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Preface

The 10th Annual International Conference on Combinatorial Optimization and
Applications (COCOA 2016) was held during December 16–18, 2016, in Hong Kong,
SAR China. COCOA 2016 provided a forum for researchers working in the area
of theoretical computer science and combinatorics.

The technical program of the conference included 60 contributed papers selected by
the Program Committee from 122 full submissions received in response to the call for
papers. All the papers were peer reviewed by Program Committee members or external
reviewers. The topics cover most aspects of theoretical computer science and combi-
natorics related to computing, including classic combinatorial optimization, geometric
optimization, complexity and data structures, graph theory, games, and miscellaneous.
Some of the papers were selected for publication in special issues of Algorithmica,
Theoretical Computer Science, and Journal of Combinatorial Optimization. It is
expected that the journal version of the papers will appear in a more complete form.

We thank everyone who made this meeting possible: the authors for submitting
papers, the Program Committee members, and external reviewers for volunteering their
time to review conference papers. We would also like to extend special thanks to the
publicity chairs, web chair, and financial chair for their work in making COCOA 2016
a successful event.

September 2016 T-H. Hubert Chan
Minming Li

Lusheng Wang
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On the Capture Time of Cops and Robbers
Game on a Planar Graph

Photchchara Pisantechakool(B) and Xuehou Tan

School of Science and Technology, School of Information Science and Technology,
Tokai University, 4-1-1 Kitakaname, Hiratsuka 259-1292, Japan

3btad008@mail.tokai-u.jp

Abstract. This paper examines the capture time of a planar graph in a
pursuit-evasion games’ variant called the cops and robbers game. Since
any planar graph requires at most three cops, we study the capture time
of a planar graph G of n vertices using three cops, which is denoted by
capt3(G). We present a new capture strategy and show that capt3(G) ≤
2n. This is the first result on capt3(G).

Keywords: Pursuit-evasion game · Cops and robber game · Capture
time · Game length

1 Introduction

Pursuit-evasion games are turn-based ones in which one player, controlling the
“evader”, tries to avoid being captured by the “pursuers” controlled by another
player. In each round, two players take turns to move their pieces. The games
have many versions, varied through many means; such as environments, knowl-
edge of terrain and the opponent’s locations, or movements. The pursuers win if
they can capture the evader, and the evader wins if he can avoid being captured
indefinitely.

There are two well-known variants of pursuit-evasion games in a graph set-
ting. In a variant where the pursuers do not know the location of the evader
(see Gal [6], and Parsons [12,13]), the problem is similar to “graph searching
problem”. The difference is that in the pursuit-evasion game, the evader may
move from an unexplored area to some areas that had been visited or cleared
by the pursuers. To prevent such recontaminations, some pursuers are required
to stand guard while others are searching. Finding the number of pursuers to
successfully clear the graph has been the main focus of the problem. There are
two approaches in finding the number of pursuers, based on searching strategy;
non-monotonic search, which allows recontaminations (Kehagias et al.’s [7]),
and monotonic search, which does not (such as Bienstock’s [4], LaPaugh’s [8]
and many in Alspach’s survey [2]).

This work was partially supported by JSPS KAKENHI Grant Number 15K00023.
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Another variant is often called a “cops and robbers game”. In this variant,
both players have full knowledge of the terrain and the opponent’s locations.
The earlier researches focused on cop number or how many cops are needed to
win the game in a given setting (such as Nowakowski and Winkler’s [11] and
Quilliot’s [14]). In a graph setting, Aigner and Fromme [1] proved that some
instances of this game can be won by the cop player controlling one cop; such
instances are called cop-win graphs. Also, they proved that for a planar graph,
three cops always suffice to win. So, the cop number for a planar graph is at
most three. Maurer et al. provided a report about the cops and robbers game
on many different planar graphs [9].

The length of the game, or the capture time of a graph by j cops, denoted
as captj(G), has been studied recently. In 2009, Bonato et al. [5] considered the
capture time of various cop-win graphs, and concluded that while the capture
time of a cop-win graph of n vertices is bounded above by n−3, half the number
of vertices is sufficient for a large class of graphs including chordal graphs. For
the graphs with multiple cops required to win, the capture time can be calculated
by a polynomial-time algorithm if the number of cops is fixed. They also proved
that the problem of determining the minimum number of cops needed to win
under the time constraint is NP-complete. In 2011, Mehrabian [10] showed that
the capture time of grids, whose cop number is known to be two, is half the
diameter of the graph, or capt2(G) ≤ �m+n

2 � − 1 for m × n grid.
Aigner and Fromme [1] have proved that any planar graph requires at most

three cops. In their proof, they introduced two concepts which can be used in
actual capture strategy. One concept is the assignment of a stage i in the capture
strategy to a certain subgraph Ri ⊂ G, which contains all the vertices that the
robber can safely enter. The graph Ri is called the robber territory. Another is a
concept called the guarded path, which is the shortest path between two vertices
such that a cop can capture the robber if the robber ever enters any vertex on the
path. After one cop successfully controlled a path, the robber territory changes
such that Ri+1 � Ri. Their method is to repeatedly find a new guarded path
that differs from previous ones, until the robber territory is eventually reduced
to one vertex. However, the capture time of their strategy is not examined in [1].

In this paper, we focus on the capture time of the cops and robbers game on
a planar graph in general, which has not yet been studied well. We present a new
capture strategy by refining the work of Aigner and Fromme in the following two
sides: (i) a new guarded path introduced at a stage shares only its end vertices
with any current path, and (ii) the end vertices of a newly introduced guarded
path are on or very close to some outer cycle, whose all vertices belong to the
infinite face of the robber territory. These two refinements are involved, specially
the second needs some deep observations. All guarded paths in our strategy are
chosen so that they are almost distinct, excluding their end vertices and a special
situation in which two new paths are simultaneously introduced at a stage.
A strategy with capture time less than 2n can then be obtained. The capture
time using our strategy is provably faster than 2n.
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In Sect. 2 of this paper, we introduce the definitions and notations for the
Cops and Robbers game. In Sect. 3 we review the known results from Aigner and
Fromme’s research. We introduce the new concepts for our strategy in Sect. 4.
Section 5 describes how to choose the guarded paths, so as to make our refini-
tions. The correctness and completeness of the capture strategy are provided in
Sect. 6, and the capture time of our strategy is analyzed in Sect. 7. The conclusion
is given in Sect. 8.

2 Preliminaries

The game of Cops and Robbers in this research is played on a planar graph,
and both players know the locations of one another’s pieces [1]. The cop player
controls three cops, and the robber player controls one robber. The game starts
by letting the cop player choose the vertices to occupy, or place her cops first, and
then the robber player occupies his vertex. Such a cop-robber turn is often called
a Round. The first cop-robber turn is considered as Round 0. For simplicity, we
assume that all cops occupy the same vertex in Round 0. In one’s turn or a
round, a player can move his/her piece to only an adjacent vertex of that piece,
and he/she can choose not to move as well. In her turn, the cop player can move
up to three cops at the same time.

Let capt3(G) denote the capture time of the cops and robber game on a
planar graph G. Clearly, if there is a capture strategy on G such that after a
finite number k (>0) of rounds, the robber is captured (i.e., the vertex occupied
by the robber is also occupied by a cop), then capt3(G) ≤ k.

In order to capture the robber, the cop player may employ a cop to prevent
the robber from crossing a certain line, like a goalkeeper preventing a ball from
entering the goal in soccer. Once she moved to the right spot on that line, she
is occupied with moving along the line in reaction to the robber’s movement.
This kind of actions limits the robber’s movement to one side of the line, and
thus diminishes the area the robber can safely enter. For this purpose, we define
below stages and robber territories as well.

Definition 1. The stage i, 0 ≤ i ≤ t, is the assignment of a subgraph Ri which
has all the vertices the robber can still safely enter. The assignment of Ri is done
after the cop player has fixed her pieces at the end of stage i− 1, and we assume
R0 = G. The subgraph Ri is called the robber territory.

We assume that stage 0 exactly coincides with Round 0, and thus R1 =
G − {e} where e denotes the vertex initially occupied by the cops. At a stage
i (>0), the cop player constructs one or two new guarded paths so that Ri is
reduced to Ri+1 � Ri. Thus, stage i may consist of several rounds. The length of
stage i is then defined as the number of rounds it takes for the cop player to fix
her pieces, and the length of stage 0 is assumed to be zero. If we have a strategy
that ends after t stage, the capture time of the strategy is equal to

∑t
i=1 length

of stage i. We will focus on the movements of cops because the length of a stage
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is actually decided by the cop whose number of movements is the largest among
three cops.

A graph G = (V,E) is defined as a set V (G) of vertices which are connected
by a set E(G) of edges. We assume the graph is planar and undirected. A cut
vertex v ∈ G is a vertex such that when removed, the graph G has the increased
number of connected components. By the nature of our problem, graph G must
be connected; otherwise the cops may not be on the same connected component
as the robber and thus it may not be cop-win.

Denoted by π(u, v) a shortest path between u ∈ V (G) and v ∈ V (G), and
|π(u, v)| the length of π(u, v), measured by the number of edges in π(u, v). The
distance between two vertices u and v is then defined as |π(u, v)|. A cycle,
denoted by C, is a path whose start vertex and end vertex are the same. The
diameter of a graph G is the greatest distance among all pairs of vertices in G.

For a vertex v ∈ V (G), N(v) is defined as the set of the vertices adjacent
to v. For a vertex set S ⊆ V (G), G[S] is defined as the subgraph of G that
is induced by the vertex set S, i.e., an edge e ∈ E(G) belongs to G[S] if two
vertices of e belong to S.

3 Known Results

In this section, we review some known results from Aigner and Fromme’s work
[1].

Lemma 1 (1-cop win [Aigner and Fromme]). Graph G is a 1-cop-win if and
only if by successively removing pitfalls, G can be reduced to a single vertex.

A pitfall is a vertex v ∈ V (G) such that there exists a vertex u ∈ N(v) and
N(v) ⊂ N(u). Lemma 1 can be applied to any tree, since we can simply chase
down the robber from some vertex to a dead end at some leaf.

Lemma 2 (Planar Graph Cop Number [Aigner and Fromme]). For any planar
graph G, the cop number of G is at most three.

Their proof of Lemma 2 provided a series of concepts and tools that can be
used in the actual strategy. One is the concept of the robber territory, which
we introduced in Definition 2. The other concept, of guarded paths, is devoted to
diminishing the area of the robber territory.

Lemma 3 (Guarded Shortest Path [Aigner and Fromme]). Let G be any graph,
u, v ∈ V (G), u �= v and P = π(u, v). We assume that at least two cops are
in the play. Then a single cop c on P can, after the movements no more than
twice the diameter of G, prevents the robber r from entering P . That is, r will
immediately be caught if he moves into P .

It is imperative that we provide the proof of Lemma 3 as well, particularly
for the new claim that “a single cop c on P can, after the movements no more
than twice the diameter of G, prevents r from entering P”.
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Modified Proof of Lemma 3. Suppose the cop c is on vertex i ∈ P and the robber
r is on vertex j ∈ V (G). Assume ∀z ∈ P, |π(z, j)| ≥ |π(z, i)|; denote this as (*).

Claim A. No matter what the robber does, the cop, by moving in the appropriate
direction on P , can preserve condition (*). If the r does not move, then neither
does c, and (*) holds. If r moves to a new vertex k, then ∀z ∈ P, |π(k, z)| ≥
|π(j, z)| − 1 ≥ |π(i, z)| − 1. If i′ ∈ P exists with |π(k, i′)| ≥ |π(i, i′)| − 1, then c,
by moving on P toward i′, also reduces the distance by 1 and (*) still holds. Sup-
pose there exist vertices x, y ∈ P such that they are on the different sides of i on
the path P , and |π(k, x)| = |π(i, x)−1|, |π(k, y)| ≤ |π(i, y)| or |π(k, x)| ≤ |π(i, x)|,
|π(k, y)| = |π(i, y)| − 1. This is impossible, since by the triangle inequality and
minimality of P ;
|π(x, y)| ≤ |π(k, x)| + |π(k, y)| ≤ |π(i, x)| + |π(i, y)| − 1 = |π(x, y)| − 1; a contra-
diction.

Claim B. It takes a number of movements no more than twice the diameter of
G for c to enforce (*). First, c moves to some i ∈ P , which takes at most the
diameter of G. By the same argument as described above, |π(j, z)| < |π(i, z)|
only holds for z’s on P on one side of i. By moving in the direction of z which
takes at most |P | or the diameter of G moves, (*) is eventually forced. �

At a single stage, an unoccupied (free) cop c will move to position herself on
some vertex of a guarded path P so as to enforce the condition (*), i.e., be on
the vertex such that she takes less time than the robber to move to any other
vertex on P . Until (*) is enforced by c, the robber r may cross P safely. Once
(*) is enforced and constantly preserved by c, r can no longer cross P without
being captured. The location satisfying (*) on P changes as the robber moves,
but there always exists at least one at a given time.

Corollary 1. If a cop c is already on P , then the number of rounds it take for
c to eventually enforce (*) is bounded above by the length of P .

Corollary 2. When a cop successfully controls (i.e., enforce (*) on) a shortest
path, all vertices of that path do not belong to the robber territory.

From Lemma 3, capturing the robber can be done by letting the cops alterna-
tively take the role of a free cop and guard a new shortest path within the robber
territory. Once the free cop successfully guards the path, she becomes occupied
and another cop, whose guarded path no longer interacts with the robber ter-
ritory, becomes the free cop at the next stage. At stage i, the path guarded at
stage i − 1 by a now-free cop is called an obsolete path.

Remark. From Lemma 3, the length of each stage of Aigner and Fromme’s
strategy is bounded by twice the diameter of Ri, or loosely by 2|V (Ri)|, as
their guarded paths are usually not distinct [1]. Suppose each stage only reduces
one vertex in the worst case. Then, the capture time of Aigner and Fromme’s
strategy can roughly be bounded by

∑n
i=1 2i = n(n − 1). Their capture time

may actually be much faster than O(n2), but it needs a careful calculation (such
as more detailed evaluation on how paths with shared vertices interact with the
movements of the cops at each stage).
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4 New Concepts

In order to establish a better upper bound on capt3(G), we make two refinitions
over [1]. The first one is that a new path shares only its end vertices with any
current path. It is worth pointing out that in our strategy, two new paths may
also be introduced at a stage. As we will see, the guarded paths in our strategy are
almost distinct, excluding their starting/ending vertices. (In [1], a new path may
share more than just end vertices with a current path.). Our second refinition
is to choose the end vertices of the new guarded path to be on or very close to
the infinite face of robber territory. To precisely define where to choose the end
vertices, we need a new concept called outer cycles.

(a): Robber Territory Ri (b): Outer cycles C(Ri)

Fig. 1. A robber territory (a) and its outer cycles (b).

P 1
i

C(Ri)

(a) P 1
i and C(Ri)

(c) B(Ri) = C(G[S])

(b) G[S] where S = V (Ri ∪ P 1
i )

a

a

Fig. 2. In (a) the current guarded path P 1
i is shown in thick black line, and the outer

cycle of Ri (C(Ri)) is shown in thick shaded cycle. (b) shows the subgraph induced on
G by the vertex set V (Ri ∪ P 1

i ), drawn in black lines and dots. The thick cycle in (c)
represents the graph B(Ri) = C(G[V (Ri ∪ P 1

i )]).
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Definition 2. The subgraph C(Ri) of Ri is defined as the set of the outer cycles,
whose all the vertices and edges belong to the infinite (exterior) face of Ri

(Fig. 1). In the case of a polyhedral graph, where all of its faces can be con-
sidered as interior ones, we can choose any face as the infinite face. For graphs
with multiple planar embeddings, outer cycles are made from the infinite face of
the planar straight line drawing.

Suppose that at the beginning of stage i, one or two current paths are guarded
by the cops so as to prevent the robber from leaving Ri. These paths will be
denoted by P 1

i and P 2
i . Since P 1

i and P 2
i are assigned at the end of Ri−1, P 1

i ∩
Ri = ∅ and P 2

i ∩ Ri = ∅. We assume that P 1
i always exists, i.e., Ri (i > 0) can

NEVER be assigned without P 1
i . The newly introduced path(s) at stage i will

be denoted by P or/and Q.
For two end vertices of a new guarded path, one may consider to choose

them from C(Ri). But, it is difficult or even impossible in some cases for the
new path to share a common vertex with P 1

i or P 2
i . To overcome this difficulty,

we will select the end vertices from the outer cycle of the subgraph induced by
the vertices of the union of Ri, P 1

i and P 2
i .

Definition 3. Let S = V (Ri ∪ P 1
i ∪ P 2

i ). The graph B(Ri) (of enlarged outer
cycles) is defined as C(G[S]).

Note that B(Ri) consists of only cycles, and thus not all vertices of Ri, P 1
i

and P 2
i belong to B(Ri). For instance, the vertex a of P 1

i (Fig. 2(a)) does not
belong to B(Ri). See Fig. 2(c).

5 Capture Strategy

This section focuses on how to choose the guarded paths at each stage of our
strategy. The analysis on the capture time of our strategy will be given in Sect. 7.
We first give two propositions which we use throughout our capture strategy.

Proposition 1: At the end of each stage i, we have at least one free cop.

Proposition 2: During our strategy, any guarded path introduced at stage i
shares only its end vertices with each of the current paths. For the two guarded
paths introduced at the same stage, they have a common end vertex, and may
share a subpath starting from that common vertex.

Before we begin, keep in mind that at some stage the robber territory may
become a tree; in this case, only one cop suffices (Lemma 1). The main idea
of our strategy is to let at most two cops guard two different paths, and then
employ the free cop(s) to guard the new path(s), which makes one of the current
guarded paths obsolete and thus reduces the robber territory.

Our capture strategy consists of two phases.

1. Initial Phase: We first find a location to place the cops, based on the structure
of the graph G. This phase also establishes the very first pair of the guarded
paths, and thus goes from the start to the end of stage 1. When it is over, R1

is reduced to R2.
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2. Recursive Phase: At a stage i (≥2), we construct new guarded path(s) using
a case-analysis method. At the end of stage i, Ri is reduced to Ri+1. We do
this recursively until Ri becomes the tree case.

Before describing the initial and recursive phases, we first give a procedure,
called TwoCopsStart, which is used when we have two free cops at stage i (hence
P 2
i does not exist). The procedure takes two inputs: a cycle C of B(Ri) and a

starting vertex u ∈ C. The procedure TwoCopsStart finds the other end vertex
for either of the two new paths. It is done by first setting the pointers x and y

such that |π(u, x)| and |π(u, y)| on C are at � |C|
3 �. Recall that a portion of P 1

i

may be included in C ⊆ B(Ri), but P 1
i ∩Ri = ∅. Thus P 1

i ∩C is the only portion
of C that is not in Ri. Since P 1

i as well as P 1
i ∩ C are shortest paths in Ri−1,

the length of the path C − (P 1
i ∩ C), which is in Ri, is at least |P 1

i ∩ C|. Hence,
at least a half of C is in Ri, and either x or y is initially in Ri. TwoCopsStart
then repeatedly checks whether the pointer x (or y) belongs to Ri; if not, x (y)
is moved on C further away from u, until x (y) belongs to Ri. Finally, x and y
are returned as v1 and v2, respectively. The outputs v1 and v2 will be used to
construct the new paths π(u, v1) and π(u, v2) in the graph G[V (Ri) + u].

Procedure: TwoCopsStart
Input: a cycle C ⊆ B(Ri) and a vertex u ∈ C.
Output: two vertices v1 and v2 for the new guarded paths π(u, v1) and π(u, v2).

1. Set a pointer x at u, move x clockwise along C for � |C|
3 � vertices.

2. While x is not in Ri, do move x to the next vertex on C clockwise.
3. Set a pointer y at u, move y counterclockwise along C for � |C|

3 � vertices.
4. While y is not in Ri, do move y to the next vertex on C counterclockwise.
5. Return v1 ← x and v2 ← y.

5.1 Initial Phase

The initial phase has the following two objectives: (i) find a vertex to place the
cops at stage 0, and (ii) establish the first pair of the guarded paths at stage 1
or in R1.

At stage 0, if B(R0) is empty, then we know that the graph is a tree, which
can be easily dealt with as stated in Lemma 1. In the case that B(R0) is not
empty, we choose a vertex e0 ∈ B(R0) such that e0 is not a cut vertex (for the
simplicity of assigning R1). We place all cops c1, c2 and c3 at e0, and then wait
for the robber player to place his piece r on the graph.

Suppose r is now located at some vertex in R0 − e0. At stage 1, we have
R1 = R0−e0 and B(R1) = B(R0) (as P 1

1 is the vertex e0 and P 2
1 = ∅). Note that

e0 ∈ B(R1) is on some cycle C1 of B(R1). Using R1, we execute TwoCopsStart
by letting C ← C1 and u ← e0. After obtaining the outputs v1 and v2, we find
the shortest paths P = π(e0, v1) and Q = π(e0, v2) in G[V (R1) + e0] and send
c1 and c2 to guard P and Q, respectively. Note that the length of stage 1 is
mainly determined by the operation of moving a cop to a vertex on the shortest
path and then enforcing condition (*) on that path, which can be done without
concerning the movements of r.
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At the end of the initial phase, if P and Q separate R1 into two or more
components, R2 is then the connected component containing the robber r. Oth-
erwise, R2 = G[V (R1 − P − Q)]. The reduced robber territory R2 is either a
subgraph with at least one outer cycle, or a tree. If it is the tree case, the robber
can simply be captured (Lemma 1). Otherwise, we enter Recursive Phase.

5.2 Recursive Phase

In this phase, we recursively reduce the robber territory Ri into Ri+1, until Ri

is a tree. The reduction of Ri into Ri+1 is done by constructing and controlling
one or two new guarded paths (Corollary 2).

Recall that the current paths P 1
i and P 2

i were given at the end of stage
i − 1, and Ri can never be assigned without P 1

i . We distinguish the following
situations.

Case (a): B(Ri) ∩ P 1
i has at most one vertex.

P

Q

v1

v2

x
P 1

i

x

v1

v2

P

Q
P 1

i

(a)

(b)

w

w

Ri

Ri

w

v1

v2

P

Q
P 1

i

(c)

Ci

Ci

Ci

Fig. 3. An example of case (a); P 1
i , shown in thick dashed line, with the unique path

π(x, w), x ∈ P 1
i and w ∈ B(Ri). The new paths P and Q, with the common end vertex

w, are shown in thick dark line.

Note that P 2
i = ∅ in this case. If B(Ri)∩P 1

i = ∅, we find a vertex x ∈ P 1
i and

a vertex w ∈ B(Ri) such that |π(x,w)| is minimum among the shortest paths
from a vertex of P 1

i to the other of B(Ri). Since B(Ri)∩P 1
i = ∅, the pair (x,w)

is unique, and all vertices of π(x,w) are cut vertices, see Fig. 3(b). We first move
all three cops c1, c2 and c3 to x, and then along π(x,w) to u. In the case that
B(Ri) ∩ P 1

i has one vertex, we let w be that vertex, see Fig. 3(c).
Let Ci ⊆ B(Ri) be the cycle containing w. Since one cop can simply guard

vertex w, two cops are free in this case. We execute TwoCopsStart procedure
by letting C ← Ci and u ← w. Note that w has some neighbors in Ri (two of
them are on Ci). After obtaining the outputs v1 and v2 (which belong to Ri),
we find the shortest paths P = π(w, v1) and Q = π(w, v2) in G[V (Ri) + w],
and then send the free cops, say, c1 and c2 to guard P and Q, respectively.
In G[V (Ri − P − Q)], the component containing r is then Ri+1.
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e

fP 1
i

m

n v1

v2

P

Q

f

e

m
v1

v2

P

Q

(a) (b)

P 1
i Ci

Ci

π(m,n)

n

Fig. 4. An example of case (b); P 1
i is shown in thick line, and Ci ⊆ B(Ri) is shown in a

combination of thick black line and thick gray lines. P (m, v1) is shown in thick dotted
line, and Q(m, v2) in thick dashed line. P and Q may share some subpath π(m, n),
which is shown in thick dash dotted line.

Case (b): B(Ri) ∩ P 1
i has more than one vertex and P 2

i = ∅.
Suppose P 1

i = π(e, f). Let N(Ri) denote the set of all vertices u, where
u ∈ N(v) for some v ∈ Ri. We find m ∈ N(Ri)∩P 1

i such that |π(m, f)|−|π(e,m)|
(≥ 0) is minimal. Since m ∈ P 1

i , we also have m ∈ B(Ri). Again, let Ci ⊆ B(Ri)
be the cycle containing m.

Since B(Ri)∩P 2
i = ∅, only one cop, say, c1, needs to guard P 1

i . Thus two cops
are free. We execute TwoCopsStart procedure by letting C ← Ci and u ← m.
After we obtain the outputs v1 and v2, we find the paths P = π(m, v1) and
Q = π(m, v2) in G[V (Ri) + m] and then send free cops c2 and c3 to guard P
and Q, respectively. Note also that P and Q may share a common subpath if m
has only one neighbor in Ri. See Fig. 4(a). In G[V (Ri − P − Q)], the component
containing r is then Ri+1.

Case (c): B(Ri) ∩ P 1
i has more than one vertex and P 2

i �= ∅.

y

x

e

fP 1
i

P 2
i

P e

f

g

x

y
P 1

i

P 2
i

P

(a) (b)

Ci

g

Ci

Fig. 5. An example of case (c); P 1
i = π(e, f), is shown in thick dark gray line, P 2

i =
π(e, g) in thick dark line, and P = π(x, y) in thick black line. Ci ⊆ B(Ri) is shown in
a combination of thick dashed lines and thick lines.

In this case, two cops have to guard P 1
i and P 2

i , and thus we have only one
free cop, say c3. It can be deduced from Proposition 2 that P 1

i and P 2
i have a

common vertex, say e. Let f (g) be the other end vertex of P 1
i (P 2

i ). By the
denotations, P 1

i = π(e, f) and P 2
i = π(e, g). Note that f or g may not belong to

B(Ri) because f (g) may not be on any outer cycle of G[V (Ri) ∪ P 1
i ∪ P 2

i ].
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Next, we find two vertices x ∈ N(Ri) ∩ P 2
i and y ∈ B(Ri) ∩ P 1

i such that
x and y are the vertices of P 2

i and P 1
i , which are closest to e and f along P 2

i

and P 1
i , respectively. See Fig. 5 for example. Note that x has to be chosen from

N(Ri), instead of B(Ri), because we want it to have some neighbor in Ri. It
is also possible for x = e in the case that e ∈ N(Ri), and for y = f when
f ∈ B(Ri). Finally, we find the shortest path P = π(x, y) in G[V (Ri) + x + y],
and send the free cop c3 to guard P . Again, Ri+1 is the component containing
r in G[V (Ri − P )].

6 Correctness and Completeness

In this section we show that our capture strategy is correct and complete.

Theorem 1. Proposition 1 is upheld for the whole of capture strategy.

Proof. In case (a) and initial phase, two new paths are introduced and both start
from a common vertex. Therefore, at least one cop is free at the next stage.

In case (b), as shown in Fig. 4(b), the new guarded paths P and Q may
partition Ri into three components; each of them is a candidate of Ri+1, which
is guarded by two cops at the next stage. Therefore, at least one cop is free at
the next stage.

Similarly in case (c), as shown in Fig. 5(b), no matter which component
becomes Ri+1, either P 1

i or P 2
i becomes obsolete and its cop is free at the next

stage. �

Theorem 2. At the end of each stage i of the robber territory, Ri+1 � Ri.

Proof. It simply follows from the definition of the robber territory and
Corollary 2. �

Theorem 3. Proposition 2 is upheld for the whole of capture strategy.

Proof. Using TwoCopsStart procedure, the two paths introduced in the initial
phase, case (a) and case (b) always have a common vertex. For case (b), the
newly introduced paths share exactly one vertex m with P 1

i , and two new paths
may also share a subpath (e.g., π(m,n) in Fig. 4).

In case (c), the newly introduced path P = π(x, y) shares at most two com-
mon vertices x (when x=e ∈ P 1

i ) and y with P 1
i , and exactly one common vertex

x with P 2
i . �

The correctness of our strategy follows from Theorem 2, and the completeness
follows from Theorems 1 and 3.
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7 Capture Time of Our Strategy

In this section we describe in detail the movements of the cops during our strat-
egy so as to get a better understanding of the capture time. We first introduce
another concept, called the active paths.

Definition 4. Active Path: Let P = π(a, b) be a current guarded path at stage i,
m and n the first vertex of P from a and b that has a neighbor in Ri, respectively.
The subpath P (m,n), from m to n, is called an active path of P .

Sometimes a path P as whole may be an active path if both end vertices are
in N(Ri). If the path persists through many stages without becoming obsolete,
the active portion may become smaller due to the change in robber territory.
This active path can be represented as B(Rj) ∩ P (j > i), since P is still a
current path and thus the active portion of P at stage j belongs to B(Rj).

Lemma 4. Suppose path P is guarded by some cop c. Then it suffices for c to
guard the active subpath of P .

Proof. Let P (m,n) be the active path of P in current stage i. By Definition 4,
the robber territory Ri has no vertex adjacent to any vertices on P − P (m,n).
Suppose the robber r wants to travel to some vertex u ∈ P − P (m,n). But u
cannot be reached in Ri without traversing through P . The robber has to enter
P (m,n) first, which is a subpath of P , and by Lemma 3, he will get captured. �

The guarding action of a cop requires three types of movements; (i) moving
into the path, (ii) moving along the path to satisfy (*), and (iii) moving along the
path while keeping to preserve (*). The length of a stage is mainly determined
by the action of the free cop trying to control a new path. When a free cop
successfully controls a path by enforcing (*) (i.e., be on the position that can
move to any vertices on that path in smaller number of movements than the
robber), the stage is then over. So (iii) movements can safely be ignored. In the
following, we give a method to count the movements (i) and (ii) taken by the
free cops.

In the initial phase, the cops are already on their own paths. The length of
stage 1 involves only (ii) movements, which takes at most max{|P |, |Q|}. In the
recursive phase, assume every stage i > 1 does not have any path that separates
subgraph Ri into multiple components. This is the worst case because none of
the vertices that do not belong to any guarded paths is removed from the robber
territory.

When a path, say, U = π(p, q), is introduced at stage i (>1), it is traversed
by a cop ci at most |U | (ii) movements (Lemma 3). See Fig. 6(a). As discussed
above, the introduction of U makes one of the current paths, say W , obsolete
at the end of stage i. At the next stage i + 1, a new free cop (differing from
ci), say, ci+1, must move out of her obsolete path W (made obsolete by U) to
a newly introduced path, say X. It might be faster to move ci+1 directly from
W to X. But, for simplicity, we do the following: move to the common vertex of
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W and U , and then (i.1) move along the intermediate path, which is a portion of
the path (U), to reach destination path (X). See Fig. 6(b). At some later stage
i + j (j > 1), U becomes obsolete by the introduction of some new path Y (at
stage i + j − 1) and the cop ci+j , who was guarding U and labeled as ci, moves
to guard another new path Z. Note that Y can be X if U is obsolete at stage
i + 2. The cop ci+j must first move out of the obsolete path (U) by (i.2) moving
along the obsolete path to its vertex that is common with the current path (Y )
at stage i + j, and then travels to Z using the method described above. See
Fig. 6(c).

In summary, a path U is traversed by the free cops in three separate occasions:
(ii) movements when being introduced at stage i, (i.1) movements when being a
current guarded path at stage i+1, and (i.2) movements after becoming obsolete
at stage i + j.

W

T

U

q

s

ci

Y

ci+j

(a) Newly introduced U is traversed by ci at stage i

(c) Obsolete path U is traversed by ci+j (= ci) at stage i + j

X

q

s
ci+1

(b) Current path U is traversed by ci+1 (= ci) at stage i + 1

W

T

T

U

p

p

r

r

W

X

q
s

T

p

r
U

Z

t

Fig. 6. A single path U is traversed by free cops on three separate occasions. At each
stage, an obsolete path is shown in dotted line, a current path in normal heavy line,
and a new path in dashed line. The portion of U traversed by a free cop is shown in
thick line.

Let U(r, s) be the active subpath of U . Following from Lemma 4, the cop ci

stops somewhere between r and s after she perform type (ii) movements. Thus,
U is traversed by a free cop for at most |U(p, s)| or |U(r, q)| (ii) movements. In
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order for ci+1 to move from obsolete path (W ) to newly introduce path (X) at
stage i + 1, at most |U(p, r)| or |U(s, q)| (i.1) movements are made on U . At the
beginning of stage i + j, U is made obsolete by Y , and the cop ci+j must be
somewhere between r and s on U . At stage i+j−1, the path Y is introduced, and
the active portion of the current path U is B(Ri+j−1) ∩ U . Thus, an end vertex
of Y coincides with an end vertex, say, t of B(Ri+j−1)∩U (Proposition 2). From
the discussion made above, t is somewhere between r and s on U . Therefore, U
is traversed by the cop ci+j for at most |U(r, t)| or |U(t, s)| (i.2) movements to
move out of obsolete path U .

In conclusion, the number of the movements (i.1), (i.2) and (ii) on U is no
more than 2|U |. Hence, we have the following result.

Lemma 5. In our capture strategy, each guarded path is traversed no more than
twice of its length.

Theorem 4. In our capture strategy, all the paths used in evaluating the lengths
of stages are distinct, excluding their end vertices.

Proof. Supposed the guarded paths Pi and Pi+1 are introduced during stage i
and stage i + 1, respectively. It follows from Theorem 3 that, excluding their
end vertices, Pi is distinct from Pi+1. When two paths are introduced at the
same stage and they may share a subpath (case (b)), only one of them (i.e., the
one traversed by the free cop whose number of movements is larger) is used in
evaluating the length of that stage. Therefore, the theorem follows. �

For completeness, in a tree case, the length of the chase on a tree is simply
bounded above by the diameter of the tree.

Theorem 5. For the cops and robbers game on a planar graph G of n vertices
with three cops, capt3(G) ≤ 2n.

Proof. The theorem directly follows from Theorem 4 and Lemma 5. �

8 Conclusion

We have presented a new capture strategy for the Cops and Robbers Game on a
planar graph with three cops, and shown that the capture time of our strategy
is no more than 2n. This gives the first linear result on capt3(G).

An extension for future work is to apply our new concepts to improve a
capture strategy in a polygonal environment; a problem researched by Bhadauria
and Isler [3]. Their strategy, which is used to prove that three cops suffice in the
polygonal environment with obstacles, is also based on the concepts given by
Aigner and Fromme. The upper bound on the capture time is suggested to be
as large as 2nA, where A is the area and n is the number of vertices of the
environment. In a geometric setting, even if all the paths are distinct, the sum
of their lengths is still bounded above by A. It is rather loose as a large portion
of the given environment is removed from the robber territory at the end of a
stage. This thus suggests that by applying our strategy we may obtain a smaller
upper bound, say, 2A. We are working in this direction.
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Abstract. A dynamic network introduced by Ford and Fulkerson is a
directed graph with capacities and transit times on its arcs. The quick-
est transshipment problem is one of the most fundamental problems in
dynamic networks. In this problem, we are given sources and sinks. Then,
the goal of this problem is to find a minimum time limit such that we
can send exactly the right amount of flow from sources to sinks. In this
paper, we introduce a variant of this problem called the mixed evacuation
problem. This problem models an emergent situation in which people can
evacuate on foot or by car. The goal is to organize such a mixed evacu-
ation so that an efficient evacuation can be achieved. In this paper, we
study this problem from the theoretical and practical viewpoints. In the
first part, we prove the polynomial-time solvability of this problem in
the case where the number of sources and sinks is not large, and also
prove the polynomial-time solvability and computational hardness of its
variants with integer constraints. In the second part, we apply our model
to the case study of Minabe town in Wakayama prefecture, Japan.

1 Introduction

The coastal area facing the Pacific Ocean in Japan ranging from Shizuoka pre-
fecture to Miyazaki prefecture has a high risk of a tsunami. In particular, it
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is predicted that Nankai Trough Earthquake will occur with 70 % probability
within thirty years, and it will trigger a tsunami of the huge size which will
quickly arrive at the coast (see, e.g., [1]). Based on several assumptions and esti-
mated data, Wakayama prefecture recently designated several areas in which it
is difficult for all people in the area to evacuate to safety places such as tsunami
evacuation buildings before a tsunami arrives when Nankai Trough Earthquake
occurs. For example, it is predicted that in Kushimoto town located at the
south end of the main land of Japan, a tsunami arrives at earliest within ten
minutes. One of assumptions the prefecture used is that the evacuation is done
only by walking. In principle, it used to be not allowed to use cars for evacuation
because the usage of cars in such an emergent situation may block evacuation
of pedestrians which was observed at the time of Tohoku-Pacific Ocean Earth-
quake. However, if it is allowed to use cars and the smooth evacuation by car is
organized, then the evacuation completion time may be shortened. The aim of
this paper is to propose a mathematical model for making such a good “mixed”
evacuation plan.

In this paper, we use a dynamic network flow introduced by Ford and
Fulkerson [2,3] for modeling such a mixed evacuation. A dynamic network is a
directed graph with capacities and transit times on its arcs. The quickest trans-
shipment problem is one of the most fundamental problems in dynamic networks.
In this problem, we are given a dynamic network with several sources and sinks.
Furthermore, we are given a supply for each source and a demand for each sink.
Then, the goal of this problem is to find the minimum time limit such that we
can send exactly the right amount of flow from sources to sinks. Hoppe and
Tardos [4] proved that this problem can be solved in polynomial time. In this
paper, we introduce a variant of the quickest transshipment problem called the
mixed evacuation problem. This problem models an emergent situation in which
people can evacuate on foot or by car. The goal of this problem is to organize
such a mixed evacuation so that an efficient evacuation can be achieved. In the
first part of this paper, we study the mixed evacuation problem from the theoret-
ical viewpoint. First we prove that if the number of sources and sinks is at most
C log2 n (n is the number of vertices) for some constant C, then mixed evacua-
tion problem can be solved in polynomial time (Sect. 3). In addition, we consider
variants of the mixed evacuation problem with integer constraints (Sect. 4). In
the second part of this paper, we study the mixed evacuation problem from the
practical viewpoint. In this part, we apply our model to the case study in Japan
(Sect. 5). More precisely, we apply our model for Minabe town in Wakayama pre-
fecture, which was designated as a city in which safe evacuation from a tsunami
is difficult when Nankai Trough Earthquake occurs.

Let R, R+, Z, Z+, and Z− be the sets of reals, non-negative reals, integers,
non-negative integers, and non-positive integers, respectively. For each finite set
U , each vector x in R

U , and each subset W of U , we define x(W ) :=
∑

u∈W x(u).
Furthermore, for each finite set U and each pair of vectors x, y in R

U , we define
〈x, y〉 :=

∑
u∈U x(u)y(u).



20 Y. Hanawa et al.

2 Preliminaries

The Mixed Evacuation problem is defined as follows. We are given a directed
graph D = (V,A) and two disjoint subsets S, T of V . Define n := |V |. The subset
S (resp., T ) is the set of source vertices (resp., sink vertices) in V . We assume
that no arc in A enters (resp., leaves) a vertex in S (resp., T ). In addition, we
are given an arc capacity vector c in Z

A
+, a supply vector b in Z

S
+, a sink capacity

vector u in Z
T
−, transit time vectors τ1, τ2 in Z

A
+, and fluid coefficients q1, q2 in

Z+. In our application, τ1 represents the speed of walking, and q1 represents the
number of people that can walk in the one unit of the arc capacity. The values
τ2, q2 represent the information for cars. Lastly, we are given a time limit Θ in
Z+. Define [Θ] := {0, 1, . . . ,Θ}.

For each integer i in {1, 2}, each function f : A × [Θ] → R+, each vertex v
in V , and each integer θ in [Θ], we define

∂if(v, θ) :=
∑

a∈δ(v;A)

θ∑

t=0

f(a, t) −
∑

a∈�(v;A)

θ−τi(a)∑

t=0

f(a, t),

where δ(v;A) (resp., �(v;A)) represents the set of arcs in A leaving (resp., enter-
ing) v. A vector d in R

S∪T is called an allocation, if d(v) ≥ 0 for every vertex
v in S and d(v) ≤ 0 for every vertex v in T . For each integer i in {1, 2}, each
allocation d in R

S∪T , and each vector w in R
A
+, d is said to be (i, w)-feasible, if

there exists a function f : A × [Θ] → R+ satisfying the following conditions.

(D1) Let a and θ be an arc in A and an integer in [Θ], respectively.
- If θ ≤ Θ − τi(a), then f(a, θ) ≤ qi · w(a).
- If θ > Θ − τi(a), then f(a, θ) = 0.

(D2) Let v and θ be a vertex in V and an integer in [Θ], respectively.
- If v ∈ V \(S ∪ T ), then ∂if(v, θ) ≤ 0.
- If v ∈ S (resp., T ), then ∂if(v, θ) ≤ d(v) (resp., ∂if(v, θ) ≥ d(v)).

(D3) Let v be a vertex in V .
- If v ∈ V \(S ∪ T ), then ∂if(v,Θ) = 0.
- If v ∈ S, then ∂if(v,Θ) = d(v).

For each integer i in {1, 2} and each vector w in R
A
+, let Fi(w) be the set of

(i, w)-feasible allocations in R
S∪T . An assignment is a tuple (d1, d2, w1, w2) such

that d1, d2 are allocations in R
S∪T and w1, w2 ∈ R

A
+. Furthermore, an assignment

(d1, d2, w1, w2) is said to be feasible, if it satisfies the following conditions.

(F1) For every vertex v in S (resp., T ), d1(v) + d2(v) = b(v) (resp., ≥ u(v)).
(F2) For every arc a in A, we have w1(a) + w2(a) ≤ c(a).
(F3) We have d1 ∈ F1(w1) and d2 ∈ F2(w2).

The goal of Mixed Evacuation (me for short) is to decide whether there
exists a feasible assignment. Notice that we can straightforwardly formulate me
as a linear programming problem (in Sect. 5, we use an algorithm based on the
linear programming). However, since the input size of Θ is log2 Θ, its size is not
bounded by a polynomial in the input size of me.
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3 Mixed Evacuation with Few Sources and Sinks

In this section, we prove that if |S ∪ T | ≤ C log2 n for some constant C, then
me can be solved in polynomial time. Assume that we are given an integer i in
{1, 2}, a vector w in R

A
+, and a subset X of S ∪ T . Define Dw

i (X) as the set of
functions f : A × [Θ] → R+ satisfying (D1) and the following conditions.

(D4) Let v and θ be a vertex in V and an integer in [Θ], respectively.
- If v ∈ V \X, then ∂if(v, θ) ≤ 0.
- If v ∈ X, then ∂if(v, θ) ≥ 0.

(D5) For every vertex v in V \(S ∪ T ), we have ∂if(v,Θ) = 0.

Recall that no arc in A enters (resp., leaves) a vertex in S (resp., T ). Thus, for
every function f in Dw

i (X) and every vertex v in (S \X) ∪ (T ∩ X), we have
∂if(v,Θ) = 0. Furthermore, we define a function ow

i : 2S∪T → R+ by

ow
i (X) := max

{ ∑

v∈X

∂if(v,Θ)
∣
∣
∣ f ∈ Dw

i (X)
}

.

Theorem 1 (Klinz [4, Theorem 5.1]). Assume that we are given an integer
i in {1, 2}, an allocation d in R

S∪T , and a vector w in R
A
+. Then, d ∈ Fi(w) if

and only if d(X) ≤ ow
i (X) for every subset X of S ∪ T .

For each pair of vertices s in S and t in T , we denote by a(t, s) an arc from
t to s. Define E := A ∪ {a(t, s) | s ∈ S, t ∈ T}. Furthermore, we define H as the
directed graph with the vertex set V and the arc set E. Then, for each integer
i in {1, 2}, each vector w in R

A
+, each subset X of S ∪ T , and each vector ξ in

R
E
+, ξ is called a feasible static flow with respect to i, w, and X, if it satisfies

the following conditions (S1), (S2), and (S3).

(S1) For every arc a in A, we have ξ(a) ≤ qi · w(a).
(S2) For every pair of vertices s in S and t in T , if at least one of s ∈ S\X and

t ∈ X holds, then ξ(a(t, s)) = 0.
(S3) For every vertex v in V , we have ξ(δ(v;E)) = ξ(�(v;E)).

For each integer i in {1, 2}, each vector w in R
A
+, and each subset X of S ∪ T ,

we denote by Sw
i (X) the set of feasible static flows with respect to i, w, and X.

In addition, for each integer i in {1, 2}, we define a vector ki in R
E as follows.

For each arc a in E\A (resp., A), we define ki(a) := Θ + 1 (resp., −τi(a)).

Theorem 2 (Ford and Fulkerson [2,3]). For every integer i in {1, 2}, every
vector w in R

A
+, and every subset X of S ∪ T , ow

i (X) is equal to the optimal
objective value of the problem of maximizing 〈ki, ξ〉 such that ξ ∈ Sw

i (X).

Define P as the set of assignments (d1, d2, w1, w2) such that it satisfies (F2)
and (F3), and the following condition.

(F1+) For every vertex v in S (resp., T ), d1(v) + d2(v) ≤ b(v) (resp., ≥ u(v)).
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Let P1 be the problem of maximizing d1(S)+d2(S) such that (d1, d2, w1, w2) ∈ P.
If the optimal objective value of P1 is equal to b(S), then we can conclude that
there exists a feasible assignment. Otherwise, we can conclude that there exists
no feasible assignment. This observation implies that if we can formulate P1 by a
linear programming problem whose size is bounded by a polynomial in the size of
me, then the polynomial-time solvability of me follows from the polynomial-time
solvability of the linear programming problem [5]. Theorems 1, 2 imply that P1
can be formulated as follows. Define a vector b◦ in R

S∪T by b◦(v) := b(v) for
each vertex v in S and b◦(v) := 0 for each vertex v in T . Define a vector u◦ in
R

S∪T by u◦(v) := 0 for each vertex v in S and u◦(v) := u(v) for each vertex v
in T .

Maximize d1(S) + d2(S)
subject to d1(v) ≥ 0, d2(v) ≥ 0 (v ∈ S)

d1(v) ≤ 0, d2(v) ≤ 0 (v ∈ T )
u◦(v) ≤ d1(v) + d2(v) ≤ b◦(v) (v ∈ S ∪ T )
〈ki, ξi,X〉 ≥ di(X) (i ∈ {1, 2},X ⊆ S ∪ T )
ξi,X ∈ Swi

i (X) (i ∈ {1, 2},X ⊆ S ∪ T )
w1(a) + w2(a) ≤ c(a) (a ∈ A)
d1, d2 ∈ R

S∪T , w1, w2 ∈ R
A
+.

If |S ∪ T | ≤ C log2 n for some constant C, then it is not difficult to see that the
size of this linear programming problem is bounded by a polynomial of the input
size of me. This completes the proof.

4 Mixed Evacuation with Integer Constraints

4.1 Integral Arc Capacities, Supplies, and Sink Capacities

Here we consider Integral Mixed Evacuation (ime for short). This problem
is a variant of me in which a feasible assignment (d1, d2, w1, w2) must satisfy
that d1, d2 ∈ Z

S∪T and w1, w2 ∈ Z
A
+. We prove the NP-completeness of ime by

reduction from Disjoint Paths with Different Costs [6] (dpdc for short)
defined as follows. In what follows, we do not distinguish a simple directed path
in a directed graph and the set of arcs contained in this directed path. We are
given a directed graph G = (N,L), a source vertex v+ in N , and a sink vertex
v− in N . Furthermore, we are given cost vectors �1, �2 in Z

L
+ and a non-negative

integer h in Z+. The goal of dpdc is to decide whether there exist arc-disjoint
simple directed paths P1, P2 from v+ to v− such that �1(P1) + �2(P2) ≤ h.

Theorem 3 (Li, McCormick, and Simchi-Levi [6]). The problem dpdc is
NP-complete even if h = 0 and �i(a) ∈ {0, 1} for every integer i in {1, 2} and
every arc a in L.1

1 In [6, Theorem 1], although the condition that h = 0 and �i(a) ∈ {0, 1} for every
integer i in {1, 2} and every arc a in L is not explicitly stated, the reduction in their
proof satisfies this condition.
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For proving the fact that ime is in NP, we need the following theorems. For
each finite set U and each function g : 2U → R, g is said to be submodular, if
g(X) + g(Y ) ≥ g(X ∪ Y ) + g(X ∩ Y ) for every pair of subsets X,Y of U .

Theorem 4 (E.g., [7,8]). Assume that we are given a finite set U and a sub-
modular function g : 2U → R. Then, we can find a subset X of U minimizing
g(X) among all subsets of U in time bounded by a polynomial in |U | and EO,
where EO is the time required to compute g(X) for a subset X of U .

Theorem 5 (Hoppe and Tardos [4]). For every integer i in {1, 2} and every
vector w in R

A
+, the function ow

i is a submodular function.

Theorem 6 (E.g., [9]). For every integer i in {1, 2} and every subset X of
S ∪ T , we can compute owi

i (X) in polynomial time.

Assume that we are given an integer i in {1, 2}, an allocation d in R
S∪T ,

and a vector w in R
A
+. Then, Theorem 1 implies that d ∈ Fi(w) if and only if

ow
i (X) − d(X) ≥ 0 for a subset X of S ∪ T minimizing ow

i (X) − d(X) among
all subsets of S ∪ T . Thus, since Theorem 5 implies that ow

i − d is submodular,
Theorems 4, 6 imply that we can check whether d ∈ Fi(w) in polynomial time.2

Theorem 7. The problem ime is NP-complete.

Proof. Theorems 1, 4, 5, and 6 imply that ime is in NP. We prove that ime is
NP-complete by reduction from dpdc. Assume that we are given an instance of
dpdc such that h = 0 and �i(a) ∈ {0, 1} for every integer i in {1, 2} and every arc
a in L. Then, we construct an instance of ime as follows. Define V := N ∪ {s∗},
where s∗ is a new vertex. Define A := L∪{a1, a2}, where a1 and a2 are new arcs
from s∗ to v+. Define S := {s∗} and T := {v−}. Define c(a) := 1 for each arc a
in A. For each arc a in A, we define

τ1(a) :=

⎧
⎪⎨

⎪⎩

�1(a) if a ∈ L

0 if a = a1

1 if a = a2

τ2(a) :=

⎧
⎪⎨

⎪⎩

�2(a) if a ∈ L

1 if a = a1

0 if a = a2.

Define b(s∗) := 2 and u(v−) := −2. Define q1 := 1, q2 := 1, and Θ := 0.
Assume that there are arc-disjoint simple directed paths P1, P2 in G from v+

to v− such that �1(P1) + �2(P2) ≤ 0. Since �i(a) ≥ 0 for every integer i in {1, 2}
and every arc a in L, we have �1(P1) = �2(P2) = 0. For each integer i in {1, 2},
we define a directed path P+

i in D as the directed path obtained by adding ai to
Pi. Since P1 and P2 are arc-disjoint, P+

1 and P+
2 are arc-disjoint. Furthermore,

for every integer i in {1, 2}, since �i(Pi) = 0 and τi(ai) = 0, we have τi(P+
i ) = 0.

For each integer i in {1, 2}, we define di(s∗) := 1 and di(v−) := −1. In addition,
for each integer i in {1, 2}, we define a vector wi in Z

A
+ as follows. If a ∈ P+

i , then
we define wi(a) := 1. Otherwise, we define wi(a) := 0. Since P+

1 and P+
2 are

2 This proof is the same as the proof of the polynomial-time solvability of the decision
version of the quickest transshipment problem in [4].
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arc-disjoint, w1(a)+w2(a) ≤ 1 = c(a) for every arc a in A. Thus, (d1, d2, w1, w2)
is a feasible assignment.

Next we assume that there exists a feasible assignment (d1, d2, w1, w2) such
that d1, d2 ∈ Z

S∪T and w1, w2 ∈ Z
A
+. Since τ1(a2) = τ2(a1) = 1, c(a1) = c(a2) =

1, and Θ = 0, we have d1(s∗) = d2(s∗) = 1. Since c(a) = 1 for every arc a in A,
we have w1(a), w2(a) ∈ {0, 1} and at most one of w1(a) and w2(a) is equal to
1 for every arc a in A. For each integer i in {1, 2}, we denote by Li the sets of
arcs a in A such that wi(a) = 1. Then, L1 and L2 are disjoint. For every integer
i in {1, 2}, since di(s∗) = 1 and Θ = 0, Li contains a simple directed path L′

i

from s∗ to v− such that τi(L′
i) = 0 as a subset. Furthermore, for every integer i

in {1, 2}, the definition of τi, we have ai ∈ L′
i. For each integer i in {1, 2}, let Pi

be the directed path obtained by removing ai from L′
i. Then, for every integer i

in {1, 2}, we have �i(Pi) = 0. This completes the proof. ��

4.2 Integral Supplies and Sink Capacities

Here we consider problems of finding an integral allocation of supplies and sink
capacities. We consider Integral Mixed Evacuation with Arc Capacities
(imeac for short) defined as follows. We are given vectors w1, w2 ∈ Z

A
+ such that

w1(a) + w2(a) ≤ c(a) for every arc a in A. Then, the goal is to decide whether
there exists a feasible assignment (d1, d2, w1, w2) such that d1, d2 ∈ Z

S∪T . We
prove that imeac can be solved in polynomial time. In the rest of this section, we
define oi := owi

i for each integer i in {1, 2}. For each finite set U , each function
g : 2U → R, and each pair of subsets P1, P2 of RU , we define P(g) := {x ∈ R

U |
x(X) ≤ g(X) (∀X ⊆ U)} and P1 + P2 := {x + y | x ∈ P1, y ∈ P2}. Then,
Theorem 1 implies that imeac can be formulated as the following problem P2.

Maximize d1(S) + d2(S)
subject to d1(v) ≥ 0, d2(v) ≥ 0 (v ∈ S)

d1(v) ≤ 0, d2(v) ≤ 0 (v ∈ T )
u◦(v) ≤ d1(v) + d2(v) ≤ b◦(v) (v ∈ S ∪ T )
d1 ∈ P(o1), d2 ∈ P(o2), d1, d2 ∈ Z

S∪T .

If the optimal objective value is equal to b(S), then we can conclude that there
exists a desired assignment. Otherwise, there exists no such an assignment.

Assume that we are given an integer i in {1, 2}. Define o−
i : 2S∪T → R+ by

setting o−
i (X) to be the minimum value of oi(Y ) over all subsets Y of X such

that X ∩ S ⊆ Y . Let X be a subset of S ∪ T . Define a function oi,X : 2X\S → R

by setting oi,X(Y ) := oi(Y ∪ (X ∩ S)) − oi(X ∩ S). It is not difficult to see that
oi,X is submodular and o−

i (X) = min{oi,X(Y ) | Y ⊆ X \S} + oi(X ∩ S). That
is, we can evaluate o−

i (X) by evaluating the value of oi and using the algorithm
for submodular function minimization. It is known [10, Eq. (3.10)] that o−

i is a
submodular function. Furthermore, it is known [10, Theorem 3.3] that P(o−

i ) is
equal to the set of vectors d in P(oi) such that d(v) ≤ 0 for every vertex v in T .
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Thus, P2 is equivalent to the following problem.

Maximize d1(S) + d2(S)
subject to d1(v) ≥ 0, d2(v) ≥ 0 (v ∈ S)

u◦(v) ≤ d1(v) + d2(v) ≤ b◦(v) (v ∈ S ∪ T )
d1 ∈ P(o−

1 ), d2 ∈ P(o−
2 ), d1, d2 ∈ Z

S∪T .

We consider the following problem P3.

Maximize d1(S) + d2(S)
subject to u◦(v) ≤ d1(v) + d2(v) ≤ b◦(v) (v ∈ S ∪ T )

d1 ∈ P(o−
1 ), d2 ∈ P(o−

2 ), d1, d2 ∈ Z
S∪T .

Lemma 1. The optimal objective values of P2 and P3 are the same.

Proof. For each optimal solution (d1, d2) of P3, we define γ(d1, d2) as the number
of pairs (i, v) of an integer i in {1, 2} and a vertex v in S such that di(v) < 0.
Let (d1, d2) be an optimal solution of P3 minimizing γ(d1, d2) among all optimal
solutions of P3. If γ(d1, d2) = 0, then since P3 is a relaxation problem of P2,
(d1, d2) is clearly an optimal solution of P2, and thus the proof is done. Assume
that γ(d1, d2) ≥ 1. Let (i, v) be a pair of an integer i in {1, 2} and a vertex v
in S such that di(v) < 0. We assume that i = 1 (we can treat the case of i = 2
in the same way). For proving this lemma by contradiction, we prove that there
exists an optimal solution (d′

1, d
′
2) of P3 such that γ(d1, d2) > γ(d′

1, d
′
2). This

contradicts the definition of (d1, d2), and thus this completes the proof.
Define vectors d′

1, d
′
2 in Z

S∪T as follows. Define d′
1(v

′) := d1(v′) and d′
2(v

′) :=
d2(v′) for each vertex v′ in (S ∪ T )\{v}. Furthermore, define d′

1(v) := 0 and
d′
2(v) := min{d2(v), b(v)}. We first prove that d1(v) + d2(v) ≤ d′

1(v) + d′
2(v). If

d′
2(v) = d2(v), then since d1(v) < 0, this clearly holds. If d2(v) = b(v), then since

d1(v) + d2(v) ≤ b(v), this clearly holds. This implies that the objective value of
(d′

1, d
′
2) is no less than that of (d1, d2). Thus, what remains is to prove that

(d′
1, d

′
2) is a feasible solution of P3. The above inequality implies that (d′

1, d
′
2)

satisfies the first constraint of P3. In addition, d′
2 clearly belongs to P(o−

2 ). Thus,
it suffices to prove that d′

1 ∈ P(o−
1 ). Assume that this does not hold. Then, there

exists a subset of X of S ∪ T such that v ∈ X and o−
1 (X) − d1(X) < −d1(v).

Since it is not difficult to see that o1(Y \{v}) ≤ o1(Y ) for every subset Y of X
such that X ∩ S ⊆ Y , o−

1 (X \{v}) ≤ o−
1 (X). Thus, o−

1 (X \{v}) < d1(X \{v}),
which contradicts that d1 ∈ P(o−

1 ). This completes the proof. ��
Lemma 2. For every integer i in {1, 2} and every subset X of S ∪ T , we have
oi(X) ∈ Z, which implies that o−

i (X) ∈ Z.

Proof. This lemma follows from Theorem 2 and [11, Theorem 12.8]. ��
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Theorem 8 (E.g., [11, Corollary 46.2c]). Assume that we are given a finite
set U and submodular functions σ, π : 2U → Z such that σ(∅) = π(∅) = 0. Then,
we have (P(σ) ∩ Z

U ) + (P(π) ∩ Z
U ) = (P(σ) + P(π)) ∩ Z

U .3

Lemmas 1, 2 and Theorem 8 imply that P2 is equivalent to the following problem.

Maximize d(S)
subject to u◦(v) ≤ d(v) ≤ b◦(v) (v ∈ S ∪ T )

d ∈ P(o−
1 ) + P(o−

2 ), d ∈ Z
S∪T .

Theorem 9 (E.g., [11, Theorem 44.6]). Assume that we are given a finite
set U and submodular functions σ, π : 2U → Z such that σ(∅) = π(∅) = 0. Then,
we have P(σ) + P(π) = P(σ + π).4

Theorem 9 implies that P2 is equivalent to the following problem.

Maximize d(S)
subject to u◦(v) ≤ d(v) ≤ b◦(v) (v ∈ S ∪ T )

d ∈ P(o−
1 + o−

2 ), d ∈ Z
S∪T .

We consider the following relaxation problem LP2 of P2.

Maximize d(S)
subject to u◦(v) ≤ d(v) ≤ b◦(v) (v ∈ S ∪ T )

d ∈ P(o−
1 + o−

2 ).

Lemma 3. The optimal objective values of P2 and LP2 are the same.

Proof. Since o−
1 , o−

2 are submodular functions, o−
1 +o−

2 is a submodular function.
Furthermore, Lemma 2 implies that o−

1 (X) + o−
2 (X) ∈ Z for every subset X of

S ∪ T . Thus, this lemma follows from [11, Corollary 44.3c] (i.e., the box-total
dual integrality of the constraints corresponding to P(o−

1 + o−
2 )). ��

Theorem 10. The problem imeac can be solved in polynomial time.

Proof. In the same way as the algorithm described after Theorem 6, we can
check in polynomial time whether d ∈ P(o−

1 + o−
2 ) for a given vector d in R

S∪T

by minimizing the submodular function o−
1 + o−

2 − d. In addition, we can check
in polynomial time whether a given vector d in R

S∪T satisfies the first constraint
of LP2. Thus, we can solve the separation problem for LP2 by using Theorem 4
in polynomial time (if d /∈ P(o−

1 + o−
2 ), then a separating hyperplane can be

obtained from a minimizer of o−
1 +o−

2 −d). This implies that we can solve imeac
in polynomial time by using the results of [12] (see also [13, Theorem 6.36]). ��
3 Precisely speaking, [11, Corollary 46.2c] considers P(σ) ∩ R

U
+. However, the similar

result holds for P(σ) (see the paragraph after the proof of [11, Theorem 44.6]).
4 In [11, Theorem 44.6], the monotonicity of functions are assumed. However, even if

functions are not monotone, this theorem holds. See also [10, Eq. (3.32)].
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4.3 Unsplittable Supplies and Sink Capacities

Here we consider the following variant of imeac called Unsplittable Mixed
Evacuation with Arc Capacities (umeac for short). In this problem, we are
given vectors w1, w2 ∈ Z

A
+ such that w1(a) + w2(a) ≤ c(a) for every arc a in A.

The goal is to decide whether there exists a feasible assignment (d1, d2, w1, w2)
such that d1(v), d2(v) ∈ {0, b(v)} for every vertex v in S and d1(v), d2(v) ∈
{0, u(v)} for every vertex v in T . In what follows, we prove that umeac is NP-
complete. Notice that if |S ∪ T | ≤ C log2 n for some constant C, then it follows
from Theorems 1, 4, 5, and 6 that umeac can be solved in polynomial time by
enumerating all subsets of S ∪T . We will prove the NP-completeness of umeac
by reduction from Partition. In this problem, we are given a finite set I and
a vector π in Z

I
+ such that π(I) is even. Then, the goal is to decide whether

there exists a subset J of I such that π(J) = π(I\J). It is well known [14] that
Partition is NP-complete.

Theorem 11. The problem umeac is NP-complete.

Proof. In the same ways as the proof of Theorem 7, we can prove that umeac is
in NP. We prove that the NP-completeness of umeac by reduction from Parti-
tion. Assume that we are given an instance of Partition, and then we construct
an instance of umeac as follows. Define V := {vi | i ∈ I} ∪ {v◦, v•, v∗

1 , v
∗
2} and

A := {(vi, v
◦), (vi, v

•) | i ∈ I} ∪ {(v◦, v∗
1), (v

•, v∗
2)}. Define S := {vi | i ∈ I}

and T := {v∗
1 , v

∗
2}. Define c(a) := 1, τ1(a) := 0, and τ2(a) := 0 for each arc a

in A. Define b(vi) := π(i) for each element i in I. Define u(v∗
1) := −π(I) and

u(v∗
2) := −π(I). Define q1 := 1 and q2 := 1. Define Θ := (π(I)/2)− 1. Lastly, we

define vectors w1, w2 in Z
A
+ as follows. For each arc a = (x, y) in A, we define

w1(a) :=

{
1 if x = v◦ or y = v◦

0 otherwise
w2(a) :=

{
1 if x = v• or y = v•

0 otherwise.

Assume that there exists a subset J of I such that π(J) = π(I\J). Then, we
define vectors d1, d2 in Z

S∪T by

d1(v) (resp., d2(v)) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

π(i) (resp., 0) if v = vi for some i ∈ J

0 (resp., π(i)) if v = vi for some i ∈ I\J

−π(I) (resp., 0) if v = v∗
1

0 (resp., −π(I)) if v = v∗
2 .

Since π(J) = π(I\J) = π(I)/2, (d1, d2, w1, w2) is a feasible assignment.
Conversely, we assume that there exists a feasible assignment (d1, d2, w1, w2)

such that d1(v), d2(v) ∈ {0, b(v)} for every vertex v in S and d1(v), d2(v) ∈
{0, u(v)} for every vertex v in T . Since Θ = (π(I)/2)−1, we have d1(S) = π(I)/2
and d2(S) = π(I)/2. Thus, if we define J as the set of elements i in I such that
d1(vi) = b(vi), then π(J) = π(I\J). This completes the proof. ��
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5 Case Study

Here we apply our model to the case study of Minabe town in Wakayama pre-
fecture, which was designated as those in which safe evacuation from tsunami
is difficult when Nankai Trough Earthquake occurs. The population of Minabe
town is about 12000. According to the census data of 2013, the number of peo-
ple living in the tsunami inundation area of this town is 4745. The left figure of
Fig. 1 shows the map of this area and the expected height of the tsunami caused
by Nankai Trough Earthquake. The town is surrounded by mountains of height
ranging from 100 to 200 m.

Fig. 1. (Left) The target area and its inundation depth. (Right) The road network in
the target areas and evacuation sites.

It is predicted that in twelve minutes after that earthquake occurs, the first
tsunami of height 1 m arrives, and then that of height 5m (and of 10 m, respec-
tively) will arrive after 15 min (and 24 min, respectively). Since people usually
start evacuation five minutes after the earthquake occurs, the actual time remain-
ing for evacuation is from five to fifteen minutes depending on where they live.
Since there are not enough evacuation buildings in the center of the town, most
of the people will have to go to the outside of the tsunami inundation area, and
thus some of them may not succeed to evacuate to a safety place.

Under this circumstance, we consider the following experiments. Our
computational experiment aims at the inundation area of Minabe town whose
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population is 4745. We prepare two scenarios. The first one is that people should
have to evacuate to the outside of the inundation area. The second is that peo-
ple should have to evacuate to the outside of the inundation area or to tsunami
evacuation buildings located inside of the inundation area. There exist six evac-
uation buildings inside the inundation area (numbered from 1 through 6 in the
right figure of Fig. 1) whose sizes (i.e., the maximum number of evacuees that
can be accommodated) are 1472, 2000, 1128, 3014, 654 and 454, respectively.
We constructed a model of a dynamic network by using the GIS databases: the
fundamental map information (1/2500, the Geospatial Information Authority of
Japan), the population census (2010, the Ministry of Internal Affairs and Com-
munications of Japan), and the Japan digital road map (Japan Digital Road
Map Association). The road network has 860 nodes and 1,106 arcs.

We assign to a sink vertex the capacity of the evacuation site located at the
vertex, i.e., the maximum number of evacuees that the site accommodates. In our
experiment, the capacity of a building was computed based on the available floor
space, assuming that two persons per m2 can be accommodated. The capacity
of an evacuation site which is outside the tsunami inundation area is assumed to
be infinity. However, since a hill top may have an upper limit on the number of
evacuees that can be accommodated, its capacity is estimated based on an aerial
photograph. Evacuation by cars is only possible to the outside of the tsunami
inundation area, and thus is assumed to be not allowed to tsunami evacuation
buildings or hill tops. Since there are not enough tsunami evacuation buildings,
the delay of evacuation is predicted. (In our experiment, we solve me by using a
linear programming solver. Thus, we can add additional constraints to our model.
Furthermore, the minimum evacuation completion time can be computed by the
binary search.)

5.1 Computational Results

We use Gurobi Optimizer (see http://www.gurobi.com/) as the solver to solve
linear programs corresponding to our experimental data.

As seen from Table 1, in each scenario, the result for the case where cars
are allowed to use is much better in the minimum evacuation completion time
than the one where they are not allowed. Comparing the scenario 2 with the sce-
nario 1, the number of evacuees who walked to the evacuation site increased since
evacuation buildings located in the town center can be used in the scenario 2.

Table 1. Computational results of each scenario.

Scenario Evacuation time Percentage of car usage Pedestrians only

1 9m40s 68.1 % 18m00s

2 9m05s 31.4 % 17m30s

http://www.gurobi.com/
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Fig. 2. (Left) The transition of the accumulated number of evacuees that completed
evacuation in the scenario 1. (Right) The transition of the accumulated number of
evacuees that completed evacuation in the scenario 2.

Now let us look at Fig. 2 that shows how the number of evacuees that have
completed evacuation increases as time proceeds since the evacuation starts. It
is observed that in the latter half for the whole time period, the number of
evacuees that completed evacuation rapidly increases in both scenarios. Ideally,
it is desired that the number of evacuees that completed evacuation is large in
the early stage. This point should be taken into account in order to improve the
current model.

Fig. 3. (Left) Distribution of evacuees that used cars in the scenario 1. (Right) Distri-
bution of evacuees that used cars in the scenario 2. (Color figure online)
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Fig. 4. (Left) The number of evacuees that arrived at each evacuation site, and the
ratio of evacuees who arrived at the site by walking and those who arrived there by a
car in the scenario 1 (Right) The number of evacuees that arrived at each evacuation
site, and the ratio of evacuees who arrived at the site by walking and those who arrived
there by a car in the scenario 2.

Let us look at the way of evacuation (by walking or a car) at each vertex.
In Fig. 3, if the color at each vertex is close to blue, it means that a majority of
people used cars for evacuation while on the other hand, if it is close to red, a
majority of people walked for evacuation. Comparing the scenarios 1 and 2, the
car usage significantly decreased in the scenario 2 near the coast since there are
evacuation buildings nearby.

Figure 4 shows the number of evacuees that arrived at each evacuation site,
and the ratio of evacuees who arrived at the site by walking and those who
arrived there by a car. In the scenario 1, for most of evacuation sites, the number
of evacuees who arrived by cars exceeds that of evacuees who arrived by walking.
On the other hand in the scenario 1, many evacuees living near the town center
evacuated to evacuation buildings inside the inundation area.

6 Conclusion

In this paper, we introduce the mixed evacuation problem that is motivated
by making an evacuation plan in an emergent situation in which people can
evacuation on foot or by car. We study this problem from the theoretical and
practical viewpoints. An apparent future work from the theoretical viewpoint
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is to reveal the computational complexity of the mixed evacuation problem in
the general case. From the practical viewpoint, it is a future work to apply our
model to areas other than Minabe town. There exist many small towns on the
coastal area facing the Pacific Ocean whose local governments are faced with a
serious problem that they have to spend a significant percentage of their budget
for building a tsunami evacuation buildings in order to reduce the loss of human
lives from tsunami triggered by Nankai Trough Earthquake that are expected to
occur with 70 % within the coming 30 years [1]. In this respect, we hope that the
methods developed for facility location problems will help to reduce the budget
to be used for such disaster prevention.

References

1. The Headquarters for Earthquake Research Promotion: Evaluation of Long-Term
Probability of Active Fault and Subduction-Zone Earthquake Occurrence (in
Japanese) (2016). http://www.jishin.go.jp/main/choukihyoka/ichiran.pdf

2. Ford Jr., L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from stat-
icflows. Oper. Res. 6(3), 419–433 (1958)

3. Ford Jr., L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press,
Princeton (1962)
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Abstract. Airline network, including airports as network nodes and
flight routes as directed network edges, has a lot of special features such
as departure and arrival times, air ticket budget, flight capacity, trans-
portation cost, etc. Thus, analyzing network behavior and service per-
formance for such a network is much more difficult than that for many
other networks. In this paper, taking China domestic airline network as
a representative, we try to discuss the reachability issue for each airport
respectively, which could reflect its regional connectivity level and ser-
vice quality of civil aviation. More specifically, we evaluate reachability
through many features including node degree, betweenness, closeness,
etc. To get the values of some features, we design a fast Dijkstra-based
all-pair shortest path algorithm with both time and budget requirements,
then use Fenwick Tree to further improve the time efficiency. Finally, we
implement Analytic Hierarchy Process (AHP) to convert the reachabil-
ity feature into numerical values for all airports to measure their ser-
vice qualities precisely. Our results for China domestic airline network
with 210 airports and 69,160 flight routes will definitely become a guide
to airline companies and civil aviation administration for their further
development and management.

1 Introduction

Reachability and connectivity have been widely used as a measure to evaluate
networks and for graph there are also many widely used features to benchmark.
However, when it comes to the airline network, things will change. We consider
an airline network as a graph including airports as nodes and flight routes as
directed edges, which has a lot of differences from other networks. For instance,
the graph may have hundreds or even thousands of parallel edges. Every edge
in the graph has its own time window, which corresponds to the departure and
arrival time of the flight route, and only in the time window can the edge be
valid. What’s more, every node has its own values such as ground transportation
cost, which makes all nodes essentially different. Since an airline network is a
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 33–48, 2016.
DOI: 10.1007/978-3-319-48749-6 3
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graph with a lot of distinctive features, it can hardly be measured by one or
more explicit numerical indicators.

In this paper, we introduce a new definition of reachability, which is closely
related to centrality and capacity. Centrality identifies how influential and impor-
tant the node is in the graph, indicating the level of the corresponding airport.
Capacity identifies the own value of the node itself regardless of the form of
the graph. When it comes to centrality, we mainly consider degree centrality,
betweenness centrality, and closeness centrality with time and budget require-
ments. For capacity, we consider flight frequency, seating capacity, and flight
duration as auxiliary features. Then taking China airline network as a repre-
sentative, we try to compute the reachability issue for each airport respectively
through Analytic Hierarchy Process (AHP), which could indicate its rationality
and superiority and be a guide to service improvement.

To figure out all the feature values, we design an algorithm to calculate the
betweenness and closeness centrality, which is the most complicated part. There
has been a fast algorithms for betweenness centrality [3], requiring O(n + m)
space and running in O(nm+ n2 log n) on weighted graph. However as is stated
above, airline network is a network with many realistic features, so we should
compromise to some realistic constraints. We presume the time of transfers is at
most 7 and the total journey will take the passenger at most 7 days, otherwise
the journey is hardly seen in the realistic world. To meet the two demands, we
convert the original graph to a new three-dimensional graph, of which the three
ordinates denote the airport, the time of transfers and the time of that moment
respectively. After adding the corresponding edges to the new graph, we use
Dijkstra algorithm with min-priority queue [3] to solve the all-pair shortest path
problem. Considering some unnecessary cases, we use Fenwick Tree to reduce
the size of the status, which seemingly makes the time complexity worse but
actually accelerate it a lot.

To summarize, in this paper we propose a novel way to measure the reach-
ability issue of an airport in airline networks. Taking China Airline Network
as a representative, we define eight features for evaluation, and use Analytic
Hierarchy Process (AHP) with expert grading matrix to quantitatively evaluate
the reachability of airports. We further design a fast detection method using
Dijkstra-based algorithm with min-priority queue and Fenwick tree to calculate
the betweenness and closeness features in this network. Our results for China
domestic airline network with 210 airports and 69,160 flight routes will denitely
become a guide to airline companies and civil aviation administration.

The rest of this paper is organized as follows: Sect. 2 summarizes the related
works in this area. Section 3 introduces the definitions and requirements of the
problem. Section 4 design a fast algorithm to detect the betweenness and close-
ness centrality. Next, Sect. 5 discusses the rating procedure to evaluate the reach-
ability issue of an airport. Finally, Sect. 6 gives the conclusion.
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2 Related Work

As for airline networks, Barros [1] used DEA two-stage procedure to evaluate
operational performance of European airlines, considering number of employees,
number of planes and operational cost; Tsaur [13] evaluated airline service qual-
ity by fuzzy MCDM considering tangibility, reliability, responsiveness, assurance
and empathy; Yu [15] used the SBM-NDEA model to assess the performance
of airports considering the airside service and landside service; Bowen [2] used
Airline Quality Rating (AQR) Methodology to evaluate the US airline industry.

As for centrality, Brandes [3] designed a fast algorithm for betweenness cen-
trality requiring O(n + m) space and running in O(nm + n2 log n) time on
weighted networks; Kourtellis [10] proposed a randomized algorithm for estimat-
ing betweenness centrality to identify nodes with high betweenness centrality;
Lee [11] constructed tourism-management strategies for villages by evaluating
spatial centrality; Guimera [9] claimed that nodes with high betweenness tend
to play a more important role than those with high degree in the world-wide
airport network.

3 Definitions and Features

In this paper, we take China airline network as a representative to discuss the
reachability issue for each airport. First, we construct China airline network
according to weekly domestic flight statistics with 210 airports and 69,160 flight
routes (data are collected from July 1st, 2016 to July 7th, 2016). Figure 1 exhibits
the connections between airports in mainland China with the help of JavaScript
Visualization libraries like D3.js. In this figure, the blue nodes represent airports,
while the grey links represent flight routes. Note that: (1) We focus on civil
aviation and do not consider service aviation or cargo airline. Thus we do not
plot Nanhai area. (2) We only record domestic flight routes and do not count
flights from/to Taiwan, Hong Kong, and Macao. (3) Links in the figure only
represents connectivity situation between airports (we omit the link direction
for clarity), which do not reflect the real flight routes, since the domestic routes
should be arcs within the territory of China. (4) We focus on regular flight routes,
so we do not record the other irregular flight routes such as extra section flights.

Correspondingly, We construct a directed graph G = (V,E). Every node in
V denotes an airport while every edge in E corresponds to a flight route. For
each e ∈ E, we denote the average air ticket price of this flight route as pe, the
number of seats on this flight (according to its aircraft type) as se, its departure
time as de, and arrival time as ae. For each v ∈ V , we denote its average ground
transportation budget as bv (denoting the average cost that city residents should
spend to the airport) and the average ground transportation time as tv.

To evaluate the reachability of an airport, we always need to detect the short-
est path from one airport u to another v through graph G. In airline network,
a path {u → v → w} not only represents the connectivity property from u to
w, but also denotes a valid flight transfer schedule for a passenger. Additionally,
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Fig. 1. A diagrammatic sketch to show the China airline network

when considering a valid schedule, people care about the travel duration as well
as the total budget. Thus, we denote the shortest path from airport u to airport
v under the time and budget requirements respectively as follows.

Definition 1 (Shortest Path with Minimum Time). A valid path from
node u to v in an airline network G with Minimum time is a path P =
{e1, · · · , en}, where the tail of ei should be the head of ei−1 and e1 goes out
of u, en goes into v respectively. Additionally, dei ≥ aei−1 + t, for i = 2, · · · , n
and t is a flight transfer time. The shortest path with minimum time is a valid
path such that the total time duration aen − de1 is minimized.

Let SPT (u, v) denote the shortest path with minimum time for u and v. Easy
to know, |SPT (u, v)| is the path length (or cardinality of the edges) and to be
realistic, |SPT (u, v)| ≤ K where K is the maximum transfer number (usually
K ≤ 7), and usually t ≥ 90 min according to a regular flight transfer procedure.
For convenience, we denote the time on the path SPT (u, v) i.e. aen − de1 as
spt(u, v).

Similarly, if we consider the shortest path with minimum budget for u and
v, instead of computing aen − de1 , we want to minimize

∑n
i=1 pei with aen −

de1 ≤ T where T is the upper bound of total travel time duration (usually T ≤
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7 days = 10080 min) and we use SPB(u, v) to denote such a path and spb(u, v)
to denote the budget i.e.

∑n
i=1 pei .

To analyze the reachability of a node u, we need to comprehensively consider
the connectivity and importance of this airport. With the help of complex net-
work theory, we select several features of u and evaluate the level of reachability
quantitatively. These features are explained as follows.

Definition 2 (Clustering Coefficient [14]). The clustering coefficient of a
node u (CCu) in an airline network is the portion of the pairs of connected
nodes (of which the number is ku) within its neighborhood divided by the maximal
possible edges (ku(ku − 1)) between them, written as:

CCu =
1

ku(ku − 1)

∑

v

∑

w

I(u, v)I(u,w)I(v, w)I(w, v), (1)

where I(u, v) is presented as an indicator:

I(u, v) =
{

1, ∃e ∈ E, s.t. e is from u to v;
0, otherwise. (2)

Degree centrality [8], betweenness centrality [7] and closeness centrality [12]
are used as three major measures to evaluate a network node. Degree centrality
symbolizes the importance of the node in a network, while betweenness centrality
measures the extent to which a particular node lies between other nodes in a
network and closeness centrality indicates the distance from all other nodes.
Their definitions are represented as follows.

Definition 3 (Degree Centrality). Degree centrality of a node u (DCu) in
an airline network is the portion of connected nodes by all the other nodes. In
other words, it is the ratio of through-flight, written as:

DCu =

∑

v
I(u, v)

|V | − 1
. (3)

Definition 4 (Betweenness Centrality with Time and Budget Require-
ments). Betweenness centrality of a node u (BCu) in an airline network is
defined as the ratio of all shortest paths (with time and budget requirements)
passing through it and reflects its transitivity. More formally,

BCu =

∑

v∈E∧v �=u

∑

w∈E∧w �=u�=v

(
It(u, v, w) + Ib(u, v, w)

)

2 · (|V | − 1)(|V | − 2)
, (4)

where It(u, v, w) and Ib(u, v, w) are indicators defined as Eqs. 5 and 6.

It(u, v, w) =
{

1, ∃ei ∈ SPT (v, w), s.t. ei is from u;
0, otherwise. (5)

Ib(u, v, w) =
{

1, ∃ei ∈ SPB(v, w), s.t. ei is from u;
0, otherwise. (6)
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Definition 5 (Closeness Centrality of Time). Closeness Centrality of
Time of a node u (CCTu) is the sum of the average time needed on SPT (u, v)
(spt(u, v)) for v among all the other nodes and the ground transportation time.
More formally,

CCTu =

∑

v∈V ∧v �=u

spt(u, v)

|V | − 1
+ tu. (7)

Definition 6 (Closeness Centrality of Budget). Closeness Centrality of
Time of a node u (CCBu) is the sum of the average budget needed on SPB(u, v)
(spb(u, v)) for v among all the other nodes and the ground transportation budget.
More formally,

CCBu =

∑

v∈V ∧v �=u

spb(u, v)

|V | − 1
+ bu. (8)

Considering a node u, we define the centrality feature of u (CTu) comprehen-
sively in Eq. 9, combining clustering coefficient, degree centrality, betweenness
centrality, and closeness centrality together.

CTu = fCT (CCu, BCu,DCu, CCTu, CCBu). (9)

Next, we consider the specific features for airline networks and give
Definitions 7–9.

Definition 7 (Flight Frequency). The Flight Frequency of a node u (FFu)
is the amount of the edges from/to u. More formally,

FFu =
∑

e∈E

(
Iin(u, e) + Iout(u, e)

)
, (10)

where Iin(u, e) and Iout(u, e) are defined as follows:

Iin(u, e) =
{

1, e is to u;
0, otherwise. Iout(u, e) =

{
1, e is from u;
0, otherwise. (11)

Definition 8 (Seating Capacity). The Seating capacity of a node u (SCu)
is the average number of the seats on the flight from the airport. More formally,

SCu =

∑

e∈E

Iout(u, e)se
∑

e∈E

Iout(u, e)
. (12)

Definition 9 (Flight Duration). The Flight Duration of a node u (FDu) is
the average duration of the flight routes from the airport. More formally,

FDu =

∑

e∈E

Iout(u, e)(ae − de)
∑

e∈E

Iout(u, e)
. (13)



Reachability Evaluation for Airline Networks with Multi-constraints 39

For a node u, we can define the capacity property of u (CPu) comprehensively
as shown in Eq. 14.

CPu = fCP (FFu, SCu, FDu). (14)

Finally we can define the reachability of a node u (Ru) as follows:

Ru = fR(CTu, CPu). (15)

Note that functions fCT in Eq. 9, fCP in Eq. 14 and fR in Eq. 15 can be
customized according to different airline network architectures and requirements.

4 Fast Detection of Betweenness and Closeness

To figure out betweenness centrality and closeness centrality, we must solve the
all-pair shortest path problem for not only the optimal spt(u, v) and spb(u, v)
but also the trajectory of all the paths. As we mentioned above, G is a graph
with multiple edges and loops and every edge has a time window so that the
existing algorithms such as Dijkstra Algorithm cannot solve the problem with
the transfer and duration constraints.

To implement Dijkstra-based algorithm, we need to first convert the airline
network G into a simple directed graph G′. Note that a valid path links one edge
to another only when the two edges are connected and their corresponding flight
route can be transferred successfully. Thus the connection in the new generated
graph should not only represent the connectivity issues, but also reflect the
time and transfer hop information. Motivated by this observation, we introduce
duplicated graph generated from G as follows:

Definition 10 (Duplicated Graph). The duplicated graph of G is a simple
directed graph G′ = (V ′, E′) where a node in V ′ is denoted as (v, k, t) and an edge
in E′ from v′

1 to v′
2 is denoted as 〈v′

1, v
′
2〉. If there is a node v′ = (v, k, t) ∈ V ′, it

means that at time t (take minutes as the unit) the passenger reach the airport v
after the kth transfer. ∀e ∈ E (from u to v), there is an edge e′ = 〈(u, k, t), (v, k+
1, ae)〉 with weight we′ = pe (with k + 1 ≤ transfer constraints and t ≤ de − 90).

In G′, k reflects the transfer number, while t reflects the time information.
In reality, we usually set k ≤ K and t ≤ T .

Obviously every path in G′ corresponds to a valid path in G and for every
valid path in G, there must exist at least one corresponding path in G′. If we solve
the all-pair shortest path problem on G′, we can easily figure out betweenness
centrality and closeness centrality in the original graph.

Figure 2 is an example to illustrate this conversion. Figure 2(a) is a simple
flight network G with two nodes A and B, as well as two flight routes both
departure on Monday. One is flight A → B with duration 09:00–11:00, and
another is B → A during 14:00–16:00. We set k ≤ 2 (means we only allow less
than two transfers), and 0 ≤ t ≤ 1440 (means the trip should be finished within
one day). Figure 2(b) is the converted graph G′. Since the first flight departures
at 09:00, nodes (A, 0, 0) to (A, 0, 450) are all valid to reach (B, 1, 660) since



40 X. You et al.

the flight departures at 09:00, so the latest valid boarding time should be 9 ×
60 − 90 = 450. Next, the flight takes 120 min and reaches B at 11:00, so the t
value at B part should be 660. (There are totally 451 nodes if we count per
minutes.) Each of the edge has weight �500 as ticket cost. Similarly, nodes
labeled (B, 0, 0) to (B, 0, 750) all link to (A, 1, 960) if we departure at 14 ×
60 min − 90 min = 750 min.

Easy to see, G′ has two connected components depicting all the possible
transfer plans. |V ′| = 2 × 3 × 1441 = 8646 and |E′| = (451 + 751) × 2 = 2404
edges (but obviously there are only 4 vertices with positive in-degree, which is
the key observation to reduce the algorithm complexity).

Fig. 2. An example duplicated graph G′ generated from G

The next step is to solve the shortest path problem in the new graph. As
a simple graph with non-negative weights (on edges as budget), we implement
Dijkstra algorithm [4]. Initially we choose a v ∈ V ′ and start from this specific
source. At each step, we pick the closest node in the set of undiscovered nodes,
update the shortest path to each undiscovered node and remove the node from
the set. We keep doing it until every node is picked. Here we use array path[u]
to record the in-edge of the shortest path from the starting node to u, and use
array prev[u] to record u’s previous hop along the path.

The final step is to find the corresponding shortest path in the original graph.
We have got the minimum distance from the source to all other nodes with
specific time and specific transfer numbers, so we can easily get the minimum
duration and the minimum budget needed from the source to all the nodes.
By tracing down path[·] and prev[·] arrays, we can easily get the corresponding
shortest paths in original graph G.

Note that for G′, there are only O(|E|) nodes with positive in-degree (can be
found from Fig. 2), so there are O(|E|) valid nodes, i.e. |V ′| = O(|E|). For each
node, there are at most O(|E|) edges from it, so there are O(|E|2) edges i.e. |E′| =
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O(|E|2). If we compute all-pair shortest path with Dijkstra algorithm, the total
time complexity is O(|V ′|3) = O(|E|3). Apparently, for China airline network,
the algorithm can hardly hit the upper bound of the time complexity. However, it
still works with extremely low efficiency as a matter of fact. We choose to invoke
min-priority queue [6] to improve the time efficiency. The detailed description is
shown in Algorithm 1. Here dist[u] is the array to record the minimum distance
from the starting node to u. Actually, we need to run Algorithm 1 on G′ for |E|
times to compute all-pair shortest path (starting from the representative of the
departure point of each flight route in G).

Algorithm 1. Dijkstra Algorithm with Priority Queue
Input: the graph G′, the source s.
Output: the set of minimum distance dist[·], the set of previous nodes prev[·],

the set of previous path path[·].
1 Create vertex min-distance priority queue Q;
2 foreach vertex v in V ′ do
3 dist[v] ← +∞; prev[v] ← ∅; path[v] ← ∅ ; // initialization

4 Q ← push(Q, v) ; // push v into queue Q

5 dist[s] ← 0;
6 while Q is not empty do
7 u ← pop(Q) ; // pop out the first vertex from Q
8 foreach edge e from u to v do
9 alt ← dist[u] + we;

10 if alt < dist[v] then
11 dist[v] ← alt; prev[v] ← u; path[v] ← e;

After adding min-priority queue, the time complexity (with Fibonacci heap)
is still O(|V ′|2 log |V ′| + |V ′||E′|) = O(|E|3), but later we will show how it
improves the time efficiency via numerical experiments. Actually, we can further
optimize the efficiency of this algorithm. Now we focus on the distribution of the
shortest distances to give the following lemma:

Lemma 1. ∀v ∈ V , ∀k ≤ K, ∀t2 < T , if ∃t1 < t2 s.t. dist[(v, k, t1)] <
dist[(v, k, t2)], then all the results (minimum time/budget path) will not change
if we delete the node (v, k, t2).

Proof. To simplify the problem, assume now we are exploring the shortest paths
from a source (s, ·, ·) to all other nodes with time and budget requirements. Let
x, y ∈ [0, 1], then what we want to minimize is a linear combination of flight time
and budget, shown as x · time + y · budget. Especially in this paper we choose
x = 0, y = 1 (as minimum budget) and x = 1, y = 0 (as minimum time).

Now, given a t2, if ∃t1 < t2 < T , we have dist[(v, k, t1)] < dist[(v, k, t2)], then
we can get that

x · t1 + y · dist[(v, k, t1)] < x · t2 + y · dist[(v, k, t2)],
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which means the path starting from (s, ·, ·) and ending up at node (v, k, t2) can
never be an answer to any requirement.

Next, let us check other paths passing through (v, k, t2). Assume there is a
shortest path starting from (s, ·, ·) and passing from (v, k, t2) to (v′, k + 1, t3),
denoted as P1 = {(s, ·, ·) → · · · → (v, k, t2) → (v′, k + 1, t3) → · · · }, then we
can change it to P2 = {(s, ·, ·) → · · · → (v, k, t1) → (v′, k + 1, t3) → · · · }. By
Definition 10, we know that there must exist an edge from (v, k, t1) to (v′, k +
1, t3) with the same weight as (v, k, t2)’s and dist[(v, k, t1)] < dist[(v, k, t2)]. Then
the length of P2 is shorter then that of P1, which violates the shortest property
of P1, a contradiction! Hence node (v, k, t2) will not be involved in any shortest
path starting from (s, ·, ·). Additionally, since dist[(v, k, t1)] < dist[(v, k, t2)],
(v, k, t1) can be picked earlier than (v, k, t2) in Algorithm 1. Therefore, (v, k, t2)
can never be used to update the dist[·] value for all other nodes.

In conclusion, (v, k, t2) can never be an answer to any requirement and it can
never be used to update the dist[·] value of all other nodes, so it is safe to remove
node (v, k, t2) when exploring the shortest path from starting point (s, ·, ·). �

Inspired by Lemma 1, whenever we select a node (v, k, t) ∈ V ′, we can first
check whether there exists another node v′ with earlier t′ and smaller dist[v′]
value. To achieve this purpose, we use a Fenwick tree [5] to calculate the prefix
minimum value as F [v][k][·], which is defined in Definition 11.

Definition 11 (Fenwick Tree [5]). A Fenwick Tree (in our algorithm),
denoted as F [·][·][·], is a data structure to calculate the prefix minimum value.
More formally, ∀v ∈ V , ∀k ≤ K, ∀t ≤ T ,

F [v][k][t] = min
0≤i≤t

dist[(v, k, i)].

There are two operations on the Fenwick Tree: insert a new value (alt) into
the old minimum prefix (denoted as F [v][k][t] ← alt) and calculate the minimum
prefix (just denoted as F [v][k][t]). Both of them occupies O(log T ) time, where
T is the time range (in our examples T = 10080).

For a node (v, k, t) in G′, whenever we plan to update the dist[·] of all its
neighbors (like Line 8 to Line 11 in Algorithm 1), we will compare dist[(v, k, t)] to
the prefix minimum value of F [v][k][t]. If dist[(v, k, t)] > F [v][k][t], it means we
meet a case satisfying Lemma 1, and thus (v, k, t) is redundant for the shortest
path exploration. We can safely remove this node without influencing the final
result, which will obviously reduce the intermediate operations for computation.
Note that once we change a dist[·] value, we need to modify the Fenwick tree in
O(log T ) time. Thus we get an optimized algorithm shown in Algorithm 2.

Theorem 1. The if statement in Line 9 of Algorithm 2 will not change the
minimum time or minimum budget we finally calculate.

Proof. When dist[u] ≤ F [v1][k1][t1] is false, we can get

dist[(v1, k1, t1)] > min
0≤i≤t1

dist[(v1, k1, i)].
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Algorithm 2. Dijkstra Algorithm with Priority Queue and Fenwick Tree
Input: the graph G′, the source s.
Output: the set of minimum distance dist[·], the set of previous node prev[·],

the set of previous path path[·].
1 create vertex min-distance priority queue Q;
2 create min-prefix Fenwick tree F [·][·][·];
3 foreach vertex v in V ′ do
4 dist[v] ← +∞; prev[v] ← ∅; path[v] ← ∅;
5 Q ← push(Q, v) ; // push v into queue Q

6 dist[s] ← 0;
7 while Q is not empty do
8 u = (v1, k1, t1) ← pop(Q) ; // pop out the first vertex from Q
9 if dist[u] ≤ F [v1][k1][t1] then // Compare u with the min value in F

and decide whether to update dist[·] for u’s neighbors

10 foreach edge e from u to v = (v2, k2, t2) do
11 alt ← dist[u] + we;
12 if alt < dist[v] then
13 dist[v] ← alt; F [v2][k2][t2] ← alt; prev[v] ← u; path[v] ← e;

That means ∃t0 < t1 s.t. dist[(v1, k1, t0)] < dist[(v1, k1, t1)] and by Lemma 1, all
the results will not change if we delete u. �

By Theorem 1, Algorithm 2 turns out the right answers. After adding
Fenwick tree, the complexity of the algorithm seemingly turns even worse to
O(|E|3 log T ). However, in practice we find that Fenwick tree improves the algo-
rithm more than ten times faster, and Fig. 3 exhibits this phenomenon. We
randomly choose 2 nodes as the sources and randomly choose different scales of
edges, use these three algorithms to detect the shortest paths to all the other
nodes, repeat three times, record the average elapsed time, and plot a chart for
comparison. The x-axis denotes the scale of edges, while the y-axis is the log-
arithmic value of computing time. From this figure we can see clearly that the
two optimization strategies improve the practical performance efficiency greatly.

5 AHP-Based Reachability Evaluation

Now, we implement Analytic Hierarchy Process (AHP) to convert the reachabil-
ity feature into numerical values for all airports to measure their service qualities
precisely. Figure 4 shows our AHP model with 2 layers and 8 indices (defined in
Sect. 3). At first, we need to normalize these data into [0, 1] range. The nor-
malization methods are summarized in Table 1. Table 2 shows some sample data
triples after the normalization.

We then survey and get expert grading matrix for these indices. Table 3 is
an example matrix for centrality with 5 indices. Next, we use the matrix to
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Fig. 3. A comparison among three algorithms

Fig. 4. AHP properties for reachability evaluation (Color figure online)

grade and calculate the weights of these features, with properties values and
Consistency Ratio (CR). Since here CR = CI/RI = 0.0469 < 0.1, meaning
the value of Consistency Ratio is smaller or equal to 10 %, the inconsistency is
acceptable. Finally, we get all the properties for indices, shown in Fig. 4 as blue
numbers next to each block.

Finally, we calculate the reachability value of all the airports. Table 4 is a
sample of accurate results and we also provide a visualization map to show the
distribution of the reachability in Fig. 5.
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Table 1. Normalization methods for indices

Index Normalization methods

Clustering Coefficient (CC) Min-max normalization

Degree Centrality (DC) Min-max normalization

Betweenness Centrality (BC) Min-max normalization

Closeness Centrality of Time
(CCT)

Reciprocal + min-max normalization

Closeness Centrality of Budget
(CCB)

Reciprocal + min-max normalization

Flight Frequency (FF) Log of the minimum + min-max normalization

Seating Capacity (SC) Min-max normalization

Flight Duration (FD) Reciprocal + min-max normalization

Table 2. Data after normalization

IATA City CC DC BC CCT CCB FF SC FD

XIY Xi’an 0.298 0.811 1.000 0.920 0.996 0.932 0.781 0.175

PEK Beijing 0.240 1.000 0.632 1.000 0.792 1.000 1.000 0.063

CTU Chengdu 0.312 0.803 0.527 0.992 0.821 0.928 0.861 0.122

CKG Chongqing 0.338 0.724 0.544 0.923 0.979 0.919 0.767 0.164

KMG Kunming 0.364 0.717 0.557 0.856 0.814 0.945 0.716 0.177

...
...

...
...

...
...

...
...

...
...

SHF Shihezi 0.000 0.016 0.004 0.172 0.419 0.095 0.498 0.000

EJN Ejina 0.000 0.008 0.000 0.216 0.165 0.116 0.081 0.221

RHT Alxa Youqi 0.000 0.008 0.000 0.000 0.000 0.000 0.000 0.606

Table 3. Pairwise comparison matrix for centrality

CC DC BC CCT CCB Properties CR

CC 1 1 2 3 1 0.2765

DC 1 1 1 2 2 0.2400

BC 1/2 1 1 3 2 0.2333 0.0469

CCT 1/3 1/2 1/2 1 1 0.1037

CCB 1 1/2 1/2 1 1 0.1465
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Table 4. Reachability results

IATA City CC DC BC CCT CCB FF SC FD R

XIY Xi’an 0.298 0.811 1.000 0.920 0.996 0.932 0.781 0.175 0.725

PEK Beijing 0.240 1.000 0.632 1.000 0.792 1.000 1.000 0.063 0.707

CTU Chengdu 0.312 0.803 0.527 0.992 0.821 0.928 0.861 0.122 0.654

CKG Chongqing 0.338 0.724 0.544 0.923 0.979 0.919 0.767 0.164 0.649

KMG Kunming 0.364 0.717 0.557 0.856 0.814 0.945 0.716 0.177 0.635

...
...

...
...

...
...

...
...

...
...

NGQ Gunsa 0.000 0.016 0.000 0.207 0.114 0.150 0.540 0.343 0.156

RKZ Shigatse 0.000 0.008 0.000 0.270 0.205 0.116 0.535 0.115 0.137

SHF Shihezi 0.000 0.016 0.004 0.172 0.419 0.095 0.498 0.000 0.131

EJN Ejina 0.000 0.008 0.000 0.216 0.165 0.116 0.081 0.221 0.082

RHT Alxa Youqi 0.000 0.008 0.000 0.000 0.000 0.000 0.000 0.606 0.064

Fig. 5. Visualization results for reachability of airports in China
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Obviously, in Fig. 5 a lighter and bigger circle represents an airport with
higher reachability. It is apparently that the top two airports are Xi’an and
Beijing. It is seemingly surprising that Xi’an airport is with higher reachability
than Beijing, but noting that what we discuss about is reachability. Considering
the location of Xi’an in China and the fact that almost 15% shortest paths
passing through it, the conclusion is meaningful to some extent.

6 Conclusion

In this paper, we take China airline network as a representative and try to
discuss the reachability issue for each airport respectively, which could reflect its
regional connectivity level and service quality of civil aviation. More specifically,
we evaluate reachability through many features including node degree, closeness,
betweenness, etc. To get some feature values, we design a fast Dijkstra-based
all-pair shortest path algorithm with both time and budget requirements, using
priority Queue and Fenwick Tree to improve the time efficiency. Finally, we
implement Analytic Hierarchy Process (AHP) to convert the reachability feature
as numerical values for all airports to measure their service qualities precisely.
We not only give a algorithm design and an AHP evaluation, but also prove
theoretically the correctness of our method. Such methodology can be easily
extended to other airline networks or any arbitrary network with transfer and
duration constraints. Our results for China domestic airline network with 210
nodes and 69,160 flight routes will definitely become guide and reference to
airline companies and civil aviation administration for their further development
and management.
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Abstract. In this paper, we propose the Max k-Uncut problem. Given
an n-vertex undirected graph G = (V, E) with nonnegative weights
{we | e ∈ E} defined on edges, and a positive integer k, the Max k-Uncut
problem asks to find a partition {V1, V2, · · · , Vk} of V such that the
total weight of edges that are not cut is maximized. This problem is just
the complement of the classic Min k-Cut problem. We get this problem
from the study of complex networks. For Max k-Uncut, we present a
randomized (1 − k

n
)2-approximation algorithm, a greedy (1 − 2(k−1)

n
)-

approximation algorithm, and an Ω( 1
2
α)-approximation algorithm by

reducing it to Densest k-Subgraph, where α is the approximation ratio
for the Densest k-Subgraph problem. More importantly, we show that
Max k-Uncut and Densest k-Subgraph are in fact equivalent in approxima-
bility up to a factor of 2. We also prove a weak approximation hardness
result for Max k-Uncut under the assumption P �= NP.

1 Introduction

In this paper, we investigate the Max k-Uncut problem, which is obtained from
the study of the homophyly law [8, Chap. 4] of large scale networks. Being one of
the basic laws governing the structures of large scale networks, the homophyly
law states that edges in a network tend to connect nodes with the same or similar
attributes, just as an old proverb says, “birds of a feather flock together”. For
example, in a paper citation network, papers are more likely to cite papers with
which they have the same or similar keywords.

While it is common to list keywords in a paper by its authors, in a paper
citation network there are still many papers whose keywords are not explicitly
given. Consequently, it is natural to predict keywords for these papers using
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the homophyly law. Inspired by this observation, Zhang (the first author of
this paper) and Li [21] proposed the Maximum Happy Edges (MHE) problem. In
the MHE problem, we are given an undirected graph G = (V,E) and a color
set C = {1, 2, · · · , k}. Only part of vertices are given colors in C. An edge is
happy if its two endpoints share the same color. The goal of MHE is to color
all the uncolored vertices such that the number of happy edges is maximized.
Here, vertices correspond to papers, edges correspond to citations (neglecting
directions), and colors correspond to keywords.

A natural variant of MHE is that in the input graph all vertices are uncolored
and the problem just asks to color them in k colors such that the number (or total
weight) of happy edges is maximized. This suggests the Max k-Uncut problem
we investigate in this paper.

Definition 1. The Max k-Uncut Problem

(Instance). We are given an undirected graph G = (V,E) with nonnegative edge
weights {we | e ∈ E}, and a positive integer k.

(Goal). The problem asks to find a partition {V1, V2, · · · , Vk} of V (i.e., to find
a k-coloring of vertices) such that the total weight of happy edges is maximized.

In the definition of Max k-Uncut, by k-coloring we mean a coloring scheme
that uses exactly k colors, which results in a k-partition {V1, V2, · · · , Vk}, where
Vi is the set of vertices whose color is i. In the paper we will interchangeably
use k-coloring and k-partition. Note that the requirement of exactly k colors
is necessary, otherwise we can color all vertices in one color and all edges are
happy.

In the Max k-Uncut problem, if k = 1 or k = n, the problem becomes trivial.
The optimum would be respectively the number of all edges and 0 in these
two cases. So, throughout the paper we always assume 2 ≤ k ≤ n − 1 for the
Max k-Uncut problem.

Note that Max k-Uncut is not a special case of MHE. In MHE, if all vertices
are un-colored, then the problem becomes trivial: Just color all vertices in one
color, then all edges will become happy. In contrast, if all vertices in Max k-Uncut
are uncolored, we cannot color them in one color. In Max k-Uncut, we must figure
out a k-coloring.

Two problems that are closely related to Max k-Uncut have already appeared
in literature. Choudhurya et al. [7] proposed the capacitated Max k-Uncut prob-
lem. Given an undirected graph G and k integers s1, s2, · · · , sk, this problem is
to partition V (G) into k subsets of sizes s1, s2, · · · , sk respectively, such that the
total weight of happy edges is maximized. Very recently, Wu et al. [18] studied
the balanced Max 3-Uncut problem, in which an input graph is partitioned into
3 equal-sized parts so that the total weight of happy edges is maximized.

Notations and Terms. Some common notations and terms are listed here.
Given a graph G, let n be the number of its vertices. Given an optimization
problem, let OPT denote the value of its optimal solution. By r-clique for some
integer r, we mean a clique (i.e., a complete subgraph) that contains exactly r
vertices.
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1.1 Related Work

To the best of our knowledge, the general Max k-Uncut problem is new and has
not been studied in literature. Though it is new, Max k-Uncut has rich connection
to the classic and existing problems.

Max k-Uncut is just the complement of the classic Min k-Cut problem. The
Min k-Cut problem asks for a k-partition such that the total weight of cut
edges is minimized. The Min k-Cut problem is strongly NP-hard [12], so is the
Max k-Uncut problem. The best approximation ratio for Min k-Cut is 2 [17].
When k is a constant, the Min k-Cut problem can be optimally solved in polyno-
mial time [12]. Obviously, Max k-Uncut with constant k is also polynomial time
solvable. In a word, Max k-Uncut is strongly NP-hard (when k is given in the
input), and is polynomial time solvable when k is a constant.

Previously we have pointed out two closely related variants of Max k-Uncut,
i.e., the capacitated Max k-Uncut problem and the balanced Max 3-Uncut prob-
lem. Using the heuristic of local search, Choudhurya et al. [7] gave a 1

d(k−1)+1 -
approximation algorithm for capacitated Max k-Uncut, where d is the ratio of the
largest size and the smallest size in the partition. This ratio is somewhat poor
and cannot extend to the Max k-Uncut problem studied in this paper. Using the
semidefinite programming technique, Wu et al. [18] gave a 0.3456-approximation
algorithm for the balanced Max 3-Uncut problem.

The cut problems are classic and rich. They play an important role in the
study of approximation algorithms and operations research. In literature, the
“uncut” problems are also been studied. Besides Max k-Uncut, three examples
are Min Uncut [1], Multiway Uncut [15,20], and the complement of Min Bisection
[19]. Min Uncut is the complement of the classic Max Cut problem. Agarwal et
al. [1] gave an O(

√
log n)-approximation algorithm for Min Uncut, where n is

the number of vertices in the input graph. Multiway Uncut is the complement
of the classic Multiway Cut problem [5,6]. Langberg et al. [15] proposed the
Multiway Uncut problem. The current best approximation ratio for Multiway

Uncut is 1
2 +

√
2
4 f(k) ≥ 0.8535 [20], where f(k) ≥ 1 is a function of k. Ye and

Zhang [19] gave a 0.602-approximation algorithm for the complement of the Min
Bisection problem.

Due to the close relation of Max k-Uncut to Multiway Uncut, we have to say
more about Multiway Uncut. Given a graph G = (V,E) with edge weights and a
terminal set {s1, s2, · · · , sk} ⊆ V , the Multiway Uncut problem asks a partition of
V that separates the k terminals from each other and maximizes the total weight
of happy edges. (Multiway Uncut is a special case of MHE.) Both Max k-Uncut and
Multiway Uncut ask for a k-partition. The only difference is that in Max k-Uncut,
there is no terminal, and in Multiway Uncut, there are terminals.

Another closely related problem is Max k-Cut, which is the problem to
find a k-partition such that the total weight of cut edges is maximized. When
k = 2, Max k-Cut (namely, Max Cut) is already NP-hard. The current best
approximation ratio for Max Cut is 0.87856, given by Goemans and Williamson
[11] using the semidefinite programming technique. Frieze and Jerrum [10]
extended Goemans-Williamson’s technique to the Max k-Cut problem, obtained
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the approximation ratio αk = 1 − 1
k + (1 + ε(k))2 ln k

k2 for Max k-Cut, where ε(k)
is a function of k which tends to zero as k → ∞. When k = 3, 4, 5, αk is no less
than 0.800217, 0.850304, and 0.874243, respectively.

1.2 Our Results

In this paper, we give three approximation algorithms for the Max k-Uncut prob-
lem and prove a (weak) approximation hardness result of Max k-Uncut. These
three algorithms share the same idea, which is simple but powerful: To find a
k-partition with many happy edges, one may just find a dense subgraph as large
as possible. The subgraph is used as one part of the k-partition. The larger and
denser the subgraph is, the more happy edges we will get. Along this line, we
finally find that Max k-Uncut is in fact equivalent to the Densest k-Subgraph
problem in approximability (up to a factor of 2). Note that Densest k-Subgraph
is one of the current hot topics in approximation algorithms. This may be our
most important find in this paper.

The first algorithm is a randomized algorithm (Algorithm 2.1) whose approx-
imation ratio is (1 − k

n )2. This algorithm can be derandomized in polynomial
time. The second algorithm is a greedy algorithm (Algorithm 2.2) whose approx-
imation ratio is 1− 2(k−1)

n . While the ratios of these two algorithms are very close,
they are still incomparable. Specifically, when k <

√
2n, the ratio 1 − 2(k−1)

n is
better than the ratio (1 − k

n )2. Otherwise (when k >
√

2n), the latter is better
than the former.

The ratio ρ = max{(1 − k
n )2, 1 − 2(k−1)

n } for Max k-Uncut we obtain so far
is already good when k is not too large. For example, if k ≤ n/2, then ρ ≥ 1/4.
However, when k approaches n−1, ρ becomes worse and worse, and equals to 1

n2

finally. This observation suggests that the most difficult case of approximating
Max k-Uncut should be the case when k is close to n, say, k = n − O(log n).
And in this case (i.e., when k is large), we may make use of the connection to
Densest k-Subgraph.

Therefore, in the third algorithm (Algorithm 2.3), we reduce Max k-Uncut
to Densest k̄-Subgraph (for some suitable k̄) by exploring the structure of opti-
mal solutions to Max k-Uncut. It is convenient to define the Densest k-Subgraph
problem here.

Definition 2. The Densest k-Subgraph Problem

(Instance). We are given an undirected graph G = (V,E) with nonnegative edge
weights {we | e ∈ E}, and a positive integer k.

(Goal). The problem asks to find a k-vertex subgraph G′ such that the total weight
of edges in E(G′) is maximized.

The reduction used in Algorithm 2.3 is nontrivial. Let α be the approximation
ratio for Densest k-Subgraph. Then Algorithm 2.3 approximates Max k-Uncut
within 1

2α in polynomial time. The current best value of α is Ω(1/n
1
4+ε) [4].
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Consequently, Algorithm 2.3 repairs the deficiencies of Algorithms 2.1 and 2.2.
Now, the approximation ratio we obtain for Max k-Uncut is max{ρ, 1

2α}.
Surprisingly and interestingly, our technique in the analysis of Algorithm2.3

also implies that if Max k-Uncut can be approximated within a factor of β, then
Densest k-Subgraph can be approximated within 1

2β. Therefore, Max k-Uncut
and Densest k-Subgraph are equivalent in approximability up to a factor of 2.
This reveals the strong connection between Max k-Uncut and Densest k-Subgraph,
and may open a new viewpoint in tackling the Densest k-Subgraph problem, since
this problem is known as a notorious hard problem in approximation algorithms.
(There is a wide gap between its best approximation factor and its best hardness
factor).

Next, we prove an approximation hardness result for Max k-Uncut: For any
small constant ε > 0, Max k-Uncut cannot be approximated within 1 − 1

2nε in
polynomial time, where n is the number of vertices in the input graph. This is
proved via a gap-preserving reduction from the hardness result of the Max Clique
problem [3,13]. As a result, the hardness 1 − 1

2nε for any small constant ε > 0
implies that Max k-Uncut does not admit FPTAS.

Honestly speaking, this hardness result is weak since Max k-Uncut is indeed
strongly NP-hard, and the strong NP-hardness already rules out FPTAS. How-
ever, we make twofold contribution in proving the approximation hardness of
Max k-Uncut. First, we give an explicit expression of the approximation hard-
ness factor of Max k-Uncut, instead of just speaking that it is strongly NP-hard.
Second, we prove a technical lemma (Lemma 2), which gives an upper bound of
the number of happy edges that can be produced by any k-partition on a graph
with no (r + 1)-clique. The technical lemma is of independent interest and may
find more applications in related problems. In fact, the upper bound is obtained
by a special k-partition which consists of k − 1 singletons and one subset of size
n−(k−1). This again hints the connection of Max k-Uncut to Densest k-Subgraph
and Max Clique.

2 Approximation Algorithms

2.1 A Randomized Algorithm

A straightforward idea for Max k-Uncut is to color vertices randomly. However,
if we color every vertex randomly, we may not get an approximation algorithm
with good ratio. (We can prove that an algorithm of this type has approximation
ratio 1

k − k−1
n(n−1) . The details are omitted here.)

In graphs with only unit weight on edges, to maximize the total weight
of happy edges is equivalent to leave as many as possible edges uncut. So, a
clever randomized strategy is to randomly color k − 1 vertices only, making the
remaining vertices as many as possible. Intuitively, these many vertices would
induce many happy edges. Algorithm R below is a randomized algorithm for
Max k-Uncut of this idea.

Let Wtot be the total weight of edges in graph G.
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Algorithm 2.1. (Algorithm R for Max k-Uncut)
1 Pick randomly k − 1 vertices from V , and color them respectively in colors

1 to k − 1.
2 Color all the remaining vertices in color k.

Theorem 1. Algorithm R is a randomized
(
1 − k

n

)2
-approximation algorithm

for the Max k-Uncut problem.

Proof. First note that Algorithm R runs in polynomial time. Let Vi be the set
of vertices of color i. Take any edge e = (u, v). Then, e is happy (uncut) if and
only if both u and v are not chosen in the first k − 1 random choices (step 1).
This means that

Pr[edge e is happy] =

(
n−2
k−1

)

(
n

k−1

) =
(n − k + 1)(n − k)

n(n − 1)
>

(n − k)2

n2
=

(

1 − k

n

)2

.

Let SOL be the solution value obtained by Algorithm R. Therefore, we have

E[SOL] =
∑

e∈E

we · Pr[edge e is happy] ≥
(

1 − k

n

)2

Wtot.

On the other hand, the optimum OPT is obviously at most Wtot. So, the
approximation ratio of Algorithm R is at least

(
1 − k

n

)2
. 	


Algorithm R can be derandomized by the conditional expectation method in
polynomial time. This is sketched as follows in rounds. In the first round we
determine the first vertex to be removed. We remove each vertex vi (1 ≤ i ≤ n)
from G to obtain Gi. That is, ∀1 ≤ i ≤ n, Gi = G \ vi. For each Gi, we compute
the expected solution value ai of Algorithm R for the Max(k−1)-Uncut problem.
We find the largest expected value in this round, say aj . Then, vj is the first
vertex we pick and is colored in color 1. The next round begins from G with vj

removed. Repeating the above procedure for k − 1 rounds, we obtain a solution
whose value is at least as better as the expected value of Algorithm R.

2.2 A Greedy Algorithm

The idea in Sect. 2.1 can be restated as finding a subgraph of size n − k + 1 as
dense as possible, where by dense subgraph we mean a subgraph whose total
weight of edges is as much as possible. This leads to a greedy algorithm for
Max k-Uncut, shown as Algorithm G below. For the sake of description, we define
the weighted degree dw(v) of a vertex v as the sum of weights of edges incident
to v. By definition, the weight of vertex v is equal to the capacity of the cut
({v}, V \ {v}). Obviously, when each edge in the graph has unit weight, the
weighted degree of a vertex is simply its degree.
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Algorithm 2.2. (Algorithm G for Max k-Uncut)
1 Pick vertices from V with the first k−1 smallest weighted degrees, and color

them in colors 1 to k − 1, respectively.
2 Color all the remaining vertices in color k.

Theorem 2. Algorithm G is a
(
1 − 2(k−1)

n

)
-approximation algorithm for the

Max k-Uncut problem.

Proof. Algorithm G obviously runs in polynomial time. Let v1, · · · , vk−1 be the
vertices picked in the first step of Algorithm G. By the algorithm, only edges
incident to vertices in {v1, · · · , vk−1} would be unhappy. So, the total weight of
unhappy edges is at most

k−1∑

i=1

dw(vi) ≤ k − 1
n

∑

v

dw(v) =
2(k − 1)

n
Wtot.

Therefore, the total weight of happy edges is at least

Wtot − 2(k − 1)
n

Wtot.

Since OPT ≤ Wtot, this means the approximation ratio of Algorithm G is at
least 1 − 2(k−1)

n . 	


The approximation ratios (1 − k
n )2 and 1 − 2(k−1)

n behave well when k is not
too large. For example, (1 − k

n )2 ≥ 1
4 when k ≤ n

2 . However, when k is large
enough, say, k = n−O(log n), the approximation ratio max{(1− k

n )2, 1− 2(k−1)
n }

we obtained so far becomes bad. To remedy this deficiency, we design another
approximation algorithm for Max k-Uncut, that is, Algorithm T in Sect. 2.3.
Actually, our subsequent study on Max k-Uncut in this paper makes us realize
that the hard core of Max k-Uncut just lies in the case when k is large.

2.3 Reduces to Densest k-Subgraph

In this section, we reduce Max k-Uncut to Densest k̄-Subgraph for some suitable
k̄. For clarity, when the instance of Densest k-Subgraph is given as, e.g., (G,w, k̄),
we call it the instance of the Densest k̄-Subgraph problem. The reader should be
aware of that Densest k-Subgraph and Densest k̄-Subgraph are the same problem.
This usage also happens to the Max k-Uncut problem.

Given a vertex subset S of an edge-weighted graph G, let w(S) denote
the total weight of happy edges induced by S. Given a k-partition P =
{V1, V2, · · · , Vk} of V (G), let w(P) denote the total weight of happy edges
induced by P, i.e., w(P) =

∑
i w(Vi).

First we prove a technical lemma.
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Lemma 1. Let P = {V1, V2, · · · , Vk} be a k-partition of graph G with weights
defined on edges. Then in polynomial time (in terms of |V (G)|) we can construct
a k-partition P ′ = {V ′

1 , V
′
2 , · · · , V ′

k} which satisfies

(i) |V ′
1 | = · · · = |V ′

k−1| = 1, |V ′
k| = n − k + 1, and

(ii) w(P ′) ≥ 1
2w(P).

Proof. We renumber the vertex subsets in P according to the non-decreasing
order of their w(·) values, and rewrite P as {R1, R2, · · · , Ra, S1, S2, · · · , Sb},
where we assume that in P there are a singletons R1, · · · , Ra, and b non-
singletons S1, · · · , Sb (that is, each Si has size at least two). So, we have a+b = k,

w(R1) ≤ · · · ≤ w(Ra) ≤ w(S1) ≤ · · · ≤ w(Sb),

and
w(P) = w(S1) + · · · + w(Sb).

Note that a may be zero.
If b = 1, then the theorem is proved by just letting P ′ = P. So, in the follow-

ing we assume that b ≥ 2. We shall convert S1, · · · , Sb−1, Sb to S′
1, · · · , S′

b−1, S
′
b

such that the first b − 1 S′
i’s are singletons. This is done as follows.

We pick the unique � ∈ [
1, � b−1

2 ] such that

|S1| + |S2| + · · · + |S�| ≥ b − 1

and
|S1| + |S2| + · · · + |S�−1| < b − 1. (1)

Note that it may be the case that � = 1, and in this case we do not need the
condition (1). Also note that since b ≥ 2 and ∀1 ≤ i ≤ b, |Si| ≥ 2, � must be at
most � b−1

2 .
Initially S′

b is empty. We merge all vertices in S�+1, · · · , Sb into S′
b. Then

we pick arbitrarily b − 1 vertices from S1, · · · , S� to make b − 1 singletons S′
1,

S′
2, · · · , S′

b−1. If there are still remaining vertices in S1, · · · , S� (in case that
|S1|+ |S2|+ · · ·+ |S�| > b− 1), we then move all of them to S′

b. This finishes the
construction of S′

1, · · · , S′
b−1, S′

b.
Since � ≤ � b−1

2  ≤ 1
2b, the number of subsets S�+1, · · · , Sb is at least half of

b. In the above construction, all the happy edges in these subsets are kept in S′
b.

Since S1, · · · , Sb are in the non-decreasing order of the total weights of happy
edges they contain, we know that

w(S′
b) ≥ 1

2
(w(S1) + · · · + w(Sb))

The desired k-partition P ′ is just {R1, · · · , Ra, S′
1, · · · , S′

b}. 	

Algorithm T is the algorithm reducing Max k-Uncut to Densest k̄-Subgraph. Since
the subgraph G′ found in step 2 contains k̄ vertices, there are exactly n−k̄ = k−1
vertices in V (G) \ V (G′). So, in step 4 we can color them in colors 1, · · · , k − 1,
respectively.
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Algorithm 2.3. (Algorithm T for Max k-Uncut)
Input: An instance (G,w, k) of Max k-Uncut.
Output: A k-partition of V (G).
1 k̄ ← n − (k − 1).
2 Find a subgraph G′ of G by an approximation algorithm for Densest k̄-
Subgraph on instance (G,w, k̄).

3 Color all vertices in V (G′) in color k.
4 Color all vertices in V (G) \ V (G′) in colors 1, · · · , k − 1, respectively.

Theorem 3. Let α be the approximation ratio of Densest k-Subgraph. Then
Algorithm T is a α

2 -approximation algorithm for the Max k-Uncut problem.

By [4], α can be Ω(1/n1/4+ε) for every small constant ε > 0. (The ratio in
[4] is for unweighted Densest k-Subgraph. Using the technique in [9], this ratio
can be extended to weighted Densest k-Subgraph.) This means that Max k-Uncut
can be approximated within 1

2α = Ω(1/n1/4+ε) in polynomial time.

Proof (of Theorem 3). Let OPTMkU be the optimal value of Max k-Uncut on
instance (G,w, k). Let P∗ = {V1, V2, · · · , Vk} be the corresponding optimal solu-
tion. By Lemma 1, we can build a k-partition P ′ = {V ′

1 , V
′
2 , · · · , V ′

k} from P∗

such that V ′
1 , · · · , V ′

k−1 are singletons. This means that |V ′
k| = n − (k − 1). So,

V ′
k is a feasible solution to Densest k̄-Subgraph on instance (G,w, k̄) satisfying

w(V ′
k) = w(P ′) ≥ 1

2
w(P∗) =

1
2
OPTMkU, (2)

where the inequality is by Lemma 1.
Note that G′ is the subgraph found in step 2 by the approximation algorithm

for Densest k̄-Subgraph. There are k − 1 vertices in V (G) \ V (G′). Then, step
4 builds k − 1 singletons using the vertices in V (G) \ V (G′). These singletons,
together with V (G′), constitute a k-partition, denoted by P, which is a feasible
solution to Max k-Uncut. We have

w(P) = w(V (G′)) ≥ α · OPTDk̄S ≥ α · w(V ′
k) ≥

(2)

α

2
· OPTMkU,

where the first inequality holds since G′ is an α-approximate solution to the
Densest k̄-Subgraph instance (G,w, k̄), and the second inequality holds since V ′

k

is a feasible solution to (G,w, k̄). The theorem is proved. 	

Note that the running time of Algorithm T does not depend on the construction
time of the k-partition in Lemma 1. Lemma 1 is only used in the analysis of
Algorithm T . (This construction time is useful in the following Algorithm C.)

Interestingly and somewhat surprisingly, Lemma 1 also implies the converse
of Theorem 3: Densest k-Subgraph reduces to Max k-Uncut. This is shown in
Algorithm C and Theorem 4.
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Algorithm 2.4. (Algorithm C for Densest k-Subgraph)
Input: An instance (G,w, k) of Densest k-Subgraph.
Output: A vertex subset V ′ ⊆ V (G) containing exactly k vertices.
1 k̄ ← n − k + 1.
2 Find a k̄-partition P = {V1, V2, · · · , Vk̄} of V (G) by an approximation algo-

rithm for Max k̄-Uncut on instance (G,w, k̄).
3 Convert P to a k̄-partition P ′ = {V ′

1 , V
′
2 , · · · , V ′̄

k
} by Lemma 1, where |V ′̄

k
| =

n − (k̄ − 1) = k.
4 return V ′ ← V ′̄

k
.

Theorem 4. If Max k-Uncut can be approximated within a factor of α, then
Densest k-Subgraph can be approximated within a factor of α/2.

Proof. We design Algorithm C as the approximation algorithm for
Densest k-Subgraph. Step 2 calls the supposed α-approximation algorithm for
Max k̄-Uncut. By Lemma 1, step 3 can be finished in polynomial time. There-
fore, the overall running time of Algorithm C is polynomial.

Let V ∗ be an optimal solution to the Densest k-Subgraph instance (G,w, k),
whose value is denoted by OPTDkS. Note that in Algorithm C we have k̄ = n−k+
1. By viewing each vertex in V (G)\V ∗ as a singleton, we can build a k̄-partition
P◦ = {V ◦

1 , V ◦
2 , · · · , V ◦̄

k
}, where V ◦̄

k
= V ∗. Obviously we have w(P◦) = OPTDkS.

A crucial observation is that P◦ is a feasible solution to the Max k̄-Uncut instance
(G,w, k̄). This helps us get the connection

OPTMk̄U ≥ OPTDkS, (3)

where OPTMk̄U is the optimal value of the instance (G,w, k̄) of Max k̄-Uncut.
For the two k̄-partitions P and P ′, we have w(P ′) ≥ 1

2w(P) by Lemma 1.
Since Max k̄-Uncut can be approximated within α, we have w(P) ≥ α ·OPTMk̄U.
These facts, together with (3), conclude the theorem. 	

Theorems 3 and 4 show that Max k-Uncut and Densest k-Subgraph are in fact
equivalent in approximability up to a factor of two.

3 Approximation Hardness

3.1 Ruling Out Constant Factor Approximation

The approximability equivalence (up to a factor of two) of Max k-Uncut and
Densest k-Subgraph naturally suggests that the approximation hardness results
of Densest k-Subgraph may extend to Max k-Uncut. In particular, the following
conditional hardness result holds.

Corollary 1. If Densest k-Subgraph cannot be approximated within any con-
stant factor, then so do Max k-Uncut.



Approximation and Hardness Results for the Max k-Uncut Problem 59

Under some appropriate complexity assumptions, people indeed proved
that Densest k-Subgraph cannot be approximated within any constant factor.
Raghavendra and Steurer [16] proved that assuming that the Unique Games
with Small Set Expansion conjecture is true, it is NP-hard to approximate the
Densest k-Subgraph problem within any constant factor. Alon et al. [2] also ruled
out constant approximation factor for Densest k-Subgraph, under an average case
hardness assumption. For the exact meaning of these complexity assumptions,
we refer the reader to [2,16].

Khot [14] proved that assuming NP �⊆ ∩ε>0BPTIME(2nε

), Densest
k-Subgraph has no PTAS. However, this result cannot be extended to
Max k-Uncut directly, since the approximability equivalence of Max k-Uncut and
Densest k-Subgraph proved above omits a constant factor 2.

3.2 An Explicit Hardness Factor

The approximation hardness results for Densest k-Subgraph mentioned above all
use stronger complexity assumptions than the general assumption P �= NP. In
the following, we shall prove an approximation hardness result for Max k-Uncut,
assuming that P �= NP. The proved hardness factor is 1− 1

2nε , where ε > 0 is an
arbitrarily small constant, and n is the vertex number of the input graph. This
result implies that, if P �= NP, Max k-Uncut does not admit FPTAS.

The hardness result 1− 1
2nε for Max k-Uncut is rather weak since Max k-Uncut

is strongly NP-hard, and this (the strong NP-hardness) already rules out FPTAS.
However, we make twofold contribution in proving such a result. First, we give an
explicit expression of the approximation hardness factor of Max k-Uncut, instead
of just speaking that it is strongly NP-hard. Second, we prove a technical lemma
(Lemma 2), which gives an upper bound of the number of happy edges that
can be produced by any k-partition on a graph with no (r + 1)-clique. The
technical lemma is of independent interest and may find more applications in
related problems.

Lemma 2. Any k-partition on an n-vertex undirected graph with no (r + 1)-
clique can produce at most 1

2 (1 − 1
r )u2 happy edges, where u = n − (k − 1).

H̊astad [13] proved the following remarkable approximation hardness result
for the Max Clique problem: For any ε > 0, unless P = NP, there is no polynomial
time algorithm that approximates Max Clique within a factor of n1/2−ε, where
n is the vertex number of the input graph. By this result and Lemma 2, we can
prove that

Theorem 5. For any ε > 0, unless P = NP, there is no polynomial time algo-
rithm that approximates Max k-Uncut within a factor of 1 − n1/2−ε−1

n1/2−1
, where n

is the vertex number of the input graph. The hardness factor is ≤ 1 − 1
2nε for

sufficiently large n.

The proof of Lemma 2 is rather complicated. Due to space limitation, the
proofs of Lemma 2 and Theorem 5 are omitted here and will be given in the
journal version of the paper.
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H̊astad [13] also proved that assuming ZPP �= NP, Max Clique cannot be
approximated within n1−ε for any small constant ε > 0. However, for technical
reasons, this stronger hardness factor cannot improve the result of Theorem 5
accordingly.

A corollary of Theorem 5 is that Max k-Uncut has no FPTAS, if P �= NP.

Corollary 2. Max k-Uncut does not admit FPTAS, if P �= NP.

Proof. Suppose for contradiction that there is an FPTAS for Max k-Uncut which
for any small ε′ > 0, gets a (1−ε′)-approximation to Max k-Uncut instance I, with
running time poly( 1

ε′ , |I|), where |I| denotes the length of instance I, and poly()
denotes some polynomial. Given any small constant ε > 0, if we set ε′ = 1

2nε and
run the FPTAS, where n is the number of vertices in the input graph, then we
can get a (1− 1

2nε )-approximation to instance I in time poly(2nε, |I|) = poly(|I|),
contradicting Theorem 5. 	
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Abstract. In this paper, we introduce and investigate a new notion of
strong tree-breadth. We say that a graph G has strong tree-breadth ρ if
there is a tree-decomposition T for G such that each bag B of T is equal
to the complete ρ-neighbourhood of some vertex v in G, i. e., B = Nρ

G[v].
We show that

– it is NP-complete to determine if a given graph has strong tree-
breadth ρ, even for ρ = 1;

– if a graph G has strong tree-breadth ρ, then we can find a tree-
decomposition for G with tree-breadth ρ in O(n2m) time;

– with some additional restrictions, a tree-decomposition with strong
breadth ρ can be found in polynomial time;

– some graph classes including distance-hereditary graphs have strong
tree-breadth 1.

1 Introduction

Decomposing a graph into a tree is an old concept. It was introduced already
by Halin [14]. However, a more popular introduction was given by Robertson
and Seymour [15,16]. The idea is to decompose a graph into multiple induced
subgraphs, usually called bags, where each vertex can be in multiple bags. These
bags are combined to a tree in such a way that the following requirements are
fulfilled: Each vertex is in at least one bag, each edge is in at least one bag, and,
for each vertex, the bags containing it induces a subtree. We will give formal
definitions in the next section.

For a given graph, there can be up to exponentially many different tree-
decompositions. The easiest is to have only one bag containing the whole graph.
To make the concept more interesting, it is necessary to add additional restric-
tions. The most known is called tree-width. A decomposition has width ω if each
bag contains at most ω + 1 vertices. Then, a graph G has tree-width ω if there
is a tree-decomposition for G which has width ω.

In the last years, a new perspective on tree-decompositions was invested.
Instead of limiting the number of vertices in each bag, the distance between
vertices inside a bag is limited [8,9]. In this paper, we are interested in a variant
called tree-breadth. It was introduced by Dragan and Köhler in [9]. The breadth
of a tree-decomposition is ρ, if, for each bag B, there is a vertex v such that
each vertex in B has distance at most ρ to v. Accordingly, we say the tree-
breadth of a graph G is ρ (written as tb(G) = ρ) if there is a tree-decomposition
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 62–76, 2016.
DOI: 10.1007/978-3-319-48749-6 5
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for G with breadth ρ and there is no tree-decomposition with smaller breadth.
This new concept of tree-breadth played a crucial role in designing an efficient
and best to the date approximation algorithm for the well-known tree t-spanner
problem (see [9] for details). Recently, Ducoffe et al. [13] have shown that it is
NP-complete to determine if a graph has tree-breadth ρ for all ρ ≥ 1. On the
other hand, for a given graph G, a tree-decomposition of breadth at most 3 tb(G)
can be computed in linear time [1].

By definition, a tree-decomposition has breadth ρ if each bag B is the subset
of the ρ-neighbourhood of some vertex v, i. e., the set of bags is the set of subsets
of the ρ-neighbourhoods of some vertices. Tree-breadth 1 graphs contain the
class of dually chordal graphs which can be defines as follows: A graph G is
dually chordal if it admits a tree-decomposition T such that, for each vertex v
in G, T contains a bag B = NG[v] [4]. That is, the set of bags in T is the set of
complete neighbourhoods of all vertices.

In this paper, we investigate the case which lays between dually chordal
graphs and general tree-breadth ρ graphs. In particular, tree-decompositions are
considered where the set of bags are the complete ρ-neighbourhoods of some ver-
tices. We call this strong tree-breadth. The strong breadth of a tree-decomposition
is ρ, if, for each bag B, there is a vertex v such that B = Nρ

G[v]. Accord-
ingly, a graph G has strong tree-breadth smaller than or equal to ρ (written as
stb(G) ≤ ρ) if there is a tree-decomposition for G with strong breadth at most ρ.

Dually chordal graphs and their powers are exactly the graphs admitting a
tree-decomposition where the set of bags is equal to the set of complete neigh-
bourhoods (complete ρ-neighbourhoods) of all vertices. It is a known fact that
the dually chordal graphs (the powers of dually chordal graphs) can be recog-
nised in linear time (respectively, polynomial time) [4]. General tree-breadth ρ
graphs cannot be recognised in polynomial time unless P = NP [13]. It remained
an interesting open question if the graphs with strong tree-breadth ρ can be
recognised in polynomial time.

In this paper we show that it is NP-complete to determine if a given graph
has strong tree-breadth ρ, even for ρ = 1. Furthermore, we demonstrate that:
if a graph G has strong tree-breadth ρ, then we can find a tree-decomposition
for G with tree-breadth ρ in O(n2m) time; with some additional restrictions, a
tree-decomposition with strong breadth ρ can be found in polynomial time; some
graph classes including distance-hereditary graphs have strong tree-breadth 1.
Our future research plans are to investigate algorithmic implications of the
existence for a graph of a tree-decomposition with small strong tree-breadth.
Can some algorithmic problems that remain NP-complete on general tree-
breadth ρ graphs be solved/approximated efficiently on the graphs with strong
tree-breadth ρ? Recall that, for example, greedy routing with aid of a spanning
tree [12], (connected) r-domination [3], Steiner tree [3], and (weighted) efficient
domination [5,6] can be efficiently solved on dually chordal graphs and their
powers.
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2 Preliminaries

All graphs occurring in this paper are (if not stated or constructed otherwise)
connected, finite, unweighted, undirected, without loops, and without multiple
edges. For a graph G = (V,E), we use n = |V | and m = |E| to denote the
cardinality of the vertex set and the edge set of G. The length of a path from a
vertex v to a vertex u is the number of edges in the path. The distance dG(u, v)
of two vertices u and v is the length of a shortest path connecting u and v.
The distance between a vertex v and a set S ⊆ V is defined as dG(v, S) =
minu∈S dG(u, v).

For a vertex v of G, NG(v) = {u ∈ V | uv ∈ E} is called the open neighbor-
hood of v. Similarly, for a set S ⊆ V , we define NG(S) = {u ∈ V | dG(u, S) = 1}.
The r-neighbourhood of a vertex v in G is Nr

G[v] = {u | dG(u, v) ≤ r}; if r is not
specified, then r = 1. Two vertices u and v are true twins if NG[u] = NG[v] and
are false twins if they are non-adjacent and NG(u) = NG(v).

For a vertex set S, let G[S] denote the subgraph of G induced by S. With
G − S, we denote the graph G[V \S]. A vertex set S is a separator for two
vertices u and v in G if each path from u to v contains a vertex s ∈ S; in this
case we say S separates u from v. If a separator S contains only one vertex s,
i. e., S = {s}, then s is an articulation point. A block is a maximal subgraph
without articulation points.

A chord in a cycle is an edge connecting two non-consecutive vertices of the
cycle. A cycle is called induced if it has no chords. For each k ≥ 3, an induced
cycle of length k is called as Ck. A subgraph is called clique if all its vertices
are pairwise adjacent. A maximal clique is a clique that cannot be extended by
including any additional vertex.

A tree-decomposition of a graph G = (V,E) is a tree T with the vertex
set B where each vertex of T , called bag, is a subset of V such that: (i) V =⋃

B∈B B, (ii) for each edge uv ∈ E, there is a bag B ∈ B with u, v ∈ B, and
(iii) for each vertex v ∈ V , the bags containing v induce a subtree of T . A
tree-decomposition T of G has breadth ρ if, for each bag B of T , there is a
vertex v in G with B ⊆ Nρ

G[v]. The tree-breadth of a graph G is ρ, written as
tb(G) = ρ, if ρ is the minimal breadth of all tree-decomposition for G. Similarly,
a tree-decomposition T of G has strong breadth ρ if, for each bag B of T , there
is a vertex v in G with B = Nρ

G[v]. The strong tree-breadth of a graph G is the
minimal ρ for which G admits a tree-decomposition with strong breadth ρ. This
is written as stb(G) = ρ.

3 NP-Completeness

In this section, we will show that it is NP-complete to determine if a given graph
has strong tree-breadth ρ even if ρ = 1. To do so, we will first show that, for
some small graphs, the choice of possible centers is restricted. Then, we will use
these small graphs to construct a reduction.
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Lemma 1. Let C = {v1, v2, v3, v4} be an induced C4 in a graph G with the
edge set {v1v2, v2v3, v3v4, v4v1}. If there is no vertex w /∈ C with NG[w] ⊇ C,
then NG[v1] and NG[v2] cannot both be bags in the same tree-decomposition with
strong breadth 1.

Proof. Assume that there is a decomposition T with strong breadth 1 containing
the bags B1 = NG[v1] and B2 = NG[v2]. Because v3 and v4 are adjacent, there is
a bag B3 ⊇ {v3, v4}. Consider the subtrees T1, T2, T3, and T4 of T induced by v1,
v2, v3, and v4, respectively. These subtrees pairwise intersect in the bags B1, B2,
and B3. Because pairwise intersecting subtrees of a tree have a common vertex,
T contains a bag NG[w] ⊇ C. Note that there is no vi ∈ C with NG[vi] ⊇ C.
Thus, w /∈ C. This contradicts with the condition that there is no vertex w /∈ C
with NG[w] ⊇ C. ��

Let C = {v1, . . . , v5} be a C5 with the edges E5 = {v1v2, v2v3, . . . , v5v1}. We
call the graph H = (C ∪ {u}, E5 ∪ {uv1, uv3, uv4}), with u /∈ C, an extended C5

of degree 1 and refer to the vertices u, v1, v2, and v5 as middle, top, right, and
left vertex of H, respectively. Based on H = (VH , EH), we construct an extended
C5 of degree ρ (with ρ > 1) as follows. First, replace each edge xy ∈ EH by a
path of length ρ. Second, for each vertex w on the shortest path from v3 to v4,
connect u with w using a path of length ρ. Figure 1 gives an illustration.

Fig. 1. Two extended C5 of degree 1 and degree 3. We refer to the vertices u, v1, v2,
and v5 as middle, top, right, and left vertex, respectively.

Lemma 2. Let B be a bag of a tree-decomposition T for a graph G and let C be
a connected component in G−B. Then, T contains a bag BC with BC ⊇ NG(C)
and BC ∩ C �= ∅.
Proof. Let BC be the bag in T for which BC ∩ C �= ∅ and the distance between
B and BC in T is minimal. Additionally, let B′ be the bag in T adjacent to BC

which is closest to B and let S = BC ∩B′. Note that S∩C = ∅ and, by properties
of tree-decompositions, S separates C from all vertices in B\S. Assume that
there is a vertex u ∈ NG(C)\S. Because u ∈ NG(C), there is a vertex v ∈ C
which is adjacent to u. This contradicts with S being a separator for u and v.
Therefore, NG(C) ⊆ S ⊆ BC . ��
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Lemma 3. Let H be an extended C5 of degree ρ in a graph G as defined above.
Additionally, let H be a block of G and its top vertex v1 be the only articulation
point of G in H. Then, there is no vertex w in G with dG(w, v1) < ρ which is
the center of a bag in a tree-decomposition for G with strong breadth ρ.

Proof. Let T be a tree-decomposition for G with strong breadth ρ. Assume that
T contains a bag Bw = Nρ

G[w] with dG(w, v1) < ρ. Note that the distance from
v1 to any vertex on the shortest path from v3 to v4 is 2ρ. Hence, G − Bw has a
connected component C containing the vertices v3 and v4. Then, by Lemma 2,
there has to be a vertex w′ �= w in G and a bag B′

w = Nρ
G[w′] in T such that

(i) B′
w ⊇ NG(C) and (ii) B′

w ∩ C �= ∅. Thus, if we can show, for a given w, that
there is no such w′, then w cannot be center of a bag.

First, consider the case that w is in H. We will construct a set X = {x, y} ⊆
NG(C) such that there is a unique shortest path from x to y in G passing w. If
w = v1, let x = v2 and y = v5. If w is on the shortest path from v1 to u, let x
and y be on the shortest path from v1 to v2 and from v4 to u, respectively. If w
is on the shortest path from v1 to v2, let x and y be on the shortest path from
v1 to v5 and from v2 to v3, respectively. In each case, there is a unique shortest
path from x to y passing w. Note that, for all three cases, dG(v1, y) ≥ ρ. Thus,
each w′ with dG(w′, y) ≤ ρ is in H. Therefore, w is the only vertex in G with
X ⊆ Nρ

G[w], i. e., there is no vertex w′ �= w satisfying condition (i). This implies
that w cannot be center of a bag in T .

Next, consider the case that w is not in H. Without loss of generality, let w
be a center for which dG(v1, w) is minimal. As shown above, there is no vertex w′

in H with dG(v1, w′) < ρ which is center of a bag. Hence, w′ is not in H either.
However, because v1 is an articulation point, w′ has to be closer to v1 than w to
satisfy condition (ii). This contradicts with dG(v1, w) being minimal. Therefore,
there is no vertex w′ satisfying condition (ii) and w cannot be center of a bag
in T . ��
Theorem 1. It is NP-complete to decide, for a given graph G, if stb(G) = 1.

Proof. Clearly, the problem is in NP: Select non-deterministically a set S of
vertices such that their neighbourhoods cover each vertex and each edge. Then,
check deterministically if the neighbourhoods of the vertices in S give a valid
tree-decomposition. This can be done in linear time [18]. The algorithm in [18]
also creates the corresponding tree.

To show that the problem is NP-hard, we will make a reduction from 1-in-3-
SAT [17]. That is, you are given a boolean formula in CNF with at most three
literals per clause; find a satisfying assignment such that, in each clause, only
one literal becomes true.

Let I be an instance of 1-in-3-SAT with the literals L = {p1, . . . , pn}, the
clauses C = {c1, . . . , cm}, and, for each c ∈ C, c ⊆ L. We create a graph G =
(V,E) as follows. Create a vertex for each literal p ∈ L and, for all literals pi

and pj with pi ≡ ¬pj , create an induced C4 = {pi, pj , qi, qj} with the edges pipj ,
qiqj , piqi, and pjqj . For each clause c ∈ C with c = {pi, pj , pk}, create an extended
C5 with c as top vertex, connect c with an edge to all literals it contains, and
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make all literals in c pairwise adjacent, i. e., the vertex set {c, pi, pj , pk} induces
a maximal clique in G. Additionally, create a vertex v and make v adjacent to
all literals. Figure 2a gives an illustration for the construction so far.

Fig. 2. Illustration to the proof of Theorem 1. The graphs shown are subgraphs of G
as created by a clause c = {pi, pj , pk} and a literal pl with pi ≡ ¬pl.

Next, for each clause {pi, pj , pk} and for each (xy|z) ∈ {(ij|k), (jk|i), (ki|j)},
create the vertices r(xy|z) and s(xy|z), make r(xy|z) adjacent to s(xy|z) and px,
and make s(xy|z) adjacent to py and pz. See Fig. 2b for an illustration. Note that
r(ij|k) and s(ij|k) are specific for the clause {pi, pj , pk}. Thus, if pi and pj are
additionally in a clause with pl, then we also create the vertices r(ij|l) and s(ij|l).
For the case that a clause only contains two literals pi and pj , create the vertices
r(ij) and s(ij), make r(ij) adjacent to pi and s(ij), and make s(ij) adjacent to pj ,
i. e., {pi, pj , r(ij), s(ij)} induces a C4 in G.

For the reduction, first, consider the case that I is a yes-instance for
1-in-3-SAT. Let f : P → {T, F} be a satisfying assignment such that each clause
contains only one literal pi with f(pi) = T . Select the following vertices as centers
of bags: v, the middle, left and right vertex of each extended C5, pi if f(pi) = T ,
and qj if f(pj) = F . Additionally, for each clause {pi, pj , pk} with f(pi) = T ,
select the vertices s(ij|k), r(jk|i), and r(ki|j). The neighbourhoods of the selected
vertices give a valid tree-decomposition for G. Therefore, stb(G) = 1.

Next, assume that stb(G) = 1. Recall that, for a clause c = {pi, pj , pk}, the
vertex set {c, pi, pj , pk} induces a maximal clique in G. By Lemma 3, c cannot
be center of a bag because it is top of an extended C5. Therefore, at least one
vertex in {pi, pj , pk} must be center of a bag. Without loss of generality, let pi

be a center of a bag. By construction, pi is adjacent to all p ∈ {pj , pk, pl}, where
pl ≡ ¬pi. Additionally, p and pi are vertices in an induced C4, say C, and there
is no vertex w in G with NG[w] ⊇ C. Thus, by Lemma 1, at most one vertex
in {pi, pj , pk} can be center of a bag. Therefore, the function f : L → {T, F}
defined as

f(pi) =

{
T if pi is center of a bag,
F else

is a satisfying assignment for I. ��
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In [13], Ducoffe et al. have shown how to construct a graph G′
ρ based on a

given graph G such that tb(G′
ρ) = 1 if and only if tb(G) ≤ ρ. We will slightly

extend their construction to achieve a similar result for strong tree-breadth.
Consider a given graph G = (V,E) with stb(G) = ρ. We will construct G′

ρ

as follows. Let V = {v1, v2, . . . , vn}. Add the vertices U = {u1, u2, . . . , un} and
make them pairwise adjacent. Additionally, make each vertex ui, with 1 ≤ i ≤ n,
adjacent to all vertices in Nρ

G[vi]. Last, for each vi ∈ V , add an extended C5 of
degree 1 with vi as top vertex.

Lemma 4. stb(G) ≤ ρ if and only if stb(G′
ρ) = 1.

Proof. First, consider a tree-decomposition T for G with strong breadth ρ. Let
T ′

ρ be a tree-decomposition for G′
ρ created from T by adding all vertices in U

into each bag of T and by making the center, left, and right vertices of each
extended C5 centers of bags. Because the set U induces a clique in G′

ρ and
Nρ

G[vi] = NG′
ρ
[ui] ∩ V , each bag of T ′

ρ is the complete neighbourhood of some
vertex.

Next, consider a tree-decomposition T ′
ρ for G′

ρ with strong breadth 1. Note
that each vertex vi is top vertex of some extended C5. Thus, vi cannot be center
of a bag. Therefore, each edge vivj is in a bag Bk = NG′

ρ
[uk]. By construction

of G′
ρ, Bk ∩ V = Nρ

G[vk]. Thus, we can construct a tree-decomposition T for G
with strong breadth ρ by creating a bag Bi = Nρ

G[vi] for each bag NG′
ρ
[ui]

of T ′
ρ. ��
Next, consider a given graph G = (V,E) with V = {v1, v2, . . . , vn} and

stb(G) = 1. For a given ρ > 1, we obtain the graph G+
ρ by doing the following

for each vi ∈ V :

– Add the vertices ui,1, . . . , ui,5, xi, and yi.
– Add an extended C5 of degree ρ with the top vertex zi.
– Connect

• ui,1 and xi with a path of length �ρ/2� − 1,
• ui,2 and yi with a path of length �ρ/2�,
• ui,3 and vi with a path of length �ρ/2� − 1,
• ui,4 and vi with a path of length �ρ/2�, and
• ui,4 and zi with a path of length �ρ/2� − 1.

– Add the edges ui,1ui,2, ui,1ui,3, ui,2ui,3, ui,2ui,4, and ui,3ui,4.

Note that, for small ρ, it can happen that vi = ui,4, xi = ui,1, yi = ui,2, or
zi = ui,5. Figure 3 gives an illustration.

Lemma 5. stb(G) = 1 if and only if stb(G+
ρ ) = ρ.

Proof. First, assume that stb(G) = 1. Then, there is a tree-decomposition T
for G with strong breadth 1. We will construct for G+

ρ a tree-decomposition T+
ρ

with strong breadth ρ. Make the middle, left, and right vertex of each extended
C5 center of a bag. For each vi ∈ V , if vi is center of a bag of T , make xi a center
of a bag of T+

ρ . Otherwise, make yi center of a bag of T+
ρ . The distance in G+

ρ
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Fig. 3. Illustration for the graph G+
ρ . The graph shown is a subgraph of G+

ρ as con-
structed for each vi in G.

from vi to xi is ρ−1. The distances from vi to yi, from xi to zi, and from yi to zi

are ρ. Thus, Nρ

G+
ρ
[xi] ∩ V = NG[vi], Nρ

G+
ρ
[yi] ∩ V = {vi}, and there is no conflict

with Lemma 3. Therefore, the constructed T+
ρ is a valid tree-decomposition with

strong breadth ρ for G+
ρ .

Next, assume that stb(G+
ρ ) = ρ and there is a tree-decomposition T+

ρ with
strong breadth ρ for G+

ρ . By Lemma 3, no vertex in distance less than ρ to any
zi can be a center of a bag in T+

ρ . Therefore, because the distance from vi to zi

in G+
ρ is ρ − 1, no vi ∈ V can be a center of a bag in T+

ρ . The only vertices with
a large enough distance to zi to be a center of a bag are xi and yi. Therefore,
either xi or yi is selected as center. To construct a tree-decomposition T with
strong breadth 1 for G, select vi as center if and only if xi is a center of a bag
in T+

ρ . Because Nρ

G+
ρ
[xi] ∩ V = NG[vi] and Nρ

G+
ρ
[yi] ∩ V = {vi}, the constructed

T is a valid tree-decomposition with strong breadth 1 for G. ��
Constructing G′

ρ can be done in O(n2) time and constructing G+
ρ can be done

in O(ρ · n + m) time. Thus, combining Lemmas 4 and 5 allows us, for a given
graph G, some given ρ, and some given ρ′, to construct a graph H in O(ρ · n2)
time such that stb(G) ≤ ρ if and only if stb(H) ≤ ρ′. Additionally, by combining
Theorem 1 and Lemma 3, we get:

Theorem 2. It is NP-complete to decide, for a graph G and a given ρ, if
stb(G) = ρ.

4 Polynomial Time Cases

In the previous section, we have shown that, in general, it is NP-complete to
determine the strong tree-breadth of a graph. In this section, we will investigate
cases for which a decomposition can be found in polynomial time.
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4.1 General Graphs

Let G be a graph with strong tree-breadth ρ and let T be a corresponding
tree-decomposition. For a given vertex u in G, we denote the set of connected
components in G−Nρ

G[u] as CG[u]. We say that a vertex v is a potential partner
of u for some C ∈ CG[u] if Nρ

G[v] ⊇ NG(C) and Nρ
G[v] ∩ C �= ∅.

Lemma 6. Let C be a connected component in G − Bu for some Bu ⊆ Nρ
G[u].

Also, let C ∈ CG[u] and v be a potential partner of u for C. Then, for all
connected components Cv in G[C] − Nρ

G[v], Cv ∈ CG[v].

Proof. Consider a connected component Cv in G[C] − Nρ
G[v]. Clearly, Cv ⊆ C

and there is a connected component C ′ ∈ C[v] such that C ′ ⊇ Cv.
Let x be an arbitrary vertex in C ′. Then, there is a path P ⊆ C ′ from x

to Cv. Because NG(C) ⊆ Bu and v is a potential partner of u for C, NG(C) ⊆
Bu ∩Nρ

G[v]. Also, NG(C) separates all vertices in C from all other vertices in G.
Therefore, x ∈ C and C ′ ⊆ C; otherwise, P would intersect Nρ

G[v]. It follows
that each vertex in P is in the same connected component of G[C] − Nρ

G[v] and,
thus, Cv = C ′. ��

From Lemma 2, it directly follows:

Corollary 1. If Nρ
G[u] is a bag in T , then T contains a bag Nρ

G[v] for each
C ∈ CG[u] such that v is a potential partner of u for C.

Because of Corollary 1, there is a vertex set U such that each u ∈ U has a
potential partner v ∈ U for each connected component C ∈ CG[u]. With such a
set, we can construct a tree-decomposition for G with the following approach:
Pick a vertex u ∈ U and make it center of a bag Bu. For each connected compo-
nent C ∈ CG[u], u has a potential partner v. Nρ

G[v] splits C in more connected
components and, because v ∈ U , v has a potential partner w ∈ U for each of
these components. Hence, create a bag Bv = Nρ

G[v]∩ (Bu ∪C) and continue this
until the whole graph is covered. Algorithm1 will determine such a set of vertices
with their potential partners (represented as a graph H) and then construct a
decomposition as described above.

Theorem 3. Algorithm1 constructs, for a given graph G with strong tree-
breadth ρ, a tree-decomposition T with breadth ρ in O(n2m) time.

Proof (Correctness). The Algorithm 1 works in two parts. First, it creates a
graph H with potential centers (line 1 to line 6). Second, it uses H to create
a tree-decomposition for G (line 9 to line 15). To show the correctness of the
algorithm, we will, first, show that centers of a tree-decomposition for G are
vertices in H and, then, show that a tree-decomposition created based on H is
a valid tree-decomposition for G.

A vertex u is added to H (line 4) if, for at least one connected component C ∈
CG[u], u has a potential partner v. Later, u is kept in H (line 5 and 6) if it has a
potential partner v for all connected components in C ∈ CG[u]. By Corollary 1,
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Algorithm 1. Constructs, for a given graph G = (V,E) with strong
tree-breadth ρ, a tree-decomposition T with breadth ρ.
1 Create an empty directed graph H = (VH , EH). Let φ be a function that maps

each edge (u, v) ∈ EH to a connected component C ∈ CG[u].
2 foreach u, v ∈ V and all C ∈ CG[u] do
3 if v is a potential parter of u for C then
4 Add the directed edge (u, v) to H and set φ(u, v) := C. (Add u and v to

H if necessary.)

5 while there is a vertex u ∈ VH and some C ∈ CG[u] such that there is no
(u, v) ∈ EH with φ(u, v) = C do

6 Remove u from H.

7 if H is empty then
8 Stop. stb(G) > ρ.

9 Create an empty tree-decomposition T .
10 Let G − T be the subgraph of G that is not covered by T and let ψ be a

function that maps each connected component in G − T to a bag Bu ⊆ Nρ
G[u].

11 Pick an arbitrary vertex u ∈ VH , add Bu = Nρ
G[u] as bag to T , and set

ψ(C) := Bu for each connect component C in G − T .
12 while G − T is non-empty do
13 Pick a connected component C in G − T , determine the bag Bv := ψ(C)

and find an edge (v, w) ∈ EH with φ(v, w) = C.
14 Add Bw = Nρ

G[w] ∩ (Bv ∪ C) to T , and make Bv and Bw adjacent in T .
15 For each new connected component C′ in G − T with C′ ⊆ C, set

ψ(Cw) := Bw.

16 Output T .

each center of a bag in a tree-decomposition T with strong breadth ρ satisfies
these conditions. Therefore, after line 6, H contains all centers of bags in T , i. e.,
if G has strong tree-breadth ρ, H is non-empty.

Next, we show that T created in the second part of the algorithm (line 9 to
line 15) is a valid tree-decomposition for G with breadth ρ. To do so, we will
show the following invariant for the loop starting in line 12: (i) T is a valid tree-
decomposition with breadth ρ for the subgraph covered by T and (ii) for each
connected component C in G−T , the bag Bv = ψ(C) is in T , NG(C) ⊆ Bv, and
C ∈ CG[v]. After line 11, the invariant clearly holds. Assume by induction that
the invariant holds each time line 12 is checked. If T covers the whole graph, the
check fails and the algorithm outputs T . If T does not cover G completely, there
is a connected component C in G − T . By condition (ii), the bag Bv = ψ(C) is
in T , NG(C) ⊆ Bv, and C ∈ CG[v]. Because of the way H is constructed and
C ∈ CG[v], there is an edge (v, w) ∈ EH with φ(v, w) = C, i. e., w is a potential
partner of v for C. Thus, line 13 is successful and the algorithm adds a new
bag Bw = Nρ

G[w] ∩ (Bv ∪ C) (line 14). Because w is a potential partner of v
for C, i. e., NG(C) ⊆ Nρ

G[w], and NG(C) ⊆ Bv, Bw ⊇ NG(C). Therefore, after
adding Bw to T , T still satisfies condition (i). Additionally, Bw splits C in a
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set C′ of connected components such that, for each C ′ ∈ C′, NG(C ′) ⊆ Bw and,
by Lemma 6, C ′ ∈ CG[w]. Thus, condition (ii) is also satisfied. ��
Proof (Complexity). First, determine the pairwise distance of all vertices. This
can be done in O(nm) time and allows to check the distance between vertices in
constant time.

For a vertex u, let N [u] = {NG(C) | C ∈ CG[u]}. Note that, for some
C ∈ CG[u] and each vertex x ∈ NG(C), there is an edge xy with y ∈ C. There-
fore, |N [u]| :=

∑
C∈CG[u] |NG(C)| ≤ m. To determine, for some vertex u, all its

potential partners v, first, compute N [u]. This can be done in O(m) time. Then,
check, for each vertex v and each NG(C) ∈ N [u], if NG(C) ⊆ Nρ

G[v] and add
the edge (u, v) to H if successful. For a single vertex v this requires O(m) time
because |N [u]| ≤ m and distances can be determined in constant time. Therefore,
the total runtime for creating H (line 1 to line 4) is O(n(m + nm)) = O(n2m).

Assume that, for each φ(u, v) = C, C is represented buy two values: (i) a
characteristic vertex x ∈ C (for example the vertex with the lowest index) and
(ii) the index of C in CG[u]. While creating H, count and store, for each vertex u
and each connected component C ∈ CG[u], the number of edges (u, v) ∈ EH

with φ(u, v) = C. Note that there is a different counter for each C ∈ CG[u].
With this information, we can implement line 5 and 6 as follows. First check,
for every vertex v in H, if one of its counters is 0. In this case, remove v from H
and update the counters for all vertices u with (u, v) ∈ EH using value (ii)
of φ(u, v). If this sets a counter for u to 0, add u to a queue Q of vertices to
process. Continue this until each vertex is checked. Then, for each vertex u in Q,
remove u form H and add its neighbours into Q if necessary until Q is empty.
This way, a vertex is processed at most twice. A single iteration runs in at most
O(n) time. Therefore, line 5 and 6 can be implemented in O(n2) time.

Assume that ψ uses the characteristic vertex x to represent a connected
component, i. e., value (i) of φ. Then, finding an edge (v, w) ∈ EH (line 13) can
be done in O(m) time. Creating Bw (line 14), splitting C into new connected
components C ′, finding their characteristic vertex, and setting ψ(C ′) (line 15)
takes O(m) time, too. In each iteration, at least one more vertex of G is covered
by T . Hence, there are at most n iterations and, thus, the loop starting in line
12 runs in O(mn) time.

Therefore, Algorithm 1 runs in total O(n2m) time. ��
Algorithm 1 creates for each graph G with stb(G) ≤ ρ a tree-decomposition T

with breadth ρ. Next, we will invest a case where we can construct a tree-
decomposition for G with strong breadth ρ.

We say that two vertices u and v are perfect partners if (i) u and v are
potential partner of each other for some Cu ∈ CG[u] and some Cv ∈ CG[v], (ii) Cu

is the only connected component in CG[u] which is intersected by Nρ
G[v], and

(iii) Cv is the only connected component in CG[v] which is intersected by Nρ
G[u].

Accordingly, we say that a tree-decomposition T has perfect strong breadth ρ if
it has strong breadth ρ and, for each center u of some bag and each connected
component C ∈ CG[u], there is a center v such that v is a perfect partner of u
for C.
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Theorem 4. A tree-decomposition with perfect strong breadth ρ can be con-
structed in polynomial time.

Proof. To construct such a tree-decomposition, we can modify Algorithm1.
Instead of checking if u has a potential partner v (line 3), check if u and v
are perfect partners.

Assume by induction that, for each bag Bv in T , Bv = Nρ
G[v]. By definition

of perfect partners v and w, Nρ
G[w] intersects only one C ∈ CG[v], i. e., Nρ

G[w] ⊆
Nρ

G[v]∪C. Thus, when creating the bag Bw (line 14), Bw = Nρ
G[w]∩ (Bv ∪C) =

Nρ
G[w] ∩ (Nρ

G[v] ∪ C) = Nρ
G[w]. Therefore, the created tree-decomposition T has

perfect strong tree-breadth ρ. ��
We conjecture that there are weaker cases than perfect strong breadth which

allow to construct a tree-decomposition with strong-breadth ρ. For example,
if the centers of two adjacent bags are perfect partners, but a center u does
not need to have a perfect partner for each C ∈ CG[u]. However, when using a
similar approach as in Algorithm1, this would require a more complex way of
constructing H.

4.2 Special Graph Classes

A graph G is distance-hereditary if, in any connected induced subgraph, the
distances are the same as in G.

Theorem 5. Distance-hereditary graphs have strong tree-breadth 1. An accord-
ing decomposition can be computed in linear time.

Proof. Let σ = 〈v1, v2, . . . , vn〉 be an ordering for the vertices of a graph G,
Vi = {v1, v2, . . . , vi}, and Gi denote the graph G[Vi]. An ordering σ is called a
pruning sequence for G if, for 1 < i ≤ n, each vi satisfies one of the following
conditions in Gi:

(i) vi is a pendant vertex,
(ii) vi is a true twin of some vertex vj , or
(iii) vi is a false twin of some vertex vj .

A graph G is distance-hereditary if and only if there is a pruning sequence
for G [2].

Assume that we are given such a pruning sequence. Additionally, assume
by induction over i that Gi has a tree-decomposition Ti with strong breadth 1.
Then, there are three cases:

(i) vi+1 is a pendant vertex in Gi+1. If the neighbour u of vi+1 is a center of
a bag Bu, add vi+1 to Bu. Thus, Ti+1 is a valid decomposition for Gi+1.
Otherwise, if u is not a center, make vi+1 center of a bag. Because u is an
articulation point, Ti+1 = Ti + NG[v] is a valid decomposition for Gi+1.

(ii) vi+1 is a true twin of a vertex u in Gi+1. Simply add vi+1 into any bag
containing u. The resulting decomposition is a valid decomposition for Gi+1.
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(iii) vi+1 is a false twin of a vertex u in Gi+1. If u is not center of a bag, add
vi+1 into any bag u is in. Otherwise, make a new bag Bi+1 = NG[vi+1] and
make it adjacent to the bag NG[u]. Because no vertex in NG(u) is center of
a bag, the resulting decomposition is a valid decomposition for Gi+1.

Therefore, distance-hereditary graphs have strong tree-breadth 1.
Next, we will show how to compute an according tree-decomposition in lin-

ear time. The argument above already gives an algorithmic approach. First, we
compute a pruning sequence for G. This can be done in linear time with an algo-
rithm by Damiand et al. [7]. Then, we determine which vertex becomes a center
of a bag. Note that we can simplify the three cases above with the following
rule: If vi has no neighbour in Gi which is center of a bag, make vi center of
a bag. Otherwise, proceed with vi+1. This can be easily implemented in linear
time with a binary flag for each vertex. ��

Algorithm 2 formalizes the method described in the proof of Theorem5.

Algorithm 2. Computes, for a given distance-hereditary graph G, a tree-
decomposition T with strong breadth 1.
1 Compute a pruning sequence 〈v1, v2, . . . , vn〉 (see [7]).
2 Create a set C := ∅.
3 for i := 1 to n do
4 if NG[vi] ∩ Vi ∩ C = ∅ then
5 Add vi to C.

6 Create a tree-decomposition T with the vertices in C as centers of its bags.

A bipartite graph is chordal bipartite if each cycle of length at least 6 has
a chord. In [11], it was shown that any chordal bipartite graph G = (X,Y,E)
admits a tree-decomposition with the set of bags B = {B1, B2, . . . , B|X|}, where
Bi = NG[xi], xi ∈ X. As far as we can tell, there is no linear time algorithm
known to recognise chordal bipartite graphs. However, we can still compute a
tree-decomposition in linear time with three steps. First, compute a 2-colouring.
Second, select a colour and make the neighbourhood of all vertices with this
colour bags. Third, use the algorithm in [18] to check if the selected bags give a
valid tree-decomposition.

Theorem 6 [11]. Each chordal bipartite graph has strong tree-breadth 1. An
according tree-decomposition can be found in linear time.

Consider two parallel lines (upper and lower) in the plane. Assume that
each line contains n points, labelled 1 to n. Each two points with the same label
define a segment with that label. The intersection graph of such a set of segments
between two parallel lines is called a permutation graph. In [10], an algorithm
was presented that finds, for a given permutation graph, a path-decomposition
with strong breadth 1 in linear time.
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Theorem 7 [10]. Permutation graphs have strong tree-breadth 1. An according
tree-decomposition can be found in linear time.

5 Conclusion

We have shown that, in general, it is NP-complete to determine if a given graph G
admits a tree-decomposition with strong breadth ρ for all ρ ≥ 1. Consider the
case that a vertex v is center of a bag. Part of the hardness of finding a decompo-
sition, even for ρ = 1, lays in determining which connected component C ∈ CG[v]
will be covered by which neighbouring bag NG[u]. If, for two vertices u and w,
NG[u] and NG[w] intersect C and are bags in the same decompositions T , both
cannot be separated in T by NG[v]. Additionally, if u is adjacent to v, it might
happen that NG[u] intersects multiple connected components. This leads to a
potentially exponential number of combinations.

A path-decomposition of graph is a tree-decomposition with the restriction
that the bags form a path instead of a tree with multiple branches. Accordingly, a
graph has (strong) path-breadth ρ if it admits a path-decomposition with (strong)
breadth ρ. In [10], it was shown that, for graphs with bounded path-breadth, a
constant factor approximation for the bandwidth problem and the line-distortion
problem can be found in polynomial time.

