
from a finite set into itself, injectiveness of 1" implies that T is a bijective map-
ping from C(n — 1) onto itself. Again, since 10" and 10° are adjacent in G if and
only if 109(") and 109*) are adjacent in H for distinct r, s € {0,1,2,...,n—1}, we
have that T restricted on 5(G,n) is a mapping from S(G,n) into S(H,n). Injec-
tiveness of T ensures the injectiveness of T restricted to 8(G,n). Since B(G,n)
and B(H,n) are finite sets with equal cardinality, we have that T restricted to
B(G,n) is a bijection from 3(G,n) onto B(H,n).

Next, we observe that T is ‘linear’ on C'(n—1), i.e., if p,q € C(n—1) such that
p+q € C(n—1), then T(p)+T(q) = T(p+q). Let p ~,, [10°=107|, ¢ ~,, [10"—10°|
such that p + ¢ € C(n — 1). Then by Corollary 9, we have | {i,5} N {r,s}| = 1.
Without loss of generality, we assume j = r. So ¢(j) = ¢(r) and p + g ~,
|10° — 10%|. Now T(p) ~p [109) —1099)| and T(q) ~, [1097) — 109¢)|. Since
g(4) = g(r), we have T'(p) +T(q) € C(n—1) and T(p) +T(q) ~, [109) —109()].
Since T'(p + q) ~n [109%) — 109)|, we have T(p + q) = T(p) + T(q).

Now let e; ~,, [10" — 10| for all i = 1,2,...,n. We know that B = {e; |
i =1,2,...,n} is a basis of ZJ~'. Since T is defined on each e; as the latter
is in C(n — 1) (in fact, T(e;) ~p [109) —109¢=1)|), we can extend T linearly
to a linear operator T7 on ngl. Bijectiveness of T follows from injectiveness
of T on C'(n — 1) (which ensures distinct images under T for distinct elements

214 S. Ghosh et al.

of B, thus ensuring injectiveness of T}) and finiteness of Z3~*. As M[3(G,n)]
and M[B(H,n)] are also of the same order, we have M[3(G,n)] =2, M[G(H,n)].

Conversely, let M[B(G,n)] =s M[B(H,n)]. So there exists a bijective linear
operator T satisfying the properties mentioned in the Definition 5. We find a
permutation g on the set {0,1,2,...,n — 1} such that for any distinct r,s €
{0,1,2,...,n—1}, 10" and 10° are adjacent in G if and only if 109(") and 109(*)
are adjacent in H. Clearly, such a g acts as an isomorphism between G and H.
Now for ¢ = 1,2,...,n, define e; as the element in C(n — 1) which has 1 in
its i co-ordinate from the right ((n —i)*® co-ordinate from the left) and 0 in
remaining coordinates. Then e; ~,, |10° — 10°~1|. Now for i = 1,2,...,n— 1, we
have e;+e;41 € C(n—1). So from Lemma 6, we have T'(e;) +T(e;4+1) € C(n—1).
From Corollary 9, the edges corresponding to T'(e;) and T'(e;+1) have a (unique)
common point, say 10%. We define g(i—1) = . This defines g as a mapping from
{0,1,2,...,n— 2} into {0,1,2,...,n — 1}. Now we show that g is one-to-one.

If possible, let g(i — 1) = g(j — 1) for some i # j, 4,5 € {1,2,...,n—1}. By
the above definition of g, g(i — 1) and g(j — 1) are one of the common end points
of T(e;),T(e;+1) and T(e;),T(ej41) respectively. So the edges corresponding
to T'(e;) and T'(e;) have a common end-point g(i — 1) (= g(j — 1)). So from
Corollary 9, we have T'(e;) + T'(e;) € C(n — 1). Linearity of T implies that
T(e;+e;) € C(n—1). Since T restricted to C(n — 1) is a bijection from T onto
itself, we have e; +e; € C(n—1). Again, e; +¢,41 € C(n—1) for the same reason
as g(i — 1) is a common end-point between edges corresponding to T'(e;) and
T(ei_,_l). ‘We also have e;t+eir1 € C(Tl—l) So eitej, er1te;,ejte 11 € C’(n—l).
If possible, let e; + e; + e;41 = 0. However, then e; = e; + e;11, which is
impossible by the definition of e;’s. Thus, from Lemma5, 10? is either 10’ or
10°=1,i.e., i = j or j — 1. Similar argument on €;,€j,ej41 gives us j =1 ori— 1.
But i = j — 1 and j = i — 1 both cannot be true simultaneously. So we have
i = j which is a contradiction. Thus ¢ is injective. So we define g(n — 1) = =z,
where = € {0,1,2,...,n — 1} ~ {g(0),9(1),...,9(n — 2)}. Then g is defined on
{0,1,2,...,n — 1} into itself. Moreover since g is injective, it is a permutation
on the set {0,1,2,...,n —1}.

Acknowledgements. Authors are thankful to learned referees for their kind com-
ments and suggestions. The second author is grateful to the University Grants Com-
mission, Government of India, for providing research support (Grant no. F. 17-76/2008

(SA-T).

References

1. Chen, W.K.: On vector spaces associated with a graph. SIAM J. Appl. Math. 20,
526-529 (1971)

2. Deo, N.: Graph Theory with Applications to Engineering and Computer Science.

Prentice Hall of India Pvt. Ltd., New Delhi (1997)

Gould, R.: Graphs and vector spaces. J. Math. Phys. 37, 193-214 (1958)

4. Gross, J.L., Yellen, J.: Graph Theory and Its Applications, 2nd edn. CRC Press,
New York (2006)

w

o

An Introduction to Coding Sequences of Graphs 215

Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (1992)

Tutte, W.T.: Matroids and graphs. Trans. Am. Math. Soc. 90, 527-552 (1959)
Tutte, W.T.: An algorithm for determining whether a given binary matroid is
graphic. Proc. Am. Math. Soc. 11, 905-917 (1960)

West, D.B.: Introduction to Graph Theory. Prentice-Hall of India Pvt. Ltd., New
Delhi (2003)

Whitney, H.: On the abstract properties of linear dependence. Am. J. Math. 57,
509-533 (1935)

Minimum Eccentricity Shortest Path Problem:
An Approximation Algorithm and Relation
with the k-Laminarity Problem

Etienne Birmelé!, Fabien de Montgolfier?®™) | and Léo Planche®+?

L MAP5, UMR CNRS 8145, Univ. Sorbonne Paris Cité, Paris, France
etienne.birmele@parisdescartes.fr
2 IRIF, UMR CRNS 8243, Univ. Sorbonne Paris Cité, Paris, France
{fm,leo_planche}@liafa.univ-paris-diderot.fr

Abstract. The Minimum Eccentricity Shortest Path (MESP) Problem
consists in determining a shortest path (a path whose length is the dis-
tance between its extremities) of minimum eccentricity in a graph. It
was introduced by Dragan and Leitert [9] who described a linear-time
algorithm which is an 8-approximation of the problem. In this paper,
we study deeper the double-BFS procedure used in that algorithm and
extend it to obtain a linear-time 3-approximation algorithm. We more-
over study the link between the MESP problem and the notion of lam-
inarity, introduced by Volkel et al. [12], corresponding to its restriction
to a diameter (i.e. a shortest path of maximum length), and show tight
bounds between MESP and laminarity parameters.

Keywords: Graph search - Graph theory - Eccentricity + Diameter -
BFS - Approximation algorithms * k-Laminar graph

1 Introduction

For both graph classification purposes and applications, it is an important issue
to determine to which extent a graph can be summarized by a path. Different
path constructions and metrics to characterize how far the graph is from the
constructed path can be used, for example path-decompositions and path-width
[11] or path-distance-decompositions and path-distance-width [13]. Another app-
roach, on which we focus in this article, is to characterize the graph by a spine
defined by one of its paths.

This problem was first studied in terms of domination, that is finding a path
such that every vertex in the graph belongs to or has a neighbor in the path.
Several graphs classes were defined in terms of dominating paths. [7] studies the
graphs for which the dominating path is a diameter. [8] introduces dominating
pairs, that is vertices such that every path linking them is dominating. Graphs
such that short dominating paths are present in all induced subgraphs are char-
acterized in [2]. Linear-time algorithms to find dominating paths or dominating
vertex pairs were also developed for AT-free graphs [4,6].

© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 216-229, 2016.
DOI: 10.1007/978-3-319-48749-6_16

Minimum Eccentricity Shortest Path Problem 217

Dominating paths do not exist however in every graph and have no associated
metric to measure the distance from the graph to the path. A natural extension
of the notion of domination is the notion of k-coverage for a given integer k,
defined by the fact that a path k-covers the graphs if every vertex is at distance
at most k from the path. The smallest k such that a path k-covers the graph is
then a metric as desired.

In the present paper, we study the latter problem in which the covering path
is required to be a shortest path between its end-vertices. It was introduced in
[9] as the Minimum Eccentricity Shortest Path Problem, and shown to be linked
to the minimum line distortion problem [14].

The MESP problem is also closely related to the notion of k-laminar graphs
introduced in [12], in which the covering path is required to be a diameter.

The MESP problem, as well as determining if a graph is k-laminar for a
given k, are NP-hard [9,12]. However, Dragan and Leitert [9] develop a 2-
approximation algorithm for MESP of time complexity O(n?), a 3-approximation
algorithm in O(nm) and a linear 8-approximation. The latter is extremely simple
as it consists in a double-BFS procedure.

Roadmap. In this paper, we introduce a different analysis of the double-BFS
procedure and prove that it is in fact a 5-approximation algorithm, and that
the bound is tight. We then develop the idea of this algorithm and reach a
3-approximation, which still runs in linear time. Finally, we establish bounds
relating the MESP problem and the notion of laminarity.

Definitions and Notations. Through this paper G = (V, E) denotes a finite
connected undirected graph. A shortest path between two vertices u and v is a
path whose length is minimal among all u, v-paths. This length (counting edges)
is the distance d(u,v). Depending on the context, we consider a path either as
a sequence, or as a set of vertices. The distance d(v,S) between a vertex v and
a set S is smallest distance between v and a vertex from S.

The eccentricity ecc(S) of a set S is the largest distance between S and any
vertex of G.

The maximal eccentricity of any singleton {v}, or equivalently the largest
distance between two vertices, denoted here diam(G), is often called the diameter
of the graph, but for clarity in this paper a diameter is always a shortest path
of maximum length, i.e. a shortest path of length diam(G), and not its length.

2 Double-BFS Is a 5-Approximation Algorithm

Let us define the problem we are interested in:

Definition 1 (Minimum Eccentricity = Shortest Path Problem
(MESP)). Given a graph G, find a shortest path P such that, for every shortest
path Q, ecc(P) < ecc(Q).

k(G) denotes the eccentricity of a MESP of G.

218 E. Birmelé et al.

Theorem 1 (Dragan and Leitert [9]). Computing k(G) or finding a« MESP
are NP-complete problems.

It is therefore worth using polynomial-time approximation algorithms. We
say that an algorithm is an a-approximation of the MESP if every path output
by this algorithm is a shortest path of eccentricity at most ak(G).

Double-BFS is a widely used tool for approximating diam(G) [3]. It simply
consists in the following procedure:

1. Pick an arbitrary vertex r

2. Perform a BFS (Breadth-First Search) starting at r and ending at x. = is
thus one of the furthest vertices from r.

3. Perform a BFS (Breadth-First Search) starting at « and ending at y.

The output of the algorithm is the path from z to y, called a spread path,
while its extremities (z,y) are called a spread pair. A folklore result is that the
distance between z and y 2-approximates the diameter of G. As noted by Dragan
and Leitert, Double-BFS may also be used for approximating MESP: they have
shown in [9] that any spread path is an 8-approximation of the MESP problem.

The first result of the present paper is that any spread path is in fact a 5-
approximation of the MESP problem and that the bound is tight. But before we
prove this result (Theorem 2), let us give the key lemma used for proving our
three theorems:

Lemma 1. Let G be a graph having a shortest path vy, vy ... vs of eccentricity k.
Let P=xg,x1,...xs be a shortest path of G.
Let it . (resp. il ..) be the smallest (resp. largest) integer such that vip
(resp. vir) is at distance at most k of P. '
For every integer i such that it . <i <iP wv; is then at distance at most
2k from P.
Subsequently, every vertex v of G at distance at most k from the subpath

between v;p and vie is at distance al most 3k of P.

min

One may think, at first glance, that this lemma looks similar to the following:

Lemma 2 (from Dragan et al. [9]). If G has a shortest path of eccentricity at
most k from s to t, then every path Q with s in Q and d(s,t) < max,eqd(s,v)
has eccentricity at most 3k.

The difference lies in the fact that the k£ in Lemma 2 is specific to the given
couple of vertices (s,t) while the k in Lemma 1 is global. On the other hand,
Lemma 2 gives a bound on the eccentricity of a path with respect to the whole
graph, while Lemma 1 only guarantees an eccentricity for a defined subgraph.

Proof (of Lemma 1). The second assertion of the lemma is straightforward given
the first one. To prove the latter, we define, for all [between 0 and s, the subpath
P =xp,z1...20.

Let us show by induction on [that for all ¢ between it and il

min mazy Vi is at
distance at most 2k of P,.

Minimum Eccentricity Shortest Path Problem 219

o /= 07 PO = Z0-
Using the triangle inequality:

d(vip0 JU.py) < d(vipo ,Zo) + d(:co,vz.poy) <2k (1)

min tmaw min

' Po Py
Hence, for all i between 4, and 7,9,

d(v,py ,vi) <kord(ve ,vi)<k (2)

min

The result is thus verified for { = 0.

e Let lin (1...s) such that the property if verified for [— 1.
For all ¢ between if,;li}bl and if:{gmﬂ v; is at distance at most 2k of P,_; by the
induction hypothesis. Hence, v; is at distance at most 2k of P;.
Moreover,
dvr_,vr)< d(vifrf;;,v-wz) (3)

tmad max tmazx

and by the triangle inequality:
Az, v) S dey,a) + d(@e, o) + d(@,ve,) <2k+1 0 (4)

As the sub-path of P between VP and v,p s a shortest path, it follows
that for all ¢ between iﬂgj and it

max’

d(vip,_l,vi) <kord(vr ,v)<k, (5)

max

meaning that v; is at distance at most 2k of P,_; or of z;.
A similar proof shows that for all i between iilm and ifl’i‘nl,
at most 2k from P,_; or from x;.

The property is verified by induction, and the lemma follows for [= s.

r Y
U3 Va Us
Vo Ve
U1 V2
x

Fig.1. The bound shown in Theorem 2 is tight. Indeed the graph is such that
0,01 -..Ve is a shortest path of eccentricity 1. The vertex z is at distance 5 from
the shortest path (shown by thick edges) between z and y computed by double-BFS
starting at r.

v; 1s at distance

220 E. Birmelé et al.

Theorem 2. A double-BFS is a linear-time 5-approximation algorithm for the
MESP problem.

Before we prove it, notice that Fig. 1 shows that this bound is tight.

Proof. Let k be k(G), P = vy, vy ...v; be a MESP (its eccentricity is thus k),
and @ = z, ...,y be the result of a double-BFS starting at some arbitrary vertex
r, then reaching z, then reaching y. We shall prove that @) is a 5k-dominating
path of G.

Let i (resp. j) be such that v; (resp. v;) is at distance at most k of r (resp. x).
The following inequalities are verified:

d(r,z) > d(r,ve) > d(vi,ve) — d(r,v;) > d(vi,v) — k (6)

d(r,z) < d(r,v;) + d(vi, vj) + d(v;, z) < d(v;,v;) + 2k (7)

Combining those inequalities,
d(vi,ve) — 3k < d(v;, v) (8)

Similarly:
d(via UO) -3k S d('Ui, U]) (9)

Therefore v; is at distance at most 3%k of vy or v;. Without loss of generality,
assume that v; is at distance at most 3k of vg.
Let [be such that v; is at distance at most k of y. We distinguish two cases:

(i) 1<
Then y is at distance at most 5k of x. As y is a vertex most distant from zx,
x is a bk-dominating vertex of the graph. The lemma is then verified.

(i) I > j:
Applying to (x,y) the inequalities established at the beginning of the proof:

d(vj,ve) — 3k < d(vj,vr) (10)

As > j, it follows that:
d(vy,ve) < 3k (11)

Figure 2 shows the configuration of the graph in that case. The vertices at
distance at most & of a vertex vs such that s < j (resp. s > 1) are at distance
at most 5k of = (resp. y).

According to Lemma 1, every vertex v of G at distance at most k of a vertex
vs such that s is between j and [is at distance at most 3k of any shortest
path between z and y. The lemma is thus verified.

3

Minimum Eccentricity Shortest Path Problem 221

max d(z,v)

Vo V1 Vj Vi vl Vt—1 Ut

Fig. 2. Notations used in the proof of Theorem 2

A 3-Approximation Algorithm

We show now that by using more BF'S runs we may obtain a 3k-approximation

of

MESP, still in linear time.
Let bestPath and bestEcc be global variables used as return values for the

path and its eccentricity. bestPath stores a path and is uninitialized, and bestFcc

is

© 00 N O s W N

[
(=]

an integer initialized with |V (G)|.

Data: G graph, z,y vertices of G, step integer
Compute a shortest path @ between z and y;
Select a vertex z of G most distant from Q);
if d(Q, z) < bestEcc then

bestPath «— Q;

bestEcc «— d(Q, 2);

end

f step < 8 then

Algorithm3k(G,z,z,step + 1);
Algorithm3k(G,y,z,step + 1);

end

e

Algorithm 1. Algorithm3k

Theorem 3. A 3-approximation of the MESP Problem can be computed

m

linear time by considering a spread pair (s,l) of G and running

Algorithm3k(G,s,l1,0).

Proof (Correctness). Let G be a graph admitting a shortest path P = vg, vy ... vy

of

eccentricity k.

222 E. Birmelé et al.

Let x and y be any vertices of G, @, a shortest path between = and y.
Define ;¥ = (resp. %Y) as the smallest (resp. largest) integer such that v

(resp. v;zv) is at distance at most k of x or y. Then, by Lemma 1,

For all j such that i, —k <j <it¥ +k, d(Quy,vj) <2k (12)

min ma

Hence, if i,)¥ <k and %% >t — k, every vertex of P is at distance at most
2k of @, and, as P is of eccentricity k, @, is of eccentricity at most 3k.

Algorithm3k uses this implication to exhibit a pair z,y such that @, , is of
eccentricity at most 3k. Indeed, in each recursive call, one of the following cases
holds:

1. the vertex z selected at line 3 is at distance at most 3%k from @), . In that case,
bestPath will be set to (), unless it already contains a path of even better
eccentricity. In any case, the result of the algorithm is a path of eccentricity
at most 3k.

2. the vertex z is at a distance greater than 3k of Q. ,. Let i, be such that v;,
is at distance at most k of z. Then, according to Eq. (12),

in <% —kori, > %Y 4k (13)

(a) Suppose that i, > %% + k. Then, in the case d(v;=v ,x) = k, we get

Gin < Gmin a0d @522 > Y+ k. And in the case d(vgv ,y) =k we get
iy < iyt — kand ib:% >0l

min — “min X mazxr max’ o - X .
(b) A similar reasoning can be applied if i, < 'Y — k, also yielding to

Ty 2 -T,Y T, 2 ST,y T2 T, Y T, 2 ST,y
Ymin S Ymin and Ymax Z Ymaz + k or Ymin S Ymin k and Ymax Z Ymaz:

Therefore, either the algorithm already found a path of eccentricity at most
3k, or it makes one of its two new calls with a couple (2/,y’) such that the
interval [zﬁ;i’,zg;al;’] contains [i;’¥ %Y] but has length increased by at least k.

Consider now a spread pair (s,!) for which Algorithm3k(G,s,l,0) is run. It
follows from case (i) and (ii) of the proof of Theorem 2 that

il < b5kand %l >t—5k (14)

min mazx

At each of the recursive calls, if no path of eccentricity at most 3k has already
been discovered, one of the new calls expands the interval [i)"Y %Y | length by
at least k, while containing the previous interval. As the recursive calls are made
until step = 8, it follows that either a path of eccentricity 3k has been discovered,
or one of the explored possibilities corresponds to eight extensions of size at least
k starting from [i%! ist 1.

In the latter case, Eq. (14) implies that the final couple of vertices (x,y)
fulfills @'Y < k and %% >t — k. Every vertex of P is then of distance at most

2k of @, and thus @, is of eccentricity at most 3k.

Proof (Complexity). The algorithm computes two BFS trees at line 1 and 2,
taking O(n + m) time. The rest of the operations is computed in constant time.

The recursivity width is 2 and, since it is first called with step = 0, the
recursivity length is 8. The algorithm is thus called 255 times. Therefore the
total runtime of the algorithm is O(n + m).

Minimum Eccentricity Shortest Path Problem 223

Proof (Tightness of the approzimation). Fig. 3 shows a graph for which the algo-
rithm may produce a path of eccentricity 3k(G) (see caption).

vr U8 Vg V10 V11
U3
Vo
U1 U2 V4 Vs Ve

V12

Fig. 3. Tightness of the bound shown in Theorem 3. The algorithm may indeed loop
between the following couples of vertices: (vo,vs), (vo,v12), (ve, v12), (vo,v11), (V11,v12),
(ve, v7), (v7,v12), (v11,v7). Each time, it may choose a shortest path of eccentricity 3
(passing through vs vg and vip whenever vi2 is not an endvertex of the path) while
v0..v3..V¢ has eccentricity 1.

4 Bounds Between MESP and Laminarity

In this section, we investigate the link between the MESP problem and the notion
of laminarity introduced by Volkel et al. in [12]. The study of the k-laminar graph
class finds motivation both from a theoretical and practical point of view. On
the theoretical side, AT-free graphs form a well known graph class introduced
half a century ago by Lekkerkerker and Boland [10], which contains many graph
classes like co-comparability graphs. An AT-free graph admits a diameter all
other vertices are adjacent with [5]. It is then natural to extend this notion of
dominating diameter. On the practical side, some large graphs constructed from
reads similarity networks of genomic or metagenomic data appear to have a very
long diameter and all vertices at short distance from it [12], and exhibiting the
“best” diameter allows to better understand their structure.

Definition 2 (laminarity). A graph G is

— l-laminar if G has a diameter of eccentricity at most [.
— s-strongly laminar if every diameter has eccentricity at most s.

(G) and s(G) denote the minimal values of I and s such that G is respectively
l-laminar and s-strongly laminar.

A natural question about laminarity and MESP is to ask what link exists
between them.

224 E. Birmelé et al.

Theorem 4. For every graph G,

k(G) < I(G) < 4k(G

b
|
Do

Moreover, there exist three graph sequences (Gi)i>1, (Hr)k>1 and (Ji)k>1
such that, for every k,

- k(Gy) = UGk) = s(Gy) = k;
~ k(Hy) =k and I(Hy) = 4k — 2;
— k(Jr) =k and s(Jy) = 4k;

The bounds given by the inequalities are therefore tight.

Proof (k(G) <I(G) and k(G) < s(G)). Those inequalities are straightforward as
every diameter is by definition a shortest path. The eccentricity of every diameter
is therefore always greater than k(G).

Proof (s(G) < 4k(G)). Let D = xp,x1,...2s be a diameter of G and P =
Vg, V1 ... vy & shortest path of eccentricity k. We shall show ecc(D) < 4k. Let z
be any vertex of G. Since ecc(P) = k there exists a vertex v; of P such that
d(z,v;) < k. Let us distinguish three cases:

e Case 1: there exists vertices x4, 2, of D and v,, v, of P such that a <i <b
and d(vqe, z,) < k and d(vp,xp) < k. Then by Lemma 1, z is at distance at
most 3k from any shortest path between z, and x, and thus at distance at
most 3k of D.

e Case 2: there exists no vertex v, of P with a <14 and d(v,, D) < k

e Case 3: there exists no vertex v, of P with ¢ < a and d(v,, D) < k.

Without loss of generality we focus on Case 2 (illustrated in Fig. 4), which is
symmetric with Case 3. Let [(resp. m) be such that v; (resp. v,) is at distance
at most k of o (resp. xy), assume | < m:

d(vy, vm) > d(zo, zs) — 2k (15)

D being a diameter,
d(xg,xs) > d(vg,vy) (16)

By combining those inequalities,

d(vy,) > d(vg, ve) — 2k (17)
d(vy, vm) > d(vo,v;) + d(vi, v1) + d(vi, V) + d(vm, ve) — 2k (18)
2k > d(v;, v) (19)

It follows that z is at distance at most 4k of x.

Minimum Eccentricity Shortest Path Problem 225

Proof (I(G) < 4k(G) —2). Let D = xg,x1,... s be a diameter of G and P =
Vo, V1 - . . vy a shortest path of eccentricity k. We shall show that either ecc(D) <
4k — 2 or G contains a diameter D’ of eccentricity 3k. If P is a diameter we are
done. Let us suppose from now it is of length at most |D| — 1.

Let z be any vertex of G and v; a vertex of P such that d(z,v;) < k. Let
us distinguish the same three cases than in the proof that s(G) < 4k(G). The
first case also leads to d(z, D) < 3k. The second and third being symmetric, let
us suppose there exists no vertex v; of P at distance at most k of D such that
j<i.

Let v; (resp. vp,) be a vertex of P at distance at most k from xzq (resp. xs),
clearly,

d(vr, vm) > |D] — 2. (20)

Let us distinguish two subcases:

e Case 2.1: d(vi,vm) > |D| — 2k,
d(vi,vi) < d(vo,ve) — d(vi,vm) < (ID[= 1) = (D] =2k +1) <2k -2 (21)

It follows that z is at distance at most 4k — 2 of D.

e Case 2.2: d(vi,v,) = |D| — 2k
In this case, a path D' = xg,..0;, U141, .Um,.-Zs i a diameter. Assuming
I < m, Eq.19 in previous proof shows that:

d(vi,vp) < 2k (22)
and with a symmetrical reasoning,
d(vm,v) < 2k (23)

It follows that any vertex v of G at distance at most k of a vertex v, with
a <1 (resp. a > m) is at distance at most 3k of v; (resp. v,,). Hence at
distance at most 3k of D’. v;,viy1,..v,, being a subpath of D', any vertex
v of G at distance at most k of a vertex v, with a between m and t is at
distance at most k of D’. Finally, any vertex of G is at distance at most 3k
of D'.

Proof (Tightness of the bounds). Consider the graph Gy reduced to a path P
of length 4k to which a second path of length & is attached in the middle. P is
then simultaneously the only diameter and the MESP, and it k-covers G} but
doesn’t (k — 1)-cover it. Hence the inequalities k(G) < I(G) and k(G) < s(G)
are tight.

Figure 5 shows how to build the graph sequence (Jx)x>1 (only Ji and Js are
drawn). Jj is a graph with a shortest path of eccentricity k& and a diameter of
eccentricity 4k. The inequality s(G) < 4k(G) is thus tight.

Figure 6 shows how to build the graph sequence (Hy)x>1 (only Hy, Ho and
and Hg are drawn). Hy, is a graph with a shortest path of eccentricity k, while the
unique diameter has eccentricity 4k —2 (H; is a special case with two diameters).
The inequality I(G) < 4k(G) — 2 is therefore tight.

226 E. Birmelé et al.

Zo diam(Q) Ts
) inini il *
1 1
< k V< k
1 1
i G) —
e S St -0
0 i vy Um Ut
<k
1
:
[J
z
Fig. 4. Notations used in Case 2 of the proof of Theorem 4
¢-—-—-- ko . >
e z
000000
Pe08088
00000000
000000000
B} 0000000800
T Y% 000000!
. U3k Vak
K 0
,/',]
,/' 0
,,' 0
K", 0
eSS S QV2
o Vo O

Th+1

SERRAEA

T2k T3k T4k

Fig. 5. Proof that s(G) > 4k(G). The red path xo, z1, . .. zax is a diameter of length 4k
and at distance 4k of z; while the green path wvo,v1,...vax is a shortest path (another
diameter indeed) of eccentricity k. The large graph is Js (using the graph sequence
(Jx)r from Theorem 4) and the small one on the bottom left is J;. The other members
of the sequence car easily be derived. (Color figure online)

Minimum Eccentricity Shortest Path Problem 227

T2k+1 T3k+1 Tak

Fig. 6. Proof that I[(G) > 4k(G) — 2. It is a graph sequence (Hy)x, using the notation
from Theorem 4. For k > 2, the red path zg,x1,...z4r is the unique diameter. Its
length is 4k and it is at distance 4k — 2 of z. The green path wvo,v1,...v4k—1 is a
shortest path of length 4k — 1 and of eccentricity k. Graphs H2 and Hg are drawn but
all graphs Hy, k > 2 can be derived from the pattern of Hg. The small graph on the
bottom left is the special case H1 who do not follow this pattern. It admits exactly two
diameters, both of eccentricity 2 (red), and a shortest path of eccentricity 1 (green).
(Color figure online)

5 Conclusion

We have investigated the Minimum Eccentricity Shortest Path problem for gen-
eral graphs and proposed a linear time algorithm computing a 3-approximation.
The algorithm is a 2-recursive function with constant recursivity depth, launch-
ing two BFSs each time, thus taking linear time. Additionally, we’ve established
some tight bounds linking the MESP parameter k(G) and the k-laminarity para-
meters s(G) and I(G).

228 E. Birmelé et al.

On improving the current approximation algorithms, the following remark
should be noted. Our algorithm is confined in finding a good pair of vertices in
the graph, and the shortest path between them is then picked arbitrarily. By
doing so, we are unlikely to get a better result than a 3-approximation. Indeed
as shown by [9] there exist graphs for which the MESP solution is a path of
eccentricity k between two vertices s and t such that some other shortest paths
between s and ¢t have an eccentricity of exactly 3k.

About laminarity parameters, computing [(G) is NP-complete, while com-
puting s(G) can be done in O(n?mlogn) time [12]. It may be interesting to
design an approximation algorithm, i.e producing a diameter of eccentricity at
most as(G) or BI(G). Linear-time algorithms like BFS cannot be used however,
since we do not know how to compute diam(G) faster than a matrix product,
and even surlinear approximation are studied [1]. Different techniques than the
ones used here must therefore be employed.

References

1. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter
and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167—
1181 (1999). http://dx.doi.org/10.1137/S0097539796303421

2. Bacso, G., Tuza, Z., Voigt, M.: Characterization of graphs dominated by induced
paths. Discret. Math. 307(7-8), 822-826 (2007). http://dx.doi.org/10.1016/
j.disc.2005.11.035

3. Corneil, D.G., Dragan, F.F., Kohler, E.: On the power of BFS to deter-
mine a graph’s diameter. Networks 42(4), 209-222 (2003). http://dx.doi.org/
10.1002/net.10098

4. Corneil, D.G., Olariu, S., Stewart, L.: A linear time algorithm to compute a
dominating path in an at-free graph. Inf. Process. Lett. 54(5), 253-257 (1995).
http://dx.doi.org/10.1016 /0020-0190(95)00021-4

5. Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal triple-free graphs. STAM J. Dis-
cret. Math. 10(3), 399-430 (1997). http://dx.doi.org/10.1137/S0895480193250125

6. Corneil, D.G., Olariu, S., Stewart, L.: Linear time algorithms for dominating
pairs in asteroidal triple-free graphs. SIAM J. Comput. 28(4), 1284-1297 (1999).
http://dx.doi.org/10.1137/S0097539795282377

7. Deogun, J.S., Kratsch, D.: Diametral path graphs. In: Nagl, M. (ed.) WG
1995. LNCS, vol. 1017, pp. 344-357. Springer, Heidelberg (1995). doi:10.1007/
3-540-60618-1_87

8. Deogun, J.S., Kratsch, D.: Dominating pair graphs. SIAM J. Discret. Math. 15(3),
353-366 (2002). http://dx.doi.org/10.1137/S0895480100367111

9. Dragan, F.F., Leitert, A.: On the minimum eccentricity shortest path problem.
In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214,
pp. 276-288. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21840-3_23

10. Lekkerkerker, C., Boland, J.: Representation of a finite graph by a set of intervals
on the real line. Fund. Math. 51, 45-64 (1962)

11. Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. The-
ory Ser. B 35(1), 39-61 (1983). http://dx.doi.org/10.1016/0095-8956(83)90079-5

http://dx.doi.org/10.1137/S0097539796303421
http://dx.doi.org/10.1016/j.disc.2005.11.035
http://dx.doi.org/10.1016/j.disc.2005.11.035
http://dx.doi.org/10.1002/net.10098
http://dx.doi.org/10.1002/net.10098
http://dx.doi.org/10.1016/0020-0190(95)00021-4
http://dx.doi.org/10.1137/S0895480193250125
http://dx.doi.org/10.1137/S0097539795282377
http://dx.doi.org/10.1007/3-540-60618-1_87
http://dx.doi.org/10.1007/3-540-60618-1_87
http://dx.doi.org/10.1137/S0895480100367111
http://dx.doi.org/10.1007/978-3-319-21840-3_23
http://dx.doi.org/10.1016/0095-8956(83)90079-5

12.

13.

14.

Minimum Eccentricity Shortest Path Problem 229

Volkel, F., Bapteste, E., Habib, M., Lopez, P., Vigliotti, C.: Read networks and
k-laminar graphs. CoRR abs/1603.01179 (2016). arXiv:1603.01179

Yamazaki, K., Bodlaender, H.L., Fluiter, B., Thilikos, D.M.: Isomorphism for
graphs of bounded distance width. In: Bongiovanni, G., Bovet, D.P., Battista,
G. (eds.) CIAC 1997. LNCS, vol. 1203, pp. 276-287. Springer, Heidelberg (1997).
doi:10.1007/3-540-62592-5_79

Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph embed-
ding and extensions: a general framework for dimensionality reduction. IEEE
Trans. Pattern Anal. Mach. Intell. 29(1), 40-51 (2007). http://dx.doi.org/10.1109/
TPAMI.2007.250598

http://arxiv.org/abs/1603.01179
http://dx.doi.org/10.1007/3-540-62592-5_79
http://dx.doi.org/10.1109/TPAMI.2007.250598
http://dx.doi.org/10.1109/TPAMI.2007.250598

On the Complexity of Extracting Subtree
with Keeping Distinguishability

Xianmin Liu'®), Zhipeng Cai?, Dongjing Miao', and Jianzhong Li'

! Harbin Institute of Technology, Harbin, China
{liuxianmin,miaodongjing,lijzh}@hit.edu.cn
2 (eorgia State University, Atlanta, USA
zcai@gsu.edu

Abstract. We consider the problem of subtree extraction with guar-
antee of preserving distinguishability. Given a query g and a tree T,
evaluating ¢ on T will output ¢(T") which is a set of nodes of T'. For two
nodes a and b in T, they can be distinguished by some query ¢ in T,
iff exactly one of them belongs to ¢(7'). Then, given a tree T, a query
class £, and two disjoint node sets A and B of T, a subtree T" of T is
called preserving distinguishability of T, iff (1) T’ contains all nodes in
AU B, (2) for any node pair (a,b) € A x B, if a and b can be distin-
guished by some query in £ in T, they can also be distinguished by some
query (not necessarily the same one) in £ in 7", and (3) for any node
pair (a,b) € A x B and a query g € L, if a and b can be distinguished by
q in T”, they can also be distinguished by q in T. The subtree extraction
problem considered by this paper is to determine whether there is a small
enough subtree T” of T', such that for query class £ and node sets A and
B, T’ preserves the distinguishability of T. In this paper, as an initial
attempt of investigating this problem, fixing £ to be a specific part of
tree pattern queries (introduced later), the subtree extraction problem is
shown to be NP-complete.

Keywords: Subtree extraction - Distinguishability - Computational
complexity

1 Introduction

Recently, computation on large-scale data has increased lots of research interests.
An important strategy for large data is to preprocess data before the computa-
tion, which aims to reduce the data size by only keeping the necessary informa-
tion related to the computation. This paper studies that idea on the platform of
tree-structured data and tree queries.

Tree-structured data (e.g. XML) and its query language have been investi-
gated very much [1,2]. For a query ¢ and data tree T', let ¢(T") be the result node
set outputted by evaluating ¢ on 7', then two nodes u and v in T can be distin-
guished by g, iff exactly one of them belongs to ¢(7"). They can be distinguished
by query class L, iff they can be distinguished by some query g € L.
© Springer International Publishing AG 2016

T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 230240, 2016.
DOI: 10.1007/978-3-319-48749-6_17

On the Complexity of Extracting Subtree with Keeping Distinguishability 231

In this paper, the Distinguishability Preserving Subtree Extraction problem
(dpSE for short) is considered which can be described informally as follows.
Given data tree T and an integer k > 0, dpSE determines whether or not 7" has
a subtree T” satisfying |T'| — |T’| > k such that for specific query class £ and
two node sets A, B of T, the following two conditions are satisfied.

— Preserving Node Distinguishability. Each node pair in A x B which can be
distinguished in T can still be distinguished in 7”.

— Preserving Query Distinguishability. For each node pair (u,v) € A x B, if query
q € L can distinguish them in 7", it can still distinguish them in 7.

There are lots of useful applications of the dpSE problem in many areas such
as Mass Customization, Category Management and so on. We are not aware of
any previous works focusing on the same problem. As an initial attempt, in this
paper, the query class is fixed to be a specific part of tree pattern queries, and,
in that case, dpSE is shown to be NP-complete.

1.1 Related Work

Some related works are in the area of XML data, a popular and very stud-
ied tree-structured data. Finding concise representations for both syntactical
and semantic information of XML data is useful for many applications, such as
schema inference [3,4], information extraction [5,6], query learning [6-8] and so
on. Schema inference usually uses regular expressions or its fragments as rep-
resentations [3,4,9], and extracts schemas from given valid data. Information
extraction usually utilizes semantic rules or queries [5,6,10] to extract informa-
tion interested. Query learning uses query languages defined over XML [6-8],
and searches proper queries accepting positive examples and rejecting negative
examples. The problem dpSE can be extended to those applications. Aso, this
paper is motivated by the work of learning XML queries by [6,7,11], which shows
that, even for very simple queries, it is NP-hard to find a query consistent with
given positive and negative examples. The problem considered here investigates
the possibility of preprocessing techniques for reducing input data size. The
tree-map used in this paper is related to the mappings studied by [12-14], which
mainly focus on the relations between mappings and query containment or query
evaluation.

2 Preliminary

A tree is referred to the rooted, directed and labeled tree here, formally defined
as below.

Definition 2.1 (Tree Structure Data). A data tree T can be represented by a
5-tuple (Vp, Ep,rr, 2,1l7), where Vi and Ep are the node and edge sets respec-
tively, rr is the unique root node in Vp, 2 is an alphabet for labeling the nodes,
and lp is a label function which is defined as a mapping from Vp to 2. O

232 X. Liu et al.

For two trees T and Tb, it is denoted by T C T5 if T7 is a subtree of T5. For
a tree T and a node u € Vi, we use T, to represent the whole subtree rooted at
win T

Tree pattern query is a popular tree querying language [12], and this paper
considers one simple and common used fragment of tree pattern query.

Definition 2.2 (Simple Tree Pattern Query). A simple tree pattern query ¢ is
a binary tuple (7,,t,), where Ty is a tree represented by (V,, Ey, 74, $2,1,) and
t, € V, is the unique target node of ¢q. Additionally, the set of all simple tree
pattern queries is denoted by Q’. O

Also, for convenience, two other representations for query are also used. Given
a query ¢, a graphical tree definition of ¢ can be built by first drawing the
embedded tree of ¢ and then marking the target node in the tree T. The string
definition can be built as follows. First, string s is built by concatenating the
label of the nodes on the path p between root and target node of ¢ using ¢/’
orderly. Then, the strings of each subtree of node u on p is wrapped by ‘[| and
inserted after the label of u in s.

The semantics of @/ will be given after introducing a kind of map functions
on trees.

Definition 2.3 (Tree-map). A tree-map is a map defined between two trees.
For given trees T and T, a function f : Vp — Vp/ is a tree-map from Vr to
Vs, if

(1) frr) =rr,

(2) for node n € Vi, Ip(n) = lp/(f(n)), and

(3) for edge (z,y) € Er, (f(2), f(y)) € Er. u|

Definition 2.4 (Semantic of Q’). For atree T and g = (T, t,) € Q/, T matches
(or satisfies) ¢, denoted by T' = ¢, iff there exists a tree-map f from V, to Vr.
For special f, it is also denoted by T |=¢ ¢, if f just defines such a tree-map.
Additionally, a node u € Vp is selected by g on T, denoted by u € ¢(T'), if there
exists a tree-map f such that T |=¢ ¢ and f(t;) = u. O

There are some properties of Q/ useful in this paper.