Now, consider the case that we want to compute if a given graph admits a
path-decomposition P with strong breadth 1. In this case, there can be at most
two bags adjacent to a bag NG[v] in P . Hence, for each v, there is at most a
quadratic number of combinations. This leads to the following conjecture.

Conjecture. The strong path-breadth of a graph can be computed in polynomial
time.

Another question is if a bounded strong tree-breadth leads to a lower bound
for the tree-breadth of a graph. That is, is there a constant c such that, for any
graph G, stb(G) ≤ c · tb(G). Using Algorithm 1, a small constant might lead to
a new approach for approximating the tree-breadth of a graph.
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Abstract. In this paper, we consider a new Steiner tree problem. This
problem defines the weight of a Steiner tree as the minimum weight
of vertex covers in the tree, and seeks a minimum-weight Steiner tree
in a given vertex-weighted undirected graph. Since it is included by
the Steiner tree activation problem, the problem admits an O(log n)-
approximation algorithm in general graphs with n vertices. This approx-
imation factor is tight because it is known to be NP-hard to achieve
an o(logn)-approximation for the problem with general graphs. In this
paper, we present constant-factor approximation algorithms for the prob-
lem with unit disk graphs and with graphs excluding a fixed minor.

1 Introduction

The problem of finding a minimum-weight tree in a graph has been extensively
studied in the field of combinatorial optimization. A typical example is the
Steiner tree problem in edge-weighted graphs; it has a long history of approx-
imation algorithms, culminating in the currently best approximation factor of
1.39 [1,2]. The Steiner tree problem has also been studied in vertex-weighted
graphs, where the weight of a Steiner tree is defined as the total weight of the
vertices spanned by the tree. We call this problem the vertex-weighted Steiner
tree problem while the problem in the edge-weighted graphs is called the edge-
weighted Steiner tree problem. There is an O(log k)-approximation algorithm for
the vertex-weighted Steiner tree problem with k terminals, and it is NP-hard to
improve this factor because the problem includes the set cover problem [3].

In this paper, we present a new variation of the Steiner tree problem. Our
problem is motivated by the following situation in communication networks. We
assume that messages are exchanged along a tree in a network; this is the case
in many popular routing protocols such as the spanning tree protocol [4]. We
consider locating devices that will monitor the traffic in the tree. If a device
is located at a vertex, it can monitor all the traffic that passes through links
incident to that vertex. How many devices do we need for monitoring all of
the traffic in the tree? Obviously, it depends on the topology of the tree. If the
tree is a star, it suffices to locate one device at the center. If the tree is a path
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 77–91, 2016.
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on n vertices, then it requires �n/2� devices, because any vertex cover of the
path consists of at least �n/2� vertices. Our problem is to compute a tree that
minimizes the number (or, more generally, the weight) of devices required to
monitor all of the traffic.

More formally, our problem is defined as follows. Let G = (V,E) be an undi-
rected graph associated with nonnegative vertex weights w ∈ R

V
+. Throughout

this paper, we will denote |V | by n. Let T ⊆ V be a set of vertices called termi-
nals. The problem seeks a pair comprising a tree F and a vertex set U ⊆ V (F )
such that (i) F is a Steiner tree with regard to the terminal set T (i.e., T ⊆ V (F )),
and (ii) U is a vertex cover of F (i.e., each edge in F is incident to at least one
vertex in U). The objective is to find such a pair (F,U) that minimizes the weight
w(U) :=

∑
v∈U w(v) of the vertex cover. We call this the vertex-cover-weighted

(VC-weighted) Steiner tree problem. We call the special case in which V = T
the vertex-cover-weighted (VC-weighted) spanning tree problem. The aim of this
paper is to investigate these fundamental problems.

Besides the motivation from the communication networks, there is another
reason for the importance of the VC-weighted Steiner tree problem. The VC-
weighted Steiner tree problem is a special case of the Steiner tree activation
problem, which was formulated by Panigrahi [5]. In the Steiner tree activation
problem, we are given a set W of nonnegative real numbers, and each edge uv
in the graph is associated with an activation function fuv : W × W → {�,⊥},
where � indicates that an edge uv is activated, and ⊥ indicates that it is not.
A solution for the problem is defined as a |V |-dimensional vector x ∈ WV . We
say that a solution x activates an edge uv if fuv(x(u), x(v)) = �. The problem
seeks a solution x that minimizes x(V ) :=

∑
v∈V x(v) subject to the constraint

that the edges activated by x include a Steiner tree. In previous studies of this
problem, an algorithm is allowed to run in polynomial time of |W |, and it is
assumed that the activation function is monotone (i.e., if fuv(i, j) = �, i ≤ i′,
and j ≤ j′, then fuv(i′, j′) = �). The Steiner tree activation problem models
various natural settings in design of wireless networks [5]. To see that the Steiner
tree activation problem includes the VC-weighted Steiner tree problem, define
W as {w(v) : v ∈ V }, and let fuv(i, j) = � if and only if i ≥ w(u) or j ≥ w(v)
for each edge uv. Under this setting, if x is a minimal vector that activates an
edge set F , the objective x(V ) is equal to the minimum weight of vertex covers
of the subgraph induced by F . Hence the Steiner tree activation problem under
this setting is equivalent to the VC-weighted Steiner tree problem.

The Steiner tree activation problem also contains the vertex-weighted Steiner
tree problem. Indeed, vertex-weighted Steiner tree problem corresponds to the
activation function fuv such that fuv(i, j) = � if and only if i ≥ w(u) and
j ≥ w(v) for each edge uv. Notice that the similarity of the activation functions
for the VC-weighted and the vertex-weighted Steiner tree problems. Thus the
VC-weighted Steiner tree problem is an interesting variant of the vertex-weighted
Steiner tree and the Steiner tree activation problems, which are studied actively
in the literature.
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It is known that the Steiner tree activation problems admits an O(log k)-
approximation algorithm when |T | = k. Indeed, there is an approximation-
preserving reduction from the problem to the vertex-weighted Steiner tree prob-
lem, and hence the O(log k)-approximation algorithm for the latter problem
implies that for the former problem. This approximation factor is proven to be
tight even in the spanning tree variant of the problem [5].

Since the VC-weighted Steiner tree problem is included by the Steiner tree
activation problem, the O(log k)-approximation algorithm can also be applied to
the VC-weighted problem. Moreover, Angel et al. [6] presented a reduction from
the dominating set problem to the VC-weighted spanning tree problem with
uniform vertex-weights. This reduction implies the it is NP-hard to approximate
the VC-weighted spanning tree problem within a factor of o(log n) even if the
given vertex weights are uniform.

1.1 Our Contributions

Because of the hardness of the VC-weighted spanning tree problem on general
graphs, we will consider restricted graph classes. We show that the VC-weighted
Steiner tree problem admits constant-factor approximation algorithms for unit
disk graphs (Corollary 3) and graphs excluding a fixed minor (Theorem5). Note
that the later graph class contains planar graphs. For these graphs, it is known
that the vertex-weighted Steiner tree problem admits constant-factor approxi-
mation algorithms [7–9]. Hence it is natural to ask whether the VC-weighted
Steiner tree problem in these graph classes admits constant-factor approxima-
tion algorithms. Moreover, unit disk graphs are regarded as a reasonable model
of wireless networks, and the vertex-weighted Steiner tree problem in unit disk
graphs has been actively studied in this context (see, e.g., [8–12]). Since our prob-
lem is motivated by an application in communication networks, it is reasonable
to investigate the problem in unit disk graphs.

Our algorithm for unit disk graphs is based on a novel reduction to another
optimization problem. The problem used in the reduction is similar to the con-
nected facility location problem studied in [13,14], but it is slightly different. In
the connected facility location problem, we are given sets C,D ⊆ V of clients
and facilities with an edge-weighted undirected graph G = (V,E). If a facility
f ∈ D is opened by paying an associated opening cost, any client i ∈ C can
be allocated to f by paying the allocation cost, which is defined as the shortest
path length from i to f multiplied by the demand of i. The opened facilities
must be spanned by a Steiner tree, which incurs a connection cost defined as the
edge weight of the tree. The objective is to find a set of opened facilities and a
Steiner tree connecting them, that minimizes the sum of the opening cost, the
allocation cost, and the connection cost. Our problem differs from the connected
facility location problem in the fact that each client i can be allocated to an
opened facility f only when i is adjacent to f in G, and there is no cost for the
allocation. It can be regarded as a combination of the dominating set and the
edge-weighted Steiner tree problems. Hence we call this the connected dominat-
ing set problem, although in the literature, this name is usually reserved for the
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case where the connection cost is defined by vertex weights and all vertices in the
graph are clients. From a geometric property of unit disk graphs, we show that
our reduction preserves the approximation guarantee up to a constant factor if
the graph is a unit disk graph (Theorem1). To solve the connected dominating
set problem, we present a linear programming (LP) rounding algorithm. This
algorithm relies on an idea presented by Huang et al. [11], who considered a
variant of the connected dominating set problem in unit disk graphs. Although
their algorithm is only for minimizing the number of vertices in a solution, we
prove that it can be extended to our problem.

For graphs excluding a fixed minor, we solve the VC-weighted Steiner tree
problem by presenting a constant-factor approximation algorithm for the Steiner
tree activation problem. Our algorithm simply combines the reduction to the
vertex-weighted Steiner tree problem and the algorithm of Demaine et al. [7]
for the vertex-weighted Steiner tree problem in graphs excluding a fixed minor.
However, analyzing it is not straightforward, because the reduction does not
preserve the minor-freeness of the input graphs. Nevertheless, we show that the
algorithm of Demaine et al. achieves a constant-factor approximation for the
graphs constructed by the reduction (Sect. 4).

1.2 Organization

Section 2 introduces the notation and preliminary facts used throughout the
paper. Sections 3 and 4 provide constant-factor approximation algorithms for
unit disk graphs and for graphs excluding a fixed minor, respectively. Section 5
concludes the paper.

2 Preliminaries

We first define the notation used in this paper. Let G = (V,E) be a graph with
the vertex set V and the edge set E. We sometimes identify the graph G with
its edge set E and by V (G) denote the vertex set of G. When G is a tree, L(G)
denotes the set of leaves of G.

Let U be a subset of V . Then G − U denotes the subgraph of G obtained
by removing all vertices in U and all edges incident to them. G[U ] denotes the
subgraph of G induced by U .

We denote a singleton vertex set {v} by v. An edge joining vertices u and
v is denoted by uv. For a vertex v, NG(v) denotes the set of neighbors of v in
a graph G, i.e., NG(v) = {u ∈ V : uv ∈ E}. NG[v] indicates NG(v) ∪ v. We let
dG(v) denote |NG(v)|. For a set U of vertices, NG(U) denotes (

⋃
v∈U NG(v))\U .

When the graph G is clear from the context, we may remove the subscripts from
our notation. We say that a vertex set U dominates a vertex v if v ∈ U , or U
contains a vertex u that is adjacent to v. If a vertex set U dominates each vertex
v in another vertex set W , then we say that U dominates W .

A graph G is a unit disk graph when there is an embedding of the vertex set
into the Euclidean plane such that two vertices u and v are joined by an edge if
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and only if their Euclidean distance is at most 1. If G is a unit disk graph, we
call such an embedding a geometric representation of G.

Let G and H be undirected graphs. We say that H is a minor of G if H is
obtained from G by deleting edges and vertices and by contracting edges. If H is
not a minor of G, G is called H-minor-free. By Kuratowski’s theorem, a graph
is planar if and only if it is K5-minor-free and K3,3-minor-free.

As mentioned in Sect. 1, the Steiner tree activation problem contains both
the VC-weighted and the vertex-weighted Steiner tree problems. In addition, the
Steiner tree activation problem can be reduced to the vertex-weighted Steiner
tree problem, as summarized in the following theorem.

Theorem 1. There is an approximation-preserving reduction from the Steiner
tree activation problem to the vertex-weighted Steiner tree problem. Hence, if the
latter problem admits an α-approximation algorithm, the former problem does
also.

Proof. Recall that an instance I of the Steiner tree activation problem consists
of an undirected graph G = (V,E), a terminal set T , a range W ⊆ R+, and
an activation function fuv : W × W → {�,⊥} for each uv ∈ E. We define a
copy vi of a vertex v for each v ∈ V and i ∈ W , and associate vi with the
weight w(vi) := i. We join ui and vj by an edge if uv ∈ E and fuv(i, j) = �.
In addition, we join each terminal t ∈ T with its copies ti, i ∈ W . The weight
w(t) of t is defined to be 0. Let G′ be the obtained graph on the vertex set
T ∪{vi : v ∈ V, i ∈ W}. Let I ′ be the instance of the vertex weighted Steiner tree
problem that consists of the graph G′, the vertex weights w, and the terminal set
T . From an inclusion-wise minimal Steiner tree F feasible to I ′, define a vector
x ∈ WV by x(v) = max{i ∈ W : vi ∈ V (F )} for each v ∈ V . Then x activates a
Steiner tree in the original instance I, and x(V ) is equal to the vertex weight of
F . Hence there is a one-to-one correspondence between a minimal Steiner tree
in I ′ and a feasible solution in I, and they have the same objective values in
their own problems. Hence the above reduction is an approximation-preserving
reduction from the Steiner tree activation problem to the vertex-weighted Steiner
tree problem. �
We do not claim the originality of Theorem1; we believe that this reduction has
been already known although we are aware of no previous study describing this
reduction explicitly.

We note that the reduction claimed in Theorem 1 transforms the input graph,
and hence it may not be closed in a graph class. In fact, we can observe that the
reduction is not closed in unit disk graphs or planar graphs.

3 VC-weighted Steiner Tree Problem in Unit Disk
Graphs

This section presents a constant-factor approximation algorithm for the VC-
weighted Steiner tree problem in unit disk graphs. Our algorithm consists of
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two steps. In the first step, we reduce the VC-weighted Steiner tree problem
to another optimization problem, which is called the connected dominating set
problem. Combined with a constant-factor approximation algorithm for the con-
nected dominating set problem, the reduction gives the required algorithm for
the VC-weighted Steiner tree problem.

Let us discuss the reduction. As noted in Theorem 1, the Steiner tree activa-
tion problem can be reduced to the vertex-weighted Steiner tree problem. Since
the VC-weighted Steiner tree problem is included in the Steiner tree activation
problem, the reduction also applies to the VC-weighted Steiner tree problem.
Since there is a constant-factor approximation algorithm for the vertex-weighted
Steiner tree problem in unit disk graphs, this reduction gives a constant-factor
approximation for the VC-weighted problem if the graph constructed by the
reduction is a unit disk graph. However, the constructed graph may not be a
unit disk graph even if the original graph is a unit disk graph.

Our idea is to reduce the VC-weighted Steiner tree problem to another opti-
mization problem. This is inspired by a constant-factor approximation algorithm
for the vertex-weighted Steiner tree problem on a unit disk graph [8,9]. This algo-
rithm is based on a reduction from the vertex-weighted to the edge-weighted
Steiner tree problems. The reduction is possible because the former problem
always admits an optimal Steiner tree in which the maximum degree is a con-
stant if the graph is a unit disk graph. Even in the VC-weighted Steiner tree
problem, if there is an optimal solution (F,U) such that the maximum degree
of vertices in the vertex cover U is a constant in the Steiner tree F , then we can
reduce the problem to the edge-weighted Steiner tree problem. However, there
is an instance of the VC-weighted Steiner tree problem that admits no such
optimal solution. For example, if the vertex weights are uniform, and the graph
includes a star in which all of the terminals are its leaves, then the star is the
Steiner tree in the optimal solution, and its minimum vertex cover consists of
only the center of the star. The degree of the center of the star is not bounded by
a constant. Hence it seems that it would be difficult to reduce the VC-weighted
Steiner tree problem to the edge-weighted problem.

We reduce the VC-weighted Steiner tree problem to a problem similar to
the connected facility location problem. The reduction is based on a geometric
property of unit disk graphs, and we will begin by proving this property. The
following lemma gives a basic claim about geometry. For two points i and j on
the plane, we denote their Euclidean distance by lij .

Lemma 1. Let i be a point on the Euclidean plane, and let α ∈ (1/2, 3/4]. Let
P be a set of points on the plane such that α < lik/lij ≤ 1/α holds for all
j, k ∈ P . If |P | > 2π/ arccos(α/2 + 3/(8α)), then there exist j, k ∈ P such that
ljk < max{lij , lik}/2.

Proof. Since |P | > 2π/ arccos(α/2 + 3/(8α)), there exist j, k ∈ P such that
θ := ∠jik < arccos(α/2 + 3/(8α)). We note that l2jk = l2ij + l2ik − 2lij lik cos θ.
Without loss of generality, we assume lij ≥ lik. Then, (max{lij , lik})2 = l2ij .
Hence it suffices to show that −4l2ik − 3l2ij + 8lij lik cos θ > 0.
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Let β := lik/lij . Then, α < β ≤ 1. maxα<β≤1 4β + 3/β = 4α + 3/α holds,
where the maximum is attained by β = α. Hence the required inequality is
verified by

−4l2ik − 3l2ij + 8lij lik cos θ = lij lik

(

−4β − 3
β

+ 8 cos θ

)

≥ lij lik

(

−4α − 3
α

+ 8 cos θ

)

= 0. �
Our reduction requires the assumption that there is an optimal solution (F,U)
for the VC-weighted Steiner tree problem such that the degree of each vertex
v ∈ U is bounded by a constant α in the tree F − (L(F ) \ U). The following
lemma proves that the unit disk graph satisfies this assumption with α = 29.

Lemma 2. If the input graph G = (V,E) is a unit disk graph, the VC-weighted
Steiner tree problem admits an optimal solution consisting of a Steiner tree F
and a vertex cover U of F such that the degree of each vertex in U is at most 29
in F − (L(F ) \ U).

Proof. For two vertices u, v ∈ V , let luv denote the Euclidean distance between
u and v in the geometric representation of G. Let (F,U) be an optimal solution
for the VC-weighted Steiner tree problem. Without loss of generality, we can
assume that (F,U) satisfies the following conditions:

(a) (F,U) maximizes |L(F ) \ U | over all optimal solutions;
(b) F minimizes

∑
e∈F le over all optimal solutions subject to (a);

(c) (F,U) minimizes the number of vertices v ∈ U such that |{u ∈ U : uv ∈
F}| ≥ 6 over all optimal solutions subject to (a) and (b).

Let v ∈ U . Let Mv := {u ∈ U : uv ∈ F} and M ′
v := {u ∈ V \(U∪L(F )) : uv ∈ F}.

The lemma can be proven by showing that |Mv| ≤ 5 and |M ′
v| ≤ 24.

Let us prove |Mv| ≤ 5. We first prove |Mv| ≤ 6, and then prove |Mv| �= 6. Sup-
pose that there are two distinct vertices i, j ∈ Mv such that lij < max{lvi, lvj}.
Let lvi = max{lvi, lvj}, and denote F \ {vi} ∪ {ij} by F ′. Then F ′ is a Steiner
tree, U is a vertex cover of F ′, L(F ) \ U = L(F ′) \ U , and

∑
e∈F ′ le <

∑
e∈F le.

Since the existence of such an F ′ contradicts the condition (b), Mv contains no
such vertices i and j. If |Mv| ≥ 7, there must be two vertices i, j ∈ Mv such that
∠ivj < π/3, and lij < max{lvi, lvj} holds for these vertices. Hence |Mv| ≤ 6
holds.

Suppose that |Mv| = 6. In this case, Mv = {u1, . . . , u6}, and lvuk
= lvuk+1 =

lukuk+1 holds for all k = 1, . . . , 6, where u7 denotes u1 for notational convenience.
If |Mu1 | ≤ 4, we define F ′ as F \ {vu2}∪{u1u2}. Then, F ′ is a Steiner tree, U is
a vertex cover of F ′, L(F ′) \ U = L(F ) \ U , and

∑
e∈F ′ le =

∑
e∈F le. Replacing

F by F ′ decreases the number of vertices v ∈ U such that |Mv| ≥ 6, which
contradicts the condition (c). If |Mu1 | ≥ 5, then (i) there exist i, j ∈ Mu1 \ v
such that lij < max{lu1i, lu1j}, or (ii) there exist i ∈ Mu1 \ v and j ∈ {v, u2, u6}
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such that lij < max{lu1i, lu1j}. Case (i) contradicts the condition (b) as observed
above. In case (ii), we define F ′ as F \ {u1i} ∪ {ij} if max{lu1i, lu1j} = lu1i, and
as F \ {u1v} ∪ {ij} if max{lu1i, lu1j} = lu1j . In either case, F ′ is a Steiner tree,
U is a vertex cover of F ′, L(F ′) \U = L(F ) \U , and

∑
e∈F le >

∑
e∈F ′ le, which

contradicts the condition (b). Hence |Mv| ≤ 5 holds.

v

u

v

u

Fig. 1. Transformation of F when lvu′ ≤ 1 for all u′ ∈ Au

We now prove |M ′
v| ≤ 24. Let u ∈ M ′

v. Since u is not a leaf, u has a neighbor
other than v. We denote by Au the set of neighbors of u other than v. Since
u �∈ U , each vertex in Au is included in U . If lvu′ ≤ 1 holds for all vertices
u′ ∈ Au, consider F ′ := F \ (vu ∪ {uu′ : u′ ∈ Au}) ∪ {vu′ : u′ ∈ Au}. Then, F ′

is a Steiner tree, U is a vertex cover of F ′, and L(F ′) \ U = (L(F ) \ U) ∪ {u}
(Fig. 1). Since the existence of such an F ′ contradicts condition (a), there is at
least one vertex u′ ∈ Au with lvu′ > 1. We choose one of these vertices for each
u ∈ M ′

v, and let B denote the set of those chosen vertices (hence B includes
exactly one vertex in Au for each u ∈ M ′

v).
Suppose there exist two vertices i, j ∈ B such that lij < max{lvi, lvj}/2.

Let lvi = max{lvi, lvj}. Let u denote the common neighbor of v and i. Then
lvu or lui is at least lvi/2. If lvu ≥ lvi/2, then replace edge vu by ij in F (see
Fig. 2(a)). Otherwise, replace edge ui by ij in F (see Fig. 2(b)). Let F ′ denote
the tree obtained by this replacement. F ′ is a Steiner tree, U is a vertex cover of
F ′, L(F ) \ U ⊆ L(F ′) \ U , and

∑
e∈F ′ le <

∑
e∈F le hold. Since this contradicts

condition (a) or (b), there exists no such pair of vertices i, j ∈ B′.
We divide B into B′ := {i ∈ B | lvi ≤ 1.41} and B′′ := {i ∈ B | 1.41 ≤ lvi}.

Notice that 1/1.41 ≤ lvi/lvj ≤ 1.41 holds for any i, j ∈ B′. Hence, by Lemma 1,
|B′| ≤ �2π/ arccos(1/2.82 + 4.23/8)� = 12. Moreover, 3/5 ≤ lvi/lvj ≤ 5/3 holds
for any i, j ∈ B′′. Hence, by Lemma 1, |B′′| ≤ �2π/ arccos(3/10 + 5/8)� = 12.
Since |M ′

v| ≤ |B| = |B′| + |B′′| ≤ 24, this proves the lemma. �
In the remainder of this section, we assume that G is not necessarily a unit disk
graph, but there is an optimal solution (F,U) for the VC-weighted Steiner tree
problem such that the degree of each vertex v ∈ U is at most a constant α in
the tree F − (L(F ) \ U). Based on this assumption, we reduce the VC-weighted
Steiner tree problem to another optimization problem. First, let us define the
problem used in the reduction.
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v

u i

j

v
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j

(a) lvu ≥ lvi/2

v

u

i

j

v

u

i

j

(b) lui ≥ lvi/2

Fig. 2. Transformation of a tree F when lij < max{lvi, lvj}/2

Definition 1 (Connected Dominating Set Problem). Let G = (V,E) be an
undirected graph, and let T ⊆ V be a set of terminals. Each edge e is associated
with the length l(e) ∈ R+, each vertex v is associated with the weight w(v) ∈ R+,
and l(e) ≤ min{w(u), w(v)} holds for each edge e = uv ∈ E. The problem seeks
a pair of a tree F ⊆ E and a vertex set S ⊆ V such that S dominates T and F
spans S. Let l(F ) denote

∑
e∈F l(e). The objective is to minimize w(S) + l(F ).

Theorem 2. Suppose that the VC-weighted Steiner tree problem with input
graph G admits an optimal solution (F,U) such that the degree of each vertex in
U is at most α in the tree F − (L(F ) \ U). If there is a β-approximation algo-
rithm for the connected dominating set problem in G, then there is an (α + 1)β-
approximation algorithm for the VC-weighted Steiner tree problem with G.

Proof. Suppose that an instance I of the VC-weighted Steiner tree problem
consists of an undirected graph G = (V,E), a terminal set T ⊆ V , and vertex
weights w ∈ R

V
+. We define the edge length l(e) as min{w(u), w(v)} for each

e = uv ∈ E, and define an instance I ′ of the connected dominating set problem
from G, T , w, and l. We show that the optimal objective value of I ′ is at most
α + 1 times that of I, and a feasible solution for I can be constructed from the
one for I ′ without increasing the objective value.

First, we prove that the optimal objective value of I ′ is at most α + 1 times
that of I. Let (F,U) be an optimal solution for I. Then, the optimal objective
value of I is w(U). Since F spans T and U is a vertex cover of F , U dominates T .
Define F ′ := F − (L(F ) \ U). Since F ′ is a tree spanning U , (F ′, U) is a feasible
solution for I ′. If e = uv ∈ F ′, then u or v is included in U , and l(e) is at most
w(u) and w(v). Hence l(F ′) ≤ ∑

v∈U w(v)dF ′(v). By assumption, dF ′(v) ≤ α
holds for each v ∈ U . Hence l(F ′) ≤ αw(U). Since the objective value of (F ′, U)
in I ′ is l(F ′) + w(U), the optimal objective value of I ′ is at most (α + 1)w(U).

Next, we prove that a feasible solution (F, S) for I ′ provides a feasible solution
for I, and its objective value is at most that of (F, S). Since S dominates T , if a
terminal t ∈ T is not spanned by F , there is a vertex v ∈ S with tv ∈ E. We let
F ′ be the set of such edges tv. Notice that F ∪F ′ is a Steiner tree of the terminal
set T . For each edge e ∈ F , choose an end vertex v of e such that l(e) = w(v).
Let S′ denote this set of chosen vertices. Then, S′ ∪S is a vertex cover of F ∪F ′.
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Hence (F ∪ F ′, S′ ∪ S) is feasible for I. Since w(S′ ∪ S) ≤ w(S) + l(F ), the
objective value of (F ∪ F ′, S′ ∪ S) is at most that of (F, S). �
By Lemma 2 and Theorem 2, a constant-factor approximation algorithm for the
connected dominating set problem gives that for the VC-weighted Steiner tree
problem. We note that there are several previous studies of the connected dom-
inating set problem [10,12,15,16]. However, the algorithms in those studies do
not apply to our setting because they consider only the case T = V . Indeed, if
T = V , the connected dominating set problem can be solved by a simple algo-
rithm as follows; compute an approximate solution S for the minimum weight
dominating set of the graph, and then compute a tree spanning S by an approx-
imation algorithm for the edge-weighted Steiner tree problem. We note that the
dominating set problem admits a constant-factor approximation algorithm if the
graph is a unit disk graph [12,19]. This achieves a constant-factor approxima-
tion for the connected dominating set problem with T = V . However, this simple
algorithm does not work for the case of T ⊂ V .

We can observe through an example that computing a dominating set and a
Steiner tree for connecting it separately does not give a good approximate solu-
tion for the connected dominating set problem. Motivated by this observation,
we consider an LP rounding algorithm. Our key idea is to use an LP relaxation
for coordinating a dominating set and a Steiner tree. The same idea was pre-
viously given by Huang et al. [11] for a problem, which is a special case of the
connected dominating set problem. We can prove that their algorithm can be
extended to the connected dominating set problem. In the present paper, we
omit its detail due to the space limitation. We will present it in the full version.

Theorem 3. The VC-weighted Steiner tree problem admits a constant-factor
approximation algorithm in unit disk graphs.

4 Steiner Tree Activation Problem in Graphs Excluding
a Fixed Minor

In this section, we present a constant-factor approximation algorithm for the
Steiner tree activation problem in graphs excluding a fixed minor. In particular,
our algorithms is a 11-approximation for planar graphs.

Our algorithm is based on the reduction mentioned in Theorem1. We reduce
the problem to the vertex-weighted Steiner tree problem by using that reduc-
tion, and we solve the obtained instance by using the constant-factor approxi-
mation algorithm proposed by Demaine et al. [7] for the vertex-weighted Steiner
tree problem in graphs excluding a fixed minor. We prove that this achieves a
constant-factor approximation for the Steiner tree activation problem when the
input graph is H-minor-free for some graph H such that |V (H)| is a constant.
This seems to be an easy corollary to Demaine et al., but it is not because the
reduction does not preserve the H-minor-freeness of the input graph. In spite
of this, we can prove that the approximation guarantee given by Demaine et al.
extends to the graphs constructed from a H-minor-free graph by the reduction.
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We recall that the reduction constructs a graph G′ on the vertex set T ∪
{vi : v ∈ V, i ∈ W} from the input graph G = (V,E) and the monotone activation
functions fuv : W ×W → {�,⊥}, uv ∈ E. We denote the vertex set {vi : i ∈ W}
defined from an original vertex v ∈ V by Uv. Let U denote

⋃
v∈V Uv.

First, let us illustrate how the algorithm of Demaine et al. behaves for G′.
The algorithm maintains a vertex set X ⊆ T ∪ U , where X is initialized to T at
the beginning. Let A(X) ⊆ 2X denote the family of connected components that
include some terminals in the subgraph of G′[X]. We call each member of A(X)
an active set. The algorithm consists of two phases, called the increase phase and
the reverse-deletion phase. In the increase phase, the algorithm iteratively adds
vertices to X until |A(X)| is equal to one. This implies that, when the increase
phase terminates, the subgraph induced by X connects all of the terminals. In the
reverse-deletion phase, X is transformed into an inclusion-wise minimal vertex
set that induces a Steiner tree. This is done by repeatedly removing vertices
from X in the reverse of the order in which they were added.

Let X̄ be the vertex set X when the algorithm terminates, and let X be the
vertex set at some point during the increase phase. We denote X̄ \X by X̄ ′. Note
that X̄ ′ is a minimal augmentation of X such that X ∪X̄ ′ induces a Steiner tree.
Each Y ∈ A(X) is disjoint from X̄ ′, because Y ⊆ X. Demaine et al. showed the
following analysis of their algorithm.

Theorem 4 ([7]). Let X be a vertex set maintained at some moment in the
increase phase, and let X̄ ′ be a minimal augmentation of X so that X ∪ X̄ ′

induces a Steiner tree. If there is a number γ such that
∑

Y ∈A(X) |X̄ ′ ∩N(Y )| ≤
γ|A(X)| holds for any X and X̄ ′, the algorithm of Demaine et al. achieves an
approximation factor γ.

In G′[X̄ ′ ∪ (
⋃

Y ∈A(X) Y )], contract each Y ∈ A(X) into a single vertex,
discard all edges induced by X̄ ′ and all isolated vertices in X̄ ′, and replace
multiple edges by single edges. This gives us a simple bipartite graph with the
bipartition {A,B} of the vertex set, where each vertex in A corresponds to an
active set, and B is a subset of X̄ ′. Let D denote this graph. This construction
of D is illustrated in Fig. 3. We note that

∑
Y ∈A(X) |X̄ ′ ∩ N(Y )| is equal to the

number of edges in D. Hence, by Theorem 4, if the number of edges is at most a
constant factor of |A|, the algorithm achieves a constant-factor approximation.

Demaine et al. proved that |B| ≤ 2|A|, and D is H-minor-free if G is H-
minor-free. By [17,18], these two facts imply that the number of edges in D is
O(|A||V (H)|√log |V (H)|). When G is planar, together with Euler’s formula and
the fact that D is bipartite, they imply that the number of edges in D is at most
6|A|.

The proof of Demaine et al. for |B| ≤ 2|A| can be carried to our case. How-
ever, D is not necessarily H-minor-free even if G is H-minor-free. Nevertheless,
we can bound the number of edges in D, as follows.

Lemma 3. Suppose that the given activation function is monotone. If G is H-
minor-free, the number of edges in D is O(|A||V (H)|√log |V (H)|). If G is pla-
nar, the number of edges in D is at most 11|A|.
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The following theorem is immediate from Theorem 4 and Lemma 3.

Theorem 5. If an input graph is H-minor-free for some graph H, then the
Steiner tree activation problem with a monotone activation function admits
an O(|V (H)|√log |V (H)|)-approximation algorithm. In particular, if the input
graph is planar, then the problem admits a 11-approximation algorithm.

In the rest of this section, we prove Lemma 3. We first provide several prepara-
tory lemmas.

Lemma 4. If G′ includes an edge uivj for some u, v ∈ V and i, j ∈ W , then G′

also includes an edge ui′vj′ for any i′, j′ ∈ W with i′ ≥ i and j′ ≥ j.

Proof. The lemma is immediate from the construction of G′ and the assumption
that each edge in G is associated with a monotone activation function. �
Lemma 5. X̄ does not contain any two distinct copies of an original vertex.

Proof. For the sake of a contradiction, suppose that vi, vj ∈ X̄ for some v ∈ V
and i, j ∈ W with i < j. If an edge ukvi exists in G′, then another edge ukvj also
exists by Lemma 4. This means that X̄ \ vi induces a Steiner tree in G′, which
contradicts the minimality of X̄. �
Lemma 6. Let Y, Y ′ ∈ A(X) with Y �= Y ′. If Y ∩ Uv �= ∅ for some v ∈ V , then
Y ′ ∩ Uv = ∅.
Proof. Suppose that Y ∩Uv �= ∅ �= Y ′ ∩Uv. Let vi ∈ Y and vj ∈ Y ′ with i < j. A
vertex adjacent to vi is also adjacent to vj in G′ by Lemma 4. By the definition, Y
induces a connected component of G′[X] that includes a terminal t. Hence vi has
at least one neighbor in Y . This implies that vi and vj are connected in G′[X].
This contradicts the fact that Y and Y ′ are different connected components of
G′[X]. �
Consider Y ∈ A(X) and v ∈ V such that Y ∩Uv �= ∅. Let vi be the vertex that has
the largest subscript in Y ∩Uv (i.e., i = max{i′ ∈ W : vi′ ∈ Y ∩Uv}). Then, from
Y , we remove all vertices in Y ∩ Uv but vi. Moreover, if a copy vj of v is included
in B, we replace vi by vj . Notice that j > i holds in this case by Lemma 4, and
B does not include more than one copy of v because of Lemma 5. Let Ȳ denote
the vertex set obtained from Y by doing these operations for each v ∈ V with
Y ∩ Uv �= ∅. Ȳ induces a connected subgraph of G′ because of Lemma 4.

We let VB denote {v ∈ V : B ∩ Uv �= ∅}, and let VB,Y denote {v ∈
VB : Ȳ ∩ Uv �= ∅} for each Y ∈ A(X). Moreover, let B′ denote B ∩ {Uv : v ∈⋃

Y ∈A(X) VB,Y }, and B′′ denote B \ B′. In other words, each vertex vj ∈ B

belongs to B′ if and only if some copy vi of the same original vertex v ∈ V is
contained by an active set in A(X).

If k := |VB,Y | ≥ 2, we divide Ȳ into k subsets such that the copies of the
vertices in VB,Y belong to different subsets, and each subset induces a connected
subgraph of G′. Let A′(X) denote the family of vertex sets obtained by doing
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Y1 Y2 Y3 Y4

ui
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vj uj

X̄

A(X)

G [X̄ ∪ ( Y ∈A(X) Y )]

a1 a2 a3 a4

vj uj

B

A

D

a1 a2

a3 a3

a4

B

A

D

Fig. 3. An example of G′[X̄ ′ ∪ (
⋃

Y ∈A(X) Y )], D, and D′; in construction of D′, Ȳ3

is divided into two subsets, one of which contains uj and the other contains vj ; the
former is shrunken into a3 and the later is shrunken into a′

3

these operations to all active sets in A(X). Notice that |A′(X)| = |A(X)| +∑
Y ∈A(X) max{0, |VB,Y |−1}. Lemma 6 indicates that, if a vertex v ∈ VB belongs

to VB,Y for some Y ∈ A(X), then it does not belong to VB,Y ′ for any Y ′ ∈
A(X) \ {Y }. Thus,

∑
Y ∈A |VB,Y | ≤ |B′|, and hence |A′(X)| ≤ |A(X)| + |B′|.

We shrink each Z ∈ A′(X) into a single vertex in the induced subgraph
G′[B′′∪(

⋃
Z∈A′(X) Z)] of G′, and convert the obtained graph into a simple graph

by removing all self-loops and by replacing multiple edges with single edges. Let
A′ denote the set of vertices obtained by shrinking vertex sets in A′(X), and
let D′ denote the obtained graph (with the vertex set A′ ∪ B′′). See Fig. 3 for
an illustration of this construction. We observe that D′ is H-minor-free in the
following lemma.

Lemma 7. If G is H-minor-free, then D′ is H-minor-free.

Proof. By Lemma 5 and the construction of A′(X), each vertex in V has at
most one copy in B′′ ∪ (

⋃
Z∈A′(X) Z). If G′[B′′ ∪ (

⋃
Z∈A′(X) Z)] includes an edge

uivj for ui ∈ Uu and vj ∈ Uv, then G also includes an edge uv. Thus G′[B′′ ∪
(
⋃

Z∈A′(X) Z)] is isomorphic to a subgraph of G. Since each Z ∈ A′(X) induces a
connected subgraph of G′, the graph D′ (constructed from G′[B′′∪(

⋃
Z∈A′(X) Z)]

by shrinking each Z ∈ A′(X)) is a minor of G. Hence if G is H-minor-free, D′

is also H-minor-free. �
The following lemma gives a relationship between D and D′.

Lemma 8. If l is the number of edges in D′, then D contains at most l + |B′|
edges.

Proof. Let avi be an edge in D that joins vertices a ∈ A and vj ∈ B. Suppose
that a is a vertex obtained by shrinking Y ∈ A(X), and vj is a copy of v ∈ V .
Remember that vj belongs to either B′ or B′′. If vj ∈ B′, it is contained by a
vertex set in A′(X), denoted by Zv. We consider the following three cases:
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1. vj ∈ B′ and Zv ⊆ Ȳ
2. vj ∈ B′ and Zv �⊆ Ȳ
3. vj ∈ B′′

In the second case, an edge in D′ joins vertices obtained by shrinking Zv and
a subset of Ȳ . In the third case, vj exists in D′, and D′ includes an edge that
joins vj and the vertex obtained by shrinking a subset of Ȳ . Thus D′ includes an
edge corresponding to avj in these two cases. We can also observe that no edge
in D′ corresponds to more than two such edges avj . This is because Zu �= Zv for
any distinct vertices ui and vj in B′ by the construction of A′(X).

In the first case, D′ may not contain an edge corresponding to avj . How-
ever, the number of such edges is at most |B′| in total because Ȳ are uniquely
determined from vj in this case. Therefore, the number of edges in D is at most
l + |B′|. �
We now prove Lemma 3.

Proof (Lemma 3). The number of vertices in D′ is at most |A′(X)| + |B′′| ≤
|A(X)|+|B′|+|B′′| = |A|+|B|. As we mentioned, we can prove |B| ≤ 2|A| similar
to Demaine et al. [7]. Hence D′ contains at most 3|A| vertices. By Lemma 7, D′

is H-minor-free. It is known [17,18] that the number of edges in an H-minor-free
graph with n vertices is O(n|V (H)|√log |V (H)|). Therefore, the number of edges
in D′ is O(|A||V (H)|√log |V (H)|). By Lemma 8, this implies that the number
of edges in D is |B′| + O(|A||V (H)|√log |V (H)|) = O(|A||V (H)|√log |V (H)|).

If G is planar, by Euler’s formula, the number of edges in D′ is at most
3(|A| + |B|). Hence, by Lemma 8, the number of edges in D is at most 3(|A| +
|B|) + |B′| ≤ 3|A| + 4|B| ≤ 11|A|. �

5 Conclusion

In this paper, we formulate the VC-weighted Steiner tree problem, a new vari-
ant of the vertex-weighted Steiner tree and the Steiner tree activation problems.
We proved that it is NP-hard to achieve an o(log n)-approximation for the VC-
weighted spanning tree problem in general graphs, and we presented constant-
factor approximation algorithms for the VC-weighted Steiner tree problem with
unit disk graphs and for the Steiner tree activation problem with graphs exclud-
ing a fixed minor. Finding a constant-factor approximation algorithm for the
Steiner tree activation problem with unit disk graphs remains an open problem.
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Abstract. We introduce the problem Partial VC Dimension that
asks, given a hypergraph H = (X, E) and integers k and �, whether one
can select a set C ⊆ X of k vertices of H such that the set {e∩C, e ∈ E}
of distinct hyperedge-intersections with C has size at least �. The sets
e ∩ C define equivalence classes over E. Partial VC Dimension is a
generalization of VC Dimension, which corresponds to the case � = 2k,
and of Distinguishing Transversal, which corresponds to the case
� = |E| (the latter is also known as Test Cover in the dual hyper-
graph). We also introduce the associated fixed-cardinality maximization
problem Max Partial VC Dimension that aims at maximizing the
number of equivalence classes induced by a solution set of k vertices. We
study the approximation complexity of Max Partial VC Dimension
on general hypergraphs and on more restricted instances, in particular,
neighborhood hypergraphs of graphs.

1 Introduction

We study identification problems in discrete structures. Consider a hypergraph
(or set system) H = (X,E), where X is the vertex set and E is a collection
of hyperedges, that is, subsets of X. Given a subset C ⊆ X of vertices, we say
that two hyperedges of E are distinguished (or separated) by C if some element
in C belongs to exactly one of the two hyperedges. In this setting, one can tell
apart the two distinguished hyperedges simply by comparing their intersections
with C. Following this viewpoint, one may say that two hyperedges are related if
they have the same intersection with C. This is clearly an equivalence relation,
and one may determine the collection of equivalence classes induced by C: each
such class corresponds to its own subset of C. Any two hyperedges belonging to
distinct equivalence classes are then distinguished by C. We call these classes
neighborhood equivalence classes. In general, one naturally seeks to distinguish
as many pairs of hyperedges as possible, using a small set C.

It is a well-studied setting to ask for a maximum-size set C such that C
induces all possible 2|C| equivalence classes. In this case, C is said to be shat-
tered. The maximum size of a shattered set in a hypergraph H is called its
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Vapnis-Červonenkis dimension (VC dimension for short). This notion,
introduced by Vapnis and Červonenkis [40] arose in the context of statistical
learning theory as a measure of the structural complexity of the data. It has
since been widely used in discrete mathematics; see the references in the the-
sis [9] for more references. We have the following associated decision problem.

VC Dimension
Input: A hypergraph H = (X,E), and an integer k.
Question: Is there a shattered set C ⊆ X of size at least k in H?

The complexity of VC Dimension was studied in e.g. [17,21,34]; it is a
complete problem for the complexity class LOGNP defined in [34] (it is therefore
a good candidate for an NP-intermediate problem). VC Dimension remains
LOGNP-complete for neighborhood hypergraphs of graphs [30] (the neighborhood
hypergraph of G has V (G) as its vertex set, and the set of closed neighborhoods
of vertices of G as its hyperedge set).

In another setting, one wishes to distinguish all pairs of hyperedges (in other
words, each equivalence class must have size 1) while minimizing the size of the
solution set C. Following [26], we call the associated decision problem, Distin-
guishing Transversal.

Distinguishing Transversal
Input: A hypergraph H = (X,E), and an integer k.
Question: Is there a set C ⊆ X of size at most k that induces |E| distinct
equivalence classes?

There exists a rich literature about Distinguishing Transversal. It was
studied under different names, such as Test Set in Garey and Johnson’s
book [25, SP6]; other names include Test Cover [18–20], Discriminating
Code [16] or Separating System [7,37].1 A celebrated theorem of Bondy [8]
also implicitely studies this notion. A version of Distinguishing Transversal
called Identifying Code was defined for graphs instead of hypergraphs [23,27].
Similarly as for the well-known relation between the classic graph problem Dom-
inating Set and the hypergraph problem Hitting Set, it is easy to check that
an identifying code in graph G is the same as a distinguishing transversal in the
neighborhood hypergraph of G.

The goal of this paper is to introduce and study the problem Partial
VC Dimension, that generalizes both Distinguishing Transversal and VC
Dimension, and defined as follows.

1 Technically speaking, in Test Set, Test Cover and Separating System, the
goal is to distinguish the vertices of a hypergraph using a set C of hyperedges, and
in Discriminating Code the input is presented as a bipartite graph. Nevertheless,
these formulations are equivalent to Distinguishing Transversal by considering
either the dual hypergraph of the input hypergraph H = (X, E) (with vertex set E
and hyperedge set X, and hyperedge x contains vertex e in the dual if hyperedge
e contains vertex x in H), or the bipartite incidence graph (defined over vertex set
X ∪ E, and where x and e are adjacent if they were incident in H).
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Partial VC Dimension
Input: A hypergraph H = (X,E), and two integers k and �.
Question: Is there a set C ⊆ X of size k that induces at least � distinct
equivalence classses?

Partial VC Dimension belongs to the category of partial versions of com-
mon decision problems, in which, instead of satisfying the problem’s constraint
task for all elements (here, all 2k equivalence classes), we ask whether we can sat-
isfy a certain number, �, of these constraints. See for example the papers [22,29]
that study some partial versions of standard decision problems, such as Set
Cover or Dominating Set.

When � = |E|, Partial VC Dimension is precisely the problem Distin-
guishing Transversal. When � = 2k, we have the problem VC Dimension.
Hence, Partial VC Dimension is NP-hard, even on many restricted classes.
Indeed, Distinguishing Transversal is NP-hard [25], even on hypergraphs
where each vertex belongs to at most two hyperedges [20], or on neighborhood
hypergraphs of graphs that are either: unit disk graphs [32], planar bipartite
subcubic [23], graphs that are interval and permutation [24], split graphs [23].
Min Distinguishing Transversal cannot be approximated within a factor
of o(log n) on hypergraphs of order n [20], even on hypergraphs without 4-
cycles [10], and on neighborhood hypergraphs of bipartite, co-bipartite or split
graphs [23].

When � = 2k, Partial VC Dimension is equivalent to VC Dimension
and unlikely to be NP-hard (unless all problems in NP can be solved in quasi-
polynomial time), since |X| � 2k and a simple brute-force algorithm has quasi-
polynomial running time. Moreover, VC Dimension (and hence Partial VC
Dimension) is W[1]-complete when parameterized by k [21].

Recently, the authors in [12] introduced the notion of (α, β)-set systems, that
is, hypergraphs where, for any set S of vertices with |S| � α, S induces at most β
equivalence classes. Using this terminology, if a given hypergraph H is an (α, β)-
set system, (H, k, �) with k = α is a YES-instance of Partial VC Dimension
if and only if � � β.

We will also study the approximation complexity of the following fixed-
cardinality maximization problem associated to Partial VC Dimension.

Max Partial VC Dimension
Input: A hypergraph H = (X,E), and an integer k.
Output: A set C ⊆ X of size k that maximizes the number of equivalence
classes induced by C.

Similar fixed-cardinality versions of classic optimization problems such as
Set Cover, Dominating Set or Vertex Cover, derived from the “partial”
counterparts of the corresponding decision problems, have gained some attention
in the recent years, see for example [13,14,29].

Max Partial VC Dimension is clearly NP-hard since Partial VC
Dimension is NP-complete; other than that, its approximation complexity is
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completely unknown since it cannot be directly related to the one of approxi-
mating Min Distinguishing Transversal or Max VC Dimension (the min-
imization and maximization versions of Distinguishing Transversal and VC
Dimension, respectively).

Our Results. Our focus is on the approximation complexity of Max Partial
VC Dimension. We give positive results in Sect. 3. We first provide polynomial-
time approximation algorithms using the VC-dimension for the maximum degree
or for the maximum edge-size of the input hypergraph. We apply these to obtain
approximation ratios of the form nδ (for δ < 1 a constant) in certain special
cases, as well as a better approximation ratio but with exponential time. For
neighbourhood hypergraphs of planar graphs, Max Partial VC Dimension
admits a PTAS (this is also shown for Min Distinguishing Transversal). In
Sect. 4, we give hardness results. We show that any 2-approximation algorithm
for Max Partial VC Dimension implies a 2-approximation algorithm for Max
VC Dimension. Finally, we show that Max Partial VC Dimension is APX-
hard, even for graphs of maximum degree at most 7.

2 Preliminaries

Twin-free Hypergraphs. In a hypergraph H, we call two equal hyperedges twin
hyperedges. Similarly, two vertices belonging to the same set of hyperedges are
twin vertices.

Clearly, two twin hyperedges will always belong to the same neighborhood
equivalence classes. Similarly, for any set T of mutually twin vertices, there is
no advantage in selecting more than one of the vertices in T when building a
solution set C.

Observation 1. Let H = (X,E) be a hypergraph and let H ′ = (X ′, E′) be the
hypergraph obtained from H by deleting all but one of the hyperedges or vertices
from each set of mutual twins. Then, for any set C ⊆ X, the equivalence classes
induced by C in H are the same as those induced by C ∩ X ′ in H ′.

Therefore, since it is easy to detect twin hyperedges and vertices in an input
hypergraph, in what follows, we will always restrict ourselves to hypergraphs
without twins. We call such hypergraphs twin-free.

Degree conditions. In a hypergraph H, the degree of a vertex x is the number
of hyperedges it belongs to. The maximum degree of H is the maximum value
of the degree of a vertex of H; we denote it by Δ(H).

The next theorem gives an upper bound on the number of neighborhood
equivalence classes that can be induced when the degrees are bounded.

Theorem 2 ([18,20,27]). Let H = (X,E) be a hypergraph with maximum
degree Δ and let C be a subset of X of size k. Then, C cannot induce more
than k(Δ+1)

2 + 1 neighborhood equivalence classes.
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The Sauer-Shelah lemma. The following theorem is known as the Sauer-Shelah
Lemma [38,39] (it is also credited to Perles in [39] and a weaker form was stated
by Vapnik and Červonenkis [40]). It is a fundamental tool in the study of the
VC dimension.

Theorem 3 (Sauer-Shelah Lemma [38,39]). Let H = (X,E) be a hyper-
graph with strictly more than

∑d−1
i=0

(|X|
i

)
distinct hyperedges. Then, S has VC-

dimension at least d.

Theorem 3 is known to be tight. Indeed, the system that consists of consid-
ering all subsets of {1, . . . , n} of cardinality at most d − 1 has VC-dimension
equal to d − 1. Though the original proofs of Theorem3 were non-constructive,
Ajtai [1] gave a constructive proof that yields a (randomized) polynomial-time
algorithm, and an easier proof of this type can be found in Miccianio [31].

The following direct corollary of Theorem3 is observed for example in [10].

Corollary 4. Let S = (X,E) be a hypergraph with VC dimension at most d.
Then, for any subset X ′ ⊆ X, there are at most

∑d
i=0

(|X′|
i

)
� |X ′|d + 1 equiva-

lence classes induced by X ′.

Approximation. An algorithm for an optimization problem is a c-approximation
algorithm if it returns a solution whose value is always at most a factor of c
away from the optimum. The class APX contains all optimization problems that
admit a polynomial-time c-approximation algorithm for some fixed constant c.
A polynomial-time approximation scheme (PTAS for short) for an optimization
problem is an algorithm that, given any fixed constant ε > 0, returns in polyno-
mial time (in terms of the instance and for fixed ε) a solution that is a factor of
1+ ε away from the optimum. An optimization problem is APX-hard if it admits
no PTAS (unless P=NP).

Given an optimization problem P , an instance I of P , we denote by optP (I)
(or opt(I) if there is no ambiguity) the value of an optimal solution for I.

Definition 5 (L-reduction [33]). Let A and B be two optimization problems.
Then A is said to be L-reducible to B if there are two constants α, β > 0 and
two polynomial time computable functions f , g such that: (i) f maps an instance
I of A into an instance I ′ of B such that optB(I ′) � α · optA(I), (ii) g maps
each solution S′ of I ′ into a solution S of I such that ||S|−optA(I)| � β · ||S′|−
optB(I ′)|.

L-reductions are useful in order to apply the following theorem.

Theorem 6 [33]. Let A and B be two optimization problems. If A is APX-hard
and L-reducible to B, then B is APX-hard.
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3 Positive Approximation Results for Max Partial VC
Dimension

We start with a greedy polynomial-time procedure that always returns (if it
exists), a set |X ′| that induces at least |X ′| + 1 equivalence classes.

Lemma 7. Let H = (X,E) be a twin-free hypergraph and let k � |X| − 1 be an
integer. One can construct, in time O(k(|X| + |E|)), a set C ⊆ X of size k that
produces at least min{|E|, k + 1} neighborhood equivalence classes.

Proof. We produce C in an inductive way. First, let C1 = {x} for an arbitrary
vertex x of X for which there exists at least one hyperedge of E with x /∈ E (if
such hyperedge does not exist, then all edges are twin edges; since H is twin-free,
|E| � 1 and we are done). Then, for each i with 2 � i � k, we build Ci from
Ci−1 as follows: select vertex xi as a vertex in X \ Ci−1 such that Ci−1 ∪ {x}
maximizes the number of equivalence classes.

We claim that either we already have at least |E| equivalence classes, or Ci

induces at least one more equivalence class than Ci−1. Assume for a contradiction
that we have strictly less than |E| equivalence classes, but Ci has the same
number of equivalence classes as Ci−1. Since we have strictly less than |E| classes,
there is an equivalence class consisting of at least two edges, say e1 and e2. But
then, since H is twin-free, there is a vertex x that belongs to exactly one of e1
and e2. But Ci−1 ∪ {x} would have strictly more equivalence classes than Ci, a
contradiction since Ci was maximizing the number of equivalence classes.

Hence, setting C = Ck finishes the proof. ��

Proposition 8. Max Partial VC Dimension is min{2k,|E|}
k+1 -approximable in

polynomial time. For hypergraphs with VC dimension at most d, Max Partial
VC Dimension is kd−1-approximable. For hypergraphs with maximum degree Δ,
Max Partial VC Dimension is Δ+1

2 -approximable.

Proof. By Lemma 7, we can always compute in polynomial time, a solution with
at least k + 1 neighborhood equivalence classes (if it exists; otherwise, we solve
the problem exactly). Since there are at most min{2k, |E|} possible classes, the
first part of the statement follows. Similarly, by Corollary 4, if the hypergraph
has VC dimension at most d, there are at most kd + 1 equivalence classes, and
kd+1
k+1 � kd−1. Finally, if the maximum degree is at most Δ, by Theorem 2 there

are at most k(Δ+1)+2
2 possible classes (and when Δ � 1, k(Δ+1)+2

2(k+1) � Δ+1
2 ). ��

Corollary 9. For hypergraphs of VC dimension at most d, Max Partial VC
Dimension is |E|(d−1)/d-approximable.

Proof. By Proposition 8, we have a min{kd−1, |E|/k})-approximation. If kd−1 <
|E|(d−1)/d we are done. Otherwise, we have kd−1 � |E|(d−1)/d and hence k �
|E|1/d, which implies that |E|

k � |E|(d−1)/d. ��
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For examples of concrete applications of Corollary 9, hypergraphs with no 4-
cycles in its bipartite incidence graph2 have VC-dimension at most 3 and hence
we have an |E|2/3-approximation for this class. Hypergraphs with maximum
edge-size d also have VC dimension at most d. Other examples, arising from
graphs, are neighborhood hypergraphs of: Kd+1-minor-free graphs (that have
VC dimension at most d [11]); graphs of rankwidth at most r (VC dimension at
most 22

O(r)
[11]); interval graphs (VC dimension at most 2 [10]); permutation

graphs (VC dimension at most 3 [10]); line graphs (VC dimension at most 3);
unit disk graphs (VC dimension at most 3) [10]; C4-free graphs (VC dimension at
most 2); chordal bipartite graphs (VC dimension at most 3 [10]); undirected path
graphs (VC dimension at most 3 [10]). Typical graph classes with unbounded
VC dimension are bipartite graphs and their complements, or split graphs.

In the case of hypergraphs with no 4-cycles in its bipartite incidence graph
(for which Max Partial VC Dimension has an |E|2/3-approximation algo-
rithm by Corollary 9), we can also relate Max Partial VC Dimension to
Max Partial Double Hitting Set, defined as follows.

Max Partial Double Hitting Set
Input: A hypergraph H = (X,E), an integer k.
Output: A subset C ⊆ X of size k maximizing the number of hyperedges
containing at least two elements of C.

Theorem 10. Any α-approximation algorithm for Max Partial Double
Hitting Set on hypergraphs without 4-cycles in its bipartite incidence graph
can be used to obtain a 4α-approximation algorithm for Max Partial VC
Dimension on hypergraphs without 4-cycles in its bipartite incidence graph.

Proof. Let H = (X,E) be a hypergraph without 4-cycles in its bipartite inci-
dence graph, and let C ⊆ X be a subset of vertices. Since H has no 4-cycles in
its bipartite incidence graph, note that if some hyperedge contains two vertices
of X, then no other hyperedge contains these two vertices. Therefore, the num-
ber of equivalence classes induced by C is equal to the number of hyperedges
containing at least two elements of C, plus the number of equivalence classes
corresponding to a single (or no) element of C. Therefore, the maximum num-
ber opt(H) of equivalence classes for a set of size k is at most opt2HS(H)+k+1,
where opt2HS(H) is the value of an optimal solution for Max Partial Double
Hitting Set on H. Observing that opt2HS(H) � k

2 (since one may always iter-
atively select pairs of vertices covering a same hyperedge to obtain a valid double
hitting set of H), we get that opt(H) � 3opt2HS(H)+1 � 4opt2HS(H). Moreover,
in polynomial time we can apply the approximation algorithm of Max Par-

tial Double Hitting Set to H to obtain a set C inducing at least opt2HS(H)
α

neighborhood equivalence classes. Thus, C induces at least opt(H)
4α neighborhood

equivalence classes. ��
2 In the dual hypergraph, this corresponds to the property that each pair of hyperedges

have at most one common element, see for example [2].
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Unfortunately, the complexity of approximating Max Partial Double
Hitting Set seems not to be well-known, even when restricted to hypergraphs
with no 4-cycles in its bipartite incidence graph. In fact, the problem Max
Densest Subgraph (which, given an input graph, consists of maximizing the
number of edges of a subgraph of order k) is precisely Max Partial Double
Hitting Set restricted to hypergraphs where each hyperedge has size at most 2
(that is, to graphs), that can be assumed to contain no 4-cycles in its bipartite
incidence graph (a 4-cycle would imply the existence of two twin hyperedges).
Although Max Densest Subgraph (and hence Max Partial Double Hit-
ting Set for hypergraphs with no 4-cycles in its bipartite incidence graph)
is only known to admit no PTAS [28], the best known approximation ratio
for it is O(|E|1/4) [5].3 We deduce from this result, the following corollary of
Theorem 10 for hypergraphs of hyperedge-size bounded by 2. This improves on
the O(|E|1/2)-approximation algorithm given by Corollary 9 for this case.

Corollary 11. Let α be the best approximation ratio in polynomial time for
Max Densest Subgraph. Then, Max Partial VC Dimension can be 3α-
approximated in polynomial time on hypergraphs with hyperedges of size at
most 2. In particular, there is a polynomial-time O(|E|1/4)-approximation algo-
rithm for this case.

We will now apply the following result from [4].

Lemma 12 ([4]). If an optimization problem is r1(k)-approximable in fpt-time
with respect to parameter k for some strictly increasing function r1 depending
solely on k, then it is also r2(n)-approximable in fpt-time w.r.t. parameter k for
any strictly increasing function r2 depending solely on the instance size n.

Using Proposition 8 showing that Max Partial VC Dimension is 2k

k+1 -
approximable and Lemma12, we directly obtain the following.

Corollary 13. For any strictly increasing function r, Max Partial VC
Dimension parameterized by k is r(n)-approximable in FPT-time.

In the following we establish polynomial time approximation schemes for Min
Distinguishing Transversal and Max Partial VC Dimension on planar
graphs using the layer decomposition technique introduced by Baker [3].

Given a planar embedding of an input graph, we call the vertices which are
on the external face level 1 vertices. By induction, we define level t vertices as
the set of vertices which are on the external face after removing the vertices of
levels smaller than t [3]. A planar embedding is t-level if it has no vertices of
level greater than t. If a planar graph is t-level, it has a t-outerplanar embedding.

Theorem 14. Max Partial VC Dimension on neighborhood hypergraphs of
planar graphs admits a PTAS.

3 Formally, it is stated in [5] as an O(|V |1/4)-approximation algorithm, but we may
assume that the input graph is connected, and hence |V | = O(|E|).
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Proof. Let G be a planar graph with a t-level planar embedding for some
integer t. We aim to achieve an approximation ratio of 1 + ε. Let λ = � 1

ε	 − 1.
Let Gi (0 � i � λ) be the graph obtained from G by removing the vertices

on levels i mod (λ+1). Thus, graph Gi is the disjoint union of several subgraphs
Gij (0 � j � p with p = � t+i

λ+1	) where Gi0 is induced by the vertices on
levels 0, . . . , i − 1 (note that G00 is empty) and Gij with j � 1 is induced
by the vertices on levels (j − 1)(λ + 1) + i + 1, . . . j(λ + 1) + i − 1. In other
words, each subgraph Gij is the union of at most λ consecutive levels and is
thus λ-outerplanar. Hence, Gi is also λ-outerplanar and it has treewidth at
most 3λ − 1 [6]. Using Courcelle’s theorem4, for any integer t and any subgraph
Gij , we can efficiently determine an optimal set St

ij of t vertices of Gij that
maximizes the number of (nonempty) induced equivalence classes in Gij . We
then use dynamic programming to construct a solution for Gi. Denote by Si(q, y)
a solution corresponding to the maximum feasible number of equivalence classes
induced by a set of y vertices of Gi (0 � y � k) among the first q subgraphs
Gi1, . . . , Giq (1 � q � p). We have Si(q, y) = max0�x�y(Sx

iq + Si(q − 1, y − x)).
Let Si = Si(p, k).

Among S0, . . . , Sλ, we choose the best solution, that we denote by S. We
now prove that S is an (1 + ε)-approximation of the optimal value opt(G) for
Max Partial VC Dimension on G. Let Sopt be an optimal solution of G.
Then, there is at least one integer r such that at most 1/(λ+1) of the equivalent
classes induced by Sopt in G are lost when we remove vertices on the levels
congruent to r mod (λ + 1).

Thus, val(S) � val(Sr) � opt(G) − opt(G)
λ+1 = λ

λ+1opt(G) � (1 − 1
ε )opt(G),

which completes the proof.
The overall running time of the algorithm is λ times the running time for

graphs of treewidth at most 3λ − 1, that is, O(λn). ��
As a side result, using the same technique, we provide the following theorem

about Min Distinguishing Transversal, which is an improvement over the
7-approximation algorithm that follows from [36] (in which it is proved that any
YES-instance satisfies � � 7k) and solves an open problem from [23]. Due to
space constraints, its proof is omitted.

Theorem 15. Min Distinguishing Transversal on neighborhood hyper-
graphs of planar graphs (equivalently, Min Identifying Code on planar
graphs) admits a PTAS.

4 Hardness of Approximation Results for Max Partial
VC Dimension

We define Max VC Dimension as the maximization version of VC Dimension.
4 We can indeed encode the decision version of our problem in MSOL as follows:

∃x1, . . . , xk, y1, . . . , yl, s
1
1, s

2
1, . . . , s

�
�−1, s

j
i =
∨k

q=1 xq,
∨(�

2)
i,j=0(s

j
i ∈ yi ∧ sj

i /∈ yj) ∨ (sj
i /∈

yi ∧ sj
i ∈ yj).
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Max VC Dimension
Input: A hypergraph H = (X,E).
Output: A maximum-size shattered subset C ⊆ X of vertices.

Not much is known about the complexity of Max VC Dimension: it is
trivially log2 |E|-approximable by returning a single vertex; a lower bound on
the running time of a potential PTAS has been proved [17]. It is mentioned as
an outstanding open problem in [15]. In the following we establish a connection
between the approximability of Max VC Dimension and Max Partial VC
Dimension.

Theorem 16. Any 2-approximation algorithm for Max Partial VC Dimen-
sion can be transformed into a randomized 2-approximation algorithm for Max
VC Dimension with polynomial overhead in the running time.

Proof. Let H be a hypergraph on n vertices that is an instance for Max VC
Dimension, and suppose we have a c-approximation algorithm A for Max
Partial VC Dimension.

We run A with k = 1, . . . , log2 |X|, and let k0 be the largest value of k such
that the algorithm outputs a solution with at least 2k

c neighborhood equivalence
classes. Since A is a c-approximation algorithm, we know that the optimum
for Max Partial VC Dimension for any k > k0 is strictly less than 2k. This
implies that the VC-dimension of S is at most k0.

Now, let X be the solution set of size k0 computed by A , and let HX be
the sub-hypergraph of H induced by X. By our assumption, this hypergraph
has at least 2k0

c distinct edges. We can now apply the Sauer-Shelah Lemma
(Theorem 3).

We have c = 2, and we apply the lemma with |X| = k0 and d = k0
2 + 1; it

follows that the VC dimension of HX (and hence, of H) is at least k0
2 +1. By the

constructive proof of Theorem 3, a shattered set Y of this size can be computed
in (randomized) polynomial time [1,31]. Set Y is a 2-approximation, since we
saw in the previous paragraph that the VC dimension of H is at most k0. ��

We note that the previous proof does not seem to apply for any other con-
stant than 2, because the Sauer-Shelah Lemma would not apply. Though the
approximation complexity of Max VC Dimension is not known, our result
shows that Max Partial VC Dimension is at least as hard to approximate.

Before proving our next result, we first need an intermediate result for Max
Partial Vertex Cover (also known as Max k-Vertex Cover [14]), which
is defined as follows.

Max Partial Vertex Cover
Input: A graph G = (V,E), an integer k.
Output: A subset S ⊆ V of size k covering the maximum number of edges.
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Proposition 17 ([35]). Max Partial Vertex Cover is APX-hard, even for
cubic graphs.

Theorem 18. Max Partial VC Dimension is APX-hard, even for graphs of
maximum degree 7.

Proof. We will give an L-reduction from Max Partial Vertex Cover (which
is APX-hard, by Proposition 17) to Max Partial VC Dimension. The result
will then follow from Theorem6. Given an instance I = (G, k) of Max Partial
Vertex Cover with G = (V,E) a cubic graph, we construct an instance I ′ =
(G′, k′) of Max Partial VC Dimension with G′ = (V ′, E′) of maximum
degree 7 in the following way. For each vertex v ∈ V , we create a gadget Pv with
twelve vertices where four among these twelve vertices are special: they form the
set Fv = {f1

v , f2
v , f3

v , f4
v }. The other vertices are adjacent to the subsets {f4

v },
{f2

v , f3
v }, {f1

v , f3
v }, {f2

v , f4
v }, {f1

v , f4
v }, {f1

v , f3
v , f4

v }, {f1
v , f2

v , f4
v },{f1

v , f2
v , f3

v , f4
v },

respectively. We also add edges between f1
v and f2

v , between f2
v and f3

v and
between f3

v and f4
v . Since G is cubic, for each vertex v of G, there are three

edges e1, e2 and e3 incident with v. For each edge ei (1 � i � 3), the endpoint
v is replaced by f i

v. Moreover, each of these original edges of G is replaced in
G′ by two edges by subdividing it once (see Fig. 1 for an illustration). We call
the vertices resulting from the subdivision process, edge-vertices. Finally, we set
k′ = 4k.

f1
v

f2
v

f3
v

f4
v

a) b)

v

u1

u2

u3

Pv

Pu1

Pu2

Pu3

Fig. 1. a) Vertex-gadget Pv and b) illustration of the reduction.

From any optimal solution S with |S| = k covering opt(I) edges of G, we
construct a set C = {f j

v : 1 � j � 4, v ∈ S} of size 4k. By construction, C
induces 12 equivalence classes in each vertex gadget. Moreover, for each covered
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edge e = xy in G, the corresponding edge-vertex ve in G′ forms a class of
size 1 (which corresponds to one or two neighbor vertices f i

x and f j
y of ve in C).

Finally, all vertices in G′ corresponding to edges not covered by S in G, as well
as all vertices in vertex gadgets corresponding to vertices not in S, belong to the
same equivalence class (corresponding to the empty set). Thus, C induces in G′

12k + opt(I) + 1 equivalence classes, and hence we have

opt(I ′) � 12k + opt(I) + 1. (1)

Conversely, given a solution C ′ of I ′ with |C ′| = 4k, we transform it into a
solution for I as follows. First, we show that C ′ can be transformed into another
solution C ′′ such that (1) C ′′ only contains vertices of the form f i

v, (2) each
vertex-gadget contains either zero or four vertices of C ′′, and (3) C ′′ does not
induce less equivalence classes than C ′. To prove this, we proceed step by step
by locally altering C ′ whenever (1) and (2) are not satisfied, while ensuring (3).

Suppose first that some vertex-gadget Pv of G′ contains at least four vertices
of C ′. Then, the number of equivalence classes involving some vertex of V (Pv)∩
C ′ is at most twelve within Pv (since there are only twelve vertices in Pv), and at
most three outside Pv (since there are only three vertices not in Pv adjacent to
vertices in Pv). Therefore, we can replace V (Pv)∩C ′ by the four special vertices
of the set Fv in Pv; this choice also induces twelve equivalence classes within Pv,
and does not decrease the number of induced classes.

Next, we show that it is always best to select the four special vertices of Fv

from some vertex-gadget (rather than having several vertex-gadgets containing
less than four solution vertices each). To the contrary, assume that there are two
vertex-gadgets Pu and Pv containing respectively a and b vertices of C ′, where
1 � b � a � 3. Then, we remove an arbitrary vertex from C ′ ∩ V (Pv); moreover
we replace C ′ ∩ V (Pu) with the subset {f i

u, 1 � i � a + 1}, and similarly we
replace C ′ ∩V (Pv) with the subset {f i

v, 1 � i � b−1}. Before this alteration, the
solution vertices within V (Pu) ∪ V (Pv) could contribute to at most 2a + 2b − 2
equivalence classes. After the modification, one can check that this quantity is
at least 2a+1+2b−1−2 classes. Observing that 2a+1+2b−1−2 � 2a +2b −2 since
2a − 2b−1 � 0 yields our claim. Hence, by this argument, we conclude that all
vertex-gadgets (except possibly at most one) contain either zero or four vertices
from the solution set C ′.

Suppose that there exists one vertex-gadget Pv with i solution vertices, 1 �
i � 3. We show that we may add 4−i solution vertices to it so that C ′ ∩V (Pv) =
Fv. Consider the set of edge-vertices belonging to C ′. Since we had |C ′| = 4k
and all but one vertex-gadget contain exactly four solution vertices, there are at
least 4−i edge-vertices in the current solution set. Then, we remove an arbitrary
set of 4 − i edge-vertices from C ′ and instead, we replace the set V (Pv) ∩ C ′ by
the set Fv of special vertices of Pv. We now claim that this does not decrease the
number of classes induced by C ′. Indeed, any edge-vertex, since it has degree 2,
may contribute to at most three equivalence classes, and the i solution vertices
in Pv can contribute to at most 2i classes. Summing up, in the old solution set,
these four vertices contribute to at most 3(4 − i) + 2i classes, which is less than
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12 since 1 � i � 3. In the new solution, these four vertices contribute to at least
12 classes, which proves our above claim.

We now know that there are 4i edge-vertices in C ′, for some i � k. All
other solution vertices are special vertices in some vertex-gadgets. By similar
arguments as in the previous paragraph, we may select any four of them and
replace them with some set Fv of special vertices of some vertex-gadget Pv.
Before this modification, these four solution vertices may have contributed to at
most 3 · 4 = 12 classes, while the new four solution vertices now contribute to at
least 12 classes.

Applying the above arguments, we have proved the existence of the required
set C ′′ that satisfies conditions (1)–(3).

Therefore, we may now assume that the solution C ′′ contains no edge-
vertices, and for each vertex-gadget Pv, C ′′ ∩ V (Pv) ∈ {∅, Fv}. We define as
solution S for I the set of vertices v of G for which Pv contains four ver-
tices of C ′′. Then, val(S) = val(C ′) − 12k − 1. Considering an optimal solu-
tion C ′ for I ′, we have opt(I) � opt(I ′) − 12k − 1. Using (1), we conclude that
opt(I ′) = opt(I) + 12k + 1 � opt(I) + 24opt(I) + 1 since k � 2opt(I) and thus
opt(I ′) � 26opt(I).

Moreover, we have opt(I)−val(S) = opt(I ′)−12k−1−(val(C ′)−12k−1) =
opt(I ′) − val(C ′).

Thus, our reduction is an L-reduction with α = 26 and β = 1. ��
Proposition 8 and Theorem 18 give the following corollary:

Corollary 19. Max Partial VC Dimension is APX-complete for bounded
degree graphs.

5 Conclusion

In this paper, we defined and studied generalization of Distinguishing
Transversal and VC Dimension. The probably most intriguing open ques-
tion seems to be the approximation complexity of Max Partial VC Dimen-
sion. In particular, does the problem admit a constant-factor approximation
algorithm? As a first step, one could determine whether such an approxima-
tion algorithm exists in superpolynomial time, or on special subclasses such as
neighbourhood hypergraphs of specific graphs. We have seen that there exist
polynomial-time approximation algorithms with a sublinear ratio for special
cases; does one exist in the general case?
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Abstract. The system reliability is an important issue for
multiprocessor systems. The fault diagnosis has become crucial for
achieving high reliability in multiprocessor systems. In the comparison-
based model, it allows a processor to perform diagnosis by contrasting the
responses from a pair of neighboring processors through sending the iden-
tical assignment. Recently, Ye and Hsieh devised an precise fault diagno-
sis algorithm to detect all faulty processors for hypercube-like networks
by using the MM* model with O(N(log2 N)2) time complexity, where N
is the cardinality of processor set in multiprocessor systems. On the basis
of Hamiltonian cycle properties, we improve the aforementioned results
by presenting an O(N)-time precise fault diagnosis algorithm to detect all
faulty processors for hypercube-like networks by using the MM* model.

1 Introduction

In the semiconductor technology, the system reliability is crucial for multiproces-
sor systems. To maintain high reliability, multiprocessor systems should differ-
entiate between fault-free and faulty processors, that is, each faulty processor
in this system ought to be substituted by a fault-free processor. Determining
all faulty processors is known as fault diagnosis. When all faulty processors
can be evaluated precisely, and t is the upper bound of the faulty processors,
we called the multiprocessor system as t-diagnosable. The largest cardinality
of the faulty set is named as the diagnosability of this multiprocessor system.
Numerous fault diagnosis algorithms have been presented for different topolo-
gies [2,5,6,12,13,17,18].

In self-diagnosable systems, there are several approaches which have been
proposed to detect faulty processors. The PMC model [11] allows each proces-
sor to perform diagnosis by testing the neighboring processors and observing
their responses. In the PMC model, a test syndrome collects all test results. The
MM model [7] is a comparison-based model and it allows a processor to perform
diagnosis by contrasting the responses from a pair of neighboring processors
through sending the identical assignment. In the MM model, a comparison syn-
drome collects all comparison results. In [13], Sengupta and Dahbura modified
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 107–112, 2016.
DOI: 10.1007/978-3-319-48749-6 8
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the comparison-based model and put forward the MM* model. Under this model,
any processor w (comparator) detects two processors x and y if w has direct com-
munication links to them. In the MM* model, provided that w is a fault-free
processor and x, y are two neighbors of w; an agreement of the comparison
results means that processors x and y are fault-free processors. Conversely, a
disagreement of the comparison results means that at least one of x, y, and w
must be faulty.

In self-diagnosable systems, there are two basic strategies for fault diagno-
sis. The first one is named as the precise diagnositic strategy, which detects all
processors correctly [7,11]. The second one is named as the pessimistic diag-
nositic strategy, which isolated all faulty processors in a faulty set such that no
more than two processors which are faulty-free processors [4].

In a multiprocessor system, using a simple graph G = (VG, EG) depicts the
topology, where every vertex in VG depicts a processor and every edge in EG

depicts a communication link between two processors. In [14], Vaidya et al.
proposed a class of hypercube-like networks.

Recently, Ye and Hsieh [15] devised an O(N(log2 N)2)-time precise fault
diagnosis algorithm to detect all faulty processors for hypercube-like networks
on the basis of the MM* model, where N is the cardinality of the vertex set in
this system.

In order to reduce the time complexity, we present an O(N)-time precise fault
diagnosis algorithm to detect all faulty processors for hypercube-like networks
based on the MM* model, where N = 2n is the cardinality of the vertex set in
this topology. Therefore, our precise fault diagnosis algorithm is better than the
Ye-Hsieh algorithm [15] for hypercube-like networks.

Next, we introduce the basic concept in self-diagnosable systems through
Sect. 2. In Sect. 3, we investigate several definitions and lemmas, then propose
the precise fault diagnosis algorithm to detect all faulty processors for hypercube-
like networks. Finally, we provide some concluding remarks in Sect. 4.

2 Preliminaries

We first present some fundamental definitions and notations and introduce the
background of fault diagnosis.

2.1 Definitions and Notations from Graph Theory

Use a simple graph G = (VG, EG) to describe the link situation for a simple
multiprocessor system. The processors in this system are denoted by an vertex
set VG and the links between each pair of processors are denoted by an edge
set EG. When there exists an edge between two processors (x and y) such that
the processor x is adjacent to the processor y, x is a neighbor of y. Use NG(x)
= {y ∈ VG| y is adjacent to x} to denote the neighbors of x. The degree of a
processor x is the cardinality of the edge set incident to x in a simple graph G.
Use degG(x) to denote the degree of a processor x, that is, degG(x) = |NG(x)|.
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We say a simple graph is k-regular when each processor has exactly k neighbors.
In this research, we consider the diagnosability of the hypercube-like network,
and the structure of hypercube-like network contains the property of k-regular.

In a simple graph, a path is constructed by a sequence of distinct processors.
We use P [x0, xk] = 〈x0, x1, . . . , xk〉 to represent a path with k distinct processors,
such that the processor xi and the processor xi+1 are adjacent to each other for
0 ≤ i ≤ k − 1. The processors x0 and xk are the two end processors of this
path. A subpath is denoted by P [xi, xj ], which is a sequence of processors within
the original path P [x0, xk] = 〈x0, x1, . . . , xi−1, P [xi, xj ], xj+1, . . . , xk〉. A path
in a simple graph that visits each processor of G exactly once is named as
a Hamiltonian path. We also denote a cycle by a sequence of processors in a
simple graph of the form 〈x0, x1, . . . , xt〉 for t ≥ 2, where x0, x1, . . . , xt are all
distinct processors such that any two consecutive processors are adjacent and
the two processors x0 and xt are also adjacent to each other. A cycle in a simple
graph that visits each processor of G exactly once is named as a Hamiltonian
cycle. When a graph contains a Hamiltonian cycle, it is called a Hamiltonian.

A matching in a simple graph is an edge subset MG ⊆ EG, which contains
the non-loop edges without any common processor. If a matching MG saturates
a processor x ∈ VG, then x is said to be MG-saturated; otherwise, x is MG-
unsaturated. When a matching saturates every processor of the graph, we say
this matching is a perfect matching.

Definition 1. The class of n -dimensional hypercube-like networks, denoted by
HLn, can be recursively defined as follows:

1. HL0 is a trivial graph that contains only one vertex.
2. For i ≥ 1, HLi = {G| G = PM(G0, G1), where G0, G1 ∈ HLi−1, and

PM(G0, G1) is a graph which is connected by a perfect matching PM between
VG0 and VG1 , and every edge in this perfect matching is labeled by i − 1. For
a graph G ∈ HLn, VG = VG0

⋃
VG1 and EG = EG0

⋃
EG1

⋃
PM .

An n-dimensional hypercube-like graph is an n-regular graph with 2n vertices
and n2n−1 edges [14], denoted by HLn.

2.2 System Diagnostic Models

Observing those responses from the two neighbors x and y, the set of comparison
results can be used to construct a comparison multigraph MG = (VG, LG). In
a comparison multigraph, the processor set VG is the set of all processors and
LG is the set of labeled edges that denote which processor is used to compare
the two processors of this edge. A labeled edge (x, y)w ∈ LG means that the
processor w compares processor x and processor y.

In the MM* model, for the pair of processors x and y such that (w, x) ∈ EG

and (w, y) ∈ EG, we say that w is a comparator. Let (x, y)w ∈ LG; the output
is denoted by σ((x, y)w). We use σ((x, y)w) = 1 to denote a disagreement of the
output result and σ((x, y)w) = 0 to denote an agreement of the output result.
The MM* model collects all the comparison results as a set and names it as
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a comparison syndrome of the self-diagnosable systems. The comparison result
σ((x, y)w) = 0 indicates that the compared processors x and y are fault-free
processors provided that the comparator processor w is a fault-free vertex. The
comparison result σ((x, y)w) = 1 means that at least one of x, y, and w must be
faulty.

3 A Precise Fault Diagnosis Algorithm in HLn

In this section, we use a Hamiltonian cycle in HLn to detect all faulty vertices.

3.1 Comparison Syndrome Properties in HLn

Definition 2. Assume that σ be a comparison syndrome of G ∈ HLn. If
σ((x, y)w) = 0, a vertex w is named as a σ -zero vertex, where x and y are
adjacent to w. If σ((x, y)w) = 1), a vertex w is named as a σ -one vertex, where
x and y are adjacent to w.

Definition 3. Assume that σ be a comparison syndrome of G ∈ HLn. A path
P [x0, xk] = 〈x0, x1, . . . , xk〉 in G is a σ-zero path if σ((xi−1, xi+1)xi

) = 0 for any
three consecutive vertices with 1 ≤ i ≤ k − 1.

According to previous definitions, we can use the following Lemma to detect
all the vertices in a σ-zero path.

Lemma 1 [16]. All vertices in a σ-zero path must be in the same state. The
vertices in this path are either all fault-free vertices or all faulty vertices.

Lemma 2 [3]. Provided that there exists at most l faulty vertices in a path P
and σ is a syndrome on this path. Let P ∗ denotes a σ-zero subpath of P and the
length of this subpath is k. Then,

1. When k > l, we assume that all vertices in P ∗ must be fault-free. Meanwhile,
the σ-one neighbors of the two end vertices in P ∗ are also fault-free.

2. When k ≤ l, we assume that the σ-one neighbors of the two end vertices and
all vertices in P ∗ are fault-free. Otherwise, we assume that all vertices in P ∗

are faulty.

Lemma 3 [10]. Every graph in HLn for n ≥ 2 is Hamiltonian.

Since the diagnosability of an n-dimensional hypercube-like network is
bounded by n [1] on the basis of the MM* model for n ≥ 5, we assume that there
are no more than t faulty vertices in an n-dimensional hypercube-like network
with t = n. According to Lemma 2, a σ-zero subpath with more than t vertices
can be located if the cardinality of the faulty set existing in an N -vertex cycle
does not exceed t. Let P [vm, vn] = 〈vm, vm+1, . . . , vn−1, vn〉 be a σ-zero subpath
with n − m + 1 vertices and n − m + 1 > t. Then, according to Lemmas 1 and 2,
we can identify vertices from vm−1 to vn+1 as fault-free vertices, and vm−2 and
vn+2 as faulty vertices. If vm−2 or vn+2 is adjacent to another σ-zero subpath,
then identify all vertices in this σ-zero subpath as faulty vertices.
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3.2 A Precise Fault Diagnosis Algorithm

A precise fault diagnosis algorithm is described in this subsection.

Algorithm 1. Algorithm HL
Input : An integer n ≥ 5, and a graph G ∈ HLn, where 2n is the cardinality

of the vertex set in G.
Output: The state of all vertices are diagnosed as either fault-free or faulty.

Step 1: Construct a Hamiltonian cycle in HLn.
Step 2: Obtain its cycle syndrome by σ((xi−1, xi+1)xi) for 0 ≤ i ≤ 2n − 1.
Step 3: Let P [vm, vn] = 〈vm, vm+1, . . . , vn−1, vn〉 be a σ-zero subpath with

n − m + 1 vertices and n − m + 1 > t.
Step 4: Identify all vertices in P [vm, vn] as fault-free, and vm−1, vn+1 as fault-

free and vm−2, vn+2 as faulty.
Step 5: For each unknown σ-zero subpath, if it has a vertex x that has an

identified fault-free neighbor w that in turn has an identified fault-free
neighbor y, then diagnose (x, y)w; if this σ-zero vertex x is identified as
faulty, then identify other vertices in this σ-zero subpath as faulty.

4 Conclusion

For hypercube-like networks, when the cardinality of the vertex set is N = 2n

for n ≥ 5, we have designed an O(N)-time precise fault diagnosis algorithm on
the basis of the MM* model. Moreover, our previous result presented in [15] an
N(log2 N)2-time algorithm for the hypercube-like networks for n ≥ 11. There-
fore, the proposed precise fault diagnosis algorithm can run in O(N) time com-
plexity for n ≥ 5, which is superior to the previous algorithms for the class of
hypercube-like networks.
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Abstract. The problem of finding the maximum number of vertex-
disjoint uni-color paths in an edge-colored graph (MaxCDP) has been
recently introduced in literature, motivated by applications in social net-
work analysis. In this paper we investigate how the complexity of the
problem depends on graph parameters (distance from disjoint paths and
size of vertex cover), and that is not FPT-approximable. Moreover, we
introduce a new variant of the problem, called MaxCDDP, whose goal
is to find the maximum number of vertex-disjoint and color-disjoint uni-
color paths. We extend some of the results of MaxCDP to this new vari-
ant, and we prove that unlike MaxCDP, MaxCDDP is already hard on
graphs at distance two from disjoint paths.

1 Introduction

The analysis of social networks and social media has introduced several inter-
esting problems from an algorithmic point of view. Social networks are usually
viewed as graphs, where vertices represent the elements of the network, and edges
represent a binary relation between the represented elements. One of the most
relevant properties to analyze social network is the vertex connectivity of two
given vertices. Indeed, a relevant property of social networks is how information
flows from one vertex to the other, and vertex connectivity is considered as a
measure of the information flow. Furthermore, two relevant structural proper-
ties of a social network, group cohesiveness and centrality, can be identified via
vertex connectivity [8,12]. Vertex connectivity has been widely investigated in
graph theory; Menger’s theorem shows that vertex connectivity is equivalent to
the maximum number of disjoint paths between two given vertices.

Usually social networks analyses focus on a single type of relation. However,
due to the availability of several social networks, a natural goal is to integrate
the information into a single network. Wu [13] introduced a model to consider
multi-relational social networks, where different kinds of relations are considered.
In the proposed model colors are associated with edges of the graph to distin-
guish different kinds of relations. Given such an edge-colored graph, a natural
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 113–127, 2016.
DOI: 10.1007/978-3-319-48749-6 9
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combinatorial problem to compute vertex connectivity introduced in [13], called
Maximum Colored Disjoint Paths (MaxCDP), asks for the maximum number of
vertex-disjoint paths consisting of edges of the same colors (also called uni-color
paths) in the input graph.

The complexity of MaxCDP has been investigated in [3,13]. MaxCDP
is polynomial time solvable when the input graph contains exactly one color,
while it is NP-hard when the edges of the graph are associated with at least
two colors. On general instance, MaxCDP is shown to be not approximable
with factor O(nd), where n is the number of vertices of the input graph, for
any constant 0 < d < 1, and W[1]-hard if the parameter if the number of
paths in the solution [3]. Moreover, MaxCDP is approximable within factor
q, where q is the number of colors of the edges of the input graph, but not
approximable within factor 2 − ε, for any ε > 0, when q is a fixed constant.
Moreover, in [13] it is considered a variant of the problem where the length of
the paths in the solution are (upper) bounded by an integer l � 1, as in many
real social networks the diameter of the graph is bounded by a constant and we
are interesting in short paths connecting two vertices. When l � 4 MaxCDP is
NP-hard, while it is polynomial time solvable for l < 4 [13]. The bounded length
variant of the problem is approximable within factor (l − 1)/2 + ε [13], and it
is fixed-parameter tractable for the combined parameter number of paths in the
solution and l [3]. Moreover, this variant does not admit a polynomial kernel
unless NP ⊆ coNP/Poly, as it follows from the results in [7].

In this paper, we further investigate the complexity of MaxCDP and of a
related problem that we introduce, called MaxCDDP, whose goal is to find
the maximum number of vertex-disjoint and color-disjoint (that is having differ-
ent colors) uni-color paths. The color disjointness of paths can be interesting to
characterize how different relations in a network connects two vertices. In this
case, we are not interested to have more paths of a single color, but rather to
compute the maximum number of color-disjoint paths between two vertices. We
study how the complexity of MaxCDP and MaxCDDP depends on several
parameters, in the spirit of a multivariate complexity analysis [9]. As described
in the previous paragraph, it has already been studied how the complexity of
MaxCDP depends on different constraints (number of colors of each edge, max-
imum length of a path). We believe that it is interesting to take into account
the structure of the input graph when studying the complexity of these two
problems, since real-life networks exhibit properties that leads to graphs with a
specific structure. For example, it is widely believed that social networks have
a “small-world phenomenon” property, and thus information on the structure
of the corresponding graphs can be derived. Moreover, such a study is also of
theoretical interest, since it helps to better understand the complexity of the two
problems.

First, we investigate how the complexity of the two problems depends on
two graph parameters: distance from disjoint paths and size of vertex cover. In
Sect. 3 we show that on graphs at distance bounded by a constant from disjoint
paths MaxCDP admits a polynomial-time algorithm, whereas MaxCDDP is
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NP-hard. Then, in Sect. 4 we show that MaxCDP is fixed-parameter tractable
when parameterized by the size of the vertex cover of the input graph. In Sect. 5
we consider the parameterized complexity of the bounded length version of Max-
CDDP, where the parameters are the number of vertex and color-disjoint paths
of a solution and the maximum length of a path, and we extend the FPT algo-
rithm for MaxCDP to MaxCDDP. Finally, we show in Sect. 6 that both prob-
lems are not ρ-approximable in FPT time, for any function ρ.

2 Definitions

In this section we present some definitions as well as the formal definition of
the two combinatorial problems we are interested in. First, notice that in this
paper, we will consider undirected graphs. Given a graph G = (V,E) and a
vertex v ∈ V , we denote by N(v) the vertex adjacent to v in G. Consider a set
of colors C = {c1, . . . , cq}, where q represents cardinality of C. A C-edge-colored
graph (or simply an edge-colored graph when the set of colors is clear from the
context) is defined as G = (V,E, fC), where V denotes the set of vertices of G
and E denotes the set of edges, and fC : E → 2C is a coloring of each edge with
a set of colors in C = {c1, . . . , cq}. In the paper, we denote by n the size of V
and by m the size of E.

A path π in G is said to be colored by cj ∈ C if all the edges of π are colored
by cj . A path π in G is called a uni-color path if there is a color cj ∈ C such
that all the edges of π are colored by cj .

Given two vertices x, y ∈ V , an xy-path is a path between vertices x and
y. Two paths π′ and π′′ are internally disjoint (or, simply, disjoint) if they do
not share any internal vertex, while a set P of paths is internally disjoint if the
paths in P are pairwise internally disjoint. Two uni-color paths π′ and π′′ are
color disjoint if they are disjoint and they have different colors.

Next, we introduce the formal definitions of the problems we deal with.

Max Colored Disjoint Path (MaxCDP)

• Input: a set C of colors, a C-edge-colored graph G = (V,E, fC) and two
vertices s, t ∈ V .
• Output: the maximum number of disjoint uni-color st-paths.

Max Colored Doubly Disjoint Path (MaxCDDP)

• Input: a set C of colors, a C-edge-colored graph G = (V,E, fC), and two
vertices s, t ∈ V .
• Output: the maximum number of color disjoint uni-color st-paths.

We will consider a variant of the two problems where the length of the paths
in the solution is (upper) bounded by an integer l � 1, that is we are interested
only in paths bounded by l. These variants will be denoted by l-MaxCDP and
l-MaxCDDP.
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Notice that in the versions of these problems parameterized by the natural
parameter, we are also given an integer k > 0 and we look whether there exists
at least k (color) disjoint uni-color st-paths.

A parameterized problem (I, k) is said fixed-parameter tractable (or in the
class FPT) with respect to a parameter k if it can be solved in f(k) · |I|c time (in
fpt-time), where f is any computable function and c is a constant. The class XP
contains problems solvable in time |I|f(k), where f is an unrestricted function.
We defer the reader to the recent monographs of Downey and Fellows or Cygan
et al. for additional information around parameterized complexity [5,6].

The natural notion of parameterized approximation was introduced quite
recently (see the survey of Marx for an overview [10]). Informally, it aims at
giving more time than polynomiality to achieve better approximation ratio. We
give the definition of fpt cost ρ-approximation algorithm, as in Sect. 6 we will
rule out the existence of such an algorithm for MaxCDP and MaxCDDP. This
is a weaker notion than fpt-approximation, but notice that we will prove negative
result (which will thus be stronger).

An NP-optimization problem Q is a tuple (I, Sol, val, goal), where I is the
set of instances, Sol(I) is the set of feasible solutions for instance I, val(I, S) is
the value of a feasible solution S of I, and goal is either max or min.

Definition 1 (fpt cost ρ-approximation algorithm, Chen et al. [4]). Let
Q be an optimization problem and ρ : N → R be a function such that ρ(k) � 1 for
every k � 1 and k ·ρ(k) is nondecreasing (when goal = min) or k

ρ(k) is unbounded
and nondecreasing (when goal = max). A decision algorithm A is an fpt cost
ρ-approximation algorithm for Q (when ρ satisfies the previous conditions) if for
every instance I of Q and integer k, with Sol(I) �= ∅, its output satisfies the
following conditions:

1. If opt(I) > k (when goal = min) or opt(I) < k (when goal = max), then A
rejects (I, k).

2. If k � opt(I) · ρ(opt(I)) (when goal = min) or k � opt(I)
ρ(opt(I)) (when goal =

max), then A accepts (I, k).

Moreover the running time of A on input (I, k) is f(k) · |I|O(1). If such a
decision algorithm A exists then Q is called fpt cost ρ-approximable.

3 Complexity of MaxCDDP and MaxCDP on Graphs at
Bounded Distance from Disjoint Paths

In this section we consider the complexity of MaxCDP and MaxCDDP on
graphs having distance bounded by a constant from disjoint paths. The distance
to disjoint paths is the minimum number of vertices to remove to make the graph
a set of disjoint paths.

We show that MaxCDDP is NP-hard for graphs at distance two from dis-
joint paths, while MaxCDDP is polynomial time solvable when the input graph
has distance bounded by a constant from disjoint paths.
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3.1 Complexity of MaxCDDP on Graphs at Distance Two from
Disjoint Paths

In this section, we show that if the input graph G has distance two from a set
of disjoint path, then MaxCDDP is NP-hard.

We give a reduction from Maximum Independent Set on Cubic graphs
(MaxISC)1. We recall the definition of MaxISC:

Maximum Independent Set on Cubic graphs (MaxISC)

• Input: a cubic graph GI = (VI , EI).
• Output: a subset V ′

I ⊆ VI of maximum cardinality, such that for each
vx, vy ∈ V ′

I it holds {vx, vy} /∈ E

We build a graph G = (V,E, fC) from GI = (VI , EI) by defining a gadget
GVi for each vertex vi ∈ VI , and connecting the gadget to vertices s and t.

Given vi ∈ VI , define a gadget GVi consisting of a set Vi of 4 vertices (see
Fig. 1): Vi = {v′

i, v
′
i,j : vi ∈ VI , 1 � j � 3}.

Moreover, define the set C of colors as follows: C = {ci : vi ∈ VI} ∪ {ci,j :
{vi, vj} ∈ EI}.

We assume that, given a vertex vi, the vertices adjacent to vi (that is the
vertices in N(vi)) are ordered, i.e. if vj , vh, vz ∈ N(vi) with 1 � j � h � z, then
vj is the first vertex adjacent to vi, vh is the second and vz is the third.

We define the edges of G be means of the following paths:

– a path colored ci that consists of s, v′
i, v′

i,1, v′
i,2, v′

i,3, t, with 1 � i � |VI |
– if, according to the ordering, vj is the p-th vertex incident on vi, 1 � p � 3,

then there exists a path colored ci,j that passes through s, v′
i,p, t

First, we prove that the graph G has distance two from disjoint paths.

s

vi vi,1 vi,2 vi,3

t

ci

ci ci ci

ci,j
ci,h

ci,z

Fig. 1. Gadget GVi associated with vertex vi ∈ VI . Vertices vj , vh, vz are three vertices
of VI , with N(vi) = {vj , vh, vz} and j < h < z. vj is the first vertex adjacent to vi in
GI and thus there exists a path in G colored by ci,j that passes through s, v′

i,1, t; vh is
the second vertex adjacent to vi in GI (hence there exists a path in G colored by ci,h
that passes through s, v′

i,2, t); vz is the third vertex adjacent to vi in GI (hence there
exists a path in G colored by ci,z that passes through s, v′

i,3, t).

1 A graph is cubic when each of its vertices has degree 3.
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Lemma 2. Given a cubic graph GI , let G be the corresponding graph input of
MaxCDDP. Then G has distance two from disjoint paths.

Proof. After the removal of s and t, the paths left in the resulting graph are the
paths colored by ci, with 1 � i � |VI |, that pass through v′

i, v′
i,1, v′

i,2, v′
i,3. Since

these paths are pairwise vertex disjoint, the lemma holds. �	
Next, we prove the main results of the reduction.

Lemma 3. Let GI be a cubic graph and G be the corresponding graph input
of MaxCDDP. Given an independent set V ′

I of GI , then we can compute in
polynomial time |E| + |V ′

I | disjoint uni-color color paths in G.

Proof. Consider an independent set V ′
I ⊆ VI of GI , we define a set P of uni-color

disjoint paths as follows. P contains a path s, v′
i, v

′
i,1, v

′
i,2, v

′
i,3, t colored by ci, for

each vi ∈ V ′
I . Moreover, for each {vi, vj} ∈ EI , assume w.l.o.g. that vi ∈ VI \ V ′

I

and that vj is the h-th vertex, 1 � h � 3, adjacent to vi. Then P contains the
path s, v′

i,h, t colored by ci,j . Notice that these paths, since V ′
I is an independent

set, are by construction color disjoint. �	
Lemma 4. Let GI be a cubic graph and G be the corresponding graph input of
MaxCDDP. Given |E| + t color disjoint uni-color paths in G, we can compute
in polynomial time an independent set of size t for GI .

Proof. Consider a solution P of the instance of MaxCDDP consisting of |E|+ t
color disjoint uni-color paths. First, we can assume that P contains, for each
color ci,j , a path colored by ci,j . Assume this is not the case. Then, we can
replace a path colored by ci or a path colored by cj with a path p′ colored by
ci,j that passes through the vertices of gadget V Gi or V Gj , without decreasing
the number of path in P. Moreover, notice that by replacing a path color ci with
p′, the set P still contains color disjoint uni-color paths.

Now, starting from P, we can compute an independent set V ′
I as follows. If

P contains a path s, v′
i, v

′
i,1, v

′
i,2, v

′
i,3, t colored by ci, then vi ∈ V ′

I . Notice that
V ′

I is an independent set, since, if vi, vj , with {vi, vj} ∈ E, are both in V ′
I , this

implies that there is no ci,j-path in P, contradicting our assumption. �	
Hence, we can prove the NP-hardness of MaxCDDP on graphs at distance

two from disjoint paths.

Theorem 5. MaxCDDP is NP-hard, even if the graph G has distance two
from disjoint paths.

Proof. MaxISC is NP-hard [1]. Hence Lemmas 2, 3 and 4 imply that Max-
CDDP is NP-hard, even if the graph G has distance two from disjoint
paths. �	

The previous result implies that MaxCDDP cannot be solved in nf(k) time
unless P= NP (it is not in the class XP), where k is the distance to disjoint
paths of G, but also for “stronger” parameters like pathwidth or treewidth [9]
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3.2 A Polynomial-Time Algorithm for MaxCDP on Graphs at
Constant Distance from Disjoint Paths

In this section, we show that, contrary to MaxCDDP, MaxCDP is polynomial-
time solvable when the input graph G has distance bounded by a constant d from
a set P of disjoint paths (that is, it is in the class XP for the parameter distance
to disjoint paths).

Next, we present the algorithm. Notice that we assume that a set X ⊆ V is
given, such that after the removal of X ∪ {s, t} the resulting graph consists of a
set P of disjoint paths2. We assume that X and P are defined so that s, t /∈ X
and that no path in P contains s and t. Denote by V (P) the set of vertices that
belong to a path of P, it holds V = V (P) ∪ X ∪ {s, t}.

Since G has distance d, where d > 0 is constant, from the set of disjoint paths
P, it follows that |X| � d. Let P ′ = {p1, . . . , pb}, with 1 � i � b � d, such that
V (P ′) ⊆ V is the set of paths of an optimal solution of MaxCDP such that pi

contains a non-empty subset of X.
The algorithm computes each pi, with 1 � i � b, by iterating through sub-

paths of size at most d in P and a subset of X. More precisely, pi is computed
as follows. Each path pi contains at most d + 1 disjoint subpaths that belong
to paths in P, that are connected through a subset of at most d vertices of X.
In time O(n2(d+1)), we compute the at most d + 1 disjoint subpaths px[j1, j2] of
Px ∈ P that belong to pi; in time O(2d) we compute the subset Xi ⊆ X that
belong to each pi. Let Vi = V (pi) ∪ Xi, that is the set of vertices that belong to
pi and to subset Xi. Notice that the subsets Vi, with 1 � i � b, are computed
so that they are pairwise disjoint.

The algorithm computes in polynomial time if there exists a uni-color path
from s to t that passes through the vertices Vi. If for each i with 1 � i � b such
a path exists, then the algorithm computes the maximum number of uni-color
disjoint paths in the subgraph G′ of G induced by V ′ = V \⋃b

i=1 Vi. Notice that,
since V ′ ∩ X = ∅, it follows that, if we remove s and t from V ′, G′ consists of
a set of disjoint paths {p′

1, . . . , p
′
r}. The maximum number of uni-color disjoint

paths in the subgraph G′ can be computed in polynomial time, as shown in the
following lemma.

Lemma 6. Let G = (V,E, fc) be an edge colored graph such that V ∗ = V \{s, t}
induces a set of disjoint paths. Then MaxCDP on G can be solved in polynomial
time.

Proof. Let P = {p′
1, . . . , p

′
r} be the set of disjoint paths induced by V ∗. Since

there is no st-path in G containing a vertex of p′
i and a vertex of p′

j , with i �= j,
we compute a solution of MaxCDP independently on each path p′

i. Let Pi be
the set of uni-color st-paths that contains only vertices of p′

i. For each i with
1 � i � r, we compute a shortest uni-color st-path p that contains only vertices
of p′

i, we add it to Pi, and we remove the vertices of p from p′
i. We iterate this

procedure, until there exists no st-path that contains only vertices of p′
i.

2 Notice that, since |X| � d, X can be computed in time O(nd).
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We claim that Pi is a set of uni-color st-paths of maximum size. Consider
a shortest path p added to Pi. Let x be the vertex of p adjacent to s and y be
the vertex of p adjacent to t. Notice that each vertex in p, except for x and y,
is not connected to s or t, otherwise p would not be a shortest path between s
and t. Now, assume that there is an optimal solution Q of MaxCDP that does
not contain p and that, moreover, contains an st-path that passes through some
vertex of p, otherwise we can add p to Q and Q would not be optimal. Then
by construction, since P is a set of disjoint paths, Q must contain a path p′

that contains p as a subpath. But then we can replace p′ with p in Q, without
decreasing the size of the optimal solution. �	

Now, we give the main result of this section.

Theorem 7. MaxCDP is in XP when the distance to disjoint paths is bounded
by a constant.

Proof. Notice that for each i with 1 � i � b � d, we compute the set Vi in
time O(2dn2(d+1)); hence the d disjoint sets V1, . . . , Vb are computed in time
O(2d2

n2d(d+1)). Since the existence of a uni-color path that passes through the
vertices Vi can be computed in polynomial time and since by Lemma 6 we
compute in polynomial time the maximum number of uni-color disjoint paths in
the subgraph G′, the theorem holds. �	

4 FPT Algorithm Parameterized by Vertex Cover for
MaxCDP

In this section, we will show that MaxCDP is FPT when parameterized by the
size of the vertex cover of the input graph.

Theorem 8. MaxCDP is in FPT when parameterized by the size of the vertex
cover of the input graph.

Proof. First, consider uni-color paths of length three s, v, t, for some v ∈ V .
Uni-color path of length three are greedily added to a solution of MaxCDP.
Since any solution of MaxCDP contains at most one uni-color path that passes
through v, it follows that there exists an optimal solution of MaxCDP that
contains path s, v, t. Hence, we add such path to our solution P, and we remove
vertex v from G.

Let V ′ be a vertex cover of the resulting graph G = (V,E, fC), |V ′| = k
(which can be computed in FPT-time). Since in G there is no uni-color path of
length three connecting s and t, the following property holds. Consider a uni-
color path p of G, then p either consists of vertices in V ′ or each vertex of V \V ′

that belongs to p is adjacent in p to vertices of V ′ ∪ {s} ∪ {t}. This is true since
V ′ is a vertex cover (and thus V \ V ′ is an independent set in G).

A consequence of this property is that each uni-color path has length at most
2k. Moreover, there can be at most k uni-color paths in a solution (since each
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path must contain a vertex of V ′ and |V ′| � k). Since both the number of paths
and the length of paths are bounded by k and MaxCDP is known to be in FPT
w.r.t. the combination of these two parameters [3], the claimed result follows. �	

This algorithm does not easily extend to MaxCDDP. The main difference
between MaxCDDP and MaxCDP, when considering as parameter the vertex
cover of the input graph, is that in the latter we can safely add a uni-color path
s, v, t of length three to a solution, while in the former we are not allowed to do it.
Consider for example the uni-color path s, v, t of length three colored by c; if this
path belongs to a solution of MaxCDDP, it prevents any other uni-color path
p′ that passes through v (colored by some color c′), but also any path p′′ colored
by c (that does not pass through v) to be part of the solution. So, by adding the
path s, v, t to the solution we are computing, we may get a suboptimal solution,
since by removing p and by adding p′ and p′′, we possibly compute a larger set
of disjoint color uni-color paths.

5 A Fixed-Parameter Algorithm for l-MaxCDDP

In this section, we give a fixed-parameter algorithm for l-MaxCDDP, the length-
bounded version of MaxCDDP, parameterized by the number k of uni-color
color disjoint st-paths of a solution. Notice that MaxCDDP is W[1]-hard when
parameterized by k, as the reduction that prove the W[1]-hardness of MaxCDP
parameterized by k consists of paths having distinct colors [3].

Next, we present a parameterized algorithm based on the color coding
technique [2]. The algorithm is inspired by the one for MaxCDP [3]. However,
in this case we must combine two different labelings, one to label the vertices
that belong to a uni-color path, one to label the color associated with a uni-color
path of MaxCDDP.

First, we introduce the definition of perfect hash function on which our algo-
rithm is based. A family F of hash functions from a set U (the vertex set in
the traditional applications of color coding) to the set {l1, . . . , lk} of labels is
k-perfect if, for each subset U ′ of U with |U ′| = k, there exists a hash function
f ∈ F such that f assigns a distinct label to each element of U ′. Function f is
called a labelling function.

Let fv ∈ FV be a labelling function that assigns to each vertex v ∈ V \ {s, t}
a label fv(v) ∈ Lv = {1v, . . . , hv}, where hv = |Lv| � lk.

Consider a second labelling function fc ∈ FC that assigns to each color c ∈ C
a label fc(v) ∈ Lc = {1c, . . . , hc}, where hc = |Lc| � k.

By the property of perfect hash functions, we assume that each vertex that
belongs to a solution of MaxCDDP is assigned a distinct label by fv and that
each color d, such that there exists a uni-color path of MaxCDDP colored by
d, is associated with distinct label fc.

A simple path p in G is perfect for a set Lv of labels assigned to V if and
only if for each vertex v of p, with v /∈ {s, t}, fv(v) ∈ Lv, and for each pair of
distinct vertices u, v of p, fv(u) �= fv(v). A set {p1, . . . , pk} of uni-color paths is
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perfect for the set Lv and Lc of labels if and only if: (1) there exists a partition
{Lv,1, . . . , Lv,k} of Lv such that each pi is perfect for Li; (2) each path pi, with
1 � i � k, is colored by c ∈ C associated with a distinct label in Lc. We combine
two dynamic-programming recurrences to compute, given the labelling functions
fv and fc, whether there exists a set of perfect uni-color paths in G.

First, consider the function S[L′
v, u, λ], with L′

v ⊆ Lv, u ∈ V and λ ∈ C.
S[L′

v, u, λ] = 1 if and only if there exists a path from s to vertex u �= t, such
that the path is perfect for L′

v and p is colored by λ.
We consider a second function Π[L′

v,M, z], with L′
v ⊆ Lv and M ⊆ Lc,

0 � z � k. Π[L′
v,M, z] = 1 if and only if there exist a set of labels L′

v ⊆ Lv and
a set of labels M ⊆ Lc, such that there exists a set of z uni-color paths perfect
for L′

v and M .
S[L′

v, u, λ] is defined as follows (we recall that � represents the disjoint union
operator). In the base case, when u = s, S[L′

v, u, λ] = 1 if L′
v = ∅, otherwise

(when L′
v �= ∅), S[L′

v, u, λ] = 0.
When u �= s:

S[L′
v, u, λ] = max

w∈N(u)

{
S[L′′

v , w, λ] | L′
v = L′′

v � {fv(u)} ∧ {w, u} is colored by λ}

Next, we give the recurrence, Π[L′
v,M, z]. In the base case, that is when

z = 0, then Π[L′
v,M, 0] = 1 if L′

v = ∅ and M = ∅, else Π[L′
v,M, 0] = 0. Recall

that l is the bound on the length of each path, L′
v ⊆ Lv, M ⊆ C and 0 � z � k,

Π[L′
v,M, z] is defined as follows:

Π[L′
v,M, z] =

⎧
⎪⎨

⎪⎩

max
{
Π[L′′

v ,M \ {fc(λ)}, z − 1] ∧ S[L∗
v, u, λ] |

L′
v = L′′

v � L∗
v ∧ |L∗| � l − 1 ∧ λ ∈ C ∧ fc(λ) ∈ M ∧

{u, t} ∈ E is colored by λ
}

(1)
Next, we prove the correctness of the two recurrences.

Lemma 9. Given a labelling fv of the vertices of G, a color λ ∈ C, a vertex u
and a set L′

v ⊆ Lv, there exists a simple path p in G from s to u perfect for L′
v

if and only if S[L′
v, u, λ] = 1.

Proof. We prove the lemma by induction on the length of the path p. First, we
consider the base case, that is u = s. Since s is not associated with a label in
Lv, it holds S[L′

v, u, λ] = 1 if and only if L′
v = ∅.

Consider now the general case and assume that there exists a path p in G
perfect for L′

v such that p is colored by λ. Consider the last vertex u of p, and
let w be the vertex adjacent to u in p. By induction hypothesis, it follows that
S[L′′

v , w, λ] = 1, where L′
v = L′′

v � {fv(u)}. By the definition of the recurrence,
then S[L′

v, u, λ] = 1.
Assume that S[L′

v, u, λ] = 1. By the definition of the recurrence it holds that
S[L′′

v , w, λ] = 1, where L′
v = L′′

v � {fv(u)} and there is an edge {u,w} ∈ E
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colored by λ. By induction hypothesis, since S[L′′
v , w, λ] = 1, there exists a path

p′ from s to w perfect for L′′
v such that p′ is colored by λ. Since {u,w} ∈ E is

colored by λ, it follows that there exists a simple path p in G from s to u perfect
for L′

v. �	
Lemma 10. Given a labelling fv of the vertices of G and a labelling fc of the
set C of colors, a set L′

v ⊆ Lv, a set M ⊆ Lc, and integer z with 0 � z � k,
there exists a set {p1, . . . , pz} of uni-color paths which is perfect for L′

v and M
if and only if Π[L′

v,M, z] = 1.

Proof. We prove the lemma by induction on the number of uni-color paths. First,
we consider the base case, that is z = 0. Then there is no uni-color path perfect
for L′

v = ∅ and M = ∅ if and only if Π[∅, ∅, 0] = 1.
Consider now that there exist z disjoint color uni-color paths. Consider one of

such paths, denoted by p, which is colored by λ and whose vertices are associated
with set of labels L∗

v and such that the vertex of p adjacent to t is u, hence
{u, t} ∈ E is colored by λ. Then, by Lemma 9 S[L∗

v, u, λ] = 1. Moreover, by
induction hypothesis it holds Π[L′′

v ,M \ {fc(λ)}, z − 1] = 1, where L′
v = L∗

v �
L′′

v and fc(λ) ∈ M . Hence, by the definition of the recurrence for Π, it holds
Π[L′

v,M, z] = 1.
Consider the case that Π[L′

v,M, z] = 1. By the definition of function Π, it
follows that there exists a color λ ∈ C, with fc(λ) ∈ M , and a set of labels
L∗

v ⊆ Lv, such that Π[L′′
v ,M \ {fc(λ)}, z − 1] = 1, where L′

v = L′′
v � L∗

v, and
S[L∗

v, u, λ] = 1. By induction hypothesis, since Π[L′′
v ,M \ {fc(λ)}, z − 1] = 1,

there exists a set P ′ of z − 1 paths perfect for the sets L′′
V and M \ {fc(λ)}.

By Lemma 9 there exists a path p′ from s to u colorful for L′′
v and that has

color λ. Moreover, since Π[L′
v,M, z] = 1, {u, t} ∈ E is colored by λ. By the

property of labelling fc, no path of P ′ has label fc(λ), hence P ′ ∪p is perfect for
L′

v and M . �	
We can now state the main result.

Theorem 11. l-MaxCDDP can be solved in time 2O(lk)poly(n).

Proof. An optimal solution of l-MaxCDDP consisting of k color disjoint paths
exists if and only if Π[Lv,M, k] = 1. The correctness of the recurrence to com-
pute Π follows from Lemma 10. Now, we discuss the time complexity to com-
pute Π[L′

v,M, z] and S[L′
v, u, λ]. First, consider S[L′

v, u, λ]. It consists of 2lknq
entries and each entry can be computed in time O(n), as we consider each vertex
w ∈ N(u).

Now, consider Π[L′
v,M, z]. It consists of 2k(l+1)k entries. In order to compute

Π[L′
v,M, z], at most 2klk entries must be considered, since Π[L∗

v,M\{fc(v)}, z−
1] is considered, where we have 2kl subsets L∗

v ⊆ L′
v and k labels fc(v). Given

two labelling functions fv and fc, the time complexity to compute the entries
Π[L′

v,M, z] is O(2k(2l+1)kn). By the property of color-coding [2], a function
fv ∈ Fv and a function fv ∈ Fv can be computed in time 2O(lk)poly(n) and
2O(k)poly(n), respectively, hence in time 2O(lk)poly(n). �	
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6 FPT Inapproximation

Since MaxCDP and MaxCDDP are hard to approximate in poly-time and
do not admit fixed-parameterized algorithm for parameter number of paths,
it is worth to investigate approximation in FPT time, i.e. find approximate
solution with additional time. Unfortunately, in this section, we show that both
MaxCDP and MaxCDDP do not admit an FPT cost ρ-approximation, for
any function ρ of the optimum, unless FPT = W[1]. We will show the result by
giving a reduction from the Threshold Set problem. Marx [11] showed that
the Threshold Set problem does not admit a fpt cost ρ-approximation, for
any function ρ of the optimum, unless FPT = W[1].

First, we introduce the definition of the Threshold Set problem.

Threshold Set

• Input: a set U of elements, a collection S = {S1, . . . , Sq} of subsets of U
and a positive integer weight w(Si) for each Si ∈ S, with 1 � i � q.
• Output: a set T ⊆ U of maximum cardinality such that |T ∩Si| � w(Si) for
every Si ∈ S.

The cost of a solution of Threshold Set is denoted by |T |. Notice that
this problem can be seen as a generalization of the Independent Set problem;
indeed, for a graph G = (V,E), we can define U = V , S = E and w(S) = 1 for
every set S ∈ S.

We will reduce Threshold Set to MaxCDP in polynomial time such that
there is a “one-to-one” correspondence between the solutions of the two problem,
therefore the inapproximability result transfers to MaxCDP, and then to Max-
CDDP. The reduction is inspired by the one in [3], that shows inapproximability
in polynomial time and W[1]-hardness of MaxCDP.

First, we design the reduction for the MaxCDP problem. Notice that we
assume that we are given an ordering over the sets in S (i.e. Si < Sj , i < j).
Consider an instance (U,S, w) of Threshold Set, we define a corresponding
instance (G = (V,E, fC), s, t) of MaxCDP. The set V of vertices is defined as
follows:

V = {s, t} ∪ {si|i ∈ [|U |]} ∪ {Sj
i |i ∈ [|S|], 1 � j � w(Si)}

The set of colors C is defined as follows: C = {ci : i ∈ U}.
Now, we define the set E of edges.

– for all i ∈ [|U |], define an edge {s, si} colored by ci and an edge {si, S
j
q} colored

by ci, for all 1 � j � w(Sq), where q is the smallest index of a set Sq ∈ S such
that i ∈ Sq,

– from each Sj
q , define an edge {Sj

q , Sj′
q′ } colored by ci, for all 1 � j′ � w(Sq′),

such that i ∈ Sq, i ∈ Sq′ , q′ > q and, for each q < l < q′, it holds i /∈ Sl,
– from each Sj

q , define an edge {Sj
q , t} colored by ci, where i ∈ Sq and for each

q′ > q with Sq′ ∈ S, i /∈ Sq′ .
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Fig. 2. Sample construction of an instance of MaxCDP from an instance of Thresh-
old Set with S = {{1, 2, 3}, {1, 4}, {2, 3, 4}}, w(S1) = 2, w(S2) = 1, w(S3) = 2.
A solution for this instance of Threshold Set could be T ′ = {1, 2}, and we drawn
with dark edges the corresponding disjoint paths for MaxCDP.

See Fig. 2 for an example. Now, we prove the main properties of the reduction.

Lemma 12. Given an instance (U,S, w) of Threshold Set, let (G =
(V,E, fC), s, t) be the corresponding instance of MaxCDP. Then, given a solu-
tion T ′ of Threshold Set on instance (U,S, w), we can compute in polynomial
time a set of |T ′| disjoint uni-color paths in (G = (V,E, fC), s, t).

Proof. Consider a solution T ′ of Threshold Set on instance (U,S, w), and
define a set P of |T ′| disjoint uni-color paths in (G = (V,E, fC), s, t) as follows.
For each i ∈ T ′, define a uni-color path p colored by ci that starts in s, passes
through si, and for each Sq ∈ S, if i is the j-th element of T ′ in Sq, 1 � j � w(Sq),
passes through vertex Sj

q . It follows that the path defined are disjoints, as at most
one element can be the j-th element of T ′ in Sq and |T ′ ∩ Sq| � w(Sq). �	
Lemma 13. Given an instance (U,S, w) of Threshold Set, let (G =
(V,E, fC), s, t) be the corresponding instance of MaxCDP. Then, given a set of
q disjoint uni-color paths in (G = (V,E, fC), s, t), we can compute in polynomial
time a solution of size q of Threshold Set on instance (U,S, w).

Proof. Consider a set P of disjoint uni-color paths in (G = (V,E, fC), s, t). First,
we claim that each path in P has a distinct color. Indeed, the paths in P must
be disjoint and, by construction, for each color ci each path must pass trough
vertex si.

Now, starting from P , we define a solution T ′ of of Threshold Set on
instance (U,S, w). For each path p ∈ P colored by ci, elements ui belongs to T ′.
We show that T ′ is a a solution of Threshold Set on instance (U,S, w).

Consider a set Si ∈ S, then there exists a most w(Si) elements in T ′. Indeed,
notice that, by construction, there exists at most w(Si) vertices Sj

i , hence by
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construction there exist at most w(Si) paths in P that passes through vertices
of Sj

i , hence at most w(Si) elements in T ′ belong to Si. As a consequence T ′ is
a feasible solution of Threshold Set on instance (U, S,w). By construction,
|T ′| = q. �	
Theorem 14. MaxCDP and MaxCDDP cannot be approximated in FPT-
time within any function ρ of the optimum, unless FPT=W[1].

Proof. The theorem holds for MaxCDP since Threshold Set cannot be
approximated within any function ρ of the optimum, unless FPT = W[1] [11],
and from the properties of the polynomial time reduction proved in Lemmas 12
and 13.

For MaxCDDP, it holds from the fact that in the described reduction all
the paths have a distinct color. �	

7 Conclusion

In this paper, we continued the complexity analysis of MaxCDP and deepen
the hardness analysis according to the structure of the input graph. We also
introduced a new variant, called MaxCDDP, asking for a solution with vertex
and disjoint colors.

In the future, we would like to further deepen the analysis on the the struc-
tural complexity of MaxCDP and MaxCDDP. For example is MaxCDP in
XP when the parameter if the size of the Feedback Vertex Set of the input graph?
Is MaxCDP FPT when the parameter if the distance to disjoint paths of the
input graph? We would also like to improve the running time of our algorithms
and to match them with some lower bounds under widely believed assumptions
in order to have a fine-grained complexity analysis of these problems.
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Abstract. This paper concerns weighted triangle covering in undirected
graph G = (V, E), where a nonnegative integral vector w = (w(e) : e ∈
E)T gives weights of edges. A subset S of E is a triangle cover in G if S
intersects every triangle of G. The weight of a triangle cover is the sum
of w(e) over all edges e in it. The characteristic vector x of each triangle
cover in G is an integral solution of the linear system

π : Ax ≥ 1,x ≥ 0,

where A is the triangle-edge incidence matrix of G. System π is totally
dual integral if max{1Ty : ATy ≤ w,y ≥ 0} has an integral optimum
solution y for each integral vector w ∈ ZE

+ for which the maximum
is finite. The total dual integrality of π implies the nice combinatorial
min-max relation that the minimum weight of a triangle cover equals
the maximize size of a triangle packing, i.e., a collection of triangles in
G (repetitions allowed) such that each edge e is contained in at most
w(e) of them. In this paper, we obtain graphical properties that are
necessary for the total dual integrality of system π, as well as those for the
(stronger) total unimodularity of matrix A and the (weaker) integrality
of polyhedron {x : Ax ≥ 1,x ≥ 0}. These necessary conditions are
shown to be sufficient when restricted to planar graphs. We prove that
the three notions of integrality coincide, and are commonly characterized
by excluding odd pseudo-wheels from the planar graphs.

Keywords: Triangle packing and covering · Totally dual integral
system · Totally unimodular matrix · Integral polyhedron · Planar
graph · Hypergraph

1 Introduction

Covering and packing triangles in graphs has been extensively studied for decades
in graph theory [6,7,14] and optimization theory [2,9]. In this paper, we study the
problem from both a polyhedral perspective and a graphical persective – charac-
terizing polyhedral integralities of triangle covering and packing with graphical
structures.
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Graphs considered in this paper are undirected, simple and finite. A weighted
graph (G,w) consists of a graph G (with vertex set V (G) and edge set E(G))
and an edge weight (function) w ∈ Z

E(G)
+ . The weight of any edge subset S

is w(S) =
∑

e∈S w(e). By a triangle cover of G we mean an edge subset S
(⊆ E(G)) whose removal from G leaves a triangle-free graph. Let τw(G) denote
the minimum weight of a triangle cover of (G,w). By a triangle packing of (G,w)
we mean a collection of triangles in G (repetition allowed) such that each edge
e ∈ E(G) is contained in at most w(e) of them. Let νw(G) denote the maximum
size of a triangle packing of (G,w). In case of w = 1, we write τw(G) and νw(G)
as τ(G) and ν(G), respectively.

Tuza’s Conjecture and Variants. A vast literature on triangle covering and
packing concerns Tuza’s conjecture [14] that τ(G) ≤ 2ν(G) for all graphs G
and its weighted version [2] that τw(G) ≤ 2νw(G) for all graphs G and all
w ∈ Z

E(G)
+ . Both conjectures remain wide open. The best known general results

τ(G) ≤ 2.87ν(G) and τw(G) ≤ 2.92νw(G) are due to Haxell [7] and Chapuy
et al. [2], respectively. Many researchers have pursued the conjectures by showing
the conjectured inequalities hold for certain special class of graphs. In particu-
lar, Tuza [15] and Chapuy et al. [2] confirmed their own conjectures for planar
graphs. Haxell et al. [6] proved the stronger inequality τ(G) ≤ 1.5ν(G) if G is
planar and K4-free, where K4 denotes the complete graph on 4 vertices.

Along a different line, Lakshmanan et al. [10] proved that the equation
τ(G) = ν(G) holds whenever G is (K4, gem)-free or G’s triangle graph is
odd-hole-free. A natural question arises for the weighted version: When does
τw(G) = νw(G) hold? This question is closely related to the notion of total dual
integrality from the theory of polyhedral combinatorics.

Total Dual Integrality. A rational system {Ax ≥ b,x ≥ 0} is called totally dual
integral (TDI) if the maximum in the LP duality equation

min{cTx : Ax ≥ b,x ≥ 0} = max{bTy : ATy ≤ c,y ≥ 0}
has an integral optimum solution y for each integral vector c for which the
maximum is finite. The model of TDI systems introduced by Edmonds and
Galies [5] plays a crucial role in combinatorial optimization and serves as
a general framework for establishing many important combinatorial min-max
relations [3,4,11,12]. Schrijver and Seymour [13] derived the following useful
tool for proving total dual integrality.

Theorem 1 [13]. The rational system Ax ≥ b,x ≥ 0 is TDI, if and only if

max{bTy : ATy ≤ c,y ≥ 0, 2y is integral}
has an integral optimum solution y for each integral vector c for which the max-
imum is finite.

Edmonds and Giles [5] showed that total dual integrality implies primal inte-
grality as specified by the following theorem.
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Theorem 2 [5]. If rational system Ax ≥ b,x ≥ 0 is TDI and b is integral, then
the polyhedron {x : Ax ≥ b,x ≥ 0} is integral, i.e., min{cTx : Ax ≥ b,x ≥ 0}
is attained by an integral vector for each integral vector c for which the minimum
is finite.

Given a weighted graph (G,w), let Λ(G) denote the set of triangles in G.
To see the relation between the equation τw(G) = νw(G) and TDI systems, let
us consider the hypergraph HG = (E(G), Λ(G)) of triangles in G. We assume
Λ(G) �= ∅ to avoid triviality. The edge-vertex incidence matrix AG of HG is
exactly the triangle-edge incidence matrix of G, whose rows and columns are
indexed by triangles and edges of G, respectively, such that for any � ∈ Λ(G) and
e ∈ E(G), A�,e = 1 if e ∈ � and A�,e = 0 otherwise. In standard terminologies
from the theory of packing and covering [4,12], we write

τw(HG) = min{wTx : AGx ≥ 1,x ∈ Z
E(G)
+ }, (1.1)

νw(HG) = max{1Ty : AT
Gy ≤ w,y ∈ Z

Λ(G)
+ }, (1.2)

τ∗
w(HG) = min{wTx : AGx ≥ 1,x ≥ 0}, (1.3)

ν∗
w(HG) = max{1Ty : AT

Gy ≤ w,y ≥ 0}. (1.4)

Combinatorially, each feasible 0–1 solution x of (1.1) is the characteristic vector
of a triangle cover of G, and vice versa. Thus such an x is also referred to as
a triangle cover (or an integral triangle cover to emphasis the integrality) of G.
Moreover the minimality of τw(HG) implies that

τw(HG) = τw(G).

Similarly, each feasible solution y of (1.2) is regarded as a triangle packing (or
an integral triangle packing) which contains, for each � ∈ Λ(G), exactly y(�)
copies of �. In particular,

νw(HG) = νw(G).

Usually, feasible solutions of (1.3) and (1.4) are called fractional triangle covers
and fractional triangle packings of G, respectively. Writing τ∗

w(G) = τ∗
w(HG) and

ν∗
w(G) = ν∗

w(HG), the LP-duality theorem gives

τw(G) ≥ τ∗
w(G) = ν∗

w(G) ≥ νw(G).

It is well known (see e.g., page 1397 of [12]) that

τw(G) = νw(G) holds for eachw ∈ Z
E(G)
+ if and only ifAGx ≥ 1,x ≥ 0 is TDI.

Total Unimodularity. A matrix A is totally unimodular (TUM) if each subde-
terminant of A is 0, 1 or −1. Total unimodular matrices often imply stronger
integrality than TDI systems (see e.g., [8]).

Theorem 3. An integral matrix A is totally unimodular if and only if the system
Ax ≥ b,x ≥ 0 is TDI for each vector b.
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The 0–1 TUM matrices are connected to balanced hypergraphs. Let H =
(V, E) be a hypergraph with vertex set V and edge set E . Let k ≥ 2 be an
integer. In H, a cycle of length k is a sequence v1e1v2e2 . . . vkekv1 such that
v1, . . . , vk ∈ V are distinct, e1, . . . , ek ∈ E are distinct, and {vi, vi+1} ⊆ ei for
each i = 1, . . . , k, where vk+1 = v1. Hypergraph H is called balanced if every odd
cycle, i.e., cycle of odd length, has an edge that contains at least three vertices
of the cycle.

Theorem 4 (Berge [1]). Let H be a hypergraph such that every edge consists
of at most three vertices. Then the vertex-edge incidence matrix of H is TUM if
and only if H is balanced.

Our Results. Let B, M, and I be the sets of graphs G such that the triangle-
edge incidence matrices AG are TUM, systems AGx ≥ 1,x ≥ 0 are TDI, and
polyhedra {x|AGx ≥ 1,x ≥ 0} are integral, respectively. In terminologies of
hypergraph theory (see e.g., Part VIII of [12]),

G ∈ B ⇔ HG is balanced (by Theorem 4because HG is 3-uniform).

G ∈ M ⇔ HG is Mengerian, i.e., τw(G) = νw(G) holds for each w ∈ Z
E(G)
+ .

G ∈ I ⇔ HG is ideal, i.e., τw(G) = τ∗
w(G) holds for each w ∈ Z

E(G)
+ .

Recalling Theorems 2 and 3, given any graph G, the total modularity (balanced-
ness): G ∈ B implies the total dual integrality (Mengerian property): G ∈ M,
while G ∈ M implies primal integrality: G ∈ I. It follows that

B ⊆ M ⊆ I. (1.5)

In Sect. 2, first we strengthen (1.5) to B � M � I (Theorem 5). Then we
obtain necessary conditions for a graph to be a member of I (Lemma 4) or a
minimal graph outside B (Theorem 6 and its corollaries) in terms of the pattern
of the so-called odd triangle-cycles (Definition 1). Building on these conditions,
we establish in Sect. 3 the following characterization for total dual integrality of
covering triangle in planar graphs G (Theorem 9):

G ∈ M ⇔ G ∈ B ⇔ G ∈ I is K4-free ⇔ G is K4-free & odd pseudo-wheel-free,

where odd pseudo-wheels correspond to odd induced cycles in the triangle graph
of G (Definition 2). We conclude in Sect. 4 with remarks on characterizing general
graphs G ∈ M and general graphs G ∈ I. For easy reference, Appendix gives a
list of mathematical symbols used in the paper.

2 General Graphs

In this section, we study TUM, TDI and integral properties for covering and
packing triangle in general graphs. We often identify a graph G with its edge set
E(G). The following definition is crucial to our discussions.
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Definition 1. A triangle-cycle in G is a sequence C = e1�1e2 · · · ek�ke1 with
k ≥ 3 such that e1, · · · , ek are distinct edges, �1, · · · ,�k are distinct triangles,
and {ei, ei+1} ⊆ �i for each i ∈ {1, 2, · · · , k}, where ek+1 = e1. In ∪k

i=1�i, the
edges e1, e2, . . . , ek are join edges and other edges are non-join edges.

Let C = e1�1e2 · · · ek�ke1 be a triangle-cycle. We call C odd if its length k
is odd. By abusing notations, we identify C with the graph ∪k

i=1�i, whose edge
set we denote as E(C). We write JC = {e1, · · · , ek} for the set of join edges, and
NC = E(C)\JC for the set of non-join edges. Let TC denote the set of triangles
in C. A triangle in TC is basic if it belongs to BC = {�1, · · · ,�k}. Two basic
triangles �i and �j are consecutive if |i − j| ∈ {1, k − 1}. Triangles in TC can
be classified into four categories:

TC,i = {� ∈ TC : |� ∩ JC | = i}, i = 0, 1, 2, 3.

It is clear from Definition 1 that BC ⊆ TC,2 ∪ TC,3. We will establish a
strengthening B � M � I of the inclusion relations (1.5). The proof needs the
following equivalence implied by hypergraph theory.

Lemma 1. Let G be a graph. Then G ∈ B if and only if every odd triangle-cycle
C in G (if any) contains a basic triangle that belongs to TC,3;

Proof. Recall that G ∈ B if and only if hypergraph HG = (E(G), Λ(G)) is
balanced. By definition, the balance condition amounts to saying that every odd
triangle-cycle C in G (if any) has a triangle � which contains at least 3 joins.
It must be the case that � is formed by exactly 3 joins, giving � ∈ TC,3. �

Observe that the balanced, Mengerian, and integral properties are all closed
under taking subgraphs (see, e.g., Theorems 78.2 and 79.1 of [12]).

Lemma 2. Let G be a graph and H a subgraph of G. If G ∈ X for some X ∈
{B,M,I}, then H ∈ X. �
Lemma 3. K4 ∈ I \ M.

Proof. Note that K4 �∈ M follows from the fact that τ(K4) = 2 and ν(K4) = 1.
To see K4 = (V,E) ∈ I, for any x ∈ QE , let F (x) = {e ∈ E : 0 < x(e) < 1}
consist of “fractional” edges w.r.t x. Taking arbitrary w ∈ ZE

+, we consider an
optimal fractional triangle cover x∗ for (K4,w) such that

F (x∗) is as small as possible.

We are done by showing that x∗ is integral. Suppose it were not the case. The
optimality says that wTx∗ = τ∗

w(K4) and x∗ ≤ 1. Thus F (x∗) �= ∅.
If x∗(e) = 1 for some e ∈ E, then x∗|E\{e} is a fractional triangle cover for

K4 \ e such that (w|E\{e})Tx∗|E\{e} = τ∗
w(K4) − w(e). Since K4 \ e ∈ B ⊆ I,

there is a triangle cover S of K4\e with minimum weight w(S) ≤ τ∗
w(K4)−w(e).

So S∪{e} is a triangle cover of K4 with weight w(S)+w(e) ≤ τ∗
w(K4), and hence

the incidence vector x ∈ {0, 1}E of S ∪{e} is an optimal fractional triangle cover
for (K4,w) with F (x) = ∅ � F (x∗) contradicting the minimality of F (x∗).
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Therefore x∗(e) < 1 for all e ∈ E, and AK4x
∗ ≥ 1 enforces that every

triangle of K4 intersects F (x∗) with at least 2 edges. Thus F (x∗) contains four
edges e1, e2, e3, e4 that induce a cycle of K4, where {e1, e3} and {e2, e4} are
two matchings of K4. Without loss of generality we may assume that x∗(e1) =
min4

i=1 x∗(ei). Let x ∈ QE
+ be defined by x(ei) = x∗(ei) + (−1)ix∗(e1) for i =

1, 2, 3, 4 and x(e) = x∗(e) for e ∈ E \ {e1, e2, e3, e4}. It is straightforward that

wTx = wTx∗ andF (x) ⊆ F (x∗) \ {e1}.

Since every triangle of K4 intersects each of {e1, e3} and {e2, e4} with exactly
one edge, we have AK4x = AK4x

∗ ≥ 1, which along with wTx = wTx∗ says
that x ∈ {0, 1}E is an optimal fractional triangle cover for (K4,w). However,
F (x) � F (x∗) gives a contradiction. �
Theorem 5. B � M � I.

Proof. In view of Lemma 3, it suffices to show that the graph G = (V,E) depicted
in Fig. 1 belongs to M \B. Note that G = e1�1e2 · · · e7�7e1 is an odd triangle-
cycle of length 7, where BG = {�1,�2, . . . ,�7} and Λ = Λ(G) = TG =
{�1, . . . ,�7,�8}.

Fig. 1. Graph G ∈ M \ B.

It is routine to check that none of G’s basic triangles �1,�2, . . . ,�7 belongs
to TG,3. Hence Lemma 1 asserts that G �∈ B. To prove G ∈ M, by Theorem 1, it
suffices to prove that, for any w ∈ ZE

+ and an optimal solution y∗ of max{1Ty :
AT

Gy ≤ w,y ≥ 0, 2y ∈ ZΛ
+}, there is an integral triangle packing z ∈ ZΛ

+ of
(G,w) such that 1T z ≥ 1Ty∗.

Let y′ ∈ {0, 1/2}Λ be defined by y′(�) = y∗(�) − �y∗(�)� for each � ∈ Λ,
and let w′ ∈ ZE

+ be defined by w′(e) = w(e)−∑
�∈Λ:e∈��y(�)� for each e ∈ E.

Then y′ is a fractional triangle packing of (G,w′) such that

1Ty′ = 1Ty∗ −
∑

�∈Λ
y∗(�).

If there is an integral packing z′ of (G,w′) such that 1T z′ ≥ 1Ty′, then z
with z(�) = �y∗(�)� + z′(�) for each � ∈ Λ is an integral packing of (G,w)
satisfying 1T z ≥ ∑

�∈Λ y∗(�) + 1Ty′ = 1Ty∗ as desired. We next show such
a z′ does exist by distinguishing two cases for integral weight w′.
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In case of w′(e) ≥ 1 for each e ∈ E, we observe that z′ with z′(�i) = 1 for
i = 1, 3, 6, 8 and z′(�i) = 0 for i = 2, 4, 5, 7 is a triangle packing of (G,w′) with
1T z′ = 4 = |Λ|/2 ≥ 1Ty′.

In case of w′(e) = 0 for some e ∈ G, the restriction y′′ of y′ to Λ(G \ e) is a
fractional triangle packing of (G\e,w′|E\e) with 1Ty′′ = 1Ty′. Using Lemma 1,
it is routine to check that G \ e ∈ B, which along with B ⊆ M gives an integral
triangle packing z′′ of (G\e,w′|E\e) with 1T z′′ ≥ 1Ty′′. For each triangle � ∈ Λ,
set z′(�) to 0 if e ∈ � and to z′′(�) otherwise. It follows that z′ ∈ ZΛ

+ is an
integral triangle packing of (G,w′) with 1T z′ = 1T z′′ ≥ 1Ty′ as desired. �
Lemma 4. If C is an odd triangle-cycle of graph G ∈ I, then C contains either
a basic triangle belonging to TC,3 or a non-basic triangle belonging to TC,0∪TC,1.

Proof. By contradiction, suppose that graph G ∈ I and its odd triangle-cycle C
of length 2k + 1 form a counterexample, i.e., BC ⊆ TC,2 and TC \ BC ⊆
TC,2∪TC,3. By Observation 2, we have C ∈ I. Let w ∈ {1,∞}E(C) be defined by
w(e) = 1 for all e ∈ JC and w(e) = ∞ for all e ∈ NC . On one hand, BC ⊆ TC,2

implies that each join edge of C exactly belongs to two basic triangles. To break
all 2k + 1 basic triangles, we have to delete at least k + 1 join edges unless we
use some non-join edge (with infinity weight). Thus τw(C) ≥ k + 1.

On the other hand, note that every triangle of C contains at least two join
edges in JC . Thus x ∈ {1/2, 0}E(C) with x(e) = 1/2 if e ∈ JC and x(e) = 0
otherwise is a fractional triangle cover of C. This along with |JC | = 2k + 1 and
w|JC

= 1 shows that τ∗
w(C) ≤ |JC |/2 = k + 1/2. However, τw(C) > τ∗

w(C)
contradicts C ∈ I. �

The concept of triangle graph provides an efficient tool for studying triangle
covering. Suppose that G is a graph with at least a triangle. Its triangle graph,
denoted as T (G), is a graph whose vertices are named as triangles of G such that
�i�j is an edge in T (G) if and only if �i and �j are distinct triangles in G
which share a common edge. For example, the graph G in Fig. 1 has its triangle
graph as depicted in Fig. 2.

Fig. 2. The triangle graph T (G) of G in Fig. 1.
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A graph G �∈ B is called minimal if every proper subgraph H of G belongs
to B. Let N denote the set of these minimal graphs.

Theorem 6. If G ∈ N, then G is either K4 or an odd triangle-cycle with length
at least 5 such that BG ⊆ TG,2 and TG \ BG ⊆ TG,1 ∪ TG,3.

Proof. Clearly, K4 ∈ N. So we consider G �= K4. Since G �∈ B is minimal, G is
K4-free, and by Lemma 1, G = e1�1e2 · · · ek�ke1 is an odd triangle-cycle such
that BG ⊆ TC,2, where k ≥ 5 is odd. Observe that triangle-cycle G corresponds
to a cycle C̃ = ẽ1�1ẽ2 · · · ẽk�kẽ1 in triangle graph T (G). We first present a
series of useful properties.

Property 1. If �i�j is a chord of C̃, then the common edge of �i and �j is an
non-join edge.

Since {�i,�j} ⊆ TG,2 and they are not consecutive in G, �i ∩JG and �j ∩JG

are disjoint. �

Property 2. If both �i�j and �j�k are chords of C̃, then �i,�j ,�k share the
same non-join edge in G, and �i�k is a chord of C̃.

It follows from Property 1 that each of �i,�j ,�k has only one non-join edge.�

Property 3. If �i1 ,�i2 , . . . ,�it
are all basic triangles in BG that contain

e ∈ NG, where t ≥ 2 and i1 < i2 < · · · < it, then for each j = 1, 2, . . . , t,
|{�ij

,�ij+1 . . . ,�ij+1−1,�ij+1}| is even (where it+1 = i1 in case of j = t).

Otherwise, Cj = e�ij
eij+1�ij+1 · · · �ij+1−1eij+1�ij+1e is an odd triangle-cycle

of G for some 1 ≤ j ≤ t. Observe that every basic triangle of Cj belongs to TCj ,2.
Thus Lemma 1 says that Cj �∈ B, which along with the minimality of G ∈ N
enforces that Cj = G. However this is absurd because Cj does not contain the
join edge eij+2 ∈ JG of G. �

Property 4. For each e ∈ NG, there are exactly an odd number of basic triangles
in BG that contain e.

Since G is the union of its basic triangles, e is contained by some basic triangle
of G. The property is instant from Property 3 and the odd length k of the
triangle-cycle G. �

We now proceed to prove TG\BG ⊆ TG,1∪TG,3. Suppose for a contradiction
that there exists � ∈ TG\BG with � ∈ TG,0. Then � consists of three non-join
edges p, q, r ∈ NG. Let

Bp = {� ∈ BG : p ∈ �},Bq = {� ∈ BG : q ∈ �},Br = {� ∈ BG : r ∈ �}

denote the sets of basic triangles (of G) that contain p, q, r, respectively. Notice
from Property 4 that

|Bp|, |Bq| and |Br| are odd numbers.
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We distinguish between two cases depending on whether all of Bp,Bq,Br are
singletons or not.

Case 1. |Bp| = |Bq| = |Br| = 1. We may assume without loss of generality that
Bj = {�ij

} for j ∈ {p, q, r} and ip < iq < ir. Note that

Cpq = p�ip
eip+1�ip+1 · · · eiq

�iq
q�p,

Cqr = q�iq
eiq+1�iq+1 · · · eir

�ir
r�q,

Crp = r�ir
eir+1�ir+1 · · · eip

�ip
p�r

are triangle-cycles of G whose basic triangles each contain exactly two join edges.
Observe that the sum of lengths of Cpq, Cqr, Crp equals k + 6, which is odd. So
at least one of Cpq, Cqr, Crp, say Cpq, has an odd length. It follows from BCpq

⊆
TCpq,2 and Lemma 1 that Cpq �∈ B. Now the minimality of G ∈ N enforces
Cpq = G. Hence the join edge eiq+2 ∈ JG must be one of eip

, eip+1, . . . , eiq−1,
from which we deduce that eiq+2 = eip

(and iq + 1 = ir). As eiq+2 has a
common vertex with eiq

, it follows that eip
, eiq+1 and r form a triangle, and

p, q, r, eip
, eip+1, eiq+1 induce a K4, contradicting the fact that G is K4-free.

Case 2. max{|Bp|, |Bq|, |Br|} ≥ 3. Suppose without loss of generality that Bp =
{�i1 , · · · ,�it

} where t ≥ 3 and i1 < i2 · · · < it. Setting it+1 = i1, since Bp ∩
Bq = ∅, we have |Bq| =

∑t
j=1 |{�ij

,�ij+1 · · · ,�ij+1} ∩ Bq|. Recall that |Bq|
is odd. So there exists j ∈ {1, . . . , t} such that {�ij

,�ij+1 · · · ,�ij+1} ∩ Bq

consists of
an odd number s of basic triangles �h1 , . . . ,�hs

,

where ij < h1 < · · · < hs < ij+1. By Property 3, |{�ij
,�ij+1 . . . ,�ij+1}| is

even, and |{�h�
,�h�+1, . . . ,�h�+1}| is even for each � ∈ {1, . . . , s − 1}. Note

that

|{�ij
,�ij+1 . . . ,�ij+1}|

= |{�ij
,�ij+1 . . . ,�h1}| +

(
s−1∑

�=1

|{�h�
,�h�+1, . . . ,�h�+1}|

)

+|{�hs
,�hs+1 . . . ,�ij+1}| − s

≡ (h1 − ij) + (ij+1 − hs) − s (mod 2)

Since s is odd, either h1 − ij or ij+1 − hs is odd. Suppose by symmetry that
h1 − ij is odd. It follows that C = p�ij

eij+1�ij+1 · · · eh1�h1q�p is a triangle-
cycle of G such that BC ⊆ TC,2. As the length h1 − ij + 2 is odd, we deduce
from Lemma 1 that C �∈ B. In turn G ∈ N enforces C = G. Similar to Case 1,
eh1+2 ∈ JG ⊆ C implies that �h1 ,�ij+1 ,� form a K4, a contradiction to the
K4-freeness of G. The contradiction shows that (TG \ BG) ∩ TG,0 = ∅.

It remains to prove (TG \ BG) ∩ TG,2 = ∅. Suppose on the contrary that
there exists � ∈ TG \ BG which consists of two join edges p, q ∈ JG and one
non-join edge r ∈ NG. Again we set Bp = {� ∈ BG : p ∈ �}, Bq = {� ∈
BG : q ∈ �} and Br = {� ∈ BG : r ∈ �}. Recalling BG ⊆ TG,2, we derive
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|Bp| = |Bq| = 2. Suppose without loss of generality that Bp = {�ip
,�ip+1},

Bq = {�iq
,�iq+1} and ip < ip + 1 < iq < iq + 1 (note p = eip+1, q = eiq+1).

Recall from Property 4 that |Br| is an odd number. Observe that both C =
p�ip+1eip+2�ip+2 · · · eiq

�iq
q�p and C ′ = q�iq+1eiq+2�iq+2 · · · eip

�ip
p�q are

triangle-cycles whose basic triangles each contain exactly 2 join edges. Because
the length of G is odd, exactly one of C and C ′, say C, whose length is odd.
By Lemma 1(i), C �∈ B. In turn G ∈ N gives C = G. Since neither �ip

nor
�iq+1 is a basic triangle of C and �ip

�= �iq+1, we derive that eiq+2 ∈ G \ C,
a contradiction to C = G. This completes the proof of Theorem 6. �

Let X ∈ {M,I}. If graph G ∈ X\B is minimal in the sense that every proper
subgraph H of G is outside X \ B, then H ∈ X (by Lemma 2) enforces H ∈ B.
Hence G ∈ N. Conversely, if G ∈ X ∩ N, then every subgraph H of G satisfies
H ∈ B ⊆ X, giving H �∈ X \ B. Thus the set of minimal graphs in X \ B is

{G ∈ X \ B : H �∈ X \ B for every H � G} = N ∩ X, where X ∈ {M,I}. (2.1)

Corollary 1. If G ∈ N ∩ I (i.e., G ∈ I \ B is minimal) , then G is either K4

or an odd triangle-cycle such that BG ⊆ TG,2, TG \ BG ⊆ TG,1 ∪ TG,3, and
TG,1 = TG,1 \ BG �= ∅.
Proof. In view of Theorem 6, it suffices to consider G being an odd triangle-cycle
such that BG ⊆ TG,2 and TG \ BG ⊆ TG,1 ∪ TG,3. In turn, Lemma 4 implies
the existence of at least a non-basic triangle of G that belongs to TG,1. �
Corollary 2. If G ∈ N ∩ M (i.e., G ⊆ M \ B is minimal) , then G is an
odd triangle-cycle such that BG ⊆ TG,2, TG \ BG ⊆ TG,1 ∪ TG,3, and TG,1 =
TG,1 \ BG �= ∅.
Proof. Note from G ∈ M that G �= K4. As M ⊆ I, the conclusion is immediate
from Corollary 1. �

3 Planar Graphs

In this section, we study the planar case more closely, and characterize planar
graphs in M by excluding pseudo-wheels defined as follows.

Definition 2. A triangle-cycle C is a pseudo-wheel if it has length at least 4,
TC = BC and each pair of non-consecutive basic triangles of C is edge-disjoint.

It is easy to see that a triangle-cycle C is a pseudo-wheel if and only if its
triangle graph T (C) is an induced cycle with length at least 4. Thus every wheel
other than K4 is a pseudo-wheel. Two pseudo-wheels that are not wheels are
shown in Fig. 3.

Lemma 5. If C is an odd pseudo-wheel, then C �∈ I.
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Fig. 3. Examples of pseudo-wheels.

Proof. Suppose the length of C is 2k+1. Let w ∈ ZE
+(C) be defined by w(e) = 1

for all e ∈ JC and w(e) = ∞ for all e ∈ NC . Then τw(C) = k + 1. On the other
hand x ∈ {0, 1/2}E(C) with x(e) = 1/2 for all e ∈ JC and x(e) = 0 for all e ∈ NC

is a fractional triangle cover of C, showing τ∗
w(C) ≤ wTx = k + 1/2 < τw(C). �

If �i,�o,� are distinct triangles of plane graph G such that �i is inside �
and �o is outside �, then we say that � is a separating triangle of �i and �o,
or � separates �i from �o.

A triangle-path in graph G is a sequence P = �1e1 · · · ek�k+1 with k ≥ 1
such that e1, · · · , ek are distinct edges, �1, · · · ,�k+1 are distinct triangles of G,
and {e1} ⊆ �1, {ek} ⊆ �k+1, {ei, ei+1} ⊆ �i+1 for each i ∈ [k − 1]. In ∪k+1

i=1 �i,
the edges e1, e2, . . . , ek are called join edges and other edges are called non-join
edges. Let JP denote the set of join edges of P . The length of P is defined as k.
We often say that P is a triangle-path from �1 to �k+1.

Lemma 6. Let G be a plane graph in which � is a separating triangle of trian-
gles �i and �o. Then � contains at least one join edge of every triangle-path
from �i to �o in G.

Proof. Consider an arbitrary triangle-path P = �1e1 · · · ek�k+1 in G from �1 =
�i to �k+1 = �o. We prove � ∩ {e1, . . . , ek} �= ∅ by induction on k. The basic
case of k = 1 is trivial. We consider k ≥ 2 and assuming that the lemma holds
when triangle-path involved has length at most k − 1. If �2 = �, then we are
done. If �2 �= �, then either � separates �1 from �2 or separates �2 and �k+1.
Observe that �1e1�2 is a triangle-path of length 1 < k, and �2e2 . . . , ek�k+1 is
a triangle-path of length k−1. From the induction hypothesis, we derive e1 ∈ �
in the former case, and ej ∈ � for some j = 2, . . . , k in the latter case. �
Lemma 7. Let C = e1�1e2 · · · ek�ke1 with k ≥ 3 be a triangle-cycle. If C is
plane and BC ⊆ TC,2, then �h does not separate �i from �j for any distinct
h, i, j ∈ {1, . . . , k}.
Proof. Note that C contains a triangle-path P from �i and �j with JP ⊆
JC \ �h. The triangle-path P along with Lemma 6 implies the result. �
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Theorem 7. If C is a planar triangle-cycle such that BC ⊆ TC,2, then TC ⊆
TC,0 ∪ TC,2.

Proof. Suppose that C = e1�1e2 · · · ek�ke1 with k ≥ 3 is plane, and there exists
� ∈ TC with � ∈ TC,1 ∪ TC,3.

Case 1. � ∈ TC,3 consists of three join edges eh, ei, ej , where 1 ≤ h < i < j ≤ k.
The structure of the triangle graph T (C) is illustrated in the left part of Fig. 4.

Fig. 4. The triangle graph T (C) in the two cases of the proof for Theorem 7.

For each pair (s, t) ∈ {(h, i − 1), (i, j − 1), (j, h − 1)}, there is a triangle-path
in C from �s to �t whose set of join edges is disjoint from {eh, ei, ej} = �. It
follows from Lemma 6 that

�does not separate �s from �t for each
(s, t) ∈ {(h, i − 1), (i, j − 1), (j, h − 1)}.

(3.1)

Suppose that � separates �h−1 from �h, and separates �i−1 from �i.
Without loss of generality let �h−1 and �h sit inside and outside �, respectively.
Then (3.1) implies that �j and �i−1 are inside and outside �, respectively. In
turn, i is inside �, and (3.1) says that �j−1 is inside �. Now �j−1 and �j are
both inside �, i.e., � does not separate �j−1 from �j . Hence, by symmetry we

Fig. 5. �h−1 and �h are both inside �.
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may assume that � does not separate �h−1 from �h, and further that �h−1

and �h are both inside �. as illustrated in Fig. 5.
As eh ∈ �h−1 ∩ �h, it is easy to see that either �h−1 separates �h from

�i or �h separates �h−1 from �i. The contradiction to Lemma 7 finishes our
discussion on Case 1.

Case 2. � ∈ TC,1 consist of join edge eh of C (shared with �h−1,�h), non-join
edge f (shared with �i) and non-join edge g (shared with �j), where h, i, j are
distinct. See the right part of Fig. 4. Similar to Case 1, it can be derived from
Lemma 6 that

�does not separate�s from �t for each(s, t) ∈ {(h, i), (i, j), (j, h − 1)}.

Therefore � does not separate �h−1 and �h. Suppose without loss of generality
that both �h−1 and �h are inside �. Then C has one of the structures as
illustrated in Fig. 5 with f in place of ei and g in place of ej . Again, either �h−1

separating �h from �i or �h separating �h−1 from �i contradicts to Lemma 7.
This completes the proof. �
Theorem 8. Let G be a planar graph. Then G ∈ N if and only if G is K4 or
an odd pseudo-wheel.

Proof. Sufficiency: Clearly K4 ∈ N. If G is an odd pseudo-wheel C, then G is an
odd triangle-cycle such that BG ⊆ TG,2. By Lemma 1, G �∈ B. Since the triangle
graph T (C) is an induced cycle, every proper subgraph of C is triangle-cycle-free,
and hence belongs to B, giving G ∈ N.

Necessity: Suppose that G ∈ N and G �= K4. By Theorem 6, an odd triangle-
cycle with length at least 5 such that BG ⊆ TG,2 and TG \ BG ⊆ TG,1 ∪ TG,3.
In turn, Theorem 7 enforces

TC = BC .

Suppose for a contradiction that there exists non-consecutive triangles �i,�j ∈
BG that share a common non-join edge e, where i < j −1. Then G contains two
triangle-cycles C1 = e�iei+1�i+1 · · · ej�je and C2 = e�jej+1�j+1 · · · ei�ie.
Because G is odd, one of C1 and C2, say C1, is odd. As C1 is a proper subgraph of
G ∈ N, we have C1 ∈ B. By Lemma 1, there exists a basic triangle �h in BC1 ∩
TC1,3. Because �h ∈ TG,2, it must be the case that e ∈ �h. Thus �i,�j ,�h

share a common non-join edge e of G. However in any planar embedding for G,
there is one triangle in {�i,�j ,�h}, which is a separating triangle of the other
two. This is a contradiction to Lemma 7. Thus each pair of non-consecutive basic
triangles of G is edge-disjoint, and G is an odd pseudo-wheel. �
Theorem 9. Let G be a planar graph, then the following are equivalent:

(i) G ∈ B;
(ii) G ∈ M;
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(iii) G ∈ I is K4-free; and
(iv) G is K4-free and odd pseudo-wheel free.

Proof. Recalling (1.5) and Lemma 3, B ⊆ M ⊆ I and K4 ∈ I \ M imply the
relation (i) ⇒ (ii) ⇒ (iii). If G contains an odd pseudo-wheel H, then H �∈ I by
Lemma 5, which along with Lemma 2 would give G �∈ I. So we have (iii) ⇒ (iv).

It remains to prove (iv) ⇒ (i). If G �∈ B, we take H ⊆ G to be minimal,
i.e., H ∈ N. Theorem 8 says that H is K4 or an odd pseudo-wheel, i.e., G is not
K4-free and G is not odd pseudo-wheel free. �

4 Remarks

Lemma 4 provides us a necessary condition for G ∈ I as follows:

(BC ∩TC,3)∪((TC,0∪TC,1)\BC) �= ∅ for any odd triangle-cycle C of G. (4.1)

It would be interesting to see if the condition is sufficient for G ∈ I. A supporting
evidence is the following.

Remark 1. Condition (4.1) is a necessary and sufficient condition for K4-free
planar graph G to be a member of I.

Proof. By Theorem 9, a K4-free planar graph G ∈ I implies G ∈ B, and thus
BC ∩ TC,3 �= ∅ for every odd triangle-cycle C in G. On the other hand, given
a K4-free planar graph G satisfying (4.1), we see from Definition 2 that G does
not contain any odd pseudo-wheel. It follows from Theorem 8 that G does not
contain any subgraph in N, which implies G ∈ B ⊆ I. �

As M ⊆ I, condition (4.1) is also necessary for G ∈ M, but it is not sufficient
for the total dual integrality. This can be seen from K4 �∈ M, which satisfies
(4.1): K4 has four odd triangle-cycles with length 3 each containing a triangle
without any join edge, and for each odd triangle-cycle C, there is a triangle in
TC \BC that belongs to TC,0. This motivates us to ask about the necessity and
sufficiency of the following conditions for G ∈ M:

(BC ∩ TC,3) ∪ (TC,1 \ BC) �= ∅ for any odd triangle-cycle C of G. (4.2)

Note that condition (4.2) implies G contains neither K4 nor odd pseudo-wheels.
Similar to Remark 1, Theorems 8 and 9 provide the following fact.

Remark 2. Condition (4.2) is a necessary and sufficient condition for planar
graph G to be a member of M. �
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Appendix: A List of Mathematical Symbols

(G,w) Weighted graph G = (V (G), E(G)) with w ∈ Z
E(G)
+

τw(G) The minimum weight of an integral triangle cover in (G,w)

νw(G) The maximum size of an integral triangle packing in (G,w)

τ∗
w(G) The minimum weight of a fractional triangle cover in (G,w)

ν∗
w(G) The maximum size of a fractional triangle packing in (G,w)

τ(G) τw(G) when w = 1

ν(G) νw(G) when w = 1

AG The triangle-edge incidence matrix of graph G

Λ(G) The set of triangles in graph G

B The set of graphs G such that AG are TUM

M The set of graphs G such that systems AGx ≥ 1, x ≥ 0 are TDI

J The set of graphs G such that {x : AGx ≥ 1,x ≥ 0} are intergal

N The set of minimal graphs not belonging to B

TC The set of triangles in triangle-cycle C =e1�1e2· · ·ek�ke1 =∪k
i=1�i

BC The set of basic triangles in triangle-cycle C, i.e., {�1, · · · , �k}
JC The set of join edges in triangle-cycle C, i.e., {e1, · · · , ek}
NC The set of nonjoin edges in triangle-cycle C, i.e., E(C)\JC

TC,i {� ∈ TC : |� ∩ JC | = i}, i = 0, 1, 2, 3
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Abstract. In the 1-in port model, every vertex of a synchronous network
can receive each time unit at most one message. We consider simulta-
neous broadcasting of multiple messages from the same source in such
networks with an additional restriction that every received message can
be sent out to neighbors only in the next time unit and never to already
informed vertex. We use a general concept of level-disjoint partitions
developed for this scenario. Here we introduce a subgraph extension
technique for efficient spreading information within this concept. Sur-
prisingly, this approach with so called biwheels leads to simultaneous
broadcasting of optimal number of messages on a wide class of graphs
in optimal time. In particular, we provide tight results for bipartite tori,
meshes, hypercubes. Several problems and conjectures are proposed.

Keywords: Simultaneous broadcasting · Multiple message broadcast-
ing · Level-disjoint partitions · Torus · Mesh · Hypercube

1 Introduction

A massive amount of traffic in communication networks that flows from providers
of large data (such as video streaming services) to many clients at once leads
to various optimization problems for broadcasting of multiple messages. Similar
types of problems arise in master/workers parallel computations on specific net-
works when multiple tasks are simultaneously distributed from one node (mas-
ter) to all other nodes (workers). This has been subject of research for many
years. For surveys on broadcasting and other communication protocols in vari-
ous kinds of networks see e.g. [8,9,12–14].
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We restrict ourselves to synchronous networks, where at each time unit mes-
sages can be sent from nodes to all their neighbors in one unit of time. A network
is modeled by a graph. As an example we consider namely tori, meshes, and
hypercubes, perhaps the most popular and extensively studied networks [15],
but our approach is more general.

Since networks have limited capacity of links, any larger data to be broadcast
needs to be split into multiple messages and sent individually. This leads to a
more general variant of broadcasting in which several different messages need to
be simultaneously transmitted from one source node, called the originator. The
problem of multiple broadcasting was first defined in [5] and previously studied
under several different models in [1,2,10]. The minimal overall time needed for
simultaneous broadcasting and the maximal number of messages that can be
simultaneously broadcast were considered in [1,6,10,16–18], respectively.

Here we consider a scenario when each message (or task) needs to be handled
(or processed) at each node in a time unit before it is sent out further to other
selected neighbors. It is reasonable to demand that each node has to handle at
each time unit only a single message (task). Equivalently, each node receives at
most one message in each time unit. We call this restriction a 1-in-port model.
Furthermore, every received message is send out only in the next time unit and no
message is sent to already informed vertex. In other words, nodes have no buffers
to store messages for delayed transmission. This simplification is motivated by
memory or security restrictions, or a need for uninterrupted data flow. As usual,
we also assume full-duplex mode.

For this scenario, the concept of level-disjoint partitions was developed in [6]
to study how many messages and in what time they can be simultaneously
broadcast from a given originator vertex in a given graph, see the definitions in
the next section. The same concept was further developed in [7] where results on
existence of optimal number of level-disjoint partitions in general graphs were
obtained. It was also shown in [7] that the problem of simultaneous broadcasting
in a graph G can be solved locally on a suitable subgraph H of G and then
extended to a solution for the whole graph G (c.f. Proposition 2), but without
guarantee of optimality.

In this paper, the latter result is improved in the terms of optimality by
showing that if H satisfies additional properties, namely if H contains all neigh-
bours of the originator vertex v and preserves distances to v, then simultaneous
broadcasting from v on H with optimal time for each destination vertex can be
extended to simultaneous broadcasting from v on G again with optimal time for
each destination vertex (Theorem 1).

Furthermore, we identify particular subgraphs, namely wheels and biwheels,
that play a key role for simultaneous broadcasting. We show (Theorems 2–4)
that they can be used for simultaneous broadcasting (of optimal number) of
messages in optimal time for a wide class of graphs.

In particular, since biwheels naturally occur in Cartesian products
(Propositions 3 and 4), we obtain tight results for bipartite tori, meshes, and
hypercubes. For these graphs we also provide an explicit description how optimal
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simultaneous broadcasting can be realized (Sect. 4). We also answer affirmatively
a conjecture from [6] asserting that the n-dimensional hypercube admits simul-
taneous broadcasting of n messages in optimal time 3n − 2. We conclude with
summary of open problems and conjectures (Sect. 5).

2 Concept of Level-Disjoint Partitions

In this paper we use the concept of level-disjoint partitions, introduced in [6],
to capture broadcasting under the considered communication model. We use
standard graph terminology and notation. An open neighborhood of a vertex
u in a graph G is denoted by NG(u), the degree of u by degG(u), the distance
between vertices u and v by dG(u, v). The eccentricity of a vertex u, i.e. the
maximal distance from u to other vertices, is denoted by eccG(u). The subscript
G is omitted whenever the graph is clear from context.

A level partition of a graph G is a partition S = (S0, . . . , Sh) of V (G) into a
tuple of sets, called levels, such that Si ⊆ N(Si−1) for every 1 ≤ i ≤ h; that is,
every vertex has a neighbor from previous level. The number h = h(S) = |S|−1
is called the height of S. The broadcasting starts at all vertices from the level S0,
at each time unit the same message is sent from all vertices of the current level
to all vertices in the next level through edges of the graph, till the hth time unit,
when the message is spread to all vertices of G. Note that we do not care which
particular edges are used. In the case when the starting level S0 is a singleton,
say S0 = {v}, we say that the level partition is rooted at v (or v-rooted) and the
vertex v is called the root of S.

A level partition (S0, . . . , Sh) of G with Si = {u ∈ V (G) | dG(u, S0) = i}
for every 0 ≤ i ≤ h is called a distance level partition. Clearly, a distance level
partition is determined by the choice of the starting level S0 and it has minimal
height among all level partitions with the same starting level. If, moreover, it is
rooted at a vertex v, it corresponds to the breadth-first-search tree from v (up to
the choice of edges).

Two level partitions S = (S0, . . . , Sh(S)) and T = (T0, . . . , Th(T )) are said
to be level-disjoint if Si ∩ Ti = ∅ for every 1 ≤ i ≤ min(h(S), h(T )). Note that
we allow S0 ∩ T0 �= ∅ since we consider the case when different messages have
the same originator. Level partitions S1, . . . ,Sk are said to be (mutually) level-
disjoint if each two partitions are level-disjoint. Then we say that S1, . . . ,Sk

are level-disjoint partitions, shortly LDPs. If every partition is rooted in the
same vertex v and they are level-disjoint (up to the starting level {v}), we say
that S1, . . . ,Sk are level-disjoint partitions with the same root v, shortly v-rooted
LDPs. For an example of four v-rooted LDPs of a circulant graph, see Fig. 2.
Note that the 4-tuple at a vertex denotes its levels in each partition.

Let S1, . . . ,Sk be level partitions of G, not necessarily level-disjoint. The set
of levels {l | u ∈ Si

l for some 1 ≤ i ≤ k} in which a given vertex u occurs is
called the range of u with respect to S1, . . . ,Sk, denoted by R(u).

The number of level-disjoint partitions determines how many messages can
be broadcast simultaneously while their maximal height determines the overall
time of the broadcasting. Hence a general aim is to construct for a given graph
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– as many as possible (mutually) level-disjoint partitions; and
– with as small maximal height as possible.

In [7] some necessary conditions on the number of v-rooted LDPs as well as
on their maximal height were given. Assume that S1, . . . ,Sk are v-rooted LDPs
of G. Clearly, for every vertex u except v, max(R(u)) ≥ d(u, v) + k − 1 since u
cannot appear in a level smaller than the distance to the root v and |R(u)| = k.
If equality holds, we say that u has perfect range; that is,

R(u) = {d(u, v), d(u, v) + 1, . . . , d(u, v) + k − 1}.
This means that all k messages will be delivered to the vertex u in the best time
possible for this vertex. If all vertices (up to the root v) have perfect range, we
say that level-disjoint partitions S1, . . . ,Sk are perfect.

Furthermore, the above definition is adjusted for bipartite graphs. If G is
bipartite, then for any same-rooted LDPs of G, the range of each vertex contains
elements of the same parity. It follows that no vertex can have perfect range as
defined above (except the trivial case of a single partition). So the concept of
perfect range is relaxed for bipartite graphs as follows. In a bipartite graph G,
for every vertex u except v, max(R(u)) ≥ d(u, v) + 2k − 2. If equality holds, we
say that u has biperfect range; that is,

R(u) = {d(u, v), d(u, v) + 2, . . . , d(u, v) + 2k − 2}.
If all vertices (up to the root v) have biperfect range, we say that level-disjoint
partitions S1, . . . ,Sk are biperfect. Further, the following necessary conditions
on same-rooted LDPs were proven in [7].

Proposition 1 ([7]). Let S1, . . . ,Sk be level-disjoint partitions of a graph G
with the same root v. Then,

k ≤ deg(v) (1)

max
1≤i≤k

h(Si) ≥
{

ecc(v) + k − 1 if G is not bipartite,

ecc(v) + 2k − 2 if G is bipartite.
(2)

2.1 Subgraph Extension Technique

In [7] it was shown that it suffices to find v-rooted LDPs on some suitable
subgraph H of G and then extend them to v-rooted LDPs of the whole graph
G as stated by the following proposition. Let G − v denote the graph obtained
by removing a vertex v and all incident edges from a G.

Proposition 2 ([7]). Let v be a vertex of a graph G and H be a subgraph of
G containing v and some vertex from each component of G − v. Then any k
v-rooted level-disjoint partitions of H can be extended to k v-rooted level-disjoint
partitions of G.
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Our first result in this paper extends Proposition 2 in terms of preserving
(bi)perfectness. It shows that it suffices to find (bi)perfect LDPs locally on a
subgraph H of G that covers all neighbors of the root v and preserves distances
to v. Then they can be extended to (bi)perfect, respectively, LDPs with the same
root to the whole graph G. We say that a subgraph H of a graph G preserves
distances to a vertex v ∈ V (H) if dH(u, v) = dG(u, v) for every u ∈ V (H). If
a subgraph H ⊆ G does not contain a vertex v of G, we denote by H + v the
subgraph of G obtained by adding v and all incident edges from G to H.

Theorem 1. Let v be a vertex of a graph G and H be a subgraph of G containing
N(v) ∪ {v} and preserving distances to v. Then any k (bi)perfect v-rooted level-
disjoint partitions of H can be extended to k (bi)perfect, respectively, v-rooted
level-disjoint partitions of G.

Proof. Let S1, . . . ,Sk be (bi)perfect level-disjoint partitions of H rooted in v and
assume V (H) � V (G); for otherwise we are done. We show that they can be
extended to (bi)perfect, respectively, v-rooted level-disjoint partitions of H ′ =
H+u for some vertex u of G uncovered by H such that H ′ preserves distances to
v. Then, by incremental extension until no uncovered vertex remains, we obtain
(bi)perfect v-rooted level-disjoint partitions of G.

Let u be a vertex of G that is not in H but has a neighbor w in H distinct
from v such that w belongs to some shortest path in G between u and v. Note
that such u exist since N(v) ⊆ V (H). Since H preserves distances to v, for
H ′ = H + u we have

dH′(u, v) = dH(w, v) + 1 = dG(w, v) + 1 = dG(u, v),

and thus H ′ preserves distances to v as well.
Let us denote by li the level of w in Si; that is, w ∈ Si

li
for every 1 ≤ i ≤ k.

Then, we extend S1, . . . ,Sk to H ′ by adding u to the (li + 1)-th level of Si

for every 1 ≤ i ≤ k. Clearly, such extended partitions are level partitions of
H ′. Moreover, they are level-disjoint since u was added into distinct levels of
level-disjoint partitions S1, . . . ,Sk. Finally, if S1, . . . ,Sk are perfect, then

R(w) = {li | 1 ≤ i ≤ k} = {dH(w, v), dH(w, v) + 1, . . . , dH(w, v) + k − 1},
and therefore the vertex u has perfect range as well:

R(u) = {li + 1 | 1 ≤ i ≤ k} = {dH′(u, v), dH′(u, v) + 1, . . . , dH′(u, v) + k − 1}.
Similarly, if S1, . . . ,Sk are biperfect, then

R(w) = {li | 1 ≤ i ≤ k} = {dH(w, v), dH(w, v) + 2, . . . , dH(w, v) + 2k − 2},
and therefore the vertex u has biperfect range as well:

R(u) = {li + 1 | 1 ≤ i ≤ k} = {dH′(u, v), dH′(u, v) + 2, . . . , dH′(u, v) + 2k − 2}.

�

The above theorem is applied in the next section to obtain (bi)perfect level-
disjoint partitions of a wide class of graphs, including particular Cartesian
products.
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3 Simultaneous Broadcasting in Cartesian Products

A Cartesian product of graphs G and H is the graph G � H with the vertex
set V (G � H) = V (G) × V (H) and the edge set E(G � H) = {(u, v)(u′, v) |
uu′ ∈ E(G), v ∈ V (H)} ∪ {(u, v)(u, v′) | u ∈ V (G), vv′ ∈ E(H)}. As an exam-
ple, consider the hypercube. The n-dimensional hypercube Qn is the graph on
vertices V (Qn) = {0, 1}n and edges between vertices that differ in precisely
one coordinate. Observe that Qn can be viewed as the n-fold Cartesian product
of K2.

In [6] we developed a concept of composing level-disjoint partitions with
certain properties of graphs G and H into level-disjoint partitions of G�H. Here
we present a different approach of so called biwheels. We define biwheels in the
next Subsect. 3.1 and show that they naturally occur in Cartesian products. Then
in the Subsect. 3.2 we show how they can be used for construction of optimal
number of same-rooted level-disjoint partitions of optimal height in Cartesian
products. Finally, in the Subsect. 4 we consider particular Cartesian products:
meshes, tori, hypercubes and we present optimal constructions for them also
explicitly.

3.1 Biwheels in Cartesian Products

First we formally define wheels and biwheels. A k-wheel Wk for k ≥ 0 centered
at a vertex v is the graph on vertices v, w1, . . . , wk with edges joining v to all
wi’s and edges joining wi and wi+1 for every 1 ≤ i ≤ k where wk+1 is identified
as w1. Note that for technical reasons we allow k ≤ 2. A k-wheel for k ≥ 3 is a
join of a k-cycle and a vertex.

A k-biwheel Ŵk for k ≥ 0 centered at a vertex v is the subdivision of Wk

centered at v obtained by inserting a new vertex xi to the edge between wi and
wi+1 for every 1 ≤ i ≤ k. Clearly, k-biwheel is bipartite for every k whereas k-
wheel is bipartite only for k = 0, 1. See Fig. 1 for an illustration of small wheels
and biwheels.

v

v

W0 = W0 W2 W3

w1 w2

w1
w2

w3

v v v

v

w1 w1 w2

w1
w2

w3

x1 = x2
x1

x2x3

W1 = W1 W2 W3

Fig. 1. k-wheels and k-biwheels centered at v for k = 0, 1, 2, 3.

Biwheels naturally occur in Cartesian products of graphs as stated by the
following proposition.
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Proposition 3. Let u, v be vertices in graphs G,H respectively. Then G � H
has a 2k-biwheel centered at (u, v) for any 0 ≤ k ≤ min(degG(u),degH(v)).

Proof. It suffices to prove the statement for k = degG(u) = degH(v) for oth-
erwise we may use subgraphs G′ of G and H ′ of H such that k = degG′(u) =
degH′(v) as G′ �H ′ is a subgraph of G�H. For 1 ≤ i ≤ k let us denote the i-th
neighbor of u, v by ui, vi, respectively. We define the vertices of a 2k-biwheel in
G � H as follows:

w2i−1 = (ui, v), x2i−1 = (ui, vi),
w2i = (u, vi), x2i = (ui+1, vi)

for every 1 ≤ i ≤ k where uk+1 is identified as u1.
Note that all vertices w2i−1, x2i−1, w2i, x2i are distinct, vertices w2i−1, w2i

are adjacent to (u, v), and w2i−1x2i−1, x2i−1w2i, w2ix2i, x2iw2i+1 are edges in
G � H for every 1 ≤ i ≤ k. Hence these vertices form a 2k-biwheel in G � H
centered at (u, v). 
�

In particular, if degG(u) = degH(v) then G�H has a degG�H((u, v))-biwheel
centered at (u, v); that is, the largest possible biwheel at (u, v). For example,
P2 �P2 contains a 2-biwheel (with center in any vertex) or P3 �P3 contains a 4-
biwheel centered in the degree-4 vertex. In fact, P2�P2 � Ŵ2 and P3�P3 � Ŵ4.

For another example, by recursive applications we obtain an n-biwheel in the
hypercube Qn for every n = 2m where m is an integer since Q2m � Q2m−1 �
Q2m−1 . However, we would like to have n-biwheel in Qn for any n. For this
purpose we need a more general result as follows.

Proposition 4. Let u, v be vertices in graphs G,H respectively, with degG(u) ≥
degH(v) ≥ 1 and l = max(2,degG(u) − degH(v) + 1). If G has at least l-biwheel
centered at u, then G � H has a k-biwheel centered at (u, v) for any 0 ≤ k ≤
degG(u) + degH(v) = degG�H((u, v)).

Proof. Let k = 2k′ + l′ where k′ is the maximal integer such that k′ ≤ degH(v)
and l′ ≥ 0. It follows that l′ ≤ l−1. Indeed, if k′ < degH(v) then l′ = 0 or l′ = 1,
and if k′ = degH(v) then

l′ ≤ degG(u) + degH(v) − 2k′ = degG(u) − degH(v) ≤ l − 1.

(The first inequality holds since k = 2k′ + l′ ≤ degG(u) + degH(v) and the last
inequality holds since degG(u) − degH(v) + 1 ≤ l.)

Let us denote by ui for 1 ≤ i ≤ degG(u) the i-th neighbor of u,
and by vj for 1 ≤ j ≤ degH(v) the j-th neighbor of v. Furthermore, let
(u1, y1, . . . , ul′ , yl′ , ul′+1) be a subpath of the at least l-biwheel of G centered
at u where dG(u, yi) = 2 for all 1 ≤ i ≤ l′. We define the vertices of a k-biwheel
in G � H as follows:

wi = (ui, v), xi = (yi, v) for all i = 1, . . . , l′,
wl′+2j−1 = (ul′+j , v), xl′+2j−1 = (ul′+j , vj) for all j = 1, . . . , k′,

wl′+2j = (u, vj), xl′+2j = (ul′+j+1, vj) for all j = 1, . . . , k′ − 1,
wl′+2j = (u, vj), xl′+2j = (u1, vj) for j = k′.
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Note that all vertices wi, xi are distinct, vertices wi are adjacent to (u, v), and
wixi, xiwi+1 are edges in G � H for every 1 ≤ i ≤ k = 2k′ + l′. Hence these
vertices form a k-biwheel in G � H centered at (u, v). 
�

3.2 (Perfect) Level-Disjoint Partitions from Wheels and Biwheels

Both k-wheels and k-biwheels (except for k = 2) have obvious k perfect, respec-
tively biperfect, level-disjoint partitions rooted in their centers. Indeed, let the
i-th level partition Si for 1 ≤ i ≤ k of Wk where k ≥ 1 be

Si = ({v}, {wi}, {wi+1}, . . . , {wi+k−1})

with the indices taken cyclically; that is, modulo (k + 1) plus 1. Clearly, Si

and Sj are level-disjoint up to the root v for any distinct i, j. Similarly for a
k-biwheel where k ≥ 3, let the i-th level partition T i for 1 ≤ i ≤ k of Ŵk be

T i = ({v}, {wi}, {xi}, {wi+1}, {xi+1}, . . . , {wi+k−1}, {xi+k−1})

with the indices taken cyclically; that is, modulo (k + 1) plus 1. Clearly, T i and
T j are level-disjoint up to the root v for any distinct i, j.

Note that the above level-disjoint partitions of Wk and Ŵk are perfect,
respectively biperfect. Hence their maximal height is optimal in the sense of
Proposition 1. Also their number is optimal. Indeed, k = degWk

(v) = deg
̂Wk

(v),

Wk is non-bipartite, Ŵk is bipartite, and the maximal heights are

max
1≤i≤k

h(Si) = k = eccWk
(v) + k − 1, max

1≤i≤k
h(T i) = 2k = ecc

̂Wk
(v) + 2k − 2.

The above partitions together with Proposition 2 lead to following sufficient
conditions on existence of k level-disjoint partitions with the same root. A vertex
v is a cut-vertex in a graph G if G − v is disconnected.

Theorem 2. If a graph G has a k-wheel for k ≥ 1 or k-biwheel for k ≥ 3
centered at a vertex v and v is not a cut-vertex, then G has k level-disjoint
partitions rooted at v.

Note that the above theorem can be easily generalized for a vertex v that is
not a cut-vertex and is adjacent to k vertices on an arbitrarily large cycle in G.
Theorem 2 together with Propositions 3 and 4 applies in particular for Cartesian
products of (nontrivial) connected graphs as they are 2-connected.

Furthermore, applying Theorem 1 we obtain a sufficient condition on
existence of optimal number of (bi)perfect level-disjoint partitions with the
same root.

Theorem 3. Let v be a vertex of degree k ≥ 1 in a graph G. If G has a k-wheel
centered at v, then G has k perfect level-disjoint partitions rooted at v. If G is
bipartite, k ≥ 3, and G has a k-biwheel centered at v, then G has k biperfect
level-disjoint partitions rooted at v.
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Proof. Let H denote the k-wheel resp. k-biwheel centered at v. All neighbors
of v in G are also in H. In addition, distances to v from G are preserved in H.
(Note that in the case of k-biwheel we have dG(v, xi) = dH(v, xi) = 2 for every
1 ≤ i ≤ k since G is bipartite.) Hence we may apply Theorem 1 to extend the
above (bi)perfect level-disjoint partitions of H to G. 
�

Theorem 3 can be applied to obtain perfect or biperfect level-disjoint par-
titions for various graphs. For an example, see the four biperfect level-disjoint
partitions of the circulant graph in Fig. 2. Further examples are provided in the
next subsection.

(0, 0, 0, 0)

(7, 5, 3, 1)

(8, 6, 4, 2)

(5, 3, 1, 7)

(6, 4, 2, 8)

(7, 5, 3, 9)
(4, 2, 8, 6)

(5, 3, 9, 7)

(4, 2, 8, 6)

(3, 1, 7, 5)

(2, 8, 6, 4)

(1, 7, 5, 3) v
w1

w2 w3

w4

x1

x2

x3

x4

Fig. 2. Four perfect level-disjoint partitions of a circulant graph rooted at v obtained
from a 4-biwheel.

Next we generalize Theorem 3. If l divides k, then the above k (bi)perfect
level-disjoint partitions of Wk or Ŵk can be compressed into l (bi)perfect level-
disjoint partitions. Let k = pl for some integers l, p and let the i-th level partition
of Wk for 1 ≤ i ≤ l be U i = (U i

0 = {v}, U i
1, . . . , U

i
l ) where

U i
j = {wi+j−1+l, wi+j−1+2l, . . . , wi+j−1+pl}

for 1 ≤ j ≤ l and the indices are taken cyclically; that is, modulo (k + 1) plus 1.
Clearly, U i and U j are level-disjoint for any distinct 1 ≤ i, j ≤ l. Similarly for
a k-biwheel with k = pl, let the i-th level partition of Ŵk for 1 ≤ i ≤ l be
Vi = ({v}, U i

1,X
i
1, . . . , U

i
l ,X

i
l ) where U i

j is as above and

Xi
j = {xi+j−1+l, xi+j−1+2l, . . . , xi+j−1+pl}

for 1 ≤ j ≤ l and the indices are taken cyclically; that is, modulo (k + 1) plus 1.
Clearly, Vi and Vj are level-disjoint for any distinct 1 ≤ i, j ≤ l.

These partitions lead to generalization of Theorem 3 as follows. Additional
properties of these partitions, called partitions modulo p, have been studied in [6].
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Theorem 4. Let v be a vertex in a graph G of degree k ≥ 1 divisible by an
integer l ≥ 1. If G has a k-wheel centered at v, then G has l perfect level-disjoint
partitions rooted at v. If G is bipartite, k ≥ 3, and G has a k-biwheel centered
at v, then G has l biperfect level-disjoint partitions rooted at v.

4 Particular Networks

In this section we consider particular examples of Cartesian products and pro-
vide explicit constructions for them. We also propose several problems and
conjectures.

4.1 Torus C2n � C2m

First we consider a bipartite 2-dimensional torus; that is, the graph C2n � C2m

where n,m ≥ 2. By Proposition 3, it has a 4-biwheel centered at any vertex r.
Hence by Theorem 3, it has four level-disjoint partitions rooted at r of (optimal)
height

eccC2n�C2m(r) + 6 = n + m + 6.
Explicitly, let us denote the vertices of cycles C2n, C2m by C2n =

(u1, . . . , u2n), C2m = (v1, . . . , v2m) and assume r = (u1, v1). We define a function
f(i, j, k) for 1 ≤ i ≤ 2n, 1 ≤ j ≤ 2m, 1 ≤ k ≤ 4 determining the level of each
vertex (ui, vj) in the k-th level partition by

f(i, j, k) = d(i, j) +

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2((k − 1) mod 4) if 1 < i ≤ n and 1 ≤ j ≤ m,

2(k mod 4) if i = 1 or n < i ≤ 2n, and 2 ≤ j ≤ m,

2((k + 1) mod 4) if n < i ≤ 2n, and j = 1 or m < j ≤ 2m,

2((k + 2) mod 4) if 1 ≤ i ≤ n and m < j ≤ 2m

and f(1, 1, k) = 0, where d(i, j) = dC2n�C2m((ui, vj), (u1, v1)) is

d(i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i + j − 2 if 1 ≤ i ≤ n and 1 ≤ j ≤ m,

2n − i + j if n < i ≤ 2n and 1 ≤ j ≤ m,

2n − i + 2m − j + 2 if n < i ≤ 2n and m < j ≤ 2m,

i + 2m − j if 1 ≤ i ≤ n and m < j ≤ 2m.

Then it is easy to verify that Sk = (Sk
0 , . . . , S

k
h) for k = 1, . . . , 4 where h =

n + m + 6 and

Sk
l = {(ui, vj) | f(i, j, k) = l, 1 ≤ i ≤ 2n, 1 ≤ j ≤ 2m}

for every 0 ≤ l ≤ h are biperfect level-disjoint partitions of C2n � C2m. For
example see Fig. 3.

Furthermore, by applying Theorem 4 we obtain two same-rooted level-
disjoint partitions of C2n � C2m of (optimal) height n + m + 2. Trivially, a
single distance partition from the root has (optimal) height n+m as well. Hence
it remains a question whether C2n � C2m has three same-rooted level-disjoint
partitions of (optimal) height n+m+ 4, which is perhaps easy to resolve. More
interestingly, this can be generalized for higher dimensions as follows.
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v4

v1

v2

v3

u6 u1 u2 u3 u4 u5

r

(0, 0, 0, 0) (1, 3, 5, 7)

(2, 4, 6, 8)(3, 5, 7, 1)(4, 6, 8, 2)

(5, 7, 1, 3)

(6, 8, 2, 4) (7, 1, 3, 5) (8, 2, 4, 6)

4-biwheel

(2, 4, 6, 8)

(3, 5, 7, 9) (5, 7, 9, 3)(6, 8, 10, 4)

(9, 3, 5, 7)

(8, 2, 4, 6) (9, 3, 5, 7) (10, 4, 6, 8)

(6, 8, 2, 4)

(7, 9, 3, 5)

(7, 9, 3, 5)

(7, 9, 3, 5)

(8, 10, 4, 6)

(8, 10, 4, 6)(9, 11, 5, 7)

r

Fig. 3. Four biperfect level-disjoint partitions of C6 � C4 rooted at r = (u1, v1) of
maximal height 11. The eccentric vertex to r, denoted by r, is in the (last) 11th level of
the second partition. The arrows denote how these LDPs are constructed from LDPs
of the 4-biwheel centered at r.

Conjecture 1. The (bipartite) generalized torus C2n1 �C2n2 � · · · �C2nd
where

d ≥ 2 and n1, . . . , nd ≥ 2 has l same-rooted level-disjoint partitions of optimal
height for every 1 ≤ l ≤ 2d.

We only know from Theorem 4 that Conjecture 1 holds if l divides 2d. Note
that by (2), an optimal height of four r-routed level-disjoint partitions of a non-
bipartite torus is ecc(r) + 3 instead of ecc(r) + 6 for bipartite case. This leads
us to pose the following problem. Clearly, if Conjecture 1 holds, this problem
reduces only to non-bipartite cases.

Problem 1. Which of generalized tori Cm1 � Cm2 � · · · � Cmd
admit 2d same-

rooted level-disjoint partitions of optimal height?

4.2 Mesh Pn � Pm

For 2-dimensional meshes Pn � Pm where n,m ≥ 3 we obtain similar results as
for tori, up to choice of the root. Let us denote the vertices of paths Pn, Pm by
Pn = (u1, . . . , un), Pm = (v1, . . . , vm). A vertex (ui, vj) of Pn � Pm is an inner
vertex if 1 < i < n and 1 < j < m; and a border vertex otherwise.

By Proposition 3, the mesh Pn � Pm has a 4-biwheel centered at any inner
vertex. Hence by Theorem 3 it has four level-disjoint partitions rooted at the
same inner vertex r = (ui, vj) of (optimal) height eccPn�Pm

(r) + 6 where

eccPn�Pm
((ui, uj)) = max(i + j − 2, i + m − j − 1, n − i + m − j, n − i + j − 1).

For example, see Fig. 4.



Time-Optimal Broadcasting of Multiple Messages in 1-in Port Model 155

v4

v1

v2

v3

u1 u2 u3 u4 u5 u6

r

(0, 0, 0, 0) (1, 3, 5, 7)

(2, 4, 6, 8)(3, 5, 7, 1)(4, 6, 8, 2)

(5, 7, 1, 3)

(6, 8, 2, 4) (7, 1, 3, 5) (8, 2, 4, 6)

4-biwheel

(2, 4, 6, 8)

(3, 5, 7, 9) (5, 7, 9, 11)(4, 6, 8, 10)

(9, 3, 5, 7)

(4, 6, 8, 2) (3, 5, 7, 9) (4, 6, 8, 10)

(4, 6, 8, 10)

(11, 5, 7, 9)

(3, 5, 7, 9)

(5, 7, 9, 3)

(10, 4, 6, 8)

(6, 8, 10, 12)(5, 7, 9, 11)

r

Fig. 4. Four biperfect level-disjoint partitions of P6 � P4 rooted at r = (u2, v2) of
maximal height 12. The eccentric vertex to r, denoted by r, is in the (last) 12th level
of the fourth partition. The arrows denote how these LDPs are constructed from LDPs
of the 4-biwheel centered at r.

Furthermore, by applying Theorem 4 we obtain two level-disjoint partitions
rooted at the same inner vertex r of (optimal) height ecc(r) + 2. Explicit con-
structions of such level-disjoint partitions can easily be derived in a similar way
as for torus. We leave them out as they are merely technical. Similarly as for
bipartite tori, we propose the following conjecture.

Conjecture 2. The generalized mesh Pm1 � Pm2 � · · · � Pmd
where d ≥ 2 and

m1, . . . ,md ≥ 3 has l r-rooted level-disjoint partitions of optimal height for every
1 ≤ l ≤ 2d and every inner vertex r.

Note that Conjecture 2 implies Conjecture 1 since a bipartite torus contains a
mesh with the same parameters 2n1, . . . , 2nd as a spanning subgraph, and the
mesh has an inner vertex with eccentricity equal to the eccentricity of any vertex
of the torus. We only know from Theorem 4 that Conjecture 2 holds if l divides
2d. Note that we considered only inner vertices as roots since for border vertices
in 2-dimensional meshes there are no k-biwheels with k ≥ 3.

Problem 2. Determine the maximal number of r-rooted level-disjoint partitions
of optimal height in the generalized mesh Pm1 �Pm2 � · · · �Pmd

for all vertices
r and all parameters d ≥ 2, m1, . . . ,md ≥ 2.

4.3 Hypercube Qn

We view the n-dimensional hypercube Qn for n ≥ 3 as the Cartesian product
of C4 � Ŵ2 and the (n − 2)-fold Cartesian product of K2; that is, Qn � C4 �
(K2)n−2. By recursive application of Proposition 4, we obtain that Qn for any
n ≥ 3 has an n-biwheel centered at any vertex v. Explicitly, let us assume that
v = 0n = (0, . . . , 0). Then an n-biwheel centered at v is formed (for example)
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by vertices wi = ei for i = 1, . . . , n, xi = ei ⊕ ei+1 for i = 1, . . . , n − 1, and
xn = e1 ⊕ en, where ei denotes the vector with 1 exactly in the ith coordinate.

Hence by Theorem 3 we obtain the following result, answering affirmatively
a conjecture from [6] where only the case when n = 3 · 2i or n = 4 · 2i for some
integer i ≥ 0 was shown. See examples for n = 3 and n = 4 on Fig. 5.

Corollary 1. For every n ≥ 3 there exist n level-disjoint partitions of Qn with
the same root and with the maximal height 3n − 2.

v

x1 x3 x2

w1 w2 w3

x1 x2

w1 w2 w3

v

w4

x3x4

(0, 0, 0)

(5, 1, 3) (1, 3, 5) (3, 5, 1)

(2, 4, 6)(4, 6, 2)

(0, 0, 0, 0)

(5, 7, 1, 3) (7, 1, 3, 5) (1, 3, 5, 7)

(7, 3, 5)

(3, 5, 7, 1)

(6, 8, 2, 4) (2, 4, 6, 8)(4, 6, 8, 2) (8, 2, 4, 6)

(7, 9, 3, 5) (7, 9, 3, 5) (7, 9, 3, 5) (9, 3, 5, 7)

(8, 10, 4, 6)

(8, 2, 4, 6)(6, 8, 2, 4)(6, 2, 4)

Fig. 5. (a) Three biperfect level-disjoint partitions of Q3 rooted at v of maximal height
7. (b) Four biperfect level-disjoint partitions of Q4 rooted at v of maximal height 10.

Explicitly, we define a function f(u, k) for u ∈ V (Qn), 1 ≤ k ≤ n determining
the level of each vertex u in the k-th level partition as

f(u, k) =

⎧
⎪⎨

⎪⎩

0 if u = v (= 0n),
2((n + k) mod n) + 2 if u = xn (= e1 ⊕ en),
2((i + k) mod n) + j otherwise

where i is the position of the leftmost 1 in u and j is the number of 1’s in u. Then
it is easy to verify that Sk = (Sk

0 , . . . , S
k
h) for k = 1, . . . , n where h = 3n− 2 and

Sk
l = {u ∈ V (Qn) | f(u, k) = l} for every 0 ≤ l ≤ h are biperfect level-disjoint

partitions of Qn.
Note that the above definition of f(u, k) is based on the fact that each vertex

u except v or xn has a shortest path to the root v that goes through wi = ei
and avoids xn, where i is the position of the leftmost 1 in u. Indeed, from u
by consecutively changing the rightmost 1 to 0 we obtain all vertices of such
a path. Furthermore, from xi we go to wi = ei along these paths for each
i = 1, . . . , n− 1 which agrees with the partition of the n-biwheel Ŵn. Therefore,
we may extend the canonical biperfect level-disjoint partitions of Ŵn along these
paths to biperfect level-disjoint partitions of Qn by applying Theorem 1, which
corresponds to the above prescription for f(u, k).
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Furthermore, from Theorem 4 we obtain that Qn for any n ≥ 3 has k biperfect
level-disjoint partitions rooted at the same vertex (of maximal height n+2k−2)
if k divides n. We propose that it holds for any k ≥ 1.

Conjecture 3. For any 1 ≤ k ≤ n, n ≥ 3, the hypercube Qn has k same-rooted
level-disjoint partitions of optimal height.

5 Conclusions

In this work the concept of level-disjoint partitions which was originally intro-
duced in [6] is employed to describe simultaneous broadcasting of multiple mes-
sages from the same originator in the considered communication model.

It is shown that a local solution on a suitable subgraph can be extended
to the whole graph without loss of optimality. In this paper we use specifically
wheels and biwheels as local subgraphs. This could be further generalized for
other subgraphs such as subdivisions of wheels.

This approach leads to simultaneous broadcasting in optimal time on partic-
ular Cartesian products of graphs. However, it can be applied for a much larger
class of graphs. For example, for some circulant graphs or Knödel graphs that
have been previously studied in the context of broadcasting [3,4,11].

For bipartite tori, meshes, and hypercubes we provided tight results based
on construction of optimal number of biperfect level-disjoint partitions from
biwheels. We believe that simultaneous broadcasting can be achieved in opti-
mal time for any number of messages on generalized bipartite tori, generalized
meshes, and hypercubes (Conjectures 1–3). The problem of simultaneous broad-
casting in optimal time remains open for general tori (Problem 1) and meshes
with border originator vertices (Problem 2).
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Information in Communication Networks: Broadcasting, Gossiping, Leader Elec-
tion, and Fault-Tolerance. Texts in Theoretical Computer Science. Springer, Berlin
(2005)

15. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann, San Mateo (1992)

16. Sun, C.M., Lin, C.K., Huang, H.M., Hsu, L.H.: Mutually independent Hamiltonian
cycles in hypercubes. In: Proceedings of 8th Symposium on Parallel Architectures,
Algorithms and Networks (2005)
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Abstract. Research on graph searching has recently gained interest in
computer science, mathematics, and physics. This paper studies fast
searching of a fugitive in a graph, a model that was introduced by Dyer,
Yang and Yaşar in 2008. We provide lower bounds and upper bounds on
the fast search number (i.e., the minimum number of searchers required
for capturing the fugitive) of complete k-partite graphs. We also investi-
gate some special classes of complete k-partite graphs, such as complete
bipartite graphs and complete split graphs. We solve the open problem
of determining the fast search number of complete bipartite graphs, and
present upper and lower bounds on the fast search number of complete
split graphs.

1 Introduction

Graph searching, also called Cops and Robbers games or pursuit-evasion prob-
lems, has many models, such as edge searching, node searching, mixed searching,
fast searching, etc. [1,3,4,7–10]. Let G denote an undirected graph. In the fast
search model, a fugitive hides either on vertices or on edges of G. The fugitive
can move at a great speed at any time from one vertex to another along a path
that contains no searchers. We call an edge contaminated if it may contain the
fugitive, and we call an edge cleared if we are certain that it does not contain
the fugitive. In order to capture the fugitive, one launches a set of searchers on
some vertices of the graph; these searchers then clear the graph edge by edge
while at the same time guarding the already cleared parts of the graph. This idea
is modelled by rules that describe the searchers’ allowed moves, as explained in
Sect. 2. A fast search strategy of a graph is a sequence of actions of searchers that
clear all contaminated edges of the graph. The fast search number of G, denoted
by fs(G), is the smallest number of searchers needed to capture the fugitive in G.

Stanley and Yang [11] presented a linear time algorithm for computing the
fast search number of Harlin graphs and their extensions, as well as a quadratic
time algorithm for computing the fast search number of cubic graphs. Yang [13]
proved that the problem of finding the fast search number of a graph is NP-
complete; and it remains NP-complete for Eulerian graphs. He also proved that
the problem of determining whether the fast search number of G equals to a
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 159–174, 2016.
DOI: 10.1007/978-3-319-48749-6 12
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half of the number of odd vertices in G is NP-complete for planar graphs with
maximum degree 4. Dereniowski et al. [5] gave characterizations of graphs for
which 2 or 3 searchers are sufficient in the fast search model. Xue and Yang [12]
investigated Cartesian products of graphs, and proved an explicit formula for
computing the fast search number of the Cartesian product of an Eulerian graph
and a path. They also presented upper and lower bounds on the fast search
number of hypercubes.

The fast search problem has a close relationship with the edge search
problem [6]. Alspach et al. [2] presented a formula for the edge search num-
ber of complete k-partite graphs. Dyer et al. [6] proved the fast search number
of complete bipartite graphs Km,n when m is even. They also presented lower
and upper bounds respectively on the fast search number of Km,n when m is
odd. However, the gap between the lower and upper bounds can be arbitrarily
large, and this open problem remains unsolved for eight years.

In this paper, we provide lower and upper bounds on the fast search number
of complete k-partite graphs. Further, we investigate some special classes of k-
partite graphs, such as complete bipartite graphs and complete split graphs.
We solve the open problem of determining the fast search number of complete
bipartite graphs. We also present lower and upper bounds on the fast search
number of complete split graphs.

2 Preliminaries

Throughout this paper, we only consider finite undirected graphs that have no
loops or multiple edges. Let G = (V,E) denote a graph with vertex set V and
edge set E. We also use V (G) and E(G) to denote the vertex set and edge set
of G respectively. Let uv be an edge with two endpoints u and v. For a vertex
v ∈ V , the degree of v is the number of edges incident on v, denoted by degG(v).
We say a vertex is odd if its degree is odd, and we say a vertex is even if its degree
is even. An odd graph is a graph in which all vertices are odd. An even graph is
a graph in which all vertices are even. Define Vodd(G) = {v ∈ V : v is odd}.

For a subset V ′ ⊆ V , we use G[V ′] to denote the subgraph induced by V ′,
which consists of all vertices of V ′ and all the edges of G between vertices in
V ′. We use G − V ′ to denote the induced subgraph G[V \ V ′]. For a subset
E′ ⊆ E, we use G − E′ to denote the subgraph (V,E \ E′). Let G1 = (V1, E1)
and G2 = (V2, E2) be two subgraphs of G. The union of two graphs G1 and G2

is the graph G1 ∪G2 = (V1 ∪V2, E1 ∪E2). We use G1 +V2 to denote the induced
subgraph G[V1 ∪ V2].

A walk is a list v0, e1, v1, . . . , ek, vk of vertices and edges such that each edge
ei, 1 ≤ i ≤ k, has endpoints vi−1 and vi. A path is a walk that does not contain
the same vertex twice, except that its first vertex might be the same as its last
vertex. We use v0v1...vk to denote a path with ends v0 and vk. A trail is a
walk in which no edge occurs multiple times. For a connected subgraph G′ with
at least one edge, an Eulerian trail of G′ is a trail that traverses every edge
of G′ exactly once. A circuit is a trail whose first vertex is the same as its last.
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An Eulerian circuit is an Eulerian trail that begins and ends on the same vertex.
A graph is called Eulerian if it contains an Eulerian circuit that traverses all its
edges. Note that we only consider finite graphs with no loops or multiple edges
in this paper. So, throughout this paper, we assume that an Eulerian circuit or
Eulerian subgraph contains at least three edges.

In the fast search model, initially every vertex in V and every edge in E is
considered contaminated. We call a vertex v ∈ V cleared if all edges incident
on v are cleared, and we call v partially cleared if v has both contaminated
and cleared incident edges. A fast search strategy proceeds as follows. First, it
places some number of searchers on some vertices in V . Then, it performs sliding
actions along contaminated edges until either every edge in E is cleared or no
more sliding actions are possible. A searcher on vertex u can slide along the
edge e = uv if e is contaminated and (1) u contains one additional searcher or
(2) e is the only contaminated edge incident on u. After sliding along e, the
searcher then resides on v and e is cleared. Intuitively, the sliding rules ensure
that the searchers guard the already cleared parts of the graph, so that the
fugitive cannot hide there. The following lemmas give two known lower bounds
on the fast search number.

Lemma 1 [6]. For any connected graph G, fs(G) ≥ 1
2 |Vodd(G)|.

Lemma 2 [11]. For any connected graph G with no leaves, fs(G) ≥
1
2 |Vodd(G)| + 2.

Let Kn1,...,nk
= (V1, . . . , Vk, E) denote a complete k-partite graph, where

V1, . . . , Vk are disjoint independent sets, |Vi| = ni and ni ≤ ni+1 for all 1 ≤ i ≤
k − 1. Each vertex in Vi is adjacent to all the vertices in V (Kn1,...,nk

) \ Vi. We
use Km,n = (V1, V2, E) to denote a complete bipartite graph, where |V1| = m,
|V2| = n and 1 ≤ m ≤ n. We use Sm,n = (V1, V2, E) to denote a complete split
graph, where V1 and V2 are disjoint sets, V1 induces a clique with m vertices and
V2 is an independent set with n vertices. In Sm,n, each vertex in V1 is adjacent
to all the other vertices in V1 ∪ V2.

Note that for any connected graph G, the fast search number of G is always
at least the edge search number of G. From Theorem 2 in [2], we have the next
lemma.

Lemma 3. For any connected graph G that contains a clique Km of order m,
where m ≥ 4, we have fs(G) ≥ m.

3 Complete k-partite Graphs

In the following, we give lower bounds and upper bounds on the fast search
number of complete k-partite graphs. Throughout this section, in order to better
describe our proof ideas, we assume that placing actions of searchers can be
inserted after sliding actions of searchers in a fast search strategy. If we want
all placing actions to happen before all sliding actions in a fast search strategy,
then we can simply move all placing actions before all sliding actions in that fast
search strategy.
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Lemma 4. For a complete k-partite graph Kn1,...,nk
, where k ≥ 2 and n1 ≤

· · · ≤ nk, we have fs(Kn1,...,nk
) ≥ ∑k−1

i=1 ni.

Lemma 5. For a complete k-partite graph Kn1,...,nk
, where k ≥ 3 and n1 ≤

· · · ≤ nk, if
∑k−1

i=1 ni ≥ 3 and nk ≥ 3, then fs(Kn1,...,nk
) ≥ 2 +

∑k−1
i=1 ni.

Proof. For any graph G, fs(G) is greater than or equal to the edge search number
of G. Thus, it follows from Theorem 6 in [2] that fs(Kn1,...,nk

) ≥ 2 +
∑k−1

i=1 ni.

Theorem 1. For a complete k-partite graph Kn1,...,nk
, where k ≥ 3, n1 ≤ · · · ≤

nk and
∑k

i=1 ni = n, if
∑k−1

i=1 ni ≥ nk = 3, then fs(Kn1,...,nk
) = n − 1.

Proof. From Lemma 5, we have fs(Kn1,...,nk
) ≥ n − nk + 2 = n − 1. We will

show that n − 1 searchers can clear the graph. Let Vk = {v1, v2, v3} and X =
Kn1,...,nk

− Vk. Place n − 3 searchers on v1 and slide them to each vertex of X.
Since k ≥ 3, X is connected. We have three cases for the graph X.

Case 1. X is Eulerian. The following fast search strategy can clear all edges
of the graph Kn1,...,nk

− {v1} using n − 1 searchers.

1. Place a searcher on a vertex u of X.
2. Slide one of the two searchers on u along the Eulerian circuit of X to clear

all its edges.
3. Slide the two searchers on u to v2 and v3 respectively.
4. Place a searcher on v2. Let Y be the graph formed by all the remaining

contaminated edges of Kn1,...,nk
.

(a) If degY (v2) is even (Y is Eulerian in this case), then slide one of the two
searchers on v2 along the Eulerian circuit of Y to clear all its edges.

(b) If degY (v2) is odd (Y has an Eulerian trail in this case), then slide one
of the two searchers on v2 to v3 along the Eulerian trail of Y to clear all
its edges.

Case 2. X is odd. So X + {v2} is Eulerian. We first place two searchers
on v2. Then slide one of the two searchers on v2 along the Eulerian circuit of
X + {v2} to clear all its edges. Finally, slide all searchers on X to v3 to clear all
the remaining contaminated edges of Kn1,...,nk

.
Case 3. X has both even and odd vertices. Suppose that X has 2h odd

vertices. Let a1 and b1 be two odd vertices of X such that there is a path P1

between them which does not contain any vertex in Vodd(X) as an internal
vertex. Let H1 = X − E(P1). For i = 2, . . . , h, let ai and bi be two odd vertices
of Hi−1 such that there is a path Pi between them which does not contain any
vertex in Vodd(Hi−1) as an internal vertex. Let Hi = Hi−1 − E(Pi). It is easy to
see that Hh contains no odd vertices. In particular, we select Pi in the following
manner:

(1) If X contains at least two even vertices, say u and u′, then for i = 1, . . . , h,
let Pi = aiu

′bi.
(2) If X contains only one even vertex, say u, then we first show that V1 =

{u}. Note that all vertices in Vj , 1 ≤ j ≤ k − 1, have the same degree in X.
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Therefore, we know |V1| = 1 and u is the only vertex in V1. Further, if there
is a vertex set Vj , 2 ≤ j ≤ k − 1, which contains three vertices, then each of
the three vertices is even in X. This is a contradiction. Hence, |Vj | = 2 for all
2 ≤ j ≤ k − 1. We have two subcases for k.

(2.1) If k > 3, then we can find a matching for all odd vertices of X. Note that
there are 2k − 4 odd vertices on X. Let V2 = {a1, bk−2} and Vj = {aj−1, bj−2},
3 ≤ j ≤ k −1. For 1 ≤ i ≤ k −2, it is easy to see that ai is adjacent to bi. Hence,
we can let Pi = aibi. Clearly, u is not included in Pi.

(2.2) If k = 3, then we have |V1| = 1, |V2| = 2 and |V3| = 3. Further, a1 and
b1 are the only two odd vertices of X. Let V (X) = {u, a1, b1} and P1 = a1ub1.

If X contains at least two even vertices or X contains only one even vertex
and k > 3, then similar to Case 1, we clear all edges of the graph Kn1,...,nk

−{v1}
using the following fast search strategy. Let U be a connected component in Hh

that contains u.

1. Place a searcher on the vertex u.
2. Slide one of the two searchers on u along the Eulerian circuit of U to clear all

its edges. Note that all edges of X incident on u are cleared after this step.
3. Slide the two searchers on u to v2 and v3 respectively.
4. Place a searcher on v2. Let H be the graph formed by all the remaining

contaminated edges of Kn1,...,nk
except edges in ∪h

i=1E(Pi).
(a) If degH(v2) is even (so H is Eulerian), then slide one of the two searchers

on v2 along the Eulerian circuit of H to clear all its edges.
(b) If degH(v2) is odd (so H has an Eulerian trail), then slide one of the two

searchers on v2 from v2 to v3 along the Eulerian trail of H to clear all its
edges.

5. Let GP be the graph formed by the paths P1, . . . , Ph (E(GP ) is the set of
all the remaining contaminated edges of Kn1,...,nk

). Note that ah and bh are
two vertices of degree one on GP . Slide the searcher on ah along Ph to bh.
Then ah−1 and bh−1 are two vertices of degree one on GP − E(Ph). Slide
the searcher on ah−1 along Ph−1 to bh−1. Continuing like this we see that all
edges of GP can be cleared.

If X contains only one even vertex and k = 3, then similar to Case 1, we
clear all edges of the graph K1,2,3 −{v1} using the following fast search strategy.
Place a searcher on a1 and v2 respectively. Slide one of the two searchers on a1

along P1 to b1. Slide the two searchers on b1 to v2 and v3 respectively. Note that
the graph formed by all the remaining contaminated edges of K1,2,3 is Eulerian.
Slide one of the searchers on v2 along the path v2uv3a1v2 to clear all its edges.
Then, K1,2,3 is cleared.

Theorem 2. For a complete k-partite graph Kn1,...,nk
, if there is an nj, 1 ≤ j ≤

k, such that
∑k

i=1 ni − nj ≥ 4 and
∑k

i=1 ni − nj is even, then fs(Kn1,...,nk
) ≤

∑k
i=1 ni − nj + 3.

Proof. If nj ≤ 3, from Theorem 5.1 in [13], we see that the claim holds. If k = 2
and

∑k
i=1 ni − nj ≥ 6, from Lemma 5 in [6], we know that the claim holds.
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If k = 2 and
∑k

i=1 ni − nj = 4, similar to Lemma 5 in [6], we can show that the
claim also holds. So we assume that nj ≥ 4 and k ≥ 3 in the rest of the proof.
Let Vj = {v1, v2, . . . , vnj

} and X = Kn1,...,nk
− Vj . Let

∑k
i=1 ni − nj = m and

V (X) = {u1, u2, . . . , um}. If nj is odd, then place m searchers on vnj
and slide

them to each vertex of X. If nj is even, then place m searchers on each vertex of
X. Without loss of generality, we assume that nj is even. Place three additional
searchers on u1, u2 and u3 respectively.

Since k ≥ 3, we know that X is a complete (k − 1)-partite graph. So X is
connected. If X is Eulerian, then slide a searcher from u1 along the Eulerian
circuit of X to clear all its edges. Without loss of generality, we assume that
X is not Eulerian. Suppose that X has 2h odd vertices. Let H0 = X. Similar
to Case 3 in the proof of Theorem 1, let ai and bi be two odd vertices of Hi−1

such that there is a path Pi between them which does not contain any vertex in
Vodd(Hi−1) as an internal vertex. Let Hi = Hi−1 − E(Pi), 1 ≤ i ≤ h. We now
describe a fast search strategy that can clear all edges of Kn1,...,nk

using m + 3
searchers.

1. In the following procedure, at any moment when a vertex ui (1 ≤ i ≤ m)
contains two searchers, if Hh has a connected component that contains ui and
no edges of the component are cleared, then slide a searcher from ui along
the Eulerian circuit of the component to clear all its edges.

2. Slide a searcher from u1 to v1 along u1v1, slide a searcher from u2 to v1 along
u2v1 and slide a searcher from u3 to v2 along u3v2.

3. Note that the subgraph induced by all the edges across {u4, . . . , um} and
{v1, v2} has an Eulerian trail (since m is even). Slide a searcher from v1 to v2
along the Eulerian trail to clear all its edges.

4. Slide a searcher from v1 to u3 along v1u3, slide a searcher from v2 to u1 along
v2u1 and slide a searcher from v2 to u2 along v2u2. After this step, v1 and v2
are cleared.

5. Similar to Steps 2, 3 and 4, we can clear v3 and v4, and then clear v5 and v6
(if they exist), and so on, until vn−1 and vn are cleared.

6. Let GP be the graph formed by the paths P1, . . . , Ph (E(GP ) is the set of all
the remaining contaminated edges of Kn1,...,nk

). Similar to Step 5 in Case 3
of the proof of Theorem 1, we can clear all edges of GP .

Theorem 3. For a complete k-partite graph Kn1,...,nk
, if there is an nj, 1 ≤

j ≤ k, such that
∑k

i=1 ni −nj ≥ 3 and
∑k

i=1 ni −nj is odd, then fs(Kn1,...,nk
) ≤

∑k
i=1 ni − ⌊nj

2

⌋
.

Proof. If nj ≤ 3, similar to Theorem 5.1 in [13], we can prove the claim. If
k = 2, from Lemma 7 in [6], we see that the claim holds. So we assume that
nj ≥ 4 and k ≥ 3 in the remainder of the proof. Let Vj = {v1, v2, . . . , vnj

} and
X = Kn1,...,nk

− Vj . Let
∑k

i=1 ni − nj = m and V (X) = {u1, u2, . . . , um}. Note
that X is connected since k ≥ 3. Suppose that X has 2h odd vertices. Similar to
Case 3 in the proof of Theorem 1, we can define ai, bi, Pi and Hi for 1 ≤ i ≤ h.

Case 1. nj = 4� + 1. Place m searchers on v1, place one searcher on each of
u1, v2 and v3. Place one searcher on each of v4i+2 and v4i+3 for i = 1, . . . , � − 1
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(i.e., we place two searchers for every four vertices in Vj \ {v1}). In total we use
m + 1 + nj−1

2 searchers.

1. In the following process, at any moment when a vertex ui (1 ≤ i ≤ m)
contains two searchers, if Hh has a connected component that contains ui

and no edges of the component are cleared, then slide a searcher from ui

along the Eulerian circuit of the component to clear all its edges.
2. Slide m searchers from v1 to each vertex of X. Slide one of the two

searchers on u1 along the Eulerian circuit induced by all the edges across
{u1, u2, . . . , um−1} and {v2, v3} to clear all its edges.

3. Slide a searcher from v2 to v4 along v2umv4 and slide a searcher from v3 to
u5 along v3umv5 to clear v2 and v3. Slide a searcher on u1 along the Eulerian
circuit induced by all the edges across {u1, u2, . . . , um−1} and {v4, v5} to clear
all its edges.

4. Repeat the above step for all of v4i+2 and v4i+3 where i = 1, . . . , � − 1. First
clear the Eulerian circuit induced by all the edges across {u1, u2, . . . , um−1}
and {v4i+2, v4i+3} with a searcher on u1. Slide the searcher on v4i+2 along
v4i+2umv4i+4 and the searcher on v4i+3 along v4i+3umv4i+5. Then clear the
Eulerian circuit induced by all the edges across {u1, u2, . . . , um−1} and
{v4i+4, v4i+5} with a searcher on u1.

5. Let GP be the graph formed by the paths P1, . . . , Ph. Similar to Step 5 in
Case 3 of the proof of Theorem 1, we can clear all edges of GP .

Case 2. nj = 4�+2. Place the searchers as in Case 1. So m+1+ nj−2
2 = m+ nj

2
searchers are placed on the graph. Clear all vertices in Vj \ {vnj

} with the same
strategy used in Steps 1–4 in Case 1. Note that the only contaminated edges are
the ones incident on vnj

and the edges of GP . We can arrange the vertices of X
before placing actions such that u1 = ah, which is a vertex of degree one on GP .
Since m is odd, there is at least one vertex u such that degX(u) is even. For each
vertex u ∈ V (X) whose degX(u) is even, if u /∈ V (GP ), then slide a searcher
on u to vnj

along uvnj
. Slide a searcher from u1 to vnj

along u1vnj
; slide the

other searcher on u1 (i.e., ah) along Ph to bh, during which, when a vertex ui of
Ph has only one contaminated edge (i.e., uivnj

), incident on it, slide a searcher
on ui along uivnj

to vnj
. Then ah−1 and bh−1 are two vertices of degree one

on GP − E(Ph). Slide a searcher from vnj
to ah−1 along vnj

ah−1, and slide this
searcher along Ph−1 to bh−1, during which, when a vertex ui of Ph−1 has only
one contaminated edge incident on it, slide a searcher on ui along uivnj

to vnj
.

Continuing like this we can clear all edges of GP and all edges incident on vnj
.

Case 3. nj = 4� + 3. Place the searchers as in Case 1. Place another searcher
on um. Hence we use m + 1 + nj−3

2 + 1 = m + nj+1
2 searchers. Use the same

strategy as in Steps 1–4 in Case 1 to clear every vertex in Vj \{vnj−1, vnj
}. Now

there is one searcher on every vertex of X except u1 and um on which there
are two searchers. We can arrange the vertices of X before placing actions such
that um = ah. Slide one of the two searchers on um along Ph to bh to clear all
its edges. Then, bh contains two searchers. Slide a searcher on bh along bhvnj−1

and bhvnj
respectively. Slide a searcher on u1 to clear the Eulerian circuit induced
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by all the edges across V (X) \ {b1} and {vnj−1, vnj
}. Finally, similar to Step 5

in Case 1, we can clear all edges of GP − E(Ph).
Case 4. nj = 4�. Place a searcher on every vertex in {u1, u2, . . . ,

um−1, v1, v2, . . . , v2�} and place a second searcher on u1. Hence we use m + nj

2
searchers. We can arrange the vertices of X before placing actions such that
degX(um) is even and u1 = ah. Let Pi = aiumbi, 1 ≤ i ≤ h.

1. Slide the searcher from u1 along the Eulerian circuit induced by all the edges
across {u1, u2, . . . , um−1} and {v1, v2, . . . , v2�}. Then slide each searcher on
vi ∈ {v1, v2, . . . , v2�} along vium to clear {v1, v2, . . . , v2�}.

2. Slide a searcher on um to each vertex in {v2�+1, v2�+2, . . . , v4�−2}. Slide a
searcher on u1 to clear the Eulerian circuit induced by all the edges across
{u1, u2, . . . , um−1} and {v2�+1, v2�+2, . . . , v4�−2}. Slide a searcher on u1 to bh

along Ph.
3. In the following process, at any moment when a vertex ui (1 ≤ i ≤ m)

contains two searchers, if Hh has a connected component that contains ui

and no edges of the component are cleared, then slide a searcher from ui

along the Eulerian circuit of the component to clear all its edges.
4. Slide a searcher on bh along bhv4�−1 and bhv4� respectively and bh is cleared.

Then, slide a searcher on um to clear the Eulerian circuit induced by all the
edges across V (X) \ {bh} and {v4�−1, v4�}.

5. Finally, similar to Step 5 in Case 1, we can clear all edges of GP − E(Ph).

Corollary 1. For a complete k-partite graph Kn1,...,nk
, define αj, 1 ≤ j ≤ k,

as

αj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k∑

i=1

ni − nj + 3, if
∑k

i=1
ni − nj is even and

∑k

i=1
ni − nj ≥ 4,

k∑

i=1

ni −
⌊nj

2

⌋
, if

∑k

i=1
ni − nj is odd and

∑k

i=1
ni − nj ≥ 3,

k∑

i=1

ni, else.

Then fs(Kn1,...,nk
) ≤ min1≤j≤k αj .

4 Complete Bipartite Graphs

In Sects. 4 and 5, we focus on some special classes of complete k-partite graphs.
When k = 2, Kn1,...,nk

is a complete bipartite graph. Dyer et al. [6] proved
several results on the fast search number of Km,n. The fast search problem on
Km,n has been solved when m is even. However, the fast search problem remains
open when m is odd, and they only gave lower and upper bounds on fs(Km,n)
in [6]:
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– When m is odd, n is even and 3 ≤ m ≤ n, we have max{m + 2, n
2 } ≤

fs(Km,n) ≤ min{n + 3,m + n
2 }.

– When m and n are odd and 3 ≤ m ≤ n, we have max{m + 2, m+n
2 } ≤

fs(Km,n) ≤ m + n+1
2 .

In the following, we will prove that for a complete bipartite graph Km,n

with 3 ≤ m ≤ n, if m is odd, then fs(Km,n) equals to the upper bounds given
above. Let SKm,n

denote an optimal fast search strategy for Km,n, which uses
the minimum number of sliding actions to clear the first cleared vertex of Km,n

among all optimal fast search strategies for Km,n. We use w1 to denote the first
cleared vertex of Km,n. Let t1 denote the moment at which w1 is cleared (see
Fig. 1(1)). Note that vertices of Km,n are partitioned into two vertex sets V1 and
V2. We use w2 to denote the first cleared vertex in another vertex set of Km,n

which does not contain w1. That is, if w1 ∈ V1, then w2 ∈ V2; if w1 ∈ V2, then
w2 ∈ V1. Let t2 denote the moment after which the next sliding action clears
w2 (see Fig. 1(2)). Without loss of generality, we first assume that w1 ∈ V2. In a
similar way, we can prove the lower bound on fs(Km,n) when w1 ∈ V1.

Fig. 1. (1) After searcher λ slides from v1 to u1, v1 becomes the first cleared vertex
of K3,3. Let this moment be denoted by t1, and we have w1 = v1. (2) Searcher λ will
slide from u3 to v3 in the next step. After that, u3 becomes the first cleared vertex in
V1. Let t2 denote this moment, and we have w2 = u3.

Throughout this section, we assume m is odd. We use A1 to denote the set of
all vertices in V2 \ {w1} which contain a searcher at t1 and have cleared incident
edges at t2. We use A2 to denote the set of all vertices in V2 \{w1} which contain
a searcher and have cleared incident edges at t2. Let a1 = |A1| and a2 = |A2|, it
is easy to see that a1 + a2 ≥ |A1 ∪ A2|. Figures 2 and 3 illustrate A1 and A2.

Note that at the moment t1, all vertices in A2 \ {A1 ∩ A2} are contaminated
and contain no searchers, and hence contain no searchers at the beginning of
SKm,n

either. Since m is odd, we know all vertices in A2 are odd. Therefore,
each vertex in A2 \ {A1 ∩ A2} must contain a searcher at the end of SKm,n

.

Lemma 6. For a complete bipartite graph Km,n with m,n ≥ 3, let SKm,n
be an

optimal fast search strategy for clearing Km,n. Suppose that w1 ∈ V2 in SKm,n
,

then we have a1 + a2 ≥ |A1 ∪ A2| ≥ n − 2.
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Fig. 2. At the moment t1, each vertex in A1 contains a searcher. Further, each vertex
in A1 has cleared incident edges at t2 (see Fig. 3). In this case, A1 = {v2, v3}.

Fig. 3. At the moment t2, each vertex in A2 contains a searcher, and all vertices in A1

and A2 have cleared incident edges. In this case, A2 = {v4}.

Lemma 7. For a complete bipartite graph Km,n with m,n ≥ 3, let SKm,n
be an

optimal fast search strategy for clearing Km,n. Suppose that w1 ∈ V2 in SKm,n
. If

(1) each vertex in V1∪A1 contains exactly one searcher at t1, and (2) w1 contains
no searchers at t1, then each vertex in A1 has at least two contaminated incident
edges at t1.

4.1 Both m and n Are Odd

Lemma 8. For a complete bipartite graph Km,n with 3 ≤ m ≤ n, suppose that
both m and n are odd. If w1 ∈ V2, then fs(Km,n) ≥ m + n+1

2 .

Proof. If 3 = m ≤ n, then it follows from Lemma 2 that fs(Km,n) ≥ m+n
2 + 2 =

n+1
2 +3 = m+ n+1

2 . So we only need to consider 5 ≤ m ≤ n in the following. Since
w1 ∈ V2 and w1 is cleared at t1, we know each vertex in V1 must be guarded by
a searcher at the moment t1. If max{a1, a2} ≥ n+1

2 , then fs(Km,n) ≥ m + n+1
2 .

Suppose that max{a1, a2} ≤ n−1
2 . Note that a1 + a2 ≥ n − 2 and both m and n

are odd. We know min{a1, a2} ≥ n−3
2 . Further, a1 and a2 cannot both equal to

n−3
2 ; otherwise, a1 + a2 = n − 3 < n − 2. Hence, there are two cases.

Case 1. a1 = n−1
2 . If w1 contains a searcher at t1, then fs(Km,n) ≥ |V1| +

|A1| + 1 = m + a1 + 1 = m + n+1
2 . If w1 contains no searchers at t1, then for the

sake of contradiction, we assume that m + n−1
2 searchers can clear Km,n. Since

|V1∪A1| = m+ n−1
2 , we know each vertex in V1∪A1 contains exactly one searcher

at t1, and no searchers are located on other vertices. Consider the moment
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t1. From Lemma 7, we know each vertex in A1 has at least two contaminated
incident edges at t1. Further, since |V2\{A1∪{w1}}| = n− n−1

2 −1 ≥ 2, there are
at least two vertices in V2 which have no cleared incident edges. Therefore, each
vertex in V1 has at least two contaminated incident edges. Observe that every
vertex in V1∪A1 contains exactly one searcher and has at least two contaminated
incident edges. Therefore, all searchers get stuck at t1, which contradicts that
m + n−1

2 searchers can clear Km,n. Hence, fs(Km,n) ≥ m + n+1
2 .

Case 2. a1 = n−3
2 . Since max{a1, a2} ≤ n−1

2 and a1 + a2 ≥ n − 2, we know
a2 = n−1

2 . Further, since a1 + a2 = n − 2, we know A1 ∩ A2 = ∅, and hence
each vertex in A2 should always contain a searcher after t2. For the sake of
contradiction, assume that m+ n−1

2 searchers can clear Km,n. Recall that at the
moment t2, each vertex in A2 ∪ V1 is occupied by a searcher and |A2 ∪ V1| =
m + n−1

2 , we know each vertex in A2 ∪ V1 is occupied by exactly one searcher at
t2. Let x1x2 denote the last cleared edge before t2, which is cleared by sliding
a searcher from x1 to x2. Note that each vertex in V1 is occupied by a searcher
between t1 and t2. We know x2 must be in A2, and x2 contains no searchers
before x1x2 is cleared. Thus, x1x2 is the only cleared edge incident on x2 at
t2. Recall that a1 + a2 = n − 2, it is easy to see that there is still a vertex
in V2, say x3, which has no cleared incident edges at t2. Hence, w2x3 must be
cleared by the next sliding action after t2. When w2 is cleared, we know both
of x2 and x3 have exactly one cleared incident edge, and the two edges must be
w2x2 and w2x3. Therefore, when w2 is cleared, each vertex in V1 except w2 has
at least two contaminated incident edges. Note that each vertex in A2 should
be guarded by a searcher after t2. Hence, every searcher gets stuck after w2

is cleared. This contradicts that m + n−1
2 searchers can clear Km,n. Therefore,

fs(Km,n) ≥ m + n+1
2 .

Corollary 2. For a complete bipartite graph Km,n with 3 ≤ m ≤ n, suppose
that both m and n are odd. If w1 ∈ V1, then fs(Km,n) ≥ m + n+1

2 when m = 3,
and fs(Km,n) ≥ n + m+1

2 when m ≥ 5.

From Lemma 8 and Corollary 2, we are ready to present the lower bound on
fs(Km,n) when both m and n are odd. Note that since m ≤ n, min{m+ n+1

2 , n+
m+1
2 } = m + n+1

2 .

Theorem 4. Given a complete bipartite graph Km,n with 3 ≤ m ≤ n, if both m
and n are odd, then fs(Km,n) ≥ m + n+1

2 .

4.2 m is Odd and n is Even

Lemma 9. For a complete bipartite graph Km,n with 3 ≤ m < n, suppose that
m is odd and n is even. If w1 ∈ V2, then fs(Km,n) ≥ m + n

2 .

Proof. If max{a1, a2} ≥ n
2 , then it is easy to see that fs(Km,n) ≥ m+ n

2 . Suppose
that max{a1, a2} < n

2 . Since a1 + a2 ≥ n − 2 and n is even, we know a1 =
a2 = n−2

2 and A1 ∩ A2 = ∅. Consider the moment t1. We know each vertex
in V1 ∪ A1 contains a searcher. For the sake of contradiction, we assume that
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m+ n−2
2 searchers can clear Km,n. Then each vertex in V1 ∪A1 contains exactly

one searcher at t1. From Lemma 7, we know each vertex in A1 has at least
two contaminated incident edges. Further, since A1 ∩ A2 = ∅ and |V2 \ {A1 ∪
{w1}}| = n − n−2

2 − 1 ≥ 2, we know there are at least two vertices in V2 which
have no cleared incident edges at t1. Thus, each vertex in V1 has at least two
contaminated incident edges at t1, and hence, all searchers get stuck at t1. This
contradicts that m+ n−2

2 searchers can clear Km,n. Therefore, fs(Km,n) ≥ m+ n
2 .

In the following, we consider the case when w1 ∈ V1.

Lemma 10. For a complete bipartite graph Km,n with 3 ≤ m < n, suppose that
m is odd and n is even. If w1 ∈ V1, then fs(Km,n) ≥ n + 1 when m = 3, and
fs(Km,n) ≥ n + 3 when m ≥ 5.

Proof. If w1 ∈ V1, then w2 ∈ V2. At the moment t1, since w1 is the first cleared
vertex, each vertex in V2 is occupied by a searcher. Let w3 denote the second
cleared vertex of Km,n. If w3 ∈ V2, then we know each vertex of Km,n except w1

and w3 must be occupied by a searcher before w3 is cleared. Hence, fs(Km,n) ≥
m + n − 2. If w3 ∈ V1, then we have two cases:

Case 1. m = 3. Assume that n searchers can clear Km,n. Consider the moment
t1. Note that |V2| = n and each vertex in V2 is occupied by a searcher at t1.
Hence, each vertex in V2 contains exactly one searcher at t1 and no searchers
are located on other vertices. Since there are still two vertices in V1 which have
no cleared incident edges, then each vertex in V2 has two contaminated incident
edges. Thus, it is impossible to move any of the searchers located on V2 after
t1. This contradicts our assumption that n searchers can clear Km,n. Therefore,
fs(Km,n) ≥ n + 1 when m = 3.

Case 2. m ≥ 5. For the sake of contradiction, we assume that n+2 searchers
are sufficient to clear Km,n. We have three subcases:

Case 2.1. w3 contains no searchers after it is cleared. Then the last two
cleared edges incident on w3 are both cleared by sliding a searcher from w3

to V2. After w3 is cleared, all searchers will get stuck within five steps. This
contradicts the assumption that n + 2 searchers are sufficient to clear Km,n.
Therefore, fs(Km,n) ≥ n + 3.

Case 2.2. w3 contains exactly one searcher after it is cleared. Note that w3

has degree at least 6, we know the last cleared edge incident on w3 has to be
cleared by sliding a searcher from w3 to V2. Consider the moment when w3 is
cleared. Note that each vertex in V2 is occupied by a searcher between t1 and
t2, and there are at least m − 2 ≥ 3 vertices in V1 which contain no searchers
and have no cleared incident edges. Since we assume that n + 2 searchers are
sufficient to clear Km,n, hence, there is only one vertex in V2 which contains two
searchers. It is easy to see that all searchers get stuck within one step after w3

is cleared, which is a contradiction. Therefore, fs(Km,n) ≥ n + 3.
Case 2.3. w3 contains exactly two searchers after it is cleared. Consider the

moment at which w3 is cleared. Note that there are still at least m − 2 ≥ 3
vertices in V1 which contain no searchers and have no cleared incident edges.
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Further, each vertex in V2 is occupied by exactly one searcher. Hence, it is easy
to see that all searchers get stuck after w3 is cleared. Therefore, fs(Km,n) ≥ n+3.

From the above cases, if w1 ∈ V1, then fs(Km,n) ≥ min{m + n − 2, n + 1} =
n + 1 when m = 3, and fs(Km,n) ≥ min{m + n − 2, n + 3} = n + 3 when m ≥ 5.

From Lemmas 9 and 10, we know: (1) when m = 3, fs(Km,n) ≥ min{m +
n
2 , n + 1} = m + n

2 ; (2) when m ≥ 5, fs(Km,n) ≥ min{m + n
2 , n + 3}. Hence,

we are now ready to give the lower bound on fs(Km,n) when m is odd, n is even
and 3 ≤ m ≤ n.

Theorem 5. For a complete bipartite graph Km,n with 3 ≤ m < n, if m is odd
and n is even, then fs(Km,n) ≥ min{n + 3,m + n

2 }.
From Theorems 4 and 5 above, in combination with Lemma 4 and Theorem

4 in [6], we have a complete solution to fs(Km,n).

Theorem 6. For a complete bipartite graph Km,n with 3 ≤ m ≤ n,

fs(Km,n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⌈n

2

⌉
, m = 1,

2, m = n = 2,
3, m = 2 and n ≥ 3,

m +
n + 1

2
, 3 ≤ m ≤ n, both m and n are odd,

min{n + 3,m +
n

2
}, 3 ≤ m < n, m is odd and n is even,

6, m = 4 and n ≥ 4,
m + 3, 6 ≤ m ≤ n and m is even.

5 Complete Split Graphs

In this section, we consider complete split graphs Sm,n with m,n ≥ 1, which also
form a special class of k-partite graphs Kn1,...,nk

when 1 = n1 = · · · = nk−1 ≤
nk. We start with some initial cases.

Lemma 11. For a complete split graph Sm,n, if n = 1, then

fs(Sm,1) =

⎧
⎪⎨

⎪⎩

1, m = 1,

2, m = 2,

m + 1, m ≥ 3.

In the following, we consider the fast search number of Sm,n when n ≥ 2. Let
SSm,n

denote an optimal fast search strategy for clearing Sm,n. Let w′
1 denote

the first cleared vertex in SSm,n
, and let t′1 denote the moment at which w′

1 is
cleared.
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5.1 m is Odd and n ≥ 2

When m = 1 and n ≥ 2, Sm,n is a star with n leaves. It is easy to see that
S1,n can be cleared with 	n

2 
 searchers. Further, it follows from Lemma 1 that
fs(S1,n) ≥ 1

2 |Vodd(S1,n)| = 	n
2 
. Hence, we have the next lemma.

Lemma 12. For a complete split graph with m = 1, if n ≥ 2, then fs(S1,n) =
	n
2 
.

Lemma 13. For a complete split graph Sm,n with m ≥ 3 and n ≥ 2, if m is
odd, then fs(Sm,n) = m + 	n

2 
.
Proof. If w′

1 ∈ V1, then each vertex of Sm,n except w′
1 should be guarded by a

searcher at the moment t′1. Hence, fs(Sm.n) ≥ m − 1 + n. If w′
1 ∈ V2, then we

have two cases:
Case 1. n is even. If n = 2, then it follows from Lemma 3 that fs(Sm,n) ≥

m + 1 = m + n
2 . If n ≥ 4, then similar to the proof of Lemma9, we can show

that fs(Sm,n) ≥ m + n
2 .

Case 2. n is odd. If n = 3, then it follows from Lemma5 that fs(Sm,n) ≥
2 + m = m + n+1

2 . If n = 5, then similar to the proof of Lemma8 when n ≥ 5,
we can show that fs(Sm,n) ≥ m + n+1

2 .
From the above cases, when m ≥ 3 and n ≥ 2, fs(Sm,n) ≥ min{m−1+n,m+

	n
2 
} = m + 	n

2 
. In combination with Theorem 3, we have fs(Sm,n) = m + 	n
2 
,

when m ≥ 3 and n ≥ 2.

From Lemmas 12 and 13, we are ready to give the fast search number of Sm,n

when m is odd and n ≥ 2.

Theorem 7. For a complete split graph Sm,n, if m is odd, then

fs(Sm,n) =

⎧
⎪⎨

⎪⎩

⌈n

2

⌉
, m = 1, n ≥ 2,

m +
⌈n

2

⌉
, m ≥ 3, n ≥ 2.

5.2 m is Even and n ≥ 2

Now we consider the complete split graph Sm,n where m is even and n ≥ 2. We
first give the following upper bound on fs(Sm,n).

Lemma 14. For a complete split graph Sm,n with m = 2 and n ≥ 2, we have
fs(S2,n) ≤ 3.

Proof. Let V1 = {u1, u2} and V2 = {v1, v2, . . . , vn}. Place a searcher on u1 and
u2 respectively. Place a second searcher, say λ, on u1. Hence we use 3 searchers.
Let λ clear v1 by sliding along the path u1v1u2. Next let λ clear v2 by sliding
along the path u2v2u1. Repeat this process to clear all the other vertices of Sm,n.

Lemma 15. For a complete split graph Sm,n with m = 4 and n ≥ 3, we have
fs(S4,n) ≤ 6.
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Lemma 16. For a complete split graph Sm,n with m ≥ 4 and n = 2, we have
fs(Sm,2) ≤ m + 1.

Theorem 8. For a complete graph Sm,n,

fs(Sm,n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3, m = 2, n ≥ 2,

6, m = 4, n ≥ 3,

m + 1, m ≥ 4, n = 2,

m + 2, m ≥ 6, n = 3.

Proof.

(1) m = 2 and n ≥ 2. If w′
1 ∈ V1, then fs(S2,n) ≥ |V1 ∪V2|−1 = 2+n−1 ≥ 3. If

w′
1 ∈ V2, then let w′

1x1 denote the last sliding action at t′1. Suppose that two
searchers are sufficient to clear Sm,n. When w′

1 is cleared, each vertex in V1

should be occupied by a searcher. Therefore, at the moment t′1, each vertex in
V1 is occupied by exactly one searcher and no searchers are located on other
vertices. Hence, x1 has no cleared incident edges before w′

1x1 is cleared.
Further, the only edge between two vertices in V1 is contaminated when
w′

1x1 is cleared. Since there is at least one vertex in V2 which has no cleared
incident edges, we know each vertex in V1 has at least two contaminated
incident edges. Therefore, no searchers can move after w′

1 is cleared. This is
a contradiction. Thus, when m = 2 and n ≥ 2, fs(S2,n) ≥ 3.

(2) m = 4 and n ≥ 3. It follows from Lemmas 5 and 15 that fs(S4,n) = m+2 = 6.
(3) m ≥ 4 and n = 2. Clearly, Sm,2 contains a clique Km+1. From Lemmas 3

and 16, we have fs(Sm,2) = m + 1.
(4) m ≥ 6 and n = 3. It follows from Theorem 1 that fs(Sm,3) = m + n − 1 =

m + 2.

From Lemma 5 and Theorem 2, we give a lower bound and an upper bound
on fs(Sm,n) when m ≥ 6 and n ≥ 4.

Theorem 9. For a complete split graph Sm,n with m ≥ 6 and n ≥ 4, if m is
even, then m + 2 ≤ fs(Sm,n) ≤ m + 3.

6 Conclusion and Open Problems

We established both lower bounds and upper bounds on the fast search number
of complete k-partite graphs. For k = 2, in combination with existing upper
bounds, we completely resolved the open question of determining the fast search
number of complete bipartite graphs. In addition, we presented some new and
nontrivial bounds on the fast search number of complete split graphs.

State-of-the-art knowledge and intuition about the fast search model is not
developed as well as for most other search models. Our lower bounds required
new proof approaches compared to the existing results in the literature; thus our
results shed light on the general problem of finding optimal fast search strategies.

The following problems are left open which we consider worth to investigate:
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(1) For complete split graphs Sm,n with m ≥ 6 and n ≥ 4, resolve the gap of 1
between the upper bound and lower bound on the fast search number when
m is even.

(2) Determine the fast search number of Kn1,...,nk
for general values of n1, . . . ,

nk. We conjecture that in Corollary 1, if
∑k

i=1 ni −nj is odd and
∑k

i=1 ni −
nj ≥ 3, then fs(Kn1,...,nk

) = min1≤j≤k αj , where αj =
∑k

i=1 ni − ⌊nj

2

⌋
.
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Abstract. The existence of a densely knit core surrounded by a loosely
connected periphery is a common macro-structural feature of social net-
works. Formally, the CorePeriphery problem is to partition the nodes
of an undirected graph G = (V, E) such that a subset X ⊂ V , the
core, induces a dense subgraph, and its complement V \X, the periph-
ery, induces a sparse subgraph. Split graphs represent the ideal case in
which the core induces a clique and the periphery forms an independent
set. The number of missing and superfluous edges in the core and the
periphery, respectively, can be minimized in linear time via edit distance
to the closest split graph.

We show that the CorePeriphery becomes intractable for standard
notions of density other than the absolute number of misclassified pairs.
Our main tool is a regularization procedure that transforms a given graph
with maximum degree d into a d-regular graph with the same clique num-
ber by adding at most d · n new nodes. This is of independent interest
because it implies that finding a maximum clique in a regular graph is
NP-hard to approximate to within a factor of n1/2−ε for all ε > 0.

1 Introduction

In the CorePeriphery problem, we are given a graph G = (V,E) and our
goal is to find a bipartition of V into a tightly knit core and a loosely connected
periphery. To formalize the CorePeriphery problem, we compare the given
graph with the class of split graphs, i.e., graphs that admit a bipartition into
a complete induced subgraph and a set of mutually non-adjacent vertices. Our
aim is now to minimize the error, i.e., the deviation from the ideal case.

To this end, we want to simultaneously maximize the density in the core and
minimize the density in the periphery.
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The CorePeriphery problem is highly relevant for the analysis of social net-
works [2,21] in various domains [1,5,6,8,9,15,16,18–20,22–25]. The most com-
mon formalizations are due to Borgatti and Everett [2] and heuristic algorithms
are used [3,4] to separate a core from its periphery. Rombach et al. [21] present
a method for identifying multiple cores in a network. Holme [12] introduced a
core-periphery-coefficient to measure if the network can be bisected in core and
periphery. Zhang et al. [26] developed a statistically principled method, where
they use a maximum-likelihood fit, for detecting a core-periphery-decomposition.

The CorePeriphery is closely related to other problems in graph theory.
For example, if we omit the condition of a bipartition, we get the problem of
finding a densest subgraph in a given graph. Goldberg [10] shows that this prob-
lem can be solved in polynomial time for the linear density by using an algorithm
based on a network flow computation. The problem to find a vertex partition
with maximal sum of the densities of the subsets is known to be NP-hard [7].
Khuller and Saha [14] give 2-approximation algorithms for computing a densest
subgraph with at least k vertices for a given k.

The problems of finding large cliques and independent sets are notoriously
difficult: it is NP-hard to approximate the size of the largest clique/independent
set within a factor of n1−ε for all ε > 0 [13,27]. Mathieson and Szeider [17]
showed that the clique problem remains W [1]-hard even in regular graphs. To
this end, they proposed a gadget to regularize a given graph, which yields n1/3−ε-
hardness for approximating the size of the largest clique in regular graphs. To
the best of our knowledge, this was the best previously known lower bound for
the hardness of approximation of cliques in regular graphs.

1.1 Our Contribution

We propose a novel regularization procedure that transforms a given graph with
n nodes and maximum degree d into a d-regular graph by adding O(d · n) nodes
and O(d2n) edges without increasing the size of the largest clique provided that
the given graph was not already triangle-free. This improves the construction
in [17], which uses O(d2n) extra nodes. Furthermore, we show that this implies
that it is NP-hard to approximate the size of the largest clique in a regular
graph within a factor of O(n1/2−ε) for all ε > 0. Finally we show by a new
proof technique that the CorePeriphery problem is NP-hard for linear and
quadratic densities.

1.2 Preliminaries

We start by a formal treatment of our problems. A graph G = (V,E) is d-regular
if all nodes in V have exactly d neighbors, i.e., all nodes in V have the same
degree deg(v) = d.

We say that a graph G′ = (V ′, E′) is an induced subgraph of the graph G,
G′ ⊆ G, if V ′ ⊆ V and E′ consists of all edges in E, which have both endnodes
in V ′. We also write G′ = G[V ′]. If we consider the number of adjacent nodes of
v ∈ V ′ in a subgraph G′ = (V ′, E′), we express this by degG′(v).
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The complement edge set Ē := {{v, w} ⊆ V : {v, w} /∈ E, v �= w} of G =
(V,E) consists of all edges which are not included in E. The complement graph
Ḡ =

(
V, Ē

)
of G is a graph with the same set of vertices and the complement

edge set of G.
An �-clique K� is an induced complete subgraph of G with � nodes, i.e., every

pair of nodes in the node set of K� is connected by an edge. A famous problem
in the graph theory is the MaxClique problem. The goal of it is to find a
maximum clique in the given graph G, i.e., a clique with the biggest number of
nodes. We call this number the clique number ω(G) of the graph G. If G is a
regular graph, we call the problem of computing ω(G) RegularClique.

A graph G = (V,E) is called bipartite if the node set V can be partitioned
into two not empty subsets V1 and V2 so that every edge in E has one endnode
in V1 and one endnode in V2. A bipartite subgraph Ka,b = (V ′

1 ∪ V ′
2 , E

′) in G
with |V ′

1 | = a and |V ′
2 | = b is called biclique, if every node of V ′

1 is adjacent to
every node of V ′

2 . A set of edges in the graph G that are mutually disjoint is
called matching in G. If every node in G is incident to one edge of the matching
then it is a perfect matching. A complete bipartite graph with 2n nodes from
which the edges of a perfect matching have been removed is called crown graph.

2 RegularClique is NP-Hard to Approximate

To prove the hardness result, we first describe a polynomial-time algorithm to
regularize a given graph G = (V,E) with |V | = n and |E| = m and maximum
degree d.

2.1 Regularization Procedure

Our goal is to augment a graph G = (V,E) with maximum degree d by additional
nodes and edges to obtain a d-regular graph Gd = (Vd, Ed) such that G ⊆ Gd

and ω(G) = ω(Gd). We assume w.l.o.g. that |V | = 2x with x ∈ Z
+: If the

number of nodes is odd, we add an isolated node to V . This does not change
ω(G) and increases n to n + 1, which does not harm the asymptotic statements
later on.

Since we will not remove any edges, we must fill up the degree of each node
until it reaches d. Then the regularized graph Gd = (Vd, Ed) will contain exactly
y := d · n − 2m new edges, each with exactly one incident node in V . We choose
r, s ∈ Z≥0 so that m = d · s − r with 0 ≤ r < d. Thus,

y = 2d · x − 2d · s + 2r = 2d · (x − s) + 2r.

Now we consider a crown graph with 2d nodes, i.e., biclique Kd,d without a
perfect matching. Every node of it has degree equal to d − 1. We add x − s such
graphs to G and connect every node of them with one of the nodes in V with
degree less than d. Thereby, we may connect one node in V with one or several
nodes of these auxiliary graphs until its degree is equal to d.
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For the 2r remaining required new edges we add a further biclique Kd,d

without a matching with r edges. This auxiliary graph contains 2r nodes with
degree d − 1. We connect those nodes with the nodes in V whose degree is still
smaller than d (Fig. 1).

Fig. 1. A graph G with n = 7, m = 8 and d = 3. We add an auxiliary node a, set
x = 4, s = 3 and r = 1. Then we construct Gd by adding one K3,3 without a perfect
matching (on the right side of the figure) and one K3,3 without the matching with
r = 1 edges. Finally we create new edges according to the above description.

Theorem 1. The graph G contains a k-clique with k ≥ 4, if and only if its
regularized version Gd contains a k-clique.

Proof. Let k ≥ 4. Assume that G contains a k-clique. As the regularization
procedure only adds nodes and edges and does not remove any of the original
nodes or edges, G is an induced subgraph of Gd and thus Gd contains the same
k-clique.

On the other hand, if Gd contains a k-clique K with k ≥ 4, at most two
of its nodes may be contained in Vd\V because the added bipartite graphs are
triangle-free. But if K contains exactly two nodes from Vd \V , then these two
nodes can have at most one common neighbor in K because each of them is
only incident to exactly one node in V , a contradiction to the assumption that
K is a clique with at least 4 nodes. Similarly, if exactly one node from Vd \V
is contained in K, then it is incident to exactly one other node in K, again a
contradiction. Thus, K is completely contained in V , which proves the claim. �	

2.2 Hardness of Approximation

The RegularClique problem is formally defined as follows.

Problem 1 (RegularClique). Given a regular graph G and an integer k,
decide whether G contains a clique of size k.

This problem is not only NP-hard, but also very hard to approximate.
To prove this, we recall the situation for MaxClique in general graphs.
Zuckerman [27] derandomized a construction of H̊astad [13] to obtain the fol-
lowing theorem.
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Theorem 2 ([13,27]). Let ε > 0. Given a graph G = (V,E), it is NP-hard to
approximate MaxClique to within a factor of |V (G)|1−ε.

From this, we derive a similar hardness result, where we lose a
√

n-factor
due to the blow-up of O(dn) in the number of nodes with our regularization
procedure. We restrict ourselves to the case k ≥ 4 because we can decide whether
there is a K3 by enumerating all triples of nodes in O(n3) time and because the
cases for k ∈ {1, 2} are trivial.

Theorem 3. It is NP-hard to approximate RegularClique within a factor of
n

1
2−ε for all ε > 0.

Proof. Let G = (V,E) be a given undirected graph with n := |V | and m := |E|,
and let Gd = (Vd, Ed) denote its regularized version. For our considerations, we
can assume that the graph G is a connected graph and therefore m ≥ n − 1 ⇔
2m ≥ 2n − 2 and hence 2m ≥ n for all n ≥ 2. By the regularizing construction
we get

N := |Vd| = n + 2d · (x − s) + 2d = n + d · n − 2m − 2r + 2d ≤ d · n ≤ n2.

Suppose that there exists an approximation algorithm ARegClique for regular
clique within a factor of N

1−ε
2 for an ε > 0. Then we can find a k-clique K in

Gd with k ≥ ω(Gd)/N
1−ε
2 nodes. According to the Theorem 1, K is contained

in G and ω(Gd) = ω(G). Thus, k ≥ ω(G)/N
1−ε
2 ≥ ω(G)/n1−ε. Thus, we would

have an n1−ε-approximation for MaxClique. Theorem 2 proves the statement
above. �	

For the sake of presentation, we further restrict the range for k to {4, . . . , d}.
This is w.l.o.g. because d-regular graphs cannot have a clique with more than
d+1 nodes, the cases for k ∈ {1, 2, 3} can be decided in polynomial time, as well
as the case for k = d + 1 as the following Lemma shows.

Lemma 1. A d-regular graph G = (V,E) contains a clique Kd+1, if and only if
G contains a connected component with d + 1 nodes.

Proof. Let K ⊆ V be a clique in G with d + 1 nodes. Since degK(v) = d for
all v ∈ K every node in K is adjacent to all other nodes in K. Because G is a
d-regular graph, there cannot be an edge {v, w} with v ∈ K and w /∈ K.

On the other hand, let G contain a connected component V ′ ⊆ V with d + 1
nodes. Because G is a d-regular graph, every node in V ′ is adjacent to d nodes.
This means that every node in V ′ is adjacent to all nodes in V ′. Thus, G[V ′] is
a clique with d + 1 nodes. �	

3 Application to CorePeriphery

We apply the results from the previous section to prove NP-hardness of two
versions of the CorePeriphery problem. Generally speaking our aim is to
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decompose a given graph G = (V,E) into a core, i.e., nodes that are tightly
connected, and a periphery, i.e., vertices that are loosely connected. The ideal
case is a so called split graph. This is a graph for which there exists a bipartition
of its vertices into a clique and an independent set, i.e., a set of nodes that not
induce any edge. Hammer and Simeone [11] showed that the split graphs can be
recognized in linear time.

Theorem 4 (Hammer and Simeone, 1981 [11]). Let G = (V,E) be an
undirected graph with |V | = n and the degree sequence d1 ≥ · · · ≥ dn. Define
k := max{i : di ≥ i − 1}. Then, G is a split graph if and only if the splittance

1
2

⎛

⎝k(k − 1) −
k∑

i=1

di +
n∑

j=k+1

dj

⎞

⎠ = 0.

Furthermore, if this is the case, then k is the clique number of G.

For all other graphs we try to minimize the deviation from this ideal case, i.e.,
to minimize the splittance. Observe that 1

2

(
k(k − 1) − ∑k

i=1 di +
∑n

j=d+1 dj

)

edges have to be added/deleted to make G a split graph. That is, the splittance
is the number of edges that have to be added or to be deleted to obtain a
bipartition of a given graph into a clique as a core and the independent set as
periphery. Furthermore, Hammer and Simeone showed in [11] that the splittance
of any graph can be determined in linear time.

Fig. 2. Here we see two different cores (black nodes) in the Petersen graph. The split-
tance of the graph is always equal to 9 if the core consists of 4 nodes, although the
core induces no edges.

The fact that the splittance of a d-regular graph is equal for all cores with
d + 1 nodes, illustrates that the splittance is not able to discriminate certain
situations. For example, Fig. 2 shows two cores in the Petersen graphs that are
both optimal w.r.t. the splittance, but one of them even induces an independent
set — the opposite of a clique. So it is natural to ask for the size normalized
deviation like how many edges on average per node must be added in the core
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and be deleted in the periphery to obtain a split graph. Analogously, we can
consider the problem so that we ask which fraction of edges of the clique is to
be added to the core and which fraction of potential edges in periphery is to be
deleted to obtain the ideal case.

To facilitate the comparison of further objective functions, we introduce the
following notations. Let G = (V,E) be a graph and X ⊆ V a candidate for the
core of G. The number of edges and non-edges in the core X are denoted by

c1(X) := |{e ∈ E : e ⊆ X}|, c0(X) := |{ē ∈ Ē : ē ⊆ X}|

and similarly in the periphery V \X:

p1(X) := |{e ∈ E : e ∩ X = ∅}|, p0(X) := |{ē ∈ Ē : ē ∩ X = ∅}|.

We write c1, c0, p1, or p0 if X is clear from the context. Using our notion the
splittance is equal to c0 + p1.

Our aim is to decompose the nodes of the graph into the core X and periphery
V \X such that the density of the subgraph induced by X is maximal and
the density of the subgraph induced by V \X is minimal. To combine these
criteria in a single objective function that mimics the splittance, we minimize
sparsityG(X) + densityG(V \X), where sparsityG(X) := densityḠ(X), i.e., the
sparsity is defined as density in the complement graph.

Popular density functions are the linear and the quadratic density. The linear
density d1(X) of X ⊆ V in a graph G = (V,E) is defined as the average degree
in the subgraph induced by X. That is,

d1(X) =
1

|X|
∑

v∈X

degX(v) =
2c1
|X| .

The quadratic density d2(X) of X ⊆ V in a graph G = (V,E) is the ratio of
existent edges to the number of all possible edges in the subgraph induced by
X. That is,

d2(G) :=
c1

|X|(|X|−1)
2

=
2c1

|X|(|X| − 1)
.

To facilitate the discussion, we split the contribution of the sparsity of the
core X and the density of the periphery V \X into two functions f(X) and g(X),
respectively, such that their sum defines the objective function h(X). This is
summarized in the Table 1.

The function f(X) counts non-edges in X, in relation to the size of X and
g(X) counts edges having both incident nodes in the set V \X, in relation to
the size of V \X. These quantities yield the deviation of the core X and the
periphery V \X to a perfect core-periphery structure, i.e., the average number
of edges per node to be added to the core or to be deleted from the periphery
in the case of linear density, and the percentage of missing edges in the core or
surplus edges in the periphery, respectively, to make X a clique and V \X an
independent set.
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Table 1. The decomposition of the objective function into contributions of the core
and the periphery for splittance, linear, and quadratic normalization.

Deviation Absolute Linear Quadratic

Core X c0(X) f(X) := 2c0(X)
|X| f(X) := 2c0(X)

|X||X−1|
Periphery V \X p1(X) g(X) := 2p1(X)

|V |−|X| g(X) := 2p1(X)
(|V |−|X|)(|V |−|X|−1)

Total deviation c0(X) + p1(X) h(X) := f(X) + g(X)

We will show in the following that the CorePeriphery problem is NP-hard
for both of these densities. For this we will use the hardness result for Regu-
larClique from the previous section. The main idea of our proof is that we
augment the graph by isolated nodes such that any reasonably good solution will
take a clique as the core. That is, all solutions that have an incomplete subgraph
as a core will have a worse objective value than taking the two endpoints of any
edge as the core. It is important for our argument that the input graph is regular
and therefore we will make use of our regularization procedure.

3.1 Linear Density

First we show that if the core-candidate X is not a clique, then the value of the
density of X never falls below a certain value.

Lemma 2. If a non-empty set X ⊆ V does not induce a clique, then f(X) ≥
2

d+1 for any d ≥ 2.

Proof. We first consider the case |X| ≤ d + 1. Since X does not induce a clique,
the induced subgraph misses at least one edge from being complete, i.e., c0 ≥ 1.
Thus, we have

f(X) =
2c0
|X| ≥ 2

|X| ≥ 2
d + 1

.

If |X| ≥ d + 2, we have |X| − 1 ≥ d + 1 and so X must miss more than

|X|(|X| − 1)
2

− d|X|
2

≥ |X|(d + 1) − d|X|
2

=
|X|
2

edges, i.e., c0 ≥ |X|
2 . Thus, f(X) = 2c0

|X| ≥ 1 ≥ 2/(d + 1) for all d ≥ 2. �	
The idea for proving NP-hardness is to augment a given graph by isolated nodes
such that h(X) is at most 1/d < 2/(d + 1) whenever X induces a clique (even if
it induces single edge) in a graph with d ≥ 2.

Lemma 3. A d-regular graph G contains a clique of size k ≤ d, if and only if,
G′ = (V ′, E) with the node set V ′ consisting of the n nodes of V and q additional
isolated nodes (i.e., |V ′| = n + q) contains a core X ⊆ V ′ with

h(X) ≤ nd − 2dk + k(k − 1)
n + q − k

for all q ≥ d2n.
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Proof. Let X be a k-clique in G and thus also in G′. Note that f(X) = 0.
Moreover, the total number of edges is nd

2 due to the regularity and the number
of edges incident to nodes in X is given by kd − (

k
2

)
. Hence,

h(X) = g(X) = 2
nd
2 − (dk − (

k
2

)
)

n + q − k
=

nd − 2dk + k(k − 1)
n + q − k

︸ ︷︷ ︸
=:g(k)

.

To prove the converse direction, we show that g(k) is decreasing in the range of
1 ≤ k ≤ d. To this end, we consider the first derivative of g(k), i.e.,

g′(k) =
(2k − 2d − 1)q + 2kn − dn − n − k2

(n + q − k)2

≤ −q − dn + n + 1
(n + q − k)2

≤ − (d2 − d + 1)n + 1
(n + q − k)2

< 0

Thus, g(k) ≤ g(1) = (dn − 2d)/(n + q − 1) ≤ (dn − 2d)/(n + d2n − 1) ≤ 1/d <
2/(d + 1) for all d ≥ 2. Hence, G contains a k-clique if and only if there is an
X ⊂ V ′ with

h(X) ≤ nd − 2dk + k(k − 1)
q + n − k

.

�	
As a consequence, we obtain a reduction to prove NP-hardness of linear

CorePeriphery.

Theorem 5. Solving the problem CorePeriphery with linear density is NP-
complete.

Proof. Given a d-regular graph G = (V,E) and an integer k ∈ {1, . . . , d}, we wish
to decide whether G contains a k-clique (by Lemma 1 it is sufficient to consider
k-cliques with k ≤ d). We add q = nd2 isolated nodes to G and thereby obtain
G′ = (V ′, E′) for which we compute the CorePeriphery problem. Combining
Lemmas 2 and 3, the reported core will be a clique. �	

3.2 Quadratic Density

Lemma 4. If X ⊆ V does not induce a clique, then f(X) ≥ 1
d2 for d ≥ 2.

Proof. We again consider the case |X| ≤ d + 1 first. Since X does not induce a
clique, it contains at least one non-edge in E and thereby

f(X) ≥ 2
|X|(|X| − 1)

≥ 2
(d + 1)d

≥ 1
d2

.
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If |X| = d+ � with 2 ≤ � ∈ Z, than there are (d+ �)(d+ �− 1)/2− d(d+ �)/2
non-edges and thus

f(X) ≥ (d + �)(d + � − 1) − d(d + �)
(d + �)(d + � − 1)

=
d + � − 1 − d

d + � − 1
= 1 − d

d + � − 1

≥ 1 − d

d + 1
=

1
d + 1

.

�	
For proving NP-hardness for the quadratic density, we augment a given graph

by q isolated nodes analogous to the case of linear density such that h(X) is
strictly less than 1/d2 whenever X induces a clique (even if it induces single
edge).

Lemma 5. A d-regular graph G contains a clique of size k ≤ d, if and only if,
G′ = (V ′, E) with the node set V ′ consisting of the n nodes of V and q additional
isolated nodes (i.e., |V ′| = n + q) contains a core X ⊆ V ′ with

h(X) ≤ nd − 2dk + k(k − 1)
(n + q − k)(n + q − k − 1)

for all q ≥ dn.

Proof. At first we assume that X is a k-clique in G and also in G′. Analogous
to the proof for the linear density we obtain

h(X) = g(X) =
nd − 2dk + k(k − 1)

(n + q − k)(n + q − k − 1)
︸ ︷︷ ︸

=:g(k)

=
nd − k(2d − k + 1)

q2 + k2 + n(n − 2k − 1) + q(2n − 2k − 1) + k
<

nd

q2
.

For q ≥ dn we get g(X) < 1
dn and therefore h(X) < 1

dn < 1
d2 . Recall that

h(X) ≥ 1
d2 if X is not a clique by Lemma 4.

Now we have to prove that a larger clique is preferred instead of a smaller
one. To this end, we show that the function g(k) decreases for increasing k by
considering the difference

g(k − 1) − g(k) =
−2(1 − dk − k − n − q + d − dq + kn + kq)
(n + q − k + 1)(n + q − k)(n + q − k − 1)

It is easy to verify that the denominator of this difference is positive. So we have
to investigate the numerator only.

−2(1−dk−k−n−q+d−dq+kn+kq) = 2(q(d−k+1)+dk+k−kn−d+n−1)
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We show that for q ≥ dn this term is positive.

2(q(d − k + 1) + dk + k − kn − d + n − 1)
≥ 2(dn(d − k + 1) + dk + k − kn − d + n − 1)
≥ 2(dn(d − k + 1) + d + 1 − kn − d + n − 1)
≥ 2(dn(d − d + 1) + d + 1 − dn − d + n − 1)
= 2n > 0

As a consequence a minimizer for the CorePeriphery problem for quadratic
density is a clique X ⊆ V . �	
Theorem 6. Solving the problem CorePeriphery with quadratic density is
NP- complete.

Proof. Given a d-regular graph G = (V,E) and an integer k ∈ {1, . . . , d}. The
question is again whether G contains a clique with k nodes. We construct a graph
G′ = (V ′, E′) by adding q = nd isolated nodes to G analogous to the case of
linear density. Then we solve the CorePeriphery problem on G′. Combining
Lemmas 4 and 5, we obtain a clique as the core. �	
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Abstract. In the partial degree bounded edge packing problem
(PDBEP), the input is an undirected graph G = (V,E) with capac-
ity cv ∈ N on each vertex. The objective is to find a feasible subgraph
G′ = (V,E′) maximizing |E′|, where G′ is said to be feasible if for each
e = {u, v} ∈ E′, degG′(u) ≤ cu or degG′(v) ≤ cv. In the weighted version
of the problem, additionally each edge e ∈ E has a weight w(e) and we
want to find a feasible subgraph G′ = (V,E′) maximizing

∑
e∈E′ w(e).

The problem is already NP-hard if cv = 1 for all v ∈ V [Zhang, FAW-
AAIM 2012].

In this paper, we introduce a generalization of the PDBEP problem.
We let the edges have weights as well as demands, and we present the first
constant-factor approximation algorithms for this problem. Our results
imply the first constant-factor approximation algorithm for the weighted
PDBEP problem, improving the result of Aurora et al. [FAW-AAIM
2013] who presented an O(log n)-approximation for the weighted case.

We also present a PTAS for H-minor free graphs, if the demands on
the edges are bounded above by a constant, and we show that the prob-
lem is APX-hard even for cubic graphs and bounded degree bipartite
graphs with cv = 1, ∀v ∈ V .

1 Introduction

Packing problems are central objects of study in the theory of algorithms.
Quintessential examples of such problems are the Independent Set problem [4]
in graphs, Maximum Matchings in graphs [10,12], and the Knapsack Problem
[16]. Due to their fundamental nature, and wide applicability, these problems
and variants thereof have been studied intensively over several decades. In this
paper, we study a variant of the matching problem that is called the Partial
Degree Bounded Edge Packing problem (PDBEP for short).

In the most basic version of this problem, the input is an undirected graph
G = (V,E), with unit capacities on the vertices, and unit weight on the edges.
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The goal is to pack a maximum cardinality set E′ ⊆ E of edges such that in the
resulting sub-graph G′ = (V,E′), each edge e = {u, v} ∈ E′ is satisfied, where
an edge is said to be satisfied if either of its end-points has degree at most 1 in
the sub-graph G′, i.e., degG′(u) ≤ 1 or degG′(v) ≤ 1.

The Maximum Matching problem, phrased as above would be to find a sub-
graph G′ = (V,E′) with maximum number of edges E′ such that each edge is
satisfied, where an edge is said to be satisfied if both of its end-points have degree
at most 1 in the sub-graph G′, i.e., degG′(u) ≤ 1 and degG′(v) ≤ 1.

The difference between the Maximum Matching problem and the PDBEP
problem is only in the definition of when an edge is satisfied. While in the case
of Maximum Matching, we require that the degree condition at both end-points
be satisfied, we only require a weaker condition to be satisfied for the PDBEP
problem, namely that for each edge, the degree condition be satisfied at at least
one end-point. One can immediately observe that despite the seeming similarity
with the maximum matching problem, the solutions to the two problems can
be vastly different. For example, consider a star K1,n. The maximum matching
problem has a solution of size 1, whereas the PDBEP problem on the same
instance has a solution of size n. In fact, while the Maximum Matching problem
admits a polynomial time algorithm [10], our problem is NP-hard [19] even in
the case of unit capacities.

Motivated by an application in computing on binary strings by Bu et al. [6],
Zhang introduced the PEpD problem in [19]. The problem he studied is called
the Maximum Expressive Independent Set (MEIS for short) problem where the
objective is to find a subset X of maximum cardinality from a set of binary
strings W such that no string t ∈ X is expressible from X \ {t}, where a binary
string s is expressible from a set of binary strings S, if it can be obtained by
combining the strings in S using bitwise AND and OR operators. He studied
a restricted version of this problem where each string is 2-regular which means
that it has exactly two ones. This he posed as a graph problem where the graph
has a vertex for every bit position and an edge {i, j} corresponds to a string that
has ones at positions i, j. Now a solution to the PDBEP problem with uniform
cu = 2 corresponds to a subset of strings such that for any string in the subset
with ones at positions i, j, at most one other string can have a 1 at one of these
two positions which means that the subset of edges gives a solution to the MEIS
problem (this follows from Lemma 2.4 in [19]).

Another natural application of the PDBEP problem is in resource allocation.
Here, we are given |V | types of resources and |E| jobs. Each job needs two types
of resources. A job u can be accomplished if either one of its necessary resources
is shared by no more than cu other jobs. The problem then asks to finish as
many jobs as possible.

The rest of the paper is organized as follows. In Sect. 2, we present the nota-
tion used, give a formal definition of the problems studied, and present prelim-
inary results. Section 3 describes related work. We study the PDBEP problem
with unit capacities in Sect. 4, and then present results for the general setting
in Sect. 5. We give a PTAS for the weighted PDBEP problem on H-minor free
graphs in Sect. 6. In Sect. 7, we prove that the PDBEP problem is APX-hard.
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2 Preliminaries

Let G = (V,E) denote an undirected graph. In our setting, the graphs come
equipped with a weight function w : E → N and a demand function d : E → N

on the edges, and a capacity function c : V → N on the vertices. We also consider
the special case when all vertices have unit capacity. In this setting, we assume
that the demand of each edge is also 1, and that the graphs are simple. When
we consider the general problem, the graph is no longer assumed to be simple.

We also consider directed graphs, denoted D = (V,A). Each edge (u, v) ∈ A
with head v and tail u is said to be entering v, and exiting u. We use in(v), out(v)
respectively to denote the edges entering and exiting v.

For a vertex v, we let Ne(v) = {e = {u, v} ∈ E} denote the set of edges
incident on v. In the weighted setting, we let Nmax(v) = {e ∈ Ne(v) : w(e) ≥
w(f) ∀f ∈ Ne(v)}. Thus, Nmax(v) is the set of heaviest weighted edges incident
on v. For a set F ⊆ E of edges, we let w(F ) =

∑
e∈F w(e), and d(F ) =

∑
e∈F de.

We now formally define the Weighted Partial Degree Bounded Edge Pack-
ing Problem with Demands, denoted PEpD: The input is an undirected
(multi-)graph, with w, d : E → N, the weights and demands respectively, on
the edges, and c : V → N the capacity on the vertices. We want to compute a
sub-graph G′ = (V,E′) such that w(E′) is maximized, and each edge is satisfied.
We say that an edge is satisfied if at least one of its end-points is not overloaded.
Thus, we want for each e = {u, v} ∈ E′, d(Ne(u)) ≤ cu or d(Ne(v)) ≤ cv. For
an edge e = {u, v} an end-point that is not overloaded, we call a good end-point
of e. If neither end-point is overloaded, we pick a good end-point arbitrarily. We
also consider the unit-capacity case, i.e., cv = 1, ∀v ∈ V . In this case, we assume
de = 1, ∀e ∈ E. We use PEp to denote the unit-capacity problem.

We also consider in this paper, two graph orientation problems. The Max-
imum Degree-Bounded Orientation Problem with Demands (OrD) is defined
as follows: The input is identical to the PEpD problem, namely an undirected
graph G = (V,E), w, d : E → N and c : V → N. The goal is to select a maximum
weight subset of edges E′ ⊆ E, and compute an orientation

−→
E′ of the edges in

E′ such that the total demand of in(v) is at most its capacity for each v ∈ V ,
i.e.,

∑
e∈in(v) de ≤ cv for all v ∈ V . When all vertex capacities are 1, we assume

de = 1, ∀e ∈ E, and use Or to denote this problem with unit capacity and
demands.

A solution to PEpD yields a solution to the OrD problem on the same
instance. To see this, each edge e in a feasible PEpD solution has a good end-
point, and orienting e towards its good end-point is a feasible solution to OrD of
the same weight. It would be tempting to hope that the reverse might be true;
and if so, this would be cause for cheer as we will show that the OrD problem
is tractable. Unfortunately, this is not the case even in the unit-capacity case.
Consider for example, a triangle with unit capacity on the vertices, and unit
weight on the edges. Any feasible solution to the PEp problem consists of at
most 2 edges, but orienting the three edges in a cycle is feasible for Or. In fact,
it is known that the PEp problem is NP-hard [19].
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Our approximation algorithms for the PEpD problem nevertheless use a
solution to the OrD problem as a starting point, and in fact, any solution to
the OrD problem can be transformed into one for the PEpD problem on the
same instance at the loss of a small constant factor. The relation between the
two problems is useful, and we capture this in the following proposition.

Proposition 1. For any instance I, OPTPEpD(I) ≤ OPTOrD(I).

We show that Or problem can be reduced in polynomial time to the b-
matching problem in bipartite graphs, which can be solved in polynomial time
[17]. Hence, Or can be solved in polynomial time. Similarly, the OrD problem
with demands can be reduced to the demand matching problem in bipartite
graphs [18], and hence, 2-approximation follows.

Lemma 1. The Or problem can be solved in polynomial time.

Proof. We prove this by giving a polynomial time reduction from Or to b-
matching in bipartite graphs. The reduction is as follows: Given an instance
G = (V,E), c : V → N, w : E → N of the Or problem, we construct a bipartite
graph H = (E ∪ V, F ), with capacities be = 1 for all e ∈ E and bv = cv for all
v ∈ V . The edges F are defined as follows: For each edge e = {u, v}, add two
edges {e, u}, {e, v} to F , each of weight w(e).

Suppose E′ ⊆ E is a feasible solution to Or, where
−→
E′ denotes a feasible

orientation of E′. We claim that E′ yields a feasible matching M in H of the
same weight. Corresponding to each e = (u, v) ∈ −→

E′, pick {e, v} in M . Then,
exactly one edge is chosen in M for each e ∈ E′, and for each v, at most cv edges
in M are incident on it. Thus, M is feasible and has weight w(M) = w(E′).

Let M be a maximum weight b-matching in H. Let E′ ⊆ E be the set of
edges of G covered by M . We claim that E′ is a feasible solution to Or. To see
this, since be = 1 for all e ∈ E, for each e = {u, v}, at most one of {e, u} or
{e, v} is in M . This defines an orientation of e in the graph G. If {e, u} ∈ M ,
let e ∈ E′ and −→e = (v, u). Else, if {e, v} ∈ M , let e ∈ E′ and let −→e = (u, v).
Since edges {e, v} and {e, u} have the same weight as that of e, it follows that
w(E′) = w(M).

Since b-matching in bipartite graphs admits a polynomial time algorithm
[17], it follows that Or can be solved in polynomial time. 	

A similar reduction, imples that OrD has a 2-approximation algorithm.

Lemma 2. The OrD problem has a 2-approximation algorithm.

Proof. We use a reduction similar to that in Lemma1. The only difference is that
the edges in F inherit both the weight as well as demand of the corresponding
edge, and in the bipartite graph H, we set be = de for e ∈ E, and bv = cv for
each v ∈ V . Since demand-matching on bipartite graphs has a 2-approximation
algorithm [15], the lemma follows. 	
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3 Related Work

The PDBEP problem was introduced by Zhang [19] motivated by a problem of
resource allocation as well as a problem of finding large independent sets. This
is the unit demand and unit weight version of our problem, namely PEpD with
the additional constraint that w(e) = de = 1 for all e ∈ E. As mentioned earlier,
Zhang proved that unit capacity version of PDBEP i.e., PEp with unit edge
weights is NP-hard. This result follows from the fact that for a graph G = (V,E),
a solution of size k for PEp implies a dominating set of size |V | − k. Since the
Dominating Set problem is NP-hard [11], this implies PEp is NP-hard. Zhang
also presented a 2-approximation algorithm for PEp, with unit edge weights, and
a 32/11-approximation algorithm, again with unit edge-weights and a uniform
capacity of 2 for all vertices. Dehne et al. [8] studied a parameterized version of
the PDBEP problem (with vertex capacity 1 and edge demands 1), and obtained
algorithms that are exponential in the size of the PEp solution.

A related problem is the problem of packing vertex disjoint T -stars where a
T -star is a complete bipartite graph K1,t for some 1 ≤ t ≤ T . In [3] the authors
gave a 9

4
T

T+1 -approximation for this problem. When T ≥ |V | − 1, the T -star
packing in an edge weighted graph where the objective is to maximize the total
weight of the edges in the stars is exactly the PEp problem.

Aurora et al. [2] presented a simple 2-approximation algorithm for PEp with
arbitrary vertex capacity, but unit demands and unit weights on the edges.
In the setting with weighted edges, but unit demands on the edges, they pre-
sented only an O(log n)-approximation algorithm. We introduce the version of
the PEp problem with demands on the edges, and present the first constant-
factor approximation for this general case.

The PEp problem, as stated earlier is similar to the Maximum weight match-
ing problem, for which several polynomial time algorithms are known [10,13].
The demand version of the problem, PEpD is similar to the demand match-
ing problem introduced by Shepherd and Vetta [18]. For the demand match-
ing problem, Shepherd and Vetta presented a 3.264-approximation for general
graphs and a 2.764-approximation for bipartite graphs. These results have since
been improved using the technique of iterative rounding to a factor 3 for general
graphs, and a factor of 2 for bipartite graphs [14,15].

The degree-bounded orienting problem Or is a classic combinatorial opti-
mization problem. However, it has mostly received attention in terms of main-
taining connectivity. See [17] for more details.

4 A 2-Approximation Algorithm for Unit Capacity
Instances

In this section, we present a 2-approximation algorithm for PEp. In this setting,
recall that cv = 1 for all v ∈ V . Earlier, a 2-approximation algorithm was known
only for the unweighted case by Zhang [19], i.e., when w(e) = 1 for all e ∈ E.
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Our algorithm is combinatorial. We show that we can carefully select a subset
of edges such that an upper bound on OPTPEp can be constructed from this
subset. Recall that for a vertex v ∈ V , Nmax(v) denotes the set of edges of
maximum weight incident on v, and we use emax(v) to denote an edge in Nmax(v).

The set of edges Emax ⊆ E is constructed as follows: Let v1, . . . , vn be an
arbitrary ordering of the vertices. Starting with E1

max = E2
max = ∅, for each i

from 1, . . . , n, if an edge from Nmax(vi) has not been chosen, pick an arbitrary
edge e = {vi, vj} from Nmax(vi). If e ∈ Nmax(vj) and no edges from Nmax(vj)
have been chosen yet we add e to E2

max, otherwise add e to E1
max. We denote

the set Emax = E1
max ∪ E2

max. Observe that by the way we choose the edges in
E2

max at most one edge from Nmax(v) is chosen for each vertex. This is encoded
in the Proposition below.

Proposition 2. For each v ∈ V , |E2
max ∩ Nmax(v)| ≤ 1

Lemma 3. OPTPEp ≤ ∑
v∈V w(emax(v))

Proof. We show that
∑

v∈V w(emax(v)) is an upper-bound on the Max-
orientation problem Or on the same instance. Then, the lemma follows from
Proposition 1. Let F ⊆ E be a feasible solution to the Or problem in G. Since
the vertices have unit capacity, for any vertex v ∈ V , there is at most one edge
of F in-coming to v. Let w(in(v)) denote the weight of this edge if any, and zero
otherwise. Then,

∑
(u,v)∈F w(u, v) =

∑
v∈V w(in(v)) ≤ ∑

v∈V w(emax(v)). 	

Note that in order to obtain an upper bound, we require that we sum up
w(emax(v)) over all vertices as w(Emax) by itself does not constitute an upper
bound. For example consider the graph G = ({a, b, c, d}, {{a, b}, {b, c}, {c, d},
{a, d}, {b, d}}). Let the weights on the edges be {5, 3, 4, 1, 2} in the same order.
In this example,

∑
e∈Emax

w(e) = w(a, b) + w(d, c) = 9. However, OPTPEp =
w(a, b) + w(b, c) + w(b, d) = 10.

In order to obtain our claimed approximation, we construct an orientation of
the edges in Emax such that

−→
Gmax = (V,

−→
Emax) is acyclic, and show that each

connected component of
−→
Gmax is an out-tree.

Lemma 4. There exists an orientation of the edges in Emax such that each
connected component of

−→
Gmax = (V,

−→
Emax) is an out-tree.

Proof. We suggest a natural orientation of the edges in Emax. Suppose the ver-
tices are considered in the order of v1, . . . , vn during the construction of Emax.
In iteration i of the construction, if an edge is added to either E1

max or E2
max,

then orient that edge towards vi. Since in each iteration at most one edge can be
added to Emax, our orientation ensures that for any vertex vi ∈ V , at most one
edge in

−→
Emax is oriented towards vi, which implies the in-degree of any vertex

is at most 1. Note that this shows the set Emax is in fact a feasible solution to
the Or problem.

To show that each connected component of
−→
Gmax is an out-tree, we also

require that the graph
−→
Gmax is acyclic. In contrary, let C = v0, v1, . . . , vk, v0 be
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a directed cycle in
−→
Gmax. Our orientation ensures that if an edge e is oriented

towards v, then e ∈ Nmax(v). Thus, the weight of an in-coming edge into a vertex
v has weight at least as large as any out-going edge. Thus, following the cycle
from v0, the weight of the edges can not increase. Therefore, the only possibility
is that all edges in C have equal weight. However, we add an edge e incident
on a vertex v into Emax only if no edge in Nmax(v) is present in Emax when v
is processed, and we then orient e towards v. If, without loss of generality, the
vertex v0 was the first to be processed during the construction of Emax, then
the edge {vk, v0} is already present in the solution when we process vk. Since
{vk, v0} ∈ Nmax(vk), no edge is added during the processing of vk. This implies
no edge is oriented towards vk, which is a contradiction. Hence,

−→
Gmax is acyclic.

Thus, we have
−→
Gmax is acyclic and each vertex has in-degree at most 1. This

ensures each connected component of Gmax is an out-tree. 	

The example discussed above shows that w(Emax) is not an upper bound on
OPTPEp. However, we can re-write the upper bound by distinguishing the con-
tribution from the edges of E1

max and E2
max.

Lemma 5. OPTPEp ≤ w(E1
max) + 2w(E2

max)

Proof. Consider the above oriented graph
−→
Gmax = (V,

−→
Emax). We claim that for

any vertex vi, if no edge is oriented towards vi, then there is exactly one edge
in E2

max incident on vi. To see this, note that if no edge is oriented towards vi,
then before iteration i, we have already added at least one edge from Nmax(vi)
to Emax. Let j be the minimal iteration such that an edge from the set Nmax(vi)
is added to Emax. Then according to our construction, the edge {vj , vi} is the
only edge added to the set E2

max among all the edges incident on vi in Emax.
Let v be any vertex towards which no edge is oriented in

−→
Gmax. Then there

is exactly one edge in E2
max incident on v. Let e = {u, v} be that edge. We

add another edge of weight w(e) between u and v to
−→
Gmax, and orient this

edge towards v. Let the resulting multi-graph be
−→
G ′

max = (V,
−→
E ′

max). In
−→
G ′

max,
exactly one edge from Nmax(v) is oriented towards v for each vertex v. Thus,∑

v∈V w(emax(v)) =
∑

e∈−→
E ′

max
w(e) =

∑
e∈E1

max
w(e) + 2

∑
e∈E2

max
w(e). Using

Lemma 3, we get OPTPEp ≤ w(E1
max) + 2w(E2

max). 	

Theorem 1. There exists a 2-approximation algorithm for PEp.

Proof. Since each connected component of the graph
−→
Gmax is an out-tree, we

can partition the vertices into two sets such that all the edges in
−→
Emax crosses

the partition. To see this, for any tree T in
−→
Gmax, label the vertices with distance

from the root. Since T is a tree, a vertex with odd label is only adjacent to vertices
with even label, and vice-versa. Therefore, we can partition V into two sets X
and Y , where X consists of odd-labeled vertices, and Y consists of even-labeled
vertices. The set of edges between X and Y consists of all the edges.

Now consider the cut (X,Y ) in Gmax, and orient the edges in Emax as follows:
Orient all the edges in E1

max in the same way it is oriented in
−→
Gmax, and orient



194 P. Aurora et al.

each edge e ∈ E2
max, towards both the end-points. Note that

∑
e∈−→

δ (X)
w(e) +

∑
e∈−→

δ (Y )
w(e) = w(E1

max) + 2w(E2
max), since each edge in E2

max is present in

both
−→
δ (X) and

−→
δ (Y ), where for any Z,

−→
δ (Z) denotes the set of out-going

edges from Z. Therefore, max{−→δ (X),
−→
δ (Y )} ≥ (w(E1

max)+2w(E2
max))/2. Thus,

by returning the maximum among
−→
δ (X), and

−→
δ (Y ), we guarantee a solution

of weight at least OPTPEp/2 (Using Lemma 5).
Now it remains to prove the feasibility of

−→
δ (X), and

−→
δ (Y ). Note that the

in-degree of any vertex is at most 1 in the oriented graph, which ensures both−→
δ (X) and

−→
δ (Y ) are individually feasible for PEp. 	


Note that our 2-approximation algorithm for PEp improves the result of
Babenko and Gusakov [3] for the special case of T -star packing when T = |V |−1.
They proposed a 9

4
T

T+1 -approximation algorithm for this problem.

5 A Constant-Factor Approximation Algorithm

In this section, we obtain a (4+ε)-approximation algorithm for any ε > 0 for the
PEpD problem on general graphs, and a (2 + ε)-approximation algorithm for
the PEpD problem on bipartite graphs. Our algorithm holds for a slightly more
general problem. Instead of demands on the edges, we let each edge e = {u, v}
have possibly different demands d(e, u), d(e, v) at its end-points. It is possible
that d(e, u) exceeds the capacity cu of vertex u, and yet, e could be in our
solution since its other end-point, namely v could be its good end-point.

Given a graph G = (V,E), our algorithm finds an oriented multi-graph
−→
G ′ =

(V,
−→
E ′) having w(E′) almost equal to the optimal PEpD solution such that for

all the vertices, in-degree constraint is satisfied. Next, by finding a directed cut
of weight at least w(E′)/4 in

−→
G ′, we guarantee a (4 + ε)-approximate solution

for PEpD in G.

Lemma 6. Given a graph G = (V,E), weights w : E → N, demands d : E → N

on the edges, and capacities c : V → N on the vertices, there exists a directed
multi-graph

−→
G ′ = (V,

−→
E ′) with w(E′) at least (1 − ε)OPTPEpD such that∑

e∈in(v) de ≤ cv, for all v ∈ V .

Proof. Let OPTPEpD denote an optimal solution for the PEpD problem, and
F ⊆ E be the edges picked in this solution. For any vertex vi, if the degree
condition is satisfied in F , then we set OPTi

PEpD to be the total weight of the
edges incident on vi in F , otherwise we set OPTi

PEpD to be 0. Since for any
edge in F , the degree condition is satisfied at at least one end-point, we have∑n

i=1 OPTi
PEpD ≥ OPTPEpD.

For all vi ∈ V , we consider the problem of picking a maximum weight sub-set
of edges from Ne(vi) such that the degree condition is satisfied. Observe that at
each vertex, this amounts to solving an independent Knapsack problem. Since
Knapsack admits an FPTAS [16], we obtain a solution Ai of weight at least
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(1 − ε)OPTi, where OPTi is the optimal solution to this problem w.r.t. vertex
vi. Therefore, we have

n∑

i=1

w(Ai) ≥ (1 − ε)
n∑

i=1

OPTi

≥ (1 − ε)
n∑

i=1

OPTi
PEpD

≥ (1 − ε)OPTPEpD.

The second inequality is true because OPTi
PEpD is a feasible solution to the

knapsack problem w.r.t. vi.
Observe that in a similar way, we can show that

∑n
i=1 w(Ai) is at least

(1 − ε)OPTOrD. The set of edges in ∪n
i=1Ai is in fact a feasible solution to the

OrD problem. To see this, for each vertex vi, orient the edges in Ai \ ∪i−1
j=1Aj

towards the vertex vi. This ensures that for any vertex, the total demand of the
incoming edges is at most its capacity. Since, each edge can appear at most twice
in the sum

∑n
i=1 w(Ai), we have a (2+ ε)-approximation algorithm for the OrD

problem.
However, the set of edges in ∪n

i=1Ai may not be a feasible solution for the
PEpD problem. In order to obtain the (4 + ε)-approximation, we construct a
directed multi-graph

−→
G ′ = (V,

−→
E ′) as follows: Pick an arbitrary ordering of the

vertices, say v1, . . . , vn. Starting with E′ = ∅, for each i from 1, . . . n, add the
edges in Ai to the multi-set of edges E′ and orient the edges in Ai towards vi.
By doing this, we ensure that

∑
e∈E′ w(e) =

∑n
i=1 w(Ai) ≥ (1 − ε)OPTPEpD.

Theorem 2. For any ε > 0, there exists a (2 + ε)-approximation algorithm for
PEpD on bipartite graphs.

Proof. Given a bipartite graph G = (U ∪ V,E), using Lemma 6, we can find the
directed multi-graph

−→
G ′ = (U ∪ V,

−→
E ′) with w(E′) ≥ (1 − ε′)OPTPEpD, for any

ε′ > 0 such that total demand of the in-coming edges to any vertex is at most
its capacity. So, the set of incoming edges to U and the set of in-coming edges to
V in

−→
G ′ are separately feasible for the PEpD problem on G, and the maximum

of both has weight at least (1 − ε′)OPTPEpD/2. Choosing ε′ = ε/(2 + ε), we
obtain a solution of weight at least OPTPEpD/(2+ ε) for the PEpD problem on
bipartite graphs.

In order to get the desired approximation ratio for general graphs, we find a
directed cut (DICUT) of weight at least w(E′)/4 in

−→
G ′. Given a directed multi-

graph
−→
Gm and an edge weight function w : E(Gm) → N, a DICUT is defined

to be the set of out-going edges from some vertex subset X (we denote it by−→
δ (X)). Note that any directed cut in

−→
G ′ is a feasible PEpD solution. Lemma 7

captures this.

Lemma 7. Any directed cut of the directed multi-graph
−→
G ′ is a feasible PEpD

solution of G.
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Proof. Let
−→
δ (X) be a DICUT of

−→
G ′. This implies for all v ∈ V \X, out(v) = ∅,

and for any edge (u, v) in
−→
δ (X) directed towards v, the degree condition of v is

satisfied in G. This ensures
−→
δ (X) is a feasible PEpD solution.

Lemma 8. Given a directed multi-graph
−→
G ′ = (V,

−→
E ′), weights w : E′ → N,

there exists a directed cut of size at least w(E′)/4.

Proof. Consider the trivial randomized algorithm which adds any vertex in V
to the set X with probability 1/2. Any directed edge e = (u, v) is a cut if u ∈ X
and v ∈ V \ X. This happens with probability 1/4. So, the expected weight of
the DICUT is

E

( ∑

e∈−→
δ (X)

w(e)
)

=
∑

e∈−→
E ′

w(e) · Pr
(
e ∈ −→

δ (X)
)

=
∑

e∈−→
E ′

w(e) · 1
4

=
w(E′)

4
.

This ensures, there exists a DICUT of weight at least w(E′)/4. To find it, de-
randomize this by using the method of conditional expectations.

Armed with Lemmas 6, 7, and 8 we can now complete the proof.

Theorem 3. There exists a (4+ε)-approximation algorithm for PEpD, for any
ε > 0.

Proof. Given an instance of PEpD, let OPTPEpD be an optimal solution to
PEpD. Lemma 6 shows that we can obtain an oriented graph

−→
G ′ = (V,

−→
E ′)

having w(E′) ≥ (1 − ε′)OPTPEpD, for any ε′ > 0 such that
∑

e∈in(v) de ≤
cv, for all v ∈ V . Combining this with Lemma 7 and Lemma 8 we obtain
a PEpD solution in G of weight at least w(E′)/4 which is at least (1 −
ε′)OPTPEpD/4. Using ε′ = ε/(4+ε), we obtain a PEpD solution of weight at least
OPTPEpD/(4 + ε).

6 PTAS for PEpD on Minor-free Graphs

In this section, we obtain a PTAS for PEpD in H-minor-free graphs. Our result
follows the standard procedure for proving a PTAS for such graphs. We present a
polynomial time algorithm for graphs of bounded-treewidth. However, the algo-
rithm only work in the setting where the demands on the edges are bounded by a
constant. Then, a PTAS for H-minor-free graphs then follows from the results of
Demaine et al. [9]. For ease of exposition, we only describe the polynomial time
algorithm for bounded tree-width graphs with de = 1 for all e ∈ E. However,
the extension to arbitrary, but constant demands is straight forward.

6.1 A Polynomial Time Algorithm for Bounded-Treewidth Graphs

For the sake of completeness, we give a definition of a tree-decomposition. See
[5] for a description and results on tree-decompositions.
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Definition 1. A tree decomposition of a graph G = (V,E) is a pair (T,X),
where T = (I, F ) is a tree and X = {Xi| i ∈ I} is a set with Xi ⊆ V satisfying

–
⋃

i∈I

Xi = V .

– for any edge e = (u, v) ∈ E, there exists an i ∈ I with u ∈ Xi and v ∈ Xi.
– for all v ∈ V , the set of nodes {i ∈ I| v ∈ Xi} forms a connected subtree of T .

We refer to the vertices of T as nodes and the corresponding Xi’s as bags in order
to distinguish them from the vertices of G. The width of any tree decomposition
T = (I, F ) is max

i∈I
|Xi| − 1 and the tree-width of a graph G, denoted as tw(G)

is the minimum width among all possible tree decompositions of G. Let G be a
graph with tw(G) = t − 1, for constant t > 0, and let (T,X) with T = (I, F )
and X = {Xi| i ∈ I} be a tree decomposition of G of width t − 1. It is also well
known that without loss of generality we can assume that T is a rooted binary
tree [5].

Define for all i ∈ I, Yi = {v ∈ Xj | j is a descendant of i}. Let G[Xi] =
(Xi, Ei), and G[Yi] = (Yi, Fi) denote the vertex induced subgraphs of G with
vertices in Xi and Yi respectively. Let G′ = (V,E′) be an optimal solution for
PEpD, and F ′

i = Fi ∩ E′, E′
i = Ei ∩ E′. For any bag Xi, let di be the degree

sequence of the vertices in Xi in the subgraph G′
i = (V, F ′

i ∪E′
i). Suppose f be a

vector representing whether degG′(v) ≤ cv, or degG′(v) > cv. For any v ∈ V , we
set f(v) = cv, if degG′(v) ≤ cv, and f(v) = ∞, otherwise. The vector fi denotes
the vector f with restriction to the vertices in Xi.

We now describe our dynamic program. The dynamic program works bottom-
up. Each DP cell C(i, E′

i,di, fi) represents the subproblem of choosing a set
of edges F ′

i ⊆ Fi with maximum total weight, such that F ′
i ∪ E′

i are feasible
assuming the degrees on vertices of Xi in the subgraphs (V,E′) and (V, F ′

i ∪E′
i)

are bounded above by vectors fi and di respectively.
We calculate each DP cell as follows: for each node i, we guess the set of

edges E′
i, and the vectors fi, di � fi, where di � fi denotes that the vector di

is component-wise less than or equal to the vector fi. Since f provides an upper
bound on the degree of any vertex in G′, edges in any subgraph of G′ must satisfy
the feasibility constraint assuming degree of vertex v can be at most f(v). Let
W(i, E′

i, fi,di) be the weight of the DP cell C(i, E′
i, fi,di). For any leaf node i,

we compute W(i, E′
i, fi,di) as follows:

W(i, E′
i, fi,di) =

{
w(E′

i), if ∀{u, v} ∈ E′
i, fi(u) ≤ cu or fi(v) ≤ cv

−∞, otherwise.

For any internal node i, with children j and k for which we have already com-
puted the DP cells, we can compute the DP cell as follows:

W(i, E′
i, fi,di) =

{
A(

W(i, E′
i, fi,di)

)
, if ∀{u, v} ∈ E′

i, fi(u) ≤ cu or fi(v) ≤ cv

−∞, otherwise.
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Where, A(
W(i, E′

i, fi,di)
)

can be computed as follows:

A(
W(i, E′

i, fi,di)
)

= max
E′

j ,fj,dj�fj,

E′
k,fk,dk�fk

{

W(j, E′
j , fj,dj) + W(k,E′

k, fk,dk)

+ w(E′
i \ (E′

j ∪ E′
k)) − w(E′

j ∩ E′
k)

∣
∣
∣
∣

∀v ∈ {Xi ∩ Xj ∩ Xk}, fi(v) = fj(v) = fk(v),
∀v ∈ {Xi ∩ Xj}, fi(v) = fj(v),
∀v ∈ {Xi ∩ Xk}, fi(v) = fk(v),
∀v ∈ Xi,di(v) ≥ dj(v) + dk(v)+

degE′
i\(E′

j∪E′
k)

(v) − degE′
j∩E′

k
(v)

}

,

Where, degE′
i\(E′

j∪E′
k)

(v) and degE′
j∩E′

k
(v) denote the degrees of v in the sub-

graphs (V,E′
i \ (E′

j ∪ E′
k)) and (V,E′

j ∩ E′
k) respectively. Note that if v /∈ Xj ,

then dj(v) = 0 and if v /∈ Xk, then dk(v) = 0.
The optimal solution is the max{W(r, E′

r, fr, fr)}, where r is the root node
of the tree T .

The number of nodes in the tree-decomposition T of G is at most O(nt) [5].
For any node i ∈ I, |Xi| ≤ t, so E′

i can take at most 2t2 values, and fi can take
at most 2t values. For any vertex v ∈ Xi, di(v) can take at most n values. di(v)
can take at most n values. So, total number of cells in the DP can be at most
O(nt) · 2t2 · 2t · nt = O(nt). Each DP cell takes O(n2t) computation time. So the
running time of the DP is bounded by O(n3t).

Theorem 4. The PEpD problem, on graphs with bounded tree-width can be
solved in polynomial time if the demand of any edge is bounded above by a con-
stant.

6.2 Partition into Bounded Treewidth Graphs

We use the following result of Demaine et al. [9] on the structure of H-minor-free
graphs.

Lemma 9 [9]. For a fixed graph H, there is a constant cH such that, for any
integer k ≥ 1 and for every H-minor-free graph G, the vertices of G (or the
edges of G) can be partitioned into k + 1 sets such that any k of the sets induce
a graph of tree-width at most cHk. Furthermore, such a partition can be found
in polynomial time.

Theorem 5. In H-minor free graphs, there is a PTAS for the PEpD problem
if the demand of any edge is bounded above by a constant.
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Proof. Let G = (V,E) be any H-minor-free graph. We apply lemma9 with
k = 1/ε to partition E into sets E1, E2, · · · E1+1/ε. Let E′ be the edges in the
optimal solution, and E′

1 = E′ ∩ E1, E
′
2 = E′ ∩ E2, · · · , E′

1+1/ε = E′ ∩ E1+1/ε.
Let E′

m be the set with minimum weight among {E′
1, E

′
2, · · · , E′

1+1/ε}. Since,

w(E′
m) ≤ w(E′)

k+1 . this implies w(E′ \ E′
m) ≥ (1 − 1/k + 1)w(E′).

Let Gi be the subgraph of G with edge set Ei = ∪j 	=iEj . Each Gi has
tree-width bounded by cHk for which we can get the optimal solution OPTi

by using theorem 4. Since the set E′ \ E′
i is a feasible solution to Gi, we have

OPTi ≥ w(E′ \ E′
i).

max{OPT1, · · · , OPTk+1} ≥ OPTm ≥ w(E′ \ E′
m)

≥
(

1 − 1
k + 1

)

w(E′) ≥ (1 − ε)w(E′).

Hence, the maximum weighted solution among the solutions for G1, G2, · · · Gk+1

gives a PTAS.

7 APX-Hardness

In this section, we prove that PEp problem is APX-hard even for unweighted
cubic graphs, and unweighted bipartite graphs of bounded degree. Earlier, only
NP-hardness was known. This was proved by Zhang [19] by showing that for a
graph G = (V,E), a solution to unweighted PEp of size k implies a Dominating
Set in G of size |V |−k. Our result follows from the following facts: Cubic graphs
and bipartite graphs of bounded degree have large dominating set, and the fact
that the Dominating set problem is APX-hard on cubic graphs and bounded
degree bipartite graphs. We show that a PTAS for the unweighted PEp would
imply a PTAS for the Dominating set problem.

Proposition 3. Let G = (U ∪V,E) be bipartite graph with degree bounded by B.
Then, any dominating set in G has size at least |U ∪ V |/(1 + B).

Proof. Let |U ∪ V | = n and suppose there is a dominating set S ⊂ U ∪ V of size
< n/(1+B). Since each v ∈ S can dominate at most B vertices in {U ∪V }\S, all
vertices in S together can dominate < nB/(1 + B) vertices. Since any vertex in
G either belongs to S or is dominated by a vertex in S, we have the total number
of vertices in G < n/(1 + B) + nB/(1 + B) = n contradicting our assumption
that |U ∪ V | = n.

We use the following result of Zhang [19] on the relation between Dominating
Sets and PEp on unweighted graphs. Following which, our result on bipartite
graphs follows by using the result of Chleb́ık and Chleb́ıková [7] that Dominating
Set on bounded degree bipartite graphs is APX-hard.

Lemma 10 [19]. Let G = (V,E) be a graph without isolated vertices having
w(e) = 1, for all e ∈ E. In G, there is a maximal solution of size k to the
PEp if and only if there is a solution of size |V | − k to the Dominating Set
problem.
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Theorem 6 [7]. It is NP-hard to approximate the Dominating Set problem in
bipartite graphs of degree at most B ≥ 3 within a factor of ln B − C ln lnB for
some absolute constant C.

Theorem 7. The PEp problem is APX-hard for unweighted bipartite graphs
having degree at most B ≥ 3.

Proof. We prove that an existence of a PTAS for the PEp problem on bounded
degree bipartite graphs implies a PTAS for the Dominating Set problem on the
same class of graphs, contradicting Theorem 6.

Let G = (U ∪ V,E) be a bipartite graph with degree bounded by B and
|U ∪ V | = n. By Proposition 3, OPTDS(G) ≥ n/(1 + B). Lemma 10 implies
that OPTPEp(G) = n − OPTDS(G). If there exists a PTAS for PEp, this
implies that for every ε > 0, we can find a sub-graph G′ = (V,E′) such that
|E′| ≥ (1− ε)(n−OPTDS(G)). We can assume that G′ is a collection of disjoint
stars with no isolated vertices as a PEp solution with isolated vertices can always
be transformed into one without isolated vertices. Therefore G′ is a collection
of stars spanning V and the set C of central vertices form a dominating set
(Lemma 10). |C| = n − |E′|. Therefore,

|C| = n − |E′| ≤ n − (1 − ε)(n − OPTDS(G))
≤ (1 + B)εOPTDS(G) + (1 − ε)OPTDS(G)
≤ (1 + Bε)OPTDS(G).

Therefore, PEp is APX-hard, even on unweighted bipartite graphs of
bounded degree.

Remark: The APX-hardness result on cubic graphs can be obtained by using a
similar argument and the result of Alimonti and Kann [1] that Dominating Set
on cubic graphs is APX-hard.

8 Conclusion

To obtain better than 2-approximation for PEp, (2+ε)-approximation for PEpD
on bipartite graphs, and (4 + ε)-approximation for PEpD on general graphs, we
need to find better upper bounds on OPTPEp, OPTPEpD on bipartite graphs,
and OPTPEpD on general graphs respectively. For example consider the graph C4

(cycle on 4 vertices) with unit weight on all the edges. In this case OPTPEp = 2,
whereas the upper bound is

∑
v∈V w(emax(v)) = 4. So we cannot expect to get

a better than 2-approximation with this upper bound.
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7. Chleb́ık, M., Chleb́ıková, J.: Approximation hardness of dominating set problems
in bounded degree graphs. Inf. Comput. 206(11), 1264–1275 (2008)

8. Dehne, F., Fellows, M.R., Fernau, H., Prieto, E., Rosamond, F.A.: nonblocker:
parameterized algorithmics for minimum dominating set. In: Wiedermann, J.,
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Abstract. In this paper, we introduce a new representation of simple
undirected graphs in terms of set of vectors in finite dimensional vec-
tor spaces over Z2 which satisfy consecutive 1’s property, called a cod-
ing sequence of a graph G. Among all coding sequences we identify the
one which is unique for a class of isomorphic graphs, called the code
of a graph. We characterize several classes of graphs in terms of coding
sequences. It is shown that a graph G with n vertices is a tree if and only
if any coding sequence of G is a basis of the vector space Z

n−1
2 over Z2.

Moreover, considering coding sequences as binary matroids, we obtain
a characterization for simple graphic matroids. Introducing concepts of
segment binary matroid and strong isomorphisms we show that two
simple undirected graphs are isomorphic if and only if their canonical
sequences are strongly isomorphic simple segment binary matroids.
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1 Introduction

There are various representations of simple undirected graphs in terms of adja-
cency matrices, adjacency lists, incidence matrices, unordered pairs etc. In this
paper, we introduce another representation of a simple undirected graph with
n vertices in terms of certain vectors in the vector space Zn−1

2 over Z2. We call
the set of vectors representing a graph G as a coding sequence of G and denote
it by β(G,n). Among all such coding sequences we identify the one which is
unique for a class of isomorphic graphs. We call it the code of the graph. We
find characterizations of graphs which are connected, acyclic, bipartite, Eulerian
or Hamiltonian in terms of β(G,n). We prove that a graph G with n vertices is
a tree if and only if any coding sequence of G is a basis of the vector space Zn−1

2

over Z2.
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In his pioneering paper [9] on matroids in 1935, Whitney left the problem
of characterizing graphic matroid open by making the following comment: “The
problem of characterizing linear graphs from this point of view is the same as that
of characterizing matroids which correspond to matrices (mod 2) with exactly
two ones in each column.” In 1959, Tutte obtained a characterization of graphic
matroids in terms of forbidden minors [6]. But it is clear that Whitney indicated
about incidence matrices of simple undirected graphs. In this paper, we use a
variation of incidence matrix for the same characterization.

In Sect. 3, we introduce the concept of a segment binary matroid which cor-
responds to matrices over Z2 that has the consecutive 1’s property (i.e., 1’s are
consecutive) for columns and a characterization of graphic matroids is obtained
by considering β(G,n) as a segment binary matroid. We introduce the concept
of a strong isomorphism for segment binary matroids and show that two simple
graphs G and H (with n vertices each) are isomorphic if and only if β(G,n) and
β(H,n) are strongly isomorphic segment binary matroids.

For graph theoretic concepts, see [8] and for matroid related terminologies,
one may consult [5].

2 Coding Sequences

Definition 1. Let G = (V,E) be a simple undirected graph with n vertices and
m edges. Let V = {v0, v1, . . . , vn−1}. Define a map f : V −→ N by f(vi) = 10i

and another map f∗ : E −→ N by f∗(vivj) = |f(vi) − f(vj)|, if E �= ∅. Let
σ(G,n) be the sequence {f∗(e) | e ∈ E} sorted in the increasing order. If E = ∅,
then σ(G,n) = ∅. It is worth noticing that for e = vivj ∈ E, f∗(e) = |10i − 10j |
uniquely determines the pair (i, j) as it is a natural number with i digits, starting
with i − j number of 9’s and followed by j number of 0’s, when i > j. Thus the
m entries of σ(G,n) are all distinct.

Now for E �= ∅, we define a map f# : E −→ Zn−1
2 by f#(e) =

(x1, x2, . . . , xn−1), where xi = 1, if the (n − i)th digit of f∗(e) from the right
is 9, otherwise xi = 0 for i = 1, 2, . . . , n − 1. For convenience we write the
field Z2 as {0, 1} instead of {0̄, 1̄}. Let β(G,n) be the sequence

{
f#(e) | e ∈ E

}

sorted in the same order as in σ(G,n). If E = ∅, then β(G,n) = ∅. The sequence
β(G,n) is called a coding sequence of the graph G.

Naturally, β(G,n) is not unique for a graph G as it depends on the labeling f
of vertices. Now there are n! such labellings and consequently we have at most n!
different σ(G,n) for a graph G. Among which we choose the one, say, σc(G,n)
which is the minimum in the lexicographic ordering of Nm. The corresponding
β(G,n) is called the code of the graph G and is denoted by βc(G,n). Clearly
βc(G,n) is unique for a class of isomorphic graphs with n vertices, though it is
not always easy to determine generally.

Example 1. Consider the graph G in Fig. 1 (left). We have

σ(G, 4) = (9, 90, 900, 990) and β(G, 4) = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0)}
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Fig. 1. The graph G in Example 1 with different labellings

according to the labeling of vertices given in Fig. 1 (left). One may verify that

σc(G, 4) = (9, 90, 99, 900) and βc(G, 4) = {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0)}

according to the labeling of vertices shown in Fig. 1 (right).

Remark 1. An incidence matrix of a (simple undirected) graph G = (V,E) is
obtained by placing its vertices in rows and edges in columns and an entry in a
row corresponding to a vertex v and in a column corresponding to an edge e of
the matrix is 1 if and only if v is an end point of e, otherwise it is 0. It is important
to note that a coding sequence of a graph has a similarity with the incidence
matrix of the graph. In fact, given a coding sequence of a graph G, one can
easily obtain the incidence matrix of G and vice-versa. Also cut-set and circuit
subspaces of a vector space of dimension |E| over Z2 constructed from edges of G
are well known [1,3]. For studying various matrix representations of graphs, one
may see [2,4,8]. Now, as we mentioned in the introduction, Whitney expected
the characterization of graphic matroids would be obtained from the incidence
matrix. Here we consider a variation of it with a consecutive 1’s representation
as it helps us to build a very natural interplay between graph theory, matroids
and linear algebra which is evident from Theorem1, Corollary 8 and Theorem 4.

Throughout this section by a graph we mean a simple undirected graph.

Definition 2. A non-null vector e = (x1, x2, . . . , xn−1) ∈ Zn−1
2 is said to satisfy

the consecutive 1’s property if 1’s appear consecutively in the sequence of
coordinates of e. Let

C(n − 1) =
{
v ∈ Zn−1

2 | v satisfies the consecutive 1′s property
}

.

Clearly, |C(n − 1)| =
(
n
2

)
= n(n−1)

2 and G is a complete graph with n vertices if
and only if β(G,n) = C(n−1). In fact, for every S ⊆ C(n−1), there is a unique
graph G(S) of n vertices such that β(G,n) = S. If S = ∅, then G is the null
graph with n vertices and no edges. If S �= ∅, each member e of S represents an
edge of G(S) = (V,E) with end points 10n−i and 10n−j−1, where the consecutive
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stretch of 1’s in e starts from the ith entry and ends at the jth entry from the
left and V =

{
1, 10, 102, . . . , 10n−1

}
. Also it is clear that C(n − 1) � β(G,n) is

a coding sequence of the complement Ḡ of a graph G with n vertices.
Let ∅ �= S ⊆ C(n−1). Let G̃(S) be the subgraph of G(S) obtained by removing

all isolated vertices (if there is any) from G(S). Then G̃(S) is the subgraph of
the complete graph of n vertices induced by the edges represented by the vectors
in S.

We denote the null vector in the vector space Zn−1
2 by 0 for any n ∈ N and write

Z0
2 for the zero-dimensional space {0}. Let S = {e1, e2, . . . , ek} ⊆ Zn−1

2 � {0},
(k ∈ N, k � 2n−1). As ei’s are distinct, we have ei + ej �= 0 for all i �= j,
i, j ∈ {1, 2, . . . , k}. Thus S is a set of linearly dependent vectors in Zn−1

2 over
Z2 if and only if there exists A ⊆ S, |A| � 3 such that

∑

e∈A

e = 0. In other

words, S ⊆ Zn−1
2 is linearly independent over Z2 if and only if S = ∅ or S =

{e1, e2, . . . , ek} for some k ∈ N, k � 2n−1 and
∑

e∈A

e �= 0 for all ∅ �= A ⊆ S. We

denote the linear span (over Z2) of a subset S of Zn−1
2 by Sp (S), i.e., Sp (S) is

the smallest subspace of Zn−1
2 containing S.

Proposition 1. Let S = {e1, e2, e3} ⊆ C(n − 1) for some n ∈ N, n � 3. Then
G̃(S) is a 3-cycle if and only if e1 + e2 + e3 = 0.

Proof. First suppose that G̃(S) is the 3-cycle shown in Fig. 2, where α, β, γ ∈
{0, 1, . . . , n − 1}. Without loss of generality we assume α > β > γ. Then

e1 = (0, 0, . . . , 0
︸ ︷︷ ︸

n−α−1

, 1, 1, . . . , 1
︸ ︷︷ ︸

α−β

, 0, 0, . . . , 0, 0, 0, . . . , 0
︸ ︷︷ ︸

β

)

e2 = (0, 0, . . . , 0
︸ ︷︷ ︸

n−α−1

, 1, 1, . . . , 1, 1, 1, . . . , 1
︸ ︷︷ ︸

α−γ

, 0, 0, . . . , 0
︸ ︷︷ ︸

γ

)

e3 = (0, 0, . . . , 0, 0, 0, . . . , 0
︸ ︷︷ ︸

n−β−1

, 1, 1, . . . , 1
︸ ︷︷ ︸

β−γ

, 0, 0, . . . , 0
︸ ︷︷ ︸

γ

)

Clearly e1 + e2 + e3 = 0.

Conversely, let e1 + e2 + e3 = 0. Consider the matrix M =

⎛

⎝
e1
e2
e3

⎞

⎠, where we

represent each ei as a row matrix consisting of n − 1 columns for i = 1, 2, 3.
Since e1 + e2 + e3 = 0, in each column where 1’s appear, they appear exactly in
two rows. Let i be the least column number of M that contains 1. Without loss
of generality we assume that 1’s appear in the first two rows in the ith column
(otherwise we rearrange rows of M). Also suppose that the number of zeros after
the stretch of 1’s in the first row, say, β is more than that of the second, say, γ
(otherwise again we rearrange rows of M). Let α = n − i. Then the end points
of the edge of G̃(S) corresponding to e1 are 10α and 10β and those of the edge
corresponding to e2 are 10α and 10γ . Since β > γ and e1 + e2 + e3 = 0, we have

e3 = e1 + e2 = (0, 0, . . . , 0
︸ ︷︷ ︸

n−β−1

, 1, 1, . . . , 1
︸ ︷︷ ︸

β−γ

, 0, 0, . . . , 0
︸ ︷︷ ︸

γ

).
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Fig. 2. A 3-cycle

Thus the end points of the edge of G̃(S) corresponding to e3 are 10β and 10γ . So
the vertices labeled by 10α, 10β and 10γ form a 3-cycle with edges corresponding
to e1, e2, e3, as required.

Definition 3. A set S �= ∅ of non-null vectors in Zn−1
2 is called reduced if∑

e∈A

e �= 0 for all ∅ �= A � S.

Lemma 1. Let S = {e1, e2, . . . , ek} ⊆ C(n − 1) for some k, n ∈ N, 3 � k � n.
Then G̃(S) is a k-cycle if and only if S is reduced and e1 + e2 + · · · + ek = 0.

Proof. We prove by induction on k. By Proposition 1, the result is true for k = 3.
Suppose the result is true for k = r − 1 � 3. Let S = {e1, e2, . . . , er} ⊆ C(n − 1)
for some r, n ∈ N, 3 < r � n form the r-cycle shown in Fig. 3 (we renumber ei’s,
if necessary). Consider the chord e so that e1, e2 and e form a triangle. Then
e1 + e2 + e = 0 by Proposition 1. So e = e1 + e2. Also {e, e3, e4, . . . , er} forms an
(r − 1)-cycle. So by induction hypothesis e+ e3 + e4 + · · ·+ er = 0 which implies
e1 + e2 + e3 + e4 + · · · + er = 0. Moreover, since S is a cycle, no proper subset
of S forms a cycle. Thus S is reduced by induction hypothesis.
Conversely, let S = {e1, e2, . . . , er} ⊆ C(n − 1) for some r, n ∈ N, 3 < r � n be

reduced and e1 + e2 + · · · + er = 0. Consider the matrix M =

⎛

⎜
⎜
⎝

e1
e2
· · ·
er

⎞

⎟
⎟
⎠, where we

represent each ei as a row matrix consisting of n − 1 columns for i = 1, 2, . . . , r.
Let i be the least column number of M that contains 1. Since the row sum
of M is zero (the null vector), the ith column contains even number of 1’s. So
there are at least two rows with 1 in the ith column. Rearrange rows of M such
that e1 and e2 be two such rows. Since both of these rows begin with 1 in the
ith column, the edges corresponding to them have a common end point with
label 10n−i. Join the other end points of e1 and e2 by an edge, say, e to form a
triangle with edges e1, e2, e. Then e1 + e2 + e = 0 which implies e = e1 + e2. So
e + e3 + e4 + · · · + er = 0.

We claim that S1 = {e, e3, e4, . . . , er} is reduced. Suppose A � S1, |A| � 3
be such that a =

∑

x∈A

x = 0. If e /∈ A, then a �= 0 as S is reduced. So e ∈ A. Then

replacing e by e1 + e2 in a would again contradict the fact that S is reduced.
So S1 is reduced. Hence by induction hypothesis, S1 form an (r − 1)-cycle. Now
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Fig. 3. An r-cycle

replacing the edge e by the path consisting of edges e1 and e2 gives us an r-cycle
formed by S.

The following two corollaries follow immediately from the above lemma.

Corollary 1. A graph G with n � 3 vertices (n ∈ N) is Hamiltonian if and
only if for any coding sequence β(G,n) of G, there exists S = {e1, e2, . . . , en} ⊆
β(G,n) such that S is reduced and e1 + e2 + · · · + en = 0.

Corollary 2. A graph G with n vertices (n ∈ N) is acyclic if and only if any
coding sequence β(G,n) of G is linearly independent over Z2.

Corollary 3. A graph G with at most one non-trivial component and with n

vertices (n ∈ N) is Eulerian if and only if
∑

e∈β(G,n)

e = 0 for any coding sequence

β(G,n) of G.

Proof. Follows from Lemma 1 and the fact that a circuit in a graph can be
decomposed into edge-disjoint cycles.

Corollary 4. A graph G with n � 2 vertices (n ∈ N) is bipartite if and only if
for any coding sequence β(G,n) of G,

∑

e∈S

e �= 0 for every S ⊆ β(G,n) where |S|
is odd.

Proof. Follows from Lemma 1 and the fact that a graph is bipartite if and only
if it does not contain any odd cycle.

Theorem 1. A graph G with n vertices (n ∈ N) is a tree if and only if any
coding sequence β(G,n) of G is a basis of the vector space Zn−1

2 over the field
Z2.

Proof. Suppose G is a tree. Then G is acyclic which implies β(G,n) is linearly
independent over Z2 by Corollary 2. Again since G is a tree, the number of entries
in β(G,n) is n − 1, we have n − 1 linearly independent vectors in Zn−1

2 over Z2.
Thus β(G,n) is a basis of Zn−1

2 over Z2.
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Conversely, suppose β(G,n) is a basis of Zn−1
2 over Z2. Then β(G,n) is

linearly independent over Z2 and so G is acyclic by Corollary 2. Also since β(G,n)
is a basis of Zn−1

2 over Z2, the number of entries in β(G,n) is n−1 which implies
G has n − 1 edges. Thus G is a tree.

Corollary 5. A graph G with n vertices (n ∈ N) is connected if and only if for
any coding sequence β(G,n) of G, Sp (β(G,n)) = Zn−1

2 .

Proof. We first note that a graph G is connected if and only if G has a spanning
tree. Suppose G = (V,E) has a spanning tree H = (V,E1). Then β(H,n) ⊆
β(G,n) with the same vertex labeling. But β(H,n) is a basis of Zn−1

2 over Z2 by
Theorem 1. Thus Sp (β(G,n)) ⊇ Sp (β(H,n)) = Zn−1

2 . So Sp (β(G,n)) = Zn−1
2 .

Conversely, if Sp (β(G,n)) = Zn−1
2 , then β(G,n) contains a basis, say B

of Zn−1
2 over Z2. Then G(B) is a spanning tree of G by Theorem 1 as B =

β(G(B), n). Thus G is connected.

Corollary 6. Let G be a connected graph with n vertices and S ⊆ β(G,n). Then
G(S) is a spanning tree of G if and only if S is a basis of the vector space Zn−1

2

over the field Z2.

3 Matroid Representation

Whitney introduced the concept of a matroid in [9]. There are several ways of
defining matroids. We take the one that will serve our purpose. A matroid M is
an ordered pair (E,B) consisting of a finite set E of elements and a nonempty
collection B of subsets of E, called bases which satisfies the properties: (i) no
proper subset of a base is a base and (ii) if B1, B2 ∈ B and e ∈ B1 � B2, then
there exists f ∈ B2 �B1 such that (B1 �{e})∪{f} ∈ B. Independent sets of M
are subsets of bases and minimal dependent sets are circuits. The cycle matroid
M [G] of graph G is the matroid whose elements are edges of G and circuits are
cycles of G. Independent sets and bases of M [G] are forests and maximal forests
of G respectively. A matroid is graphic (simple graphic) if it is a cycle matroid
of a graph (respectively, simple graph).

Let E be the set of column labels of an n × m matrix A over a field F ,
and B be the set of maximal subsets X of E for which the multiset of columns
labeled by X is linearly independent in the vector space Fm over F . Then the
pair (E,B) is the column (vector) matroid of A and is denoted by M [A]. In
particular, if F = Z2, then M [A] is a binary matroid. A binary matroid M [A] is
simple if A does not contain zero columns and no two columns of A are identical
(i.e., columns of A are non-zero and distinct).

Definition 4. A binary matroid M [A] is called a segment binary matroid if
A satisfies the consecutive 1’s property for columns. Moreover, if it is simple, then
we call it a simple segment binary matroid. For any ∅ �= S ⊆ Zn−1

2 , M [S]
denotes the column (vector) matroid of the matrix whose columns are precisely
the elements of S. Clearly, M [S] is a binary matroid.
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Remark 2. In particular, when ∅ �= S ⊆ C(n − 1), M [S] becomes a simple
segment binary matroid. So for any simple graph G with n vertices, M [β(G,n)]
is a simple segment binary matroid. Conversely, every simple segment binary
matroid M [A] with n − 1 rows is same as M [S], where S is the set of column
vectors of A over Z2. Also in this case S ⊆ C(n − 1).

Two matroids M1 = (E1,B1) and M2 = (E2,B2) are isomorphic if there is a
bijection ψ from E1 onto E2 such that for all X ⊆ E1, X is independent in M1 if
and only if ψ(X) is independent in M2 (or, equivalently, X is a circuit in M1 if
and only if ψ(X) is a circuit in M2). In this case, we denote by M1

∼= M2. Also
abusing notations we sometimes identify elements of M [A] with its correspond-
ing column vector representation. Thus a simple binary matroid M [A] may be
considered as the set of column vectors of A. The following theorem characterizes
isomorphisms of simple binary matroids in terms of linear transformations.

Theorem 2. Let M [A] and M [A1] be two simple binary matroids such that both
A and A1 are of same order n × m, (m,n ∈ N). Then M [A] ∼= M [A1] if and
only if there exists a bijective linear operator T on Zn

2 such that T restricted on
M [A] is a bijective map from M [A] onto M [A1].

Proof. Let ψ be an isomorphism from M [A] onto M [A1]. Let B be a base in
M [A]. Then B is linearly independent over Z2. We extend B to a basis B1 (say)
of Zn

2 over Z2. Now since ψ is an isomorphism, ψ(B) is also a base in M [A1]
and |ψ(B)| = |B|. We also extend ψ(B) to B2, a basis of Zn

2 over Z2. Then
|B1 � B| = |B2 � ψ(B)| = n − |B|. Let f be a bijection from B1 � B onto
B2 � ψ(B). Now define a map T1 : B1 −→ B2 by

T1(e) =
{

ψ(e), e ∈ B
f(e), e ∈ B1 � B

We next verify that ψ is ‘linear’ on M [A], i.e., if e1, e2 are columns of A such that
e1 + e2 is also a column of A, then ψ(e1 + e2) = ψ(e1) + ψ(e2). Let e = e1 + e2.
Then e + e1 + e2 = 0 which implies that {e, e1, e2} is a circuit of M [A]. Again
since ψ is an isomorphism, {ψ(e), ψ(e1), ψ(e2)} is also a circuit in M [A1]. Hence
ψ(e)+ψ(e1)+ψ(e2) = 0, i.e., ψ(e1+e2) = ψ(e) = ψ(e1)+ψ(e2). This completes
the verification. We extend T1 linearly to obtain a linear operator T on Zn

2 over
Z2. Then T is bijective as T1 maps a basis bijectively to another basis of Zn

2 over
Z2 and the restriction of T on M [A] is ψ due to the above verification.

Conversely, let T be a bijective linear operator on Zn
2 such that the map ψ,

the restriction of T on M [A] is a bijective map from M [A] onto M [A1]. Let X

be a circuit in M [A]. Then
∑

e∈X

e = 0 and
∑

e∈A

e �= 0 for all ∅ �= A � X. Now

since T is bijective and linear, we have
∑

e∈A

e = 0 if and only if
∑

e∈A

T (e) = 0 for

all ∅ �= A ⊆ X. Thus X is a circuit in M [A] if and only if ψ(X) is a circuit in
M [A1]. Hence ψ is an isomorphism from M [A] onto M [A1].
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Corollary 7. Let M [A] and M [A1] be two simple binary matroids such that
both A and A1 are of same order n × m, (m,n ∈ N). Then M [A] ∼= M [A1] if
and only if there exist a non-singular matrix P of order n×n and a permutation
matrix Q of order m × m such that PAQ = A1.

Proof. If M [A] ∼= M [A1], then following the proof of the direct part of the above
theorem, consider two bases B1 and B2 of Zn

2 over Z2 and the bijective linear
operator T that maps B1 onto B2. Let P be the matrix representation of T with
respect to these bases. Then P is a non-singular matrix and PA = A2 where A2

is obtained from A1 by rearranging columns such that ith column of A2 is the
image of the ith column of A under T . Thus PAQ = A1 for some permutation
matrix Q.

Conversely, let A1 = PAQ for some non-singular matrix P and some permu-
tation matrix Q. Let A2 = A1Q

−1. Then PA = A2. Since P is non-singular, it
corresponds to a bijective linear operator T on Zn

2 (over Z2) defined by T (e) = Pe
(considering elements of Zn

2 as column matrices) such that the restriction of T
on M [A] is a bijective map from M [A] onto M [A2]. Then M [A] ∼= M [A2] by the
above theorem. Since M [A1] = M [A2], we have M [A] ∼= M [A1].

Now we proceed to characterize simple graphic matroids.

Lemma 2. Let G be a simple graph with n vertices. Then M [G] ∼= M [β(G,n)]
for any coding sequence β(G,n) of G.

Proof. It follows from Lemma 1 that cycles of G are precisely the circuits of the
matroid M [β(G,n)]. So M [G] ∼= M [β(G,n)] as matroids.

Theorem 3. A matroid is simple graphic if and only if it is isomorphic to a
simple segment binary matroid.

Proof. Let M be a simple graphic matroid. Then M ∼= M [G] for a simple graph
G. By Lemma 2, we have M [G] ∼= M [β(G,n)] where n is the number of vertices
of G. Thus M is isomorphic to a simple segment binary matroid by Remark 2.

Conversely, let M [A] be a simple segment binary matroid. Then we may
consider M [A] as M [S] where S is the set of columns of A. By Remark 2, we
have S ⊆ C(n − 1), where A ∈ Mn−1,m(Z2). Then by Definition 2, there is a
unique simple graph G such that S = β(G,n). Therefore, by Lemma 2, M [S] =
M [β(G,n)] ∼= M [G]. Thus, M [A] is a simple graphic matroid.

Corollary 8. A simple binary matroid M [A] (where A is of order (n − 1) × m)
is simple graphic if and only if m �

(
n
2

)
and there exists a non-singular matrix

P such that PA satisfies the consecutive 1’s property for columns.

Proof. Follows from Theorem 3 and Corollary 7.

Remark 3. Since any non-singular matrix is obtained from identity matrix by
finite number of elementary row operations, a simple binary matroid M [A] is
simple graphic if and only if the consecutive 1’s property for columns can be
obtained from A by finite number of elementary row operations.
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It is well known [5] that an ordinary matroid isomorphism does not guarantee
the corresponding graph isomorphism for graphic matroids. We now introduce
the concept of a strong isomorphism of simple segment binary matroids.

Definition 5. Two simple segment binary matroids M [A1] and M [A2] are called
strongly isomorphic if

(1) A1, A2 ∈ Mn−1,m(Z2) for some m,n ∈ N, n � 2.
(2) There exists a bijective linear operator T on Zn−1

2 such that:
(i) T restricted on C(n − 1) is a bijection onto itself.
(ii) T restricted on M [A1] is a bijective map from M [A1] onto M [A2].

We write M [A1] ∼=s M [A2] to denote that M [A1] is strongly isomorphic to
M [A2].

Note that, if M [A1] ∼=s M [A2], then the restriction of T on M [A1] is a matroid
isomorphism onto M [A2] and the restriction of T on C(n − 1) is a matroid
automorphism. These follow from the fact that T is linear and injective, as
then for any subset X of the set of columns of A1,

∑

e∈X

e = 0 if and only if
∑

e∈X

T (e) = 0. In the sequel, we show that strong isomorphism of simple segment

binary matroids would guarantee the corresponding graph isomorphism.
Let G = (V,E) be a (simple undirected) graph with |V | = n. Then for

any e ∈ E, we use the symbol p ∼n |10x − 10y| if f∗(e) = |10x − 10y| and
p = f#(e) ∈ β(G,n).

Lemma 3. Let p1, p2 be distinct elements in β(G,n) for any coding sequence
β(G,n) of a graph G with n vertices. If p1 ∼n |10x −10y| and p2 ∼n |10x −10z|,
then p1 + p2 ∼n |10y − 10z|.
Proof. Let p3 = p1 + p2. So p1 + p2 + p3 = 0. From the converse part of the
proof of Proposition 1, we have that p3 corresponds to the end points 10y and
10z. Thus, p1 + p2 ∼n |10y − 10z|.
Lemma 4. Let S = {e1, e2, . . . , ek} ⊆ β(G,n) for any coding sequence β(G,n)
of a graph G with n vertices. Then G̃(S) induces a path in G if and only if

k∑

j=1

ej ∈ C(n − 1) and S is reduced.

Proof. If e1, e2, . . . , ek induce a path (in that order) then it is easy to see that
we have ei ∼n |10xi+1 − 10xi | for some distinct x1, x2, . . . , xk+1 ∈ N ∪ {0}. By

applying Lemma 3 repetitively, we have
k∑

j=1

ej ∼n |10xk+1 − 10x1 |. Thus
k∑

j=1

ej ∈

C(n−1). Let e =
k∑

j=1

ej . Then elements of S∪{e} form a cycle. Then by Lemma 1,

S ∪ {e} is reduced and so S is reduced.
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Conversely, let
k∑

j=1

ej ∈ C(n − 1) and S is reduced. Let
k∑

j=1

ej = e. So e +

k∑

j=1

ej = 0 and since S is reduced, S ∪ {e} is also reduced. Now consider the

graph G′ such that β(G′, n) = β(G,n) ∪ {e}. Clearly, S ∪ {e} induces a cycle
in β(G′, n) by Lemma 1. One edge of that cycle corresponds to e, all the other
edges correspond precisely to the members of S. Hence, G̃(S) induces a path in
G.

Corollary 9. Suppose p ∼n |10i − 10j |, q ∼n |10r − 10s| where p �= q and
i, j, r, s ∈ {0, 1, 2, . . . , n − 1}. Then we have p + q ∈ C(n − 1) if and only if
|{i, j} ∩ {r, s}| = 1. Moreover, p + q ∼n |10x − 10y|, where x ∈ {i, j}, y ∈ {r, s}
and x, y /∈ {i, j} ∩ {r, s}.
Proof. Consider a graph G with n vertices such that p, q ∈ β(G,n) for some
coding sequence β(G,n) of G. Clearly, p corresponds to end-points 10i and 10j ,
and q corresponds to end-points 10r and 10s. First, let p + q ∈ C(n − 1). So by
Lemma 4, it follows that G̃({p, q}) induces a path in G. This implies that the
two edges corresponding to p and q have a common vertex. Since p �= q, this
gives that |{i, j} ∩ {r, s}| = 1.

Conversely, let |{i, j} ∩ {r, s}| = 1. Suppose j = r, without loss of generality.
Then by Lemma 3, p + q ∼n |10i − 10s| (which proves the next part also). Thus,
p + q ∈ C(n − 1).

Lemma 5. Suppose p1 ∼n |10i −10j |, p2 ∼n |10k −10l|, p3 ∼n |10r −10s|, where
i, j, k, l, r, s ∈ {0, 1, 2, . . . , n−1} and p1, p2, p3 are distinct. If p1+p2, p2+p3, p1+
p3 ∈ C(n − 1), then either p1 + p2 + p3 = 0 or {i, j} ∩ {k, l} = {i, j} ∩ {r, s} =
{k, l} ∩ {r, s}.
Proof. Consider a graph G with n vertices such that p1, p2, p3 ∈ β(G,n) for some
coding sequence β(G,n) of G. Clearly, p1 corrsponds to end-points 10i and 10j ,
p2 corresponds to end-points 10k and 10l and p3 corresponds to end-points 10r

and 10s. Now since p1+p2 ∈ C(n−1), by Corollary 9 we have |{i, j}∩{k, l}| = 1.
Without loss of generality, let j = k. Then 10j is the common end-point between
edges corresponding to p1 and p2. Since we also have that p1 + p3 ∈ C(n − 1)
and p2 + p3 ∈ C(n − 1), it follows that the edge corresponding to p3 has a
common end-point with the edge corresponding to p1 and a common end-point
with the edge correponding to p2. If the common end-point in both the cases is
10j(= 10k) then we have {i, j}∩{k, l} = {i, j}∩{r, s} = {k, l}∩{r, s}. Otherwise,
the common end-point between p1 and p3 must be 10i and the common end-
point between p2 and p3 must be 10l. Thus, edges corresponding to p1, p2, p3
form a cycle involving the vertices 10i, 10j , 10l. So by Proposition 1, we have
p1 + p2 + p3 = 0.

Lemma 6. Let G,H be two simple graphs with n vertices each and suppose
M [β(G,n)] ∼=s M [β(H,n)]. Let T be any bijective linear operator on Zn−1

2 giving
a strong isomorphism between M [β(G,n)] and M [β(H,n)]. Then for e1, e2 ∈
C(n − 1), we have e1 + e2 ∈ C(n − 1) if and only if T (e1) + T (e2) ∈ C(n − 1).
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Proof. Let e1, e2 ∈ β(G,n). First, let e1 + e2 ∈ C(n − 1). Now T (e1) + T (e2) =
T (e1 + e2) ∈ T (C(n − 1)) = C(n − 1) as restriction of T maps C(n − 1) onto
itself. Conversely, let T (e1)+T (e2) ∈ C(n− 1). So T (e1 + e2) ∈ C(n− 1). Again
since restriction of T maps C(n − 1) onto itself, there exists some e in C(n − 1)
such that T (e) = T (e1 + e2). Finally, since T is injective, we have e = e1 + e2.
So e1 + e2 ∈ C(n − 1).