Lemma 2.1: @/ is in PTimme. That is, given a tree T, a query ¢ € Q/ and a
node u € Vp, it can be determined in PTiME whether or not u € ¢(T). O

Lemma 2.2: Given trees T7 and T3, it can be determined in PTIME whether
there is a tree-map from T; to 1. |

Lemma 2.3: Given trees 17, T and T3, if f1 is a tree-map from 77 to 75 and
f2 is a tree-map from T4 to T3, then the function f3 defined as f3(v) = fa(f1(v))
is a tree-map from T to T3. O

Given a tree T', two nodes n1,ny € Vp are called to be distinguished by query
g, denoted by ny #74 ng, if exactly one of them is selected by g. Otherwise, they

On the Complexity of Extracting Subtree with Keeping Distinguishability 233

can not be distinguished by ¢, denoted by ny =1 4 no. For a query class £ and tree
T, two nodes n1,ny € Vr are called to be distinguishable, denoted by n1 #r 2 na,
if there is a ¢ € £ such that ny #r 4 no. Otherwise, they are not distinguishable,
denoted by n; =p ¢ na. If the query class is clear from the context, we only use
the representations ny #r ns and ny =p no.

For query class Q/, the Distinguishability Preserving Subtree Extraction prob-
lem, dpSE for short, can be formally defined as follows.

Definition 2.5 (Problem (dpSE, Q’)). Given a tree T, node sets A, B C Vrp,
and an integer k, the dpSE problem is to determine whether there is a subtree
T’ of T such that |Vp| — |Vpv| > k, AU B C Vpv, and the following condition is
satisfied. For each pair of nodes (u,v) € A x B,

- Node Distinguishability Preserving. If u £ o/ v, then u #4. o, v, and

- Query Distinguishability Preserving. For a query ¢ € Q/, if u #7/ 4 v, then
U FEr,q . O

3 The Hardness Result

The main result of this paper can be described by the following theorem.
Theorem 3.1: (dpSE, Q’) is NP-complete. O

Before describing the proof, we introduce some useful notations first. For two
paths p; and po, let X(p1,p2) be the set of node pairs with the same depths.
For nodes n; and no, let path(ny,ns) be the path from ny to ny. For two trees
Ty = (i, Er,m, (1, 0) and Ty = (Va, Ea, 19, {29,12) and a node u € Vi, w.lo.g.
assuming V3 NV, = (), a operator Link can be defined such that Link(Ty,u, Ts) is
the tree (V1 uVs, EiUESU (u7 Ty), Ty, 21U, 1 Ulg) . Intuitively, Link(Tl, Uu, T2)
is obtained by linking 75 to the node u and letting root of T7 be the new root.

3.1 The Upper Bound

The upper bound for (dpSE,Q’) problem can be described by the following
lemma.

Lemma 3.1: (dpSE,Q’) is in NP. O

To prove the Lemma 3.1, based on two functions gc and Ic, a NP algorithm
for the problem (dpSE,Q’) is given in Lemma 3.2.

Definition 3.1 (gc and Icfunction). Given trees Ty and T5 satisfying 7o C T}
and two nodes u,v € Vo, NVp,,

-gc (u,v,T1,T2) = true iff u #p, v implies u £, v.

-lc (u,v,Th,T) = true iff u #1, 4 v implies u #1, 4 v for any query ¢ € Q/. O

In fact, it is easy to find that the conditions for gc and Ic are same as pre-
serving the node and query distinguishability.

234 X. Liu et al.

Lemma 3.2: If gc and Ic can be determined in PTiME, there is an NP algorithm

for the (dpSE,Q’) problem. O
Proof: 1t is easy to verify by considering the definitions directly. O
Lemma 3.3: Function gc can be evaluated in PTIME. O

Proof: Since gc (u,v,T1,Ty) is equivalent to (u =, v) V (u #7, v), a PTIME
algorithm for determining the relation = will simply a PTmmE algorithm for gc
(u,v,T1,T») immediately. Next, a PTivMe algorithm ifEquiv will be given such
that ifEquiv (u,v,T) returns true iff v =7 v.

A function ifMap is utilized here, which takes two trees T” and T" as input,
and returns true iff there is a tree-map from T’ to T". The existence of ifMap
can be known from Lemma 2.2.

Given inputs T and u,v € Vp, the ifEquiv algorithm works as follows. Let
py = path(rp,u), p, = path(rp,v).

— If |py| # |py| return false, otherwise, continue.

— If there is a pair (u;,v;) in X(py,py) such that lr(u;)#Alr(v;), return false,
otherwise continue.

— Return res=

(ui,v:) €EX(Pu,Dov)

Obviously, the ifEquiv algorithm is in PTivE. The correctness of ifEquiv algo-
rithm can be verified by considering constructing maps according to the outputs
of functions. O

Lemma 3.4: Function lc can be evaluated in PTIME. O

Proof: To prove the lemma, a PTIME algorithm ifRight is given in Fig. 1.

An important observation is introduced first. Let p, represent path(rr,,u)
or path(rr,,u) (they are same since Ty C Ty). Similarly, we can define p,. The
observation is that if p, and p, have different lengths or different node labels
one some position, lc(u,v,T7,T2) must be true. To prove this, let us consider
an arbitrary query ¢ € Q/, and assume u #p, o v. Moreover, w.l.o.g., we can
assume u € ¢(Tz) and v ¢ ¢(T3). (1) First, we have v ¢ ¢(T3). If not, both u
and v are in ¢(71) will imply p,, and p, have same lengths and labels, which is a
contradiction. (2) Second, we have u € ¢(T}) since T is a part of Tj. Combining
them, we have u #p, 4 v. Then, according to the definition of Ic, Ic(u, v, T1, T3)
is true.

The first step of Algorithm ifRight is to return true for the case that the
conditions for the above observation are satisfied (line 1-4). The output of Join
has two properties.

+ Property P1. There are tree-maps from Join (77, 7") to T' and T".

On the Complexity of Extracting Subtree with Keeping Distinguishability

=

© W NP oW

Algorithm ifRight
Input: Trees Ty and Ta, s.t. To € 11,

nodes u,v € Vp, NV,

Output: The boolean value ans of Ic

/* %+ The first stepx * =/

. Let py = path(rn,,u), py = path(rr,,v);
. if |pu| # |py| then return true;

for (ui,v;) € x(pu,pv) do
if i1, (ui) # I, (v;) then return true;
/* % * The second step* * x/

5. for (ui,v;) € ¥(pu,py) do

6. Cil = JOin(TQ,u“Tl,vi);

7. Cz'z = Join(Tgﬂ,“Tl,ui);

8. qi1 = Link(pu,ui,Cil);

9. qi2 = Link(pu,ui,Cig);

10. if u #1y,q;; YV U £T,,q;, v then return false;

1lreturn true;

Procedure Join

Input: Two trees T" and T"
Output: The tree T = Join(T",T")
1.
. if Uy (rqr) # lpo (rpe) then return g@;

. Initialize T to be node rr, s.t. Ir(rr) = lg (rpr);
. for each node z s.t. (rrs,x) € Eps do

if 1 = @ or 15> = @ then return @;

for each node y s.t. (r77,y) € Er» do
Ty = Join(T}, T,/);
if T,y + @ then
T = Link(T,rr, Txy);

. return T';

Fig. 1. Algorithm for Ic

235

+Property P2. Any query ¢ having tree-maps from T}, to 7" and T" also has
a tree-map from T to Join (7",T").

The second step of Algorithm ifRight builds ¢;; and ¢;o based on Join pro-
cedure for each node pair (u;,v;) € X (py,py) first (line 5-9), and then returns

false if there is a query q;; (i € [1,[pul], j € [1,2]) s.t. u #1, 4, v (line 10).

The proof of correctness of the second step can be divided into two directions.

= If there is a query ¢;; satisfying u #r, q,, v, we will prove that there is a
query ¢ satisfying both u #r1, 4 v and u =7, 4 v. In fact, ¢;; can just the role

of g. Obviously, we only need to prove u =r, 4,; v. There are two cases.

For j = 1, we have ¢;; = ¢i1 = Link(py, u;, Ci1) and Cj1 = Join(Tou,, T v,)-
Then, we know u € ¢;1(T2), because there is a tree-map from Cy; to To
(Property P1), and it can be extended to a tree-map from ¢;; to T» such that

236 X. Liu et al.

t, is mapped to w. Similarly, v € ¢;1(T1). We also have u € ¢;1(T1), since
T, C Th. Therefore, u =7, 4,, V.

For j = 2, we have similar proof.
«: If there is a query ¢ such that u #7, , v and v =, 4 v, we will prove that
there is a query ¢;; such that u 7, 4, v.

Since u #7, 4 v, w.l.o.g., it is assumed that u € ¢(T%) and v ¢ ¢(T%). Then,
because To C Ti and u =7, 4 v, we also have u € ¢(T7) and v € ¢(T7). Since
py and p, are totally same after the first step of ifRight, path(rr, ,t,) must be
also same as p, and p,. Then, we will prove this part by assuming each g;;
satisfies u =7, ¢, v and making the contradiction that v € q(T5).

Let pg = (21, .-, 2|p,|) be the path(rr,,t,), and T, be the subtree rooted at
z; obtained after deleting all edges on p, from T;. (1) First, because v € ¢(T1)
and u € ¢(T3), for each i, there must be a tree-map from T, to T3 ,, and
a tree-map from T, to T5,,. According to Property P2, there must be a
tree-map f; from T, to Join(Ts,,,T1,) = Ci1. (2) Second, consider Cj,
according to Property P1, there must be a tree-map from Cj; to T3 ,,, which
implies u € ¢;1(T%). Also, according to the assumption, ¢;; satisfies v =7, ¢,, v,
we have v € ¢;1(T3). Thus, there must be a tree-map g; from ¢;; to Ty such
that g;(tg,) = v. Obviously, ¢; is also a tree-map from Cj; to Tb,,. (3)
Then, according to Lemma 2.3, a tree-map h; from T, to 15 ,, can be built
by composing f; and g;. (4) Finally, a tree-map h from ¢ to T5 satisfying
h(ty) = v can be built by taking a union of all h;s, which will make the
contradiction that v € ¢(T%).

Finally, the construction of the contradiction proves this direction.

In conclusion, Ic can be evaluated by algorithm ifRight in PTME. O

3.2 The Lower Bound
The lower bound of dpSE on Q/ can be described by the following lemma.
Lemma 3.5: (dpSE, Q’) is NP-hard. O

Proof: We show (dpSE, Q’) is NP-hard by reduction from 3SAT problem,
which is known to be NP-complete very much [15]. For given variable set X =
{z1,z9,...,2,}, a 3SAT instance can be represented as ¢ = C; ACy A+ A Cpy,
and each Cj is in the form 1,1 V 1j5 V l;3 where each 1, is ; or T; for i € [1,n].
Without loss of generality, for any variable z € X, it is assumed that {z,Z} can
not appear in the same clause.

Given an instance ¢ of 3SAT, we construct an instance S, = (T, A, B, k) of
(dpSE,Q’) such that the answer of S, is ‘yes’ iff ¢ is satisfied. S, can be defined
as follows.

On the Complexity of Extracting Subtree with Keeping Distinguishability 237

X X
) ag N
T
+
Tier 1+ Telauses2 T P \X i \X
Clausesl TAssignmenf / \ /‘
g (91)) (92) X2 Xz X2 Xz
(a) TSkeleton (b) Trp

: |
b Xkb
x/\x x/\x

Xix| Xl Xix] X Xix Xix

\
b \X
N

“

(C) TAssignment (d) TBasic and Tciquses

Fig. 2. Examples for several parts of reduction

o First, Tskeieton shown in Fig.2(a) gives an overview of the structure of T
The root node rr is labelled r uniquely, and in the followings, node r also
means the node rp. There are two paths (a1,¢91) and (a2, g2) under r, where
a1 and as are labelled a, and g; and gs are labelled g. Under a1, there are
two subtree sets Tr, g1 and Tojquse1, and under ao, there are three subtree sets
T1.B2, Tclause2 and Tassignment- Trp1 and Tp pa have totally same structures,
and so do Teojause1 and Tjguse2. Therefore, in the followings, 11,5 presents
both T1p1 and Ty g2, and Tojquse represents both Tojauser and Tojquses-

As shown in Fig. 2(c), there is only one tree in T Assignment, Which is obtained
by first constructing a tree /b/X|[/x;][/Z;] for each variable x;, and then con-
catenating them orderly. In the followings, T'Assignment also represents the only
subtree in it.

Ty p is obtained based on Tassignment. In detail, for each z;, there is a cor-
responding tree T, in Trp which is constructed by deleting z; and Z; from
T Assignment- For example, as shown in Fig. 2(b), when X = {x, z2}, the tree

238 X. Liu et al.

on the left is T'Assignment, and the right one is the tree in T p corresponding
to 1.

® Triauses 1s used to encode the clauses in ¢. First, a tree Tpqs; is built by
first constructing a tree /b[/X /z;]/X /Z; for each variable z;, and then con-
catenating them as shown on the left of Fig.2(d). For each clause Cj, there is
a corresponding subtree Tc, in Teiquses, Which is constructed by deleting z;
(vesp. T;) from T'gasic if x; (resp. T;) is in C;. For example, the corresponding
tree for clause T; A x; A Ty, is shown on the right of Fig. 2(d).

o Let k=1X]|.

e A is the defined to contain all leaf nodes in Tgyqause and TrB, g1, and all X
nodes in T4ssignment- B only contains g.

Obviously, the above reduction is in PTiME. The correctness of this reduction
can be shown by considering the following two directions.

= If is satisfied, the answer of S, is ‘yes’. Suppose the assignment satisfying

@ is v, a subtree T” of T' will be constructed such that 7" is an evidence for

the ‘yes” answer of S,. T’ is got by deleting | X | leaf nodes in T Assignment from

T. In detail, for each variable ; € X, if v,(x;) =true, delete T;, otherwise,

delete x;. Then, 7" can be shown to be an evidence for the ‘yes’ answer of S,

by considering the followings.

(1) Obviously, T" is a subtree of T containing AU B, and |Vp|—|Vp/| = | X| =
k.

(2) To show Node Distinguishability preserving, it needs to show that, for
each node pair (u,v) € A X B, if u #7 v, then u 7+ v. Let ¢ be the query
/r/a/g. Obviously, in T”, except (g1, ¢2), all pairs (u,v) in A x B can be
distinguished by g. Thus, we only need to consider (g1,¢2). (i) In T, g1
and g can be distinguished g = (Link(Tq, a, TAssignment), g), where, to be
convenient, a and g represent the nodes labelled a and g in Ty respectively.
Obviously, g2 € ¢(T). Also, we have g1 ¢ ¢(T), because, for g1’s parent
node a1, there does not exist a tree-map from Tassignment 10 Ty, . (ii)
In T’, g1 and gy can be distinguished ¢’ = (Link(Ty, @, T, s gnment): 9)-
Obviously, g € ¢/(T"). Also, we have g1 ¢ ¢'(T") because of following
observations. First, there is no tree-map from 7%, \meps t0 trees in Tpp,
because each X node in T, nmen: has at least one child, but there is
always one X has no child in each tree of Tp, g. Second, there is no tree-map
from Tgssignmem to trees in Toiguses- For each To, € Teiquses, because
v, satisfies C, according to the definitions of T, and Tgssignmem, there
is a variable z; such that z; (resp. T;) exists in 7% nmene DUt DOt in
T¢,, which means that a tree-map from 77, gnment 80 T, 1s impossible.
(iii) Combining (i) and (i¢), we have g1 #r g2 and g1 #77 go. Finally, Node
Distinguishability is preserved in T".

(3) To show Query Distinguishability preserving, it needs to show, for each
node pair (u,v), if a query ¢ satisfies u #p/ 4 v, it also has u #p, v.
Similar with the (2) part, we only need to consider (g1, g2). Consider an
arbitrary query ¢ such that g; #7/ 4 g2. Because, in 7', T;; C T , there

On the Complexity of Extracting Subtree with Keeping Distinguishability 239

must be g2 € ¢(T7) and g1 ¢ ¢(T"). Since T" C T, obviously, g2 € ¢(T).
Because T, and T}, are totally same, we also have g1 ¢ ¢(T). Therefore,
g1 1,9 92-

Combing them, the answer of S, is ‘yes’.

«: If the answer of S, is ‘yes’, ¢ is satisfied. Suppose the subtree of 1" satisfying
conditions in dpSE is 7", an assignment v,, satisfying ¢ will be constructed.
Before defining v,,, following observations are explained. First, the only dif-
ference between 7" and 7" is between Tassignment and Ty onmens- Second,
in Tassignment, at most 2|X| = 2n = 2k nodes can be deleted, which are
{z1,T1,..., 2k, Tr}. Third, at least k nodes are deleted. Forth, for each X,
at most one child can be deleted. Otherwise, there will be a tree-map from
T ssignmens t0 some tree in Ty, 5, and g1 and go can not be distinguished in 7".
Combined with g1 #7 g2 (by query (Link(Tg, @, Tassignment), 9)), it contradicts
that T” is a solution of S,. Fifth, taking the third and forth observations,
there is, in T ;o ment> €ach X selects exactly one child from z; and ;.

Then, based on T, gnment> Vi 18 built as follows. For each variable x; € X,
if x; appears in Tgssignment, let v, (z;) =true, otherwise let v, (z;) =false.

Finally, it will be checked that v, indeed satisfies ¢. First, because g; and
g2 can be distinguished in T as discussed above, it is known that g #7 go.
Then, we have, for each T¢;, there is no tree-map from 77, ; gnment 10 Ty It

not, we can build a tree-map from T}, to T}, (because Ty, C T,,) and a tree-
map from Ty, to T,, (extending the tree-map from Thygignment to Tc; naturally).
Then, there must be a x; such that, ; (or Z;) is in Thssgnment, Dut not in Tg;.
Assume x; is 0 Thgsignment a0d T; is in Tc;. According to the definition of Tc,,
there is z; € Cj;. Since z; is in Tf%sz—gnmm, according to the construction of v, we
have v, (z;) = true, that is C; can be satisfied by v,. For the case that Z; is in
Thssignment and x; is in Tc;, a similar proof can show C) is satisfied by v,,. At last,

it is known that ¢ is satisfied by v,.

In conclusion, after showing the correctness of the reduction, it is shown that
3SAT problem can be reduced to the problem (dpSE,Q’/) in PTime. Therefore,
(dpSE, Q’) is NP-hard. O

4 Conclusion

We have proposed dpSE problem in this paper, whose question is whether the size
of a given tree can be reduced while preserving two kinds of distinguishability.
Considering the query class Q/, dpSE is proved to be NP-complete.

Acknowledgement. This work was supported in part by the National Grand
Fundamental Research 973 Program of China under grant 2012CB316200, the
General Program of the National Natural Science Foundation of China under
grant 61502121, 61402130, the China Postdoctoral Science Foundation under grant
2016M590284, the Fundamental Research Funds for the Central Universities (Grant
No. HIT.NSRIF.201649), and Heilongjiang Postdoctoral Foundation (Grant No.
LBH-Z15094).

240 X. Liu et al.
References
1. Neven, F., Schwentick, T.. Expressive, efficient pattern languages for tree-

10.

11.

12.

13.

14.

15.

structured data. In: PODS (2000)

. Gou, G., Chirkova, R.: Efficiently querying large XML data repositories: a survey.

IEEE Trans. Knowl. Data Eng. 19(10), 1381-1403 (2007)
Min, J.-K.,; Ahn, J.-Y., Chung, C.-W.: Efficient extraction of schemas for XML
documents. Inf. Process. Lett. 85, 7-12 (2003)

. Bex, G.J., Neven, F., Schwentick, T., Vansummeren, S.: Inference of concise regular

expressions and DTDs. ACM Trans. Database Syst. (TODS) 35(2), 11:1-11:47
(2010)

Sarawagi, S.: Information extraction. Found. Trends Databases 1(3), 261-344
(2008)

Raeymaekers, S., Bruynooghe, M., Bussche, J.: Learning (k, [)-contextual tree lan-
guages for information extraction. Mach. Learn. 71(2-3), 155-183 (2008)
Staworko, S., Wieczorek, P.: Learning twig, path queries. In: ICDT (2012)
Carme, J., Gilleron, R., Lemay, A., Niehren, J.: Interactive learning of node select-
ing tree transducer. Mach. Learn. 66(1), 33-67 (2007)

Bex, G.J., Neven, F., Vansummeren, S.: Learning deterministic regular expressions
for the inference of schemas from xml data. ACM Trans. Web 4(4), 1-32 (2010)
Liu, L., Pu, C., Han, W.: XWRAP: an XML-enabled wrapper construction system
for web information sources. In: ICDE, pp. 611-621 (2000)

Suzuki, Y., Shoudai, T., Uchida, T., Miyahara, T.: Ordered term tree languages
which are polynomial time inductively inferable from positive data. Theoret. Com-
put. Sci. 350(1), 63-90 (2006)

Amer-Yahia, S., Cho, S., Lakshmanan, L.V.S., Srivastava, D.: Tree pattern query
minimization. VLDB J. 11(4), 315-331 (2002)

Miklau, G., Suciu, D.: Containment and equivalence for a fragment of XPath. J.
ACM 51(1), 2-45 (2004)

Benedikt, M., Koch, C.: XPath leashed. ACM Comput. Surv. (CSUR) 41(1), 1-54
(2009)

Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)

Safe Sets in Graphs: Graph Classes
and Structural Parameters

Raquel Aguedal, Nathann Cohen?, Shinya Fujita3, Sylvain Legay?,
Yannis Manoussakis?, Yasuko Matsui*, Leandro Montero?, Reza Naserasr®,
Yota Otachi®®™) | Tadashi Sakuma’, Zsolt Tuza®?, and Renyu Xu'?

! Universidad de Castilla-La Mancha, Ciudad Real, Spain
2 LRI, University Paris-Sud, Orsay, France
3 Yokohama City University, Yokohama, Japan
4 Tokai University, Tokyo, Japan
5 LIAFA, University Paris-Diderot, Paris, France
8 Japan Advanced Institute of Science and Technology, Nomi, Japan
otachi@jaist.ac.jp
" Yamagata University, Yamagata, Japan
8 MTA Rényi Institute, Budapest, Hungary
9 University of Pannonia, Veszprém, Hungary
10 Shandong University, Jinan, China

Abstract. A safe set of a graph G = (V, E) is a non-empty subset S
of V such that for every component A of G[S] and every component
B of G[V \ S|, we have |A| > |B| whenever there exists an edge of G
between A and B. In this paper, we show that a minimum safe set can
be found in polynomial time for trees. We then further extend the result
and present polynomial-time algorithms for graphs of bounded treewidth,
and also for interval graphs. We also study the parameterized complexity
of the problem. We show that the problem is fixed-parameter tractable
when parameterized by the solution size. Furthermore, we show that this
parameter lies between tree-depth and vertex cover number.

Keywords: Graph algorithm - Safe set - Treewidth - Interval graph -
Fixed-parameter tractability

1 Introduction

In this paper, we only consider finite and simple graphs. The subgraph of a graph
G induced by S C V(G) is denoted by G[S]. A component of G is a connected
induced subgraph of G with an inclusionwise maximal vertex set. For vertex-
disjoint subgraphs A and B of G, if there is an edge between A and B, then A
and B are adjacent.

In a graph G = (V, E), a non-empty set S C V of vertices is a safe set if,
for every component A of G[S] and every component B of G[V'\ S] adjacent to
A, it holds that |A| > |B|. If a safe set induces a connected subgraph, then it is
a connected safe set. The safe number s(G) of G is the size of a minimum safe

© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 241-253, 2016.
DOI: 10.1007/978-3-319-48749-6_18

242 R. Agueda et al.

set of G, and the connected safe number cs(G) of G is the size of a minimum
connected safe set of G. It is known that s(G) < cs(G) < 2-s(G) — 1 [10].

The concept of (connected) safe number was introduced by Fujita et al. [10].
Their motivation came from a variant of facility location problems, where the
goal is to find a “safe” subset of nodes in a network to place facilities. They
showed that the problems of finding a minimum safe set and a minimum con-
nected safe set are NP-hard in general. They also showed that a minimum con-
nected safe set in a tree can be found in linear time.

The main contribution of this paper is to give polynomial-time algorithms for
finding a minimum safe set on trees, graphs of bounded treewidth, and interval
graphs. We also show that the problems are fixed-parameter tractable when
parameterized by the solution size.

The rest of the paper is organized as follows. In Sect. 2, we present an O(n®)-
time algorithm for finding a minimum safe set on trees. In Sect. 3, we generalize
the algorithm to make it work on graphs of bounded treewidth. In Sect. 4, we
show that the problem can be solved in O(n®) time for interval graphs. In Sect. 5,
we show the fixed-parameter tractability of the problem when the parameter
is the solution size. We also discuss the relationship of safe number to other
important and well-studied graph parameters. In the final section, we conclude
the paper with a few open problems.

2 Safe Sets in Trees

Recall that a tree is a connected graph with no cycles. In this section, we prove
the following theorem.

Theorem 2.1. For an n-vertex tree, a safe set of the minimum size can be
found in time O(n®).

We only show that the size of a minimum safe set can be computed in O(n®)
time. It is straightforward to modify the dynamic program below for computing
an actual safe set in the same running time.

In the following, we assume that a tree ' = (V, E') has a root and that the
children of each vertex are ordered. For a vertex u € V, we denote the set of
children of u by Cr(u). By V;, we denote the vertex set that consists of u and
its descendants. We define some subtrees induced by special sets of vertices as
follows (see Fig.1):

— For a vertex u € V, let T'(u) = T[V,].
— For an edge {u,v} € E where v is the parent of u, let T'(u — v) = T[{v}UV,].
— For w € V with children wy, ..., wq, let T(u,i) =T [{u} UlUi<j<i ij]

Note that T'(u,1) = T'(wy — u) if wy is the first child of u, T'(u) = T'(u, |Cr(u)])
if w is not a leaf, and T = T'(p) if p is the root of T.

Safe Sets in Graphs: Graph Classes and Structural Parameters 243

Fig. 1. Subtrees T'(u), T'(v — w), and T'(z, 2).

Fragments: For a subtree TV of T and S C V(T"), a fragment in T" with respect
to S is the vertex set of a component in 7”[S] or T'[V (T")\ S]. We denote the set
of fragments in 7" with respect to S by F(T”,S). The fragment that contains
the root of T" is active, and the other fragments are inactive. Two fragments
in F(T',S) are adjacent if there is an edge of T’ between them. A fragment
F € F(T',8) is bad if it is inactive, F C S, and there is another inactive
fragment F' € F(T',S) adjacent to F' with |F| < |F”|.

(T,b, s,a) — feasiblesets: For b € {t,f}, s €{0,...,n}, and a € {1,...,n}, we
say S C V(T") is (T',b, s, a)-feasible if |S| = s, the size of the active fragment
in F(1",8) is a, there is no bad fragment in F(1”,5), and b = t if and only if
the root of 7" is in S.

Intuitively, a (T”,b, s, a)-feasible set S is “almost safe.” If A is the active
fragment in F(T",S), then S\ A is a safe set of T'[V(T") \ A].

For S C V(T"), we set 052%(S) and 9="(S) to be the sizes of maximum and
minimum fragments, respectively, adjacent to the active fragment in F(7”,S). If
there is no adjacent fragment, then we set 95%(S) = —oo and 93 (S) = +oo.

DP Table: We construct a table with values ps(7”,b,s,a) € {0,...,n} U
{+00,—c0} for storing information of partial solutions, where b € {t,f},
s €40,...,n}, and a € {1,...,n}, and 7" is a subtree of T such that either
T = T(u) for some u € V, T = T(u — v) for some {u,v} € E, or T" = T (u,1)
for some u € V and 1 < ¢ < |Cp(u)|. The table entries will have the following
values:

) +00 if no (1T”,t, s, a)-feasible set exists,
ps(T",t,5,0) = min P (S) otherwise,
(T t,s,a)-feasible S
, —00 if no (77,f, s, a)-feasible set exists,
ps(T".f,5,a) = Omin(S) otherwise.

max T
(T f,s,a)-feasible S

The definition of the table ps implies the following fact.

244 R. Agueda et al.

Lemma 2.2. s(T') is the smallest s such that there is a € {1,...,n} with
ps(T,t,s,a) < a or ps(T,f,s,a) > a.

Proof. Assume that S is a safe set of T such that |S| = s and the root is contained
in S. Let A be the active fragment in F(7,S). Then, S is (T\t, s, |A|)-feasible.
Since A cannot be smaller than any adjacent fragment, we have 9F**(S) < |A].
Hence ps(T,t, s, |A]) < |A| holds. By a similar argument, we can show that if
the root is not in S, then ps(T,f, s, |A]) > |A|.

Conversely, assume that ps(7',t,s,a) < a for some a € {1,...,n}. (The proof
for the other case, where ps(T,f,s,a) > a, is similar.) Let S be a (T\t,s,a)-
feasible set with 0F**(S) = ps(T,t,s,a). Since there is no bad fragment in
F(T,S) and the active fragment (of size a) is not smaller than the adjacent
fragments (of size at most 9**(S) = ps(T,t, s,a) < a), all fragments included
in S are not smaller than their adjacent fragments. This implies that S is a safe
set of size s. O

By Lemma 2.2, after computing all entries ps(7”, b, s, a), we can compute s(7') in
time O(n?). There are O(n?) tuples (T",b, s,a), and thus to prove the theorem,
it suffices to show that each entry ps(7”,b, s,a) can be computed in time O(n?)
assuming that the entries for all subtrees of T are already computed.

We compute all entries ps(7’, b, s,a) in a bottom-up manner: We first com-
pute the entries for T'(u) for each leaf u. We then repeat the following steps until
none of them can be applied. (1) For each u such that the entries for T'(u) are
already computed, we compute the entries for T'(u — v), where v is the parent of
u. (2) For each u such that the entries for T'(u,i—1) and T'(w; — u) are already
computed, where wj; is the ith child of u, we compute the entries for T'(u,).

Lemma 2.3. For aleafu of T, each table entry ps(T'(u),b, s,a) can be computed
i constant time.

Proof. The set {u} is the unique (T'(u),t,1,1)-feasible set. Since F(T'(u), {u})
contains no inactive fragment, we set ps(7'(u),t,1,1) = —oco. Similarly the empty
set is the unique (T'(u),f,0,1)-feasible set. We set ps(T'(u),f,0,1) = +oo. For
the other tuples, there are no feasible sets. We set the values accordingly for
them. Clearly, each entry can be computed in constant time. O

Lemma 2.4. For a vertez u and its parent v in T, each table entry ps(T(u — v),
b, s,a) can be computed in O(n) time, using the table entries for the subtree T'(u).

Proof. We separate the proof into two cases: a > 2 and a = 1. If a > 2, then we
can compute the table entry in constant time. If a = 1, we need O(n) time.

Case 1: a > 2. In this case, for every (T'(u — v), b, s, a)-feasible set S, u and v
are in the active fragment of F(T(u — v),S) since the root v of T'(u — v) has
the unique neighbor u.

Case 1-1: b = t. Let S be a (T(u — v),t,s, a) feasible set that minimizes
OP(u)(S). Observe that S\ {v} is (T'(u),t,s — 1,a — 1)-feasible and that

U*)’U

Safe Sets in Graphs: Graph Classes and Structural Parameters 245

Ol (S) = 07 (S \ {v}). We claim that 075 (S \ {v}) = ps(T(u),t,
1,a — 1), and thub

ps(T(u — v),t,s,a) = ps(T(u),t,s — 1,0 — 1).

Suppose that some (T'(u),t,s — 1,a — 1)-feasible set @ satisfies 977 (Q) <
ey (S \ {v}). Now Q U {v} is (T'(u — v),t,5,a)-feasible. However, it holds

that
Ty (@ UA{v}) = 070N (Q) < Op((S \ {v}) =I5, ()
This contradicts the optimality of .S.

Case 1-2: b = f. Let S be a (T'(u — v),f,s,a)-feasible set that maximizes
(9“““)(9). The set Sis also (T'(u), f, s, a—1)-feasible and satisfies %‘g}jﬂv)(S) =

U*VU

35‘9(13)(). We claim that 8%‘(12)(5‘) = ps(T'(u),t,s,a — 1), and thus

ps(T(u — v),f,s,a) = ps(T(u),f,s,a — 1).

Suppose that there is a (T'(u), t, s, a—1)-feasible set @ with 8?(12)(62) > 85‘3(12) (9).
Since @ is also (T'(u — v), f, s, a)-feasible, it holds that

Pl (Q) = OF(y (Q) > OF(1) (S) = FF(i_ ().
This contradicts the optimality of .S.

Case 2: a = 1. For every (T'(u — v),b, s, 1)-feasible set S, the set {v} is the
active fragment, and the vertex w is in the unique fragment adjacent to the active
fragment.

Case 2-1: b = t. Let S be a (T(u — v),t, s, 1)-feasible set. Then S\ {v} is a
(T'(u),f,s — 1,a’)-feasible set for some a’. Moreover, since F(T(u — v),S) does
not contain any bad fragment, 5‘7‘{‘(‘2) (S\{v}) > a'. Thus we can set ps(T(u — v),
t,s,1) as follows:

min{a’ | ps(T(u),f,s —1,a’) > a’} if such @’ exists,
+00 otherwise.

ps(T'(u — v),t,8,1) = {

Case 2-2: b = f. Let S be a (T'(u — v),f,s,1)-feasible set. The set S is a
(T'(u),t, s, a’)-feasible set for some a’. Since F(T'(u — v),S) does not contain
any bad fragment, 07,7 (S) < a’. Thus we can set ps(T(u — v),f, s,1) as follows:

max{a’ | ps(T(u),t,s,a’) <a'} if there is such an a’,

—00 otherwise.

ps(T(u — v),f,s,1) = {

In both Cases 2-1 and 2-2, we can compute the entry ps(T'(v — v),b, s,1) in
O(n) time by looking up at most n table entries for the subtree T'(u). O

246 R. Agueda et al.

Lemma 2.5. For a non-leaf vertex u with the children wy, ..., wq and an integer
i with 2 < i < d, each table entry ps(T(u,i),b,s,a) can be computed in O(n?)
time, using the table entries for the subtrees T'(u,i — 1) and T'(w; — u).

Proof. For the sake of simplicity, let Ty = T'(u,i — 1) and Tp = T'(w; — u). Let
S be a (T(u,i),b,s,a)-feasible set and A be the active fragment in F (T (u, 1), S).
For j € {1,2}, let S; = SNV(T;) and A; = ANV(T}). Observe that S; is a
(Tj,b,|S;], |Aj|)-feasible set. If b = t, then S1 NSy = {u}; otherwise S1 NSy = 0.
Thus |S1| + |S2| = |S| +1if b = t, and |S1| + |S2| = | S| otherwise. Similarly,
since Ay N As = {u}, it holds that |A;]| + |Aa| = |A| + 1. Therefore, we can set
the table entries as follows:

ps(T(u,4),t,8,a) = min max{ps(Ti,t,s1,a1),ps(Ta,t, s2,a2)},
S1+s2=s+1
a1+tazs=a+1

ps(T(u,1),f,s,a) = ,max min{ps(T1,f, s1,a1), ps(Tz,f, s2,a2)}.
al}ka215+1

In both cases, we can compute the entry ps(T(u,4),b,s,a) in O(n?) time since
there are O(n) possibilities for each (s1,s2) and (ay, az). O

A graph is unicyclic if it can be obtained by adding an edge to a tree. Using the
algorithm for weighted paths presented in [2] as a subroutine, we can extend the
algorithm in this section to find a minimum safe set and a minimum connected
safe set of a unicyclic graph in the same running time.

3 Safe Sets in Graphs of Bounded Treewidth

In this section, we show that for any fixed constant k£, a minimum safe set and
a minimum connected safe set of a graph of treewidth at most k can be found
in O(n5*%) time.

Basically, the algorithm in this section is a generalization of the one in the
previous section. The most crucial difference is that here we may have many
active fragments, and each active fragment may have many vertices adjacent to
the “outside.” This makes the algorithm much more complicated and slow.

A tree decomposition of a graph G = (V, E) is a pair ({X,, | p € I},T) such
that each X, called a bag, is a subset of V', and T is a tree with V(T') = I such
that

— for each v € V, there is p € I with v € X,;
— for each {u,v} € E, there is p € I with u,v € X,,;
— for p,q,7 € I, if ¢ is on the p—r path in T', then X, N X, C X,.

The width of a tree decomposition is the size of a largest bag minus 1. The
treewidth of a graph, denoted by tw(G), is the minimum width over all tree
decompositions of G.

A tree decomposition ({X, | p € I}, T) is nice if

Safe Sets in Graphs: Graph Classes and Structural Parameters 247

T is a rooted tree in which every node has at most two children;
— if a node p has two children ¢, r, then X, = X, = X, (such a node p is a join
node);
— if a node p has only one child g, then either
e X, =X,U{v} for some v ¢ X, (pis a introduce node), or
e X, =X, \ {v} for some v € X, (¢ is a forget node);
— if a node p is a leaf, then X, = {v} for some v € V.

Theorem 3.1. Let k be a fixed constant. For an n-vertex graph of treewidth at
most k, a (connected) safe set of minimum size can be found in time O(n>*+8).

Proof. We only show that s(G) and cs(G) can be computed in the claimed run-
ning time. It is straightforward to modify the dynamic program below for com-
puting an actual set in the same running time.

Let G = (V, E) be a graph of treewidth at most k. We compute a nice tree
decomposition ({X, | p € I},T) with at most 4n nodes. It can be done in O(n)
time [4,12]. For each p € I, let V, = X, U Uq Xg4, where ¢ runs through all
descendants of p in T.

Fragments: For a node p and a vertex set S C V,,, a fragment is a component
in G[S] or G[V,, \ S]. We denote the set of fragments with respect to p and S
by F(p,S). A fragment F € F(p,S) is active if F N X, # 0, and it is inactive
otherwise. Two fragments in F(p, S) are adjacent if there is an edge of G[V,)]
between them. A fragment F' is bad if it is inactive, F' C S, and there is another
inactive fragment F’ adjacent to F' with |F| < |F”|.

DP Table: For storing information of partial solutions, we construct a table with
values ps(p, s, A, 3,7, ¢,) € {t,f} with indices p € I, s € {0,...,n}, a partition
Aof X, B: A —{1,...,n}, v: A — {1,...,n} U {£oo}, ¢: A — {t,f}, and
¥: () — {t,f}. We set

pS(p,S,A,ﬁ,’y,¢,1/)) =t

if and only if there exists a set S C V), of size s with the following conditions:

— there is no bad fragment in F(p, S),
— for each active fragment F' in F(p, S),
e there is a unique element Ar € A such that Ap = FN X,
o B(Ar) = |F|,
o p(Ap)=tif and only if F C S,
e if F C S, then v(AF) is the size of a mazimum inactive fragment adjacent
to F' (if no such fragment exists, we set y(4;) = —00),
e if F Z S, then v(AFp) is the size of a minimum inactive fragment adjacent
to F if no such fragment exists, we set v(A4;) = +00),
for two active fragments F, F’ in F(p,S), v({Ar,Ap/}) =t if and only if F
and F’ are adjacent, where Ap = FN X, and Ap = F' N X,,.!

! In the following, we (ab)use simpler notation ¥(Agp, Aps) instead of Y({Ar, Ap}).

248 R. Agueda et al.

Let p be the root of T'. The definition of the table ps implies the following
fact.

Observation 3.2. s(G) is the smallest s with ps(p, s, A, 8,7, ¢,¥) =t for some
A, B, v, &, and b such that B(A) > v(A) for each A € A with ¢(A) = t,
B(A) < ~v(A) for each A € A with $(A) =1, and B(A) > B(A") for any A, A’ € A
with ¢(A) =t and (A, A") =+t.