Now we prove the theorem which gives a necessary and sufficient condition for
two simple graphs to be isomorphic.

Theorem 4. Let G and H be two simple graphs of n vertices each. Then G ∼= H
if and only if M [β(G,n)] ∼=s M [β(H,n)] for any coding sequences β(G,n) and
β(H,n) of G and H, respectively.

Proof. We consider vertices of both G and H are labeled by 1, 10, 102, . . . , 10n−1.
First, let G ∼= H. So there exists a permutation g on the set {0, 1, 2, . . . , n − 1}
such that for any r, s ∈ {0, 1, 2, . . . , n − 1}, we have 10r and 10s are adjacent in
G if and only if 10g(r) and 10g(s) are adjacent in H. We consider the graphs
K(1),K(2), where K(1) = G ∪ Ḡ and K(2) = H ∪ H̄, where Ḡ and H̄ are
complements of graphs G and H respectively. Now for each e ∈ C(n − 1), if
e ∼n |10i − 10j |, we define T (e) ∼n |10g(i) − 10g(j)|. Clearly, T is a well-defined
mapping from C(n−1) into itself, since |10p −10q| uniquely determines the pair
{p, q} for any p, q.

Now g, being a permutation, is a bijection. Suppose e1, e2 are distinct ele-
ments of C(n − 1). Let e1 ∼n |10a − 10b| and e2 ∼n |10c − 10d|. Clearly,
{a, b} �= {c, d}. Bijectiveness of g implies that {g(a), g(b)} �= {g(c), g(d)}. This
shows that T (e1) �= T (e2). So we have that T is one-to-one. Since T is a mapping
from a finite set into itself, injectiveness of T implies that T is a bijective map-
ping from C(n− 1) onto itself. Again, since 10r and 10s are adjacent in G if and
only if 10g(r) and 10g(s) are adjacent in H for distinct r, s ∈ {0, 1, 2, . . . , n−1}, we
have that T restricted on β(G,n) is a mapping from β(G,n) into β(H,n). Injec-
tiveness of T ensures the injectiveness of T restricted to β(G,n). Since β(G,n)
and β(H,n) are finite sets with equal cardinality, we have that T restricted to
β(G,n) is a bijection from β(G,n) onto β(H,n).

Next, we observe that T is ‘linear’ on C(n−1), i.e., if p, q ∈ C(n−1) such that
p+q ∈ C(n−1), then T (p)+T (q) = T (p+q). Let p ∼n |10i−10j |, q ∼n |10r−10s|
such that p + q ∈ C(n − 1). Then by Corollary 9, we have | {i, j} ∩ {r, s} | = 1.
Without loss of generality, we assume j = r. So g(j) = g(r) and p + q ∼n

|10i − 10s|. Now T (p) ∼n |10g(i) − 10g(j)| and T (q) ∼n |10g(r) − 10g(s)|. Since
g(j) = g(r), we have T (p)+T (q) ∈ C(n−1) and T (p)+T (q) ∼n |10g(i)−10g(s)|.
Since T (p + q) ∼n |10g(i) − 10g(s)|, we have T (p + q) = T (p) + T (q).

Now let ei ∼n |10i − 10i−1| for all i = 1, 2, . . . , n. We know that B = {ei |
i = 1, 2, . . . , n} is a basis of Zn−1

2 . Since T is defined on each ei as the latter
is in C(n − 1) (in fact, T (ei) ∼n |10g(i) − 10g(i−1)|), we can extend T linearly
to a linear operator T1 on Zn−1

2 . Bijectiveness of T1 follows from injectiveness
of T on C(n − 1) (which ensures distinct images under T for distinct elements
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of B, thus ensuring injectiveness of T1) and finiteness of Zn−1
2 . As M [β(G,n)]

and M [β(H,n)] are also of the same order, we have M [β(G,n)] ∼=s M [β(H,n)].
Conversely, let M [β(G,n)] ∼=s M [β(H,n)]. So there exists a bijective linear

operator T satisfying the properties mentioned in the Definition 5. We find a
permutation g on the set {0, 1, 2, . . . , n − 1} such that for any distinct r, s ∈
{0, 1, 2, . . . , n − 1}, 10r and 10s are adjacent in G if and only if 10g(r) and 10g(s)

are adjacent in H. Clearly, such a g acts as an isomorphism between G and H.
Now for i = 1, 2, . . . , n, define ei as the element in C(n − 1) which has 1 in
its ith co-ordinate from the right ((n − i)th co-ordinate from the left) and 0 in
remaining coordinates. Then ei ∼n |10i − 10i−1|. Now for i = 1, 2, . . . , n − 1, we
have ei +ei+1 ∈ C(n−1). So from Lemma 6, we have T (ei)+T (ei+1) ∈ C(n−1).
From Corollary 9, the edges corresponding to T (ei) and T (ei+1) have a (unique)
common point, say 10x. We define g(i−1) = x. This defines g as a mapping from
{0, 1, 2, . . . , n − 2} into {0, 1, 2, . . . , n − 1}. Now we show that g is one-to-one.

If possible, let g(i − 1) = g(j − 1) for some i �= j, i, j ∈ {1, 2, . . . , n − 1}. By
the above definition of g, g(i−1) and g(j −1) are one of the common end points
of T (ei), T (ei+1) and T (ej), T (ej+1) respectively. So the edges corresponding
to T (ei) and T (ej) have a common end-point g(i − 1) (= g(j − 1)). So from
Corollary 9, we have T (ei) + T (ej) ∈ C(n − 1). Linearity of T implies that
T (ei + ej) ∈ C(n − 1). Since T restricted to C(n − 1) is a bijection from T onto
itself, we have ei +ej ∈ C(n−1). Again, ej +ei+1 ∈ C(n−1) for the same reason
as g(i − 1) is a common end-point between edges corresponding to T (ej) and
T (ei+1). We also have ei+ei+1 ∈ C(n−1). So ei+ej , ei+1+ei, ej+ei+1 ∈ C(n−1).
If possible, let ei + ej + ei+1 = 0. However, then ej = ei + ei+1, which is
impossible by the definition of ei’s. Thus, from Lemma 5, 10i is either 10j or
10j−1, i.e., i = j or j − 1. Similar argument on ei, ej , ej+1 gives us j = i or i− 1.
But i = j − 1 and j = i − 1 both cannot be true simultaneously. So we have
i = j which is a contradiction. Thus g is injective. So we define g(n − 1) = x,
where x ∈ {0, 1, 2, . . . , n − 1} � {g(0), g(1), . . . , g(n − 2)}. Then g is defined on
{0, 1, 2, . . . , n − 1} into itself. Moreover since g is injective, it is a permutation
on the set {0, 1, 2, . . . , n − 1}.
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Abstract. The Minimum Eccentricity Shortest Path (MESP) Problem
consists in determining a shortest path (a path whose length is the dis-
tance between its extremities) of minimum eccentricity in a graph. It
was introduced by Dragan and Leitert [9] who described a linear-time
algorithm which is an 8-approximation of the problem. In this paper,
we study deeper the double-BFS procedure used in that algorithm and
extend it to obtain a linear-time 3-approximation algorithm. We more-
over study the link between the MESP problem and the notion of lam-
inarity, introduced by Völkel et al. [12], corresponding to its restriction
to a diameter (i.e. a shortest path of maximum length), and show tight
bounds between MESP and laminarity parameters.

Keywords: Graph search · Graph theory · Eccentricity · Diameter ·
BFS · Approximation algorithms · k-Laminar graph

1 Introduction

For both graph classification purposes and applications, it is an important issue
to determine to which extent a graph can be summarized by a path. Different
path constructions and metrics to characterize how far the graph is from the
constructed path can be used, for example path-decompositions and path-width
[11] or path-distance-decompositions and path-distance-width [13]. Another app-
roach, on which we focus in this article, is to characterize the graph by a spine
defined by one of its paths.

This problem was first studied in terms of domination, that is finding a path
such that every vertex in the graph belongs to or has a neighbor in the path.
Several graphs classes were defined in terms of dominating paths. [7] studies the
graphs for which the dominating path is a diameter. [8] introduces dominating
pairs, that is vertices such that every path linking them is dominating. Graphs
such that short dominating paths are present in all induced subgraphs are char-
acterized in [2]. Linear-time algorithms to find dominating paths or dominating
vertex pairs were also developed for AT-free graphs [4,6].
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 216–229, 2016.
DOI: 10.1007/978-3-319-48749-6 16



Minimum Eccentricity Shortest Path Problem 217

Dominating paths do not exist however in every graph and have no associated
metric to measure the distance from the graph to the path. A natural extension
of the notion of domination is the notion of k-coverage for a given integer k,
defined by the fact that a path k-covers the graphs if every vertex is at distance
at most k from the path. The smallest k such that a path k-covers the graph is
then a metric as desired.

In the present paper, we study the latter problem in which the covering path
is required to be a shortest path between its end-vertices. It was introduced in
[9] as the Minimum Eccentricity Shortest Path Problem, and shown to be linked
to the minimum line distortion problem [14].

The MESP problem is also closely related to the notion of k-laminar graphs
introduced in [12], in which the covering path is required to be a diameter.

The MESP problem, as well as determining if a graph is k-laminar for a
given k, are NP-hard [9,12]. However, Dragan and Leitert [9] develop a 2-
approximation algorithm for MESP of time complexity O(n3), a 3-approximation
algorithm in O(nm) and a linear 8-approximation. The latter is extremely simple
as it consists in a double-BFS procedure.

Roadmap. In this paper, we introduce a different analysis of the double-BFS
procedure and prove that it is in fact a 5-approximation algorithm, and that
the bound is tight. We then develop the idea of this algorithm and reach a
3-approximation, which still runs in linear time. Finally, we establish bounds
relating the MESP problem and the notion of laminarity.

Definitions and Notations. Through this paper G = (V,E) denotes a finite
connected undirected graph. A shortest path between two vertices u and v is a
path whose length is minimal among all u, v-paths. This length (counting edges)
is the distance d(u, v). Depending on the context, we consider a path either as
a sequence, or as a set of vertices. The distance d(v, S) between a vertex v and
a set S is smallest distance between v and a vertex from S.

The eccentricity ecc(S) of a set S is the largest distance between S and any
vertex of G.

The maximal eccentricity of any singleton {v}, or equivalently the largest
distance between two vertices, denoted here diam(G), is often called the diameter
of the graph, but for clarity in this paper a diameter is always a shortest path
of maximum length, i.e. a shortest path of length diam(G), and not its length.

2 Double-BFS Is a 5-Approximation Algorithm

Let us define the problem we are interested in:

Definition 1 (Minimum Eccentricity Shortest Path Problem
(MESP)). Given a graph G, find a shortest path P such that, for every shortest
path Q, ecc(P ) ≤ ecc(Q).

k(G) denotes the eccentricity of a MESP of G.
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Theorem 1 (Dragan and Leitert [9]). Computing k(G) or finding a MESP
are NP-complete problems.

It is therefore worth using polynomial-time approximation algorithms. We
say that an algorithm is an α-approximation of the MESP if every path output
by this algorithm is a shortest path of eccentricity at most αk(G).

Double-BFS is a widely used tool for approximating diam(G) [3]. It simply
consists in the following procedure:

1. Pick an arbitrary vertex r
2. Perform a BFS (Breadth-First Search) starting at r and ending at x. x is

thus one of the furthest vertices from r.
3. Perform a BFS (Breadth-First Search) starting at x and ending at y.

The output of the algorithm is the path from x to y, called a spread path,
while its extremities (x, y) are called a spread pair. A folklore result is that the
distance between x and y 2-approximates the diameter of G. As noted by Dragan
and Leitert, Double-BFS may also be used for approximating MESP: they have
shown in [9] that any spread path is an 8-approximation of the MESP problem.

The first result of the present paper is that any spread path is in fact a 5-
approximation of the MESP problem and that the bound is tight. But before we
prove this result (Theorem 2), let us give the key lemma used for proving our
three theorems:

Lemma 1. Let G be a graph having a shortest path v0, v1 . . . vt of eccentricity k.
Let P=x0, x1, . . . xs be a shortest path of G.
Let iPmin (resp. iPmax) be the smallest (resp. largest) integer such that viPmin

(resp. viPmax
) is at distance at most k of P.

For every integer i such that iPmin ≤ i ≤ iPmax, vi is then at distance at most
2k from P .

Subsequently, every vertex v of G at distance at most k from the subpath
between viPmin

and viPmax
is at distance at most 3k of P .

One may think, at first glance, that this lemma looks similar to the following:

Lemma 2 (from Dragan et al. [9]). If G has a shortest path of eccentricity at
most k from s to t, then every path Q with s in Q and d(s, t) ≤ maxv∈Qd(s, v)
has eccentricity at most 3k.

The difference lies in the fact that the k in Lemma 2 is specific to the given
couple of vertices (s, t) while the k in Lemma 1 is global. On the other hand,
Lemma 2 gives a bound on the eccentricity of a path with respect to the whole
graph, while Lemma 1 only guarantees an eccentricity for a defined subgraph.

Proof (of Lemma 1). The second assertion of the lemma is straightforward given
the first one. To prove the latter, we define, for all l between 0 and s, the subpath
Pl = x0, x1 . . . xl.

Let us show by induction on l that for all i between iPl
min and iPl

max, vi is at
distance at most 2k of Pl.
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• l = 0, P0 = x0.

Using the triangle inequality:

d(v
i
P0
min

, v
i
P0
max

) ≤ d(v
i
P0
min

, x0) + d(x0, viP0
max

) ≤ 2k (1)

Hence, for all i between iP0
min and iP0

max,

d(v
i
P0
min

, vi) ≤ k or d(v
i
P0
max

, vi) ≤ k (2)

The result is thus verified for l = 0.

• Let l in (1 . . . s) such that the property if verified for l − 1.

For all i between i
Pl−1
min and i

Pl−1
max , vi is at distance at most 2k of Pl−1 by the

induction hypothesis. Hence, vi is at distance at most 2k of Pl.
Moreover,

d(v
i
Pl−1
max

, v
i
Pl
max

) ≤ d(v
i
xl−1
max

, vixl
max

) (3)

and by the triangle inequality:

d(v
i
xl−1
max

, vixl
max

) ≤ d(v
i
xl−1
max

, xl−1) + d(xl−1, xl) + d(xl, vixl
max

) ≤ 2k + 1 (4)

As the sub-path of P between v
i
Pl−1
max

and v
i
Pl
max

is a shortest path, it follows

that for all i between i
Pl−1
max and iPl

max,

d(v
i
Pl−1
max

, vi) ≤ k or d(v
i
Pl
max

, vi) ≤ k, (5)

meaning that vi is at distance at most 2k of Pl−1 or of xl.
A similar proof shows that for all i between iPl

min and i
Pl−1
min , vi is at distance

at most 2k from Pl−1 or from xl.
The property is verified by induction, and the lemma follows for l = s.

v0
v1 v2

v6

rz

x

y

v3 v4 v5

Fig. 1. The bound shown in Theorem 2 is tight. Indeed the graph is such that
v0, v1 . . . v6 is a shortest path of eccentricity 1. The vertex z is at distance 5 from
the shortest path (shown by thick edges) between x and y computed by double-BFS
starting at r.
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Theorem 2. A double-BFS is a linear-time 5-approximation algorithm for the
MESP problem.

Before we prove it, notice that Fig. 1 shows that this bound is tight.

Proof. Let k be k(G), P = v0, v1 . . . vt be a MESP (its eccentricity is thus k),
and Q = x, . . . , y be the result of a double-BFS starting at some arbitrary vertex
r, then reaching x, then reaching y. We shall prove that Q is a 5k-dominating
path of G.

Let i (resp. j) be such that vi (resp. vj) is at distance at most k of r (resp. x).
The following inequalities are verified:

d(r, x) ≥ d(r, vt) ≥ d(vi, vt) − d(r, vi) ≥ d(vi, vt) − k (6)

d(r, x) ≤ d(r, vi) + d(vi, vj) + d(vj , x) ≤ d(vi, vj) + 2k (7)

Combining those inequalities,

d(vi, vt) − 3k ≤ d(vi, vj) (8)

Similarly:
d(vi, v0) − 3k ≤ d(vi, vj) (9)

Therefore vj is at distance at most 3k of v0 or vt. Without loss of generality,
assume that vj is at distance at most 3k of v0.

Let l be such that vl is at distance at most k of y. We distinguish two cases:

(i) l ≤ j:
Then y is at distance at most 5k of x. As y is a vertex most distant from x,
x is a 5k-dominating vertex of the graph. The lemma is then verified.

(ii) l > j:
Applying to (x, y) the inequalities established at the beginning of the proof:

d(vj , vt) − 3k ≤ d(vj , vl) (10)

As l > j, it follows that:
d(vl, vt) ≤ 3k (11)

Figure 2 shows the configuration of the graph in that case. The vertices at
distance at most k of a vertex vs such that s ≤ j (resp. s ≥ l) are at distance
at most 5k of x (resp. y).
According to Lemma 1, every vertex v of G at distance at most k of a vertex
vs such that s is between j and l is at distance at most 3k of any shortest
path between x and y. The lemma is thus verified.
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v0 v1 vj vi vl vt−1 vt

x r y

≤ k ≤ k ≤ k

max
v∈G

d(r, v)

max
v∈G

d(x, v)

Fig. 2. Notations used in the proof of Theorem 2

3 A 3-Approximation Algorithm

We show now that by using more BFS runs we may obtain a 3k-approximation
of MESP, still in linear time.

Let bestPath and bestEcc be global variables used as return values for the
path and its eccentricity. bestPath stores a path and is uninitialized, and bestEcc
is an integer initialized with |V (G)|.

Data: G graph, x,y vertices of G, step integer
1 Compute a shortest path Q between x and y;
2 Select a vertex z of G most distant from Q;
3 if d(Q, z) < bestEcc then
4 bestPath ← Q;
5 bestEcc ← d(Q, z);
6 end
7 if step < 8 then
8 Algorithm3k(G,x,z,step + 1);
9 Algorithm3k(G,y,z,step + 1);

10 end
Algorithm 1. Algorithm3k

Theorem 3. A 3-approximation of the MESP Problem can be computed
in linear time by considering a spread pair (s, l) of G and running
Algorithm3k(G,s,l,0).

Proof (Correctness). Let G be a graph admitting a shortest path P = v0, v1 . . . vt
of eccentricity k.
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Let x and y be any vertices of G, Qx,y a shortest path between x and y.
Define ix,ymin (resp. ix,ymax) as the smallest (resp. largest) integer such that vix,y

min

(resp. vix,y
max

) is at distance at most k of x or y. Then, by Lemma 1,

For all j such that ix,ymin − k ≤ j ≤ ix,ymax + k, d(Qx,y, vj) ≤ 2k (12)

Hence, if ix,ymin ≤ k and ix,ymax ≥ t − k, every vertex of P is at distance at most
2k of Qx,y and, as P is of eccentricity k, Qx,y is of eccentricity at most 3k.

Algorithm3k uses this implication to exhibit a pair x, y such that Qx,y is of
eccentricity at most 3k. Indeed, in each recursive call, one of the following cases
holds:

1. the vertex z selected at line 3 is at distance at most 3k from Qx,y. In that case,
bestPath will be set to Qx,y unless it already contains a path of even better
eccentricity. In any case, the result of the algorithm is a path of eccentricity
at most 3k.

2. the vertex z is at a distance greater than 3k of Qx,y. Let iz be such that viz
is at distance at most k of z. Then, according to Eq. (12),

iz ≤ ix,ymin − k or iz ≥ ix,ymax + k (13)

(a) Suppose that iz ≥ ix,ymax + k. Then, in the case d(vix,y
min

, x) = k, we get
ix,zmin ≤ ix,ymin and ix,zmax ≥ ix,ymax + k. And in the case d(vix,y

min
, y) = k we get

ix,zmin ≤ ix,ymin − k and ix,zmax ≥ ix,ymax.
(b) A similar reasoning can be applied if iz ≤ ix,ymin − k, also yielding to

ix,zmin ≤ ix,ymin and ix,zmax ≥ ix,ymax + k or ix,zmin ≤ ix,ymin − k and ix,zmax ≥ ix,ymax.

Therefore, either the algorithm already found a path of eccentricity at most
3k, or it makes one of its two new calls with a couple (x′, y′) such that the
interval [ix

′,y′
min , ix

′,y′
max ] contains [ix,ymin, ix,ymax] but has length increased by at least k.

Consider now a spread pair (s, l) for which Algorithm3k(G,s,l,0) is run. It
follows from case (i) and (ii) of the proof of Theorem 2 that

is,lmin ≤ 5k and is,lmax ≥ t − 5k (14)

At each of the recursive calls, if no path of eccentricity at most 3k has already
been discovered, one of the new calls expands the interval [ix,ymin, ix,ymax] length by
at least k, while containing the previous interval. As the recursive calls are made
until step = 8, it follows that either a path of eccentricity 3k has been discovered,
or one of the explored possibilities corresponds to eight extensions of size at least
k starting from [is,lmin, is,lmax].

In the latter case, Eq. (14) implies that the final couple of vertices (x, y)
fulfills ix,ymin ≤ k and ix,ymax ≥ t − k. Every vertex of P is then of distance at most
2k of Qx,y and thus Qx,y is of eccentricity at most 3k.

Proof (Complexity). The algorithm computes two BFS trees at line 1 and 2,
taking O(n + m) time. The rest of the operations is computed in constant time.

The recursivity width is 2 and, since it is first called with step = 0, the
recursivity length is 8. The algorithm is thus called 255 times. Therefore the
total runtime of the algorithm is O(n + m).
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Proof (Tightness of the approximation). Fig. 3 shows a graph for which the algo-
rithm may produce a path of eccentricity 3k(G) (see caption).

v0
v1 v2

v3

v4 v5 v6

v7 v8 v9 v10 v11

v12

Fig. 3. Tightness of the bound shown in Theorem 3. The algorithm may indeed loop
between the following couples of vertices: (v0, v6), (v0, v12), (v6, v12), (v0, v11), (v11, v12),
(v6, v7), (v7, v12), (v11, v7). Each time, it may choose a shortest path of eccentricity 3
(passing through v8 v9 and v10 whenever v12 is not an endvertex of the path) while
v0..v3..v6 has eccentricity 1.

4 Bounds Between MESP and Laminarity

In this section, we investigate the link between the MESP problem and the notion
of laminarity introduced by Völkel et al. in [12]. The study of the k-laminar graph
class finds motivation both from a theoretical and practical point of view. On
the theoretical side, AT-free graphs form a well known graph class introduced
half a century ago by Lekkerkerker and Boland [10], which contains many graph
classes like co-comparability graphs. An AT-free graph admits a diameter all
other vertices are adjacent with [5]. It is then natural to extend this notion of
dominating diameter. On the practical side, some large graphs constructed from
reads similarity networks of genomic or metagenomic data appear to have a very
long diameter and all vertices at short distance from it [12], and exhibiting the
“best” diameter allows to better understand their structure.

Definition 2 (laminarity). A graph G is

– l-laminar if G has a diameter of eccentricity at most l.
– s-strongly laminar if every diameter has eccentricity at most s.

l(G) and s(G) denote the minimal values of l and s such that G is respectively
l-laminar and s-strongly laminar.

A natural question about laminarity and MESP is to ask what link exists
between them.
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Theorem 4. For every graph G,

k(G) ≤ l(G) ≤ 4k(G) − 2
k(G) ≤ s(G) ≤ 4k(G)

Moreover, there exist three graph sequences (Gk)k≥1, (Hk)k≥1 and (Jk)k≥1

such that, for every k,

– k(Gk) = l(Gk) = s(Gk) = k;
– k(Hk) = k and l(Hk) = 4k − 2;
– k(Jk) = k and s(Jk) = 4k;

The bounds given by the inequalities are therefore tight.

Proof (k(G) ≤ l(G) and k(G) ≤ s(G)). Those inequalities are straightforward as
every diameter is by definition a shortest path. The eccentricity of every diameter
is therefore always greater than k(G).

Proof (s(G) ≤ 4k(G)). Let D = x0, x1, . . . xs be a diameter of G and P =
v0, v1 . . . vt a shortest path of eccentricity k. We shall show ecc(D) ≤ 4k. Let z
be any vertex of G. Since ecc(P ) = k there exists a vertex vi of P such that
d(z, vi) ≤ k. Let us distinguish three cases:

• Case 1: there exists vertices xa, xb of D and va, vb of P such that a ≤ i ≤ b
and d(va, xa) ≤ k and d(vb, xb) ≤ k. Then by Lemma 1, z is at distance at
most 3k from any shortest path between xa and xb, and thus at distance at
most 3k of D.

• Case 2: there exists no vertex va of P with a ≤ i and d(va,D) ≤ k
• Case 3: there exists no vertex va of P with i ≤ a and d(va,D) ≤ k.

Without loss of generality we focus on Case 2 (illustrated in Fig. 4), which is
symmetric with Case 3. Let l (resp. m) be such that vl (resp. vm) is at distance
at most k of x0 (resp. xs), assume l ≤ m:

d(vl, vm) ≥ d(x0, xs) − 2k (15)

D being a diameter,
d(x0, xs) ≥ d(v0, vt) (16)

By combining those inequalities,

d(vl, vm) ≥ d(v0, vt) − 2k (17)

d(vl, vm) ≥ d(v0, vi) + d(vi, vl) + d(vl, vm) + d(vm, vt) − 2k (18)

2k ≥ d(vi, vl) (19)

It follows that z is at distance at most 4k of x0.
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Proof (l(G) ≤ 4k(G) − 2). Let D = x0, x1, . . . xs be a diameter of G and P =
v0, v1 . . . vt a shortest path of eccentricity k. We shall show that either ecc(D) ≤
4k − 2 or G contains a diameter D′ of eccentricity 3k. If P is a diameter we are
done. Let us suppose from now it is of length at most |D| − 1.

Let z be any vertex of G and vi a vertex of P such that d(z, vi) ≤ k. Let
us distinguish the same three cases than in the proof that s(G) ≤ 4k(G). The
first case also leads to d(z,D) ≤ 3k. The second and third being symmetric, let
us suppose there exists no vertex vj of P at distance at most k of D such that
j ≤ i.

Let vl (resp. vm) be a vertex of P at distance at most k from x0 (resp. xs),
clearly,

d(vl, vm) ≥ |D| − 2k. (20)

Let us distinguish two subcases:

• Case 2.1: d(vl, vm) > |D| − 2k,

d(vi, vl) ≤ d(v0, vt) − d(vl, vm) ≤ (|D| − 1) − (|D| − 2k + 1) ≤ 2k − 2 (21)

It follows that z is at distance at most 4k − 2 of D.
• Case 2.2: d(vl, vm) = |D| − 2k

In this case, a path D′ = x0, ..vl, vl+1, ..vm, ..xs is a diameter. Assuming
l ≤ m, Eq. 19 in previous proof shows that:

d(vi, vl) ≤ 2k (22)

and with a symmetrical reasoning,

d(vm, vt) ≤ 2k (23)

It follows that any vertex v of G at distance at most k of a vertex va with
a ≤ l (resp. a ≥ m) is at distance at most 3k of vl (resp. vm). Hence at
distance at most 3k of D′. vl, vl+1, ..vm being a subpath of D′, any vertex
v of G at distance at most k of a vertex va with a between m and t is at
distance at most k of D′. Finally, any vertex of G is at distance at most 3k
of D′.

Proof (Tightness of the bounds). Consider the graph Gk reduced to a path P
of length 4k to which a second path of length k is attached in the middle. P is
then simultaneously the only diameter and the MESP, and it k-covers Gk but
doesn’t (k − 1)-cover it. Hence the inequalities k(G) ≤ l(G) and k(G) ≤ s(G)
are tight.

Figure 5 shows how to build the graph sequence (Jk)k≥1 (only J1 and J6 are
drawn). Jk is a graph with a shortest path of eccentricity k and a diameter of
eccentricity 4k. The inequality s(G) ≤ 4k(G) is thus tight.

Figure 6 shows how to build the graph sequence (Hk)k≥1 (only H1, H2 and
and H6 are drawn). Hk is a graph with a shortest path of eccentricity k, while the
unique diameter has eccentricity 4k−2 (H1 is a special case with two diameters).
The inequality l(G) ≤ 4k(G) − 2 is therefore tight.
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v0

vi

vl vm vt

z

x0 xs

≤ 2k ≥ diam(G) − 2k

≤ k

≤ k ≤ k

diam(G)

Fig. 4. Notations used in Case 2 of the proof of Theorem 4

x0 v0
v2k

v4k

z

xk+1

x2k x3k x4k

vk

v3k

k

k

k

k

Fig. 5. Proof that s(G) ≥ 4k(G). The red path x0, x1, . . . x4k is a diameter of length 4k
and at distance 4k of z; while the green path v0, v1, . . . v4k is a shortest path (another
diameter indeed) of eccentricity k. The large graph is J6 (using the graph sequence
(Jk)k from Theorem 4) and the small one on the bottom left is J1. The other members
of the sequence car easily be derived. (Color figure online)
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x0 v0
v2k+1

v4k−1

z

xk+1

x2k+1 x3k+1 x4k

vk+1

v3k+1

k

k + 1

k

k − 2

H6

H1

H2

Fig. 6. Proof that l(G) ≥ 4k(G) − 2. It is a graph sequence (Hk)k, using the notation
from Theorem 4. For k ≥ 2, the red path x0, x1, . . . x4k is the unique diameter. Its
length is 4k and it is at distance 4k − 2 of z. The green path v0, v1, . . . v4k−1 is a
shortest path of length 4k − 1 and of eccentricity k. Graphs H2 and H6 are drawn but
all graphs Hk, k ≥ 2 can be derived from the pattern of H6. The small graph on the
bottom left is the special case H1 who do not follow this pattern. It admits exactly two
diameters, both of eccentricity 2 (red), and a shortest path of eccentricity 1 (green).
(Color figure online)

5 Conclusion

We have investigated the Minimum Eccentricity Shortest Path problem for gen-
eral graphs and proposed a linear time algorithm computing a 3-approximation.
The algorithm is a 2-recursive function with constant recursivity depth, launch-
ing two BFSs each time, thus taking linear time. Additionally, we’ve established
some tight bounds linking the MESP parameter k(G) and the k-laminarity para-
meters s(G) and l(G).
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On improving the current approximation algorithms, the following remark
should be noted. Our algorithm is confined in finding a good pair of vertices in
the graph, and the shortest path between them is then picked arbitrarily. By
doing so, we are unlikely to get a better result than a 3-approximation. Indeed
as shown by [9] there exist graphs for which the MESP solution is a path of
eccentricity k between two vertices s and t such that some other shortest paths
between s and t have an eccentricity of exactly 3k.

About laminarity parameters, computing l(G) is NP-complete, while com-
puting s(G) can be done in O(n2m log n) time [12]. It may be interesting to
design an approximation algorithm, i.e producing a diameter of eccentricity at
most αs(G) or βl(G). Linear-time algorithms like BFS cannot be used however,
since we do not know how to compute diam(G) faster than a matrix product,
and even surlinear approximation are studied [1]. Different techniques than the
ones used here must therefore be employed.
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Abstract. We consider the problem of subtree extraction with guar-
antee of preserving distinguishability. Given a query q and a tree T ,
evaluating q on T will output q(T ) which is a set of nodes of T . For two
nodes a and b in T , they can be distinguished by some query q in T ,
iff exactly one of them belongs to q(T ). Then, given a tree T , a query
class L, and two disjoint node sets A and B of T , a subtree T ′ of T is
called preserving distinguishability of T , iff (1) T ′ contains all nodes in
A ∪ B, (2) for any node pair (a, b) ∈ A × B, if a and b can be distin-
guished by some query in L in T , they can also be distinguished by some
query (not necessarily the same one) in L in T ′, and (3) for any node
pair (a, b) ∈ A × B and a query q ∈ L, if a and b can be distinguished by
q in T ′, they can also be distinguished by q in T . The subtree extraction
problem considered by this paper is to determine whether there is a small
enough subtree T ′ of T , such that for query class L and node sets A and
B, T ′ preserves the distinguishability of T . In this paper, as an initial
attempt of investigating this problem, fixing L to be a specific part of
tree pattern queries (introduced later), the subtree extraction problem is
shown to be NP-complete.

Keywords: Subtree extraction · Distinguishability · Computational
complexity

1 Introduction

Recently, computation on large-scale data has increased lots of research interests.
An important strategy for large data is to preprocess data before the computa-
tion, which aims to reduce the data size by only keeping the necessary informa-
tion related to the computation. This paper studies that idea on the platform of
tree-structured data and tree queries.

Tree-structured data (e.g. XML) and its query language have been investi-
gated very much [1,2]. For a query q and data tree T , let q(T ) be the result node
set outputted by evaluating q on T , then two nodes u and v in T can be distin-
guished by q, iff exactly one of them belongs to q(T ). They can be distinguished
by query class L, iff they can be distinguished by some query q ∈ L.
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 230–240, 2016.
DOI: 10.1007/978-3-319-48749-6 17
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In this paper, the Distinguishability Preserving Subtree Extraction problem
(dpSE for short) is considered which can be described informally as follows.
Given data tree T and an integer k > 0, dpSE determines whether or not T has
a subtree T ′ satisfying |T | − |T ′| ≥ k such that for specific query class L and
two node sets A,B of T , the following two conditions are satisfied.

– Preserving Node Distinguishability. Each node pair in A × B which can be
distinguished in T can still be distinguished in T ′.

– Preserving Query Distinguishability. For each node pair (u, v) ∈ A × B, if query
q ∈ L can distinguish them in T ′, it can still distinguish them in T .

There are lots of useful applications of the dpSE problem in many areas such
as Mass Customization, Category Management and so on. We are not aware of
any previous works focusing on the same problem. As an initial attempt, in this
paper, the query class is fixed to be a specific part of tree pattern queries, and,
in that case, dpSE is shown to be NP-complete.

1.1 Related Work

Some related works are in the area of XML data, a popular and very stud-
ied tree-structured data. Finding concise representations for both syntactical
and semantic information of XML data is useful for many applications, such as
schema inference [3,4], information extraction [5,6], query learning [6–8] and so
on. Schema inference usually uses regular expressions or its fragments as rep-
resentations [3,4,9], and extracts schemas from given valid data. Information
extraction usually utilizes semantic rules or queries [5,6,10] to extract informa-
tion interested. Query learning uses query languages defined over XML [6–8],
and searches proper queries accepting positive examples and rejecting negative
examples. The problem dpSE can be extended to those applications. Aso, this
paper is motivated by the work of learning XML queries by [6,7,11], which shows
that, even for very simple queries, it is NP-hard to find a query consistent with
given positive and negative examples. The problem considered here investigates
the possibility of preprocessing techniques for reducing input data size. The
tree-map used in this paper is related to the mappings studied by [12–14], which
mainly focus on the relations between mappings and query containment or query
evaluation.

2 Preliminary

A tree is referred to the rooted, directed and labeled tree here, formally defined
as below.

Definition 2.1 (Tree Structure Data). A data tree T can be represented by a
5-tuple (VT , ET , rT , Ω, lT ), where VT and ET are the node and edge sets respec-
tively, rT is the unique root node in VT , Ω is an alphabet for labeling the nodes,
and lT is a label function which is defined as a mapping from VT to Ω. ��
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For two trees T1 and T2, it is denoted by T1 ⊆ T2 if T1 is a subtree of T2. For
a tree T and a node u ∈ VT , we use Tu to represent the whole subtree rooted at
u in T .

Tree pattern query is a popular tree querying language [12], and this paper
considers one simple and common used fragment of tree pattern query.

Definition 2.2 (Simple Tree Pattern Query). A simple tree pattern query q is
a binary tuple (Tq, tq), where Tq is a tree represented by (Vq, Eq, rq, Ω, lq) and
tq ∈ Vq is the unique target node of q. Additionally, the set of all simple tree
pattern queries is denoted by Q/. ��

Also, for convenience, two other representations for query are also used. Given
a query q, a graphical tree definition of q can be built by first drawing the
embedded tree of q and then marking the target node in the tree T . The string
definition can be built as follows. First, string s is built by concatenating the
label of the nodes on the path p between root and target node of q using ‘/’
orderly. Then, the strings of each subtree of node u on p is wrapped by ‘[ ]’ and
inserted after the label of u in s.

The semantics of Q/ will be given after introducing a kind of map functions
on trees.

Definition 2.3 (Tree-map). A tree-map is a map defined between two trees.
For given trees T and T ′, a function f : VT �→ VT ′ is a tree-map from VT to
VT ′ , if
(1) f(rT ) = rT ′ ,
(2) for node n ∈ VT , lT (n) = lT ′(f(n)), and
(3) for edge (x, y) ∈ ET , (f(x), f(y)) ∈ ET ′ . ��
Definition 2.4 (Semantic of Q/). For a tree T and q = (Tq, tq) ∈ Q/, T matches
(or satisfies) q, denoted by T |= q, iff there exists a tree-map f from Vq to VT .
For special f , it is also denoted by T |=f q, if f just defines such a tree-map.
Additionally, a node u ∈ VT is selected by q on T , denoted by u ∈ q(T ), if there
exists a tree-map f such that T |=f q and f(tq) = u. ��

There are some properties of Q/ useful in this paper.

Lemma 2.1: Q/ is in PTime. That is, given a tree T , a query q ∈ Q/ and a
node u ∈ VT , it can be determined in PTime whether or not u ∈ q(T ). ��
Lemma 2.2: Given trees T1 and T2, it can be determined in PTime whether
there is a tree-map from T1 to T2. ��
Lemma 2.3: Given trees T1, T2 and T3, if f1 is a tree-map from T1 to T2 and
f2 is a tree-map from T2 to T3, then the function f3 defined as f3(v) = f2(f1(v))
is a tree-map from T1 to T3. ��

Given a tree T , two nodes n1, n2 ∈ VT are called to be distinguished by query
q, denoted by n1 ≢T,q n2, if exactly one of them is selected by q. Otherwise, they
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can not be distinguished by q, denoted by n1 ≡T,q n2. For a query class L and tree
T , two nodes n1, n2 ∈ VT are called to be distinguishable, denoted by n1 ≢T,L n2,
if there is a q ∈ L such that n1 ≢T,q n2. Otherwise, they are not distinguishable,
denoted by n1 ≡T,L n2. If the query class is clear from the context, we only use
the representations n1 ≢T n2 and n1 ≡T n2.

For query class Q/, the Distinguishability Preserving Subtree Extraction prob-
lem, dpSE for short, can be formally defined as follows.

Definition 2.5 (Problem 〈dpSE,Q/〉). Given a tree T , node sets A,B ⊆ VT ,
and an integer k, the dpSE problem is to determine whether there is a subtree
T ′ of T such that |VT | − |VT ′ | ≥ k, A ∪ B ⊆ VT ′ , and the following condition is
satisfied. For each pair of nodes (u, v) ∈ A × B,
- Node Distinguishability Preserving. If u ≢T,Q/ v, then u ≢T ′,Q/ v, and
- Query Distinguishability Preserving. For a query q ∈ Q/, if u ≢T ′,q v, then
u ≢T,q v. ��

3 The Hardness Result

The main result of this paper can be described by the following theorem.

Theorem 3.1: 〈dpSE,Q/〉 is NP-complete. ��
Before describing the proof, we introduce some useful notations first. For two

paths p1 and p2, let ��(p1, p2) be the set of node pairs with the same depths.
For nodes n1 and n2, let path(n1, n2) be the path from n1 to n2. For two trees
T1 = (V1, E1, r1, Ω1, l1) and T2 = (V2, E2, r2, Ω2, l2) and a node u ∈ V1, w.l.o.g.
assuming V1 ∩ V2 = ∅, a operator Link can be defined such that Link(T1, u, T2) is
the tree

(
V1∪V2, E1∪E2∪(u, rT2), rT1 , Ω1∪Ω2, l1∪l2

)
. Intuitively, Link(T1, u, T2)

is obtained by linking T2 to the node u and letting root of T1 be the new root.

3.1 The Upper Bound

The upper bound for 〈dpSE,Q/〉 problem can be described by the following
lemma.

Lemma 3.1: 〈dpSE,Q/〉 is in NP. ��
To prove the Lemma 3.1, based on two functions gc and lc, a NP algorithm

for the problem 〈dpSE,Q/〉 is given in Lemma 3.2.

Definition 3.1 (gc and lcfunction). Given trees T1 and T2 satisfying T2 ⊆ T1

and two nodes u, v ∈ VT1 ∩ VT2 ,
-gc (u, v, T1, T2) = true iff u ≢T1 v implies u ≢T2 v.
-lc (u, v, T1, T2) = true iff u ≢T2,q v implies u ≢T1,q v for any query q ∈ Q/. ��

In fact, it is easy to find that the conditions for gc and lc are same as pre-
serving the node and query distinguishability.
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Lemma 3.2: If gc and lc can be determined in PTime, there is an NP algorithm
for the 〈dpSE,Q/〉 problem. ��
Proof: It is easy to verify by considering the definitions directly. ��
Lemma 3.3: Function gc can be evaluated in PTime. ��
Proof: Since gc (u, v, T1, T2) is equivalent to (u ≡T1 v) ∨ (u ≢T2 v), a PTime

algorithm for determining the relation ≡ will simply a PTime algorithm for gc
(u, v, T1, T2) immediately. Next, a PTime algorithm ifEquiv will be given such
that ifEquiv (u, v, T ) returns true iff u ≡T v.

A function ifMap is utilized here, which takes two trees T ′ and T ′′ as input,
and returns true iff there is a tree-map from T ′ to T ′′. The existence of ifMap
can be known from Lemma 2.2.

Given inputs T and u, v ∈ VT , the ifEquiv algorithm works as follows. Let
pu = path(rT , u), pv = path(rT , v).

– If |pu| �= |pv| return false, otherwise, continue.
– If there is a pair (ui, vi) in ��(pu, pv) such that lT (ui)�=lT (vi), return false,

otherwise continue.
– Return res=

∧

(ui,vi)∈��(pu,pv)

(
ifMap(Tui

, Tvi
) ∧ ifMap(Tvi

, Tui
)
)

Obviously, the ifEquiv algorithm is in PTime. The correctness of ifEquiv algo-
rithm can be verified by considering constructing maps according to the outputs
of functions. ��

Lemma 3.4: Function lc can be evaluated in PTime. ��
Proof: To prove the lemma, a PTime algorithm ifRight is given in Fig. 1.

An important observation is introduced first. Let pu represent path(rT1 , u)
or path(rT2 , u) (they are same since T2 ⊆ T1). Similarly, we can define pv. The
observation is that if pu and pv have different lengths or different node labels
one some position, lc(u, v, T1, T2) must be true. To prove this, let us consider
an arbitrary query q ∈ Q/, and assume u ≢T2,q v. Moreover, w.l.o.g., we can
assume u ∈ q(T2) and v /∈ q(T2). (1) First, we have v /∈ q(T1). If not, both u
and v are in q(T1) will imply pu and pv have same lengths and labels, which is a
contradiction. (2) Second, we have u ∈ q(T1) since T2 is a part of T1. Combining
them, we have u ≢T1,q v. Then, according to the definition of lc, lc(u, v, T1, T2)
is true.

The first step of Algorithm ifRight is to return true for the case that the
conditions for the above observation are satisfied (line 1–4). The output of Join
has two properties.

+ Property P1. There are tree-maps from Join (T ′, T ′′) to T ′ and T ′′.
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Fig. 1. Algorithm for lc

+Property P2. Any query q having tree-maps from Tq to T ′ and T ′′ also has
a tree-map from Tq to Join (T ′, T ′′).

The second step of Algorithm ifRight builds qi1 and qi2 based on Join pro-
cedure for each node pair (ui, vi) ∈ ��(pu, pv) first (line 5–9), and then returns
false if there is a query qij (i ∈ [1, |pu|], j ∈ [1, 2]) s.t. u ≢T2,qij v (line 10).

The proof of correctness of the second step can be divided into two directions.

⇒: If there is a query qij satisfying u ≢T2,qij v, we will prove that there is a
query q satisfying both u ≢T2,q v and u ≡T1,q v. In fact, qij can just the role
of q. Obviously, we only need to prove u ≡T1,qij v. There are two cases.

For j = 1, we have qij = qi1 = Link(pu, ui, Ci1) and Ci1 = Join(T2,ui
, T1,vi

).
Then, we know u ∈ qi1(T2), because there is a tree-map from Ci1 to T2,ui

(Property P1), and it can be extended to a tree-map from qi1 to T2 such that
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tq is mapped to u. Similarly, v ∈ qi1(T1). We also have u ∈ qi1(T1), since
T2 ⊆ T1. Therefore, u ≡T1,qi1 v.

For j = 2, we have similar proof.
⇐: If there is a query q such that u ≢T2,q v and u ≡T1,q v, we will prove that

there is a query qij such that u ≢T2,qij v.

Since u ≢T2,q v, w.l.o.g., it is assumed that u ∈ q(T2) and v /∈ q(T2). Then,
because T2 ⊆ T1 and u ≡T1,q v, we also have u ∈ q(T1) and v ∈ q(T1). Since
pu and pv are totally same after the first step of ifRight, path(rTq

, tq) must be
also same as pu and pv. Then, we will prove this part by assuming each qij

satisfies u ≡T2,qij v and making the contradiction that v ∈ q(T2).

Let pq = (z1, . . . , z|pq|) be the path(rTq
, tq), and Tzi

be the subtree rooted at
zi obtained after deleting all edges on pq from Tq. (1) First, because v ∈ q(T1)
and u ∈ q(T2), for each i, there must be a tree-map from Tzi

to T1,vi
and

a tree-map from Tzi
to T2,ui

. According to Property P2, there must be a
tree-map fi from Tzi

to Join(T2,ui
, T1,vi

) = Ci1. (2) Second, consider Ci1,
according to Property P1, there must be a tree-map from Ci1 to T2,ui

, which
implies u ∈ qi1(T2). Also, according to the assumption, qi1 satisfies u ≡T2,qi1 v,
we have v ∈ qi1(T2). Thus, there must be a tree-map gi from qi1 to T2 such
that gi(tqi1) = v. Obviously, gi is also a tree-map from Ci1 to T2,vi

. (3)
Then, according to Lemma 2.3, a tree-map hi from Tzi

to T2,vi
can be built

by composing fi and gi. (4) Finally, a tree-map h from q to T2 satisfying
h(tq) = v can be built by taking a union of all his, which will make the
contradiction that v ∈ q(T2).

Finally, the construction of the contradiction proves this direction.

In conclusion, lc can be evaluated by algorithm ifRight in PTime. ��

3.2 The Lower Bound

The lower bound of dpSE on Q/ can be described by the following lemma.

Lemma 3.5: 〈dpSE, Q/ 〉 is NP-hard . ��
Proof: We show 〈dpSE, Q/ 〉 is NP-hard by reduction from 3SAT problem,
which is known to be NP-complete very much [15]. For given variable set X =
{x1, x2, . . . , xn}, a 3SAT instance can be represented as ϕ = C1 ∧ C2 ∧ · · · ∧ Cm,
and each Cj is in the form lj1 ∨ lj2 ∨ lj3 where each ljk is xi or xi for i ∈ [1, n].
Without loss of generality, for any variable z ∈ X, it is assumed that {z, z} can
not appear in the same clause.

Given an instance ϕ of 3SAT, we construct an instance Sϕ = 〈T,A,B, k〉 of
〈dpSE,Q/〉 such that the answer of Sϕ is ‘yes’ iff ϕ is satisfied. Sϕ can be defined
as follows.
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Fig. 2. Examples for several parts of reduction

• First, TSkeleton shown in Fig. 2(a) gives an overview of the structure of T .
The root node rT is labelled r uniquely, and in the followings, node r also
means the node rT . There are two paths (a1, g1) and (a2, g2) under r, where
a1 and a2 are labelled a, and g1 and g2 are labelled g. Under a1, there are
two subtree sets TLB1 and TClause1, and under a2, there are three subtree sets
TLB2, TClause2 and TAssignment. TLB1 and TLB2 have totally same structures,
and so do TClause1 and TClause2. Therefore, in the followings, TLB presents
both TLB1 and TLB2, and TClause represents both TClause1 and TClause2.

• As shown in Fig. 2(c), there is only one tree in TAssignment, which is obtained
by first constructing a tree /b/X[/xi][/xi] for each variable xi, and then con-
catenating them orderly. In the followings, TAssignment also represents the only
subtree in it.

• TLB is obtained based on TAssignment. In detail, for each xi, there is a cor-
responding tree Txi

in TLB which is constructed by deleting xi and xi from
TAssignment. For example, as shown in Fig. 2(b), when X = {x1, x2}, the tree
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on the left is TAssignment, and the right one is the tree in TLB corresponding
to x1.

• TClauses is used to encode the clauses in ϕ. First, a tree TBasic is built by
first constructing a tree /b[/X/xi]/X/xi for each variable xi, and then con-
catenating them as shown on the left of Fig. 2(d). For each clause Cj , there is
a corresponding subtree TCj

in TClauses, which is constructed by deleting xi

(resp. xi) from TBasic if xi (resp. xi) is in Cj . For example, the corresponding
tree for clause xi ∧ xj ∧ xk is shown on the right of Fig. 2(d).

• Let k = |X|.
• A is the defined to contain all leaf nodes in TClause and TLB , g1, and all X

nodes in TAssignment. B only contains g2.

Obviously, the above reduction is in PTime. The correctness of this reduction
can be shown by considering the following two directions.

⇒: If ϕ is satisfied, the answer of Sϕ is ‘yes’. Suppose the assignment satisfying
ϕ is νϕ, a subtree T ′ of T will be constructed such that T ′ is an evidence for
the ‘yes’ answer of Sϕ. T ′ is got by deleting |X| leaf nodes in TAssignment from
T . In detail, for each variable xi ∈ X, if νϕ(xi) =true, delete xi, otherwise,
delete xi. Then, T ′ can be shown to be an evidence for the ‘yes’ answer of Sϕ

by considering the followings.
(1) Obviously, T ′ is a subtree of T containing A∪B, and |VT |−|VT ′ | = |X| =

k.
(2) To show Node Distinguishability preserving, it needs to show that, for

each node pair (u, v) ∈ A × B, if u ≢T v, then u ≢T ′ v. Let q̄ be the query
/r/a/g. Obviously, in T ′, except (g1, g2), all pairs (u, v) in A × B can be
distinguished by q̄. Thus, we only need to consider (g1, g2). (i) In T , g1
and g2 can be distinguished q =

(
Link(Tq̄, a, TAssignment), g

)
, where, to be

convenient, a and g represent the nodes labelled a and g in Tq̄ respectively.
Obviously, g2 ∈ q(T ). Also, we have g1 /∈ q(T ), because, for g1’s parent
node a1, there does not exist a tree-map from TAssignment to Ta1 . (ii)
In T ′, g1 and g2 can be distinguished q′ =

(
Link(Tq̄, a, T ′

Assignment), g
)
.

Obviously, g2 ∈ q′(T ′). Also, we have g1 /∈ q′(T ′) because of following
observations. First, there is no tree-map from T ′

Assignment to trees in TLB ,
because each X node in T ′

Assignment has at least one child, but there is
always one X has no child in each tree of TLB . Second, there is no tree-map
from T ′

Assignment to trees in TClauses. For each TCj
∈ TClauses, because

νϕ satisfies Cj , according to the definitions of TCj
and T ′

Assignment, there
is a variable xi such that xi (resp. xi) exists in T ′

Assignment but not in
TCj

, which means that a tree-map from T ′
Assignment to TCj

is impossible.
(iii) Combining (i) and (ii), we have g1 ≢T g2 and g1 ≢T ′ g2. Finally, Node
Distinguishability is preserved in T ′.

(3) To show Query Distinguishability preserving, it needs to show, for each
node pair (u, v), if a query q satisfies u ≢T ′,q v, it also has u ≢T,q v.
Similar with the (2) part, we only need to consider (g1, g2). Consider an
arbitrary query q such that g1 ≢T ′,q g2. Because, in T ′, T ′

a1
⊆ T ′

a2
, there
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must be g2 ∈ q(T ′) and g1 /∈ q(T ′). Since T ′ ⊆ T , obviously, g2 ∈ q(T ).
Because Ta1 and T ′

a1
are totally same, we also have g1 /∈ q(T ). Therefore,

g1 ≢T,q g2.
Combing them, the answer of Sϕ is ‘yes’.

⇐: If the answer of Sϕ is ‘yes’, ϕ is satisfied. Suppose the subtree of T satisfying
conditions in dpSE is T ′, an assignment νϕ satisfying ϕ will be constructed.
Before defining νϕ, following observations are explained. First, the only dif-
ference between T and T ′ is between TAssignment and T ′

Assignment. Second,
in TAssignment, at most 2|X| = 2n = 2k nodes can be deleted, which are
{x1, x1, . . . , xk, xk}. Third, at least k nodes are deleted. Forth, for each X,
at most one child can be deleted. Otherwise, there will be a tree-map from
T ′

Assignment to some tree in TLB , and g1 and g2 can not be distinguished in T ′.
Combined with g1 ≢T g2 (by query (Link(Tq̄, a, TAssignment), g)), it contradicts
that T ′ is a solution of Sϕ. Fifth, taking the third and forth observations,
there is, in T ′

Assignment, each X selects exactly one child from xi and xi.

Then, based on T ′
Assignment, νϕ is built as follows. For each variable xi ∈ X,

if xi appears in T ′
Assignment, let νϕ(xi) =true, otherwise let νϕ(xi) =false.

Finally, it will be checked that νϕ indeed satisfies ϕ. First, because g1 and
g2 can be distinguished in T as discussed above, it is known that g1 ≢T ′ g2.
Then, we have, for each TCj

, there is no tree-map from T ′
Assignment to TCj

. If
not, we can build a tree-map from T ′

a1
to T ′

a2
(because T ′

a1 ⊆ T ′
a2) and a tree-

map from T ′
a2 to T ′

a1 (extending the tree-map from T ′
Assignment to TCj naturally).

Then, there must be a xi such that, xi (or xi) is in T ′
Assignment, but not in TCj .

Assume xi is in T ′
Assignment and xi is in TCj . According to the definition of TCj ,

there is xi ∈ Cj . Since xi is in T ′
Assignment, according to the construction of νϕ, we

have νϕ(xi) = true, that is Cj can be satisfied by νϕ. For the case that xi is in
T ′

Assignment and xi is in TCj , a similar proof can show Cj is satisfied by νϕ. At last,
it is known that ϕ is satisfied by νϕ.

In conclusion, after showing the correctness of the reduction, it is shown that
3SAT problem can be reduced to the problem 〈dpSE,Q/ 〉 in PTime. Therefore,
〈dpSE, Q/ 〉 is NP-hard . ��

4 Conclusion

We have proposed dpSE problem in this paper, whose question is whether the size
of a given tree can be reduced while preserving two kinds of distinguishability.
Considering the query class Q/, dpSE is proved to be NP-complete.
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Abstract. A safe set of a graph G = (V, E) is a non-empty subset S
of V such that for every component A of G[S] and every component
B of G[V \ S], we have |A| ≥ |B| whenever there exists an edge of G
between A and B. In this paper, we show that a minimum safe set can
be found in polynomial time for trees. We then further extend the result
and present polynomial-time algorithms for graphs of bounded treewidth,
and also for interval graphs. We also study the parameterized complexity
of the problem. We show that the problem is fixed-parameter tractable
when parameterized by the solution size. Furthermore, we show that this
parameter lies between tree-depth and vertex cover number.

Keywords: Graph algorithm · Safe set · Treewidth · Interval graph ·
Fixed-parameter tractability

1 Introduction

In this paper, we only consider finite and simple graphs. The subgraph of a graph
G induced by S ⊆ V (G) is denoted by G[S]. A component of G is a connected
induced subgraph of G with an inclusionwise maximal vertex set. For vertex-
disjoint subgraphs A and B of G, if there is an edge between A and B, then A
and B are adjacent.

In a graph G = (V,E), a non-empty set S ⊆ V of vertices is a safe set if,
for every component A of G[S] and every component B of G[V \ S] adjacent to
A, it holds that |A| ≥ |B|. If a safe set induces a connected subgraph, then it is
a connected safe set. The safe number s(G) of G is the size of a minimum safe
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 241–253, 2016.
DOI: 10.1007/978-3-319-48749-6 18
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set of G, and the connected safe number cs(G) of G is the size of a minimum
connected safe set of G. It is known that s(G) ≤ cs(G) ≤ 2 · s(G) − 1 [10].

The concept of (connected) safe number was introduced by Fujita et al. [10].
Their motivation came from a variant of facility location problems, where the
goal is to find a “safe” subset of nodes in a network to place facilities. They
showed that the problems of finding a minimum safe set and a minimum con-
nected safe set are NP-hard in general. They also showed that a minimum con-
nected safe set in a tree can be found in linear time.

The main contribution of this paper is to give polynomial-time algorithms for
finding a minimum safe set on trees, graphs of bounded treewidth, and interval
graphs. We also show that the problems are fixed-parameter tractable when
parameterized by the solution size.

The rest of the paper is organized as follows. In Sect. 2, we present an O(n5)-
time algorithm for finding a minimum safe set on trees. In Sect. 3, we generalize
the algorithm to make it work on graphs of bounded treewidth. In Sect. 4, we
show that the problem can be solved in O(n8) time for interval graphs. In Sect. 5,
we show the fixed-parameter tractability of the problem when the parameter
is the solution size. We also discuss the relationship of safe number to other
important and well-studied graph parameters. In the final section, we conclude
the paper with a few open problems.

2 Safe Sets in Trees

Recall that a tree is a connected graph with no cycles. In this section, we prove
the following theorem.

Theorem 2.1. For an n-vertex tree, a safe set of the minimum size can be
found in time O(n5).

We only show that the size of a minimum safe set can be computed in O(n5)
time. It is straightforward to modify the dynamic program below for computing
an actual safe set in the same running time.

In the following, we assume that a tree T = (V,E) has a root and that the
children of each vertex are ordered. For a vertex u ∈ V , we denote the set of
children of u by CT (u). By Vu we denote the vertex set that consists of u and
its descendants. We define some subtrees induced by special sets of vertices as
follows (see Fig. 1):

– For a vertex u ∈ V , let T (u) = T [Vu].
– For an edge {u, v} ∈ E where v is the parent of u, let T (u → v) = T [{v}∪Vu].
– For u ∈ V with children w1, . . . , wd, let T (u, i) = T

[
{u} ∪ ⋃

1≤j≤i Vwj

]
.

Note that T (u, 1) = T (w1 → u) if w1 is the first child of u, T (u) = T (u, |CT (u)|)
if u is not a leaf, and T = T (ρ) if ρ is the root of T .
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u v

w x

ρ

T (u)

T (v → w) T (x, 2)

Fig. 1. Subtrees T (u), T (v → w), and T (x, 2).

Fragments: For a subtree T ′ of T and S ⊆ V (T ′), a fragment in T ′ with respect
to S is the vertex set of a component in T ′[S] or T ′[V (T ′)\S]. We denote the set
of fragments in T ′ with respect to S by F(T ′, S). The fragment that contains
the root of T ′ is active, and the other fragments are inactive. Two fragments
in F(T ′, S) are adjacent if there is an edge of T ′ between them. A fragment
F ∈ F(T ′, S) is bad if it is inactive, F ⊆ S, and there is another inactive
fragment F ′ ∈ F(T ′, S) adjacent to F with |F | < |F ′|.
(T ′, b, s, a) − feasiblesets: For b ∈ {t, f}, s ∈ {0, . . . , n}, and a ∈ {1, . . . , n}, we
say S ⊆ V (T ′) is (T ′, b, s, a)-feasible if |S| = s, the size of the active fragment
in F(T ′, S) is a, there is no bad fragment in F(T ′, S), and b = t if and only if
the root of T ′ is in S.

Intuitively, a (T ′, b, s, a)-feasible set S is “almost safe.” If A is the active
fragment in F(T ′, S), then S \ A is a safe set of T ′[V (T ′) \ A].

For S ⊆ V (T ′), we set ∂max
T ′ (S) and ∂min

T ′ (S) to be the sizes of maximum and
minimum fragments, respectively, adjacent to the active fragment in F(T ′, S). If
there is no adjacent fragment, then we set ∂max

T ′ (S) = −∞ and ∂min
T ′ (S) = +∞.

DP Table: We construct a table with values ps(T ′, b, s, a) ∈ {0, . . . , n} ∪
{+∞,−∞} for storing information of partial solutions, where b ∈ {t, f},
s ∈ {0, . . . , n}, and a ∈ {1, . . . , n}, and T ′ is a subtree of T such that either
T ′ = T (u) for some u ∈ V , T ′ = T (u → v) for some {u, v} ∈ E, or T ′ = T (u, i)
for some u ∈ V and 1 ≤ i ≤ |CT (u)|. The table entries will have the following
values:

ps(T ′, t, s, a) =

⎧
⎨

⎩

+∞ if no (T ′, t, s, a)-feasible set exists,
min

(T ′,t,s,a)-feasible S
∂max
T ′ (S) otherwise,

ps(T ′, f, s, a) =

⎧
⎨

⎩

−∞ if no (T ′, f, s, a)-feasible set exists,
max

(T ′,f,s,a)-feasible S
∂min
T ′ (S) otherwise.

The definition of the table ps implies the following fact.
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Lemma 2.2. s(T ) is the smallest s such that there is a ∈ {1, . . . , n} with
ps(T, t, s, a) ≤ a or ps(T, f, s, a) ≥ a.

Proof. Assume that S is a safe set of T such that |S| = s and the root is contained
in S. Let A be the active fragment in F(T, S). Then, S is (T, t, s, |A|)-feasible.
Since A cannot be smaller than any adjacent fragment, we have ∂max

T (S) ≤ |A|.
Hence ps(T, t, s, |A|) ≤ |A| holds. By a similar argument, we can show that if
the root is not in S, then ps(T, f, s, |A|) ≥ |A|.

Conversely, assume that ps(T, t, s, a) ≤ a for some a ∈ {1, . . . , n}. (The proof
for the other case, where ps(T, f, s, a) ≥ a, is similar.) Let S be a (T, t, s, a)-
feasible set with ∂max

T (S) = ps(T, t, s, a). Since there is no bad fragment in
F(T, S) and the active fragment (of size a) is not smaller than the adjacent
fragments (of size at most ∂max

T (S) = ps(T, t, s, a) ≤ a), all fragments included
in S are not smaller than their adjacent fragments. This implies that S is a safe
set of size s. 	

By Lemma 2.2, after computing all entries ps(T ′, b, s, a), we can compute s(T ) in
time O(n2). There are O(n3) tuples (T ′, b, s, a), and thus to prove the theorem,
it suffices to show that each entry ps(T ′, b, s, a) can be computed in time O(n2)
assuming that the entries for all subtrees of T ′ are already computed.

We compute all entries ps(T ′, b, s, a) in a bottom-up manner: We first com-
pute the entries for T (u) for each leaf u. We then repeat the following steps until
none of them can be applied. (1) For each u such that the entries for T (u) are
already computed, we compute the entries for T (u → v), where v is the parent of
u. (2) For each u such that the entries for T (u, i−1) and T (wi → u) are already
computed, where wi is the ith child of u, we compute the entries for T (u, i).

Lemma 2.3. For a leaf u of T , each table entry ps(T (u), b, s, a) can be computed
in constant time.

Proof. The set {u} is the unique (T (u), t, 1, 1)-feasible set. Since F(T (u), {u})
contains no inactive fragment, we set ps(T (u), t, 1, 1) = −∞. Similarly the empty
set is the unique (T (u), f, 0, 1)-feasible set. We set ps(T (u), f, 0, 1) = +∞. For
the other tuples, there are no feasible sets. We set the values accordingly for
them. Clearly, each entry can be computed in constant time. 	

Lemma 2.4. For a vertex u and its parent v in T , each table entry ps(T (u → v),
b, s, a) can be computed in O(n) time, using the table entries for the subtree T (u).

Proof. We separate the proof into two cases: a ≥ 2 and a = 1. If a ≥ 2, then we
can compute the table entry in constant time. If a = 1, we need O(n) time.

Case 1: a ≥ 2. In this case, for every (T (u → v), b, s, a)-feasible set S, u and v
are in the active fragment of F(T (u → v), S) since the root v of T (u → v) has
the unique neighbor u.

Case 1-1: b = t. Let S be a (T (u → v), t, s, a)-feasible set that minimizes
∂max
T (u→v)(S). Observe that S \ {v} is (T (u), t, s − 1, a − 1)-feasible and that
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∂max
T (u→v)(S) = ∂max

T (u)(S \ {v}). We claim that ∂max
T (u)(S \ {v}) = ps(T (u), t, s −

1, a − 1), and thus

ps(T (u → v), t, s, a) = ps(T (u), t, s − 1, a − 1).

Suppose that some (T (u), t, s − 1, a − 1)-feasible set Q satisfies ∂max
T (u)(Q) <

∂max
T (u)(S \ {v}). Now Q ∪ {v} is (T (u → v), t, s, a)-feasible. However, it holds

that
∂max
T (u→v)(Q ∪ {v}) = ∂max

T (u)(Q) < ∂max
T (u)(S \ {v}) = ∂max

T (u→v)(S).

This contradicts the optimality of S.

Case 1-2: b = f. Let S be a (T (u → v), f, s, a)-feasible set that maximizes
∂min
T (u→v)(S). The set S is also (T (u), f, s, a−1)-feasible and satisfies ∂min

T (u→v)(S) =
∂min
T (u)(S). We claim that ∂min

T (u)(S) = ps(T (u), t, s, a − 1), and thus

ps(T (u → v), f, s, a) = ps(T (u), f, s, a − 1).

Suppose that there is a (T (u), t, s, a−1)-feasible set Q with ∂min
T (u)(Q) > ∂min

T (u)(S).
Since Q is also (T (u → v), f, s, a)-feasible, it holds that

∂min
T (u→v)(Q) = ∂min

T (u)(Q) > ∂min
T (u)(S) = ∂min

T (u→v)(S).

This contradicts the optimality of S.

Case 2: a = 1. For every (T (u → v), b, s, 1)-feasible set S, the set {v} is the
active fragment, and the vertex u is in the unique fragment adjacent to the active
fragment.

Case 2-1: b = t. Let S be a (T (u → v), t, s, 1)-feasible set. Then S \ {v} is a
(T (u), f, s − 1, a′)-feasible set for some a′. Moreover, since F(T (u → v), S) does
not contain any bad fragment, ∂min

T (u)(S\{v}) ≥ a′. Thus we can set ps(T (u → v),
t, s, 1) as follows:

ps(T (u → v), t, s, 1) =

{
min{a′ | ps(T (u), f, s − 1, a′) ≥ a′} if such a′ exists,
+∞ otherwise.

Case 2-2: b = f. Let S be a (T (u → v), f, s, 1)-feasible set. The set S is a
(T (u), t, s, a′)-feasible set for some a′. Since F(T (u → v), S) does not contain
any bad fragment, ∂max

T (u)(S) ≤ a′. Thus we can set ps(T (u → v), f, s, 1) as follows:

ps(T (u → v), f, s, 1) =

{
max{a′ | ps(T (u), t, s, a′) ≤ a′} if there is such an a′,
−∞ otherwise.

In both Cases 2-1 and 2-2, we can compute the entry ps(T (u → v), b, s, 1) in
O(n) time by looking up at most n table entries for the subtree T (u). 	
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Lemma 2.5. For a non-leaf vertex u with the children w1, . . . , wd and an integer
i with 2 ≤ i ≤ d, each table entry ps(T (u, i), b, s, a) can be computed in O(n2)
time, using the table entries for the subtrees T (u, i − 1) and T (wi → u).

Proof. For the sake of simplicity, let T1 = T (u, i − 1) and T2 = T (wi → u). Let
S be a (T (u, i), b, s, a)-feasible set and A be the active fragment in F(T (u, i), S).
For j ∈ {1, 2}, let Sj = S ∩ V (Tj) and Aj = A ∩ V (Tj). Observe that Sj is a
(Tj , b, |Sj |, |Aj |)-feasible set. If b = t, then S1 ∩S2 = {u}; otherwise S1 ∩S2 = ∅.
Thus |S1| + |S2| = |S| + 1 if b = t, and |S1| + |S2| = |S| otherwise. Similarly,
since A1 ∩ A2 = {u}, it holds that |A1| + |A2| = |A| + 1. Therefore, we can set
the table entries as follows:

ps(T (u, i), t, s, a) = min
s1+s2=s+1
a1+a2=a+1

max{ps(T1, t, s1, a1), ps(T2, t, s2, a2)},

ps(T (u, i), f, s, a) = max
s1+s2=s

a1+a2=a+1

min{ps(T1, f, s1, a1), ps(T2, f, s2, a2)}.

In both cases, we can compute the entry ps(T (u, i), b, s, a) in O(n2) time since
there are O(n) possibilities for each (s1, s2) and (a1, a2). 	

A graph is unicyclic if it can be obtained by adding an edge to a tree. Using the
algorithm for weighted paths presented in [2] as a subroutine, we can extend the
algorithm in this section to find a minimum safe set and a minimum connected
safe set of a unicyclic graph in the same running time.

3 Safe Sets in Graphs of Bounded Treewidth

In this section, we show that for any fixed constant k, a minimum safe set and
a minimum connected safe set of a graph of treewidth at most k can be found
in O(n5k+8) time.

Basically, the algorithm in this section is a generalization of the one in the
previous section. The most crucial difference is that here we may have many
active fragments, and each active fragment may have many vertices adjacent to
the “outside.” This makes the algorithm much more complicated and slow.

A tree decomposition of a graph G = (V,E) is a pair ({Xp | p ∈ I}, T ) such
that each Xp, called a bag, is a subset of V , and T is a tree with V (T ) = I such
that

– for each v ∈ V , there is p ∈ I with v ∈ Xp;
– for each {u, v} ∈ E, there is p ∈ I with u, v ∈ Xp;
– for p, q, r ∈ I, if q is on the p–r path in T , then Xp ∩ Xr ⊆ Xq.

The width of a tree decomposition is the size of a largest bag minus 1. The
treewidth of a graph, denoted by tw(G), is the minimum width over all tree
decompositions of G.

A tree decomposition ({Xp | p ∈ I}, T ) is nice if
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– T is a rooted tree in which every node has at most two children;
– if a node p has two children q, r, then Xp = Xq = Xr (such a node p is a join

node);
– if a node p has only one child q, then either

• Xp = Xq ∪ {v} for some v /∈ Xq (p is a introduce node), or
• Xp = Xq \ {v} for some v ∈ Xq (q is a forget node);

– if a node p is a leaf, then Xp = {v} for some v ∈ V .

Theorem 3.1. Let k be a fixed constant. For an n-vertex graph of treewidth at
most k, a (connected) safe set of minimum size can be found in time O(n5k+8).

Proof. We only show that s(G) and cs(G) can be computed in the claimed run-
ning time. It is straightforward to modify the dynamic program below for com-
puting an actual set in the same running time.

Let G = (V,E) be a graph of treewidth at most k. We compute a nice tree
decomposition ({Xp | p ∈ I}, T ) with at most 4n nodes. It can be done in O(n)
time [4,12]. For each p ∈ I, let Vp = Xp ∪ ⋃

q Xq, where q runs through all
descendants of p in T .

Fragments: For a node p and a vertex set S ⊆ Vp, a fragment is a component
in G[S] or G[Vp \ S]. We denote the set of fragments with respect to p and S
by F(p, S). A fragment F ∈ F(p, S) is active if F ∩ Xp = ∅, and it is inactive
otherwise. Two fragments in F(p, S) are adjacent if there is an edge of G[Vp]
between them. A fragment F is bad if it is inactive, F ⊆ S, and there is another
inactive fragment F ′ adjacent to F with |F | < |F ′|.

DP Table: For storing information of partial solutions, we construct a table with
values ps(p, s,A, β, γ, φ, ψ) ∈ {t, f} with indices p ∈ I, s ∈ {0, . . . , n}, a partition
A of Xp, β : A → {1, . . . , n}, γ : A → {1, . . . , n} ∪ {±∞}, φ : A → {t, f}, and
ψ :

(A
2

) → {t, f}. We set

ps(p, s,A, β, γ, φ, ψ) = t

if and only if there exists a set S ⊆ Vp of size s with the following conditions:

– there is no bad fragment in F(p, S),
– for each active fragment F in F(p, S),

• there is a unique element AF ∈ A such that AF = F ∩ Xp,
• β(AF ) = |F |,
• φ(AF ) = t if and only if F ⊆ S,
• if F ⊆ S, then γ(AF ) is the size of a maximum inactive fragment adjacent

to F (if no such fragment exists, we set γ(Ai) = −∞),
• if F ⊆ S, then γ(AF ) is the size of a minimum inactive fragment adjacent

to F if no such fragment exists, we set γ(Ai) = +∞),
– for two active fragments F, F ′ in F(p, S), ψ({AF , AF ′}) = t if and only if F

and F ′ are adjacent, where AF = F ∩ Xp and AF ′ = F ′ ∩ Xp.1

1 In the following, we (ab)use simpler notation ψ(AF , AF ′) instead of ψ({AF , AF ′}).
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Let ρ be the root of T . The definition of the table ps implies the following
fact.

Observation 3.2. s(G) is the smallest s with ps(ρ, s,A, β, γ, φ, ψ) = t for some
A, β, γ, φ, and ψ such that β(A) ≥ γ(A) for each A ∈ A with φ(A) = t,
β(A) ≤ γ(A) for each A ∈ A with φ(A) = f, and β(A) ≥ β(A′) for any A,A′ ∈ A
with φ(A) = t and ψ(A,A′) = t.

For computing cs(G), we need to compute additional information for each
tuple (p, s,A, β, γ, φ, ψ). For A ∈ A, let β′(A) be the size of the fragment in
F(ρ, S) that is a superset of the fragment FA ⊇ A in F(p, S). If A ⊆ S, then
β′(A) = β(A); otherwise β′(A) = |CA \ Xp| +

∑
A′∈A, A′⊆CA

β(A′), where CA is
the component in G[(V \Vp)∪ (Xp \S)] that includes A. We can compute β′(A)
for all A ∈ A in time O(n) by running a breadth-first search from Xp \ S.

Observation 3.3. cs(G) is the smallest s with ps(p, s,A, β, γ, φ, ψ) = t for some
p, A, β, γ, φ, and ψ such that β(A) ≥ γ(A) for each A ∈ A with φ(A) = t,
β(A) ≤ γ(A) for each A ∈ A with φ(A) = f, and β(A) ≥ β′(A′) for any
A,A′ ∈ A with φ(A) = t and ψ(A,A′) = t.

By Observations 3.2 and 3.3, provided that all entries ps(p, s,A, β, γ, φ, ψ) are
computed in advance, we can compute s(G) and cs(G) by spending time O(1) and
O(n), respectively, for each tuple. We compute all entries ps(p, s,A, β, γ, φ, ψ) by
a bottom-up dynamic program. Due to the space limitation, we omit this part
in the conference version. 	

For a vertex-weighted graph G = (V,E) with a weight function w : V → Z

+, a
set S ⊆ V is a weighted safe set of weight

∑
s∈S w(s) if for each component C of

G[S] and each component D of G[V \S] with an edge between C and D, it holds
that w(C) ≥ w(D). Bapat et al. [2] show that finding a minimum (connected)
weighted safe set is weakly NP-hard even for stars. Let W =

∑
v∈V w(v). Our

dynamic program above works for the weighted version if we extend the ranges
of parameters s, β, and γ by including {1, . . . , W}. The running time becomes
polynomial in W .

Theorem 3.4. For a vertex weighted graph of bounded treewidth, a weighted
(connected) safe set of the minimum weight can be found in pseudo-polynomial
time.

4 Safe Sets in Interval Graphs

In this section, we present a polynomial-time algorithm for finding a minimum
safe set and a minimum connected safe set in an interval graph.

A graph is an interval graph if it can be represented as the intersection graph
of intervals on a line. Given a graph, one can determine in linear time whether the
graph is an interval graph, and if so, find a corresponding interval representation
in the same running time [6].
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Theorem 4.1. For an n-vertex interval graph, a minimum safe set and a min-
imum connected safe set can be found in time O(n8).

Proof. Let G be a given interval graph. As we can deal with each component
of G separately, we assume that G is connected. The algorithm is a dynamic
programming on an interval representation of G. We assume that its vertices
(i.e. intervals) v1, . . . , vn are ordered increasingly according to their left ends,
and write Xi = {v1, . . . , vi}.

At each step i of the algorithm, we want to store all subsets S ⊆ Xi which
can potentially be completed (with vertices from G \ Xi) into a safe set. The
number of such sets can be exponential: we thus define a notion of signature,
and store the signatures of the sets instead of storing the sets themselves. The
cost of this storage is bounded by the number of possible signatures, which is
polynomial in n.

We will then prove that all possible signatures of sets at step i can be deduced
from the set of signatures at step i−1. The cardinality of a minimum safe set (and
a minimum connected safe set) can finally be deduced from the set of signatures
stored during the last step. We can easily modify the algorithm so that it also
outputs a minimum set.

We define the signature of S at step i as the 8-tuple that consists of the
following items (see Fig. 2):

1. The size of S.
2. The vertex vS

r of S with the most neighbors in G \ Xi.
3. The vertex vS̄

r of S̄ := Xi \ S with the most neighbors in G \ Xi.
4. The size of Sr (the rightmost component of S).
5. The size of S̄r (the rightmost component of S̄).
6. The largest size of a component of S̄ \ S̄r adjacent with Sr.
7. The smallest size of a component of S \ Sr adjacent with S̄r.
8. A boolean value indicating whether S is connected.

S̄̄S
S

Xi G \ Xi

Sr

S̄r

vSr

vS̄r

vi

Fig. 2. The dynamic programming on an interval graph.

Assuming that we know the signature of a set S at step i, we show how to
obtain the signature at step i + 1 of (a) S′ = S and (b) S′ = S ∪ {vi+1}. With
this procedure, all signatures of step i + 1 can be obtained from all signatures
at step i.

1. The size of S′ (at step i: |S|).
(a) |S|.
(b) |S| + 1.
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2. The vertex of S′ with the most neighbors in G \ Xi+1 (at step i: vS
r ).

(a) vS
r .

(b) The one of vS
r and vi+1 which has the most neighbors in G \ Xi+1.

3. The vertex of S̄′ := Xi+1 \ S′ with the most neighbors in G \ Xi+1 (at step
i: vS̄

r ).
(a) The one of vS̄

r and vi+1 which has the most neighbors in G \ Xi+1.
(b) vS̄

r .
4. The size of the rightmost component S′

r of S′ (at step i: |Sr|).
(a) |Sr|.
(b) |Sr| + 1 if vi+1 and vS

r are adjacent, and 1 otherwise (new component).
In the latter case, we discard the signature if |Sr| is strictly smaller than
the largest size of a component of S̄ \ S̄r adjacent with Sr at step i.

5. The size of the rightmost component S̄′
r of S̄′ (at step i: |S̄r|).

(a) 1 if vi+1 and vS̄
r are not adjacent (new component), and |S̄r|+1 otherwise.

In the latter case, we discard the signature if |S̄r| is strictly larger than
the smallest size of a component of S \ Sr adjacent with S̄r at step i.

(b) |S̄r|.
6. The largest size of a component of S̄′ \ S̄′

r adjacent with S′
r (at step i: c).

(a) c if no new component of S̄′ was created (see 5.), and max{c, |S̄′
r|} oth-

erwise.
(b) c if no new component of S′ was created (see 4.), and −∞ otherwise.

7. The smallest size of a component of S′ \ S′
r adjacent with S̄′

r (at step i: c).
(a) c if no new component of S̄′ was created (see 5.), and +∞ otherwise.
(b) c if no new component of S′ was created (see 4.), and min{c, |S′

r|} other-
wise.

8. A boolean variable indicating whether S′ is connected (at step i: b).
(a) b
(b) t if |S| = 0, b if vi+1 and vS

r are adjacent, and f otherwise.

When all signatures at step n have been computed, we use the additional
information that S and S̄ cannot be further extended to discard the remaining
signatures corresponding to non-safe sets. That is, we discard a signature if
|Sr| < |S̄r|, or |Sr| is strictly smaller than the largest size of a component of
S̄ \ S̄r adjacent to it, or |S̄r| + 1 is strictly larger than the smallest size of a
component of S \ Sr adjacent to it.

The minimum sizes of a safe set and a connected safe set can be obtained
from the remaining signatures. For each step i, there are O(n7) signatures. From
a signature for step i, we can compute the corresponding signature for step i+1
in O(1) time. Therefore, the total running time is O(n8). 	


5 Fixed-Parameter Tractability

In this section, we show that the problems of finding a safe set and a connected
safe set of size at most s is fixed-parameter tractable when the solution size s is
the parameter. For the standard concepts in parameterized complexity, see the
recent textbook [8].
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We first show that graphs with small safe sets have small treewidth. We then
show that for any fixed constants s the property of having a (connected) safe set
of size at most s can be expressed in the monadic second-order logic on graphs.
Then we use the well-known theorems by Bodlaender [4] and Courcelle [7] to
obtain an FPT algorithm that depends only linearly on the input size.

Lemma 5.1. Let G = (V,E) be a connected graph. If tw(G) ≥ s2 − 1, then
s(G) ≥ s.

Proof. It is known that every graph G has a path of tw(G) + 1 vertices as a
subgraph [3]. Thus tw(G) ≥ s2 − 1 implies that G has a path of s2 vertices as a
subgraph.

Let P be a path of s2 vertices in G, and let S ⊆ V be an arbitrary set of
size less than s. By the pigeon-hole principle, there is a subpath Q of P such
that |Q| ≥ s and S ∩ V (Q) = ∅. Hence there is a component B of G[V \ S]
with V (Q) ⊆ B. Since G is connected there is a component A of G[S] adjacent
to B. Now we have |A| ≤ |S| < s ≤ |Q| ≤ |B|, which implies that S is not a
safe set. 	

The syntax of the monadic second-order logic of graphs (MS2) includes (i) the
logical connectives ∨, ∧, ¬, ⇔, ⇒, (ii) variables for vertices, edges, vertex sets,
and edge sets, (iii) the quantifiers ∀ and ∃ applicable to these variables, and (iv)
the following binary relations:

– v ∈ U for a vertex variable v and a vertex set variable U ;
– e ∈ F for an edge variable e and an edge set variable F ;
– inc(e, v) for an edge variable e and a vertex variable v, where the interpretation

is that e is incident with v;
– equality of variables.

Now we can show the following.

Lemma 5.2. For a fixed constant s, the property of having a safe set of size at
most s can be expressed in MS2.

Corollary 5.3. For a fixed constant s, the property of having a connected safe
set of size at most s can be expressed in MS2. 	

Theorem 5.4. The problems of finding a safe set and a connected safe set of size
at most s is fixed-parameter tractable when the solution size s is the parameter.
Furthermore, the running time depends only linearly on the input size.

Proof. Let G be a given graph. Since we can handle the components separately,
we assume that G is connected. We first check whether tw(G) < (s + 1)2 − 1 in
O(n) time by Bodlaender’s algorithm [4]. If not, Lemma 5.1 implies that s(G) ≥
s+1. Otherwise, Bodlaender’s algorithm gives us a tree decomposition of G with
width less than (s + 1)2 − 1. Courcelle’s theorem [7] says that it can be checked
in linear time whether a graph satisfies a fixed MS2 formula if the graph is given
with a tree decomposition of constant width (see also [1]). Therefore, Lemma 5.2
and Corollary 5.3 imply the theorem. 	
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5.1 Relationship to Other Structural Graph Parameters

As we showed in Lemma 5.1, the treewidth of a graph is bounded by a constant
if it has constant safe number. Here we further discuss the relationship to other
well-studied graph parameters: tree-depth and vertex cover number. As bounding
these parameters is more restricted than bounding treewidth, more problems
can be solved efficiently when the problems are parameterized by tree-depth or
vertex cover number (see [9,11]). In the following, we show that safe number lies
between these two parameters. This implies that parameterizing a problem by
safe number may give a finer understanding of the parameterized complexity of
the problem.

Tree-Depth. The tree-depth [13] (also known as elimination tree height [14] and
vertex ranking number [5]) of a connected graph G is the minimum depth of a
rooted tree T such that T ∗ contains G as a subgraph, where T ∗ is the supergraph
of T with the additional edges connecting all comparable pairs in T . We can easily
see that the tree-depth of a graph is at least its treewidth. It is known that a
graph has constant tree-depth if and only if it has a constant upper bound on
the length of paths in it [13]. Hence the proof of Lemma 5.1 implies the following
relation.

Lemma 5.5. The tree-depth of a connected graph is bounded by a constant if it
has constant safe number.

The converse of the statement above is not true in general. The complete k-ary
tree of depth 2 has tree-depth 2 and safe number k.

Vertex Cover Number. A set C ⊆ V (G) is a vertex cover of a graph G if each
edge in G has at least one end in C. The vertex cover number of a graph is the
size of a minimum vertex cover in the graph. We can see that C is a vertex cover
if and only if each component of G \ C has size 1. Thus a vertex cover is a safe
set, and the following relation follows.

Lemma 5.6. The safe number of a graph is at most its vertex cover number.

Again the converse is not true. Consider the graph obtained from the star graph
K1,k by subdividing each edge. It has a (connected) safe set of size 2, while its
vertex cover number is k.

Note that Lemma 5.6 and Theorem 5.4 together imply that the problem of
finding a (connected) safe set is fixed-parameter tractable when parameterized
by vertex cover number.

6 Concluding Remarks

A graph is chordal if it has no induced cycle of length 4 or more. Trees and inter-
val graphs form the most well-known subclasses of the class of chordal graphs.
A natural question would be the complexity of the problems on chordal graphs.
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Another question is about planar graphs. As the original motivation of the prob-
lem was from a facility location problem, it would be natural and important to
study the problem on planar graphs.2

Our algorithm for graphs of treewidth at most k runs in nO(k) time. Such an
algorithm is called an XP algorithm, and an FPT algorithm with running time
f(k) ·nc is more preferable, where f is an arbitrary computable function and c is
a fixed constant. It would be interesting if one can show that such an algorithm
exists (or does not exist under some complexity assumption).
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Abstract. A 2-stab unit interval graph (2SUIG) is an axes-parallel unit
square intersection graph where the unit squares intersect either of the
two fixed lines parallel to the X-axis, distance 1 + ε (0 < ε < 1) apart.
This family of graphs allow us to study local structures of unit square
intersection graphs, that is, graphs with cubicity 2. The complexity of
determining whether a tree has cubicity 2 is unknown while the graph
recognition problem for unit square intersection graph is known to be
NP-hard. We present a linear time algorithm for recognizing trees that
admit a 2SUIG representation.

1 Introduction

We know that geometric intersection graphs have been studied for over
50 years [9,10] and interval graphs [9] are probably the most studied such family.
To begin with, let us present a few definitions. Cubicity, cub(G) of a graph G is
the minimum d such that G is representable as a geometric intersection graph of
d-dimensional (axes-parallel) cubes [10]. The notion of cubicity is a special case
of boxicity [10]. Boxicity box(G) of a graph G is the minimum d such that G is
representable as a geometric intersection graph of d-dimensional (axes-parallel)
hyper-rectangles. The family of graphs with boxicity 1 and the family of graphs
with cubicity 1 are the families of interval and unit interval graphs, respectively.

It is curious that several decision problems such as graph recognition, k-
coloring, finding minimum dominating set etc. are polynomial time solvable for
interval graphs and unit interval graphs but are NP-hard for their 2-dimensional
counterparts, the families of graphs with boxicity 2 and cubicity 2, respec-
tively [3,4,6,8]. There seems to be a jump in the difficulty level of the study of
these families while going from dimension 1 to 2. To be precise, interval graphs
and unit interval graphs are intersection graphs of geometric objects embedded
in R

1 while boxicity 2 and cubicity 2 graphs are intersection graphs of geometric
objects embedded in R

2.
Our goal is to understand the reason of this jump and study what lies “in

between”. A number of efforts [5,12] in this direction has been made yielding dif-
ferent graphs families, each of which are generalization of interval graphs. For each
such family, determining the complexity of the graph recognition problem has
been one of the most difficult and important algorithmic question. The answer
c© Springer International Publishing AG 2016
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to this question is either extremely difficult or had remained unsolved unless the
graph family in question are a family of perfect graphs. In general, such graph
families are of interest and solving problems in these set ups are challenging.

In a recent work [2] we introduced and studied new families of geometric
intersection graphs which satisfies the properties prescribed by Scheinerman [11].
One such graph family is the focus of our study here in order to get insight
towards understanding the structure of graphs with cubicity 2.

Let y = 1 be the lower stab line and y = 2 + ε be the upper stab line where
ε ∈ (0, 1) is a constant. Now consider unit squares that intersects one of the stab
lines. A 2-stab unit interval graph (2SUIG) is a graph G that can be represented
as an intersection graph of such unit squares. Such a representation R of G is
called a 2SUIG representation (for example, see Fig. 1).

Fig. 1. A representation (right) of a 2SUIG graph (left).

Note that this family is highly relevant in the study of cubicity 2 graphs
as they, informally speaking, capture the local structures of these graphs. Note
that the complexity of the graph recognition problem for 2SUIG is not known
and seems to be a difficult problem. Whereas, recognition problem of trees is
challenging, which we address in this article. In general, recognizing tree for
graph families are either polynomial time solvable, such as in the case of interval
graphs, unit interval graphs, boxicity 2 graphs or NP-hard, such as in the case
of the family of induced subgraphs of the 2-dimensional infinite grid graph [1].
Trees with boxicity 1 are the caterpiller graphs while all trees have boxicity
2. On the contrary, determining cubicity of a tree seems to be a more difficult
problem. It is easy to note that trees with cubicity 1 are paths. For higher dimen-
sions, Babu et al. [7] presented a randomized algorithm that runs in polynomial
time and computes cube representations of trees, of dimension within a constant
factor of the optimum. The complexity of determining the cubicity of a tree is
unknown [7]. In our case, the problem is linear time solvable but the solution is
highly non-trivial.

In this article, we characterize all trees that admit a 2SUIG representation
using forbidden structures. We prove the following:

Theorem 1. Determining whether a given tree T = (V,E) is a 2SUIG can be
done in O(|V |) time.

We propose an algorithm that outputs a 2SUIG representation of the trees
which are 2SUIG. Otherwise, our algorithm finds a forbidden structure respon-
sible for the tree not having a 2SUIG representation.
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One interesting aspect of the family of 2-stab unit interval graphs is that
there is a scope of naturally generalizing the concept by defining a family of “k-
stab unit interval graphs or kSUIG”. Intuitively, for k = 1, this family will give
us the family of unit interval graphs and for k = ∞ it will give us the family of
cubicity 2 graphs. So our definition, in this sense, manages to go “in between”.
Varying the number of stab-lines, k, we obtain an infinite chain of graph families
starting with the unit interval graphs and tending towards graphs with cubicity
2. Thus the study of 2SUIG graphs maybe the beginning of solving the mystery
of why studying 2 dimensional geometric graphs are more difficult than studying
one dimensional graphs.

In Sect. 2, we present some definitions. In Sect. 3, we present the proof of
Theorem 1. Finally in Sect. 4, conclusions are drawn.

2 Preliminaries

Let G be a graph. The set of vertices and edges are denoted by V (G) and E(G),
respectively. A vertex subset I of G is an independent set if all the vertices of I
are pairwise non-adjacent. The cardinality of the largest independent set of G is
its independence number, denoted by α(G).

Let G be a unit square intersection graph with a fixed representation R.
We denote the unit square in R corresponding to the vertex v of G by sv. In
this article, by a unit square we will always mean a closed unit square. The co-
ordinates of the left lower-corner of su are denoted by (xu, yu). Given a graph G
with a 2SUIG representation R and two vertices u, v ∈ V (G) we say su <x sv if
xu < xv and su <y sv if yu < yv (see Fig. 2). Let H be a connected subgraph of
G. Consider the union of intervals obtained from the projection of unit squares
corresponding to the vertices of H on X−axis. This so obtained interval span(H)
is called the span of H in R.

Fig. 2. In the above picture su <x sv and su <y sv.

A leaf is a vertex with degree 1. A caterpillar is a tree where every leaf
vertex is adjacent to a vertex of a fixed path. A branch vertex is a vertex having
degree more than 2. A branch edge is an edge incident to a branch vertex.
A claw is the complete bipartite graph K1,3. Given a 2SUIG representation R
of a graph G, an edge uv is a bridge edge if su and sv intersect different stab
lines. Given a 2SUIG representation of a graph G, the vertices corresponding to
the unit squares intersecting the upper stab line are called upper vertices and
the vertices corresponding to the unit squares intersecting the lower stab line
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are called lower vertices. If all the vertices of a set intersect the same stab line
then we say they are in the same stab.

Let P = v1v2...vk be a path with a 2SUIG representation R. The path P is
a monotone path if either sv1 <x sv2 <x ... <x svk

or svk
<x svk−1 <x ... <x sv1 .

Let P = v1v2...vk be a monotone path with sv1 <x sv2 <x ... <x svk
and all vi’s

are in the same stab. Observe that α(P ) = �k
2 � < span(P ) ≤ k are tight bounds

for span(P ). Fix some constant c ∈ (0, .5). A monotone representation of P is
stretched if span(P ) = k and is shrinked if span(P ) = �k

2 � + c (see Fig. 3). The
value of c within that range will not affect our proof. If all the vertices of P have
distinct lower left corners and are in the same stab, then P must be monotone.
Such monotone path can be classified as follows.

1. right monotone: all the vertices of the path are sv1 <x sv2 <x ... <x svk
;

2. left monotone: all the vertices of the path are svk
<x svk−1 <x ... <x sv1 ;

Lower right monotone path is right monotone path with all lower vertices. Upper
right monotone path is right monotone path with all upper vertices. Similalry,
we have lower left monotone path and upper left monotone path.

A path P = v1v2...vk is called a folded path if it has a degree two vertex u
such that either su <x sv for all v ∈ V (P )\{u} or sv <x su for all v ∈ V (P )\{u}.
Note that all vertices of a folded path cannot be in the same stab.

A red edge of a tree T is an edge e such that each component of T \ {e}
contains a claw. A red path is a path induced by red edges. A maximal red path
is a red path that is not properly contained in another red path. Let P = v1v2...vk
be a maximal red path in T . The vertices v1 and vk are endpoints of P .

Fig. 3. A streached (left) and shrinked (right) representation of a path on five vertices.

3 Proof of Theorem 1

Given a tree T , our objective is to determine whether T has a 2SUIG repre-
sentation. Let T = (V,E) be a fixed tree. We will now prove several necessary
conditions for T being a 2SUIG. On the other hand, we will show that these
conditions together are also sufficient and can be verified in O(|V |) time.

3.1 Structural Properties

We will start by proving some structural properties of T assuming it is a 2SUIG.
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Lemma 1. If T has a 2SUIG representation, then its vertices have degree at
most four.

A tree T that admits a 2SUIG representation does not necessarily have a red
edge (defined in Sect. 2). But if T has at least one red edge then the red edges
of T must induce a path.

Lemma 2. If T has a 2SUIG representation, then either T has no red edge or
the set of red edges of T induces a connected path.

Proof. Let T has at least one red edge and T ′ be the graph induced by all red
edges. First we will show that T ′ is connected. Thus, assume that T ′ has at least
two components T1 and T2. Then there is a path P in T connecting T1 and T2.
Note that removing an edge e of P creates two components of T each of which
contains a claw. Thus, e should be a red edge. Therefore, T ′ is connected.

Now we will show that T ′ is a path. Assume that v is a vertex of T ′ with degree
at least 3. Also, let v1, v2 and v3 be three neighbors of v in T ′. In any 2SUIG
representation of T , at least three corners of sv must be intersected by sv1 , sv2

and sv3 . Without loss of generality, we assume that sv1 intersects the upper-left
corner of sv, sv2 intersect the upper-right corner of sv, and sv3 intersects the left
lower-corner of sv. This implies that sv1 , sv2 intersect the upper stab line while
sv3 intersects the lower stab line.

Note that a claw has a 2SUIG representation. Any such representation of a
claw will have squares intersecting the upper stab line and squares intersecting
the lower stab line. As each component of T \ {vv1} has a claw, there must be a
path of the form v1v11v12...v1k in T such that sv1i <x sv1 for all i ∈ {1, 2, ..., k}
where sv1k intersects the lower stab line. Similarly, as each component of T \{vv2}
has a claw, there must be a path of the form v2v21v22...v2k′ in T such that
sv2 <x sv2i for all i ∈ {1, 2, ..., k′} where sv2k′ intersects the lower stab line.
Moreover, as each component of T \ {vv3} has a claw, there must be a path of
the form v3v31v32...v3k′′ in T where sv3k′′ intersects the upper stab line. This
will force a cycle in the representation of T , a contradiction. Thus, T ′ must be
a path.

The above result leads us to two cases: when T has a red path and when T
does not have any red edge. If the red edges of T induces a path P , then construct
the extended red path A = a1a2...ak by including the edge(s), that are not red,
incident to the endpoint(s) of P that have degree two in T . In particular, if both
the end points of P are branch vertices, the extended red path A = P . On the
other hand, if T has no red edges, then distance between any two branch vertices
is at most 2. Thus, there exist a vertex v in T whose closed neighborhood N [v]
contains all the branch vertices of T . Choose (if not found to be unique) one
such special vertex v. If v has degree two then consider the path uvw induced
by the closed neighborhood of v and call it the extended red path of T . If v does
not have degree two, then the extended red path of T is the singleton vertex v.
In any case, rename the vertices of the extended red path A = a1a2...ak so that
we can speak about it in an uniform framework along with the case T having
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red edges. We fix such an extended red path A = a1a2...ak for the rest of this
article. The vertices VA = {a1, a2, ..., ak} of this extended red path A are called
the red vertices. The following lemmas will provide intuitions about how a tree
having a 2SUIG representation looks like.

Lemma 3. If T has a 2SUIG representation and does not have any red edge,
then the number of branch vertex in T is at most 5.

Fig. 4. The nomenclature – red edges = thick lines; new edge(s) added to the red path
for obtaining the extended red path = thick dotted line(s); red vertices = big solid
circles, agents = big hollow circles, tails = thin dotted lines; vertices of the tails =
small solid circles.

The above follows directly from the fact that the vertices of T has degree at
most four.

Lemma 4. If T has at most one branch vertex with degree at most four, then
T has a 2SUIG representation.

Proof. If T has no branch vertices, then T is a path which admits a unit interval
representation. On the other hand, T with one branch vertices of degree at
most four is a subdivision of K1,3 or K1,4. These graphs clearly admit 2SUIG
representation.

Lemma 5. A branch vertex of a tree T is either a red vertex or is adjacent to
a red vertex.

Proof. If T has no red edges, then there exists a red vertex v in T such that all
the branch vertices are in the closed neighborhood N [v] of v.

Thus suppose that the red edges of T induces a path. Let a red vertex v and
a non-red branch vertex u be connected by a path with no red edges of length at
least 2. Clearly after deleting this path, the component containing v contatins
a claw. Thus if we delete the edge {e} of the path incident to v, then both the
components of T \ {e} contains a claw, a contradiction.

Note that if T is a 2SUIG tree with at least two branch vertices, then the
endpoints a1 and ak of the extended path A must be branch vertices of T .
Assume that Ab = {a1 = ai1 , ai2 , ..., aik′ = ak} be the branch vertices of A
where 1 = i1 < i2 < ... < ik′ = k. The neighbors of red vertices that are not red
are called agents. An agent v is adjacent to exactly one red vertex, say aj , of T .
We call v is an agent of aj in this case.
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If we delete all the red vertices and agents from a 2SUIG tree T then by
Lemma 5 we will be left with some disjoint paths. Each such path actually starts
from (that is, is one endpoint of) one of the agents. Let P = v1v2...vl be a
path where v1 is an agent and the other vertices are neither agent nor red
vertices. Also v2, v3, ..., vl−1 are degree 2 vertices and vl is a leaf. Then the path
P ′ = v2v3...vl−1vl is called a tail of agent v1. Let v1 be an agent of the red vertex
aj . Sometimes we will also use the term “tail P ′ of the red vertex aj”. Deleting
the tail P ′ is to delete all the vertices of P ′. The red vertex aj , all its agents and
tails are together called aj and its associates for each j ∈ {1, 2, ...k}. Note that
an agent has exactly two tails by allowing tails with zero vertices. Let us set
the following conventions: the tails of an agent z are the long tail lt(z) and the
short tail st(z) such that |lt(z)| ≥ |st(z)| where |lt(z)| and |st(z)| denotes the
number of vertices in the respective tails. Now we have enough nomenclatures
(see Fig. 4) to present the rest of the proof.

3.2 Partial Description of the Canonical Representation

In the following, we will show that there is a canonical way to represent a 2SUIG
tree. First we will describe the representation of the extended red path followed
by representation of the agents and their tails.

Lemma 6. If T is a 2SUIG with at least one red edge, then there exists a 2SUIG
representation where the extended red path of T is monotone and stretched.

Proof. Let A be the extended red path of T with a representation R. If A is not
monotone then one of the following is true. (i) A is a folded path. (ii) There are
three vertices {ai, ai+1, ai+2} ∈ V (A) such that sai+1 <x sai

and sai+1 <x sai+2

where i > 1 and for all j < i we have saj
<x saj+1 .

(i) There is a vertex u ∈ V (A) with sv <x su for all v ∈ V (A) \ {u}. Then
there will be two claws C1, C2 in two different components of T \ {u} with
sv <x su for all v ∈ V (C1)∪V (C2). But as T is a 2SUIG, this configuration will
force a cycle in it. This is a contradiction.

(ii) Without loss of generality assume sai
intersects the lower stab line. Then

sai+1 and sai+2 must intersect the upper stab line. Let Ti+1 be the component
of T obtained by deleting the edge aiai+1 and contains ai+1. There is a claw
C3 in Ti+1 with sai+1 <x sw for all w ∈ V (C3). Thus, an agent z of ai with
sai

<x sz is not a branch vertex as otherwise this will force a cycle. Hence its
tail can be presented by a lower-right monotone representation. Therefore, we
can translate (rigid motion) the component Ti+1 to the right to obtain a 2SUIG
representation of T where the extended red path A is monotone.

To prove that A can be stretched let e = aiai+1 be an edge of the extended
red path A with xai

< xai+1 in R. Let Ti and Ti+1 be the components of T \ {e}
containing ai and ai+1, respectively. Now translate (rigid motion) the component
Ti+1 to the right obtaining a 2SUIG representation with xai+1 = xai

+1. We are
done by performing this operation on every edge of A.
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Similarly it can be shown that if T is a 2SUIG with no red edge, still it admits
a representation where the extended red path A is monotone and streched. We
turn our focus on the bridge edges of the extended red path.

Fig. 5. Explaining the reflection and translation described in the proof of Lemma 7
with an example.

Lemma 7. If T admits a 2SUIG representation R with a stretched monotone
extended red path, then there exists a 2SUIG representation where every red
bridge vertex is a branch vertex.

Proof. Let A = a1a2...ak be a right monotone extended red path of T with
respect to R. Let e = aiai+1 be a bridge edge of the extended red path A where
ai+1 is not a branch vertex. Also assume that a bridge vertex aj is a branch
vertex for all j < i.

Let S = {v ∈ V (T )|sai
<x sv}. Let T ′ be the graph induced by S. Note that S

contains the vertex ai+1. Now consider the reflection of the 2SUIG representation
of T ′ induced by R with respect to the X-axis (Fig. 5). This will give us a picture
where every unit square corresponding to the vertices of T ′ lies under the X-
axis. This is a particular unit square representation R′ of T ′ which in fact is
also a 2SUIG representation of it if we consider the stab lines to be y = −1 and
y = −2 − ε. In this 2SUIG representation R′, the lower vertices with respect to
R of T ′ became upper vertices and vice versa. Now translate the unit square
representation R′ upwards until all the upper vertices (with respect to R′) of T ′

intersects y = 2 + ε, all the lower vertices intersect y = 1. Note that ai can have
at most one degree 2 agent in T ′ and thus, that agent can have at most one tail.
After what we did above, we can adjust the Y -co-ordinates of that agent and its
tail, if needed, to obtain a 2SUIG representation of T .

We will be done by induction after handling one more case. The case where ai

is the first bridge vertex of A which is not a branch vertex while ai+1 is a branch
vertex. Let S′ = {v ∈ V (T )|sv <x sai+1} and let T ′′ be the graph induced by
S′. To achieve our goal, we do the exact same thing with T ′′ that we did with
T ′. This will provide us a 2SUIG representation of T where each bridge vertex
aj is a branch vertex for all j ≤ i + 1. Hence we are done by induction.



262 S. Bhore et al.

Now we will describe a way to represent the tails in the following lemma.

Lemma 8. If T admits a 2SUIG representation R, then there exists a 2SUIG
representation where each tail is a shrinked monotone path and all its vertices
are in the same stab.

Proof. Let P = v2v3...vl−1 be a tail of agent v1. Note that if all vertices of the
tail P are in the same stab then P must be monotone. Furthermore, if P is not
shrinked in R then we can shrink it to obtain a new representation of T without
changing anything else of R.

Therefore, to complete the proof, let us assume that not all vertices of P
are in the same stab. Then at least one edge e of P is a bridge edge. Any brige
edge divides the stab lines into two parts, left and right. Assume, without loss
of generality, that sv1 is in the left part. Thus, as there are no branch vertices
in the tail, we do not have any vertex w ∈ V (T ) \ V (P ) with sw lying in the
right part. Thus, we can modify the representation R by placing all the vertices
of the tail P in the same stab making use of the empty right part.

3.3 Properties of the Canonical Representation

Assume that R is a 2SUIG representation of T such that extended red path is a
monotone stretched path. The other vertices of T are the agents and the vertices
of the tails. Note that the endpoints a1 and ak can have at most 3 agents and 6
tails while the other red vertices can have at most 2 agents and 4 tails.

Lemma 9. Let T be a 2SUIG tree with a representation R where the extended
red path A is a stretched right monotone path and R satisfies the conditions of
Lemmas 7 and 8.

(a) If each right monotone tail of T is such that it is not possible to make the
tail left monotone and obtain a 2SUIG representation of T from R without
changing anything else, then any red vertex other than ak has at most one
right monotone tail having at least two vertices.

(b) If each left monotone tail of T is such that it is not possible to make the
tail right monotone and obtain a 2SUIG representation of T from R without
changing anything else, then any red vertex other than a1 has at most one
left monotone tail having at least two vertices.

Proof. (a) Let aj (j < k) be a red vertex of T with at least two monotone tails.
Without loss of generality, assume that aj is a lower vertex. Note that saj+1

contains either the upper-right corner or the lower-right corner of saj
. Let v be

an agent of aj .

Case 1. If sv contains the lower-left corner of saj
, then v cannot have a right

monotone tail for any j ≥ 2 as saj−1 contains the upper-left corner of saj
.

If j = 1, then a right monotone tail P = v1v2...vl of v must be upper-right
monotone. This means vv1 is a bridge edge. This will mean, there is no upper
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vertex z in T with sz <x sv1 . Thus, if we make the tail P an upper-left
monotone tail instead (we keep the position of sv1 as before but change the
positions of the other vertices of P ), then we obtain a 2SUIG representation
of T . But this should not be possible according to the assumptions. Hence v
cannot have a right-monotone tail for any red vertex aj (j 	= k).

Case 2. If sv contains the upper-left corner of saj
, then v can indeed have an

upper-right monotone tail. Note that, in this case, v can have at most one
right monotone path, an upper-right monotone that is. If some other neighbor
of aj contains the upper-right corner of saj

, then the right monotone tail of
v can have at most one vertex in order to avoid cycles in T .

Case 3. If sv contains the upper-right corner of saj
, then v can have at most

one right monotone tail, an upper-right monotone tail to be specific, as this
situation implies that saj+1 contains the lower-right corner of saj

.

Therefore, only the agents containing upper-left corner or upper-right corner
of saj

can have at most one right monotone tail each. But if both types of agents
are present, then the right monotone tail of the agent containing upper-left corner
of saj

can have at most one vertex.
(b) This proof can be done similarly like (a).

From the above we can infer the following:

Lemma 10. Let T be a 2SUIG tree with a representation R where a lower (or
upper) red vertex has two upper (or lower) neighbors.

1. If the left neighbor is an agent then it can have at most one right monotone
tail having at most one vertex.

2. If the right neighbor is an agent then it can have at most one left monotone
tail having at most one vertex.

3. If both the neighbors are agents then the left neighbor can have a right
monotone tail and the right neighbor can have a left monotone tail having
one vertex each.

In the above lemma, the third case is to say that the worst case scenarios of
the first two cases can take place simultaniously. Now we will discuss the length
of the tails that can be accommodated between two red branch vertices in the
following lemma.

Lemma 11. Let T be a 2SUIG tree with a representation R with a stretched
right monotone extended red path A. Let al, al+m (m = 0 is possible) be two
red branch vertices such that al has a right monotone tail P and al+m has a
left monotone tail P ′ in the same stab with no vertex v of T satisfying sp <x

sv <x sp′ where p, p′ are the leaf vertices of the tails P, P ′, respectively. Then,
depending on the positions of the corresponding agents v of P and v′ of P ′, R
must satisfy one of the following conditions:

1. If sal
<x sv and sv′ <x sal+m

, then α(Pv) + α(P ′
v′) ≤ m;

2. If sv <x sal
and sv′ <x sal+m

, then α(Pv) + α(P ′
v′) − 1 ≤ m;
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3. If sv <x sal
and sal+m

<x sv′ , then α(Pv) + α(P ′
v′) − 2 ≤ m;

4. If sal
<x sv and sal+m

<x sv′ , then α(Pv) + α(P ′
v′) − 1 ≤ m;

where Pv is the path induced by V (P ) ∪ {v} and P ′
v′ is the path induced by

V (P ′) ∪ {v′}.
Proof. Let A′ = alal+1...al+m and sv <x sal

and sal+m
<x sv′ . As A′ is stretched

and Pv and P ′
v′ are both shrinked we have span(A′)+2 ≥ span(Pv)+span(P ′

v′).
This implies m + 1 + 2 = m + 3 ≥ �α(Pv) + α(P ′

v′) + 2c� = α(Pv) + α(P ′
v′) + 1

and hence condition 3. The other conditions can be proved similarly.

As we discuss in the following lemma, in our prescribed representation of T ,
assuming it is a 2SUIG, bridge edges of the extended red path are induced by
red branch vertices.

Lemma 12. If two adjacent red vertices both have degree 4, then they must be
in different stabs.

Proof. Without loss of generality assume that alal+1 is such an edge where
al, al+1 are both degree 4 lower vertices with sal

<x sal+1 . Then either the
upper-right corner of sal

is contained in sal+1 or the upper-left corner of sal+1

is contained in sal
. If the upper-right corner of sal

is contained in sal+1 , then
al cannot have more than three neighbors as no neighbor other than sal+1 can
contain one of the right corners of sal

. We can argue similarly for the other case
as well.

3.4 The Canonical Representation

In this section suppose that T is a tree with maximum degree 4 such that either
there is no red edge or the red edges induces a path. We will try to obtain a
2SUIG representation of T and if our process fails to obtain such a presentation,
then we will conclude that T is not a 2SUIG. Also assume that the extended red
path of T is A = a1a2...ak. Due to Lemma 6 we can assume that A is a stretched
right monotone path and a1 is a lower vertex.

Our strategy is to first represent a1 and its associates and then to represent ai

and its associates one by one in ascending order of indices where i ∈ {2, 3, ..., k}.
In each step our strategy is to represent ai and its associates in such a way
that the maximum value of xv is minimized where v is a vertex from ai and
its associates. Note that the main difficulty is to represent ai and its associates
when d(ai) ≥ 3 as otherwise ai do not have any agents or tails. We begin with
the following lemma.

Lemma 13. There exists a 2SUIG representation, satisfying all the properties
of the canonical representation proved till now, with a1 and a2 in the same stab
if and only if either d(a1) ≤ 3 or d(a2) ≤ 3.

Proof. The “only if” part follows from Lemma 12. The “if” part can be proved
similarly like the proof of Lemma7.
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Representation of a1 and Its Associates When k 	= 1: First we will handle
the case k 	= 1. Now we are going to list out the way to obtain the canonical
representation of a1 and its associates and the conditions for it to be valid
through case analysis. Also in any representation the agents intersecting the
lower-left corner, the upper-left corner, the upper-right corner and the lower-
right corner of sa1 are renamed as z1, z2, z3 and z4, respectively. The conditions
below are simple conditions for avoiding cycles in the graph.

Case 1: d(a1) = 4, d(a2) = 4. In this case a2 is an upper vertex by Lemma 12,
sa2 intersects the upper-right corner of sa1 and the three agents of a1 are
z1, z2, z4.
(1) lt(z1) is shrinked lower-left monotone and st(z1) is shrinked upper-left

monotone.
(2) lt(z2) is shrinked upper-left monotone and st(z2) is shrinked upper-right

monotone.
(3) |st(z2)| ≤ 1 and if |st(z1)| > 0, then |lt(z2)| ≤ 1.
(4) |lt(z4)| = 0.

Case 2: d(a1) = 3, d(a2) = 4. In this case a2 is a lower vertex by Lemma 13, sa2

intersects the upper-right corner of sa1 and the two agents of a1 are z1, z2.
(1) conditions (1)–(3) of Case 1.

Case 3: d(a1) = 4, d(a2) = 3. In this case a2 is a lower vertex by Lemma 13, sa2

intersects the lower-right corner of sa1 and the three agents of a1 are z1, z2, z3.
(1) conditions (1)–(3) from Case 1.
(2) |lt(z3)| ≤ 1, lt(z3) is shrinked upper-left monotone and st(z3) is shrinked

upper-right monotone.
Case 4: d(a1) = 3, d(a2) = 3. In this case a2 is a lower vertex by Lemma 13, sa2

intersects the lower-right corner of sa1 and the two agents of a1 are z1, z2.
(1) lt(z1) is shrinked lower-left monotone and st(z1) is shrinked upper-left

monotone.
(2) if |st(z1)| > 0, then lt(z2) is shrinked upper-right monotone with |lt(z2)| ≤

3 and st(z2) is shrinked upper-left monotone |st(z2)| ≤ 1.
(3) if |st(z1)| = 0, then lt(z2) is shrinked upper-left monotone and st(z2) is

shrinked upper-right monotone |st(z2)| ≤ 3.
Case 5: d(a1) = 4, d(a2) = 2. In this case a2 is a lower vertex by Lemma 13, sa2

intersects the lower-right corner of sa1 and the three agents of a1 are z1, z2, z3.
(1) condition (1)–(3) from Case 1.
(2) if |lt(z3)| ≤ 1, then lt(z3) is shrinked upper-left monotone and st(z3) is

shrinked upper-right monotone.
(3) if |lt(z3)| > 1, then |st(z3)| ≤ 1 and lt(z3) is shrinked upper-right

monotone and st(z3) is shrinked upper-left monotone.
Case 6: d(a1) = 3, d(a2) = 2. In this case a2 is a lower vertex by Lemma 13,

sa2 intersects the lower-right corner of sa1 and the two agents of a1 are from
{z1, z2, z3}.
(1) lt(z1) is shrinked lower-left monotone and st(z1) is shrinked upper-left

monotone.
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(2) if both z1, z2 exists and |st(z1)| = 0, then lt(z2) is shrinked upper-left
monotone and st(z2) is shrinked upper-right monotone.

(3) if both z1, z2 exists, |st(z1)| > 0 and |lt(z2)| ≤ 1, then lt(z2) is shrinked
upper-left monotone and st(z2) is shrinked upper-right monotone.

(4) if both z1, z2 exists, |st(z1)| > 0 and |lt(z2)| > 1, then st(z2) is shrinked
upper-left monotone and lt(z2) is shrinked upper-right monotone with
|st(z1)| ≤ 1.

(5) there is no case when both z2, z3 exists as we can always modify this
representation by making the agent playing the role of z2 play the role of
z1 instead.

(6) there is no case when both z1, z3 exists with |st(z1)| = 0 as we can always
modify this representation by making the agent playing the role of z3 play
the role of z2 instead.

(7) there is no case when both z1, z3 exists with |st(z3)| ≤ 1 and |lt(z3)| ≤ 3
as we can always modify this representation by making the agent playing
the role of z3 play the role of z2 instead.

(8) if both z1, z3 exists, |st(z1)| > 0 and |lt(z3)| ≤ 3, then lt(z3) is shrinked
upper-left monotone and st(z2) is shrinked upper-right monotone.

(9) if both z1, z3 exists, |st(z1)| > 0 and |lt(z3)| > 3, then st(z3) is shrinked
upper-left monotone with |st(z1)| ≤ 3 and lt(z2) is shrinked upper-right
monotone.

The square sa2 must intersect one of the right corners of sa1 . In each of the
cases listed above, there can be at most 3! = 6 possible ways of in which the
agents of a1 can play the role of z1, z2, z3, z4. Among all possible ways those
which satisfies the above conditions, we choose the one for which the leaf of
the right-monotone tail of z2 (only when z3, z4 does not exist) or z3 (z4 cannot
exist) or z4 (z3 cannot exist) is minimized with respect to <x. As there are at
most a constant number of probes to be made, this is achieveable in constant
time. Moreover, such a representation, if found, will be called the optimized
representation of a1 and its associates. Otherwise, T is not a 2SUIG.

Representation of a1 and Its Associates When k = 1: The canonical
representation of ak and its associates is similar as above.

Representation of ai and Its Associates for All 1 < i < k: We describe
the canonical representation of ai and its associates given the canonical repre-
sentation of aj and its associates for all j < i. Throughout the case analysis we
will assume without loss of generality that ai−1 is an upper vertex. Also assume
that ai′ be the maximum i′ < i such that d(ai′) ≥ 3 (i − 1 = i′ is possible).
Moreover, in any representation the agents intersecting the lower-left corner, the
upper-right corner and the lower-right corner of sai

are renamed as z1, z3 and
z4, respectively. The conditions below are simple conditions for avoiding cycles
in the graph.
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(1) If z1 exists and ai is a lower vertex, then |st(z1)| = 0 and lt(z1) is a lower-left
shrinked monotone path satisfying conditions of Lemma11.

(2) If z1 exists, ai is an upper vertex and either z3 or z4 exists, then st(z1)
is a lower-right shrinked monotone path with |st(z1)| ≤ 1 and lt(z1) is a
lower-left shrinked monotone path satisfying conditions of Lemma11.

(3) If z1 exists, ai is an upper vertex and neither z3 nor z4 exists, P11 is shrinked
lower-left monotone satisfying conditions of Lemma11 and P12 is shrinked
lower-right monotone where {P11, P12} = {st(z1), lt(z1)}.

(4) If z3 exists with ai being an upper vertex, then |st(z3)| = 0 and lt(z3) is an
upper-right shrinked monotone path.

(5) If z3 exists with ai being a lower vertex, then z3 has an upper-left monotone
tail P1 satisfying |P1| ≤ 1 and an upper-right monotone tail P2 with some
{P1, P2} = {st(z3), lt(z3)}.

(6) If z4 exists with ai being an upper vertex and z1 also exists, then z4 has a
lower-left monotone tail P1 satisfying |P1| ≤ 1 and a lower-right monotone
tail P2 with some {P1, P2} = {st(z4), lt(z4)}.

(7) If z4 exists with ai being an upper vertex and z1 does not exist, then z4
has a lower-left monotone tail P1 conditions of Lemma 11 and a lower-right
monotone tail P2 with some {P1, P2} = {st(z4), lt(z4)}.

(8) If z4 exists with ai being a lower vertex, then |st(z4)| = 0 and lt(z4) is a
lower-right shrinked monotone path.

To check the above conditions, as there are at most a constant number of
probes to be made, this is achievable in constant time. Moreover, such a rep-
resentation, if found, will be called the optimized representation of ai and its
associates. Otherwise, T is not a 2SUIG.

Representation of ak and Its Associates: The canonical representation of
ak and its associates is similar as above.

3.5 Algorithm

Finally we will describe the algorithm for recongnizing if a given tree T is a
2SUIG. Whenever our algorithm concludes that the given tree T is not a 2SUIG,
there is a configuration responsible for it. These configurations are forbidden
configurations for 2SUIG trees.

(1) Check if maximum degree of T is at most 4. If not, then T is not a 2SUIG
(Lemma 1).

(2) Check if there at most one branch vertex in T . If yes, then T is a 2SUIG by
Lemma 4.

(3) Find out the graph induced by the red edges of the tree. If that graph has
at least one edge but not a path, then T is not a 2SUIG by Lemma 2.

(4) Find out a (but for some trivial cases it is unique) extended red path A =
a1a2...ak. Assign xai

= i for all i ∈ {1, 2, ..., k}. Moreover, put sa1 in the
lower stab.
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(5) For i = 1 to k find out the optimized representation of ai and its associates.
If we fail to find such a representation for some i ∈ {1, 2, ..., k}, then T is
not a 2SUIG.

Correctness of the algorithm implies from the previous results and discus-
sions. Given a tree it is possible to find out its set of red edges in linear time
using post-order traversal. For the other steps we need to probe at most a con-
stant number cases for each red vertex. Thus, it is possible to run the algorithm
in O(|V |) time.

4 Conclusions

In this paper we consider the problem of recognizing 2SUIG trees. While doing
that we proved a number of structural properties and provided insights regarding
how a canonical 2SUIG representation of a tree can be obtained. Recall our
discussion on red edges and red vertices of a tree. Observe that, if the red vertices
induce a path, then the tree has a unit square intersection representation. Hence,
we hope our work can be extended for “k-stab unit interval graphs” and will help
solving the tree recognition problem for cubicity two graphs. Even though the
recognition of trees turns out to be solvable in linear time for 2SUIG, the natural
and probably, the more important question is the following:

Question 1. Given a graph G what is the complexity for determining if G is a
2SUIG?
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Abstract. This paper studies generalized variants of the maximum
independent set problem, called the Maximum Distance-d Inde-
pendent Set problem (MaxDdIS for short). For an integer d ≥ 2,
a distance-d independent set of an unweighted graph G = (V,E)
is a subset S ⊆ V of vertices such that for any pair of vertices
u, v ∈ S, the number of edges in any path between u and v is at
least d in G. Given an unweighted graph G, the goal of MaxDdIS
is to find a maximum-cardinality distance-d independent set of G.
In this paper, we analyze the (in)approximability of the problem on
r-regular graphs (r ≥ 3) and planar graphs, as follows: (1) For every fixed
integers d ≥ 3 and r ≥ 3, MaxDdIS on r-regular graphs is APX-hard.
(2) We design polynomial-time O(rd−1)-approximation and O(rd−2/d)-
approximation algorithms for MaxDdIS on r-regular graphs. (3) We
sharpen the above O(rd−2/d)-approximation algorithms when restricted
to d = r = 3, and give a polynomial-time 2-approximation algorithm for
MaxD3IS on cubic graphs. (4) Finally, we show that MaxDdIS admits a
polynomial-time approximation scheme (PTAS) for planar graphs.

1 Introduction

Let G be an unweighted graph; we denote by V (G) and E(G) the sets of ver-
tices and edges, respectively, and let n = |V (G)|. An independent set (or stable
set) of G is a subset S ⊆ V (G) of vertices such that {u, v} �∈ E holds for all
u, v ∈ S. In theoretical computer science and combinatorial optimization, one of
the most important and most investigated computational problems is the Max-
imum Independent Set problem (MaxIS for short): Given a graph G, the goal
of MaxIS is to find an independent set S of maximum cardinality in G. There are
a huge number of its applications in diverse fields, such as scheduling, computer
vision, pattern recognition, coding theory, map labeling, and computational biol-
ogy; many different problems have been modeled using independent sets.
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1.1 Our Problems

In this paper, we consider a generalization of MaxIS, named the Maximum
Distance-d Independent Set problem (MaxDdIS for short). For an integer
d ≥ 2, a distance-d independent set of an unweighted graph G is a subset S ⊆
V (G) of vertices such that for any pair of vertices u, v ∈ S, the distance (i.e., the
number of edges) of any path between u and v is at least d in G. For an integer
d ≥ 2, MaxDdIS is formulated as the following class of problems [1,8]:

Maximum Distance-d Independent Set (MaxDdIS)
Input: An unweighted graph G

Output: A distance-d independent set of G with the maximum cardinality

When d = 2, MaxDdIS (i.e., MaxD2IS) is equivalent to the original MaxIS.
Zuckerman [18] proved that MaxD2IS cannot be approximated in polynomial
time, unless P = NP, within a factor of n1−ε for any ε > 0. Moreover, MaxD2IS
remains NP-hard even if the input graph is a cubic planar graph, a triangle-
free graph, or a graph with large girth. Fortunately, however, it is well known
that MaxD2IS can be solved in polynomial time when restricted to, for example,
bipartite graphs [14], chordal graphs [9], circular-arc graphs [10], comparability
graphs [11], and many other classes [4,16,17].

For every fixed integer d ≥ 3, Eto et al. [8] proved that MaxDdIS is NP-hard
even for planar bipartite graphs of maximum degree three. Furthermore, they
showed that it is NP-hard to approximate MaxDdIS on bipartite graphs and
chordal graphs within a factor of n1/2−ε (ε > 0) for every fixed integer d ≥ 3
and every fixed odd integer d ≥ 3, respectively. On the other hand, interestingly,
they showed that MaxDdIS on chordal graphs is solvable in polynomial time for
every fixed even integer d ≥ 2. As the other positive results, Agnarsson et al. [1]
showed the tractability of MaxDdIS on interval graphs, trapezoid graphs, and
circular-arc graphs.

1.2 Known Results for Regular Graphs and Planar Graphs

In this paper, we focus on the (in)approximability of MaxDdIS on regular graphs
and planar graphs. As far as we know, this is the first paper which studies the
problem on those graphs for general d ≥ 2. Thus, known results exist only for
MaxD2IS (MaxIS) on those graphs. Recall that the problem is NP-hard even for
cubic (i.e., 3-regular) planar graphs.

Chleb́ık and Chleb́ıková [6] proved the 1.0107, 1.0216, 1.0225, and 1.0236-
inapproximability for MaxD2IS on 3-regular, 4-regular, 5-regular, and r-regular
(r ≥ 6) graphs, respectively. On the other hand, we can obtain polynomial-
time 1.2, 1.4, and 1.6-approximation algorithms for MaxD2IS on 3-regular, 4-
regular, and 5-regular graphs, respectively, by applying the Δ+3

5 -approximation
algorithm proposed by Berman and Fujito [3] for the problem on general graphs
of maximum degree Δ ≤ 613. We note that, for a larger maximum degree Δ



272 H. Eto et al.

(and hence general r), Halldórsson and Radhakrishnan developed polynomial-
time approximation algorithms within factors of Δ+2

3 [12] and O( Δ
log log Δ ) [13].

For planar graphs, it is well known that the Baker’s shifting technique [2] for
NP-hard optimization problems can be applied to MaxD2IS on planar graphs; it
yields a polynomial-time approximation scheme (PTAS). Thus, MaxD2IS can be
approximated within an arbitrarily small factor for planar graphs.

1.3 Our Contribution

In this paper, we study the (in)approximability of MaxDdIS on regular graphs
and planar graphs for a fixed integer d ≥ 3. Our main results are summarized
as follows:

(i) For every fixed integers d ≥ 3 and r ≥ 3, MaxDdIS on r-regular graphs is
APX-hard. In particular, when restricted to d = r = 3, we show that it is
NP-hard to approximate MaxD3IS on 3-regular graphs within 1.00105.

(ii) We then design polynomial-time O(rd−1)-approximation and O(rd−2/d)-
approximation algorithms for MaxDdIS on r-regular graphs. (The approx-
imation ratio of each algorithm will be analyzed precisely.) Note that the
running time of each algorithm is independent from r and d.

(iii) We consider the problem when restricted to d = r = 3, and give
a polynomial-time 2-approximation algorithm for MaxD3IS on 3-regular
graphs. We note that the simple applications of the above O(rd−2/d)-
approximation algorithm yields an approximation ratio strictly greater than
two. To improve the ratio to two, we sharpen and precisely analyze the
approximation algorithm.

(iv) Finally, by employing the Baker’s shifting technique [2], we show that
MaxDdIS on planar graphs admits a PTAS for every fixed constant d ≥ 3.

Due to the page limitation, we omit some proofs from this extended abstract.

2 Notation

Let G = (V,E) be an unweighted graph, where V and E denote the set of vertices
and the set of edges, respectively. V (G) and E(G) also denote the vertex set and
the edge set of G, respectively. We denote an edge with endpoints u and v by
{u, v}. For a pair of vertices u and v, the length of a shortest path from u to v,
i.e., the distance between u and v is denoted by distG(u, v), and the diameter G
is defined as diam(G) = maxu,v∈V distG(u, v).

For a graph G and its vertex v, we denote the (open) neighborhood of v in G
by D1(v) = {u ∈ V (G) | {v, u} ∈ E(G)}, i.e., for any u ∈ D1(v), distG(v, u) = 1
holds. More generally, for d ≥ 1, let Dd(v) = {w ∈ V (G) | distG(v, w) = d} be
the subset of vertices that are distance-d away from v. Similarly, let D1(S) be the
open neighborhood of a subset S of vertices, D2(S) be the open neighborhood
of D1(S), and so on. The degree of v is denoted by deg(v) = |D1(v)|. A graph is
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r-regular if the degree deg(v) of every vertex v is exactly r ≥ 0, and a 3-regular
graph is often called cubic graph.

A graph GS is a subgraph of a graph G if V (GS) ⊆ V (G) and E(GS) ⊆
E(G). For a subset of vertices U ⊆ V , let G[U ] be the subgraph induced by U .
For a positive integer d ≥ 1 and a graph G, the dth power of G, denoted by
Gd = (V (G), Ed), is the graph formed from V (G), where all pairs of vertices
u, v ∈ G such that distG(u, v) ≤ d are connected by edges {u, v}’s. Note that
E(G) ⊆ Ed, i.e., the original edges in E(G) are retained.

We say that an algorithm ALG is a σ-approximation algorithm for MaxDdIS
or that ALG’s approximation ratio is at most σ if |OPT (G)| ≤ σ · |ALG(G)| holds
for any input G, where ALG(G) is a distance-d independent set returned by ALG
and OPT (G) is an optimal distance-d independent set on input G.

3 APX-Hardness of MaxDdIS on Regular Graphs

In this section we analyze the inapproximability of MaxDdIS on r-regular graphs.

3.1 MaxDdIS for Cubic Graphs

First, we prove the following inapproximability for MaxD3IS on cubic (i.e., 3-
regular) graphs:

Theorem 1. There exists no σ-approximation algorithm for MaxD3IS on cubic
graphs for constant σ < 1.00105 < 950

949 .

Proof. The hardness of approximation of MaxD3IS on cubic graphs is shown by
a gap-preserving reduction from MaxD2IS on cubic graphs. It is known [6] that
there exists no σ′-approximation algorithm for the latter problem for constant
σ′ < 95

94 . Consider an input cubic graph G0 = (V0, E0) with n-vertices and m
edges of MaxD2IS. Then, we construct another cubic graph G = (V,E) as an
instance of MaxD3IS on cubic graphs from G0.

Let #OPT2(G0) (and #OPT3(G), resp.) denote the number of vertices of
an optimal distance-2 independent set in G0 (and one of an optimal distance-3
independent set in G, resp.). Let V0 = {v1, v2, · · · , vn} and E0 = {e1, e2, · · · , em}
be vertex and edge sets of G0, respectively. Also, let g(n) be a parameter function
of the instance G0, meaning a solution size. Then, we provide the gap preserving
reduction such that (C1) if #OPT2(G0) ≥ g(n), then #OPT3(G) ≥ g(n) + 2m,
and (C2) if #OPT2(G0) < g(n)

γ′ for a constant γ′ > 1, then #OPT3(G) <
g(n)
γ′ + 2m.

From G0, we construct the cubic graph G which consists of (i) n vertices, u1

through un, which are associated with n vertices in V0, v1 through vn, respec-
tively, and (ii) m subgraphs, G1 through Gm, which are associated with m edges
in E0, e1 through em, respectively. We often call those subgraphs edge-gadgets in
the following. See Fig. 1(a). For every p, 1 ≤ p ≤ m, the pth diamond-shape gad-
get Gp contains ten vertices V (Gp) = {up

1, u
p
2, u

p
3, u

p
4}∪{αp

1, α
p
2}∪{βp

1 , βp
2 , βp

3 , βp
4},
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(a) (b)

Fig. 1. (a) two vertices ui, uj and edge-gadget G5,3
p and (b) reduced graph G

and the pth edge set E(Gp) has 14 edges as illustrated in Fig. 1(a). (iii) If
ei = {vi, vj} ∈ E0, then we introduce two edges {up

1, u
i} and {up

1, u
j}. As shown

in Fig. 1(b), all the edges are replaced with edge-gadgets. This completes the
reduction. One can see that the constructed graph G is cubic. Also, the above
construction can be accomplished in polynomial time.

For the above construction of G, we show that G has a distance-3 inde-
pendent set S such that |S| ≥ g(n) + 2m if and only if G0 has a distance-
2 independent set S0 such that |S0| ≥ g(n). Suppose that the graph G0 of
MaxD2IS has the distance-2 independent set S0 = {v1∗ , v2∗ , · · · , vg(n)∗} in G0,
where {1∗, 2∗, · · · , g(n)∗} ⊆ {1, 2, · · · , n}. Then, we select a subset of vertices
S′ = {u1∗ , u2∗ , · · · , ug(n)∗} and two vertices in each edge-gadget, arbitrary one
of the four pairs {αp

1, β
p
3}, {αp

1, β
p
4}, {αp

2, β
p
3}, and {αp

2, β
p
4}. Let S′′ be the set

of vertices in edge-gadgets. Hence |S′| = g(n) and |S′′| = 2m. One can see that
S = S′ ∪ S′′ is a distance-3 independent set in G since the pairwise distance in
S′ is at least four, the pairwise distance in S′′ is at least six, and the distance
between αp

1 (or αp
2) in S′′ and every vertex in S′ is at least three for each p.

Conversely, suppose that the graph G has the distance-3 independent set S
such that |S| ≥ g(n)+2m. Then, one can see that for each subgraph G[V (Gp)∪
{ui, uj}], the diameter diam(Gp) of Gp is five, and diam(G[V (Gp) ∪ {ui}]) (or
diam(G[V (Gp) ∪ {uj}])) is six. Therefore, we can select at most three vertices
as the distance-3 independent set from the graph in Fig. 1(a). If we select the
other vertices in each subgraph Gp, then we can select at most two vertices of
the distance-3 independent set in G[V (Gp) ∪ {ui, uj}]. Thus, the maximum size
of the distance-3 independent set in V (G1)∪V (G2)∪· · ·∪V (Gm) is at most 2m,
which means that |S ∩ {u1, u2, . . . , un}| ≥ g(n). Let {u1∗ , u2∗ , · · · , ug(n)∗} be a
subset of g(n) vertices in S ∩ {u1, u2, · · · , un}. Then, the pairwise distance in
the corresponding subset of vertices {v1∗ , v2∗ , · · · , vg(n)∗} of G0 is surely at least
2, i.e., G0 has a distance-2 independent set S0 such that |S0| ≥ g(n). Hence, the
reduction satisfies the conditions (C1) and (C2). This implies that MaxD3IS on
cubic graphs cannot be approximated within γ = (g(n) + 2m)/( g(n)

γ′ + 2m).
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In the remaining we obtain the value of γ: Note that a cubic graph has
m = 3n

2 edges. Thus, (g(n) + 2m)/( g(n)
γ′ + 2m) = (g(n) + 3n)/( g(n)

γ′ + 3n). It is
important to note that any optimal solution of MaxD2IS on a cubic graph with
n ≥ 5 is at least n

3 since Brooks’ theorem says [5] that such a graph has a (proper)
coloring using three colors, and hence has an independent set of cardinality at
least n

3 . Thus, g(n) ≥ n
3 and γ = (g(n) + 3n)/( g(n)

γ′ + 3n) ≥ 10γ′

9γ′+1 since γ′ > 1.
By setting γ′ = σ′ = 95

94 , we obtain γ ≥ 950
949 > 1.00105, i.e., the approximation

gap remains at least 1.00105. This completes the proof of this theorem. 	


3.2 MaxDdIS for r-Regular Graphs

Next, we give the inapproximability for MaxDdIS on r-regular graphs:

Theorem 2. There exists no σ-approximation algorithm (i) for MaxDdIS on r-
regular graphs for r ≥ 5 and constant σ < 575�d/2�−529

575�d/2�−530 . For small d and r, (ii) if
d = 3 and r = 4, then σ < 1.00122; (iii) if d = 4 and r = 3, then σ < 1.00191;
and (iv) if d = 4 and r = 4, then σ < 1.00122.

Proof. Omitted in this abstract. 	


4 Approximation Algorithms for MaxDdIS on Regular
Graphs

In this section we design two approximation algorithms for MaxDdIS on regular
graphs. The first one finds a (distance-2) independent set from the (d−1)th power
of an input graph by using the previously known approximation algorithm for
MaxIS. The second one iteratively executes the following: (i) Picks one vertex
v into a solution and (ii) removes all vertices whose distance from the “center”
vertex v is less than d. Then, we show that, from the point of view of the
approximation ratio, the latter is better than the former for sufficiently large d
and/or r.

4.1 Power-Graph-Based Algorithms

In this section we design an r(r−1)d−1+2r−6
5(r−2) -approximation algorithm for

MaxDdIS on r-regular graphs, which uses the following approximation algorithm
for MaxIS, i.e., MaxD2IS as a subroutine:

Proposition 1 [3]. There exists a polynomial-time Δ+3
5 -approximation algo-

rithm for MaxD2IS on graphs with the maximum degree Δ.

Let ALG2 be such a Δ+3
5 -approximation algorithm for MaxD2IS on graphs

with the maximum degree Δ. The above proposition immediately suggests the
following simple algorithm: First, construct the (d−1)th power Gd−1 of an input
graph G, and then obtain a distance-2 independent set of Gd−1. The following
is a description of the algorithm POWERd.
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Algorithm POWERd

Input: r-regular graph G = (V (G), E(G))
Output: Distance-d independent set DdIS(G) in G
Step 1. Obtain the (d − 1)th power Gd−1 of G by the following:

(1-1) Compute distG(u, v) for any pair u, v ∈ V .
(1-2) Add an edge {u, v} if distG(u, v) ≤ d − 1.

Step 2. Apply ALG2 to Gd−1, and then obtain a distance-2 independent
set ALG2(Gd−1) in Gd−1.

Step 3. Output DdIS(G) = ALG2(Gd−1) as a solution.

Theorem 3. The algorithm POWERd runs in polynomial time, and achieves an
r(r−1)d−1+2r−6

5(r−2) -approximation ratio for MaxDdIS on r-regular graphs.

Proof. First, we must verify that the output DdIS(G) = ALG2(Gd−1) of POWERd

is a feasible solution for MaxDdIS, i.e., the distance-2 independent set in Gd−1 is
a distance-d independent set in G. Suppose for contradiction that there is a pair
of vertices u, v ∈ ALG2(Gd−1) (i.e., distGd−1(u, v) ≥ 2) such that distG(u, v) ≤
d−1. Since distG(u, v) ≤ d−1, in Step 1 of POWERd, an edge {u, v} must be added
between u and v. That is, distGd−1(u, v) = 1 holds, which is a contradiction.
Therefore, the output of POWERd is always feasible.

Next, we show the approximation ratio of POWERd by estimating the maxi-
mum degree of the (d−1)th power graph Gd−1. Now consider a vertex v ∈ V (G).
Since G is an r-regular graph, v has r neighbor vertices, i.e., |D1(v)| = r. Also,
|D2(v)| ≤ r(r − 1) holds since each neighbor vertex u ∈ D1(v) has at most r − 1
neighbors, each of which is not v. That is, |Di(v)| ≤ r(r − 1)i−1 holds for each
1 ≤ i ≤ d − 1. Therefore, the maximum degree Δ of Gd−1 is at most:

Δ ≤ r + r(r − 1) + r(r − 1)2 + · · · + r(r − 1)d−2

=
r

r − 2
{(r − 1)d−1 − 1}.

Since POWERd applies the Δ+3
5 -approximation algorithm ALG2 for Gd−1, the

approximation ratio of POWERd is as follows:

r(r − 1)d−1 + 2r − 6
5(r − 2)

.

The algorithm clearly runs in polynomial time and hence this completes the
proof of this theorem. 	


Roughly, the approximation ratio of POWERd is O(rd−1).

4.2 Iterative-Pick-One Algorithms

Next, we consider a naive algorithm for MaxDdIS on r-regular graphs, which
iteratively picks a vertex v into the distance-d independent set and eliminates
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all the vertices in D1(v)∪D2(v)∪ · · · ∪Dd−1(v) from candidates of the solution.
Then we show its approximation ratio. Here is a description of the “pick-one”
algorithm, where DdIS(G) stores vertices in the distance-d independent set, B
does vertices which are determined to be not candidates of the solution, W does
vertices which can be picked in the next iteration, and V does vertices which are
not processed yet:

Algorithm PICK ONEd

Input: r-regular graph G = (V (G), E(G))
Output Distance-d independent set DdIS(G)
Step 1. Set DdIS(G) = ∅, B = ∅, W = V (G), and V = V (G).
Step 2. If V �= ∅, then repeat the following; else goto Step 3:

Select one arbitrary vertex v from W . Then, let Bi = {v} ∪⋃
1≤i≤d−1 Di(v) for the ith iteration of this step, update DdIS(G) =

DdIS(G) ∪ {v}, V = V \ Bi, B = B ∪ Bi, and set W = D1(B) \ B.
Step 3. Terminate and output DdIS(G) as a solution.

In order to prove the approximation ratio of the above algorithm PICK ONEd,
we now provide an upper bound of the maximum number of vertices in the
distance-d independent set in an input graph G with n vertices:

Lemma 1. Consider an r-regular graph G = (V,E) with |V | = n vertices. Then,
if r ≥ 3 and d ≥ 4, then the size #OPTd(G) of optimal solutions of MaxDdIS
satisfies the following inequality:

#OPTd(G) ≤

⎧
⎪⎪⎨

⎪⎪⎩

3n

r(d − 2)
d is even,

3n

r(d − 1)
otherwise.

Proof. Given an r-regular graph G, let OPTd(G) = {v∗
1 , v

∗
2 , · · · , v∗

L} be an opti-
mal solution of MaxDdIS and let #OPTd(G) = L. Then, if d is even, then, for
every 1 ≤ i ≤ L, consider a ball Ball(v∗

i ) = D1(v∗
i )∪D2(v∗

i )∪· · ·∪D(d−2)/2(v∗
i ),

where the center of the ball is v∗
i and its radius is (d − 2)/2 (or, equiva-

lently, its diameter is (d − 2)). If d is odd, then we consider a ball Ball(v∗
i ) =

D1(v∗
i ) ∪ D2(v∗

i ) ∪ · · · ∪ D(d−1)/2(v∗
i ) of diameter (d − 1). Since, for every pair

of i and j (i �= j), distG(v∗
i , v∗

j ) ≥ d holds from the feasibility of the solution,
Ball(v∗

i ) ∩ Ball(v∗
j ) = ∅ is surely satisfied for every pair i and j. It follows that

∑L
i=1 |Ball(v∗

i )| ≤ n.
Now, we estimate the value of

∑L
i=1 |Ball(v∗

i )| by considering the “smallest”
r-regular graph of diameter diam, that is, a lower bound of the size of |Ball(v∗

i )|.
Recently, Knor has proven [15] that the minimum number of vertices in an r-
regular graph of diameter diam is at least r·diam

3 if r ≥ 3 and diam ≥ 4. As a
result, the following inequality holds:
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L∑

i=1

|Ball(v∗
i )| ≥ r · diam

3
× L.

Then, we have

#OPTd(G) = L ≤ 3n

r · diam
,

where diam = d−2 if d is even and diam = d−1 if d is odd as mentioned above.
This completes the proof of this lemma. 	


Now we calculate the number #ALGd(G) of vertices in DdIS(G) output by
PICK ONEd, and obtain the following lemma:

Lemma 2. Assume that PICK ONEd finds a solution of size #ALGd(G), give an
r-regular graph with n vertices. Then, the following is satisfied:

#ALG(G) ≥

⎧
⎪⎨

⎪⎩

n(r−2)−r(r−1)
d
2 −1+2

r(r−1)d−1−r(r−1)
d
2 −1

d is even,

n(r−2)−2(r−1)
d−1
2 +2r−2

r(r−1)d−1−2(r−1)
d−1
2 +2r−4

otherwise.

Proof. Omitted in this abstract. 	

Theorem 4. The approximation ratio σ of PICK ONEd is as follows:

σ =

⎧
⎨

⎩

3(r−1)d−1−3(r−1)
d
2 −1

(r−2)(d−2) + O( 1
n ) d is even,

3r(r−1)d−1−6(r−1)
d−1
2 +6r−12

r(r−2)(d−1) + O( 1
n ) otherwise.

Proof. The approximation ratio σ is bounded by #OPTd(G)/#ALGd(G). From
the upperbound of #OPTd(G) and the lowerbound of #ALGd(G) shown in
Lemmas 1 and 2, respectively, we can obtain this theorem. 	


That is, the approximation ratio of PICK ONEd is O(rd−2/d), while the
approximation ratio of POWERd is O(rd−1).

5 2-Approximation Algorithm for MaxD3IS on Cubic
Graphs

In this section, as a special case, we study the approximability of MaxD3IS
on cubic graphs, i.e., d = 3 and r = 3 and show the approximation ratios of
POWER3 and PICK ONE3. Furthermore, by a slight modification, we obtain a 2-
approximation algorithm for MaxD3IS on cubic graphs.
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5.1 Power-Graph-Based Algorithm

First, as an immediate consequence of Theorem 3, we have the following
corollary:

Corollary 1. The algorithm POWER3 achieves a 2.4-approximation ratio for
MaxD3IS on cubic graphs.

Proof. Since the maximum degree of the second power G2 of an input 3-regular
graph G is nine, the approximation ratio is 12/5 = 2.4. 	


5.2 Iterative-Pick-One Algorithm

In this section, we prove that PICK ONE3 achieves 2 + O(1/n)-approximation
ratio, and furthermore, the ratio can be improved into exactly 2 by a slight
modification of PICK ONE3 and careful observations.

Recall that the upperbound of optimal solutions of MaxDdIS on r-regular
graphs provided in Lemma 1 holds only for the case where d ≥ 4. Then, we
give an estimation of the upperbound of the maximum number of vertices in an
optimal solution for the case where r = 3 and d = 3:

Lemma 3. Consider a cubic graph G = (V,E) with |V | = n vertices. Then,
the size #OPT3(G) of every optimal solution of MaxD3IS satisfies the following
inequality:

#OPT3(G) ≤ n

4
.

Proof. Given a 3-regular graph G of n vertices, let OPT3(G) = {v∗
1 , v

∗
2 , · · · , v∗

L}
be an optimal solution of MaxD3IS and let #OPT3(G) = L. Also, let OPT3(G)
be the set of vertices not in OPT3(G), i.e., OPT3(G) = V (G) \ OPT3(G).
Then, three edges, say, {{v∗

i , ui,1}, {v∗
i , ui,2}, {v∗

i , ui,3}}, are incident to every
vertex v∗

i ∈ OPT3(G) for 1 ≤ i ≤ L, and ui,1, ui,2, ui,3 ∈ OPT3(G). Therefore,
|OPT3(G)| ≥ 3L. From the definition, |OPT3(G)| = n − L holds. As a result,
the following inequality is obtained:

#OPT3(G) = L ≤ n

4
.

This completes the proof of this lemma. 	

Consider a graph D2 = ({v1,v2,v3,v4,v5,v6,v7,v8}, {{v1, v2}, {v1, v3}, {v2, v3},

{v2, v4}, {v3, v4}, {v5, v6}, {v5, v7}, {v6, v7}, {v6, v8}, {v7, v8}, {v4, v5}, {v8, v1}})
of eight vertices, which consists of two diamond graphs and two edges. One can
verify that D2 is cubic and |OPT3(D2)| = 2 = 8/4. Similarly, by circularly
joining diamond graphs, we can obtain an infinite family of tight examples for
Lemma 3; for a graph D� having � diamond graphs (4� vertices), |OPT3(D�)| = �.

Theorem 5. The algorithm PICK ONE3 achieves a
(
2 + 4

n−2

)
-approximation

ratio for MaxD3IS on cubic graphs.
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Proof. Let D3IS(G) = {s1, s2, · · · , s�} be an output of PICK ONE3, and without
loss of generality, assume that PICK ONE3 picks those � vertices into D3IS(G) in
this order, i.e., first s1, next s2, and so on.

(i) In the first iteration of Step 2 of PICK ONE3, the first vertex s1 is selected
into D3IS(G), then B1 = {s1} ∪ D1(s1) ∪ D2(s1) are removed from V (G),
and set V = V (G) \ B1. One can see that the number of vertices in B1 is
at most 10 since s1 has at most three neighbors, i.e., |D1(s1)| ≤ 3, and each
vertex in D1(s1) has at most two other vertices, i.e., |D2(s1)| ≤ 6.

(ii) In the second iteration, the second vertex s2 is selected from neighbor ver-
tices of B1 into D3IS(G), and then B2 = {s2}∪D1(s2)∪D2(s2) are removed
from V updated in Step 2. The number of vertices in B2 is again at most
10, but |B1 ∩B2| ≥ 2 because there must exist at least two vertices between
s1 and s2 from the fact distG(s1, s2) ≥ 3. That is, |B2 \ B1| ≤ 8 and thus
at most eight vertices currently in V are removed from V in the second
iteration. Similarly, when si for 3 ≤ i ≤ � are selected into D3IS(G), at
most eight vertices in V are removed from V . Therefore,

|B1| + |B2 \ B1| + · · · + |B� \ (
⋃

1≤i≤�−1

Bi)| ≤ 10 + 8(� − 1).

At the time when PICK ONE3 terminates, V = ∅ and thus the following inequality
holds since the value of the left-hand side of the above inequality is equal to n:

10 + 8(� − 1) ≥ n.

Namely,

� ≥ n − 2
8

.

Since #OPT3(G) ≤ n
4 , the approximation ratio of PICK ONE3 is as follows:

#OPT3(G)
�

≤ 2 +
4

n − 2
. 	


To improve the above ratio of 2 + ε (ε > 0) to 2, we slightly modify Step 2
of PICK ONE3, and get the following algorithm, called REV PICK ONE3:

Algorithm REV PICK ONE3:

Input: 3-regular graph G = (V (G), E(G))
Output: Distance-3 independent set D3IS(G)
Step 1. Set D3IS(G) = ∅, B = ∅, W = V (G), and V = V (G).
Step 2. If V �= ∅ , then repeat the following; else goto Step 3:

Select one vertex v from W such that |(D1(v)∪D2(v))\B| is minimum
among all vertices in W . Then, let Bi = {v}∪D1(v)∪D2(v) in the ith
iteration of this step, update D3IS(G) = D3IS(G)∪{v}, V = V \Bi,
B = B ∪ Bi, and set W = D1(B) \ B.

Step 3. Terminate and output D3IS as a solution.
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Recall that PICK ONE3 selects an arbitrary vertex v in each iteration in
Step 2. On the other hand, REV PICK ONE3 selects a vertex v such that
|(D1(v) ∪ D2(v)) \ B| is minimum among all vertices in W in each iteration,
only which is the difference between PICK ONE3 and REV PICK ONE3.

Theorem 6. The algorithm REV PICK ONE3 runs in polynomial time, and
achieves a 2-approximation ratio for MaxD3IS on cubic graphs.

Proof. Again, let D3IS(G) = {s1, s2, · · · , s�} be an output of REV PICK ONE3,
and assume that REV PICK ONE3 picks those � vertices into D3IS(G) in this
order. That is, in the first iteration, REV PICK ONE3 picks s1 such that |(D1(s1)∪
D2(s1))| is minimum among all vertices in V (G) since B = ∅. Then, we update
B = B1 = {s1} ∪ D1(s1) ∪ D2(s1). We have the following three cases according
to the size of |B1|: (i) |B1| ≤ 8, (ii) |B1| = 9, and (iii) |B1| = 10.

(i) First consider the case where |B1| ≤ 8. Similarly to the proof of Theorem 5,
in the second iteration of Step 2, the second vertex s2 is selected from
neighbor vertices of B1 into D3IS(G), and then B2 = {s2}∪D1(s2)∪D2(s2)
are removed from V updated in Step 2. Recall that |B2\B1| ≤ 8. Similarly,
when si for 3 ≤ i ≤ � are selected into D3IS(G), |Bi \ (

⋃
1≤j≤i−1 Bj)| ≤ 8

holds. Therefore,

|B1| + |B2 \ B1| + · · · + |B� \ (
⋃

1≤i≤�−1

Bi)| ≤ 8�. (1)

Namely,

� ≥ n

8
.

Since #OPT3(G) ≤ n
4 , the approximation ratio of REV PICK ONE3 is as

follows:

#OPT3(G)
�

≤ 2.

(ii) Next suppose that |B1| = 9. Similarly, again |Bi\(
⋃

1≤j≤i−1 Bj)| ≤ 8 holds
for the ith iteration, 2 ≤ i ≤ �. It is now important to note that the number
n of vertices in the cubic graph G must be even since the degree r is odd.
Thus, actually, at least one of |Bi \ (

⋃
1≤j≤i−1 Bj)| for 2 ≤ i ≤ � must be

at most seven. Therefore, the left-hand side of the inequality (1) is at most
9 + 7 + 8(� − 2) = 8�. As a result, the inequality (1) holds again, which
means that the approximation ratio is two.

(iii) Finally, suppose that |B1| = 10, which implies that |{si}∪D1(si)∪D2(si)| =
10 for every vertex si since |{s1}∪D1(s1)∪D2(s1)| is minimum. Indeed, for
example, |{v}∪D1(v)∪D2(v)| = 10 holds for any vertex v in a C4-free cubic
graph (i.e., the graph including no induced cycles of length 3 and 4). Fortu-
nately, if at least one, say, |Bi\(

⋃
1≤j≤i−1 Bj)| is seven, then there must exist

at least one iteration, say, i′ (�= i) such that |Bi′ \(
⋃

1≤j≤i′−1 Bj)| ≤ 7 holds
since n is even. That is, the inequality (1) is true as well. Unfortunately,
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however, if |Bi \ (
⋃

1≤j≤i−1 Bj)| = 8 holds for every 2 ≤ i ≤ �, then the
ratio of REV PICK ONE3 is 2+4/(n− 2) similarly to PICK ONE3. Now, as the
worst case, we suppose that in the second through the (� − 1)th iterations,
s2 through s�−1 are selected and |B2 \ B1| through |B�−1 \ (

⋃
1≤j≤�−2 Bj)|

are all eight. Then, we take a look at the last iteration in detail. (iii-1) If the
current V has at least nine vertices, then we can get further two vertices in
the distance-3 independent set since |B� \ (

⋃
1≤j≤�−1 Bj)| ≤ 8, which is a

contradiction from the assumption of |D3IS(G)| = �. Thus, (iii-2) we can
assume that the number of the remaining vertices in V is at most eight
after the (� − 1)th iteration. Then, one can see that if those eight vertices
are connected, then we again get two vertices in the distance-3 independent
set, which is another contradiction. (iii-3) Now suppose that the remaining
graph G[V ] has at least two connected components. Then, there must exist
a vertex s� such that |B� \ (

⋃
1≤j≤�−1 Bj)| ≤ 5. As a result, again we can

obtain the inequality (1), which follows that the approximation ratio is two.
This completes the proof of this theorem. 	


6 Approximation Scheme for Planar Graphs

An outerplanar graph (often called a 1-outerplanar graph) is a graph that can
be drawn in the plane without any edge-crossing such that all vertices lie on the
unbounded face. A planar graph G is said to be k-outerplanar for k ≥ 2 if it
has a plane-embedding such that by removing the vertices on the unbounded
face, we obtain a (k − 1)-outerplanar graph; the deleted vertices form the kth
layer of G. Note that every planar graph G can be regarded as a k-outerplanar
graph for some integer k, although k can be Ω(

√|V (G)|). Also note that the
treewidth of a k-outerplanar graph is at most 3k + 1. The outerplanar factor k
plays an important role in many polynomial-time approximation schemes based
on the Baker’s shifting technique for NP-hard optimization problems on planar
graphs [2]. The Baker’s shifting technique can be applied to MaxDdIS on planar
graphs, as follows:

Algorithm SHIFTINGd

Input: D-outerplanar graph G
Output: Distance-d independent set DdIS(G) of G
Step 1. For each i ∈ {1, 2, . . . , k}, repeat the following:

(1-1) Delete all vertices in layers i through i+(d−2), k + i+(d−2)
through k+ i+2(d−2), 2k+ i+2(d−2) through 2k+ i+3(d−2),
and so on. Let Gi be the resulting graph.

– Note that each connected component of Gi is a (k − 1)-
outerplanar graph, and hence its treewidth is at most 3k − 2.

(1-2) Solve MaxDdIS for each connected component of Gi, and
obtain an optimal distance-d independent set S∗

i of Gi.
Step 2. Output the best S∗ among the k obtained distance-d indepen-

dent sets S∗
1 through S∗

k as the solution DdIS(G).
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Theorem 7. For a fixed constant d ≥ 2, MaxDdIS admits a polynomial-time
approximation scheme for planar graphs.

Proof. As a seminal result of Courcelle [7], it is known that every problem
definable in monadic second-order logic can be solved for graphs with bounded
treewidth in time linear in the number of vertices of the graph. By a simple
extension of the independent set problem (i.e., MaxD2IS), MaxDdIS can be also
defined in monadic second order logic. Therefore, MaxDdIS can be solved in lin-
ear time (although its running time depends exponentially on the treewidth and
the distance d). Thus, the algorithm SHIFTINGd runs in time polynomial in n,
which is the number of vertices.

Let S be any optimal distance-d independent set in a given planar graph. Let
Si be the distance-d independent set obtained from S by deleting all vertices in
layers i through i+(d−2), k+i+(d−2) through k+i+2(d−2), 2k+i+2(d−2)
through 2k + i + 3(d − 2), and so on. Let S∗ be the output of the algorithm
SHIFTINGd, and S∗

i be the distance-d independent set of Gi (and hence of G)
obtained by Step 1–2. From the definitions of these sets, both |Si| ≤ |S∗

i | and
|S∗

i | ≤ |S∗| hold for every i ∈ {1, 2, . . . , k}. Then, since |Si| ≤ |S∗
i | for every

i ∈ {1, 2, . . . , k}, we have

|S1| + |S2| + · · · + |Sk| ≤ |S∗
1 | + |S∗

2 | + · · · + |S∗
k |.

Next, since Gi (or Si) does not include any vertices in layers i through i+(d−2),
k+ i+(d−2) through k+ i+2(d−2), 2k+ i+2(d−2) through 2k+ i+3(d−2),
and so on, the following inequality holds:

|S1| + |S2| + · · · + |Sk| = (k − (d − 1))|S|.

Since |S∗| = max{|S∗
i | : 1 ≤ i ≤ k}, we have

|S∗
1 | + |S∗

2 | + · · · + |S∗
k | ≤ k|S∗|.

Therefore, the following holds:

(k − (d − 1))|S| ≤ k|S∗|,

that is,

|S|
|S∗| ≤ 1 +

d − 1
k − (d − 1)

.

Thus, by setting ε = d−1
k−(d−1) , we can conclude that SHIFTINGd is a (1 + ε)-

approximation algorithm, that is, it is a polynomial-time approximation scheme
for MaxDdIS on planar graphs. This completes the proof.
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Abstract. For a graph G = (V,E), D ⊆ V is a dominating set if every
vertex in V \D has a neighbor in D. If every vertex in V has to be
adjacent to a vertex of D, then D is called a total dominating set of G.
The (total) domination problem on G is to find a (total) dominating set
D of the minimum cardinality. The (total) domination problem is well-
studied. Recently, the following variant is proposed. Vertex subset D is
a disjunctive total dominating set if every vertex of V is adjacent to a
vertex of D or has at least two vertices in D at distance 2 from it. The
disjunctive total domination problem on G is to find a disjunctive total
dominating set D of the minimum cardinality. For the complexity issue,
the only known result is that the disjunctive total domination problem is
NP-hard on general graphs. In this paper, by using a minimum-cost flow
algorithm as a subroutine, we show that the disjunctive total domination
problem on trees can be solved in polynomial time. This is the first
polynomial-time algorithm for the problem on a special class of graphs.
Besides, we show that the problem remains NP-hard on bipartite graphs
and planar graphs.

Keywords: Trees · Total domination · Disjunctive total domination ·
Minimum-cost flow algorithm

1 Introduction

Let G = (V,E) be a simple and undirected graph with vertex set V and edge
set E. For two vertices u, v ∈ V , the distance between u and v is denoted as
d(u, v) which is the length of the shortest path from u to v. The open neigh-
borhood of a vertex v is denoted by N(v) = {u ∈ V | (u, v) ∈ E}. The close
neighborhood of vertex v is denoted by N [v] = N(v)∪ {v}. The concept of open
(close) neighborhood can be extended to a vertex subset. For a vertex set S, we
let N(S) = {u ∈ V | (u, v) ∈ E and v ∈ S} and N [S] = N(S) ∪ S.

A vertex subset D ⊆ V is called a dominating set if every vertex in V \D
has a neighbor in D, i.e., V \D ⊆ N(D). If every vertex in V has to be adjacent
to a vertex of D, then D is called a total dominating set of G, i.e., V = N(D)
for a total dominating set D. The (total) domination problem on G is to find
a (total) dominating set D of the minimum cardinality. The (total) domination
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 285–293, 2016.
DOI: 10.1007/978-3-319-48749-6 21
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problem is well-studied. For some theoretical and algorithmic results, please refer
[1,2,5,6,12,13,15,16,21,22].

Recently, a variant of domination problem called disjunctive domination
problem is proposed. A vertex subset D is a disjunctive dominating set if every
vertex of V\D is adjacent to a vertex of D or has at least two vertices in D at dis-
tance 2 from it. The disjunctive domination problem on G is to find a disjunctive
dominating set D of the minimum cardinality [4,7,8]. Some algorithmic results
are studied in [19]. Similarly, if every vertex of V is adjacent to a vertex of D or
has at least two vertices in D at distance 2 from it, then D is called a disjunctive
total dominating set of G. The disjunctive total domination problem (DTDP) on
G is to find the minimum cardinality of a disjunctive total dominating set [11].
Some theoretical results are studied in [9,10].

For the disjunctive total domination problem, there are few results about
the issue of algorithmic complexity. In [7], the authors proposed a linear-time
algorithm for solving the disjunctive domination problem on trees based on the
dynamic programming approach. In this paper, we propose the first polynomial-
time algorithm for the DTDP on trees. Our algorithm runs from leaves to an
internal vertex. For each phase we determine a partial dominating set that can
dominate all the undominated leaves. This partial dominating set is determined
by using a minimum-cost maximum-flow algorithm [14,18]. Then, we delete all
the dominated vertices (including some non-leaf vertices) and the next phase is
initialized and processed again until all the vertices are disjunctively dominated.
For the remaining of this paper, we propose our polynomial-time algorithm for
DTDP on trees in Sect. 2. The NP-hardness results are presented in Sect. 3.
Finally, we give a concluding remarks in the last section.

2 Polynomial Algorithm on Trees

Trees are a class of graphs that are connected and without any cycle. In this
section, the graph we considered is a tree denoted as T = (V,E). Assume that
L(T ) is the set of all leaves of T . Many tree algorithms using dynamic program-
ming usually take a tree as a rooted tree. Then, a bottom-up process from leaves
to root can work for solving many combinatorial problems on trees. However,
for DTDP, the behavior of our algorithm runs like an algorithm for finding the
center of a tree. A center-finding algorithm works as follows. At first, we delete
all the leaves from the input tree. We call it a deletion process. If the resulting
tree is neither a vertex nor an edge, then we do the deletion process on the
resulting tree. The algorithm runs deletion process many times until the final
tree becomes a vertex or an edge. Vertex (vertices) in the final tree is called the
center of the tree. This is also a standard approach for many tree algorithms.

Labeling is another useful tool for many domination-like algorithms. In our
algorithm, we use numbers in {0, 1, 2} to denote the status of a vertex. For
convenience, for each vertex v, we define N1(v) = N(v) and N2(v) = {u |
d(u, v) = 2}. With respect to a partial dominating set D, the label of vertex v
is defined as follows.
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Definition 1. The label lab(v) for a vertex v is defined as follows:

1. lab(v) = 0 if |N1(v) ∩ D| ≥ 1 or |N2(v) ∩ D| ≥ 2
2. lab(v) = 1 if |N2(v) ∩ D| = 1
3. lab(v) = 2 otherwise

Initially, the label of every vertex in V is 2 since the partial dominating set
D is empty. For each phase (or iteration), we only consider how to make the
label of each leaf become 0, i.e., disjunctively total dominated. To do this, we
transform the tree into an instance of network flow problem. Then, we determine
which vertex should be included in D. Once we select a vertex u into D. We then
update the label of each vertex in N1(u) ∪N2(u) according to the definitions of
labels. Let us consider the following tree T as an example.

v1 v2

v3 v4 v5 v6

v7 v8 v9 v10 v11

v12 v13 v14 v15 v16

Fig. 1. A tree T with 16 vertices.

Similar to most domination problems on trees, the following lemma is not
hard to be proved.

Lemma 1. For any tree T , there is a disjunctive total dominating set D such
that D does not contain any leaf vertices.

By Lemma 1, our first intension is to find a partial dominating set to dominate
all the leaves of T . To find such a set, we transform the tree into an instance of a
flow network. For each leaf v, we only need to consider vertices in N1(v)∪N2(v)
as candidates for disjunctively total dominating v. Thus we obtain two vertex
subsets X and Y such that X =

⋃
v∈L(T ) N1(v)∪N2(v) and Y = {v | v ∈ L(T )}.

For constructing a flow network N , we need two extra vertices, namely, source
vertex s and sink vertex t. Note that edges in N are directed and weighted.
Thus, the direction of an edge (u, v) in N is from u to v. Finally, the flow
network N = (s, t,X ∪ Y,E′) can be constructed as follows.

Definition 2. In N = (s, t,X ∪ Y,E′), E′ is defined as follows:

1. (s, x) ∈ E′ for every vertex x ∈ X.
2. (x, y) ∈ E′ if x ∈ X, y ∈ Y , and d(x, y) ≤ 2.
3. (y, t) ∈ E′ for every vertex y ∈ Y .
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Since we consider the minimum-cost maximum-flow problem, edges in N are
directed and weighted. For convenience, let deg(u) = |{v | (u, v) ∈ E′}|.
Definition 3. In N = (s, t,X ∪ Y,E′), for each edge (u, v) ∈ E′, we define its
capacity and cost as follows:

1. u ∈ X and v ∈ Y : capacity c(u, v) = 3 − d(u, v) and cost w(u, v) = 1
2. u = s and v ∈ X: capacity c(u, v) =

∑
y∈Y c(v, y) and cost w(u, v) = 1

deg(u)

3. u ∈ Y and v = t: capacity c(u, v) = lab(u) and cost w(u, v) = 1

Note that in N , the capacity of each edge contributes the dominating power.
However, the cost of each edge lets the flow algorithm prefer vertices with more
dominating power that will minimize the cardinality of the selected disjunctive
total dominating set. Figure 2 is the resulting flow network that is constructed
from the tree T depicted in Fig. 1. For simplicity, we omit the cost for each edge.
It is not hard to see that only the costs of v10 and v11 are 1

2 ; the others are 1.

s

v3 v4 v5 v6 v7 v8 v9 v10 v11

v12 v13 v14 v15 v16

t

1 1 1 1 2 2 2 3 3

1 1 1 12 2 2 2
1

1
2

2

2
2

2

2

Fig. 2. The flow network instance transformed from tree T with capacity.

For a tree T = (V,E) and a vertex subset U ⊆ V , let T [U ] be the forest
induced by U . We have the following lemma.

Lemma 2. Let N = (s, t,X ∪ Y,E′) be the flow network constructed by T . Let
f be the minimum-cost maximum-flow of N . Then, {x | x ∈ X and x is in any
nonzero flow path from s to t} is an optimal disjunctive total dominating set of
T [X ∪ Y ].

By considering the flow network in Fig. 2, we run a minimum-cost
maximum-flow algorithm [14,18] and obtain a partial dominating set D =
{v7, v8, v9, v10, v11}. Then we update vertex labels and delete each leaf whose
label is 0 until there is no label-0 leaf. For convenience, we list the algorithm for
clearing label-0 leaves as follows.
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Algorithm 1. Algorithm for removing label-0 leaves
Input: A tree T = (V,E)
Output: A tree without label-0 leaf
1: initially, a queue Q = ∅;
2: put every label-0 leaf into Q;
3: for Q �= ∅ do
4: v = Dequeue(Q);
5: let (v, u) ∈ E;
6: delete v from V ;
7: if u becomes a leaf and label(u) = 0 then
8: Enqueue(Q, u);
9: end if

10: end for
11: return the resulting tree T

Consider our example again. The resulting tree is depicted in Fig. 3. Note
that, in Fig. 3, the labels of v1 and v2 are 1. However, the labels of v3, v4, and
v5 are 0 and the labels of v7, v8, and v9 are 2.

v1 v2

v3 v4 v5

v7 v8 v9

Fig. 3. The resulting tree for deleting label-0 leaves after a partial dominating set is
determined.

For completeness, we construct the flow network of the remaining tree in
Fig. 4. It is not hard to check that {v3, v5} is a disjunctive total dominating
set. Thus, by combining the previous partial dominating set, we obtain that
{v3, v5, v7, v8, v9, v10, v11} is a disjunctive total dominating set of the tree T
(depicted in Fig. 1).

Note that during the computation of disjunctive total dominating set, for
each phase, we have to construct a flow network N from the current tree T .
Since our N is four layers, namely, s, t, X, and Y (also known as bipartite,
i.e., X and Y ). Thus, if we cannot find X and Y from T , then the network-flow
algorithm has to be terminated. In this final phase, T is possible to be empty, a
vertex, or all the vertices of T are leaves, i.e., an edge (u, v). If T contains only
one edge (u, v), then {u, v} is the disjunctive total dominating set of T . The
detailed algorithm is listed as follows.
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s

v1 v3 v4 v5

v2 v7 v8 v9

t

3 3 4 4

2
1

2

1

1
2

1

1
2

1

1

2 2

2

Fig. 4. The flow network instance transformed from the tree in Fig. 3.

Algorithm 2. DTDP-algorithm
Input: A tree T = (V,E)
Output: A disjunctive total dominating set D
1: initially, lab(v) = 2 for each vertex v in V and D = ∅;
2: for T is not empty do
3: construct flow network N = (s, t,X ∪ Y,E′) from T ;
4: run a minimum-cost maximum-flow algorithm on N ;
5: let D′ = {x ∈ X | x is in any nonzero flow path from s to t};
6: D = D ∪ D′;
7: update vertex labels according to D′;
8: let T be the resulting tree by running Algorithm 1;
9: if T contains only one vertex u then

10: v be any vertex in N(u) in the original tree;
11: D = D ∪ {v};
12: let lab(u) = 0 and T = ∅
13: end if
14: if T contains only one edge (u, v) then
15: D = D ∪ {u, v};
16: let lab(u) = lab(v) = 0 and T = ∅
17: end if
18: end for
19: return D

Theorem 1. For any tree T , Algorithm2 computes an optimal disjunctive total
dominating set of T .

Proof. The correctness can be proved by induction on the number of iterations
in Algorithm2. We omit the detail in this conference version. �	

Now we consider the time complexity issue for Algorithm2. For any network
N = (s, t,X ∪Y,E′), let n = |{s, t}∪X ∪Y | and m = |E′|. Then the minimum-
cost maximum-flow problem on N can be solved in O(m log n(m + n log n))
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time [18]. However, in Algorithm2, the flow network is constructed from T =
(V,E). Thus, n = O(|V |). Since T is a tree, each leaf has only one vertex at the
distance 2. Therefore, m = O(|V |). In the worst case, the number of iterations of
Algorithm2 will be at most r, the radius of T . Since r = O(|V |), Algorithm2 can
be implemented in O(n3 log2 n) time. Therefore, we have the following theorem.

Theorem 2. The disjunctive total domination problem on trees can be solved
in polynomial time.

Thought the disjunctive domination problem on tree can be solved in linear
time [4], we find that in Algorithm2 if the label of every selected vertex in D′ is
set to 0 at each iteration, then the final set D will be a disjunctive dominating
set of T . That is, our proposed algorithm is a unified approach for these two
variants of domination problem. Thus we have the following corollary.

Corollary 1. The disjunctive domination problem on trees can be solved in poly-
nomial time.

3 NP-Hardness Results

Recall that for a graph G = (V,E), a vertex subset D ⊆ V is called a total
dominating set if every vertex in V is adjacent to a vertex of D, i.e., V = N(D).
The total domination problem (TDP for short) on G is to find a total dominating
set D of the minimum cardinality. It is known that TDP is NP-hard on bipartite
graphs [20] and planar graphs [3]. By reducing the TDP to DTDP, we establish
the hardness result of DTDP.

Given a graph G = (V,E), we construct the graph HG = (V ′, E′) as follows.
For each edge (u, v) ∈ E, we add a vertex w in (u, v). The resulting graph G′ is
called the subdivision of G. We call these new vertices subdivision vertices. Then
for each original (respectively, subdivision) vertex, we attach one (respectively,
two) P4, a path with 4 vertices. HG is the final graph. Let n = |V | and m = |E|.
It is not hard to check that |V ′| = n + m + 4n + 8m = 5n + 9m and |E′| =
2m+ 4n+ 8m = 4n+ 10m. Figure 5 shows an example of a graph G = P4 and
the corresponding graph HG.

By this reduction, we can show that if there is a total dominating set of size
k for G, then there is a disjunctive total dominating set of size k + 2(n + 2m)
for graph HG. The darken vertices in Fig. 5 belong to the desired dominating set
that shows this correspondence. Note that it is not hard to check that if G is a
bipartite (planar) graph, then HG is a bipartite (planar) graph too. Thus by the
results of [3,20], we have the following theorem.

Theorem 3. The disjunctive total domination problem is NP-hard on bipartite
graphs and planar graphs.
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G

HG

Fig. 5. Example of the reduction.

4 Conclusion

In this paper, we show that the disjunctive total domination problem can be
solved in polynomial time on trees. It is interesting that our approach can be
extended to some other domination problems. Though, the time complexity of
our algorithm depends on the running time of a minimum-cost maximum-flow
algorithm, the idea of our algorithm is easy to understand. On the other hand,
we show that the disjunctive total domination problem is NP-hard on bipartite
graphs and planar graphs. In fact, this idea is similar to the one in [4] for showing
that the hardness of the disjunctive domination problem. Thus, by relaxing the
number of dominating vertices at distance 2, we can have a more general result
of hardness. In [19], the authors proposed a polynomial-time algorithm for the
disjunctive domination problem on proper interval graphs. Thus, it is interesting
whether the disjunctive total domination problem can be solved in polynomial
time on proper interval graphs or other special classes of graphs.
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Abstract. The Scaffolding problem in bioinformatics, aims to com-
plete the contig assembly process by determining the relative position
and orientation of these contigs. Modeled as a combinatorial optimiza-
tion problem in a graph named scaffold graph, this problem is NP-
hard and its exact resolution is generally impossible on large instances.
Hence, heuristics like polynomial-time approximation algorithms remain
the only possibility to propose a solution. In general, even in the case
where we know a constant guaranteed approximation ratio, it is impossi-
ble to know if the solution proposed by the algorithm is close to the opti-
mal, or close to the bound defined by this ratio. In this paper we present a
measure, associated to a greedy algorithm, determining an upper bound
on the score of the optimal solution. This measure, depending on the
instance, guarantees a – non constant – ratio for the greedy algorithm
on this instance. We prove that this measure is a fine upper bound on
optimal score, we perform experiments on real instances and show that
the greedy algorithm yields near from optimal solutions.

Keywords: Genome scaffolding · Greedy heuristic · Approximation
ratio

1 Introduction

Genomic studies, especially comparative genomic and genome rearrangement
inference, necessitate the production of high-quality whole sequences. Such
sequences are hard to obtain from High-Throughput Sequencing data, consist-
ing of sometimes billions of small DNA fragments. Genome scaffolding, which
is our concern in this paper, consists of orienting and ordering a collection of
pre-assembled DNA fragments, called contigs. This can be done using NGS infor-
mation that locally links endpoints of contigs, that is usually available for NGS
data (paired-end reads). The scaffolding problem, expressible as a combinatorial
optimization problem in a graph, is NP-hard [2,11] and represents a barrier
in genome sequence production. When it comes to treat very large data like
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 294–308, 2016.
DOI: 10.1007/978-3-319-48749-6 22
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Fig. 1. A scaffold graph with 17 contigs (bold edges) and 26 (weighted) links between
them, corresponding to the genome of virus Ebola.

eukaryotic genomes (especially plants like rice), exact methods find their limits
and we have to consider heuristics.

Description of the Problem. We consider an undirected graph G = (V,E) with
an even number 2n of vertices and without self loops and a perfect matching
(that is, a pairing of vertices such that each vertex is paired with exactly one
other vertex) M∗ ⊆ E in G. We call a path (v0, v1, . . . , vt) in G closed (or a
cycle) if v0 = vt. Slightly abusing notation, we sometimes consider (possibly
closed) paths in G as sets of edges occurring in the path. In the following, we
call a (possibly closed) path p in G alternating with respect to M∗ if each vertex
on p is incident with an edge in p ∩ M∗. Note that an alternating path has an
even number ≥ 2 of vertices (≥ 4 if it is closed).

In the bioinformatic context, M∗ represents contigs and, thus, all vertices
are extremities of contigs and each contig has two extremities. Edges of E \ M∗

represent ways to link the contigs together. These edges are weighted by a weight
function w : E → IN measuring the support of each of these links (e.g. the number
of pairs of reads with one end in each of the two contigs). Figure 1 shows an
example of such a scaffold graph. The goal is then to compute a most probable
genomic structure consisting of a fixed number σp of linear chromosomes (paths)
and σc of circular chromosomes (cycles). Thus, we are interested in covering G
with a given number of vertex-disjoint alternating paths and cycles, maximizing
the total support of the solution. Two variants of the problem are considered:
in the first one, qualified “strict”, the solution must exactly satisfy the number
of paths and cycles; the second one allows to find less of these paths and cycles.
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Max Strict Scaffolding (MaxSSCA)
Input: a graph G = (V,E), edge weights ω : E → IN, a perfect matching

M∗ of G, and σp, σc ∈ IN
Task: Find a vertex-disjoint maximum-weight collection of exactly σp

alternating paths &σc alternating cycles covering the vertices of G.

Max Scaffolding (MaxSCA)
Input: a graph G = (V,E), edge weights ω : E → IN, a perfect matching

M∗ of G, and σp, σc ∈ IN
Task: Find a vertex-disjoint maximum-weight collection of ≤ σp alternat-

ing paths &≤ σc alternating cycles covering the vertices of G.

Exchanging “maximum-weight” for “minimum-weight” in the above defini-
tion yields corresponding minimization problems called Min Strict Scaffold-
ing and Min Scaffolding. The decision versions of the maximization problems
are called Strict Scaffolding and Scaffolding.

Related Work. For efficiency reasons, previous work on scaffolding is essentially
based on heuristics and exact methods on simplified instances of variants of the
scaffold graph. The literature offers a wide range of methods [5,6,8,9,12,15,16],
as well as a comparison thereof [10]. The problem received much attention in
the framework of complexity and approximation [2,17–19] and it is known to be
NP-hard, even in constrained special cases. While neither Max Scaffolding
nor Min Scaffolding are constant-factor approximable [19], some polynomial-
time approximation algorithms are known for the case that G is a clique [2] or
a complete bipartite graph [19]. The parameterized complexity of Max Scaf-
folding has been considered [17,18], showing that, while an optimal solution
can be calculated in polynomial time on graphs of low treewidth, there is no
polynomial kernel for this parameter. Further, for the special case where remov-
ing the edges of M∗ kills all cycles in G, Max Scaffolding remains NP-hard
to approximate, but can be solved optimally in O(n2σp+1) time [19].

Some of our previous work on the problem is dedicated to approximation
algorithms. We described algorithms with a ratio of three and two in special
cases [2,17,19], in a first attempt to control the extent to which a heuristic
solution diverges from the optimal. This result was improved by randomization
techniques [3]. However, since this ratio in obtained for complete graphs, or
graphs incompletely describing real instances, it is not completely satisfying.
When applying this approach to real instances, one needs to complete the graph
with zero-weighted edges that have are not biologically meaningful and void any
computational advantage derived from the sparsity of real-world instances.

Our Contribution. In this paper, we focus on the greedy heuristic described by
Chateau and Giroudeau [2]. This algorithm was proven to guarantee a constant
approximation ratio of three, which is tight1, on complete graphs. However, this
1 This means that instances for which the computed solution has a third of the optimal

weight exist. It does not exclude better approximation algorithms.
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bound is of pure theoretical nature and we suspected the solutions to behave
much better in practice. Hence, we propose here a measure of quality computed
for each instance, instead of improving the guaranteed constant ratio on special
instances. The main idea is to exploit the greedy process and, at each step,
analyze to what extent the greedy choice diverges from potential optimality. We
define an upper bound on the optimal score for each given instance, computed
at no additional cost during the greedy algorithm. We implemented and tested
this bound on a set of real instances and show that the greedy algorithm is really
performant on those instances.

Organization of the Paper. In the following, Sect. 2 recalls the principles of the
greedy algorithm, Sect. 3 gives a description of the dynamic upper bound and
its proof. Finally, Sect. 4 presents and discusses the experimental results.

2 Greedy Algorithm

In this work, we modify the existing 3-approximation algorithm [2] which is
described on complete scaffold graphs. To apply this algorithm to any instance,
we may have to complete the input graph first. However, it is possible to stop
the algorithm at the first edge with weight zero, and arbitrarily and quickly
complete the solution.

Notation. Let G be the input graph and let n := |V |/2 = |M∗|. In a partial cover
of G with alternating paths and cycles, we refer to the number of paths and
cycles by np and nc, respectively. The number of paths of length 1 (i.e. isolated
contigs) within the partial solution is p1, while the number of paths containing
at least 3 edges is p≥3. At the beginning of each iteration of the algorithm we
have np = p1 + p≥3. We also maintain the following data structures:

• for each path p in the partial solution, we maintain its length L(p),
• for each vertex v, we store the unique path p(v) containing v,
• for each endpoint v of a path p in the partial solution, o(v) refers to the other

endpoint of p.

Note that, at the beginning of the algorithm, for each uv ∈ M∗, we have p(u) =
p(v) = uv, o(u) = v, o(v) = u and, since all cycles should contain at least four
edges, we also have n ≥ σp + 2σc. If, during the execution of Algorithm1, we
have σp = 0 and nc = σc > 0 and np ≥ 1, then we call any alternating path that
is not part of an alternating cycle an orphan path.

Description. Algorithm 1 is a greedy algorithm which consecutively considers
edges of E\M∗ by decreasing order of weight. When an edge is added to the
partial solution, the algorithm removes all edges adjacent to the added edge, forc-
ing every vertex to have degree at most two in the partial solution (see Procedure
Take). Algorithm 1 has been proven 3-approximate for Min Strict Scaffold-
ing on complete graphs satisfying n ≥ 2(σp + 2σc), with a time complexity of
O(m log2 n) [2].
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Algorithm 1. 3-approximated greedy algorithm.
Data: an edge-weighted clique G = (V, E), a perfect matching M∗ of G,

integers σp and σc.
Result: a set E′ ⊂ E inducing a collection of exactly σp and σc alternating

paths and cycles, respectively, in G
1 sort the edges of E by decreasing order of weight;
2 (E, E′) ← (E \ M∗, M∗); initialize p(v), o(v) for each v ∈ V ;
3 (np, nc, p1, p≥3) ← (n, 0, n, 0);
4 while np �= σp or nc �= σc do
5 e = uv ← the first element of the ordered-list E;
6 E ← E \ {e};
7 if p(u) �= p(v) and np + nc > σp + σc and Permit(e) then
8 Take(E,E′,e); // merge two paths

9 update L(p(u)), L(p(v)), p1, p≥3, o(o(u)), and o(o(v));

10 else
11 if p(u) = p(v) and nc < σc and no orphan path will remain then
12 Take(E,E′,e); // complete a cycle

13 update L(p(u)), np, nc, and p≥3;

14 return E′

Function Permit maintains the condition σp + 2(σc − nc) ≤ p1 + 2p≥3, which
is neccessary for constructing a solution as it permits to build at least σc − nc

cycles and σp paths from np = p1 +p≥3 paths. The function returns True if and
only if this condition will hold after adding the edge e to the partial solution.

Function. Permit(e).
Data: edge uv ∈ E \ M∗

Result: True iff a solution can still be constructed after adding e to E′

1 if L(p(u)) = L(p(v)) = 1 then
2 return True;
3 else
4 if L(p(u)) = 1 or L(p(v)) = 1 then
5 return (p1 − 1 ≥ 2(σc − nc − p≥3) + σp);
6 else
7 return (p1 ≥ 2(σc − nc − (p≥3 − 1)) + σp);

3 Dynamic Upper Bound

Experiments on real datasets point out the near optimality of the greedy
algorithm [2]. Indeed, despite the fact that the algorithm has a fixed ratio of
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Procedure. Take(E,E′,e).
Data: e ∈ E\M∗

1 E′ ← E′ ∪ {e};
2 remove all non-matching edges adjacent to e from E;

Fig. 2. Calculation of θ(e) (dashed) for a partial solution (solid) with M∗ (bold).

three, the real ratio of the algorithm on several real instances is close to one.
If we know the weight of an optimal solution, it is easy to compute the real
ratio of the weight of the approximate solution. However, if we do not have the
weight of an optimal solution (for example if the instance is too big to be solved
by an exact algorithm) one cannot guess the real ratio of the algorithm on the
instance. Our main goal is to calculate an upper bound on the weight of an
optimal solution and then guarantee an upper bound on the effective ratio of
the greedy algorithm on a specific instance.

3.1 Notation and Definitions

Let G = (V,E,M∗) be a scaffold graph with weight function ω : E → N. For any
S ⊆ E, we abbreviate ω(S) :=

∑
e∈S ω(e). Let e = uv /∈ M∗. We say an edge f

is adjacent to e if e ∩ f �= ∅. The set of edges of S ⊆ E that are adjacent to e is
denoted by e	S := {f ∈ S | |e∩f | = 1}. We let SA = {e1, . . . , en−σp} ⊆ E \M∗

denote the set of edges chosen by Algorithm 1 in that order. We also denote
by SOPT = {f1, . . . , fn−σp} ⊆ E \ M∗ the set of edges of an optimal solution,
considered in that order during Algorithm1. When running the algorithm, we
could consider two points of view:

1. we can consider that a solution is progressively built by adding edges to M∗,
and thus we denote by Sk the set of edges M∗ ∪ {e1, . . . , ek} corresponding
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Fig. 3. Contacts between f ∈ SOPT and SA.

to a partial solution. Note that (V, Sk) consists of at least σp paths and at
most σc cycles;

2. we can consider that the original clique is progressively updated by removing
edges, during the update steps. Then, we denote by Ek the set E in the
algorithm after the edge ek has been added to the solution. In the same way,
we denote by Gk the graph (V, Sk ∪ Ek).

Observation 1. The graph Gk does not contain any edge which has been
rejected by the algorithm before the edge ek has been added to the solution.

Definition 1. Let (G = (V,E),M∗, σp, σc) be an instance of Max Strict
Scaffolding, and ei ∈ SA an edge of the solution given by Algorithm1. For
u ∈ ei, we define max ei

(u) to be any edge that, among all edges f /∈ M∗ of Gi−1

with f ∩ ei = {u} has maximal weight.

Definition 2. Let (G = (V,E),M∗, σp, σc) be an instance of Max Strict
Scaffolding, and let ei = uv ∈ SA be an edge of the solution given by
Algorithm1. Let pu and pv be maximal-length paths of (V, Sk ∪ M∗) such that
pu = (u, . . . , x) and pv = (v, . . . , y). Then,

θ(ei) := {max e(u),max e(v)} ∪ ({xy} \ {uv})

For convenience, we use ēi as shorthand for the edge xy, i.e. the edge which
would close the path pu ∪ {ei} ∪ pv in a cycle. See Fig. 2 for an example.

Notice that the definition of θ depends on the partial solution Si.

3.2 Computation of the Upper Bound

Lemma 1. Let (G = (V,E),M∗, σp, σc) be an instance of Max Strict Scaf-
folding, let SA be a solution produced by Algorithm1 and let SOPT be an opti-
mal solution. Then,

ω(SOPT ) ≤
∑

e∈SA

max(ω(θ(e)), ω(e) + ω(ē)) (1)
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Proof. We call any function Γi : SOPT → E good if Γi is injective and ω(f) ≤
ω(Γi(f)) for all f for which Γi is defined. To prove (1), we inductively construct
a good function Γ : SOPT → E that assigns each f ∈ SOPT such that Γ (f) is in
{e}∪ θ(e) for some e ∈ SA, and Γ (SOPT ) does not contain both e and θ(e) \ {ē}
for any e ∈ SA. For all k, we denote by Sk

OPT the set of edges of SOPT for which
Γk is defined.

k = 0 : Then, we set Γ0(f) = f for all f ∈ M∗ and observe that Γ0 is good.

k ⇒ k + 1 : we suppose that Γk is good and extend it to Γk+1. Let e = ek+1 = xy
be the last edge added to Sk+1 when running Algorithm1.

For all f ∈ SOPT \ Sk−1
OPT , i.e. Γk(f) is not defined:

if |f ∩ e| = 2 then f = e and we set Γk+1(f) = f . Since e is the newly added
edge to Sk+1, Γk+1 is still injective on Sk+1

OPT and ω(f) ≤ ω(Γ (f));
if |f ∩ e| = 1 then, without loss of generality, let x ∈ f and we set Γk+1(f) =

max e(x). As max e(x) is in Gk and no two edges of SOPT \ M∗ can share an
endpoint, there is no edge f ′ ∈ SOPT \{f} with Γk+1(f ′) = max e(x). Hence,
Γ is still injective on Sk+1

OPT and ω(f) ≤ ω(Γ (f));
if f = ē then we set Γk+1(f) = f . By similar argument, since two edges of

SOPT \ M∗ cannot share an endpoint, there is no edge f ′ ∈ SOPT such
that Γk+1(f ′) = ē. Thus, Γk+1 is still injective on Sk

OPT + 1 on and ω(f) ≤
ω(Γ (f)).

Otherwise, leave Γk+1(f) undefined.

If Γk+1 = Γk, then we call e free. We remark that all edges rejected by the
algorithm belongs to θ(e′) for some e′ ∈ SA.

At the end of the construction, Γn−σp is good. Though, some edges of SOPT may
still not have an image in Γn−σp , namely unassigned edges. However, since |SA| =
|SOPT | = n − σp and Γn−σp is injective on S

n−σp
OPT , there are at least as many

free edges in SA than unassigned edges in SOPT . Moreover, we can assign each
unassigned edge of SOPT to a free edge in SA. Indeed, because f is unassigned,
either f has not been rejected by the algorithm and ω(f) ≤ ω(e),∀e ∈ SA, or
f was rejected and then necessarily already belongs to θ(e) for some e ∈ SA.
Hence, the association of unassigned edges is trivial. Let Γ denote the result of
adding these assignments to Γn−σp .

The relation Γ is then injective on SOPT , and ∀f ∈ SOPT , we have ω(f) ≤
ω(Γ (f)). In addition, for any e ∈ SA that is not free,

⋃
f∈SOPT

Γ (f) intersects
either {e} or {max e(x),max e(y)}, but not both. Actually, for f ∈ SOPT \ M∗

and e ∈ SA, if Γ (f) = {e} then either f = e or e was free before it was assigned.
Moreover, if Γ (f) = max e(x) (or max e(y)) then |e ∩ f | = 1 and since neither
SOPT \ M∗ nor SA \ M∗ contains a pair of adjacent edges, no f ′ ∈ SOPT \ M∗

is mapped to e by Γ . Hence,
∑

f∈SOPT

ω(f) ≤
∑

f∈SOPT

Γ (f) ≤
∑

e∈SA

max{ω(θ(e)), ω(e) + ω(ē)}. 	
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Lemma 2. Let G be a clique, let (G,M∗, σp, σc) be an instance of Max Strict
Scaffolding and let SA be a solution computed by Algorithm1. Then,

∑

e∈SA

max(ω(θ(e)), ω(e) + ω(ē)) ≤ 3ω(SA)

Proof. Since, for any ek ∈ SA, θ(ek) is defined considering the graph Gk−1 and,
by Observation 1, the edge ek have maximum weight among Ek−1. Indeed it is
not possible that ēk has been rejected before considering ek, since ēk is counted in
θ(ek) when ēk closes a cycle ek belongs to. If it is structurally possible to join both
involved paths by ek, it would also have been possible to join them by ēk and this
edge would not have been rejected then. Thus ω(ēk) ≤ ω(ek), and more generally,
for any e′ ∈ Ek−1, we have ω(e′) ≤ ω(e). Then, for each e ∈ SA, we have
ω(θ(e)) ≤ 3ω(e) and, thus,

∑

e∈SA

max(ω(θ(e)), ω(e)) ≤ ∑

e∈SA

3ω(e) = 3ω(SA). 	

Theorem 1 follows straightforwardly from previous Lemmas 1 and 2:

Theorem 1. Let G be a clique, let (G,M∗, σp, σc) be an instance of Max
Strict Scaffolding and let SA be a solution computed by Algorithm1. Then,

ω(SOPT ) ≤
∑

e∈SA

max(ω(θ(e)), ω(e)) ≤ 3ω(SA)

3.3 Derived Results

In the following, let G = (V,E) be a clique, let I := (G,M∗, ω, σp, σc) be an
instance of Max Strict Scaffolding. Let S ⊆ E be a subset of (or equal to)
a feasible solution for I. Then, we call S extensible. For any vertex v ∈ V , we
define dS(v) as the degree of the vertex v in the graph (V, S). Further, any edge
e ∈ E \ S such that S ∪ {e} is extensible is called valid with respect to S.

Lemma 3. Let G be a clique, let I := (G,M∗, ω, σp, σc) be an instance of Max
Strict Scaffolding, and let Sp ⊇ M∗ be a subset of an optimal solution for
I. Let e = xy and e+ be edges in E \ Sp that are valid for Sp, with e �= e+,
ω(e) ≥ ω(e+), and no other edge that is valid for Sp is heavier than e+. Let

ω(max e(x)) + ω(max e(y)) + ω(e+) ≤ ω(e). (2)

Then, there is an optimal solution S′ for I, such that Sp ∪ {e} ⊆ S′.

Proof. Let S∗ be an optimal solution for I with Sp ⊆ S∗ and consider the set
S = S∗ ∪{e}. In the following, we construct a solution S′ with Sp ∪{e} ⊆ S′ and
ω(S′) ≥ ω(S∗). Then, we conclude that S′ is an optimal solution for I. First, let
S′ = S. Then, we exhaustively apply the following rules to modify S′.

Rule 1: ∀w ∈ V, dS′(w) = 3, remove from S′ \ Sp the unique edge wz �= e;
Rule 2: if σc is strictly smaller than the number of cycles in (V, S′), then remove

from S′ any edge f ∈ S′ \ Sp, f �= e that is on a cycle;
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Rule 3: if σp is strictly greater than the number of paths in (V, S′), remove any
edge f ∈ S′ \ Sp, f �= e that is on a path;

Rule 4: connect path-endpoints in (V, S′) to restore σp paths and σc cycles.

Note that the result S′ is a feasible solution for I. Next, we prove ω(S′) ≥ ω(S).

If Rule 1 is triggered, then Rule 1 removes at most two edges f1, f2 such that
f1 ∩ e = {x} and f2 ∩ e = {y} and, as e is valid for Sp, we have f1, f2 /∈ Sp.
Since ω(f1) ≤ ω(max e(x)) and ω(f2) ≤ ω(max e(y)), (2) implies ω(f1) +
ω(f2) ≤ ω(e). Thus, ω(S′ \ {f1, f2}) ≥ ω(S∗).

If Rules 1 and 2 are triggered, then Rule 1 removes at most two edges f1, f2 with
ω(f1) + ω(f2) ≤ ω(max e(x)) + ω(max e(y)) and Rule 2 one edge f . Further,
ω(f) ≤ ω(e+) by choice of e+. Thus, (2) implies ω(S′ \ {f1, f2, f}) ≥ ω(S∗).

If Rule 3 is triggered, then the edge f ∈ S′\Sp, f �= e exists as otherwise, Sp∪{e}
is not extensible, contradicting the choice of e. Moreover, ω(f) ≤ ω(e+) by
choice of e+ and, thus, (2) implies ω(S′ \ {f}) ≥ ω(S∗).

Rule 4 only adds edges and, thus, may only increase the weight of S′. 	
An edge e like the one considered in Lemma 3 will be called optimal edge, since we
showed that there is an optimal solution containing e. The direct application of
Lemma 3 is the conception of an exact algorithm for the Scaffolding problem.
Moreover, since our greedy algorithm considers only maximal weight edges, only
a slight modification of the algorithm is necessary to take such edges into account.

4 Experimental Results

Theorem 1 provides a dynamic upper bound on the optimal score, allowing us
to estimate the quality of Algorithm 1 on different kinds of instances. In order
to prove the near optimality of Algorithm1 on real instances, we have devel-
oped a variant of the algorithm in which the calculation of the dynamic upper
bound of Sect. 3 is implemented. This calculation neither affects the behavior
of the algorithm, nor its time complexity of O(m log n), nor its worst-case ratio
of 3. Through experimental runs, we give a direct application of the bound as
a measure of how realistic the generated scaffold graphs are and we answer the
following questions:

1. Can the greedy algorithm be used on very large scaffold graphs, and what is
its associated computation time?

2. Is the upper bound on the ratio computed with θ closer to 1 or to the theo-
retical guaranteed ratio 3?

3. Is the upper bound useful to measure the efficiency of simulation?

We tested our algorithm on real data from assembled paired-end reads and
from assembled simulated paired-end reads.
Real Dataset. A first dataset, called real instances, has been built using the fol-
lowing pipeline, except for azucena which comes from a personal communication
with authors of a paired-end reads library:
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Table 1. Real dataset.

Species Size (bp) Type Accession

Anopheles Gambiae str. PEST (anopheles) 41,963,435 Chromosome 3L NT 078267.5

Bacillus anthracis str. Sterne (anthrax) 5,228,663 Chromosome NC 005945.1

Arabidopsis Thaliana (arabido) 119,667,750 Complete genome TAIR10

Zaire ebolavirus (ebola) 18,959 Complete genome NC 002549.1

Gloeobacter violaceus PCC 7421 (gloeobacter) 4,659,019 Chromosome NC 005125.1

Lactobacillus acidophilus NCFM (lactobacillus) 1,993,560 Chromosome NC 006814.3

Danaus plexippus (monarch) 15,314 Mitochondrion NC 021452.1

Pandoravirus salinus (pandora) 2,473,870 Complete genome NC 022098.1

Pseudomonas aeruginosa PAO1 (pseudomonas) 6,264,404 Chromosome NC 002516.2

Oryza sativa Japonica (rice) 134,525 Chloroplast X15901.1

Saccharomyces cerevisiae (sacchr3) 316,613 Chromosome 3 X59720.2

Saccharomyces cerevisiae (sacchr12) 1,078,177 Chromosome 12 NC 001144.5

1. Choice of a reference genome, for instance on the nucleotide database from
NCBI2. Table 1 shows selected genomes used to perform our experiments,
chosen because of their various origins and sizes.

2. Simulation of paired-end reads, using wgsim [14]. The chosen parameters are
an insert size of 500bp and a read length L of 100bp.

3. Assembly using the de novo assembly tool minia [4] with k-mer size k = 30.
4. Mapping of reads on contigs, using bwa [13]. This mapping tool was chosen

according to results obtained by Hunt [10], a survey on scaffolding tools.
5. Generation of scaffold graph from the mapping file. Statistics on the numbers

of vertices and edges in produced scaffold graphs can be viewed in Table 4.

Simulated Reads. The main advantage of simulated instances is that we can
easily control the graph size and its density. However, it seems quite difficult to
relevantly identify structures of real scaffold graphs and then simulated data are
generally far from reality. We used two kinds of simulation tools:

1. A naive random generator, which uniformly generates a graph with given
density and number of vertices. This generator is called Uniform;

2. A more complex generator, issued from the Model Driven Engineering world
and especially designed to generate realistic instances: Grimm3 [7].

Instances are generated by both Grimm and Uniform, either using real parame-
ters on the number of contigs and edges, namely semi-simulated, or with artificial
parameters sometimes far from those observed in real scaffold graphs, namely
pure simulated. Thus, we have four simulated datasets to play with.

4.1 Computation Time Scaling

Experiments were run on a personal computer with four processors i7 3.2GHz
and 16GB RAM. Memory usage was very light, except for the biggest graph
2 http://www.ncbi.nlm.nih.gov/.
3 http://www.lirmm.fr/∼ferdjoukh/english/research.html.

http://www.ncbi.nlm.nih.gov/
http://www.lirmm.fr/~ferdjoukh/english/research.html
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Table 2. Computation time (in ms) for real
instances.

Instance Time Instance Time

monarch <0.1 anthrax 34

ebola 0.1 gloeobacter 36

rice 0.27 pseudomonas 37

sacchr3 1 anopheles 462

sacchr12 10 arabido 1,500

lactobacillus 17 azucena 19,215

pandora 19

Table 3. Computation time for
two instances on usual scaffolders.
Note that SOPRA ran out of mem-
ory on the azucena data set.

Scaffolder anopheles azucena

BESST [15] 102.1s 727.5s

SCARPA [6] 146.9s >48h

SOPRA [5] 56.1s –

Greedy 116.0s 889.4s

(azucena) which took up to 5GB. However, we think this amount of memory
usage may be significantly lowered by a better handling of graph I/O. Table 2
shows computation time of the greedy part. Even for the biggest graph with
nearly one million contigs, computation time is less than 20s. Note that this
time only concerns the greedy computation time, once the graph is generated.
Generation of the graph from a mapping file may take more time, up to 15 min
in the case of azucena. The most expensive step in the production of the graph
remains the mapping of reads on contigs, which takes several hours for azucena,
but is common to all de novo scaffolding tools. These experiments let us answer
our first question: Algorithm1 is capable of treating huge instances, using very
little computational ressources. Table 3 shows a comparison of the computation
time of several scaffolders on the instances anopheles and azucena, including
precomputation time (after the mapping step). We notice that our method is
competitive relatively to other heuristics, in addition to providing a bound on
the quality of the solution.

4.2 Exploring the Bounds on Ratio

If SA is the solution given by Algorithm 1, and SOPT a corresponding optimal
solution, we denote their weights by ωA and ωOPT , respectively. For the bound
B proven in Theorem 1, we have ωA ≤ ωOPT ≤ B ≤ 3ωA. Thus, the ratio
ωOPT /wA ≥ 1 is not only smaller than 3, but also than B/ωA. Table 4 shows
the results we have on the upper bound. Indeed, we are able to guarantee a
ratio very close to 1 for all of the real data since the gap between the weight
of the approximated solution and the upper bound is small. The solution for
ebola is even optimal. Moreover, for azucena, the largest instance we have in
our possession, we prove that the solution returned by the algorithm is at worst
1% smaller than the upper bound we have calculated. As a conclusion to this
experiment, we can remark that, although it is only a heuristic, the greedy
algorithm provides very good solutions on real instances, and since it is very
quick, has a very practical interest.
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Table 4. Guaranteed ratio on real data for σp = 1 and σc = 0.

graph #contigs #edges ωA B B/ωA − 1

monarch 14 19 506 507 0.20 %

ebola 17 26 776 776 0.00%

rice 84 139 4,293 4,321 0.65 %

sacchr3 296 527 14,524 14,629 0.72 %

sacchr12 889 1,522 46,027 46,345 0.69 %

lactobacillus 1,898 3,335 95,538 96,194 0.69 %

pandora 2,451 4,271 119,575 120,334 0.64 %

anthrax 4,055 6,958 226,709 227,925 0.54 %

gloeobacter 4,517 7,885 218,524 220,091 0.72 %

pseudomonas 5,248 9,086 279,611 280,865 0.45 %

anopheles 42,045 71,452 1,707,463 1,720,269 0.75 %

arabido 1,571,094 1,561,540 1,561,540 1,571,094 0.60 %

azucena 956,902 2,425,349 4,692,840 4,740,633 1.06%

Table 5. Guaranteed ratio on simulated data.

Data type #graphs mean ratio median ratio

Pure simulated, Grimm 375 1.433 1.320

Pure simulated, Uniform 520 1.729 1.814

Semi-simulated, Grimm 330 1.086 1.084

Semi-simulated, Uniform 330 1.151 1.118

4.3 Simulated Data

Because of the near optimal results we obtained on real data, we wanted to test
our algorithm on simulated instances. We then compared obtained average ratios
between these four types of data to point out the gap of efficiency according to
the generation method.

Table 5 reveals the differences of gaps between the approximated solution
weight and the calculated upper bound, depending on the generation method.
Note that this gap is always smaller when simulating with Grimm than with
Uniform data, which was expected since real-world instances (which Grimm tries
to mimic) are expected to be the result of overlaying a strong signal with little
noise, which makes detecting this signal much easier than looking for a signal in
uniform random graphs. Furthermore, semi-simulated data obtain the smallest
gap, which means our algorithm is more effective on real data like instances than
on pure simulated instances. We noticed that degree distribution has an impact
on the efficiency of the greedy method. However, we observe that simulated data
cannot generally guarantee a ratio as good as real data, meaning that simulation
process should be refined to produce fully exploitable benchmarks.
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5 Conclusion

In Sect. 4 we pointed out the efficiency of our upper bound calculation previously
proven in Sect. 3. By demonstrating that the worst case scenario never actually
occurs in real or simulated data, these results encourage the use of Algorithm 1.
In addition, the gap between real data and simulated data seems to indicate
that additional effort in designing more realistic scaffold graph generators is
warranted.

Perspectives of this work go into both practical and theoretical directions. On
the latter one, short term perspectives include exploring possibilities to develop
dynamic upper bounds on approximation ratios of other algorithms. As far as we
know, this kind of technique for computing upper bounds has not been consid-
ered, and it extends straightforwardly to several NP-complete problems such as
the maximization variant of Travelling Salesman Problem [1]. Finally, the proof
of Lemma 3 may lead to an exact algorithm which would use optimal edges to
minimize branching on the search-tree. On the practical side, we are interested
in testing the current implementation of Algorithm1 in comparison with existing
scaffolding tools. This may also include a careful examination of the quality of
solutions, not only from a combinatorial point of view, but also from a biolog-
ical point of view. As an extension of this work, we are also interested in the
generalization of this greedy algorithm to a version of the problem allowing to
use a same contig several times, modeling the case where there are repeats in
the genomes, which is what happens in reality.
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16. Salmela, L., Mäkinen, V., Välimäki, N., Ylinen, J., Ukkonen, E.: Fast scaffolding
with small independent mixed integer programs. Bioinformatics 27(23), 3259–3265
(2011)

17. Weller, M., Chateau, A., Dallard, C., Giroudeau, R.: Scaffolding problems revisited:
complexity, approximation and fixed parameter tractable algorithms, and some
special cases. In: (2016, revision)

18. Weller, M., Chateau, A., Giroudeau, R.: Exact approaches for scaffolding. BMC
Bioinform. 16(14), S2 (2015). ISSN 1471–2105

19. Weller, M., Chateau, A., Giroudeau, R.: On the complexity of scaffolding problems:
from cliques to sparse graphs. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.)
COCOA 2015. LNCS, vol. 9486, pp. 409–423. Springer, Heidelberg (2015)

http://dx.doi.org/10.1186/gb-2014-15-3-r42
http://dx.doi.org/10.1186/gb-2014-15-3-r42
http://dx.doi.org/10.1186/gb-2014-15-3-r42
http://dx.doi.org/10.1093/bioinformatics/btp698
http://dx.doi.org/10.1093/bioinformatics/btp698
http://dx.doi.org/10.1093/bioinformatics/btp698


Geometric Optimization



Performing Multicut on Walkable Environments

Obtaining a Minimally Connected Multi-layered
Environment from a Walkable Environment

Arne Hillebrand(B), Marjan van den Akker,
Roland Geraerts, and Han Hoogeveen

Institute of Information and Computing Sciences,
Utrecht University, 3508 TA Utrecht, The Netherlands

{A.Hillebrand,J.M.vandenAkker,R.J.Geraerts,J.A.Hoogeveen}@uu.nl

Abstract. A multi-layered environment is a representation of the walk-
able space in a 3D virtual environment that comprises a set of two-
dimensional layers together with the locations where the different layers
touch, which are called connections. This representation can be used
for crowd simulations, e.g. to determine evacuation times in complex
buildings. Since the execution times of many algorithms depend on the
number of connections, we will study multi-layered environments with
a minimal number of connections. We show how finding a minimally
connected multi-layered environment can be formulated as an instance
of the multicut problem. We will prove that finding a minimally con-
nected multi-layered environment is an NP-Hard problem. Lastly, we
will present techniques which shrink the size of the underlying graph by
removing redundant information. These techniques decrease the input
size for algorithms that use this representation for finding multi-layered
environments.

1 Introduction

Evacuation planning and crowd simulations for safety purposes are becoming
more and more important in modern society. To perform such simulations in a
soccer stadium for example, we need its underlying polygonal environment (PE),
which is a common format used by architects [17] and 3D modelling tools. A PE
is a collection of polygons in R

3 which can be processed through a pipeline to
mould it in an appropriate format; an example of such a pipeline is shown in
Fig. 1. As is shown in Fig. 1(a), such a PE usually contains unnecessary details
for simulations. We only need a filtered version of the PE that contains the
polygons that are traversable. Examples of polygons that are not needed in
the walkable environment (WE) are polygons that are too steep, too close to a
ceiling or polygons for which there is not enough clearance for a character to
be positioned on the polygon. We assume, without loss of generality, that all
polygons P ∈ WE are convex. Furthermore, we assume that the WE is clean,
that is, there is no intersecting or degenerate geometry. Both these properties
can be guaranteed when extracting the WE from the PE. An example of a WE
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 311–325, 2016.
DOI: 10.1007/978-3-319-48749-6 23
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(a) PE (b) WE (c) MLE

Fig. 1. (a): A polygonal environment. (b): The walkable environment of this model.
(c): A multi-layered environment for this walkable environment. Polygons with the
same shade of grey are in the same layer. The red edges are connections. (Color figure
online)

is shown in Fig. 1(b). Polygons in a WE can either overlap or be connected.
Two polygons overlap when they share at least one point when projected on the
ground plane that is not on an edge of both polygons. The polygons P and Q
are connected when they do not overlap and share exactly one edge eP,Q. When
P and Q are connected, it is possible for a virtual point character to move from
P to Q and vice versa.

On a WE we want to perform operations such as constructing visibility
graphs [10], which are used for finding shortest paths in the environment, or for
creating navigation meshes [15], which enable fast path planning queries that
are used for crowd simulations. However, many operations currently are limited
to two-dimensional environments. These operations can be extended to layered
two-dimensional environments by using a multi-layered environment (MLE). An
MLE is a decomposition of the WE in layers, such that every layer can be embed-
ded in the plane. When two polygons P and Q share an edge eP,Q and do not
overlap but are in different layers, eP,Q connects the two layers. This type of
edge is called a connection. This set of edges is also stored for an MLE.

Definition 1 (Multi-layered Environment, Van Toll et al. [16]). An MLE
for a given WE consists of a set L = {L1, ..., Ll} of two-dimensional layers and
a set C of connections, such that:

– No layer Li (i = 1, . . . , l) contains overlapping polygons;
– Every polygon in the WE is assigned to exactly one layer Li (i = 1, . . . , l);
– When two polygons P and Q are connected, but are in different layers, the

connection between P and Q is part of the set C;
– Every layer Li (i = 1, . . . , l) forms a single connected component, i.e. for any

two polygons P , Q in Li we can walk from P to Q without leaving Li.

When we use this definition of an MLE, it is rarely the case that there exists
only one possible MLE for a WE. Take for example the MLE given in Fig. 1(c),
consisting of three layers and two connections. Another possible MLE for this
WE has only two layers, but needs four different connections. We call an MLE
with the minimal number of connections a minimally connected multi-layered
environment (MICLE). In this paper we will focus on MICLEs. This is the
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most useful type of MLE because subsequent operations are dependent on the
number of connections. For example, van Toll et al. [16] show that constructing
a navigation mesh for an MLE can be done in O(k × n log n) time, where k is
the number of connections in an MLE and n is the number of obstacle points
used to describe the boundaries of the individual layers of the MLE.

1.1 Related Work

There are several applications and algorithms that are already using some form
of an MLE. However, the MLEs that they use are often of poor quality. They
do not cover all of the walkable space or contain a high number of connections.
Van Toll et al. [16] use an MLE to create a multi-layered navigation mesh,
which allows for fast path planning queries. Their MLE is a decomposition of
the walkable environment into layers. One strength of this type of MLE is that
the representation of the corresponding WE is exact. However, they do not
describe any methods to find an MLE with a low number of connections.

Deusdado et al. [3] use a discretized height map to automatically extract
walkable surfaces from a PE. The locations of the connections are determined
by comparing the height information of different walkable surfaces. Oliva and
Pelechano [11] overlay the environment with a three-dimensional grid and mark
each grid cell positive when it contains walkable geometry. These grid cells are
grouped into layers which are then used to create a multi-layered navigation
mesh. Pettré et al. [12] create multiple elevation maps of a PE by using the
graphics card. From these elevation maps, slopes that are too steep are filtered
and the elevation maps are joined, resulting in a WE. The downside of these
techniques is that they are not general enough and that the resulting MLE is
only an approximation of the WE and does not cover all of the WE.

Instead of extracting an MLE from a PE or WE, Jiang et al. [9] propose a
method which models the environment in simple blocks that can be described
in two dimensions. The blocks are linked together in a floor plan-like fashion.
When an environment is described this way, an MLE is easy to extract since the
layers and connections are explicitly defined.

1.2 Our Contribution

In Sect. 2, we will show that the search for a MICLE can be solved in theory
by using multi-commodity minimal-cut (MULTICUT). For this we will encode the
WE as a graph. MULTICUT is a problem in the class of NP-Hard problems [1],
for which fixed parameter tractable (FPT) algorithms exist [5]. We will prove
that finding a MICLE is also in the class of NP-Hard problems. In Sect. 3 we
will identify situations in which edges, vertices and overlaps can be removed
from the graph, without influencing the size of the cut needed for finding a valid
MICLE. We have also implemented algorithms to handle these situations and we
experimentally evaluate them in Sect. 4. The graph reduction algorithms have
varying results on real-world environments.
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2 Finding a MICLE

We first convert the WE into a graph G = (V,E,O). In this graph, a vertex is
added to V for every polygon in the WE. An undirected edge (v, w) is added to
E whenever the polygons corresponding to the vertices v and w are connected in
the WE. When two polygons with corresponding vertices v′ and w′ overlap, the
unordered pair (v′, w′) is added to O. This process is illustrated in Fig. 2. The
resulting graph is called the walkable environment graph (WEG). Sometimes, we
want to assign different weights to edges in the WEG. One such situation will
be described in Sect. 3. For a weighted WEG we have G = (V,E,O,w). Here w
is a function that maps every edge e ∈ E to a real number. The weight of the
cut set C is defined as |C| = w(C) =

∑
e∈C w(e). Using the WEG, the problem

of finding a MICLE can now be formulated as follows:

(a) WE (b) Vertices added (c) Edges added (d) Overlaps added

Fig. 2. Constructing the graph representation of a walkable environment. (a): The
walkable environment. (b): Vertices are added for every polygon in the walkable envi-
ronment. (c): Undirected edges are added for connected polygons. (d): Overlapping
vertices are annotated (represented by red edges). (Color figure online)

Problem 1 (Finding a MICLE). Given WEG G = (V,E,O) of WE W . Finding
a MICLE is now the same as finding the set C ⊆ E for which:

– ∀v, w such that (v, w) ∈ O: v and w are in different graph components for the
graph G′ = (V,E\C);

– |C| is minimal.

From the different connected components in the graph G′ = (V,E\C), we can
construct the different layers in the MLE. When |O| = 1, this problem is the
same as the s-t cut problem, which can be solved using the max-flow min-cut
theorem [4]. If |O| > 1, we have an instance of the MULTICUT problem [14]. In
the MULTICUT framework, multiple source-sink pairs (si, ti) exist, where each
pair has to be separated. By using MULTICUT it is possible to find an MLE with
a minimal number of connections for a WEG by using the overlapping pairs
(v, w) ∈ O as the terminal pair set. Unfortunately, MULTICUT has been proven
to be NP-Hard when |O| ≥ 3 [1]. For |O| = 2, polynomial time algorithms
exist to solve MULTICUT [8]. However, since finding a MICLE is a special case of
MULTICUT, we still need to prove that finding a MICLE for a WEG is indeed an
NP-Hard problem. We will show this below.
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2.1 Preliminaries

The proof that finding a MICLE is in the class of NP-Hard problems is heavily
based on the work done by Dahlhaus et al. [2] on the MULTITERMINAL-CUT (MTC)
problem. The decision version of this problem is defined below:

Definition 2 (MULTITERMINAL-CUT,Dahlhaus et al. [2]). Given a graph G =
(V,E,w), a terminal set T ⊆ V and a positive bound B. The decision version of
MTC is now the same as finding a set E′ ⊆ E for which:

– ∀v, w ∈ T such that v �= w: v and w are in different components for the graph
G′ = (V,E\E′);

–
∑

e∈E′ w(e) ≤ B.

To prove that the MTC problem is NP-Hard, Dahlhaus et al. first prove a
restricted version of PLANAR 3-SAT (P3R) to be NP-Complete.

Definition 3 (P3R, Dahlhaus et al. [2]). Given a set of variables X =
{x1, . . . xn} and set of clauses C = {c1, . . . , cm}, where:

– ∀cj ∈ C: cj = (xk ∨ xl) or cj = (xk ∨ xl ∨ xm) for some xk, xl, xm ∈ X;
– ∀xi ∈ X: xi occurs exactly once in three different clauses, and;
– ∀xi ∈ X: Both the literals xi and x̄i occur at least once.

Solving P3R for a formula F = c1 ∧ . . .∧ cm is now equal to finding a suitable
truth assignment T for all the variables xi ∈ X such that F equals true.

Dahlhaus et al. show how an instance of P3R can be reduced to the decision
version of MTC. Some of the widgets that they use are given in Fig. 3. In this
figure, the circles represent the terminals of the MTC problem. Every variable xi

with two xi literals is replaced with the widget shown in Fig. 3(a). The clauses
of size three are replaced with the widget from Fig. 3(c). Similar widgets exist
for the clauses of size two and for the variables with two x̄i literals.

Next, the widgets representing the variables and the clauses are connected
using weight two link edges. The link edges are attached to the vertices labelled
li,x, l̄i,1 and l̂j,x (x = 1, 2, 3). For details on how these widgets are connected
using the link edges, we refer the reader to reference [2]. The component induced
by the vertices of the link edge and the neighbours of these vertices is called the
link structure. While proving that the decision version of the MTC problem is
NP-Complete, Dahlhaus et al. also proved the following two lemmas:

Lemma 1 (Dahlhaus et al. [2]). Given are a P3R instance (X,C) with X
the set of variables and C the set of clauses. Let GX,C be the bipartite graph
representing this instance and G′

X,C the transformed graph of GX,C . There exists
a set of edges E′ with total weight B = 10|X|+4|C| separating the terminals in
G′

X,C if and only if the P3R instance (X,C) has a satisfying truth assignment.

Lemma 2 (Dahlhaus et al. [2]). When a cut set E′ for MTC is found where
the separation cost

∑
e∈E′ w(e) ≤ B, E′ only contains edges from the connector

triangles or link edges. Furthermore, for each link structure it will only contain
one of the connector triangles or the link edge.
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Fig. 3. The widgets used by Dahlhaus et al. [2] and their polygonal counterparts. The
terminals are depicted by circles and the vertices by discs. The widget in (a) is used
for a variable xi with two xi literals. The widget in (c) is used for clauses with three
variables. For the polygonal counterparts (Figs.(b) and (d)), the newly created vertices
are coloured orange. (Color figure online)

These two lemmas are of key importance for the proof that finding a MICLE is
an NP-Hard problem.

2.2 Finding a MICLE Is NP-Hard in the Strong Sense

First, we will show that the transformed graph G′
X,C can exist as a WEG. Next,

we will prove that it is possible to encode the terminals of MTC in a WE. Finally,
we will show that this can be done in polynomial time.

Since G′
X,C is planar, the components from this graph can easily be repre-

sented using the polygonal structures given in Figs. 3(b) and (d). The link edges
connecting the link vertices li,x or l̄i,x to l̂j,x (x = 1, 2, 3) can be represented
using a series of polygons. Since the link edges have weight two, two of such
series of polygons are required. These series are attached to the only two free
sides of the tetragons li,x or l̄i,x and l̂j,y. The tetragons that represent these
vertices are hatched in Figs. 3(b) and (d). Every link edge can be represented by
using at most five polygons, since there exists a straight line drawing for every
planar graph, and it can be found in O(|V |) time [6]. It is easy to see that the
resulting WEG has the same properties as the components given by Dahlhaus
et al., that is, separating any pair of the vertices from the WEG that directly
corresponds to vertices from the original widgets will result in a cut of exactly
the same weight.
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All the terminals can be encoded by one big set Ttower of polygons. The
required number of polygons in this set is 2|X| + 2|C|, one for each terminal
in G′

X,C . These polygons should all be centred around one point c such that,
when all the polygons are projected on the ground plane, they all contain this
point. As a result, all these polygons will be placed in different components when
searching for any MLE.

The next step is connecting the polygons from Ttower to the polygons where
the terminals of the MTC problem are located. These are labelled xi, x̄i, c−

j and c+j
in Figs. 3(b) and (d). This should be done in such a way that Lemma1 remains
valid and the final polygonal environment is a WE. The validity of Lemma1
remains when we connect each terminal in Ttower to one of the terminals of
MTC using a single weight 7 edge. Cutting such an edge will always increase the
weight of the cut set E′ to a value higher than B. Edges of weight 7 are sufficient,
since the edges of weight 3 and weight 5 connected to the terminals of MTC are
guaranteed not to be part of the cut set E′ if a satisfying truth assignment exists
(Lemma 2).

When we represent these edges of weight 7 by 7 polygonal paths, the polygons
can overlap parts of clause and variable structures, generating new overlaps
that have to be separated. Fortunately, we can create paths that guarantee that
Lemmas 1 and 2 will still hold, even when these paths are added to the WEG.

Lemma 3. We are given a former terminal t, a path p connecting t to the new
terminal t′ ∈ Ttower and the polygonal structure S that contains t, the polygonal
widget it belongs to and its link structures. If p does not overlap S or itself,
Lemmas 1 and 2 still hold.

Proof. Since Lemmas 1 and 2 do not state anything about the scenario where
no satisfying truth assignment for P3R exists, we do not need to consider this
scenario. For this reason, we will assume that there exists a satisfying truth
assignment for P3R.

Note that the path p must be one of the 7 polygonal paths that connects t
to t′. Therefore, cutting only path p will increase the weight of the cut set but
not make t′ and t disconnected in the WEG. Therefore, cutting p will also mean
cutting the other 6 paths connecting t and t′. We already know that these 7
paths will not be cut when separating all terminals in Ttower, unless there is no
possible truth assignment for P3R. Furthermore, we know from Lemma 2 that the
edges from the link structures separate all the terminals. This also means that
all paths connecting vertices in a variable or clause structure will be separated
from any other variable or clause structure. Since p connects the former terminal
t and the new terminal t′, we know that cutting the correct link structures will
separate t′ from all other terminals in Ttower. The terminals that are created
when p overlaps parts of the WE are also cut, since we know that these overlaps
are connected through link structures, and all link structures are cut. Therefore,
both Lemmas 1 and 2 must hold. 
�

It is easy to see that these paths exists. We know that the various clause and
variable structures can be connected using straight paths [6], not considering the
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polygons from Ttower or the paths connecting these structures to Ttower. This
follows from the fact that we started from an instance of P3R, which can be
embedded in the plane. Furthermore, the only non-planar structures are Ttower

and the paths that lead to it. We also know that the paths connecting the former
terminals to the new terminals in Ttower may overlap. Therefore, it is sufficient
to have these paths skim the border of the polygonal structure S, until a straight
path to Ttower is possible. This results in the following theorem:

Theorem 1. The decision version of finding a MICLE is NP-Complete and
finding a MICLE is NP-Hard.

Proof. First we use the graph G′
X,C of Dahlhaus et al. [2]. This graph can be

represented using 45 polygons for every variable, 20 polygons for every clause
with 2 variables and 32 polygons for every clause of three variables. Every link
edge can be represented using 5 polygons, and there are 2|X| link edges in total.
The number of added polygons to create the link structures and components is
linear in |X|+ |C|; the same holds for the needed number of polygons for Ttower.
The polygons will also encode the 2(|X| + |C|) terminals from the MTC problem.
For creating the paths to Ttower, at most another number of polygons linear in
|X| + |C| is needed.

To complete the proof, bounds for the terminal-pairs have to be given.
The number of added terminal-pairs while creating the paths to Ttower is at
most O((|X| + |C|)2). As a result, the decision version of finding a MICLE is
NP-Complete, and, therefore the optimization version of finding a MICLE is
NP-Hard. 
�

3 Reducing the Size of the WEG

In this section we describe situations in which vertices, edges and overlaps can be
removed from a WEG without changing the optimal solution. In Sect. 3.1, we will
present techniques to reduce the number of edges in the WEG, and in Sect. 3.2,
we will discuss the removal of overlaps that are already enforced by other overlaps
of the WEG. In this section we will use a weighted WEG, as defined in Sect. 2.
We start with ∀e ∈ E : w(e) = 1. We will use Nv = {w|(v, w) ∈ E} for the
set of neighbours of a vertex v in a weighted WEG G = (V,E,O,w). Similarly,
Ov = {w|(v, w) ∈ O} is the set of vertices that v overlaps. A simple path between
the vertices v and w, will be denoted as [v → w].

3.1 Reducing the Number of Edges

The first reduction we will discuss is called 1-CONTRACT. It is only applicable
for a vertex v with |Ov| = 0 and |Nv| = 1. Such a vertex can easily be ignored.
There is no reason to add this vertex to any other layer than the layer of its only
neighbour.

The second graph simplification applies to a vertex with |Nv| = 2 and
|Ov| = 0. Assume the two neighbours of v are u and w. Since this vertex v
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(a) (b) (c) (d)

Fig. 4. An example of the application of the contraction operations. In (a) the WEG
with which we start is given. In (b), (c) and (d) the WEG is shown after the application
of 1-CONTRACT, 2-CONTRACT and E-REDUCE, respectively. The thick edge in (d) is of
weight 2.

has no vertices it overlaps with, merging v and u or v and w will not force any
new overlaps. The newly created edge (u,w) does not create any new connec-
tions between u and w, nor does the minimal cost of separating u and w change.
This operation is called 2-CONTRACT.

The third graph simplification is only useful in combination with the previ-
ous simplification. The operation applies to two vertices connected by multiple
edges. This situation can not exist in the original WEG because of the convexity
constraint for the polygons in a WE. In this situation it would be nice if we could
apply the 2-CONTRACT operation, but this is not possible since the degree of v is
three, not two. A simple solution solving this problem is merging all the double
edges and combining their respective weights. This method is called E-REDUCE.
An example of a EEG, and the resulting WEGs after we have applied each of
these operations, can be seen in Fig. 4.

3.2 Reducing the Number of Overlaps

A logical next step is removing overlaps from the WEG. This situation will be
subdivided into two categories. First, we have the trivial cases, where there is
only one possible cut to separate two vertices. Second, there is the case of vertices
with degree 2 that overlap. In this scenario several overlaps can be removed under
specific circumstances.

Trivial Cases. A case is considered trivial when there exists only one vertex-
disjoint path between v and w, (v, w) ∈ E, and v and w are overlapping. When
this happens, there is only one possible way to separate v and w, which is done by
cutting the edge (v, w). Since this action guarantees that v and w are separated,
the overlap (v, w) can be removed from O. When there are other vertex-disjoint
paths between v and w not containing the edge (v, w), cutting the edge (v, w) will
not separate these paths. For this reason, the overlap (v, w) cannot be removed
from O in this situation.

Another trivial case is when a vertex v has degree 1 and (v, w) ∈ O. In this
scenario the overlap can be removed when all the neighbours of w that are on a
vertex-disjoint path [v → w] are overlapped by the single neighbour of v. In this
situation, every path connecting v and w has a subpath connecting a neighbour
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nv v nv

nw w nw

(a)

nv nv

nw nw

(b)

Fig. 5. An example in which the overlap (v, w) can be removed as long as the vertices
have degree 2.

of v to a neighbour of w. This subpath has to be cut, since the neighbour of v
is assumed to overlap all the neighbours of w. We call this operation 1-REMOVE.
For a vertex v, we can check if an overlap can be removed in O(|Nw|) time if
all members of Nw are overlapped by the single member of Nv, say nv. If nv

does not overlap all members of Nw, this check is more expensive. We need to
check if the members of Nw that are not overlapped by nv are in a different graph
component after the temporary removal of w. This can be done using a Breadth-
first search (BFS), resulting in an expensive O(|E|) check to see if this operation
is applicable. Performing this step on an entire WEG can take O(|V ||O||E|) time.
Since |O| can be O(|V |2), we end up with an O(|V |3|E|) algorithm, which is a
costly operation for larger environments. However, we think that this worst-case
scenario rarely happens in practice, because |O| is only O(|V |2) when almost all
polygons overlap all other polygons.

Removing Overlaps from Vertices of Degree 2. When considering a vertex
v with degree 2 and its overlaps, some of these overlaps might be removed.
Assuming (v, w) ∈ O, this overlap can be removed when, on each path connecting
v and w, there is a pair of vertices (x, y) ∈ O. That is, for every possible path
connecting v to w, there is a pair of vertices (x, y) ∈ O and both x and y are on
this path. An example of such a situation is given in Fig. 5(a). We will call such
a structure a stack, and the operation that removes overlaps from this stack we
will call STACK-REMOVE. In this situation, all edges have weight one and both v
and w have degree two. Furthermore, the neighbours of v and w do also overlap.
A formal proof of the validity of STACK-REMOVE is given in AppendixA.

Overlaps in similar cases can still be removed from a WEG whenever the
edges (nw, w) and (w, n′

w) have the same weights a, and the edges (nv, v) and
(v, n′

v) also have the same weights b. However, if edges (nw, w) and (w, n′
w) each

have different weights, this is not longer true, since these edges cannot be easily
replaced by edges from the original graph.

General Overlap Removal. In the general case, overlaps can be removed
whenever the separation of overlapping vertices is already forced by the sur-
rounding environment, just as with STACK-REMOVE. Unfortunately, checking this
requires an exponential amount of time in worst case scenarios. A simple BFS
or DFS will not suffice since not all paths connecting v and w are traversed.



Performing Multicut on Walkable Environments 321

Since such a worst-case runtime is not usable in practice (especially when
you consider running that algorithm for every vertex that has an overlap), it is
prudent to limit the search depth at the cost of the number of overlaps that will
be removed. Such an algorithm is d-REMOVE. The parameter d is a bound on the
path length considered when searching for overlaps that can be removed.

For each simple path of length d originating in v, we temporarily remove
the vertices that are overlapped by vertices on the simple path from the WEG.
After doing this, a BFS is started from the last vertex on the simple path.
If we encounter a vertex o that overlaps v during this BFS, we remember it.
This process is repeated for all the simple paths. For overlaps that were not
encountered during this process, there must be vertices on the simple paths of
length d that guarantee the separation. Therefore, we can safely remove the
overlaps that were not encountered during this process from the WEG.

The running time for this algorithm is O(xd × (|E| + |V | − 2d) + xd × y),
where x is the maximal branching factor and y is the maximal number of over-
laps associated with a vertex. In this algorithm, xd calls are made to a BFS
algorithm. Since we already traversed d vertices and edges, the BFS does not
have to visit them any more. Registering the encountered overlaps on the simple
paths accounts for the remaining xd × y time.

4 Experiments and Results

We have implemented the WEG reductions described in Sect. 3 in C++ and
tested them on a number of environments. The details of the used environments
are given in Table 1. The environments As oilrig, Library and Parking lot were
taken from Saaltink [13], Station 1 and Station 2 were provided by Movares, an
engineering and consultancy company. The environments Halo, Cliffsides and
Hexagon were taken from the Google Sketchup warehouse1. The Tower environ-
ment was created by the authors, based on a flat in Utrecht, the Netherlands.

Table 1. The different environments we have tested. Column T. gives the type of
environment. V stands for “real” virtual environment and R stands for real world
environment. A ✓ in column Tri. means that the environment is triangulated.

Environ. T. Tri. |V | |E| |O|
As oilrig V 2077 2399 10717

Halo V 179 184 346

Cliffsides V 748 764 162

Hexagon V 2368 2419 20207

Environ. T. Tri. |V | |E| |O|
Library R 298 420 775

Tower R 5932 8033 116983

Station 1 R 206 209 1026

Station 2 R 82 86 115

Besides the size of these environments (which we can see in column |V |),
there are two other important aspects of the environments. The first one is

1 https://3dwarehouse.sketchup.com/model.html?id={13c3078fa52d14554b9e177bc9-
ee06a9, 2ac949d235d65acb46697ff0ff0b9b2c, 33b2c337108275568c09573a9753f4fd}.

https://3dwarehouse.sketchup.com/model.html?id=
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Fig. 6. Plots showing the relative changes of |V |, |E|, |O| and the running time for the
different values of d. For the results in column ‘No O’ only 1-CONTRACT, 2-CONTRACT
and E-REDUCE were used.

(a) Original WEG (b) d = 1 (c) d = 2

(d) d = 3 (e) d = 4 (f) d = 5

Fig. 7. Different WEGs for the Library environment. The black circles are vertices,
the blue segments are edges and the red segments are overlaps. In (a) the unmodified
WEG is shown. (b) through (e) show the reduced WEGs for different values of d. (Color
figure online)

the ratio |O|
|V | , which is an indication of how layered the environment is. The

second aspect is what types of geometric primitives were used to model these
environments. If an environment consists solely of triangles, it might be easier
to reduce the underlying graph. We tested our algorithms on models of real
buildings (type R) and on game levels (type V).

All our experiments were performed on a machine with an Intel i5-4670
clocked at 3.4 GHz with 16 GB of DDR3 RAM. They only used a single thread
and were repeated 20 times. The OS and compiler that we used are Linux Mint
13.2 (64 bit) and g++ version 5.3.0, respectively.
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For each environment, we first ran experiments that only used the edge reduc-
tion algorithms described in Sect. 3.1. Next we added the overlap reduction algo-
rithms from Sect. 3.2. We did not include the results of experiments that only
used the algorithms in Sect. 3.2, because of space limitations. We tested for d
from d-REMOVE in the range 1 through 8. The results for all environments can be
seen in Fig. 6. This figure shows the relative changes for |V |, |E| and |O|. Here,
a value of 1 means that no graph reduction was performed. A value of 0 means
that all the vertices (or edges or overlaps) were removed.

The first thing that we notice is that the Cliffsides environment benefits
greatly from the edge-reduction algorithms. We believe this to be because of
the relatively low ratio of |O|

|V | for this environment. This ratio is a measure of
how layered the environment is. Another important factor is the fact that the
environment is triangulated, which is also illustrated in Fig. 7. In this figure, we
see the Library environment and the corresponding WEG for different values
of d. When d = 5, there are many vertices that do not have any overlap, but
cannot be removed because the edge degree is too high. The edge degree would
have been lower, if the environment had been triangulated beforehand.

We can also see that all environments benefit from the use of the overlap-
reductions algorithms. There is a steep decline in the number of vertices and
edges when it is first used.

5 Conclusion

We have given a definition of MLEs that can be used as input for already existing
2D algorithms. A special type of MLE, the MICLE, can be useful for solving
problems in the multi-layered problem domain. Since a MICLE has the lowest
number of connections possible, cross-layer operations will occur less frequently.
Finding such a MICLE for a given WE is an NP-Hard problem. It is a version
of the well studied MULTICUT, which is also in the class of NP-Hard problems.

Furthermore, we have described some algorithms that can reduce the size of
the WEG. This is accomplished by merging vertices and removing overlaps in
such a way, when searching for a MICLE, that we find a solution that is also
optimal for the unmodified WEG, or one that can be adjusted to an optimal
solution for the unmodified WEG. These algorithms have been implemented
and tested for different environments.

Working with MICLEs can increase the efficiency of operations performed
on this MLE. Examples of such operations include, but are not limited to, per-
forming simulations of large crowds or constructing a visibility graphs for finding
shortest routes. However, as we have proven, an MLE with the smallest number
of connections is hard to find.

Currently, we are investigating techniques that can generate a WE from a PE
and strategies that can construct an MLE with a small number of connections
from a WE. Our first results on extracting MLEs from WEs can be found in
reference [7].
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A Proof of STACK-REMOVE

Theorem 2. Given a weighted WEG G = (V,E,O,w), vertex v with Nv =
{nv, n

′
v}, vertex w with Nw = {nw, n

′
w}, {(v, w), (nv, nw), (n′

v, n
′
w)} ⊆ O and

w(e) = 1 for all e ∈ E. The optimal cut set C′ for G′ = (V,E,O′, w) with
O′ = O\(v, w), either is also optimal for G, or can be adjusted to an optimal cut
set C for G.

Proof. Assume we have the WEG G′ = (V,E,O′, w), with O′ = O \ (v, w).
Furthermore, we will also assume that we have found a MICLE for G′ with
the cut set C′. Are all paths [v → w] cut by C′? If not, how can we change C′

without increasing the weight so that these paths are cut? This situation is also
illustrated in Fig. 5.

First, we observe that all vertex-disjoint paths [v → w] can be split into
four categories, namely [v, nv → nw, w], [v, n′

v → n′
w, w], [v, nv → n′

w, w] and
[v, n′

v → nw, w]. Categories [v, nv → nw, w] and [v, n′
v → n′

w, w] will be cut
by C′, because the vertex-disjoint paths [nv → nw] and [n′

v → n′
w] need to be

cut for any valid MICLE of G′. But what about the paths [v, nv → n′
w, w] and

[v, n′
v → nw, w]? We know the following groups of paths will be cut using edges

of C′: (a) [nv → n′
w, w, nw]; (b) [n′

v → nw, w, n
′
w]; (c) [nv, v, n

′
v → nw]; (d)

[n′
v, v, nv → n′

w].
This fact does not guarantee that the vertex-disjoint paths [v, nv → n′

w, w]
and [v, n′

v → nw, w] are cut by C′. The paths [v, nv → n′
w, w] and [v, n′

v → nw, w]
are definitely cut when C′ contains at least one edge of all vertex-disjoint paths
[nv → n′

w] and [n′
v → nw]. If this is not the case, we have one of the following

three situations:

1. The paths [nv → n′
w] are cut by C′, but the paths [n′

v → nw] are not;
2. The paths [n′

v → nw] are not cut by C′, but the paths [nw → nv] are;
3. Both the paths from [nv → n′

w] and [n′
v → nw] are not cut by C′.

For these three remaining situations we can replace edges from C′ to also cut all
paths [v → w] without increasing the weight of C′ and cutting all paths from O
and thus obtaining the cut set C for G.

For the first situation, we know that the edges (nv, v) and (n′
w, w) need to be

in C′ to cut the paths of type (b) and (c). Instead of adding the edges (nv, v) and
(n′

w, w) to C′, we can add the edges (n′
v, v) and (nw, w) to C′ without increasing

the weight of C′. When we do this the overlapping vertices of G′ will still be
separated, but we also separated v from w without increasing the weight of C′.
The second situation can be handled analogously.

When we have the third situation, we know that one of the edges {(nw, w),
(w, n′

w)} needs to be in C′ to cut the paths of types (a) and (b), and one of the
edges {(nv, v), (v, n′

v)} to cut the paths of type (c) and (d). When we just pick
the edges (v, nv) and (w, nw), we will once again not change the size of C′ and
still separate all overlaps of O′, but also all overlaps of O. 
�
The same trick can be applied to prove that overlaps can also be removed in a
stack of structures. This can be proven using exactly the same steps as before
and can only be applied under the same restrictions.
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Abstract. We break the long standing cubic time bound of O(n3) for
the Minimum Weight Polygon Triangulation problem by showing that
the well known dynamic programming algorithm, reported independently
by Gilbert and Klincsek, can be optimized with a faster algorithm for the
(min,+)-product using look-up tables. In doing so, we also show that
the well known Floyd-Warshall algorithm can be optimized in a similar
manner to achieve a sub-cubic time bound for the All Pairs Shortest
Paths problem without having to resort to recursion in the semi-ring
theory.

1 Introduction

Given a polygon, there are many different ways to divide up the polygon into
triangles. Such an operation is commonly known as triangulation. It is well
known that the total number of possible triangulations on a polygon with n
vertices is the (n−2)th Catalan number1 that grows exponentially as n increases.
If the edge costs between vertices of the polygon are defined, the Minimum
Weight Polygon Triangulation (MWPT) problem is to find the triangulation of
the polygon such that the total edge cost is minimal. We assume the polygon is
convex for simplicity.

There exists a well known dynamic programming algorithm that solves the
MWPT problem in O(n3) time bound reported independently by Gilbert [8] and
Klincsek [12]. We refer to this algorithm as the GK algorithm.

If we consider the input polygon as a graph with edge costs, then another
well known problem is the All Pairs Shortest Paths (APSP) problem, which is to
find the path that gives the minimal total edge cost for all possible pairs of ver-
tices. Floyd-Warshall (FW) algorithm [6] is a well known dynamic programming
algorithm for the APSP problem, also with O(n3) time bound.

The GK algorithm for solving the MWPT problem that we will review later in
this paper has a striking resemblance to the FW algorithm for solving the APSP
problem. The similarity may suggest that perhaps sub-cubic time bound algo-
rithms for the MWPT problem would also be possible, as there has been much
research in sub-cubic algorithms for the APSP problem, as shown in Table 1.
For the APSP problem, even algorithms with deeply sub-cubic time bounds
1 Named after the Belgian mathematician Eugene Charles Catalan (1814–1894).
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Table 1. Sub-cubic algorithms for the APSP problem.

Year Time complexity Author(s)

1976 O(n3(log log n/ logn)1/3) Fredman [7]

1990 O(n3/
√

logn) Dobosiewicz [5]

1992 O(n3
√

log log n/ logn) Takaoka [14]

2004 O(n3(log log n/ logn)5/7) Han [9]

2005 O(n3 log log n/ log n) Takaoka [15]

2006 O(n3√log log n/ logn) Zwick [17]

2008 O(n3/ logn) Chan [4]

2008 O(n3(log log n/ logn)5/4) Han [10]

2012 O(n3 log log n/ log2 n) Han and Takaoka [11]

are known for graphs with small integer edge costs that utilize faster matrix
multiplication over a ring [3,13,16].

All algorithms provided in Table 1 are based on speeding up the (min,+)
matrix multiplication in a semi-ring using pre-computed look-up tables. It is
widely known that computing the closure of the (min,+) matrix semi-ring is
equivalent to solving the APSP problem, and that the closure of a matrix semi-
ring can be computed in the same time complexity as multiplying two matrices
in the semi-ring [1].

The MWPT problem on general polygons are known to be P-complete [2].
If the problem on convex polygons is also P-complete, it is quite unlikely that
the aforementioned approach based on the semi-ring theory would be able to be
applied to the MWPT problem, since the semi-ring based approach would likely
mean that the algorithm is easily parallelizable, which contradicts the problem
being P-complete.

In this paper, we firstly show that we do not have to resort to the semi-ring
theory in order to provide a sub-cubic time bound for the APSP problem. We
still rely on optimizing the (min,+) matrix multiplication with look-up tables,
but we embed this optimization directly within the FW algorithm rather than
relying on recursion in the semi-ring theory. While we are unable to provide a
faster algorithm for solving the APSP problem with this new approach, we show
that we can apply the same set of principles to the GK algorithm to break the
long standing cubic time barrier of the MWPT problem, which we present as the
main contribution of this paper. We have tried to appeal to the reader’s intuition
by using analogies such as acceleration, cruising and braking in the description
of our algorithms.

2 Preliminaries

Let G = (V,E) be the input polygon (graph), where V is the set of vertices and
E is the set of edges with costs. Let n = |V |. We assume that the vertices are
numbered from 1 to n in the clockwise direction as shown in Fig. 1.
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Fig. 1. Two example triangulations of a Hexagon

Let D = {dij} be an n-by-n matrix such that dij = D[i][j] is the distance
(cost) from vertex i to vertex j. We refer to D as a distance matrix. If no edge
exists between i to j, we let dij = ∞. dii = 0 for all 1 ≤ i ≤ n. We assume
that enough edges exist in the input graph for a successful triangulation. We
assume that the edges are undirected for the MWPT problem, although no such
restrictions are required for the APSP problem.

If A, B and C are all distance matrices, then we can define the (min,+)
matrix multiplication, C = A ∗B, which we refer to as the (min,+)-product, as
performing the following operations for all possible pairs of i and j:

cij ← ∞, cij ←
n

min
k=1

{cij , aik + bkj}

If we were to compute the (min,+)-product D∗D, intuitively, the meaning of the
operation min{dij , dik + dkj} can be understood to be the comparison between
the currently known distance from i to j against the total distance from i to
j going via vertex k. Vertex k in this instance is also commonly referred to as
the witness vertex. In other words, vertex k proves that the given distance from
i to j is possible by going via k. We refer to the above min operation as the
triple operation. In both the FW algorithm for solving the APSP problem and
the GK algorithm for solving the MWPT problem, we repeatedly perform this
triple operation to pick the best vertex k that gives the lowest cost/distance.

For the set of distance matrices, if we define the above (min,+)-product as
the matrix multiplication and define the component-wise min operation as the
matrix addition, then we can formulate a distance matrix semi-ring, such that
computing the closure of the semi-ring is equivalent to solving the APSP prob-
lem [1]. A straightforward implementation of computing the (min,+)-product
would take O(n3) time. Since the closure of a matrix semi-ring can be computed
within the same time bound as computing the product in the semi-ring [1], the
APSP problem can be solved with the semi-ring theory in O(n3) time, which
incidentally is also the time bound for both the FW and GK algorithms.

As briefly mentioned in Sect. 1, time bounds provided in Table 1 are achieved
by optimizing the computation of the (min,+)-product with look-up tables.
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The key idea that allows for such optimization was first given by Fredman [7] as
follows:

air + brj ≤ ais + bsj

If the above equation holds when computing A ∗B, then r is a better via vertex
than s since it provides a lower cost from i to j. The equation can be rearranged
as:

air − ais ≤ bsj − brj

Fredman showed that we can pre-compute both sides separately from each other
for all possible r and s pairs within a given set of via vertices, and then sort
and merge the results to retrieve the relative rankings for the r and s pairs, such
that we can then use the rankings from both sides to index into a pre-computed
look-up table to retrieve which via vertex gives the lowest cost from i to j in
O(1) time. We refer to the sorted results for r and s the sorted lists of differences.
Since the size of the look-up table grows exponentially, the amount of speed up
provided by this method is likely to remain within the polylog factor.

3 Sub-Cubic Floyd-Warshall Algorithm

We start with a review of the classical FW algorithm, as provided in Algorithm1.
A visualization of the algorithm is given in Fig. 2.

Algorithm 1. Original Floyd-Warshall Algorithm
1: for k ← 1 to n do
2: for i ← 1 to n do
3: for j ← 1 to n do
4: D[i][j] ← min{D[i][j], D[i][k] + D[k][j]}

k

k

i

j

D[i][j]D[i][k]

D[k][j]

k

i j

Fig. 2. Visualization of Floyd algorithm
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As we can see from the right hand side diagram in Fig. 2, in the FW algorithm,
for each via vertex k, we perform the triple operation for all pairs of i and j to
check whether going via vertex k provides a better distance than the currently
known distance from i to j.

Close inspection of the FW algorithm reveals that neither the order in which
we iterate through the different values for k, or the order in which we iterate
through the possible (i, j) pairs, affect the correctness of the algorithm. This
observation can be easily derived from the fact that vertices in G can be num-
bered from 1 to n in any order for the APSP problem. This leads to Algorithm2,
which we refer to as the generalized FW algorithm. Algorithm 2 clearly shows
that there is room for flexibility in implementing the FW algorithm.

Algorithm 2. Generalized Floyd-Warshall Algorithm
1: for each k ∈ {1...n} in any order do
2: for all (i, j) pair in any order do
3: D[i][j] ← min{D[i][j], D[i][k] + D[k][j]}

With Algorithm 2, we make another key observation that the values for k
must iterate outside of the iteration for (i, j) pairs, but this restriction only exists
because D[1...n][k] or D[k][1...n] must be used for subsequent computations of
other vertex pairs that do not have k as an index. In other words, if, for example
the triple operation was performed for D[i][j] for via vertices k1 and k2 but the
resulting value for D[i][j] is not used for subsequent triple operations on other
(i, j) pairs with via vertices k1 and k2, then clearly performing the two triple
operations for D[i][j] out of order does not affect the overall computation of the
FW algorithm. From this key observation, we can derive the coarse-grained FW
algorithm given by Algorithm3, which effectively goes through the different via
vertices in bulk in each iteration.

The visualization of the coarse-grained FW algorithm is given in Fig. 3. The
main point of this new algorithm is in performing the triple operations for O(m)
via vertices in a single iteration, rather than stepping through each via vertex
one by one, by dividing up the n-by-n distance matrix into m-by-m sub-matrices.
Each iteration of Algorithm3 is divided into two distinct phases to achieve this,
which we refer to as the Acceleration phase and the Cruising phase.

Let N = n/m such that D is divided into a total of N2 square matrices, where
each sub matrix is m-by-m. The term “coarse-grained” comes from iterating
through the m-by-m sub-matrices in contrast to the “fine-grained” method of
iterating through each column/row of D one-by-one. For clarity we use capital
letters in our algorithms for coarse-grained iterators. D[I][J ] represents the m-
by-m sub-matrix on coarse-grained row I and coarse-grained column J , where
1 ≤ I, J ≤ N .

The Acceleration phase of an iteration performs “fine-grained” triple opera-
tions for a set of (i, j) pairs for a total of m via vertices, similarly to the original
FW algorithm, iterating over the m via vertices one-by-one. The shaded area
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Algorithm 3. Coarse-Grained Floyd-Warshall Algorithm
1: N ← n/m
2: for K ← 1 to N do
3: km ← (K − 1)m
4: /* Acceleration Phase */
5: for k ← km + 1 to km + m do
6: for i ← km + 1 to km + m do
7: for j ← 1 to n do
8: D[i][j] ← min(D[i][j], D[i][k] + D[k][j])

9: for i ← 1 to n do
10: for j ← km + 1 to km + m do
11: D[i][j] ← min(D[i][j], D[i][k] + D[k][j])

12: /* Cruising Phase */
13: for I ← 1 to N do
14: for J ← 1 to N do
15: Compute D[I][J ] ← D[I][K] ∗ D[K][J ]

K

K

I

J

m

m

mm

K

I J

m

Fig. 3. Visualization of coarse-grained Floyd-Warshall algorithm

in Fig. 3 represents the subset of (i, j) pairs that finish computation for m via
vertices in the Acceleration phase of an iteration. We refer to this shaded area
as the thick row and the thick column.

We then move onto the Cruising phase, where we use the computed sub-
matrices from the Acceleration phase, namely thick column D[1...N ][K] and
thick row D[K][1...J ], to finish off all remaining m-by-m sub-matrices for the
same set of m via vertices in the iteration. It is important to note that the
general (min,+)-product can be used in the cruising phase to compute D[I][J ] =
D[I][K] ∗ D[K][J ] that assumes no order in the computation of the via vertices
since the sub-matrices sit outside of the shaded area in Fig. 3. In other words,
for any of the given m via vertices, D[i][j] that does not sit in the shaded area
are not used in the computation of any other (i, j) pairs.
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The Acceleration phase takes O(m2n) time and the Cruising phase takes
O(mn2) time, assuming O(m3) time bound for computing the (min,+)-product
of two m-by-m sub-matrices. Since we iterate N = n/m times, the total time
bound is O(mn2 + n3), but since m < n, we have O(n3) for the coarse-grained
FW algorithm given by Algorithm3.

Theorem 1. Algorithm3 correctly solves the APSP problem.

Let block I be the vertex set {(I−1)m+1, (I−1)m+2, ..., (I−1)m+m = Im},
that is, the Ith block of the sorted vertex set V = {1, 2, ..., n}. Let block J and
block K be similarly defined. V can be expressed as S(1) ∪ S(2) ∪ ... ∪ S(N)
where S(K) = {(K−1)m+1, (K−1)m+2, ..., (K−1)m+m = Km}. We prove
the correctness of Algorithm 3 by induction.

Invariant. At the end of the Kth iteration D[i][j] is the distance of the shortest
path from vertex i in any block I to vertex j in any block J that goes through
the set of via vertices V (K) = {1, 2, ...,K ∗ m}.

Basis. At K = 0, V (0) is empty and D[i][j] is the original distance matrix with
no via vertices. Let the value of D[i][j] at the end of Kth iteration be denoted
by DK [i][j] and that of sub-matrix D[I][J ] be DK [I][J ]. Suppose the invariant
is correct for K − 1 and take up a shortest path i in block I to j in block J that
goes through V (K). The path either goes through only V (K − 1) or visits S(K)
on the way.

We now provide two lemmas, Lemma 1, and Lemma 2, to show that D[I][K]
and D[K][J ] are correctly computed, and the block-wise triple operation cor-
rectly computes DK [I][J ], respectively. Thus we show that the above invariant
is correct for K.

Lemma 1. At the end of the accelerating phase of the Kth iteration, D[i][j] is
the distance of a shortest path from i in block K to j in any block 1 ≤ J ≤ N
that goes through V (K). Similarly D[i][j] is the distance of a shortest path from
i in any block 1 ≤ I ≤ N to j in block K that goes through V (K).

Proof. We prove this by induction on k. Invariant. At the end of the kth iter-
ation of the update for the thick row in the global Kth iteration, D[i][j] is the
distance of the shortest path from i in block K to j in any block J that goes
through {1, 2, ..., k}. Basis. k = Km. This is guaranteed by the global induc-
tion assumption. Suppose invariant is true for up to k − 1. The triple operation
D[i][j] = min{D[i][j],D[i][k]+D[k][j]} makes invariant true for k. The proof for
the thick column is similar.

Lemma 2. Let D[I][K] be the shortest distances of paths from block I to block
K that go through V (K). D[K][J ] is similar. Then the statement D[I][J ] =
min{D[I][J ],D[I][K] ∗ D[K][J ]} correctly computes D[I][J ] for the distances of
the shortest paths that go from block I to block J through V (K).

Proof. Let the two dimensional index block, block I × block J , be denoted
by (I, J). Suppose I �= K and J �= K. Then block (I,K) and block (K,J)
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are disjoint. In the (min,+)-product D[I][K] ∗ D[K][J ] all possibilities for the
shortest paths that go from block I to block J via block K are represented. As
mentioned earlier we can compute the (min,+)-product without any cumulative
effect since the blocks are disjoint. If I = K or J = K, we note that D[I][K] ∗
D[K][J ] = D[I][J ]. By taking the minima with D[I][J ] the case of the paths
from block I to block J that do not go through block K are taken care of. The
possibility of a shortest path going though block K is taken care of by D[I][K]
or D[K][J ] at the end of the accelerating phase.

Theorem 2. The FW algorithm can be optimized to have a sub-cubic time
bound.

Proof. In each iteration of Algorithm3, after the Acceleration phase completes
and before the Cruising phase begins, we go through each m-by-m sub matrix
that was computed in the Acceleration phase (i.e. the shaded region in Fig. 3),
and further divide each sub-matrix in column K as m-by-l rectangular sub-
matrices, and divide each sub-matrix in row K as l-by-m rectangular sub-
matrices. An example of this further break down into rectangular sub-matrices
is shown in Fig. 3. Then we can pre-compute the rankings from these rectangular
sub-matrices as briefly explained in Sect. 2 and use the sorted rankings to index
into a pre-computed look-up table such that the (min,+)-product of an m-by-l
matrix with an l-by-m matrix can be computed in O(l2m) time bound, which is a
much faster time bound compared to the straightforward time bound of O(lm2)
[14]. Since there are m/l l-by-m or m-by-l rectangular sub-matrices in an m-by-m
sub-matrix, computing the (min,+)-product of two m-by-m sub-matrices using
the look up table method given by Takaoka [14] takes O(l2m) ∗ m/l = O(lm2)
for the (min,+)-product and O(m3/l) for the component-wise min operation to
combine the m/l separate products, resulting in O(lm2 + m3/l), which is bal-
anced to O(m2.5) by setting l =

√
m. Thus in the Cruising phase of Algorithm3,

we can compute the (min,+)-product of all O(n2/m2) m-by-m sub-matrices in
the total time bound of O(

√
mn2).

Since we iterate N = n/m times, for the whole algorithm, we spend O(mn2)
in the Acceleration phase, and O(n3/

√
m) in the Cruising phase. By letting

m = O(log n/ log log n) the total time taken for pre-computation and sorting for
indexing into the look-up table, as well as the computation of the whole look-up
table itself, can be shown to stay within the time bound of O(n3/

√
m) [14]. Since

the time complexity of the Cruising phase dominates, for the whole algorithm,
we have the sub-cubic time complexity of O(n3

√
log log n/ log n).

4 Sub-Cubic Minimum Weight Polygon Triangulation
Algorithm

Similarly to the APSP problem in Sect. 3, we start with a review of the GK algo-
rithm based on dynamic programming given by Algorithm4. As noted earlier, we
assume that the vertices in the polygon are numbered from 1 to n in the clockwise
direction as shown in Fig. 1. In Algorithm 4, t+ 1 is the total number of vertices
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Algorithm 4. Original Gilbert-Klincse Algorithm
1: for t ← 2 to n − 1 do
2: for i ← 1 to n − t − 1 do
3: j ← i + t
4: for k ← i + 1 to j − 1 do
5: C[i][j] ← min(C[i][j], C[i][k] + C[k][j] + D[i][j])

in the sub-polygon for which the MWPT problem will be solved. Starting from
polygons of size 3 (t = 2), we solve the MWPT problem for the sub-polygons
in the clockwise direction (i.e. i iterates from 1 in increasing order), storing the
minimum triangulation costs in the matrix C = {cij}, where cij = C[i][j] is
the minimum possible triangulation cost for the sub-polygon that includes the
vertices {i, i+1, i+2, ..., j}. We assume that C[i][j] is firstly initialized to ∞ for
all 1 ≤ i, j ≤ n, then we let C[i][i + 1] = D[i][i + 1] for all 1 ≤ i < n.

We note that the main operation of Algorithm4 to compute C[i][j] in each
iteration looks very similar to the triple operation. In fact, we observe that the
addition of D[i][j] can trivially be moved outside of the inner most for loop to give
C[i][j] ← min{C[i][j], C[i][k] + C[k][j]}, which is exactly the triple operation as
given in Sect. 2. For the MWPT problem the triple operation is performed on the
triangulation cost matrix rather than the distance matrix for the APSP problem.
Intuitively, the meaning of the triple operation performed on C is that given a
sub-polygon with vertices {i, i + 1, i + 2, ..., j}, we wish to take the minimum of
the currently known triangulation cost C[i][j], and the triangulation cost given
by the triangle i, j, k in addition to the already known minimum triangulation
cost C[i][k] and C[k][j]. In the context of the MWPT problem, we refer to k as
the dividing vertex.

A visualization of Algorithm 4 is given by Fig. 4. The shaded region on the
left hand side shows the part of the cost matrix C that is never used because j
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j
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j

Fig. 4. Visualization of GK algorithm
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is always greater than i. The diagram on the right hand side shows the iteration
over k to determine which triangulation provides the minimum cost.

We can visualize the sequence of the GK algorithm by picturing the diagonal,
given by the set of (i, j) such that j − i = t in Fig. 4, shifting closer and closer
to the top-right corner of C in each iteration. The cost matrix elements on
this diagonal contains the sub-polygon triangulation costs that have just been
computed in the iteration. Thus in each iteration, the diagonal shifts one element
closer to the top-right corner. Once the diagonal reaches C[1][n], the MWPT
problem is solved and the total triangulation cost will be contained in C[1][n].
We refer to this moving diagonal line as the update line.

A closer inspection of the original GK algorithm reveals that iterating
through the different values of t is very sequential in nature because to com-
pute the minimum weight triangulation for a sub-polygon with t + 1 vertices,
we must have finished the minimum weight triangulation computation for all
sub-polygons with t vertices. On the other hand, given a sub-polygon starting
with vertex i and ending with vertex j, we can clearly iterate through the divid-
ing vertices k in any order to determine which triangulation option gives the
minimum total cost. Together with the aforementioned possible relocation of
the summation of D[i][j] from the inner-most for loop, we can provide a more
generalized version of the GK algorithm as given by Algorithm5.

Algorithm 5. Generalized Gilbert-Klincse Algorithm
1: for t ← 2 to n − 1 do
2: for i ∈ {1, 2, ..., n − t − 1} in any order do
3: j ← i + t
4: for k ∈ {i + 1...j − 1} in any order do
5: C[i][j] ← min{C[i][j], C[i][k] + C[k][j]}
6: C[i][j] ← C[i][j] + D[i][j]

Finally we extend the generalized GK Algorithm to provide the coarse-
grained GK algorithm, given by Algorithm6 and visualized in Fig. 5. Algorithm 6
consists of three phases. The Acceleration Phase sits outside of the main loop,
for solving the MWPT problem for all sub-polygons of size O(m) where m < n.
In other words, the update line is moved towards the top-right corner by O(m).
Then in the main for loop, the aim is to shift the update line closer to the
top-right corner by O(m) in a single iteration in a “coarse-grained” manner,
instead of the “fine-grained” manner of shifting the update line by one element
in each iteration. This is achieved by the Cruising Phase of each iteration per-
forming bulk of the work by computing a series of (min,+)-products of m-by-m
sub-matrices, followed by a necessary tidy-up in the Braking Phase due to the
sequential nature of the original GK algorithm. Similarly to the coarse-grained
FW algorithm described in Sect. 3, we use upper case letters as coarse-grained
iterators, and C[I][J ] denotes an m-by-m sub-matrix such that 1 ≤ I, J ≤ N .
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Algorithm 6. Coarse-Grained Gilbert-Klincse Algorithm
1: /* Acceleration Phase */
2: Perform original GK Algorithm for 1 ≤ t < m
3: N ← n/m
4: for T ← 1 to N − 1 do
5: for I ← 1 to N − T − 1 do
6: /* Cruising Phase */
7: J ← I + T
8: for K ← I + 1 to J − 1 do
9: C[I][J ] ← min{C[I][J ], C[I][K] ∗ C[K][J ]}

10: C[I][J ] = C[I][J ] + D[I][J ]
11: /* Braking Phase */
12: tm ← (T − 1)m; im ← (I − 1)m; jm ← (J − 1)m
13: for t ← 1 to 2m − 1 do
14: for i ← im + 1 to im + m do
15: j ← i + tm + t
16: if jm + 1 ≤ j ≤ jm + m then
17: for k ← i + 1 to im + m do
18: C[i][j] ← min{C[i][j], C[i][k] + C[k][j] + D[i][j]}
19: for k ← jm + 1 to j − 1 do
20: C[i][j] ← min{C[i][j], C[i][k] + C[k][j] + D[i][j]}
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Fig. 5. Visualization of coarse grained GK algorithm

Theorem 3. Algorithm6 correctly solves the MWPT problem.

Proof. Formally the proof can be given based on induction on T and also induc-
tion on t, which we refer to as the global induction and the local induction,
respectively. The Acceleration Phase corresponds to the basis for the global
induction and the Cruising Phase is the general iteration by T . The basis for
the local induction is the fact that the bottom left corner of matrix C[I][J ] such
that J − I = T is already computed as well as C[I][J ] such that J − I < T at
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Fig. 6. Computing all values of k

the end of the current cruising Phase. The general process in the Braking Phase
is to finalize the value of C[i][j] on the update line in increasing order of t. The
Braking Phase is essentially the GK algorithm executed on the sub-matrices
C[I][J ], C[I][K] and C[K][J ], as shown in Fig. 6. Note that for T = 1, the Cruis-
ing Phase is skipped entirely, and the final values for C[I][J ] is computed entirely
in the Braking Phase.

For the induction process it is sufficient to show that for all elements cij in
C[I][J ] sub-matrices that have been computed in a given iteration, all dividing
vertices k such that i < k < j have been considered. All dividing vertices k such
that im + m < k ≤ jm are checked in the Cruising Phase. These values of k are
represented by the horizontal and vertical solid lines in Fig. 6. As noted earlier,
k can be iterated in any order, thus (min,+)-product can be used without any
restrictions in the order of computation. This leaves the two disjoint sets of
dividing vertices i < k ≤ im + m and jm < k < j.

The reason we cannot simply compute C[I][I] ∗C[I][J ] and C[I][J ] ∗C[J ][J ]
in the Cruising Phase to compute the dividing vertices i < k ≤ im + m and
jm < k < j, respectively is because the sub-matrix C[I][J ] does not get fully
computed until the end of the iteration. More specifically, due to the sequential
nature of the GK algorithm, for any i and j, C[i][j] can only be computed if
both C[i][j − 1] and C[i + 1][j] have already been computed.

Thus the remaining dividing vertices are covered off in a “fine-grained” man-
ner in the Braking Phase, which is in effect no different from the original GK
algorithm. The first set of i < k ≤ i+m is covered by the for loop with Line 18
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as the main operation, represented by the dashed lines in Fig. 6. The second set
of j −m ≤ k < j is covered by the for loop with Line 20 as the main operation,
represented by the dotted lines in Fig. 6.

Theorem 4. There exists an algorithm that solves the MWPT problem in sub-
cubic time bound.

Proof. In Algorithm 6, after the Braking Phase and before the iteration with T
ends, divide the m-by-m sub-matrices that have just been solved in the iteration
into m-by-l and l-by-m rectangular sub-matrices as shown in Fig. 5. We can
then generate the sorted lists of differences to later perform the merge process
and rank computation [14]. As explained in the proof of Theorem2, with those
lists and ranks, we can use look-up tables to compute the (min,+)-product of
m-by-m sub-matrices in O(m2.5) time bound [14].

The Acceleration Phase takes O(nm2). The Braking Phase of each iteration
takes O(m3) time, and thus for the whole algorithm takes O(n2m) time. The
Cruising Phase takes O(n3

√
m) time in total. With m = O(log n/ log log n) [14],

the Cruising Phase dominates, which gives us the total sub-cubic time complexity
of O(n3

√
log log n/ log n).

5 Concluding Remarks

We have made use of the sub-cubic algorithm for the (min,+)-product given by
Takaoka [14] to optimize the FW algorithm in Sect. 3, and more importantly, the
GK algorithm in Sect. 4 to break the cubic time barrier for the MWPT problem.
We chose the aforementioned (min,+)-product algorithm not because it was the
fastest algorithm that we could apply, but because it was the simplest that we
could use to achieve the goal of this paper, which is to show that an algorithm
with sub-cubic time bounds for solving the MWPT problem is indeed possible.

In fact, it seems straightforward to use a faster (min,+)-product [15] in
Algorithm 6 to achieve a faster time bound, although applying the currently
fastest known algorithm for (min,+)-product [11] seems challenging due to the
inherent sequential nature of the GK problem. We conclude the paper with the
obvious open question: How close can we take the time bounds of solving the
MWPT problem to the time bounds of the APSP problem?
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Abstract. This paper studies a new version of the location problem
called the mixed center location problem. Let P be a set of n points
in the plane. We first consider the mixed 2-center problem where one
of the centers must be in P and solve it in O(n2 log n) time. Next we
consider the mixed k-center problem where m of the centers are in P .
Motivated by two practical constraints, we propose two variations of the
problem. We present an exact algorithm, a 2-approximation algorithm
and a heuristic algorithm solving the mixed k-center problem. The time
complexity of the exact algorithm is O(nm+O(

√
k−m)).

Keywords: k-center problem · Facility location problem · Voronoi
diagram · Computational geometry

1 Introduction

The facility location problem is to choose the locations of facilities to minimize
the cost of satisfying the demand for certain commodity. Sometimes the location
problem is associated with the costs for building the facilities, as well as the
transportation costs for distributing the commodities. In this paper, we consider
a new facility location problem called the mixed center location problem.

Related work. Let P be a set of n points in the plane. The k-center location prob-
lem is to find k centers such that the maximum of the distances from the stations
to the nearest centers is minimized. When k = 2, the 2-center problem (S2CP )
has been extensively studied. Jaromczyk and Kowaluk first gave a determinis-
tic algorithm with running time O(n2 log n) [1]. Eppstein gave an improvement
with a randomized algorithm running in O(n log2 n) expected time [2]. In a major
breakthrough, Sharir showed that the planar 2-center problem can be actually
solved in near-linear time and the time bound is O(n log9 n) time [3]. Finally
the algorithm was further improved by Chan in O(n log2 n log2 log n) time [4].
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 340–349, 2016.
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In [3,4], S2CP was divided into two parts: the fixed-size problem and the prob-
lem of computing the smallest radius. The fixed-size problem is to determine
whether there exist two congruent disks with radius r whose union covers P for
a given radius r. Hershberger solved the fixed-size problem for S2CP in O(n2)
time [5] and Sharir improved the bound to O(n log3 n) time [3]. The discrete
2-center problem (D2CP ) is defined as follows: covering P by the union of two
congruent closed disks whose radius is as small as possible, and centers are two
points of P . The first near-quadratic algorithm was proposed in [6] and finally
improved to O(n

4
3 log5 n) time in [7].

The k-center problem (SkCP ) has also been widely considered. When k is
part of the input, the problem is known to be NP-complete [8]. Drezner pro-
posed an algorithm with O(n2k+1 log n) time to solve SkCP [9]. By combining
the result of 1-center problem proposed by Megiddo [10], SkCP can be revised
to O(n2k−1 log n) time. Finally, Hwang et al. improved the time complexity
to O(nO(

√
k)) using the slab dividing method [11]. Some approximation algo-

rithms for SkCP have also been considered. Under general metrics, Hochbaum
and Shmoys [12] and Gonzalez [13] provided the 2-approximation algorithms
in O(n2 log n) and O(nk) time respectively. Feder and Greene [14] gave a 2-
approximation algorithm in O(n log k) time for the Euclidean standard k-center
problem.

Problem statement. In this paper, we consider the mixed center location prob-
lem. First we propose a variation of the 2-center problem called the mixed 2-
center problem (M2CP ). M2CP is to cover P by two closed disks whose max-
imum radius is minimized and one of the two centers is in P . We simply solve
M2CP in O(n2 log n) time. See Fig. 1.

Fig. 1. (i) An example of S2CP (ii) An example of M2CP (iii) An example of D2CP

Then we consider the mixed k-center problem. For the k-center problem,
if all the centers are in P , we call the problem the discrete k-center problem
(DkCP ), if m (m < k) of the centers are in P , we call the problem the mixed
k-center problem (M(k,m)CP ), otherwise we call the problem the standard k-
center problem (SkCP ). Let {rp1(P ), rp2(P ), ..., rpk

(P )} be the radii of k disks
centered at {p1, p2, ..., pk}. The three problems are listed as follows:
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(1) The discrete k-center problem (DkCP ): find k centers {p1, p2, ..., pk} ∈ P
such that max{rp1(P ), rp2(P ), ..., rpk

(P )} is minimized.
(2) The mixed k-center problem (M(k,m)CP ): find k centers {p1, p2, ..., pk} and

m of them are in P such that max{rp1(P ), rp2(P ), ..., rpk
(P )} is minimized.

(3) The standard k-center problem (SkCP ): find k centers {p1, p2, ..., pk} such
that max{rp1(P ), rp2(P ), ..., rpk

(P )} is minimized.

Organization. The remainder of this paper is organized as follows. In Sect. 2, we
consider the M2CP which can be solved in O(n2 log n) time. In Sect. 3, we con-
sider the M(k,m)CP . In Sect. 3.1 and 3.2, we consider the M(k,m)CP under
two constraints. One is to consider M(k,m)CP under the budget constraint, and
the other is that the m centers in P must be lying in a given region. We show
an algorithm that determines {k,m} and the optimal solution under the bud-
get constraint. In Sect. 3.3, we give an exact algorithm that solves M(k,m)CP

in O(nm+O(
√
k−m)) time. In Sect. 3.4, we give a 2-approximation algorithm. In

Sect. 3.5, we present a heuristic algorithm based on the Voronoi diagram and
finally we give a conclusion in Sect. 4.

2 The Mixed 2-Center Problem

For a planar point set P , it is obvious that when one center of the optimum solu-
tion for S2CP is in P , the optimum solution of M2CP is the same as S2CP ’s.
We consider the case where the optimum solutions of S2CP and M2CP are
different. Letting the radius of the standard (resp. discrete) minimum enclosing
disk of a planar point set Q be rSQ (resp. rDQ ), we have:

Observation 1 Suppose q /∈ Q, then rSQ ≤ rSQ∪{q}.

However, rDQ may not be less than rDQ∪{q}. Here we show a counter-example:
Suppose Q is a straight line point set, the leftmost point is q1, the rightmost
point is qn and no point in Q is in the middle of the segment lq1,qn (la,b
denotes the line segment with two nodes a, b). Let q be the middle point of
lq1,qn , we have rDQ > rDQ∪{q}. Conversely, if q is on the left of q1, rDQ ≤ rDQ∪{q}.
Suppose {m1,m2, ...,mk} /∈ Q, from Observation 1, we know that the radii of
the standard minimum enclosing disks of Q, Q ∪ {m1}, Q ∪ {m1,m2}, ... and
Q∪{m1,m2, ...,mk} are non-decreasing. Whereas, for discrete minimum enclos-
ing disk, the radii of Q, Q ∪ {m1}, Q ∪ {m1,m2}, ... and Q ∪ {m1,m2, ...,mk}
have no monotone property.

2.1 The Overall Algorithm

For the fixed point p, we go through all the points in P , and sort P\{p} in order
of non-decreasing distance from p. Let {p1, p2, ..., pn−1} be the resulting order,
i.e., d(p, p1) ≤ d(p, p2) ≤ ... ≤ d(p, pn−1), where d(a, b) denotes the distance
between a and b. For the disk with center p and radius d(p, pi), we compute
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the standard minimum enclosing disk of P\{p1, p2, ..., pi}, which can be done
in O(n) time [10]. From Observation 1, by binary search, the M2CP can be
solved in O(n log n) time. Finally the overall running time of the algorithm is
O(n2 log n) time using O(n) storage. (See Algorithm 1.)

Algorithm 1. Algorithm for the mixed 2-center problem
1: for each p ∈ P do
2: Sort the distance among p and all the other points in non-decreasing order, i.e.,

d(p, p1) ≤ d(p, p2) ≤ ... ≤ d(p, pn−1).
3: for pi ∈ P do
4: By using linear programming [10], compute the radius rpi of the standard

minimum enclosing disk of P \ {p, p1, ..., pi}. rp = max{d(p, pi), rpi}.
5: end for
6: end for
7: ropt ← min(rp).

Theorem 1. Let P be a planar point set of n points, the mixed 2-center problem
can be solved in O(n2 log n) time using O(n) storage.

3 The Mixed k-Center Problem

We consider the mixed k-center problem (M(k,m)CP ) in two cases, called
the budget constraint problem and the region constraint problem. The budget
constraint problem is to consider the M(k,m)CP under the budget constraint.
The region constraint problem is to consider the M(k,m)CP with m centers
lying in the given region.

3.1 The Budget Constraint Problem

First we consider the M(k,m)CP under the budget constraint. In practice, the
facility location problem is not only to find a good location for serving some
stations or facilities, but also to consider the budget constraint and the cost
difference among different places. In general, the point set P , which needs to be
covered, is given. It means that there are some facilities or buildings at some
points in P while none is located at the left points. Thus the construction costs
for setting up a station in or not in P is different. Under the budget constraint,
we need to find the number of the stations to be constructed and hope to serve
the consumers efficiently.

From the definitions of SkCP , DkCP and M(k,m)CP , let the optimal radii
of these problems be rDkCP , rSkCP and rM(k,m)CP respectively, we have the
following fact.

Fact 1. Let P be a planar point set of n points. rDkCP , rSkCP and rM(k,m)CP

are defined above. We have rSkCP ≤ rM(k,m)CP ≤ rDkCP .
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Consider the center location problem under budget constraint. Suppose build-
ing a new center costs M1 and rebuilding (changing one facility into a center) a
center costs M2 (M2 < M1). Under the budget M where mM2+(k−m)M1 ≤ M ,
we will try to choose the proper centers. From the definitions of SkCP , DkCP
and M(k,m)CP , if the center is in P , the cost can be seen as M2, otherwise
the cost is M1. Our goal is to serve the consumers efficiently under the budget
constraint; i.e., to minimize the distance of the optimal solution of the mixed
k-center location problem.

Fact 2. Let P be a planar point set of n points. For fixed k, if m2 < m1, we
have rM(k,m2)CP ≤ rM(k,m1)CP .

Let k∗
1 = � M

M1
� and k∗

2 = � M
M2

�, in order to obtain the minimum radius, we
check all the possible combinations with 0 ≤ m ≤ k ≤ k∗

2 . From Fact 2, the
radius of the optimal solution is increasing when m is growing larger for each k
under the budget M . From Fact 1, we need to compute the minimum rM(k,m)CP

where i + m = k, 0 ≤ i ≤ k∗
1 and m = �M−iM1

M2
�. See Algorithm 2. Suppose

M(k,m)CP can be solved in O(A) time, we have Theorem 2.

Algorithm 2. Algorithm of k-center location problem under budget constraint
1: Let M be the budget constraint, building a new facility costs M1 and rebuilding a

facility costs M2, k
∗
1 = � M

M1
�.

2: for i = 0 to k∗
1 do

3: Consider the mixed k-center problem where m = �M−iM1
M2

� and k = i+m (See
Sect. 3.3). Let the optimal radius be ri.

4: end for
5: Return ropt ← min(ri).

Theorem 2. Let P be a planar point set of n points, building a new facility
cost M1 and rebuilding a facility cost M2. We can find the optimal solution of
k-center location problem in O(k∗

1A) time under the budget M where k∗
1 = � M

M1
�.

3.2 The Region Constraint Problem

In this subsection, we consider the case where the centers are located in two
bounded areas. In many developing countries, the new urban area of a city is
usually nearby the old urban area. This means that the two areas can be divided.
Intuitively, we suggest two areas are separated by a bounded area, like a line
or a convex polygon. Take Shanghai in China as an example, the economy of
the urban area in the east of the Huangpu River (the new urban area) develops
faster than the urban area in the west (the old urban area). We hope to build k
shopping malls, where m are in the old urban area and k − m are in the open
area. In the new urban area, we choose to build the shopping malls in the newly
freed up area. On the contrary, there aren’t enough areas in the old urban area
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and we need to reconstruct some old buildings into shopping malls. Thus the
planar has been partitioned into two regions R1 and R2. For a given planar
point set and a partition, the M(k,m)CP is to find k centers, such that the
maximum distance from the clients to the nearest shopping mall is minimized,
and m of the centers are in R1 (or R2). Figure 2 shows two examples. Figure 2(i)
illustrates two regions separated by a line and Fig. 2(ii) illustrates two regions
separated by a convex polygon. This problem is very similar to the k-supplier
problem. In [15], Nagarajan et al. considered the k-supplier problem which is
given a set of clients C and a set of facilities F , along with a bound k, to find a
subset of k facilities so as to minimize the maximum distance of a client to the
open facility, i.e., minS∈F :|S|=kmaxv∈Cd(v, S) where d(v, S) = minu∈Sd(u, v).
They gave a (1+

√
3)-approximation algorithm for the k-supplier problem under

Euclidean metrics.
Let the constraint region be R1, the points in R1 denoted as P1 and

P2 := {P\P1}. Since R1 and R2 have already been given, we go through all
the combinations of m centers in R1 and solve the M(k,m)CP . Let |P1| = l and
l > m, S(k−m)CP can be solved in O(nO(

√
k−m)) time for fixed m centers. See

the details in Algorithm 2. We have:

Theorem 3. The region constraint problem can be solved in O(lmnO(
√
k−m))

time.

(i) Line bounded. (ii) Convex polygon bounded.

Fig. 2. k = 5, m = 2 and p1, p2 are in P

In the following, we consider the M(k,m)CP . We give an exact algorithm,
a 2-approximation algorithm and a heuristic algorithm solving the M(k,m)CP .

3.3 Exact Algorithm

In this section, we present an exact algorithm for M(k,m)CP . The main idea
of the algorithm is based on the following lemma. Our algorithm combines the
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algorithms of Drezner [9] and Hwang et al. [11]. Let D(o, r) be the disk with
center o and radius r and S1CP (resp. D1CP ) be the standard (resp. discrete)
minimum enclosing disk problem of a point set.

Lemma 1. For fixed m points {p1, p2, ..., pm} in P as the centers of M(k,m)CP
and a given radius r, let subset PT of P consist of the elements out of
D(p1, r)∪D(p2, r)∪, ...,∪D(pm, r) and radius rT be the radius of the solution of
the standard (k − m)-center problem of PT , we have: if r1 > r2, rT1 ≤ rT2 .

Proof. As r1 > r2, we have PT
1 ⊆ PT

2 , then rT1 ≤ rT2 . 	

The optimal radius of M(k,m)CP is either the distance between two points in
P or the radius of the minimum enclosing disk of a subset of P . If the optimal
radius is the distance between two points in P , it is clear that the optimal radius
of M(k,m)CP is the radius of a discrete minimum enclosing disk. Otherwise,
the optimal radius of M(k,m)CP is the radius of a standard minimum enclosing
disk. If the optimal radius of M(k,m)CP is the radius of a discrete minimum
enclosing disk, there are at most n(n− 1)/2 distances between two points in P .
Otherwise the optimal radius of M(k,m)CP is of a standard minimum enclosing
disk, and there are at most O(n3) distances. We check all these distances and
set all m possible points as the centers {p1, p2, ..., pm} in P . For m points in
P , there are at most O(nm) combinations. For each possible combination and
radius r, we obtain the disk D(pi, r) (i = 1, 2, ...,m) and compute PT . It can be
done in O(m log n) time after computing the distances among all the points and
sorting them. According to the algorithm mentioned in [4], we solve the standard
(k − m)-center problem of PT . Note that we can sightly modify to reduce the
bound of the complexity from Lemma1. The method described above of reducing
the value of r can be replaced by binary search. Finding all the possible r and
sorting them can be done in O(n3 log n) time. By binary search, we only need
O(log n) iterations in the for loop in Algorithm 3, rather than O(n3). Therefore
the bound of the complexity of the modified algorithm is O(nm+O(

√
k−m) log n) =

O(nm+O(
√
k−m)) time. See Algorithm 3 for details. From the above analysis, we

have the following theorem:

Theorem 4. Let P be a planar point set of n points, the mixed k-center problem
can be solved in O(nm+O(

√
k−m)) time.

3.4 2-Approximation Algorithm

There are many 2-approximation algorithms for SkCP [12–14]. Feder and Greene
showed that under Euclidean metrics, SkCP can not be approximated to within
a factor of

√
3 unless P = NP [14]. In this section, we also give a 2-approximation

algorithm for M(k,m)CP . We solve the SkCP of P by the exact algorithm
mentioned in [11] and sort the radii in non-decreasing order. Then solve the
D1CP of these m subsets consisting of the points in m disks whose radii are the
m minimum. We have Lemma 2.
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Algorithm 3. Exact algorithm for the mixed k-center problem for fixed m
centers
1: Initial i = 1, r = ∞, {p1, p2, ..., pm} be the fixed m centers;
2: for each i do
3: Compute PT

i for fixed radius ri and the standard (k − m)-center problem for
PT
i . Let the radius and the centers be rTi and {ci1 , ..., cik−m} respectively;

4: if r > max(ri, r
T
i ), then

5: {ci−11 , ..., ci−1k−m} ← {ci1 , ..., cik−m}, r ← max(ri, r
T
i ).

6: end if
7: end for
8: Return r, Centers: {p1, p2, ..., pm, ci1 , ..., cik−m}.

Lemma 2. Let S be a planar point set, the minimum enclosing disk and the
discrete minimum enclosing disk be D(s, rS) and D(d, rD) respectively, we have
1 ≤ rD

rS
≤ 2.

Proof. We have d ∈ S. Let the farthest point of d be fd. Both d and fd are in
D(s, rS), i.e., rD ≤ 2rS , and we have rD

rS
≤ 2. On the other hand, it is obvious

that when rD ≥ rS , we have 1 ≤ rD
rS

≤ 2. 	

In the following, we give the algorithm and show the approximation factor is
2. We solve the SkCP and sort the k radii in non-deceasing order. We choose
m minimum radii and solve the D1CP of these m corresponding subsets. See
Algorithm 4.

Algorithm 4. Approximation algorithm
1: Solve the SkCP and sort the k radii in non-deceasing order.
2: Choose m minimum radii and solve the D1CP of these m corresponding subsets.
3: Return the optimal solution.

Theorem 5. Algorithm4 yields a 2-approximation algorithm.

Proof. Let the optimal radius of SkCP be rSopt, the disk with the maximum
radius of the m discrete minimum enclosing disks in Algorithm 4 be D(om, rm)
and rs be the radius of the standard minimum enclosing disk of the points in
D(om, rm). The optimal radius of MkCP be rMopt. If rSopt ≥ rm, from Fact 1, we
have rMopt = rSopt. Otherwise, we have rMopt ≥ rSopt and rs ≤ rSopt < rm. From
Lemma 2, we have rm

rMopt
≤ rm

rSopt
≤ rm

rs
≤ 2. 	


3.5 Heuristic Algorithm

In this section, we present a heuristic algorithm for M(k,m)CP . Suppose there
are m centers in P , the heuristic algorithm is similar to Drezner’s [9]. The main
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idea of the heuristic algorithm is to partition P into k subsets and solve S1CP
of each subset. Initially, we pick a set Q of k arbitrary points p1, p2, ..., pk and
compute the Voronoi diagram [16]. Let the Voronoi cell of each point pi be Vi.
Compute the standard minimum enclosing disk of all the Voronoi cells and let
Q′ = {p′

i|p′
i is the center of the standard minimum enclosing disk}. We repeat

this process by setting Q = Q′. When the iteration is terminated, go through
all the radii in non-decreasing order and choose the m minimum radii. Solve the
D1CP of these m corresponding subsets. If any point belongs to more than one
set, assign it to an arbitrary set. See Algorithm 5 for details.

Algorithm 5. Heuristic algorithm for the mixed k-center problem
1: Let j be the iteration number, choose k arbitrary points as the initial k centers,

denoted as {p01, p02, ..., p0k}.
2: for i = 0 to j − 1 do
3: Compute the Voronoi diagram of {pi1, pi2, ..., pik}. Let each Voronoi region be

{Ri
1, R

i
2, ..., R

i
k}. Solve the S1CP of {Ri

1, R
i
2, ..., R

i
k}. Let the centers of the optimal

solution of S1CP of each Voronoi region be {pi+1
1 , pi+1

2 , ..., pi+1
k }.

4: end for
5: Let the radii of the S1CP of {Rj

1, R
j
2, ..., R

j
k} be {rj1, rj2, ..., rjk}. Sort them in

non-deceasing order and denote them as r1 ≤ r2 ≤ ... ≤ rk. For each rl (l =
1, 2, ..., k), the corresponding region and center are Rl and cl respectively. Choose
{R1, R2, ..., Rm} and solve D1CP of the points in {R1, R2, ..., Rm}, let the centers
of these disks be {q1, q2, ..., qm} and the maximal radius of these disks be rmax.

6: Return rheuristics ← max(rmax, rk−m+1), centers: {q1,q2,...,qm,ck−m+1,...,ck}.

Theorem 6. The time complexity of every iteration in Algorithm5 is
O(n log k).

Proof. In the for loop, it takes O(k log k) time to compute the Voronoi diagram
for a set of k points. All the points in each Voronoi region can be computed
in O(n log k) time using planar point location. For all points in Voronoi region,
solving the S1CP takes O(n) time. Thus, the overall time complexity of a single
iteration is O(n log k). 	


4 Conclusion

In this paper, we consider two variations of the k center location problem. We
consider the mixed k-center problem. When k = 2, we give an O(n2 log n) time
algorithm. When k > 2, we show two motivations considering such a problem and
give an exact algorithm, a 2-approximation algorithm and a heuristic algorithm
solving the mixed k-center problem. The time complexity of the exact algorithm
is O(nm+O(

√
k−m)).

However, we have not found any geometric properties for the mixed k-center
problem under region constraint to improve the time complexity. So far, we have
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not found any algorithms considering the mixed k-center problem for a convex
polygon with constraint that m of the centers are the vertexes. All these are
interesting problems for the further research.
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Abstract. Lighting systems account for a major part of the energy con-
sumed by large commercial buildings. This paper aims at reducing this
energy consumption by defining the Contrained Light Deployment Prob-
lem. This new problem is related to the classical Art Gallery Problem
(AGP) in computational geometry. In contrast to AGP, which asks for
the minimum number of guards to monitor a polygonal area, our prob-
lem, CLDP, poses a new challenging requirement: not only must each
point p have an unobstructed line-of-sight to a light source, but also,
the combined illuminance at p from all light sources must exceed some
given threshold value. We provide evidence that our new problem is NP-
hard, based on known results for AGP. Then we propose fast heuristics
for floor plans shaped like orthogonal polygons, with and without holes.
Our problem formulation allows lights to be placed internally, not only
at vertices. Our algorithm, which combines ideas from computational
geometry, clustering and binary search, computes a set of light place-
ments that satisfies the illumination requirement. The algorithm seeks a
light set of minimum size by an iterative binary search procedure that
progressively tightens upper and lower bounds.

1 Introduction1

Lighting systems, critical to our daily life in modern society, consume a tremen-
dous and costly amount of energy resources. The U.S. Energy Information
Administration (EIA) discloses that in 2015, about 404 billion kilowatthours
(kWh) of electricity were used for lighting by the residential sector and the com-
mercial sector in the United States, which amounted to about 10% of total U.S.
electricity consumption [6]. Therefore, reducing energy consumed by lighting
systems could have a significant impact on the sustainable development of our
society.

Reducing the energy consumption of lighting systems raises challenging trade-
off issues. On the one hand, reducing energy implies lowering tota lilluminance2.
On the other hand, lighting systems should keep the building occupants comfort-
able and safe, which implies maintaining a suitable illuminance level everywhere.

1 This research was supported in part by NSERC and the University of Victoria.
2 Illuminance is the amount of luminous flux per unit area.

c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 350–364, 2016.
DOI: 10.1007/978-3-319-48749-6 26



Constrained Light Deployment for Reducing Energy Consumption 351

The challenging problem we face is: without making major changes to the build-
ing, such as by installing skylights, can we reduce the energy used by the lighting
system while still meeting the needs of the occupants?

As a start to tackling this general problem, we consider the following scenario:
occupants may add their own task lighting at their own expense; the building
owner meets a given uniform threshold lighting requirement at each point in
the floorplan by deploying a set of light fixtures (“lights”) of the same type,
modeled as a discrete point set in the floorplan; and the floorplan is modelled
by an orthogonal polygon, either with or without holes (see Sect. 3 for defini-
tions). Thus we seek the minimum number of lights that will meet the given
threshold level of illuminance throughout the building. We call this problem
the Constrained Light Deployment Problem (CLDP) (Sect. 3 elaborates). This
problem is similar to the well-known Art Gallery Problem (AGP), which asks for
the minimum number of guards to monitor an art gallery with a polygonal floor
plan. While a light is analogous to a guard, our problem differs from AGP in
two crucial respects: (1) the illuminance at a point p provided by a light source
at g decreases nonlinearly over distance, and (2) the combined illuminance at
any point p must exceed a given value. Like AGP, the CLDP proposed above
has many variations. It is relevant both to the design of new buildings and to
the retrofitting of existing ones [13]. Our main contributions are:

1. Formulation of the Constrained Light Deployment Problem CLDP. Unlike
AGP, the CLDP specifies an aggregated threshold illuminance level to be
met at each point, not just visibility by a guard.

2. Evidence that CLDP is NP-hard, together with a polynomial time strategy
for solving it.

3. Algorithms to determine upper bounds on the number of lights needed for
floor plans modeled as orthogonal polygons with, and without, holes.

2 Related Work

Strategies for energy savings in the design of lighting systems for buildings have
been extensively considered [13]. Most existing efforts, however, focus on using
energy-efficient lights or developing intelligent lighting systems that turn lights
on/off based on sensing data about tenant behaviour [14,16]. To the best of
our knowledge, the CLDP problem we formulate is the first to consider the
optimal deployment of light fixtures from an algorithmic, geometric viewpoint,
for the purpose of meeting a threshold illuminance requirement. Our problem
does, however, belong to a broader class of problems seeking an optimal selection
of points to meet a given requirement, e.g., fully covering a monitored area [15]
or minimizing the uncertainty of the monitored phenomenon [12].

The Art Gallery Problem (AGP) [15], i.e., guarding an art gallery with the
minimum number of guards who together see the whole gallery, has an exten-
sive literature that considers various shapes for the art gallery and various
types of guards and candidate positions for them. The algorithms that have
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been proposed to solve AGP fall mainly into these groups: (1) linear program-
ming based algorithms [3,4], (2) algorithms based on the SET COVER problem
[7,9], (3) algorithms based on the HITTING SET problem [10,11], (4) genetic
algorithms [1], and (5) algorithms using simulated annealing [2].

Since the illuminance at a point p is determined by all lights that have an
unobstructed line-of-sight to p, the requirement that the illuminance at each
point in the building should exceed a given threshold significantly complicates
algorithm design for CLDP. For this reason, none of the algorithms in the exten-
sive AGP literature can be applied directly to solve CLDP.

3 Problem Formulation

3.1 Floor Model

Definition 1. An orthogonal polygon is one whose edges each align with one
of a pair of given orthogonal coordinate axes.

We consider buildings whose floor plans are orthogonal polygons in 2D. For
industrial buildings, such polygons are not uncommon. Moveover, orthogonal
polygons have been widely used to approximate general polygons. We consider
two types of orthogonal polygons: orthogonal polygons without holes inside,
called Simple Orthogonal Polygons (SOP), and Orthogonal Polygons with Holes,
denoted as OPH. Note that the holes are inside the polygon and must themselves
have boundaries that are orthogonal polygons. In our context, holes represent
regions that block light.

3.2 Illumination Model

Definition 2. The unobstructed distance between two points p = (px, py)
and g = (gx, gy), inside or on the boundary of an orthogonal polygon, is:

dpg = I
√

(px − gx)2 + (py − gy)2, (1)

where I is the indicator function:

I =

{
1, if p and g have an unblocked line-of-sight;
∞, otherwise.

(2)

Here, no part of the line-of-sight can lie outside the polygon.

We adopt a simple illumination model that is a special case of the generic
model proposed in [5]. Assume that the illuminance at a light source g is I0.
Then the illuminance Ipg at p due to light g is:

Ipg =
I0

1 + d2pg

. (3)
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To keep the model simple, we disregard the refraction, reflection and coher-
ence of light waves, all of which are hard to model as they depend on, for example,
the wall and floor coverings and the furniture. Thus we assume that the total
illuminance at a point p is the sum, over all the lights, of the illuminance due to
that light. Thus, given a light set G = {g1, g2, . . . , gm} in a polygon P , the total
illuminance at a point p in P is:

Ip =
m∑

i=1

I0
1 + d2pgi

, (4)

where m is the number of lights and dpgi
is the unobstructed distance between

the point p and the light gi. Note that while we assume homogeneous light
sources by using the same I0 for all lights, the illumination model can be easily
extended to handle heterogeneous lights, where the value of I0 may be different
for different lights.

Definition 3. The effective illumination area of a light g is the circular
area centered at g such that at each point in that area, the illuminance due to
light g is strictly greater than the given illuminance threshold δ.

Let R denote the radius of the effective illumination area. It is easy to cal-
culate that

R =

√
I0
δ

− 1. (5)

Note that we require I0
δ > 1 and set R = ∞ if δ = 0.

3.3 CLDP and the Hardness of CLDP

Definition 4. The Constrained Light Deployment Problem takes as input
the coordinates of the vertices of an orthogonal polygon P, listed in cyclic order,
together with a rational threshold value δ ≥ 0, and asks to find the minimum
possible cardinality of a set of lights located inside or on the boundary of the
polygon P, such that the illuminance at each point inside P due to the set of
lights is strictly greater than δ. Here, the illuminance is determined by Eq. (4).

The version of AGP that assumes point guards and SOP (or OPH) corre-
sponds to the special case of CLDP for δ = 0: each point is visible to at least one
guard (light) and thus receives some illuminance greater than 0. Because this
version of AGP is NP-hard [17], CLDP is also NP-hard. While modifying the
definition of CLDP to exclude the possibility of δ = 0 might better model the
practical problem, nevertheless, one would expect CLDP to remain NP-hard.

Note also that modifying CLDP to ask for the deployment of the lights as
well as their minimum possible number does not affect the NP-hardness. In fact
our algorithms output the placement of the lights, not just the number of them.

We denote CLDP with SOP as CLDP-SOP, and we denote CLDP with OPH
as CLDP-OPH. Next we describe our general approach, then adapt it to these
problems in later sections.
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4 Solving CLDP with Clustering and Binary Search

4.1 Main Idea

Since CLDP is NP-hard, we present a heuristic algorithm to solve CLDP. The
main idea is to compute lower and upper bounds, denoted as nlb and nub, respec-
tively, for the number m = ns of lights required in solution sets of the type we
will seek, and then to use iterative binary search to find a solution with the best
ns value. See Fig. 1.

Fig. 1. Search for the smallest number ns of lights

While the basic idea is simple, to fully explain the algorithm, we must provide
answers to the questions below:

1. What is clustered in the hierarchical clustering?
2. Where are the ns lights placed?
3. How is it determined whether ns lights are sufficient to meet the illumination

requirement?
4. How is the initial value of nlb set?
5. How is the initial value of nub set?

In the rest of this section, we answer the first four questions. We answer the
last question in Sects. 5 and 6.

4.2 Hierarchical Clustering of Observation Points

Given that there is an infinitude of points inside a polygon, we cannot check
that the illumination requirement is met point by point. Furthermore, locations
of lights might have irrational coordinates. To address these issues, we place a
unit square grid on the 2D plane and make use of the vertices of the grid falling
inside the orthogonal polygon; we call such grid vertices observation points.
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Here the scale of the coordinate system is chosen so that R ≥ 1, where R is
the radius of the effective illumination area.

We first calculate the unobstructed distance between any pair of observation
points. We cluster the observation points using the distance values calculated.
Many clustering algorithms, e.g., K-means and hierarchical clustering [8], may
be applied here. Since some clustering algorithms, e.g., K-means, are sensitive to
initial selection of means, we use hierarchical clustering to avoid the difficulty in
selecting initial cluster means in our context. Our implementation of hierarchical
clustering uses the bottom-up approach: each observation point starts in its own
cluster, and pairs of clusters are merged as one moves up the hierarchy. The
process continues until the number ns of clusters, as specified by the binary
search, is reached.

4.3 Placement of Lights

After we cluster the observation points into ns clusters, we need to calculate the
location of each cluster centre. In our case, the average coordinates of observation
points in each cluster may not fall within the polygon. To handle this issue, we
consider what we call cluster centrality, denoted by dp

c and defined to be the
sum of the unobstructed distances between an observation point p and the other
observation points q in the same cluster c, i.e.,

dp
c =

∑

q∈c

dpq, (6)

where p and q belong to the same cluster c. For each cluster, we select the
observation point whose cluster centrality value is the smallest in the cluster as
the cluster centre. This is the place where we deploy a light.

After the above steps, an observation point may have a shorter unobstructed
distance to the centre of another cluster than to its own cluster centre. We then
use the following iterative procedure to further adjust the cluster centres: For
an observation point p, if the unobstructed distance to its cluster centre g is
greater than the unobstructed distance to another cluster centre h, point p is
reassigned to the cluster centred at h. After that, we calculate the new centres
of the adjusted clusters. The above procedure repeats until convergence3.

4.4 Are ns Lights Enough?

After we select the locations of ns lights, we need to check whether the illu-
minance level at each point inside the polygon (including points that are not
observation points), calculated with Eq. (4), is above the given threshold δ. Note

3 While we do not prove convergence, our experiments (matlab package available upon
request) suggest that adjustment is required only for a relatively small number of
observation points near the boundary of two clusters, and convergence is reached
after a few rounds.
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that satisfying the illuminance requirement at each observation point does not
immediately imply that the whole polygon area meets the requirement.

To handle this difficulty, we put a stronger illuminance requirement on obser-
vation points: each observation point must fall within the effective illumination
area of at least one light. This stronger requirement brings two benefits. First,
the calculation is much simpler. Since the shortest unobstructed distance from
an observation point to a light is that from the observation point to its cluster
centre, we only need to check whether or not the observation point falls within
the effective illumination area of its cluster centre. Second, because of the next
theorem, we can easily check whether or not the whole polygon area meets the
illuminance requirement.

Theorem 1. Consider a square whose side length is no greater than the effective
illumination radius R of each light. If each of the four corners of the square falls
within the effective illumination area of at least one light, then the whole square
area satisfies the illumination requirement defined in CLDP.

Refer to the Appendix for the proof and for all other proofs in the paper.
Note that in the above theorem, the four corners of the square may fall within
the effective illumination area of different lights. From Theorem 1, we conclude
that if every observation point falls within the effective illumination area of its
cluster centre, then the whole polygon satisfies the illuminance requirement.

4.5 The Initial Lower Bound nlb

We denote the area of a given orthogonal polygon P by Sop. In terms of the
effective illumination radius R of a light, the effective illumination area of that
light is πR2.

According to previous subsection, we now require that each observation point
falls within the effective illumination area of its cluster centre. Taking the area
of a region as an approximate count of the number of observation points in that
region, a reasonable initial lower bound on the number ns of lights (placed at
the cluster centres) needed to cover all the observation points is:

nlb = � Sop

πR2
�. (7)

While this value for nlb is easy to compute, finding a suitable initial value
for nub is nontrivial. To complete the description of our algorithms, and thereby
answer the last question raised in Sect. 4.1, we explain how this can be done for
CLDP-SOP and for CLDP-OPH in the next two sections.

5 An Upper Bound for CLDP-SOP

In this section, we no longer use the grid and the observation points of the
previous section. Our idea to obtain nub is as follows: we modify the original
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CLDP problem to require that each of the infinitude of points in the polygon
must fall within the effective illumination area of at least one light. Thus a
solution to the modified CLDP gives an upper bound for the original CLDP as
more lights may be needed to satisfy the stronger constraint.

We solve the modified CLDP in two steps: Step 1 obtains an initial solution
to the modified CLDP by assuming that the radius R of the effective illumination
area of a light is infinite; Step 2 then puts back the finite value for the radius R
and adds more lights to the set of lights found in Step 1.

Step 1 is the same as the classical AGP. There are both heuristic algorithms
and approximation algorithms to solve the classical AGP, without or with holes.
Below we give a heuristic algorithm for Step 1.

5.1 Step 1

We first explain several basic concepts we use.
– Reflex Vertex: If the internal angle of a vertex is greater than π, this vertex

is called a reflex vertex.
– Edge Extension: The two edges incident to a reflex vertex can be extended

until they intersect the boundary of the orthogonal polygon.
– Rectangular Block: With edge extensions, the whole orthogonal polygon

can be divided into rectangular blocks.
– Block Number: We assign a unique integer label, called a block number, to

each rectangular block.
– Coverage Sets: The coverage set CS(g) of a light g is the set of all the block

numbers of the rectangular blocks that are visible to light g. The coverage set
CS(G) of a set G of lights is the union of the coverage sets of the lights in G.
We say that a set G of lights covers a polygon P if all the block numbers of
P belong to CS(G).

We have the following propositions:
Proposition 1. Every rectangular block is covered by at least one reflex vertex.

From Proposition 1, we easily obtain the following propositions.

Proposition 2. If a light is placed at each reflex vertex of a simple orthogonal
polygon P , the set of these lights at the reflex vertices covers P .

Proposition 3. If every element in the coverage set of a light A is also an
element in the coverage set of another light B, then light A is redundant and
can be removed from any light set containing B. Similarly, if the coverage set of
a union of lights is included in the coverage set of the union of another set of
lights, then the lights generating the included coverage set are redundant and can
be removed from any light set containing the lights that generate the including
coverage set.

We need a method to determine whether or not a reflex vertex covers a given
rectangular block. For this, we have the following proposition.

Proposition 4. If all four vertices of one block are visible to a light g, then the
entire block is visible to the light g.
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A Heuristic Algorithm. According to Proposition 2, if a light is placed at each
reflex vertex, the light set covers the whole polygon and the number of lights is
r = n−4

2 , where n is the number of vertices of the orthogonal polygon. To reduce
the number of lights below r, we remove redundant reflex vertices from the light
set, based on Proposition 3. In other words, we initialize the candidate light set
with the reflex vertex set, and then remove redundant lights.

Reducing the redundancy of the coverage sets is a special case of the Set
Covering Problem, one of Karp’s original 21 NP-complete problems in 1972. We
propose Algorithm 1 for finding an approximate solution.

Algorithm 1. Redundancy Removal Algorithm
Input: The coverage sets C = C(1), C(2), ..., C(r) of a simple orthogonal polygon.
Output: A reduced light set
1: Construct a bipartite graph G =< VL

⋃
VR, E >, where each left-side vertex in

VL = {1, 2, . . . , r} represents a reflex vertex in the orthogonal polygon, each right-
side vertex in VR = {1, 2, . . . ,m} represents a rectangular block, and there is an
edge between vl ∈ VL and vr ∈ VR if the set C(vl) includes vr.

2: Mark all left-side vertices as unlabelled and all right-side vertices as unlabelled.
3: Label all right-side vertices whose degree is 1. /*A right-side vertex has degree 1

if it is covered by only one reflex vertex. */
4: Label all left-side vertices that have an edge to a labelled right-side vertex.
5: Remove all labelled right-side vertices and the corresponding edges linked to those

vertices.
6: while Remaining right-side vertex set is not empty do
7: Label the left-side vertex of the highest degree, if it is unlabelled, in the remaining

bipartite graph.
8: Label all the right-side vertices that have an edge to a labelled left-side vertex.
9: Remove all labelled right-side vertices and the corresponding edges linked to

those vertices.
10: end while
11: return All labelled left-side vertices

5.2 Step 2

In Step 1, we find an initial value for nub for simple orthogonal polygons without
considering the illuminance threshold value. In this section, we put back the
stronger illumination requirement, as defined in the unmodified CLDP, i.e., we
put back the illumination threshold δ > 0.

Fortunately, we can reuse the solution in Step 1 after the following changes.
If the diagonal of one rectangular block is greater than the radius R (calculated
with Eq. (5)) of the coverage area of one light, we split this rectangular block
with horizontal and vertical lines into smaller blocks until all rectangular blocks
can be covered by one light. When we split one rectangular block, we introduce
another important set: the secondary-point set. A secondary point is a vertex
shared by two new adjacent blocks generated by the splitting process, and it is
a candidate location for placing a light.
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Combining the reflex vertex set and the secondary-point set as the candidate
light set, we apply the solution in Step 1 to obtain the new nub value.

5.3 Worst Case Time Complexity Analysis

Denoting the number of vertices of the simple orthogonal polygon by n, and the
number of its reflex vertices by r, we have n = 2r + 4. The time complexity for
determining the reflex set is O(n); constructing the edge extension costs O(r)
time; determining the intersections of edge extensions costs O(r2); labeling the
blocks costs O(n2); calculating the coverage set costs O(n3); and redundancy
removal costs O(nr). Thus finding nub is O(n3).

6 An Upper Bound for CLDP-OPH

We use the idea in the previous section to obtain the initial upper bound nub for
CLDP-OPH, namely, we modify CLDP to require that each point in the polygon
fall within the effective illuminance area of at least one light. We also need to
modify the algorithm to address the problems caused by the special topology of
OPH. As such, we next analyse the different conditions caused by holes and give
the modifications to the solution for SOP to address these conditions.

Propositions 1, 2 and 3 hold for OPH because (1) the proof of Proposition 1
applies to OPH and (2) Propositions 2 and 3 follow directly from Proposition 1.
However, we cannot use Proposition 4 to determine whether or not a reflex vertex
covers a rectangular block in OPH. Figure 2 shows a special case of Proposition 4
in which the orthogonal polygon has one hole. In the figure, the outer boundary
of the orthogonal polygon and the hole are shown with a black line; the blue
dotted lines are the extended edges. Since the four points A,B,C,D are visible
to the reflex vertex g, by Proposition 1, the rectangular block ABCD should be
visible to g. But this is not the case here because of the hole.

A

g

C

D

B

Fig. 2. Special case in OPH (Color figure online)

Fortunately, we only need to revise Proposition 4 by adding the following
constraint, so that the revised proposition holds for OPHs.
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Proposition 5. If all four vertices of one block are visible to light g outside the
block, and there is no other vertex inside the convex polygon determined by light
g and the vertices of that block, then the entire block is visible to light g.

7 Conclusion

We have formulated and studied the Constrained Light Deployment Problem
(CLDP), which aims to deploy the minimum possible number of lights to satisfy
illuminance requirements. Given the hardness of the problem, we proposed a
heuristic algorithm that uses hierarchical clustering and binary search. To set
proper initial values for the binary search, we proposed methods to obtain upper
and lower bounds on the number of lights needed. We implemented and evaluated
the algorithms in matlab. The package is available upon request.

Our formulation of CLDP leads naturally to the study of many variations,
including 3D versions and versions in which light fixtures have different prop-
erties and types. The hardness of these variations can be considered from a
complexity theory viewpoint, as well as the hardness of CLDP for δ > 0.

Appendix

Proof of Theorem1

Proof. Proving Theorem1 is equivalent to solving the following problem shown
in Fig. 3: Assuming that the side length of the square is R and O is an arbitrary
point in the square, we need to prove that

1
1 + |OA′|2 +

1
1 + |OB′|2 +

1
1 + |OC ′|2 +

1
1 + |OD′|2 ≥ 1

1 + R2
. (8)

The equivalence is based on the fact that Fig. 3 illustrates the worst case4

scenario: each corner of the square is covered by a different light, and the loca-
tions of the lights (i.e., A′, B′, C ′,D′) lead to the lowest illuminance value at O.
As the assumption in Theorem 1, the right-hand side of (8), 1

1+R2 , is larger than
the given threshold.

First, by the inequality of arithmetic and geometric means

x1 + x2 + · · · + xn

n
≥ n

√
x1 · x2 · · · · xn, x1, · · · , xn > 0, (9)

4 It is easy to verify Theorem 1 for other simple cases: (One-light case:) all four corners
are covered by the same light. (Two-light cases:) one corner is covered by one light
and the other three corners are covered by another light; two corner are covered
by one light and the other two corners by another light. (Three-light cases:) two
corners are covered by one light and the other two corners each by the other two
lights, respectively.
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we have

1
1 + |OA′|2 +

1
1 + |OB′|2 +

1
1 + |OC ′|2 +

1
1 + |OD′|2

≥ 4
4
√

(1 + |OA′|2)(1 + |OB′|2)(1 + |OC ′|2)(1 + |OD′|2)
≥ 4 × 1

(1+|OA′|2)+(1+|OB′|2)+(1+|OC′|2)+(1+|OD′|2)
4

=
16

4 + (|OA′|2 + |OB′|2 + |OC ′|2 + |OD′|2)

(10)

Observing that |OA′|2 = (R+|OA|)2 = R2+|OA|2+2R|OA| ≤ 2(R2+|OA|2),
the relation of which holds also for |OB′|, |OC ′|, |OD′|, we have

16
4 + (|OA′|2 + |OB′|2 + |OC ′|2 + |OD′|2)
≥ 16

4 + 8R2 + 2[|OA|2 + |OB|2 + |OC|2 + |OD|2]
(11)

Now, we indicate the arbitrary O by (x, y) where x, y ∈ [−R
2 , R

2 ] in the
Euclidean coordinate, and A = (R

2 , R
2 ), B = (−R

2 , R
2 ), C = (−R

2 ,−R
2 ), D =

(R
2 ,−R

2 ). Thus we have

|OA|2 = (x − R

2
)2 + (y − R

2
)2, |OB|2 = (x +

R

2
)2 + (y − R

2
)2,

|OC|2 = (x +
R

2
)2 + (y +

R

2
)2, |OD|2 = (x − R

2
)2 + (y +

R

2
)2

(12)

Substituting Eq. (12) into (11) and using the fact that x2+y2 ≤ (R
2 )2+(R

2 )2 =
R2

2 , we obtain

16
4 + 8R2 + 2[|OA|2 + |OB|2 + |OC|2 + |OD|2]
=

16
4 + 8R2 + 2[4(x2 + y2) + 2R2]

≥ 16
4 + 8R2 + 2[2R2 + 2R2]

≥ 1
1 + R2

	

(13)

Proof of Proposition 1

Proof. There are four kinds of blocks generated by edge extensions:

1. The block has only one edge on an extended edge.
2. The block has two edges on the extended edges.
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Fig. 3. Illustration of Theorem 1

3. The block has three edges on the extended edges.
4. The block has four edges on the extended edges.

For the first case, the block has two possible shapes, which are shown by (a)
and (b) in Fig. 4. The solid edges are line segments on the polygon’s boundary
and the dotted edge is on the extended edge. Since the extended edge is a ray
starting from a reflex vertex, at least one endpoint of the dotted edge is reflex
vertex and the whole block is visible to this reflex vertex.

For the second case, the block has five kinds of shapes, shown by (c) to (g)
in Fig. 4. In (c), although no vertex of the block is reflex, the block must be
visible to the reflex vertices that emit the block’s dotted edges, because in a
simple orthogonal polygon, if some other points obstruct the visibility between
the reflex vertex and the block, there must be another reflex vertex that divides
the block into smaller ones. In (d) to (k), at least one vertex of the polygon is
reflex, and hence, the whole block is visible to the vertex.

For the third case, (h) and (i) show the two possible shapes. For the shape
in (h), the block must be visible to three reflex vertices and the reason is similar
to that for (c). In (i), the block is visible to at least two reflex vertices, which
are its own vertices.

For the fourth case, similar to the shape in (c) and (h), the block is entirely
visible to at least four reflex vertices. 	


Proof of Proposition 4

Proof. We can prove this proposition by contradiction. Suppose there is a block
that is not entirely visible to the light g, while all its four vertices are visible to
the light g. Then there must be some other points or edges that obstruct the
visibility from the light g. Since it is a simple orthogonal polygon, the obstacle
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Block visibility

must be part of the boundary of the orthogonal polygon. Hence, the boundary
must obstruct the visibility from the light g to at least one vertex of the block,
which contradicts to the condition. 	


Proof of Proposition 5

Proof. This proposition can be proved by contradiction. Suppose block ABCD
is a small block generated by the edge extensions of an orthogonal polygon P ,
and all four vertices of block ABCD (Fig. 5) are visible to light G1 but the block
is not entirely visible to light G1. The convex polygon shaped by light G1 and
some vertices of block ABCD is G1ABCD. Since block ABCD is not entirely
visible to light G1, there must be some vertices of the polygon P inside the
polygon G1ABCD blocking the light from light G1. This contradicts with the
condition “there is no other vertex inside the convex polygon”. 	


G
2

G
1

BA

D C

Fig. 5. Figure for the proof of Proposition 5
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G.: Metaheuristic approaches for the minimum vertex guard problem. In: Third
International Conference on Advanced Engineering Computing and Applications
in Sciences, ADVCOMP 2009, pp. 77–82. IEEE (2009)
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Abstract. Metrics or distance functions generalizing the Euclidean met-
ric (and even Lp-metrics) have been used in Computational Geometry
long ago; for example, convex distance functions appeared in the first
Symposium on Computational geometry [2]. Very recently Das et al. [5]
studied the 1-center problem under a convex polyhedral distance func-
tion where the unit ball of the distance function is a convex polytope. In
this paper we develop algorithms for the 2-center problem under a convex
polyhedral distance function in R

d, d = 2, 3. We show that the 2-center
can be computed in O(n log m) time for the plane and in O(nm log n)
time for d = 3. We show that the problem of for computing the 2-center
in R

3 has an Ω(n log n) lower bound.

1 Introduction

The Euclidean metric or Lp-metrics in general are common metrics in Compu-
tational Geometry. Chew and Drysdale [2] studied Voronoi diagrams based on
convex distance functions which can be viewed as a generalization of Lp-metrics.
“If a pebble is dropped into a still pond, circular waves move out from the point
of impact.” Then the Voronoi diagram under the Euclidean distance function
is just the set of points where circular waves collide, if n pebbles are dropped
simultaneously. Chew and Drysdale observed that the circular waves can be
changed to waves of a different convex shape. Then the waves collide forming a
new Voronoi diagram for the same set of n points using a new distance function.
If P is a convex bounded region containing the origin O in the interior of P ,
then the distance from the origin to a point p is the stretch factor of P such that
the boundary of the stretched P contains p. In other words, the distance from
the origin to p is |p|/|pP | where pP is the intersection point of the ray emanating
from the origin to p and the boundary of P , see Fig. 1. The distance from a point
a to a point b is defined as the distance from the origin to b− a. This distance is
well defined since the region P is star-shaped. Note that the distance function
may not be a metric since the distance from a to b may be not equal to the
distance from b to a. Clearly, this definition of convex distance function can be
extended to higher dimensions.

c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 365–377, 2016.
DOI: 10.1007/978-3-319-48749-6 27
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P

ppP

Fig. 1. The new distance from the origin to p is |p|/|pP |.

Polyhedral Convex Distance Functions. Chew et al. [3] studied Voronoi diagrams
of lines in the three-dimensional space under polyhedral convex distance func-
tions which can be defined as follows. For i = 1, 2, . . . ,m, let ai ∈ R

d and
bi ∈ R+. Consider a convex polytope with m facets

P = {x ∈ R
d | aix ≤ bi, i = 1, 2, . . . , m}.

Then the distance δP (x, y) (the polyhedral convex distance function) from a
point x ∈ R

d to a point y ∈ R
d is defined as

min r
s.t. ai(y − x) ≤ rbi, ∀i = 1, 2, . . . ,m.

Icking et al. [8] studied bisectors of two points in the plane with respect to
convex distance functions where the unit balls are convex polygons. They proved
that the bisector consists of polylines and polygons (bounded and unbounded).
It has O(n + m) complexity where n and m are the sizes of convex polygons
for the two given points. Icking et al. [7] also studied convex distance functions
in R

3.
Recently Das et al. [5] studied the 1-center problem under a convex polyhedral

distance function where the convex region of the distance function is a convex
polytope.

1-center problem. Given points p1, p2, . . . , pn ∈ R
d, find a point q ∈ R

d

such that maxi δP (q, pi) is minimized. We assume that
(i) m = O(n),1

(ii) no two points pi, pj , i �= j are aligned with a facet of P .2

Das et al. [5] found a linear time algorithm for computing the 1-center prob-
lem under a convex polyhedral distance function. The man ingredient is the
algorithm for the restricted 1-center problem where the 1-center is restricted to
a line. They show that the constrained 1-center problem can be solved in linear
time. Furthermore in linear time it can be decided whether the unconstrained
1-center lies on the given line or not. If the unconstrained 1-center does not lie
on the given line, the side of the line contains the 1-center is computed also.

The algorithm by Das et al. [5] for computing the 1-center in the plane
employs prune and search technique using weighted bisectors. The points are
1 To simplify the analysis.
2 This condition can be removed by a perturbation.
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paired and a bisector for each pair is computed. A weight is assigned to each
bisector. In one iteration of the algorithm bisectors corresponding to a quar-
ter of total weight are pruned. The running time of the entire algorithm is
O(nm log2 m) where m is the complexity of the unit ball (the number of vertices
in the polygon).

In this paper we study the 2-center problem under a convex polyhedral dis-
tance function.

2-center problem. Given points p1, p2, . . . , pn ∈ R
d, find two points

q1, q2 ∈ R
d such that maxi minj δP (qj , pi) is minimized. The value of

maxi minj δP (qj , pi) is called 2-center radius. We assume that
(i) m = O(n),
(ii) no two points pi, pj , i �= j are aligned with a facet of P .

We develop algorithms for the 2-center problem under a convex polyhedral
distance function in the plane and in R

3. We also show that the problem of
computing the 2-center in R

3 has an Ω(n log n) lower bound.

2 The 1-Center in the Plane

First, we consider the problem of computing the 1-center in the plane under a
convex polyhedral distance function. We design a new algorithm different from
the algorithm from by Das et al. [5] and use its ingredients to develop later an
algorithm for computing the 2-center. Our algorithm for computing the 1-center
in the plane does not use the bisectors. The unit ball of the distance function is a
convex polygon P with m vertices. We consider the m directions corresponding
to the sides of the polygon P , see Fig. 2.

O

P

Fig. 2. Polygon P with m = 6 vertices and 6 extreme directions.

Algorithm 1-Center-in-2D.

1. Compute m extreme points in S using directions normal to the edges of P .
2. Compute the minimum s > 0 such that the points computed in Step 1 can

be covered by a polygon sP + t for some t ∈ R
2.

3. Return 1-center t.
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2.1 Extreme Points

In this section we show that the extreme points in the first step of our algorithm
can be computed in O(n log m) time. We consider two parts of the polygon P : the
upper part Pup and the lower part Plow. They can be viewed as two polylines
between pleft and pright, the vertices of P with the smallest and largest x-
coordinates, respectively. Without loss of generality we assume that the vertices
of P with minimum and maximum x-coordinate are unique. It suffices to show
that the extreme points corresponding to Pup can be computed in O(n log m)
time (the extreme points corresponding to Plow can be computed in O(n log m)
time as well). Let d1, d2, . . . , du be the directions corresponding to Pup sorted by
the slope. Note that the value of u is at most m.

Next, we split the directions into two lists

D1 = {d1, d2, . . . , d�u/2�} and D2 = {d�u/2�+1, d�u/2�+2, . . . , du}.

We will split the points in S into two lists S1 and S2 such that, for each i = 1, 2
and all directions in Di, the extreme points in Pup must be in the set Si. First,
we find a direction dsplit between d�u/2� and d�u/2�+1, for example dsplit =
(d�u/2� + d�u/2�+1)/2. Consider pairs of points (p1, p2), (p2, p3), (p3, p4), . . . from
the set S. For each pair of points (pi, pi+1), we draw the line l passing through
pi and pi+1. Let l⊥ be the line perpendicular to line l and passing through the
origin, see Fig. 3(c) for an example. If line l⊥ coincides with the x-axis, then one
of the points pi and pi+1 (which is below the other) cannot be in either S1 or
S2, see Fig. 3(a). We delete this point. Suppose that line l⊥ has the same slope
as direction dsplit. Without loss of generality we can assume that the slope of
vector pipi+1 is dsplit − π/2 as shown in Fig. 3(b). Then pi cannot be in either
S1 and pi+1 cannot be in S2. In other words, we assign pi to S2 and pi+1 to S1.

Consider a non-degenerate case where the slope of line l⊥ is, say between
0 and dsplit as shown in Fig. 3(c). Without loss of generality we can assume
that the slope of vector pipi+1 is greater than the slope of line l⊥ by π/2 (as in
Fig. 3(b)). Then point pi cannot be in set S2 and we assign it to set S1.

O

dsplit

pi

pi+1

l

l⊥
O

dsplit

pi

pi+1

l l⊥

(a) (c)

O

dsplitpi

pi+1

l

(b)

l⊥

Fig. 3. (a) pi can be deleted as it is not in S1 nor in S2. (b) Pair of points pi and pi+1

such that the point pi+1 cannot be extreme for any direction in D2.
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Clearly, the number of points in S not assigned to either S1 or S2 will be at
most n/2 after all pairs are processed. We repeat this algorithm until none or one
unassigned point left (which can be assigned to both S1 and S2 or, alternatively,
it can be compared with extreme points computed later). Let T (n,m) be the
running time of this algorithm. Let ni, i = 1, 2 be the size of the computed set
Si. Note that n1 + n2 could be equal to n or n + 1. The recurrence for T (n,m)
is then

T (n,m) = T (n1,m/2) + T (n2,m/2) + O(n).

The solution the recurrence is T (n,m) = O(n log m).

Lemma 1. For any set S of n points and a convex polygon P of m points, the
extreme points from S in directions normal to the edges of P can be computed
in O(n log m) time.

2.2 Step 2

Our task in Step 2 is to compute the minimum s > 0 such that the points
computed in Step 1 can be covered by a polygon sP + t for some t ∈ R

2. These
points are assigned to the directions di, i ∈ {1, 2, . . . , u}. Note that a group of
consecutive directions di, di+1, . . . , dj can be assigned to a single point in S. We
show that Step 2 can be done in O(m) time.

Let pki
, i = 1, 2, . . . ,m be the extreme point in direction di computed in Step

1. Consider the following problem:

min s
s.t. ai(pki

− t) ≤ sbi, ∀i = 1, 2, . . . ,m. (1)

It can be viewed as a linear programming problem in three dimensions (the
unknowns are tx, ty and s). It can be solved in linear time [4,6,10]. Since both s
and t are computed, we can return t in Step 3 (Fig. 4).

(a)
(b)

t

P

Fig. 4. (a) Polygon P . (b) Extreme points found in Step 1 and the optimal covering
polygon sP .
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2.3 Correctness and Running Time

Since the polygon P contains the origin it can be viewed as

P = {v ∈ R
2 | aiv ≤ bi, i = 1, 2, . . . ,m}.

Then the distance δP (v, u) from a point v to a point u is defined as

min r
s.t. ai(u − v) ≤ rbi, ∀i = 1, 2, . . . ,m.

Recall the 1-center problem: Given points p1, p2, . . . , pn in the plane, find a
point q such that maxi δP (q, pi) is minimized. Let q be the 1-center and r be the
1-center radius, i.e.

r = max
i

δP (q, pi).

Then

ai(pj − q) ≤ rbi, ∀i = 1, 2, . . . ,m and ∀j = 1, 2, . . . , n

Fix any i. The inequalities

ai(pj − q) ≤ rbi, ∀j = 1, 2, . . . , n

hold if
ai(pj∗ − q) ≤ rbi

where pj∗ is a point pj , j ∈ {1, 2, . . . , n} that maximizes aipj . The algorithm is
correct since pj∗ is the extreme point in the ith direction.

The Running Time. By Lemma 1, Step 1 takes O(n log m) time. Step 2 takes
O(m) time. We conclude the following result.

Theorem 1. Let S be a set of n points in the plane and let P be a convex
polygon in the plane containing the origin. The 1-center of S under the distance
function δP () can be computed in O(n log m) time where m = |P |.

3 The 1-Center in Higher Dimensions

In this section we give a straightforward reduction of the 1-center problem in
R

d under the convex polyhedral distance function to linear programming. We
generalize the approach from Sect. 2.

Recall that in the 1-center problem we are given points p1, p2, . . . , pn ∈ R
d

and we want to find a point q ∈ R
d such that maxi δP (q, pi) is minimized. For

two points x and y ∈ R
d, the polyhedral convex distance function δP (x, y) is

min r
s.t. ai(y − x) ≤ rbi, ∀i = 1, 2, . . . ,m.
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Then the 1-center radius can be expressed as

min r
s.t. ai(q − pj) ≤ rbi, ∀i = 1, 2, . . . ,m, ∀j = 1, 2, . . . , n.

Clearly this is a linear program with unknowns q and r. Since it is a (d + 1)-
dimensional linear program with nm constraints which can be solved in linear
time in fixed dimension [4,6,10], we conclude the following.

Theorem 2. Let S be a set of n points in R
d and let P be a convex polytope

in R
d containing the origin. The 1-center of S under the distance function δP ()

can be computed in O(nm) time where m is the number of facets of P .

4 The 2-Center in the Plane

In this section we show that the 2-center in the plane under a convex polyhedral
distance function can be computed efficiently. We use the ingredients of the
algorithm from Sect. 2.

p1

p2

p3
T

sP + t

p1

p2

p3
T

sP + t

(a) (b)

Fig. 5. A polygon sP + t containing all the given points. (a) Points lying outside the
triangle Tp1p2 and corresponding sectors. (b) Points lying inside the triangle Tp1p2

and corresponding sectors.

Algorithm 2-Center-in-2D.

1. Compute m extreme points in S using directions normal to the edges of P .
2. Compute the minimum s > 0 such that the points computed in Step 1 can

be covered by a polygon sP + t for some t ∈ R
2. Let p1, p2, . . . , pk, k ≤ m be

at most m points from S on the boundary of sP + t (at most one from each
side of sP + t).
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3. If k ≥ 5 then s is the 2-center radius and two copies of sP + t cover S (just
one is sufficient).

4. Suppose that k ≤ 4. For each pair pi and pj , 1 ≤ i < j ≤ k such that the
directions of pi and pj are not opposite, compute si,j , ai,j , bi,j such that
(a) S ⊂ si,jP + ai,j ∪ si,jP + bi,j ,
(b) pi, pj are on the boundary of si,jP + ai,j , and
(c) si,j is minimized.

5. Return 2-center ai,j , bi,j minimizing si,j .

4.1 Step 4

We show that, for any pair i and j with 1 ≤ i < j ≤ k, the number si,j and the
points ai,j , bi,j can be computed in linear time.

Consider the polygon sP + t containing all the given points, see Fig. 5. First,
compute the intersection of two rays extending the sides that contain points pi
and pj (i = 1 and j = 2 in Fig. 5). Let T be this point. Draw rays emanating from
T through the vertices of the polygon sP +t that not visible (assuming that sP +t
is an obstacle) as shown in Fig. 5. For each point in S find the sector between
consecutive rays containing the point. This can be done in O(log m) time for
each point using a binary search. For each point pl, l ∈ {1, 2, . . . , n}, l �= i, j find
the stretch factor sl such that the polygon sP + t scaled by sl about T contains
pl on its boundary. Compute the median of values sl and test whether S can be
covered by two polygons P1 and P2 such that P1 is the polygon sP + t scaled
by sl about T and P2 is a translated copy of the polygon sslP . In O(n log m)
time we can find points from S covered by P1. In O(n log m) time we can decide
if the remaining points can be covered by a polygon P2 using algorithms from
Sect. 2.

If the polygon P2 exists, then we search next time for sl′ > sl; otherwise we
search for sl′ < sl. The entire algorithm will take O(n log n log m) time.

Improvement. We show that Step 4 can be performed in linear time (in n).
Consider the triangle Tpipj denoted by Δ. We maintain four sets A,B,C, and
D where

– set A stores points from S that must be in polygon P1 (for example, pi, pj),
– set B stores points from S that must be in polygon P2,
– set C stores points from S ∩ Δ that could be in either P1 or P2, and
– set D stores points from S ∩ R

2\Δ that could be in either P1 or P2.

Note that we can store at most m points in both A and B as in the algorithm
from Sect. 2. We use the median scale of either set C or D whichever is larger
(ties may be broken arbitrarily). At least half of points in the selected set will
be moved to either A or B. We update the set keeping at most m points. The
algorithm stops when C = D = ∅. Then si,j is computed as the maximum of
the size of P1 or P2 relative to the size of P . Let t(|C| + |D|, |A| + |B|) denote
the running time of the algorithm. Then the recurrence for t() is

t(n,m) = t(3n/4,m) + O(n log m)
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which is solved as t(n,m) = O(n log m).

Theorem 3. Let S be a set of n points in the plane and let P be a convex
polygon in the plane containing the origin. The 2-center of S under the distance
function δP () can be computed in O(n log m) time where m = |P |.

5 The 2-Center in Three Dimensions

In this section we show that the 2-center in R
3 under a convex polyhedral dis-

tance function can be computed efficiently.

Algorithm 2-Center-in-3D.

1. Compute m extreme points in S using directions normal to the facets of P .
2. Compute the minimum s > 0 such that the points computed in step 1 can

be covered by a polytope sP + t for some t ∈ R
3. Let p1, p2, . . . , pk, k ≤ m be

at most m points from S on the boundary of sP + t (at most one from each
side of sP + t).

3. If k ≥ 5 then pick 3 points pi, pj and pl. Similar to the scaling in the algorithm
2-Center-in-2D, use the binary search in the cone bounded by 3 planes through
the facets corresponding to pi, pj , pl. This step can be done in linear time (in
n) but a simple realization with O(n log n log m) time suffices.

4. Suppose that k = 4. For each pair pi and pj , 1 ≤ i < j ≤ k such that the
directions of pi and pj are not opposite, compute si,j , ai,j , bi,j such that
(a) S ⊂ si,jP + ai,j ∪ si,jP + bi,j ,
(b) pi, pj are on the boundary of si,jP + ai,j , and
(c) si,j is minimized.

5. Return 2-center ai,j , bi,j minimizing si,j .

5.1 Step 4

We show that, for any pair i and j with 1 ≤ i < j ≤ k, the number si,j and the
points ai,j , bi,j can be computed in O(mn log n) time. Pick a direction normal to
an lth facet of the polytope P that is different from the directions of pi and pj
and is not opposite to any of them. Create a list Ll of scale factors of P such that
a translated copy of the scaled polytope has pi, pj on its corresponding facets
and a point from S on its lth facet. This can be done by (pre)sorting S in the
direction normal to the lth facet of P . The list Ll is actually a truncated sublist
of this sorted list. The algorithm apply a binary search using the lists Ll.

To test a particular scale factor s we slide the polytope sP such that pi
and pj are both on its corresponding facets. The points covered by the sliding
polytope undergo insertions and deletions of points from S. These points are
deleted/inserted into the set S2 that is tested for covering by a translated copy
of sP . This polytope is again sliding since its two facets are defined by the other
two extreme points computed in Step 2.