For computing cs(G), we need to compute additional information for each
tuple (p,s, A, 3,7,¢,1). For A € A, let 5'(A) be the size of the fragment in
F(p,S) that is a superset of the fragment F4 O A in F(p,S). If A C S, then
B'(A) = B(A); otherwise §'(A) = [Ca \ Xp| + > 41 a, arcc, B(A), where Cy is
the component in G[(V'\ V,,) U (X, \ S)] that includes A. We can compute 3'(A)
for all A € A in time O(n) by running a breadth-first search from X, \ S.

Observation 3.3. cs(G) is the smallest s with ps(p, s, A, 3,7, ¢,1) = t for some
p, A, B, v, ¢, and ¢ such that B(A) > v(A) for each A € A with ¢p(A) = t,
B(A) < ~(A) for each A € A with $(A) = f, and B(A) > B'(A") for any
A A" € A with ¢(A) =t and P(A,A') =t

By Observations 3.2 and 3.3, provided that all entries ps(p, s, A, 3,7, ¢, 1) are
computed in advance, we can compute s(G) and cs(G) by spending time O(1) and
O(n), respectively, for each tuple. We compute all entries ps(p, s, A, 3,7, ¢, 1) by
a bottom-up dynamic program. Due to the space limitation, we omit this part
in the conference version. O
For a vertex-weighted graph G = (V, E) with a weight function w: V — Z%, a
set S C V is a weighted safe set of weight) _ g w(s) if for each component C' of
G[S] and each component D of G[V'\ S] with an edge between C' and D, it holds
that w(C) > w(D). Bapat et al. [2] show that finding a minimum (connected)
weighted safe set is weakly NP-hard even for stars. Let W = > _\, w(v). Our
dynamic program above works for the weighted version if we extend the ranges
of parameters s, 8, and v by including {1,..., W}. The running time becomes
polynomial in W.

Theorem 3.4. For a vertex weighted graph of bounded treewidth, a weighted
(connected) safe set of the minimum weight can be found in pseudo-polynomial
time.

4 Safe Sets in Interval Graphs

In this section, we present a polynomial-time algorithm for finding a minimum
safe set and a minimum connected safe set in an interval graph.

A graph is an interval graph if it can be represented as the intersection graph
of intervals on a line. Given a graph, one can determine in linear time whether the
graph is an interval graph, and if so, find a corresponding interval representation
in the same running time [6].

Safe Sets in Graphs: Graph Classes and Structural Parameters 249

Theorem 4.1. For an n-vertex interval graph, a minimum safe set and a min-
imum connected safe set can be found in time O(n®).

Proof. Let G be a given interval graph. As we can deal with each component
of G separately, we assume that G is connected. The algorithm is a dynamic
programming on an interval representation of G. We assume that its vertices
(i.e. intervals) vy,...,v, are ordered increasingly according to their left ends,
and write X; = {v1,...,v;}.

At each step i of the algorithm, we want to store all subsets S C X; which
can potentially be completed (with vertices from G \ X;) into a safe set. The
number of such sets can be exponential: we thus define a notion of signature,
and store the signatures of the sets instead of storing the sets themselves. The
cost of this storage is bounded by the number of possible signatures, which is
polynomial in n.

We will then prove that all possible signatures of sets at step ¢ can be deduced
from the set of signatures at step ¢—1. The cardinality of a minimum safe set (and
a minimum connected safe set) can finally be deduced from the set of signatures
stored during the last step. We can easily modify the algorithm so that it also
outputs a minimum set.

We define the signature of S at step ¢ as the 8-tuple that consists of the
following items (see Fig. 2):

1. The size of S.
2. The vertex v2 of S with the most neighbors in G\ X;.
3. The vertex v> of S := X;\ S with the most neighbors in G\ X;.
4. The size of S, (the rightmost component of 5).
5. The size of S, (the rightmost component of S).
6. The largest size of a component of S\ S, adjacent with S,..
7. The smallest size of a component of S\ S, adjacent with S,..
8. A boolean value indicating whether S is connected.
| Uy
S L
S —
3
X; — G\ X; —

Fig. 2. The dynamic programming on an interval graph.

Assuming that we know the signature of a set S at step ¢, we show how to
obtain the signature at step i + 1 of (a) S’ = S and (b) S" = S U {v;11}. With
this procedure, all signatures of step ¢ + 1 can be obtained from all signatures
at step 1.

1. The size of S’ (at step i: |S]).

(a) [S].

(b) |S|+1.

250 R. Agueda et al.

2. The vertex of S’ with the most neighbors in G'\ X;1; (at step i: v?).
(a) vy

(b) The one of vy and v;11 which has the most neighbors in G \ Xi11.
3. The vertex of S” := X, 41 \ S” with the most neighbors in G \ X;41 (at step

-8
i v2).)
(a) The one of v? and v;;1 which has the most neighbors in G'\ X, .
(b) vy
4. The size of the rightmost component S!. of S’ (at step i: |S,|).
(a) |5

(b) |S.| + 1 if v;41 and v? are adjacent, and 1 otherwise (new component).
In the latter case, we discard the signature if |S,| is strictly smaller than
the largest size of a component of S\ S, adjacent with S, at step i.
5. The size of the rightmost component S’. of S’ (at step i: |S,|).
(a) 1ifwv; 41 and v are not adjacent (new component), and |S,.|+1 otherwise.
In the latter case, we discard the signature if |S,| is strictly larger than
the smallest size of a component of S\ S, adjacent with S, at step i.
(b) 13,1 o
6. The largest size of a component of S’ \ S/. adjacent with S/ (at step i: c).
(a) c if no new component of S’ was created (see 5.), and max{e, |S.|} oth-
erwise.
(b) ¢ if no new component of S’ was created (see 4.), and —oo otherwise.
7. The smallest size of a component of S” \ S’ adjacent with S/ (at step i: c).
(a) c if no new component of S’ was created (see 5.), and +o00 otherwise.
(b) ¢ if no new component of 5" was created (see 4.), and min{c, |S/.|} other-

wise.
8. A boolean variable indicating whether S’ is connected (at step i: b).
(a) b

(b) tif |S| =0, b if v;41 and v2 are adjacent, and f otherwise.

When all signatures at step n have been computed, we use the additional
information that S and S cannot be further extended to discard the remaining
signatures corresponding to non-safe sets. That is, we discard a signature if
|S.| < |S.|, or |S,| is strictly smaller than the largest size of a component of
S\ S, adjacent to it, or |S,| + 1 is strictly larger than the smallest size of a
component of S\ S, adjacent to it.

The minimum sizes of a safe set and a connected safe set can be obtained
from the remaining signatures. For each step i, there are O(n") signatures. From
a signature for step ¢, we can compute the corresponding signature for step ¢+ 1
in O(1) time. Therefore, the total running time is O(n®). O

5 Fixed-Parameter Tractability

In this section, we show that the problems of finding a safe set and a connected
safe set of size at most s is fixed-parameter tractable when the solution size s is
the parameter. For the standard concepts in parameterized complexity, see the
recent textbook [8].

Safe Sets in Graphs: Graph Classes and Structural Parameters 251

We first show that graphs with small safe sets have small treewidth. We then
show that for any fixed constants s the property of having a (connected) safe set
of size at most s can be expressed in the monadic second-order logic on graphs.
Then we use the well-known theorems by Bodlaender [4] and Courcelle [7] to
obtain an FPT algorithm that depends only linearly on the input size.

Lemma 5.1. Let G = (V,E) be a connected graph. If tw(G) > s?> — 1, then
s(G) > s.

Proof. It is known that every graph G has a path of tw(G) + 1 vertices as a
subgraph [3]. Thus tw(G) > s? — 1 implies that G has a path of s? vertices as a
subgraph.

Let P be a path of s? vertices in G, and let S C V be an arbitrary set of
size less than s. By the pigeon-hole principle, there is a subpath @ of P such
that |Q] > s and SNV (Q) = 0. Hence there is a component B of G[V \ 9]
with V(Q) C B. Since G is connected there is a component A of G[S] adjacent
to B. Now we have |[A| < |S] < s < |Q] < |B|, which implies that S is not a
safe set. O

The syntax of the monadic second-order logic of graphs (MSs) includes (i) the
logical connectives V, A, =, <, =, (ii) variables for vertices, edges, vertex sets,
and edge sets, (iii) the quantifiers V and 3 applicable to these variables, and (iv)
the following binary relations:

— v € U for a vertex variable v and a vertex set variable U,

— e € F for an edge variable e and an edge set variable F;

— inc(e, v) for an edge variable e and a vertex variable v, where the interpretation
is that e is incident with v;

— equality of variables.

Now we can show the following.

Lemma 5.2. For a fized constant s, the property of having a safe set of size at
most s can be expressed in MSs.

Corollary 5.3. For a fixed constant s, the property of having a connected safe
set of size at most s can be expressed in MSs. O

Theorem 5.4. The problems of finding a safe set and a connected safe set of size
at most s is fized-parameter tractable when the solution size s is the parameter.
Furthermore, the running time depends only linearly on the input size.

Proof. Let G be a given graph. Since we can handle the components separately,
we assume that G is connected. We first check whether tw(G) < (s + 1) — 1 in
O(n) time by Bodlaender’s algorithm [4]. If not, Lemma 5.1 implies that s(G) >
s+ 1. Otherwise, Bodlaender’s algorithm gives us a tree decomposition of G with
width less than (s + 1)? — 1. Courcelle’s theorem [7] says that it can be checked
in linear time whether a graph satisfies a fixed MSs formula if the graph is given
with a tree decomposition of constant width (see also [1]). Therefore, Lemma 5.2
and Corollary 5.3 imply the theorem. O

252 R. Agueda et al.

5.1 Relationship to Other Structural Graph Parameters

As we showed in Lemma 5.1, the treewidth of a graph is bounded by a constant
if it has constant safe number. Here we further discuss the relationship to other
well-studied graph parameters: tree-depth and vertex cover number. As bounding
these parameters is more restricted than bounding treewidth, more problems
can be solved efficiently when the problems are parameterized by tree-depth or
vertex cover number (see [9,11]). In the following, we show that safe number lies
between these two parameters. This implies that parameterizing a problem by
safe number may give a finer understanding of the parameterized complexity of
the problem.

Tree-Depth. The tree-depth [13] (also known as elimination tree height [14] and
vertex ranking number [5]) of a connected graph G is the minimum depth of a
rooted tree T such that T contains G as a subgraph, where T is the supergraph
of T'with the additional edges connecting all comparable pairs in T'. We can easily
see that the tree-depth of a graph is at least its treewidth. It is known that a
graph has constant tree-depth if and only if it has a constant upper bound on
the length of paths in it [13]. Hence the proof of Lemma 5.1 implies the following
relation.

Lemma 5.5. The tree-depth of a connected graph is bounded by a constant if it
has constant safe number.

The converse of the statement above is not true in general. The complete k-ary
tree of depth 2 has tree-depth 2 and safe number k.

Vertex Cover Number. A set C C V(G) is a vertex cover of a graph G if each
edge in G has at least one end in C. The vertex cover number of a graph is the
size of a minimum vertex cover in the graph. We can see that C is a vertex cover
if and only if each component of G\ C has size 1. Thus a vertex cover is a safe
set, and the following relation follows.

Lemma 5.6. The safe number of a graph is at most its vertex cover number.

Again the converse is not true. Consider the graph obtained from the star graph
K 1, by subdividing each edge. It has a (connected) safe set of size 2, while its
vertex cover number is k.

Note that Lemma5.6 and Theorem 5.4 together imply that the problem of
finding a (connected) safe set is fixed-parameter tractable when parameterized
by vertex cover number.

6 Concluding Remarks

A graph is chordal if it has no induced cycle of length 4 or more. Trees and inter-
val graphs form the most well-known subclasses of the class of chordal graphs.
A natural question would be the complexity of the problems on chordal graphs.

Safe Sets in Graphs: Graph Classes and Structural Parameters 253

Another question is about planar graphs. As the original motivation of the prob-
lem was from a facility location problem, it would be natural and important to
study the problem on planar graphs.?

Our algorithm for graphs of treewidth at most & runs in n©*) time. Such an
algorithm is called an XP algorithm, and an FPT algorithm with running time
f(k)-nc is more preferable, where f is an arbitrary computable function and ¢ is
a fixed constant. It would be interesting if one can show that such an algorithm
exists (or does not exist under some complexity assumption).

References

1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
J. Algorithms 12, 308-340 (1991)

2. Bapat, R.B., Fujita, S., Legay, S., Manoussakis, Y., Matsui, Y., Sakuma, T., Tuza,
Z.: Network majority on tree topological network (2016). http://www2u.biglobe.
ne.jp/~sfujita/fullpaper.pdf

3. Bodlaender, H.L.: On linear time minor tests with depth-first search. J. Algorithms
14, 1-23 (1993)

4. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25, 1305-1317 (1996)

5. Bodlaender, H.L., Deogun, J.S., Jansen, K., Kloks, T., Kratsch, D., Miiller, H.,
Tuza, Z.: Rankings of graphs. STAM J. Discrete Math. 11, 168-181 (1998)

6. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13,
335-379 (1976)

7. Courcelle, B.: The monadic second-order logic of graphs III: tree-decompositions,
minor and complexity issues. Theor. Inform. Appl. 26, 257-286 (1992)

8. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Heidelberg (2015)

9. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H.,
Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294-305. Springer, Heidel-
berg (2008)

10. Fujita, S., MacGillivray, G., Sakuma, T.: Safe set problem on graphs. Discrete
Appl. Math. 215, 106-111 (2016)

11. Gutin, G., Jones, M., Wahlstrom, M.: Structural parameterizations of the mixed
chinese postman problem. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol.
9294, pp. 668-679. Springer, Heidelberg (2015)

12. Kloks, T. (ed.): Treewidth: Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994)

13. Nesetiil, J., de Mendez, P.O.: Sparsity: Graphs, Structures, and Algorithms. Algo-
rithms and combinatorics, vol. 28. Springer, Heidelberg (2012)

14. Pothen, A.: The complexity of optimal elimination trees. Technical report CS-88-
13. Pennsylvania State University (1988)

2 After the submission of the conference version, together with Hirotaka Ono, we found
that the problem is NP-hard for these graph classes.

http://www2u.biglobe.ne.jp/~sfujita/fullpaper.pdf
http://www2u.biglobe.ne.jp/~sfujita/fullpaper.pdf

On Local Structures of Cubicity 2 Graphs

Sujoy Bhore?, Dibyayan Chakraborty’ ™, Sandip Das!, and Sagnik Sen?

! Indian Statistical Institute, Kolkata, India
dibyayancg@gmail.com
2 Ben-Gurion University, Beersheba, Israel
3 Indian Statistical Institute, Bangalore, India

Abstract. A 2-stab unit interval graph (2SUIQG) is an axes-parallel unit
square intersection graph where the unit squares intersect either of the
two fixed lines parallel to the X-axis, distance 1 + € (0 < € < 1) apart.
This family of graphs allow us to study local structures of unit square
intersection graphs, that is, graphs with cubicity 2. The complexity of
determining whether a tree has cubicity 2 is unknown while the graph
recognition problem for unit square intersection graph is known to be
NP-hard. We present a linear time algorithm for recognizing trees that
admit a 2SUIG representation.

1 Introduction

We know that geometric intersection graphs have been studied for over
50 years [9,10] and interval graphs [9] are probably the most studied such family.
To begin with, let us present a few definitions. Cubicity, cub(G) of a graph G is
the minimum d such that G is representable as a geometric intersection graph of
d-dimensional (axes-parallel) cubes [10]. The notion of cubicity is a special case
of boxicity [10]. Boxicity box(G) of a graph G is the minimum d such that G is
representable as a geometric intersection graph of d-dimensional (axes-parallel)
hyper-rectangles. The family of graphs with boxicity 1 and the family of graphs
with cubicity 1 are the families of interval and unit interval graphs, respectively.

It is curious that several decision problems such as graph recognition, k-
coloring, finding minimum dominating set etc. are polynomial time solvable for
interval graphs and unit interval graphs but are NP-hard for their 2-dimensional
counterparts, the families of graphs with boxicity 2 and cubicity 2, respec-
tively [3,4,6,8]. There seems to be a jump in the difficulty level of the study of
these families while going from dimension 1 to 2. To be precise, interval graphs
and unit interval graphs are intersection graphs of geometric objects embedded
in R! while boxicity 2 and cubicity 2 graphs are intersection graphs of geometric
objects embedded in R2.

Our goal is to understand the reason of this jump and study what lies “in
between”. A number of efforts [5,12] in this direction has been made yielding dif-
ferent graphs families, each of which are generalization of interval graphs. For each
such family, determining the complexity of the graph recognition problem has
been one of the most difficult and important algorithmic question. The answer

© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 254-269, 2016.
DOI: 10.1007/978-3-319-48749-6_19

On Local Structures of Cubicity 2 Graphs 255

to this question is either extremely difficult or had remained unsolved unless the
graph family in question are a family of perfect graphs. In general, such graph
families are of interest and solving problems in these set ups are challenging.

In a recent work [2] we introduced and studied new families of geometric
intersection graphs which satisfies the properties prescribed by Scheinerman [11].
One such graph family is the focus of our study here in order to get insight
towards understanding the structure of graphs with cubicity 2.

Let y = 1 be the lower stab line and y = 2 4+ € be the upper stab line where
€ € (0,1) is a constant. Now consider unit squares that intersects one of the stab
lines. A 2-stab unit interval graph (2SUIG) is a graph G that can be represented
as an intersection graph of such unit squares. Such a representation R of G is
called a 2SUIG representation (for example, see Fig.1).

Fig. 1. A representation (right) of a 2SUIG graph (left).

Note that this family is highly relevant in the study of cubicity 2 graphs
as they, informally speaking, capture the local structures of these graphs. Note
that the complexity of the graph recognition problem for 2SUIG is not known
and seems to be a difficult problem. Whereas, recognition problem of trees is
challenging, which we address in this article. In general, recognizing tree for
graph families are either polynomial time solvable, such as in the case of interval
graphs, unit interval graphs, boxicity 2 graphs or NP-hard, such as in the case
of the family of induced subgraphs of the 2-dimensional infinite grid graph [1].
Trees with boxicity 1 are the caterpiller graphs while all trees have boxicity
2. On the contrary, determining cubicity of a tree seems to be a more difficult
problem. It is easy to note that trees with cubicity 1 are paths. For higher dimen-
sions, Babu et al. [7] presented a randomized algorithm that runs in polynomial
time and computes cube representations of trees, of dimension within a constant
factor of the optimum. The complexity of determining the cubicity of a tree is
unknown [7]. In our case, the problem is linear time solvable but the solution is
highly non-trivial.

In this article, we characterize all trees that admit a 2SUIG representation
using forbidden structures. We prove the following:

Theorem 1. Determining whether a given tree T = (V, E) is a 2SUIG can be
done in O(|V]) time.

We propose an algorithm that outputs a 2SUIG representation of the trees
which are 2SUIG. Otherwise, our algorithm finds a forbidden structure respon-
sible for the tree not having a 2SUIG representation.

256 S. Bhore et al.

One interesting aspect of the family of 2-stab unit interval graphs is that
there is a scope of naturally generalizing the concept by defining a family of “k-
stab unit interval graphs or kSUIG”. Intuitively, for k£ = 1, this family will give
us the family of unit interval graphs and for & = oo it will give us the family of
cubicity 2 graphs. So our definition, in this sense, manages to go “in between”.
Varying the number of stab-lines, k, we obtain an infinite chain of graph families
starting with the unit interval graphs and tending towards graphs with cubicity
2. Thus the study of 2SUIG graphs maybe the beginning of solving the mystery
of why studying 2 dimensional geometric graphs are more difficult than studying
one dimensional graphs.

In Sect.2, we present some definitions. In Sect.3, we present the proof of
Theorem 1. Finally in Sect. 4, conclusions are drawn.

2 Preliminaries

Let G be a graph. The set of vertices and edges are denoted by V(G) and E(G),
respectively. A vertex subset I of G is an independent set if all the vertices of I
are pairwise non-adjacent. The cardinality of the largest independent set of G is
its independence number, denoted by a(G).

Let G be a unit square intersection graph with a fixed representation R.
We denote the unit square in R corresponding to the vertex v of G by s,. In
this article, by a unit square we will always mean a closed unit square. The co-
ordinates of the left lower-corner of s, are denoted by (z,y,). Given a graph G
with a 2SUIG representation R and two vertices u,v € V(G) we say s, <g Sy if
Ty < Ty and 8y <y Sy if Yo < Yo (see Fig.2). Let H be a connected subgraph of
G. Consider the union of intervals obtained from the projection of unit squares
corresponding to the vertices of H on X —axis. This so obtained interval span(H)
is called the span of H in R.

Fig. 2. In the above picture s, <, sy, and s, <y Sv.

A leaf is a vertex with degree 1. A caterpillar is a tree where every leaf
vertex is adjacent to a vertex of a fixed path. A branch vertex is a vertex having
degree more than 2. A branch edge is an edge incident to a branch vertex.
A claw is the complete bipartite graph K 3. Given a 2SUIG representation R
of a graph G, an edge wv is a bridge edge if s, and s, intersect different stab
lines. Given a 2SUIG representation of a graph G, the vertices corresponding to
the unit squares intersecting the upper stab line are called upper vertices and
the vertices corresponding to the unit squares intersecting the lower stab line

On Local Structures of Cubicity 2 Graphs 257

are called lower vertices. If all the vertices of a set intersect the same stab line
then we say they are in the same stab.

Let P = vivs...vx be a path with a 2SUIG representation R. The path P is
a monotone path if either s,, <z Sy, <z ... <z Sy, O Sy, <z Spp_; <z - <z Su,-
Let P = v1v2...v, be a monotone path with s,;, <z 8y, <z ... <g Sy, and all v;’s
are in the same stab. Observe that a(P) = [4] < span(P) < k are tight bounds
for span(P). Fix some constant ¢ € (0,.5). A monotone representation of P is
stretched if span(P) = k and is shrinked if span(P) = [£] + ¢ (see Fig. 3). The
value of ¢ within that range will not affect our proof. If all the vertices of P have
distinct lower left corners and are in the same stab, then P must be monotone.
Such monotone path can be classified as follows.

1. right monotone: all the vertices of the path are s,, <z Sy, <z ... <z Suy;
2. left monotone: all the vertices of the path are s,, <z v, ; <z .. <z Suv;;

Lower right monotone path is right monotone path with all lower vertices. Upper
right monotone path is right monotone path with all upper vertices. Similalry,
we have lower left monotone path and upper left monotone path.

A path P = vjvs...v; is called a folded path if it has a degree two vertex u
such that either s, <, s, for allv € V(P)\{u} or s, <, s, forallv € V(P)\{u}.
Note that all vertices of a folded path cannot be in the same stab.

A red edge of a tree T is an edge e such that each component of T\ {e}
contains a claw. A red path is a path induced by red edges. A mazimal red path
is a red path that is not properly contained in another red path. Let P = vyvs...v%
be a maximal red path in 7. The vertices v; and vy are endpoints of P.

5 unit

(3+¢c)unit
<

Fig. 3. A streached (left) and shrinked (right) representation of a path on five vertices.

3 Proof of Theorem 1

Given a tree T, our objective is to determine whether 7" has a 2SUIG repre-
sentation. Let T = (V, E) be a fixed tree. We will now prove several necessary
conditions for T" being a 2SUIG. On the other hand, we will show that these
conditions together are also sufficient and can be verified in O(|V|) time.

3.1 Structural Properties

We will start by proving some structural properties of T' assuming it is a 2SUIG.

258 S. Bhore et al.

Lemma 1. If T has a 2SUIG representation, then its vertices have degree at
most four.

A tree T that admits a 2SUIG representation does not necessarily have a red
edge (defined in Sect.2). But if T has at least one red edge then the red edges
of T must induce a path.

Lemma 2. If T has a 2SUIG representation, then either T has no red edge or
the set of red edges of T induces a connected path.

Proof. Let T has at least one red edge and T” be the graph induced by all red
edges. First we will show that 7" is connected. Thus, assume that 77 has at least
two components 77 and 75. Then there is a path P in T' connecting 77 and T5.
Note that removing an edge e of P creates two components of T" each of which
contains a claw. Thus, e should be a red edge. Therefore, T” is connected.

Now we will show that 7" is a path. Assume that v is a vertex of T” with degree
at least 3. Also, let v1, v and vs be three neighbors of v in T”. In any 2SUIG
representation of 7', at least three corners of s, must be intersected by s, , Sy,
and s,,. Without loss of generality, we assume that s,, intersects the upper-left
corner of s, $,, intersect the upper-right corner of s,, and s,, intersects the left
lower-corner of s,. This implies that s,,, s,, intersect the upper stab line while
Sy, intersects the lower stab line.

Note that a claw has a 2SUIG representation. Any such representation of a
claw will have squares intersecting the upper stab line and squares intersecting
the lower stab line. As each component of T'\ {vv;} has a claw, there must be a
path of the form vivy1v12...v1 in T such that s,,, <, S,, for all i € {1,2,...,k}
where s,,,, intersects the lower stab line. Similarly, as each component of T\ {vvs }
has a claw, there must be a path of the form vov9iv2s...v2;, in T such that
Spy <o Suy, for all i € {1,2,...,k"} where s,,,, intersects the lower stab line.
Moreover, as each component of T\ {vvs} has a claw, there must be a path of
the form v3v31v32...v3,» in T where Sy, intersects the upper stab line. This
will force a cycle in the representation of T, a contradiction. Thus, T” must be
a path.

The above result leads us to two cases: when 7' has a red path and when T'
does not have any red edge. If the red edges of T induces a path P, then construct
the extended red path A = ajas...ax by including the edge(s), that are not red,
incident to the endpoint(s) of P that have degree two in T In particular, if both
the end points of P are branch vertices, the extended red path A = P. On the
other hand, if T has no red edges, then distance between any two branch vertices
is at most 2. Thus, there exist a vertex v in T" whose closed neighborhood N[v]
contains all the branch vertices of T. Choose (if not found to be unique) one
such special vertex v. If v has degree two then consider the path uwvw induced
by the closed neighborhood of v and call it the extended red path of T'. If v does
not have degree two, then the extended red path of T' is the singleton vertex v.
In any case, rename the vertices of the extended red path A = ajas...a; so that
we can speak about it in an uniform framework along with the case T having

On Local Structures of Cubicity 2 Graphs 259

red edges. We fix such an extended red path A = ajas...a; for the rest of this
article. The vertices V4 = {a1,as, ..., ax} of this extended red path A are called
the red vertices. The following lemmas will provide intuitions about how a tree
having a 2SUIG representation looks like.

Lemma 3. If T has a 25UIG representation and does not have any red edge,
then the number of branch vertex in T is at most 5.

Fig. 4. The nomenclature — red edges = thick lines; new edge(s) added to the red path
for obtaining the extended red path = thick dotted line(s); red vertices = big solid
circles, agents = big hollow circles, tails = thin dotted lines; vertices of the tails =
small solid circles.

The above follows directly from the fact that the vertices of T' has degree at
most four.

Lemma 4. If T has at most one branch vertex with degree at most four, then
T has a 2SUIG representation.

Proof. If T has no branch vertices, then T is a path which admits a unit interval
representation. On the other hand, T with one branch vertices of degree at
most four is a subdivision of K; 3 or K; 4. These graphs clearly admit 2SUIG
representation.

Lemma 5. A branch vertex of a tree T is either a red vertex or is adjacent to
a red vertex.

Proof. If T has no red edges, then there exists a red vertex v in T such that all
the branch vertices are in the closed neighborhood N|[v] of v.

Thus suppose that the red edges of T induces a path. Let a red vertex v and
a non-red branch vertex u be connected by a path with no red edges of length at
least 2. Clearly after deleting this path, the component containing v contatins
a claw. Thus if we delete the edge {e} of the path incident to v, then both the
components of T'\ {e} contains a claw, a contradiction.

Note that if T is a 2SUIG tree with at least two branch vertices, then the
endpoints a; and ap of the extended path A must be branch vertices of T'.
Assume that A, = {a1 = a;,,0ai,,...,a;,, = ap} be the branch vertices of A
where 1 =iy < iy < ... < g = k. The neighbors of red vertices that are not red
are called agents. An agent v is adjacent to exactly one red vertex, say a;, of T'.
We call v is an agent of a; in this case.

260 S. Bhore et al.

If we delete all the red vertices and agents from a 2SUIG tree T then by
Lemma 5 we will be left with some disjoint paths. Each such path actually starts
from (that is, is one endpoint of) one of the agents. Let P = vjvs...v; be a
path where vy is an agent and the other vertices are neither agent nor red
vertices. Also vs,vs,...,v;_1 are degree 2 vertices and v; is a leaf. Then the path
P’ = vyvs...v;_1v; is called a tail of agent v;. Let v1 be an agent of the red vertex
a;. Sometimes we will also use the term “tail P’ of the red vertex a;”. Deleting
the tail P’ is to delete all the vertices of P’. The red vertex a;, all its agents and
tails are together called a; and its associates for each j € {1,2,...k}. Note that
an agent has exactly two tails by allowing tails with zero vertices. Let us set
the following conventions: the tails of an agent z are the long tail lt(z) and the
short tail st(z) such that |lt(z)| > |st(z)| where |lt(z)| and |st(z)| denotes the
number of vertices in the respective tails. Now we have enough nomenclatures
(see Fig.4) to present the rest of the proof.

3.2 Partial Description of the Canonical Representation

In the following, we will show that there is a canonical way to represent a 2SUIG
tree. First we will describe the representation of the extended red path followed
by representation of the agents and their tails.

Lemma 6. IfT is a 2SUIG with at least one red edge, then there exists a 2SUIG
representation where the extended red path of T is monotone and stretched.

Proof. Let A be the extended red path of T' with a representation R. If A is not
monotone then one of the following is true. (i) A is a folded path. (ii) There are
three vertices {a;, aiy1,a;42} € V(A) such that s,,,, <u 54, and sq,,, <z Sa; .
where 4 > 1 and for all j < ¢ we have Sa; <z Saji1-

(i) There is a vertex u € V(A) with s, <, s, for all v € V(A) \ {u}. Then
there will be two claws Cq,Cy in two different components of T'\ {u} with
Sy <z Sy for allv € V(C1) UV (Cs). But as T is a 2SUIG, this configuration will
force a cycle in it. This is a contradiction.

(ii) Without loss of generality assume s,, intersects the lower stab line. Then
Sa;,, and sq,,, must intersect the upper stab line. Let T}, be the component
of T obtained by deleting the edge a;a;+1 and contains a;yi. There is a claw
Cs in Tiyq with s, <. s, for all w € V(C3). Thus, an agent z of a; with
Sa; <z Sy is not a branch vertex as otherwise this will force a cycle. Hence its
tail can be presented by a lower-right monotone representation. Therefore, we
can translate (rigid motion) the component 7T} to the right to obtain a 2SUIG
representation of 7" where the extended red path A is monotone.

To prove that A can be stretched let e = a;a;4+1 be an edge of the extended
red path A with 24, < x4,,, in R. Let T; and Tj;1 be the components of 7"\ {e}
containing a; and a,41, respectively. Now translate (rigid motion) the component
T;+1 to the right obtaining a 2SUIG representation with x,,,, = x4, +1. We are
done by performing this operation on every edge of A.

i+1

On Local Structures of Cubicity 2 Graphs 261

Similarly it can be shown that if 7" is a 2SUIG with no red edge, still it admits
a representation where the extended red path A is monotone and streched. We
turn our focus on the bridge edges of the extended red path.

N T e, Wy |

Lot e =

Fig. 5. Explaining the reflection and translation described in the proof of Lemma 7
with an example.

Lemma 7. If T admits a 2SUIG representation R with a stretched monotone
extended red path, then there exists a 2SUIG representation where every red
bridge vertex is a branch vertex.

Proof. Let A = ajas...ar be a right monotone extended red path of T with
respect to R. Let e = a;a,41 be a bridge edge of the extended red path A where
ai+1 is not a branch vertex. Also assume that a bridge vertex a; is a branch
vertex for all j < 4.

Let S = {v € V(T)|sq; <z Sv}. Let T' be the graph induced by S. Note that S
contains the vertex a; 1. Now consider the reflection of the 2SUIG representation
of T" induced by R with respect to the X-axis (Fig. 5). This will give us a picture
where every unit square corresponding to the vertices of T” lies under the X-
axis. This is a particular unit square representation R’ of 7' which in fact is
also a 2SUIG representation of it if we consider the stab lines to be y = —1 and
y = —2 — €. In this 2SUIG representation R’, the lower vertices with respect to
R of T’ became upper vertices and vice versa. Now translate the unit square
representation R’ upwards until all the upper vertices (with respect to R') of T”
intersects y = 2 + ¢, all the lower vertices intersect y = 1. Note that a; can have
at most one degree 2 agent in T” and thus, that agent can have at most one tail.
After what we did above, we can adjust the Y-co-ordinates of that agent and its
tail, if needed, to obtain a 2SUIG representation of T

We will be done by induction after handling one more case. The case where a;
is the first bridge vertex of A which is not a branch vertex while a;41 is a branch
vertex. Let S = {v € V(T)|sy <& Sa,.,} and let T” be the graph induced by
S’. To achieve our goal, we do the exact same thing with 7" that we did with
T’. This will provide us a 2SUIG representation of T" where each bridge vertex
a; is a branch vertex for all j < i+ 1. Hence we are done by induction.

262 S. Bhore et al.

Now we will describe a way to represent the tails in the following lemma.

Lemma 8. If T admits a 2SUIG representation R, then there exists a 2SUIG
representation where each tail is a shrinked monotone path and all its vertices
are in the same stab.

Proof. Let P = vavs...v;—1 be a tail of agent v;. Note that if all vertices of the
tail P are in the same stab then P must be monotone. Furthermore, if P is not
shrinked in R then we can shrink it to obtain a new representation of T" without
changing anything else of R.

Therefore, to complete the proof, let us assume that not all vertices of P
are in the same stab. Then at least one edge e of P is a bridge edge. Any brige
edge divides the stab lines into two parts, left and right. Assume, without loss
of generality, that s,, is in the left part. Thus, as there are no branch vertices
in the tail, we do not have any vertex w € V(T) \ V(P) with s, lying in the
right part. Thus, we can modify the representation R by placing all the vertices
of the tail P in the same stab making use of the empty right part.

3.3 Properties of the Canonical Representation

Assume that R is a 2SUIG representation of T' such that extended red path is a
monotone stretched path. The other vertices of T are the agents and the vertices
of the tails. Note that the endpoints a; and aj can have at most 3 agents and 6
tails while the other red vertices can have at most 2 agents and 4 tails.

Lemma 9. Let T be a 2SUIG tree with a representation R where the extended
red path A is a stretched right monotone path and R satisfies the conditions of
Lemmas 7 and 8.

(a) If each right monotone tail of T is such that it is not possible to make the
tail left monotone and obtain a 2SUIG representation of T from R without
changing anything else, then any red vertex other than ap has at most one
right monotone tail having at least two vertices.

(b) If each left monotone tail of T is such that it is not possible to make the
tail right monotone and obtain a 2SUIG representation of T from R without
changing anything else, then any red vertex other than a; has at most one
left monotone tail having at least two vertices.

Proof. (a) Let a; (j < k) be a red vertex of T' with at least two monotone tails.
Without loss of generality, assume that a; is a lower vertex. Note that s, ,
contains either the upper-right corner or the lower-right corner of s,;. Let v be
an agent of a;.

Case 1. If s, contains the lower-left corner of s,;, then v cannot have a right
monotone tail for any j > 2 as s,,_, contains the upper-left corner of s,;.
If j = 1, then a right monotone tail P = vivs...v; of v must be upper-right
monotone. This means vv; is a bridge edge. This will mean, there is no upper

On Local Structures of Cubicity 2 Graphs 263

vertex z in T with s, <; $,,. Thus, if we make the tail P an upper-left
monotone tail instead (we keep the position of s,, as before but change the
positions of the other vertices of P), then we obtain a 2SUIG representation
of T'. But this should not be possible according to the assumptions. Hence v
cannot have a right-monotone tail for any red vertex a; (j # k).

Case 2. If s, contains the upper-left corner of s,,, then v can indeed have an
upper-right monotone tail. Note that, in this case, v can have at most one
right monotone path, an upper-right monotone that is. If some other neighbor
of a; contains the upper-right corner of s, then the right monotone tail of
v can have at most one vertex in order to avoid cycles in 7.

Case 3. If s, contains the upper-right corner of s,;, then v can have at most
one right monotone tail, an upper-right monotone tail to be specific, as this
situation implies that s,;,, contains the lower-right corner of s,;.

Therefore, only the agents containing upper-left corner or upper-right corner
of s4; can have at most one right monotone tail each. But if both types of agents
are present, then the right monotone tail of the agent containing upper-left corner
of s,; can have at most one vertex.

(b) This proof can be done similarly like (a).

From the above we can infer the following;:

Lemma 10. Let T be a 2SUIG tree with a representation R where a lower (or
upper) red vertex has two upper (or lower) neighbors.

1. If the left neighbor is an agent then it can have at most one right monotone
tail having at most one vertex.

2. If the right neighbor is an agent then it can have at most one left monotone
tail having at most one vertex.

3. If both the mneighbors are agents then the left neighbor can have a right
monotone tail and the right neighbor can have a left monotone tail having
one vertex each.

In the above lemma, the third case is to say that the worst case scenarios of
the first two cases can take place simultaniously. Now we will discuss the length
of the tails that can be accommodated between two red branch vertices in the
following lemma.

Lemma 11. Let T be a 2SUIG tree with a representation R with a stretched
right monotone extended red path A. Let a;, aj4m (m = 0 is possible) be two
red branch vertices such that a; has a right monotone tail P and aj4,, has a
left monotone tail P’ in the same stab with no vertex v of T satisfying s, <u
Sy <gz Sp where p,p’ are the leaf vertices of the tails P, P’, respectively. Then,
depending on the positions of the corresponding agents v of P and v' of P', R
must satisfy one of the following conditions:

1. If 8q; <o 80 and sy <y Sq,,,, then a(P,) +a(P),) < m;
2. If s, <u 84, and sy <y Sa,,,,, then a(P,) + a(P),) =1 <m;

264 S. Bhore et al.

3. If sy <u 84, and Sq,, ., <az v, then a(P,) + a(P),) —2 <m;
4. If 84, <z 8y and sq,,,, <o Su, then a(P,) +a(P),) =1 <m;

where P, is the path induced by V(P) U {v} and P!, is the path induced by
V(P U{v'}.

Proof. Let A" = ajai41...a14m and s, <; sq, and sq,,,, <; Su. As A’ is stretched
and P, and P, are both shrinked we have span(A")+2 > span(P,)+ span(P),).
This implies m +1+2 =m+3 > [a(P,) + a(P),) + 2¢] = a(P,) + a(P),) +1
and hence condition 3. The other conditions can be proved similarly.

As we discuss in the following lemma, in our prescribed representation of T,
assuming it is a 2SUIG, bridge edges of the extended red path are induced by
red branch vertices.

Lemma 12. If two adjacent red vertices both have degree 4, then they must be
in different stabs.

Proof. Without loss of generality assume that aja;+; is such an edge where
ay,a;41 are both degree 4 lower vertices with sq, <; Sq,,,. Then either the
upper-right corner of s, is contained in s,, , or the upper-left corner of s, ,
is contained in s,,. If the upper-right corner of s,, is contained in s,,,,, then
a; cannot have more than three neighbors as no neighbor other than s, , can
contain one of the right corners of s,,. We can argue similarly for the other case
as well.

3.4 The Canonical Representation

In this section suppose that T is a tree with maximum degree 4 such that either
there is no red edge or the red edges induces a path. We will try to obtain a
2SUIG representation of T and if our process fails to obtain such a presentation,
then we will conclude that 7" is not a 2SUIG. Also assume that the extended red
path of T is A = aias...a;. Due to Lemma 6 we can assume that A is a stretched
right monotone path and a; is a lower vertex.

Our strategy is to first represent a1 and its associates and then to represent a;
and its associates one by one in ascending order of indices where i € {2,3, ..., k}.
In each step our strategy is to represent a; and its associates in such a way
that the maximum value of z, is minimized where v is a vertex from a; and
its associates. Note that the main difficulty is to represent a; and its associates
when d(a;) > 3 as otherwise a; do not have any agents or tails. We begin with
the following lemma.

Lemma 13. There exists a 2SUIG representation, satisfying all the properties
of the canonical representation proved till now, with a; and as in the same stab
if and only if either d(a1) < 3 or d(az) < 3.