Note that each point is at S2 at the beginning of the sliding of the first
copy of sP . Also each point either is in S2 all the time or is deleted and then
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inserted again. We compute these times for all the points in O(n log m) time
by (i) projecting S and the first copy of sP onto a plane perpendicular to the
sliding direction, and (ii) locating each point in two projected facets of the copy
of sP . Similarly, we find two facets of the second copy of sP for each point in S.
Now, for each instant of time, we compute two points from S that are extreme
in two (opposite) sliding directions. We explain how to do it for one direction,
say d. Each point is already assigned to one facet in direction d. We partition S
into corresponding lists. These lists are sublists of the corresponding sorted lists
that can be precomputed in O(nm log n) time. The sublists can be extracted in
O(nm) time. In O(nm) time the sublists can be merged into the required list
for d. Similarly, we crate the list for the opposite direction. Finally, the test can
be done by traversing the two lists.

Theorem 4. Let S be a set of n points in the plane and let P be a convex polygon
in R

3 containing the origin. The 2-center of S under the distance function δP ()
can be computed in O(mn log m) time where m = |P |.

6 Lower Bound

In this section we prove a lower bound for computing the 2-center in R
3 under a

convex polyhedral distance function by a reduction from the MAX-GAP prob-
lem.

MAX-GAP problem. Given a set A = {a1, a2, . . . , an} of n real num-
bers, compute the maximum gap of A, which is the largest absolute value
of the difference between two elements ai and aj that are consecutive in
the sorted sequence.

Note that the value of the maximum gap is easily computed after sorting S.
The MAX-GAP problem has an Ω(n log n) lower bound in the algebraic decision
tree model, as proved by Lee and Wu [9]. We will reduce the MAX-GAP problem
to the 2-center in R

3 under a convex polyhedral distance function. In fact, we
use the decision problem where, given a positive real number γ, we want to
determine whether or not the maximum gap is greater than or equal to γ. It has
an Ω(n log n) lower bound in the algebraic computation tree model [1].

Consider a tetrahedron T1 with four vertices in R
3: (0, 0,−1), (0, 0, 1), (1, 1, 0)

and (−1, 1, 0), see Fig. 6. Let T2 be a copy of T1 shifted by some number y0 −
1 ∈ (0, 1) along Y -axis. We actually assume that 4/3 < y0 < 2 for a reason
that will be explained later. The top facet of T1 is the triangle with vertices
(0, 0, 1), (1, 1, 0) and (−1, 1, 0). The equation of the plane π1 passing through
these points is then y + z = 1. The facet seen from X-axis (or from (∞, 0, 0)) is
the triangle with vertices (0, 0,−1), (0, 0, 1), (1, 1, 0). The equation of the plane
π2 passing through these points is x−y = 0, see Fig. 6. We place two points on the
two facets of T1 close to the origin, say points p1 = (σ, σ, 0) and p2 = (−σ, σ, 0)
for some small σ > 0. Similarly, place two points on the two facets of T2 close
to the point (0, y0, 0), say points p3 = (0, y0 − σ, σ) and p4 = (0, y0 − σ,−σ).
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X

Y

Z

y0

T1
T2

π1

π2

p1
p3

p5

p7

Fig. 6. Two tetrahedra covering n given points.

Polytope P. We define the unit ball of the convex polyhedral distance function
as a translated copy of tetrahedron T1 such that the origin is in its interior. For
example, tetrahedron T1 − v where v = (0, 1/2, 0) can be used as the polytope
P . Its vertices are (0,−1/2,−1), (0,−1/2, 1), (1, 1/2, 0) and (−1, 1/2, 0).

Consider the plane π3 with equation y = y0/2. We place the remaining points
in π3 as follows. The intersection of plane π3 and tetrahedron T1 is a rectangle
R1. Its sides are defined by the intersection of plane π3 and

– the intersection of planes π1 and π3, which is {(x, y, z)| y = y0/2, z = 1 − y0},
and

– the intersection of planes π2 and π3, which is {(x, y, z)| x = y0/2, y = y0/2}.

Similarly, the intersection of plane π3 and tetrahedron T2 is a (2 − y0) × y0
rectangle R2.

We create a set A1 of n points corresponding to the numbers a1, a2, . . . , an.
Let s be the spread of A, i.e. s = maxi ai − mini ai. Let t be the number γ(2 −
y0)/(s + γ). We map a number ai, i = 1, 2 . . . , n to a point (xi, y0/2, zi) where
xi = t+2−y0−zi, y0/2, zi), zi = t+(ai−minj aj)r, and r = (2−y0−t)/s . Note
that the points of A1 lie on the line x + z = t + 2 − y0, y = y0/2, see Fig. 7. We
create a translated copy of A1, the set A2 = A1−(2t+2−y0, 2t+2−y0). Finally,
we place two points p9 = (2 − y0 + ε, t) and p10 = (t, 2 − y0 + ε) for sufficiently
small ε. Thus, we constructed a set S = {pi | i = 1, 2, . . . , 10}∪A1, A2 of 2n+10
points.

Lemma 2. The maximum gap of A is greater than or equal to γ if and only if
the 2-center radius of S is smaller than or equal to one.

Proof. First, we show that if the set S can be covered by two copies of P under
translation then the maximum gap of A is greater than or equal to γ. Suppose
that two polytopes P1 = P + v1 and P2 = P + v2 cover S, i.e. S ⊂ P1 ∩ P2.
It is easy to see that polytope P cannot be translated to cover one point from
{p1, p2} and one point from {p3, p4}. Therefore, we can assume that p1, p2 ∈ P1
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Fig. 7. The sets A1 and A2 in case of a1 ≤ a2 ≤ . . . an.

and p3, p4 ∈ P2. The intersection of P1 and π3 is a l1×w1 rectangle where l1 ≤ y0
and w2 ≤ 2 − y0. Note that polytope P1 cannot contain a point from {p5, p6}
and a point from {p7, p8}, since w2/2 < z(p7) = y0/2. The last inequality follows
from y0/2 > (2 − y0)/2 or y0 > 1.

We can choose y0 such that P1 cannot contain a point from {p5, p6} and a
point from {p7, p8}; for example, by restricting w2 < z(p7) = y0/2. The last
inequality follows from 2 − y0 < y0/2 or y0 > 4/3.

Similarly, P2 does not contain a point from {p5, p6} and a point from {p7, p8}.
Also P1 cannot contain p7 or p8 and P2 cannot contain p5 or p6. Thus, P1 must
contain p5 and p6 and P2 must contain p7 and p8. Furthermore, p5, p6 /∈ P2 and
p7, p8 /∈ P1. This implies that the tetrahedron P1 is a translated copy of T1 along
the z-axis and the tetrahedron P2 is a translated copy of T2 along the x-axis.

Since rectangle R1 cannot contain point p10, it should be covered by R2.
Similarly, point p9 lies in R1. Since the intersection of R1 and R2 is a square of
side 2 − y0, R1 ∪ R2 cannot cover the segment of A2. The uncovered part of A2

must be within a gap between two consecutive points in A2. The claim follows
if the uncovered segment has x-length (if projected onto the x-axis) at least
γr. Suppose the uncovered segment has x-length smaller than γr. The x-shift
between lines containing A1 and A2 is 2t + t − y0. It can be verified that t = γr.
Therefore, the uncovered segment of A1 has x-length greater than γr and the
claim follows.

Clearly, if the 2-center radius of S is smaller than or equal to one, then the
maximum gap of A is greater than or equal to γ (since the set S can be covered
by two copies of P under translation). This conclude “if” part of the lemma.
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Now, we show that if the maximum gap of A is equal to γ then the set S
can be covered by two copies of P under translation. Without loss of generality
we assume that the numbers in A are sorted, i.e. a1 ≤ a2 ≤ . . . an. Suppose that
the maximum gap is between ai and ai+1. Place R1 such that its top side is at
zi and place R2 such that its left side is at xi+1 as shown in Fig. 7. Then the
uncovered segment of A2 is exactly between two points corresponding ai and
ai+1 since

• xi+1 − xi = γr and the width of R2 is 2 − y0, and
• zi+1 − zi = γr and the width of R1 is 2 − y0.

The positions of rectangles R + i, i = 1, 2 can be used to find the positions of
tetrahedra Ti, i = 1, 2. Therefore, the “only if” part of the lemma follows.

By Lemma 2 and an Ω(n log n) bound [1] for the problem of deciding whether
the maximum gap is greater than or equal to γ, the main result of this section
follows.

Theorem 5. The problem of computing the 2-center in R
3 under a convex poly-

hedral distance has an Ω(n log n) lower bound in the algebraic decision tree
model.
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Abstract. The colourful simplicial depth (CSD) of a point x ∈ IR2

relative to a configuration P = (P 1, P 2, . . . , P k) of n points in k colour
classes is exactly the number of closed simplices (triangles) with vertices
from 3 different colour classes that contain x in their convex hull. We
consider the problems of efficiently computing the colourful simplicial
depth of a point x, and of finding a point in IR2, called a median, that
maximizes colourful simplicial depth.

For computing the colourful simplicial depth of x, our algorithm runs
in time O (n log n + kn) in general, and O(kn) if the points are sorted
around x. For finding the colourful median, we get a time of O(n4). For
comparison, the running times of the best known algorithm for the mono-
chrome version of these problems are O (n log n) in general, improving
to O(n) if the points are sorted around x for monochrome depth, and
O(n4) for finding a monochrome median.

1 Introduction

The simplicial depth of a point x ∈ IR2 relative to a set P of n data points
is exactly the number of simplices (triangles) formed with the points from P
that contain x in their convex hull. A simplicial median of the set P is any
point in IR2 which is contained in the most triangles formed by elements of P ,
i.e. has maximum simplicial depth with respect to P . Here we consider a set
P that consists of k colour classes P 1, . . . , P k. The colourful simplicial depth
of x with respect to configuration P is the number of triangles with vertices
from 3 different colour classes that contain x. A colourful simplicial median of
a configuration P = (P 1, P 2, . . . , P k) is any point in the convex hull of P with
maximum colourful simplicial depth.

The monochrome simplicial depth was introduced by Liu [16]. Up to a con-
stant, it can be interpreted as the probability that x is in the convex hull of a
random simplex generated by P . The colourful version, see [7], generalizes this
to selecting points from k distributions. Then medians are central points which
are in some sense most representative of the distribution(s). Our objective is
find efficient algorithms for finding both the colourful simplicial depth of a given
point x with respect to a configuration, and a colourful simplicial median of a
configuration.

c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 378–392, 2016.
DOI: 10.1007/978-3-319-48749-6 28
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1.1 Background

Both monochrome and colourful simplicial depth extend to IRd and are natural
objects of study in discrete geometry. For more background on simplicial depth
and competing measures of data depth, see [2,11]. Monochrome depth has seen
a flurry of activity in the past few years, most notably relating to the First Selec-
tion Lemma, which is a lower bound for the depth of the median, see e.g. [17].
Among the recent work on colourful depth are proofs of the lower [20] and
upper [1] bounds conjectured by Deza et al., with the latter result showing
beautiful connections to Minkowski sums of polytopes.

The monochrome simplicial depth can be computed by enumerating sim-
plices, but in general dimension, it is quite challenging to compute it more effi-
ciently [2,5,11]. Several authors have considered the two-dimensional version of
the problem, including Khuller and Mitchell [14], Gil et al. [13] and Rousseeuw
and Ruts [19]. Each of these groups produced an algorithm that computes the
monochrome depth in O(n log n) time, with sorting the input as the bottleneck.
If the input points are sorted, these algorithms take linear time.

We consider a simplicial median to be any point x ∈ IR2 maximizing the
simplicial depth. Aloupis et al. [3] considered this question, and found an O(n4)
algorithm to do this. This is arguably as good as should be expected, following
the observation of Lemma 2 in Sect. 3.1 that shows that there are in some sense
Θ(n4) candidate points for the location of the colourful median.

1.2 Organization and Main Results

In Sect. 2, we develop an algorithm for computing colourful simplicial depth
that runs in O(n log n+kn) time. This retains the O(n log n) asymptotics of the
monochrome algorithms when k is fixed. As in the monochrome case, sorting the
initial input is a bottleneck, and the time drops to O(kn) if the input is sorted
around x. In this case, for fixed k, it is a linear time algorithm.

In Sect. 3, we turn our attention to computing a colourful simplicial median.
We develop an algorithm that does this in O(n4) time using a topological sweep.
This is independent of k and matches the running time from the monotone case.
Section 4 contains conclusions and discussion about future directions.

2 Computing Colourful Simplicial Depth

2.1 Preliminaries

We consider a family of sets P 1, P 2, . . ., P k ⊆ IR2, k ≥ 3, where each P i

consists of the points of some particular colour i. Refer to the jth element of P i

as P i
j . We generally use superscripts for colour classes, while subscripts indicate

the position in the array. We will sometime perform arithmetic operations on
the subscripts, in which case the indices are taken modulo the size of the array
i.e. (mod ni).
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We denote the union of all colour sets by P : P =
k⋃

i=1

P i. The total number

of points is n, where |P i| = ni,
k∑

i=1

ni = n. We assume that points of P
⋃{x}

are in general position to avoid technicalities. Without loss of generality, we can
take x = 0, the zero vector.

Definition 1. A colourful triangle is a triangle with one vertex of each colour,
i.e. it is a triangle whose vertices v1, v2, v3 are chosen from distinct sets P i1 ,
P i2 , P i3 , where ii �= i2, i3; i2 �= i3.

Definition 2. The colourful simplicial depth D̂(x, P ) of a point x relative to
the set P in IR2 is the number of colourful triangles containing x in their convex
hull. We reserve D(x, P ) for the (monochrome) simplicial depth, which counts
all triangles from P regardless of the colours of their vertices.

Remark 1. We are checking containment in closed triangles. With our general
position assumption, this will not affect the value of D̂(x, P ). It is more natural
to consider closed triangles than open triangles in defining colourful medians;
the open triangles version of this question may also be interesting.

Throughout the paper we work with polar angles θi
j formed by the data

points P i
j and a fixed ray from x. We remark that simplicial containment does

not change as points are moved on rays from x, see for example [23]. Thus we
can ignore the moduli of the P i

j , and work entirely with the θi
j , which lie on

the unit circle C with x as its origin. We will at times abuse notation, and not
distinguish between P i

j and θi
j .

Note that the ray taken to have angle 0 is arbitrary, and may be chosen based
on an underlying coordinate system if available, or set to the direction of the
first data point P1. We can sort the input by polar angle, in other words, we
can order the points around x. (Perhaps it is naturally presented this way.) We
reduce the θi

j to lie in the range [0, 2π).
The antipode of some point α on the unit circle is ᾱ = (α+π) mod 2π. A key

fact in computing CSD is that a triangle �abc does not contain x if and only if
the corresponding polar angles of points a, b and c lie on a circular arc of less
than π radians. This is illustrated in Fig. 1, and is equivalent to the following
lemma, stated by Gil, Steiger and Wigderson [13]:

Lemma 1. Given points a, b, c on the unit circle C centred at x, let ā be
antipodal to a. Then �abc contains x if and only if ā is contained in the minor
arc (i.e. of at most π radians) with endpoints b and c.

2.2 Outline of Strategy

Recall that we denote the ordinary and colourful simplicial depth by D(x, P )
and D̂(x, P ) respectively. We can compute D̂(x, P ) by first computing D(x, P )
and then removing all triangles that contain less than three distinct colours.
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x

bc
ā

a

Fig. 1. Antipode ā falls in the minor arc between b and c and, therefore, the triangle
�abc contains x.

To this end, we denote the number of triangles with at least two vertices of colour
i as Di(x, P ). When x and P are clear from the context, we will abbreviate these
to D, D̂ and Di.

Since we can compute D(x, P ) efficiently using the algorithms mentioned
in the introduction [13,14,19], the challenge is to compute Di(x, P ) for each

i = 1, 2, . . . , k. Then we conclude D̂(x, P ) = D(x, P )−
k∑

i=1

Di(x, P ). To compute

Di efficiently for each colour i, we walk around the unit circle tracking the minor
arcs between pairs of points of colour i, and the number of antipodes between
them. We do this in linear time in n by moving the front and back of the interval
once around the circle, and adjusting the number of relevant antipodes with each
move. This builds on the approach of Gil et al. [13] for monochrome depth.

Remark 2. When computing Di, we count antipodes of all k colours; the tri-
angles with three vertices of colour i will be counted three times: �abc,
�bca and �cab. Thus the quantity obtained by this count is in fact Di

∗ :=

Di + 2
k∑

i=1

D(x, P i). We separately compute
k∑

i=1

D(x, P i), allowing us to correct

for the overcounting at the end.

2.3 Data Structures and Preprocessing

We begin with the arrays θi of polar angles, which we sort if necessary. All

elements in
k⋃

i=1

θi are distinct due to the general position requirement. By con-

struction we have:

0 ≤ θi
0 < θi

1 < . . . < θi
ni−1 < 2π, for all 1 ≤ i ≤ k. (1)

Let θ̄i be the array of antipodes of θi, also sorted in ascending order. We generate
θ̄i by finding the first θi

j ≥ π, moving the part of the array that begins with that
element to the front, and hence the front of the original array to the back; π is
subtracted from the elements moved to the front and added to those moved to
the back. This takes linear time.
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x
θi
j

θi
l(i,j)

θ̄i
j

θi
l(i,j)+1

Fig. 2. Index l(i, j) and index (l(i, j) + 1)

We merge all θ̄i into a common sorted array denoted by A. Now we have all
antipodes ordered as if we were scanning them in counter-clockwise order around
the circle C with origin x. Let us index the n elements of A starting from 0. Then,
for each colour i = 1, . . . , k, we merge A and θi into a sorted array Ai. Once
again, this corresponds to a counter-clockwise ordering of data points around C.

While building Ai, we associate pointers from the elements of array θi to
the corresponding position (index) in Ai. This is done by updating the point-
ers whenever a swap occurs during the process of merging the arrays. Denote
the index of some θi

j in Ai by p(θi
j). Then the number of the antipodes that

fall in the minor arc between two consecutive points θi
j and θi

j+1 on C is
(
p

(
θi

j+1

) − p
(
θi

j

) − 1
)
, if p

(
θi

j

)
< p

(
θi

j+1

)
, or

(
n + ni − p

(
θi

j

)
+ p

(
θi

j+1

) − 1
)
,

if p
(
θi

j

)
> p

(
θi

j+1

)
. Note that p

(
θi

j

)
is never equal to p

(
θi

j+1

)
.

Now, for each point θi
j , we find the index l(i, j) in the corresponding array θi

such that ∠θi
j , x, θi

l(i,j) < π and ∠θi
j , x, θi

l(i,j)+1 > π (Fig. 2). Thus the sequence
of points θi

j , θ
i
j+1, . . . , θ

i
l(i,j) is maximal on an arc shorter than π. Viewing the

minor arc between two points as an interval, the intervals with left endpoint
θi

j and right end point from this sequence overlap and can be split into small
disjoint intervals as follows:

[
θi

j , θ
i
t

)
=

t⋃

h=j+1

[
θi

h−1, θ
i
h

)
, where t = j + 1, . . . , l(i, j). (2)

2.4 Computing Di
∗

Let us denote the count of the antipodes within the minor arc between a and b
by c(a, b). Then Di

∗ can be written as follows:

Di
∗ =

ni−1∑

j=0

l(i,j)∑

t=j+1

c
(
θi

j , θ
i
t

)
. (3)

Note that index t is taken modulo ni. From (2) we have:

c
(
θi

j , θ
i
t

)
=

t∑

h=j+1

c
(
θi

h−1, θ
i
h

)
, for t = j + 1, . . . , l(i, j). (4)
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Due to (3) and (4), we have:

Di
∗ =

ni−1∑

j=0

l(i,j)∑

t=j+1

t∑

h=j+1

c
(
θi

h−1, θ
i
h

)
. (5)

Let Ci
h = c

(
θi

h−1, θ
i
h

)
, |Ci| = ni. Then (5) can be rewritten as:

Di
∗ =

ni−1∑

j=0

l(i,j)∑

t=j+1

t∑

h=j+1

Ci
h. (6)

Let us create an array of prefix sums: Si, where Si
t =

∑t
h=0 Ci

h, |Si| = ni.
This array can be filled in O(ni) time and proves to be very useful when we need
to calculate a sum of the elements of Ci between two certain indices. In fact,
such sum can be obtained in constant time using the elements of array Si:

t∑

h=j+1

Ci
h =

⎧
⎪⎨

⎪⎩

Si
t − Si

j , if t ≥ j + 1, j �= ni − 1,

Si
ni−1 + Si

t − Si
j , if t < j + 1, j �= ni − 1,

Si
t , if j = ni − 1.

(7)

Combining (6) and (7), we get:

Di
∗ =

ni−1∑

j=0

l(i,j)∑

t=j+1

Si
t −

ni−1∑

j=0

((l(i, j) − j) mod ni) · Si
j +

⎧
⎪⎨

⎪⎩

0, if t ≥ j + 1or j = ni − 1,
ni−1∑

j=0

l(i,j)∑

t=j+1

Si
ni−1, if t < j + 1.

(8)

Let us create another array of prefix sums T i, where T i
j =

∑j
t=0 Si

t , |T i| = ni.
This array is used to retrieve the sum of elements of Si between the indices j +1
and l(i, j) in O(1) time:

l(i,j)∑

t=j+1

Si
t =

⎧
⎪⎨

⎪⎩

T i
l(i,j) − T i

j , if l(i, j) ≥ j + 1, j �= ni − 1,

T i
ni−1 + T i

l(i,j) − T i
j , if l(i, j) < j + 1, j �= ni − 1,

T i
l(i,j), if j = ni − 1.

(9)

Also note that the index t runs from j + 1 to l(i, j). So t < j + 1 in (8) is only
possible if initially j + 1 > l(i, j) and we wrapped around the array. In other
words, t < j + 1 is equivalent to j + 1 > l(i, j) and t = 0, . . . , l(i, j).

After simplifying, we obtain:

Di
∗ =

ni−1∑

j=0

(
T i

l(i,j) − T i
j − ((l(i, j) − j) mod ni) · Si

j

)

+

{
ni · (

T i
ni−1 + ((l(i, j) + 1) mod ni) · Si

ni−1

)
, if l(i, j) < j + 1,

0, otherwise.

(10)
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2.5 Algorithm and Analysis

First, we find all polar angles and their antipodes, which takes O(n) in total.
Second, we sort the arrays of polar angles θi and their corresponding antipodal

elements θ̄i, which gives us O

(
k∑

i=1

ni log ni

)

. Third, we need to rotate θ̄i, so

that they are in ascending order. This will take O(n) time. Then we compute
for each i the number of triangles with all three vertices of colour i that contain
x using the algorithm of Rousseeuw and Ruts [19] for sorted data. This will run
in O(ni), for each i, or O(n) in total. Hence lines 2–10 of the Algorithm 1 take

Algorithm 1. CSD(x, P)
Input: x, P = (P1, . . . , Pk). Output: D̂(x, P).

1: Sum1 ← 0, Sum2 ← 0;
2: for i ← 1, k do

3: for j ← 0, ni − 1 do

4: θi
j ← polar angle of (Pij − x) mod 2π;

5: θ̄i
j ← (θi

j + π) mod 2π;
6: end for

7: Sort(θi); � while permuting θ̄i

8: Restore the order in θ̄i;
9: Sum1 ← Sum1 + D(x, θi); � use the algorithm from [19]

10: end for

11: A ← Merge(θ̄1, . . . , θ̄k); � A is sorted

12: D ← D(x, A); � use the algorithm from [19]

13: for i ← 1, k do

14: B ← Merge(A, θi); � update p(θi
j) the pointers of θi

j,

15: � B stands for Ai

16: for j ← 1, ni do � j = j mod ni
17: if p(θi

j−1) < p(θi
j) then

18: Cj ← p(θi
j) − p(θi

j−1) − 1; � C = Ci - array of antipodal counts

19: else

20: Cj ← n + ni − p(θi
j−1) + p(θi

j) − 1;
21: end if

22: end for

23: Find l(i, 0) using binary search in θi;
24: S0 ← C0; T0 ← S0; � S = Si, T = Ti - prefix sum arrays

25: for j ← 1, ni − 1 do

26: Find l(i, j);
27: Sj ← Sj−1 + Cj;
28: Tj ← Tj−1 + Sj;
29: end for

30: Sum2 ← Sum2 + Di∗(x, P) obtained from the formula (10);

31: delete B, C, S, T;
32: end for

33: return D̂(x, P) = D − (Sum2 − 2 ∗ Sum1) ; � Sum1 =
k∑

i=1

D(x, Pi)
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O

(
k∑

i=1

ni +
k∑

i=1

ni log ni

)

= O(n log n) time to complete. This follows from the

facts that
k∑

i=1

ni = n and n log n is convex.

To generate the sorted array A of antipodes, we merge the k single-coloured
arrays using a heap (following e.g. [6]) in O(n log k) time. We need to compute
the monochrome depth D(x, P ) of x with respect to all points in P , regardless
of colour. For this we can use the sorted array of antipodes rather than sorting
the original array. Thus we again use the linear time monochrome algorithm [19]
with x and A. Note that working with the antipodes is equivalent due to the
fact that the simplicial depth of x does not change if we rotate the system of
data points around the centre x.

After that, we execute a cycle of k iterations – one for each colour. It
starts with merging two sorted arrays A and θi, which is linear in the size of

arrays we are merging and takes O

(
k∑

i=1

(n + ni)
)

= O (kn) in total. Filling the

arrays C is linear. Since the l(i, j) appear in sequence in the array θi, we find
the first one l(i, 0) using a binary search that takes O(log ni), and O(k log n)
in total. Then we find the rest of l(i, j) in O(n) time for each i by scanning
through the array starting from the element θi

l(i,0). The remaining operations
take constant time to execute. Therefore, total running time of Algorithm1 is
O (n + n log n + n + n log k + kn + k log n + kn) = O (n log n + kn). The n log n
term corresponds to the initial sorting of the data points, if they are presented
in sorted order, the running time drops to O(kn).

As for space, arrays θi, θ̄i and A take O(3n) = O(n) space in total. Note
that merging k sorted arrays into A can be done in place [12]. At each iteration
i, we create B of size O(n + ni), and C, S, T of size O(ni) each. Fortunately,
we only need these arrays within the ith iteration, so we can delete them in the
end (line 31 of the Algorithm1) and reuse the space freed. To store the indices
l(i, j), we need O(n) space, which again can be reallocated when i changes. Thus
the amount of space used by our algorithm is O(n).

An implementation of this algorithm is available on-line [22].

Remark 3. In Sect. 3, we will want to compute the colourful simplicial depth of
the data points themselves. This can be done by computing D̂(x, P \ {x}) and
counting colourful simplices which have x as a vertex. This is the number of
pairs of vertices of some other colour, and can be computed in linear time.

3 Computing Colourful Simplicial Medians

3.1 Preliminaries

Consider a family of sets P 1, P 2, . . . , P k ∈ IR2, k ≥ 3, where each P i consists of
the points of some particular colour i. Define ni = |P i|, for i = 1, . . . , k. Let P
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p
q

v

Fig. 3. An example of a cell

be the union of all colour sets: P =
k⋃

i=1

P i. Recall that we denote the CSD of a

point x ∈ IR2 relative to P by D̂(x, P ).
Our objective is to find a point x inside the convex hull of P , denoted

conv(P ), maximizing D̂(x, P ). Call the depth of such a point μ̂(P ). Let S be the
set of line segments formed by all possible pairs of points (A,B), where A ∈ P i,
B ∈ P j , i < j. The following lemma (from [3]) is here adapted to a colourful
setting:

Lemma 2. To find a point with maximum colourful simplicial depth it suffices
to consider the intersection points of the colourful segments in S.

Proof. The segments of S partition conv(P ) into cells1 of dimension 2, 1, 0 of
constant colourful simplicial depth [7]. Consider a 2-dimensional cell. Let p be
a point in the interior of this cell, q a point on the interior of an edge and v
a vertex, so that q and v belong to the same line segment (Fig. 3). Then the
following inequality holds: D̂(p, P ) ≤ D̂(q, P ) ≤ D̂(v, P ), since any colourful
simplices containing p also contain q, and any containing q also contain v.

Let col(A) denote the colour of a point A. We store the segments in S as
pairs of points: s = (A,B), col(A) < col(B). It is helpful to view each segment
as directed, i.e. a vector, with A as the tail and B as the head. Each segment
s extends to a directed line h dividing IR2 into two open half-spaces: s+ and
s−, where s+ lies to the right of the vector s, and s− to the left (Fig. 4). We
denote the set of lines generated by segments by H, so that every segment s ∈ S
corresponds to a line h ∈ H.

We call the intersection points of the segments in S vertices. Note that draw-
ing the colourful segments is equivalent to generating a rectilinear drawing of
the complete graph Kn with a few edges removed (the monochrome ones). Thus,
unless the points are concentrated in a single colour class, the Crossing Lemma
(see e.g. [18]) shows that we will have Θ(n4) vertices. Computing the CSD of each
of these points gives an O(n4 log n) algorithm for finding a simplicial median.

To improve this, we follow Aloupis et al. [3], and compute the monochrome
simplicial depth of most vertices based on values of their neighbours and infor-
mation about the half-spaces of local segments.
1 Some points of conv(P ) may fall outside any cell.



Algorithms for Colourful Simplicial Depth and Medians in the Plane 387

A
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s+

s−

(a)

A

B

s+
s−

(b)

Fig. 4. s+ and s− of the segment s = (A, B)

Denote the number of points in s+ that have colours different from the end-
points of s by r(s), and those in s− by l(s). Let ri(s) and li(s) be the number of
points of a colour i in s+ and s− respectively. Let r̄i(s) and l̄i(s) be the number
of points of all k colours except for the colour i in s+ and s− respectively. So for

segment s = (A,B), we have quantities as follows r̄col(A)(s) =
k∑

i=1,
i�=col(A)

ri(s),

l̄col(A)(s) =
k∑

i=1,
i�=col(A)

li(s). Then it follows: r(s) = r̄col(A)(s) − rcol(B)(s) and

l(s) = l̄col(A)(s) − lcol(B)(s). The quantities r̄col(A)(s) and l̄col(A)(s), rcol(B)(s)
and lcol(B)(s), can be obtained as byproducts of running an algorithm that com-
putes half-space depth.

The half-space depth HSD(x, P ) of a point x relative to data set P is the
smallest number of data points in a half-plane through the point x [21]. An
algorithm to compute half-space depth is described by Rousseeuw and Ruts [19],
it runs in O(|P |) time when P is sorted around x. It calculates the number of
points ki in P that lie strictly to the left of each line formed by x and some point
Pi, where x is the tail of the vector

−→
xPi. Then the number of points to the right−→

xPi is |P | − ki − 1. These intermediate calculations are used in our algorithm.
The algorithm of [15] will, for each Pi ∈ P , sort P \{Pi} around Pi in Θ(|P |2)

time. In particular, it assigns every point Pi ∈ P a list of indices that determine
the order of points P \ {Pi} in the clockwise ordering around Pi. Denote this by
List(Pi). These ideas allow us to compute r(s) and l(s) for every segment s. At
every iteration i, we form arrays of sorted polar angles θ̄col(Pi) and θi′

. Together
they take O(2n) = O(n) space.

3.2 Computing a Median

To compute the CSD of all vertices, we carry out a topological sweep (see e.g. [9]).
We begin by extending the segments in S to a set of lines H. The set V ∗ of
intersection points of lines of H includes the Θ(n4) vertices V which are on
the interior of a pair of segments of S, points from P , and additional exterior
intersections. We call points in V ∗ \ V phantom vertices.
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(b) An elementary step in a topological
sweep

Fig. 5. Topological sweep

Call a line segment of any line in H between two neighbouring vertices, or a
ray from a vertex on a line that contains no further vertices an edge. A topological
line is a curve in IR2 that is topologically a line and intersects each line in H
exactly once. We choose an initial topological line to be an unbounded curve
that divides IR2 into two pieces such that all the finitely many vertices in V
lie on one side of the curve, by convention the right side. We call this line the
leftmost cut. We call a vertical cut the list (c1, c2, . . . , cm) of the m = |H| edges
intersecting a particular topological line. For each i, 1 ≤ i ≤ m − 1, ci and ci+1

share a 2-cell in the complex induced by H.
The topological sweep begins with the leftmost cut and moves across the

arrangement to the right, crossing one vertex at a time. If two edges ci and ci+1

of the current cut have a common right endpoint, we store the index i in the
stack I. For example, in Fig. 5(a), I = {1, 4}. An elementary step is performed
when we move to a new vertex by popping the stack I. In Fig. 5(b), we have
moved past the vertex v, a common right endpoint of c4 and c5 which is the
intersection point of h1 and h2. The updated stack is I = {1, 3}.

We focus on the elementary steps, because at each step we can compute the
CSD of the crossed vertex. As it moves, the topological line retains the property
that everything to the left of it has already been swept over. That is, if we are
crossing vertex v that belongs to segment s, every vertex of the line containing
s on the opposite side of the topological line prior to crossing has already been
swept. For each segment s ∈ S we store the last processed vertex and denote
it by ver(s), along with its CSD. Since every vertex lies at the intersection
of two segments, we also store the crossing segment for s and ver(s), denote
it by cross(ver(s)). Before starting the topological sweep, for each s ∈ S we
assign ver(s) = ∅, and cross(ver(s)) = ∅. After completing an elementary step
where we crossed a vertex v that lies at the intersection of si and sj , we assign
ver(si) ← v, ver(sj) ← v, cross(ver(si)) = sj , cross(ver(sj)) = si.

The topological sweep skips through phantom vertices, and computes the
CSD of vertices in P directly. We now explain how we process a non-phantom
vertex v at an elementary step when we have an adjacent vertex already com-
puted. Assume v is at the intersection of si =

−−→
AB and sk =

−−→
EF , see Fig. 6(a).
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(a) Two adjacent vertices p and v and their cor-
responding line segments. A colourful triangle

CDA contains p but not v, where col(A ) /∈
{col(C), col(D)}. Similarly, a colourful triangle

EFB contains v but not p, where col(B ) /∈
{col(E), col(F )}.

v

A = p

B
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F

si sk

(b) Here
ver(si) = ∅, hence
cross(ver(si)) = ∅,
and we can not run
Subroutine 2.

Fig. 6. Capturing a new vertex

Without loss of generality we take ver(si) = p, where cross(ver(si)) = sj . We
view this elementary step as moving along the segment si from its intersection
point with sj to the one with sk. Each intersecting segment forms a triangle
with every point strictly to one side. Thus when we leave segment sj = (C,D)
behind, we exit as many colourful triangles that contain p as there are points
on the other side of sj of colours different from col(C) and col(D). When we
encounter segment sk = (E,F ), we enter the colourful triangles that contain v
formed by sk and each point of a colour different from col(E) and col(F ) on
the other side of sk. Let us denote the x and y coordinates of a point A by A.x
and A.y respectively. Now, to compute the CSD of v knowing the CSD of p, we
execute Subroutine 2.

Subroutine 2. Computing D̂(v) from D̂(p)
Input: D̂(p), p, v, sj = (C, D), sk = (E, F). Output: D̂(v).

1: if (v.x − C.x)(D.y − C.y) − (v.y − C.y)(D.x − C.x) < 0 then
2: D̂(v) ← D̂(p) − r(sj);
3: else
4: D̂(v) ← D̂(p) − l(sj);
5: end if
6: if (p.x − E.x)(F.y − E.y) − (p.y − E.y)(F.x − E.x) < 0 then
7: D̂(v) ← D̂(v) + r(sk);
8: else
9: D̂(v) ← D̂(v) + l(sk);

10: end if

When both ver(si) = ∅, ver(sk) = ∅, i.e. vertex v is the first vertex to
be discovered for both segments (Fig. 6(b)), we execute CSD(v, P ) to find the
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depth, and otherwise update in the usual way. Since once a segment s has ver(s)
nonempty it cannot return to being empty, we call CSD at most O(n2) times.

3.3 Running Time and Space Analysis

Algorithm 3 is our main algorithm. First, it computes the half-space counts r(s)
and l(s), which has a running time of O(n2). At the same time, we initialize
the structure S that contains the colourful segments, setting ver(s) = ∅ and
cross(ver(s)) = ∅ for all s ∈ S. Note that these as well as H, List(Pi), r(s), l(s)
require O(n2) storage.

Sorting the lines in H according to their slopes while also permuting the
segments in S takes O(n2 log n) time. We assume non-degeneracy and no vertical
lines (these can use some special handling, see e.g. [10]). Computing the CSD of
points where no previous vertex is available takes O(n2 log n + kn2) total time.
The topological sweep takes linear time in the number of intersection points of

Algorithm 3. Computing μ̂(P)
Input: P1, . . . , Pk, S, H, r(s), l(s). Output: v, μ̂(P).

1: Preprocessing: Initialize S, compute r(s), l(s);

2: Sort H while permuting S;

3: max ← 0;

4: for i ← 0, n − 1 do

5: θ = polar angles of List(Pi);

6: D̂(Pi) ← CSD(Pi, θ);

7: if d > max then

8: max ← D̂(Pi);

9: median ← Pi;

10: end if

11: end for

12: I ← ∅;
13: Push common right endpoints of the edges of the leftmost cut onto I;

14: while I �= ∅ do � Start of the topological sweep.

15: v ← pop(I); � v lies at the intersection of si = (A, B) and sk = (E, F)

16: if v lies in the interiors of si and sk then

17: if ver(si) = ∅ & ver(sk) = ∅ then

18: D̂(v) = CSD(v, P);

19: else if ver(si) �= ∅ then

20: D̂(v) ← Subr 2 (D̂(p), p, v, sj, sk); � p = ver(si), sj = cross(ver(si))

21: else

22: D̂(v) ← Subr 2 (D̂(p), p, v, sj, si); � p = ver(sk), sj = cross(ver(sk))

23: end if

24: if D̂(v) > max then

25: max ← D̂(v);

26: median ← v;

27: end if

28: ver(si) ← v, ver(sk) ← v, cross(ver(si)) ← sk, cross(ver(sk)) ← si;

29: end if

30: Push any new common right endpoints of the edges onto I;

31: end while

� End of the topological sweep.

32: return (median, max).
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H, so O(n4). We do not store all the vertices, but only one per segment. Steps
15–28 (except for 18) in Algorithm 3 take O(1) time, including the calls to the
Subroutine 2. As for step 18, it could happen O(n) times. Therefore, the total
time it will take is O(n2 log n + kn2). Hence overall our algorithm takes O(n4)
time and needs O(n2) storage.

Algorithm 3 returns a point that has maximum colourful simplicial depth
along with its CSD. It is simple to modify the algorithm to return a list of all
such points if there is more than one.

4 Conclusions and Questions

Our main result is an algorithm computing the colourful simplicial depth of a
point x relative to a configuration P =

(
P 1, P 2, . . . , P k

)
of n points in IR2 in

k colour classes can be solved in O(n log n + kn) time, or in O(kn) time if the
input is sorted. If we assume, as seems likely, that we cannot do better without
sorting the input, then for fixed k this result is optimal up to a constant factor.
It is an interesting question whether we can improve the dependence on k, in
particular when k is large.

Computing colourful simplicial depth in higher dimension is very challenging,
in particular because there is no longer a natural (circular) order of the points.
Non-trivial algorithms for monochrome depth do exist in dimension 3 [5,13],
but we do not know of any non-trivial algorithms for d ≥ 4. Algorithms for
monochrome and colourful depth in higher dimension are an appealing challenge.
Indeed, for (d+1) colours in IRd, it is not even clear how efficiently one can exhibit
a single colourful simplex containing a given point [4,8].
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Abstract. Let S = {p1, p2, . . . , pn} be a set of pairwise disjoint geomet-
ric objects of some type and let C = {c1, c2, . . . , cn} be a set of closed
objects of some type with the property that each element in C covers
exactly one element in S and any two elements in C can intersect only on
their boundaries. We call an element in S a seed and an element in C a
cover. A cover contact graph (CCG) consists of a set of vertices and a set
of edges where each of the vertex corresponds to each of the covers and
each edge corresponds to a connection between two covers if and only if
they touch at their boundaries. A triangle cover contact graph (TCCG)
is a cover contact graph whose cover elements are triangles. In this paper,
we show that every Halin graph has a realization as a TCCG on a given
set of collinear seeds. We introduce a new class of graphs which we call
super-Halin graphs. We also show that the classes super-Halin graphs,
cubic planar Hamiltonian graphs and a× b grid graphs have realizations
as TCCGs on collinear seeds. We also show that every complete graph
has a realization as a TCCG on any given set of seeds. Note that only
trees and cycles are known to be realizable as CCGs and outerplanar
graphs are known to be realizable as TCCGs.

1 Introduction

Let S = {p1, p2, . . . , pn} be a set of pairwise disjoint geometric objects of some
type and C = {c1, c2, . . . , cn} be a set of closed objects of some type with the
property that each element in C covers exactly one element in S and any two
elements in C can intersect only on their boundaries. We call an element in S a
seed and an element in C a cover. The seeds may be points, disks or triangles
and covering elements may be disks or triangles. The cover contact graph (CCG)
consists of a set of vertices and a set of edges where each of the vertex corresponds
to each of the covers and each edge corresponds to a connection between two
covers if they touch at their boundaries. In other words, two vertices of a cover
contact graph are adjacent if and only if the corresponding cover elements touch
at their boundaries. Note that the vertices of the cover contact graph are in one-
to-one correspondence to both seeds and covering objects. In a cover contact

c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 393–407, 2016.
DOI: 10.1007/978-3-319-48749-6 29
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graph, if disks are used as covers then it is called a disk cover contact graph
and if triangles are used as covers then it is called a triangle cover contact graph
(TCCG). Figure 1(b) depicts the disk cover contact graph induced by the disk
covers in Fig. 1(a), whereas Fig. 1(d) depicts the triangle cover contact graph
induced by the triangle covers in Fig. 1(c).

Fig. 1. Illustration for CCG and TCCG

There are several works [6,8,10–12] in the area of geometric optimization
where the problem is how to cover geometric objects such as points by other
geometric objects such as disks. The main goal is to minimize the radius of a set of
k disks to cover n input points. Applications of such covering problems are found
in geometric optimization problems such as facility location problems [11,12].
There are also lot of works [4,12] related to optimization of covering geometric
objects. Abellanas et al. [1] illustrated coin placement problem, which is NP-
complete. They tried to cover the n points using n disks (each having different
radius) by placing each disk in the center position at one of the points so that
no two disks overlap. Further Abellanas et al. [2] considered another related
problem. They showed that for a given set of points in the plane, it is also NP-
complete to decide whether there are disjoint disks centered at the points such
that the contact graph of the disks is connected.

Atienza et al. [3] introduced the concept of cover contact graphs where they
considered a problem which they called “realization problem.” They gave some
necessary conditions and then showed that it is NP-hard to decide whether a
given graph can be realized as a disk cover contact graph if the correspondence
between vertices and point seeds is given. They also showed that every tree and
cycle have realizations as CCGs on a given set of collinear point seeds. Recently,
Iqbal et al. [7] worked on triangle cover contact graphs (TCCGs) where the
seeds are points and the covers are triangles. First they considered the set of
seeds which are in general position, i.e., no two seeds lie on a vertical line and
they gave an O(n log n) algorithm to construct a 3-connected TCCG of the set of
seeds. They also gave an O(n log n) algorithm to construct a 4-connected TCCG
for a given set of six or more seeds. Addressing the realization problem, they
gave an algorithm that realizes a given outerplanar graph as a TCCG for a given
set of seeds on a line.
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In this paper, addressing the realization problem we show that every Halin
graph has a realization as a TCCG on a given set of collinear seeds. We introduce
a new class of graphs which we call super-Halin graphs. We also show that the
classes super-Halin graphs, cubic planar Hamiltonian graphs and a×b grid graphs
have realizations as TCCGs on collinear seeds. We also show that every complete
graph has a realization as a TCCG on any given set of seeds.

The remaining of the paper is organized as follows. Section 2 presents some
definitions and preliminary results. Section 3 gives an algorithm that realizes a
given Halin graph as a TCCG. This section also presents a new class of graphs
which we call super-Halin graphs and gives an algorithm that realizes a super-
Halin graph as a TCCG. Two algorithms that realize a given Hamiltonian graph
and an a × b grid graph as TCCGs are given in Sects. 4 and 5, respectively. In
Sect. 6 we present an algorithm that realizes a given complete graph as a TCCG.
Finally, Sect. 7 contains concluding remarks and directions for further research
in this field.

2 Preliminaries

In this section we present some terminologies and definitions which will be used
throughout the paper. For the graph theoretic definitions which have not been
described here, see [5,9].

A graph is planar if it can be embedded in the plane without edge crossing
except at the vertices where the edges are incident. A plane graph is a planar
graph with a fixed planar embedding. A plane graph divides the plane into
connected regions called faces. The unbounded region is called the outer face;
the other faces are called inner faces. The cycle lies on the outer face is called
outer cycle. We denote the outer cycle of G by Co(G). The edges in the outer
cycle is called outer edges.

A graph G is connected if there is a path between any two distinct vertices
u and v in G. A graph which is not connected is called a disconnected graph.
Let G = (V,E) be a connected simple graph with vertex set V and edge set E.
A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E′) such that V ′ ⊆ V
and E′ ⊆ E. If G′ contains all the edges of G that join vertices in V ′, then G′

is called the subgraph induced by V ′. The connectivity κ(G) of a graph G is the
minimum number of vertices whose removal results in a disconnected graph or a
single-vertex graph. We say that G is k-connected if κ(G) ≥ k. A vertex v in G
is a cut-vertex if the removal of v results in a disconnected graph. A biconnected
component is a maximal biconnected subgraph.

Let S = {p1, p2, . . . , pn} be a set of pairwise disjoint geometric objects of
some type and C = {c1, c2, . . . , cn} be a set of closed objects of some type with
the property that each element in C covers exactly one element in S and any
two elements in C can intersect only on their boundaries. We call an element
in S a seed and an element in C a cover. The seeds may be points, disks or
triangles and covering elements may be disks or triangles. The cover contact
graph (CCG) induced by C is the contact graph of the elements of C, that is,
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the graph G = (C,E) with E = {{Ci, Cj} ⊆ C | Ci �= Cj , Ci ∩ Cj �= ∅}. In
other words, two vertices of a cover contact graph are adjacent if and only if the
corresponding cover elements touch at their boundaries. Note that the vertices
of the cover contact graph are in one-to-one correspondence to both seeds and
covering objects. In a cover contact graph, if disks are used as covers, then the
cover contact graph is called a disk cover contact graph and if triangles are used
as covers, then it is called a triangle cover contact graph (TCCG). Figure 1(c)
shows a triangle cover of seeds and Fig. 1(d) shows the resulting TCCG.

A Halin graph is a connected planar graph that consists of an unrooted tree
and a cycle connecting the end vertices of the tree. A Halin graph is constructed
as follows. Let T be a tree with more than three vertices embedded in the plane.
Then a Halin graph is constructed by adding to T a cycle through each of its
leaves, such that the augmented graph remains planar. We call T the core tree
of the Halin graph. Figure 2(a) shows a Halin graph.

Let T be an ordered rooted tree with root r. If T consists only of r, then
r is the preorder traversal of T . Otherwise, suppose that T1, T2, . . . , Tn are the
subtrees at r from left to right in T . The preorder traversal begins by visiting r.
It continues by traversing T1 in preorder, then T2 in preorder, and so on, until
Tn is traversed in preorder.

A super-Halin graph is a connected graph in which every biconnected com-
ponent is a Halin graph. Figure 2(b) shows a super-Halin graph where G1, G2,
G3 and G4 are Halin graphs. T1, T2, T3 and T4 are core trees of corresponding
G1, G2, G3 and G4, respectively. C1 is the cut-vertex by which G1, G2 and G3

are connected and C2 is the cut-vertex by which G3 and G4 are connected.

Fig. 2. (a) A Halin graph and (b) a super-Halin graph.

A path is a Hamiltonian path if its vertices are distinct and span V . A cycle
is a path with at least three vertices such that its first vertex is the same as
the last vertex. A cycle is a Hamiltonian cycle if it traverses every vertex of G
exactly once. A graph is Hamiltonian if it has a Hamiltonian cycle. A graph
is cubic if each of its vertex is of degree 3. A cubic planar graph which has a
Hamiltonian cycle is called a cubic planar Hamiltonian graph. Figure 3(a) shows
a cubic planar Hamiltonian graph.
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Fig. 3. (a) A cubic planar Hamiltonian graph and (b) an a× b grid graph.

A two-dimensional grid graph, also known as a square grid graph, is an a × b
grid graph Ga,b that is the graph Cartesian product Pa × Pb of path graphs on
a and b vertices. Figure 3(b) shows an a × b grid graph where a = b.

3 Realizability of Halin Graphs and Super-Halin Graphs

In this section we show that a Halin graph has a realization as a triangle cover
contact graph (TCCG) on a given set of seeds on a line as in the following
theorem.

Theorem 1. Let G be a Halin graph of n vertices. Let S be a set of n seeds
aligned on a straight line. Then G is realizable on S as a TCCG in O(n log n)
time.

We give a constructive proof of Theorem 1. Here we cover each seed p by
a triangle T such that p is the bottommost point of T and one side of T lies
on the vertical line x = x(p). Here x(p) denotes the x-coordinate of p point.
We define three corner points of T by α, β, γ where α = p, β lies on the line
x = x(p) and γ is an arbitrary point that lies in the left half-plane of the line
x = x(p). Figure 4(a) illustrates an example of a triangle described above. We
call this triangle the covering triangle of p in our algorithm. Sometimes we change
covering triangle T by adjusting γ points arbitrarily, β points by shifting them
along line x = x(p) and α points by shifting them vertically downwardly on line
x = x(p) such that the definition of a covering triangle is not violated as shown
in Fig. 4(b).

Proof. Let G = (V,E) be a Halin graph with the core tree T . We make T an
ordered rooted tree by taking an arbitrary leaf as the root of T and ordering
the children of each vertex in a counter clockwise order which reflect the plane
embedding of G as shown in Fig. 5(c). We then obtain a vertex ordering of T by
preorder traversal. Let O = v1, v2, . . . , vn be the vertex ordering of the vertices of
T obtained by preorder traversal. Note that v1 is the root of T . Let p1, p2, . . . , pn

be the seeds of S sorted according to their x-coordinates.
We cover each seed pi by a covering triangle Ti corresponds to the vertex vi

of T as follows. We denote α, β and γ points of Ti by αi, βi and γi, respectively.
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Fig. 4. Covering triangle T of seed p.

Let x(α) and y(α) be the x-coordinate and y-coordinate of α point, respectively
and let Lαβ be the line that passes through the points α and β.

We cover p1 by T1 corresponding to v1 so that x(γ1) < x(β1) and x(γ1) <
x(α1) and y(γ1) > y(α1) and y(γ1) < y(β1). We then cover pi (1 < i ≤ n) by Ti

according to vi (1 < i ≤ n). Here γi of Ti corresponding to vi which are children
of T lies on Lαiβi

of Ti corresponding to vi which are parents of that children.
βi of Ti lies on x(pi), y(pi) + q where q is sufficient small constant and αi of Ti

lies on pi as shown in Fig. 5(d). This ensures that the triangle corresponding to
a non-root vertex of T touches the triangle corresponding to its parent. Clearly
this can be done safely so that Ti (1 < i ≤ n) does not touch or overlap with
any unwanted triangles. One can observe that the resulting TCCG is a tree that
corresponds to the ordered rooted tree T .

We are now going to realize the edges on Co(G). Let vp and vq be two leaves
of T such that 1 < p < q < n in O and (vp, vq) ∈ E(G). We now realize (vp, vq)
as follows. We have the following two cases to consider.

Case 1: The leaves vp and vq have the same parent. In this case we adjust Tp.
We shift βp on the line Lαqγq

so that Tp touches to Tq. For example, in Fig. 5(e),
since v7 and v8 are two children of the same parent v3, we adjust T7 by shifting
β7 on the line Lα8γ8 .

Case 2: The leaves vp and vq have different parents. We first consider the case
where vp and vq are consecutive in O. In this case we adjust Tp. We shift βp on
the line Lαqγq

so that Tp touches to Tq. For example, in Fig. 5(e), we adjust T1

by shifting β1 on the line Lα5γ5 . We now consider the other case, that is, vp and
vq are not consecutive in O. Let vk be the parent of vq. In this case we adjust
Tp and Tq. We also adjust Tk corresponding to vk which is the parent of vq. We
put γq on αp by shifting αp vertically downward, then shift αk on Lβqγq

so that
other triangles do not touch or overlap. For example, in Fig. 5(e), since v8 and
v9 are two children of different parents i.e., v3 is the parent of v8 and v2 is the
parent of v9, we put γ9 on α8 by shifting α8 vertically downward, then shift α2

on Lβ9γ9 .
To complete the proof we now need to show the realization of two edges of

Co(G) incident to v1. Clearly (v1, vn) is one such edge. Let the other edge be
(v1, vr).
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Fig. 5. (a) A Halin graph G, (b) a set of seeds S, (c) an ordered rooted tree T , (d)
realization of T as TCCG on S and (e) realization of G as TCCG on S.

We now realize (v1, vr) as follows. Let vl be the parent of vr. In this case we
adjust T1 and Tr. We also adjust Tl corresponding to vl which is the parent of
vr. We put γr on α1 by shifting α1 vertically downward, then shift αl on Lβrγr

so that other triangles do not touch or overlap with any unwanted triangles. For
example, in Fig. 5(e), since v6 and v7 are adjacent in G and v3 is the parent of
v7, we put γ7 on α6 by shifting α6 vertically downward, then shift α3 on Lβ7γ7 .

We now realize (v1, vn) as follows. In this case we adjust Tn. We put γn on
β1 such that shifting βi of the previous triangles which were touched with Tn

upward. For example, in Fig. 5(e), since v6 and v5 are adjacent in G, we put γ5
on β6 such that shifting β4 and β1 of T4 and T1 which were touched with T5

upward.
Since G is a simple graph there is no multi edge. For each edge (vp, vq) we

ensure Tp, Tq and Tk do not contact with any unwanted triangles. Hence G is
realizable on S.

All steps of this algorithm can be done in O(n) time, but for sorting we need
O(n log n) time. So the overall time complexity is O(n log n). 	

We now consider the realizability of super-Halin graphs. Note that a super-Halin
graph is a connected graph in which every biconnected component is a Halin
graph. We show that a super-Halin graph has a realization as a triangle cover
contact graph (TCCG) on a given set of seeds on a line. We first construct a tree
by deleting the outer edges of the super-Halin graph. We then make the tree an
ordered rooted tree by taking an arbitrary cut-vertex of the super-Halin graph
as the root of the tree. We realize the ordered rooted tree by using the technique
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mentioned in the proof of Theorem1. We then realize the outer edges of each
biconnected component by extending the technique mentioned in the proof of
Theorem 1. A realization of a super-Halin graph as TCCG is illustrated in Fig. 6.
The detail is omitted in this version. We thus have the following theorem.

Fig. 6. (a) A super-Halin graph, (b) a tree where core trees of Halin graphs are con-
nected by cut-vertices of the graph, (c) an ordered rooted tree with outer edges of the
graph, (d) realization of the tree as TCCG on S and (e) realization of the super-Halin
graph.

Theorem 2. Let G be a super-Halin graph of n vertices. Let S be a set of n seeds
aligned on a straight line. Then G is realizable on S as a TCCG in O(n log n)
time.

4 Realizability of Hamiltonian Graphs

In this section, we show that cubic planar Hamiltonian graphs have realizations
as triangle cover contact graphs (TCCG) on a given set of seeds on a line. We
have the following theorem.

Theorem 3. Let G be a cubic planar Hamiltonian graph of n vertices. Let S be
a set of n seeds aligned on a straight line. Then G is realizable on S as a TCCG
in O(n log n) time.
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Proof. We give a constructive proof. Let G = (V,E) be a cubic planar Hamil-
tonian graph and Let C be a Hamiltonian cycle of G illustrated in Fig. 7(c).
Let v1, v2, . . . , vn be the vertices on C in clockwise order taking the starting
vertex v1 arbitrary. Let p1, p2, . . . , pn be the seeds of S sorted according to their
x-coordinates. We fix the vertices vi of the cycle C on pi of S as illustrated in
Fig. 7(d). We thus find a plane embedding of G which we realize as TCCG. In
this embedding an edge of G which is not on C is either lie inside the region
bounded by C or outside the region bounded by C. We call an edge of G which
is inside of the region bounded by C an internal edge of C and call an edge which
is outside of the region an external edge of C.

We cover each seed pi by a covering triangle Ti corresponding to the vertex vi

of C as follows. We denote α, β and γ points of Ti by αi, βi and γi, respectively.
Let x(α) and y(α) be the x-coordinate and y-coordinate of α point, respectively
and let Lαβ be the line that passes through the points α and β.

We cover p1 by T1 corresponding to v1 so that x(γ1) < x(β1) and x(γ1) <
x(α1) and y(γ1) > y(α1) and y(γ1) < y(β1). We then cover pi (1 < i < n) by Ti

where γi lies on Lαi−1βi−1 and βi lies on xpi
, ypi

+ q where q is a sufficient small
constant. This ensures that triangle Ti touches Ti+1 (1 < i < n − 1). We now

Fig. 7. (a) A cubic planar Hamiltonian graph G, (b) a set of collinear seeds S,
(c) Hamiltonian cycle in G, (d) Hamiltonian cycle with external edges and internal
edges in S, (e) realization of Hamiltonian cycle as TCCG on S and (f) realization of
G as TCCG on S.
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cover pn by Tn so that it touches T1 and Tn−1. The point γn lies on γ1 we then
shift βn−1 on Lαnγn

. Clearly this can be done safely so that T2, T3 . . . , Tn−2 does
not touch or overlap line Lαnγn

. One can observe that the resulting TCCG is a
cycle that corresponds to the Hamiltonian cycle C of G as shown in Fig. 7(e).

We are now going to realize the internal edges and external edges of C. Let
vs and vt be two vertices of C such that s < t and (vs, vt) ∈ E(G). We now
realize (vs, vt) as follows. We have the following two cases to consider.

Case 1: The (vs, vt) is an internal edge. We put γt on αs by shifting αs vertically
downward. Then shift αs of the previous triangle of Tt on Lβtγt

so that other
triangles do not touch or overlap with unwanted triangles. For example, We put
γ6 on α8 by shifting α8 vertically downward. Then shift α4 on Lβ6γ6 as illustrated
in Fig. 7(f).

Case 2: The (vs, vt) is an external edge. We put γt on βs by shifting βs vertically
upward. If Tt is previously adjusted then βs touches on Lαtγt

by shifting βs

vertically upward. For example, We put γ3 on β2 by shifting β2 vertically upward
as illustrated in Fig. 7(f).

Since G is a simple graph there is no multi-edge. For each edge (vi, vi+1) we
ensure Ti, Ti+1 . . . , Tn do not touch any unwanted triangles. Hence G is realizable
on S.

We now prove the time complexity. Sorting of the seeds takes O(n log n) time.
One can implement the rest of the steps in O(n) time. Hence the overall time
complexity is O(n log n). 	


5 Realizability of Grid Graphs

In this section, we now show that an a × b grid graph has a realization as a
triangle cover contact graph (TCCG) on a given set of seeds on a line as in the
following theorem.

Theorem 4. Let G be an a×b grid graph of n vertices. Let S be a set of n seeds
aligned on a straight line. Then G is realizable on S as a TCCG in O(n log n)
time.

Proof. We give a constructive proof. Let G = (V,E) be an a × b grid graph. We
find out a path on the a × b grid graph G starting from the upper-left vertex,
across the top row to the upper-right vertex, then down one vertex, then across
the second row to the left, then down one vertex, then across to the right again,
and so on. We call this path a zig-zag path. This path is shown by the gray lines
in Fig. 8(c). Let the vertices of the a × b grid graph be denoted v1, v2, . . . , vn in
the order that they encountered on the zig-zag path taking the starting vertex
of this path is v1 which is upper-left vertex of G. Let p1, p2, . . . , pn be the seeds
of S sorted according to their x-coordinates. We set the vertices vi of the zig-zag
path on pi of S as illustrated in Fig. 8(d). We thus find a plane embedding of G
which we realize as TCCG. In this embedding an edge of G which is not on the
zig-zag path is either upper plane of the line or lower plane of the line. We call
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an edge of G which is in the upper plane of the line an upward-edge and call an
edge which is in the lower plane of the line an downward-edge of G. The zig-zag
path, upward-edges and downward- edges are shown in Fig. 8(d).

We cover each seed pi by a covering triangle Ti corresponds to the vertex vi

of G as follows. We denote α, β and γ points of Ti by αi, βi and γi, respectively.
Let x(α) and y(α) be the x-coordinate and y-coordinate of α point, respectively
and let Lαβ be the line that passes through the points α and β.

We cover p1 by T1 corresponding to v1 so that x(γ1) < x(β1) and x(γ1) <
x(α1) and y(γ1) > y(α1) and y(γ1) < y(β1). We then cover pi (1 < i ≤ n) by
Ti where γi lies on Lαi−1βi−1 and βi lies on xpi

, ypi
+ q where q is a sufficient

small constant. This ensure that triangle Ti touches Ti+1 (1 < i < n − 1). One
can observe that the resulting TCCG is a path that corresponds to the zig-zag
path of G as illustrated in Fig. 8(e).

We are now going to realize upward-edges and downward-edges of G. For
this purpose we adjust the covering triangles by traversing vertices v1, v2 . . . , vn

in this order of the path. Let (vs, vt) be an edge such that s < t which to be
realized. We adjust covering triangles Ts and Tt for realizing the edge (vs, vt) as
follows. (Initially no triangle is adjusted.) We have the following two cases to
consider.

Case 1: The edge ( vs, vt) is an upward-edge. Depending on whether there is
a downward-edge incident to vs or not, Ts might be preadjusted. We thus have
the following two cases to consider to realize all upward-edges: (1) Ts and Tt

are not adjusted and (2) Ts is adjusted downward and Tt is not adjusted. We
first consider the case where Ts and Tt are not adjusted. In this case we need
to adjust the triangles Ts and Tt. We put γt on Lαsβs

, then shift βt−1 on Lαtγt

so that Ts+1, . . . , Tt−2 do not touch or overlap the line Lαtγt
. For example, in

Fig. 8(f), both triangles T1 and T8 are not adjusted. To adjust these triangles,
we put γ8 on Lα1β1 and then shift β7 on Lα8γ8 so that the triangles between
these two triangles do not touch or overlap the line Lα8γ8 . We now consider the
other case, that is, Ts is adjusted downward and Tt is not adjusted. In this case
we also need to adjust the triangles Ts and Tt. We put γt on Lαsβs

, then shift
βt−1 on Lαtγt

so that Ts+1, . . . , Tt−2 do not touch or overlap the line Lαtγt
, then

we mark Tt adjusted. For example, in Fig. 8(f), T10 is adjusted downward but
T15 is not adjusted. To adjust T10, we put γ15 on Lα10β10 and then shift β14 on
Lα15γ15 so that triangles between these two triangles do not touch or overlap the
line Lα15γ15 .

Case 2: The edge ( vs, vt) is a downward-edge. Depending on whether there is
an upward-edge incident to vs or not, Ts might be preadjusted. We thus have
the following two cases to consider to realize all downward-edges: (1) Ts and Tt

are not adjusted and (2) Ts is adjusted upward and Tt is not adjusted. We first
consider the case where Ts and Tt are not adjusted. In this case we need to adjust
the triangles Ts and Tt. We put γt on Lαsβs

by shifting αs vertically downward,
then shift βt−1 on Lαtγt

so that Ts+1, . . . , Tt−2 do not touch or overlap the line
Lαtγt

. For example, in Fig. 8(f), both triangles T5 and T12 are not adjusted. To
adjust these triangles, we put γ12 on Lα5β5 by shifting α5 vertically downward
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and then shift β11 on Lα12γ12 so that the triangles between these two triangles
do not touch or overlap the line Lα12γ12 . We now consider the other case, that is,
Ts is adjusted upward and Tt is not adjusted. In this case we also need to adjust
the triangles Ts and Tt. We put γt on Lαsβs

by shifting αs vertically downward,
then shift βt−1 on Lαtγt

so that Ts+1, . . . , Tt−2 do not touch or overlap the line
Lαtγt

. For example, in Fig. 8(f), triangle T7 is adjusted upward and T10 is not
adjusted. To adjust these triangles, we put γ10 on Lα7β7 by shifting α7 vertically
downward and then shift β9 on Lα10γ10 so that the triangles between these two
triangles do not touch or overlap the line Lα10γ10 . Hence G is realizable on S.

Fig. 8. (a) An a× b grid graph G, (b) a set of collinear seeds S, (c) the zig-zag path in
G, (d) the zig-zag path, upward-edges and downward- edges on S, (e) realization of the
zig-zag path as TCCG on S and (f) realization of some upward-edges and downward-
edges of G as TCCG on S.
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All steps of this algorithm except sorting of the seeds can be implemented
in O(n) time. Since sorting of the seeds takes O(n log n) time, the overall time
complexity is O(n log n). 	


6 Realizability of Complete Graphs

In this section, we show that a complete graph has a realization as a triangle cover
contact graph (TCCG) on any given set of seeds as in the following theorem.

Theorem 5. Let G be a complete graph of n vertices and let S be a set of n
seeds. Then G is realizable on S as a TCCG in O(n log n) time.

Proof. We give a constructive proof. Let G = (V,E) be a complete graph.
Assume for the simplicity that no two seeds in S are on a horizontal or on
a vertical line. If the point set does not satisfy the condition we can simply
rotate the coordinate plane so that the point set satisfies the condition. Let p1
be the left seed and pn be the right seed among the seeds of S. Let v1, v2, . . . , vn

be the vertices of G. Let p2, p3 . . . , pn−1 be the seeds of S sorted according to
their y-coordinates. We set the vertices vi of G on pi of S.

Our idea is to cover each seed pi by a triangle Ti such that pi is inside of Ti

and one side of Ti lies on the vertical line x = x(pi) + k. Here x(pi) denotes the
x-coordinate of point pi and k is a constant. We define three corner points of Ti

Fig. 9. (a) A complete graph G, (b) a set of seeds S and (c) realization of G as TCCG
on S.
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by αi, βi, γi where αi, βi lies on the line x = x(pi) + k and γi is an arbitrary
point.

We cover each seed pi by a covering triangle Ti corresponds to the vertex vi of
G as follows. We denote α, β and γ points of Ti by αi, βi and γi, respectively. Let
x(α) and y(α) be the x-coordinate and y-coordinate of α point, respectively and
let Lαβ be the line that passes through the points α and β. Here each triangle
covers one seed.

We cover p1 by T1 corresponding to v1 so that x(γ1) < x(β1) and x(γ1) <
x(α1) and y(γ1) > y(α1) and y(γ1) < y(β1). We now cover pn by Tn so that it
touches T1. The point γn lies on α1. We then cover pi (1 < i < n) by Ti where γi

meets at a point and lies on Lα1β1 and αi lies on Lβnγn
. This ensure that every

triangle Ti touches with each other where (1 ≥ i ≤ n). One can observe that the
resulting TCCG is a complete graph as shown in Fig. 9(c). Hence G is realizable
on S.

All steps of the algorithm except sorting of the seeds can be implemented
in O(n) time. Since sorting of the seeds takes O(n log n) time, the overall time
complexity is O(n log n). 	


7 Conclusion

In this paper we have shown that every Halin graph has a realization as a TCCG
on a given set of collinear seeds. We also have shown that every super-Halin
graph, cubic planar Hamiltonian graph and a × b grid graph have a realization
each as a TCCG on a given set of collinear seeds. We also have shown that every
complete graph has a realization as a TCCG on any given set of seeds. The result
is interesting since TCCG of a complete graph is planar although the complete
graph is non planar. This triggers a research direction to investigate which classes
of non planar graphs have TCCG representations. It is also interesting to know
which larger classes of graphs are realizable as TCCGs.
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Abstract. This paper studies the continuous connected 2-facility
location problem (CC2FLP) in trees. Let T = (V, E, c, d, �, μ) be an
undirected rooted tree, where each node v ∈ V has a weight d(v) ≥ 0
denoting the demand amount of v as well as a weight �(v) ≥ 0 denoting
the cost of opening a facility at v, and each edge e ∈ E has a weight
c(e) ≥ 0 denoting the cost on e as well as is associated with a function
μ(e, t) ≥ 0 denoting the cost of opening a facility at a point x(e, t) on e
where t is a continuous variable on e. Given a subset D ⊆ V of clients, and
a subset F ⊆ P(T ) of continuum points admitting facilities where P(T )
is the set of all the points on edges of T , when two facilities are installed
at a pair of continuum points x1 and x2 in F , the total cost involved
by CC2FLP includes three parts: the cost of opening two facilities at x1

and x2, K times the cost of connecting x1 and x2, and the cost of all
the clients in D connecting to some facility. The objective is to open two
facilities at a pair of continuum points in F to minimize the total cost, for
a given input parameter K ≥ 1. This paper considers the case of D = V
and F = P(T ). We first study the discrete version of CC2FLP, named the
discrete connected 2-facility location problem (DC2FLP), where
two facilities are restricted to the nodes of T , and devise a quadratic time
edge-splitting algorithm for DC2FLP. Furthermore, we prove CC2FLP
is almost equivalent to DC2FLP in trees, and develop a quadratic time
exact algorithm based on the edge-splitting algorithm.

Keywords: Continuous connected 2-facility · Tree · Edge-splitting ·
Quadratic time

1 Introduction

The connected facility location problem (CFLP) has a wide range of appli-
cations in the design of telecommunication networks and data management prob-
lems on networks, and has attracted considerable attention both from the theo-
retical computer science community [5–11,15] and from the operations research
community [2,12–14].
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The CFLP can be described as follows: given an undirected graph G = (V,E)
with each edge e ∈ E having a cost ce ≥ 0, a set F ⊆ V of facilities, a set
D ⊆ V of client nodes and a parameter K ≥ 1. Each facility i ∈ F has an
opening cost fi ≥ 0, and each client j ∈ D has a demand amount dj ≥ 0. The
objective is to open a subset F ⊆ F of facilities, assign each client j ∈ D to
some facility ij ∈ F as well as use a shortest path in G to connect j and ij ,
and connect all the open facilities using a Steiner tree T such that the total cost∑

i∈F fi +K
∑

e∈T ce +
∑

j∈D djρ(j, ij) is minimized, where ρ(j, ij) is the j-to-ij
shortest path distance in G. The CFLP is the combination and generalization
of the uncapacitated facility location problem (UFLP) and the Steiner
tree problem (STP), and is both NP-hard and APX-complete [5].

Karger and Minkoff [11] introduced CFLP and presented the first approx-
imation algorithm of a constant factor. Gupta et al. [6] devised a 10.66-
approximation algorithm by rounding LP of an exponential size. In [8], Gupta
et al. obtained a 9.01-approximation algorithm by random facility sampling.
Swamy and Kumar [15] developed an 8.55-approximation algorithm by integrat-
ing the primal-dual approaches for the facility location problem and the Steiner
tree problem. In [7], Gupta et al. conjectured whether Swamy and Kumar’s
algorithm can be improved by a randomized sampling approach. Eisenbrand et
al. [5] presented a 4-approximation randomized algorithm, and thus answered
this question affirmatively. Later, Hasan et al. [9] gave an 8.29-approximation
LP rounding algorithm, and Jung et al. [10] obtained a 6.55-approximation algo-
rithm by improving Step 1 of Swamy and Kumar’s algorithm. Moreover, a variety
of heuristics have been proposed, e.g., a variable neighborhood search by Ljubić
[13] which combines reactive tabu search and branch-and-cut approach, and a
dual-based local search by Bardossy and Raghavan [2], and etc.

A variant of CFLP with the number of open facilities being at most p,
named the connected p-facility location problem (CpFLP), has been stud-
ied recently. Swamy and Kumar [15] first introduced CpFLP and proposed a
15.55-approximation algorithm. Eisenbrand et al. [5] presented a randomized
6.85-approximation algorithm.

The previous results focused on the discrete version of CFLP, named the
discrete connected facility location problem (DCFLP), where all the
facilities are restricted to the nodes of G. In practice, however, it commonly
occurs that the facilities are installed on the edges, e.g., the emergency service
centers of a city are constructed on the roads of communication network of the
city. Provided that the number of open facilities is at most p, we can model the
scenario above as the continuous connected p-facility location problem
(CCpFLP). Let F ⊆ P(G) denote the set of candidate points on edges of
admitting facilities. When opening facilities at F ⊆ F , every client j ∈ D is
assigned to some facility xj ∈ F , j connects to xj via a shortest path in G, and
all the open facilities in F are connected by a Steiner tree Ts. Let fx be the cost
of opening a facility at x ∈ F , σ(j, xj) be the j-to-xj shortest path distance in
G, and c(Ts) be the cost of Ts. CCpFLP can be formulated as
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min
F∈F,|F |≤p

∑

x∈F

fx + Kc(Ts) +
∑

j∈D
djσ(j, xj). (1)

As discussed in [5], CCpFLP is both NP-hard [4] and APX-complete [1,14] since
it contains STP as a special case. This paper focuses on the case of D = V and
F = P(G).

The CCpFLP is denoted by (C, p)-CFLP, and the case p = 2 of CCpFLP is
denoted by CC2FLP or (C, 2)-CFLP. The paper deals with (C, 2)-CFLP in trees
and presents a nontrivial quadratic time exact algorithm. First, we consider the
discrete version of CC2FLP, that is DC2FLP and denoted by (D, 2)-CFLP, in
trees. We examine an important property that an optimum to (D, 2)-CFLP in
trees is the combination of two optimums to the discrete towed 1-facility
location problem (DT1FLP) over two subtrees obtained by removing one
edge of tree, respectively. We design a linear time algorithm for DT1FLP using
complementary dynamic programming (CDP) in trees, proposed by Ding and
Xue [3], which consists of a bottom-up dynamic programming (BUDP) and a top-
down dynamic programming (TDDP). The dynamic computation in trees goes
on from bottom up to root in BUDP while from root down to bottom in TDDP.
The combination of the CDP algorithm for DT1FLP and related properties on
(D, 2)-CFLP leads to a quadratic time edge-splitting algorithm for (D, 2)-CFLP.
Next, we study (C, 2)-CFLP. We prove that the continuous towed 1-facility
location problem (CT1FLP) in trees is equivalent to DT1FLP, and (C, 2)-
CFLP in trees is almost equivalent to (D, 2)-CFLP other than seldom exceptional
cases. Based on the edge-splitting algorithm for (D, 2)-CFLP and the asymptotic
equivalence, we develop a quadratic time exact algorithm for (C, 2)-CFLP in
trees.

The rest of this paper is organized as follows. In Sect. 2, we define DT1FLP
and DC2FLP formally, and design a linear time algorithm by using CDP
for DT1FLP in trees as well as a quadratic time edge-splitting algorithm for
DC2FLP in trees. In Sect. 3, we define CT1FLP and CC2FLP formally. In Sect. 4,
we prove the equivalence between DT1FLP and CT1FLP in trees. In Sect. 5, we
obtain the asymptotic equivalence between DC2FLP and CC2FLP in trees, and
further develop a quadratic time exact algorithm for CC2FLP. In Sect. 6, we
conclude this paper.

2 Optimal Discrete Connected 2-Facility in Trees

In this section, we will first design a linear time algorithm by using CDP for
DT1FLP in trees, and then develop a quadratic time edge-splitting algorithm
for DC2FLP in trees based on the linear time algorithm.

2.1 Problem Statements and Notations

Let T = (V,E, c, d, �) be an undirected tree, where V is the node set and E is the
edge set, each edge e ∈ E has a weight c(e) ≥ 0 denoting the cost on e, each node
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v ∈ V has one weight �(v) ≥ 0 denoting the cost of opening a facility at v and
the other weight d(v) ≥ 0 denoting the demand amount of v. Let 〈v, u〉 denote a
node pair of T , and V 2 be the set of all the node pairs. For any 〈v, u〉 ∈ V 2, we
use π(v, u) to denote the unique path on T connecting v and u, and use c(v, u)
to denote the cost of π(v, u), which is equal to the sum of costs on all the edges
of π(v, u), i.e., c(v, u) =

∑
e∈π(v,u) c(e). Clearly, c(v, u) = c(u, v). Specifically,

c(v, v) = 0,∀v ∈ V . Suppose T is a rooted tree with root node r throughout the
paper since an unrooted tree always can be transformed into a rooted tree by
designating a node of tree as its root.

We consider that every node of V is a client and a center is fixed at node α.
A facility is called a discrete towed 1-facility (DT1F), if when it is installed at
node v ∈ V the total cost involved includes three parts: the cost of opening a
facility at v, K times the cost of connecting v to α, and the cost of connecting
all the clients to v. The cost of connecting any client u ∈ V to v is equal to d(u)
times c(v, u). Let F1(v) denote the cost of opening a DT1F at v. We have

F1(v) = �(v) + Kc(v, α) +
∑

u∈V

d(u)c(v, u), ∀v ∈ V. (2)

Problem 1. Given T = (V,E, c, d, �), a fixed center α ∈ V and a constant K ≥ 1,
the discrete towed 1-facility location problem (DT1FLP) asks to find a
node of T at which the cost of opening a DT1F is minimized.

Let v∗ be an optimal DT1F of T , i.e.,

F1(v∗) = min
v∈V

F1(v). (3)

When a pair of facilities is installed at 〈v1, v2〉, every client u ∈ V gets services
from the closer facility to itself (or say, u connects to the closer facility) in order
to reduce the service cost. A pair of facilities is called a discrete connected 2-
facility (DC2F), if when it is installed at 〈v1, v2〉 the total cost involved includes
three parts: the cost of opening a pair of facilities at 〈v1, v2〉, K times the cost
of connecting v1 with v2, and the cost of connecting all clients to some facility.
The cost of connecting u to some facility is equal to d(u) times the minimum of
c(v1, u) and c(v2, u). For any 〈v1, v2〉 ∈ V 2, we use F2(v1, v2) to denote the cost
of opening a pair of facilities at 〈v1, v2〉. We have

F2(v1, v2)
= �(v1) + �(v2) + Kc(v1, v2) +

∑

u∈V

d(u)min{c(v1, u), c(v2, u)}. (4)

Problem 2. Given T = (V,E, c, d, �) and a constant K ≥ 1, the discrete
connected 2-facility location problem (DC2FLP), abbreviated to (D, 2)-
CFLP, asks to find a node pair of T at which the cost of opening a DC2F is
minimized.

Let 〈v∗
1 , v

∗
2〉 be an optimal DC2F of T , i.e.,

F2(v∗
1 , v

∗
2) = min

〈v1,v2〉∈V 2
F2(v1, v2). (5)
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2.2 A Linear Time Algorithm for DT1FLP in Trees

In this subsection, we devise a linear time exact algorithm for DT1FLP in T =
(V,E, c, d, �) by using CDP.

We claim by Eq. (3) that an optimal DT1F, v∗, of T can be derived from
computing all the values of F1(v), v ∈ V and then finding the minimum. By Eq.
(2), we let F1(v) = F

(1)
1 (v) + F

(2)
1 (v), where

F
(1)
1 (v) =

∑

u∈V

d(u)c(v, u), (6)

and
F

(2)
1 (v) = �(v) + Kc(v, α). (7)

For every v ∈ V , the value of F
(2)
1 (v) is easy to be figured out since the

value of �(v) is known as part of input of DT1CP and the value of c(v, α) can be
obtained by using preprocessing procedure PreDT1FLP. The idea of PreDT1FLP
is described roughly as follows: it uses DFS (depth-first search) to tour T with α
as origin, and the tree distance c(α, v) is set to c(α, u)+ c(u, v) when a new node
v is visited at the first time via the arc from u to v. In fact, PreDT1FLP calls
DFS once, and so PreDT1FLP produces all the tree distances with α as origin in
O(|V |) time.

Next, we compute all the values of F
(1)
1 (v), v ∈ V . For any v ∈ V , we let S(v)

be the set of children of v and p(v) be the parent of v. Let T (v) be the subtree of
T rooted at v. We denote by V +(v) the set of nodes in T (v), and by V −(v) the
set of nodes outside T (v). Let f+(v) (resp. f−(v)) denote the cost of all the nodes
in V +(v) (resp. V −(v)) connecting to v, i.e., f+(v) =

∑
u∈V +(v) d(u)c(v, u) and

f−(v) =
∑

u∈V −(v) d(u)c(v, u). Let d+(v) (resp. d−(v)) denote the total demand
amount from V +(v) (resp. V −(v)), i.e., d+(v) =

∑
u∈V +(v) d(u) and d−(v) =

∑
u∈V −(v) d(u). Given any T = (V,E, c, d, �), the total demand amount from

all the nodes in V is certainly a constant, denoted by D. Clearly, D = d+(r). In
addition, we let X �Y denote the union of two disjoint sets X and Y . Theorem 1
shows a partition scheme of T , see Fig. 1.

Fig. 1. The partition scheme of T at v.
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Theorem 1 (see [3]). For any v ∈ V , we have

V = V +(v) � V −(v), (8)

where

V +(v) = {v} �
⎧
⎨

⎩

⊎

u∈S(v)

V +(u)

⎫
⎬

⎭
, (9)

and

V −(v) = {p(v)} � V −(p(v)) �
⎧
⎨

⎩

⊎

u∈S(p(v))\{v}
V +(u)

⎫
⎬

⎭
. (10)

Specifically, S(v) = ∅ and so V +(v) = {v}, d+(v) = d(v) for each leaf v of T
while p(r) = null and so V −(r) = ∅. From Eq. (9), it follows that

d+(v) = d(v) +
∑

u∈S(v)

∑

w∈V +(u)

d(w) = d(v) +
∑

u∈S(v)

d+(u). (11)

By Eq. (8), d−(v) = D−d+(v). Based on Eq. (11), we can use BUDP to compute
all the values of d+(v) and d−(v), which can be incorporated into PreDT1FLP.

Theorem 2. For any v ∈ V , we have

F
(1)
1 (v) = f+(v) + f−(v), (12)

where
f+(v) =

∑

u∈S(v)

(
f+(u) + d+(u)c(v, u)

)
, (13)

and

f−(v) = f−(p(v)) + f+(p(v)) − f+(v) + (d−(v) − d+(v))c(v, p(v)). (14)

By Eq. (12), we can first compute the values of f+(v) and f−(v), and then
get F

(1)
1 (v), for all v ∈ V . According to Eqs. (13) and (14), all the values of d+(v)

and d−(v), v ∈ V need to be obtained in advance, which is done by PreDT1FLP.
We claim from Eq. (13) that we can use BUDP on T to compute all the values
of f+(v), and from Eq. (14) we can use TDDP on T to compute all the values
of f−(v). This idea results in a CDP procedure, described as MainProcedure
of our algorithm for DT1FLP. Therefore, the combination of PreDT1FLP and
MainProcedure forms our algorithm for DT1FLP on T = (V,E, c, d, �), called
AlgDT1FLP.

In practice, we can implement AlgDT1FLP based on the search of tree.
AlgDT1FLP uses BUDP twice and TDDP once. The BUDP procedure in
AlgDT1FLP can be implemented by DFS as follows: tour T with r as origin.
For any node v ∈ V , the values of d+(v) and f+(v) are figured out when the
tour goes backward from v. The TDDP procedure in AlgDT1FLP can be imple-
mented by BFS (breadth-first search) as follows: tour T with r as origin, and
compute f−(v) when every v ∈ V \ {r} is visited at the first time. The time
complexity of AlgDT1FLP is shown in Theorem 3.
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Theorem 3. Given T = (V,E, c, d, �) with n nodes, a fixed center α ∈ V and a
constant K ≥ 1, AlgDT1FLP can find an optimal DT1F of T in O(n) time.

2.3 An Edge-Splitting Algorithm for (D, 2)-CFLP in Trees

In this subsection, we present a quadratic time edge-splitting algorithm for
(D, 2)-CFLP in T = (V,E, c, d, �) based on AlgDT1FLP.

All the nodes in T are labelled from bottom up to root r and so r has the
highest level. For any e ∈ E, the endpoint of e lying on a lower (resp. higher)
level is denoted by e+ (resp. e−). So, e = {e+, e−}. We simplify V +(e+) and
V −(e+) to V +(e) and V −(e), respectively. Evidently, all the nodes in V +(e)
reach e+ without passing through e while all the nodes in V −(e) reach e+ by
passing through e. The node pair of V with v1 ∈ V +(e) and v2 ∈ V −(e) is
denoted by 〈v1, v2〉e, and all such node pairs form a set denoted by V 2(e). Unless
specified otherwise, we always suppose v1 ∈ V +(e) and v2 ∈ V −(e) for all
e ∈ E. Clearly, 〈v1, v2〉 is interchangeable while 〈v1, v2〉e is not interchangeable.
In addition, if one edge ẽ ∈ π(v1, v2) satisfies that c(v1, ẽ+) < c(v2, ẽ+) and
c(v1, ẽ−) ≥ c(v2, ẽ−), it is called the threshold edge of 〈v1, v2〉 and denoted by
t(v1, v2). All the node pairs with e as their threshold edge form a set, denoted
by V 2

t (e).

Lemma 1. V 2 =
⋃

e∈E V 2
t (e).

A tree can be partitioned into two subtrees by removing one edge. The edge
removed from T is called a splitting edge of T . For any 〈v1, v2〉 ∈ V 2 and any
e ∈ π(v1, v2), when e is designated as the splitting edge, the objective function
of DT1FLP over the subtree including v1 and a fixed center e+ is

F+
1 (v1; e) = �(v1) + Kc(v1, e+) +

∑

u∈V +(e)

d(u)c(v1, u), (15)

and that over the subtree including v2 and a fixed center e− is

F−
1 (v2; e) = �(v2) + Kc(v2, e−) +

∑

u∈V −(e)

d(u)c(v2, u). (16)

Below are several fundamental lemmas, which form the basis of our quadratic
time edge-splitting algorithm for (D, 2)-CFLP.

Lemma 2. Given any 〈v1, v2〉 ∈ V 2 and any e ∈ π(v1, v2), we have

F+
1 (v1; e) + F−

1 (v2; e) + Kc(e)
≥ F+

1 (v1; t(v1, v2)) + F−
1 (v2; t(v1, v2)) + Kc(t(v1, v2)).

(17)

Lemma 3. Given any 〈v1, v2〉 ∈ V 2, we have

F2(v1, v2) = F+
1 (v1; t(v1, v2)) + F−

1 (v2; t(v1, v2)) + Kc(t(v1, v2)). (18)
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Theorem 4. Given T = (V,E, c, d, �), an optimal DC2F, 〈v∗
1 , v

∗
2〉, of T satisfies

that

F2(v∗
1 , v

∗
2) = min

e∈E

{

min
v1∈V +(e)

F+
1 (v1; e) + min

v2∈V −(e)
F−
1 (v2; e) + Kc(e)

}

. (19)

According to Theorem 4, we need to compute the values of F+
1 (v∗

1 ; e) and
F−
1 (v∗

2 ; e) for all e ∈ E in order to compute the value of F2(v∗
1 , v

∗
2). For any e ∈ E,

during the computation of F+
1 (v∗

1 ; e), none of the nodes in V −(e) is involved while
all the nodes in V +(e) are involved. Thus, we call AlgDT1FLP(T (e+), e+,K) to
compute F+

1 (v∗
1 ; e). During the computation of F−

1 (v∗
2 ; e), none of the nodes in

V +(e) is involved while all the nodes in V −(e) are involved. So, it is certain
that e is not visited during the tour on T . Thus, we call AlgDT1FLP(T, e−,K)
with e forbidden to visit to compute F−

1 (v∗
2 ; e). The edge minimizing the sum of

F+
1 (v∗

1 ; e), F−
1 (v∗

2 ; e) and Kc(e) is an optimal splitting edge e∗. The node pair
〈v∗

1 , v
∗
2〉, where v∗

1 and v∗
2 minimize F+

1 (v1; e∗) and F−
1 (v2; e∗) respectively, is an

optimal DC2F. This idea leads to our edge-splitting algorithm for (D, 2)-CFLP,
called AlgDC2FLP. The time complexity of AlgDC2FLP is shown in Theorem 5.

Theorem 5. Given T = (V,E, c, d, �) with n nodes and a constant K ≥ 1,
AlgDC2FLP can find an optimal DC2F of T in O(n2) time.

3 Optimal Continuous Connected 2-Facility in Trees

Let T = (V,E, c, d, �, μ) be an undirected rooted tree, where V,E, c(·), d(·) and
�(·) are as defined in Sect. 2. In addition, every edge e ∈ E has another weight
denoting the cost of opening a facility on e. Let P(e) be the set of all the
continuum points on e, and P(T ) be the set of all the continuum points on edges
of T . For any e ∈ E and any point x ∈ P(e), e is partitioned into two sections
at x. Suppose the cost over one section between x and e− is t, and thus the cost
over the other section between x and e+ is c(e)− t. Clearly, 0 ≤ t ≤ c(e),∀e ∈ E.
Let x(e, t) be the point on e such that the cost between it and e− is equal to t,
and μ(e, t) denote the cost of opening a facility at x(e, t) as follows,

μ(e, t) =
(

1 − t

c(e)

)

�(e−) +
t

c(e)
�(e+), ∀0 ≤ t ≤ c(e). (20)

Given a node v ∈ V and a point x ∈ P(T ), we let π(x, v) denote the unique
path on T connecting x and v, and let c(x, v) denote the cost of π(x, v). For any
edge e ∈ E and any point x ∈ P(e), π(x, v) certainly contains one path π(e+, v)
and the section of e between x and e+ if v lies in V +(e) while it contains π(e−, v)
and the section of e between x and e− if v lies in V −(e). Thus,

c(x, v) =
{

c(e−, v) − t if v ∈ V +(e),
c(e−, v) + t if v ∈ V −(e), ∀v ∈ V. (21)

Suppose that each node of V is a client and a center is fixed at node α.
A facility is called a continuous towed 1-facility (CT1F), if when it is installed
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at point x ∈ P(T ) the total cost involved includes three parts: the cost of opening
a facility at x, K times the cost of connecting x to α, and the cost of connecting
all the clients to x. The cost of connecting every client v ∈ V to x is equal to d(v)
times c(x, v). For any edge e ∈ E and any point x(e, t) ∈ P(e), we let F1(e, t)
denote the cost of opening a CT1F at x(e, t). We have

F1(e, t) = μ(e, t) + Kc(x(e, t), α) +
∑

v∈V

d(v)c(x(e, t), v), ∀0 ≤ t ≤ c(e). (22)

Problem 3. Given T = (V,E, c, d, �, μ), a fixed center α ∈ V and a constant
K ≥ 1, the continuous towed 1-facility location problem (CT1FLP),
asks to find a point of T at which the cost of opening a CT1F is minimized.

Let x(e∗, t∗) be an optimal CT1F of T , i.e.,

F1(e∗, t∗) = min
e∈E, 0≤t≤c(e)

F1(e, t). (23)

Let 〈x1, x2〉 denote a point pair of T , i.e., x1, x2 ∈ P(T ). When a pair of
facilities is installed at 〈x1, x2〉, each client v ∈ V connects to the closer facil-
ity. A pair of facilities is called a continuous connected 2-facility (CC2F), if
when it is installed at 〈x1, x2〉 the total cost involved includes three parts: the
cost of opening a pair of facilities at 〈x1, x2〉, K times the cost of connect-
ing x1 with x2, and the cost of connecting all the clients to some facility. For
any pair of edges e1 and e2, given any two points x(e1, t1) ∈ P(e1), x(e2, t2) ∈
P(e2), we let F2(e1, t1; e2, t2) denote the cost of opening a pair of facilities at
〈x(e1, t1), x(e2, t2)〉. The objective function of Eq. (1) can rewritten to be

F2(e1, t1; e2, t2) = μ(e1, t1) + μ(e2, t2) + Kc(x(e1, t1), x(e2, t2))
+

∑

v∈V

d(v)min{c(x(e1, t1), v), c(x(e2, t2), v)}. (24)

Problem 4. Given T = (V,E, c, d, �, μ) and a constant K ≥ 1, the continuous
connected 2-facility location problem (CC2FLP), abbreviated to (C, 2)-
CFLP, asks to find a point pair of T at which the cost of opening a CC2F is
minimized.

Let 〈x(e∗
1, t

∗
1), x(e∗

2, t
∗
2)〉 be an optimal CC2F of T , i.e.,

F2(e∗
1, t

∗
1; e

∗
2, t

∗
2) = min

e1∈E,0≤t1≤c(e1); e2∈E,0≤t2≤c(e2)
F2(e1, t1; e2, t2). (25)

In the remainder of this paper, we first study CT1FLP in trees, and then
study (C, 2)-CFLP in trees. Due to page limit, the most of technical details will
be omitted here.

4 Equivalence of CT1FLP in Trees

In this section, we prove the equivalence between CT1FLP and DT1FLP in trees.
So, AlgDT1FLP also applies to CT1FLP in trees.

Theorem 6. CT1FLP in T = (V,E, c, d, �, μ) is equivalent to DT1FLP in
T = (V,E, c, d, �).
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5 Algorithm for (C, 2)-CFLP in Trees

In this section, we develop a quadratic time exact algorithm for (C, 2)-CFLP in
trees based on AlgDC2FLP.

Let 〈e1, e2〉 be a pair of edges of T , and E2 be the set of all the edge
pairs. If e1 and e2 have a common node then they are called adjacent, and
otherwise called nonadjacent. Let E2

1 , E2
2 and E2

3 be the set of all the pairs
of nonadjacent edges, all the pairs of adjacent edges, and all the pairs of
same edge, respectively. Clearly, E2 = E2

1 � E2
2 � E2

3 . If 〈e1, e2〉 ∈ E2
k, k =

1, 2, 3, we use F
(k)
2 (e1, t1; e2, t2) to denote the objective function of (C, 2)-CFLP.

Specifically, we have F
(3)
2 (e, t1; e, t2) when e1 = e2 = e. Accordingly, we use

F
(1)
2 (e∗

11, t
∗
11; e

∗
12, t

∗
12), F

(2)
2 (e∗

21, t
∗
21; e

∗
22, t

∗
22) and F

(3)
2 (e∗

3, t
∗
31; e

∗
3, t

∗
32) to denote the

optimum, respectively.
For any point pair 〈x1, x2〉 of T , there are three potential situations: they lie

on a pair of nonadjacent edges, or a pair of adjacent edges or a single edge. So,
we need to discuss three cases, see Fig. 2, respectively.

Fig. 2. Three potential situations of a point pair 〈x1, x2〉.

5.1 Case 1: A Pair of Nonadjacent Edges

In this subsection, we show a way to computing F
(1)
2 (e∗

11, t
∗
11; e

∗
12, t

∗
12). We obtain

the following theorem.

Theorem 7. F
(1)
2 (e∗

11, t
∗
11; e

∗
12, t

∗
12) = F2(v∗

1 , v
∗
2).

5.2 Case 2: A Pair of Adjacent Edges

In this subsection, we show a way to computing F
(2)
2 (e∗

21, t
∗
21; e

∗
22, t

∗
22). For any

〈e1, e2〉 ∈ E2
2 , we let e1 = {v1, v2} and e2 = {v2, v3}. Suppose, w.l.o.g, that

c(e1) ≤ c(e2). There are two types of the layouts of 〈e1, e2〉, see Fig. 3. Let
V1, V2, V3 be the set of nodes which reach x(e1, t1) and/or x(e2, t2) by passing
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Fig. 3. A node pair 〈x1, x2〉 lies on a pair of adjacent edges 〈e1, e2〉 ∈ E2
2 . There

are two types of layouts of 〈e1, e2〉. TYPE–I is shown in (a) and TYPE–II is shown
in (b).

through v1, v2, v3, and let d1, d2, d3 denote the total demand amount of all the
nodes in V1, V2, V3, respectively. Let

λ0 = �(v2) + �(v3) + F
(1)
1 (v2) + (K − d3)c(e2),

λ1 =
�(v1) − �(v2)

c(e1)
+ K − d1,

λ2 =
�(v2) − �(v3)

c(e2)
− K + d3.

(26)

For ease of presentation, we define three terms as follows:

– FALSE1 = “λ1 + d2 < 0, λ2 < 0, λ1 − λ2 + d2 < 0”;
– FALSE2 = “λ1 > 0, λ2 − d2 > 0, λ1 − λ2 + d2 < 0”;
– FALSE3 = “λ1 ≤ 0, λ2 − d2 > 0”.

We obtain the following Lemma.

Lemma 4. Given T = (V,E, c, d, �, μ) and any pair of adjacent edges
〈e1, e2〉 ∈ E2

2 , when one of FALSE1, FALSE2 and FALSE3 occurs, we infer
F
(2)
2 (e1, t1; e2, t2) gets its minimum at 〈e+1 , x(e2, c(e2) − c(e1))〉, i.e.,

F
(2)
2 (e1, t∗1; e2, t

∗
2) = λ0 + λ2c(e2) + (λ1 − λ2 + d2)c(e1). (27)

Theorem 8. Given T = (V,E, c, d, �, μ), unless one of FALSE1, FALSE2
and FALSE3 occurs to a pair of adjacent edges of T , it always holds that
F
(2)
2 (e∗

21, t
∗
21; e

∗
22, t

∗
22) ≥ F2(v∗

1 , v
∗
2).
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Fig. 4. A node pair lies on a single edge e = {v1, v2}.

5.3 Case 3: A Single Edge (see Fig. 4)

In this subsection, we show a way to computing F
(3)
2 (e∗

3, t
∗
31; e

∗
3, t

∗
32). We obtain

the following theorem.

Theorem 9. F
(3)
2 (e∗

3, t
∗
31; e

∗
3, t

∗
32) ≥ F2(v∗

1 , v
∗
2).

5.4 A Quadratic Time Exact Algorithm

The combination of Theorems 7, 8 and 9 yields Theorem 10.

Theorem 10. (C, 2)-CFLP in T = (V,E, c, d, �, μ) is equivalent to (D, 2)-CFLP
in T = (V,E, c, d, �) unless one of FALSE1, FALSE2 and FALSE3 occurs to a
pair of adjacent edges of T = (V,E, c, d, �, μ).

Let F
(2)
2 (e1, t

∗
1; e2, t

∗
2) denote the minimum of all the potential values

of F
(2)
2 (e1, t∗1; e2, t

∗
2) under FALSE1, FALSE2 and FALSE3. We conclude

from Theorem 10 that we can get F2(e∗
1, t

∗
1; e

∗
2, t

∗
2) and an optimal CC2F,

〈x(e∗
1, t

∗
1), x(e∗

2, t
∗
2)〉, by first using AlgDC2FLP to compute F2(v∗

1 , v
∗
2), and using

Eq. (27) to compute all the potential values of F
(2)
2 (e1, t∗1; e2, t

∗
2), and finally

determining the minimum of them. If F2(e∗
1, t

∗
1; e

∗
2, t

∗
2) is equal to F2(v∗

1 , v
∗
2), then

〈v∗
1 , v

∗
2〉 is an optimal CC2F. If F2(e∗

1, t
∗
1; e

∗
2, t

∗
2) is equal to F

(2)
2 (e1, t

∗
1; e2, t

∗
2), then

〈(e1)+, x(e2, c(e2) − c(e1))〉 is an optimal CC2F by Corollary 4. This idea leads
to our algorithm for (C, 2)-CFLP in T = (V,E, c, d, �, μ), called AlgCC2FLP. The
time complexity of AlgCC2FLP is shown in Theorem 11.

Theorem 11. Given T = (V,E, c, d, �, μ) with n nodes and a constant K ≥ 1,
AlgCC2FLP can find an optimal CC2F of T in O(n2) time.

6 Conclusions

This paper first designs a quadratic time edge-splitting algorithm AlgDC2FLP
for (D, 2)-CFLP in trees, and then develops a quadratic time exact algorithm
AlgCC2FLP based on AlgDC2FLP for (C, 2)-CFLP in trees.
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This paper deals with the case of F = P(T ) and D = V . In essence, the
approach used in this paper can be easily extended to the general case of F ⊆
P(T ) and D ⊆ V . Furthermore, we conjecture that (C, p)-CFLP with p > 2 in
trees admits a polynomial time exact algorithm.
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Abstract. An (r, �)-partition of a graph G is a partition of its vertex
set into r independent sets and � cliques. A graph is (r, �) if it admits
an (r, �)-partition. A graph is well-covered if every maximal indepen-
dent set is also maximum. A graph is (r, �)-well-covered if it is both
(r, �) and well-covered. In this paper we consider two different decision
problems. In the (r, �)-Well-Covered Graph problem ((r, �)wcg for
short), we are given a graph G, and the question is whether G is an
(r, �)-well-covered graph. In the Well-Covered (r, �)-Graph problem
(wc(r, �)g for short), we are given an (r, �)-graph G together with an
(r, �)-partition of V (G) into r independent sets and � cliques, and the
question is whether G is well-covered. We classify most of these prob-
lems into P, coNP-complete, NP-complete, NP-hard, or coNP-hard. Only
the cases wc(r, 0)g for r ≥ 3 remain open. In addition, we consider
the parameterized complexity of these problems for several choices of
parameters, such as the size α of a maximum independent set of the
input graph, its neighborhood diversity, or the number � of cliques in an
(r, �)-partition. In particular, we show that the parameterized problem
of deciding whether a general graph is well-covered parameterized by α
can be reduced to the wc(0, �)g problem parameterized by �, and we
prove that this latter problem is in XP but does not admit polynomial
kernels unless coNP ⊆ NP/poly.
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1 Introduction

An (r, �)-partition of a graph G = (V,E) is a partition of V into r independent
sets S1, . . . , Sr and � cliques K1, . . . , K�. For convenience, we allow these sets
to be empty. A graph is (r, �) if it admits an (r, �)-partition. The P versus NP-
complete dichotomy for recognizing (r, �)-graphs is well known [2]: the problem
is in P if max{r, �} ≤ 2, and NP-complete otherwise. The class of (r, �)-graphs
and its subclasses have been extensively studied in the literature. For instance,
list partitions of (r, �)-graphs were studied by Feder et al. [11]. In another paper,
Feder et al. [12] proved that recognizing graphs that are both chordal and (r, �)
is in P.

Well-covered graphs were first introduced by Plummer [20] in 1970. Plummer
defined that “a graph is said to be well-covered if every minimal point cover is
also a minimum cover”. This is equivalent to demanding that every maximal
independent set has the same cardinality. The problem of recognizing a well-
covered graph, which we denote by Well-Covered Graph, was proved to be
coNP-complete by Chvátal and Slater [3] and independently by Sankaranarayana
and Stewart [22], but is in P when the input graph is known to be claw-free
[18,24].

Motivated by this latter example and by the relevance of (r, �)-graphs, in
this paper we are interested in recognizing graphs that are both (r, �) and well-
covered. We note that similar restrictions have been considered in the literature.
For instance, Kolay et al. [16] recently considered the problem of removing few
vertices from a perfect graph so that it additionally becomes (r, �).

Let r, � ≥ 0 be two fixed integers. A graph is (r, �)-well-covered if it is both
(r, �) and well-covered. More precisely, in this paper we focus on the following
two decision problems.

(r, �)-Well-Covered Graph ((r, �)wcg )
Input: A graph G

Question: Is G (r, �)-well-covered?

Well-Covered (r, �)-Graph (wc(r, �)g )
Input: An (r, �)-graph G, together with a partition of V (G) into r

independent sets and � cliques
Question: Is G well-covered?

We establish an almost complete characterization of the complexity of the
(r, �)wcg and wc(r, �)g problems. Our results are shown in the following tables,
where r (resp. �) corresponds to the rows (resp. columns) of the tables, and
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where coNPc stands for coNP-complete, NPh stands for NP-hard, NPc stands
for NP-complete, and (co)NPh stands for both NP-hard and coNP-hard. The
symbol ‘?’ denotes that the complexity of the corresponding problem is open.

( )wcg 0 1 2 ≥ 3

0 − P P NPc

1 P P P NPc

2 P coNPc coNPc (co)NPh

≥ 3 NPh (co)NPh (co)NPh (co)NPh

wc( )g 0 1 2 ≥ 3

0 − P P P

1 P P P P

2 P coNPc coNPc coNPc

≥ 3 ? coNPc coNPc coNPc

We note the following simple facts that we will use to fill the above tables:

Fact 1. If (r, �)wcg is in P, then wc(r, �)g is in P.

Fact 2. If wc(r, �)g is coNP-hard, then (r, �)wcg is coNP-hard.

Note that wc(r, �)g is in coNP, since a certificate for a No-instance consists
just of two maximal independent sets of different size. On the other hand, for
(r, �)wcg we have the following facts, which are easy to verify:

Fact 3. For any pair of integers (r, �) such that the problem of recognizing an
(r, �)-graph is in P, the (r, �)wcg problem is in coNP.

Fact 4. For any pair of integers (r, �) such that the wc(r, �)g problem is in P,
the (r, �)wcg problem is in NP.

In this paper we prove that (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), and (1, 2)wcg
can be solved in polynomial time, which by Fact 1 yields that wc(0, 1), (1, 0),
(0, 2),(1, 1), (2, 0), and (1, 2)g can also be solved in polynomial time. On the other
hand, we prove that wc(2, 1)g is coNP-complete, which by Facts 2 and 3 will yield
that (2, 1)wcg is also coNP-complete. Furthermore, we also prove that wc(0, �)g
and wc(1, �)g are polynomial, and that (0, 3), (3, 0), and (1, 3)wcg are NP-hard.
Finally, we state and prove a “monotonicity” result, namely Theorem1, stating
how to extend the NP-hardness or coNP-hardness of wc(r, �)g (resp. (r, �)wcg)
to wc(r + 1, �)g (resp. (r + 1, �)wcg), and wc(r, � + 1)g (resp. (r, � + 1)wcg).

Together, these results correspond to those shown in the above tables. Note
that the only remaining open cases are wc(r, 0)g for r ≥ 3. As an avenue for
further research, it would be interesting to provide a complete characterization of
well-covered tripartite graphs, as has been done for bipartite graphs [10,21,26].
So far, only partial characterizations exist [14,15].

In addition, we consider the parameterized complexity of these problems for
several choices of the parameters, such as the size α of a maximum independent
set of the input graph, its neighborhood diversity, or the number � of cliques in
an (r, �)-partition. We obtain several positive and negative results. In particular,
we show that the parameterized problem of deciding whether a general graph
is well-covered parameterized by α can be reduced to the wc(0, �)g problem
parameterized by �, and we prove that this latter problem is in XP but does not
admit polynomial kernels unless coNP ⊆ NP/poly. (For an introduction to the
field of Parameterized Complexity, see [4,7,13,19].)
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The rest of this paper is organized as follows. In Sect. 2 we prove our results
concerning the classical complexity of both problems, and in Sect. 3 we focus on
their parameterized complexity.

We use standard graph-theoretic notation, and we refer the reader to [6] for
any undefined notation. Throughout the paper, we let n denote the number of
vertices in the input graph for the problem under consideration.

2 Classical Complexity of the Problems

We start with a monotonicity theorem that will be very helpful to fill the tables
presented in Sect. 1. The remainder of this section is divided into four subsections
according to whether (r, �)wcg and wc(r, �)g are polynomial or hard problems.

Theorem 1. Let r, � ≥ 0 be two fixed integers.

(i) If wc(r, �)g is coNP-complete then wc(r + 1, �)g and wc(r, � + 1)g are
coNP-complete.

(ii) If (r, �)wcg is NP-hard (resp. coNP-hard) then (r, � + 1)wcg is NP-hard
(resp. coNP-hard).

(iii) Suppose that r ≥ 1. If (r, �)wcg is NP-hard (resp. coNP-hard) then (r + 1,
�)wcg is NP-hard (resp. coNP-hard).

Proof. (i) This follows immediately from the fact that every (r, �)-graph is also
an (r + 1, �)-graph and an (r, � + 1)-graph.

(ii) Let G be an instance of (r, �)wcg. Let H be the disjoint union of G and
a clique Z with V (Z) = {z1, . . . , zr+1}. Clearly G is well-covered if and only if H
is well-covered. If G is an (r, �)-graph then H is an (r, �+1)-graph. Suppose H is
an (r, � + 1)-graph, with a partition into r independent sets S1, . . . , Sr and � + 1
cliques K1, . . . ,K�+1. Each independent set Si can contain at most one vertex
of the clique Z. Therefore, there must be a vertex zi in some clique Kj . Assume
without loss of generality that there is a vertex of Z in K�+1. Then K�+1 cannot
contain any vertex outside of V (Z), so we may assume that K�+1 contains all
vertices of Z. Now S1, . . . , Sr,K1, . . . ,K� is an (r, �)-partition of G, so G is an
(r, �)-graph. Hence, H is a Yes-instance of (r, � + 1)wcg if and only if G is a
Yes-instance of (r, �)wcg.

(iii) Let G be an instance of (r, �)wcg. Let G′ be the graph obtained by
adding � + 1 isolated vertices to G. (This guarantees that every maximal inde-
pendent set in G′ contains at least � + 1 vertices.) Since r ≥ 1, it follows that
G′ is an (r, �)-graph if and only if G is. Clearly G′ is well-covered if and only if
G is.

Next, find an arbitrary maximal independent set in G′ and let p be the
number of vertices in this set. Note that p ≥ � + 1. Let H be the join of G′

and a set of p independent vertices Z = {z1, . . . , zp}, i.e., NH(zi) = V (G′) for
all i. Every maximal independent set of H is either Z or a maximal independent
set of G′ and every maximal independent set of G′ is a maximal independent
set of H. Therefore, H is well-covered if and only if G′ is well-covered. Clearly,
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if G′ is an (r, �)-graph then H is an (r + 1, �)-graph. Suppose H is an (r + 1, �)-
graph, with a partition into r + 1 independent sets S1, . . . , Sr+1 and � cliques
K1, . . . ,K�. Each clique set Ki can contain at most one vertex of Z. Therefore
there must be a vertex zi in some independent set Sj . Suppose that there is
a vertex of Z in Sr+1. Then Sr+1 cannot contain any vertex outside of Z.
Without loss of generality, we may assume that Sr+1 contains all vertices of Z.
Now S1, . . . , Sr,K1, . . . ,K� is an (r, �)-partition of G, so G is an (r, �)-graph.
Thus H is a Yes-instance of (r + 1, �)wcg if and only if G is a Yes-instance of
(r, �)wcg. ��

2.1 Polynomial Cases for WC(r, �)G

Theorem 2. wc(0, �)g and wc(1, �)g are in P for every integer � ≥ 0.

Proof. It is enough to prove that wc(1, �)g is polynomial. Let V = (S,K1,K2,
K3, . . . , K�) be a (1, �)-partition for G. Then each maximal independent set I
of G admits a partition I = (IK , S \ NS(IK)), where IK is an independent set
of K1 ∪ K2 ∪ K3 ∪ · · · ∪ K�.

Observe that there are at most O(n�) choices for an independent set IK of
K1∪K2∪K3∪· · · ∪ K�, which can be listed in time O(n�), since � is constant and
(K1,K2, K3, . . . , K�) is given. For each of them, we consider the independent
set I = IK ∪ (S \ NS(IK)). If I is not maximal (which may happen if a vertex
in (K1 ∪ K2 ∪ K3 ∪ · · · ∪ K�) \ IK has no neighbors in I), we discard this choice
of IK . Hence, we have a polynomial number O(n�) of maximal independent sets
to check in order to decide whether G is a well-covered graph. ��

2.2 Polynomial Cases for (r, �)WCG

Fact 5. The graph induced by a clique or by an independent set is well-covered.

The following corollary is a simple application of Fact 5.

Corollary 1. G is a (0, 1)-well-covered graph if and only if G is a (0, 1)-graph.
Similarly, G is a (1, 0)-well-covered graph if and only if G is a (1, 0)-graph.

The following is an easy observation.

Theorem 3. (0, 2)wcg can be solved in polynomial time.

In the next three lemmas we give a characterization of (1, 1)-well-covered
graphs in terms of their graph degree sequence. Note that (1, 1)-graphs are known
in the literature as split graphs.

Lemma 1. Let G = (V,E) be a (1, 1)-well-covered graph with (1, 1)-partition
V = (S,K), where S is a independent set and K is a clique. If x ∈ K, then
|NS(x)| ≤ 1.
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Proof. Suppose that G is a (1, 1)-well-covered graph with (1, 1)-partition V =
(S,K), where S is a independent set and K is a clique. Let I be a maximal inde-
pendent set of G such that x ∈ I∩K. Suppose for contradiction that |NS(x)| ≥ 2,
and let y, z ∈ NS(x). Since y, z ∈ S, NG(y), NG(z) ⊆ K. Since K is a clique,
vertex x is the only vertex of I in K. Hence, we have that NG(y) ∩ (I \ {x}) =
NG(z) ∩ (I \ {x}) = ∅. Therefore I ′ = (I \ {x}) ∪ {y, z} is an independent set
of G such that |I ′| = |I| + 1. Thus, I is a maximal independent set that is not
maximum, so G is not well-covered. Thus, |NS(x)| ≤ 1. ��
Lemma 2. A graph G is a (1, 1)-well-covered graph if and only if it admits a
(1, 1)-partition V = (S,K) such that either for every x ∈ K, |NS(x)| = 0, or for
every x ∈ K, |NS(x)| = 1.

Proof. Let G be a (1, 1)-well-covered graph. By Lemma 1 we have that, given a
vertex x ∈ K, either |NS(x)| = 0 or |NS(x)| = 1. Suppose for contradiction that
there are two vertices x, y ∈ K such that |NS(x)| = 0 and |NS(y)| = 1. Let z be
the vertex of S adjacent to y. Let I be a maximal independent set containing
vertex y. Note that the vertex x is non-adjacent to every vertex of I \ {y} since
there is at most one vertex of I in K. The same applies to the vertex z. Hence,
a larger independent set I ′, with size |I ′| = |I| + 1, can be obtained from I
by replacing vertex y with the non-adjacent vertices x, z, i.e., I is a maximal
independent set of G that is not maximum, a contradiction. Thus, either for
every x ∈ K, |NS(x)| = 0, or for every x ∈ K, |NS(x)| = 1.

Conversely, suppose that there is a (1, 1)-partition V = (S,K) of G such
that either for every x ∈ K, |NS(x)| = 0, or for every x ∈ K, |NS(x)| = 1. If
K = ∅, then G is (1, 0) and then G is well-covered. Hence we assume K �= ∅. If
for every x ∈ K, |NS(x)| = 0, then every maximal independent set consists of all
the vertices of S and exactly one vertex v ∈ K. If for every x ∈ K, |NS(x)| = 1,
then every maximal independent set is either I = S, or I = {x} ∪ (S \ NS(x))
for some x ∈ K. Since |NS(x)| = 1 we have |I| = 1 + |S| − 1 = |S|, and hence G
is a (1, 1)-well-covered graph. ��
Lemma 3. G is a (1, 1)-well-covered graph if and only if there is a positive
integer k such that G is a graph with a (1, 1)-partition V = (S,K) where
|K| = k, with degree sequence either (k, k, k, . . . , k, i1, i2, . . . , is, 0, 0, 0, . . . , 0)
with

∑s
j=1(ij) = k, or (k − 1, k − 1, k − 1, . . . , k − 1, 0, 0, 0, . . . , 0), where the

subsequences k, . . . , k (resp. k − 1, . . . , k − 1) have length k.

Proof. Let G be a (1, 1)-well-covered graph. Then G admits a (1, 1)-partition
V = (S,K) where k := |K|, k ≥ 0. If k = 0, then the degree sequence is
(0, 0, 0, . . . , 0). If k ≥ 1, then by Lemma 2 either for every x ∈ K, |NS(x)| = 0,
or for every x ∈ K, |NS(x)| = 1. If for every x ∈ K, |NS(x)| = 0, then the
degree sequence of G is (k − 1, k − 1, k − 1, . . . , k − 1, 0, 0, 0, . . . , 0). If for every
x ∈ K, |NS(x)| = 1, then the degree sequence of G is (k, k, k, . . . , k, i1, i2, . . . , is,
0, 0, 0, . . . , 0), with

∑s
j=1(ij) = k.

Suppose that there is a positive integer k such that G is a graph with (1, 1)-
partition V = (S,K) where |K| = k, with degree sequence either (k, k, k, . . . , k,
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i1, i2, . . . , is, 0, 0, 0, . . . , 0), or (k − 1, k − 1, k − 1, . . . , k − 1, 0, 0, 0, . . . , 0), such
that

∑s
j=1(ij) = k. If the degree sequence of G is (k, k, k, . . . , k, i1, i2, . . . , is,

0, 0, 0, . . . , 0), then the vertices of K are adjacent to k − 1 vertices of K and
exactly one of S, since the vertices with degree i1, i2, . . . , is, have degree at
most k and the vertices with degree 0 are isolated. If the degree sequence of G
is (k −1, k −1, k −1, . . . , k −1, 0, 0, 0, . . . , 0), then the vertices of K are adjacent
to k − 1 vertices of K and none of S and the vertices with degree 0 are isolated.
By Lemma 2 we have that G is a well-covered graph. ��
Corollary 2. (1, 1)wcg can be solved in polynomial time.

Ravindra [21] gave the following characterization of (2, 0)-well-covered
graphs.

Theorem 4 (Ravindra [21]). Let G be a connected graph. G is a (2, 0)-well-
covered graph if and only if G contains a perfect matching F such that for every
edge e = uv in F , G[N(u) ∪ N(v)] is a complete bipartite graph.

We now prove that Theorem 4 leads to a polynomial-time algorithm.

Theorem 5. (2, 0)wcg can be solved in polynomial time.

Proof. Assume that G is connnected and consider the weighted graph (G,ω)
with ω : E(G) → {0, 1} satisfying ω(uv) = 1, if G[N(u) ∪ N(v)] is a complete
bipartite graph, and 0 otherwise. By Theorem4, G is well-covered if and only if
(G,ω) has a weighted perfect matching with weight at least n/2, and this can
be decided in polynomial time [9]. ��
Theorem 6. (1, 2)wcg can be solved in polynomial time.

Proof. We can find a (1, 2)-partition of a graph G (if any) in polynomial time [2].
After that, we use the algorithm for wc(1, �)g given by Theorem2. ��

2.3 coNP-complete Cases for WC(r, �)G

We note that the well-Covered Graph instance G constructed in the reduc-
tion of Chvátal and Slater [3] is (2, 1), directly implying that wc(2, 1)g is coNP-
complete.

Indeed, Chvátal and Slater [3] take a 3-sat instance I = (U,C) = ({u1, u2,
u3, . . . , un}, {c1, c2, c3, . . . , cm}), and construct a Well-Covered Graph
instance G = (V,E) = ( {u1, u2, u3, . . . , un, u1, u2, u3, . . . , un, c1, c2, c3, . . . , cm},
{xcj : x occurs in cj} ∪ {uiui : 1 ≤ i ≤ n} ∪ {cicj : 1 ≤ i < j ≤ m} ).
Note that {cicj : 1 ≤ i < j ≤ m} is a clique, and that {u1, u2, u3, . . . , un},
and {u1, u2, u3, . . . , un} are independent sets. Hence, G is a (2, 1)-graph. An
illustration of this construction can be found in Fig. 1. This discussion can be
summarized as follows.

Theorem 7 (Chvátal and Slater [3]). wc(2, 1)g is coNP-complete.

As (2, 1)-graphs can be recognized in polynomial time [2], we have the
following corollary.

Corollary 3. (2, 1)wcg is coNP-complete.
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Fig. 1. Chvatal and Slater’s [3] Well-Covered Graph instance G = (V, E) obtained
from the satisfiable 3-sat instance I = (U, C) = ({u1, u2, u3}, {(u1, u2, u3), (u1, u2, u3),
(u1, u2, u3)}), where {c1, c2, . . . , cm} is a clique of G. Observe that I is satisfi-
able if and only if G is not well-covered, since there is a maximal independent
set with size n + 1 (e.g. {c1, u1, u2, u3}) and there is a maximal independent set
of size n (e.g. {u1, u2, u3}). Note also that G is a (2, 1)-graph with (2, 1)-partition
V = ({u1, u2, . . . , un}, {u1, u2, . . . , un}, {c1, c2, . . . , cm} ).

2.4 NP-hard Cases for (r, �)WCG

Now we prove that (0, 3) wcg is NP-complete. For this purpose, we slightly
modify an NP-completeness proof of Stockmeyer [23].

Stockmeyer’s [23] NP-completeness proof of 3-coloring considers a 3-sat
instance I = (U,C) = ( {u1, u2, u3, . . . , un}, {c1, c2, c3, . . . , cm} ), and constructs
a 3-coloring instance G = (V,E) = ({u1, u2, u3, . . . , un, u1, u2, u3, . . . ,
un} ∪ {v1[j], v2[j], v3[j], v4[j], v5[j], v6[j] : j ∈ {1, 2, 3, . . . ,m}} ∪ {t1, t2}, {uiui :
i ∈ {1, 2, 3, . . . , n}} ∪ {v1[j]v2[j], v2[j]v4[j], v4[j]v1[j], v4[j]v5[j], v5[j]v6[j], v6[j]v3
[j], v3[j]v5[j] : j ∈ {1, 2, 3, . . . ,m}} ∪ {v1[j]x, v2[j]y, v3[j]z : cj = (x, y, z)} ∪ {t1
ui, t1ūi : i ∈ {1, 2, 3, . . . , n}} ∪ {t2v6[j] : j ∈ {1, 2, 3, . . . ,m}}); see Fig. 2(a).

Theorem 8. (0, 3)wcg is NP-complete.

Proof. As by Theorem 2 the Well-Covered Graph problem can be solved in
polynomial time on (0, 3)-graphs, by Fact 4 (0, 3)wcg is in NP.

Let I = (U,C) be a 3-sat instance. We produce, in polynomial time in the
size of I, a (0, 3)wcg instance H, such that I is satisfiable if and only if H
is (0, 3)-well-covered. Let G = (V,E) be the graph of [23] obtained from I, and
let G′ be the graph obtained from G by adding to V a vertex xuv for every edge uv
of G not belonging to a triangle, and by adding to E edges uxuv and vxuv; see
Fig. 2(b). Finally, we define H = G′ as the complement of G′. Note that, by [23],
I is satisfiable if and only if G is 3-colorable. Since xuv is adjacent to only two
different colors of G, clearly G is 3-colorable if and only if G′ is 3-colorable.
Hence, I is satisfiable if and only if H is a (0, 3)-graph. We prove next that I is
satisfiable if and only if H is a (0, 3)-well-covered graph.

Suppose that I is satisfiable. Then, since H is a (0, 3)-graph, every maximal
independent set of H has size 3, 2, or 1. If there is a maximal independent
set I in H with size 1 or 2, then I is a maximal clique of G′ of size 1 or 2. This
contradicts the construction of G′, since every maximal clique of G′ is a triangle.
Therefore, G is well-covered.

Suppose that H is (0, 3)-well-covered. Then G′ is 3-colorable, so G is also
3-colorable. Thus, by [23], I is satisfiable. ��
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Fig. 2. (a) Stockmeyer’s [23] 3-coloring instance G obtained from the 3-sat instance
I = (U, C) = ({u1, u2, u3}, {(u1, u2, u3), (u1, u2, u3), (u1, u2, u3)}). (b) The graph G′

obtained from G by adding a vertex xuv with NG′(xuv) = {u, v} for every edge uv of
G not belonging to a triangle.

We next prove that (3, 0)wcg is NP-hard. For this, we again use the proof
of Stockmeyer [23], together with the following theorem.

Theorem 9 (Topp and Volkmann [25]). Let G = (V,E) be an n-vertex
graph, V = {v1, v2, v3, . . . , vn}, and let H be obtained from G such that V (H) =
V ∪ {u1, u2, u3, . . . , un} and E(H) = E ∪ {viui : i ∈ {1, 2, 3, . . . , n}}. Then H is
a well-covered graph where every maximal independent set has size n.

Proof. Observe that every maximal independent set I of H has a subset IG =
I ∩ V . Let U ⊆ {1, 2, 3, . . . , n} be the set of indices i such that vi ∈ I. Since I
is maximal, the set {ui : i ∈ {1, 2, 3, . . . , n} \ U} must be contained in I, so
|I| = n. ��
Theorem 10. (3, 0)wcg is NP-hard.

Proof. Let I = (U,C) be a 3-sat instance; let G = (V,E) be the graph obtained
from I in Stockmeyer’s [23] NP-completeness proof for 3-coloring; and let H
be the graph obtained from G by the transformation described in Theorem9.
We prove that I is satisfiable if and only if H is a (3, 0)-well-covered graph.
Suppose that I is satisfiable. Then by [23] we have that G is 3-colorable. Since
a vertex v ∈ V (H) \ V (G) has just one neighbor, there are 2 colors left for v to
extend a 3-coloring of G, and so H is a (3, 0)-graph. Hence, by Theorem9, H is
a (3, 0)-well-covered graph. Suppose that H is a (3, 0)-well-covered graph. Then
we have that G is a (3, 0)-graph. By [23], I is satisfiable. ��

Note that Theorem 1 combined with Theorem 8 does not imply that
(1, 3)wcg is NP-complete.
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Theorem 11. (1, 3)wcg is NP-complete.

Proof. As by Theorem 2 the Well-Covered Graph problem can be solved in
polynomial time on (1, 3)-graphs, by Fact 4 (1, 3)wcg is in NP.

Let I = (U,C) be a 3-sat instance. Without loss of generality, I has more
than two clauses. We produce a (1, 3)wcg instance H polynomial in the size
of I, such that I is satisfiable if and only if H is (1, 3)-well-covered.

Let G = (V,E) be the graph of Stockmeyer [23] obtained from I (see
Fig. 2(a)), and let H be the graph obtained from G (the complement of the
graph G) by adding one pendant vertex pv for each vertex v of G. Note that
V (H) = V (G) ∪ {pv : v ∈ V (G)}, E(H) = E(G) ∪ {pvv : v ∈ V (G)}, and
NH(pv) = {v}.

First suppose that I is satisfiable. Then by [23], G is a (3, 0)-graph, and G
is a (0, 3)-graph with partition into cliques V (G) = (K1

G
,K2

G
,K3

G
). Thus it

follows that (S = {pv : v ∈ V (G)},K1
G

,K2
G

,K3
G

) is a (1, 3)-partition of V (H).
In addition, from Theorem9 and by the construction of H, H is a well-covered
graph. Hence H is (1, 3)-well-covered.

Conversely, suppose that H is (1, 3)-well-covered, and let V (H) = (S,K1,K2,
K3) be a (1, 3)-partition for H. Then we claim that no vertex pv ∈ V (H)\V (G)
belongs to Ki, i ∈ {1, 2, 3}. Indeed, suppose for contradiction that pv ∈ Ki

for some i ∈ {1, 2, 3}. Then, Ki ⊆ {pv, v}. Hence, H \ Ki is a (1, 2)-graph
and G \ {v} is an induced subgraph of a (2, 1)-graph. But by construction of G,
G\{v} (for any v ∈ V (G)) contains at least one 2K3 (that is, two vertex-disjoint
copies of K3) as an induced subgraph, which is a contradiction given that 2K3 is
clearly a forbidden subgraph for (2, 1)-graphs. Therefore, {pv : v ∈ V (G)} ⊆ S,
and since {pv : v ∈ V (G)} is a dominating set of H, S = {pv : v ∈ V (G)}. Thus,
G is a (0, 3)-graph with partition V (G) = (K1,K2,K3), and therefore G is a
(3, 0)-graph, i.e., a 3-colorable graph. Therefore, by [23], I is satisfiable. ��
Corollary 4. If (r ≥ 3 and � = 0) then (r, �)wcg is NP-hard. If (r ∈ {0, 1} and
� ≥ 3) then (r, �)wcg is NP-complete.

Proof. (r, �)wcg is NP-hard in all of these cases by combining Theorems 1, 8, 10
and 11. For (r ∈ {0, 1} and � ≥ 3), the Well-Covered Graph problem can
be solved in polynomial time on (r, �)-graphs, so by Fact 4 (r, �)wcg is in NP. ��

3 Parameterized Complexity of the Problems

In this section we focus on the parameterized complexity of the Well-Covered
Graph problem, with special emphasis on the case where the input graph is an
(r, �)-graph. Henceforth we let α denote the size of a maximum independent
set in the input graph G for the problem under consideration. That is, G is
well-covered if and only if any maximal independent set of G has size α.

Lemma 4. The wc(r, �)g problem can be solved in time 2r·α · nO(�). In partic-
ular, it is FPT when � is fixed and r, α are parameters.
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Proof. Note that each of the r independent sets S1, . . . , Sr of the given partition
of V (G) must have size at most α. On the other hand, any maximal independent
set of G contains at most one vertex in each of the � cliques. The algorithm
exhaustively constructs all maximal independent sets of G as follows: we start
by guessing a subset of

⋃r
i=1 Si, and then choose at most one vertex in each

clique. For each choice we just have to verify whether the constructed set is
a maximal independent set, and then check that all the constructed maximal
independent sets have the same size. The claimed running time follows. In fact,
in the statement of the lemma, one could replace α with max1≤i≤r |Si|, which
yields a stronger result. ��

The following lemma motivates the study of the Well-Covered (0, �)-
Graph problem, as it shows that the Well-Covered Graph problem (on
general graphs) parameterized by α can be reduced to the wc(0, �)g problem
parameterized by �.

Lemma 5. The Well-Covered Graph problem parameterized by α, with α
given as part of the input, can be fpt-reduced to the wc(0, �)g problem parame-
terized by �.

Proof. Given a general graph G and α (recall that α is the size of a maximum
independent set in G), we construct a (0, α)-graph G′ as follows. For every vertex
v ∈ V (G), we add to G′ a clique Kv on α vertices, which are denoted v1, . . . , vα.
For every two vertices u, v ∈ V (G) and every integer i, 1 ≤ i ≤ α, we add
to G′ the edge uivi. Finally, for every edge uv ∈ E(G), we add to G′ a complete
bipartite subgraph between V (Ku) and V (Kv). It is clear from the construction
that G′ is a (0, α)-graph, and that G is well-covered if and only if G′ is well-
covered. ��
Lemma 6. The wc(1, �)g problem can be solved in time nO(�). In other words,
it is in XP when parameterized by �.

Proof. Let V (G) = S1∪K1∪· · ·∪K�. The algorithm chooses at most one vertex
in each clique, and adds them to a potential independent set Ik ⊆ V (G). If Ik

is not independent, then we discard this set. Otherwise, we set I = Ik ∪ (S1 \
NS1(Ik)). This clearly defines an independent set of G, which may be maximal or
not, but any maximal independent set of G can be constructed in this way. The
number of sets considered by this procedure is nO(�). Finally, it just remains to
check whether all the constructed independent sets, after discarding those that
are not maximal, have the same size. ��

Note that Lemma 6 implies that the Well-Covered (0, �)-Graph prob-
lem can also be solved in time nO(�). This observation raises the following
question: are the Well-Covered (0, �)-Graph and Well-Covered (1, �)-
Graph problems FPT when parameterized by �? Even if we still do not know
the answer to this question, in the following them we prove that, in particular,
the Well-Covered (0, �)-Graph and Well-Covered (1, �)-Graph problems
are unlikely to admit polynomial kernels when parameterized by �. We first need
a definition introduced by Bodlaender et al. [1].
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Definition 1 (and-composition [1]). Let Q ⊆ Σ∗×N be a parameterized prob-
lem. An and-composition for Q is an algorithm that, given t instances (x1, k),
. . . , (xt, k) ∈ Σ∗ × N of Q, takes time polynomial in

∑t
i=1 |xi| + k and outputs

an instance (y, k′) ∈ Σ∗ × N such that:

(i) The parameter value k′ is polynomially bounded by k.
(ii) The instance (y, k′) is Yes for Q if and only if all instances (xi, k) are Yes

for Q.

The following result was formulated as the ‘AND-conjecture’ by Bodlaender
et al. [1], and it was finally proved by Drucker [8] (see [5] for a simplified proof).

Theorem 12 (Drucker [8]). If a parameterized problem admits a polynomial
kernel and an and-composition, then coNP ⊆ NP/poly.

We are ready the state our result.

Theorem 13. For any fixed integer r ≥ 0, the wc(r, �)g problem does not admit
polynomial kernels when parameterized by �, unless coNP ⊆ NP/poly.

Proof. By Theorem 12, to prove the result it is enough to present an and-
composition for the Well-Covered (0, �)-Graph problem, which implies the
result for the Well-Covered (r, �)-Graph for any r ≥ 0, as any (0, �)-graph
is also an (r, �)-graph for r ≥ 0. Let G1, . . . , Gt be the given (0, �)-graphs. For
every 1 ≤ i ≤ t, take arbitrarily a maximal independent set Si of Gi, and let G′

i

be the graph obtained from Gi by adding � − |Si| isolated vertices. As any inde-
pendent set in Gi can have at most one vertex in each clique Kj , it follows that
|Si| ≤ �, and thus G′

i is well-defined. Note also that for every 1 ≤ i ≤ t, G′
i is a

(0, 2�)-graph (just consider a new clique for each isolated vertex). The following
two properties are easy to verify:

(i) For every 1 ≤ i ≤ t, G′
i is well-covered if and only if Gi is well-covered.

(ii) For every 1 ≤ i ≤ t, if G′
i is well-covered then every maximal independent

set of G′
i has size �.

We create a graph G by taking the disjoint union of the Gi’s and then adding,
for every i, j ∈ {1, . . . , t}, i �= j, all edges between V (G′

i) and V (G′
j). We set the

parameter of G as �′ = 2�. Since each G′
i is a (0, 2�)-graph, by construction G is

also a (0, 2�)-graph. Note that, by construction of G, any independent set of G
can intersect only one Gi, and therefore, if we let S (resp. Si) denote the set of
all maximal independent sets of G (resp. G′

i), it follows that

S =
⋃

{Si : 1 ≤ i ≤ t}. (1)

We claim that G is well-covered if and only if Gi is well-covered for every
1 ≤ i ≤ t, which will conclude the proof.

Indeed, first suppose that G is well-covered. Then, by Eq. (1), G′
i is well-

covered for every 1 ≤ i ≤ t, and by Property (i) this implies that Gi is also
well-covered for every 1 ≤ i ≤ t.
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Conversely, suppose that Gi is well-covered for every 1 ≤ i ≤ t. Then, by
Property (i), G′

i is also well-covered for every 1 ≤ i ≤ t and, by Property (ii),
for every 1 ≤ i ≤ t, any maximal independent set of G′

i has size �. This implies
by Eq. (1) that any maximal independent set of G also has size �, and therefore
G is well-covered, as we wanted to prove. ��

3.1 Taking the Neighborhood Diversity as the Parameter

The vertex cover number is a classical graph parameter that has been widely used
as a parameter in the multivariate complexity analysis of problems, including
those that are not directly related to the vertex cover number. Neighborhood
diversity is another graph parameter, defined by Lampis [17], which captures
more precisely than vertex cover number the property that two vertices with the
same neighborhood are “equivalent”. This parameter is defined as follows.

Definition 2. The neighborhood diversity nd(G) of a graph G = (V,E) is the
minimum t such that V can be partitioned into t sets V1, . . . , Vt where for every
v ∈ V (G) and every i ∈ {1, . . . , t}, either v is adjacent to every vertex in Vi or
it is adjacent to none of them. Note that each part Vi of G is either a clique or
an independent set.

Neighborhood diversity is a stronger parameter than vertex cover, in the
sense that bounded vertex cover graphs are a subclass of bounded neighborhood
diversity graphs. It is known that an optimal neighborhood diversity decompo-
sition of a graph G can be computed in time O(n3). See [17] for more details.

Lampis [17] showed that: (i) for every graph G we have nd(G) ≤ 2vc(G) +
vc(G), where vc(G) is the vertex cover number of G; cw(G) ≤ nd(G)+1, where
cw(G) is the clique-width of G; (iii) there exist graphs of constant treewidth and
unbounded neighborhood diversity and vice versa; (iv) an optimal neighborhood
diversity decomposition of a graph G can be computed in polynomial time.

Lemma 7. The Well-Covered Graph problem is FPT when parameterized
by the neighborhood diversity.

Proof. Given a graph G, we first obtain a neighborhood partition of G with min-
imum width using the polynomial-time algorithm of Lampis [17]. Let t := nd(G)
and let V1, . . . , Vt be the partition of V (G). As we can observe, for any pair u, v
of non-adjacent vertices belonging to the same part Vi, if u is in a maximal
independent set S then v also belongs to S, otherwise S cannot be maximum.
On the other hand, if N [u] = N [v] then for any maximal independent set Su

such that u ∈ Su there exists another maximal independent set Sv such that
Sv = Su \ {u} ∪ {v}. Hence, we can contract each partition Vi which is an inde-
pendent set into a single vertex vi with weight τ(vi) = |Si|, and contract each
partition Vi which is a clique into a single vertex vi with weight τ(vi) = 1, in
order to obtain a graph Gt with |V (Gt)| = t, where the weight of a vertex vi of Gt

means that any maximal independent set of G uses either none or exactly τ(v)
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vertices of Vi. At this point, we just need to analyze whether all maximal inde-
pendent sets of Gt have the same weight (sum of the weights of its vertices),
which can be done in 2t · nO(1) time. ��
Corollary 5. The Well-Covered Graph problem is FPT when parameter-
ized by the vertex cover number n − α.

Acknowledgement. We would like to thank the anonymous reviewers for their thor-
ough, pertinent, and very helpful remarks.
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Abstract. The ridesharing problem is to share personal vehicles by indi-
viduals (participants) with similar itineraries. A trip in the ridesharing
problem is a participant and his/her itinerary. To realize a trip is to
deliver the participant to his/her destination by a vehicle satisfying the
itinerary requirement. We study two optimization problems in rideshar-
ing: minimize the number of vehicles and minimize the total travel dis-
tance of vehicles to realize all trips. The minimization problems are com-
plex and NP-hard because of many parameters. We simplify the prob-
lems by considering only the source, destination, vehicle capacity, detour
distance and preferred path parameters. We prove that the simplified
minimization problems are still NP-hard while a further simplified vari-
ant is polynomial time solvable. These suggest a boundary between the
NP-hard and polynomial time solvable cases.

Keywords: Ridesharing problem · Algorithmic analysis · Optimization
algorithms

1 Introduction

The ridesharing problem is the shared use of personal vehicles by individuals
(participants) who have similar itineraries. When a vehicle is selected to serve
any participant, the owner of the vehicle is called a driver and a participant other
than a driver is called a passenger. Ridgesharing can save the total cost of all
drivers and passengers, reduce traffic congestion, conserve fuel, and reduce air
pollution [6,13,14]. Despite the advantages of ridesharing, according to [8], the
share of personal vehicles has decreased by almost 10 % in the past 30 years. The
average occupancy rate of personal vehicles is 1.6 persons per vehicle mile based
on reports published in 2011 [10,15]. Currently, ridesharing coordination is not
fully regulated and organized in the industry. A major obstacle prevents rideshar-
ing from being widely adopted is the lack of efficient and convenient methods to
arrange vehicles for drivers and passengers. Other hurdles include privacy, safety,
social discomfort, and pricing. Some of these issues can be addressed by intro-
ducing reputation building system, profiling, or preferences [10]. With today’s
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 438–452, 2016.
DOI: 10.1007/978-3-319-48749-6 32
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technology in GPS and smartphone, Internet-enabled mobile devices should be
able to play an important role in popularizing ridesharing. There are new compa-
nies trying to reduce the gap between convenient transportation and ridesharing
[2,12], such as Uber and Lyft. Readers may refer to recent surveys [2,8] about
ridesharing in general. In the two surveys, methods for general ridesharing prob-
lems are reviewed along with some approaches for encouraging participation in
ridesharing.

The ridesharing problem is similar to the dial-a-ride problem (DARP) [7].
In DARP, a set of drivers serves a set of passengers. One difference between the
ridesharing problem and DARP is that, a driver in the ridesharing problem may
only provide service to passengers of similar itineraries to that of the driver,
while a driver in DARP may provide service for a wider range of passengers.
The ridesharing problem is a generalization of the travel salesman problem and
NP-hard in general. Most previous studies on the ridesharing problem focus on
developing heuristics or solving some simplified variants of the problem, such as
single passenger at a time, single pick-up of a driver’s trip, not including pricing,
or single objective function. Usually, the ridesharing problem is formulated as
an IP (or MIP) problem and solved using some heuristics or meta-heuristics. In
[4], Baldacci et al. propose both an exact method and a heuristic to solve the car
pooling problem based on two integer programming formulations. Herbawi and
Weber [11] give an IP formulation of the dynamic ridesharing problem where
the objective function contains four optimization goals at the same time. Each
of the components in the objective function is associated with a parameter that
controls which optimization goal has more emphasis. They propose a genera-
tional genetic algorithm to solve such an IP formulation of the ridesharing prob-
lem [11]. In [1], Agatz et al. develop optimization-based approaches for solving
dynamic ridesharing in a practical environment where drivers and ride requests
from passengers dynamically enter and leave the system. They build a simulation
environment based on the travel demand model data from the Atlanta Regional
Commission, and use it to compare different methods. The ridesharing problem
they study is simplified, a driver can serve only one passenger. In a recent paper
[12], Huang et al. propose a method for large scale real-time ridesharing. They
compare their method with some general approaches for the ridesharing problem,
such as branch and bound algorithm and mixed integer programming approach.
Their comparison is based on a large scale taxi data set made by Shanghai taxis.
For a literature review of the ridesharing problem, readers are referred to [2,8].

A trip in ridesharing is a participant (driver or passenger) with an itinerary
specified by many parameters such as source and destination in a road net-
work, departure/arrival time, preferred path of a driver, distance/time detour
limit a driver can tolerate, vehicle capacity, price, and so on. To realize a trip
is to arrange a driver to deliver the participant to his/her destination satis-
fying the itinerary requirement. Usually such an arrangement is realized by a
central matching agency which finds a driver arrangement to realize all trips.
The ridesharing problem can be static or dynamic. In the static ridesharing, the
driver arrangement is computed for a given set of trips. In the dynamic rideshar-
ing, each trip arrives online and a driver is arranged for an arrived trip without
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the knowledge of trips in the future. The static and dynamic ridesharings are
closely related. One can view a dynamic ridesharing instance as a sequence of
static ridesharing instances. It is important to understand the fundamentals of
the static ridesharing problem since the solutions and methods for the static
problem can be used for the dynamic ridesharing systems for a batch of trips
arrived in a specific time window. In this paper, we study the static rideshairing
problem.

In many previous studies, drivers and passengers are considered different:
passengers are served by drivers but a driver is not served by another partici-
pant [2,8]. We consider a more general ridesharing problem: every participant
can be a driver or passenger; a solution for the problem is a subset of selected
drivers who can serve all trips and an assignment of passengers to drivers. We
study two important optimization problems in ridesharing: minimize the num-
ber of drivers and minimize the total travel distance of the drivers for realizing
all trips. The large number of parameters make the problems very complex and
NP-hard. The minimization problems can be simplified by considering only some
of the parameters but little is known on to what extent of the simplification the
minimization problems become polynomial time solvable. We give an algorith-
mic analysis for the simplified minimization problems and explore a boundary
between the NP-hard and polynomial time solvable cases. We prove that the
simplified minimization problems, where only the parameters of source, vehicle
capacity and one of destination, distance detour limit and preferred path are
considered, are still NP-hard while a further simplified variant of minimizing the
number of vehicles becomes polynomial time solvable. These results suggest a
boundary between the NP-hard and polynomial time solvable cases.

The rest of this paper is organized as follows. Section 2 gives the preliminaries
of the paper. In Sect. 3, we prove the NP-hardness results. Section 4 shows a
polynomial time solvable case. The final section concludes the paper.

2 Preliminaries

A road network is expressed by a graph G which consists of a set V (G) of vertices
(locations in the network) and a set E(G) of edges, each edge is a set {u, v} of
two vertices (a road between u and v). G is weighted if each edge is assigned a
weight (cost to use the road). When the weight of each edge in G is not specified,
we assume the weight is one. A path in G is a sequence e1, . . . , ek of edges, where
ei = {vi−1, vi} ∈ E(G) for 1 ≤ i ≤ k and no vertex is repeated in the sequence.
The length of a path is the sum of the weights assigned to the edges of the path.

In the ridesharing problem, we assume that every participant can be a driver
or passenger. A trip is a participant and his/her itinerary. In general, each trip
has a source, a destination, an earliest departure time, a latest arrival time, a
preferred path (e.g., a shortest path) to reach the destination, a limit on the
detour distance/time from the preferred path to serve other participants and a
price limit the participant can pay if served. We simplify the ridesharing problem
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by considering only the source, destination, vehicle capacity, distance detour
limit and preferred path parameters. For the simplified problem, we denote a
trip by an integer i specified by (si, ti, ni, di,Pi), where

– si is the source (start location) of i (a vertex in G),
– ti is the destination of i (a vertex in G),
– ni is the number of seats (capacity) of i available for passengers,
– di is the detour distance limit i can tolerate for offering ridesharing services,

and
– Pi is a set of preferred paths of i from si to ti in G.

In what follows, we use the ridesharing problem for the simplified ridesharing
problem unless otherwise stated. We say trip i can serve i itself and can serve
a trip j �= i if i and j can arrive at their destinations with j a passenger of i
and the detour of i is at most di. A trip i can serve a set σ(i) of trips if trip i
can serve all trips of σ(i) and the total detour of i is at most di. A trip i can
serve at most ni + 1 trips (including the driver) at any specific time point but
|σ(i)| may be greater than ni+1 if i can serve some passengers after the delivery
of some other passengers (known as re-take passengers in previous studies). If
re-take passengers is not allowed then |σ(i)| ≤ ni + 1. The ridesharing problem
is that given an instance (G,R), G is a graph and R = {1, . . . , l} is a set of trips,
find a set S ⊆ R of drivers and a mapping σ : S → 2R such that (1) for each
i ∈ S, i can serve σ(i), (2) for each pair i, j ∈ S with i �= j, σ(i) ∩ σ(j) = ∅,
and (3) ∪i∈Sσ(i) = R. We call (S, σ) a solution for the ridesharing instance. We
consider the problem of minimizing |S| (the number of drivers) and the problem
of minimizing the total travel distance of the drivers in S.

3 NP-hardness Results

The minimization problems can be further simplified, assuming some of para-
meters si, ti, ni, di,Pi satisfying certain conditions specified below:

(C1) Unique destination: all trips have the same destination, that is, ti = D for
every i ∈ R.

(C2) Zero detour: each trip can only serve others on his/her preferred path, that
is, di = 0 for every i ∈ R.

(C3) Fixed path: Pi has a unique preferred path Pi.

When any of the conditions is satisfied, the problems are simplified by dropping
the corresponding parameter. We prove that the minimization problems are still
NP-hard even if any two of the conditions are satisfied.

3.1 NP-hardness Result for Non-zero Detour

We prove that the minimization problems are NP-hard when conditions (C1) and
(C3) are satisfied but the non-zero detour is allowed. The proof is a reduction
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from the 3-partition problem to the minimization problems. The decision prob-
lem of 3-partition is that given a set A = {a1, . . . , a3k} of 3k positive integers,
where k ≥ 2,

∑3k
i=1 ai = kM and M/4 < ai < M/2, whether A can be parti-

tioned into k disjoint subsets A1, . . . , Ak, each subset has three elements of A
and the sum of integers in each subset is M . The decision problem of 3-partition
is NP-complete even M is upper bounded by a polynomial in k [9].

Given an instance A = {a1, . . . , a3k} of the 3-partition problem, we construct
an instance (G,RA) of the ridesharing problem as follows (also see Fig. 1(a)):

– G is a weighted graph with V (G) = {I,D, v1, . . . , v4k} and E(G) having edge
{D, I} of weight kM , edges {vi, I} of weight ai, 1 ≤ i ≤ 3k, and edges {vi, I}
of weight kM , 3k + 1 ≤ i ≤ 4k.

– RA = {1, 2, . . . , 4k} has 4k trips.
Each trip i, 1 ≤ i ≤ 4k, has source si = vi and destination ti = D.
Each trip i, 1 ≤ i ≤ 3k, has ni = 0 (i can only serve i itself) and di ≥ 0.
Each trip i, 3k + 1 ≤ i ≤ 4k, has ni = 3 (i can serve up to three passengers at
the same time) and di = 2M .
Each trip i, 1 ≤ i ≤ 4k, has a unique preferred path between vi and D in G.

Fig. 1. Ridesharing instances based on a given 3-partition problem instance: (a) (C1)
and (C3) are satisfied; (b) (C1) and (C2) are satisfied.

Lemma 1. Any solution for the instance (G,RA) has every trip i with 3k+1 ≤
i ≤ 4k as a driver and total travel distance at least 2k(k + 1)M .

Proof. In the instance (G,RA), any trip i for 3k + 1 ≤ i ≤ 4k can not be served
by any trip j �= i because for 3k + 1 ≤ j ≤ 4k, the detour in such a service
by j is 2kM > 2M for k > 1 and the detour limit of j is at most 2M , and for
1 ≤ j ≤ 3k, nj = 0. Therefore, any solution for the instance must have every
trip i with 3k + 1 ≤ i ≤ 4k as a driver (at least k drivers).

Let S be the set of k drivers i with 3k+1 ≤ i ≤ 4k. The total travel distance of
the drivers in S is at least 2kkM . For each trip j with 1 ≤ j ≤ 3k, the total travel
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distance of drivers in S and trip j is at least 2kkM +2aj if j is served by a driver
in S, otherwise is at least 2kkM + aj + kM . Since aj < kM , the minimum total
travel distance to realize all trips is to have every j, 1 ≤ j ≤ 3k, as a passenger
and the distance is 2kkM +

∑
1≤j≤3k 2aj = 2kkM + 2kM = 2k(k + 1)M . �

Theorem 1. Minimizing the number of drivers is NP-hard when conditions
(C1) and (C3) are satisfied but condition (C2) is not.

Proof. To get the theorem, we prove that an instance A = {a1, . . . , a3k} of the
3-partition problem has a solution if and only if the ridesharing problem instance
(G,RA) has a solution of k drivers.

Assume that the 3-partition instance has a solution A1, . . . , Ak, the sum of
elements in each Aj is M . We assign each trip i with 3k + 1 ≤ i ≤ 4k to serve
one set Aj for j = i − 3k. Driver i can serve the three passengers corresponding
to Aj with the total detour distance 2M because ni = 3, Aj has three elements
and the sum of elements in Aj is M . Hence, we have a solution of k drivers for
(G,RA).

Assume that (G,RA) has a solution of k drivers. By Lemma 1, every trip
i with 3k + 1 ≤ i ≤ 4k must be a driver in the solution and each trip j for
1 ≤ j ≤ 3k can not be a driver in the solution. By the detour limit di = 2M
and ni = 3, each driver i can serve at most 3 passengers. From this and there
are 3k passengers, each driver i must serve exactly 3 passengers in the solution.
Assume that some driver i has a detour smaller than 2M . Then from the fact
that the sum of elements in A is kM , some driver i′ must have a detour greater
than 2M , a contradiction. So the detour of each driver i is exactly 2M . For each
driver i, 3k + 1 ≤ i ≤ 4k, let Aj , j = i − 3k, be the subset of the three integers
of A corresponding to the three passengers served by i. Then A1, . . . , Ak is a
solution for the 3-partition problem instance.

The size of (G,RA) is linear in k. It takes a linear time to convert a solution
of (G,RA) to a solution of the 3-partition instance and vice versa. �

Theorem 2. Minimizing the total travel distance of drivers is NP-hard when
conditions (C1) and (C3) are satisfied but condition (C2) is not.

The proof of the theorem is similar to that for Theorem1 (details omitted).

3.2 NP-hardness Result for No Fixed Preferred Path

When conditions (C1) and (C2) are satisfied but each trip may have multiple
preferred paths, we prove that the minimization problems are NP-hard. Again,
the proof is a reduction from the 3-partition problem. Given an instance A =
{a1, . . . , a3k} of the 3-partition problem, we construct an instance (G,RA) of the
ridesharing problem as follows (also see Fig. 1(b)):

– G is a graph with V (G) = {I,D, u1, . . . , u3k, v1, . . . , vk} and E(G) having
edges {ui, I}, 1 ≤ i ≤ 3k, {I, vi} and {vi,D}, 1 ≤ i ≤ k. Each edge has
weight 1.
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– RA = {1, . . . , 3k + kM} trips.
Each trip i, 1 ≤ i ≤ 3k, has source si = ui, destination ti = D, ni = ai, di = 0
and k preferred paths {ui, I}, {I, vj}, {vj ,D}, 1 ≤ j ≤ k.
Each trip i, 3k + 1 ≤ i ≤ 3k + kM , has source si = vj , j = �(i − 3k)/M�,
destination ti = D, ni = 0, di = 0 and a unique preferred path {vj ,D}.

Lemma 2. Any solution for the instance (G,RA) has every trip i, 1 ≤ i ≤ 3k,
as a driver and total travel distance at least 9k.

Proof. Since condition (C2) is satisfied (detour is not allowed), every trip i,
1 ≤ i ≤ 3k, must be a driver in any solution. A solution with exactly 3k drivers
i, 1 ≤ i ≤ 3k, has total travel distance 9k and any solution with a trip i, 3k+1 ≤
i ≤ 3k + kM , as a driver has total travel distance greater than 9k. �

Theorem 3. Minimizing the number of drivers is NP-hard when conditions
(C1) and (C2) are satisfied but condition (C3) is not.

Proof. We prove the theorem by showing that an instance A = {a1, . . . , a3k}
of the 3-partition problem has a solution if and only if the ridesharing problem
instance (G,RA) has a solution of 3k drivers.

Assume that the 3-partition instance has a solution A1, . . . , Ak. Then for
each Aj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ k, we assign the three trips j1, j2, j3 as drivers
to serve the nj1 + nj2 + nj3 = aj1 + aj2 + aj3 = M trips with sources at vertex
vj . This gives a solution of 3k drivers for (G,RA).

Assume that (G,RA) has a solution of 3k drivers. By Lemma 2, each trip
i, 1 ≤ i ≤ 3k, is a driver and each trip j, 3k + 1 ≤ j ≤ 3k + kM is a passenger
in the solution, total kM passengers. Since

∑
1≤i≤3k ai = kM , each driver i, 1 ≤

i ≤ 3k serves exactly ai passengers. Since ai < M/2 for every 1 ≤ i ≤ 3k,
at least three drivers are required to serve the M passengers with sources at
each vertex vj , 1 ≤ j ≤ k. Therefore, the solution of 3k drivers has exactly
three drivers j1, j2, j3 to serve the M passengers with sources at the vertex vj ,
implying aj1 + aj2 + aj3 = M . Let Aj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ k, we get a
solution for the 3-partition instance.

The size of (G,RA) is polynomial in k. It takes a polynomial time to convert
a solution of (G,RA) to a solution of the 3-partition instance and vice versa. �

Theorem 4. Minimizing the total travel distance of drivers is NP-hard when
conditions (C1) and (C2) are satisfied but condition (C3) is not.

The proof of the theorem is similar to that for Theorem3 (details omitted).

3.3 NP-hardness Result for Non-unique Destinations

We show that the minimization problems are NP-hard when conditions (C2)
and (C3) are satisfied but trips may have distinct destinations. The proof is
a reduction from the Interval Scheduling with Machine Availability Problem
(ISMAP) [3], which is also called the k-Track Assignment Problem [5].
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ISMAP is a machine scheduling problem: Let I be an instance of m machines
and n jobs. Each machine i, 1 ≤ i ≤ m, has an operational interval [ai, bi), ai is
the start time and bi is the end time. Each job j, 1 ≤ j ≤ n, has a process interval
[pj , qj), pj is the start time and qj is the end time. We may simply call [ai, bi)
and [pj , qj) an interval and call each of ai, bi, pj , qj an end point of an interval.
Each job can only be processed by one machine and each machine can process
at most one job at any time point. A schedule for I is an assignment of all jobs
to machines such that every job is assigned to one machine, if job j is assigned
to machine i then [pj , qj) ⊆ [ai, bi), and if jobs j and j′ are assigned to machine
i then [pj , qj) ∩ [pj′ , qj′) = ∅. The decision version of ISMAP is that: Given an
instance I, is there a schedule for I? The decision problem is NP-complete [3,5].

Given an ISMAP instance I, we first construct another ISMAP instance I ′

such that there is a schedule for I if and only if there is a schedule for I ′. Then we
construct an instance of the ridesharing problem such that there is an optimal
solution for the ridesharing problem if and only if there is a schedule for I ′.

The construction of I ′ is as follows: We assume that bi ≤ bi+1 for 1 ≤ i ≤
m − 1 and ai ≥ 0 for 1 ≤ i ≤ m. For each machine i in I, we extend the
operational interval of i to [i − m − 1, bi + i) and include i as a machine in I ′.
Every job j in I is included in I ′. For each machine i ∈ I ′, we create a new job
xi with process interval [pxi

, qxi
) = [i − m− 1, ai) and a new job yi with process

interval [pyi
, qyi

) = [bi, bi + i). Then each of jobs xi and yi can be processed only
by machine i in any schedule for I ′.

Lemma 3. There is a schedule for I if and only if there is a schedule for I ′.

Proof. Assume that there is a schedule S for I. Then in addition to S, assigning
jobs xi and yi to machine i, 1 ≤ i ≤ m, gives a schedule for I ′. Assume that
there is a schedule S′ for I ′. Then removing jobs xi and yi, 1 ≤ i ≤ m, from
S′ gives a schedule for I. The size of I ′ is linear in |I|. A schedule of I can be
computed from a schedule of I ′ in linear time and vice versa. �

Given an instance I ′ of m machines and n + 2m jobs, we construct an instance
(G,RI) for the ridesharing problem as follows:

– G is a graph with V (G) = {u | u is an end point of an interval in I ′} and
E(G) = {{u, v} | u < v and no w ∈ V (G) with u < w < v}. Notice that G is
a path.

– RI is the set of trips defined below.
For each machine i, 1 ≤ i ≤ m, of interval [i − m − 1, bi + i), three trips are
created,
(1) trip i (corresponding to machine i) with source si = i−m−1, destination

ti = bi+i, ni = 1, di = 0, and the unique preferred path between i−m−1
and bi + i in G;

(2) trip m+ i (corresponding to job xi of interval [i−m−1, ai)) with source
sm+i = i − m − 1, destination tm+i = ai, nm+i = 0, dm+i = 0, and the
unique preferred path between i − m − 1 and ai in G; and
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(3) trip 2m + i (corresponding to job yi of interval [bi, bi + i)) with source
s2m+i = bi, destination t2m+i = bi + i, n2m+i = 0, d2m+i = 0, and the
unique preferred path between bi and bi + i in G.

For each job j of interval [pj , qj), 1 ≤ j ≤ n, a trip i = 3m + j is created with
source si = pj , destination ti = qj , ni = 0, di = 0, and the unique preferred
path between pj and qj in G.

Lemma 4. Every solution for the instance (G,RI) has every trip i, 1 ≤ i ≤ m,
as a driver.

Proof. From the zero-detour condition (C2), a trip i can serve a trip j �= i if
the interval of j is a subset of the interval of i in I ′ and ni > 0. Since the
interval of any trip i, 1 ≤ i ≤ m, is not a subset of the interval of any trip other
than i, trip i can not be served by any trip other than i. Further, any trip i,
m + 1 ≤ i ≤ 3m + n, can not serve any trip other than i because ni = 0. So
any solution for the instance (G.RI) must include every trip i, 1 ≤ i ≤ m, as a
driver. �

Theorem 5. Minimizing the number of drivers is NP-hard when conditions
(C2) and (C3) are satisfied but condition (C1) is not.

Proof. Given an ISMAP instance I, we construct an instance I ′ as shown above.
By Lemma 3, I has a schedule if and only if I ′ has a schedule. We prove that I ′

has a schedule if and only if instance (G,RI) has a solution of m drivers.
Assume that I ′ has a schedule. Then for every job assigned to machine i,

1 ≤ i ≤ m, the interval of the job is a subset of the interval of i and thus trip i
can serve the trip corresponding to the assigned job. Further, there is no overlap
between the intervals of any two jobs assigned to machine i. Therefore, trip i can
serve all trips corresponding to the jobs assigned it. Thus, trips i, 1 ≤ i ≤ m, and
the assignment of jobs to every trip i give a solution of m drivers for (G,RI).

Let (S, σ) be a solution of m drivers for (G,RI). By Lemma 4, S has all trips
i, 1 ≤ i ≤ m, as the drivers and every trip j, m + 1 ≤ j ≤ 3m + n, is served by
a driver. A schedule for I ′ can be obtained by assigning each job corresponding
to a passenger in σ(i) to machine i.

The size of (G,RI) is linear in |I ′| and |I|. A schedule for I ′ and that for I
can be computed from a solution of m drivers in linear time and vice versa. �

Theorem 6. Minimizing the total travel distance of drivers is NP-hard when
conditions (C2) and (C3) are satisfied but condition (C1) is not.

The proof of the theorem is similar to that for Theorem5 (details omitted).

4 A Polynomial Time Solvable Case

We give a polynomial time exact algorithm for the problem of minimizing the
number of drivers when all conditions (C1), (C2) and (C3) are satisfied, and
the preferred paths of all trips R lie on a single path of the road network G
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(i.e., the graph induced by the preferred paths of all trips is a path in G).
For this minimization problem, a problem instance can be expressed by a set
R = {1, . . . , l} of l trips on a graph G with V (G) = {0, 1, . . . , l} and E(G) =
{{i, i + 1} | 0 ≤ i ≤ l − 1}. Each trip i has si ∈ {1, . . . , l}, destination ti = 0,
ni ≥ 0, di = 0 and the unique path Pi between si and 0. We can further assume
without loss of generality that si < si+1, 1 ≤ i ≤ l − 1 (i.e., for each i ∈ R,
si = i).

Fig. 2. Algorithm for minimizing the number of drivers in ridesharing.

4.1 Algorithm

Given an instance (G,R) and a (partial) solution (S, σ) for R, we define the
following for each driver in S:

– free(i) = ni − |σ(i)| + 1 is the number of additional trips i can serve.
– Sf := {i | i ∈ S and free(i) > 0} is the set of drivers in S who can serve

additional trips.

Algorithm RFP (Fig. 2) processes every trip i of R, from i = 1 to l. In processing
i, the algorithm finds a minimum number of drivers for the trips from 1 to i.
At any execution point of Algorithm RFP, whenever a trip is assigned to be
a passenger, it remains as a passenger throughout the algorithm. On the other
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hand, an assigned driver can be changed to a passenger when a new trip is
processed. Procedure Find-Target computes a driver k ∈ S to be removed from
S and an integer gap. To remove a driver k from S, the trips of σ(k) will be
served by drivers j in Sf for k < j ≤ i, first by those other than i and then by i.
The value gap(i, k) is the minimum number of seats required from i to remove
a driver from S and k is the driver removed from S by gap(i, k) seats from i.

4.2 Analysis of Algorithm

Obviously Algorithm RFP finds a solution in polynomial time. We prove that the
algorithm finds a minimum solution. For 1 ≤ j < i, let R(j, i) = {k | j ≤ k ≤ i}.
For a (partial) solution (S, σ) for R, let S(j, i) = S ∩ R(j, i) be the set of drivers
in R(j, i).

Lemma 5. Let (S, σ) be the solution found by Algorithm RFP processed R(1, i)
only and (S∗, σ∗) be any solution for R. If there is a driver k in S that serves a
passenger y, then for every driver j in S(y + 1, k − 1), |σ(j)| ≥ |σ∗(j)|.
Proof. Since y is served by k in S, free(j) = 0 for y < j < k by the algorithm
when y is put into σ(k). From this, |σ(j)| = nj + 1 ≥ |σ∗(j)|. �

Lemma 6. Let (S, σ) be the solution found by Algorithm RFP processed R(1, i)
only. If there is an optimal solution (S∗

1 , σ∗
1) for R with S∗

1 (1, i) ⊆ S, then an
optimal solution (S∗, σ∗) for R can be constructed such that S∗ = S∗

1 and for
every j ∈ S∗(1, i), σ(j) ⊆ σ∗(j) (inclusion property).

Proof sketch. Let (S, σ) be the solution found by Algorithm RFP processed
R(1, i) only and (S∗

1 , σ∗
1) be an optimal solution for R with S∗

1 (1, i) ⊆ S. We
check the inclusion property for every element of S∗

1 (1, i) in the decreasing order.
If the inclusion property does not hold on some driver k ∈ S∗

1 (1, i), we modify
σ∗
1 to make the inclusion property hold for every j with k ≤ j ≤ i. When the

inclusion property is checked for every element of S∗
1 (1, i), we get the lemma.

Let Yj = σ(j) \ σ∗
1(j) for j ∈ S∗

1 (1, i). Assume that Yk �= ∅ for some k ∈
S∗
1 (1, i) and Yj = ∅ (inclusion property holds) for every j ∈ S∗

1 (k + 1, i). Every
y0 ∈ Yk is served by a driver j0 �= k in solution S∗

1 . If σ∗
1(k) ⊂ σ(k) then we

move y0 from σ∗
1(j0) to σ∗

1(k). After the move, we have the following progress:

– The size of Yk is reduced by one, the size of Yj for every j ∈ S∗
1 (1, i) with j �= k

is non-increasing, and the inclusion property holds for every j ∈ S∗
1 (k + 1, i).

Suppose that σ∗
1(k) �⊂ σ(k). Let u be a passenger in σ∗

1(k) \ σ(k). If u < j0 then
we move y0 from σ∗

1(j0) to σ∗
1(k) and move u from σ∗

1(k) to σ∗
1(j0) (Fig. 3(a)).

After this, only σ∗
1(k) and σ∗

1(j0) are changed. The size of Yk is reduced by one.
Further, the size of Yj0 is not increased and if j0 ∈ S∗

1 (k+1, i) then the inclusion
property holds for every j ∈ S∗

1 (k + 1, i) because y0 �∈ σ(j0). Therefore, we get a
progress.

Assume that u > j0. Then y0 < j0 < u < k and y0 ∈ σ(k). By Lemma 5,
|σ(j0)| ≥ |σ∗

1(j0)|. From this and y0 ∈ σ∗
1(j0) but y0 /∈ σ(j0), there is a y1 ∈
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Fig. 3. Different modifications of (S∗
1 , σ∗

1) (move processes) to have a progress.
Trips in R are represented by vertices on a path. Each arc (u, v) from vertex u to
vertex v denotes that driver u serves passenger v in some solution. The solid arcs
above the path represent (S, σ), the solid arcs below the path represent (S∗

1 , σ∗
1), and

the dashed arcs below the path represent the modified (S∗
1 , σ∗

1) after a move process.

σ(j0) \ σ∗
1(j0) such that y1 ∈ σ∗

1(j1) and j1 �= j0. We try to move y0 to σ∗
1(k) to

have a progress by the following move process:

– For y0 ∈ Yk, if there are u ∈ σ∗
1(k) \ σ(k), j0 and j′ such that y0 ∈ σ∗

1(j0),
y′ ∈ σ(j0), y′ ∈ σ∗

1(j
′) and j′ > u, then we move y0 from σ∗

1(j0) to σ∗
1(k),

move y′ from σ∗
1(j

′) to σ∗
1(j0) and move u from σ∗

1(k) to σ∗
1(j

′) (Fig. 3(b)).