Proof. The “only if” part follows from Lemma 12. The “if” part can be proved
similarly like the proof of Lemma7.

On Local Structures of Cubicity 2 Graphs 265

Representation of a, and Its Associates When k # 1: First we will handle
the case k # 1. Now we are going to list out the way to obtain the canonical
representation of a; and its associates and the conditions for it to be valid
through case analysis. Also in any representation the agents intersecting the
lower-left corner, the upper-left corner, the upper-right corner and the lower-
right corner of s,, are renamed as 21, 22, 23 and 24, respectively. The conditions
below are simple conditions for avoiding cycles in the graph.

Case 1: d(a1) = 4,d(az) = 4. In this case as is an upper vertex by Lemma 12,
Sa, intersects the upper-right corner of s,, and the three agents of a; are
21,22, %4-

(1) lt(z1) is shrinked lower-left monotone and st(zq) is shrinked upper-left
monotone.

(2) 1t(z2) is shrinked upper-left monotone and st(z3) is shrinked upper-right
monotone.

(3) |st(z2)| <1 and if |st(z1)| > 0, then |lt(z2)| < 1.

(1) [it(=1)] = 0.

Case 2: d(a1) = 3,d(az) = 4. In this case ag is a lower vertex by Lemma 13, s,,
intersects the upper-right corner of s,, and the two agents of a; are z, 23.
(1) conditions (1)—(3) of Case 1.

Case 3: d(a1) = 4,d(az) = 3. In this case ag is a lower vertex by Lemma 13, s,,
intersects the lower-right corner of s,, and the three agents of a; are 21, 22, 23.
(1) conditions (1)—(3) from Case 1.

(2) |lt(z3)] <1, lt(z3) is shrinked upper-left monotone and st(z3) is shrinked
upper-right monotone.
Case 4: d(a1) = 3,d(az) = 3. In this case ag is a lower vertex by Lemma 13, s,,
intersects the lower-right corner of s,, and the two agents of a; are 21, z5.
(1) lt(z1) is shrinked lower-left monotone and st(zq) is shrinked upper-left
monotone.

(2) if [st(z1)| > 0, then lt(z2) is shrinked upper-right monotone with |lt(z2)| <
3 and st(za) is shrinked upper-left monotone |st(z3)| < 1.

(3) if |st(z1)| = 0, then lt(z2) is shrinked upper-left monotone and st(z2) is
shrinked upper-right monotone |st(zz)| < 3.

Case 5: d(a1) = 4,d(az) = 2. In this case ag is a lower vertex by Lemma 13, s,,
intersects the lower-right corner of s,, and the three agents of a; are z1, 22, 23.
(1) condition (1)—(3) from Case 1.

(2) if |it(z3)| < 1, then lt(z3) is shrinked upper-left monotone and st(z3) is
shrinked upper-right monotone.

(3) if |it(z3)] > 1, then |st(z3)] < 1 and lt(z3) is shrinked upper-right
monotone and st(z3) is shrinked upper-left monotone.

Case 6: d(a1) = 3,d(az) = 2. In this case ay is a lower vertex by Lemma 13,
Sa, intersects the lower-right corner of s,, and the two agents of a; are from
{2’1, z2, 23}.

(1) lt(z1) is shrinked lower-left monotone and st(zq) is shrinked upper-left
monotone.

266 S. Bhore et al.

(2) if both 21,22 exists and |st(z1)] = 0, then lt(z2) is shrinked upper-left
monotone and st(zz) is shrinked upper-right monotone.

(3) if both z1, 29 exists, |st(z1)] > 0 and |lt(z2)| < 1, then lt(z2) is shrinked
upper-left monotone and st(z2) is shrinked upper-right monotone.

(4) if both 2z, 29 exists, |st(z1)] > 0 and |lt(z2)| > 1, then st(z3) is shrinked
upper-left monotone and [t(z3) is shrinked upper-right monotone with
|st(z1)] < 1.

(5) there is no case when both zy,z3 exists as we can always modify this
representation by making the agent playing the role of z; play the role of
z1 instead.

(6) there is no case when both z1, z5 exists with |st(z1)| = 0 as we can always
modify this representation by making the agent playing the role of z3 play
the role of z9 instead.

(7) there is no case when both z, z3 exists with |st(z3)] < 1 and |lt(z3)] < 3
as we can always modify this representation by making the agent playing
the role of z3 play the role of 2o instead.

(8) if both z1, 23 exists, |st(z1)| > 0 and |lt(z3)| < 3, then lt(z3) is shrinked
upper-left monotone and st(z2) is shrinked upper-right monotone.

(9) if both z1, z5 exists, |st(z1)] > 0 and |lt(z3)| > 3, then st(z3) is shrinked
upper-left monotone with |st(z1)| < 3 and lt(z2) is shrinked upper-right
monotone.

The square s,, must intersect one of the right corners of s,,. In each of the
cases listed above, there can be at most 3! = 6 possible ways of in which the
agents of a; can play the role of z1, 29, 23, z4. Among all possible ways those
which satisfies the above conditions, we choose the one for which the leaf of
the right-monotone tail of zy (only when z3, z4 does not exist) or z3 (z4 cannot
exist) or z4 (z3 cannot exist) is minimized with respect to <,. As there are at
most a constant number of probes to be made, this is achieveable in constant
time. Moreover, such a representation, if found, will be called the optimized
representation of a1 and its associates. Otherwise, T is not a 2SUIG.

Representation of a; and Its Associates When k = 1: The canonical
representation of aj and its associates is similar as above.

Representation of a; and Its Associates for All 1 < i < k: We describe
the canonical representation of a; and its associates given the canonical repre-
sentation of a; and its associates for all j < i. Throughout the case analysis we
will assume without loss of generality that a;_; is an upper vertex. Also assume
that a; be the maximum ¢’ < 4 such that d(a;) > 3 (¢ — 1 = 4’ is possible).
Moreover, in any representation the agents intersecting the lower-left corner, the
upper-right corner and the lower-right corner of s,, are renamed as 21, z3 and
z4, respectively. The conditions below are simple conditions for avoiding cycles
in the graph.

On Local Structures of Cubicity 2 Graphs 267

(1) If 21 exists and a; is a lower vertex, then |st(z1)| = 0 and lt(z1) is a lower-left
shrinked monotone path satisfying conditions of Lemma 11.

(2) If 21 exists, a; is an upper vertex and either zz or z4 exists, then st(z1)
is a lower-right shrinked monotone path with |st(z1)] < 1 and lt(z1) is a
lower-left shrinked monotone path satisfying conditions of Lemma 11.

(3) If 1 exists, a; is an upper vertex and neither z3 nor z4 exists, Pi; is shrinked
lower-left monotone satisfying conditions of Lemma 11 and Pj5 is shrinked
lower-right monotone where {Py1, P1a} = {st(z1),t(z1)}.

(4) If z3 exists with a; being an upper vertex, then |st(z3)| = 0 and lt(z3) is an
upper-right shrinked monotone path.

(5) If z5 exists with a; being a lower vertex, then z3 has an upper-left monotone
tail P; satisfying |P;| < 1 and an upper-right monotone tail P, with some
{Pl, P2} = {St(Zg,), lt(Zg)}

(6) If z4 exists with a; being an upper vertex and z; also exists, then z4 has a
lower-left monotone tail P; satisfying |P;| < 1 and a lower-right monotone
tail Py with some {Py, Po} = {st(z4),1t(24)}.

(7) If z4 exists with a; being an upper vertex and z; does not exist, then zy
has a lower-left monotone tail P; conditions of Lemma 11 and a lower-right
monotone tail Py with some {Py, Py} = {st(z4),1t(24)}.

(8) If z4 exists with a; being a lower vertex, then |st(z4)] = 0 and lt(z4) is a
lower-right shrinked monotone path.

To check the above conditions, as there are at most a constant number of
probes to be made, this is achievable in constant time. Moreover, such a rep-
resentation, if found, will be called the optimized representation of a; and its
associates. Otherwise, T is not a 2SUIG.

Representation of ai, and Its Associates: The canonical representation of
ar, and its associates is similar as above.

3.5 Algorithm

Finally we will describe the algorithm for recongnizing if a given tree T is a
2SUIG. Whenever our algorithm concludes that the given tree T is not a 2SUIG,
there is a configuration responsible for it. These configurations are forbidden
configurations for 2SUIG trees.

(1) Check if maximum degree of T' is at most 4. If not, then T is not a 2SUIG
(Lemma1).

(2) Check if there at most one branch vertex in T If yes, then T is a 2SUIG by
Lemmad4.

(3) Find out the graph induced by the red edges of the tree. If that graph has
at least one edge but not a path, then T is not a 2SUIG by Lemma 2.

(4) Find out a (but for some trivial cases it is unique) extended red path A =
ayas...ap. Assign x,, = i for all i € {1,2,...,k}. Moreover, put s,, in the
lower stab.

268 S. Bhore et al.

(5) For i =1 to k find out the optimized representation of a; and its associates.
If we fail to find such a representation for some i € {1,2,...,k}, then T is
not a 2SUIG.

Correctness of the algorithm implies from the previous results and discus-
sions. Given a tree it is possible to find out its set of red edges in linear time
using post-order traversal. For the other steps we need to probe at most a con-
stant number cases for each red vertex. Thus, it is possible to run the algorithm
in O(|V|) time.

4 Conclusions

In this paper we consider the problem of recognizing 2SUIG trees. While doing
that we proved a number of structural properties and provided insights regarding
how a canonical 2SUIG representation of a tree can be obtained. Recall our
discussion on red edges and red vertices of a tree. Observe that, if the red vertices
induce a path, then the tree has a unit square intersection representation. Hence,
we hope our work can be extended for “k-stab unit interval graphs” and will help
solving the tree recognition problem for cubicity two graphs. Even though the
recognition of trees turns out to be solvable in linear time for 2SUIG, the natural
and probably, the more important question is the following:

Question 1. Given a graph G what is the complexity for determining if G is a
2SUIG?

References

1. Bhatt, S.N., Cosmadakis, S.S.: The complexity of minimizing wire lengths in VLSI
layouts. Inf. Process. Lett. 25(4), 263-267 (1987)

2. Bhore, S.K., Chakraborty, D., Das, S., Sen, S.: On a special class of boxicity 2
graphs. In: Ganguly, S., Krishnamurti, R. (eds.) CALDAM 2015. LNCS, vol. 8959,
pp. 157-168. Springer, Heidelberg (2015)

3. Breu, H.: Algorithmic aspects of constrained unit disk graphs. Ph.D. thesis,
University of British Columbia (1996)

4. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math.
86(1-3), 165-177 (1990)

5. Correa, J., Feuilloley, L., Pérez-Lantero, P., Soto, J.A.: Independent and hitting
sets of rectangles intersecting a diagonal line: algorithms and complexity. Discrete
Comput. Geom. 53(2), 344-365 (2015)

6. Imai, H., Asano, T.: Finding the connected components and a maximum clique
of an intersection graph of rectangles in the plane. J. Algorithms 4(4), 310-323
(1983)

7. Babu, J., Basavaraju, M., Chandran, L.S., Rajendraprasad, D., Sivadasan, N.:
Approximating the cubicity of trees. CoRR, abs/1402.6310 (2014)

8. Kratochvil, J.: A special planar satisfiability problem and a consequence of its
NP-completeness. Discrete Appl. Math. 52(3), 233-252 (1994)

10.

11.

12.

On Local Structures of Cubicity 2 Graphs 269

Lekkeikerker, C., Boland, J.: Representation of a finite graph by a set of intervals
on the real line. Fundamenta Math. 51(1), 45-64 (1962)

Roberts, F.S.: On the boxicity and cubicity of a graph. In: Recent Progresses in
Combinatorics, pp. 301-310 (1969)

Scheinerman, E.R.: Characterizing intersection classes of graphs. Discrete Math.
55(2), 185-193 (1985)

West, D.B., Shmoys, D.B.: Recognizing graphs with fixed interval number is NP-
complete. Discrete Appl. Math. 8(3), 295-305 (1984)

Approximability of the Distance Independent
Set Problem on Regular Graphs
and Planar Graphs

Hiroshi Eto!, Takehiro Ito*?, Zhilong Liu'®), and Eiji Miyano®

! Kyushu Institute of Technology, Fukuoka 820-8502, Japan
{eto,liu}@theory.ces.kyutech.ac.jp, miyano@ces.kyutech.ac.jp
2 Tohoku University, Sendai 980-8579, Japan
takehiro@ecei.tohoku.ac. jp
3 CREST, JST, 4-1-8 Honcho, Kawaguchi 332-0012, Japan

Abstract. This paper studies generalized variants of the MAXIMUM
INDEPENDENT SET problem, called the MAXIMUM DISTANCE-d INDE-
PENDENT SET problem (MaxDdIS for short). For an integer d > 2,
a distance-d independent set of an unweighted graph G = (V,E)
is a subset S C V of vertices such that for any pair of vertices
u,v € S, the number of edges in any path between v and v is at
least d in G. Given an unweighted graph G, the goal of MaxDdIS
is to find a maximum-cardinality distance-d independent set of G.
In this paper, we analyze the (in)approximability of the problem on
r-regular graphs (r > 3) and planar graphs, as follows: (1) For every fixed
integers d > 3 and r > 3, MaxDdIS on r-regular graphs is APX-hard.
(2) We design polynomial-time O(r%~!)-approximation and O(r*=2/d)-
approximation algorithms for MaxDdIS on r-regular graphs. (3) We
sharpen the above O(r%~2 /d)-approximation algorithms when restricted
to d = r = 3, and give a polynomial-time 2-approximation algorithm for
MaxD3IS on cubic graphs. (4) Finally, we show that MaxDdIS admits a
polynomial-time approximation scheme (PTAS) for planar graphs.

1 Introduction

Let G be an unweighted graph; we denote by V(G) and E(G) the sets of ver-
tices and edges, respectively, and let n = |V(G)|. An independent set (or stable
set) of G is a subset S C V(G) of vertices such that {u,v} & E holds for all
u,v € S. In theoretical computer science and combinatorial optimization, one of
the most important and most investigated computational problems is the MAX-
IMUM INDEPENDENT SET problem (MaxIS for short): Given a graph G, the goal
of MaxIS is to find an independent set S of maximum cardinality in G. There are
a huge number of its applications in diverse fields, such as scheduling, computer
vision, pattern recognition, coding theory, map labeling, and computational biol-
ogy; many different problems have been modeled using independent sets.

This work is partially supported by JSPS KAKENHI Grant Numbers JP15J05484,
JP15H00849, JP16K00004, and JP26330017.
© Springer International Publishing AG 2016

T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 270-284, 2016.
DOI: 10.1007/978-3-319-48749-6_20

Approximability of the Distance Independent Set Problem 271

1.1 Owur Problems

In this paper, we consider a generalization of MaxIS, named the MAXIMUM
DISTANCE-d INDEPENDENT SET problem (MaxDdlS for short). For an integer
d > 2, a distance-d independent set of an unweighted graph G is a subset S C
V(G) of vertices such that for any pair of vertices u,v € S, the distance (i.e., the
number of edges) of any path between u and v is at least d in G. For an integer
d > 2, MaxDdIS is formulated as the following class of problems [1,8]:

Maximum Distance-d Independent Set (MaxDdIS)
Input: An unweighted graph G
Output: A distance-d independent set of G with the maximum cardinality

When d = 2, MaxDdIS (i.e., MaxD2IS) is equivalent to the original MaxIS.
Zuckerman [18] proved that MaxD2IS cannot be approximated in polynomial
time, unless P = NP, within a factor of n'—¢ for any € > 0. Moreover, MaxD2IS
remains NP-hard even if the input graph is a cubic planar graph, a triangle-
free graph, or a graph with large girth. Fortunately, however, it is well known
that MaxD2IS can be solved in polynomial time when restricted to, for example,
bipartite graphs [14], chordal graphs [9], circular-arc graphs [10], comparability
graphs [11], and many other classes [4,16,17].

For every fixed integer d > 3, Eto et al. [8] proved that MaxDdIS is NP-hard
even for planar bipartite graphs of maximum degree three. Furthermore, they
showed that it is NP-hard to approximate MaxDdIS on bipartite graphs and
chordal graphs within a factor of n'/2=% (¢ > 0) for every fixed integer d > 3
and every fixed odd integer d > 3, respectively. On the other hand, interestingly,
they showed that MaxDdIS on chordal graphs is solvable in polynomial time for
every fixed even integer d > 2. As the other positive results, Agnarsson et al. [1]
showed the tractability of MaxDdIS on interval graphs, trapezoid graphs, and
circular-arc graphs.

1.2 Known Results for Regular Graphs and Planar Graphs

In this paper, we focus on the (in)approximability of MaxDdIS on regular graphs
and planar graphs. As far as we know, this is the first paper which studies the
problem on those graphs for general d > 2. Thus, known results exist only for
MaxD2IS (MaxIS) on those graphs. Recall that the problem is NP-hard even for
cubic (i.e., 3-regular) planar graphs.

Chlebik and Chlebikova [6] proved the 1.0107, 1.0216, 1.0225, and 1.0236-
inapproximability for MaxD2IS on 3-regular, 4-regular, 5-regular, and r-regular
(r > 6) graphs, respectively. On the other hand, we can obtain polynomial-
time 1.2, 1.4, and 1.6-approximation algorithms for MaxD2IS on 3-regular, 4-
regular, and 5-regular graphs, respectively, by applying the %—approximation
algorithm proposed by Berman and Fujito [3] for the problem on general graphs

of maximum degree A < 613. We note that, for a larger maximum degree A

272 H. Eto et al.

(and hence general r), Halldérsson and Radhakrishnan developed polynomial-
time approximation algorithms within factors of % [12] and O(m) [13].

For planar graphs, it is well known that the Baker’s shifting technique [2] for
NP-hard optimization problems can be applied to MaxD2IS on planar graphs; it
yields a polynomial-time approximation scheme (PTAS). Thus, MaxD2IS can be

approximated within an arbitrarily small factor for planar graphs.

1.3 Owur Contribution

In this paper, we study the (in)approximability of MaxDdIS on regular graphs
and planar graphs for a fixed integer d > 3. Our main results are summarized
as follows:

(i) For every fixed integers d > 3 and r > 3, MaxDdIS on r-regular graphs is
APX-hard. In particular, when restricted to d = r = 3, we show that it is
NP-hard to approximate MaxD3IS on 3-regular graphs within 1.00105.

(ii) We then design polynomial-time O(r?~!)-approximation and O(r?~2/d)-
approximation algorithms for MaxDdIS on r-regular graphs. (The approx-
imation ratio of each algorithm will be analyzed precisely.) Note that the
running time of each algorithm is independent from r and d.

(iii) We consider the problem when restricted to d = r = 3, and give
a polynomial-time 2-approximation algorithm for MaxD3IS on 3-regular
graphs. We mnote that the simple applications of the above O(r?=2/d)-
approximation algorithm yields an approximation ratio strictly greater than
two. To improve the ratio to two, we sharpen and precisely analyze the
approximation algorithm.

(iv) Finally, by employing the Baker’s shifting technique [2], we show that
MaxDdIS on planar graphs admits a PTAS for every fixed constant d > 3.

Due to the page limitation, we omit some proofs from this extended abstract.

2 Notation

Let G = (V, E) be an unweighted graph, where V and F denote the set of vertices
and the set of edges, respectively. V(G) and E(G) also denote the vertex set and
the edge set of GG, respectively. We denote an edge with endpoints v and v by
{u,v}. For a pair of vertices u and v, the length of a shortest path from u to v,
i.e., the distance between u and v is denoted by diste(u,v), and the diameter G
is defined as diam(G) = max, yev distg(u,v).

For a graph G and its vertex v, we denote the (open) neighborhood of v in G
by Di(v) = {u € V(G) | {v,u} € E(G)}, i.e., for any u € Dy (v), distg(v,u) =1
holds. More generally, for d > 1, let Dg(v) = {w € V(G) | distg(v,w) = d} be
the subset of vertices that are distance-d away from v. Similarly, let D1 (S) be the
open neighborhood of a subset S of vertices, D2(S) be the open neighborhood
of Dy(S), and so on. The degree of v is denoted by deg(v) = |D1(v)|. A graph is

Approximability of the Distance Independent Set Problem 273

r-reqular if the degree deg(v) of every vertex v is exactly r > 0, and a 3-regular
graph is often called cubic graph.

A graph Gg is a subgraph of a graph G if V(Gs) C V(G) and E(Gg) C
E(Q). For a subset of vertices U C V, let G[U] be the subgraph induced by U.
For a positive integer d > 1 and a graph G, the dth power of G, denoted by
G? = (V(Q), E?%), is the graph formed from V(G), where all pairs of vertices
u,v € G such that distg(u,v) < d are connected by edges {u,v}’s. Note that
E(G) C E4, i.e., the original edges in E(G) are retained.

We say that an algorithm ALG is a o-approximation algorithm for MaxDdIS
or that ALG’s approximation ratio is at most o if |OPT(G)| < o-|ALG(G)| holds
for any input G, where ALG(G) is a distance-d independent set returned by ALG
and OPT(G) is an optimal distance-d independent set on input G.

3 APX-Hardness of MaxDdIS on Regular Graphs

In this section we analyze the inapproximability of MaxDdIS on r-regular graphs.

3.1 MaxDdIS for Cubic Graphs

First, we prove the following inapproximability for MaxD3IS on cubic (i.e., 3-
regular) graphs:

Theorem 1. There exists no o-approximation algorithm for MaxD3IS on cubic
950

graphs for constant o < 1.00105 < g7g.

Proof. The hardness of approximation of MaxD3IS on cubic graphs is shown by
a gap-preserving reduction from MaxD2IS on cubic graphs. It is known [6] that
there exists no o’-approximation algorithm for the latter problem for constant
o < %. Consider an input cubic graph Gy = (Vp, Ep) with n-vertices and m
edges of MaxD2IS. Then, we construct another cubic graph G = (V, E) as an
instance of MaxD3IS on cubic graphs from Gy.

Let #0PT5(Gy) (and #OPT3(G), resp.) denote the number of vertices of
an optimal distance-2 independent set in Gy (and one of an optimal distance-3
independent set in G, resp.). Let Vo = {v1,v2,- -+ ,v,} and Ey = {e1, €2, ,en}
be vertex and edge sets of G, respectively. Also, let g(n) be a parameter function
of the instance Gy, meaning a solution size. Then, we provide the gap preserving
reduction such that (C1) if #0PT5(Go) > g(n), then #OPT5(G) > g(n) + 2m,
and (C2) if #OPTx(Gy) < % for a constant 7/ > 1, then #0PT3(G) <

g(n) +2m
v)

From Gy, we construct the cubic graph G which consists of (i) n vertices, u'
through «™, which are associated with n vertices in Vj, v; through v,, respec-
tively, and (ii) m subgraphs, G; through G,,, which are associated with m edges
in Ey, ey through e,,, respectively. We often call those subgraphs edge-gadgets in
the following. See Fig. 1(a). For every p, 1 < p < m, the pth diamond-shape gad-

get G, contains ten vertices V(G,,) = {uf, ub, uf, ufj JU{al, o5 YU{BY, 85, BY, B},

274 H. Eto et al.

Fig. 1. (a) two vertices u;, u; and edge-gadget G3>* and (b) reduced graph G

and the pth edge set E(G)p) has 14 edges as illustrated in Fig.1(a). (iii) If
e; = {vi,v;} € Ey, then we introduce two edges {u},u’} and {u},u’}. As shown
in Fig. 1(b), all the edges are replaced with edge-gadgets. This completes the
reduction. One can see that the constructed graph G is cubic. Also, the above
construction can be accomplished in polynomial time.

For the above construction of G, we show that G has a distance-3 inde-
pendent set S such that |S| > g(n) + 2m if and only if Gy has a distance-
2 independent set Sy such that |Syp| > g(n). Suppose that the graph Gy of

MaxD2IS has the distance-2 independent set Sy = {v1+,v2+, -+ ,vg(n)+} in Go,
where {1%,2*,--- g(n)"} C {1,2,--- ,n}. Then, we select a subset of vertices
S" = {ur+,uz+,- -+ ,ug(n)+} and two vertices in each edge-gadget, arbitrary one

of the four pairs {af, 85}, {of, 85}, {oh, B85}, and {ah, 5)}. Let S” be the set
of vertices in edge-gadgets. Hence |S’| = g(n) and |S”| = 2m. One can see that
S =8"US" is a distance-3 independent set in G since the pairwise distance in
S’ is at least four, the pairwise distance in S” is at least six, and the distance
between of (or f) in S” and every vertex in S’ is at least three for each p.
Conversely, suppose that the graph G has the distance-3 independent set S
such that |S| > g(n) +2m. Then, one can see that for each subgraph G[V (G,)U
{ui,u;}], the diameter diam(G,) of G, is five, and diam(G[V(G,) U {u;}]) (or
diam(G[V (Gp) U {u;}])) is six. Therefore, we can select at most three vertices
as the distance-3 independent set from the graph in Fig.1(a). If we select the
other vertices in each subgraph G, then we can select at most two vertices of
the distance-3 independent set in G[V(G,) U {u;, u;}]. Thus, the maximum size
of the distance-3 independent set in V(G1)UV (G2)U---UV(G,,) is at most 2m,

which means that [S N {ui,uz,...,un}| > g(n). Let {u1«,ug, -+ ,ugmy~} be a
subset of g(n) vertices in S N {uq,us, -+ ,u,}. Then, the pairwise distance in
the corresponding subset of vertices {vy«,va, -+ ,v4(n)* } of Gy is surely at least

2, i.e., G has a distance-2 independent set Sy such that |Sy| > g(n). Hence, the
reduction satisfies the conditions (C1) and (C2). This implies that MaxD3IS on

cubic graphs cannot be approximated within v = (g(n) + 2m)/(@ =+ 2m).

Approximability of the Distance Independent Set Problem 275

In the remaining we obtain the value of +: Note that a cubic graph has

m = 3 edges. Thus, (g(n) + Qm)/(% +2m) = (g(n) + Sn)/(% +3n). It is
important to note that any optimal solution of MaxD2IS on a cubic graph with
n > 5is at least § since Brooks’ theorem says [5] that such a graph has a (proper)
coloring using three colors, and hence has an independent set of cardinality at

least 5. Thus, g(n) > § and v = (g(n) + Sn)/(% +3n) > 9{3;’;1 since 7/ > 1.

By setting ' = o/ = %, we obtain y > % > 1.00105, i.e., the approximation
gap remains at least 1.00105. This completes the proof of this theorem. a

3.2 MaxDdIS for r-Regular Graphs
Next, we give the inapproximability for MaxDdIS on r-regular graphs:

Theorem 2. There exists no o-approzimation algorithm (i) for MaxDdIS on r-
reqular graphs for r > 5 and constant o < %. For small d and r, (i) if
d =3 and r =4, then 0 < 1.00122; (iii) if d =4 and r = 3, then o < 1.00191;

and (iv) if d =4 and r =4, then o < 1.00122.

Proof. Omitted in this abstract. O

4 Approximation Algorithms for MaxDdIS on Regular
Graphs

In this section we design two approximation algorithms for MaxDdIS on regular
graphs. The first one finds a (distance-2) independent set from the (d—1)th power
of an input graph by using the previously known approximation algorithm for
MaxIS. The second one iteratively executes the following: (i) Picks one vertex
v into a solution and (ii) removes all vertices whose distance from the “center”
vertex v is less than d. Then, we show that, from the point of view of the
approximation ratio, the latter is better than the former for sufficiently large d
and/or r.

4.1 Power-Graph-Based Algorithms

d—1
In this section we design an W—approximation algorithm for

MaxDdIS on r-regular graphs, which uses the following approximation algorithm
for MaxIS, i.e., MaxD2IS as a subroutine:

Proposition 1 [3]. There exists a polynomial-time %—appmximation algo-

rithm for MaxD2IS on graphs with the mazimum degree A.

Let ALGy be such a %—approximation algorithm for MaxD2IS on graphs
with the maximum degree A. The above proposition immediately suggests the
following simple algorithm: First, construct the (d—1)th power G%~! of an input
graph G, and then obtain a distance-2 independent set of G~1. The following
is a description of the algorithm POWER,.

276 H. Eto et al.

Algorithm POWER,

Input: r-regular graph G = (V(G), E(G))

Output: Distance-d independent set DdIS(G) in G

Step 1. Obtain the (d — 1)th power G?~! of G by the following:
(1-1) Compute distg(u,v) for any pair u,v € V.
(1-2) Add an edge {u,v} if distg(u,v) < d—1.

Step 2. Apply ALG; to G9!, and then obtain a distance-2 independent
set ALGo(G71) in G4~ 1.

Step 3. Output DAIS(G) = ALG5(G9™1) as a solution.

Theorem 3. The algorithm POWERg runs in polynomial time, and achieves an
r(r—1)4"142r—6

50=2) -approximation ratio for MaxDdIS on r-regular graphs.

Proof. First, we must verify that the output DdIS(G) = ALG5(G9~1) of POWER
is a feasible solution for MaxDdIS, i.e., the distance-2 independent set in G4~ is
a distance-d independent set in G. Suppose for contradiction that there is a pair
of vertices u,v € ALG2(G4™1) (i.e., distga—1(u,v) > 2) such that distg(u,v) <
d—1. Since distg(u,v) < d—1, in Step 1 of POWER, an edge {u, v} must be added
between u and v. That is, distga—1(u,v) = 1 holds, which is a contradiction.
Therefore, the output of POWER, is always feasible.

Next, we show the approximation ratio of POWER,; by estimating the maxi-
mum degree of the (d—1)th power graph G¢~!. Now consider a vertex v € V(G).
Since G is an r-regular graph, v has r neighbor vertices, i.e., |D1(v)| = r. Also,
|D2(v)| < r(r — 1) holds since each neighbor vertex u € D;(v) has at most r — 1
neighbors, each of which is not v. That is, |D;(v)| < r(r — 1)i~! holds for each
1 <i < d— 1. Therefore, the maximum degree A of G4~! is at most:

A<r4rr—1)+rr—124 - +r@r—1)42
r

= LS{e-pt -,

Since POWER; applies the %—approximation algorithm ALGy for G~ the

approximation ratio of POWER, is as follows:

r(r—1)"1 4+ 2r — 6
5(r — 2)

The algorithm clearly runs in polynomial time and hence this completes the
proof of this theorem. m]

Roughly, the approximation ratio of POWERy is O(r4—1).

4.2 TIterative-Pick-One Algorithms

Next, we consider a naive algorithm for MaxDdIS on r-regular graphs, which
iteratively picks a vertex v into the distance-d independent set and eliminates

Approximability of the Distance Independent Set Problem 277

all the vertices in Dy (v)U Da(v)U---UDg4_1(v) from candidates of the solution.
Then we show its approximation ratio. Here is a description of the “pick-one”
algorithm, where DdIS(G) stores vertices in the distance-d independent set, B
does vertices which are determined to be not candidates of the solution, W does
vertices which can be picked in the next iteration, and V' does vertices which are
not processed yet:

Algorithm PICK_ONE,

Input: r-regular graph G = (V(G), E(G))

Output Distance-d independent set DdIS(G)

Step 1. Set DAIS(G) =0, B=0, W = V(G), and V = V(G).

Step 2. If V # (), then repeat the following; else goto Step 3:
Select one arbitrary vertex v from W. Then, let B, = {v} U
Ui<ica_q Di(v) for the ith iteration of this step, update DdIS(G) =
DAIS(G)U{v}, V=V \ By, B=BUB;, and set W = D;(B) \ B.

Step 3. Terminate and output DdIS(G) as a solution.

In order to prove the approximation ratio of the above algorithm PICK_ONE,,
we now provide an upper bound of the maximum number of vertices in the
distance-d independent set in an input graph G with n vertices:

Lemma 1. Consider an r-regular graph G = (V, E) with |V| = n vertices. Then,
if r > 3 and d > 4, then the size #OPTy(G) of optimal solutions of MaxDdIS
satisfies the following inequality:

3771 d is even
d—2 ’
#orrycy < "4
W otherwise.
r(d—

Proof. Given an r-regular graph G, let OPTy(G) = {v},v3,--- , v} be an opti-
mal solution of MaxDdIS and let #0PTy(G) = L. Then, if d is even, then, for
every 1 <14 < L, consider a ball Ball(v) = D1(v])UDz(v])U---UD_2)/2(v]),
where the center of the ball is v} and its radius is (d — 2)/2 (or, equiva-
lently, its diameter is (d — 2)). If d is odd, then we consider a ball Ball(v]) =
Dy (v}) U Da(vf) U---U Dg_1)/2(v;) of diameter (d — 1). Since, for every pair
of i and j (i # j), distg(v;,v}) > d holds from the feasibility of the solution,
Ball(v}) N Ball(v}) = 0 is surely satisfied for every pair 7 and j. It follows that
S | Ball(vf)] < n.

Now, we estimate the value of Zle |Ball(v})| by considering the “smallest”
r-regular graph of diameter diam, that is, a lower bound of the size of |Ball(v})].
Recently, Knor has proven [15] that the minimum number of vertices in an r-
regular graph of diameter diam is at least % if r > 3 and diam > 4. As a
result, the following inequality holds:

278 H. Eto et al.

L r - diam
> " |Ball(v})| > —— xL
i=1

Then, we have

3n
r-diam’

#OPT,H(G) =L <

where diam = d—2 if d is even and diam = d—1 if d is odd as mentioned above.
This completes the proof of this lemma. O

Now we calculate the number #ALG4(G) of vertices in DdIS(G) output by
PICK_ONEy, and obtain the following lemmas:

Lemma 2. Assume that PICK_ONE, finds a solution of size #ALG4(G), give an
r-reqular graph with n vertices. Then, the following is satisfied:

n(r72)7r('r71)%71+2

T d is even,
#ALG(G) > r(rfl)dflfr(rflé
nr=2)=2(r=1) > +2r=2 iperwise.
r(r—1)4-1-2(r—1)" 2 +2r—4
Proof. Omitted in this abstract. O

Theorem 4. The approzimation ratio o of PICK_ONE; is as follows:

d—1 d_3
_ |t t0k) diseven
7= 3r(r—1)d71—6(7‘_1)%+67‘_12

=2 @D + O(2) otherwise.

Proof. The approximation ratio o is bounded by #0PT,;(G)/#ALG4(G). From
the upperbound of #OPTy(G) and the lowerbound of #ALG4(G) shown in
Lemmas 1 and 2, respectively, we can obtain this theorem. a

That is, the approximation ratio of PICK_ONE; is O(r?=2/d), while the
approximation ratio of POWER, is O(r?~1).

5 2-Approximation Algorithm for MaxD3IS on Cubic
Graphs

In this section, as a special case, we study the approximability of MaxD3IS
on cubic graphs, i.e., d = 3 and r = 3 and show the approximation ratios of
POWER3 and PICK_ONE3. Furthermore, by a slight modification, we obtain a 2-
approximation algorithm for MaxD3IS on cubic graphs.

Approximability of the Distance Independent Set Problem 279

5.1 Power-Graph-Based Algorithm

First, as an immediate consequence of Theorem 3, we have the following
corollary:

Corollary 1. The algorithm POWER3 achieves a 2.4-approximation ratio for
MaxD31S on cubic graphs.

Proof. Since the maximum degree of the second power G? of an input 3-regular
graph G is nine, the approximation ratio is 12/5 = 2.4. O

5.2 Iterative-Pick-One Algorithm

In this section, we prove that PICK_ONE3 achieves 2 + O(1/n)-approximation
ratio, and furthermore, the ratio can be improved into exactly 2 by a slight
modification of PICK_ONE3 and careful observations.

Recall that the upperbound of optimal solutions of MaxDdIS on r-regular
graphs provided in Lemma 1 holds only for the case where d > 4. Then, we
give an estimation of the upperbound of the maximum number of vertices in an
optimal solution for the case where r = 3 and d = 3:

Lemma 3. Consider a cubic graph G = (V,E) with |V| = n vertices. Then,
the size #OPT5(G) of every optimal solution of MaxD3IS satisfies the following
inequality:

#OPTy(G) < 7.

Proof. Given a 3-regular graph G of n vertices, let OPT3(G) = {v},v3, - , v} }
be an optimal solution of MaxD3IS and let #0OPT5(G) = L. Also, let OPT3(G)
be the set of vertices not in OPT3(G), ie., OPT3(G) = V(G) \ OPT3(G).
Then, three edges, say, {{v},u;1},{v],u;2},{v], u;3}}, are incident to every
vertex v} € OPT3(G) for 1 < i < L, and u; 1,ui2,u;,3 € OPT3(G). Therefore,
|OPT5(G)| > 3L. From the definition, |OPT3(G)| = n — L holds. As a result,
the following inequality is obtained:

#OPT3(G) =L <

13

This completes the proof of this lemma. O

Consider a graph Do = ({v1,v2,03,04,V5,V6,07,V8}, {{v1, v2}, {v1, v3}, {v2, v3},
{v2,va}, {vs, va}, {vs, ve}, {vs, vr}, {ve, v7}, {ve, vs}, {vr, vs}, {va, vs}, {vs, v1}})
of eight vertices, which consists of two diamond graphs and two edges. One can
verify that Ds is cubic and |OPT5(D3)| = 2 = 8/4. Similarly, by circularly
joining diamond graphs, we can obtain an infinite family of tight examples for
Lemma 3; for a graph Dy having ¢ diamond graphs (44 vertices), |OPT5(Dy)| = £.

Theorem 5. The algorithm PICK_ONE3 achieves a (2—|— P

ratio for MaxD3IS on cubic graphs.

4) -approximation

280 H. Eto et al.

Proof. Let D3IS(G) = {s1, 82, , ¢} be an output of PICK_ONE3, and without
loss of generality, assume that PICK_ONE3 picks those ¢ vertices into D3I.S(G) in
this order, i.e., first s1, next ss, and so on.

(i) In the first iteration of Step 2 of PICK_ONEg, the first vertex s; is selected
into D3IS(G), then By = {s1} U D1(s1) U D2(s1) are removed from V(G),
and set V = V(G) \ B;. One can see that the number of vertices in B; is
at most 10 since s; has at most three neighbors, i.e., |D1(s1)| < 3, and each
vertex in Dj(s1) has at most two other vertices, i.e., |D2(s1)| < 6.

(ii) In the second iteration, the second vertex ss is selected from neighbor ver-
tices of By into D3IS(G), and then By = {s2}UD1(s2)UD3(s2) are removed
from V updated in Step 2. The number of vertices in By is again at most
10, but | By N Ba| > 2 because there must exist at least two vertices between
s1 and sy from the fact distg(s1,s2) > 3. That is, |Bs \ Bi| < 8 and thus
at most eight vertices currently in V' are removed from V in the second
iteration. Similarly, when s; for 3 < i < ¢ are selected into D3IS(G), at
most eight vertices in V' are removed from V. Therefore,

|Bi|+ B2\ Bl -+ B\ (| Bl <10+8(¢—1).
1<i<t—1

At the time when PICK_ONE;3 terminates, V' =) and thus the following inequality
holds since the value of the left-hand side of the above inequality is equal to n:

104 8(0—1) > n.

Namely,

n—2

> .
- 8
Since #OPT3(G) < %, the approximation ratio of PICK_ONE3 is as follows:
#OPT;5(G) 4
<2 .
12 =2 n—2 U

To improve the above ratio of 2+ ¢ (¢ > 0) to 2, we slightly modify Step 2
of PICK_ONE3, and get the following algorithm, called REV_PICK_ONEj3:

Algorithm REV_PICK ONEj:

Input: 3-regular graph G = (V(G), E(G))

Output: Distance-3 independent set D3IS(G)

Step 1. Set D31S(G) =0, B=0, W =V(G), and V = V(G).

Step 2. If V # (), then repeat the following; else goto Step 3:
Select one vertex v from W such that |(D; (v)UD2(v))\ B| is minimum
among all vertices in W. Then, let B; = {v}UD(v)UD3(v) in the ith
iteration of this step, update D3IS(G) = D3IS(G)U{v}, V =V \B;,
B = BUB,;, and set W = D;(B) \ B.

Step 3. Terminate and output D315 as a solution.

Approximability of the Distance Independent Set Problem 281

Recall that PICK_ONE3 selects an arbitrary vertex v in each iteration in
Step 2. On the other hand, REV_PICK_ONE3 selects a vertex v such that
|(D1(v) U Da(v)) \ Bl is minimum among all vertices in W in each iteration,
only which is the difference between PICK_ONE3 and REV_PICK_ONEj.