If j1 > u then we apply the move process with j1 = j′ and y1 = y′. It can
be shown that after the move process, we get a progress. Assume that j1 < u
(extend-case). Similar to the existence of y1, there is a passenger y2 ∈ σ(j1) \
σ∗
1(j1) such that y2 ∈ σ∗

1(j2) and j2 �= j1. Notice that y2 �= y1 and y2 �= y0
since j1 < u < k (j1 �= j0 �= k). If j2 > u then we apply the move process with
j2 = j′ and y2 = y′ to get a progress (Fig. 3(c)). Otherwise (j2 < u), we have
the extend-case.

Assume that the extend case continues and we have a chain of distinct pas-
sengers y0, y1, . . . , yp−1 such that yc ∈ σ(jc−1), yc ∈ σ∗

1(jc), and jc−1 �= jc for
c = 1, . . . , p − 1, and y0 ∈ σ(k), y0 ∈ σ∗

1(j0), and j0, j1, . . . , jp−1 < u. It can be
shown that there is a yp ∈ σ(jp−1) \ σ∗

1(jp−1) such that yp ∈ σ∗
1(jp) and jp �= jc

for every c = 0, . . . , p−1. Since the elements in the chain are distinct, the length
of the chain cannot exceed u − 1, and there is a jp with jp > u for the chain
y0, . . . , yp. Then we apply the move process with jp = j′ and yp = y′ to get a
progress (Fig. 3(d)).

From the above, we can modify (S∗
1 , σ∗

1) such that S∗
1 does not change and

the size of Yk is reduced by one. Repeat the above, we get Yk = ∅ and have the
lemma proved. �



450 Q.-P. Gu et al.

Recall that free(i) is the number of additional trips a driver i in a (partial)
solution (S, σ) can serve. In the rest of this section, we will use free1(i), free∗(i)
and free∗

1(i) for the numbers of additional trips a driver i in (partial) solutions
(S1, σ1), (S∗, σ∗) and (S∗

1 , σ∗
1) can serve, respectively.

Lemma 7. Let (S, σ) be the solution found by Algorithm RFP processed R(1, i)
only. Then there is an optimal solution (S∗, σ∗) for R such that S∗(1, i) ⊆ S.

Proof sketch. We prove the lemma by induction on i. For i = 1, S = {1} and
for any optimal solution S∗ for R, S∗(1, 1) ⊆ S. So the induction base is true.
Assume that for i − 1 ≥ 1, the lemma holds and we prove it for i. Let (S, σ)
and (S1, σ1) be the solutions found by Algorithm RFP processed R(1, i) and
R(1, i − 1) only, respectively. By the induction hypothesis, there is an optimal
solution (S∗

1 , σ∗
1) such that S∗

1 (1, i−1) ⊆ S1. If S∗
1 (1, i−1) ⊆ S then S∗

1 (1, i) ⊆ S
because i ∈ S. Taking S∗ = S∗

1 , we get the lemma. So we assume that the set
W = {w | w ∈ S∗

1 (1, i − 1) and w /∈ S} is not empty. We show that another
optimal solution (S∗, σ∗) can be found by modifying S∗

1 with every w ∈ W
removed from S∗

1 such that S∗(1, i) ⊆ S.
We start the modification from a trivial case where S ⊆ S∗

1 (1, i) ∪ {i}. Let
S∗ = (S∗

1 \ W ) ∪ {i}. Then |S∗(1, i)| = |S∗
1 (1, i)| − |W | + 1 if i /∈ S∗

1 , otherwise
|S∗(1, i)| = |S∗

1 (1, i)|− |W |. Since S serves all trips in R(1, i), we can move every
trip in σ1(j), j ∈ W to σ∗(k) for some k ∈ S∗(1, i). Since |W | ≥ 1, |S∗| ≤ |S∗

1 |
and S∗ is optimal. Notice that in the trivial case, i /∈ S∗

1 and |W | = 1, otherwise,
|S∗| < |S∗

1 |, a contradiction since S∗
1 is optimal.

Assume that S �⊆ S∗
1 (1, i) ∪ {i}. The idea for finding (S∗, σ∗) is to modify

S∗
1 by replacing a driver w ∈ W with a driver in (S1 \ S∗

1 ) ∪ {i}. Let w be an
arbitrary element of W and Z = S1 \ S∗

1 . Notice that S ∩ Z �= ∅, otherwise
S ⊆ S∗

1 (1, i)∪{i}. By Lemma 6, we assume that the inclusion property holds for
every j ∈ S∗

1 (1, i − 1). The modification is divided into two cases.

Case 1. There is a z ∈ Z with z < w. We further assume that for some z ∈ Z
with z < w, gap(i, w) ≤ gap(i, z). It can be shown that |σ1(z)| ≥ |σ∗

1(w)| +∑
j∈S∗

1 (z+1,w) free∗
1(j), implying that if we remove |σ1(z)| trips from σ∗

1(j) for
j ∈ S∗

1 , S∗
1 (w + 1, l) can serve at least |σ∗

1(w)| additional trips. We apply the
following update process to modify (S∗

1 , σ∗
1):

– Add z to S∗
1 , define σ∗

1(z) = σ1(z) and remove the trips of σ∗
1(z) from σ∗

1(j)
for j �= z.

After the update, S∗
1 (w + 1, l) can serve at least |σ∗

1(w)| additional trips. We
move the trips of σ∗

1(w) to σ∗
1(j), j ∈ S∗

1 (w + 1, l) and remove w from S∗
1 . By

this, the size of S∗
1 is not changed, the inclusion property still holds for every

j ∈ S∗
1 (1, i − 1), the size of W is reduced by one, and the size of Z is reduced

by one.
Assume that for every z ∈ Z with z < w, gap(i, w) > gap(i, z). We apply the

update process taking some z ∈ S ∩ Z (S ∩ Z �= ∅). After the update, it can be
shown that S∗

1 (w +1, l) can serve at least nz +1 ≥ |σ∗
1(w)| additional trips after
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the update. We move the trips of σ∗
1(w) to σ∗

1(j), j ∈ S∗
1 (w +1, l) and remove w

from S∗
1 . By this, the size of S∗

1 is not changed, the inclusion property still holds
for every j ∈ S∗

1 (1, i − 1), the size of W is reduced by one, and the size of Z is
reduced by one.

Case 2. For every z ∈ Z, z > w. Let z0 be the minimum in Z. It can be
shown that S1(w, z0 − 1) = S∗

1 (w, z0 − 1) and free∗
1(j) = free1(j) for every

j ∈ S∗
1 (w, z0 − 1).

Assume that gap(i, w) > gap(i, z0). It can be shown that there is a z ∈ S ∩Z
with w < z0 < z and gap(i, w) ≤ gap(i, z) (nz ≥ nw). We apply the update
process taking this z. After the update, S∗

1 (w + 1, l) can serve at least nz + 1 ≥
|σ∗

1(w)| additional trips. We move the trips of σ∗
1(w) to σ∗

1(j), j ∈ S∗
1 (w + 1, l)

and remove w from S∗
1 . By this, the size of S∗

1 is not changed, the inclusion
property still holds for every j ∈ S∗

1 (1, i − 1), the size of W is reduced by one,
and the size of Z is reduced by one.

Assume that gap(i, w) ≤ gap(i, z0). We apply the update process with z0 = z.
It can be shown that after the update, |σ∗

1(w)| = |σ1(w)| and we can move the
trips of σ∗

1(w) to σ∗
1(j), j ∈ S∗

1 (w+1, l), and remove w from S∗
1 . By this, the size

of S∗
1 is not changed, the inclusion property still holds for every j ∈ S∗

1 (1, i − 1),
the size of W is reduced by one, and the size of Z is reduced by one.

Repeat the processes in Cases 1 and 2, we get an optimal solution S∗
1 with

either W = ∅ or Z = ∅. For W = ∅, S∗ = S∗
1 is the solution we want to find. For

Z = ∅, S ⊆ S∗
1 (1, i) ∪ {i} and by the trivial case, we can get S∗. �

Theorem 7. Algorithm RFP finds a solution (S, σ) for input instance (G,R)
with the minimum number of drivers in O(l2) time.

Proof. First, observe that (S, σ) is a solution for R since every trip in R is
processed one by one and assigned to be a driver initially. By Lemma7, there
is an optimal solution (S∗, σ∗) for R such that S∗ ⊆ S. Assume that S∗ ⊂ S.
By Lemma 6, we can modify σ∗ such that the inclusion property holds, that is,
σ(j) ⊆ σ∗(j) for every j ∈ S∩S∗. Let z be a driver in S\S∗. Then all trips of σ(z)
must be served by drivers in S∗(z + 1, l). By the inclusion property, free∗(j) ≤
free(j) for every j ∈ S∗(1, l). This implies that |σ(z)| ≤ ∑

j∈S(z+1,l) free(j),
which is a contradiction to Algorithm RFP as σ(z) should have been served by
S. Therefore, it must be the case that S∗ = S. It is not difficult to see that
Algorithm RFP has running time O(l2). �

Algorithm RFP works for a more general case: The preferred paths of trips lie on
multiple vertex-disjoint paths (except at the destination) of the road network.
Algorithm RFP finds an optimal solution for the trips on a same path and the
union of the optimal solutions is an optimal solution for R.

5 Concluding Remarks

We proved that the problems of minimizing the number of vehicles and minimiz-
ing the total distance of vehicles for realizing all given trips in the ridesharing
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problem are still NP-hard even any two conditions of (C1), (C2) and (C3) are
satisfied. We also showed that the problem of minimizing the number of vehicles
is polynomial time solvable when all three conditions are satisfied, and the pre-
ferred paths of participants satisfy an additional condition. It is open whether
the problem is NP-hard or polynomial time solvable when all three conditions are
satisfied but each trip can have an arbitrary unique preferred path in the road
network. It is interesting to develop efficient practical algorithms and approxi-
mation algorithms for the minimization problems.
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Abstract. Deletion propagation problem is a class of view update
problem in relational databases [1]. Given a source database D, a
monotone relational algebraic query Q, the view V generated by the
query Q(D) and an update on view ΔV , deletion propagation is to find a
side effect free update ΔD on database D such that Q(D\ΔD) = V \ΔV .
In general, the database updated may be very distant from the original
database. In this paper, we propose a new approach, bounded version
deletion propagation problem (b-dp for short), where number of tuples
deleted ‘|ΔD|’ is bounded by constant b, in which it aims to find the
view side-effect free and bounded ΔD, then analyze its computational
complexity. Our results show that in many cases both the data and com-
bined complexity drop, even for functional dependency restricted version
deletion propagation.

Keywords: Bounded deletion propagation · View update · Database ·
Complexity

1 Introduction

The ability to analyze the impact of view update on database is a central prob-
lem for data provenance and quality research. In the study of view update in
database [2–6], as an important problem, propagation analysis [1] of view update
has been studied for a long time. Propagation analysis mainly focuses on decid-
ing whether there is a side-effect free deletion, and minimizing side-effect over
source database or view which caused by the asymmetry between update on
view and the source database.

The fundamental decision problem of propagation analysis is view side effect
free deletion propagation, first defined in [1], which can be stated as follows: given
a source database D, an monotone relational query Q, the view V = Q(D),
and update on view (a set of tuples) ΔV , the view side-effect free deletion
propagation is to decide if there is a ΔD such that Q(D\ΔD) = V \ΔV , i.e.,
side effect free whenever such ΔD exists.

c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 453–462, 2016.
DOI: 10.1007/978-3-319-48749-6 33
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Example 1. Let’s visit an example of the deletion propagation. Consider an file
management database of a company including two relations, Dept(dept, user)
records department each user belongs to, and Author(dept, file) records files that
each group has the authority to access. There is also a view defined as a conjunc-
tive query (Selection-Projection-Join) “show the file and users have authority to
access it” as follow,

now given a deletion on view V , ‘ΔV = (u1, f1)’, the task is to find a side effect
free deletion. For this deletion, there does existing view side effect free update
over source data D, actually three alternatives,

(a) delete ‘(d1,u1)’ from Dept,
(b) delete ‘(d1, f1)’ from Author,
(c) delete both ‘(d1,u1)’ and ‘(d1, f1)’ from both Dept and Author respectively.

any deletion will not bring side effect into the view. However, for another view
deletion ‘ΔV = (u2, f2)’, there are several possible propagations as follows,

(a) delete ‘(d2,u2)’ from Dept,
(b) delete ‘(d2, f2)’ from Author,
(c) delete both ‘(d2,u2)’ and ‘(d2, f2)’ from both Dept and Author respectively.

Here, ‘(a)’ will produce a side effect, ‘(u2, f3)’ is also deleted from view besides
ΔV ; ‘(b)’ will produce another side effect, ‘(u3, f2)’ is also deleted from view
besides ΔV ; At last, ‘(c)’ will produce more side effects, both ‘(u2, f3)’ and
‘(u3, f2)’ are deleted from view besides ΔV . It is easy to see that in this case,
deleting ΔV has to result in deletion of some other tuples, therefore, we claim
that there is no view side effect free deletion on source database D. ��
There have been some complexity results on the view side effect problem for
insertion [7,8] and deletion propagation [1,8–13], moreover, on the data com-
plexity of deletion propagation, Kimfield et al. [9] showed the dichotomy ‘head
domination’ for every conjunctive query without self joins, deletion propaga-
tion is either APX-hard or solvable (in polynomial time) by the unidimensional
algorithm, they also showed the dichotomy ‘functional head domination’ [10]
for fd -restricted version, For multiple or group deletion [11], they especially
showed the trichotomy for group deletion a more general case. On the combined
complexity of deletion propagation, [8,13] showed the variety results for differ-
ent combination of relational algebraic operators. At the same time, [12] stud-
ied the functional dependency restricted version deletion propagation problem
and showed the tractable and intractable results on both data and combined
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complexity aspects. All the previous results showed that, for most cases, the
deletion propagation is hard due to the huge searching space.

In this work, we introduce a bounded version of deletion propagation, where
an additional bound on the number of tuple deleted from the source database is
given. This new approach is interesting because it usually gives lower complexity
bounds on formalisms. As we shown in this paper, for the bounded case all
query classes become polynomial tractable on the data complexity and in many
cases the combined complexity drops. One might argue that a way to overcome
these problems is to consider minimizing side effect only. There are, however,
instances for which this restriction is too strong and excludes potential updates.
Moreover, the crucial difficulty is the high complexity. We can see that even the
data complexity under conjunctive query is NP-hard.

Contributions. We introduce a natural version of deletion propagation where
the number of tuple deleted from the source database is bounded. This new
notion leads to more natural answers in certain scenarios, as in data provenance
and quality management, preserves the nice properties of deletion propagation.
Usually, the side effects are defined on source and view respectively. In this
paper, we study the view side effect, investigate the bounded view side-effect-free
deletion propagation problem, ‘b-dp’ for short, mainly on the complexity aspect
of this problem.

We give a detailed complexity analysis (of the combined complexity) for
relational algebraic query classes and show that in many cases the complexity
drops. For instance, for conjunctive queries, for the single deletion, the data
complexity drops from NP-hard to PTime and the combined complexity drops
from ΣP

2 -complete to ΔP
2 but not in NP∪coNP, and for the group deletion, the

combined complexity also drops to ΔP
2 but is in DP-hard.

2 New Approach and Overview of Results

Let’s begin with some necessary definition. A schema is a finite sequence R =
〈R1, . . . , Rm〉 of distinct relation symbols, where each Ri has an arity ri > 0
and includes several attributes, denoted by Ri = {A1, . . . , Ari}. Each attribute
Ai has a corresponding set dom(Ai) which is the domain of values appearing
in Ai. An database instance D (over R) is a sequence 〈RD

1 , ..., RD
m〉, such that

each RD
i is a finite set of tuples {t1, . . . , tN}, each tuple tk belongs to the set

dom(A1) × · · · × dom(Ari). We use R.Ai to indicate the attribute Ai of relation
R, and also we denote RD as R without loss of clarity.

Definition 1 (bounded view side − effect free deletion propagation,b-dp). Given
a database D, a positive integer b, a query Q, its view V and a set of tuples
deleted ΔV , it is to decide whether there is a tuple set ΔD such that

(1) |ΔD| ≤ b,
(2) Q (D\ΔD) = V \ΔV .
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In this paper, we study the complexity of b-dp in two cases single deletion
when |ΔV | = 1, and group deletion when |ΔV | > 1. The query Q is written by
operations in relational algebra including S (selection), P (projection), J (join),
U (union). For the sake of clarity, we list notations again as follows.

D, ΔD Source database, and its update

V, ΔV View, update on view

b, Q Constant bound, relational algebraic query

S, P, J, U Selection,Projection, Join, Union

We examine the impact of different combinations of these factors on both data
and combined complexity of these problems. Data complexity is the complexity
expressed in terms of the size of the database only, while combined complexity
is the complexity expressed in terms of both the size of the database and the
query expression [14] (Table 1).

Table 1. The data complexity of bounded, general, fd-restricted deletion propagation

Query Single deletion Group deletion

b-(fd-)dp dp [1] fd-dp [12] b-(fd-)dp dp [1] fd-dp [12]

SJU PTime NP-hard NP-hard PTime NP-hard NP-hard

SPU PTime PTime

SPJ NP-hard NP-hard

SPJU

Table 2. The combined complexity of bounded, general, fd-restricted deletion
propagation

Query Single deletion Group deletion

b-(fd-)dp dp [7,8] fd-dp [12] b-(fd-)dp dp [7,8] fd-dp [12]

SJU PTime NP-hard NP-hard PTime NP-hard NP-hard

SPU PTime PTime

SPJ NP-hard,
coNP-hard, ΔP

2

ΣP
2 ΣP

2 -complete DP-hard, ΔP
2 ΣP

2 ΣP
2 -complete

SPJU

The complexity measure follows the work [1] where the complexity results of
propagation problem were first established and the studies [3,15,16] where the
complexity of view update problems was studied. We provide a complete picture
of the complexity on these problems for views defined in various fragments of



On the Complexity of Bounded Deletion Propagation 457

SPJU queries, identifying all those cases that are intractable. Especially, when
the input data is inconsistent and the deletion propagation is restricted by func-
tional dependencies, the previous results showed it is even harder, for example,
it belongs to ΣP

2 -complete for conjunctive query. However, our bounded method
can also lower the complexity at presence of functional dependency constraints,
concretely, the complete picture we map out as the follow table (Table 2).

3 Bounded Deletion Propagation

In the following, we show specifically the results in domination positions includ-
ing both data and combined complexity of group and single deletion case.

Theorem 1. b-dp is PTime for SPU and SJU query under group deletion on
combined complexity.

Proof

(a) This is easy that one can enumerate all the possible bounded deletions of
the input database D, there are O(|D|b) candidates in all. Then, for each
of them, compute the query result, and check if it equals to V \ΔV , if none
of them can give the right answer, then we can claim that there is no valid
bounded deletion for the input instance of b-dp.

(b) We should first briefly introduce some definitions. Given any SJ query Q
with an equivalent standard form σc(R1 ×· · ·×Rm), each Ri (1 ≤ i ≤ m) is
a table included in D, and any two tables in R1, · · · , Rm may be the same
table in the database, if Q includes self-join. For a tuple t ∈ V , we now define
its inverse on D with respect to Q: for each i, let t−Ri

be the projection on
Ri of t. We also know that an SJU query has the equivalent standard form
Q1 ∪ · · · ∪ Qk, where each Qi is a standard SJ query. Then, the following
algorithm works polynomially,

(a) Given an instance 〈D,Q, V,ΔV, b〉, enumerate each possible b-bounded
deletion ΔD polynomially;

(b) For each ΔD enumerated, check if Q (D\ΔD) = V \ΔV . Concretely, for
each ΔD, we check if (1) for each tuple t ∈ (V \ΔV ), there is a SJ query
Qi involved in Q such that each Ri in D\ΔD contains t−Ri

, and (2) there
is at least a tuple t in ΔV , in each SJ query Qi involved in Q, there is
at least a table Ri in D\ΔD which does not contain the corresponding
t−Ri

;
(c) If there is some ΔD satisfies the constraint Q (D\ΔD) = V \ΔV ,

then output D\ΔD; Otherwise, there is no side effect free deletion
propagation.

Since there is no intermediate of join need to generate, it is a polynomial
algorithm. ��
Compare with the result above, we next show SPJ query is even harder than
NP on combined complexity unless P=NP.
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Lemma 1. b-dp for an SPJ query is coNP-hard under single deletion on com-
bined complexity.

Proof. We build a reduction from 3-DNF tautology problem. An instance of
3-DNF tautology problem includes a variable sets X = {x1, ..., xn}, and a 3-
DNF boolean expression φ with m clauses {C1, . . . , Cm}, the task is to determine
whether φ is satisfied by all assignments for X.

Base instance D. Let D has m relations R1, · · · , Rm, where Ri simulates
clause Ci and variables in it. Concretely, for each clause Ci (1 ≤ i < m), build
a quintuple relation Ri (A1, A2, A3, A4, A5).

(a) Add 7 tuples into table Ri, whose values of A1, A2, A3 refer to the 7 value
assignments (0–1 value) of the 3 variables which make the corresponding
clause unsatisfied, values of A4 are the result of the corresponding assign-
ments, i.e., seven ‘−’s, and the values of A5 are the same sign ‘↑’.

(b) Add b tuples into table Ri, respectively, they are (♣1,♣1,♣1,−, ↓1), ...,
(♣b,♣b,♣b,−, ↓b).

Here, the signs ‘↑’ and ‘↓i’s are used to identify join paths of variables from ‘♣i’s.

Query Q. We first prepare all the join conditions used in query as follows.

(a) To identify join path of variables, build a join condition

consign := R1.A5 = · · · = Rm.A5,

so that the intermediate join paths of the query consists of just b + 1 types,
‘↑’ and ‘↓i’s.

(b) For the occurrences of each variable xi (i ∈ [1, n]) in clauses, say ‘ki’, we
build a join condition with conjunctive form such that

coni := q1 ∧ q2 ∧ · · · ∧ qki
,

such that each q is also an equation Rl.Ap = Rl′ .Ap′ , if xi occurs in the
p-th and p′-th positions of clauses Cl and Cl′ where p, p′ ∈ {1, 2, 3} and
l, l′ ∈ {1, · · · ,m}.

(c) Let R is R1 × · · · × Rm, then we define the query Q such that,

Q := πR1.A4,...,Rm.A4(σcon1∧···∧conn∧consign
R).

View V . Initially, one can verify that V = {(−, . . . ,−
︸ ︷︷ ︸

m

)}.

View single deletion ΔV . Let ΔV = V . ��
Surprisingly, we next show that on combined complexity, for conjunctive query
(SPJ), b-dp is also NP-hard,
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Lemma 2. b-dp for a SJU query is NP-hard under single deletion on combined
complexity.

Proof. We build a reduction form 3-SAT problem to b-dp for SJU query under
group deletion. An instance of 3-SAT problem includes a set of variables X =
{x1, ..., xn} and a 3-CNF boolean expression φ with m clauses {C1, . . . , Cm}, the
task is to decide whether there is an assignment τ for X such that φ is satisfied
by τ .

Base instance D. Let D has m relations R1, · · · , Rm, where Ri simulates clause
Cj and variables in it. Concretely, for each clause Ci (1 ≤ i ≤ m), build a
quintuple relation Ri (A1, A2, A3, A4, A5).

(a) Add 7 tuples into table Ri, whose values of A1, A2, A3 refer to the 7 value
assignments (0–1 value) of the 3 variables which make the corresponding
clause satisfied, values of A4 are the result of the corresponding assignments,
i.e., seven ‘+’s, and the values of A5 are the same sign ‘↑’.

(b) Add b tuples into table Ri, respectively, they are (♣1,♣1,♣1,+, ↓), ...,
(♣b,♣b,♣b,+, ↓).

Similar to the last lemma, the signs ‘↑’ and ‘↓’ are used to distinguish join paths
from the query results.

Query Q. We first prepare all the join conditions used in query as follows.

(a) Similar to the last lemma, to identify join path of variables, build a join
condition

consign := R1.A5 = · · · = Rm.A5,

so that the intermediate join paths of the query consists of just 2 types, ‘↑’
and ‘↓.

(b) For the occurrences of each variable xi (i ∈ [1, n]) in clauses, say ‘ki’, we
build a join condition with conjunctive form such that

coni := q1 ∧ q2 ∧ · · · ∧ qki
,

such that each q is also an equation Rl.Ap = Rl′ .Ap′ , if xi occurs in the
p-th and p′-th positions of clauses Cl and Cl′ where p, p′ ∈ {1, 2, 3} and
l, l′ ∈ {1, · · · ,m}.

(c) Let R is R1 × · · · × Rm, then we define the query Q = Q1 × Q2 such that,

Q1 := πR1.A4,...,Rm.A4(σcon1∧···∧conn∧consign
R),

Q2 := πA5(R1).

View V . Initially, one can verify that V = {(+, . . . ,+
︸ ︷︷ ︸

m

, ↑), (+, . . . ,+
︸ ︷︷ ︸

m

, ↓)}.

Single View deletion ΔV . Let ΔV = {(+, . . . ,+
︸ ︷︷ ︸

m

, ↓)}. ��
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Corollary 1. b-dp is not in both NP and coNP unless P=NP.

Theorem 2. b-dp for an SPJ query is both NP-hard and coNP-hard under single
deletion while DP-hard under group deletion on combined complexity.

Proof. Due to Lemmas 1 and 2, the former can be proved obviously.
Now, we show why it is DP-hard under group deletion. We build a polynomial

reduction from SAT-UNSAT problem which is a canonical DP-complete problem.
Given two Boolean expressions φ, φ′, both in conjunctive normal form with 3
literals per clause, the question is to decide if φ is satisfiable and φ′ is not. We
slightly modify and combine the two reductions of Lemmas 1 and 2 to show the
reduction here.

To reduce the express φ, we use the reduction of Lemma 2 to build the base
relation, the only modification is, instead of b ♣-like tuples, we now add only
 b
2� ones: (♣1,♣1,♣1,+, ↓1), · · · , (♣� b

2 �,♣� b
2 �,♣� b

2 �,+, ↓� b
2 �).

To reduce the expression φ′, we modify the reduction of Lemma 1 as follows,
(1) change the first 7 tuples as the true assignments; (2) change all the value
of A4 into ‘+’; (3) similarly, instead of b ♣-like tuples, we now add only � b

2�
ones: (♣1,♣1,♣1,+, ↓), · · · , (♣� b

2 �,♣� b
2 �,♣� b

2 �,+, ↓) (4) add a additional tuple
(�,�,�,�,→) into each Ri.

Let Q1 and Q2 as the queries defined in Lemmas 1 and 2, we simply set the
query as Q = Q1 × Q2. Then one can verify that the initial view includes 4
tuples, {(+, · · · ,+, ↑), (+, · · · ,+, ↓)} × {(−, · · · ,−), (�, · · · ,�)}.

At last, define the update ΔV = V \{(+, · · · ,+, ↑,�, · · · ,�)}.
One can verify that answer of SAT-UNSAT is yes iff there is a b-bounded

side-effect-free deletion. ��
Lemma 3. b-dp for an SPJU query belongs to ΔP

2 even under group deletion
on combined complexity.

Proof. There is a ΔP
2 algorithm for solving this problem.

(a) Given an instance 〈D,Q, V,ΔV, b〉, enumerate each possible b-bounded dele-
tion ΔD, actually |D|b in total;

(b) For each ΔD enumerated, query an NP oracle check if Q (D\ΔD) = V \ΔV ;

(c) If there is some ΔD, the NP oracle returns ‘yes’, it can be decided that
there is a b-bounded deletion for instance 〈D,Q, V,ΔV, b〉; If for all ΔD, the
NP oracle return ‘no’, then it can be decided that there is no solution for
instance 〈D,Q, V,ΔV, b〉.

4 Conclusion

We study the complexity of b-dp problem a bounded version of general deletion
propagation, map out the complete picture of it. We find that, for most cases of
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relation algebraic query, bounded deletion decision problem is more easy than
its general case, that is bound can lower the complexity of deletion propagation
problem. We are currently finding the tractable condition and approximation
algorithms for conjunctive query, besides the bounded version of deletion prop-
agation. We also plan to study the cases at the present of other types of depen-
dency constraints on database, such as independent dependencies in the future
work.
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Abstract. The solution extension variant of a problem consists in, being
given an instance and a partial solution, finding the best solution com-
prising the given partial solution. Many problems have been studied with
a similar approach. For instance the Precoloring Extension problem, the
clustered variant of the Travelling Salesman problem, or the General
Routing Problem are in a way typical examples of solution extension
variant problems. Motivated by practical applications of such variants,
this work aims to explore different aspects around extension on classical
optimization problems. We define residue-approximations as algorithms
whose performance ratio on the non-prescribed part can be bounded,
and corresponding complexity classes. Using residue-approximation, we
classify several problems according to their residue-approximability.

1 Introduction

This paper presents a general study and exploration of the behavior of combina-
torial problems when a partial solution is given, generally qualified as extension
problems. We focus here on the complexity and approximation point of view, and
especially on what changes, or not, when considering this partial solution. The
motivation of this work is rooted in the search to improve practical applications
of approximation algorithms. Indeed, it is sometimes possible to infer a limited
part of an optimal solution in polynomial time, or to consider prerequisites of
problems as a partial solution. Originating in the search of practical algorithms
solving the Scaffolding problem that represents a crucial step in the modern-
day genome assembly process [21,22], it now appears that extension problems
have wider impact. This may be the case, for instance, in application domains
like scheduling, networks design, routing, resource assignment, etc. If inferring
a partial solution is easy, and it is possible to prove that giving a partial solu-
tion does not alter the approximation ratio of a heuristic, this heuristic could be
used to complete the solution. Depending on how much of a partial solution we
can guess, this may lead to improvements of known heuristics, at no additional
approximation cost. In the following, we refer to partial solutions as residue. As
opposed to traditional optimization problems that, given an instance, aim at
optimizing the (cost of the) solution, extension problems take an instance and a
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 463–476, 2016.
DOI: 10.1007/978-3-319-48749-6 34
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Table 1. Synthetic view of complexity and approximation results.

Problem Extension variant Residue variant

Vertex Cover 2-approx 2-approx.

Feedback Vertex Set 2-approx 2-approx.

Steiner Tree 3/2-approx 3/2-approx.

Max Leaf ≥ 1/3 · OPT − 2/3 · |P | Open

Bin Packing 3/2-approx no APX unless P = NP

partial solution and aim at optimizing the full solution (that extends the given
partial solution) and residue problems take an instance and a partial solution
and aim at optimizing the residue of the full solution.

Related Work. Several extension problems have already been studied. A series of
papers dealt with Precoloring Extension which, given a graph and a partial
proper coloring of its vertices, asks to find a proper coloring extending the partial
one. On proper interval graphs [17] and bipartite graphs [14], the problem is NP-
hard for ≥ 3 precolored vertices. On general interval graphs, Precoloring
Extension is polynomial-time solvable if each color is only used once, while
NP-hard if each color can be used at most twice [6]. A variant of Shortest
Cycle consists in finding a shortest simple cycle traversing k specified elements
(vertices or edges). This variant is known to be NP-hard but Björklund et al.
[7] designed an FPT -algorithm solving it in O(2kpoly(n)) time. Previous work
has been done on the TSP problem with prescribed edges and vertices, called
General Routing Problem (GRP) [15,18], including a 3/2-approximation
using an adaptation of Christofides’ algorithm [8]. Also, Clustered TSP, where
the set of vertices is partitioned into an ordered collection of to-be-visited clusters
has been previously studied from the approximation point of view [1,2,10,13].

Our Contribution. One goal of the present work is to properly define underlying
notions of extension and residue variants of classical problems, giving a general
framework for approximation concerns. We provide a first collection of results
and define two new complexity classes: RAPX , which gathers problems allowing
a constant ratio approximation on residue, and FRAPX , in which this ratio
is the same as for the underlying classical problem. In order to illustrate those
notions and provide intuition on how they could meaningfully describe extension
problems, we also give some results for a sample of classical problems, together
with the description of residue-approximating algorithms when possible. Table 1
summarizes the main results obtained for the considered problems.

In Sect. 2, we give useful definition and examples, Sect. 3 lists a few examples
of problems of FRAPX . Thereafter, we develop two more involved examples
of problems in RAPX : Sect. 4 concerns the Bin Packing problem, which we
prove to not be residue-approximable despite it being in APX . We show that the
extension variant is, however, approximable with the same ratio as the original
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problem. Section 5 deals with the problem of finding a spanning tree with max-
imal number of leaves in a graph and its inverse, finding a spanning tree with a
minimum number of internal vertices. We show that the extension version of this
second problem is approximable with the same ratio as the original problem.

2 Definitions

Let Σ be a ground set. For a function f : Σ → Q, its domain dom(f) is the
subset of Σ for which f is defined and its image img(f) is the set of rationals that
are assigned by f . We write f(x) = ⊥ if x is not in the domain of f . Given a set
S ⊆ 2Σ , and a function ω : 2Σ → N (all of which may be implicitly defined), a
minimization problem or maximization problem asks to find an S ∈ S minimizing
or maximizing ω(S), respectively. We call S the solution space of the problem
and we call the elements of S solutions for it. Each P ⊆ Σ is called partial
solution for the problem and we define SP := {R | R ∩ P = ∅ ∧ R ∪ P ∈ S}.
Let A be an optimization problem defined like the following:

Problem A
Input: S, ω : 2Σ → N

Task: Find a solution S∗ ∈ S such that ω(S∗) is optimal.

Then, the extension variant Aext of A is the following:

Problem Aext

Input: S, some P ⊆ Σ, and ω : 2Σ → N

Task: Find a solution S∗ ∈ S s.t. P ⊆ S∗ and ω(S∗) is optimal.

Consider for example the well-known Minimum Vertex Cover (MVC) prob-
lem, where we are given a graph G = (V,E) and the task is to find a smallest set
S∗ ⊆ V such that each edge of G is incident with a vertex in S∗. The graph G
implicitly defines the set S of all vertex sets that cover all edges of G and the
function ω : 2V → N as ω(Y ) = |Y | for all Y ⊆ V . Then, the correspond-
ing extension problem asks for a minimum-size vertex-cover S∗ ⊆ V of G that
contains P .

For algorithms finding an optimal solution, it often does not matter whether
we optimize the weight of the overall solution S or the weight of the addi-
tional part S \ P , called the residue. However, in the context of approximation
algorithms, this difference becomes significant as an algorithm producing an
approximate residue may be more desirable than one producing an approximate
solution containing the given partial solution. This motivates introducing the
residue variant of optimization problems, asking to find a residue that optimizes
a weight function ωP (which might differ from ω and might depend on P ).

Problem Ares

Input: S, some P ⊆ Σ, and ωP : 2Σ → Z

Task: Find an R ∈ SP such that ωP (R) is optimal.
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Since ωP may differ from ω, this definition allows degenerated cases where an
optimal solution for Ares does not correspond to an optimal solution for A.
Therefore, we will focus on the special case of Ares for which ω(∅) = 0 and, for
all P ⊆ Σ and R ∈ SP , we have ωP (R) = ω(R ∪ P ) − ω(P ). In this case, we call
Ares canonical.

In this work, we are interested in developing algorithms that produce good
approximate residues. To this end, we define the class RAPX containing a prob-
lem A if and only if its canonical residue version Ares is ρ-approximable for some
ρ ∈ Q. Note that RAPX ⊆ APX since A is a special case of Ares with P = ∅.
Indeed, we show RAPX ⊂ APX (unless P = NP) in Sect. 4.

Observation 1. Let ρ ∈ Q, let A be an optimization problem and let its canon-
ical residue variant be ρ-approximable. Then, A is ρ-approximable.

Further, we define the class FRAPX ⊆ RAPX of problems for which the
converse of Observation 1 holds too. That is, FRAPX contains the problems A
such that, for all ρ ∈ Q, its canonical residue variant Ares is ρ-approximable if
and only if A is ρ-approximable.

Continuing the above example, the residue variant of MVC takes a graph
G = (V,E), a vertex set P ⊆ V and a weight function ωP and the task is to find
a vertex set R such that R∪P is a vertex cover of G and ωP (R) is minimized. In
its canonical residue version, which we call Minimum Residue Vertex Cover
(MVCres), we have that ωP (R) = ω(R ∪ P ) − ω(P ) = |R \ P |. Observe that
we can trivially reduce MVCres back to MVC by simply removing the vertices
of P from G, along with their incident edges. Now, the fact that MVC is 2-
approximable [5] immediately implies that MVCres is 2-approximable. We call
problems exhibiting such behavior “r-hereditary”.

Definition 1 (r-hereditary). Let A be an optimization problem and let Ares

be a canonical residue variant of A. Let λ, τ be polynomial-time computable func-
tions such that, for all instances (S, P, ωP ) of Ares,

(a) (S ′, ω′) := λ(S, P, ωP ) is an instance of A,
(b) ∀X (X ⊆ Σ \ P ∧ X ∪ P ∈ S) ⇐⇒ ∃Y ∈S′ τ(Y ) = X, and
(c) ∀Y ∈S′ ω′(Y ) = ωP (τ(Y )).

Then, A is called r-hereditary by virtue of λ and τ .

Noticeably, any r-hereditary problem in APX is in FRAPX .

Proposition 1. Let ρ ∈ Q and A be an r-hereditary, ρ-approximable optimiza-
tion problem. Then, Ares is ρ-approximable.

Proof. Without loss of generality, et A be a maximization problem and let λ
and τ be the functions by virtue of which A is r-hereditary. Let (S, P, ωP ) be an
instance of Ares and let (S ′, ω′) := λ(S, P, ωP ), which, by Definition 1 (a), is an
instance of A.
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Consider an optimal residue R ⊆ Σ \ P for Ares, that is, R ∪ P ∈ S and
ωP (R) = OPTAres(S, P, ωP ). By Definition 1(b) & (c), there is some Y ∈ S ′

with τ(Y ) = R and ω′(Y ) = ωP (R). Thus, OPTAres(S, P, ωP ) = ωP (R) =
ω′(Y ) ≤ OPTA(S ′, ω′). Since A is ρ-approximable, we can compute an S′ ∈ S ′

with ω′(S′) ≥ ρ ·OPTA(S ′, ω′) in polynomial time. Note that, by Definition 1(b),
τ(S′) is a solution for (S, P, ωP ) and, since

ωP (τ(S′))
Def. 1(c)

= ω′(S′) ≥ ρ · OPTA(S ′, ω′) ≥ ρ · OPTAres(S, P, ωP ),

it is ρ-approximate. Finally, since λ and τ can be computed in polynomial time,
so can τ(S′). ��

3 Some FRAPX Problems

In this section, we propose three examples of r-hereditary problems in APX ,
proving their containment in FRAPX .

3.1 Feedback Vertex Set

Feedback Vertex Set (FVS)
Input: G = (V,E) a graph, ω : V → {1}
Task: Find S ⊂ V s.t. G[V \ S] is a forest and ω(S) is minimum.

Proposition 2. Feedback Vertex Set ∈ FRAPX .

Proof. Let (G,P, ω) be an instance of Feedback Vertex Setres. Let λ be the
transformation such that λ(G,P, ω) = (G − P, ω) is an instance of FVS. Let τ
be the identity relation, that is, τ(S) = S for all solutions S of (G−P, ω). Then,
for all sets X:

1. if X is disjoint from P and X∪P is a feedback vertex set of G, then τ(X) = X
is a feedback vertex set of G − P and

2. if there is some feedback vertex set Y of G − P with Y = τ(X) = X, then Y
is disjoint from P and Y ∪ P is a feedback vertex set of G.

Finally, for each feedback vertex set Y of G − P , we have ω(τ(Y )) = ω(Y ).
Thus, FVS is r-hereditary and, as (on undirected graphs) it is also

2-approximable [4], Proposition 1 implies the claim. ��

3.2 Satisfiability

For any formula ϕ and any (partial) assignment α of variables of ϕ, we let ϕ |α
denote the formula resulting from replacing the variables assigned by α by their
assigned values.
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Weighted SAT (WSAT)
Input: a formula ϕ over the variable set V , some ω : V → N

Task: Find a satisfying assignment α : V → {0, 1} for ϕ such that∑
v ω(v) · α(v) is optimal.

Min/Max SAT (MMSAT)
Input: a set ϕ of disjunctions over a variable set V , ω : ϕ → N

Task: Find an assignment α : V → {0, 1} for ϕ such that∑{ω(C) | α satisfies C ∈ ϕ} is optimal.

Proposition 3. Let A be a version of Weighted SAT such that A ∈ APX
and for any instance (ϕ, ω) of A and any variable x of ϕ, also (ϕ |x=0, ω) and
(ϕ |x=1, ω) are instances of A. Then, A ∈ FRAPX .

Proof. Let (ϕ,P, ω) be an instance of Weighted SATres. Let λ be the trans-
formation such that λ(ϕ,P, ω) = (ψ, ω) is an instance of A with ψ = ϕ |P . Let τ
be the identity relation, that is, τ(α) = α for all satisfying assignments α of ψ.
Then, for all X:

1. if X is disjoint from P and X ∪ P is a satisfying assignment for ϕ, then
τ(X) = X is a satisfying assignment for ψ and

2. if there is some satisfying assignment Y for ψ with Y = τ(X) = X, then Y
is disjoint from P and Y ∪ P is a satisfying assignment for ϕ.

Finally, for each satisfying assignment Y for ψ, we have ω(τ(Y )) = ω(Y ).
Thus, A is r-hereditary and Proposition 1 implies the claim. ��
For instance, the minimization variant where each clause in ϕ contains at most
two variables and ω is uniform is 2-approximable [12] and Proposition 3 implies
that this problem is in FRAPX . A similar construction as in the proof of Propo-
sition 3 in which λ also removes clauses containing a 1 from ϕ shows that MMSAT
is r-hereditary, implying that its approximable variants [3,11] are in FRAPX .

3.3 Steiner Spanning Subgraph

Steiner Spanning Subgraph (SSS)
Input: an edge-weighted graph G = (V,E, ω), terminals T ⊆ V
Task: Find S ⊆ E such that G[S] is connected, spanning T , and ω(S) is

minimal.

Proposition 4. Steiner Spanning Subgraph ∈ FRAPX .

Proof. Consider an instance (G,P, T, ω) of Steiner Spanning Subgraphres.
To avoid ambiguities, suppose that there is no triangle (u, v, z) such that uv ∈ P
and ω(zu) = ω(zv) (otherwise, delete zu without losing generality). Further,
suppose that ω(a) = ∞ for all a �∈ E(G) and suppose that no edge in P inter-
sects T (otherwise, remove the intersection from T ). Let λ be the transformation



On Residual Approximation in Solution Extension Problems 469

such that λ(G,P, T, ω) = (G′, T ′, ω′) is an instance of SSS obtained as follows.
(G′, T ′, ω′) is obtained from (G,P, T, ω) by contracting each connected compo-
nent C of G[P ] into a vertex xC , adding xC as a new terminal, and setting
ω′(uxC) = minv∈C ω(uv). For all solutions Y to (G′, T ′, ω′), we define τ(Y ) as
the result of undoing this operation on Y , that is, replacing each uxC ∈ Y by
uv with v = argminz∈C ω(uz) and likewise replacing each xCxD by the lightest
edge between C and D in G.
Then, for all X:

1. if X is disjoint from P and X ∪ P induces a connected spanning subgraph of
G containing T , then Y := λ(G[X ∪ P ], P, T, ω) is a solution for (G′, T ′, ω′),
and τ(Y ) = X;

2. if there is a solution Y to (G′, T ′, ω′) with τ(Y ) = X, then Y is disjoint from
P and X ∪ P is a solution to (G,P, T, ω).

Finally, for each solution Y to (G′, T ′, ω′), we have ω(τ(Y )) = ω′(Y ).
Thus, SSS is r-hereditary and, since it is also 3/2-approximable [19],

Steiner Spanning Subgraph ∈ FRAPX by Proposition 1. ��

4 Non-symmetrical Approximability

In this section, we show that Bin Packing is an example of a problem in APX
whose canonical residue variant cannot be approximated within any constant
factor, unless P = NP. It is defined as follows.

Bin Packing (BP)
Input: a vector [w] of rational weights
Task: Find b : N → N such that

∑{wi | b(i) = j} ≤ 1 for each j ∈ N,
minimizing | img(b)|.

Deciding whether the given weights fit into two bins or not is already strongly
NP-hard [9]. However, BP can be approximated to within a factor of 3/2 [20].
The canonical residue variant of BP is

Bin Packingres (RBP)
Input: a vector [w] of rational weights, an assignment P : N → N

Task: Find some r : N \ dom(P ) → N such that for each j ∈ N,∑ {wi | r(i) = j ∨ P (i) = j} ≤ 1, minimizing | img(r) \ img(P )|.
Now, consider the following reduction. Given an instance I of BP i.e. a vector
[w] of size k, we construct an instance I ′ of Bin Packingres by dividing all
weights by 2 from the vector [w], and adding two new items to the vector [w]
with weights wk = wk+1 = 0.5, and we set P (k) = 0 and P (k+1) = 1. Then, this
Bin Packingres instance has a solution r with | img(r)\ img(P )| = 0 if and only
if the weights [w] of the original instance fit into two bins. Thus, Bin Packingres

cannot be approximated to within any constant factor unless P = NP.
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Observation 2. Bin Packing ∈ APX \ RAPX .

In the following, we show that the extension variant of BP can be approximated
to within a factor of 3

2 .

Bin Packingext (EBP)
Input: a vector [w] of rational weights, an assignment P : N → N

Task: Find some b : N → N such that P ⊆ b and, for each j ∈ N,∑ {wi | b(i) = j} ≤ 1, minimizing | img(b)|.
Without loss of generality, we suppose that [w] does not fit into a single bin.
We call a solution b for an instance ([w], P ) of EBP 2

3 -filling if at most one bin
j is strictly less than 2

3 full (that is,
∑{wi | b(i) = j} < 2/3). In this case, we

suppose that no item assigned to j by b fits into any other bin.

Lemma 1. Let ([w], P ) be an instance of EBP and let b be a 2
3 -filling solution.

Then, b is 3
2 -approximate.

Proof. For each j ∈ N, let hj :=
∑{wi | b(i) = j} be the height of bin j with

respect to b, and let κ := | img(b)| be the number of bins used by b. Let κ∗ be
the optimal number of bins. Clearly, κ∗ ≥ ∑

i wi =
∑

j hj . Now, assuming every
bin is at least 2

3 full, we have

κ∗ ≥
∑

j

hj ≥ κ · min
j

(hj) ≥ 2
3
κ implying

3
2
κ∗ ≥ κ.

Otherwise, there is a bin k that is less than 2
3 full. Then, hk > maxj �=k(1−hj)

since no weight from k can be assigned to another bin (b is 2
3 -filling). We still

have κ∗ ≥ ∑
j hj , which gives:

κ∗ ≥ hk +
∑

j �=k

hj > max
j �=k

(1 − hj) + (κ − 1)min
j �=k

(hj) >
1
3

+
2
3
(κ − 1)

Now we have 3κ∗ > 2κ − 1 giving 3
2κ∗ ≥ κ. ��

Given an instance ([w], P ) of EBP we call a weight wi heavy if wi ∈ dom(P ) or
wi > 1

3 . We call ([w], P ) heavy if all weights of [w] are heavy and we call a heavy
instance strict if, for all bins j ∈ img(P ), we have

∑{wi | P (i) = j} ≤ 1
3 . Using

the following rules, we prove that we can focus on strict instances.

Rule 1. Let ([w], P ) be an instance of EBP and let wi ≤ 1
3 be a weight of [w].

Then, remove wi from [w].

Rule 2. Let ([w], P ) be a heavy instance of EBP and let j ∈ img(P ) with hj :=∑{wi | P (i) = j} > 1
3 . Then, remove all wi with P (i) = j from [w] and remove

any heaviest weight wk /∈ dom(P ) with wk ≤ 1 − hj from [w].
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Lemma 2. Given a 3
2 -approximate solution b′ for the result ([w′], P ′) of apply-

ing Rule 1 or Rule 2 to ([w], P ), a 3
2 -approximate solution for ([w], P ) can be

computed in polynomial time.

Proof. Rule 1: Let wk be the removed weight. If there is a bin j ∈ img(b′) with∑{wi | b′(i) = j} ≤ 2
3 , then let b := b′ ∪ {(k → j)}. In this case, b does not

use more bins than b′ and, hence, it is 3
2 -approximate for ([w], P ). If all bins are

2
3 -filled by b′, then b assigns wk to a new bin. In this case, b is 2

3 -filling and, by
Lemma 1, b is 3

2 -approximate.

Rule 2: Let Pj be the set of assignments to j in P . If there is no weight wk /∈
dom(P ) with wk ≤ 1 − hj in [w], then no solution for ([w], P ) assigns any
additional weight to bin j. Thus, b′∪Pj is 3

2 -approximate for ([w], P ). Otherwise,
let wk be heaviest among all weights outside dom(P ) with wk ≤ 1 − hj . We
show that there is an optimal solution b for ([w], P ) that assigns wk to bin j
and, since b′ is 3

2 -approximate for ([w′], P ′), we conclude that b′ ∪Pj ∪{(k → j)}
is 3

2 -approximate for ([w], P ). Let b be an optimal solution for ([w], P ) with
(k → j) /∈ b and let � be the bin containing wk. Further, since ([w], P ) is heavy
and j is 1

3 -filled by P , we know that b assigns at most one weight wk′ /∈ dom(P )
to j. Also, wk′ ≤ wk by maximality of wk. Then, swapping (k′ → j) and (k → �)
for (k′ → �) and (k → j) in b yields a solution using the same number of bins as
b. ��
As the result of exhaustive application of Rules 1 and 2 is strict, it remains only
to show that EBF is 3

2 -approximable on strict instances.

Theorem 1. Bin Packingext is 3
2 -approximable.

Proof. Let ([w], P ) be an instance of EBP and, using Lemma2, suppose that
([w], P ) is strict. We call the weights (bins) in dom(P ) (img(P )) preassigned.
Let [w′] be the result of removing all preassigned weights from [w], let n be
the length of [w′] and let p := | img(P )|. Let b∗ be an optimal solution for
([w], P ) and let κ∗ := | img(b∗)|. The graph G = (V,E) with V := {1, . . . , n} and
E := {ij | w′

i+w′
j ≤ 1} is called the compatibility graph of [w′]. In G, we compute

a maximum matching M and let m := |M |. Let s := n − 2m be the number of
vertices that M does not touch. Since ([w], P ) is strict, no bin can hold more
than two weights of [w′] and, by maximality of M , we have κ∗ ≥ max(p,m + s).
Let bg be an assignment resulting from exhaustive application of the following
routine: take a heaviest, non-fixed, unmarked weight w′

i in [w′], mark it and, if
possible, assign it to an arbitrary preassigned bin. Then,

Case 1: img(bg) = img(P ). Let [w′′] be the vector of weights of [w] that are
not assigned by bg ∪ P and note that its size is at most n − p. We build the
compatibility graph G′′ of [w′′] and compute a maximum matching M ′′ on
G′′. Let m′′ := |M ′′| and let s′′ be the number of vertices that M ′′ does not
touch. Extending bg by assigning each pair of weights corresponding to an
edge of M ′′ to a new bin and the s′′ remaining weights to separate bins, we
obtain a solution b for ([w], P ) using κ = p+m′′+s′′ bins. Let bp be a solution
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for ([w], P ) such that bp \ P uses at most p/2 preassigned bins. Then, bp uses
at least m + s − p

2 bins in total. By spreading the at most p weights that
bp \ P assigns to preassigned bins, we obtain from bp a solution for ([w], P )
that puts at most one weight in each preassigned bin and, thus, uses at least
as many bins as b. Hence, | img(b)| = m′′ + s′′ + p ≤ m + s − p

2 , implying
κ ≤ p + m + s − p

2 ≤ 3
2 max(p,m + s).

Case 2: img(P ) � img(bg). Let [w′′] be the vector of weights that are not
assigned by bg ∪ P and let wm be minimal in [w′′]. Since ([w], P ) is strict,
wm > 2

3 . We show that the extension b of bg ∪ P that assigns each weight in
[w′′] to a separate bin is an optimal solution for ([w], P ). To this end, assume
that | img(b)| − p > | img(b∗)| − p. Then, there is a bin j ∈ img(P ) such
that b∗ assigns a weight wi ≥ wm of [w] to j but b does not. Then, j cannot
be outside img(bg) as otherwise, bg would assign wm, so bg assigns a weight
wk < wm to j. But this contradicts the construction of bg, as wm would have
been considered before wk.

In both cases, we produce a 3
2 -approximate solution for ([w], P ). ��

5 Spanning Tree with Many Leaves

Consider the problem of finding a spanning tree with a maximum number of
leaves in a given graph. Its extension variant prescribes some edges.

Max Leaf (ML)
Input: a graph G = (V,E)
Task: find S ⊆ E such that (V, S) is a spanning tree of G, maximizing

the number of leaves.

Max Leafext (MLE)
Input: a graph G = (V,E), an edge set P ⊆ E
Task: find S ⊆ E such that P ⊆ S and (V, S) is a spanning tree of G,

maximizing the number of leaves.

We prove that solving Max Leaf is equivalent to solving its extension variant
Max Leafext. Further, we conclude that approximating the inverse problem,
Min Internal Spanning Tree is equivalent to approximating its extension
variant Min Internal Spanning Treeext. In the following, suppose that G
has at least three vertices.

Transformation 1 (see Fig. 1). Let (G = (V,E), P ) be an instance of MLE
such that (V, P ) is a forest. Let PM ⊆ P such that (V, PM ) is a matching and
PM is maximal under this condition. Then, construct an instance G′ of ML as
follows: For each uv ∈ PM , add a vertex xuv to V and the edges uxuv and vxuv

to E. Finally, for all vertices w of degree at least two in (V, P \ PM ), add a new
vertex yw to V and add the edge wyw to E.



On Residual Approximation in Solution Extension Problems 473

Fig. 1. Transformation 1 turns the left instance of MLE into the right instance of ML.

Lemma 3. Let G′ = (V ′, E′) be the result of applying Transformation 1 to (G =
(V,E), P ) and let k ∈ N. there is a spanning tree with ≤ k non-leaves containing
P in G if and only if there is a spanning tree with ≤ k non-leaves in G′.

Proof. “⇒”: Let (V, S) be a tree with � leaves (k non-leaves) containing P .
Clearly, for each w of degree at least two in (V, P \ PM ), we can add wyw to
S, creating the leaf yw. Further, for each uv ∈ PM , at least one of u and v, say
u, is not a leaf in (V, S). Then, we can add uxuv to S, creating the leaf xuv.
Thus, the modified set induces a spanning tree for G′ with � + |V ′ \ V | leaves (k
non-leaves).

“⇐”: Let T ′ := (V ′, S′) be a spanning tree of G′ with a maximum number
of leaves. We show that there is a set S such that (a) P ⊆ S, (b) (V ′, S) has the
same number of leaves as (V ′, S′), (c) all vertices in V ′ \ V are leaves in (V ′, S),
and (d) (V ′, S) is a spanning tree of G′. Then, (V, S ∩E) is a spanning tree of G
with at most |V ′ \ V | leaves less than (V ′, S′). That is, (V, S ∩ E) has the same
number of non-leaves as T ′.

To construct S, let uv ∈ PM \ S′. Since xuv ∈ V ′ has degree two in G′, at
least one of uxuv, vxuv is in S′. Without loss of generality, let uxuv ∈ S′. If
vxuv ∈ S′, then we can swap vxuv for uv in S′, creating a new leaf xuv and,
thus, contradicting optimality of T ′.

Hence, xuv is a leaf and u is not a leaf in T ′. If both u and v are non-leaves in
T ′, then we swap the first edge on the unique u-v-path in T ′ for uv in S′. If v is a
leaf in T ′ and z is its unique neighbor in T ′, then we swap vz for uv in S′. Next,
let uv ∈ P \ (PM ∪S′). Since uv /∈ PM , one of u, v, say u, is a non-leaf of (V, P ).
Then, since u is neighbor of some leaf yu in T ′, we know that u is also a non-leaf
in T ′. If v is a non-leaf in T ′, then we swap uv for any edge of S′ \ P occurring
in the unique u-v-path in T ′ (note that such an edge exists since otherwise P
contains a cycle). If v is a leaf in T ′ then v is a leaf in (V, P ), as otherwise, v
has a neighbor yv in G′ that is not covered by T ′. In this case, let vz ∈ S′ \ P
and we swap uv for vz in S′. Note that each swap introduces an edge of P into
S′ and removes an edge of S′ \ P and, thus, the algorithm terminates after at
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Fig. 2. From a solution of ML (left) to a solution of MLE by successive swaps (right).

most |P | swaps. We let S denote the result of an exhaustive application of the
above swap-rules to S′. Figure 2 shows the application to the example of Fig. 1.

First, since the application is exhaustive, no edge of P remains outside S,
implying (a). Second, since none of the swaps we do creates a cycle and |S| = |S′|
we know that (V ′, S) is still a spanning tree of G′, implying (d). Third, (b) is
implied by the fact that none of the swap operations turns a leaf into an internal
vertex. Fourth, to show (c), assume there is some vertex in V ′ \ V that is a
non-leaf in (V ′, S). Clearly, it is not a yu for any u ∈ V . Thus, let uv ∈ PM such
that xuv ∈ V ′ \ V is a non-leaf in (V ′, S). Then, by (a), (u, v, xuv) is a cycle in
(V ′, S), contradicting (d). ��
We use the fact that the proof of Lemma 3 is constructive to transfer approxi-
mation algorithms for Max Leaf to Max Leafext.

Corollary 1. Every ρ-approximation for the problem Max Leaf can be used
to pseudo-approximate Max Leafext.

Proof. Given an instance (G,P ) of Max Leafext, use Transformation 1 to com-
pute an instance G′ of Max Leaf and let ΔV := V ′ \ V . Then, compute a
ρ-approximate spanning tree (V ′, S′) for G′, and let f ′ denote its number of
leaves. Then, morph S′ into a set S as in the proof of Lemma3, that is, all
vertices of ΔV are leaves in (V ′, S) and (V ′, S) has at least f ′ leaves. Let f be
the number of leaves in (V, S ∩ E).

Then, f ′ ≥ ρ · OPTML(G′) and f ≥ f ′ − |ΔV | and, by Lemma 3, we have
OPTMLE(G,P ) = OPTML(G′) − |ΔV |. Thus,

f ≥ ρ · OPTMLE(G,P ) − (1 − ρ)|ΔV | ≥ ρ · OPTMLE(G,P ) − (1 − ρ)|P |
��

Corollary 2. Every ρ-approximation for Min Internal Spanning Tree can
be used to ρ-approximate Min Internal Spanning Treeext.
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Note that it exists a 5/3-approximation for the Maximum Internal Spanning
Tree problem [16].

6 Conclusion

In this article, we tackle variants of several classical combinatorial optimiza-
tion problems (Vertex Cover, Steiner Tree, Feedback Vertex Set,
. . .) focused around extending a given partial solution. This allows us to define
approximation with respect to the additional part of the solution, the residue. We
propose the approximation classes FRAPX and RAPX capturing approxima-
bility of the residue. In this context, we design polynomial-time approximation
algorithms and show approximation lower bounds. We hope to open new avenues
of research in considering residue approximation, as many combinatorial prob-
lems may be examined under this point of view. In this way, our work can be
understood as a factory for interesting open problems. Aside from considering
more classical combinatorial problems, we are interested in researching the para-
meterized complexity of extension problems, parameterized (also) by the size of
the imposed partial solution.
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Abstract. Efficiently parallelizable parameterized problems have been
classified as being either in the class FPP (fixed-parameter parallelizable)
or the class PNC (parameterized analog of NC ), which contains FPP as
a subclass. In this paper, we propose a more restrictive class of paral-
lelizable parameterized problems called fixed-parameter parallel-tractable
(FPPT). For a problem to be in FPPT, it should possess an efficient
parallel algorithm not only from a theoretical standpoint but in practice
as well. The primary distinction between FPPT and FPP is the parallel
processor utilization, which is bounded by a polynomial function in the
case of FPPT. We initiate the study of FPPT with the well-known k-
vertex cover problem. In particular, we present a parallel algorithm that
outperforms the best known parallel algorithm for this problem: using
O(m) instead of O(n2) parallel processors, the running time improves
from 4 log n + O(kk) to O(k · log3 n), where m is the number of edges, n
is the number of vertices of the input graph, and k is an upper bound of
the size of the sought vertex cover. We also note that a few P-complete
problems fall into FPPT including the monotone circuit value problem
(MCV) when the underlying graphs are bounded by a constant Euler
genus.

1 Introduction

The area of Parameterized Complexity has witnessed tremendous growth in the
last two decades and has become a central research area in theoretical computer
science. A problem is fixed-parameter tractable (FPT) if it has an algorithm that
runs in time O(f(k) · nO(1)), where n is the problem size and k is the input
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parameter that is independent of n, for an arbitrary computable function f . A
typical, well-known, example is the k-vertex cover problem which is solvable in
time O(kn + 1.274k), where n is the number of vertices of the input graph and
k is an upper bound of the size of the sought vertex cover [6]. Numerous other
NP-complete problems also fall into the class FPT.

The study of parameterized complexity has been extended to parallel com-
puting and this is broadly known as parameterized parallel complexity. The first
systematic work on parameterized parallel complexity appeared in [5], where the
authors introduced two classes to characterize the efficiently parallelizable para-
meterized problems, according to the degree of efficiency required, known as para-
meterized analog of NC (PNC) and fixed-parameter parallelizable (FPP), respec-
tively. The class PNC contains all parameterized problems that have a parallel
deterministic algorithm running in time O(f(k) · (log n)h(k)) using O(g(k) · nβ)
parallel processors, where n is the input size, k is the parameter, f , g, and h
are arbitrary computable functions, and β is a constant independent of n and k.
The class FPP contains all parameterized problems that have a parallel deter-
ministic algorithm running in time O(f(k) · (log n)α) using O(g(k) · nβ) parallel
processors, where n is the input size, k is the parameter, f and g are arbitrary
computable functions, and α, β are constants independent of n and k. They also
proposed a FPP algorithm that solves the k-vertex cover problem and proved
that all problems involving MS (definable in monadic second-order logic with
quantifications over vertex and edge sets) or EMS properties (that involve count-
ing or summing evaluations over sets definable in monadic second-order logic)
are in FPP when restricted to graphs of bounded treewidth.

Our Contribution. In this paper, we propose a new class of efficiently
parallelizable parameterized problems called fixed-parameter parallel-tractable
(FPPT). FPPT has several advantages over PNC and FPP. It eliminates the
heavy exponent that depends on the parameter k in the logarithm of PNC.
Moreover, it gets rid of the arbitrary function g, which does not seem to lead to
a parallel algorithm that is efficient from a practical point of view of processor
utilization. Thus, a problem in FPPT should possess an efficient parallel algo-
rithm, not only from a theoretical standpoint but also in practice. We initiate
the study of FPPT with the well-known k-vertex cover problem for which we
propose a parallel algorithm and show that it belongs to FPPT. We also note
that the classical monotone circuit value problem (MCV) belongs to FPPT when
the underlying graph is bounded to a constant Euler genus.

Our proposed algorithm for the k-vertex cover problem outperforms the best
known parallel algorithm for this problem, which appeared in [5]. The number
of parallel processors is O(m) instead of O(n2) and the running time improves
from 4 log n + O(kk) to O(k · log3 n), where m is the number of edges, n is
the number of vertices of the input graph, and k is an upper bound of the
size of the sought vertex cover. Our algorithm employs kernelization using the
Crown Reduction method of [2]. As for the MCV problem, we have recently
presented a parallel algorithm when the Euler genus of the underlying graph is
bounded by the parameter k [3]. The algorithm runs in time O((k + 1) · log3 n)
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using O(nc) parallel processors, where O(nc) is the best processor boundary for
parallel matrix multiplication [19].

2 Preliminaries

Given an undirected graph G = (V,E), the k-vertex cover problem asks whether
there is a set of vertices V ′ ⊆ V of size at most k (k is assumed to be fixed),
such that for every edge (u, v) ∈ E, at least one of its endpoints, u or v is in
V ′. In other words, the complement of V ′ is an independent set (i.e., a set that
induces an edge-less subgraph).

A matching M is a subset of E such that no two edges in M share a common
vertex. A vertex that is incident to an element of M is said to be matched under
M . A matching is maximal if it is not contained in a larger matching. Such a
matching is maximum if no matching of larger cardinality exists. If all vertices
are matched under a matching, then it is a perfect matching. The problem of
finding a maximum matching or a perfect matching, even in planar graphs, has
received considerable attention in the field of parallel computation.

Merging a subset V ′ of the vertices consists of replacing all the vertices in V ′

with a single vertex w such that N(w) =
⋃

v∈V ′ N(v)\V ′.
A crown in a graph G is an ordered pair (I,H) of subsets of V that satisfies

the following criteria:

– I �= ∅ is an independent set of G,
– H = N(I), and
– there exists a matching M on the edges connecting I and H such that all

elements of H are matched under M .

H is called the head of the crown. The width of the crown is |H|. A straight
crown is a crown (I,H) that satisfies the condition |I| = |H|. A flared crown is
a crown (I,H) that satisfies condition |I| > |H|. These notions are depicted in
Fig. 1.

I I
H

H

· · · ·
Rest of Graph

· · · ·
Rest of Graph

Fig. 1. Sample crowns (Bold edges denote a matching)

The following theorem was proved in the early work on crown decomposition.

Theorem 1 ([1,7]). If G is a graph with a crown (I,H), then there is a vertex
cover of G of minimum size that contains all the vertices in H and none of the
vertices in I.
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Kernelization is a polynomial-time transformation that reduces an arbitrary
instance (I, k) of a parameterized problem to an equivalent instance (I ′, k′), such
that k′ ≤ k and |I ′| is bounded by some function of k. The resulting instance
is often referred to as a problem kernel of the instance. It is kernelization that
distinguishes an arbitrary problem from one that is FPT. More specifically, a
problem is FPT if and only if it has a kernelization algorithm [11].

3 FPPT Kernelization by Crown Reduction

The classes PNC and FPP introduced by Cesati and Ianni in [5] fail to capture
some important aspects mainly caused by the “arbitrary” computable functions
h and g bounding the running time and the processor utilization. For example,
the exponent in the logarithm of PNC heavily depends on the parameter k.
It grows at a rapid rate thus making the running time very close to a linear
function even for not too large values of k. Moreover, according to its definition,
g is allowed to be a super-polynomial function of the parameter k, which makes
the processor utilization unreasonable even for relatively small values of k. Since
the number of available processors is a strong physical constraint when employing
a parallel algorithm, membership in PNC and FPP can sometimes be relevant
mostly for theoretical purposes.

Motivated by the above, we refine the classes PNC and FPP and propose
a new class called fixed-parameter parallel-tractable (FPPT). The main purpose
is to have a better characterization of solvable fixed-parameter parallelizable
problems at least from a practical standpoint. We formally define FPPT as
follows:

Definition 1 (FPPT). The class of fixed-parameter parallel-tractable (FPPT)
contains all parameterized problems that have a parallel deterministic algorithm
whose running time is in O(f(k)·(log n)α) using O(nβ) parallel processors, where
n is the size of input, k is the parameter, f is an arbitrary computable function,
and α, β are constants independent of n and k.

The Lemma below shows the relation between FPT and PNC, given by Cesati
and Ianni.

Lemma 1 ([5]). PNC is a subset of FPT.

It is then easy to observe that FPP ⊆ PNC. Hence, we conclude that:

FPPT ⊆ FPP ⊆ PNC ⊆ FPT.

In the following, we present an FPPT kernelization algorithm for the k-vertex
cover problem, which is based on a crown decomposition of the input graph in [2].



On the Parameterized Parallel Complexity and the Vertex Cover Problem 481

Algorithm 1. Parallel algorithm for finding a crown.
procedure ParallelCrown(G)

Step 1: Find a maximal matching M1 in parallel and identify the set of all
unmatched vertices as the set O of outsiders.

Step 2: Find a maximum auxiliary matching M2 of the edges between O and
N(O) in parallel.

Step 3: If every vertex in N(O) is matched by M2, then H = N(O) and I = O
form a straight crown, and we are done.

Step 4: Let I0 be the set of vertices in O that are unmatched by M2.
Step 5: Repeat Steps 5a and 5b until n = N so that IN−1 = IN .

5a. Let Hn = N(In).
5b. Let In+1 = In ∪ NM2(Hn).

Step 6: I = IN and H = HN form a flared crown.
end procedure

It has been shown in [7] that, if both matchings M1 and M2 are of a size less
than or equal to k, then G has at most 3k vertices that are not in the crown.
So we only analyze the running time and processor utilization here. Apparently,
the most expensive part of this procedure are Steps 1 and 2.

Israeli and Shiloach presented a parallel algorithm for maximal matching.
The performance of their algorithm is given by the following lemma:

Lemma 2 ([16]). A maximal matching in general graphs can be found in time
O(log3 n) using O(m) parallel processors, where m is the number of edges and
n is the number of vertices of the input graph.

So we only need to show that the maximum matching M2 in Step 2 can be
constructed (efficiently) in parallel, which will be discussed in Sect. 4 where we
prove that the construction of such a maximum matching is in FPPT. Therefore
we obtain the following.

Theorem 2. Vertex cover kernelization via crown reduction is in FPPT.

Consequently, and since crown reduction guarantees a 3k-kernel, we can solve
the reduced instance of vertex cover in O(f(k))-time. This finishes the proof of
our main result.

Theorem 3. The k-vertex cover problem is in FPPT.

4 Parameterized Maximum Matching

In this section, let us consider a parameterized version of the maximum matching
problem stated below, as a subroutine of the parallel crown reduction procedure.
Note that, in our definition of the parameterized maximum matching problem,
we ask the question whether the cardinality of the maximum matching is equal
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to or less than parameter k. (This is to be contrasted with the usual parameter-
ization of a maximization problem where one would ask for a solution of size k
or more).

Input: A graph G = (V,E) and a positive integer k.
Problem: Is there a maximum matching M of size at most k?

If yes, how to construct one?

To the best of our knowledge, this is the first time that the maximum match-
ing problem is studied with an input parameter given, especially in a way that
upper-bounds the size of the sought matching. In classical computational com-
plexity, the maximum matching problem has the same complexity as the perfect
matching problem, since the former can be easily reduced to the latter in log-
arithmic space. Suppose we want to check whether there is a matching with k
edges in G. If such a matching existed, 2k vertices would have been matched
and n− 2k would have been “free.” We add n− 2k new vertices to G and create
edges between these new vertices and all old vertices in G in order to obtain a
new graph G′. Thus, G′ has a perfect matching if and only if G has a matching
with exactly k edges. Conversely, perfect matching parameterized by the num-
ber of matching edges is trivially FPPT by a simple reduction to our version of
parameterized maximum matching (if n �= 2k then it is a no instance). So the
two problems have the same parameterized parallel complexity with respect to
the parameter k. However, when the parameter is the number of perfect match-
ings, perfect matching falls in the class FPPT, more precisely in NC in this
case [4], while it is not known yet whether maximum matching has an NC algo-
rithm when the number of maximum matchings is bounded by a polynomial in
n. This problem is open at this stage. The related studies on perfect matching,
including NC algorithms for some special structures of graphs or parameters,
such as: dense graphs [9], regular bipartite graphs [18], strongly chordal graphs
[10], claw-free graphs [8], bipartite graphs with polynomially bounded number
of perfect matchings [15], general graphs with polynomially bounded number of
perfect matchings [4], bipartite planar and small genus graphs [20].

Suppose G is a graph with minimum vertex cover bounded by a constant k.
It is not hard to see that the maximum matching of G must be bounded to k as
well (since the edges in a maximum matching are pairwise disjoint, at least one
end of each edge should be included in the minimum vertex cover). Therefore,
in order to cover all edges in a maximum matching, the minimum vertex cover
must be greater than or equal to the size of a maximum matching.

Our algorithm is based on the augmenting path approach used in the classical
Blossoms algorithm. We show that, with careful analysis, the parameterized
maximum matching problem can be solved in time O(f(k) · log3 n) using O(m)
parallel processors, where m is the number of edges and n is the number of
vertices of the input graph. The algorithm is summarized in Algorithm2.
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Algorithm 2. Parallel algorithm for parameterized maximum matching
1: procedure FindMaximumMatching(G,k) � Graph G and parameter k
2: Step 1: Find a maximal matching M1 in parallel. If |M1| > k, return false.
3: Step 2: Construct a new graph by merging the unmatched vertices into a new

vertex S.
4: Step 3: Construct an alternating BFS tree rooted at S in parallel.
5: Step 4: Either find an augmenting path with respect to M1, or construct a new

graph with a maximum matching of cardinality k − 1.
6: Step 5: Repeat Step 1 to Step 4 at most k rounds.
7: end procedure

It is well known that the size of any maximal matching is at least half the
size of a maximum matching. Therefore, we note that the maximal matching
produced in Step 1 is not less than k/2.

In Step 2, we make a transformation as follows. We merge all unmatched
vertices into a single vertex S so that all edges connected to the unmatched
vertices become incident to S, thus making all augmenting paths in the graph
G transfer into an odd alternating cycle in the new graph.

Next, we construct an alternating BFS tree with the following properties:

– S is the root (and layer 0);
– All vertices adjacent to S are in layer 1;
– All edges from odd layers to even layers are matching edges (elements of the

matching M1 constructed in Step 1).

Note that we also add the unmatched edges into the alternating BFS tree in
Fig. 2 to help in the analysis. This will be made clear in the sequel.

The parallel alternating BFS tree can be constructed in time O(log2 n) using
O(n3) parallel processors [13]. However, the graph for which the BFS is con-
structed consists of at most 2k + 1 vertices because all unmatched vertices are
merged into S. Thus, the running time will be O(log2 k) with O(k3) parallel
processors. Consequently, we observe the following:

– All vertices in the tree are matched except for S. All edges between layer 0
and layer 1 are unmatched, otherwise S will be matched.

– If the nodes in layer 1 have no descendants (i.e., neighbors in a layer of a
higher index), then they must be matched in this layer (e.g., b and c in Fig. 2).
Otherwise, these nodes would be unmatched. We call such an edge type B
edge. The unmatched edges in the same layer are also type B edges.

– The unmatched edges from odd layers to descendant layers are of type A (e.g.,
(d, f) and (a, k) in Fig. 2).

– The unmatched edges from even layers to the adjacent odd layer are of type
C (e.g., (h, j) in Fig. 2).

– The depth of the tree is at most 2k because the size of the maximum matching
is bounded by k.
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S

cbalayer 1 d e

layer 2 f g h

layer 3 i j k l m

...

B

B

layer i

A

A

C

Fig. 2. Alternating BFS tree. (Bold edges denote matching edges)

Lemma 3. If M1 is not a maximum matching, then every alternating odd cycle
must pass through at least one type B edge.

Proof. Suppose there is an augmenting path p = e1, e2, . . . , eh that consists of
type A, type C, and matching edges. According to the observation above, the
initial vertex of p must be S and e1 must be an unmatched edge between layer
0 and layer 1 (e.g., (S, e) in Fig. 2). For p to be an augmenting path, e2 must
be a matched edge. Since it is not allowed to take type B edges, we have to
go further down (e.g., (e, h) in Fig. 2). Then, e3 must be a type C edge (e.g.,
(h, j) in Fig. 2). Because any type C edge starts from an even layer towards an
adjacent odd layer, it is impossible to construct an augmenting path. ��
Since each augmenting path transforms into an alternating odd cycle and
increases the matching by 1, we only need to check if there are type B edges
in the alternating BFS tree. If yes, we proceed by checking whether the alter-
nating odd cycle comes from a valid augmenting path. Otherwise, we either get
a maximum matching with cardinality at most k or reduce the graph to a new
graph with the maximum matching of size bounded by k − 1. Now, we analyze
this procedure by considering the following two cases:

Case 1 : Suppose an alternating odd cycle resulted from an augmenting path is
(s−a− b− s) and the edge (a, b) is matched. a, b connect to different vertices u1

and u2 in S. It is easy to find an augmenting path u1 −a− b−u2. We can argue
the same way if the edge (a, b) is an unmatched type B edge. Refer to Fig. 3 for
an illustration.

Case 2 : Suppose that an alternating odd cycle transformed from an augmenting
path is (u−a−b−u) and the edge (a, b) is matched. Also a and b connect to the
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a b

S

B

(a)

a b

u1(S) u2(S)

B

(b)

a b

u1(S) u2(S)

c d

B

(c)

Fig. 3. An alternating odd cycle passes through type B edges. (a) An alternating odd
cycle; (b) (a, b) is a matched type B edge; (c) (a, b) is an unmatched type B edge.

a b

u

B

(a)

S

a b

u

c d

B

(b)

S

Fig. 4. Blossom structure.

same vertices u and there is a alternating path from S to u. We do not know if
there exists an augmenting path, neither do we know how to find one, if there is
any. For this case, the alternating odd cycle is called a blossom structure. Refer
to Fig. 4 for an illustration. Since a blossom contains at least one matched edge
and three nodes, we can shrink the blossom to a single vertex and the new graph
obtained will have a maximum matching of cardinality at most k − 1. Since the
size of the maximum matching is bounded by k, at most k rounds are needed to
construct a maximum matching.

Thus, the running time will be O(k · log3 n) with O(m) parallel processors,
where m is the number of edges, n is the number of vertices of the input graph,
and k is an upper bound of the size of the sought maximum matching. Given all
of the above, we can now state Theorem 4.

Theorem 4. Maximum matching parameterized by an upper bound on the
matching size, is in FPPT.

5 MCV with Bounded Genus Is in FPPT

In this section, we note that the problem known as the monotone circuit value
(MCV) problem with bounded genus is also in FPPT.
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A Boolean Circuit is a directed acyclic graph consisting of NOT, AND, and
OR gates. The circuit value problem (CVP) is the problem of evaluating a
boolean circuit on a given input. CVP was shown to be P-complete with respect
to logarithmic space reductions in [17]. Some other restricted variants of CVP
have also been studied. The planar circuit value (PCV) problem, for example, is
a variant of CVP in which the underlying graph of the circuit is planar. Another
variant is the monotone circuit value (MCV) problem in which the circuit only
has AND and OR gates. Both the PCV and MCV problem were shown to be
P-complete in [14]. Another variant in which the circuit is simultaneously planar
and monotone is known as the PMCV problem. PMCV problem was shown to
be in NC, and its first NC algorithm was given in [23]. Recently, we proposed a
parallel algorithm for a variant of the general MCV problem in which the under-
lying graph bounded by a constant Euler genus k in [3]. The main result can be
stated as Theorem 5.

Theorem 5. Given a general monotone boolean circuit with n gates and an
underlying graph bounded by a constant Euler genus k, the circuit can be evalu-
ated in time O((k + 1) · log3 n) using O(nc) parallel processors, where O(nc) is
the best processor boundary for parallel matrix multiplication.

Hence, we deduce that the monotone circuit value problem with bounded Euler
genus k is in FPPT.

6 Concluding Remarks and Future Work

In this paper, we initiated the study of a new class of efficiently paralleliz-
able parameterized problems called fixed-parameter parallel-tractable (FPPT).
A problem in FPPT, unlike one in PNC or FPP, must be solved by a polynomial
number of processors independent of the parameter k. Hence it should possess
an efficient parallel algorithm not only from a theoretical standpoint but also in
practice.

We reconsidered the k-vertex cover problem and noted that it falls in FPPT
due to the algorithm of Cesati and Ianni in [5]. Our improved algorithm is based
on obtaining a quadratic kernel. We showed that obtaining a linear kernel for the
problem is also in FPPT by proving that constructing a corresponding crown
decomposition is in FPPT as well. We believe this will lead to proving other
problems also, where a kernel is obtained via a crown reduction, are in FPPT.

Furthermore, we conclude that FPPT is somehow orthogonal to the NP-
complete and P-complete classes in the sense that some, but not all, problems
from each of these classes fall in FPPT. We further raise some open questions.

– At this stage, the first obvious question is which other problems belong to
FPPT.

– Numerous NP-complete problems fall into the class FPT, but clearly not all
of them do. It was shown that there is a W [∗] hierarchy in the NP class where
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FPT = W [0]. With the introduction of parameterization into the field of par-
allel computing, some NP-complete and P-complete problems were shown to
have a fixed-parameter parallel algorithm by fixing one (or more) parame-
ter(s). These include the vertex cover problem, the graph genus problem [12],
and the monotone circuit value problem, which all fall into FPPT. Now the
question is what happens if we restrict our attention to P-complete problems:
could it be that the P class also has a hierarchy, say Z[∗], analogous to W [∗] in
the class NP, where FPPT = Z[0]? In fact, we believe such a hierarchy should
exist because the following is true. The MCV problem and the NAND circuit
value problem [22] are both P-complete problems. The first is in FPPT while
the second is not, taking the graph genus as a parameter. Another conceivable
example is the lexicographically first maximal subgraph problem (LFMIS).
Miyano showed that the latter is P-complete even for bipartite graphs with
bounded degree at most 3 in [21]. It would be interesting, and probably not
too difficult, to obtain hardness results showing a problem cannot belong to
FPPT unless some new parameterized parallel-complexity hierarchy collapses.

– Furthermore, there has been an interest in the so-called “gradually intractable
problems” for the class NP. The question here is whether “gradually unparal-
lelizable problems” can be analogously investigated in the class of P-complete.
We suggest involving one or more parameters to characterize the “gradually”
procedure. This would be helpful to understand the intrinsic difficulty of P-
complete problems and to answer the question of whether P = NC, which is
one of the main motivations behind this paper.

Acknowledgments. We wish to thank the anonymous referees for their valuable
comments to improve the quality and presentation of this paper.
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Abstract. We present the first potential function for pairing heaps
with linear range. This implies that the runtime of a short sequence
of operations is faster than previously known. It is also simpler than the
only other potential function known to give constant amortized time for
insertion.

1 Introduction

The pairing heap is a data structure for implementing priority queues introduced
in the mid-1980s [FSST86]. The inventors conjectured that pairing heaps and
Fibonacci heaps [FT84] have the same amortized complexity for all operations.
While this was eventually disproved [Fre99], pairing heaps are, unlike Fibonacci
heaps, both easy to implement and also fast in practice [LST14]. Thus, they are
widely used, while their asymptotic performance is still not fully understood.
Here, we show that a short sequence of operations on a pairing heap takes less
time than was previously known.

1.1 Motivation: Why a Linear Potential Function Is Useful

We begin with a brief review of potential functions. Given a sequence of opera-
tions o1, o2, . . . , om executed on a particular data structure, and an integer i ≥ 0,
a potential function is a function Φ that maps i to a real number Φi. The real
number Φi is called the potential after the ith operation. Given Φ, we define the
amortized time ai of an operation oi as the actual time ti of the operation, plus
the change in potential Φi − Φi−1.

Observe that since ak = tk +Φk −Φk−1, we have tk = ak −Φk +Φk−1. Thus,
the total time taken for the subsequence of consecutive operations from i to j is∑j

k=i tk =
∑j

k=i(ak −Φk +Φk−1) = Φi−1 −Φj +
∑j

k=i ak. From this formula, we
can derive the motivation for our result: namely, that a potential function with
a small range is useful. (When we speak of the range of a potential function, we
mean its maximum value as function of n minus its minimum value. Often the
minimum is zero, and thus the range is simply the maximum value.) To see this,
suppose you have a data structure with n elements, and you perform a sequence
of k operations on it that don’t change the size. If each operation takes O(log n)
amortized time, then the total actual time is bounded by O(k log n) plus the

See [IY16] for the full version of this paper.
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loss of potential. Thus, if the range of the potential function is O(n log n), then
the total time is O(k log n+n log n), but if the range of the potential function is
linear, this is improved to O(k log n+n), which is asymptotically better whenever
k is o(n). Thus, a reduced range of a potential function improves the time bounds
for short sequences that don’t start from an empty data structure.

1.2 Pairing Heaps

A pairing heap [FSST86] is a heap-ordered general rooted ordered tree. That
is, each node has zero or more children, which are listed from left to right, and
a child’s key value is always larger than its parent’s. The basic operation on a
pairing heap is the pairing operation, which combines two pairing heaps into one
by attaching the root with the larger key value to the other root as its leftmost
child. For the purposes of implementation, pairing heaps are stored as a binary
tree using the leftmost-child, right-sibling correspondence. That is, a node’s left
child in the binary tree corresponds to its leftmost child in the general tree, and
its right child in the binary tree corresponds to its right sibling in the general
tree. In order to support decrease-key, there is also a parent pointer which points
to the node’s parent in the binary representation.

Priority queue operations are implemented in a pairing heap as follows:
make-heap(): return null; get-min(H): return H.val; insert(H,x): create a
new node and pair it with the existing root (if present); decrease-key(p, y): let
n be the node p points to, set the value of n’s key to y, and if n is not the root,
detach n from its parent and pair it with the root; delete-min(H): first, we
remove the root. The rest of delete-min proceeds in two stages, known as the first
pairing pass and the second pairing pass. In the first pass, we pair the children
of the old root in groups of two. In the second pass, we incrementally pair the
remaining trees from right to left. Finally, we return the new root. See Fig. 1 for
an example of a delete-min executing on a pairing heap. (Readers familiar with
splay trees may notice that in the binary view, a delete-min resembles a splay
operation.)

All pairing heap operations take constant actual time, except delete-min,
which takes time linear in the number of children of the root. Pairing heaps
naturally support one more operation in constant time: merge. This takes two
independent heaps and pairs them. Unfortunately, this takes amortized linear
time using our potential function.

History. Pairing heaps were originally inspired by splay trees [ST85]. Like splay
trees, they are a self-adjusting data structure: the nodes of the heap don’t store
any information aside from the key value and whatever pointers are needed to
traverse the structure. This is in contrast to, say, Fibonacci heaps [FT84], which
store at each node an approximation of that node’s subtree size. Fibonacci heaps
support delete-min in logarithmic amortized time, and all the other heap opera-
tions in constant amortized time. However, they are complicated to implement,
somewhat bulky, and therefore slow in practice [SV86]. Pairing heaps were intro-
duced as a simpler alternative to Fibonacci heaps, and it was conjectured that
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(f) Final heap after a delete-min.

Fig. 1. Delete-min on a heap where the root has eight children.

they have the same amortized complexity for all operations, although [FSST86]
showed only an amortized logarithmic bound for insert, decrease-key, and delete-
min. The conjecture was eventually disproved when it was shown that if insert
and delete-min both take O(log n) amortized time, an adversary can force
decrease-key to take Ω(log log n) amortized time [Fre99].

Present. Nevertheless, pairing heaps are fast in practice. For instance, the
authors of [LST14] benchmarked a variety of priority queue data structures.
They also tried to estimate difficulty of implementation, by counting lines of
code, and pairing heaps were essentially tied for first place by that metric, losing
to binary heaps by only two lines. Despite (or rather because of) their simplicity,
pairing heaps had the best performance among over a dozen heap variants in
two out of the six benchmarks.

1.3 Previous Work and Our Result

In [Col00, Theorem 3], Cole develops a linear potential function for splay trees
(that is, the potential function ranges from zero to O(n)), improving on the
potential function used in the original analysis of splay trees, which had a range
of O(n log n) [ST85]. As explained above, this allows applying amortized analysis
over shorter operation sequences.

There are several variants of pairing heaps such as [IO14] and [Elm09a], and
one of them also has a potential function that is o(n log n) [IO14]. The main
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Table 1. Various heaps and amortized bounds on their running times. Top: analyses of
pairing heaps. Middle: close relatives of pairing heaps. Bottom: more distant relatives
of pairing heaps. Note: lg = log2.

Result Range Insert Decrease-key Delete-min

Pairing heap [FSST86] Θ(n lgn) O(lgn) O(lgn) O(lgn)

Pairing heap [Pet05] O(n · 4
√

lg lgn) O(4
√
lg lgn) O(4

√
lg lgn) O(lgn)

Pairing heap [Iac00] O(n lgn) O(1) O(lgn) O(lgn)

Pairing heap [This paper] Θ(n) O(1) O(lgn) O(lgn)

Stasko/Vitter [SV86] O(n lgn) O(1) O(lgn) O(lgn)

Elmasry [Elm09a,Elm09b] O(n lgn) O(1) O(lg lg n) O(lgn)

Sort heap [IO14] Θ(n lg lgn) O(lg lg n) O(lg lg n) O(lgn lg lgn)

Binomial heap [Vui78] Θ(lgn) O(1) O(lgn) O(lgn)

Fibonacci heap [FT84] Θ(n) O(1) O(1) O(lgn)

Rank-pairing heap [HST09] Ω(n) O(1) O(1) O(lgn)

theme in all the variants is to create a heap with provably fast decrease-key,
while maintaining as much of the simplicity of pairing heaps as possible.

Our Result. We present a potential function for pairing heaps that is much sim-
pler than the one found for splay trees in [Col00] and also simpler than the only
previously known potential function for pairing heaps that is o(n log n) [Pet05].
Further, it is simpler than the only other potential function known to give con-
stant amortized time for insertion [Iac00], and perhaps more importantly, it is the
first potential function for pairing heaps whose range is O(n), which allows the
use of amortized analysis to bound the run times of shorter operation sequences
than before. In the case of pairing heaps, this bound on the potential function
range is asymptotically the best possible, since the worst-case time for delete-min
is linear, and thus we need to store at least a linear potential to pay for it.

Previous Work. In Table 1, we list the amortized operation costs and ranges of
several potential functions. Each row of the table corresponds to a single analysis
of a specific heap variant. The table is divided into three parts. The top part is
devoted to analyses of pairing heaps. The middle is for variants of pairing heaps,
and the bottom is for heaps that are sufficiently different from pairing heaps
that calling them a variant seems inaccurate. For an extended discussion of this
table, see [Yag16] or [IY16].

2 The Potential Function

Our potential function is the sum of three components. The first is the node
potential, which will give a value to each node. (The total node potential is
the sum of the values for individual nodes.) The second is the edge potential:
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each edge will have a potential of either 0 or −7. (The total edge potential is
likewise the sum of the values of individual edges.) The third we shall call the
size potential. We begin with explaining the concept of the sticky size, since we
will need it to define all three components. The size n of a heap is how many
elements it currently stores. The sticky size N is initially 1. After every heap
update, the sticky size is updated as follows: if n≥ 2N , then N is doubled, and
if n≤ N/2, then N is halved. The sticky size is the only aspect of the potential
function which is not computable simply from the current state of the heap but
is based on the history of operations.

The size potential is simply 900|N − n|.
The node potential is slightly more complicated. Given a node x, let |x| be

the size of its subtree (in the binary view). Its left child in the binary view is
xL and its right child is xR. The node potential φx of x depends on |xL| and
|xR|. Note that |x| = |xL| + |xR| + 1. Let lg = log2. There are three cases. If
|xL| > lg N and |xR| > lg N , then x is a large node and φx = 400 + 100 lg |x|.
If |xL| ≤ lg N < |xR|, then x is a mixed node and φx = 400 + 100 |xL|

lgN lg |x|.
(The case where |xR| ≤ lg N < |xL| is symmetric.) Finally, if |xL| ≤ lg N and
|xR| ≤ lg N , then x is a small node and φx = 0.

If the right child of a large node (in the binary view) is also large, then the
edge potential of the edge connecting them is −7. All other edges have zero edge
potential.

We define the actual cost of an operation to be the number of pairings per-
formed plus one. Through most of the analysis, it will seem that the node poten-
tial is a hundred times larger than what is needed. Near the end, we will see that
we use the excess to pay for mixed-large pairings during a delete-min.

3 The Analysis

In the proofs below, we assume for convenience that the heap has at least four
elements, so we can say things like “the root of the heap is always mixed, since
it has no siblings and n − 1 descendants in the general representation,” which
assumes that n − 1 > lg N , which may not be true for heaps with less than four
elements. If we need stronger assumptions on the size, we will call those out
explicitly.

Lemma 1. The potential of a pairing heap is O(N) = O(n).

Proof. The size potential is linear by definition. The edge potential is slightly
negative: most edges have potential zero, the exception being those edges that
connect two large nodes. If there are L large nodes, the total edge potential may
be as low as −7(L − 1). But the node potential is at least 400L, so the edge
potential can never make the heap potential negative.

We now turn to the node potential. The small nodes have potential zero.
Observe that the lowest common ancestor (in the binary representation) of two
large nodes must itself be large. This immediately implies that if the left subtree



494 J. Iacono and M. Yagnatinsky

(in the binary view) of a large node contains any large nodes, then this subtree
contains a unique large node which is the common ancestor of all large nodes
in this subtree. (And likewise for the right subtree.) Thus, it makes sense to
speak of the tree induced by the large nodes, which is the binary tree obtained
by taking the original pairing heap and performing the following two operations:
first, erase all small nodes (they have no mixed or large descendants). After this,
all mixed nodes have only one child, so they form paths. Second, contract these
paths to edges. Now only large nodes remain, and ancestor-descendant relations
are preserved. (One thing that is not preserved is the root: in the original tree,
the root is a mixed node.) If a large node has less than two children in this
shrunken tree, call it a leaf-ish large node, and otherwise call it an internal large
node. In the original tree, a leaf-ish large node x has a left and a right subtree
(in the binary representation), at least one of which has no large nodes in it: call
that a barren subtree of x; see Fig. 2.

Fig. 2. Barren subtrees are marked
by dashed bubbles; small nodes are
marked with hollow red circles, large
nodes are marked with bold black
disks, and mixed nodes are green.
(Color figure online)

Let x and y be two leaf-ish large nodes,
and observe that their barren subtrees are
disjoint, even if x is an ancestor of y. We
say that a leaf-ish large node owns the
nodes in its barren subtree. Observe that,
in the binary view, every leaf-ish large node
has at least lg N descendants which are
not owned by any other leaf-ish large node,
which implies that there are at most n/ lg N
leaf-ish large nodes. There are more leaf-
ish large nodes than there are internal large
nodes (since a binary tree always has more
leaf-ish nodes than internal nodes, as can be
shown by induction), so there are at most
2n/ lg N large nodes in total, each of which
has a potential of at most 100 lg n + 400 =
100 lg N +O(1), so the total potential of all
large nodes is at most 200n + o(n).

This leaves the mixed nodes. Every
mixed node has a heavy subtree with more
than lg N nodes in the binary view, and a
possibly empty light subtree with at most
lg N nodes. Since the light subtree contains
no mixed nodes, every node in the heap is in
the light subtree of at most one mixed node;
that is, the light subtrees of different nodes
are disjoint. If x is a mixed node and Lx is
the size of its light subtree, the node potential of x is φx = 400+100 Lx

lgN lg |x| ≤
400+100 Lx

lgN lg n ≤ 400+100 Lx

lgN lg 2N = 400+100 Lx

lgN +100Lx ≤ 400+100 Lx

lg 4+
100Lx = 400 + 150Lx.
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Summing the potential over all mixed nodes, we have
∑

x(400 + 150Lx) =
400n+150

∑
x Lx. Since all the light subtrees are disjoint,

∑
x Lx is at most the

heap size: n. Thus, the combined potential of all mixed nodes is 550n, and that
of all nodes is 750n + o(n). ��

We now analyze the five heap operations. All operations except delete-min
take constant actual time. The get-min operation does not change the heap so
its amortized time is also obviously constant. The make-heap operation creates a
new heap with a potential of 900, due to the size potential. This leaves insertion,
decrease-key, and deletion, which we handle in that order.

Lemma 2. Insertion into a pairing heap takes O(1) amortized time.

Proof. The actual time is constant, so it suffices to bound the change in potential.
We first bound the potential assuming N stays constant during the execution
of the operation. Note that we need not worry about edge potentials here, since
inserting a new node can not disturb any existing edges, and creates only one
new edge, and the new node is never large, since if it becomes the root it will
have no siblings in the general view, and if it does not become the root then it
will have no children in the general view. (In the binary view this corresponds
to having no right child or no left child.)

There are only two nodes whose node potentials change, the new node and
the old root. If the old root has a larger key value than the new node, then the
new node becomes the root. They both become mixed nodes with a potential
of 400. If the new node is bigger than the old root, then the old root still has
a potential of 400, and the new node becomes a mixed node, because it has no
children in the general view, and thus also has a potential of 400. Thus, if N
does not change, the amortized cost is constant.

However, N could increase to the next power of two. If it does, some mixed
nodes may become small and some large nodes may become mixed or even small.
These are decreases, so we can ignore them. Also, all mixed nodes that remain
mixed will have their potential decrease. What we have to worry about is the
edge potential. However, since there are only O(n/ log n) large nodes, the total
edge potential can only increase by an amount that is o(n). Meanwhile, if N
increases, its new value is the new heap size n, while the old value was n/2, so
we release 450n units of size potential. The increase in potential if N doubles is
thus O(n/ log n) − Θ(n), which is negative for large enough n. How large must
n be for this to hold? There were previously at most 2n lg(n/2) large nodes,
and thus at most that many edges with negative edge potential. Thus, we need
7 · 2n lg(n/2) < 450n. Solving for n yields 232 < 225 lg n. Thus, the asymptotic
statement actually holds for all n > 3. Since a heap that small contains no large
nodes at all, the statement holds unconditionally. ��

The following observation will be useful when we analyze decrease-key.

Lemma 3. A node’s potential is monotone nondecreasing in the size of both of
its subtrees (in the binary view) if n is fixed.
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Proof. We must show that increasing the size of the left or right sub-tree of
a node never causes its potential to drop. This follows immediately from sev-
eral simple observations. As long as a node is small, its potential is identically
zero and thus monotone. Since the potential is always non-negative, transi-
tioning from small to non-small can only increase the potential. Observe that
the formulas for mixed nodes and large nodes can be combined, as follows:
400 + 100min

(
1, min(|xL|,|xR|)

lgN

)
× lg(|xL| + |xR| + 1). This formula is monotone

in |xL| and |xR|, by inspection. ��
Lemma 4. Decrease-key in a pairing heap takes O(log n) amortized time.

Proof. The actual time is constant, so it suffices to bound the potential change.
There are three types of nodes that can change potential: the old root, the
decreased node, and the decreased node’s ancestors in the binary representation.
The ancestors’ potential can only go down, since their subtree size is now smaller
and potential is a monotone function of subtree size. This leaves just two nodes
that might change potential: the root and the node that had its key decreased.
But the potential of a node is between zero and 400 + 100 lg n at all times.
This leaves the edge potential and the size potential. The size potential does
not change. Only O(1) edges were created and destroyed, so the edge potential
change due to directly affected edges is negligible. However, it is possible that
there is a large indirect effect: some large ancestors of the decreased node might
transition from large to mixed, and if those nodes had an incident edge with
negative potential, its potential is now zero. Fortunately for us, at most lg n +
O(1) edges can undergo this transition. To see this, let x be the decreased node.
The parent of x may transition from large to mixed as a result of losing x, but it
can’t transition from large to small, because losing x can only affect the size of
one of its subtrees, not both. Likewise, x’s grandparent may transition from large
to mixed, as well as x’s great-grandparent, and x’s great-great-grandparent =
great2-grandparent, and so on. However, x’s greatlg n-grandparent still has more
than lg n descendants in both subtrees despite losing x, and so will not undergo
this transition. Thus, the change in edge potential is O(log n). ��
Lemma 5. Delete-min in a pairing heap takes O(log n) amortized time.

Proof. We break the analysis into two parts. Delete-min changes n, which means
it may change N , which may affect the size potential, and the node potential, and
the edge potential. The first part of our analysis bounds the change in potential
due to changing N , and the second part deals with the delete-min and associated
pairings.

Changing N may change small nodes into mixed or even large, and likewise
it may change mixed nodes into large. In the case of the edge potentials, this
works in our favor, since the edge potentials can only go down when then the
number of large nodes increase.

If the new value of N is n and the old value was 2n, then we release 900n
units of size potential, while in Lemma 1 we showed that the sum of the mixed
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and large potentials is at most 750n + o(n). In fact, we can redo the calculation
of that lemma slightly more precisely now, by taking advantage of the fact that
we now have N = n. There are at most 2n

lgn large nodes, each with a potential
of at most 400 + 100 lg n, so the total potential of all large nodes is 200n + 800n

lgn .
We then add the mixed nodes for a total of 750n + 800n

lgn . Thus, we release
enough size potential if 900 − 750 = 150 > 800

lgn . If the heap contains at least
64 items, this inequality holds, since 150 · 6 = 900 > 800. Could it be that for
small heaps, we do not release enough size potential to pay for changing N?
If the heap has size 8 or less, then there are no large nodes, and we are then
also guaranteed to release enough size potential. Since the size of the heap must
be a power of two when N changes, this leaves the heap sizes of 16 and 32 in
question. A heap of size 16 has at most one large node, so the relevant inequality
is 900 ·16 > 550 ·16+400+100 lg 16. Finally, a heap of size 32 has at most three
large nodes, so we need 350 · 32 > 3(400 + 100 lg 32). It turns out that both of
these inequalities hold; we omit the arithmetic calculations.

It remains to analyze the cost of the pairings performed. The number of pair-
ings performed in the second pass is either k or k −1. We will show that the sec-
ond pass increases the potential by O(log n) and that the first pass increases the
potential by O(log n)−2k, and thus the amortized cost of delete-min is O(log n).

If the root has c > 0 children, then a delete-min performs c − 1 pairings and
thus takes c units of actual time. (If the root has c = 0 children, we are doing
delete-min on a heap of size 1, which is trivial.) The loss of the root causes a
potential drop of 400. Notice first that when two nodes are paired, this does not
affect the subtree sizes of any other nodes. There are several cases to consider,
depending on the sizes of nodes that get paired, and also depending on whether
it is the first or second pairing pass. To avoid confusion: whenever we use the
notation |x| to refer to the size of a node x, if x changed size as a result of
the pairing we are analyzing, we mean its initial size. Finally, when we pair two
nodes, the node that becomes the parent of the other is said to have won the
pairing, while the other is said to have lost it.

We give a brief sketch of the proof in this paragraph. There are six cases to
consider, depending on the sizes of the nodes involved in the pairing. If both
nodes are large, we use the classic analysis; if at least one node is small, we take
advantage of the fact that there are few such pairings; if both nodes are mixed,
then the loser is small and 400 units of potential are released; finally, if there are
many medium-large pairings, then they must release some edge potential.

We now establish some vocabulary we will use throughout the analysis. Every
pairing performed during the delete-min will be between two adjacent siblings
(in the general view) x and y, where x is left of y; see Fig. 3. (In the binary view,
y is the right child of x.) We use xL to denote x’s left subtree (in the binary
view), yL for y’s left subtree, and yR for y’s right subtree (which is the subtree
containing the siblings right of y in the general view).

Finally, let kML denote the number of pairings performed in the first pass
of a delete-min that involve one mixed node and one large node, and let ΔφML

denote the increase in potential as a result of those pairings. We also define kLL,
ΔφMM and so on, analogously.
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Fig. 3. A step of the first pairing pass (binary view).

Large-Large. We start with
a large-large pairing. In
this case, the potential
function is the same as
the classic potential of
[FSST86], and the analysis
is nearly identical.

First Pass. We show that
ΔφLL ≤ −393kLL+O(log n).
We will use the fact that
ab≤ 1

4 (a+b)2. (Proof: ab≤ 1
4 (a+

b)2 ⇐⇒ 4ab≤ (a + b)2 =
a2 +b2 +2ab ⇐⇒ 0≤ a2 +
b2 −2ab = (a− b)2, and the
square of a real number is never negative.)

We know that |yR| > 0, for otherwise y could not be large (see Fig. 3). The
initial potential of x is 400 + 100 lg |x| = 400 + 100 lg(|xL| + 2 + |yL| + |yR|), and
the initial potential of y is 400 + 100 lg |y| = 400 + 100 lg(|yL| + 1 + |yR|). The
potential of x and y after the pairing depends on which of them won the pairing,
but the sum of their potentials is the same in either case: 800 + 100 lg(|xL| +
|yL| + 1) + 100 lg(|xL| + |yL| + 2 + |yR|). The change P in node potential is P =
100 lg(|xL|+|yL|+1)−100 lg(|yL|+|yR|+1) < 100 lg(|xL|+|yL|+1)−100 lg |yR| =
100[lg(|xL| + |yL| + 1) + lg |yR|] + 100[− lg |yR| − lg |yR|]≤ 100 lg 1

4 (|xL| + |yL| +
1 + |yR|)2 − 200 lg |yR| < 100 lg 1

4 |x|2 − 200 lg |yR| = 200 lg |x| − 400 − 200 lg |yR|.
We now sum the node potential change over all large-large pairings done

in the first pass. Denote the nodes linked by large-large pairings during this
pass as x1, . . . , x2k, with xi being left of xi+1. As a notational convenience, let
Li = 200 lg |xi|. Also, let x′

i denote the right subtree of xi. Note that for odd
i, we have x′

i = xi+1, but for even i, we don’t, since there is no guarantee that
all large nodes are adjacent to each other. If we also define L′

i = 200 lg |x′
i|,

then by the calculation above, the ith pairing raises the potential by at most
L2i−1 − 400 − L′

2i. If all large pairings done in the first pass were adjacent, we’d
have L′

2i = L2i+1. Since they need not be, we have L′
2i ≥ L2i+1. Thus, we have

a telescoping sum: ≤ ∑k
i=1(L2i−1 − 400 − L′

2i)≤ ∑k
i=1(L2i−1 − 400 − L2i+1) =

−400k + L1 − L2k+1 ≤ − 400k + L1 ≤ − 400k + 200 lg n.
We should also consider the effects of edge potential. In the course of a

pairing, five edges are destroyed and five new edges are created. Out of these
five, three connect a node to its right child (in the binary view) and thus may
have non-zero potential. In the case of a large-large pairing, if the edge that
originally connected x to its parent p had negative potential, then the edge that
connects the winner of the pairing to p also has negative potential. Likewise,
if the edge that connects y to yR had negative potential, then the edge that
connects the winner to yR does too. However, the edge that connected x to y
had negative potential, while the edge that connects the loser to its new right
child might not.
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Thus, each pairing releases at least 400 units of node potential and costs at
most 7 units of edge potential, and therefore ΔφLL ≤ − 393kLL + O(log n).

Second Pass. The second pairing pass repeatedly pairs the two rightmost nodes.
Therefore, one of them has no right siblings in the general representation, which
means in the binary representation its right subtree has size zero, which implies
that it is not a large node. Hence, in the second pairing pass there are no large-
large pairings.

Mixed-Mixed. Since x and y are initially mixed, any incident edge has poten-
tial zero, so any edge potential change would be a decrease, and thus we can
afford to neglect the edge potentials.

First Pass. We will show that ΔφMM ≤ − 150kMM + O(log n). There are two
cases: (1) x and y both have small left subtrees in the binary view, or (2) either x
or y has a large left subtree in the binary view. We first handle the second case:
at least one of the two nodes being paired has a large left subtree and hence a
small right subtree. The left-heavy node can not be x, because y is contained in
the right subtree of x, and y can not be mixed if the right subtree of x is small.
Thus we conclude that y’s right subtree is small. This can happen, but it can
only happen once during the first pass of a delete-min, because in that case all
right siblings of y in the general view will be small. An arbitrary pairing costs
only O(log n) potential, so this case can not contribute more than O(log n) to
the cost of the first pass.

We now turn to case (1), where x and y both have small left subtrees.
The initial potential of x is 400 + 100 |xL|

lgN lg |x|, and the initial potential of y

is 400 + 100 |yL|
lgN lg |y|. Observe that whichever node loses the pairing will have

left and right subtrees with sizes |xL| and |yL|. Thus, both its subtrees will be
small, and so the loser becomes a small node with a potential of zero. There
are two sub-cases to consider: (a) the winning node remains mixed, or (b) it
becomes large. We first consider case (a). Since the winner remains mixed, its
new potential is 400 + 100 |xL|+|yL|+1

lgN lg |x|. We will make use of the fact that
|yL| + 1 < lg N , since the winner is mixed. The increase P in potential is:
P = 400 + 100 |xL|+|yL|+1

lgN lg |x| − (400 + 100 |yL|
lgN lg |y|) − (400 + 100 |xL|

lgN lg |x|) =

−400 + 100 |yL|+1
lgN lg(|xL| + 1 + |y|) − 100 |yL|

lgN lg |y| ≤ − 400 + 100 |yL|+1
lgN lg(lg N +

1 + |y|) − 100 |yL|
lgN lg |y| ≤ − 400 + 100 |yL|+1

lgN lg(|yR| + |y|) − 100 |yL|
lgN lg |y| <

−400+100 |yL|+1
lgN lg(|y|+|y|)−100 |yL|

lgN lg |y| = −400+100 |yL|+1
lgN +100 1

lgN lg |y| <

−400 + 100 + 100 1
lgN lg n = −300 + 100 1

lgN lg n < −300 + 100 1
lgN lg 2N =

−200 + 100
lgN ≤ − 200 + 100

lg 4 = −150. Thus, if the node that wins the pairing
remains mixed, then at least 150 units of potential are released.

We now turn to case (b) where the node that wins the pairing becomes
large. This can only happen if |xL| + |yL| + 1 > lg N . In that case, the increase
in potential is P = 400 + 100 lg |x| − 100(4 + |yL|

lgN lg |y|) − 100(4 + |xL|
lgN lg |x|) =
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−400+100 lg |x|−100 |yL|
lgN lg |y|−100 |xL|

lgN lg |x| < −400+100 lg |x|−100 |yL|
lgN lg |y|−

100 |xL|
lgN lg |y| = −400 + 100 lg |x| − 100 |xL|+|yL|

lgN lg |y| ≤ − 400 + 100 lg |x| −
100 lg |y| = −400+100 lg(|xL|+1+|y|)−100 lg |y| ≤ −400+100 lg 2|y|−100 lg |y| =
−400+100(lg |y|+1)−100 lg |y| = −300, and thus at least 300 units of potential
are released.

Second Pass. In the second pass, we are guaranteed that |yR| = 0. The ini-
tial potential of y is thus 400. The initial potential of x depends on which
of its subtrees is small. But in fact we know that x is right-heavy, or else y

could not be mixed. Thus the initial potential of x is 400 + 100 |xL|
lgN lg |x| =

400 + 100 |xL|
lgN lg(|xL| + 2 + |yL|). Whichever node wins the pairing will have a

final potential of 400 (because it will have no right siblings). Whichever node
loses the pairing will have a final potential of 400 + 100 |xL|

lgN lg(|xL| + 1 + |yL|).
Thus, there is no potential gain.

Mixed-Small and Large-Small. These types of pairings can only happen
once during the first pass. To see this, observe that, in the general view, all right
siblings of a small node are small. Therefore we have kMS+kLS < 2. An arbitrary
pairing costs only O(log n) potential, so ΔφMS + ΔφLS is O(log n). The winner
of such a pairing is no longer small, so this type of pairing can happen only once
during the second pass as well.

Small-Small. We show that the number kSS of small-small pairings performed
in both passes is O(log n), and that the potential increase ΔφSS caused by said
pairings is also O(log n). In one pass, there are fewer than lg N small-pairings,
because a small node has few right siblings. By the same logic as for mixed-
mixed, the loser of a small-small pairing remains small. The winner may remain
small, in which case the pairing costs no potential. Or the winner may become
mixed. However, that can only happen once per pass. For if the winner is mixed,
that means that the combined subtree sizes of the two nodes exceeded lg N ,
which means none of the left siblings were small. Thus, in the first pass, only
the first small-small pairing may have the winner become mixed. Thus, ΔφSS is
O(log n).

Mixed-Large. We show that the heap potential can increase by at most
O(log n) as a result of all mixed-large pairings performed. We begin with the
second pass this time, to get the easy case out of the way first. The mixed-large
pairings of the second pass cause no potential increase at all.

Second Pass. In the second pass, we are guaranteed that |yR| = 0. The initial
potential of y is thus 400. The initial potential of x is 400 + 100 lg |x| = 400 +
100 lg(|xL|+2+|yL|). Whichever node wins the pairing will have a final potential
of 400 (because it will have no right siblings). Whichever node loses the pairing
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will have a final potential of 400+100 lg(|xL|+1+|yL|). Thus, there is no increase
in node potential. At first it seems that the edge potential could increase, for
even though |yL| ≥ lg N (and likewise for xL), there is no guarantee that yL (or
xL) is a large node. On the other hand, there is also no guarantee that the parent
of x in the binary view is not a large node. Thus, it is possible that we lose an
edge with negative potential and have nothing to replace it with. However, this
can only happen once, because the loser of such a pairing becomes a large node
and will play the role of yL in the next pairing, and once any pairing has a large
yL, all subsequent ones will too.

First Pass. We have three cases to consider, depending on which of |xL|, |yL|,
or |yR| is small. The case where |yR| ≤ lg N is easy to dispense with, as it can
only happen once during a delete-min. Observe that in the other two cases,
the edge potential can’t increase, because the winner of the pairing is large. If
|yL| ≤ lg N , the initial potential of x is 400 + 100 lg |x|, and the initial potential
of y is 400 + 100 |yL|

lgN lg |y|. After the pairing, the loser is a mixed node with

potential 400 + 100 |yL|
lgN lg(|xL| + 1 + |yL|). The winner is large with a potential

of 400 + 100 lg |x|. Thus, the increase P in potential is P = 100 |yL|
lgN lg(|xL| + 1 +

|yL|)−100 |yL|
lgN lg |y| = 100 |yL|

lgN [lg(|xL|+1+|yL|)−lg(|yL|+1+|yR|)]≤ 100[lg(|xL|+
1 + |yL|) − lg(|yL| + 1 + |yR|)] < 100[lg |x| − lg(|yL| + 1 + |yR|)] < 100[lg |x| −
lg |yR|]. Observe that when we sum over all such mixed-large pairings, we get a
telescoping sum of the same form as the one that arose in the analysis of large-
large pairings, and thus the combined potential increase for all such pairings is
O(log n).

We now turn to the last case, where |xL| ≤ lg N . The initial potential of x

is now 400 + 100 |xL|
lgN lg |x|, and that of y is 400 + 100 lg |y|. The potential of

the winner of the pairing is 400 + 100 lg |x|, and the potential of the loser is
400+100 |xL|

lgN lg(|xL|+ |yL|+1), so the increase P in potential is P = 100 lg |x|+
100 |xL|

lgN lg(|xL| + |yL| + 1) − 100 lg |y| − 100 |xL|
lgN lg |x| < 100 lg |x| − 100 lg |y| <

100 lg |x| − 100 lg |yR|. Summing over all such mixed-large pairings, this sum
again telescopes in the same way as in the large-large case. Thus, all mixed-large
pairings combined cost only O(log n) potential. However, unlike small-small, the
actual cost can be far greater, and unlike large-large, we may not release enough
node potential to pay for it. What saves us is the edge potentials.

Call a mixed-large pairing normal if |yR| > lg N . Observe that during the first
pass, at most one mixed-large pairing can be abnormal, because if |yR| ≤ lg N ,
all its right siblings (in the general view) are small nodes. We show that three
consecutive normal mixed-large pairings release at least 7 units of potential:
enough to pay for those three pairings, with 4 units left over. First, observe
that the winner of a normal mixed-large pairing must be large. Thus, for every
three consecutive normal mixed-large pairings, at least two large siblings become
adjacent that were not adjacent before, and thus some edge has its potential go
from 0 to −7. (We must of course be careful that this is not offset by some other
edge nearby undergoing the opposite transition, but indeed, we are safe here,
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because the winner of the pairing is large.) Thus, even though we don’t release
enough node potential to pay for all mixed large pairings, there is hope that if
there are so many of them that they tend to be consecutive, the edge potentials
can pay for them instead, while if there are not so many that they tend to be
consecutive, perhaps they do not dominate the cost of the first pass. We will
soon see that this is indeed the case.

Bringing it All Together. We can now calculate the total amortized runtime
of delete-min. The actual work done in the second pass is the same as that of the
first pass, and the second pass causes at most a logarithmic increase in potential.
Thus, we must show that Δφ ≤ −2k+O(log n), where k is the number of pairings
done by the first pass and Δφ is the change in potential due to the first pass. We
have k = kLL + kMM + kSS + kML + kMS + kLS ≤ kLL + kMM + lg N + kML + 1 =
kLL+kMM+kML+O(log n). The increase in potential from the first pass is Δφ =
ΔφLL +ΔφMM +ΔφSS +ΔφML +ΔφMS +ΔφLS ≤ O(log n)−393kLL −150kMM.
Summing the actual work with the node potential change, we obtain O(log n) −
392kLL−149kMM+kML ≤ O(log n)−149(kLL+kMM)+kML. Thus, the question is
whether most of those terms cancel, leaving us with a O(log n)−k amortized cost.
There are two cases to consider, depending on how large kML is. If at most 74

75
of all

pairings done are mixed-large (that is, kML < 74
75
k, or rather kML < 74

75
(kLL+kMM+kML),

or equivalently kML < 74kLL + 74kMM), then the amortized cost of the first pass is at
most O(log n)−149(kLL +kMM)+kML ≤O(log n)−149(kLL +kMM)+74(kLL +kMM) =
O(log n) − 74(kLL + kMM) + kLL + kMM ≤O(log n) − kML + kLL + kMM ≤O(log n) − k.
Since the second pass only increases the potential by O(log n) and its actual cost is k,
the cost for the whole delete-min is O(log n) − k + k = O(log n).

That leaves the case where more than 74
75

of parings are mixed-large ones. In fact,
we will use the weaker assumption that at least 2021 of the pairings in the first pass
are mixed-large. We divide the pairings into groups of three: the first three pairings,
the second three, and so on. If a group consists of only mixed-large pairings, then it
releases 7 units of potential, for a total amortized cost of −4. There are k/3 groups
(give or take divisibility by three), and all but k/21 of those groups consist entirely of
mixed-large pairings. These k/3 − k/21 = 6k/21 = 2k/7 groups release 8k/7 units of
spare potential. The remaining k/21 groups require k/7 units of potential to pay for
them, leaving k units of spare potential, which we use to pay for the second pairing
pass. ��

4 Final Words

It would be interesting to extend this potential function to so that merging two pairing
heaps is fast. The amortized time using this potential function is, in the worst case,
linear, because the two heaps might have sizes that are adjacent powers of 2 (e.g., 1024
and 2048), and thus the size potential of the new heap is linear in the combined size
of the old heap, whereas the size potentials of the old heaps are both zero.

It would also be interesting to see whether a similar potential function can be made
to work for splay trees; the one presented here does not. In particular, a splay where
every double-rotation is a zig-zag does not release enough potential if the node x being
accessed is large and all nodes on the path to x are mixed, so the amortized cost of
the splay would be super-logarithmic.
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Abstract. A new type of sequences called left-child sequences
(LC-sequences for short) was recently introduced by Wu et al. [19]
for representing binary trees. In particular, they pointed out that such
sequences have a natural interpretation from the view point of data struc-
ture and gave a characterization of them. Based on such a characteriza-
tion, there is an algorithm to generate all LC-sequences of binary trees
with n internal nodes in lexicographic order. In this paper, we extend our
study to the ranking and unranking problems. By integrating a measure
called “left distances” introduced by Mäkinen [8] to represent binary
trees, we develop efficient ranking and unranking algorithms for LC-
sequences in lexicographic order. With a help of aggregate analysis, we
show that both ranking and unranking algorithms can be run in amor-
tized cost of O(n) time and space.

Keywords: Binary trees · Left-child sequences · Lexicographic order ·
Ranking algorithms · Unranking algorithms · Amortized cost

1 Introduction

Exhaustively generating a class of combinatorial objects is an important research
topic. This is due to many applications in computer science such as combinatorial
group testing, algorithm performance analyzing, and counterexample searching.
As usual, combinatorial objects are encoded by using integer sequences so that
all sequences are generated in a particular order, such as the lexicographic order
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[3,13,27,28] or a Gray-code order [12,14]. For algorithmic efficiency, generations
in lexicographic order are demanded to run in constant amortized time (CAT for
short) [1,15]. By contrast, for Gray-code order, each generation is demanded to
take a constant time (i.e., the so-called loopless algorithms defined by Ehrlich [2]
and see [6,17–19,24,26] for more references).

Given a specific order of objects, a ranking algorithm is a function that deter-
mines the rank of a given object in the generated list, and an unranking algorithm
is one that produces the sequence of object corresponding to a given rank. Effi-
cient ranking and unranking are important and useful for storing and retrieving
elements in a class of combinatorial objects. Moreover, these techniques can be
extended to the uses of database indexing, data compression and data encryp-
tion [4,10].

Since binary trees are one of the most fundamental data structures in com-
puter science, many types of integer sequences have been introduced to encode
binary trees [5,9]. In addition, there exist many algorithms for generating binary
tree sequences, see e.g. [7,11,12,17–19,23]. Also, for ranking and unranking
binary tree sequences and their generalizations, we refer to [3,16,20–22,25].
Recently, Wu et al. [19] proposed a loopless algorithm associated with tree rota-
tions for simultaneously generating four types of binary tree sequences. In par-
ticular, they suggested two new types of sequences called left-child sequences
(LC-sequences for short) and their mirror images called right-child sequences
(RC-sequences for short). It is the practice to implement binary trees by using
structure pointer representation so that nodes in a tree are allocated by struc-
tures and children of nodes are accessed through pointers. Accordingly, Wu et
al. [19] claimed that LC- and RC-sequences were inspired by such a natural
structure representation of binary trees. From then on no further research is
devoted to the study of LC- and RC-sequences. In this paper, we are inter-
ested to make an exploration on this topic. By integrating a measure called
left-distances sequences (LD-sequences for short) introduced by Mäkinen [8] to
represent binary trees, we develop efficient algorithms for ranking and unranking
LC-sequences of binary trees in lexicographic order. By symmetry, a similar way
can develop algorithms for RC-sequences.

The rest of this paper is organized as follows. Section 2 formally gives the
definitions of LC-sequences and LD-sequences and shows the correspondence
between them. Section 3 provides a lexicographic generation of LC-sequences
and introduces a coding trees structure for representing such a generated list.
According to the structure properties of coding tree, Sects. 4 and 5 respectively
present our ranking and unranking algorithms and show the correctness. Finally,
concluding remarks are given in the last section.

2 Preliminaries

2.1 Left-Distance Sequences and Left-Child Sequences

In the early stage, Mäkinen [8] used a measure called left distance to represent a
binary tree. For a binary tree T , a left-distance sequence (LD-sequence for short)
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of T , denoted by d(T ) = (d1, d2, . . . , dn), is an integer sequence such that the
term di for each node i ∈ T is recursively defined as follows:

di =

⎧
⎪⎨

⎪⎩

0 if i is the root of T;
dp(i) if i is a left child;
dp(i) + 1 if i is a right child,

where p(i) stands for the parent of node i in T . For instance, the LD-sequence
of the binary tree shown in Fig. 1 is d(T ) = (0, 0, 1, 2, 3, 3, 4, 3, 1). It is easy to
observe that every node lying on the left arm of T has left distance 0. Moreover,
for a node i, every node lying on the left arm of Ri has left distance di + 1.
Mäkinen [8] also characterized an integer sequence (d1, d2, . . . , dn) to be an LD-
sequence if and only if the following conditions are fulfilled: d1 = 0 and 0 � di �
di−1 + 1 for 2 � i � n.

Fig. 1. A binary tree T with d(T ) = (0, 0, 1, 2, 3, 3, 4, 3, 1) and c(T ) =
(0, 1, 0, 0, 0, 5, 0, 6, 3).

Wu et al. [19] recently introduced a new type of sequences called left-child
sequence (LC-sequence for short) to represent binary trees. For a binary T with
n internal nodes labeled by 1, 2, . . . , n in inorder, the LC-sequence of T , denoted
by c(T ) = (c1, c2, . . . , cn), is an integer sequence so that the term ci, 1 � i � n,
is defined as follows:

ci =

{
0 if the left child of i is a leaf;
j if j is the left child of i in T.

For instance, the LC-sequence of the binary tree T shown in Fig. 1 is c(T ) =
(0, 1, 0, 0, 0, 5, 0, 6, 3). Wu et al. [19] also characterized LC-sequences as follows.

Theorem 1. Let c = (c1, c2, . . . , cn) be an integer sequence. Then, c is the LC-
sequence of a binary tree T with n internal nodes if and only if the following
conditions are fulfilled for all i ∈ {1, 2, . . . , n}: (i) 0 � ci < i and (ii) cj = 0 or
cj > ci for all ci < j < i.
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2.2 Sequences Transformation

Given a binary tree T , we now provide a linear time transformation between
c(T ) and d(T ). Before this, we need some auxiliary properties.

Lemma 1. Let T be a binary tree and i ∈ T an internal node. Then

di =

⎧
⎪⎨

⎪⎩

0 if i = 1;
di−1 + 1 if i � 2 and ci = 0;
dci otherwise.

Proof. We may imagine that T is the right subtree of a dummy node numbered
by 0 and let d0 = −1. Suppose that the node i occurs in the left arm of a subtree
Rj . If ci = 0, then the left child of i must be a leaf. In this case, since all nodes
of T are numbered in inorder, we have i = j + 1. Since every node lying on the
left arm of Rj has left distance dj + 1, it implies that di = dj + 1 = di−1 + 1. In
particular, if i = 1, then di = 0. Also, for a node i with ci �= 0, it is clear that di
is the same as the left distance of its left child. Thus, di = dci . ��
Lemma 2. Let T be a binary tree and i ∈ T an internal node. Then

ci =

{
0 if i = 1 or di > di−1;
max{j ∈ T : dj = di for j < i} otherwise.

Proof. Since all nodes of T are numbered in inorder, it is clear that c1 = 0.
For i > 1, if di > di−1, then the node i is the leftmost node in the left arm of
Ri−1. In this case, since the left child of i is a leaf, it follows that ci = 0. We
now consider di � di−1 and let t = max{j ∈ T : dj = di for j < i}. If di = di−1,
then i − 1 must be the left child of i, and the right child of i − 1 is a leaf. Thus,
ci = i − 1 = t. If di < di−1, then i − 1 ∈ Li and the node numbered by t is the
left child of i, and thus ci = t. ��
Based on Lemmas 1 and 2, linear time transformations between LC-sequences
and LD-sequences are shown in Fig. 2. Therefore, we have the following theorem.

Fig. 2. Linear time transformations between LC- and LD-sequences.

Theorem 2. Transformations between an LC-sequence and an LD-sequence of
length n can be done in O(n) time.
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3 Lexicographic Generation and Coding Tree Structure

It is well-known that the number of binary trees with n internal nodes is totally
1

n+1

(
2n
n

)
. There is a systematic way to depict all binary tree sequences by use

of coding trees [19]. A coding tree Tn is a rooted tree consisting of n levels
such that every node is associated with a label and the full labels along a
path from the root to a leaf in Tn represent the sequence of a binary tree
with n internal nodes. Figure 3 demonstrates the coding tree T4 with respect
to LC-sequences and LD-sequences, where each node x in the ith level of the
tree is labeled by ci/di. For instance, labels in the left arm (respectively, right
arm) of T4 represent the right-skewed tree with LC-sequence (0, 0, 0, 0) and LD-
sequence (0, 1, 2, 3) (respectively, left-skewed tree with LC-sequence (0, 1, 2, 3)
and LD-sequence (0, 0, 0, 0)), where we omit the drawing of leaves in the cor-
responding tree. In this paper, we consider a specific coding tree Tn in which
all LC-sequences of binary trees are emerged from left to right in lexicographic
order (e.g., see T4 in Fig. 3). Although the list of LC-sequences produces a lexi-
cographic order, it should be noted that the corresponding list of LD-sequences
does not produce a reverse lexicographic order.

Fig. 3. A coding tree T4 for representing LC-sequences and LD-sequences.

3.1 Generating LC-Equences in Lexicographic Order

According to the characterization of LC-sequences described in Theorem 1, we
now propose an algorithm to generate all LC-sequences of binary trees with n
internal nodes in lexicographic order. Figure 4 shows the algorithm, where the
outer loop specifies the range of condition (i) of Theorem 1, while the testing
by if · · · then statement in the inner loop is the condition (ii) of Theorem 1.
Initially, we set c1 = 0, and then perform a procedure call Lex-Gen-Tree(2) to
start the generation.

Theorem 3. Lex-Gen-Tree can correctly generate all LC-sequences of binary
trees with n internal nodes in lexicographic order.
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Fig. 4. An algorithm for generating LC-sequences in lexicographic order.

Proof. The correctness of the algorithm directly follows from Theorem 1. For
each i ∈ {2, 3, . . . , n}, since all valid ci ∈ {0, 1, . . . , i − 1} in this procedure are
emerged in increasing order, it implies that all output sequences are present in
lexicographic order. ��
For example, Table 1 shows the list of LC-equences generated by the procedure
Lex-Gen-Tree when n = 6. According to Theorem 3, it is easy to check that the
output of this generated list is in lexicographic order.

Table 1. LC-sequences with n = 6.

0: 000000 17: 000042 34: 000300 51: 001005 68: 002015 85: 002310 102: 010043 119: 012003

1: 000001 18: 000043 35: 000301 52: 001030 69: 002030 86: 002315 103: 010045 120: 012004

2: 000002 19: 000045 36: 000302 53: 001035 70: 002031 87: 002340 104: 010200 121: 012005

3: 000003 20: 000100 37: 000304 54: 001040 71: 002035 88: 002341 105: 010204 122: 012030

4: 000004 21: 000104 38: 000305 55: 001043 72: 002040 89: 002345 106: 010205 123: 012035

5: 000005 22: 000105 39: 000310 56: 001045 73: 002041 90: 010000 107: 010240 124: 012040

6: 000010 23: 000140 40: 000315 57: 001300 74: 002043 91: 010002 108: 010245 125: 012043

7: 000015 24: 000145 41: 000320 58: 001304 75: 002045 92: 010003 109: 010300 126: 012045

8: 000020 25: 000200 42: 000321 59: 001305 76: 002100 93: 010004 110: 010302 127: 012300

9: 000021 26: 000201 43: 000325 60: 001340 77: 002104 94: 010005 111: 010304 128: 012304

10: 000025 27: 000204 44: 000340 61: 001345 78: 002105 95: 010020 112: 010305 129: 012305

11: 000030 28: 000205 45: 000341 62: 002000 79: 002140 96: 010025 113: 010320 130: 012340

12: 000031 29: 000210 46: 000342 63: 002001 80: 002145 97: 010030 114: 010325 131: 012345

13: 000032 30: 000215 47: 000345 64: 002003 81: 002300 98: 010032 115: 010340

14: 000035 31: 000240 48: 001000 65: 002004 82: 002301 99: 010035 116: 010342

15: 000040 32: 000241 49: 001003 66: 002005 83: 002304 100: 010040 117: 010345

16: 000041 33: 000245 50: 001004 67: 002010 84: 002305 101: 010042 118: 012000

3.2 Structure Properties of Coding Trees

Since LD-sequences can be used to assist the design of ranking and unranking
algorithms, we first observe some structure properties of coding trees from the
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view point of LD-sequences. Throughout this paper, we also use the following
notation. For a node x in Tn, if x is not the root, then the parent of x is denoted
by p(x). Also, the labels of left child and left distance of x are denoted by ĉ(x)
and d̂(x), respectively. The following property can be easily obtained from the
coding tree structure.

Lemma 3. If x is a non-leaf node with d̂(x) = k in the ith level of Tn, then
the sons of x have left distance labels k + 1, 0, 1, . . . , k from left to right in the
(i + 1)th level of Tn.

Let Ai,k denote the number of leaves in the subtree rooted at a node with
left distance k in the ith level of Tn. Obviously, An,k = 1 for 0 � k � n − 1 and
An−1,k = k + 2 for 0 � k � n − 2. In general, we have

Ai,k =
k+1∑

j=0

Ai+1,j (1)

where 1 � i � n−1 and 0 � k � i−1. For a concise expression and the efficiency
of computation, we define the following formula:

Bi,k =
k∑

j=0

Ai,j (2)

where 1 � i � n − 1 and 0 � k � i − 1. For example, Table 2 shows the results
of Bi,k for n = 6. In fact, the table built from Eqs. (1) and (2) is called the
Catalan’s triangle table, and thus it can be reformulated as the following closed
form.

Proposition 1. Let n � 2 be an integer. For 1 � i � n and 0 � k � i − 1, we
have

Bi,k =
k + 1

m

(
2m + k

m − 1

)

(3)

where m = n − i + 1.

According to Eq. (3), the following corollaries can easily be obtained and are
useful for designing ranking and unranking algorithms.

Corollary 1. Let n � 2 be integer. For 2 � i � n and 0 � k � i − 1, we have

Bi−1,k = Bi,k · (2m + k + 1)(2m + k + 2)
(m + 1)(m + k + 2)

(4)

where m = n − i + 1.

Corollary 2. Let n � 2 be integer. For 2 � i � n and 1 � k � i − 1, we have

Bi,k−1 = Bi,k · k(m + k + 1)
(k + 1)(2m + k)

(5)

where m = n − i + 1.
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Table 2. The Catalan’s triangle table for n = 6

Bi,k k

0 1 2 3 4 5

i 1 132

2 42 132

3 14 42 90

4 5 14 28 48

5 2 5 9 14 20

6 1 2 3 4 5 6

Corollary 3. Let n � 2 be integer. For 1 � i � n − 1 and 0 � k � i − 1, we
have

Bi+1,k+1 = Bi,k · m(k + 2)
(k + 1)(2m + k)

(6)

where m = n − i + 1.

4 A Ranking Algorithm

In this section, we develop an algorithm to deal with the ranking problem. From
the structure of coding trees (e.g., see Fig. 3), we know that there is a one-to-one
correspondence between binary trees with n internal nodes and the leaves of Tn.
Thus, ranking a designated tree T is equivalent to counting the number of leaves
before the leaf corresponding to T in the arrangement of Tn.

Let T be a binary tree with c(T ) = (c1, c2, . . . , cn) and let (x1, x2, . . . , xn)
be the corresponding path in Tn such that ĉ(xi) = ci for 1 � i � n. For each
i ∈ {1, 2, . . . , n}, we let R(i) be the number of leaves turned up before xi when we
travel Tn in preorder (i.e., visit recursively the root and then the subtrees of Tn

from left to right). For instance, if we consider the tree T with c(T ) = (0, 1, 0, 3)
in Fig. 3, we have R(1) = 0, R(2) = 9, R(3) = 9 and R(4) = 11. As a result,
the goal of our ranking algorithm is to compute R(n). Because we do not really
build the coding tree, introducing LD-sequence instead of traveling Tn can help
us to compute R(n).

Lemma 4. For an LD-sequence (d1, d2, . . . , dn), let (x1, x2, . . . , xn) be the corre-
sponding path in Tn such that d̂(xi) = di for i ∈ {1, 2, . . . , n}. Then the following
relations holds for 2 � i � n:

R(i) =

⎧
⎪⎨

⎪⎩

R(i − 1) if di−1 < di;
R(i − 1) + (Bi,di−1+1 − Bi,di−1) if di−1 � di = 0;
R(i − 1) + (Bi,di−1+1 − Bi,di−1) + Bi,di−1 if di−1 � di �= 0;
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Fig. 5. A ranking algorithm.

Proof. By Lemma 3, we may assume that yj , j = 1, 2, . . . , di−1+2, are the sons of
xi−1 with left distance labels di−1+1, 0, 1, . . . , di−1, respectively. Recall that the
term Bi,k defined in Eq. (2) is the total number of leaves in the subtrees rooted
at nodes with labels from 0 to k, respectively, in the ith level of Tn. Let L(yj)
denote the number of leaves in the subtree rooted at yj for j = 1, 2, . . . , di−1 +2.
For di−1 < di, since d̂(y1) = di−1 + 1, we have xi = y1. This indicates that xi is
followed closely by xi−1 in the preorder traversal of Tn, and thus R(i) = R(i−1).
For di−1 � di, if di = 0, we have xi = y2. In this case, R(i)−R(i− 1) is equal to
the number of leaves in the subtree rooted at y1, and thus it can be expressed
by the term

L(y1) = Ai,di−1+1 = Bi,di−1+1 − Bi,di−1 .

On the other hand, if di �= 0, then xi is the (di + 2)th son of xi−1 in Tn. In this
case, not only the term L(y1) but also the sum of leaves in the subtrees rooted
at yj for j = 2, . . . , di + 1 needs to be counted in R(i), and the latter can be
expressed by the term

di+1∑

j=2

L(yj) =
di−1∑

k=0

Ai,k = Bi,di−1.

This proves the lemma. ��
For convenience of discussion, the nonzero term of R(i)−R(i−1) in the statement
of Lemma 4 is called the incremental change of R(i − 1). Based on Lemma 4,
we provide a ranking algorithm as shown in Fig. 5.

Example 1. Let T be a tree with left-child sequence c(T ) = (0, 1, 0, 3, 0, 4). To
perform Ranking(0, 1, 0, 3, 0, 4), we first call the function LC-to-LD(0, 1, 0, 3, 0, 4)
to obtain the corresponding LD-sequence d(T ) = (0, 0, 1, 1, 2, 1). Initially, we set
R = 0. When i = 2, since d2 = d1 = 0, we update

R = R + (B2,1 − B2,0) = 0 + (132 − 42) = 90.
When i = 3, since d3 = 1 > d2 = 0, there is no incremental change. When i = 4,
since d4 = d3 = 1 �= 0, we update
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R = R + (B4,2 − B4,1) + B4,0 = 90 + (28 − 14) + 5 = 109.
When i = 5, since d5 = 2 > d4 = 1, there is no incremental change. When i = 6,
since d6 = 1 < d5 = 2 and d6 �= 0, we update

R = R + (B6,3 − B6,2) + B6,0 = 109 + (4 − 3) + 1 = 111.
Finally, the algorithm outputs R = 111.

Obviously, we need to extract some elements of Catalan’s triangle table in the
above ranking algorithm. However, building Catalan’s triangle table in advance
requires Ω(n2) time and space, and so does the ranking algorithm. In what
follows, we will improve the complexity and show that every element of Catalan’s
triangle table can be accessed in constant time without really building the table.
Conceptually, for calculating the rank R of an LC-sequence, we imagine that
Catalan’s triangle table is a chess board and only elements along a certain path
where a chess B moves on the chess board are accumulated in R. Technically, we
do not employ Eq. (2) to extract elements in the chess board because it requires
O(n2) time for each extraction. Alternatively, the movement of B can be done
by using Eqs. (4)–(6).

Figure 6 shows the details of the algorithm. First of all, we convert the input
to an LD-sequence (d1, d2, . . . , dn) and put B on the initial location by using
Eq. (4) (Lines 2 to 5). After this step, we have i = 1, k = 0 and B = B1,0. For
each i = 1, 2, . . . , n − 1, we first update B by using Eq. (6) and move B to the
right-down cell (Lines 7 to 8). According to Lemma 4, the next location where
B moves can be determined by the relation between di and di+1 as follows. If
di � di−1, we compute the left cell of B, say B′, using Eq. (5). Then, we update
R by adding the incremental change B−B′, and move B to the left cell (Lines 10
to 12). In addition, if di �= 0, an extra incremental change needs to be considered.
In this case, we search for such an incremental change by moving B′ to the left
cell step by step until the desired cell is reached (Lines 13 to 16). After this
search, R is updated and we have k = di (Lines 17 to 18). On the other hand, if
di−1 < di, then no incremental change needs to be considered.

Theorem 4. Given the LC-sequence of a binary tree T with n internal nodes,
determining the rank of T in lexicographic order can be done in O(n) time and
space.

Proof. By Lemma 4, the function Ranking() can determine the rank of T in lex-
icographic order. Since it is the hard core of Refined-Ranking(), the correctness
of the algorithm directly follows. Obviously, the space requirement is 2n+O(1),
which is due to the conversion of LC-to-LD(). We give the time complexity on
amortized analysis as follows. Note that each of Eqs. (4)–(6) can be computed
in constant time. To acquire the overall running time, we use aggregate method
to determine an upper bound on the number of moves aroused by B (and its
substitute B′) on the chess board. For the initial stage, it is clear that B moves
n−1 steps from bottom to up. For each i = 1, 2, . . . , n−1, there is a right-down
move for B. If di � di−1, it needs at least one left move for B. Moreover, more
left moves are required for the searching of an extra incremental change. Let mi

be such a number of additional left moves aroused by B′. Thus, the total number
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Fig. 6. A refined version of ranking algorithm.

of movements of B and B′ is at most 3(n − 1) +
∑n−1

i=1 mi. By Lemma 3, we
know that mi � di−1 + 2, and thus each mi is bounded above by n moves. This
shows that the algorithm can be run in O(n2) time. Although this analysis is
correct, the complexity obtained by considering the worst-case cost is not tight.
It is fortunate that the sum of mi for all i = 1, 2, . . . , n − 1 is caused by the left
moves of B′, and it is bounded above by the sum of the width of chess board and
the number of right-down moves for B. Therefore, we have

∑n−1
i=1 mi � 2n − 1.

This leads to an algorithm with running cost in O(n) time. ��

5 An Unranking Algorithm

In this section, we provide a reverse function Unranking() that converts a positive
integer N to an LC-sequence (c1, c2, . . . , cn). As before, the corresponding LD-
sequence has been chosen purposely to assist the conversion. The basic ideal
of design inside the function is to decompose N into a sequence of incremental
changes. From these incremental changes, the corresponding LD-sequence can
be determined.

Let n and N be two parameters of the function. We begin to put B on the
initial location by using Eq. (4) and set di = 0 for all i = 1, 2, . . . , n (Lines 2 to
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Fig. 7. An unranking algorithm.

5). After this step, we have i = 1, k = 0 and B = B1,0. Then, we carry out the
following loop till N has been decreased to 0 or i = n. For each round in the loop,
we move B to the right-down cell by using Eq. (6), and then compute the left cell
of B, say B′, using Eq. (5) (Lines 7 to 9). Note that the variable i is increased
by one for each round of the loop. Now, we can test the condition N � B − B′

to determine if there exist incremental changes needed to be subtracted from
N in the current status. If there is no such an incremental change, then di is
directly set as di−1 plus one. Otherwise, we update N by subtracting B − B′

from N , and move B to the left cell (Lines 11 to 12). In addition, by repeatedly
looking ahead to extract the left cell B′ of B until B′ � N , we can further search
for an additional incremental change. After this search, N is updated, and we
have di = k (Lines 13 to 18). Once the main loop has terminated, we convert
(d1, d2, . . . , dn) to the corresponding LC-sequence for the output. The detail of
the unranking function is shown in Fig. 7.

Theorem 5. Given a positive integer N , determining a binary tree with LC-
sequence (c1, c2, . . . , cn) such that its rank is N in lexicographic order can be
done in O(n) time and space.
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Proof. Since Unranking() is the reverse procedure of Refined-Ranking(), the
correctness of the algorithm directly follows from Lemma 4 again. Clearly, the
space requirement is O(n). For algorithmic efficiency, we test the condition N > 0
instead of i < n in the main loop (Line 8) to determine if the decomposition
of N is finished. For each round in the loop, it is clear that the sequence of
movements of B and it substitute B′ is the same as that in Theorem 5. As a
result, an argument similar above that uses aggregation can analyze the time
complexity of the algorithm, and thus the theorem follows. ��

6 Concluding Remarks

In this paper, according to the characterization presented in [19], we show that it
is easy to design an algorithm to generate all LC-sequences of binary trees with
n internal nodes in lexicographic order. Moreover, based on such an ordering,
we propose efficient ranking and unranking algorithms with time complexity and
space requirement of O(n).

Although the algorithm proposed in [19] is a loopless algorithm, the gen-
eration of each LC-sequence can be obtained from its predecessor by changing
possibly two digits. As a future work, an open challenging problem is to gener-
ate all LC-sequences of binary trees in Gray-code order. Furthermore, for such a
Gray-code order, designing efficient ranking and unranking algorithms are espe-
cially interested. To the best of our knowledge, so far no such algorithms exist
for generating, ranking and unranking LC-sequences in Gray-code order.
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Abstract. We consider the setting of a sensor that consists of a speed-
scalable processor, a battery, and a solar cell that harvests energy from
its environment at a time-invariant recharge rate. The processor must
process a collection of jobs of various sizes. Jobs arrive at different times
and have different deadlines. The objective is to minimize the recharge
rate, which is the rate at which the device has to harvest energy in
order to feasibly schedule all jobs. The main result is a polynomial-
time combinatorial algorithm for processors with a natural set of discrete
speed/power pairs.

1 Introduction

Most of the algorithmic literature on scheduling devices to manage energy
assume the objective of minimizing the total energy usage. This is an appro-
priate objective if the amount of available energy is bounded, say by the capac-
ity of a battery. However, many devices (most notably sensors in hazardous
environments) contain energy harvesting technologies. Solar cells are probably
the most common example, but some sensors also harvest energy from ambi-
ent vibrations [9,10] or electromagnetic radiation [11] (e.g., from communica-
tion technologies such as television transmitters). To get a rough feeling for the
involved scales (see also [11]), note that batteries can store on the order of a
joule of energy per cubic millimeter, while solar cells provide several hundred
microwatt per square millimeter in bright sunlight, and both vibrations and
ambient radiation technologies provide on the order of nanowatt per cubic mil-
limeter. Compared to non-harvesting technologies, the algorithmic challenge is
to cope with a more dynamic setting, where the difference between total available
and total used energy is non-monotonic (cf. Fig. 1).
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Fig. 1. The total available (dashed) and total used (solid) energy for a battery and for
a solar cell with a battery. The solid line cannot cross the dashed line; when both lines
meet, the battery is depleted. Depletion is permanent for a battery and temporarily
for a solar cell with battery. Note that the difference between total available and total
used energy is non-monotonic for solar cells.

Problem and Model in a Nutshell. The goal of this research is to use an
algorithmic lens to investigate how the addition of energy harvesting technologies
affects the complexity of scheduling such devices. As a test case, we consider the
first (and most investigated) problem on energy-aware scheduling due to [12].
There, the authors assumed that (a) the processor is speed-scalable; (b) the
power used is the square of the speed; and (c) each job has a certain size, an
earliest (release-) time at which it can be run, and a deadline by which it must be
finished. Their objective was to minimize the total energy used by the processor
when finishing all jobs. We modify these assumptions as follows:

(a) The device has a speed-scalable processor with a finite number of speeds
s1 < · · · < sk, each associated with a power consumption rate P1 < · · · < Pk.

(b) The device harvests energy at a time-invariant recharge rate R > 0 (like a
solar-cell in bright sunlight).

(c) The device has a battery (initially empty) to store harvested energy. To
concentrate on the energy harvesting aspect, we assume that the battery’s
capacity isn’t a limiting factor.

The objective becomes to find the minimal necessary recharge rate to finish all
jobs between their release time and deadline.

As is the case with the (discrete) variant of [12], our solar cell problem can be
written as a linear program. Thus, in principle it is solvable in polynomial time
by standard mathematical programming methods (e.g., the Ellipsoid method).
However, [12] showed that the total energy minimization problem is algorith-
mically much easier than linear programming by giving a simple, combinatorial
greedy algorithm. In the same spirit, we study whether the solar cell version
allows for a similarly simple, purely combinatorial algorithm.

Results in a Nutshell. Our main result is a polynomial-time combinatorial
algorithm for well-separated processor speeds. Well-separation is a technical but
natural requirement to ease the analysis. It ensures that the speed/power cover
a good efficiency spectrum, as explained below. Let Δi := Pi−Pi−1

si−si−1
. The speeds
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are well-separated if there is a constant c > 1 such that Δi+1 = c · Δi for all
i. To understand this condition, note that there is a strong convex relationship
between the speed and power in CMOS-based processors [6], typically modelled
as Power = Speedα for some constant α > 1 [12]. Thus, lower speeds give signif-
icantly better energy efficiency. A chip designer aims to choose discrete speeds
(from the continuous range of options) that are well-separated in terms of per-
formance and energy efficiency. A natural choice is to grow speeds exponentially
(i.e., si+1 = c′ · si for a suitable c′ > 1). With Pi = sα

i , we get that speeds are
well-separated with the constant c := c′α−1.

Our algorithm can be viewed as a homotopic optimization algorithm that
maintains an energy optimal schedule while the recharge rate is continuously
decreased. Similar approaches for other speed scaling problems have been used
in [1,2,7,8]. The resulting combinatorial algorithm exposes interesting structural
properties and relations to be maintained while decreasing the recharge rate and
adapting the schedule, not unlike (but much more complex than) the homotopic
algorithm from [2]. While this allows us to prove a polynomial runtime for our
algorithm, the actual bound is quite high and only barely superior to bounds
derived by generic convex program solvers. We believe that this runtime is merely
an artifact of our hierarchical analysis approach, which aims at simplifying the
(already quite involved) analysis. However, this might also indicate that other,
non-homotopical approaches might be more suitable to tackle this scheduling
variant.

Context and Related Results. The only other theoretical work (we are aware
of) on this solar cell problem is by [3]. They considered arbitrary (continuous)
speeds s ∈ R≥0 and power consumption sα (where α > 1 is a constant). They
showed that the offline problem can be expressed as a convex program. Thus,
using the well-known KKT conditions one can efficiently recognize optimal solu-
tions, and standard methods (e.g., the Ellipsoid Method) efficiently solve this
problem to any desired accuracy. [3] also proved that the schedule that optimizes
the total energy usage is a 2-approximation for the objective of recharge rate.
Finally, they showed that the online algorithm BKP, which is known to be O (1)-
competitive for total energy usage [4], is also O (1)-competitive with respect to
the recharge rate. So, intuitively, the take-away from [3] was that schedules that
naturally arise when minimizing energy usage are O (1) approximations with
respect to the recharge rate. In particular, [3] left as an open question whether
there is a simple, combinatorial algorithm for the solar cell problem.

Outline. Both our algorithm design and analysis are quite involved and require
significant understanding of the relation between the recharge rate and optimal
schedules. Thus, we start with an informal overview in the next section. The
formal model description and definitions can be found in Sects. 3 and 4. The
actual algorithm description is given in Sect. 5. Due to space restrictions, most
proofs are left for the full version.
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2 Approach and Overview

In the following, we state the central optimality conditions and give a simple
illustrating example. Afterward, we explain how to improve upon a given sched-
ule via suitable transformations guided by these optimality conditions. Finally,
we explain how our algorithm realizes these transformations in polynomial time.

Optimality Conditions. As the first step in our algorithm design, we consider
the natural linear program for our problem and translate the complementary
slackness conditions (which characterize optimal solutions) into structural opti-
mality conditions. This results in Theorem1, which states1 that optimal solutions
can be characterized as follows:

(a) Feasibility: All jobs are fully processed between their release times and dead-
lines and the battery is never depleted.

(b) Local Energy Optimality: The job portions scheduled within each depletion
interval (time between two moments when the battery is depleted) are sched-
uled in an energy optimal way.

(c) Speed Level Relation (SLR): Consider job j that runs in two depletion inter-
vals I and I ′. Let the average speed of j in I lie between discrete speeds
sa−1 and sa. Similarly, let it lie between sb−1 and sb in I ′. The SLR states
that the difference b − a is independent of the job j. In other words, jobs
jump roughly the same amount of discrete speed levels between depletion
intervals2.

(d) Split Depletion Point (SDP): There is a depletion point (time when the
battery is depleted) τ > 0 such that no job with deadline > τ is run before τ .

As above for the SLR, we often consider the average speed of a scheduled job
during a depletion interval. Note that one can easily derive an actual, discrete
schedule from these average speeds: If a job j runs at average speed s ∈ [sa−1, sa)
during a time interval I of length |I|, we can interpolate the average speed with
discrete speeds by scheduling j first for sa−s

sa−sa−1
· |I| time units at speed sa−1 and

for s−sa−1
sa−sa−1

· |I| time units at speed sa. Using that speeds are well-separated3, it
follows easily that this is an optimal discrete way to achieve average speed s.

A Simple Example. To build intuition, consider a simple example. The proces-
sor has two discrete speeds s1 = 1 and s2 = 2 with power consumption rates
P1 = 1 and P2 = 4, respectively. Job j is released at time 0 with deadline 4
and work 3. Job j′ is released at time 1 with deadline 2 and work 2. The energy

1 Statements slightly simplified; Sect. 3 gives the full formal conditions.
2 Figure 3 gives an example where the SLR can be observed: The orange and light-

blue jobs run both in depletion interval I3 and I4. The orange job’s average speed
“jumps” one discrete speed level from I3 to I4 (from below s2 to above s2).
Thus, the light-blue job must also jump one discrete speed level (from below s3 to
above s3).

3 In fact, Δi+1 > Δi is already sufficient. Also note that starting with the lower speed
is essential: otherwise the battery’s energy level might become negative.
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optimal schedule runs job j′ at speed 2 during the time interval [1, 2] and job
j at speed 1 during the time intervals [0, 1] and [2, 4]. It needs recharge rate
R = 2.5. There is a depletion point τ = 2 and two depletion intervals I1 = [0, τ)
and I2 = [τ,∞). See the left side of Fig. 2 for an illustration. While this schedule
fulfills the first three optimality conditions for rate optimality, the SDP condition
is violated (j is run both before and after τ). Thus, while it is energy optimal it
is not recharge rate optimal.

Consider what happens if we decrease the recharge rate R by an infinitesimal
small amount ε (i.e., decrease the slope of the dotted line in the left part of
Fig. 2). This results in a negative energy in the battery at time τ (the solid line
in Fig. 2 “spikes” through the dotted line at τ = 2). This is not allowed, so
we have to decrease the energy used before τ . To do so, we move some work
from a job that is processed on both sides of τ from I1 to I2 (the violation of
the SDP guarantees the existence of such a job). Continuing to do so allows us
to decrease the recharge rate until the SDP holds (see the right side of Fig. 2).
Thus, the resulting schedule is recharge rate optimal (i.e., needs a solar cell of
minimal recharge rate). Also note that this schedule is no longer energy optimal
(the total amount of used energy increased).
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Fig. 2. The energy optimal (left) and recharge rate optimal (right) schedules. Job
speeds are plotted as average speeds (i.e., the green job running at average speed 3/2
in the depletion interval [2, 4) on the right runs in the actual, discrete schedule at speed
1 during [2, 3) and at speed 2 during [3, 4)). (Color figure online)

Algorithmic Intuition. Our algorithm extends on the schedule transformation
we saw in the simple example above. We start with an energy optimal schedule
S and a trivial bound on the recharge rate R such that the first three optimality
conditions hold. We then lower R while maintaining a schedule satisfying these
first three conditions until, additionally, the SDP holds. Lowering the recharge
rate R means we have to move work out of each depletion interval (or we get a
negative energy in the battery). Since we want to maintain the first three opti-
mality conditions, we cannot move work arbitrarily. To capture all constraints
while moving work we employ a distribution muligraph GD. Its vertices are the
depletion intervals, and there is a directed edge for each way in which work can
be transferred between depletion intervals. See Fig. 3 for an illustration.
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Fig. 3. Four discrete speeds (s1 = 2, s2 = 5, s3 = 10, s4 = 15), seven jobs (release/dead-
lines indicated by the colored bars). Four depletion points τ ∈ {0, 4, 9, 15} form four
depletion intervals I1 = [0, 4), I2 = [4, 9), I3 = [9, 15), I4 = [0, ∞). A subgraph of the
distribution graph GD is shown above. (Color figure online)

The heart of our algorithm is to find a suitable transfer path for each depletion
interval: a path over which work can be transferred to the rightmost depletion
interval (possibly via multiple jobs). Given such transfer paths, we can move
work out of every depletion interval. While this allows us to make progress,
there are three types of events that can occur and must be handled:

– Edge Removal Event: It is no longer possible to transfer work on a particular
edge because there is no more work left on the job we were moving.

– Depletion Point Appearance Event: A new depletion point is created.
– Speed Level Event: Further transfer of work would cause a job’s average speed

in a depletion interval to cross a discrete speed (possibly violating the SLR).

In these cases, our algorithm attempts to find a different collection of transfer
paths. If this is not possible, the algorithm tries to update GD as follows:

– Depletion Point Removal Update: Find a depletion point that can be removed.
Removing the constraint that the battery is depleted at this point may allow
for new ways to transfer work.

– Cut Update: Because of the SLR, jobs have to jump the same amount of
discrete speed levels between two depletion intervals. Thus, all jobs must cross
the next discrete speed at the same time. A cut update basically signals that all
involved jobs reached a suitable discrete speed and can now cross the discrete
speed level. See Sect. 4 and Definition 1 for details.

As an example, consider what happens when moving work of the light blue job
from I3 to I4 in Fig. 3. After a while, its average speed in I3 reaches the discrete
speed s2 (a speed level event). The SLR forbids to further decrease this job’s
speed (it would jump two discrete speed levels, while the orange job jumps only
one). Instead, we start to move work of the orange job from I3 to I4 until it hits
the discrete speed s1. All jobs processed before and after depletion point τ = 15
are now at suitable discrete speeds and we can allow both the orange and light
blue job to further decrease their speeds (a cut update).
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Our correctness proof shows that, if none of these updates is possible, the SDP
holds. A technical difficulty is that events might influence each other, resulting
in complex dependencies (which we ignored in the above example). A lot of the
complexity of our algorithm/analysis stems from an urge to avoid these depen-
dencies wherever possible. However, it seems likely that a more careful study of
these dependencies would yield a significant simplification and improvement.

Events and Updates in Polynomial Time. Our description above assumes
that we move work continuously and stop at the corresponding events. To imple-
ment this in our algorithm, we have to calculate the next event for the current
collection of transfer paths and then compute the correct amount of work to
move between all involved depletion intervals. While the involved calculations
follow from a simple linear equation system, the main difficulty is to show that
the number of events remains polynomial. To ensure this, our algorithm design
facilitates the following hierarchy of invariants:

– Cut Invariant: Cut updates are at the top of the hierarchy. Intuitively, this
invariant states that job-speeds (or speed levels) tend to increase toward the
right (since, as a net effect, work is generally moved to the right). This is, for
example, used to prove that there is only a polynomial number of cut updates.

– Depletion Point Removal Invariant: Depletion point updates are at the second
level of the hierarchy. This invariant states that once a depletion point is
removed it will not be added again (until the next cut update).

– Speed Level Invariant: Speed level updates are also at the second level of the
hierarchy. This invariant states that this event creates a time interval to which
no work is added (until the next cut update).

– Edge Removal Invariant: Edge removal events are at the bottom of the hierar-
chy. This invariant states that once work of a job was transferred to an earlier
depletion interval (“to the left”), it will not be transferred to a later one (“to
the right”) until the next cut, depletion point removal, or speed level update.

This hierarchy provides a monotone progress measure, but complicates the algo-
rithm/analysis quite a bit. In particular, we have to deal with two aspects:
(a) G together with all transfer paths may be exponentially large. To handle
this, we search for suitable transfer paths on a subgraph H of G, containing only
the best transfers to move work between any given pair of depletion intervals.
(b) We have to define how to select these collections of transfer paths. On a high
level, the algorithm prefers transfers that move work right to transfers that move
work left. Between transfers moving work right it prefers shorter transfers, while
between transfers moving work left it prefers longer transfers (cf. Definition 8).

3 Structural Optimality via Primal-Dual Analysis

We model our problem as a linear program and use complementary slack-
ness conditions to derive structural properties that are sufficient for optimality.
These structural properties are used in both the design and the analysis of the
algorithm.
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3.1 Model

We consider the problem of scheduling a set of n jobs J := {1, 2, . . . , n} on a
single processor that features k different speeds 0 < s1 < s2 < · · · < sk and
that is equipped with a solar-powered battery. The battery is attached to a solar
cell and recharges at a rate of R ≥ 0. The power consumption when running at
speed si is Pi > 0. That is, while running at speed si work is processed at a rate
of si and the battery is drained at a rate of Pi. When the processor is idling (not
processing any job) we say it runs at speed s0 := 0 and power P0 := 0.

Each job j ∈ J comes with a release time rj , a deadline dj , and a processing
volume (or work) pj . For each time t, a schedule S must decide which job to
process and at what speed. Preemption is allowed, so that a job may be sus-
pended at any point in time and resumed later on. We model a schedule S by
two functions S(t) (speed) and J(t) (scheduling policy) that map a time t ∈ R

to a speed index S(t) ∈ {0, 1, . . . , k} and a job J(t) ∈ J . We say a job j is
active at time t if t ∈ [rj , dj). Jobs can only be processed when they are active.
Thus, a feasible schedule must ensure that J−1(j) ⊆ [rj , dj) holds for all jobs
j. Moreover, a feasible schedule must finish all jobs and must ensure that the
energy level of the battery never falls below zero. More formally, we require∫

J−1(j)
sS(t)dt ≥ pj for all jobs j and

∫ t0
0

PS(t)dt ≤ R · t0 for all times t0. Our
objective is to find a feasible schedule that requires the minimum recharge rate.

3.2 Linear Programming Formulation

For the following linear programming formulation, we discretize time into equal
length time slots t. Without loss of generality, we assume that their length is such
that there is a feasible schedule for the optimal recharge rate R that processes
at most one job using at most one discrete speed in each single time slot4. Our
linear program uses indicator variables xjit that state whether a given job j is
processed at a speed si during time slot t. Note that not only does this imply a
possible huge number of variables but it is also not trivial to compute the length
of the time slots. Nevertheless, this will not influence the running time of our
algorithm, since we merely use the linear program to extract sufficient structural
properties of optimal solutions. Our analysis will also use the fact that we can
always further subdivide the given time slots into even smaller slots without
changing the optimal schedule. By rescaling the problem parameters, we can
assume that the (final) time slots are of unit length.

With the variables xjit as defined above and a variable R for the recharge rate,
the integer linear program (ILP) shown in Fig. 4a corresponds to our scheduling
problem. The first set of constraints ensure that each job is finished during
its release-deadline interval, while the second set of constraints ensures that the
4 The existence of such a schedule follows from standard speed scaling arguments. To

see this, note that any schedule can be transformed to use earliest deadline first and
interpolate an average speed in a depletion interval by at most one speed change
between two discrete speeds. Thus, the number of job changes and speed changes is
finite (depending on n) and we merely have to choose the time slots suitably small.
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battery’s energy level does not fall below zero. The final set of constraints ensures
that the processor runs at a constant speed and processes at most one job in
each time slot.

Fig. 4. ILP formulations used in our analysis.

Structural Properties for Optimality. The complementary slackness con-
straints for the programs shown in Fig. 4 give us necessary and sufficient proper-
ties for the optimality of a pair of feasible primal and dual solutions. Although
these conditions are only necessary and sufficient for optimal solutions of the
ILP’s relaxation, our choice of the time slots ensures that there is an integral
optimal solution to the relaxation. Based on these complementary slackness con-
straints, we derive some purely combinatorial structural properties (not based
on the linear programming formulation) that will guarantee optimality. To this
end, we will consider speed levels of jobs in depletion intervals – essentially the
discrete speed a job reached in a specific depletion interval – and how they
change at depletion points. In the following, if we speak of a speed s between
two discrete speeds (e.g., s2 < s < s3) we implicitly assume s to refer to the
average speed in the considered time interval.

Definition 1 (Speed Level Relation). A schedule S and a recharge rate R
obey the Speed Level Relation (SLR) if there exist natural numbers L(j, �) ∈ N

( speed levels) such that

(a) job j processed at speed sj,� ∈ (si−1, si) in depletion interval I� ⇒ L(j, �) = i
(b) job j processed at speed sj,� = si in depletion interval I� ⇒ L(j, �) ∈

{i, i + 1}
(c) jobs j, j′ both active in depletion intervals I�1 and I�2 with �1 < �2 ⇒

L(j, �2) − L(j, �1) = L(j′, �2) − L(j′, �1) ∈ N0 (in particular, the speed levels
of a job are non-decreasing)

(d) job j processed in Il ⇒ L(j, l) ≥ L(j′, l) for all j′ active in Il,j = Il ∩ [rj , dj)



530 N. Barcelo et al.

Intuitively, the SLR states that jobs jump the same number of discrete speeds
between depletion intervals (cf. Sect. 2), that speed levels are non-decreasing, and
that the currently processed job is one of maximum speed level among active
jobs. Using this definition, we are ready to characterize optimal schedules in
terms of the following combinatorial properties. Note that for (b) of the following
theorem, one can simply use a YDS schedule (cf. [12]) for the workload assigned
to the corresponding depletion interval.

Theorem 1. Consider a schedule S and a recharge rate R. The following prop-
erties are sufficient5 for S and R to be optimal:

(a) S is feasible.
(b) The work in each depletion interval is scheduled energy optimal.
(c) The SLR holds.
(d) There is a split depletion point: a depletion point τk > 0 such that no job

with deadline greater than τk is processed before τk.

For the proof we derive the complementary slackness conditions and interpret
them in a suitable way. Details are left for the full version.

4 Notation

Given a schedule S, we need a few additional notions to describe and analyze
our algorithm.

Structuring the Input. Let us start by formally defining depletion points and
depletion intervals. As noted earlier, depletion points represent time points where
our algorithm maintains a battery level of zero and partition the time horizon
into depletion intervals. Note that these definitions depend on the current state
of the algorithm.

Definition 2 (Depletion Point). Let ES(t) be the energy remaining at time t
in schedule S. Then τi is a depletion point if ES(τi) = 0 (and the algorithm has
labeled it as such). L is the number of depletion points, τ0 := 0, and τL+1 := ∞.

Definition 3 (Depletion Interval). For � > 0, the �-th depletion interval is
I� := [τ�−1, τ�). We also define sj,� as the (average) speed of job j during I�.

To simplify the discussion, we sometimes identify a depletion interval I� with its
index �. While moving work between depletion intervals, our algorithm uses the
jobs’ speed levels together with the SLR as a guide:

Definition 4 (Speed Level). For all j, � with I� ∩ [rj , dj) 	= ∅, the speed level
L(j, �) of j in I� is such that if j is processed in I�, then sj,� ∈ [sL(j,�)−1, sL(j,�)].

5 If we restrict ourselves to normalized (earliest deadline first, only one speed change
per job in a depletion interval) schedules, they are in fact also necessary.
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Note that this definition should be understood as a variable of our algorithm. In
particular, it is not unique if the job runs at a discrete speed si−1. In these cases,
L(j, �) can be either i − 1 or i (and the algorithm can set L(j, �) as it wishes).
The algorithm initializes the speed level for every depletion interval where j is
active based on the initial YDS schedule and assigns speed levels maintaining
the SLR throughout its execution.

Next, we give a slightly weaker version of the well-known EDF (Earliest
Deadline First) scheduling policy. The idea is to maintain EDF w.r.t. depletion
intervals but to allow deviations within depletion intervals. For example, we
avoid schedules with depletion intervals I1, . . . , I4 where job j1 is scheduled in I1
and I3 and j2 in I2 and I4. This will ensure that the collection of transfer paths
will be laminar, which is useful throughout the analysis.

Definition 5 (Weak EDF, Informal6). Schedule S is weak EDF if there is
a schedule that is EDF in which each job is run in the same depletion intervals
as in S.

Next, we consider to what extent a schedule adheres to the optimality conditions
(Theorem 1). We distinguish between schedules that (essentially) adhere to the
first two optimality conditions and schedules that also have the third optimality
condition (SLR).

Definition 6 (Nice and Perfect). Schedule S is nice if it is feasible, obeys
YDS between depletion points, and satisfies weak EDF. If, additionally, S fulfills
the SLR, we call it perfect.

Distributing Workload. We now define ε-transfers, the building block for
our algorithm. Intuitively, they formalize possible ways to move work around
between depletion intervals. Our definition ensures that moving work over ε-
transfers maintains niceness throughout the algorithm’s execution. Moreover,
we also ensure that ε-transfers only affect the schedule’s speed profile at their
sources/targets.

Definition 7 (ε-transfer). The sequence (�a, ja)s
a=0 is called an ε-transfer if we

can, simultaneously for all a, move some non-zero workload of ja from �a−1 to �a

while maintaining niceness and without changing any job speeds in �1, . . . , �s−1.
The pair (�0, j0) (resp., (�s, js)) is the source and source job (resp., destination
and destination job) of the ε-transfer. The ε-transfer is active if it also maintains
perfectness.