Theorem 6. The algorithm REV_PICK_ONE3 runs in polynomial time, and
achieves a 2-approximation ratio for MaxD3IS on cubic graphs.

Proof. Again, let D3IS(G) = {s1, 82, - ,s¢} be an output of REV_PICK_ONE3,
and assume that REV_.PICK_ONE; picks those ¢ vertices into D3IS(G) in this
order. That is, in the first iteration, REV_PICK_ONEj3 picks s; such that |(D;(s1)U
Dy (s1))| is minimum among all vertices in V(G) since B = {). Then, we update
B = By = {s1} UD;i(s1) U Dxs(s1). We have the following three cases according
to the size of |By]: (i) |B1| <8, (ii) |B1]| =9, and (iii) |B;| = 10.

(i) First consider the case where |By| < 8. Similarly to the proof of Theorem 5,
in the second iteration of Step 2, the second vertex s, is selected from
neighbor vertices of By into D31S(G), and then By = {s2}UD1(s2)UD2(s2)
are removed from V updated in Step 2. Recall that | B\ By| < 8. Similarly,
when s; for 3 <i < £ are selected into D3IS(G), |Bi \ (Uy<j<;—1 Bj)l <8
holds. Therefore,

|Bi| +[Ba\ Bi|+---+ B\ (|J B)l<8L (1)
1<i<i—1
Namely,
0>
-8
Since #OPT3(G) < %, the approximation ratio of REV_PICK_ONE3 is as
follows:
#OPTUG) _,

(ii) Next suppose that |Bi| = 9. Similarly, again [B;\ (U, <;<;_, B;)| < 8 holds
for the ith iteration, 2 < i < £. It is now important to note that the number
n of vertices in the cubic graph G must be even since the degree r is odd.
Thus, actually, at least one of |B; \ (U;<;<;— Bj)| for 2 < i < £ must be
at most seven. Therefore, the left-hand side of the inequality (1) is at most
9+ 7+ 8¢ —2) = 8. As a result, the inequality (1) holds again, which
means that the approximation ratio is two.

(iii) Finally, suppose that |B;| = 10, which implies that |{s; }UD1(s;)UD2(s;)| =
10 for every vertex s; since |[{s1}UD1(s1)UD2(s1)| is minimum. Indeed, for
example, [{v}UD;(v)UD2(v)| = 10 holds for any vertex v in a Cy-free cubic
graph (i.e., the graph including no induced cycles of length 3 and 4). Fortu-
nately, if at least one, say, |B;\(U,<;<;_; Bj)| is seven, then there must exist
at least one iteration, say, i’ (# i) such that By \ (U;<;<; 1 Bj)| < 7 holds
since n is even. That is, the inequality (1) is true as well. Unfortunately,

282 H. Eto et al.

however, if |B; \ (U;<;<;—; Bj)| = 8 holds for every 2 < i < {, then the
ratio of REV_PICK_ONEj3 is 2+ 4/(n — 2) similarly to PICK_ONE3. Now, as the
worst case, we suppose that in the second through the (¢ — 1)th iterations,
s through s, are selected and By \ Bi through [Be—1 \ (U;< ;<2 Bj)|
are all eight. Then, we take a look at the last iteration in detail. (iii-1) If the
current V has at least nine vertices, then we can get further two vertices in
the distance-3 independent set since |By \ (U< ;<,_; Bj)| < 8, which is a
contradiction from the assumption of |[D3IS(G)| = ¢. Thus, (iii-2) we can
assume that the number of the remaining vertices in V is at most eight
after the (£ — 1)th iteration. Then, one can see that if those eight vertices
are connected, then we again get two vertices in the distance-3 independent
set, which is another contradiction. (iii-3) Now suppose that the remaining
graph G[V] has at least two connected components. Then, there must exist
a vertex s, such that [By \ (U;<;<,—1 Bj)| < 5. As a result, again we can
obtain the inequality (1), which follows that the approximation ratio is two.
This completes the proof of this theorem. O

6 Approximation Scheme for Planar Graphs

An outerplanar graph (often called a 1-outerplanar graph) is a graph that can
be drawn in the plane without any edge-crossing such that all vertices lie on the
unbounded face. A planar graph G is said to be k-outerplanar for k > 2 if it
has a plane-embedding such that by removing the vertices on the unbounded
face, we obtain a (k — 1)-outerplanar graph; the deleted vertices form the kth
layer of G. Note that every planar graph G can be regarded as a k-outerplanar
graph for some integer k, although k can be 2(1/|V(G)|). Also note that the
treewidth of a k-outerplanar graph is at most 3k 4+ 1. The outerplanar factor k
plays an important role in many polynomial-time approximation schemes based
on the Baker’s shifting technique for NP-hard optimization problems on planar
graphs [2]. The Baker’s shifting technique can be applied to MaxDdIS on planar
graphs, as follows:

Algorithm SHIFTING,

Input: D-outerplanar graph G
Output: Distance-d independent set DdIS(G) of G
Step 1. For each i € {1,2,...,k}, repeat the following:

(1-1) Delete all vertices in layers 7 through i+ (d —2), k+i+ (d—2)
through k+i+42(d—2), 2k+i+2(d—2) through 2k+i+3(d—2),
and so on. Let G; be the resulting graph.

— Note that each connected component of G; is a (k — 1)-
outerplanar graph, and hence its treewidth is at most 3k — 2.

(1-2) Solve MaxDdIS for each connected component of G;, and
obtain an optimal distance-d independent set S} of G;.

Step 2. Output the best S* among the k£ obtained distance-d indepen-
dent sets ST through S} as the solution DdIS(G).

Approximability of the Distance Independent Set Problem 283

Theorem 7. For a fized constant d > 2, MaxDdIS admits a polynomial-time
approzimation scheme for planar graphs.

Proof. As a seminal result of Courcelle [7], it is known that every problem
definable in monadic second-order logic can be solved for graphs with bounded
treewidth in time linear in the number of vertices of the graph. By a simple
extension of the independent set problem (i.e., MaxD2IS), MaxDdIS can be also
defined in monadic second order logic. Therefore, MaxDdIS can be solved in lin-
ear time (although its running time depends exponentially on the treewidth and
the distance d). Thus, the algorithm SHIFTING, runs in time polynomial in n,
which is the number of vertices.

Let S be any optimal distance-d independent set in a given planar graph. Let
S; be the distance-d independent set obtained from S by deleting all vertices in
layers 4 through i+ (d—2), k+i+ (d—2) through k+i+2(d—2), 2k+i+2(d—2)
through 2k + i 4+ 3(d — 2), and so on. Let S* be the output of the algorithm
SHIFTINGg, and S} be the distance-d independent set of G; (and hence of G)
obtained by Step 1-2. From the definitions of these sets, both |S;| < |S}| and
|SF| < |S8*| hold for every i € {1,2,...,k}. Then, since |S;| < |Sf| for every
i€{1,2,...,k}, we have

[S1]+ |Saf 4 - - 4 [Skl < ST+ [S2] + -+ -+ |Sg].
Next, since G; (or S;) does not include any vertices in layers 4 through i+ (d—2),
k+i+ (d—2) through k+i+2(d—2), 2k+i+2(d —2) through 2k +i+3(d—2),
and so on, the following inequality holds:
[S1] 4 [S2] + -+ 4+ Sk = (k — (d = 1))[S].
Since |S*| = max{|S}|: 1 <14 < k}, we have
[STI 4+ [S5] 4 -+~ + [SE] < kIS,
Therefore, the following holds:
(k= (d=1))|S] < k[S™],
that is,

S|y, d-1
|S*[= k—(d-1)

Thus, by setting ¢ = %7 we can conclude that SHIFTING, is a (1 + ¢)-
approximation algorithm, that is, it is a polynomial-time approximation scheme

for MaxDdIS on planar graphs. This completes the proof.

284

H. Eto et al.

References

10.
11.

12.

13.

14.
15.

16.

17.

18.

. Agnarsson, G., Damaschke, P., Halld6rsson, M.H.: Powers of geometric intersection

graphs and dispersion algorithms. Discret. Appl. Math. 132, 3-16 (2004)

. Baker, B.S.: Approximation algorithms for NP-complete problems on planar

graphs. J. ACM 41(1), 153-180 (1994)
Berman, P., Fujito, T.: On approximation properties of the independent set prob-
lem for low degree graphs. Theory Comput. Syst. 32(2), 115-132 (1999)

. Brandstédt, A., Giakoumakis, V.: Maximum weight independent sets in hole- and

co-chair-free graphs. Inf. Process. Lett. 112, 67-71 (2012)

Brooks, R.L.: On colouring the nodes of a network. In: Proceedings of Cambridge
Philosophical Society, Math. Phys. Sci. 37, 194-197 (1941)

Chlebik, M., Chlebikova, J.: Complexity of approximating bounded variants of
optimization problems. Theoret. Comput. Sci. 354, 320-338 (2006)

Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12-75 (1990)

Eto, H., Guo, F., Miyano, E.: Distance-d independent set problems for bipartite
and chordal graphs. J. Comb. Optim. 27(1), 88-99 (2014)

Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of chordal graph. STAM J. Comput. 1,
180-187 (1972)

Gavril, F.: Algorithms on circular-arc graphs. Networks 4, 357-369 (1974)
Golumbic, M.C.: The complexity of comparability graph recognition and coloring.
Computing 18, 199-208 (1977)

Halldérsson, M.M., Radhakrishnan, J.: Greed is good: approximating independent
sets in sparse and bounded-degree graphs. Algorithmica 18(1), 145-163 (1997)
Halld6rsson, M.M., Radhakrishnan, J.: Improved approximations of indepen-
dent sets in bounded-degree graphs. In: Schmidt, E.M., Skyum, S. (eds.) SWAT
1994. LNCS, vol. 824, pp. 195-206. Springer, Heidelberg (1994). doi:10.1007/
3-540-58218-5_18

Harary, F.: Graph Theory. Addison-Wesley, Boston (1969)

Knor, M.: Smallest regular graphs of given degree and diameter. Discuss. Math.
Graph Theory 34, 187-191 (2014)

Lozin, V.V., Milani¢, M.: A polynomial algorithm to find an independent set of
maximum weight in a fork-free graph. J. Discret. Algorithms 6, 595-604 (2008)
Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Com-
bin. Theory Ser. B 28, 284-304 (1980)

Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory Comput. 3(1), 103—128 (2007)

http://dx.doi.org/10.1007/3-540-58218-5_18
http://dx.doi.org/10.1007/3-540-58218-5_18

Algorithmic Aspects of Disjunctive Total
Domination in Graphs

Chin-Fu Lin and Sheng-Lung Peng®™)

Department of Computer Science and Information Engineering,
National Dong Hwa University, Hualien 97401, Taiwan
j8138119870gmail.com, slpeng@mail .ndhu.edu.tw

Abstract. For a graph G = (V, E), D C V is a dominating set if every
vertex in V' \ D has a neighbor in D. If every vertex in V has to be
adjacent to a vertex of D, then D is called a total dominating set of G.
The (total) domination problem on G is to find a (total) dominating set
D of the minimum cardinality. The (total) domination problem is well-
studied. Recently, the following variant is proposed. Vertex subset D is
a disjunctive total dominating set if every vertex of V is adjacent to a
vertex of D or has at least two vertices in D at distance 2 from it. The
disjunctive total domination problem on G is to find a disjunctive total
dominating set D of the minimum cardinality. For the complexity issue,
the only known result is that the disjunctive total domination problem is
NP-hard on general graphs. In this paper, by using a minimum-cost flow
algorithm as a subroutine, we show that the disjunctive total domination
problem on trees can be solved in polynomial time. This is the first
polynomial-time algorithm for the problem on a special class of graphs.
Besides, we show that the problem remains NP-hard on bipartite graphs
and planar graphs.

Keywords: Trees - Total domination - Disjunctive total domination -
Minimum-cost flow algorithm

1 Introduction

Let G = (V, E) be a simple and undirected graph with vertex set V and edge
set E. For two vertices u,v € V, the distance between u and v is denoted as
d(u,v) which is the length of the shortest path from w to v. The open neigh-
borhood of a vertex v is denoted by N(v) = {u € V | (u,v) € E}. The close
neighborhood of vertex v is denoted by N[v] = N(v) U{v}. The concept of open
(close) neighborhood can be extended to a vertex subset. For a vertex set S, we
let N(S)={ueV|(u,v) € Fand veS}and N[S]=N(S)US.

A vertex subset D C V is called a dominating set if every vertex in V'\ D
has a neighbor in D, i.e., V\D C N(D). If every vertex in V has to be adjacent
to a vertex of D, then D is called a total dominating set of G, i.e., V. = N(D)
for a total dominating set D. The (total) domination problem on G is to find
a (total) dominating set D of the minimum cardinality. The (total) domination

© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 285-293, 2016.
DOI: 10.1007/978-3-319-48749-6_21

286 C.-F. Lin and S.-L. Peng

problem is well-studied. For some theoretical and algorithmic results, please refer
[1,2,5,6,12,13,15,16,21,22].

Recently, a variant of domination problem called disjunctive domination
problem is proposed. A vertex subset D is a disjunctive dominating set if every
vertex of V\D is adjacent to a vertex of D or has at least two vertices in D at dis-
tance 2 from it. The disjunctive domination problem on G is to find a disjunctive
dominating set D of the minimum cardinality [4,7,8]. Some algorithmic results
are studied in [19]. Similarly, if every vertex of V' is adjacent to a vertex of D or
has at least two vertices in D at distance 2 from it, then D is called a disjunctive
total dominating set of G. The disjunctive total domination problem (DTDP) on
G is to find the minimum cardinality of a disjunctive total dominating set [11].
Some theoretical results are studied in [9,10].

For the disjunctive total domination problem, there are few results about
the issue of algorithmic complexity. In [7], the authors proposed a linear-time
algorithm for solving the disjunctive domination problem on trees based on the
dynamic programming approach. In this paper, we propose the first polynomial-
time algorithm for the DTDP on trees. Our algorithm runs from leaves to an
internal vertex. For each phase we determine a partial dominating set that can
dominate all the undominated leaves. This partial dominating set is determined
by using a minimum-cost maximum-flow algorithm [14,18]. Then, we delete all
the dominated vertices (including some non-leaf vertices) and the next phase is
initialized and processed again until all the vertices are disjunctively dominated.
For the remaining of this paper, we propose our polynomial-time algorithm for
DTDP on trees in Sect.2. The NP-hardness results are presented in Sect. 3.
Finally, we give a concluding remarks in the last section.

2 Polynomial Algorithm on Trees

Trees are a class of graphs that are connected and without any cycle. In this
section, the graph we considered is a tree denoted as T' = (V, E). Assume that
L(T) is the set of all leaves of T'. Many tree algorithms using dynamic program-
ming usually take a tree as a rooted tree. Then, a bottom-up process from leaves
to root can work for solving many combinatorial problems on trees. However,
for DTDP, the behavior of our algorithm runs like an algorithm for finding the
center of a tree. A center-finding algorithm works as follows. At first, we delete
all the leaves from the input tree. We call it a deletion process. If the resulting
tree is neither a vertex nor an edge, then we do the deletion process on the
resulting tree. The algorithm runs deletion process many times until the final
tree becomes a vertex or an edge. Vertex (vertices) in the final tree is called the
center of the tree. This is also a standard approach for many tree algorithms.

Labeling is another useful tool for many domination-like algorithms. In our
algorithm, we use numbers in {0, 1,2} to denote the status of a vertex. For
convenience, for each vertex v, we define Ni(v) = N(v) and Na(v) = {u |
d(u,v) = 2}. With respect to a partial dominating set D, the label of vertex v
is defined as follows.

Algorithmic Aspects of Disjunctive Total Domination in Graphs 287

Definition 1. The label lab(v) for a vertex v is defined as follows:

1. lab(v) =0 if [INy1(v)ND| >1 or |[Ny(v)ND| > 2
2. lab(v) =1 if [INo(v) N D| =1
3. lab(v) = 2 otherwise

Initially, the label of every vertex in V is 2 since the partial dominating set
D is empty. For each phase (or iteration), we only consider how to make the
label of each leaf become 0, i.e., disjunctively total dominated. To do this, we
transform the tree into an instance of network flow problem. Then, we determine
which vertex should be included in D. Once we select a vertex u into D. We then
update the label of each vertex in Ny (u) U Na(u) according to the definitions of
labels. Let us consider the following tree T" as an example.

Fig. 1. A tree T with 16 vertices.

Similar to most domination problems on trees, the following lemma is not
hard to be proved.

Lemma 1. For any tree T, there is a disjunctive total dominating set D such
that D does not contain any leaf vertices.

By Lemma 1, our first intension is to find a partial dominating set to dominate
all the leaves of T'. To find such a set, we transform the tree into an instance of a
flow network. For each leaf v, we only need to consider vertices in Ny (v) U Na(v)
as candidates for disjunctively total dominating v. Thus we obtain two vertex
subsets X and Y such that X = {J,cpp) N1(v)UN2(v) and Y = {v | v € L(T)}.
For constructing a flow network A/, we need two extra vertices, namely, source
vertex s and sink vertex t. Note that edges in N are directed and weighted.
Thus, the direction of an edge (u,v) in N is from v to v. Finally, the flow
network N' = (s,t, X UY, E’) can be constructed as follows.

Definition 2. In N = (s,t, X UY, E'), E' is defined as follows:

1. (s,z) € E' for every vertex x € X.
2. (x,y) eE ifreX,yeY, and d(z,y) < 2.
3. (y,t) € E' for every vertexry €Y.

288 C.-F. Lin and S.-L. Peng

Since we consider the minimum-cost maximum-flow problem, edges in A are
directed and weighted. For convenience, let deg(u) = [{v | (u,v) € E'}|.

Definition 3. In N = (s5,t, X UY, E'), for each edge (u,v) € E', we define its
capacity and cost as follows:

1. we X and v € Y: capacity c(u,v) = 3 — d(u,v) and cost w(u,v) =1
2. u=s and v € X: capacity c(u,v) = Zer c(v,y) and cost w(u,v) = ﬁ(u)
3. weY and v =t: capacity c(u,v) = lab(u) and cost w(u,v) =1

Note that in A/, the capacity of each edge contributes the dominating power.
However, the cost of each edge lets the flow algorithm prefer vertices with more
dominating power that will minimize the cardinality of the selected disjunctive
total dominating set. Figure 2 is the resulting flow network that is constructed
from the tree T' depicted in Fig. 1. For simplicity, we omit the cost for each edge.
It is not hard to see that only the costs of v1¢9 and vy; are %; the others are 1.

Fig. 2. The flow network instance transformed from tree T with capacity.

For a tree T' = (V, E) and a vertex subset U C V, let T[U] be the forest
induced by U. We have the following lemma.

Lemma 2. Let N = (s,t, X UY, E’) be the flow network constructed by T. Let
f be the minimum-cost mazimum-flow of N'. Then, {z |z € X and x is in any
nonzero flow path from s to t} is an optimal disjunctive total dominating set of
TIXUY].

By considering the flow network in Fig.2, we run a minimum-cost
maximum-flow algorithm [14,18] and obtain a partial dominating set D =
{v7,v8,v9,v10,v11}. Then we update vertex labels and delete each leaf whose
label is 0 until there is no label-0 leaf. For convenience, we list the algorithm for
clearing label-0 leaves as follows.

Algorithmic Aspects of Disjunctive Total Domination in Graphs 289

Algorithm 1. Algorithm for removing label-0 leaves
Input: A tree T = (V, E)
Output: A tree without label-0 leaf

: initially, a queue @Q = 0;

: put every label-0 leaf into Q;

: for Q # 0 do

: v = Dequeue(Q);

1

2

3

4

5: let (v,u) € E;

6: delete v from V;

7 if u becomes a leaf and label(u) = 0 then
8 Engueue(Q,u);

9 end if

0: end for

1

1
11: return the resulting tree T'

Consider our example again. The resulting tree is depicted in Fig.3. Note
that, in Fig.3, the labels of v; and vy are 1. However, the labels of v, vy, and
vs are 0 and the labels of v7, vg, and vg are 2.

Fig. 3. The resulting tree for deleting label-0 leaves after a partial dominating set is
determined.

For completeness, we construct the flow network of the remaining tree in
Fig.4. It is not hard to check that {vs,vs} is a disjunctive total dominating
set. Thus, by combining the previous partial dominating set, we obtain that
{vs, v5,v7, V8, V9, 10,v11} is a disjunctive total dominating set of the tree T
(depicted in Fig. 1).

Note that during the computation of disjunctive total dominating set, for
each phase, we have to construct a flow network A from the current tree T.
Since our N is four layers, namely, s, ¢, X, and Y (also known as bipartite,
i.e., X and Y'). Thus, if we cannot find X and Y from 7', then the network-flow
algorithm has to be terminated. In this final phase, T is possible to be empty, a
vertex, or all the vertices of T are leaves, i.e., an edge (u,v). If T contains only
one edge (u,v), then {u,v} is the disjunctive total dominating set of T'. The
detailed algorithm is listed as follows.

290 C.-F. Lin and S.-L. Peng

Fig. 4. The flow network instance transformed from the tree in Fig. 3.

Algorithm 2. DTDP-algorithm
Input: A tree T = (V, E)

Output: A disjunctive total dominating set D

1: initially, lab(v) = 2 for each vertex v in V and D = (;
2: for T is not empty do

3: construct flow network N = (s,¢t, X UY, E') from T}

4: run a minimum-cost maximum-flow algorithm on N
5: let D' = {z € X | z is in any nonzero flow path from s to t};
6: D=DuD

T update vertex labels according to D’;

8: let T' be the resulting tree by running Algorithm 1;
9: if T contains only one vertex u then

10: v be any vertex in N(u) in the original tree;

11: D =Du{v}
12: let lab(u) =0and T =0
13: end if
14: if T contains only one edge (u,v) then
15: D = D U{u,v};
16: let lab(u) = lab(v) =0 and T = 0)
17: end if
18: end for
19: return D

Theorem 1. For any tree T', Algorithm 2 computes an optimal disjunctive total
dominating set of T.

Proof. The correctness can be proved by induction on the number of iterations
in Algorithm 2. We omit the detail in this conference version. O

Now we consider the time complexity issue for Algorithm 2. For any network
N =(s,t, XUY,E'), let n = |{s,t}UX UY| and m = |E’|. Then the minimum-
cost maximum-flow problem on A can be solved in O(mlogn(m + nlogn))

Algorithmic Aspects of Disjunctive Total Domination in Graphs 291

time [18]. However, in Algorithm 2, the flow network is constructed from 7' =
(V,E). Thus, n = O(]V]). Since T is a tree, each leaf has only one vertex at the
distance 2. Therefore, m = O(|V]). In the worst case, the number of iterations of
Algorithm 2 will be at most 7, the radius of T'. Since r = O(|V]), Algorithm 2 can
be implemented in O(n? log? n) time. Therefore, we have the following theorem.

Theorem 2. The disjunctive total domination problem on trees can be solved
i polynomial time.

Thought the disjunctive domination problem on tree can be solved in linear
time [4], we find that in Algorithm 2 if the label of every selected vertex in D’ is
set to 0 at each iteration, then the final set D will be a disjunctive dominating
set of T. That is, our proposed algorithm is a unified approach for these two
variants of domination problem. Thus we have the following corollary.

Corollary 1. The disjunctive domination problem on trees can be solved in poly-
nomial time.

3 NP-Hardness Results

Recall that for a graph G = (V, E), a vertex subset D C V is called a total
dominating set if every vertex in V' is adjacent to a vertex of D, i.e., V = N(D).
The total domination problem (TDP for short) on G is to find a total dominating
set D of the minimum cardinality. It is known that TDP is NP-hard on bipartite
graphs [20] and planar graphs [3]. By reducing the TDP to DTDP, we establish
the hardness result of DTDP.

Given a graph G = (V, E), we construct the graph Hg = (V' E’) as follows.
For each edge (u,v) € E, we add a vertex w in (u,v). The resulting graph G’ is
called the subdivision of G. We call these new vertices subdivision vertices. Then
for each original (respectively, subdivision) vertex, we attach one (respectively,
two) Py, a path with 4 vertices. Hg is the final graph. Let n = |V| and m = |E]|.
It is not hard to check that |[V'| = n 4+ m + 4n + 8m = 5n + 9m and |F’'| =
2m + 4n 4+ 8m = 4n + 10m. Figure 5 shows an example of a graph G = P, and
the corresponding graph Hg.

By this reduction, we can show that if there is a total dominating set of size
k for G, then there is a disjunctive total dominating set of size k + 2(n + 2m)
for graph Hg. The darken vertices in Fig. 5 belong to the desired dominating set
that shows this correspondence. Note that it is not hard to check that if G is a
bipartite (planar) graph, then H¢ is a bipartite (planar) graph too. Thus by the
results of [3,20], we have the following theorem.

Theorem 3. The disjunctive total domination problem is NP-hard on bipartite
graphs and planar graphs.

292 C.-F. Lin and S.-L. Peng

O @ @ O
G

)))

Hg

Fig. 5. Example of the reduction.

4 Conclusion

In this paper, we show that the disjunctive total domination problem can be
solved in polynomial time on trees. It is interesting that our approach can be
extended to some other domination problems. Though, the time complexity of
our algorithm depends on the running time of a minimum-cost maximum-flow
algorithm, the idea of our algorithm is easy to understand. On the other hand,
we show that the disjunctive total domination problem is NP-hard on bipartite
graphs and planar graphs. In fact, this idea is similar to the one in [4] for showing
that the hardness of the disjunctive domination problem. Thus, by relaxing the
number of dominating vertices at distance 2, we can have a more general result
of hardness. In [19], the authors proposed a polynomial-time algorithm for the
disjunctive domination problem on proper interval graphs. Thus, it is interesting
whether the disjunctive total domination problem can be solved in polynomial
time on proper interval graphs or other special classes of graphs.

Acknowledgement. This work was partially supported by the Ministry of Science
and Technology of Taiwan, under Contract No. MOST 105-2221-E-259-018.

References

1. Booth, K.S., Johnson, J.H.: Dominating sets in chordal graphs. STAM J. Comput.
11, 191-199 (1982)

2. Chang, G.J.: Labeling algorithms for domination problems in sun-free chordal
graphs. Discrete Appl. Math. 22, 21-34 (1988)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, San Francisco (1979)

4. Goddard, W., Henning, M.A., McPillan, C.A.: The disjunctive domination number
of a graph. Quaestiones Math. 37, 547-561 (2014)

5. Henning, M.A.: Graphs with large total domination number. J. Graph Theor. 35,
21-45 (2000)

6. Henning, M.A.: A survey of selected recent results on total domination in graphs.
Discrete Math. 309, 32-63 (2009)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Algorithmic Aspects of Disjunctive Total Domination in Graphs 293

Henning, M.A., Marcon, S.A.: Domination versus disjunctive domination in trees.
Discrete Appl. Math. 184, 171-177 (2015)

Henning, M.A., Marcon, S.A.: Domination versus disjunctive domination in graphs.
Quaestiones Math. 39, 261-273 (2016)

Henning, M.A., Naicker, V.: Graphs with large disjunctive total domination num-
ber. Discrete Math. Theor. Comput. Sci. 17, 255-282 (2015)

Henning, M.A., Naicker, V.: Bounds on the disjunctive total domination number
of a tree. Discussiones Math. Graph Theor. 36, 153-171 (2016)

Henning, M.A., Naicker, V.: Disjunctive total domination in graphs. J. Comb.
Optim. 31, 1090-1110 (2016)

Henning, M.A., Yeo, A.: Total Domination in Graphs. Springer, New York (2013).
ISBN:978-1-4614-6525-6

Keil, J.M.: The complexity of domination problems in circle graphs. Discrete Appl.
Math. 42, 51-63 (1993)

Kovéacs, P.: Minimum-cost flow algorithms: an experimental evaluation. Optim.
Methods Softw. 30, 94-127 (2015)

Kratsch, D., Stewart, L.: Total domination and transformation. Inf. Process. Lett.
63, 167-170 (1997)

Laskar, R., Pfaff, J., Hedetniemi, S.M., Hedetneimi, S.T.: On the algorithmic com-
plexity of total domination. SIAM. J. Algebraic Discrete Methods 5, 420-425
(1984)

Miiller, H., Brandstéadt, A.: The NP-completeness of steiner tree and dominating
set for chordal bipartite graphs. Theor. Comput. Sci. 53, 257-265 (1987)

Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Oper. Res.
41, 338-350 (1993)

Panda, B.S., Pandey, A., Paul, S.: Algorithmic aspects of disjunctive domination
in graphs. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol. 9198, pp.
325-336. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21398-9_26

Pfaff, J., Laskar, R.C., Hedetniemi, S.T.: NP-completeness of total and connected
domination and irredundance for bipartite graphs. Technical report 428, Clemson
University. Dept. Math. Sciences (1983)

Ramalingam, G., Pandu Rangan, C.: Total domination in interval graphs revisited.
Inf. Process. Lett. 27, 17-21 (1988)

Telle, J.A.: Complexity of domination-type problems in graphs. Nord. J. Comput.
1, 157-171 (1994)

http://dx.doi.org/10.1007/978-3-319-21398-9_26

Instance Guaranteed Ratio on Greedy Heuristic
for Genome Scaffolding

Clément Dallard!, Mathias Weller! ™) Annie Chateau®2(®,
and Rodolphe Giroudeau®

! LIRMM - CNRS UMR 5506, Montpellier, France
{clement .dallard,mathias.weller,annie.chateau,
rodolphe.giroudeau}@lirmm. fr
2 IBC, Montpellier, France

Abstract. The SCAFFOLDING problem in bioinformatics, aims to com-
plete the contig assembly process by determining the relative position
and orientation of these contigs. Modeled as a combinatorial optimiza-
tion problem in a graph named scaffold graph, this problem is NP-
hard and its exact resolution is generally impossible on large instances.
Hence, heuristics like polynomial-time approximation algorithms remain
the only possibility to propose a solution. In general, even in the case
where we know a constant guaranteed approximation ratio, it is impossi-
ble to know if the solution proposed by the algorithm is close to the opti-
mal, or close to the bound defined by this ratio. In this paper we present a
measure, associated to a greedy algorithm, determining an upper bound
on the score of the optimal solution. This measure, depending on the
instance, guarantees a — non constant — ratio for the greedy algorithm
on this instance. We prove that this measure is a fine upper bound on
optimal score, we perform experiments on real instances and show that
the greedy algorithm yields near from optimal solutions.

Keywords: Genome scaffolding - Greedy heuristic - Approximation
ratio

1 Introduction

Genomic studies, especially comparative genomic and genome rearrangement
inference, necessitate the production of high-quality whole sequences. Such
sequences are hard to obtain from High-Throughput Sequencing data, consist-
ing of sometimes billions of small DNA fragments. Genome scaffolding, which
is our concern in this paper, consists of orienting and ordering a collection of
pre-assembled DNA fragments, called contigs. This can be done using NGS infor-
mation that locally links endpoints of contigs, that is usually available for NGS
data (paired-end reads). The scaffolding problem, expressible as a combinatorial
optimization problem in a graph, is AP-hard [2,11] and represents a barrier
in genome sequence production. When it comes to treat very large data like

© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 294-308, 2016.
DOI: 10.1007/978-3-319-48749-6_22

Instance Guaranteed Ratio on Greedy Heuristic for Genome Scaffolding 295

Fig. 1. A scaffold graph with 17 contigs (bold edges) and 26 (weighted) links between
them, corresponding to the genome of virus Ebola.

eukaryotic genomes (especially plants like rice), exact methods find their limits
and we have to consider heuristics.

Description of the Problem. We consider an undirected graph G = (V, E) with
an even number 2n of vertices and without self loops and a perfect matching
(that is, a pairing of vertices such that each vertex is paired with ezactly one
other vertex) M* C E in G. We call a path (vg,v1,...,v) in G closed (or a
cycle) if vg = wv;. Slightly abusing notation, we sometimes consider (possibly
closed) paths in G as sets of edges occurring in the path. In the following, we
call a (possibly closed) path p in G alternating with respect to M* if each vertex
on p is incident with an edge in p N M*. Note that an alternating path has an
even number > 2 of vertices (> 4 if it is closed).

In the bioinformatic context, M™ represents contigs and, thus, all vertices
are extremities of contigs and each contig has two extremities. Edges of F'\ M*
represent ways to link the contigs together. These edges are weighted by a weight
function w : E — IN measuring the support of each of these links (e.g. the number
of pairs of reads with one end in each of the two contigs). Figurel shows an
example of such a scaffold graph. The goal is then to compute a most probable
genomic structure consisting of a fixed number o, of linear chromosomes (paths)
and o, of circular chromosomes (cycles). Thus, we are interested in covering G
with a given number of vertex-disjoint alternating paths and cycles, maximizing
the total support of the solution. Two variants of the problem are considered:
in the first one, qualified “strict”, the solution must exactly satisfy the number
of paths and cycles; the second one allows to find less of these paths and cycles.

296 C. Dallard et al.

MAX STRICT SCAFFOLDING (MaxSSCA)

Input: a graph G = (V, E), edge weights w : E — IN, a perfect matching
M* of G, and op, 0. € IN

Task: Find a vertex-disjoint maximum-weight collection of exactly oy
alternating paths &o. alternating cycles covering the vertices of G.

MAX SCAFFOLDING (MaxSCA

Input: a graph G = (V, E), edge weights w : E — IN, a perfect matching
M* of G, and op,0. € IN

Task: Find a vertex-disjoint maximum-weight collection of < o, alternat-
ing paths &< o, alternating cycles covering the vertices of G.

Exchanging “maximum-weight” for “minimum-weight” in the above defini-
tion yields corresponding minimization problems called MIN STRICT SCAFFOLD-
ING and MIN SCAFFOLDING. The decision versions of the maximization problems
are called STRICT SCAFFOLDING and SCAFFOLDING.

Related Work. For efficiency reasons, previous work on scaffolding is essentially
based on heuristics and exact methods on simplified instances of variants of the
scaffold graph. The literature offers a wide range of methods [5,6,8,9,12,15,16],
as well as a comparison thereof [10]. The problem received much attention in
the framework of complexity and approximation [2,17-19] and it is known to be
NP-hard, even in constrained special cases. While neither MAX SCAFFOLDING
nor MIN SCAFFOLDING are constant-factor approximable [19], some polynomial-
time approximation algorithms are known for the case that G is a clique [2] or
a complete bipartite graph [19]. The parameterized complexity of MAX SCAF-
FOLDING has been considered [17,18], showing that, while an optimal solution
can be calculated in polynomial time on graphs of low treewidth, there is no
polynomial kernel for this parameter. Further, for the special case where remov-
ing the edges of M* kills all cycles in G, MAX SCAFFOLDING remains A/ P-hard
to approximate, but can be solved optimally in O(n??»*1) time [19].

Some of our previous work on the problem is dedicated to approximation
algorithms. We described algorithms with a ratio of three and two in special
cases [2,17,19], in a first attempt to control the extent to which a heuristic
solution diverges from the optimal. This result was improved by randomization
techniques [3]. However, since this ratio in obtained for complete graphs, or
graphs incompletely describing real instances, it is not completely satisfying.
When applying this approach to real instances, one needs to complete the graph
with zero-weighted edges that have are not biologically meaningful and void any
computational advantage derived from the sparsity of real-world instances.

Our Contribution. In this paper, we focus on the greedy heuristic described by
Chateau and Giroudeau [2]. This algorithm was proven to guarantee a constant
approximation ratio of three, which is tight!, on complete graphs. However, this

! This means that instances for which the computed solution has a third of the optimal
weight exist. It does not exclude better approximation algorithms.

Instance Guaranteed Ratio on Greedy Heuristic for Genome Scaffolding 297

bound is of pure theoretical nature and we suspected the solutions to behave
much better in practice. Hence, we propose here a measure of quality computed
for each instance, instead of improving the guaranteed constant ratio on special
instances. The main idea is to exploit the greedy process and, at each step,
analyze to what extent the greedy choice diverges from potential optimality. We
define an upper bound on the optimal score for each given instance, computed
at no additional cost during the greedy algorithm. We implemented and tested
this bound on a set of real instances and show that the greedy algorithm is really
performant on those instances.

Organization of the Paper. In the following, Sect.2 recalls the principles of the
greedy algorithm, Sect.3 gives a description of the dynamic upper bound and
its proof. Finally, Sect.4 presents and discusses the experimental results.

2 Greedy Algorithm

In this work, we modify the existing 3-approximation algorithm [2] which is
described on complete scaffold graphs. To apply this algorithm to any instance,
we may have to complete the input graph first. However, it is possible to stop
the algorithm at the first edge with weight zero, and arbitrarily and quickly
complete the solution.

Notation. Let G be the input graph and let n := |V|/2 = |M*|. In a partial cover
of G with alternating paths and cycles, we refer to the number of paths and
cycles by n, and n., respectively. The number of paths of length 1 (i.e. isolated
contigs) within the partial solution is p;, while the number of paths containing
at least 3 edges is p>3. At the beginning of each iteration of the algorithm we
have n, = p; + p>3. We also maintain the following data structures:

e for each path p in the partial solution, we maintain its length L(p),

e for each vertex v, we store the unique path p(v) containing v,

e for each endpoint v of a path p in the partial solution, o(v) refers to the other
endpoint of p.

Note that, at the beginning of the algorithm, for each uv € M*, we have p(u) =
p(v) = uv, o(u) = v, o(v) = u and, since all cycles should contain at least four
edges, we also have n > o}, + 20,. If, during the execution of Algorithm 1, we
have o, = 0 and n. = o, > 0 and n, > 1, then we call any alternating path that
is not part of an alternating cycle an orphan path.

Description. Algorithm 1 is a greedy algorithm which consecutively considers
edges of E\M* by decreasing order of weight. When an edge is added to the
partial solution, the algorithm removes all edges adjacent to the added edge, forc-
ing every vertex to have degree at most two in the partial solution (see Procedure
Take). Algorithm 1 has been proven 3-approximate for MIN STRICT SCAFFOLD-
ING on complete graphs satisfying n > 2(o, + 20.), with a time complexity of
O(mlogyn) [2].

298 C. Dallard et al.

Algorithm 1. 3-approximated greedy algorithm.
Data: an edge-weighted clique G = (V, E), a perfect matching M™* of G,
integers op and oec.
Result: a set E' C E inducing a collection of exactly o, and o, alternating
paths and cycles, respectively, in G

1 sort the edges of E by decreasing order of weight;

2 (E,E") « (E\ M*, M*); initialize p(v), o(v) for each v € V;

3 (nP7n67p17p23) - (TL,OJ”L,O);

4 while ny, # op or n. # o. do

5 e = uv < the first element of the ordered-list F;

6 E — E\ {e};

7 if p(u) # p(v) and ny + ne > op + oc and Permit(e) then
8 Take(E,E’,e); // merge two paths

o update L(p(w)), L(p(v)), p1, p2s, o(o(w)), and oo(v));
10 else
11 if p(u) = p(v) and n. < oc and no orphan path will remain then
12 Take(E,E’,e); // complete a cycle
13 L update L(p(u)), np, N, and p>3;
14 return E’

Function Permit maintains the condition o, +2(0c — 1) < p1 + 2p>3, which
is neccessary for constructing a solution as it permits to build at least o. — n.
cycles and o}, paths from n, = p; +p>3 paths. The function returns True if and
only if this condition will hold after adding the edge e to the partial solution.

Function. Permit(e).

Data: edge wv € E\ M~*
Result: True iff a solution can still be constructed after adding e to E’
if L(p(u)) = L(p(v)) =1 then
return True;
else
if L(p(u)) =1 or L(p(v)) =1 then
‘ return (p; — 1 > 2(0c — ne — p>3) + 0p);
else
L return (p1 > 2(0c — ne — (p>3 — 1)) + 0p);

N O Ot W

3 Dynamic Upper Bound

Experiments on real datasets point out the near optimality of the greedy
algorithm [2]. Indeed, despite the fact that the algorithm has a fixed ratio of

Instance Guaranteed Ratio on Greedy Heuristic for Genome Scaffolding 299

Procedure. Take(E,E’e).

Data: e € E\M"
1 B — E' U{e};
2 remove all non-matching edges adjacent to e from F;

u v
maz.(u) ma.(v) maze(u) maze(v)
(a) adding e connects two paths. (b) adding e closes a cycle.

Fig. 2. Calculation of 6(e) (dashed) for a partial solution (solid) with M* (bold).

three, the real ratio of the algorithm on several real instances is close to one.
If we know the weight of an optimal solution, it is easy to compute the real
ratio of the weight of the approximate solution. However, if we do not have the
weight of an optimal solution (for example if the instance is too big to be solved
by an exact algorithm) one cannot guess the real ratio of the algorithm on the
instance. Our main goal is to calculate an upper bound on the weight of an
optimal solution and then guarantee an upper bound on the effective ratio of
the greedy algorithm on a specific instance.

3.1 Notation and Definitions

Let G = (V, E, M*) be a scaffold graph with weight function w : E — N. For any
S C E, we abbreviate w(S) :=) .gw(e). Let e = uv ¢ M*. We say an edge f
is adjacent to e if eN f # @. The set of edges of S C E that are adjacent to e is
denoted by eMS:={f € S |lenf| =1} Welet Sa ={e1,...,en0,} € E\M*
denote the set of edges chosen by Algorithm 1 in that order. We also denote
by Sopr = {fi,--»fn—0,} C E\ M* the set of edges of an optimal solution,
considered in that order during Algorithm 1. When running the algorithm, we
could consider two points of view:

1. we can consider that a solution is progressively built by adding edges to M™*,
and thus we denote by Sy the set of edges M* U {e1, ..., e} corresponding

300 C. Dallard et al.

Y]
///», . ///f,
. f/ / f2 et
O ‘ ——— .
—_— =
(a) One contact between f and Sa \ M* (b) Two contacts between f and S\ M™
(e € Sa). (e1,e2 € Sa).

Fig. 3. Contacts between f € Sopr and Sa.

to a partial solution. Note that (V,Sy) consists of at least o, paths and at
most o. cycles;

2. we can consider that the original clique is progressively updated by removing
edges, during the update steps. Then, we denote by Fj the set E in the
algorithm after the edge e has been added to the solution. In the same way,
we denote by Gy, the graph (V, S, U Ey).

Observation 1. The graph Gj does not contain any edge which has been
rejected by the algorithm before the edge ey has been added to the solution.

Definition 1. Let (G = (V,E),M*,0p,0.) be an instance of MAX STRICT
SCAFFOLDING, and e; € S4 an edge of the solution given by Algorithm 1. For
u € e;, we define max ., (u) to be any edge that, among all edges f ¢ M* of G;i_1
with f Ne; = {u} has mazimal weight.

Definition 2. Let (G = (V,E),M*,0p,0.) be an instance of MAX STRICT
SCAFFOLDING, and let e; = uv € S be an edge of the solution given by
Algorithm 1. Let p,, and p, be mazimal-length paths of (V, S U M*) such that
Py = (t,...,x) and p, = (v,...,y). Then,

0(ei) = {max(u), max.(v)} U ({zy} \ {uv})

For convenience, we use €& as shorthand for the edge xy, i.e. the edge which
would close the path p, U{e;} Up, in a cycle. See Fig. 2 for an example.

Notice that the definition of # depends on the partial solution S;.

3.2 Computation of the Upper Bound

Lemma 1. Let (G = (V,E), M*,0p,0.) be an instance of MAX STRICT SCAF-
FOLDING, let S4 be a solution produced by Algorithm 1 and let Sopr be an opti-
mal solution. Then,

w(Sopr) € Y max(w(6(e)),w(e) +w(@)) (1)

eeS

Instance Guaranteed Ratio on Greedy Heuristic for Genome Scaffolding 301

Proof. We call any function I : Sopr — E good if I is injective and w(f) <
w(I;(f)) for all f for which I is defined. To prove (1), we inductively construct
a good function I' : Sppr — FE that assigns each f € Sopr such that I'(f) is in
{e}Ub(e) for some e € Sy, and I'(Sopr) does not contain both e and é(e) \ {&}
for any e € S4. For all k, we denote by S’gPT the set of edges of Sppr for which
I}, is defined.

k =0: Then, we set Io(f) = f for all f € M* and observe that I} is good.

k = k 4 1 : we suppose that Iy is good and extend it to [x41. Let e = ex41 = 2y
be the last edge added to Sky1 when running Algorithm 1.

For all f € Sopr \ Sg}lT, i.e. I(f) is not defined:

if [fNe| =2 then f = e and we set I',1(f) = f. Since e is the newly added
edge to Sy11, It is still injective on SELL and w(f) < w(I'(f));

if |f Ne|l = 1 then, without loss of generality, let € f and we set I'y11(f) =
max .(z). As max.(z) is in Gy and no two edges of Sopr \ M™* can share an
endpoint, there is no edge f’ € Sopr\{f} with I,11(f") = max.(x). Hence,
I is still injective on SEHL. and w(f) < w(I(f));

if f = & then we set I,11(f) = f. By similar argument, since two edges of
Sopr \ M* cannot share an endpoint, there is no edge f' € Sopr such
that Tky1(f') = &. Thus, x4 is still injective on S(]“)PT +1onand w(f) <
W(I()).

Otherwise, leave I';11(f) undefined.

If I'yy1 = I}, then we call e free. We remark that all edges rejected by the
algorithm belongs to 0(e’) for some e’ € S4.

At the end of the construction, Iy, is good. Though, some edges of So pr may
still not have an image in I, ., namely unassigned edges. However, since [S4| =
|Sopr| = n — oy and I, is injective on Sg;‘;", there are at least as many
free edges in S4 than unassigned edges in Sopr. Moreover, we can assign each
unassigned edge of Sopr to a free edge in S4. Indeed, because f is unassigned,
either f has not been rejected by the algorithm and w(f) < w(e),Ve € Sa, or
f was rejected and then necessarily already belongs to 6(e) for some e € S4.
Hence, the association of unassigned edges is trivial. Let I" denote the result of
adding these assignments to I, o, .

The relation I is then injective on Sppr, and Vf € Sopr, we have w(f) <
w(I'(f)). In addition, for any e € Su that is not free, U;cg,,,. I'(f) intersects
either {e} or {max.(z), max.(y)}, but not both. Actually, for f € Sopr \ M*
and e € Sy, if I'(f) = {e} then either f = e or e was free before it was assigned.
Moreover, if I'(f) = max.(x) (or max.(y)) then |e N f| = 1 and since neither
Sopr \ M* nor S4 \ M* contains a pair of adjacent edges, no f' € Sopr \ M*
is mapped to e by I'. Hence,

Yoowlhs Y ()< Y max{w(be)),wle) +w(e)). o

fe€Soprr feSoprr e€Sy

302 C. Dallard et al.

Lemma 2. Let G be a clique, let (G, M*,0,,0.) be an instance of MAX STRICT
SCAFFOLDING and let S4 be a solution computed by Algorithm 1. Then,

> max(w(b(e)),w(e) +w(e)) < 3w(Sa)

Proof. Since, for any e € Sa,60(ex) is defined considering the graph Gj_; and,
by Observation 1, the edge e; have maximum weight among Ej_1. Indeed it is
not possible that € has been rejected before considering ey, since €, is counted in
(ex) when €5, closes a cycle ey, belongs to. If it is structurally possible to join both
involved paths by ey, it would also have been possible to join them by ¢é; and this
edge would not have been rejected then. Thus w(éx) < w(eg), and more generally,
for any ¢’ € Ej_1, we have w(e’) < w(e). Then, for each e € S4, we have
w(f(e)) < 3w(e) and, thus, > max(w(f(e)),w(e)) < > 3w(e) =3w(Sa). O

ecSa e€Sa

Theorem 1 follows straightforwardly from previous Lemmas 1 and 2:

Theorem 1. Let G be a clique, let (G, M*,0p,0.) be an instance of MAX
STRICT SCAFFOLDING and let Sa be a solution computed by Algorithm 1. Then,

w(Sopr) < Z max(w w(e)) < 3w(Sa)

eeSa

3.3 Derived Results

In the following, let G = (V, E) be a clique, let I := (G, M*,w,0p,0.) be an
instance of MAX STRICT SCAFFOLDING. Let S C E be a subset of (or equal to)
a feasible solution for I. Then, we call S extensible. For any vertex v € V, we
define dg(v) as the degree of the vertex v in the graph (V,.S). Further, any edge
e € E'\ S such that S U {e} is extensible is called valid with respect to S.

Lemma 3. Let G be a clique, let I := (G, M*,w, 0y, 0.) be an instance of MAX
STRICT SCAFFOLDING, and let S, 2 M™ be a subset of an optimal solution for
I. Let e = zy and et be edges in E \ S, that are valid for S,, with e # e,
w(e) > w(el), and no other edge that is valid for S, is heavier than e™. Let

w(max (7)) + w(max . (y)) + w(et) < w(e). (2)
Then, there is an optimal solution S’ for I, such that S, U {e} C S".

Proof. Let S* be an optimal solution for I with S, C S* and consider the set
S = S*U{e}. In the following, we construct a solution S’ with S, U{e} C S’ and
w(S") > w(S*). Then, we conclude that S’ is an optimal solution for I. First, let
S’ = 5. Then, we exhaustively apply the following rules to modify S’.

Rule 1: Yw € V,dg/(w) = 3, remove from S’ \ S, the unique edge wz # e;
Rule 2: if o, is strictly smaller than the number of cycles in (V,S’), then remove
from S’ any edge f € S"\ S, f # e that is on a cycle;

Instance Guaranteed Ratio on Greedy Heuristic for Genome Scaffolding 303

Rule 3: if oy, is strictly greater than the number of paths in (V,S’), remove any
edge f € S"\ Sy, f # e that is on a path;
Rule 4: connect path-endpoints in (V,S’) to restore o, paths and o, cycles.

Note that the result S’ is a feasible solution for I. Next, we prove w(S’) > w(S5).

If Rulel is triggered, then Rule1 removes at most two edges f1, fo such that
fine={z} and foNe= {y} and, as e is valid for S, we have fi, fo ¢ S,.
Since w(f1) < w(max.(x)) and w(fe) < w(max.(y)), (2) implies w(f1) +
w(fz) < w(e). Thus, w(S'\ Lfi, fa}) > w(S°).

If Rules 1 and 2 are triggered, then Rule 1 removes at most two edges f1, fo with
w(f1) +w(f2) < w(max.(r)) + w(max.(y)) and Rule2 one edge f. Further,
w(f) <w(e™) by choice of e*. Thus, (2) implies w(S’\ {f1, f2, f}) > w(S*).

If Rule 3 is triggered, then the edge f € S'\\S,, f # e exists as otherwise, S,U{e}
is not extensible, contradicting the choice of e. Moreover, w(f) < w(e™) by
choice of e™ and, thus, (2) implies w(S"\ {f}) > w(S™).

Rule4 only adds edges and, thus, may only increase the weight of S’. a

An edge e like the one considered in Lemma 3 will be called optimal edge, since we
showed that there is an optimal solution containing e. The direct application of
Lemma 3 is the conception of an exact algorithm for the SCAFFOLDING problem.
Moreover, since our greedy algorithm considers only maximal weight edges, only
a slight modification of the algorithm is necessary to take such edges into account.

4 Experimental Results

Theorem 1 provides a dynamic upper bound on the optimal score, allowing us
to estimate the quality of Algorithm 1 on different kinds of instances. In order
to prove the near optimality of Algorithm 1 on real instances, we have devel-
oped a variant of the algorithm in which the calculation of the dynamic upper
bound of Sect.3 is implemented. This calculation neither affects the behavior
of the algorithm, nor its time complexity of O(mlogn), nor its worst-case ratio
of 3. Through experimental runs, we give a direct application of the bound as
a measure of how realistic the generated scaffold graphs are and we answer the
following questions:

1. Can the greedy algorithm be used on very large scaffold graphs, and what is
its associated computation time?

2. Is the upper bound on the ratio computed with 6 closer to 1 or to the theo-
retical guaranteed ratio 37

3. Is the upper bound useful to measure the efficiency of simulation?

We tested our algorithm on real data from assembled paired-end reads and
from assembled simulated paired-end reads.
Real Dataset. A first dataset, called real instances, has been built using the fol-
lowing pipeline, except for azucena which comes from a personal communication
with authors of a paired-end reads library:

304 C. Dallard et al.

Table 1. Real dataset.

Species Size (bp) | Type Accession
Anopheles Gambiae str. PEST (anopheles) 41,963,435 | Chromosome 3L | NT_078267.5
Bacillus anthracis str. Sterne (anthrax) 5,228,663 | Chromosome NC_005945.1
Arabidopsis Thaliana (arabido) 119,667,750 | Complete genome | TAIR10
Zaire ebolavirus (ebola) 18,959 | Complete genome | NC_002549.1
Gloeobacter violaceus PCC 7421 (gloeobacter) 4,659,019 | Chromosome NC_005125.1
Lactobacillus acidophilus NCFM (lactobacillus) 1,993,560 | Chromosome NC_006814.3
Danaus plexippus (monarch) 15,314 | Mitochondrion NC_021452.1
Pandoravirus salinus (pandora) 2,473,870 | Complete genome | NC_022098.1
Pseudomonas aeruginosa PAO1 (pseudomonas) 6,264,404 | Chromosome NC_002516.2
Oryza sativa Japonica (rice) 134,525 | Chloroplast X15901.1
Saccharomyces cerevisiae (sacchr3) 316,613 | Chromosome 3 X59720.2
Saccharomyces cerevisiae (sacchri2) 1,078,177 | Chromosome 12 | NC_001144.5

1. Choice of a reference genome, for instance on the nucleotide database from
NCBI2. Table1 shows selected genomes used to perform our experiments,
chosen because of their various origins and sizes.

2. Simulation of paired-end reads, using wgsim [14]. The chosen parameters are
an insert size of 500bp and a read length L of 100bp.

3. Assembly using the de novo assembly tool minia [4] with k-mer size k = 30.
4. Mapping of reads on contigs, using bwa [13]. This mapping tool was chosen
according to results obtained by Hunt [10], a survey on scaffolding tools.

5. Generation of scaffold graph from the mapping file. Statistics on the numbers
of vertices and edges in produced scaffold graphs can be viewed in Table4.

Simulated Reads. The main advantage of simulated instances is that we can
easily control the graph size and its density. However, it seems quite difficult to
relevantly identify structures of real scaffold graphs and then simulated data are
generally far from reality. We used two kinds of simulation tools:

1. A naive random generator, which uniformly generates a graph with given
density and number of vertices. This generator is called Uniform;

2. A more complex generator, issued from the Model Driven Engineering world
and especially designed to generate realistic instances: Grimm? [7].

Instances are generated by both Grimm and Uniform, either using real parame-
ters on the number of contigs and edges, namely semi-simulated, or with artificial
parameters sometimes far from those observed in real scaffold graphs, namely
pure simulated. Thus, we have four simulated datasets to play with.

4.1 Computation Time Scaling

Experiments were run on a personal computer with four processors i7 3.2GHz
and 16GB RAM. Memory usage was very light, except for the biggest graph

2 http://www.ncbi.nlm.nih.gov/.
3 http://www.lirmm.fr/~ferdjoukh/english/research.html.

http://www.ncbi.nlm.nih.gov/
http://www.lirmm.fr/~ferdjoukh/english/research.html

Instance Guaranteed Ratio on Greedy Heuristic for Genome Scaffolding 305

Table 2. Computation time (in ms) for real Table 3. Computation time for
instances. two instances on usual scaffolders.
Note that SOPRA ran out of mem-

Instance Time | Instance Time ory on the azucena data set.
monarch <0.1| anthraz 34

ebola 0.1 | gloeobacter 36 Scaffolder anopheles | azucena
rice 0.27 | pseudomonas 37 BESST [15] |102.1s 727.58
sacchr3 1| anopheles 462 SCARPA [6] | 146.9s >48h
sacchr1?2 10 | arabido 1,500 SOPRA [5] 56.1s -
lactobacillus 17 | azucena 19,215 Greedy 116.0s 889.4s
pandora 19

(azucena) which took up to 5GB. However, we think this amount of memory
usage may be significantly lowered by a better handling of graph 1/0. Table 2
shows computation time of the greedy part. Even for the biggest graph with
nearly one million contigs, computation time is less than 20s. Note that this
time only concerns the greedy computation time, once the graph is generated.
Generation of the graph from a mapping file may take more time, up to 15 min
in the case of azucena. The most expensive step in the production of the graph
remains the mapping of reads on contigs, which takes several hours for azucena,
but is common to all de novo scaffolding tools. These experiments let us answer
our first question: Algorithm 1 is capable of treating huge instances, using very
little computational ressources. Table 3 shows a comparison of the computation
time of several scaffolders on the instances anopheles and azucena, including
precomputation time (after the mapping step). We notice that our method is
competitive relatively to other heuristics, in addition to providing a bound on
the quality of the solution.

4.2 Exploring the Bounds on Ratio

If S, is the solution given by Algorithm 1, and Sppr a corresponding optimal
solution, we denote their weights by wa and weopr, respectively. For the bound
B proven in Theorem 1, we have wq < wopr < B < 3wy. Thus, the ratio
wopr/wa > 1 is not only smaller than 3, but also than B/w4. Table4 shows
the results we have on the upper bound. Indeed, we are able to guarantee a
ratio very close to 1 for all of the real data since the gap between the weight
of the approximated solution and the upper bound is small. The solution for
ebola is even optimal. Moreover, for azucena, the largest instance we have in
our possession, we prove that the solution returned by the algorithm is at worst
1% smaller than the upper bound we have calculated. As a conclusion to this
experiment, we can remark that, although it is only a heuristic, the greedy
algorithm provides very good solutions on real instances, and since it is very
quick, has a very practical interest.

306 C. Dallard et al.

Table 4. Guaranteed ratio on real data for o, =1 and o. = 0.

graph #contigs #edges waA B|Bj/wa—1
monarch 14 19 506 507 | 0.20 %
ebola 17 26 776 776 0.00 %
rice 84 139 4,293 4,321 0.65%
sacchr3 296 527 14,524 14,629 | 0.72%
sacchri2 889 1,522 46,027 46,345 | 0.69 %
lactobacillus 1,898 3,335 95,538 96,194 | 0.69 %
pandora 2,451 4,271 119,575 120,334 | 0.64 %
anthrazx 4,055 6,958 226,709 227,925 | 0.54 %
gloeobacter 4,517 7,885 218,524 220,091 | 0.72%
pseudomonas 5,248 9,086 279,611 280,865 | 0.45 %
anopheles 42,045 71,452 | 1,707,463 | 1,720,269 |0.75%
arabido 1,571,094 | 1,561,540 | 1,561,540| 1,571,094 |0.60 %
azucena 956,902 | 2,425,349 4,692,840 | 4,740,633 1.06 %

Table 5. Guaranteed ratio on simulated data.

Data type #graphs | mean ratio | median ratio
Pure simulated, Grimm | 375 1.433 1.320
Pure simulated, Uniform | 520 1.729 1.814
Semi-simulated, Grimm | 330 1.086 1.084
Semi-simulated, Uniform | 330 1.151 1.118

4.3 Simulated Data

Because of the near optimal results we obtained on real data, we wanted to test
our algorithm on simulated instances. We then compared obtained average ratios
between these four types of data to point out the gap of efficiency according to
the generation method.

Tableb reveals the differences of gaps between the approximated solution
weight and the calculated upper bound, depending on the generation method.
Note that this gap is always smaller when simulating with Grimm than with
Uniform data, which was expected since real-world instances (which Grimm tries
to mimic) are expected to be the result of overlaying a strong signal with little
noise, which makes detecting this signal much easier than looking for a signal in
uniform random graphs. Furthermore, semi-simulated data obtain the smallest
gap, which means our algorithm is more effective on real data like instances than
on pure simulated instances. We noticed that degree distribution has an impact
on the efficiency of the greedy method. However, we observe that simulated data
cannot generally guarantee a ratio as good as real data, meaning that simulation
process should be refined to produce fully exploitable benchmarks.

Instance Guaranteed Ratio on Greedy Heuristic for Genome Scaffolding 307

5 Conclusion

In Sect. 4 we pointed out the efficiency of our upper bound calculation previously
proven in Sect. 3. By demonstrating that the worst case scenario never actually
occurs in real or simulated data, these results encourage the use of Algorithm 1.
In addition, the gap between real data and simulated data seems to indicate
that additional effort in designing more realistic scaffold graph generators is
warranted.

Perspectives of this work go into both practical and theoretical directions. On
the latter one, short term perspectives include exploring possibilities to develop
dynamic upper bounds on approximation ratios of other algorithms. As far as we
know, this kind of technique for computing upper bounds has not been consid-
ered, and it extends straightforwardly to several N’P-complete problems such as
the maximization variant of Travelling Salesman Problem [1]. Finally, the proof
of Lemma 3 may lead to an exact algorithm which would use optimal edges to
minimize branching on the search-tree. On the practical side, we are interested
in testing the current implementation of Algorithm 1 in comparison with existing
scaffolding tools. This may also include a careful examination of the quality of
solutions, not only from a combinatorial point of view, but also from a biolog-
ical point of view. As an extension of this work, we are also interested in the
generalization of this greedy algorithm to a version of the problem allowing to
use a same contig several times, modeling the case where there are repeats in
the genomes, which is what happens in reality.

Acknowledgments. This work was partially founded by the “Projet Investissement
d’Avenir” Institut de Biologie Computationnelle. We also like to thank Anne Dievart
and Julien Frouin from CIRAD, for their interest to our work and the Azucena Rice
illumina reads library.

References

1. Barvinok, A., Gimadi, E.K., Serdyukov, A.l.: The maximum TSP. In: Gutin, G.,
Punnen, A.P. (eds.) The Traveling Salesman Problem and Its Variations. Combi-
natorial Optimization, pp. 585-607. Springer, Heidelberg (2007)

2. Chateau, A., Giroudeau, R.: A complexity and approximation framework for
the maximization scaffolding problem. Theor. Comput. Sci. 595, 92-106 (2015).
http://dx.doi.org/10.1016/j.tcs.2015.06.023

3. Chen, Z.-Z., Harada, Y., Machida, E., Guo, F., Wang, L.: Better approx-
imation algorithms for scaffolding problems. In: Zhu, D., Bereg, S. (eds.)
FAW 2016. LNCS, vol. 9711, pp. 17-28. Springer, Heidelberg (2016).
http://dx.doi.org/10.1007/978-3-319-39817-4_3

4. Chikhi, R., Rizk, G.: Space-efficient and exact de bruijn graph representation based
on a bloom filter. In: Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534,
pp. 236-248. Springer, Heidelberg (2012)

5. Dayarian, A., Michael, T.P., Sengupta, A.M.: SOPRA: scaffolding algorithm for
paired reads via statistical optimization. BMC Bioinform. 11(1), 1-21 (2010)

http://dx.doi.org/10.1016/j.tcs.2015.06.023
http://dx.doi.org/10.1007/978-3-319-39817-4_3

308

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

C. Dallard et al.

Donmez, N., Brudno, M.: SCARPA: scaffolding reads with practical algorithms.
Bioinformatics 29(4), 428-434 (2013)

Ferdjoukh, A., Bourreau, E., Chateau, A., Nebut, C.: A model-driven approach to
generate relevant and realistic datasets. In: SEKE, pp. 105-109. KSI Research Inc.
and Knowledge Systems Institute Graduate School (2016)

. Gao, S., Sung, W.-K., Nagarajan, N.: Opera: reconstructing optimal genomic scaf-

folds with high-throughput paired-end sequences. J. Comput. Biol. 18(11), 1681—
1691 (2011)

Gritsenko, A.A., Nijkamp, J.F., Reinders, M.J., de Ridder, D.: GRASS: a generic
algorithm for scaffolding next-generation sequencing assemblies. Bioinformatics
28(11), 1429-1437 (2012)

Hunt, M., Newbold, C., Berriman, M., Otto, T.: A comprehensive evaluation
of assembly scaffolding tools. Genome Biol. 15(3), 1-15 (2014). doi:10.1186/
gb-2014-15-3-r42. http://dx.doi.org/10.1186/gh-2014-15-3-r42

Huson, D.H., Reinert, K., Myers, E.W.: The greedy path-merging algorithm for
contig scaffolding. J. ACM (JACM) 49(5), 603-615 (2002)

Koren, S., Treangen, T.J., Pop, M.: Bambus 2: scaffolding metagenomes. Bioinfor-
matics 27(21), 2964-2971 (2011)

Li, H., Durbin, R.: Fast and accurate long-read alignment with Burrows-Wheeler
transform. Bioinformatics 26(5), 589-595 (2010). doi:10.1093/bioinformatics/
btp698. http://dx.doi.org/10.1093/bioinformatics/btp698

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.T.,
Abecasis, G.R., Durbin, R.: The sequence alignment/map format and SAMtools.
Bioinformatics 25(16), 2078-2079 (2009)

Sahlin, K., Vezzi, F., Nystedt, B., Lundeberg, J., Arvestad, L.: BESST - efficient
scaffolding of large fragmented assemblies. BMC Bioinform. 15(1), 281 (2014).
ISSN 1471-2105

Salmela, L., Mékinen, V., Valiméaki, N., Ylinen, J., Ukkonen, E.: Fast scaffolding
with small independent mixed integer programs. Bioinformatics 27(23), 3259-3265
(2011)

Weller, M., Chateau, A., Dallard, C., Giroudeau, R.: Scaffolding problems revisited:
complexity, approximation and fixed parameter tractable algorithms, and some
special cases. In: (2016, revision)

Weller, M., Chateau, A., Giroudeau, R.: Exact approaches for scaffolding. BMC
Bioinform. 16(14), S2 (2015). ISSN 1471-2105

Weller, M., Chateau, A., Giroudeau, R.: On the complexity of scaffolding problems:
from cliques to sparse graphs. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.)
COCOA 2015. LNCS, vol. 9486, pp. 409-423. Springer, Heidelberg (2015)

http://dx.doi.org/10.1186/gb-2014-15-3-r42
http://dx.doi.org/10.1186/gb-2014-15-3-r42
http://dx.doi.org/10.1186/gb-2014-15-3-r42
http://dx.doi.org/10.1093/bioinformatics/btp698
http://dx.doi.org/10.1093/bioinformatics/btp698
http://dx.doi.org/10.1093/bioinformatics/btp698

Geometric Optimization

Performing Multicut on Walkable Environments

Obtaining a Minimally Connected Multi-layered
Environment from a Walkable Environment

Arne Hillebrand®™), Marjan van den Akker,
Roland Geraerts, and Han Hoogeveen

Institute of Information and Computing Sciences,
Utrecht University, 3508 TA Utrecht, The Netherlands
{A .Hillebrand,J.M.vandenAkker,R.J.Geraerts,J.A. Hoogeveen}@uu .nl

Abstract. A multi-layered environment is a representation of the walk-
able space in a 3D virtual environment that comprises a set of two-
dimensional layers together with the locations where the different layers
touch, which are called connections. This representation can be used
for crowd simulations, e.g. to determine evacuation times in complex
buildings. Since the execution times of many algorithms depend on the
number of connections, we will study multi-layered environments with
a minimal number of connections. We show how finding a minimally
connected multi-layered environment can be formulated as an instance
of the multicut problem. We will prove that finding a minimally con-
nected multi-layered environment is an NP-Hard problem. Lastly, we
will present techniques which shrink the size of the underlying graph by
removing redundant information. These techniques decrease the input
size for algorithms that use this representation for finding multi-layered
environments.

1 Introduction

Evacuation planning and crowd simulations for safety purposes are becoming
more and more important in modern society. To perform such simulations in a
soccer stadium for example, we need its underlying polygonal environment (PE),
which is a common format used by architects [17] and 3D modelling tools. A PE
is a collection of polygons in R? which can be processed through a pipeline to
mould it in an appropriate format; an example of such a pipeline is shown in
Fig. 1. As is shown in Fig. 1(a), such a PE usually contains unnecessary details
for simulations. We only need a filtered version of the PE that contains the
polygons that are traversable. Examples of polygons that are not needed in
the walkable environment (WE) are polygons that are too steep, too close to a
ceiling or polygons for which there is not enough clearance for a character to
be positioned on the polygon. We assume, without loss of generality, that all
polygons P € WE are convex. Furthermore, we assume that the WE is clean,
that is, there is no intersecting or degenerate geometry. Both these properties
can be guaranteed when extracting the WE from the PE. An example of a WE

© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 311-325, 2016.
DOI: 10.1007/978-3-319-48749-6_23

312 A. Hillebrand et al.

(b) WE (c) MLE

Fig.1. (a): A polygonal environment. (b): The walkable environment of this model.
(¢): A multi-layered environment for this walkable environment. Polygons with the
same shade of grey are in the same layer. The red edges are connections. (Color figure
online)

is shown in Fig. 1(b). Polygons in a WE can either overlap or be connected.
Two polygons overlap when they share at least one point when projected on the
ground plane that is not on an edge of both polygons. The polygons P and @
are connected when they do not overlap and share exactly one edge ep,g. When
P and @ are connected, it is possible for a virtual point character to move from
P to Q and vice versa.

On a WE we want to perform operations such as constructing visibility
graphs [10], which are used for finding shortest paths in the environment, or for
creating navigation meshes [15], which enable fast path planning queries that
are used for crowd simulations. However, many operations currently are limited
to two-dimensional environments. These operations can be extended to layered
two-dimensional environments by using a multi-layered environment (MLE). An
MLE is a decomposition of the WE in layers, such that every layer can be embed-
ded in the plane. When two polygons P and () share an edge ep, and do not
overlap but are in different layers, ep g connects the two layers. This type of
edge is called a connection. This set of edges is also stored for an MLE.

Definition 1 (Multi-layered Environment, Van Toll et al. [16]). An MLE
for a given WE consists of a set L = {L, ..., L;} of two-dimensional layers and
a set C of connections, such that:

— No layer L; (i =1,...,1) contains overlapping polygons;

— Every polygon in the WE is assigned to exactly one layer L; (i =1,...,1);

— When two polygons P and @) are connected, but are in different layers, the
connection between P and @ is part of the set C;

— Every layer L; (i =1,...,1) forms a single connected component, i.e. for any
two polygons P, @ in L; we can walk from P to) without leaving L;.

When we use this definition of an MLE;, it is rarely the case that there exists
only one possible MLE for a WE. Take for example the MLE given in Fig. 1(c),
consisting of three layers and two connections. Another possible MLE for this
WE has only two layers, but needs four different connections. We call an MLE
with the minimal number of connections a minimally connected multi-layered
environment (MICLE). In this paper we will focus on MICLEs. This is the

Performing Multicut on Walkable Environments 313

most useful type of MLE because subsequent operations are dependent on the
number of connections. For example, van Toll et al. [16] show that constructing
a navigation mesh for an MLE can be done in O(k x nlogn) time, where k is
the number of connections in an MLE and n is the number of obstacle points
used to describe the boundaries of the individual layers of the MLE.

1.1 Related Work

There are several applications and algorithms that are already using some form
of an MLE. However, the MLEs that they use are often of poor quality. They
do not cover all of the walkable space or contain a high number of connections.
Van Toll et al. [16] use an MLE to create a multi-layered navigation mesh,
which allows for fast path planning queries. Their MLE is a decomposition of
the walkable environment into layers. One strength of this type of MLE is that
the representation of the corresponding WE is exact. However, they do not
describe any methods to find an MLE with a low number of connections.

Deusdado et al. [3] use a discretized height map to automatically extract
walkable surfaces from a PE. The locations of the connections are determined
by comparing the height information of different walkable surfaces. Oliva and
Pelechano [11] overlay the environment with a three-dimensional grid and mark
each grid cell positive when it contains walkable geometry. These grid cells are
grouped into layers which are then used to create a multi-layered navigation
mesh. Pettré et al. [12] create multiple elevation maps of a PE by using the
graphics card. From these elevation maps, slopes that are too steep are filtered
and the elevation maps are joined, resulting in a WE. The downside of these
techniques is that they are not general enough and that the resulting MLE is
only an approximation of the WE and does not cover all of the WE.

Instead of extracting an MLE from a PE or WE, Jiang et al. [9] propose a
method which models the environment in simple blocks that can be described
in two dimensions. The blocks are linked together in a floor plan-like fashion.
When an environment is described this way, an MLE is easy to extract since the
layers and connections are explicitly defined.

1.2 Owur Contribution

In Sect.2, we will show that the search for a MICLE can be solved in theory
by using multi-commodity minimal-cut (MULTICUT). For this we will encode the
WE as a graph. MULTICUT is a problem in the class of NP-Hard problems [1],
for which fixed parameter tractable (FPT) algorithms exist [5]. We will prove
that finding a MICLE is also in the class of NP-Hard problems. In Sect.3 we
will identify situations in which edges, vertices and overlaps can be removed
from the graph, without influencing the size of the cut needed for finding a valid
MICLE. We have also implemented algorithms to handle these situations and we
experimentally evaluate them in Sect.4. The graph reduction algorithms have
varying results on real-world environments.

314 A. Hillebrand et al.

2 Finding a MICLE

We first convert the WE into a graph G = (V, E, O). In this graph, a vertex is
added to V for every polygon in the WE. An undirected edge (v, w) is added to
FE whenever the polygons corresponding to the vertices v and w are connected in
the WE. When two polygons with corresponding vertices v’ and w’ overlap, the
unordered pair (v/,w’) is added to O. This process is illustrated in Fig. 2. The
resulting graph is called the walkable environment graph (WEG). Sometimes, we
want to assign different weights to edges in the WEG. One such situation will
be described in Sect. 3. For a weighted WEG we have G = (V, E, O, w). Here w
is a function that maps every edge e € E to a real number. The weight of the
cut set C is defined as |C| = w(C) = > ., w(e). Using the WEG, the problem
of finding a MICLE can now be formulated as follows:

(a) WE (b) Vertices added (c) Edges added (d) Overlaps added

Fig. 2. Constructing the graph representation of a walkable environment. (a): The
walkable environment. (b): Vertices are added for every polygon in the walkable envi-
ronment. (c): Undirected edges are added for connected polygons. (d): Overlapping
vertices are annotated (represented by red edges). (Color figure online)

Problem 1 (Finding a MICLE). Given WEG G = (V, E, O) of WE W. Finding
a MICLE is now the same as finding the set C C F for which:

— Yo, w such that (v,w) € O: v and w are in different graph components for the
graph G = (V, E\C);

— |C| is minimal.

From the different connected components in the graph G’ = (V, E\C), we can
construct the different layers in the MLE. When |O| = 1, this problem is the
same as the s-t cut problem, which can be solved using the max-flow min-cut
theorem [4]. If |O| > 1, we have an instance of the MULTICUT problem [14]. In
the MULTICUT framework, multiple source-sink pairs (s;,t;) exist, where each
pair has to be separated. By using MULTICUT it is possible to find an MLE with
a minimal number of connections for a WEG by using the overlapping pairs
(v,w) € O as the terminal pair set. Unfortunately, MULTICUT has been proven
to be NP-Hard when |O| > 3 [1]. For |O| = 2, polynomial time algorithms
exist to solve MULTICUT [8]. However, since finding a MICLE is a special case of
MULTICUT, we still need to prove that finding a MICLE for a WEG is indeed an
NP-Hard problem. We will show this below.

Performing Multicut on Walkable Environments 315

2.1 Preliminaries

The proof that finding a MICLE is in the class of NP-Hard problems is heavily
based on the work done by Dahlhaus et al. [2] on the MULTITERMINAL-CUT (MTC)
problem. The decision version of this problem is defined below:

Definition 2 (MULTITERMINAL-CUT, Dahlhaus et al. [2]). Given a graph G =
(V,E,w), a terminal set T CV and a positive bound B. The decision version of
MTC is now the same as finding a set E' C E for which:

- VYo,w € T such that v # w: v and w are in different components for the graph
G' = (V,E\FE');
- ZeGE’ w(e) S B.

To prove that the MTC problem is NP-Hard, Dahlhaus et al. first prove a
restricted version of PLANAR 3-SAT (P3R) to be NP-Complete.

Definition 3 (P3R, Dahlhaus et al. [2]). Given a set of variables X =
{z1,... 2, } and set of clauses C = {c1,..., ¢}, where:

- Ve; € Cicj = (zk, V) or ¢j = (z1, V@ V Ty for some zy, z, T € X;
— Vz; € X: x; occurs exactly once in three different clauses, and;
— Vx; € X: Both the literals z; and T; occur at least once.

Solving P3R for a formula F = ¢; A ... A ¢y, is now equal to finding a suitable
truth assignment 7T for all the variables x; € X such that F' equals true.

Dahlhaus et al. show how an instance of P3R can be reduced to the decision
version of MTC. Some of the widgets that they use are given in Fig.3. In this
figure, the circles represent the terminals of the MTC problem. Every variable z;
with two x; literals is replaced with the widget shown in Fig.3(a). The clauses
of size three are replaced with the widget from Fig. 3(c¢). Similar widgets exist
for the clauses of size two and for the variables with two Z; literals.

Next, the widgets representing the variables and the clauses are connected
using weight two link edges. The link edges are attached to the vertices labelled
iz, l}A and lAj’w (x = 1,2,3). For details on how these widgets are connected
using the link edges, we refer the reader to reference [2]. The component induced
by the vertices of the link edge and the neighbours of these vertices is called the
link structure. While proving that the decision version of the MTC problem is
NP-Complete, Dahlhaus et al. also proved the following two lemmas:

Lemma 1 (Dahlhaus et al. [2]). Given are a P3R instance (X,C) with X
the set of variables and C' the set of clauses. Let Gx ¢ be the bipartite graph
representing this instance and G” ' ¢ the transformed graph of Gx ¢. There exists
a set of edges E' with total weight B = 10|X|+ 4|C| separating the terminals in
G'x ¢ if and only if the P3R instance (X, C) has a satisfying truth assignment.

Lemma 2 (Dahlhaus et al. [2]). When a cut set E’ for MTC is found where
the separation cost) . w(e) < B, E" only contains edges from the connector
triangles or link edges. Furthermore, for each link structure it will only contain
one of the connector triangles or the link edge.

316 A. Hillebrand et al.

led | >.+/—{Aﬁroi’

(c) (d)

Fig. 3. The widgets used by Dahlhaus et al. [2] and their polygonal counterparts. The
terminals are depicted by circles and the vertices by discs. The widget in (a) is used
for a variable z; with two z; literals. The widget in (c) is used for clauses with three
variables. For the polygonal counterparts (Figs.(b) and (d)), the newly created vertices
are coloured orange. (Color figure online)

These two lemmas are of key importance for the proof that finding a MICLE is
an NP-Hard problem.

2.2 Finding a MICLE Is NP-Hard in the Strong Sense

First, we will show that the transformed graph G’X,C can exist as a WEG. Next,
we will prove that it is possible to encode the terminals of MTC in a WE. Finally,
we will show that this can be done in polynomial time.

Since G’y ¢ 1s planar, the components from this graph can easily be repre-
sented using the polygonal structures given in Figs. 3(b) and (d). The link edges
connecting the link vertices [; , or lZ + to l] « (x = 1,2,3) can be represented
using a series of polygons. Smce the link edges have weight two, two of such
series of polygons are required. These series are attached to the only two free
sides of the tetragons [; , or ZZ - and lj y- The tetragons that represent these
vertices are hatched in Figs. 3(b) and (d). Every link edge can be represented by
using at most five polygons, since there exists a straight line drawing for every
planar graph, and it can be found in O(|V]) time [6]. It is easy to see that the
resulting WEG has the same properties as the components given by Dahlhaus
et al., that is, separating any pair of the vertices from the WEG that directly
corresponds to vertices from the original widgets will result in a cut of exactly
the same weight.

Performing Multicut on Walkable Environments 317

All the terminals can be encoded by one big set Tiyyer of polygons. The
required number of polygons in this set is 2|X| + 2|C|, one for each terminal
in G’X,C. These polygons should all be centred around one point ¢ such that,
when all the polygons are projected on the ground plane, they all contain this
point. As a result, all these polygons will be placed in different components when
searching for any MLE.

The next step is connecting the polygons from T},qe- to the polygons where
the terminals of the MTC problem are located. These are labelled z;, Z;, ¢;” and cj'
in Figs.3(b) and (d). This should be done in such a way that Lemma 1 remains
valid and the final polygonal environment is a WE. The validity of Lemma 1
remains when we connect each terminal in Tj,ue, to one of the terminals of
MTC using a single weight 7 edge. Cutting such an edge will always increase the
weight of the cut set E’ to a value higher than B. Edges of weight 7 are sufficient,
since the edges of weight 3 and weight 5 connected to the terminals of MTC are
guaranteed not to be part of the cut set E’ if a satisfying truth assignment exists
(Lemma 2).

When we represent these edges of weight 7 by 7 polygonal paths, the polygons
can overlap parts of clause and variable structures, generating new overlaps
that have to be separated. Fortunately, we can create paths that guarantee that
Lemmas 1 and 2 will still hold, even when these paths are added to the WEG.

Lemma 3. We are given a former terminal t, a path p connecting t to the new
terminal t' € Tiower and the polygonal structure S that contains t, the polygonal
widget it belongs to and its link structures. If p does not overlap S or itself,
Lemmas 1 and 2 still hold.

Proof. Since Lemmas 1 and 2 do not state anything about the scenario where
no satisfying truth assignment for P3R exists, we do not need to consider this
scenario. For this reason, we will assume that there exists a satisfying truth
assignment for P3R.

Note that the path p must be one of the 7 polygonal paths that connects ¢
to t’. Therefore, cutting only path p will increase the weight of the cut set but
not make ¢’ and ¢ disconnected in the WEG. Therefore, cutting p will also mean
cutting the other 6 paths connecting ¢t and t’. We already know that these 7
paths will not be cut when separating all terminals in T},yer, unless there is no
possible truth assignment for P3R. Furthermore, we know from Lemma 2 that the
edges from the link structures separate all the terminals. This also means that
all paths connecting vertices in a variable or clause structure will be separated
from any other variable or clause structure. Since p connects the former terminal
t and the new terminal ¢, we know that cutting the correct link structures will
separate ' from all other terminals in T},uer. The terminals that are created
when p overlaps parts of the WE are also cut, since we know that these overlaps
are connected through link structures, and all link structures are cut. Therefore,
both Lemmas 1 and 2 must hold. O

It is easy to see that these paths exists. We know that the various clause and
variable structures can be connected using straight paths [6], not considering the

318 A. Hillebrand et al.

polygons from T}, or the paths connecting these structures to Tiower- This
follows from the fact that we started from an instance of P3R, which can be
embedded in the plane. Furthermore, the only non-planar structures are Tiower
and the paths that lead to it. We also know that the paths connecting the former
terminals to the new terminals in Tioper may overlap. Therefore, it is sufficient
to have these paths skim the border of the polygonal structure S, until a straight
path to Tipwer is possible. This results in the following theorem:

Theorem 1. The decision version of finding a MICLE is NP-Complete and
finding a MICLE is NP-Hard.

Proof. First we use the graph Gy - of Dahlhaus et al. [2]. This graph can be
represented using 45 polygons for every variable, 20 polygons for every clause
with 2 variables and 32 polygons for every clause of three variables. Every link
edge can be represented using 5 polygons, and there are 2| X| link edges in total.
The number of added polygons to create the link structures and components is
linear in | X |+ |C|; the same holds for the needed number of polygons for T;puer-
The polygons will also encode the 2(]X| + |C|) terminals from the MTC problem.
For creating the paths to Tiower, at most another number of polygons linear in
| X |+ |C| is needed.

To complete the proof, bounds for the terminal-pairs have to be given.
The number of added terminal-pairs while creating the paths to Tiower is at
most O((|X| + |C])?). As a result, the decision version of finding a MICLE is
NP-Complete, and, therefore the optimization version of finding a MICLE is
NP-Hard. O

3 Reducing the Size of the WEG

In this section we describe situations in which vertices, edges and overlaps can be
removed from a WEG without changing the optimal solution. In Sect. 3.1, we will
present techniques to reduce the number of edges in the WEG, and in Sect. 3.2,
we will discuss the removal of overlaps that are already enforced by other overlaps
of the WEG. In this section we will use a weighted WEG, as defined in Sect. 2.
We start with Ve € E : w(e) = 1. We will use N, = {w|(v,w) € E} for the
set of neighbours of a vertex v in a weighted WEG G = (V, E, O, w). Similarly,
0, = {w|(v,w) € O} is the set of vertices that v overlaps. A simple path between
the vertices v and w, will be denoted as [v — w].

3.1 Reducing the Number of Edges

The first reduction we will discuss is called 1-CONTRACT. It is only applicable
for a vertex v with |O,| = 0 and |N,| = 1. Such a vertex can easily be ignored.
There is no reason to add this vertex to any other layer than the layer of its only
neighbour.

The second graph simplification applies to a vertex with |N,| = 2 and
|O,| = 0. Assume the two neighbours of v are v and w. Since this vertex v

Performing Multicut on Walkable Environments 319

) b

Fig. 4. An example of the application of the contraction operations. In (a) the WEG
with which we start is given. In (b), (c) and (d) the WEG is shown after the application
of 1-CONTRACT, 2-CONTRACT and E-REDUCE, respectively. The thick edge in (d) is of
weight 2.

has no vertices it overlaps with, merging v and u or v and w will not force any
new overlaps. The newly created edge (u,w) does not create any new connec-
tions between u and w, nor does the minimal cost of separating v and w change.
This operation is called 2-CONTRACT.

The third graph simplification is only useful in combination with the previ-
ous simplification. The operation applies to two vertices connected by multiple
edges. This situation can not exist in the original WEG because of the convexity
constraint for the polygons in a WE. In this situation it would be nice if we could
apply the 2-CONTRACT operation, but this is not possible since the degree of v is
three, not two. A simple solution solving this problem is merging all the double
edges and combining their respective weights. This method is called E-REDUCE.
An example of a EEG, and the resulting WEGs after we have applied each of
these operations, can be seen in Fig. 4.

3.2 Reducing the Number of Overlaps

A logical next step is removing overlaps from the WEG. This situation will be
subdivided into two categories. First, we have the trivial cases, where there is
only one possible cut to separate two vertices. Second, there is the case of vertices
with degree 2 that overlap. In this scenario several overlaps can be removed under
specific circumstances.

Trivial Cases. A case is considered trivial when there exists only one vertex-
disjoint path between v and w, (v, w) € E, and v and w are overlapping. When
this happens, there is only one possible way to separate v and w, which is done by
cutting the edge (v, w). Since this action guarantees that v and w are separated,
the overlap (v, w) can be removed from O. When there are other vertex-disjoint
paths between v and w not containing the edge (v, w), cutting the edge (v, w) will
not separate these paths. For this reason, the overlap (v, w) cannot be removed
from O in this situation.

Another trivial case is when a vertex v has degree 1 and (v,w) € O. In this
scenario the overlap can be removed when all the neighbours of w that are on a
vertex-disjoint path [v — w] are overlapped by the single neighbour of v. In this
situation, every path connecting v and w has a subpath connecting a neighbour

320 A. Hillebrand et al.

L v , N, , N,
-$— o ... e g
’ 1) 1)
’ ’
My ‘ w , n/w Ny , n/w
> S —

Fig.5. An example in which the overlap (v, w) can be removed as long as the vertices
have degree 2.

of v to a neighbour of w. This subpath has to be cut, since the neighbour of v
is assumed to overlap all the neighbours of w. We call this operation 1-REMOVE.
For a vertex v, we can check if an overlap can be removed in O(|Ny|) time if
all members of N,, are overlapped by the single member of N,, say n,. If n,
does not overlap all members of N,,, this check is more expensive. We need to
check if the members of V,, that are not overlapped by n, are in a different graph
component after the temporary removal of w. This can be done using a Breadth-
first search (BFS), resulting in an expensive O(]E|) check to see if this operation
is applicable. Performing this step on an entire WEG can take O(|V||O||E|) time.
Since |O| can be O(|V|?), we end up with an O(|V|?|E|) algorithm, which is a
costly operation for larger environments. However, we think that this worst-case
scenario rarely happens in practice, because |O| is only O(]V|?) when almost all
polygons overlap all other polygons.

Removing Overlaps from Vertices of Degree 2. When considering a vertex
v with degree 2 and its overlaps, some of these overlaps might be removed.
Assuming (v, w) € O, this overlap can be removed when, on each path connecting
v and w, there is a pair of vertices (z,y) € O. That is, for every possible path
connecting v to w, there is a pair of vertices (z,y) € O and both x and y are on
this path. An example of such a situation is given in Fig. 5(a). We will call such
a structure a stack, and the operation that removes overlaps from this stack we
will call STACK-REMOVE. In this situation, all edges have weight one and both v
and w have degree two. Furthermore, the neighbours of v and w do also overlap.
A formal proof of the validity of STACK-REMOVE is given in Appendix A.

Overlaps in similar cases can still be removed from a WEG whenever the
edges (ny,w) and (w,n),) have the same weights a, and the edges (n,,v) and
(v,m!) also have the same weights b. However, if edges (n,,,w) and (w,n!,) each
have different weights, this is not longer true, since these edges cannot be easily
replaced by edges from the original graph.

General Overlap Removal. In the general case, overlaps can be removed
whenever the separation of overlapping vertices is already forced by the sur-
rounding environment, just as with STACK-REMOVE. Unfortunately, checking this
requires an exponential amount of time in worst case scenarios. A simple BFS
or DFS will not suffice since not all paths connecting v and w are traversed.

Performing Multicut on Walkable Environments 321

Since such a worst-case runtime is not usable in practice (especially when
you consider running that algorithm for every vertex that has an overlap), it is
prudent to limit the search depth at the cost of the number of overlaps that will
be removed. Such an algorithm is d-REMOVE. The parameter d is a bound on the
path length considered when searching for overlaps that can be removed.

For each simple path of length d originating in v, we temporarily remove
the vertices that are overlapped by vertices on the simple path from the WEG.
After doing this, a BFS is started from the last vertex on the simple path.
If we encounter a vertex o that overlaps v during this BFS, we remember it.
This process is repeated for all the simple paths. For overlaps that were not
encountered during this process, there must be vertices on the simple paths of
length d that guarantee the separation. Therefore, we can safely remove the
overlaps that were not encountered during this process from the WEG.

The running time for this algorithm is O(z¢ x (|E| + |V| — 2d) + 2% x y),
where z is the maximal branching factor and y is the maximal number of over-
laps associated with a vertex. In this algorithm, x¢ calls are made to a BFS
algorithm. Since we already traversed d vertices and edges, the BFS does not
have to visit them any more. Registering the encountered overlaps on the simple
paths accounts for the remaining z? x y time.

4 Experiments and Results

We have implemented the WEG reductions described in Sect.3 in C++ and
tested them on a number of environments. The details of the used environments
are given in Table 1. The environments As_oilrig, Library and Parking lot were
taken from Saaltink [13], Station 1 and Station 2 were provided by Movares, an
engineering and consultancy company. The environments Halo, Cliffsides and
Hexagon were taken from the Google Sketchup warehouse'. The Tower environ-
ment was created by the authors, based on a flat in Utrecht, the Netherlands.

Table 1. The different environments we have tested. Column T. gives the type of
environment. V stands for “real” virtual environment and R stands for real world
environment. A v in column Tri. means that the environment is triangulated.

Environ.||T.|Tri.| [V| | [E|| |O] | Environ.|T.|Tri.| [V| | |E|| |O] |
As oilrig [V| v [2077]2399[10717| Library [[R] Xx | 298] 420 775
Halo V| v | 179] 184] 346] Tower R| X [5932[8033]/116983
Cliffsides || V| v | 748] 764] 162] Station 1 |[[R| v | 206] 209] 1026
Hexagon || V| v |2368|2419|20207 Station 2 || R| v/ 82| 86 115

Besides the size of these environments (which we can see in column |V]),
there are two other important aspects of the environments. The first one is

! https://3dwarchouse.sketchup.com/model. html?id={13c¢3078fa52d14554b9e177bc9-
ee06a9, 2ac949d235d65acb46697{f0ff0bIb2c, 33b2¢337108275568c09573a9753f4fd}.

https://3dwarehouse.sketchup.com/model.html?id=

322 A. Hillebrand et al.

VI

[J] 1) 1

2 g

S 08 S 08

S o6 S 06

[(]

£ o4 £ o4

®© 0.2 © 02

[(]

— 0 T T T T T T T T 1 — 0 T T T T T T T T 1
No O d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8 No O d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

|0] Duration

g 1 106

c 0.8 —~ 1075

e £ 1074 -

S 06 E

° 1073

0.4 Q

2 £ 1072

© 02 S 1071 o

8 0 T T T T T T T T 1 1070 T T T T 1 T T T 1
No O d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8 No O d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8
As_oilrig —— Cliffsides =—— Library Station 1 —

Halo ——— Hexagon —— Tower Station 2 ——

Fig. 6. Plots showing the relative changes of |V, |E|, |O| and the running time for the
different values of d. For the results in column ‘No O’ only 1-CONTRACT, 2-CONTRACT
and E-REDUCE were used.

(f)d=5

Fig. 7. Different WEGs for the Library environment. The black circles are vertices,
the blue segments are edges and the red segments are overlaps. In (a) the unmodified
WEG is shown. (b) through (e) show the reduced WEGs for different values of d. (Color
figure online)

the ratio %, which is an indication of how layered the environment is. The

second aspect is what types of geometric primitives were used to model these
environments. If an environment consists solely of triangles, it might be easier
to reduce the underlying graph. We tested our algorithms on models of real
buildings (type R) and on game levels (type V).

All our experiments were performed on a machine with an Intel i5-4670
clocked at 3.4 GHz with 16 GB of DDR3 RAM. They only used a single thread
and were repeated 20 times. The OS and compiler that we used are Linux Mint
13.2 (64 bit) and g++ version 5.3.0, respectively.

Performing Multicut on Walkable Environments 323

For each environment, we first ran experiments that only used the edge reduc-
tion algorithms described in Sect. 3.1. Next we added the overlap reduction algo-
rithms from Sect. 3.2. We did not include the results of experiments that only
used the algorithms in Sect. 3.2, because of space limitations. We tested for d
from d-REMOVE in the range 1 through 8. The results for all environments can be
seen in Fig. 6. This figure shows the relative changes for |V, |E| and |O|. Here,
a value of 1 means that no graph reduction was performed. A value of 0 means
that all the vertices (or edges or overlaps) were removed.

The first thing that we notice is that the Cliffsides environment benefits
greatly from the edge-reduction algorithms. We believe this to be because of
the relatively low ratio of % for this environment. This ratio is a measure of
how layered the environment is. Another important factor is the fact that the
environment is triangulated, which is also illustrated in Fig. 7. In this figure, we
see the Library environment and the corresponding WEG for different values
of d. When d = 5, there are many vertices that do not have any overlap, but
cannot be removed because the edge degree is too high. The edge degree would
have been lower, if the environment had been triangulated beforehand.

We can also see that all environments benefit from the use of the overlap-
reductions algorithms. There is a steep decline in the number of vertices and
edges when it is first used.

5 Conclusion

We have given a definition of MLEs that can be used as input for already existing
2D algorithms. A special type of MLE, the MICLE, can be useful for solving
problems in the multi-layered problem domain. Since a MICLE has the lowest
number of connections possible, cross-layer operations will occur less frequently.
Finding such a MICLE for a given WE is an NP-Hard problem. It is a version
of the well studied MULTICUT, which is also in the class of NP-Hard problems.

Furthermore, we have described some algorithms that can reduce the size of
the WEG. This is accomplished by merging vertices and removing overlaps in
such a way, when searching for a MICLE, that we find a solution that is also
optimal for the unmodified WEG, or one that can be adjusted to an optimal
solution for the unmodified WEG. These algorithms have been implemented
and tested for different environments.

Working with MICLEs can increase the efficiency of operations performed
on this MLE. Examples of such operations include, but are not limited to, per-
forming simulations of large crowds or constructing a visibility graphs for finding
shortest routes. However, as we have proven, an MLE with the smallest number
of connections is hard to find.

Currently, we are investigating techniques that can generate a WE from a PE
and strategies that can construct an MLE with a small number of connections
from a WE. Our first results on extracting MLEs from WEs can be found in
reference [7].

324 A. Hillebrand et al.

A Proof of STACK-REMOVE

Theorem 2. Given a weighted WEG G = (V,E,O,w), vertex v with N, =
{ny,nl}, vertex w with Ny = {ny,nl,}, {(v,w), (ny,ny), (n,,nl,)} € O and
w(e) = 1 for all e € E. The optimal cut set C' for G' = (V,E,0',w) with
0" = O\(v,w), either is also optimal for G, or can be adjusted to an optimal cut
set C for G.

Proof. Assume we have the WEG G’ = (V, E,0',w), with O' = O\ (v,w).
Furthermore, we will also assume that we have found a MICLE for G’ with
the cut set C’. Are all paths [v — w] cut by C’? If not, how can we change C’
without increasing the weight so that these paths are cut? This situation is also
illustrated in Fig. 5.

First, we observe that all vertex-disjoint paths [v — w] can be split into
four categories, namely [v,n, — ny,,w], [v,n, — nl,w], [v,n, — nl,,w] and
[v,n), — ny,w]. Categories [v,n, — ny,w] and [v,n), — n,,,w] will be cut
by C’, because the vertex-disjoint paths [n, — n,] and [n, — n.,] need to be
cut for any valid MICLE of G'. But what about the paths [v,n, — n/,, w] and
[v,n], — Ny, w]? We know the following groups of paths will be cut using edges
of ' (a) [— iy, w,ny); (b) [— nyw, m; () [0y 0,1, — s (d)
(155 ¥, Ty — 1]

This fact does not guarantee that the vertex-disjoint paths [v,n, — n!,, w]
and [v, n!, — n,,w] are cut by C’. The paths [v,n, — nl,, w] and [v,n], — N, w]
are definitely cut when C’ contains at least one edge of all vertex-disjoint paths
[y, — nl,] and [n] — n,]. If this is not the case, we have one of the following
three situations:

1. The paths [n, — nl,] are cut by C’, but the paths [n] — n,] are not;
2. The paths [n! — n,] are not cut by C’, but the paths [n,, — n,] are;
3. Both the paths from [n, — n!] and [n] — n,] are not cut by C’.

For these three remaining situations we can replace edges from C’ to also cut all
paths [v — w] without increasing the weight of C’ and cutting all paths from O
and thus obtaining the cut set C for G.

For the first situation, we know that the edges (n,,v) and (n!,, w) need to be
in C’ to cut the paths of type (b) and (c). Instead of adding the edges (n,,v) and
(n.,,w) to C', we can add the edges (n),v) and (n,,w) to C" without increasing
the weight of C’. When we do this the overlapping vertices of G’ will still be
separated, but we also separated v from w without increasing the weight of C’.
The second situation can be handled analogously.

When we have the third situation, we know that one of the edges {(n,,,w),
(w,n!,)} needs to be in C’ to cut the paths of types (a) and (b), and one of the
edges {(ny,v), (v,n,)} to cut the paths of type (c) and (d). When we just pick
the edges (v,n,) and (w,n,), we will once again not change the size of C’ and
still separate all overlaps of O’, but also all overlaps of O. O

The same trick can be applied to prove that overlaps can also be removed in a
stack of structures. This can be proven using exactly the same steps as before
and can only be applied under the same restrictions.

Performing Multicut on Walkable Environments 325

References

10.

11.

12.

13.

14.

15.

16.

17.

Calinescu, G., Fernandes, C.G., Reed, B.: Multicuts in unweighted graphs
with bounded degree and bounded tree-width. In: Bixby, R.E., Boyd, E.A.,
Rios-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, p. 137. Springer,
Heidelberg (1998)

Dahlhaus, E., Johnson, D., Papadimitriou, C., Seymour, P., Yannakakis, M.: The
complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864-894 (1994)
Deusdado, L., Fernandes, A.R., Belo, O.: Path planning for complex 3D multilevel
environments. In: Proceedings of 24th Spring Conference on Computer Graphics,
pp. 187-194 (2008)

Ford, L., Fulkerson, D.: Solving the transportation problem. Manag. Sci. 3(1),
24-32 (1956)

Guo, J., Hiffner, F., Kenar, E., Niedermeier, R., Uhlmann, J.: Complexity and
exact algorithms for multicut. In: Software Seminar, pp. 303-312 (2006)

Harel, D., Sardas, M.: An algorithm for straight-line drawing of planar graphs.
Algorithmica 20, 119-135 (1998)

Hillebrand, A., van den Akker, M., Geraerts, R., Hoogeveen, H.: Separating a walk-
able environment into layers. In: 9th International ACM SIGGRAPH Conference
on Motion in Games (2016, to appear)

Itai, A.: Two-commodity flow. J. ACM 25, 596611 (1978)

Jiang, H., Xu, W., Mao, T., Li, C., Xia, S., Wang, Z.: A semantic environment
model for crowd simulation in multilayered complex environment. ACM Symp.
Virtual Reality Softw. Technol. 2015, 191-198 (2009)

Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths
among polyhedral obstacles. Commun. ACM 22(10), 560-570 (1979)

Oliva, R., Pelechano, N.: NEOGEN: near optimal generator of navigation meshes
for 3D multi-layered environments. Comput. Graph. 37(5), 403-412 (2013)
Pettré, J., Laumond, J.P., Thalmann, D.: A navigation graph for real-time crowd
animation on multilayered and uneven terrain. First Int. Workshop Crowd Simul.
47(2), 81-90 (2005)

Saaltink, W.: Partitioning polygonal environments into multi-layered environ-
ments. Master’s thesis, Utrecht University (2011)

Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Algorithms
and Combinatorics, vol. 24. Springer, Heidelberg (2003)

Snook, G.: Simplified 3D movement and pathfinding using navigation meshes. In:
DeLoura, M. (ed.) Game Programming Gems, pp. 288-304. Charles River Media,
Newton Centre (2000)

van Toll, W., Cook IV., A., Geraerts, R.: Navigation meshes for realistic multi-
layered environments. In: 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 3526-3532 (2011)

Whyte, J., Bouchlaghem, N., Thorpe, A., McCaffer, R.: From cad to virtual reality:
modelling approaches, data exchange and interactive 3D building design tools.
Autom. Constr. 10(1), 43-55 (2000)

Minimum Weight Polygon Triangulation
Problem in Sub-Cubic Time Bound

Sung Eun Bae, Tong-Wook Shinn®™), and Tadao Takaoka

Algorithm Research Institute, Christchurch, New Zealand
{sung.bae, tongwook.shinn,tadao.takaoka}@ari.org.nz

Abstract. We break the long standing cubic time bound of O(n?) for
the Minimum Weight Polygon Triangulation problem by showing that
the well known dynamic programming algorithm, reported independently
by Gilbert and Klincsek, can be optimized with a faster algorithm for the
(min, +)-product using look-up tables. In doing so, we also show that
the well known Floyd-Warshall algorithm can be optimized in a similar
manner to achieve a sub-cubic time bound for the All Pairs Shortest
Paths problem without having to resort to recursion in the semi-ring
theory.

1 Introduction

Given a polygon, there are many different ways to divide up the polygon into
triangles. Such an operation is commonly known as triangulation. It is well
known that the total number of possible triangulations on a polygon with n
vertices is the (n—2)*" Catalan number! that grows exponentially as n increases.
If the edge costs between vertices of the polygon are defined, the Minimum
Weight Polygon Triangulation (MWPT) problem is to find the triangulation of
the polygon such that the total edge cost is minimal. We assume the polygon is
convex for simplicity.

There exists a well known dynamic programming algorithm that solves the
MWPT problem in O(n?) time bound reported independently by Gilbert [8] and
Klincsek [12]. We refer to this algorithm as the GK algorithm.

If we consider the input polygon as a graph with edge costs, then another
well known problem is the All Pairs Shortest Paths (APSP) problem, which is to
find the path that gives the minimal total edge cost for all possible pairs of ver-
tices. Floyd-Warshall (FW) algorithm [6] is a well known dynamic programming
algorithm for the APSP problem, also with O(n?®) time bound.

The GK algorithm for solving the MWP'T problem that we will review later in
this paper has a striking resemblance to the FW algorithm for solving the APSP
problem. The similarity may suggest that perhaps sub-cubic time bound algo-
rithms for the MWPT problem would also be possible, as there has been much
research in sub-cubic algorithms for the APSP problem, as shown in Table1.
For the APSP problem, even algorithms with deeply sub-cubic time bounds

! Named after the Belgian mathematician Eugene Charles Catalan (1814-1894).

© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 326-339, 2016.
DOI: 10.1007/978-3-319-48749-6_24

Minimum Weight Polygon Triangulation Problem in Sub-Cubic Time Bound 327

Table 1. Sub-cubic algorithms for the APSP problem.

2008 | O(n®(loglogn/logn)®*) Han [10]
2012 | O(n®loglogn/log® n) Han and Takaoka [11]

Year | Time complexity Author(s)
1976 | O(n(loglog n/logn)'/?) | Fredman [7]
1990 | O(n®/+/Togn) Dobosiewicz [5]
1992 | O(n*y/loglogn/logn) | Takaoka [14]
2004 | O(n®(loglogn/logn)® ™) Han [9]
2005 | O(n®loglogn/logn) Takaoka [15]
2006 | O(n®y/Toglogn/logn) | Zwick [17]
2008 | O(n®/logn) Chan [4]

(

(

are known for graphs with small integer edge costs that utilize faster matrix
multiplication over a ring [3,13,16].

All algorithms provided in Table1 are based on speeding up the (min,+)
matrix multiplication in a semi-ring using pre-computed look-up tables. It is
widely known that computing the closure of the (min,+) matrix semi-ring is
equivalent to solving the APSP problem, and that the closure of a matrix semi-
ring can be computed in the same time complexity as multiplying two matrices
in the semi-ring [1].

The MWPT problem on general polygons are known to be P-complete [2].
If the problem on convex polygons is also P-complete, it is quite unlikely that
the aforementioned approach based on the semi-ring theory would be able to be
applied to the MWPT problem, since the semi-ring based approach would likely
mean that the algorithm is easily parallelizable, which contradicts the problem
being P-complete.

In this paper, we firstly show that we do not have to resort to the semi-ring
theory in order to provide a sub-cubic time bound for the APSP problem. We
still rely on optimizing the (min,+) matrix multiplication with look-up tables,
but we embed this optimization directly within the FW algorithm rather than
relying on recursion in the semi-ring theory. While we are unable to provide a
faster algorithm for solving the APSP problem with this new approach, we show
that we can apply the same set of principles to the GK algorithm to break the
long standing cubic time barrier of the MWPT problem, which we present as the
main contribution of this paper. We have tried to appeal to the reader’s intuition
by using analogies such as acceleration, cruising and braking in the description
of our algorithms.

2 Preliminaries
Let G = (V, E) be the input polygon (graph), where V' is the set of vertices and

E is the set of edges with costs. Let n = |V|. We assume that the vertices are
numbered from 1 to n in the clockwise direction as shown in Fig. 1.

328 S.E. Bae et al.

Fig. 1. Two example triangulations of a Hexagon

Let D = {d;;} be an n-by-n matrix such that d;; = D[i][j] is the distance
(cost) from vertex i to vertex j. We refer to D as a distance matrix. If no edge
exists between 7 to j, we let d;; = 00. d; = 0 for all 1 < ¢ < n. We assume
that enough edges exist in the input graph for a successful triangulation. We
assume that the edges are undirected for the MWPT problem, although no such
restrictions are required for the APSP problem.

If A, B and C are all distance matrices, then we can define the (min,+)
matrix multiplication, C' = A x B, which we refer to as the (min, +)-product, as
performing the following operations for all possible pairs of ¢ and j:

n
Cij < 00,Cij — %1:1111{01'3', ik + bij}

If we were to compute the (min, +)-product D= D, intuitively, the meaning of the
operation min{d;;, d;x + di;} can be understood to be the comparison between
the currently known distance from ¢ to j against the total distance from ¢ to
J going wvia vertex k. Vertex k in this instance is also commonly referred to as
the witness vertex. In other words, vertex k proves that the given distance from
i to j is possible by going wia k. We refer to the above min operation as the
triple operation. In both the FW algorithm for solving the APSP problem and
the GK algorithm for solving the MWPT problem, we repeatedly perform this
triple operation to pick the best vertex k that gives the lowest cost/distance.

For the set of distance matrices, if we define the above (min, +)-product as
the matrix multiplication and define the component-wise min operation as the
matrix addition, then we can formulate a distance matrix semi-ring, such that
computing the closure of the semi-ring is equivalent to solving the APSP prob-
lem [1]. A straightforward implementation of computing the (min,+)-product
would take O(n?) time. Since the closure of a matrix semi-ring can be computed
within the same time bound as computing the product in the semi-ring [1], the
APSP problem can be solved with the semi-ring theory in O(n?) time, which
incidentally is also the time bound for both the FW and GK algorithms.

As briefly mentioned in Sect. 1, time bounds provided in Table 1 are achieved
by optimizing the computation of the (min,+)-product with look-up tables.

Minimum Weight Polygon Triangulation Problem in Sub-Cubic Time Bound 329

The key idea that allows for such optimization was first given by Fredman [7] as
follows:
iy + brj S Qis + bsj

If the above equation holds when computing A * B, then r is a better via vertex
than s since it provides a lower cost from i to j. The equation can be rearranged
as:

Qi — Qs S bsj - brj

Fredman showed that we can pre-compute both sides separately from each other
for all possible r and s pairs within a given set of via vertices, and then sort
and merge the results to retrieve the relative rankings for the r and s pairs, such
that we can then use the rankings from both sides to index into a pre-computed
look-up table to retrieve which wvia vertex gives the lowest cost from ¢ to j in
O(1) time. We refer to the sorted results for r and s the sorted lists of differences.
Since the size of the look-up table grows exponentially, the amount of speed up
provided by this method is likely to remain within the polylog factor.

3 Sub-Cubic Floyd-Warshall Algorithm

We start with a review of the classical FW algorithm, as provided in Algorithm 1.
A visualization of the algorithm is given in Fig. 2.

Algorithm 1. Original Floyd-Warshall Algorithm
1: for £k — 1 ton do

2: for i — 1 ton do
3: for j — 1ton do
4: DI[i][j] < min{DIi][j], D[i][k] + D[k][5]}

Fig. 2. Visualization of Floyd algorithm

330 S.E. Bae et al.

As we can see from the right hand side diagram in Fig. 2, in the FW algorithm,
for each via vertex k, we perform the triple operation for all pairs of ¢ and j to
check whether going via vertex k provides a better distance than the currently
known distance from i to j.

Close inspection of the FW algorithm reveals that neither the order in which
we iterate through the different values for k, or the order in which we iterate
through the possible (i, j) pairs, affect the correctness of the algorithm. This
observation can be easily derived from the fact that vertices in G can be num-
bered from 1 to n in any order for the APSP problem. This leads to Algorithm 2,
which we refer to as the generalized FW algorithm. Algorithm 2 clearly shows
that there is room for flexibility in implementing the FW algorithm.

Algorithm 2. Generalized Floyd-Warshall Algorithm

1: for each k € {1...n} in any order do
2: for all (i,7) pair in any order do
3: DIi][j] < min{D[z][5], DIi][k] + D[k][5]}

With Algorithm 2, we make another key observation that the values for k
must iterate outside of the iteration for (7, j) pairs, but this restriction only exists
because D[1...n][k] or D[k][1...n] must be used for subsequent computations of
other vertex pairs that do not have k as an index. In other words, if, for example
the triple operation was performed for D[i][j] for via vertices k1 and ko but the
resulting value for DJ[i][;j] is not used for subsequent triple operations on other
(i,4) pairs with via vertices k; and ks, then clearly performing the two triple
operations for DJi][j] out of order does not affect the overall computation of the
FW algorithm. From this key observation, we can derive the coarse-grained FW
algorithm given by Algorithm 3, which effectively goes through the different via
vertices in bulk in each iteration.

The visualization of the coarse-grained FW algorithm is given in Fig. 3. The
main point of this new algorithm is in performing the triple operations for O(m)
via vertices in a single iteration, rather than stepping through each via vertex
one by one, by dividing up the n-by-n distance matrix into m-by-m sub-matrices.
Each iteration of Algorithm 3 is divided into two distinct phases to achieve this,
which we refer to as the Acceleration phase and the Cruising phase.

Let N = n/m such that D is divided into a total of N? square matrices, where
each sub matrix is m-by-m. The term “coarse-grained” comes from iterating
through the m-by-m sub-matrices in contrast to the “fine-grained” method of
iterating through each column/row of D one-by-one. For clarity we use capital
letters in our algorithms for coarse-grained iterators. D[I][J] represents the m-
by-m sub-matrix on coarse-grained row I and coarse-grained column .J, where
1<I1,J<N.

The Acceleration phase of an iteration performs “fine-grained” triple opera-
tions for a set of (i, j) pairs for a total of m via vertices, similarly to the original
FW algorithm, iterating over the m wia vertices one-by-one. The shaded area

Minimum Weight Polygon Triangulation Problem in Sub-Cubic Time Bound 331

Algorithm 3. Coarse-Grained Floyd-Warshall Algorithm
1: N—mn/m

2: for K +— 1to N do

3: km — (K —1)m

4: /* Acceleration Phase */

5: for k — k,, +1 to k,, + m do

6: for ¢ — k., +1 to ky +m do

7: for j — 1ton do

8: DIi][j] < min(DIi][5], D[i][k] + D[k][5])
9: for i — 1 ton do

10: for j «— kp, +1 to kny, + m do

11: DIi][j] < min(DI[i][5], D[i][k] + D[K][5])

12: /* Cruising Phase */
13: for I < 1to N do

14: for J —1to N do
15: Compute D[I][J] < D[I][K] * D[K][J]
K J

o P

Fig. 3. Visualization of coarse-grained Floyd-Warshall algorithm

in Fig. 3 represents the subset of (4,5) pairs that finish computation for m via
vertices in the Acceleration phase of an iteration. We refer to this shaded area
as the thick row and the thick column.

We then move onto the Cruising phase, where we use the computed sub-
matrices from the Acceleration phase, namely thick column D[1...N][K] and
thick row D[K][1...J], to finish off all remaining m-by-m sub-matrices for the
same set of m wvia vertices in the iteration. It is important to note that the
general (min, +)-product can be used in the cruising phase to compute D[I][J] =
DII|[K] = D|K][J] that assumes no order in the computation of the via vertices
since the sub-matrices sit outside of the shaded area in Fig.3. In other words,
for any of the given m wvia vertices, D[i][j] that does not sit in the shaded area
are not used in the computation of any other (i, j) pairs.

332 S.E. Bae et al.

The Acceleration phase takes O(m?n) time and the Cruising phase takes
O(mn?) time, assuming O(m?) time bound for computing the (min, +)-product
of two m-by-m sub-matrices. Since we iterate N = n/m times, the total time
bound is O(mn? + n?), but since m < n, we have O(n?) for the coarse-grained
FW algorithm given by Algorithm 3.

Theorem 1. Algorithm 3 correctly solves the APSP problem.

Let block I be the vertex set {(I—1)m+1, (I—-1)m+2,...,(I—1)m+m = Im},
that is, the I*" block of the sorted vertex set V = {1,2,...,n}. Let block J and
block K be similarly defined. V' can be expressed as S(1) U S(2) U...U S(N)
where S(K) = {(K—-1)m+1,(K—1)m+2,...,(K—1)m+m = Km}. We prove
the correctness of Algorithm 3 by induction.

Invariant. At the end of the K" iteration D[i][j] is the distance of the shortest
path from vertex 7 in any block I to vertex j in any block J that goes through
the set of via vertices V(K) = {1,2,..., K * m}.

Basis. At K =0, V(0) is empty and D[i][j] is the original distance matrix with
no via vertices. Let the value of D[i][j] at the end of K" iteration be denoted
by DX[i][j] and that of sub-matrix D[I][J] be DX[I][J]. Suppose the invariant
is correct for K — 1 and take up a shortest path ¢ in block I to j in block J that
goes through V(K). The path either goes through only V(K —1) or visits S(K)
on the way.

We now provide two lemmas, Lemma 1, and Lemma 2, to show that D[I][K]
and D[K][J] are correctly computed, and the block-wise triple operation cor-
rectly computes DX[I][J], respectively. Thus we show that the above invariant
is correct for K.

Lemma 1. At the end of the accelerating phase of the K" iteration, D[i][j] is
the distance of a shortest path from i in block K to j in any block 1 < J < N
that goes through V (K). Similarly D[i][j] is the distance of a shortest path from
i in any block 1 < I < N to j in block K that goes through V(K).

Proof. We prove this by induction on k. Invariant. At the end of the k" iter-
ation of the update for the thick row in the global K" iteration, D[i][j] is the
distance of the shortest path from i in block K to j in any block J that goes
through {1,2,...,k}. Basis. k = Km. This is guaranteed by the global induc-
tion assumption. Suppose invariant is true for up to £ — 1. The triple operation
Dli][j] = min{DI[i][4], D[i][k] + D[k][j]} makes invariant true for k. The proof for
the thick column is similar.

Lemma 2. Let D[I|[K] be the shortest distances of paths from block I to block
K that go through V(K). D[K][J] is similar. Then the statement D[I|[J] =
min{D[I][J], D|I|[K] * D[K][J]} correctly computes D[I|[J] for the distances of
the shortest paths that go from block I to block J through V (K).

Proof. Let the two dimensional index block, block I x block J, be denoted
by (I,J). Suppose I # K and J # K. Then block (I,K) and block (K,.J)

Minimum Weight Polygon Triangulation Problem in Sub-Cubic Time Bound 333

are disjoint. In the (min,+)-product D[I][K] * D[K][J] all possibilities for the
shortest paths that go from block I to block J via block K are represented. As
mentioned earlier we can compute the (min, +)-product without any cumulative
effect since the blocks are disjoint. If I = K or J = K, we note that D[I][K] *
DIK][J] = DI[I][J]. By taking the minima with D[I][J] the case of the paths
from block I to block J that do not go through block K are taken care of. The
possibility of a shortest path going though block K is taken care of by D[I][K]
or D[K][J] at the end of the accelerating phase.

Theorem 2. The FW algorithm can be optimized to have a sub-cubic time
bound.

Proof. In each iteration of Algorithm 3, after the Acceleration phase completes
and before the Cruising phase begins, we go through each m-by-m sub matrix
that was computed in the Acceleration phase (i.e. the shaded region in Fig. 3),
and further divide each sub-matrix in column K as m-by-I rectangular sub-
matrices, and divide each sub-matrix in row K as [-by-m rectangular sub-
matrices. An example of this further break down into rectangular sub-matrices
is shown in Fig. 3. Then we can pre-compute the rankings from these rectangular
sub-matrices as briefly explained in Sect. 2 and use the sorted rankings to index
into a pre-computed look-up table such that the (min,+)-product of an m-by-I
matrix with an [-by-m matrix can be computed in O(I?m) time bound, which is a
much faster time bound compared to the straightforward time bound of O(Im?)
[14]. Since there are m /I I-by-m or m-by-l rectangular sub-matrices in an m-by-m
sub-matrix, computing the (min, +)-product of two m-by-m sub-matrices using
the look up table method given by Takaoka [14] takes O(I?m) * m/l = O(Im?)
for the (min, +)-product and O(m? /1) for the component-wise min operation to
combine the m/l separate products, resulting in O(Ilm? + m3/l), which is bal-
anced to O(m?) by setting | = y/m. Thus in the Cruising phase of Algorithm 3,
we can compute the (min, +)-product of all O(n?/m?) m-by-m sub-matrices in
the total time bound of O(y/mn?).

Since we iterate N = n/m times, for the whole algorithm, we spend O(mn?)
in the Acceleration phase, and O(n®/y/m) in the Cruising phase. By letting
m = O(logn/loglogn) the total time taken for pre-computation and sorting for
indexing into the look-up table, as well as the computation of the whole look-up
table itself, can be shown to stay within the time bound of O(n?/y/m) [14]. Since
the time complexity of the Cruising phase dominates, for the whole algorithm,

we have the sub-cubic time complexity of O(n3y/loglogn/logn).

4 Sub-Cubic Minimum Weight Polygon Triangulation
Algorithm

Similarly to the APSP problem in Sect. 3, we start with a review of the GK algo-
rithm based on dynamic programming given by Algorithm 4. As noted earlier, we
assume that the vertices in the polygon are numbered from 1 to n in the clockwise
direction as shown in Fig. 1. In Algorithm4, ¢+ 1 is the total number of vertices

334 S.E. Bae et al.

Algorithm 4. Original Gilbert-Klincse Algorithm
1: fort—2ton—1do
2: fori<—1lton—t—1do
Je—i+t
fork—i+1toj—1do
Clillg] « min(Cld][4], Cli][k] + C[k][5] + DIlil[5])

in the sub-polygon for which the MWPT problem will be solved. Starting from
polygons of size 3 (¢t = 2), we solve the MWPT problem for the sub-polygons
in the clockwise direction (i.e. 7 iterates from 1 in increasing order), storing the
minimum triangulation costs in the matrix C' = {¢;;}, where ¢;; = C[i][j] is
the minimum possible triangulation cost for the sub-polygon that includes the
vertices {i,i+ 1,142, ..., j}. We assume that C[é][;] is firstly initialized to oo for
all 1 <i,j <mn, then we let C[i][i + 1] = D[s][i + 1] for all 1 < i < n.

We note that the main operation of Algorithm4 to compute C[i][j] in each
iteration looks very similar to the triple operation. In fact, we observe that the
addition of D[i][j] can trivially be moved outside of the inner most for loop to give
Ci][§] « min{Ci][j], C[i][k] + C[k][j]}, which is exactly the ¢riple operation as
given in Sect. 2. For the MWPT problem the triple operation is performed on the
triangulation cost matrix rather than the distance matrix for the APSP problem.
Intuitively, the meaning of the triple operation performed on C' is that given a
sub-polygon with vertices {4,7 + 1,7 + 2, ..., j}, we wish to take the minimum of
the currently known triangulation cost C[i][j], and the triangulation cost given
by the triangle i, j, k in addition to the already known minimum triangulation
cost C[i][k] and C[k][j]. In the context of the MWPT problem, we refer to k as
the dividing vertex.

A visualization of Algorithm4 is given by Fig.4. The shaded region on the
left hand side shows the part of the cost matrix C' that is never used because j

Fig. 4. Visualization of GK algorithm

Minimum Weight Polygon Triangulation Problem in Sub-Cubic Time Bound 335

is always greater than ¢. The diagram on the right hand side shows the iteration
over k to determine which triangulation provides the minimum cost.

We can visualize the sequence of the GK algorithm by picturing the diagonal,
given by the set of (7,7) such that j — ¢ = ¢ in Fig.4, shifting closer and closer
to the top-right corner of C' in each iteration. The cost matrix elements on
this diagonal contains the sub-polygon triangulation costs that have just been
computed in the iteration. Thus in each iteration, the diagonal shifts one element
closer to the top-right corner. Once the diagonal reaches C[1][n], the MWPT
problem is solved and the total triangulation cost will be contained in C[1][n].
We refer to this moving diagonal line as the update line.

A closer inspection of the original GK algorithm reveals that iterating
through the different values of ¢ is very sequential in nature because to com-
pute the minimum weight triangulation for a sub-polygon with ¢ + 1 vertices,
we must have finished the minimum weight triangulation computation for all
sub-polygons with ¢ vertices. On the other hand, given a sub-polygon starting
with vertex ¢ and ending with vertex j, we can clearly iterate through the divid-
ing vertices k in any order to determine which triangulation option gives the
minimum total cost. Together with the aforementioned possible relocation of
the summation of D[i][j] from the inner-most for loop, we can provide a more
generalized version of the GK algorithm as given by Algorithm 5.

Algorithm 5. Generalized Gilbert-Klincse Algorithm
1: fort—2ton—1do

2: for i € {1,2,...,n —t — 1} in any order do

3: Je—i+t

4: for k€ {i +1...5 — 1} in any order do

5: Clillj] < min{C[d][5], Cli][k] + C[K][5]}
6: Clillj] < Cldls] + D[]

Finally we extend the generalized GK Algorithm to provide the coarse-
grained GK algorithm, given by Algorithm 6 and visualized in Fig. 5. Algorithm 6
consists of three phases. The Acceleration Phase sits outside of the main loop,
for solving the MWPT problem for all sub-polygons of size O(m) where m < n.
In other words, the update line is moved towards the top-right corner by O(m).
Then in the main for loop, the aim is to shift the update line closer to the
top-right corner by O(m) in a single iteration in a “coarse-grained” manner,
instead of the “fine-grained” manner of shifting the update line by one element
in each iteration. This is achieved by the Cruising Phase of each iteration per-
forming bulk of the work by computing a series of (min, 4)-products of m-by-m
sub-matrices, followed by a necessary tidy-up in the Braking Phase due to the
sequential nature of the original GK algorithm. Similarly to the coarse-grained
FW algorithm described in Sect. 3, we use upper case letters as coarse-grained
iterators, and C[I][J] denotes an m-by-m sub-matrix such that 1 < I,J < N.

336 S.E. Bae et al.

Algorithm 6. Coarse-Grained Gilbert-Klincse Algorithm

1: /* Acceleration Phase */

2: Perform original GK Algorithm for 1 <t <m
3: N—n/m

4: for T —1to N —1do

5 for] —1to N—-T—1do
6: /* Cruising Phase */
7 J—I+T
8: for K —I+1toJ—1do
9: C[I)[J] «— min{C[I][J], C[I][K] * C[K][J]}
10: CI[J) = C[I][J] + D[I][J]
11: /* Braking Phase */
12: tm — (T — 1)miim — (I — 1)m;jm — (J — 1)m
13: fort —1to2m —1do
14: for 1 «— ¢,, +1 to ¢,y + m do
15: G ittmtt
16: if jm +1 <7 < jm +m then
17: for k —1i+1 to %y +m do
18: Cillg] — min{C[i][5], C[i][k] + C[K][5] + DI][j]1}
19: for kK — jm +1toj—1do
20: Callg] — min{C[i][5], Ci][k] + C[K][5] + D[]}
K J
I
K]

m m

Fig. 5. Visualization of coarse grained GK algorithm

Theorem 3. Algorithm 6 correctly solves the MWPT problem.

Proof. Formally the proof can be given based on induction on 7" and also induc-
tion on ¢, which we refer to as the global induction and the local induction,
respectively. The Acceleration Phase corresponds to the basis for the global
induction and the Cruising Phase is the general iteration by 7. The basis for
the local induction is the fact that the bottom left corner of matrix C[I][J] such
that J — I =T is already computed as well as C[I][J] such that J —I < T at

Minimum Weight Polygon Triangulation Problem in Sub-Cubic Time Bound 337
J

Clil]

I \ N Im

Fig. 6. Computing all values of k

the end of the current cruising Phase. The general process in the Braking Phase
is to finalize the value of C[i][j] on the update line in increasing order of ¢. The
Braking Phase is essentially the GK algorithm executed on the sub-matrices
C[I][J], C[I][K] and C[K][J], as shown in Fig. 6. Note that for T' = 1, the Cruis-
ing Phase is skipped entirely, and the final values for C[I][.J] is computed entirely
in the Braking Phase.

For the induction process it is sufficient to show that for all elements c;; in
C[I][J] sub-matrices that have been computed in a given iteration, all dividing
vertices k such that i < k < j have been considered. All dividing vertices k such
that i,, + m < k < j,,, are checked in the Cruising Phase. These values of k are
represented by the horizontal and vertical solid lines in Fig. 6. As noted earlier,
k can be iterated in any order, thus (min, +)-product can be used without any
restrictions in the order of computation. This leaves the two disjoint sets of
dividing vertices ¢ < k < 1,, +m and j,, < k < J.

The reason we cannot simply compute C[I][I] * C[I][J] and C[I][J]* C[J][J]
in the Cruising Phase to compute the dividing vertices i < k < 4, + m and
Jm < k < j, respectively is because the sub-matrix C[I][J] does not get fully
computed until the end of the iteration. More specifically, due to the sequential
nature of the GK algorithm, for any ¢ and j, C[i][j] can only be computed if
both C[i][j — 1] and C[i + 1][j] have already been computed.

Thus the remaining dividing vertices are covered off in a “fine-grained” man-
ner in the Braking Phase, which is in effect no different from the original GK
algorithm. The first set of i« < k < i+ m is covered by the for loop with Line 18

338 S.E. Bae et al.

as the main operation, represented by the dashed lines in Fig. 6. The second set
of j —m < k < j is covered by the for loop with Line 20 as the main operation,
represented by the dotted lines in Fig. 6.

Theorem 4. There exists an algorithm that solves the MWPT problem in sub-
cubic time bound.

Proof. In Algorithm 6, after the Braking Phase and before the iteration with T'
ends, divide the m-by-m sub-matrices that have just been solved in the iteration
into m-by-l and [-by-m rectangular sub-matrices as shown in Fig.5. We can
then generate the sorted lists of differences to later perform the merge process
and rank computation [14]. As explained in the proof of Theorem 2, with those
lists and ranks, we can use look-up tables to compute the (min,+)-product of
m-by-m sub-matrices in O(m?*?®) time bound [14].

The Acceleration Phase takes O(nm?). The Braking Phase of each iteration
takes O(m3) time, and thus for the whole algorithm takes O(n?m) time. The
Cruising Phase takes O(n®\/m) time in total. With m = O(logn/loglogn) [14],
the Cruising Phase dominates, which gives us the total sub-cubic time complexity

of O(n3/loglogn/logn).

5 Concluding Remarks

We have made use of the sub-cubic algorithm for the (min, +)-product given by
Takaoka [14] to optimize the FW algorithm in Sect. 3, and more importantly, the
GK algorithm in Sect. 4 to break the cubic time barrier for the MWPT problem.
We chose the aforementioned (min, +)-product algorithm not because it was the
fastest algorithm that we could apply, but because it was the simplest that we
could use to achieve the goal of this paper, which is to show that an algorithm
with sub-cubic time bounds for solving the MWPT problem is indeed possible.

In fact, it seems straightforward to use a faster (min,+)-product [15] in
Algorithm 6 to achieve a faster time bound, although applying the currently
fastest known algorithm for (min, +)-product [11] seems challenging due to the
inherent sequential nature of the GK problem. We conclude the paper with the
obvious open question: How close can we take the time bounds of solving the
MWPT problem to the time bounds of the APSP problem?

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Boston (1974)

2. Atallah, M.J., Callahan, P.B., Goodrich, M.T.: P-complete geometric problems.
Int. J. Comput. Geom. Appl. 3, 443-462 (1993)

3. Alon, N., Galil, Z., Margalit, O.: On the exponent of the all pairs shortest path
problem. In: FOCS, pp. 569-575 (1991)

4. Chan, T.M.: All-pairs shortest paths with real weights in O(n?/logn) time. Algo-
rithmica 2, 236-243 (2008)

Minimum Weight Polygon Triangulation Problem in Sub-Cubic Time Bound 339

10.

11.

12.

13.

14.

15.

16.

17.

Dobosiewicz, W.: A more efficient algorithm for the min-plus multiplication. Int.
J. Comput. Math. 32, 49-60 (1990)

Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)
Fredman, M.L.: New bounds on the complexity of the shortest path problem. STAM
J. Comput. 5, 83-89 (1976)

Gilbert, P.D.: New results on planar triangulations. Report R-850, Coordinated
Science Laboratory, University of Illinois, Urbana, Illinois (1979)

Han, Y.: Improved algorithm for all pairs shortest paths. Inf. Process. Lett. 91,
245-250 (2004)

Han, Y.: An O(n®(loglogn/logn)®*) time algorithm for all pairs shortest path.
Algorithmica 51, 428-434 (2008)

Han, Y., Takaoka, T.: An O(n®loglogn/log®n) time algorithm for all pairs short-
est paths. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp.
131-141. Springer, Heidelberg (2012)

Klincsek, G.T.: Minimal triangulations of polygonal domains. Ann. Discret. Math.
9, 121-123 (1980)

Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs.
J. Comput. Syst. Sci. 51, 400-403 (1995)

Takaoka, T.: A new upper bound on the complexity of the all pairs shortest path
problem. Inf. Process. Lett. 43, 195-199 (1992)

Takaoka, T.: An O(n®loglogn/logn) time algorithm for the all-pairs shortest path
problem. Inf. Process. Lett. 96, 155-161 (2005)

Zwick, U.: All pairs shortest paths using bridging sets and rectangular matrix
multiplication. J. ACM 49, 289-317 (2002)

Zwick, U.: A slightly improved sub-cubic algorithm for the all pairs shortest paths
problem with real edge lengths. Algorithmica 46, 181-192 (2006)

The Mixed Center Location Problem

Yi Xu'®), Jigen Peng!2, and Yinfeng Xu®*

1 School of Mathematics and Statistics,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
xy.clark@stu.xjtu.edu.cn
2 Beijing Center for Mathematics and Information Interdisciplinary Sciences,
Beijing 100048, People’s Republic of China
3 School of Management, Xi’an Jiaotong University,
Xi’an 710049, People’s Republic of China
4 The State Key Lab for Manufacturing Systems Engineering,
Xi’an 710049, People’s Republic of China

Abstract. This paper studies a new version of the location problem
called the mized center location problem. Let P be a set of n points
in the plane. We first consider the mixed 2-center problem where one
of the centers must be in P and solve it in O(n?logn) time. Next we
consider the mixed k-center problem where m of the centers are in P.
Motivated by two practical constraints, we propose two variations of the
problem. We present an exact algorithm, a 2-approximation algorithm
and a heuristic algorithm solving the mixed k-center problem. The time
complexity of the exact algorithm is O(n™+tOVE=m),

Keywords: k-center problem - Facility location problem - Voronoi
diagram - Computational geometry

1 Introduction

The facility location problem is to choose the locations of facilities to minimize
the cost of satisfying the demand for certain commodity. Sometimes the location
problem is associated with the costs for building the facilities, as well as the
transportation costs for distributing the commodities. In this paper, we consider
a new facility location problem called the mixzed center location problem.

Related work. Let P be a set of n points in the plane. The k-center location prob-
lem is to find k centers such that the maximum of the distances from the stations
to the nearest centers is minimized. When &k = 2, the 2-center problem (S2CP)
has been extensively studied. Jaromczyk and Kowaluk first gave a determinis-
tic algorithm with running time O(n?logn) [1]. Eppstein gave an improvement
with a randomized algorithm running in O(nlog® n) expected time [2]. In a major
breakthrough, Sharir showed that the planar 2-center problem can be actually
solved in near-linear time and the time bound is O(nlog”n) time [3]. Finally
the algorithm was further improved by Chan in O(nlog®nlog®logn) time [4].

© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 340-349, 2016.
DOI: 10.1007/978-3-319-48749-6_25

The Mixed Center Location Problem 341

In [3,4], S2C P was divided into two parts: the fixed-size problem and the prob-
lem of computing the smallest radius. The fixed-size problem is to determine
whether there exist two congruent disks with radius » whose union covers P for
a given radius r. Hershberger solved the fixed-size problem for S2CP in O(n?)
time [5] and Sharir improved the bound to O(nlog®n) time [3]. The discrete
2-center problem (D2CP) is defined as follows: covering P by the union of two
congruent closed disks whose radius is as small as possible, and centers are two
points of P. The first near-quadratic algorithm was proposed in [6] and finally
improved to O(n? log® n) time in [7].

The k-center problem (SkCP) has also been widely considered. When k is
part of the input, the problem is known to be NP-complete [8]. Drezner pro-
posed an algorithm with O(n?**!logn) time to solve SkCP [9]. By combining
the result of 1-center problem proposed by Megiddo [10], SKC'P can be revised
to O(n*~'logn) time. Finally, Hwang et al. improved the time complexity
to O(n°®) using the slab dividing method [11]. Some approximation algo-
rithms for SkEC P have also been considered. Under general metrics, Hochbaum
and Shmoys [12] and Gonzalez [13] provided the 2-approximation algorithms
in O(n?logn) and O(nk) time respectively. Feder and Greene [14] gave a 2-
approximation algorithm in O(nlogk) time for the Euclidean standard k-center
problem.

Problem statement. In this paper, we consider the mixzed center location prob-
lem. First we propose a variation of the 2-center problem called the mized 2-
center problem (M2CP). M2CP is to cover P by two closed disks whose max-
imum radius is minimized and one of the two centers is in P. We simply solve
M2CP in O(n?logn) time. See Fig. 1.

Fig. 1. (i) An example of S2CP (ii) An example of M2CP (iii) An example of D2C P

Then we consider the mixed k-center problem. For the k-center problem,
if all the centers are in P, we call the problem the discrete k-center problem
(DKCP), if m (m < k) of the centers are in P, we call the problem the mixed
k-center problem (M (k,m)CP), otherwise we call the problem the standard k-
center problem (SkCP). Let {rp, (P),rp,(P),...,7p, (P)} be the radii of k disks
centered at {p1,pa, ..., pr}. The three problems are listed as follows:

342 Y. Xu et al.

(1) The discrete k-center problem (DkCP): find k centers {p1,p2,...,pr} € P
such that max{r,, (P),7p,(P), ..., 7p, (P)} is minimized.

(2) The mixed k-center problem (M (k, m)CP): find k centers {p1, p2, ..., pr } and
m of them are in P such that max{rp, (P),7p,(P),...,7p, (P)} is minimized.

(3) The standard k-center problem (SkCP): find k centers {p1,pa, ..., pr } such
that max{ry, (P),7p,(P), ..., 7p, (P)} is minimized.

Organization. The remainder of this paper is organized as follows. In Sect. 2, we
consider the M2C P which can be solved in O(n?logn) time. In Sect. 3, we con-
sider the M (k,m)CP. In Sect.3.1 and 3.2, we consider the M (k,m)C'P under
two constraints. One is to consider M (k, m)C' P under the budget constraint, and
the other is that the m centers in P must be lying in a given region. We show
an algorithm that determines {k, m} and the optimal solution under the bud-
get constraint. In Sect. 3.3, we give an exact algorithm that solves M (k,m)CP
in O(n™+OWE=m)) time. In Sect.3.4, we give a 2-approximation algorithm. In
Sect. 3.5, we present a heuristic algorithm based on the Voronoi diagram and
finally we give a conclusion in Sect. 4.

2 The Mixed 2-Center Problem

For a planar point set P, it is obvious that when one center of the optimum solu-
tion for S2CP is in P, the optimum solution of M2CP is the same as S2CP’s.
We consider the case where the optimum solutions of S2CP and M2CP are
different. Letting the radius of the standard (resp. discrete) minimum enclosing
disk of a planar point set @ be rg (resp. rg), we have:

Observation 1 Suppose q ¢ @, then Tg < Tfyu{q}'

However, 7“5 may not be less than rgu g1 Here we show a counter-example:
Suppose @ is a straight line point set, the leftmost point is g1, the rightmost
point is ¢, and no point in @ is in the middle of the segment Iy, 4. (lap
denotes the line segment with two nodes a,b). Let ¢ be the middle point of
lq1,q.» We have 7"5 > Tgu{q}' Conversely, if ¢ is on the left of ¢, 7“8 < Tgu{q}'
Suppose {m1,ma,...,mi} ¢ Q, from Observation 1, we know that the radii of
the standard minimum enclosing disks of @, Q U {m1}, @ U {m1,ma}, ... and
QU{mi,ma,...,my} are non-decreasing. Whereas, for discrete minimum enclos-
ing disk, the radii of @, QU {m1}, QU {mi,ma}, ... and Q U {my, ma,...,my}
have no monotone property.

2.1 The Overall Algorithm

For the fixed point p, we go through all the points in P, and sort P\{p} in order
of non-decreasing distance from p. Let {p1,p2,...,pn—1} be the resulting order,
ie, d(p,p1) < d(p,p2) < ... < d(p,pn—1), where d(a,b) denotes the distance
between a and b. For the disk with center p and radius d(p,p;), we compute

The Mixed Center Location Problem 343

the standard minimum enclosing disk of P\{p1,pa,...,p;}, which can be done
in O(n) time [10]. From Observation 1, by binary search, the M2CP can be
solved in O(nlogn) time. Finally the overall running time of the algorithm is
O(n?logn) time using O(n) storage. (See Algorithm 1.)

Algorithm 1. Algorithm for the mixed 2-center problem

1: for each p € P do

2: Sort the distance among p and all the other points in non-decreasing order, i.e.,
d(p,p1) < d(p,p2) < ... < d(p,pn-1).

3: for p; € P do

4: By using linear programming [10], compute the radius r,, of the standard
minimum enclosing disk of P\ {p,p1,...,p:i}. rp = maz{d(p,pi), p, }-

5: end for

6: end for

T: Topt — min(ry).

Theorem 1. Let P be a planar point set of n points, the mized 2-center problem
can be solved in O(n?logn) time using O(n) storage.

3 The Mixed k-Center Problem

We consider the mized k-center problem (M (k,m)CP) in two cases, called
the budget constraint problem and the region constraint problem. The budget
constraint problem is to consider the M (k, m)CP under the budget constraint.
The region constraint problem is to consider the M (k,m)C'P with m centers
lying in the given region.

3.1 The Budget Constraint Problem

First we consider the M (k, m)CP under the budget constraint. In practice, the
facility location problem is not only to find a good location for serving some
stations or facilities, but also to consider the budget constraint and the cost
difference among different places. In general, the point set P, which needs to be
covered, is given. It means that there are some facilities or buildings at some
points in P while none is located at the left points. Thus the construction costs
for setting up a station in or not in P is different. Under the budget constraint,
we need to find the number of the stations to be constructed and hope to serve
the consumers efficiently.

From the definitions of SkC' P, DkCP and M (k, m)CP, let the optimal radii
of these problems be rprcp, rskcp and rr(xm)cp respectively, we have the
following fact.

Fact 1. Let P be a planar point set of n points. rprxcp, Tskcp and M (k,m)CP
are defined above. We have rsxcp < Tn(k,m)cp < TDkCP-

344 Y. Xu et al.

Consider the center location problem under budget constraint. Suppose build-
ing a new center costs M; and rebuilding (changing one facility into a center) a
center costs My (My < Mj). Under the budget M where mMs+(k—m)M; < M,
we will try to choose the proper centers. From the definitions of SkC'P, DkCP
and M (k,m)CP, if the center is in P, the cost can be seen as M, otherwise
the cost is M7. Our goal is to serve the consumers efficiently under the budget
constraint; i.e., to minimize the distance of the optimal solution of the mixed
k-center location problem.

Fact 2. Let P be a planar point set of n points. For fixed k, if ms < mq, we
have 7 y1(kma)CP < TM(k,my)OP-

Let k7 = L%J and k} = L%J, in order to obtain the minimum radius, we
check all the possible combinations with 0 < m < k < k3. From Fact 2, the
radius of the optimal solution is increasing when m is growing larger for each k
under the budget M. From Fact 1, we need to compute the minimum sk m)cp
where i +m =k, 0 < i < kf and m = LM*TZMlJ See Algorithm 2. Suppose
M (k,m)CP can be solved in O(A) time, we have Theorem 2.

Algorithm 2. Algorithm of k-center location problem under budget constraint
1: Let M be the budget constraint, building a new facility costs M; and rebuilding a
facility costs Ma, ki = IJ\ZJ
2: for i =0 to ki do
3: Consider the mixed k-center problem where m = _%j and k =i+ m (See
Sect. 3.3). Let the optimal radius be ;.
4: end for
5: Return ropt «— min(r;).

Theorem 2. Let P be a planar point set of n points, building a new facility
cost My and rebuilding a facility cost My. We can find the optimal solution of

k-center location problem in O(kiA) time under the budget M where ki = L%J

3.2 The Region Constraint Problem

In this subsection, we consider the case where the centers are located in two
bounded areas. In many developing countries, the new urban area of a city is
usually nearby the old urban area. This means that the two areas can be divided.
Intuitively, we suggest two areas are separated by a bounded area, like a line
or a convex polygon. Take Shanghai in China as an example, the economy of
the urban area in the east of the Huangpu River (the new urban area) develops
faster than the urban area in the west (the old urban area). We hope to build k
shopping malls, where m are in the old urban area and k — m are in the open
area. In the new urban area, we choose to build the shopping malls in the newly
freed up area. On the contrary, there aren’t enough areas in the old urban area

The Mixed Center Location Problem 345

and we need to reconstruct some old buildings into shopping malls. Thus the
planar has been partitioned into two regions R; and Rs. For a given planar
point set and a partition, the M (k,m)CP is to find k centers, such that the
maximum distance from the clients to the nearest shopping mall is minimized,
and m of the centers are in Ry (or Rz). Figure 2 shows two examples. Figure 2(i)
illustrates two regions separated by a line and Fig. 2(ii) illustrates two regions
separated by a convex polygon. This problem is very similar to the k-supplier
problem. In [15], Nagarajan et al. considered the k-supplier problem which is
given a set of clients C' and a set of facilities F', along with a bound k, to find a
subset of k facilities so as to minimize the maximum distance of a client to the
open facility, i.e., mingep. s|=xmaz,ccd(v,S) where d(v,S) = minesd(u,v).
They gave a (14-v/3)-approximation algorithm for the k-supplier problem under
Euclidean metrics.

Let the constraint region be R;, the points in R; denoted as P; and
P, := {P\Py}. Since Ry and R» have already been given, we go through all
the combinations of m centers in R; and solve the M (k,m)CP. Let |P;| =1 and
I > m, S(k —m)CP can be solved in O(n®F=m)) time for fixed m centers. See
the details in Algorithm 2. We have:

Theorem 3. The region constraint problem can be solved in O(I"™nCVk—m))
time.

(i) Line bounded. (ii) Convex polygon bounded.

Fig.2. k=5, m =2 and p1, p2 are in P

In the following, we consider the M (k,m)CP. We give an exact algorithm,
a 2-approximation algorithm and a heuristic algorithm solving the M (k, m)CP.

3.3 Exact Algorithm

In this section, we present an exact algorithm for M (k,m)C'P. The main idea
of the algorithm is based on the following lemma. Our algorithm combines the

346 Y. Xu et al.

algorithms of Drezner [9] and Hwang et al. [11]. Let D(o,r) be the disk with
center o and radius r and S1CP (resp. D1C'P) be the standard (resp. discrete)
minimum enclosing disk problem of a point set.

Lemma 1. For fized m points {p1,p2, ..., pm} in P as the centers of M (k, m)CP
and a given radius v, let subset PT of P consist of the elements out of
D(p1,7)UD(pa,7)U, ..., UD(pm,) and radius v* be the radius of the solution of
the standard (k — m)-center problem of PT, we have: if ri > ro, rT < oI,

Proof. As r1 > 1y, we have P C PJ'| then r{ <r1. 0

The optimal radius of M (k,m)CP is either the distance between two points in
P or the radius of the minimum enclosing disk of a subset of P. If the optimal
radius is the distance between two points in P, it is clear that the optimal radius
of M(k,m)CP is the radius of a discrete minimum enclosing disk. Otherwise,
the optimal radius of M (k, m)CP is the radius of a standard minimum enclosing
disk. If the optimal radius of M (k,m)CP is the radius of a discrete minimum
enclosing disk, there are at most n(n — 1)/2 distances between two points in P.
Otherwise the optimal radius of M (k,m)CP is of a standard minimum enclosing
disk, and there are at most O(n?) distances. We check all these distances and
set all m possible points as the centers {p1,p2,...,pm} in P. For m points in
P, there are at most O(n™) combinations. For each possible combination and
radius r, we obtain the disk D(p;,7) (i = 1,2, ...,m) and compute PT. It can be
done in O(mlogn) time after computing the distances among all the points and
sorting them. According to the algorithm mentioned in [4], we solve the standard
(k — m)-center problem of PT. Note that we can sightly modify to reduce the
bound of the complexity from Lemma 1. The method described above of reducing
the value of r can be replaced by binary search. Finding all the possible r and
sorting them can be done in O(n®logn) time. By binary search, we only need
O(logn) iterations in the for loop in Algorithm 3, rather than O(n?3). Therefore
the bound of the complexity of the modified algorithm is O (n™+OVF=m) Jog n) =
O(nm+tOWE=m)) time. See Algorithm 3 for details. From the above analysis, we
have the following theorem:

Theorem 4. Let P be a planar point set of n points, the mixed k-center problem
can be solved in O(n™+OWVE=M)) time.

3.4 2-Approximation Algorithm

There are many 2-approximation algorithms for SkC P [12-14]. Feder and Greene
showed that under Euclidean metrics, SkKC' P can not be approximated to within
a factor of v/3 unless P = NP [14]. In this section, we also give a 2-approximation
algorithm for M (k,m)CP. We solve the SEkCP of P by the exact algorithm
mentioned in [11] and sort the radii in non-decreasing order. Then solve the
D1CP of these m subsets consisting of the points in m disks whose radii are the
m minimum. We have Lemma 2.

The Mixed Center Location Problem 347

Algorithm 3. Exact algorithm for the mixed k-center problem for fixed m
centers
1: Initial ¢ = 1,7 = oo, {p1,p2, ..., pm } be the fixed m centers;
2: for each i do
3: Compute P/ for fixed radius r; and the standard (k — m)-center problem for
PF. Let the radius and the centers be 7 and {c;,, ..., ci,_, } respectively;

4: if > max(r;,r;), then

5: {Cim1yseesCicrpy_ b = {Cirs s Cip o }, T — maw(m,riT).
6: end if

7: end for

8: Return 7, Centers: {p1,p2, ..., Pm; Ciy s oo Cipo_n }-

Lemma 2. Let S be a planar point set, the minimum enclosing disk and the
discrete minimum enclosing disk be D(s,rs) and D(d,rp) respectively, we have
1< <,

Proof. We have d € S. Let the farthest point of d be f;. Both d and f; are in
D(s,rg), i.e., rp < 2rg, and we have :—FS’ < 2. On the other hand, it is obvious
that when rp > rg, we have 1 < ’;—’; < 2. O

In the following, we give the algorithm and show the approximation factor is
2. We solve the SEC'P and sort the k radii in non-deceasing order. We choose
m minimum radii and solve the D1CP of these m corresponding subsets. See
Algorithm 4.

Algorithm 4. Approximation algorithm
1: Solve the SkEC'P and sort the k radii in non-deceasing order.
2: Choose m minimum radii and solve the D1CP of these m corresponding subsets.
3: Return the optimal solution.

Theorem 5. Algorithm j yields a 2-approximation algorithm.

Proof. Let the optimal radius of SkCP be r3 . the disk with the maximum

opt>
radius of the m discrete minimum enclosing disks in Algorithm 4 be D(0,,,7m)

and 75 be the radius of the standard minimum enclosing disk of the points in

D(0m,Tm)- The optimal radius of MkCP be r}l,. If r5, > rp,, from Fact 1, we
have r%t = rfpt. Otherwise, we have r%t > rfpt and 7, < rfpt < 7. From

Lemma 2, we have T < Tm < Im <9, 0O
T

opt Topt s T

3.5 Heuristic Algorithm

In this section, we present a heuristic algorithm for M (k, m)CP. Suppose there
are m centers in P, the heuristic algorithm is similar to Drezner’s [9]. The main

348 Y. Xu et al.

idea of the heuristic algorithm is to partition P into k subsets and solve S1C'P
of each subset. Initially, we pick a set @) of k arbitrary points p1, po, ..., px and
compute the Voronoi diagram [16]. Let the Voronoi cell of each point p; be V;.
Compute the standard minimum enclosing disk of all the Voronoi cells and let
Q' = {p}|p} is the center of the standard minimum enclosing disk}. We repeat
this process by setting @ = @Q’. When the iteration is terminated, go through
all the radii in non-decreasing order and choose the m minimum radii. Solve the
D1CP of these m corresponding subsets. If any point belongs to more than one
set, assign it to an arbitrary set. See Algorithm 5 for details.

Algorithm 5. Heuristic algorithm for the mixed k-center problem

1: Let 7 be the iteration number, choose k arbitrary points as the initial k centers,
denoted as {p?, p3, ..., p%}.

2: fori=0toj—1do

3: Compute the Voronoi diagram of {pi,ps,...,pi}. Let each Voronoi region be
{Ri, R}, ..., R.}. Solve the SIC'P of {R}, R}, ..., R} }. Let the centers of the optimal

solution of SIC'P of each Voronoi region be {pi™* pitt, ...,p?’l .

4: end for

5: Let the radii of the SICP of {R], R},..., R} be {r],r3,...,rL}. Sort them in
non-deceasing order and denote them as 1 < ro < ... < 7. For each r; (I =

1,2,...,k), the corresponding region and center are R; and ¢; respectively. Choose
{R1, R, ..., Rm} and solve D1CP of the points in {R1, Ra, ..., Rm }, let the centers
of these disks be {q1, g2, ..., ¢m } and the maximal radius of these disks be rmaq.

6: Return rheuristics < Max(Tmaws Th—m+1), Centers: {q1,G2,...,qm,Ch—m+1;--,Ck }-

Theorem 6. The time complezity of every iteration in Algorithmb s
O(nlogk).

Proof. In the for loop, it takes O(klog k) time to compute the Voronoi diagram
for a set of k points. All the points in each Voronoi region can be computed
in O(nlogk) time using planar point location. For all points in Voronoi region,
solving the S1C'P takes O(n) time. Thus, the overall time complexity of a single
iteration is O(nlogk). O

4 Conclusion

In this paper, we consider two variations of the k center location problem. We
consider the mixed k-center problem. When k = 2, we give an O(n?logn) time
algorithm. When k& > 2, we show two motivations considering such a problem and
give an exact algorithm, a 2-approximation algorithm and a heuristic algorithm
solving the mixed k-center problem. The time complexity of the exact algorithm
is O(nmTOWE=m)y,

However, we have not found any geometric properties for the mixed k-center
problem under region constraint to improve the time complexity. So far, we have

The Mixed Center Location Problem 349

not found any algorithms considering the mixed k-center problem for a convex
polygon with constraint that m of the centers are the vertexes. All these are
interesting problems for the further research.

References

10.

11.

12.

13.

14.

15.

16.

. Jaromczyk, J., Kowaluk, M.: An efficient algorithm for the Euclidean two-center

problem. In: Proceedings 10th ACM Symposium on Computational Geometry, pp.
303-311 (1994)

Eppstein, D.: Faster construction of planar two-centers. In: Proceedings of the 8th
ACM-STAM Symposium on Discrete Algorithms, pp. 131-138 (1997)

Sharir, M.: A near-linear algorithm for the planar 2-center problem. Discret. Com-
put. Geom. 18, 125-134 (1997)

Chan, T.M.: More planar two-center algorithms. Comput. Geom. Theory Appl.
13, 189-198 (1999)

Hershberger, J.: A faster algorithm for the two-center decision problem. Inform.
Process. Lett. 47, 23-29 (1993)

Hershberger, J., Suri, S.: Finding tailored partitions. J. Algorithms 12, 431-463
(1991)

Agarwal, P.K., Sharir, M., Welzl, E.: The discrete 2-center problem. Discret. Com-
put. Geom. 20, 287-305 (2000)

Megiddo, N., Supowit, K.: On the complexity of some common geometric location
problems. STAM J. Comput. 13, 1182-1196 (1984)

Drezener, Z.: The p-center problem-heuristics and optimal algorithms. J. Oper.
Res. Soc. 35, 741-748 (1984)

Megiddo, N.: Linear-time algorithms for the linear programming in R® and related
problems. STAM J. Comput. 12, 759-776 (1983)

Hwang, R.Z., Lee, R.C.T., Chang, R.C.: The slab dividing approach to solve the
Euclidean p-center problem. Algorithmica 9, 1-22 (1993)

Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem.
Math. Oper. Res. 10(2), 180-184 (1985)

Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci. 38, 293-306 (1985)

Feder, T., Greene, D.: Optimal algorithms for approximate clustering. In: Proceed-
ings of the 20th ACM Symposium on Theory of Computing, pp. 434-444 (1988)
Nagarajan, V., Schieber, B., Shachnai, H.: The Euclidean k-supplier problem. In:
Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 290-301. Springer,
Heidelberg (2013)

Aurenhammer, F., Klein, R., Lee, D.T.: Voronoi Diagrams and Delaunay Triangu-
lations. World Scientific Publishing Company, Singapore (2013)

Constrained Light Deployment for Reducing
Energy Consumption in Buildings

Huamei Tian, Kui Wu®™), Sue Whitesides, and Cuiying Feng

Department of Computer Science, University of Victoria, Victoria, Canada
wkui@uvic.ca

Abstract. Lighting systems account for a major part of the energy con-
sumed by large commercial buildings. This paper aims at reducing this
energy consumption by defining the Contrained Light Deployment Prob-
lem. This new problem is related to the classical Art Gallery Problem
(AGP) in computational geometry. In contrast to AGP, which asks for
the minimum number of guards to monitor a polygonal area, our prob-
lem, CLDP, poses a new challenging requirement: not only must each
point p have an unobstructed line-of-sight to a light source, but also,
the combined illuminance at p from all light sources must exceed some
given threshold value. We provide evidence that our new problem is NP-
hard, based on known results for AGP. Then we propose fast heuristics
for floor plans shaped like orthogonal polygons, with and without holes.
Our problem formulation allows lights to be placed internally, not only
at vertices. Our algorithm, which combines ideas from computational
geometry, clustering and binary search, computes a set of light place-
ments that satisfies the illumination requirement. The algorithm seeks a
light set of minimum size by an iterative binary search procedure that
progressively tightens upper and lower bounds.

1 Introduction!

Lighting systems, critical to our daily life in modern society, consume a tremen-
dous and costly amount of energy resources. The U.S. Energy Information
Administration (EIA) discloses that in 2015, about 404 billion kilowatthours
(kWh) of electricity were used for lighting by the residential sector and the com-
mercial sector in the United States, which amounted to about 10 % of total U.S.
electricity consumption [6]. Therefore, reducing energy consumed by lighting
systems could have a significant impact on the sustainable development of our
society.

Reducing the energy consumption of lighting systems raises challenging trade-
off issues. On the one hand, reducing energy implies lowering tota lilluminance?.
On the other hand, lighting systems should keep the building occupants comfort-
able and safe, which implies maintaining a suitable illuminance level everywhere.

! This research was supported in part by NSERC and the University of Victoria.
2 Tluminance is the amount of luminous flux per unit area.
© Springer International Publishing AG 2016

T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 350-364, 2016.
DOI: 10.1007/978-3-319-48749-6_26

Constrained Light Deployment for Reducing Energy Consumption 351

The challenging problem we face is: without making major changes to the build-
ing, such as by installing skylights, can we reduce the energy used by the lighting
system while still meeting the needs of the occupants?

As a start to tackling this general problem, we consider the following scenario:
occupants may add their own task lighting at their own expense; the building
owner meets a given uniform threshold lighting requirement at each point in
the floorplan by deploying a set of light fixtures (“lights”) of the same type,
modeled as a discrete point set in the floorplan; and the floorplan is modelled
by an orthogonal polygon, either with or without holes (see Sect.3 for defini-
tions). Thus we seek the minimum number of lights that will meet the given
threshold level of illuminance throughout the building. We call this problem
the Constrained Light Deployment Problem (CLDP) (Sect.3 elaborates). This
problem is similar to the well-known Art Gallery Problem (AGP), which asks for
the minimum number of guards to monitor an art gallery with a polygonal floor
plan. While a light is analogous to a guard, our problem differs from AGP in
two crucial respects: (1) the illuminance at a point p provided by a light source
at g decreases nonlinearly over distance, and (2) the combined illuminance at
any point p must exceed a given value. Like AGP, the CLDP proposed above
has many variations. It is relevant both to the design of new buildings and to
the retrofitting of existing ones [13]. Our main contributions are:

1. Formulation of the Constrained Light Deployment Problem CLDP. Unlike
AGP, the CLDP specifies an aggregated threshold illuminance level to be
met at each point, not just visibility by a guard.

2. Evidence that CLDP is NP-hard, together with a polynomial time strategy
for solving it.

3. Algorithms to determine upper bounds on the number of lights needed for
floor plans modeled as orthogonal polygons with, and without, holes.

2 Related Work

Strategies for energy savings in the design of lighting systems for buildings have
been extensively considered [13]. Most existing efforts, however, focus on using
energy-efficient lights or developing intelligent lighting systems that turn lights
on/off based on sensing data about tenant behaviour [14,16]. To the best of
our knowledge, the CLDP problem we formulate is the first to consider the
optimal deployment of light fixtures from an algorithmic, geometric viewpoint,
for the purpose of meeting a threshold illuminance requirement. Our problem
does, however, belong to a broader class of problems seeking an optimal selection
of points to meet a given requirement, e.g., fully covering a monitored area [15]
or minimizing the uncertainty of the monitored phenomenon [12].

Th