Each edge drawn in Fig. 3 is a (trivial) ε-transfer.
Next we define the priority of an ε-transfer. Our algorithm compares

ε-transfers based on source and destination. Once the source and destination
have been fixed, the priority is used to determine which ε-transfer is used to
transfer work. As mentioned in Sect. 2, the basic idea is to: prefer transfers
that move work right to transfers that move work left, between transfers mov-
ing work right prefer shorter transfers, and between transfers moving work left
prefer longer transfers.
6 The formal definition is left for the full version.
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Definition 8 (Transfer Priority). Let T1 = (�1a, j1a)s1
a=0 and T2 = (�2a, j2a)s2

a=0

be two different ε-transfers with �10 = �20 and �1s1
= �2s2

. Let a∗
1 =

arg mina{�1a 	= �2a} and a∗
2 = arg mina{j1a 	= j2a}. We say that T1 is higher priority

than T2 if

(a) �2a∗
1

< �1a∗
1−1 < �1a∗

1
, or

(b) �1a∗
1

< �2a∗
1
, and either �2a∗

1
< �1a∗

1−1 or �1a∗
1−1 < �1a∗

1
, or

(c) a∗
1 does not exist and the deadline for j1a∗

2
is earlier than the deadline for

j2a∗
2
.

Finally, we can define our multigraph of legal ε-transfers.

Definition 9 (Distribution Graph). The distribution graph is a multigraph
GD = (VD, ED). VD is the set of depletion points and for every active ε-transfer
(�a, ja)s

a=0, there is a corresponding edge with source �0 and destination �s.

5 Algorithm Description

This section provides a formal description of the algorithm. From a high level, the
algorithm can be broken into two pieces: (a) choosing which ε-transfers to move
work along (in order to lower the recharge rate), and (b) handling events that
cause any structural changes. We start in Sect. 5.1 by describing the structural
changes our algorithm keeps track of and by giving a short explanation of each
event. Section 5.2 describes our algorithm. Due to space constraints, the full
correctness and runtime proofs are left for the full version.

5.1 Keeping Track of Structural Changes

How much work is moved along each single ε-transfer depends inherently on
the structure of the current schedule. Thus, intuitively, an event is any struc-
tural change to the distribution graph or the corresponding schedule while we
are moving work. At any such event, our algorithm has to update the current
schedule and distribution graph. The following are the basic structural changes
our algorithm keeps track of:

– Depletion Point Appearance: For some job j, the remaining energy ES(dj)
at j’s deadline becomes zero and the rate of change of energy at dj is strictly
negative. If we were not to add this depletion point, the amount of energy
available at dj would become negative, violating the schedule’s feasibility. We
can easily calculate when this happens by examining the rate of change of R
as well as the rate of change of sj,� for all jobs j that run in the depletion
interval I� containing dj .

– Edge Removal: An edge removal occurs when, for some job j, the workload
of j processed in a depletion interval I� becomes zero. In other words, all of j’s
work has been moved out of I�. Similar to before, we can easily keep track of
the time when this occurs for any job j processed in a given depletion interval,
since all involved quantities change linearly.
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– Edge Inactive: An edge inactive event occurs when for some job j its speed
sj,� in a depletion interval I� becomes equal to some discrete speed si. Once
more, we keep track of when this happens for each job processed in a given
depletion interval.

Handling of Critical Intervals. Note that by moving work along ε-transfers
between two events e1 and e2, our algorithm causes (a) the speed of exactly one
YDS critical interval in each depletion interval to decrease and (b) the speed of
some YDS critical intervals to increase. For a single critical interval, these speed
changes are monotone over time (between two events). However, critical intervals
might merge or separate during this process (e.g., when the speed of a decreasing
interval becomes equal to a neighbouring interval). In other words, the critical
intervals of a given depletion interval might be different at events e1 and e2. On
first glance, this might seem problematic, as a critical interval merge/separation
could cause a change in the rate of change of the critical interval’s speed, perhaps
with the result that the algorithm stops for events spuriously, or misses events it
should have stopped for. However, since only neighbouring critical intervals can
merge and separate, this can be easily handled: In any depletion interval, there
are at most O (n) critical intervals at event e1. Since only neighbouring critical
intervals can merge/separate when going from e1 to e2, for each critical interval
changing speed there are at most O

(
n2

)
possible candidate critical intervals that

can be part of event e2. We just compute the next event caused by each of these
candidates, and whether or not each candidate event can feasibly occur. Then,
the next event to be handled by our algorithm is simply the minimum of all
feasible candidates. This is an inefficient way to handle critical interval changes,
but it significantly simplifies the algorithm description. We leave the description
of a more efficient way to handle “critical interval events” for the full version.

Handling Events. When we have identified the next event, we must update the
distribution graph and recalculate the rates at which we move work along the
ε-transfers. Given the definition of the distribution graph, updating the graph is
fairly straightforward. However, after updating the graph there might no longer
be a path from every depletion interval to the far right depletion interval. This
can be seen as a cut in the distribution graph. In these cases, to make progress,
we either have to remove a depletion point or adapt the jobs’ speed levels; If
both of these fixes are not possible, our algorithm has found an optimal solution.
A detailed description of this can be found in the full version.

5.2 Main Algorithm

Now that we have a description of each event type, we can formalize the main
algorithm. A formal description of the algorithm can be found in Listing 1.1.
We give an informal description of its subroutines CalculateRates, Update-
Graph, and PathFinding below.

UpdateGraph(T,GD, S): This subroutine takes an event type T , the distribu-
tion graph GD and the current schedule S and performs the required struc-
tural changes. It suffices to describe how to build the graph from scratch given
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1 Set R to be recharge rate that ensures YDS schedule, S, is feasible
2 Let GD = (VD, ED) be the corresponding Distribution Graph.
3 G′

D = PathFinding(GD)
4 (Δ, δj,�, T ):= CalculateRates(G′

D, S)
5 while True:
6 for each job j and depletion interval �:
7 set sj,� = sj,� + Δ · δj,�

8 set R = R − Δ
9 UpdateGraph(T, GD, S)

10 if ∃ fixable cut:
11 fix cut with either a depletion point removal or SLR procedure
12 else : exit
13 G′

D = PathFinding(GD)
14 (Δ, δj,�, T ):= CalculateRates(G′

D, S)

Listing 1.1. The algorithm for computing minimum recharge rate schedule.

1 Let S = {vL}, where vL is rightmost vertex
2 while exists an edge e = (v1, v2) with v1, v2 ∈ S and e is the highest priority such edge:
3 add v1 to S

Listing 1.2. The PathFinding subroutine.

a schedule (computing a schedule simply involves computing a YDS sched-
ule between each depletion point). Now the question becomes: Given two
depletion points, how do we choose the ε-transfer between these two? While
perhaps daunting at first, this can be achieved via a depth-first search from
the source depletion interval. Whenever the algorithm runs into a depletion
interval it has previously visited in the search, it chooses the higher priority
ε-transfer of the two as defined by the priority relation.

PathFinding(GD): We define PathFinding(GD) in Listing 1.2. Note the
details of determining the highest priority edge are omitted but the imple-
mentation is rather straightforward. The priority relation for choosing edges
is: First choose the shortest right going edge, and otherwise choose the
longest left going edge. While this priority relation itself is rather straightfor-
ward, it requires a non-trivial amount of work to show that it yields suitable
monotonicity properties to bound the runtime.

CalculateRates(G′
D, S): This subroutine takes as input the set of paths from

the distribution graph G′
D and the current schedule S. It returns for each job

j and each depletion interval �, the rate δj,� at which sj,� should change, T , the
next event type, and Δ the amount the recharge rate should be decreased.
It is straightforward to see the set of paths chosen by the algorithm G′

D

can be viewed as a tree with the root being the rightmost depletion interval.
Assuming R is decreasing at a rate of 1, and working our way from the leaves
to the root, we can calculate δj,� such that the rate of change of energy at
all depletion points remains 0. With these rates, we can use the previously
discussed methods to find both T and Δ.
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Abstract. We present a (1 +
√

3 + ε)-approximation algorithm for the
k-median problem with uniform penalties in polynomial time, extending
the recent result by Li and Svensson for the classical k-median problem
without penalties. One important difference of this work from that of
Li and Svensson is a new definition of sparse instance to exploit the
combinatorial structure of our problem.

Keywords: Approximation algorithm · k-median problem · Penalty ·
Pseudo-solution

1 Introduction

The k-median problem is a classical NP-hard problem in combinatorial opti-
mization, with vast applications in computer science, management science, and
operations research etc. Formally, given a facility set and a client set, we want to
open at most k facilities and connect each client to exactly one opened facility
such that the total connection cost is minimized. In real practice, some clients
are too far from the facilities, who may choose not to serve these clients by
paying some penalty cost. This consideration leads naturally to the k-median
problem with uniform penalties, the main focus of this work.

1.1 Literature Review

Extensive research exists on approximation algorithms for the (metric) k-median
problem; namely the version where the connection cost is non-negative, symmet-
ric, and satisfying triangle inequalities. Jain et al. [8] show that no approxima-
tion algorithm exists with approximation ratio smaller than 1 + 2/e for this
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 536–546, 2016.
DOI: 10.1007/978-3-319-48749-6 39
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problem, unless NP⊆ DTIME(nO(loglogn)). Charikar et al. [2] propose a 20/3-
approximation algorithm based on LP-rounding technique. Arya et al. [1] give a
(3 + ε)-approximation algorithm based on local search technique, where ε > 0 is
an arbitrary constant.

In contrast to the ‘usual’ definition of approximation ratio, there is another
performance measure of relevance to the k-median problem; namely, the bi-
criteria (α, β), where an algorithm for the the k-median problem finds a solution
with cost no more than α times the optimum, while using at most βk facilities.
Lin and Vitter [12] give a polynomial-time algorithm for the metric k-median
problem with bi-criteria of (2(1 + ε), (1 + 1/ε)k) for any ε > 0.

The k-median problems is also closely related to the facility location problem
(FLP), also NP-hard. In this problem, we are given a facility set and a client
set. Each facility has an open cost and each client pays a connection cost to be
served by an open facility. The objective is to open some facilities F and connect
each client to an open facility such that the total cost C(F ) := Cf (F ) + Cc(F ),
including the facility opening cost Cf (F ) and the connection cost Cc(F ), is
minimized.

The first constant approximation ratio for the (metric) FLP is proposed by
Shmoys et al. [14] based on LP-rounding technique. They obtain two approxi-
mation ratios, one of 4 with deterministic rounding and the other of 3.16 with
randomized rounding. The lower bound of the approximation ratio for the FLP
is 1.463 unless NP⊆ DTIME(nO(loglogn)) (c.f. [5]). Sviridenko indicates that
the hardness result can be strengthened to depend only on the assumption that
P�=NP (cited as personal communication in [4]).

Due to the close relationship between the k-median problem and the FLP,
techniques designed for one usually also lead to insights for the other. For
example, Jain and Vazirani [9] propose a 3-approximation algorithm for the
FLP based on a dual-ascent procedure, which satisfies a nice property of
Lagrange multiplier preservation (LMP). An algorithm has LMP property if
αCf (F ) + Cc(F ) ≤ αC(F ∗) where F is the solution obtained by the algo-
rithm and F ∗ is the optimal solution. They show that any ρ-approximation
algorithm with LMP property for the FLP yields a 2ρ-approximation algorithm
for the corresponding k-median problem. With this observation, they obtain a 6-
approximation algorithm for the k-median problem from the afore-mentioned 3-
approximation for the FLP. Following this line of research, Jain et al. [7] improve
the approximation ratio for the FLP to 2 with LMP property, and hence also
leading to improved ratio for the k-median problem. Li and Svensson [10] show
that any ρ-approximation algorithm with LMP property for the FLP yields a(

1+
√
3+ε

2

)
ρ-approximation algorithm for the corresponding k-median problem

which improves the corresponding result of [9]. One important contribution of
the work in [10] is the introduction of the concept of pseudo-solution, where
slightly more than k facilities can be opened. Their algorithm first constructs a
pseudo-solution, which is then converted to a feasible solution without suffering
too much on the approximation ratio.
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Charikar et al. [3] introduce the k-median problem with (linear) penalties and
propose a primal-dual based 4-approximation algorithm. This ratio is improved
to 3 + ε by Hajiaghayi et al. [6] using local search approach. Charikar et al.
[3] also introduce penalties into FLP. There are two versions of the problem
studied in the literature, the linear penalty FLP where the penalty cost is linear
with respect to the penalty client set, and the submodular penalty FLP where
the penalty cost is a submodular function with respect to penalty client set.
The currently best approximation ratios for the linear and submodular versions
are 1.5148 and 2, respectively ([11]). Wang et al. [13] introduce the k-facility
location problem with (linear) penalties and propose a local search 2 + 1/p +√

3 + 2/p + 1/p2 + ε-approximation algorithm, where p ∈ Z+ is a parameter of
the algorithm.

1.2 Preliminaries

Formally, in one instance I = (F , C, d, p, k) of the k-median problem with (linear)
penalties, we are given a set of facility F and a set of client C. Each pair of nodes
i, j ∈ F ∪ C has a connection cost d(i, j) which is assumed to be metric. Each
client j ∈ C has a penalty cost pj . In this paper, we consider the case where
all penalty costs are uniform, that is, pj ’s for all client j ∈ D are equal. This
version is called the k-median problem with uniform penalties. The goal is to
open at most k facilities in F , choose some clients to be penalized, and connect
each non-penalized client to exactly one open facility such that the total cost
including the connection cost and the penalty cost is minimized.

For convenience, we denote d(i, S) as the minimum connection cost from
i ∈ F ∪ C to S ⊆ F ∪ C, i.e., d(i, S) = mini′∈S d(i, i′). The k-median problem
with uniform penalties can be formulated as an integer program. Below, the 0−1
variable yi denotes whether the facility i is opened or not; the 0 − 1 variable xij

denotes whether the client j is connected to facility i or not; and the 0 − 1
variable zj denotes whether the client j is penalized or not.

max
∑

i∈F,j∈C
d(i, j)xij +

∑

j∈C
pjzj

s. t.
∑

i∈F
xij + zj ≥ 1, ∀j ∈ C,

xij ≤ yi, ∀i ∈ F , j ∈ C, (1)
∑

i∈F
yi ≤ k,

xij , yi ∈ {0, 1}, ∀i ∈ F , j ∈ C.

In this paper, we propose an (1 +
√

3 + ε)-approximation algorithm for the
k-median problem with uniform penalties, where ε is a given positive constant.
Following the framework of [10], we define a spare instance as follows. A facility
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i ∈ F in the instance I = (F , C, d, p, k) is A-sparse if

∑

j∈CI(i, 13d(i,F ∗))

min
{

pj ,
2
3
d(i, F ∗)

}

≤ A,

where CI(i, d) is the client set {j ∈ C : d(i, j) < d} for a facility i and real
number d, and F ∗ is the optimal solution for the instance I; otherwise, we call
this facility i A-dense. An instance I = (F , C, d, p, k) is A-sparse if all facilities
in F are all A-sparse.

In the remaining of the paper, we present a three-step algorithm and the cor-
responding analysis in Sect. 2. In Sect. 3, we discuss future directions of research.

2 Our Algorithm and Analysis

The main algorithm consists of three high-level steps.

Step 1 Convert the input instance into a Cc(F
∗)

t -sparse instance for a given con-
stant t. Note that Cc(F ∗) is the optimal cost of the k-median problem
with uniform penalties.

Step 2 Construct a pseudo-solution from a fractional solution, a.k.a. bi-point
solution, for the sparse instance. In the pseudo-solution, the number of
opened facilities is k + c, where c is a constant.

Step 3 Construct a feasible integer solution from the pseudo-solution.

The following parameters can be used to adjust the algorithm.

– ε is a arbitrary constant.
– δ ∈ (0, 1/8) is a scalar.
– c is the constant that is the additive number of the open facilities in the

pseudo-solution.
– t > max{ 24c(1+

√
3)

εδ , 6c
δ }.

2.1 Step 1: Obtain a Sparse Instance

For an instance I and a constant t, the following process generates a Cc(F
∗)

t -
sparse instance.

Algorithm 1

Step 1.1 Initially, l := 1 and F ′ := F .
Step 2.2 Consider all possible series of facility-pairs with l facility-pairs as

(i1, ī1), (i2, ī2), · · · , (il, īl). Set qiu := d(iu, īu); Update F ′ := F ′ \
∪l

u=1FI(iu, qiu) to obtain a new instance I ′ = (F ′, C, d, p, k), where
FI(i, d) = {i′ ∈ F : d(i, i′) < d} for a given facility i and real number
d which is an open set.

Step 2.3 If l < t, update l := l+1 and goto Step 2; otherwise, output all facility-
pairs.
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In fact, we use the cost of the optimal solution F ∗, i.e., Cc(F ∗), which can
be obtained by guessing the value with step length 1 + ε. Note that we can
guess the cost of Cc(F ∗) in polynomial time although Algorithm 1 outputs 2O(t)

series of facility-pairs. We will show that one of the above series corresponds to
a Cc(F

∗)
t -sparse instance. Let us consider the following conceptional algorithm.

Algorithm 2

Step 1 Initially, set l := 0 and F ′ = F .
Step 2 Find a Cc(F

∗)
t -dense facility i in F ′. Update l := l + 1 and set il = i.

Find the closest facility in the optimal solution of I for il, and denote
the facility as īl. Then, we obtain a facility-pair (il, īl).

Step 3 Update F ′ := F\FI(il, d(il, īl)).
Step 4 Repeat Steps 2 and 3 until there is no dense facility in F ′.

Fig. 1. Construct a sparse instance

In Algorithm 2, we obtain a series of facility-pairs (i1, ī1), (i2, ī2), · · · , (il, īl)
with length l (c.f. Fig. 1). Obviously, the instance (F ′, C, d, p, k) given by the
above procedure is sparse since we deleted all dense facilities. Moreover, all
facilities in the optimal solution of I is still in F ′, because the set F (i, d) is an
open set. Thus, the optimal solution of I is the same as the optimal solution of
(F ′, C, d, p, k). Now we just need to show that the length l of the series of the
facility-pair is less than t; that is, the series (i1, ī1), (i2, ī2), · · · , (il, īl) is one of
the outputs for Algorithm 1.



Approximation Algorithm for the k-Median Problem with Uniform Penalties 541

Lemma 1. For the given constant t, we have l ≤ t.

Sketch of Proof: We proceed in two steps: (i) the clients in the balls of
CI(is, d(is, īs)) are disjoint; and (ii) the optimal cost is no less than the total
cost of the penalty cost or the connection cost of the clients in these balls.

Theorem 1. By Algorithm 1, we can obtain a Cc(F
∗)

t -sparse instance I ′ for an
instance I. And also, the optimal solution of the new instance I ′ is the same as
that of I.

2.2 Step 2: Obtain a Pseudo-Solution

In this section, we show how to obtain a pseudo-solution from a fractional solu-
tion for the sparse instance. The linear programming relaxation of the k-median
problem with uniform penalties (1) is as follows.

max
∑

i∈F,j∈C
d(i, j)xij +

∑

j∈C
pjzj

s. t.
∑

i∈F
xij + zj ≥ 1, ∀j ∈ C,

xij ≤ yi, ∀i ∈ F , j ∈ C, (2)
∑

i∈F
yi ≤ k,

xij , yi ≥ 0, ∀i ∈ F , j ∈ C.

Any solution of program (2) is a fractional feasible solution. For each two
opened facility sets F1 and F2 with |F1| ≤ k < |F2|, we construct a fractional
feasible solution, so-called bi-point solution, for the k-median problem with uni-
form penalties. That is, let a, b > 0 be two real numbers such that a+ b = 1 and
a|F1| + b|F2| = k. A bi-point solution is constructed as:

– xij = aIj∈S1(i) + bIj∈S1(i),
– yi = aIi∈F1 + bIi∈F2 ,
– zj = aIpj<d(j,F1) + bIpj<d(j,F2),

where I(.) is an indicator function, S1(i) is the client set, each of which is con-
nected to i in the solution F1, and S2(i) is the client set, each of which is con-
nected to i in the solution F2. We view the penalty as the connection cost; that
is, Cc(F ) =

∑
j∈C min{pj , d(j, F )}. Therefore, the cost of a bi-point solution for

the k-median problem with uniform penalties is aCc(F1) + bCc(F2).
It is easy to obtain the following theorem by combining the factor-revealing

LP in [7].

Theorem 2. There is a 2-approximation algorithm with LMP property for the
facility location problem with uniform penalties.
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This is the only place in the entire proof which uses the assumption that the
penalty costs are all equal.

Applying the algorithm by Jain et al. [7] to the facility location problem with
uniform penalties to obtain two opened sets F1 and F2, where |F1| ≤ k < |F2|,
then, Theorem 2 implies that the cost of the bi-point solution aCc(F1)+bCc(F2)
is no more than 2 times the optimal cost for the k-median problem with uniform
penalties.

The following algorithm outputs a pseudo-solution with constant additive
facilities from the bi-point solution. We present the algorithms based on three
cases depending on the parameter a; that is,

a ∈
(

0,

√
3 − 1
4

]

,

a ∈
(√

3 − 1
4

,
2

1 +
√

3

]

,

a ∈
(

2
1 +

√
3
, 1

]

.

Algorithm 3

Case 2.1 If a ∈
(
0,

√
3−1
4

]
, output the solution using the algorithm in Li and

Svensson [10].
Case 2.2 If a ∈

(√
3−1
4 , 2

1+
√
3

]
, output the cheaper solution among F1 and the

one generated by the algorithm in Li and Svensson [10] in this case.
Case 2.3 If a ∈

(
2

1+
√
3
, 1

]
, output F1 since |F1| ≤ k.

Li and Svensson [10] show that

Lemma 2. There are algorithms to obtain a pseudo-solution for the k-median
problem with a factor of

√
3+1+ε
2 for a ∈

(
0,

√
3−1
4

]
and a ∈

(√
3−1
4 , 2

1+
√
3

]
,

respectively. Moreover, the additive number of the pseudo-solution for both cases
are a constant.

For our problem, we can obtain the same lemma as follows.

Lemma 3. The cost of the solution for both a ∈
(
0,

√
3−1
4

]
and a ∈

(√
3−1
4 , 2

1+
√
3

]
is no more than

√
3+1+ε/2

2 (aCc(F1) + bCc(F2)) for any ε > 0.

Sketch of the Proof: It is easy to prove the first case. For the second, if the
client is penalized in the pseudo-solution, the factor will be 1. If the client is
connected to an opened facility, we show that the upper bound of connection
cost also holds due to linear penalty cost.
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With respect to the case a ∈
(

2
1+

√
3
, 1

]
, we have that F1 is the feasible

solution with cost

Cc(F1) ≤ 1
a
aCc(F1) ≤ 1

a
(aCc(F1) + bCc(F2))

≤
√

3 + 1
2

(aCc(F1) + bCc(F2)).

Assume that the additive constant number of the opened facility in
Algorithm 3 is c. Lemma 3 and Theorem 2 together imply that

Theorem 3. The cost Cc(T ) of pseudo-solution T by Algorithm 3 is no more
than (1 +

√
3 + ε

2 )Cc(F ∗).

2.3 Step 3: Obtain a Feasible Solution

In Sect. 2.2, the solution obtained, denoted as T , is infeasible since there are k+c

opened facilities for the Cc(F
∗)

t -sparse instance (F ′, C, d, p, k). We now convert
T into a feasible solution where exactly k facilities are opened.

Algorithm 4 . Set T ′ = T as the initial solution. Let δ be a constant such that
1+3δ
1−3δ ≤ 1 +

√
3, t > 6c(2+

√
3)

εδ , and B = 6Cc(F
∗)+Cc(T )

δt .

Step 3.1 If |T ′| > k, find a facility i ∈ T ′ such that Cc(T ′\{i}) ≤ Cc(T ′) + B.
Step 3.2 Set T ′ = T ′\{i}.
Step 3.3 Repeat Steps 3.1 and 3.2 until |T ′| ≤ k or no such facility exists.
Step 3.4 If |T ′| ≤ k, output F = T ′ as the feasible solution and stop; otherwise,

go to Step 3.5.
Step 3.5 Choose any possible D ⊆ T ′ and V ⊆ F such that |D| + |V | = k and

|V | < t. For each i ∈ D, find

s̄i := arg min
si∈FI(i,δQi)

∑

j∈CI(i, 13Qi)

min{d(si, j), d(j,D), pj},

where Qi = d(i, T ′ \{i}) is the connection cost from i to the closest
facility in T ′ except itself. Set FD,V = V ∪ {s̄i : i ∈ D}.

Step 3.6 Output F = arg minD,V Cc(FD,V ).

In Algorithm 4, the number of combinations of D and V is Ct
nCk−t

n , implying
the running time of Algorithm 4 is polynomial in terms of the inputs.

We give one choice of D and V obtained from Algorithm 4. The cost of this
choice serves as an upper bound. A facility i is determined if qi ≤ δQi. Note
that qi = d(i, F ∗), Qi = d(i, T ′\{i}), and δ is a constant used in Algorithm 4;
otherwise, the facility is undetermined.

– Set D0 := {i ∈ T ′ : qi ≤ δQi} which contains all determined facilities in T ′.
– For each i ∈ D0, denote f∗

i := arg mini′∈F ∗ d(i, i′) as the closest facility in the
optimal solution from i.
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Fig. 2. Construct a feasible solution

– Set V0 := F ∗\{f∗
i : i ∈ D0}.

Subsequently, we show that D0 and V0 (c.f. Fig. 2) is one choice among all
the Ct

nCk−t
n combinations in Algorithm 4.

Lemma 4. |D0| + |V0| = k and |V0| < t.

Sketch of Proof: We first prove that f∗
i �= f ∗̄

i
for each pair i �= ī ∈ D0, implying

|D0| + |V0| = k.
Next, let U0 be the set including all undetermined facilities in T ′. Note that

|D0| = |T ′| − |U0| and |V0| = k − |D0| together imply that

|V0| = k − |T ′| + |U0| ≤ |U0|,

where the last inequality holds since T ′ is a pseudo-solution. It suffices to prove
that |U0| < t, which can be done by contradiction. Assume that |U0| ≥ t, we can
find a facility i in T ′ such that Cc(T ′\{i}) ≤ Cc(T ′)+B, which is a contradiction.

Finally, the cost of FD0,V0 is an upper bound for the cost obtained by the
algorithm.

Lemma 5.
Cc(FD0,V0) ≤ 1 + 3δ

1 − 3δ
Cc(F ∗).

Sketch of Proof: We consider the penalty cost or connection cost for the client
depending on whether the client is penalized or not. If the client is penalized in
the optimal solution, the cost of the client is always no more than the penalty
cost.
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If the client is not penalized in the optimal solution, we consider whether the
client is in some ball CI(i, Qi/3) or not. If it is in some ball, we show that it is
either connected to s̄i, or V0, or penalized. Thus, the cost for these clients is no
more than that in the optimal solution. In the case that a client does not belong
to any ball, the cost will be no more than the that in the optimal solution if j
is connected to V0 in the optimal solution. If the client is connected to some f∗

i

in the optimal solution, we estimate the cost from the client to s̄i.
Now, we are ready to estimate the cost of the feasible solution by Algorithms

1, 3, and 4.

Theorem 4. The cost of the solution by Algorithm 4 is no more than

min
{

Cc(T ) + cB,
1 + 3δ
1 − 3δ

Cc(F ∗)
}

.

Proof. If the output is obtained by Step 3.4, the cost will be no more than
Cc(T ) + cB since there are at most c additive facilities. Thus, the result holds,
combining with Lemma 5.

Theorem 5. There is a (1+
√

3+ ε)-approximation algorithm for the k-median
problem with uniform penalties.

Proof. On the one hand, the cost Cc(T ) of the pseudo-solution is no more than
(1+

√
3+ ε)Cc(F ∗) by Theorem 3. By the value of B = 6Cc(F

∗)+Cc(T )
δt , we have

Cc(T ) + cB = Cc(T ) + c · 6
Cc(F ∗) + Cc(T )

tδ

≤ (1 +
√

3 + ε)Cc(F ∗) + c · 6
Cc(F ∗) + (1 +

√
3 + ε

2 )Cc(F ∗)
tδ

≤ (1 +
√

3 +
ε

2
)Cc(F ∗) + c · 12(1 +

√
3 + ε

2 )
tδ

Cc(F ∗). (3)

Since t > 24c(1+
√
3)

εδ , we have

Cc(T ) + cB ≤ (1 +
√

3 + ε)Cc(F ∗).

On the other hand, we can choose an appropriate δ ∈ (0, 1
8 ) such that 1+3δ

1−3δ ≤
1 +

√
3, which is achievable because 1+3δ

1−3δ is increasing with δ. Therefore, the
approximation ratio of the algorithm is 1 +

√
3 + ε for any given ε > 0.

3 Conclusion Remarks

The work of [10] inspires us in applying the concept of pseudo-solution for a
sparse instance to design our algorithm. We exploit the combinatorial struc-
tures of the sparse instance by enumerating. Combining with the algorithm of
Jain et al. [7], we propose a (1 +

√
3 + ε)-approximation algorithm for the k-

median problem with uniform penalties.



546 C. Wu et al.

There are also several directions for future research.

– We believe that the idea in this paper can be extended into the generalized
linear penalty, even submodular penalty version of the k-median problem.

– It will be interesting to develop an algorithm for the k-facility location prob-
lem, which adds opening cost to the k-median problem. The currently best
approximation ratio is 3 + ε for any ε > 0 via local search scheme. The ideas
in this paper may improve the approximation ratio.
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Abstract. We study the fundamental problem of pattern matching in
the case where the string data is weighted: for every position of the string
and every letter of the alphabet a probability of occurrence for this let-
ter at this position is given. Sequences of this type are commonly used
to represent uncertain data. They are of particular interest in computa-
tional molecular biology as they can represent different kind of ambigu-
ities in DNA sequences: distributions of SNPs in genomes populations;
position frequency matrices of DNA binding profiles; or even sequencing-
related uncertainties. A weighted string may thus represent many differ-
ent strings, each with probability of occurrence equal to the product
of probabilities of its letters at subsequent positions. In this article, we
present new average-case results on pattern matching on weighted strings
and show how they are applied effectively in several biological contexts.
A free open-source implementation of our algorithms is made available.

1 Introduction

Uncertain sequences are common in many applications: (i) data measurements
such as imprecise sensor measurements; (ii) flexible modelling of DNA sequences
such as DNA binding profiles; (iii) when observations are private and thus
sequences of observations may have artificial uncertainty introduced deliberately.
For example, in computational molecular biology an uncertain sequence can be
used to incorporate SNP distributions from a population of genomes into a refer-
ence sequence. This process can be realised by a IUPAC-encoded sequence [3,13]
or by directly incorporating the results of SNP studies such as [11,19]. An uncer-
tain sequence can also be used as a flexible model of DNA sequences such as
DNA binding profiles, and is known as position frequency matrix [18].

As pattern matching is a core computational task in many real-world applica-
tions, we focus here on designing efficient on-line algorithms for pattern matching
on uncertain sequences. On-line pattern matching algorithms process the text
position-by-position, in the order that it is fed to the algorithm, without having
the entire text at hand. Hence this type of algorithms is useful when one wishes

c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 547–562, 2016.
DOI: 10.1007/978-3-319-48749-6 40
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to query for one or a few patterns in potentially many texts without having to
pre-compute and store an index over the texts.

We start with a few definitions to explain our results. An alphabet Σ is a
finite non-empty set of size σ, whose elements are called letters. A string on an
alphabet Σ is a finite, possibly empty, sequence of elements of Σ. The zero-letter
sequence is called the empty string, and is denoted by ε. The length of a string
x is defined as the length of the sequence associated with the string x, and is
denoted by |x|. We denote by x[i], for all 0 ≤ i < |x|, the letter at index i of x.
Each index i, for all 0 ≤ i < |x|, is a position in x when x �= ε. The i-th letter of
x is the letter at position i − 1 in x. We refer to any string x ∈ Σq as a q-gram.

The concatenation of two strings x and y is the string of the letters of x
followed by the letters of y; it is denoted by xy. A string x is a factor of a string
y if there exist two strings u and v, such that y = uxv. Consider the strings
x, y, u, and v, such that y = uxv, if u = ε then x is a prefix of y, if v = ε then x
is a suffix of y. Let x be a non-empty string and y be a string, we say that there
exists an occurrence of x in y, or more simply, that x occurs in y, when x is a
factor of y. Every occurrence of x can be characterised by a position in y; thus
we say that x occurs at the starting position i in y when y[i . . i + |x| − 1] = x.

A weighted string x of length n on an alphabet Σ is a finite sequence of n
sets. Every x[i], for all 0 ≤ i < n, is a set of ordered pairs (sj , πi(sj)), where
sj ∈ Σ and πi(sj) is the probability of having letter sj at position i. Formally,
x[i] = {(sj , πi(sj))|sj �= s� for j �= �, and

∑
j πi(sj) = 1}. A letter sj occurs at

position i of a weighted string x if and only if the occurrence probability of letter
sj at position i, πi(sj), is greater than 0. A string u of length m is a factor of
a weighted string if and only if it occurs at starting position i with cumulative
occurrence probability

∏m−1
j=0 πi+j(u[j]) > 0. Given a cumulative weight threshold

1/z ∈ (0, 1], we say that factor u is valid, or equivalently that factor u has
a valid occurrence, if it occurs at starting position i and

∏m−1
j=0 πi+j(u[j]) ≥

1/z. Similarly, we say that letter sj at position i is valid if πi(sj) ≥ 1/z. For
succinctness of presentation, if πi(sj) = 1 the set of pairs is denoted only by the
letter sj ; otherwise it is denoted by [(sj1 , πi(sj1)), . . . , (sjk

, πi(sjk
))].

Suppose we are given a cumulative weight threshold 1/z. Given a (weighted)
string u and a weighted string v, both of length m, we say that u and v match,
denoted by u =z v, if there exists a (valid) factor of u of length m that is also
a valid factor of v of length m. Given a string u and a weighted string v, both
of length m, and a non-negative integer k < m, we say that u and v match with
k-mismatches, denoted by u =z,k v, if when at most k letters in u were replaced
to create a new string u′ then u′ =z v. We consider the following three problems.

WeightedTextMatching (WTM)
Input: a string x of length m, a weighted string y of length n > m, and a
cumulative weight threshold 1/z ∈ (0, 1]
Output: all positions i of y such that x =z y[i . . i + m − 1]
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GeneralWeightedPatternMatching (GWPM)
Input: a weighted string x of length m, a weighted string y of length n > m,
and a cumulative weight threshold 1/z ∈ (0, 1]
Output: all positions i of y such that x =z y[i . . i + m − 1]

ApproxWeightedTextMatching (AWTM)
Input: a string x of length m, a weighted string y of length n > m, a non-
negative integer k < m, and a cumulative weight threshold 1/z ∈ (0, 1]
Output: all positions i of y such that x =z,k y[i . . i + m − 1]

Our computational model. We assume word-RAM model with word size w =
Ω(log(nz)). We consider the log-probability model of representations of weighted
strings in which probability operations can be realised exactly in O(1) time. We
assume that σ = O(1) since the most commonly studied alphabet is {A, C, G, T}.
In this case a weighted string of length n has a representation of size O(n). A
position on a weighted string is viewed as a non-empty subset of the alphabet
such that each letter of this subset has probability of occurrence greater than 0.
For the analysis, we assume all possible non-empty subsets of the alphabet are
independent and identically distributed random variables uniformly distributed.

Related results. Problem WeightedTextMatching can be solved in time
O(n log z) [14]. Moreover, in [14], the authors showed that their solution to
WeightedTextMatching can be applied to the well-known profile-matching
problem [17]. Problem GeneralWeightedPatternMatching can be solved
in time O(zn) [4]. Problem ApproxWeightedTextMatching can be solved
in time O(n

√
m log m) using FFTs [2]. All these results are worst-case complex-

ities. Problem WeightedTextMatching can be solved in average-case search
time o(n) for weight ratio z

m < min{ 1
log z , log σ

log z(log m+log log σ)} [5].

Our contribution. We provide efficient on-line algorithms for solving these prob-
lems and provide their average-case analysis, obtaining the following results.
Note that preprocessing resources below denote worst-case complexities, 0 <
c < 1/2 is an absolute constant, v = 2σ−1

2σ−1 , d = 1 + (1 − c) logv(1 − c) + c logv c,
and a = 4

√
c(1 − c).

Problem Preprocessing Preprocessing Search time Conditions
space time

WTM O(m) O(m) O(nz log m
m

)

GWPM O(zm) O(zm) O(nz log m
m

)

AWTM O(σq) O(mqσq) O(
nz(log m+k)

m
) q ≥ 3 logv m−logv a

d
,

k
m

≤ c − 2cq
m

We also provide extensive experimental results, using both real and syn-
thetic data: (i) we show that our implementations outperform state-of-the-art
approaches by more than one order of magnitude; (ii) furthermore, we demon-
strate the suitability of the proposed algorithms in a number of real biological
contexts.
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2 Tools for Standard and Weighted Strings

Suffix trees are used as computational tools; for an introduction see [9]. The
suffix tree of a non-empty standard string y is denoted by T (y).

Fact 1 [10]. Given a non-empty string y of length n, T (y) can be constructed in
time and space O(n). Checking whether a string x of length m occurs in y can
be performed in time O(m) using T (y).

We next define some primitive operations on weighted strings. Suppose we are
given a cumulative weight threshold 1/z. Let u be a string of length m and v
be a weighted string of length m. We define operation VER1(u, v, z): it returns
true if u =z v and false otherwise. Let u be a weighted string of length m and v
be a weighted string of length m. We define operation VER2(u, v, z): it returns
true if u =z v and false otherwise. For a weighted string v, by H(v) we denote
a string obtained from v by choosing at each position the heaviest letter, that
is, the letter with the maximum probability (breaking ties arbitrarily). We call
H(v) the heavy string of v. Let u be a string of length m and v be a weighted
string of length m. Given a non-negative integer k < m, we can check whether
u =z,k v using Function VER3. An implementation of VER3 is provided below.
Intuitively, we replace at most k letters of u with the heaviest letter in v based
on how much these letter replacements contribute to the cumulative probability.

Function VER3(u, v, z, k)

v′ ← H(v);

A ← EmptyList();

foreach i such that u[i] �= v′[i] do

if πi(u[i]) = 0 then

u[i] ← v′[i];

k ← k − 1;

if k < 0 then

return false;

else

α ← πi(v
′[i])/πi(u[i]);

A ← Insert(< i, α >);

Find the kth largest element in A with respect to α;

Add the k largest elements of A with respect to α to set Ak;

foreach < i, α >∈ Ak do

u[i] ← v′[i];

if
∏m−1

j=0 πj(u[j]) ≥ 1/z then

return true;

return false;
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Lemma 1. VER1, VER2, and VER3 can be implemented to work in time O(m),
O(mz), and O(m), respectively.

Proof. For VER1 we can check whether u =z v in time O(m) by checking
∏m−1

j=0 πj(u[j]) ≥ 1/z. For VER2 we can check whether u =z v in time O(mz)
using the algorithm of [4].

Let us denote by E = {e1, . . . , e|E|}, |E| ≤ k, the set of positions of the
input string u, which we replace in VER3 by the heaviest letter of v. We denote
the resulting string by u′. Towards contradiction, assume we can guess a set
F = {f1, . . . , f|F |}, |F | ≤ k, of positions over u resulting in another string u′′ such
that Pu′′ =

∏m−1
j=0 πj(u′′[j]) > Pu′ =

∏m−1
j=0 πj(u′[j]) ≥ Pu =

∏m−1
j=0 πj(u[j]). It

must hold that

Pu′′

Pu
=

πf1(u
′′[f1]) . . . πf|F |(u

′′[f|F |])
πf1(u[f1]) . . . πf|F |(u[f|F |])

>
Pu′

Pu
=

πe1(u
′[e1]) . . . πe|E|(u

′[e|E|])
πe1(u[e1]) . . . πe|E|(u[e|E|])

.

In case E = F , this implies that there exist letters heavier than the corresponding
heaviest letters, a contradiction. In case E �= F , given that there exists no letter
heavier than the heaviest letter at each position, this implies that there exists
an element < i, α >, i ∈ F , in list A which is the rth largest, r ≤ k, with respect
to α, and it is larger than the rth element picked by VER3, a contradiction. All
operations in VER3 can be trivially done in time O(m) except for finding the
kth largest element in a list of size O(m), which can be done in time O(m) using
the introselect algorithm [16]. ��
We say that u is a (right-)maximal factor of a weighted string x at position i if
u is a valid factor of x starting at position i and no string u′ = uα, for α ∈ Σ,
is a valid factor of x at this position.

Fact 2 [1]. A weighted string has at most z different maximal factors starting
at a given position.

3 Algorithms

Let us start with a few auxiliary definitions. An indeterminate string x of length
m on an alphabet Σ is a finite sequence of m sets, such that x[i] ⊆ Σ, x[i] �= ∅,
for all 0 ≤ i < m. Naturally, we refer to any indeterminate string of length q
as indeterminate q-gram. We say that two indeterminate strings x and y match,
denoted by x ≈ y, if |x| = |y| and for each i = 0, . . . , |x|−1, we have x[i]∩y[i] �= ∅.
Intuitively, we view a weighted string as an indeterminate string in order to
conduct the average-case analysis of the algorithms according to our model.

3.1 Weighted Text Matching

In this section we present a remarkably simple and efficient algorithm to solve
problem WeightedTextMatching. We start by providing a lemma on the
probability that a random indeterminate q-gram and a standard q-gram match.
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Lemma 2. Let u be a standard q-gram and v be a uniformly random indeter-
minate q-gram. The probability that u ≈ v is no more than ( 2σ−1

2σ−1 )q, which tends
to 1

2q as σ increases.

Proof. There are less than 2σ non-empty subsets of an alphabet of size σ. Let
a ∈ Σ, then 2σ−1 of these subsets include a. Clearly then the probability that
two positions of u and v match is no more than 2σ−1

2σ−1 . Therefore the probability

of them matching at every position is no more than ( 2σ−1

2σ−1 )q. ��

Algorithm WTM(x, m, y, n, z, q)

Construct T (x);

i ← 0;

while i < n − m + 1 do

j ← i + m − q;

Let A denote the set of all valid q-grams starting at position j in y;

foreach s ∈ A do

Check if s occurs in x using T (x);

if no s ∈ A occurs in x or A = ∅ then

i ← j + 1;

else

if VER1(x, y[i . . i + m − 1], z) = true then

output i;

i ← i + 1;

Theorem 3. Algorithm WTM solves problem WeightedTextMatching in
average-case search time O(nz log m

m ) if we set q ≥ 3 log 2σ−1
2σ−1

m, which tends to

3 log2 m as σ increases. The worst-case preprocessing time and space is O(m).

Proof. By Fact 1 the time and space required for constructing T (x) is O(m).
We consider a sliding window of size m of y and read q-grams backwards from
the end of this window and check if they occur anywhere within x. By Fact 1
this check can be done in time O(q) per q-gram. If a q-gram occurs anywhere
in x then we verify the entire window, otherwise we shift the window m − q + 1
positions to the right. Clearly none of the skipped positions can be the starting
position of any occurrence of x as if this was the case, the q-gram must occur
in x; so the algorithm is correct. Verifying (all starting positions of) the window
takes time O(m2) by Lemma 1 and the probability that a q-gram matches within
a pattern of length m > q is no more than m( 2σ−1

2σ−1 )q by Lemma 2. We note that
reading the q-grams takes time O(zq) per position by Fact 2, so to achieve the
claimed runtime we must pick a value for q such that the expected cost per
window is O(zq). This is achieved when O(m3( 2σ−1

2σ−1 )q) = O(zq). It is always
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true when q ≥ 3 log 2σ−1
2σ−1

m, which tends to 3 log2 m as σ increases. There are

O( n
m ) non-overlapping windows of length m and this proves the theorem. ��

3.2 General Weighted Pattern Matching

In this section we present an algorithm, denoted by GWPM, to solve prob-
lem GeneralWeightedPatternMatching. Algorithm GWPM largely fol-
lows algorithm WTM.

Lemma 3. Let u and v be uniformly random indeterminate q-grams. The prob-
ability that u ≈ v is no more than (1−(1−( 2σ−1

2σ−1 )2)σ)q, which tends to (1−(34 )σ)q

as σ increases.

Proof. There are less than 2σ non-empty subsets of an alphabet of size σ. Let
a ∈ Σ, then 2σ−1 of these subsets include a. Clearly then the probability that
a occurs at both positions is no more than ( 2σ−1

2σ−1 )2. It then follows that the
probability that the two sets have a non-empty intersection is no more than
1−(1−( 2σ−1

2σ−1 )2)σ. Therefore the probability that all positions have a non-empty

intersection is no more than (1 − (1 − ( 2σ−1

2σ−1 )2)σ)q. ��

Algorithm GWPM(x, m, y, n, z, q, Σ)

Let F = {x1, . . . , xf} denote the set of all valid factors of length m of x;

if F = ∅ then

return;

Construct string X = x1$ . . . $xf , where $ /∈ Σ;

Construct T (X);

i ← 0;

while i < n − m + 1 do

j ← i + m − q;

Let A denote the set of all valid q-grams starting at position j in y;

foreach s ∈ A do

Check if s occurs in X using T (X);

if no s ∈ A occurs in X or A = ∅ then

i ← j + 1;

else

if VER2(x, y[i . . i + m − 1], z) = true then

output i;

i ← i + 1;

Theorem 4. Algorithm GWPM solves problem GeneralWeightedPattern-
Matching in average-case search time O(

nz log m
m ) if we set q ≥ 3 logu m, where
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u = (2σ−1)2σ

(2σ−1)2σ−((2σ−1)2−22σ−2)σ , which tends to 3 log1/(1−( 3
4 )

σ) m as σ increases.
The worst-case preprocessing time and space is O(zm).

Proof. Let x1, x2, . . . , xf denote all f valid factors of length m of x. We
construct string X = x1$x2$ . . . $xf , where $ /∈ Σ. By Facts 1 and 2 the
time and space required for constructing T (X) is O(zm). Plugging Lemmas 1
and 3 to the proof of Theorem 3 yields the result. This is achieved when
O(m3z(1−(1−( 2σ−1

2σ−1 )2)σ)q) = O(zq). It is always true when q ≥ 3 logu m, where

u = (2σ−1)2σ

(2σ−1)2σ−((2σ−1)2−22σ−2)σ , which tends to 3 log1/(1−( 3
4 )

σ) m as σ increases. ��

3.3 Approximate Weighted Text Matching

In this section we present an algorithm to solve problem ApproxWeighted-
TextMatching. The algorithm, denoted by AWTM, is split into two distinct
stages: preprocessing the pattern x and searching the weighted text y.

Preprocessing. We build a q-gram index in a similar way as that proposed by
Chang and Marr in [8]. Intuitively, we wish to determine the minimum possible
Hamming distance (mismatches) between every q-gram on Σ and any q-gram of
x. An index like this allows us to lower bound the Hamming distance between a
window of y and x without computing the Hamming distance between them. To
build this index, we generate every string of length q on Σ, and find the minimum
Hamming distance between it and all factors of length q of x. This information
can easily be stored by generating a numerical representation of the q-gram and
storing the minimum Hamming distance in an array at this location. If we know
the numerical representation, we can then look up any entry in constant time.
This index has size O(σq) and can be trivially constructed in worst-case time
O(mqσq) and space O(σq).

Lemma 4. Let u be a standard q-gram and v be a uniformly random indetermi-
nate q-gram. The probability that u and v match with cq-mismatches is at most
(
2σ−1

2σ−1

)q(1 − c)−(1−c)qc−cq 1

4
√

c(c−1)
, where 0 < c < 1/2.

Proof. Without loss of generality assume that cq is an integer. By Lemma 2, the
probability the q-grams match with exactly i mismatches is

(
q

i

)( 2σ−1

2σ − 1

)q

.

Therefore, by Lemma 3.8.2 in [15] on the sum of binomial coefficients, the prob-
ability that u and v match with cq-mismatches is

cq∑

i=0

(q

i

)( 2σ−1

2σ − 1

)q
=
( 2σ−1

2σ − 1

)q
cq∑

i=0

(q

i

)
≤
( 2σ−1

2σ − 1

)q
(1 − c)−(1−c)qc−cq 1

4
√

c(c − 1)
.

This decreases exponentially in q when (1 − c)−(1−c)c−c > 0 which holds for
0 < c < 1/2. It tends to 2−q(1 − c)−(1−c)qc−cq 1

4
√

c(c−1)
as σ increases. ��
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Searching. We wish to read backwards enough indeterminate q-grams from
a window of size m such that the probability that we must verify the win-
dow is small and the amount we can shift the window by is sufficiently large.
By Lemma 4, we know that the probability of a random indeterminate q-
gram occurring in a string of length m with cq-mismatches is no more than
m

(
2σ−1

2σ−1

)q(1 − c)−(1−c)qc−cq 1

4
√

c(1−c)
. For the rest of the discussion let a =

4
√

c(1 − c).
In the case when we read k/(cq) indeterminate q-grams, we know that with

probability at most (k/(cq))m
(
2σ−1

2σ−1

)q(1 − c)−(1−c)qc−cq1/a we have found at
most k mismatches. This does not permit us to discard the window if all q-grams
occur with at most cq mismatches. To fix this, we instead read � = 1 + k/(cq)
q-grams. If any indeterminate q-gram occurs with less than cq mismatches, we
will need to verify the window; but if they all occur with at least cq mismatches,
we must exceed the threshold k and can shift the window. When shifting the
window we have the case that we shift after verifying the window and the case
that the mismatches exceed k so we do not verify the window. If we have verified
the window, we can shift past the last position we checked for an occurrence:
we can shift by m positions. If we have not verified the window, as we read
a fixed number of indeterminate q-grams, we know the minimum-length shift
we can make is one position past this point. The length of this shift is at least
m − (q + k/c) positions. This means we will have at most n

m−(q+k/c) = O( n
m )

windows. The previous statement is only true assuming m > q + k/c, as then
the denominator is positive. From there we see that we also have the condition
that q + k/c can be at most εm, where ε < 1, so the denominator will be O(m).
This puts the condition on c, that is, c > k

εm−q . Therefore, for each window, we

verify with probability at most (1 + k/(cq))m
(

2σ−1

2σ−1

)q

(1 − c)−(1−c)qc−cq1/a. So
the probability that a verification is triggered is

(1 + k/(cq))m
( 2σ−1

2σ − 1

)q

(1 − c)−(1−c)qc−cq1/a.

By Lemma 1 verification takes time O(m2); per window the expected cost is

O(m2)(1 + k/(cq))m
( 2σ−1

2σ − 1

)q

(1 − c)−(1−c)qc−cq1/a =

O
(

(q + k)m3
(
2σ−1

2σ−1

)q(1 − c)−(1−c)qc−cq

qa

)

.

We wish to ensure that the probability of verifying a window is small enough
that the average work done is no more than the work we must do if we skip
a window without verification. When we do not verify a window, we read � =
1 + k/(cq) indeterminate q-grams and shift the window. This means that we
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process q + k/c = O(q + k) positions. So a sufficient condition is the following:

(q + k)m3
(
2σ−1

2σ−1

)q(1 − c)−(1−c)qc−cq

qa
= O(q + k).

For sufficiently large m, this holds if we set q ≥ 3 logv m−logv a−logv q
1+(1−c) logv(1−c)+c logv c , where

v = 2σ−1
2σ−1 , which tends to 3 log2 m−log2 a−log2 q

1+(1−c) log2(1−c)+c log2 c as σ increases.

Algorithm AWTM(x, m, y, n, z, k, q, �, Σ)

D[0 . . |Σ|q − 1] ← 0;

foreach s ∈ Σq do

Compute the minimal Hamming distance e between s and any
factor of x, and set D[s] ← e;

i ← 0;

while i < n − m + 1 do

d ← 0;

foreach t ∈ [1, �] do

j ← i + m − t × q;

Let A denote the set of all valid q-grams starting at position j
in y;

if A = ∅ then

break;

else

dmin ← q;

foreach s ∈ A do

dmin ← min{dmin,D[s]};

d ← d + dmin;

if d > k or A = ∅ then

i ← j + 1;

else

if VER3(x, y[i . . i + m − 1], z, k) = true then

output i;

i ← i + 1;

For this analysis to hold we must be able to read the required number of inde-
terminate q-grams. Note that the above probability is the probability that at
least one of q-grams matches with less than cq mismatches. To ensure we have
enough unread random q-grams for the above analysis to hold, the window must
be of size m ≥ 2q + 2k/c. Consider the case where 2q + 2k/c > m ≥ 2q + k/c.
If we have verified a window then we have enough new random q-grams, and
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if we have just shifted, then we know that all the q-grams we previously read
matched with at least cq mismatches and we have at least one new q-gram. The
probability that one of these matches with less than cq mismatches is less than
the one used above so the analysis holds in both cases. Note that this technique
can work for any ratio which satisfies k/m ≤ c − 2cq

m .
Now recall that in fact we are processing a weighted text, not an indeterminate

one. By the aforementioned analysis, we can choose a suitable value for c and
q, to obtain the following result, noting also that it takes time O(z(q + k)), by
Fact 2, to obtain the valid q-grams of O(q + k) positions of the weighted text.

Theorem 5. Algorithm AWTM solves problem ApproxWeightedText-

Matching in average-case search time O(nz(log m+k)
m

)
if k/m ≤ c− 2cq

m and we set
q ≥ 3 logv m−logv a

1+(1−c) logv(1−c)+c logv c , where v = 2σ−1
2σ−1 , a = 4

√
c(1 − c) and 0 < c < 1/2,

which tends to 3 log2 m−log2 a
1+(1−c) log2(1−c)+c log2 c as σ increases. The worst-case preprocess-

ing time and space is O(mqσq) and O(σq), respectively.

4 Experimental Results

Algorithms WTM and GWPM were implemented as a program to perform exact
weighted string matching, and algorithm AWTM was implemented as a program
to perform approximate weighted string matching. The programs were imple-
mented in the C++ programming language and developed under the GNU/Linux
operating system. The input parameters for WTM and GWPM are a pattern
(weighted string for GWPM), a weighted text, and a cumulative weight thresh-
old. The output of this program is the starting positions of all valid occurrences.
The input parameters for AWTM are a pattern, a weighted text, a cumulative
weight threshold, and an integer k for mismatches. The output of this program
is the starting positions of all valid occurrences. These implementations are dis-
tributed under the GNU General Public License (GPL). The implementation
for WTM and GWPM is available at https://github.com/YagaoLiu/GWSM, and
the implementation for AWTM is available at https://github.com/YagaoLiu/
HDwtm. The experiments were conducted on a Desktop PC using one core of
Intel Core i5-4690 CPU at 3.50 GHz under GNU/Linux. All programs were com-
piled with g++ version 4.8.4 at optimisation level 3 (-O3).

WTM vs.Stateoftheart. We first compared the time performance of WTM
against two other state-of-the-art algorithms: the worst-case O(n log z)-time
algorithm of [14], denoted by KPR; and the average-case o(n)-time algorithm
of [5], denoted by BLP. For this experiment we used synthetic DNA data gener-
ated by a randomised script. The length of the input weighted texts was 32MB.
Four texts with four different uncertain positions percentages, denoted by δ,
were used: 2.5%, 5%, 7.5%, and 10%. The length of the input patterns ranged
between 16 and 256. The cumulative weight threshold 1/z was set according to
δ to make sure that all patterns could potentially have valid occurrences. Specif-
ically we set: z = 256 when δ = 2.5%; z = 16, 384 when δ = 5%; z = 1, 048, 576
when δ = 7.5%; and z = 67, 108, 864 when δ = 10%. The length of q-grams was

https://github.com/YagaoLiu/GWSM
https://github.com/YagaoLiu/HDwtm
https://github.com/YagaoLiu/HDwtm
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Fig. 1. Elapsed time of KPR, BLP, and WTM for on-line pattern matching using syn-
thetic weighted texts of length 32MB over the DNA alphabet (σ = 4)

set to q = 8. The results plotted in Fig. 1 show that WTM was between one and
three orders of magnitude faster than the state-of-the-art approaches with these
datasets. In addition, our theoretical findings in Theorem3 are confirmed: for
increasing m and constant n and z, the elapsed time of WTM decreases.

Application I. DnaA proteins are the universal initiators of replication from
the chromosomal replication origin (oriC) in bacteria. The DnaA protein
recognises and binds specifically to the IUPAC-encoded sequence TTWTNCACA,
named DnaA box, which is present in all studied bacterial chromosomal repli-
cation origins [7]. We transformed sequence TTWTNCACA into the weighted
sequence TT[(A,0.5),(T,0.5)]T[(A,0.25),(T,0.25), (G,0.25),(T,0.25)]CACA; and then
we searched for this sequence in a dozen of bacterial genomes obtain from
the NCBI genome database. The length of q-gram was set to q = 4 and the
cumulative weight threshold to 1/z = 1/8 to ensure all factors of length 9 are
valid. We compared the time performance of algorithm GWPM against the worst-
case O(nz2 log z)-time algorithm of [6], denoted by WPT, for this assignment.
The bacteria used, the number of occurrences found, and the elapsed times are
shown in Table 1. The results show that GWPM is one order of magnitude faster
than WPT.



On-Line Pattern Matching on Uncertain Sequences and Applications 559

Table 1. Elapsed time of GWPM and WPT for searching for the DnaA box TTWTNCACA

in 12 bacterial genomes

Bacteria DNA length Number of Elapsed time (s)

occurrences GWPM WPT

Bacillus subtilis 4,215,606 321 1.19 9.83

Escherichia coli 4,641,652 165 1.27 10.45

Haemophilus influenzae 1,830,138 177 0.56 4.83

Helicobacter pylori 1,667,867 172 0.48 3.96

Mycobacterium tuberculosis 4,411,532 21 1.14 9.54

Proteus mirabilis 4,063,606 294 1.16 9.23

Pseudomonas aeruginosa 6,264,404 66 1.60 14.66

Pseudomonas putida 6,181,873 141 1.62 13.55

Salmonella enterica 4,857,432 190 1.31 12.03

Staphylococcus aureus 2,821,361 202 0.80 7.75

Streptomyces lividans 8,345,283 18 2.08 18.42

Yersinia pestis 4,653,728 190 1.29 10.72

Application II. Mutations in 14 known genes on human chromosome 21 have
been identified as the causes of monogenic disorders. These include one form
of Alzheimer’s disease, amyotrophic lateral sclerosis, autoimmune polyglandu-
lar disease, homocystinuria, and progressive myoclonus epilepsy; in addition, a
locus for predisposition to leukaemia has been mapped to chromosome 21 [12].
To this end, we evaluated the time performance of AWTM for pattern match-
ing in a genomes population. Pattern matching is useful for evaluating whether
SNPs occur in experimentally derived transcription factor binding sites [11,18].
As input text we used the human chromosome 21 augmented with a set of
genomic variants obtained from the 1000 Genomes Project. The SNPs present
in the population were incorporated to transform the chromosome sequence into
a weighted text. The length of human chromosome 21 is 48, 129, 895 base pairs.
The input patterns were selected randomly from the text; their length ranged
between 16 and 256. In this real scenario, δ was found to be 0.7%; we therefore
set the cumulative weight threshold to the constant value of 1/z = 1/1, 024. For
a pattern of length m, the maximum allowed number of mismatches k was set to
2.5% × m, 5% × m, 7.5% × m, and 10% × m. The length of q-grams was set to
q = log2 m and the number of q-grams read backwards was set to � =  k

0.2×q +1�.
The exact values for q, k, and � are presented in Table 2. The results plotted in
Fig. 2 demonstrate the effectiveness of AWTM: all pattern occurrences can be
found within a few seconds, even for error rates of 10%. In addition, our theo-
retical findings in Theorem 5 are confirmed: for increasing m and constant n, k,
and z, the preprocessing time of AWTM increases but the search time decreases.
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Fig. 2. Elapsed time of AWTM for on-line approximate pattern matching in human
chromosome 21 augmented with SNPs from the 1000 Genomes Project

Table 2. Pattern length m, q-grams length q, number k of maximum allowed mis-
matches, and number � of q-grams read backwards for different error rates

m q 2.5 % 5.0 % 7.5 % 10 %

k � k � k � k �

16 4 1 2 1 2 2 3 2 3

32 5 1 2 2 3 3 4 4 5

64 6 2 2 4 4 5 5 7 6

128 7 4 3 7 6 10 8 13 10

256 8 7 5 13 9 20 13 26 17

5 Final Remarks

In this article, we provided efficient on-line average-case algorithms for solving
various weighted pattern matching problems. We also provided extensive exper-
imental results, using both real and synthetic data, showing that our imple-
mentations outperform state-of-the-art approaches by more than one order of
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magnitude. Furthermore, we demonstrated the suitability of the proposed algo-
rithms in a number of real biological contexts. We would like to stress though
that the applicability of these algorithms is not exclusive to molecular biology.

Our immediate target is to investigate other ways to measure approximation
in weighted pattern matching. Another direction is to study pattern matching
on the following generalised notion of weighted strings. A generalised weighted
string x of length n on an alphabet Σ is a finite sequence of n sets. Every x[i],
for all 0 ≤ i < n, is a set of ordered pairs (sj , πi(sj)), where sj is a possibly
empty string on Σ and πi(sj) is the probability of having string sj at position i.
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Abstract. Consider a scheduling problem in which a set of jobs with
interjob communication, canonically represented by a weighted tree,
needs to be scheduled on m parallel processors interconnected by a shared
communication channel. In each time step, we may allow any processed
job to use a certain capacity of the channel in order to satisfy (parts of)
its communication demands to adjacent jobs processed in parallel. The
goal is to find a schedule with minimum length in which communication
demands of all jobs are satisfied.

We show that this problem is NP-hard in the strong sense even if the
number of processors and the maximum degree of the underlying tree
is constant. Consequently, we design and analyze simple approximation
algorithms with asymptotic approximation ratio 2 − 1/2(m−1) in case of
paths and a ratio of 5/2 in case of arbitrary trees.

1 Introduction

In “On-The-Fly Computing” [1,9], one main idea is that future software-based IT
services are automatically composed from base services traded on global markets.
Thereby, the functionality of a service is provided by the interaction of smaller
pieces of software resulting in the exchange of data during the execution. This
strengthens the necessity of taking into account communication when designing
scheduling algorithms which enable efficient execution of such software. It might
even shift the focus from processing times to planning communication, particu-
larly if the exchange of data rather than actual computations becomes the major
bottleneck in a system.

These observations lead to a new scheduling problem that we study in this
paper. We are given a dependency graph describing a service composed of jobs
(base services) by identifying nodes with jobs and using weighted edges to
model the required interjob communication of jobs. These edge weights can, for
instance, be thought of as communication volume in bytes. Also, we are given
a system comprised of m parallel, identical processors connected by a shared
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communication channel (e.g. a data bus) enabling communication between the
processors and hence between jobs processed in parallel. Given that the avail-
able communication channel constitutes a scarce resource with bounded capacity
(e.g. available data rate in bytes per second), a fundamental question arising in
this setting is: How to assign jobs to processors and share the channel among
them in order to minimize the time at which all jobs with their related commu-
nication demands are done and hence, to minimize the time until the service is
completed.

We model this scheduling problem as a novel bin packing variant and propose
and analyze efficient, practical approximation algorithms. In the following, we
give a formal description of the studied problem and review relevant related work.
In Sect. 2, we study the computational hardness showing that the considered
problem is (for the most relevant cases) NP-hard in the strong sense even for
trees with constant degree and a constant number of machines. Consequently,
we then focus on approximation algorithms and start by considering the most
basic case for trees of degree 2 and show that a NextFit strategy achieves an
asymptotic approximation ratio of 2−1/2(m−1) in Sect. 3. For trees with arbitrary
degree we show an asymptotic 5/2-approximation algorithm in Sect. 4.

1.1 Model

We consider the following scheduling problem called Sic. Given a service
described by a communication tree G = (V,E) on a set V of jobs together with
a weight function w : E →]0, C], each edge {u, v} ∈ E represents the communi-
cation requirement between jobs u and v. Additionally, we are given a set of m
identical, parallel processors connected by a shared communication channel with
capacity C. Each processor can process at most one job per (discrete) time step
while a job can be processed in several (not necessarily contiguous) time steps.
Two jobs can communicate only when they are executed in parallel. Hence, in
any time step t, at most m jobs can be processed and additionally, a schedule
has to define how much capacity of the communication channel is allocated to
pairs of jobs processed in t. Thereby the channel may not be overused, i.e. a
capacity of at most C may be allocated to jobs per time step. As soon as for a
pair of jobs with strictly positive communication demand the accumulated share
of the channel it was assigned over time is at least its requirement w(e), we call
this edge to be completed. The objective is to find a schedule that minimizes the
time where the last edge is completed (also called makespan).

Formally, the problem is defined as a bin packing variant which is equivalent
to this scheduling problem. In the bin packing formulation, each edge e ∈ E
corresponds to an item e with size se := w(e). The goal is to pack all items into
as few bins with capacity C as possible while allowing items to be arbitrarily
split into parts and subject to the following constraints:

1. Capacity Constraint: Each bin may contain (parts of) items of overall size of
at most C,

2. Edge Constraint: Each bin may contain (parts of) items incident to at most
m nodes in the underlying tree representation.
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In the rest of the paper, we assume without loss of generality that C = 1.
Observe that in terms of the original scheduling formulation each part of an
item corresponds to one time step in which the corresponding jobs are scheduled
and its size represents the channel capacity assigned to this pair of jobs in this
time step. The edge constraint respresents the fact that only m machines are
available while the capacity constraint represents the available channel capacity.
The number of bins then coincides with the number of time steps required to
finish the service.

Since in the next section we show that Sic is NP-hard in general, even with
constant degree d ≥ 2 and constant number of processors m ≥ 4, we focus on
designing approximation algorithms. A polynomial time algorithm A is called
to have an (absolute) approximation ratio of α if, on any instance I, it holds

A(I)
Opt(I) ≤ α, where A(I) and Opt(I) denote the number of bins used by algorithm
A on I and by an optimal solution for I, respectively. A has an asymptotic ratio
of α if R∞ ≤ α, where R∞ := limk→∞ supI

{
A(I)

Opt(I) : Opt(I) = k
}

.

1.2 Related Work

Bin packing has a long history in computer science research and a huge body of
literature on several variants of bin packing problems emerged in the past.

In its most basic variant, n items of sizes 0 < si ≤ 1 need to be placed into as
few bins of capacity 1 as possible. This problem is easily seen to be NP-hard by
a straightforward reduction from the classical Partition problem, which also
directly gives an inapproximability for an approximation ratio below 3

2 unless
P = NP . This bound is actually achieved by the well-known FirstFitDe-
creasing strategy, which first sorts the items in decreasing order by their sizes
and then places the current item to be packed into the first bin it fits into. In
[5], Dósa et al. also prove that FirstFitDecreasing uses at most 11

9 Opt + 6
9

bins and that this bound is tight. When considering asymptotic approximation
algorithms, even (fully) polynomial time approximation schemes (A(F)PTAS)
are known [4,10]. Such algorithms provide solutions with asymptotic approxi-
mation ratio of (1 + ε), for any ε > 0, and run in time polynomial in the input
(and 1

ε in case of an AFPTAS).
While there are dozens of variants of this basic problem, the variant closest

related to Sic is bin packing with cardinality constraints and splittable items
introduced in [3]. In this problem items of arbitrary size need to be packed into
as few unit size bins as possible. In contrast to classical bin packing, items may
be split into parts which can be placed in different bins but any bin may contain
at most m (parts of) items. Note that this constraint is similar to the edge
constraint in Sic, though there is no underlying dependency graph. In [3], Chung
et al. prove NP-hardness and give an algorithm with asymptotic approximation
factor of 3

2 for the case m = 2. Later, Epstein and van Stee [8] gave an NP-
hardness result for m > 2 and they show a simple NextFit strategy to achieve
an exact (absolute) approximation factor of 2− 1

m . In [6], an efficient polynomial
time approximation scheme is given for the case m = o(n), which essentially
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solves the problem as it is NP-hard in the strong sense and for m = Θ(n) the
problem cannot be approximated better than 3

2 unless P = NP .
In [2], Brinkmann et al. consider a different variant of scheduling with shared

resources. Here, they focus on the distribution of the resource assuming the
assignment of jobs to processors and their order on each processor is already
fixed. The remaining challenge is to distribute the resource among the processors
such that it is used efficiently and the makespan of the resulting schedule is
minimized. They prove that their problem is NP-hard if the number of processors
is part of the input and give a simple greedy approximation algorithm for a fixed
number of processors m, which has an absolute approximation factor of 2 − 1

m .
Using a dynamic program, they also give an exact polynomial time algorithm
for m = 2.

2 Complexity

First, note that our problem is trivial to solve for constant m = 2. In this case,
each item has to be packed alone, hence packing all items into distinct bins is
optimal.

For larger values of m, as a first observation and a direct corollary from NP-
hardness of cardinality constrained bin packing with splittable items [3], which,
for a cardinality constraint set to m−1, is equivalent to Sic when the dependency
graph forms a star, we have the following proposition.

Proposition 1. The Sic problem is strongly NP-hard for constant m ≥ 3
processors and the degree d of the communication tree being part of the input.

Despite this hardness result, it is interesting to study the question whether
the complexity changes when the degree d of the dependency graph is fixed.
We will see that the problem is in P for m = 3 and, more interestingly and
suprisingly, remains NP-hard for any constant degree d and constant m ≥ 4.

2.1 Exact Algorithm for m = 3 Processors

In this section, we use a similar representation for packings as Epstein and
van Stee [7] used when they introduced a PTAS for cardinality constrained bin
packing with splittable items. Here, a packing is represented by a graph where
nodes correspond to items and edges correspond to bins. For a bin containing
two item parts, there is an edge between the two items. If a bin contains only
one item, there is a loop on that item. The following lemma can be adapted
from [7].

Lemma 1 (Lemma 4 [7]). If the graph of a packing contains a cycle, it is
possible to modify the packing such that this cycle is removed without increasing
the number of bins.

From Lemma 5 in [7], we can also directly derive the following lemma.
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Fig. 1. Finding an optimal solution for m = 3 and constant degree d

Lemma 2. For constant m = 3 and any star dependency graph, there exists an
optimal packing where each item is split into at most 2 parts.

Taken together, these two lemmas imply that the packing of any star subgraph
can be represented by a graph of degree 2, i.e. a collection of paths.

Theorem 1. The Sic problem can be solved in polynomial time for constant
d ≥ 2 and m = 3.

Proof Sketch. Consider the algorithm in Fig. 1. It repeatedly packs subtrees
rooted at the second lowest level of the tree optimally. This is done by generating
all possible graph representations without cycles where each item is split at most
twice (i.e. the graph representation is a collection of paths, possibly containing
loops). Due to Lemmas 1 and 2, we know that one of the graphs generated in
Line 6 represents an optimal packing for (the star subgraph) Ev. From [7], we
also know that we can fill the bins greedily using the graph representation.

As induction hypothesis, assume that the items in E \ {Ev ∪ {ev}} together
with the remainder of ev (not packed in Line 12) are packed optimally. Now,
note that in any solution for the full graph, items from Ev can only be packed
together with ev or other items from Ev. Thus, in a given optimal solution of
the full graph, we can partition the bins into two sets.

1. B∗
1 : Bins containing no items from Ev.

2. B∗
2 : Bins containing items from Ev (hence no items from E \ {Ev ∪ {ev}}).

As our algorithm finds the optimal solution for the bin set Ev packing as much
as possible of ev additionally, it must have found a packing with bins B, where
|B| ≤ |B∗

2 |. If |B| < |B∗
2 |, we are done, as in the induction hypothesis, the

additional bin can always be used to fully pack ev. Otherwise, we have |B| = |B∗
2 |,

and as out of all solutions fully packing Ev, our algorithm found the solution
packing the highest amount of ev possible, it follows that it packed at least as
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much of ev as the optimal solution did in the bins B∗
2 . Hence, the remainder to

be packed from ev in the packing from the induction hypothesis is less or equal
than the remainder to be packed in the optimum. Thus, the number of bins used
in the induction hypothesis is at most |B∗

1 |. Inductively, it follows that the full
solution is optimal.

Note that the number of graphs in Line 6 is definitely below 2d2
. Also,

the generation of such graphs happens at most n times, yielding polynomial
runtime. ��

2.2 NP-Hardness for m > 3 Processors

Theorem 2. The Sic problem is strongly NP-hard for d = 2 and constant
m ≥ 6.

Proof. We start with the 3-Partition problem with a restricted size of the
elements which is defined as follows. Given a multiset A = {a1, . . . , an} of n = 3k
elements, a bound B with B/4 < ai < B/2 ∀ i ∈ {1, . . . , n} and

∑
a∈A a = kB,

is there a partition into k sets A1, . . . , Ak such that |Ai| = 3 and
∑

a∈Ai
a = B

for all i ∈ {1, . . . , k}?
Let our Sic instance consist of one path with � + 1 = 3k · (3m − 2) +

2k · (m − 5) + 1 nodes. We denote the edge between node i and i + 1 by ei,
yielding E = {e1, . . . , e�} with sizes {s1, . . . , s�}. Now, let s(i−1)·(3m−2)+1 =(
1
2 + ai

2B

) (
1 − m−5

5m

)
< 3

4 for all i ∈ {1, . . . , 3k}, called medium items. Also,
let s(i−1)·(3m−2)+m = s(i−1)·(3m−2)+
 3

2m� = s(i−1)·(3m−2)+2m = 1 − m−2
5m ∀ i ∈

{1, . . . , 3k}, called large items. All other edges are assigned a size of si = 1
5m ,

called small items. For a visualization, see Fig. 2. Now, is there a packing of size
at most 11k?

Fig. 2. Corresponding Sic instance for 3-Partition with input {a1, . . . , an}

In case that the 3-Partition instance is a Yes-instance, we need to show
that there is a corresponding packing with at most 11k bins for our Sic
instance. Given a set Ai, the 3 (medium) items Si derived from it can always
be packed into two bins together with m − 5 of the last 2k · (m − 5) items, i.e.
items e3k·(3m−2)+(2i−2)(m−5)+1, . . ., e3k·(3m−2)+(2i−1)(m−5) for the first bin, and
items e3k·(3m−2)+(2i−1)(m−5)+1, . . ., e3k·(3m−2)+2i(m−5) for the second bin. That
is, because the 3 items from Si only use 4 of the allowed incident nodes in both
bins, and the m − 5 small items use m − 4 of the allowed incident nodes. Also,
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we have
∑

s∈Si
sj + 2 · m−5

5m = (32 +
∑

a∈Ai

a
2B )(1 − m−5

5m ) + 2 · m−5
5m = 2 giving

a valid packing if we split one of the medium items accordingly. Thus, we can
pack all item sets Si into two bins each, together with the last 2k · (m−5) items,
leading to 2k bins.

Observe that the 3m − 3 items in each block filling the gaps between two
medium items (i.e. the rectangles in Fig. 2) can be put into three bins, that
is, the first m − 1 items of each block (i.e., m − 2 small items and one large
item) can be put into one bin, as the sum of their sizes is exactly 1 by con-
struction. The same holds for the second and third item set of m − 1 items,
respectively. More formally, items e(i−1)·(3m−2)+2, . . . , e(i−1)·(3m−2)+m for each
i ∈ {1, . . . , 3k} as well as item sets {e(i−1)·(3m−2)+m+1, . . ., e(i−1)·(3m−2)+3m−2}
and {e(i−1)·(3m−2)+2m, . . ., e(i−1)·(3m−2)+3m−2} for each i ∈ {1, . . . , 3k} can be
put into one bin each. This gives another 3 · 3k bins and all items are packed.

On the other hand, we show that if there is a packing with size at most 11k,
we show that the respective 3-Partition instance is a Yes-Instance. In order
to do so, we show the following properties in the given order:

(1) The capacity of each bin must be fully utilized.
(2) At least k medium or large items need to be split.
(3) In order to pack the last 2k·(m−5) items, 4k additional separate components

of the dependency graph have to be packed together with them.
(4) Our 11k bins contain exactly 9k · (m − 1) + 2k · (m − 3) item parts.
(5) The last 2k · (m − 5) items are packed into 2k bins containing exactly m − 5

of these items and two medium item parts each.
(6) Exactly k of the 3k medium items are split, and they are split into exactly

two parts each.
(7) The corresponding 3-Partition is a Yes-instance.

(1) The capacity must be fully utilized in any bin, because we have
∑l

i=1 si =
∑3k

i=1

(
1
2 + ai

2B

)
(1− m−5

5m )+2k(m−5) · 1
5m +3 ·3k ·((m − 2) · 1

5m +
(
1 − m−2

5m

))
=

(
3k
2 + kB

2B

)
(1 − m−5

5m ) + 2k · m−5
5m + 3 · 3k = 11k.

(2) Now, we show that at least k medium or large items need to be split.
There are 3 · 3k large items as well as 3k medium items. If less than k of these
12k items were split, there would be at least one bin fully containing two of these
items. This is a contradiction, as all the item sizes are greater than 1

2 . Hence,
there are at least l + k item parts.

(3) We now concentrate on the 2k · (m − 5) last items, i.e. on the items
e3k·(3m−2)+1, . . . , e3k·(3m−2)+2k·(m−5). Note that these items cannot be packed
with a medium or a large item without using two components of the dependency
graph. However, if using two components, they contain at most m−2 items, which
implies (as we always use the full capacity by (1)), that each bin containing one of
these items also contains at least two medium or large items. As by construction,
there are always at least m − 2 edges between a medium and a medium or large
item, and at least

⌊
m
2

⌋ − 1 edges between two large items, there are only two
possibilities how to obtain this:
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(a) At most m − 5 of the considered small items are combined with at least
two further components of the dependency graph, which contain exactly
one medium or large item each.

(b) At most
⌈

m−6
2

⌉ ≤ m−5
2 of the considered small items are combined with only

one further component of the dependency graph, which contains exactly two
large items.

Taken together, this implies that in order to pack all 2k · (m − 5) items, there
have to be taken at least 2k · 2 = 4k additional separate components from the
dependency graph.

(4) It follows that in our packing, the 11k bins can contain at most 11k ·
(m − 1) − 4k = 9k · (m − 1) + 2k · (m − 3) item parts by (3). However, as
we showed earlier in (2), the overall number of item parts is at least l + k =
3k · (3m−2)+2k · (m−5)+k = 9k · (m−1)+2k · (m−3). Thus, both properties
are tight and in all bins not containing any of the 2k · (m−5) last items, exactly
m − 1 items must be packed.

Now, this can only be done by using one (complete) large item and m − 2
adjacent small items, as one medium item together with m − 2 adjacent small
items does not use the full capacity.

(5) Considering the last 2k · (m − 5) items again, note that all bins fulfilling
(3) (a) now need to contain exactly m− 5 of these small items as well as all bins
fulfilling (b) now need to contain exactly m−5

2 of these small items. However,
this implies that (b) never happens. Otherwise, if there were 2j bins fulfilling
(b) (giving 2k − j bins fulfilling (a)), each of them would make at least one large
item incomplete. As this leads to exactly 2k − j bins containing m−3 items and
2j bins containing m − 2 items, there must be exactly 9k − j bins containing
m−1 items. However, there are only at most 9k−2j (complete) large items left,
yielding j = 0.

(6) We now know that there are exactly 9k bins containing one (complete)
large and m − 2 small items each. Hence, there are exactly 2k bins where each
bin contains m− 5 of the last 2k · (m− 5) items and two parts of medium items.
We also know that only medium items are split, thus exactly k of the medium
items are split into exactly two parts each.

W.l.o.g., let Ẽ = {e1, . . . , ek} be the (medium) items that are split. We
observe that no two items from Ẽ can be packed into the same bin. Otherwise,
at least one of them uses a capacity of at least 1

2 in that bin, hence a capacity
of at most 1

4 in the other bin, where the remaining part of the item is packed.
Then, the capacity is not fully utilized in that other bin, as the other medium
item (which has to exist by (5) and (6)) uses less than a capacity of 3

4 .
Now, for each medium item split into two parts, we know that exactly one

complete other medium item is packed together with each part of it. For each split
item, we build a set containing itself and the two medium items packed together
with it. There are m such sets S1, . . . , Sm with 3 elements each. Now, the sum
of the sizes of these three items is 2 − 2 · m−5

5m (as both bins additionally contain
m − 5 small items), implying

∑
s∈Si

(
1
2 + s

2B

)
= 2 which yields

∑
s∈Si

s = B.
This is a 3-Partition. ��



Scheduling with Interjob Communication on Parallel Processors 571

Corollary 1. The Sic problem is strongly NP-hard for d = 2 and m = 4.

Proof Sketch. We use the same reduction as in the proof of Theorem2, but with
medium item sizes 1

2 + ai

2B and without adding the last 2k(m − 5) auxiliary
items. This implies removing step (3) and instead using the fact that any bin
containing a medium item part can only be packed up to the full capacity using
two separate components of the dependency graph. As the medium items alone
have an overall capacity of 2k, it follows that at least 2k additional separate
components need to be used, yielding exactly 9k · (m − 1) + 2k · (m − 2) item
parts to be packed in step (4). However, this directly implies that at least 9k bins
have to contain the full number of m − 1 items, which (by (1)) is only possible
using one large and m − 2 adjacent small items. It follows that the remaining
2k bins contain the 3k medium items. Hence, the remaining part of the proof
remains the same. ��
Corollary 2. The Sic problem is strongly NP-hard for d = 2 and m = 5.

Proof Sketch. We modify the reduction of Corollary 1 by adding one additional
small item adjacent to each medium item and reducing the medium item sizes
by factor (1 − 1

5·5 ). Now, three medium items are always packed together with
two of these adjacent items into two bins. There are k remaining small items
adjacent to medium items. In order for these to be packed, we add k small
gadgets to the end of the path (instead of the 2k · (m − 5) small items from
the proof of Theorem 2). These small gadgets consist of one very large item of
size 1 − 2

5·5 (in contrast to large items, which now have a size of 1 − 3
5·5 ) and

one small item. Two adjacent small gadgets are always separated by the usual
rectangular gadgets from Fig. 2. With a similar argument as (3) from the proof
of Theorem 2, we now ask how to pack the small items adjacent to medium items
and conclude that they either have to be packed together with medium items
or (for the remaining k items) they have to be packed together with the newly
introduced small gadgets. This concludes the proof sketch for m = 5.

Corollary 3. The Sic problem is strongly NP-hard for constant d ≥ 2 and
constant m ≥ 4.

Proof Sketch. In order to achieve a higher degree than 2, we add a similar gadget
to the (rectangular) gadgets with the large (and small) items from the original
reduction in Theorem 2. This new gadget is visualized in Fig. 3. To separate this
gadget from the rest of the instance, we first add another rectangular gadget
as used in the proof of Theorem2 at the end of the path. The new part of the
gadget (behind the rectangular gadget) consists of a star graph with many small
and few large items to achieve the necessary degree. We fill it up with small
items in a path towards the rectangular gadget. This is necessary to achieve an
overall number of items divisible by (m − 1) (i.e. an overall number of small
items divisible by (m − 2)). Now, the items from the newly introduced gadget
have to be packed with one large item and m − 2 small items into one bin each
similar to the packing for the rectangular gadgets in Theorem2. The remaining
reduction is analogous. ��
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Fig. 3. Gadget to add for degree d ≥ 2

3 Communication Trees of Degree Two

In this section, we present a simple greedy algorithm for instances with a depen-
dency graph of degree two, i.e. we focus on paths. It is a straightforward adaption
of the classical NextFit algorithm. The formal description of the algorithm A1

is given in Fig. 4. It dispatches the items in order of the path starting at one of
the nodes with degree one. If an item fits into the current bin without violating
neither the capacity nor edge constraint, it is placed in the current bin. If it
does not fit into the current bin (since at least one of the constraints would be
violated), as much of the item is placed in the current bin as possible and a new
bin is opened in which the (remaing part of the) item is placed. That is, A1 will
always (except for the last bin) fully pack a bin or pack the maximum number
of (parts of) items allowed in a bin.

Fig. 4. Algorithm A1 for instances of degree two.

We next analyze the approximation ratio of A1 and show that any solution
is asymptotically by a factor less than two worse than the optimum.

Theorem 3. Algorithm A1 has an asymptotic approximation ratio of at most
2 − 1

2(m−1) and runs in time O(n).
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Proof. For the sake of analysis, we partition the set of bins used by algorithm
A1 into the set B1 containing those bins with a tight capacity constraint and
B2 containing those bins which are not full but have a tight edge constraint.
We also define the following three sets of items based on how they are packed
in the solution given by algorithm A1. E1 contains those items for which at
least one part of the item is packed in a bin from B1. In E2 there are all items
for which at least one part of the item is packed in a bin from B2, and finally
ER := E \ (E1 ∪ E2) contains the remaining items. Note that in ER there can
only be items placed in the last bin that was opened, and that E1 ∩E2 need not
be empty.

We now give a bound on the maximum number of bins used by A1. We have

A1 = |B1| + |B2| +
⌈ |ER|

m − 1

⌉

since each bin either belongs to B1 or B2 or is the last bin and ER = ∅. Addi-
tionally, since any bin belonging to B1 only contains items from E1, we have
|B1| ≤ ∑

e∈E1
se. Any bin belonging to B2 contains m − 1 (parts of) items from

E2 and each item from E2 is packed in at most one bin from B2 and hence,
|B2| = |E2|

m−1 . Therefore, we have

A1 = |B1| + |B2| +
⌈ |ER|

m − 1

⌉

≤
∑

e∈E1

se +
|E2|

m − 1
+

⌈ |ER|
m − 1

⌉

.

Next, we lower bound the number of bins used by Opt. We can state that:

1. Opt ≥ �∑e∈E se� and
2. Opt ≥ |E|

m−1 ,

where the inequalities directly follow from the capacity and edge constraint,
respectively. Denoting the set of items belonging to E1 and E2 by E′, we have
|E| = |E1| + |E2| + |ER| − |E′|. Together with the claim that |E′| ≤ |E1|/2, we
can conclude

A1 ≤
∑

e∈E1

se +
|E2| + |ER|

m − 1
+ 1

≤ |E1|
2(m − 1)

+
|E2| + |ER|

m − 1
+

2(m − 1) − 1
2(m − 1)

∑

e∈E

se + 1

≤ |E1| + |E2| + |ER| − |E′|
m − 1

+
2 · (m − 1) − 1

2(m − 1)

∑

e∈E

se + 1

≤
(

1 +
2 · (m − 1) − 1

2(m − 1)

)

Opt + 1,

where we used the fact that |E1| ≥ ∑
e∈E1

se and the aforementioned bound on
A1 in the first two estimations, the claimed bound on |E′| in the second last and
the bounds on Opt in the last inequality.
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Hence, it remains to prove the claim. Recall that E′ contains those items
that are in E1 and in E2, i.e. any item e ∈ E′ is partly packed in a bin which is
full and partly packed in a bin which is not full but has a tight edge constraint.
By the definition of A1, such an item e ∈ E′ fulfills the condition that it is
first partly packed in a bin B′ belonging to B1 and then a bin belonging to B2 is
opened to pack the remaining part of item e. Note that consequently B′ contains
a different item belonging to E1 \E′. Hence, to any item e ∈ E′ we can associate
a different item ē ∈ E1 \ E′, proving the claim and concluding the proof of an
asymptotic approximation ratio of 2 − 1

2(m−1) .
The runtime is O(n) as we essentially traverse the path once. ��

We now show that our analysis of the approximation factor of A1 is (almost)
tight by giving an instance on which it obtains an approximation factor of at
least 2 − 2

m .

Fig. 5. Hard instance for algorithm A1

Intuitively, this instance (cf. Fig. 5) exploits the two different optimization
goals, i.e. using the full capacity of a bin and using the full number of allowed
adjacent nodes. The optimal algorithm chooses to skip certain edges in order to
always use the full capacity. In contrast, the greedy algorithm always uses the
full capacity (packing only two items) in every second bin and the full number
of allowed adjacent nodes (using only low capacity) in the other bins. This gives
an approximation factor of almost 2.

Theorem 4. The approximation factor of Theorem3 is almost tight since there
is an instance with approximation factor of at least 2− 2

m . For m → ∞ the upper
as well as the lower bound converge to 2.

Proof. Consider an instance as given in Fig. 5 and let ε > 0 be sufficiently small.
The instance consists of a path of items of the following form: The leftmost item
has a size of 1 − m−2

2 · (m − 1)ε and is followed by a subpath P of m − 2 items
with size ε, an item of size 1 − (m − 2)ε and one of size (m − 1)ε. This subpath
is repeated several times such that we obtain m−2

2 copies of P . In the following,
we refer to the nodes of any copy of P by the indices used in P .

On this instance, an optimal solution can pack the items of the subpath
P from node 2 to m together with the item between node m and m + 1
into one bin. As there are m−2

2 copies of P , m−2
2 bins are needed for the
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respective items. Additionally, the item between node 1 and 2 can be packed
together with the items between nodes m+1 and m+2 of all copies of P . Hence,
Opt ≤ m−2

2 + 1 = m
2 .

In contrast, A1 processes the path from left to right. Hence, it packs all items
of the subpath from node 1 to node m in one bin. Afterward, the items of the
subpath from m to m + 2 are packed in a second bin, leading to an unpacked
part of the item between m + 1 and m + 2. This part is packed into a further
bin together with the items between 2 and m of the next copy of P . As this
repeats m−2

2 times, A1 needs a total of m − 1 bins. Note that this result would
not change if our algorithm processed the path from right to left instead.

Taken the upper and lower bound together yields A1
Opt ≥ 2(m−1)

m . ��

4 Communication Trees with Arbitrary Degree

In this section, we propose an algorithm A2, which provides 5
2 -approximate solu-

tions for instances described by any tree with degree at most d. Note that by
splitting the tree at each node and losing a constant factor of 2, the problem can
be reduced to cardinality constrained bin packing with splittable items. As there
exists an EPTAS for this problem [6], we can get a 2 · (1 + ε)-approximation by
using it. However, to achieve an approximation factor of 2.5 for our problem,
we need to set the ε from [6] to at most 1

36 , and the constant in the runtime

is around
(

1
ε8

) 1
ε2 , which is a very large number, rendering the usefulness rather

questionable in practice. In the literature, the best algorithm of cardinality con-
strained bin packing with splittable items using a rather simple approach is
NextFit with a tight approximation factor of 2 − 1

m , which would only yield a
2 · (2 − 1

m )-approximation. The advantage of our algorithm is its simplicity and
low runtime.

Roughly speaking, our algorithm consists of two steps: In a first step (cf.
Fig. 6), A′

2 computes a preliminary (generally infeasible) packing, which ignores
the capacity constraints of bins. Then in a second step, we fix the preliminary
packing by repacking parts of items that are packed in bins violating the capacity
constraint. In the following, we assume that the communication tree is rooted.
If this is not the case, we can root it at any node. Also, we use Tv to denote the
nodes in the subtree rooted at node v.

Intuitively, A′
2 processes nodes from the leaves to the root of the tree. That

is, the algorithm finds a node v with maximal depth such that the tree rooted in
v has size at least m. Having found such a node, it packs sets of m−1 items into
one bin, which implies an efficient utilization of the edge constraint. It proceeds
this way until it reaches the root of the tree.

Lemma 3. A′
2 produces a preliminary packing with A′

2 ≤ 1.5|E|
m−1 + 2. It runs in

time O(n log n).

Proof. Let E1 := E \ E2. We first show that |E1| + (m − 1) ≥ |E2|. Whenever
items are added to E2 in Line 11, a bin is packed with m−1 items not belonging
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Fig. 6. A′
2 constructing a preliminary packing

to E2 in Line 10. Additionally, in this case at most m − 1 items are added to E2

because of the following reasoning. Assume to the contrary that more than m−1
items are added. This could only happen if |Tvb

| + . . . + |Tvi
| ≥ 2m − 1 holds in

Line 8 at some point during the execution of the algorithm, since G′ contains
at most |Tvb

| + . . . + |Tvi
| items and m − 1 items are packed in Line 10. In this

case |Tvi
| ≥ m needs to hold. However, then there would have been an earlier

iteration of the for-loop in Line 2 in which |Tvi
| was removed or |Tvi

| became
smaller than m, which is a contradiction. Consequently, |E1| ≥ |E2| before the
execution of Line 14 and then at most m−1 items may be added to E2, yielding
|E1| + (m − 1) ≥ |E2|.

Also, it is always possible to pack the items from E2 in � |E2|
m/2� bins in Line 14

since m
2 items can be incident to at most m nodes and thus, the edge constraint

is met.
Therefore, we obtain

A′
2 ≤

⌈ |E1|
m − 1

⌉

+
⌈ |E2|

m/2

⌉

≤ |E1|
m − 1

+
1.5|E2|

m
+

0.5|E2|
m

+ 2

≤ |E1|
m − 1

+
1.5|E2|

m
+

0.5(|E1| + (m − 1))
m − 1

+ 2 ≤ 1.5|E|
m − 1

+ 2.5 .

Concerning the runtime of A′
2 one can see that it can be implemented such

that it runs in O(n log n) time. In a preprocessing step we can root the tree (if
necessary) and compute the values |Tvi

| and depth of all nodes by applying a
depth-first search, which takes O(n) time. Then, we essentially visit each node
twice (once in the two upper level loops and once in the loop in Line 7) and
the overall runtime is dominated by sorting nodes in Line 5. Hence, A′

2 has a
runtime of O(n log n) (as each node is only sorted once). ��
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Given a solution of A′
2, we can simply transform it into a feasible packing by

reallocating (parts of) items into new bins such that no capacity constraint is
violated. To this end, algorithm A2 considers each overfull bin B and greedily
takes (parts of) items of overall size 1 out of B and places them in new bins
until B’s capacity constraint is met.

Theorem 5. A2 has an asymptotic approximation ratio of 5
2 . It has a runtime

of O(n log n).

Proof. By Lemma 3 we know that A′
2 ≤ 1.5|E|

m−1 +2.5. Also we know that for each
bin B filled with items of some size s in the solution of A′

2, algorithm A2 opens
at most �s�−1 < s additional bins. Then we have A2 ≤ 1.5|E|

m−1 +2.5+
∑

si. Since

Opt ≥ max
{

|E|
m−1 ,

∑
si

}
we obtain an approximation ratio of

1.5|E|
m−1
|E|

m−1

+ 2.5
Opt +

∑

si
∑

si
≤ 2.5 · (1 + 1

Opt

)
for A2, proving the theorem. ��
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Alexander Mäcker(B), Manuel Malatyali, Friedhelm Meyer auf der Heide,
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Abstract. We consider a scheduling problem where machines need to
be rented from the cloud in order to process jobs. There are two types
of machines available which can be rented for machine-type dependent
prices and for arbitrary durations. However, a machine-type dependent
setup time is required before a machine is available for processing. Jobs
arrive online over time, have machine-type dependent sizes and have indi-
vidual deadlines. The objective is to rent machines and schedule jobs so
as to meet all deadlines while minimizing the rental cost.

Since we observe the slack of jobs to have a fundamental influence
on the competitiveness, we study the model when instances are parame-
terized by their (minimum) slack. An instance is called to have a slack
of β if, for all jobs, the difference between the job’s release time and
the latest point in time at which it needs to be started is at least β.
While for β < s no finite competitiveness is possible, our main result
is an O(c/ε + 1/ε3)-competitive online algorithm for β = (1 + ε)s with
1/s ≤ ε ≤ 1, where s and c denotes the largest setup time and the cost
ratio of the machine-types, respectively. It is complemented by a lower
bound of Ω(c/ε).

1 Introduction

Cloud computing provides a new concept for provisioning computing power,
usually in the form of virtual machines (VMs), that offers users potential benefits
but also poses new (algorithmic) challenges to be addressed. On the positive side,
main advantages for users of moving their business to the cloud are manifold:
Possessing huge computing infrastructures as well as asset and maintenance
cost associated with it are no longer required and hence, costs and risks of
large investments are significantly reduced. Instead, users are only charged to
the extent they actually use computing power and it can be scaled up and
down depending on current demands. In practice, two ways of renting machines
from the cloud are typically available – on-demand-instances without long-term
commitment, and reserved instances. In the former case, machines can be rented

This work was partially supported by the German Research Foundation (DFG)
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for any duration and the charging is by the hour (Amazon EC2 [2]) or by the
minute (Google Cloud [9]); whereas in the latter case, specific (long-term) leases
of various lengths are available. We focus on the former case and note that the
latter might better be captured within the leasing framework introduced in [15].

Despite these potential benefits, the cloud also bears new challenges in terms
of renting and utilizing resources in a (cost-)efficient way. Typically, the cloud
offers diverse VM types differing in the provided resources and further charac-
teristics. One might think of different machine types and each machine either
being a high-CPU instance, which especially suits the requirements for compute-
intensive jobs, or a high-memory instance for I/O-intensive jobs. Another exam-
ple is the distinction of CPU and GPU instances. Certain computations can be
accelerated by the use of GPUs and in [11], for instance, it is observed that,
for certain workloads, one can significantly improve performance when not only
using classical CPU but additionally GPU instances in Amazon EC2. Hence, the
performance of a job can strongly depend on the VM type on which it is executed
and one should account for this in order to be cost-efficient while guaranteeing a
good performance, for example, in terms of user-defined due dates or deadlines
implicitly given by a desired quality of service level. Consequently, introducing
the option for a scheduling algorithm to choose between machine types seems to
be reasonable and necessary.

Also, despite the fact that computing power can be scaled according to cur-
rent demands, one needs to take into account that this scaling is not instanta-
neous and it initially could take some time for a VM to be ready for processing
workload. A recent study [12] shows such setup times to typically be in the range
of several minutes for common cloud providers and hence, to be non-ignorable
for the overall performance [13].

1.1 Problem Description

The problem CloudScheduling is extracted from the preceding observations.

Machine Environment. There are two types τ ∈ {A,B} of machines, which can
be rented in order to process workload: A machine M of type τ can be opened
at any time aM and, after a setup taking some non-negligible sτ time units
was performed, can be closed at any time bM with bM ≥ aM + sτ , for values
aM , bM , sτ ∈ R≥0. It can process workload during the interval [aM +sτ , bM ] and
the rental cost incurred by a machine M is determined by the duration for which
it is open and is formally given by cτ · (bM − aM ). Note that a machine cannot
process any workload nor can be closed during the setup. However, the user is
still charged for the duration of the setup. We refer to the cost cτ · sτ incurred
by a machine during its setup as setup cost and to the cost cτ · (bM − aM − sτ )
incurred during the remaining time it is open as processing cost. Without loss
of generality, we assume that sB ≥ sA, cA = 1 and define c := cB . We restrict
ourselves to the case c ≥ 1 (which is consistent with practical observations where
c is usually in the range of 1 to a few hundred [2,12]). However, one can obtain
similar results for c < 1 by an analogous reasoning.
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Job Characteristics. The workload of an instance is represented by a set J of n
jobs, where each job j is characterized by a release time rj ∈ R≥0, a deadline
dj ∈ R>0, and sizes pj,τ ∈ R>0 for all τ ∈ {A,B}, describing the processing time
of job j when assigned to a machine of type τ . Observe that therefore machines
of the same type are considered to be identical while those of different types are
unrelated. Throughout the paper, we assume by using a suitable time scale that
pj,τ ≥ 1 for all j ∈ J and all τ ∈ {A,B}. The jobs arrive online over time at
their release times at which the scheduler gets to know the deadline and sizes
of a job. Each job needs to be completely processed by one machine before its
respective deadline, i.e., to any job j we have to assign a processing interval Ij

of length pj,τ that is contained in j’s time window [rj , dj ] ⊇ Ij on a machine M
of type τ that is open during the entire interval Ij ⊆ [aM + sτ , bM ]. A machine
M of type τ is called exclusive machine for a job j if it only processes j and
bM − aM = sτ + pj,τ . We define the slack of a job j as the amount by which j
is shiftable in its window: σj,τ := dj − rj − pj,τ for τ ∈ {A,B}.

Objective Function. The objective of CloudScheduling is to rent machines
and compute a feasible schedule that minimizes the rental cost, i.e.,

∑
M cτ(M) ·

(bM − aM ), where τ(M) denotes the type of machine M .
We analyze the quality of our algorithms in terms of their competitiveness

and assume that problem instances are parameterized by their minimum slack.
An instance is said to have a minimum slack of β if maxτ{σj,τ} ≥ β, for all j ∈ J .
Then, for a given β, an algorithm is called ρ-competitive if, on any instance with
minimum slack β, the rental cost is at most by a factor ρ larger than the cost of
an optimal offline algorithm.

In the following, by Opt we denote an optimal schedule as well as the
cost it incurs. Throughout the paper (in all upper and lower bounds), we
assume that Opt is not too small and in particular, Opt = Ω(c · rmax), where
rmax = maxj∈J rj . This bound is true, for example, if the optimal solution has
to maintain at least one open machine (of the more expensive machine type)
during (a constant fraction of) the considered time horizon. This assumption
seems to be reasonable, particularly for large-scale systems where, at any time,
the decision to make is rather concerned with dozens of machines than whether
a single machine is rented at all. Similar assumptions are made in the litera-
ture [4], where it is argued (for identically priced machines) that the case where
Opt = o(rmax) is of minor interest as workload and costs are very small.

1.2 Related Work

Cloud scheduling has recently attracted the interest of theoretical researchers.
Azar et al. [4] consider a scheduling problem where jobs arrive online over time
and need to be processed by identical machines rented from the cloud. While
machines are paid in a pay-as-you-go manner, a fixed setup time Ts is required
before the respective machine is available for processing. In this setting, Azar
et al. consider a bicriterial optimization problem where the rental cost is to be
minimized while guaranteeing a reasonable maximum delay. An online algorithm
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that is (1 + ε,O(1/ε))-competitive regarding the cost and the maximum delay,
respectively, is provided. A different model for cloud scheduling was considered
by Saha [17]. She considers jobs that arrive over time and need to be finished
before their respective deadlines. To process jobs, identical machines are available
and need to be rented from the cloud. The goal is to minimize the rental cost
where a machine that is rented for t time units incurs cost of �t/D� for some
fixed D. The problem is considered as an offline as well as an online problem
and algorithms that guarantee solutions incurring costs of O(α)Opt (where α is
the approximation factor of the algorithm for machine minimization in use, see
below) and O(log(pmax/pmin))Opt, respectively, are designed.

A different, but closely related problem is that of machine minimization. In
this problem, n jobs with release times and deadlines are considered and the
objective is to finish each job before its deadline while minimizing the number
of machines used. This problem has been studied in online and offline settings
for the general and different special cases. The first result is due to [16] where an
offline algorithm with approximation factor of O(log n/ log log n) is given. This
was later improved to O(

√
log n/ log log n) by Chuzhoy et al. [6]. Better bounds

have been achieved for special cases; if all jobs have a common release date or
equal processing times, constant approximation factors are achieved [19]. In the
online case, a lower bound of Ω(n+log(pmax/pmin)) and an algorithm matching
this bound is given in [17]. For jobs of equal size, an optimal e-competitive
algorithm is presented in [7].

A further area of research that studies rental/leasing problems from an algo-
rithmic perspective and which recently gained attention is that of resource leas-
ing. Its focus is on infrastructure problems and while classically these problems
are modeled such that resources are bought and then available all the time, in
their leasing counterparts resources are assumed to be rented only for certain
durations. In contrast to our model, in the leasing framework resources can not
be rented for arbitrary durations. Instead, there is a given number K of different
leases with individual costs and durations for which a resource can be leased.
The leasing model was introduced by Meyerson [15] and problems like Facil-
ityLeasing or SetCoverLeasing have been studied in [1,3,10] afterward.

A last problem worthmentioning here is the problem of scheduling with cali-
brations[5,8]. Although it does not consider the aspect of minimizing resources
and the number of machines is fixed, it is closely related to machine minimization
and shares aspects with our model. There is given a set of m (identical) machines
and a set of jobs with release times, deadlines and sizes. After a machine is cali-
brated at a time t, it is able to process workload in the interval [t, t+T ], for some
fixed T , and the goal is to minimize the number of calibrations. For sufficiently
large m, the problem is similar to a problem we need to solve in Sect. 3.1.

1.3 Our Results

We study algorithms for CloudScheduling where jobs need to be scheduled
on machines rented from the cloud such that the rental costs are minimized
subject to quality of service constraints. Particularly, the problem introduces
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the possibility for a scheduler to choose between different machine types being
heterogeneous in terms of prices and processing capabilities. It also captures the
fact that due to times for preparing machines and acquiring resources, available
computing power does not scale instantaneously. Our results show the compet-
itiveness to heavily depend on the minimum slack β jobs exhibit. While for
β < sB no finite competitiveness is possible, a trivial rule achieves an optimal
competitiveness of Θ(csA + sB) for β = (1 + ε)sB, 0 ≤ ε < 1/sB. For 1/sB ≤ ε ≤ 1,
we present an algorithm which is up to an O(1/ε2)-factor optimal. Its competi-
tiveness is O(c/ε + 1/ε3), while a general lower bound is proven to be Ω(c/ε).

2 Preliminaries

We begin our study by showing that setup times are hard to cope with for any
online algorithm when the minimum slack is below a natural threshold. This is
the case because an online algorithm needs to hold machines ready at any time
for arriving jobs with small deadlines.

Proposition 1. If β < sB, no online algorithm has a finite competitiveness.

Proof. Suppose there is an online algorithm with competitiveness k, where k
is some constant. We observe that there needs to be a time t at which the
algorithm has no machine of type B open. This is true because otherwise, the
adversary can release only one job with r1 = 0, p1,B = 1, d1 = sB + p1,B + β
and p1,A > sB − sA + p1,B + β. Then, the cost for the optimal algorithm is only
c · (sB + 1), whereas the online algorithm has cost of at least c · t, which is a
contradiction to the competitiveness as it grows in t and hence, without bound.

Therefore, let t be a time where the online algorithm has no machine of type
B open. The adversary releases one job j with rj = t, dj = rj + pj,B + β and an
arbitrary size pj,B and pj,A > pj,B + β. To finish this job without violating its
deadline, it needs to be started not after t+β on a machine of type B. However,
this is not possible since there is no machine of type B available at time t and
the setup of a type B machine needs time sB > β. Hence, any online algorithm
must rent a machine of type B all the time, which is a contradiction. 	

Due to this impossibility result, we restrict our studies to cases where the mini-
mum slack is β = (1 + ε)sB for some ε ≥ 0. It will turn out that for very small
values of ε, 0 ≤ ε < 1/sB, there is a high lower bound on the competitiveness and
essentially, we cannot do better than processing each job on its own machine.
However, for larger values of ε, the situation clearly improves and leaves room
for designing non-trivial online algorithms. The next lemma is proven similarly
to Proposition 1. The adversary releases a whole bunch of jobs as soon as an
online algorithm has no machine available forcing it to use machines of the unfa-
vorable type. For the few proofs (mostly fairly straightforward) that are omitted
throughout the paper, the interested reader is refered to the full version [14].

Lemma 1. If β = (1 + ε)sB, 1/sB ≤ ε ≤ 1, there is a lower bound on the
competitiveness of Ω(c/ε). For 0 ≤ ε < 1/sB a lower bound is Ω(csA + sB).



Cost-Efficient Scheduling on Machines from the Cloud 583

2.1 Simple Heuristics

As a first step of studying algorithms in our model we discuss some natural
heuristics. One of the doubtlessly most naive rules simply decides on the machine
type to process a job on based on the cost it incurs on this type. The algorithm
A1 assigns each job to its own machine and chooses this machine to be of type A
if sA +pj,A ≤ c(sB +pj,B) and σj,A ≥ sA, or if σj,B < sB. Otherwise, it chooses the
machine to be of type B. A simple calculation yields the following proposition.

Proposition 2. If β = (1+ε)sB and 0 ≤ ε < 1/sB, A1 is Θ(csA+sB)-competitive.
For 1/sB ≤ ε ≤ 1 its competitiveness is Θ(c/ε + sB).

While this trivial rule is optimal for 0 ≤ ε < 1/sB, for larger values of ε the
dependence of the competitiveness on the setup time is undesired as it can be
quite high and in particular, it is sensitive to the time scale (and recall that
we chose a time scale such that the smallest processing time of any job is at
least 1). Therefore, the rest of the paper is devoted to finding an algorithm with
a competitiveness being independent of sB and narrowing the gap to the lower
bound of Ω(c/ε) for 1/sB ≤ ε ≤ 1.

One shortcoming of A1 is the fact that jobs are never processed together on
a common machine. A simple idea to fix this and to batch jobs is to extend A1

by an AnyFit rule as known from bin packing problems (e.g. see [18]). Such an
algorithm dispatches the jobs one by one and only opens a new machine if the
job to be assigned cannot be processed on any already open machine. Then, the
job is assigned to some machine it fits into. It turns out that the competitiveness
of this approach still depends on the setup time sB, which we show by proving
a slightly more general statement. Consider the class GreedyFit consisting of
all deterministic heuristics Alg fitting into the following framework:

1. At each time t at which the jobs Jt = {j ∈ J : rj = t} arrive, Alg processes
them in any order j1, j2, . . .
1.1 If ji cannot reasonably be processed on any open machine, Alg opens

some machine.
1.2 Alg assigns ji to some open machine.

2. Alg may close a machine as soon as it is about to idle.

The terms some, any and may above should be understood as to be defined by
the concrete algorithm. A job is said to be reasonably processable on a machine
M if it does not violate any deadline and the processing cost it incurs does not
exceed the cost for setting up and processing the job on a new machine.

Unfortunately, one can still easily trick such an algorithm to open a machine
being unfavorable (though reasonable) for all upcoming jobs to process.

Proposition 3. If β ≥ sB, any GreedyFit algorithm is Ω(c/ε + sB)-
competitive.
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3 An O(c/ε + 1/ε3)-Competitive Algorithm

Due to the discussed observations, it seems that decisions on the type of a
machine to open as well as finding a good assignment of jobs requires more
information than given by a single job. The rough outline of our approach is
as follows. In a first step, we identify a variant of CloudScheduling that we
can solve by providing an Integer Linear Program (ILP). This formulation is
heavily based on some structural lemma that we prove next before turning to
the actual ILP. In a second step, we describe how to use the ILP solutions, giving
infeasible subschedules, to come up with a competitive algorithm. Throughout
the description we make the assumption that ε is known to the algorithm in
advance, which, however, can easily be dropped by maintaining a guess on ε.

We now show a fundamental lemma that provides a way of suitably batching
the processing of jobs and structuring the rental intervals. We define intervals
of the form [isτ , (i + 1)sτ ), for i ∈ N0 and τ ∈ {A,B}, as the i-th τ -interval.
Intuitively, we can partition the considered instance into subinstances each con-
sisting only of jobs released during one B-interval and the times during which
machines are open are aligned with these τ -intervals.

Lemma 2. By losing a constant factor, we may assume that Opt fulfills the
following properties:

1. each job j that is processed on a machine of type τ and fulfills pj,τ ≥ sτ is
assigned to an exclusive machine,

2. each remaining machine M of type τ is open for exactly five τ -intervals, i.e.,
[aM , bM ) = [isτ , (i + 5)sτ ) for some i ∈ N0, and

3. if it is opened at aM = (i − 1)sτ , the beginning of the (i − 1)-th τ -interval, it
only processes jobs released during the i-th τ -interval.

Proof. We prove the lemma by describing how to modify Opt to establish the
three properties while increasing its cost only by a constant factor. Consider a
fixed type τ ∈ {A,B} and let Jτ ⊆ J be the set of jobs processed on machines
of type τ in Opt. Let JM be the set of jobs processed by a machine M .

Property 1. Any job j ∈ Jτ with pj,τ ≥ sτ is moved to a new exclusive machine
of type τ if not yet scheduled on an exclusive machine in Opt. This increases the
cost due to an additional setup and the resulting idle time by sτ + pj,τ ≤ 2pj,τ .
Applying this modification to all jobs j with pj,τ ≥ sτ therefore increases the
cost of Opt by a factor of at most three and establishes the desired property.
From now on, we will assume for simplicity that all jobs j scheduled on a machine
of type τ fulfill pj,τ < sτ .

Property 2. Next, we establish the property that each remaining machine is
open for exactly four τ -intervals; when establishing the third property, this is
extended to five intervals as claimed in the lemma. Consider a fixed machine M .
Partition the time during which M is open into intervals of length sτ by defining
Ik := [aM + ksτ , aM + (k + 1)sτ ) for k ∈ {1, . . . , �(bM − aM )/sτ − 1�}. Let tj be
the starting time of job j ∈ JM and let Tk = {j ∈ JM : tj ∈ Ik} partition the
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jobs of JM with respect to the interval during which they are started. We replace
machine M by �(bM −aM )/sτ −1� machines M1,M2, . . . such that Mi processes
the jobs from Ti keeping the jobs’ starting times as given by Opt and setting
aMi

:= minj∈Ti
tj − sτ and bMi

:= maxj∈Ti
(tj + pj,τ). Observe that the cost

originally incurred by M is cτ (bM − aM ) while those incurred by the replacing
machines M1,M2, . . . are at most cτ (bM − aM ) + cτ (�(bM − aM )/sτ − 1�)sτ ≤
2cτ (bM −aM ) where the additional term stems from the additional setups. Since
it holds that pj,τ < sτ for all j ∈ JM , we conclude that bMi

− aMi
≤ 3sτ for

all Mi. For each Mi, we can now simply decrease aMi
and increase bMi

such
that Mi is open for exactly four τ -intervals. This maintains the feasibility and
increases the cost incurred by each machine Mi from at least cτsτ to at most
4cτsτ . Applying these modifications to all machines M , establishes the claimed
property while increasing the overall cost by a factor of at most eight.

Property 3. It remains to prove the third property. Again consider a fixed machine
M . Let Ni,M := {j ∈ JM : rj ∈ [isτ , (i + 1)sτ )}, i ∈ N0, be the (sub-)set of
jobs released during the i-th τ -interval and processed by M . Furthermore, let
#(M) := |{i : Ni,M �= ∅}| be the number of τ -intervals from which M processes
jobs. If #(M) ≤ 3, we replace M by #(M) machines Mi each processing only
jobs from Ni,M . To define the schedule for Mi, let Ni,M = {ji1 , ji2 , . . .} such that
ti1 < ti2 < . . . holds. We reset the starting times of the jobs in Ni,M by setting
ti1 := ri1 and tik

:= max{rik
, tik−1 + pik−1,τ}, for k > 1, and set aM := (i − 1)sτ

and bM := aM +5sτ . This gives a feasible schedule for Ni,M since no starting time
is increased and according to Property 2 we have

∑
j∈Ni,M

pj,τ ≤ 3sτ and hence,
maxj∈Ni,M

rj +
∑

j∈Ni,M
pj,τ < (i + 4)sτ = bM . Also, the replacing machines

fulfill the three properties and the cost is increased by a factor less than four.
For the complementary case where #(M) > 3, we argue as follows. Observe

that due to the already established property that M is open for exactly four
τ -intervals, Ni,M = ∅ for all i ≥ aM/sτ + 4. Note that aM/sτ ∈ N0 due to
Property 2. Also, for each i ∈ {aM/sτ − 1, aM/sτ , aM/sτ + 2, aM/sτ + 3}, we
can move the jobs from Ni,M to new machines by an argument analogous to the
one given for the case #(M) ≤ 3 above. Hence, we have established the property
that M only processes jobs j ∈ ⋃aM /sτ −2

i=0 Ni,M ∪ NaM /sτ+1,M and applying the
modification to all machines M from the set M of machines fulfilling #(M) > 3,
increases the cost by a constant factor.

In order to finally establish the third property, our last step proves how we
can reassign all those jobs j with j ∈ ⋃aM /sτ −2

i=0 Ni,M for some M ∈ M. Let
J ′ =

⋃
M∈M

⋃aM /sτ −2
i=0 Ni,M be the set containing these jobs and partition them

according to their release times by defining Ni = (
⋃

M∈M Ni,M ) ∩ J ′. Note
that for any j ∈ Ni it holds dj ≥ aM + sτ ≥ (i + 3)sτ , for all i ∈ N0. Let
wi :=

∑
j∈Ni

pj,τ . We can assign all jobs from Ni to new machines fulfilling the
three properties as follows: We open �wi/sτ� new machines at time (i − 1)sτ

and keep them open for exactly five τ -intervals. Due to the fact that for all jobs
j ∈ Ni it holds rj ≤ (i+1)sτ and dj ≥ (i+3)sτ , we can accommodate a workload
of at least sτ in the interval [(i+1)sτ , (i+3)sτ ] on each machine by assigning jobs
from Ni to it in any order. By these modifications the cost increase due to cases
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where wi ≥ sτ is given by an additive of at most cτ

∑
i:wi≥sτ

�wi/sτ�5sτ , which
is O(Opt) since Opt ≥ cτ

∑
i:wi≥sτ

wi. The overall increase in the cost due to
the cases where wi < sτ is given by an additive of cτ

∑
i:wi<sτ

5sτ = O(Opt)
due to our assumption Opt = Ω(c · rmax). 	

By Lemma 2, we can partition any instance into subinstances such that the i-
th subinstance consists of those jobs released during the interval [isB, (i + 1)sB)
and solve them separately. Hence, we assume without loss of generality that the
entire instance only consists of jobs released during the interval [0, sB).

3.1 Tentative Subschedules

Before we turn to describing our algorithm for CloudScheduling, we first
identify and describe a special problem variant that will be helpful when design-
ing our algorithm. In this variant, we assume setup costs instead of setup times,
i.e., setups do not take any time but still incur the respective cost. Under this
relaxed assumption, the goal is to compute a schedule for a whole batch of
(already arrived) jobs. Precisely, for a given time t, we consider a subset J ′ ⊆ J
of jobs such that rj ≤ t for all j ∈ J ′ and our goal is to compute a schedule for
J ′ that minimizes the rental cost and in which each job is finished at least sB

time units before its deadline (has earliness at least sB). We do not require the
starting times of jobs to be at least t and hence, a resulting schedule may be
infeasible for CloudScheduling if realized as computed. Therefore, to empha-
size its character of not being final, we call such a schedule a tentative schedule.

We now divide the jobs into three sets according to their sizes. Let J1 :=
{j ∈ J : pj,A ≥ sA ∧ pj,B ≥ sB} contain those jobs for which the processing
cost dominates the setup cost on both machine types. The set J2 := {j ∈ J :
pj,A < sA ∧ pj,B < sB} contains those jobs for which the processing cost does
not dominate the setup cost on either of the two machine types. Finally, J3 :=
J\(J1∪J2) and we write J3 = J3,1∪J3,2 = {j ∈ J3 : pj,A ≥ sA ∧pj,B < sB}∪{j ∈
J3 : pj,A < sA ∧ pj,B ≥ sB}. By Lemma 2, we directly have the following lemmas.

Lemma 3. For an optimal schedule for jobs from J2, we may assume each
machine of type τ ∈ {A,B} to be open for exactly five τ -intervals. If a job
j ∈ J2 is processed on a machine of type τ and rj ∈ [isτ , (i + 1)sτ ), i ∈ N0, its
processing interval is completely contained in the interval [isτ , (i + 4)sτ ].

Lemma 4. For an optimal schedule for jobs from J3,1, we may assume each
machine of type B to be open for exactly five B-intervals. If a job j ∈ J3,1 is
processed on a machine of type A, it is processed on an exclusive machine and
if j is processed on a machine of type B and rj ∈ [isB, (i + 1)sB), i ∈ N0, its
processing interval is completely contained in the interval [isB, (i + 4)sB].

Analogous statements hold for jobs from J3,2.

By Lemmas 3 and 4, we can now formulate the problem (which is NP-hard
by the NP-hardness of classical BinPacking) as an ILP (cf. Fig. 1) and com-
pute O(1)-approximate tentative schedules. We use Iτ (j) to denote all possi-
ble processing intervals of job j on a machine of type τ ∈ {A,B}. Intuitively,
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Fig. 1. Integer linear program for variant with setup cost.

IA(j) ∪ IB(j) describes all possible ways how job j can be scheduled. Note that
IA(j) and IB(j) are built under the assumptions from Lemmas 2, 3 and 4. For
each I ∈ IA(j)∪IB(j), the indicator variable x(I, j) states if job j is processed in
interval I. We use LB to denote all left endpoints of intervals in

⋃
j∈J2∪J3,1

IB(j)
and Li to denote all left endpoints of intervals in

⋃
j∈J2∪J3,2:rj∈[(i−1)sA,isA) IA(j).

Additionally, we use a variable zB to denote the number of (non-exclusive)
machines of type B that we rent. The variable zi describes the number of
machines of type A that we rent and that process jobs released during the (i−1)-
th A-interval. For simplicity we assume that sB is an integer multiple of sA.

We are now asked to minimize the cost for machines of type B plus those
for machines of type A, taking into account that each machine of type τ is
either open for a duration of exactly 5sτ time units (first two summands of
the objective function) or is an exclusive machine (last two summands). The
constraints of type (1) and type (2) ensure that, at any point in time, the number
of jobs processed on (non-exclusive) machines does not exceed the number of
open machines. Additionally, constraints of type (3) and type (4) ensure that
each job is completely processed by exactly one machine in a contiguous interval.

Observe that in general this ILP has an infinite number of variables since
each Iτ (j) contains all possible processing intervals of j on a machine of type τ .
Yet, there is an efficient way (adapted from [6], cf. full version [14]) to reduce the
number of variables that need to be considered to O(|J |2) such that afterward
a solution only being by a constant factor larger than the optimal one of the
original formulation exists. Note that we solve the resulting ILP optimally and
this may take non-polynomial time.

3.2 The BatchedDispatch Algorithm

In this section, we describe and analyze our competitive algorithm, which is
essentially based on several observations concerning how to restrict and then turn
tentative schedules, as described in the previous section, into feasible solutions.
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We first show the following lemma, which relates the cost of an optimal schedule
to the cost of one where jobs are finished early. For simplicity we use Δ := 1

2εsB.

Lemma 5. There is a schedule with all jobs having earliness at least sB, cost
O((c/ε+1/ε2)Opt) and no machine processes any two jobs j, j′ with rj ∈ [iΔ, (i+
1)Δ) and rj′ ∈ [i′Δ, (i′ + 1)Δ) with i �= i′ and i, i′ ∈ N0.

Furthermore, the cost for jobs j ∈ J̄ := {j : ∃τ ∈ {A,B} rj + pj,τ > dj − sB}
is O((c/ε + 1/ε2)Opt). The cost for jobs j ∈ J \J̄ is O(1/ε2Opt).

We are now ready to describe our approach. The formal description is given
in Fig. 2. It relies on Δ and its relation to the slack of a job (after decreasing
the dj in Step 1.1) and uses the following partition of J into the sets:

J ′
1 = {j : σj,B ≥ 2Δ ∧ (σj,A ≥ 2Δ ∨ pj,A ≤ Δ)},

J ′
2 = {j : σj,B ≥ 2Δ ∧ (σj,A < 2Δ ∧ pj,A > Δ)},

J ′
3 = {j : σj,B < 2Δ ∧ σj,A ≥ 2Δ}.

Note that {j : σj,B < 2Δ ∧ σj,A < 2Δ} = ∅, since max{σj,A, σj,B} ≥ (1 +
ε)sB − sB = εsB = 2Δ. Before proving the correctness and bounds on the cost,
we shortly describe the high level ideas skipping technical details, which will
become clear during the analysis. The algorithm proceeds in phases, where each
phase is devoted to scheduling jobs released during an interval of length Δ. In a
given phase, we first decrease the deadlines of jobs by sB (cf. Step1) to ensure that
later on (cf. Step 2.2) tentative schedules meeting these modified deadlines can
be extended by the necessary setups without violating any original deadline. We
also precautionary open machines for jobs that are required to be started early.
Then at the end of the phase (cf. Step 2), we compute tentative schedules with
additional restrictions on starting times and machines to use (cf. Step 2.1), which
are carefully defined depending on the characteristics of jobs concerning their
slacks. This approach ensures that we can turn solutions into feasible schedules
while guaranteeing that costs are not increased too much. The feasibility is
crucial since tentative schedules are not only delayed due to the added setups
but also because of computing the schedules only at the end of a phase.

In the next lemmas, the analysis of the algorithm is carried out, leading to
our main result in Theorem 1. Recall that due to Lemma 5 it is sufficient to show
that the schedules for a single phase are feasible and the costs are increased by a
factor of O(1) and O(1/ε), respectively, in comparison to the tentative schedules
if they were computed without the additional restrictions of Step 2.1.

Lemma 6. For jobs from J ′
1, BatchedDispatch produces a feasible schedule

with rental cost O(c/ε + 1/ε2)Opt.

Proof. Fix an arbitrary phase i and define Ni := {j ∈ J ′
1 : rj ∈ [(i−1)Δ, iΔ)} to

be the set of jobs released during the i-th phase. Let S be the tentative schedule
for Ni and let tj denote the starting time of job j ∈ Ni in S. Let S′ and t′j be
defined analogously for the respective schedule produced by BatchedDispatch.
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Fig. 2. Description of BatchedDispatch(ε) algorithm for CloudScheduling.

We first reason about the feasibility of S′. First of all, the tentative schedule
S provides a solution with tj ≥ iΔ and tj +pj,τ ≤ dj for all j ∈ N1 processed on
a machine of type τ , i.e., no modified deadline (as given after Step 1 is executed)
is violated and no job is started before time iΔ. Since the starting times are
increased in S′ to t′j = tj + sτ , each job j processed on a machine of type τ is
not started before iΔ + sτ and is finished by t′j + pj,τ ≤ tj + sτ + pj,τ ≤ dj + sτ .
Therefore, by starting the setups at iΔ, S′ is a feasible solution.

Second, we have to prove the bound on the cost of S′. Let S∗ be the tentative
schedule for Ni if computed without the restrictions on the starting times. Since
the cost of S′ are not larger than those of S, we need to show that the cost of
S only increase by a constant factor in comparison to S∗, which according to
Lemma 5 has cost O((c/ε + 1/ε2)Opt). Let Nτ

i ⊆ Ni be the set of jobs processed
on machines of type τ in S∗, for τ ∈ {A,B}. Consider an arbitrary machine M of
type τ in S∗ and let JM = {j1, j2, . . .} denote the jobs processed on M such that
t∗j1 < t∗j2 < . . . holds. Let k ∈ N such that t∗jk

+pjk,τ < iΔ and t∗jk+1
+pjk+1,τ ≥ iΔ.

Now, we can leave all jobs j ∈ {jk+2, jk+3, . . .} unaffected (i.e. tj = t∗j ) and we
can process jk+1 on an exclusive machine started at time tjk+1 = t∗jk+1

= iΔ >
rjk+1 . This is feasible since jk+1 is finished at time iΔ + pjk+1,τ ≤ djk+1 . The
last inequality either holds since pjk+1 ≤ Δ and djk+1 ≥ 2Δ + rjk+1 because
σjk+1,B ≥ 2Δ, or since σjk+1,τ = djk+1 − rjk+1 −pjk+1,τ ≥ 2Δ. All remaining jobs
j ∈ {j1, . . . , jk} can be moved to a new machine M ′ of type τ and tj = t∗j + Δ.
Each job j ∈ {j1, . . . , jk} is then finished at time tj + pj,τ = t∗j + pj,τ + Δ ≤ dj .
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The last inequality either holds since dj ≥ 2Δ+rj ≥ (i+1)Δ ≥ t∗j +pj,τ +Δ, or
since t∗j < rj +Δ and dj −rj −pj,τ ≥ 2Δ. Also, t∗jq

+Δ+pjq,τ ≤ t∗jq+1
+Δ for all

q ∈ {1, . . . , k − 1}. Hence, tj ≥ iΔ for all j ∈ JM and the cost at most triples in
comparison to S∗ since the two additional machines need not run longer than M .
Applying the argument to all machines M gives S ≤ 3S∗ = O((c/ε + 1/ε2)Opt),
which concludes the proof. 	

Lemma 7. For jobs from J ′

2 and J ′
3, BatchedDispatch produces a feasible

schedule with rental cost O(c/ε + 1/ε3)Opt.

Proof. We first consider the set J ′
2 and argue about J ′

2,1 and J ′
2,2 separately.

Scheduling jobs from J ′
2,1. Fix an arbitrary phase i and let Ni := {j ∈ J ′

2,1 :
rj ∈ [(i − 1)Δ, iΔ)}. Let S be the tentative schedule for Ni and let tj denote
the starting time of job j ∈ Ni in S. Let S′ and t′j be defined analogously
for the respective schedule produced by BatchedDispatch. Let Nτ

i ⊆ Ni be
the set of jobs processed on machines of type τ in S, for τ ∈ {A,B}. Recall
that we compute a tentative schedule for jobs from J ′

2,1 at time iΔ with the
additional constraint tj ≥ iΔ for all i ∈ NB

i , that is, the starting times of all
jobs processed on machines of type B are at least iΔ. Similar to the previous
lemma, with respect to machines of type B, S′ is feasible and fulfills the bound
on the cost. For machines of type A we can argue as follows. In case C holds, we
have t′j = tj +Δ+ sA ≥ iΔ+ sA for all j ∈ NA

i . Hence, we are able to realize the
respective schedule by starting the respective setup processes at time iΔ. Also,
since Δ + sA ≤ sB by the fact that C holds, t′j + pj,A ≤ tj + Δ + sA + pj,A ≤
dj + Δ + sA ≤ dj + sB, i.e., no original deadline is violated. Hence, S′ is feasible
and the bound on the cost is satisfied by a reasoning as in Lemma 6.

In case C does not hold, recall that at each arrival of a job j ∈ J ′
2,1, we open

a new machine of type A at time rj . This ensures that a machine is definitely
available for the respective job j ∈ NA

i at time tj + sA. Therefore, we obtain a
feasible schedule and it only remains to prove the bound on the cost. Note that
the additional setup cost in S′ compared to S is upper bounded by |J ′

2,1| · sA.
Because sA < cpj,B holds and S can process at most three jobs on a machine of
type A (since σj,A = dj−rj−pj,A < 2Δ implying dj < 2Δ+pj,A+rj and pj,A > Δ
by the definition of J ′

2), |J ′
2,1| · sA ≤ 3S holds. Therefore, BatchedDispatch

produces a feasible schedule for jobs from J ′
2,1 incurring cost of O(c/ε+1/ε2)Opt.

Scheduling jobs from J ′
2,2. Fix an arbitrary phase i and let Ni := {j ∈ J ′

2,2 : rj ∈
[(i − 1)Δ, iΔ)}. For these jobs we claim that the tentative schedule S has cost
O(c/ε + 1/ε3)Opt. Then, the same reasoning as in Lemma 6 proves the desired
result. Hence, we only have to show the claim. To this end, we show how to
shift any workload processed on a machine of type A in a tentative schedule S∗

corresponding to S without the additional restriction on machine types to use to
machines of type B. Recall that we only need to consider the case that C does not
hold since otherwise J ′

2,2 = ∅. Let NA
i ⊆ Ni be the jobs processed on machines

of type A in S∗. Note that NA
i ∩ {j : ∃τ ∈ {A,B} rj + pj,τ > dj − sB} = ∅ and

thus according to Lemma 5, the cost for jobs from NA
i is O(1/ε2)Opt. We show

that only using machines of type B increases the cost by O(1/ε) and distinguish
two cases depending on whether sA

c ≤ Δ holds.
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First, we show the claim if sA
c ≤ Δ holds. On the one hand, any machine

of type A in S∗ can process at most three jobs j with j ∈ NA
i (since σj,A =

dj − rj − pj,A < 2Δ implying dj < 2Δ+ pj,A + rj and pj,A > Δ by the definition
of J ′

2), leading to (setup) cost of Ω(|NA
i |sA). On the other hand, we can schedule

all jobs from NA
i on O( |Ni|sA

Δc ) machines of type B each open for O(sB) time units

and thus, with cost of O( |NA
i |sA
Δc csB). To see why this is true, observe that for all

jobs j ∈ NA
i it holds [rj , dj ] ⊇ [iΔ, (i + 1)Δ) =: Ii since rj ≤ iΔ and σj,A ≥ 2Δ.

Because all jobs j ∈ NA
i fulfill pj,B ≤ sA/c by definition, we can accommodate

�cΔ/sA� ≥ 1 many jobs from NA
i in Ii. Hence, there is a schedule with cost

O(1/ε3)Opt only using machines of type B, proving the claim.
Finally, it needs to be proven that the claim also holds for the case sA

c > Δ
and hence, sB < sA +Δ. Let M1, . . . ,Mm denote the machines of type A used by
S∗ and let κ1, . . . , κm be the durations for which they are open. Since pj,B ≤ pj,A

for all j ∈ J ′
2,2, we can replace each machine M ∈ {M1, . . . ,Mm} by a machine

M ′ of type B using the same schedule on M ′ as on M . We increase the cost
by a factor of at most

∑m
i=1 c(sB+κi)
∑m

i=1(sA+κi)
≤ csB

sA
+ c ≤ c(Δ+sA)

sA
+ c ≤ cΔ

sA
+ 2c =

O(sA/Δ) = O(1/ε), where the second last bound holds due to sA/c > Δ. Thus,
we have shown a schedule fulfilling the desired properties and cost O(1/ε3)Opt
to exist and since S fulfills the same bound on the cost, this proves the claim.

Since all jobs from J ′
3 can be assumed to be scheduled on machines of type

A without any loss in the cost, we obtain the same result for J ′
3 as we have in

Lemma 6. 	

Theorem 1. For β = (1 + ε)sB, 1/sB ≤ ε ≤ 1, BatchedDispatch is O(c/ε +
1/ε3)-competitive.

4 Conclusion

We presented a competitive algorithm for CloudScheduling where jobs with
deadlines need to be scheduled on machines rented from the cloud so as to
minimize the rental cost. We parameterized instances by their minimum slack β
and showed different results depending thereon. Alternatively, we could examine
the problem without this instance parameter and instead understand β as a
parameter of the algorithm describing the desired maximum tardiness of jobs.

Although the considered setting with k = 2 types of machines seems to be
restrictive, it turned out to be challenging and closing the gap between our lower
and upper bound remains open. Also, it is in line with other research (e.g. [4,17])
and in this regard it is a first step toward models for scheduling machines from
the cloud addressing the heterogeneity of machines. For future work, however,
it would be interesting to study even more general models for arbitrary k > 1.
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Abstract. In this paper we consider a strategic variant of the online
facility location problem. Given is a graph in which each node serves two
roles: it is a strategic client stating requests as well as a potential location
for a facility. In each time step one client states a request which induces
private costs equal to the distance to the closest facility. Before serving,
the clients may collectively decide to open new facilities, sharing the
corresponding price. Instead of optimizing the global costs, each client
acts selfishly. The prices of new facilities vary between nodes and also
change over time, but are always bounded by some fixed value α. Both
the requests as well as the facility prices are given by an online sequence
and are not known in advance.

We characterize the optimal strategies of the clients and analyze their
overall performance in comparison to a centralized offline solution. If all
players optimize their own competitiveness, the global performance of the
system is O(

√
α · α) times worse than the offline optimum. A restriction

to a natural subclass of strategies improves this result to O(α). We also
show that for fixed facility costs, we can find strategies such that this
bound further improves to O(

√
α).

Keywords: Online algorithms · Competitive analysis · Facility
location · Algorithmic game theory

1 Introduction

In this paper, we consider selfish clients who each have to access a common
essential IT service at irregular points in time. The clients can be regarded
as intermediaries, offering services to customers while outsourcing some of the
work to external service providers. As a result, a client does not know in advance
when he needs to access an external service or how often he needs to do this
over some period of time. The clients are arranged in an overlay network, with
some of them having direct access to the service. Those without have to use the
overlay network to access the closest instance of the service of another client.
The resulting delay in time can be considered as additional individual costs for
the client accessing the service. Depending on how often the service is needed
and by whom, it can be profitable to establish an additional service instance
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at one of the clients. This creates further (non-recurrent) costs but improves
the accessibility of all nearby clients, which in turn share the establishing costs
among each other. When receiving their own service instance, different clients are
supplied by different service providers and as a result, the prices for establishing
a new service instance can differ between the clients. In addition, these prices
may change over time. Similar to accessing the service, the clients do not know
how these prices will develop in the future.

We analyze this problem in a new setting that combines concepts from both
online algorithms and algorithmic game theory. Online algorithms deal with
problems in which the input is only partially known at the start of the computa-
tion and further information arrives over time. Our model is based on the classic
online facility location problem, with a facility representing an instance of the
essential service. The overlay network between the clients induces an undirected
graph, with each node representing a client as well as a possible position for
a facility. At each point in time, one of the clients has to serve a request (we
say a request occurs for that client), which increases his individual costs by the
shortest distance to the closest facility. The clients do not know the stream of
requests in advance. Before a request is served, all clients decide whether to open
up new facilities and where. In existing models, these decisions are made by a
centralized online algorithm which determines the actions of all clients. For such
an algorithm, the goal is to minimize the global costs of all clients combined. In
this paper, however, the clients are selfishly trying to minimize their individual
costs without any interest in how their actions affect the other clients or the
system as a whole. The interaction of such selfish players is the topic of algo-
rithmic game theory. When deciding on a new facility on a certain node, the
clients collect sealed bids, i.e. no one knows the bids of the other. If their total
sum exceeds the current price of opening a new facility on the node, then that
facility is created and the individual cost of each player grows by his own bid.
This process iterates over all possible facility locations in an arbitrary order.
The prices of the new facilities are independent between the nodes and can also
change over time. We require the prices only to be within the interval [1, α] for
a constant α at all times. Just like with the requests, the clients do not know in
advance how theses prices will develop.

Each client uses his own individual online algorithm which determines his
bids. We analyze the competitiveness of such an algorithm in comparison to an
optimal offline algorithm that knows all requests and prices in advance. This
value also depends on the online algorithms of the other clients. We are inter-
ested in equilibria in which each client uses the best-possible online algorithm,
assuming the decisions of the other clients are fixed.

Related Work. The Online Facility Location Problem has been introduced by
Meyerson [8]. He gave an O(1)-competitive algorithm for inputs arriving in a
random order and a O(log n)-competitive algorithm for an adversarial order of
inputs, where n is the total number of clients.

For general instances, Fotakis [4] showed that the best possible competitive
ratio that is achievable for the problem is Θ

(
log n

log log n

)
. The lower bound does
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not carry over to our model since we allow the opening of facilities only on nodes
in a graph where we have uniform distances.

The problem was also considered in a leasing variant, where facilities are not
bought for an infinite amount of time but only for a fixed time span. There are
several options on how much to pay for a certain amount of time in this problem.
Kling et al. [7] developed the first algorithm for this problem with a competitive
ratio independent of the input length.

Furthermore, Facility Location was also considered under game theoretical
aspects [5]. A fixed number of facilities was assigned to positions determined
by a mechanism that made the decision on the basis of the agents reporting
their positions strategically. In contrast, in our model agents invest money into
facilities directly as their strategic options.

An online problem that is in some ways similar to the Facility Location
Problem is the Page Replication Problem, where clients need access to a page
that can be copied to different nodes in the network. However, the costs of the
copies are not fixed but proportional to the distance between an existing copy
of the page and the new copy.

For general graphs it is shown in [2] that the competitive ratio for this prob-
lem is Θ(log n). However, it was shown in [1] that for graph classes like trees and
rings there are algorithms that achieve a constant competitive ratio.

In our model, prices are not fixed but fluctuate over time. The prices are also
determined by an adversary in the online setting. Price fluctuations in a rent
or buy mechanic have already been considered by Bienkowski [3], who showed
for the Ski-Rental Problem that no online algorithm can do better than Θ(

√
s)

where s is the fixed ratio between renting and buying costs, even if prices only
may change by an amount of 1 per time step.

Immorlica et al. [6] introduced the concept of dueling algorithms where two
algorithms try to outperform each other on a search problem. The payoffs of
the algorithms are like in a zero-sum game, meaning that benefits of one player
directly translate to losses of another player. In our model, all players bene-
fit from resources which they acquire collectively. In this sense, players cannot
directly harm others without passing on beneficial resources themselves.

Our Contribution. We propose a variant of facility location where each client min-
imizes its local competitive ratio. We show that optimal strategies are O(

√
α)-

competitive and achieve overall costs that are at most O(
√

α · α) times worse
than the costs of an optimal offline solution.

We can improve the result by a factor of
√

α if we restrict the strategies to
algorithms that buy a facility as soon as the accumulated costs have reached
the costs of the facility on the node of the respective player. We further show
a possible improvement of

√
α if the costs for facilities are fixed to α and that

even under this condition, no centralized algorithm can achieve a constant com-
petitiveness independent of α.
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2 Preliminaries

An instance I of the Strategic Online Facility Location Problem is given by a
graph G = (V,E), a node f0 ∈ V and a constant α > 1. Let n = |V |. Each
node in the graph is a player as well as a possible location for a facility. We will
mostly use the letter v when referring to nodes in their function as players and
f in their function as facility locations. Initially, there is only one facility in G
and it is located at f0. We denote by d(x, y) the shortest path distance between
nodes x and y.

Requests arrive as an online sequence φ = v1, v2, . . . , vT with vt ∈ V for all
time steps t. So in each time step, exactly one player vt is chosen and has to
serve a request. Let F t ⊆ V be the set of open facilities in step t and F 0 =
{f0}. Then the connection costs of player vt induced by the request in step t is
minf∈F t d(vt, f).

Before serving each request, the players may collectively decide to open some
new facilities. The price for this may change over time and can differ between
facility locations. The prices pt = (pt

f )f∈V arrive as an online sequence π =
p1, p2, . . . , pT , with pt

f ∈ [1, α] being the price for opening a new facility on
f ∈ V in round t.

The decision to open a facility is made as follows. In each time step t, a
bidding phase takes place after the current request vt and the prices pt have been
revealed, but before the request has to be served. The bidding phase iterates over
the unopened facilities in an arbitrary order. For each facility f , each player
v submits a sealed bid bt

v,f . If the sum of all bids for a location exceeds the
price pt

f , a facility is opened at that location and each player is charged his
bid. The decision whether a facility is opened is made before the bidding on
the next facility takes place so that players can adapt their behavior on the
nodes accordingly. Thus, the total cost of the requested node vt in time step t
is ct

vt = minf∈F t d(vt, f) +
∑

f∈F t\F t−1 bt
vt,f and for all remaining nodes v it is

ct
v =

∑
f∈F t\F t−1 bt

v,f .
Each player v invokes an (online) algorithm Av that determines his bids

in each time step. The cumulative cost of a player for a given online sequence
(φ, π) is denoted by cv :=

∑T
t=1 ct

v and defined as the sum of costs for serving his
requests, plus the sum of his accepted bids. In lieu of standard game theoretic
models, we assume the player to exhibit a very pessimistic and cautious behavior.
Each player assumes the online sequence and even the strategies of all other
players to be adversarial. Hence, he seeks to minimize his worst-case performance
loss of the chosen online algorithm in comparison to the optimal solution in
hindsight. For online algorithms, this is well known as the competitive ratio.
Let β−v denote the bids of the players except player v for all time steps and all
facilities. Then the local competitive ratio of player v is ρv := supI,φ,π,β−v

{
cv

c∗
v

}

where c∗
v are the costs of the optimal offline solution to the optimization goal of

player v.
If every player v chooses an algorithm Av, we call A = (Av)v∈V a strategy

profile. We are interested in strategy profiles where each player chooses an algo-
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rithm with a minimal local competitive ratio, such that each player perceives
his behavior as optimal. However, we allow the players to deviate from the
best competitive ratio by a constant factor1. Hence, we define an equilibrium
as a strategy profile in which each player chooses an online algorithm with an
asymptotically optimal competitive ratio.

Denote by SA the set of equilibria. We call the sum of all players’ cost
C(A) =

∑
v∈V cv the social costs of A. We seek to quantify the loss of efficiency

due to the lack of coordination by the users and the uncertainty about the request
sequence. We write COpt for the costs of the optimal centralized offline solution
and call the worst-case cost ratio between an equilibrium and the optimal offline
solution the online price of anarchy PoA := maxI,φ,π maxA∈SA

{
C(A)
COpt

}
and

the cost ratio with respect to the best equilibrium the online price of stability
PoS := maxI,φ,π minA∈SA

{
C(A)
COpt

}
.

3 Dynamic Facility Costs

We start to analyze our model by establishing a lower bound on the local com-
petitive ratio.

Theorem 1. The local competitive ratio is Ω(
√

α) for any strategy Av.

Proof. Consider a graph with two nodes v and f0 which are connected by an edge
(recall that f0 is the initially opened facility). We construct an online sequence
such that the price on v is

√
α in the first time step and α afterwards. There is

a request on v in the first time step. If node v decides to bid at least
√

α on this
first time step, the sequence stops and v has costs of at least

√
α for buying the

facility. The optimal solution does not bid anything and has distance costs of 1,
so we get a cost ratio of

√
α.

If the node v bids less than
√

α, the sequence continues with at least α more
requests on v. Node v has a cost of at least α + 1, whereas the optimal solution
has a cost of

√
α. The resulting cost ratio is at least α+1/

√
α >

√
α. ��

We now know that O(
√

α)-competitive algorithms are strategies that are chosen
in an equilibrium. In a later section we state an explicit algorithm which is
O(

√
α)-competitive, so we know that such an algorithm exists. Intuitively, such

an algorithm should increase his bids when his connection costs increase and
the bids for more distant facilities should be smaller. We denote B(t, d, dA) to
be the bid of an algorithm Av of node v at time step t for a facility at distance
d if its currently closest facility is located at distance dA. We define a class of
algorithms by giving bounds on B(t, d, dA) such that an algorithm can choose a
bid within these bounds at any time step and is O(

√
α)-competitive as a result.

Note that we assume that each algorithm has a value Bα for which it holds that
if the costs accumulated in total by the player are at least Bα, it will bid α on
its own node and thereby terminate the bidding process for itself.
1 This may be justified since an optimal algorithm might be hard to determine for the

players.
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Definition 1. The bids of an algorithm Av are called bounded if the bids satisfy

B(t, d, dA) ≤ O(
√

α) · COpt(t + 1) − CAv
(t) − d (1)

B(t, d, dA) ≥

⎧
⎪⎪⎨

⎪⎪⎩

Bα+α

O(
√

α)
− COpt(t), d = 0

CAv (t)+α

O(
√

α)
− COpt(t), d > 0, dA

O(
√

α)
− d ≤ 0

Ω(
√

α) + (Bα − CAv
(t))

(
1

O(
√

α)
− d

dA

)
, d > 0, dA

O(
√

α)
− d > 0

(2)

where CAv
(t) and COpt(t) are the costs gathered by Av and its corresponding

offline optimum, assuming that the online sequence ends after time step t − 1,
dA := minf∈F t d(v, f), d is the distance to the potential facility that Av is bidding
on, and

√
α ≤ Bα ≤ √

α · α are the accumulated costs which cause Av to buy a
facility for costs α on v.

Note that COpt(t + 1) can be calculated by an algorithm Av in step t since
the request is announced at the beginning of step t, and COpt(t + 1) represents
the cost before serving the request at step t + 1.

Theorem 2. Any bounded algorithm is locally O(
√

α)-competitive.

Proof. Let v ∈ V and Av be a bounded algorithm. We may assume w.l.o.g.
that there is a request on v in every time step for the benefit of easier notation.
First, we describe the costs of Av using the upper bound on the bids from the
definition. Let t∗ be the time step where Av last had to pay for a new facility.
Let Bt∗ be the bid paid in the step t∗ and CAv

(t), as in the definition. Then the
costs of the algorithm are

CAv
= CAv

(t∗) + Bt∗ +
T∑

t=t∗
min
f∈F t

d(v, f)

≤ O(
√

α) · COpt(t∗ + 1) +
T∑

t=t∗+1
min
f∈F t

d(v, f).

If the optimal offline algorithm does not open any facility which is closer than
the facility Av opened in step t∗ via bidding, it holds that

COpt ≥ COpt(t∗ + 1) + (T − t∗) · min
f∈F t∗ d(v, f) ≥ 1

O(
√

α)
· CAv

.

Otherwise, we consider the last point in time t′ where the optimal algorithm
bids on a node at distance dOpt, which is closer to v than the facility Av gets in
t∗. In order for the facility at node v to be opened, Opt must pay at least the
bid Av made at the same time. In case dOpt = 0 we have

COpt ≥ COpt(t′) + B(t′, 0, dA) ≥ Bα + α

O(
√

α)
≥ 1

O(
√

α)
· CAv

.
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In case dOpt > 0 and dA

O(
√

α)
− d ≤ 0 with dA := minf∈F t′ d(v, f) we get

COpt ≥ COpt(t′) + B(t′, dOpt, dA) + (T − t′)dOpt

≥ CAv (t′)+α

O(
√

α)
+ 1

O(
√

α)
(T − t′) min

f∈F t′
d(v, f)

≥ 1
O(

√
α)

· CAv
.

Finally, if dOpt > 0 and dA

O(
√

α)
− d > 0 it holds

COpt ≥ COpt(t′) + B(t′, dOpt, dA) + (T − t′)dOpt

≥ COpt(t′) + Ω(
√

α) + (Bα − CAv
(t′))

(
1

O(
√

α)
− dOpt

dA

)
+ (T − t′)dOpt

≥ COpt(t′) + α+Bα−CAv (t
′)

O(
√

α)
.

Suppose we have CAv
(t′) ≤ O(

√
α) · COpt(t′), then

COpt ≥ COpt(t′) + α+Bα−CAv (t
′)

O(
√

α)

≥ Bα+α
O(

√
α)

≥ 1
O(

√
α)

· CAv

which we show by an inductive argument: Consider the part of the sequence
which ends at time t′. We bound the costs of both Av and Opt until that point
using the same arguments as above on the reduced sequence.

This concludes the proof since we have shown CAv
≤ O(

√
α) · COpt for all

possible cases. ��
The above result implies that there may be many algorithms for the players
which are asymptotically optimal and hence this adds an additional factor of
unpredictability for the players to the game.

Note that a bounded algorithm may choose not to bid α on its own loca-
tion, even though it has already accumulated a cost larger than α but less than√

αα. We will later show that such algorithms may have undesired properties in
contrast to some more natural algorithms.

Definition 2. An algorithm Av is called frugal if he bids α for a facility at v if
his accumulated costs would otherwise exceed α in the current time step.

Frugal algorithms contain the class of natural algorithms Av, which always
bid their accumulated costs on v. For our analysis of this class later in this
section however, the property stated in the definition is sufficient.

We can make a similar statement about these algorithms as for gen-
eral O(

√
α)-competitive algorithms by setting Bα = α in the bounds given

above.
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Corollary 1. Any frugal algorithm Av is O(
√

α)-competitive if for the bids it
holds

B(t, d, dA) ≤ O(
√

α) · COpt(t + 1) − CAv
(t) − d (3)

B(t, d, dA) ≥

⎧
⎪⎪⎨

⎪⎪⎩

α

O(
√

α)
− COpt(t), d = 0

CAv (t)+α

O(
√

α)
− COpt(t), d > 0, dA

O(
√

α)
− d ≤ 0

Ω(
√

α) + (α − CAv
(t))

(
1

O(
√

α)
− d

dA

)
, d > 0, dA

O(
√

α)
− d > 0.

(4)

We characterized the optimal strategies for each node, assuming they seek to
minimize their competitive ratio and have given a set of algorithms which achieve
an optimal competitive ratio. In the next section we develop an algorithm based
on the ideas from above which also performs well against a centralized offline
solution, given that all players use it. We now study the impact on the over-
all performance if every node implements some O(

√
α)-competitive algorithm

without any further restrictions.

Theorem 3. If every player uses an O(
√

α)-competitive algorithm, the online
price of anarchy is Θ(

√
α · α).

Proof. Since every player buys a facility as soon as its accumulated costs would
exceed Bα, the costs of every player with at least one request in the online
sequence will never exceed

√
α · α + α, and the costs of the other players are

0. In the optimal solution every player with at least one request has costs of at
least 1, hence the cost ratio is at most (

√
α + 1)α.

For the proof of the lower bound, we construct a graph where there are n
nodes v1, . . . , vn connected to a node x in a star-like formation and the initial
facility f0 is connected to x such that the distance d(vi, f0) is α/4 · √

α. We
construct the online sequence such that every possible facility has a cost of α in
every time step and there is one request on each of the nodes v1, . . . , vn.

We will choose n large enough such that the optimal solution is to open a
facility on x in the first time step. The costs of that solution are therefore at
most α + n.

We determine the strategies of the nodes v1, . . . , vn. The cost of the first
request was α/4 ·√α and since the price of all facilities is α, the costs of the local
optimum of v1 are α after its first request. Hence it is a viable strategy to not
make any bids, since v1 can still serve one request and buy a facility on his node
while having costs less than

√
α · α.

Since bidding 0 on all nodes in all following time steps is a viable strategy for
v1, it becomes a viable strategy for all other players as well since they observe
the same prices for the facilities. As a result the players never open any facility
and the costs of the resulting strategy profile are α/4 · √

α · n. By choosing n to
be at least α, we get the resulting cost ratio. ��
The bound for the price of anarchy seems to be unreasonably high since a com-
petitive ratio of α could simply be reached by buying a facility on every node
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that is requested at least once. The higher factor stems from the fact that the
algorithms compare themselves to their local optimum solution and not to the
global optimum. If we impose the natural restriction of frugality on the algo-
rithms, we gain a factor of

√
α in efficiency.

Theorem 4. If every player uses a frugal O(
√

α)-competitive algorithm, then
the online price of anarchy is Θ(α).

Proof. We argue analogously to the previous theorem. The costs never exceed
2α for nodes which have at least 1 request and in the optimal solution these
costs are at least 1. From this, the upper bound follows directly as before.

For the lower bound, we adapt the construction from the proof of Theorem3.
Again, we have nodes v1, . . . , vn connected to a node x with distance 1 and f0
connected to x such that for the distances it now holds d(vi, f0) = α/4.

We use the same request sequence as before and get that the costs of every
local optimum is α/4. Hence a player can still serve a request without his accumu-
lated cost exceeding α and his competitive ratio becoming worse than O(

√
α).

From this it follows that we can assign strategies such that no player makes any
bid.

Hence the costs of the corresponding strategy profile are n · Θ(α), while the
costs of the optimal solution are at most α + n. This results in the lower bound
for the Price of Anarchy by choosing n > α. ��
Note that the lower bound in Theorem4 does not make use of price fluctuations.
If we make explicit use of the price changes in our online sequence, we can show
that no centralized, deterministic online algorithm and therefore no strategy
profile can achieve an asymptotically better competitive ratio.

Theorem 5. No deterministic online algorithm is better than Ω(α)-competitive.

Proof. We construct a graph with the initial facility f0 in the center and α
straight lines connecting from f0 to endpoints v1, . . . , vα such that d(f0, vi) = α.
In the first time step there is a request on a neighbor of f0 and the prices for all
facilities on v1, . . . , vα are 1. For all future time steps, the costs for the facilities
are α.

If the algorithm buys all the facilities on v1, . . . , vα then its costs are α + 1
and the optimal costs are 1 if the sequence stops after this time step. If the
algorithm does not buy a facility on vi, there is a request on vi and the costs are
α + 1, while the optimum can reach costs of 2 by buying a facility on vi in the
first step. ��

4 Fixed Facility Costs

We now consider a fixed price of α for opening a facility. Observe that the lower
bound for the local competitive ratio of Theorem1 still holds. We can simulate
any price p through a bid of α − p by another player. We have seen that there
exist many strategies where the bid in a certain round is not predetermined so
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Algorithm 1. A competitive algorithm for fixed facility costs.
nv ← 0; // number of requests on v
cv ← 0; // costs for requests on v
for each round t ∈ {1, . . . , T} do

if request for v then
nv ← nv + 1;
f∗ ← closest open facility;
for each f ∈ V do

μv(f) ← μv(f) + d(v, f∗) − d(v, f) ; // savings if facility on f

for each f ∈ V do
bid btv(f) ← √

α · μv(f) ; // bidding phase

if facility is opened at f then
for each z ∈ V do

μv(z) ← μv(z) − nv · (d(v, f∗) − d(v, f)) ; // update counters

if request for v then
cv ← cv+ distance to closest open facility; // update cost

if cv ≥ √
α then

μv(v) ← √
α; // open facility on v at next request

μv(f) ← 0 for all f �= v;

that it is reasonable to still assume that the prices show an adversarial behavior.
Hence the players will still choose the same strategies as before.

Proposition 1. The local competitive ratio is Ω(
√

α) even for fixed facility
costs.

Note that the lower bounds shown for the online price of anarchy with both
the general and the frugal strategies still hold since they do not make use of
the price changes. However, we can show that the online price of stability is
an improvement from the price of anarchy in this model by a factor of at least
Θ(

√
α).

We show that for fixed facility prices a simple algorithm has optimal local
competitiveness and is not worse than a factor of O(

√
α) in comparison to the

global optimum if every player implements that algorithm. In Algorithm1 a
node v stores a counter μv(f) for every node f , which indicates how much costs
could have been avoided if a facility had existed on f . The counter is therefore
increased by d(v, f∗) − d(v, f) each time there is a request on v, where f∗ is the
currently closest facility to v. Node v will issue a bid of bt

v(f) =
√

α · μv(f) in
each time step t. The counters are updated accordingly when a new facility is
opened. As an additional rule, node v bids α on itself as soon as its costs for
requests exceed

√
α and sets all counters to 0.
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Theorem 6. Algorithm1 has a local competitive ratio of O(
√

α).

Proof. We consider a node v executing the Algorithm 1. Suppose the closest
facility at the time of the first request of v is located on node f1 and then new
facilities are opened on f2, . . . , fk where each of the facilities is closer to v.

Let Ri be the number of requests of v before a facility is opened on fi+1. The
costs for requests are therefore

∑k−1
i=1 Ri · d(v, fi). The costs for the bids are at

most

k−1∑

i=1

√
α ·

⎛

⎝
i∑

j=1

Rj

⎞

⎠ · (d(v, fi) − d(v, fi+1)) =
√

α ·
k−1∑

i=1

Ri · (d(v, fi) − d(v, fk)) .

For the optimal solution we may assume that a new facility is opened on fi

without v having to bid anything right after this copy is established in the online
version. If the offline optimum never bids enough to contribute in the opening
of a facility, the costs for requests are the same as for the online algorithm and
therefore the cost ratio is at most

√
α + 1.

If the optimal solution contributes to a facility on a node f ′ before the online
algorithm has opened a facility at the same distance or closer to v, the costs
for this facility must be at least the bid v gave at that time. The bid of v is√

α · μv(f ′) ≥ √
α. Hence the cost of the optimal solution is at least

√
α. The

costs of Algorithm 1 are at most 3 · α since a facility is bought at v if the costs
for requests exceed

√
α. ��

We will now evaluate the profile A∗ where every player uses Algorithm 1.

Theorem 7. The online price of stability for fixed facility costs is O(
√

α).

Proof. For the analysis we assume that whenever the online algorithm opens a
new facility, the optimum gets the same facility for 0 costs in the same time step.
Obviously, this does not increase the costs of the optimal solution.

It is obvious that the costs of the optimum for the new instance are not higher
than the costs for the original instance. Furthermore, we show that the optimal
algorithm will never open an additional facility. To see this, let ν(v) be the sum of
all bids on v at any point in time. We have ν(v) =

√
α ·∑i∈R [d(y′

i, ri) − d(ri, v)],
where R is the index set of requests so far and y′

i is the currently closest facility
to node ri. Furthermore, we define τ(v) :=

∑
i∈R [d(yi, ri) − d(ri, v)] where yi is

the facility which was used to serve the request on node ri. Hence τ(v) denotes
the costs which could have been saved in total if a facility would have existed on
v from the beginning. A facility at v only lowers the cost of the offline algorithm
if τ(v) > α at some point in time.

We are only interested in requests where d(y′
i, ri)−d(ri, v) ≥ 1, otherwise both

algorithms already have a facility at node ri. Assume d(yi, ri) − d(ri, v) ≥ √
α,

then ri bids at least α on v. It follows that τ(v) < ν(v) ≤ α and therefore no
additional facility would pay off for the optimum.

We observe that when comparing the online algorithm to the optimum of the
modified instance, both algorithms have the same costs for requests since the
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optimum does not open any additional facilities. In the proof of Theorem6 we
have seen that every node only pays a factor of at most O(

√
α) more for bids

than for requests.
Hence, for the total costs of the strategy profile it holds that the costs are

O(
√

α) times the costs for requests, while the optimal solution pays at least the
costs for the requests. ��
One can easily see that the analysis for this profile is tight, using an instance
with only one active node.

Proposition 2. For strategy profile A∗ it holds maxI,φ,π

{
C(A∗)
COpt

}
= Ω(

√
α).

Proof. We construct a graph where a node v is the neighbor of the node f0 which
has opened a facility initially. Our sequence consists of

√
α requests of v. Since

the cost of each request is exactly 1, this causes v to bid α on itself before the
last request and therefore its costs are α +

√
α − 1 while the costs of the social

optimum are
√

α. ��
We have seen that the self-interested behavior of nodes and the online nature
of the problem lead to an efficiency loss which grows in α. We note that the
dependency on α cannot be dropped even if players would fully cooperate. To
that end, we show that a centralized, deterministic online algorithm cannot
achieve a competitive ratio independent of α.

Theorem 8. No deterministic (centralized) online algorithm can achieve a con-
stant competitive ratio independent of α.

Proof. Consider a full binary tree where the distance from the root to every leaf
is α and the distances from one level to the next start with α/2 and decrease
exponentially such that the distance between a level i and a level i + 1 node
is α/2i. We assume that the initial facility is located at a distance more than α
from any node within the tree.

The input sequence is a sequence of nodes v1, . . . , vlog α such that v1 is the
root of the tree and vi is on level i−1 so that the nodes form a simple path from
the root to the leaf vlog α.

Consider buying only one facility on vlog α. Then the costs are at most α +
∑log α

i=0
α
2i ≤ 3α, which is an upper bound for the costs of the optimal solution.

Now consider a deterministic online algorithm with a constant competitive
ratio. The online algorithm can only buy a constant number of facilities c since
its cost will be at least c · α. Beyond level log c, the online algorithm cannot
cover all paths down to the leafs, therefore it makes no sense to buy facilities on
higher levels in advance of the sequence.

If the distance between two facilities on the chosen path is more than k
(after level log c), then the costs are at least k · α/2l for the nodes in between the
levels l and l + k. It follows that the distance between facilities cannot be larger
than a constant and hence the facility on the highest level built by the online
algorithm can be assumed to be on a constant level l∗. This however implies the
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costs k · α/2l∗ for later requests, where k is log α − l∗. We have that the costs of
the online algorithm are Ω(k · α) and k is not constant, which implies that an
algorithm with a constant competitiveness cannot exist. ��

5 Local Facilities

We will now consider a restricted version of the problem where in addition to
the fixed facility costs, players can only open a facility on their own node for the
cost of α. Therefore the private costs for a player v ∈ V can be described as

c(v) = |FT ∩ {v}| · α +
T∑

t=1

|{v} ∩ {vt}| ·
[

min
f∈F t

d(v, f)
]

.

It is easy to see that the problem a single node has to solve boils down to
the classic ski-rental problem where the price for renting can decrease over time.
Therefore the following holds:

Proposition 3. No local strategy can be better than
(
2 − 1

α

)
-competitive and

there exists a unique strategy for each player which is
(
2 − 1

α

)
-competitive.

Proposition 3 implies that there is exactly one equilibrium in our model if we
force the players to play a strategy with a tight competitive ratio. We observe
that due to the limited options the player has in contrast to the model which
included the bidding mechanism on all nodes, players can achieve a much better
competitive ratio since the corresponding optimal offline player also has less
options, which makes it easier to compete against. Unfortunately, the online
price of anarchy is high despite the fact that the competitive ratio each player
achieves individually can be bounded by a constant.

Theorem 9. The online price of anarchy for local facilities with fixed facility
costs is Θ(α).

Proof. For the lower bound consider a graph consisting of nodes v1, . . . , vn that
are directly connected to a node x that is connected by a line of length α − 2
to f0, which is the node with the initial facility. Each of the nodes v1, . . . , vn

receives exactly one request in an arbitrary order.
The private costs of each node are at most α − 1. Hence no node will decide

to open a facility. The optimal solution opens a facility on x and has a cost of at
most α+n. With growing n, the ratio between the social costs of the competitive
strategy profile and the social optimum therefore tends to α.

To see that the online price of anarchy is also in O(α) we simply observe that
the costs for nodes which have a request are at least 1 in the social optimum,
since they either open a facility which has costs of α or the distance to the next
facility is at least 1. In the competitive strategy profile, the costs of such a node
are at most 2α. ��



606 M. Drees et al.

We observe that although the price of anarchy is not worse than in the model
with the bidding mechanism, better solutions like in the previous chapter are not
available despite the fixed facility costs. It is also noteworthy that every strategy
profile consisting of arbitrary constant-competitive strategies still cannot achieve
a better ratio than Ω(α).

Note that the online price of anarchy is the same as for the frugal strategies
in the general case, which leads us to the conclusion that the in worst case, the
bidding mechanism for all nodes does not improve the global performance of the
system despite its possibilities of cooperation for the players. As shown in the
previous section, there are however strategies in the setting with fixed facility
costs where the bidding mechanism allows for an improvement.

For the sake of completeness we finally investigate the effects of adding chang-
ing prices back to the model. Intuitively it should be clear that the results for
the social costs of the possible strategy profiles are the same or worse as for
the general model since the nodes face the same adversity while having fewer
strategic options.

Theorem 10. The online price of anarchy for local facilities with adversarial
facility costs is Θ(

√
α · α).

Proof. The lower bound can be constructed exactly as the lower bound in the
proof of Theroem3.

The upper bound follows from the simple observation that no algorithm may
accumulate more costs than O(

√
α) · α, since the costs of the local optimum are

at most α. ��
Theorem 11. The online price of stability for local facilities with adversarial
facility costs is Θ(α).

Proof. The lower bound follows directly from the lower bound on the price of
stability of the general case in Theorem5.

A possible strategy for every node is to bid
√

α times the accumulated costs
by serving requests. Therefore its costs never exceed O(α) and are at most
O(

√
α) times the costs of the local optimum. The latter can be seen by observing

that the local optimum either pays the same costs for requests as the algorithm
or at least

√
α for the facility. ��

6 Final Remarks and Future Work

In our work, we have focused on the competitive ratio as the optimization goal
of the players. Due to the online nature of the problem, some kind of comparison
to the offline optimum seems to be reasonable. Alternative cost measures might
be interesting, but not all are suitable for our model. For example, if the players
seek to optimize their worst-case absolute costs, each of them would be forced to
buy a facility on their own node in the first time step. The resulting costs would
be at most α, while any request sequence may feature an arbitrary number of
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requests for any given player. Until a facility is opened, each request for the
player at the same location results in costs larger than 0. If, on the other hand,
the players try to minimize their regret, i.e. the difference between their actual
and the optimal online costs, then again always buying a facility in the first step
optimizes the worst case, as it yields a regret of at most α. If the facility is bought
during some later round and no more requests occur afterwards, then the regret
increases only as long as its price is α in that round. If the total cost accumulated
by requests is at most α at that point in time the regret is exactly α. Otherwise,
for accumulated costs larger than α, it becomes even larger.

Our model implements a simple rent-or-buy mechanism for which it might be
interesting to be extended to a leasing mechanism as used in [7], for example. In
addition, the ideas of this paper could be extended to other online and possibly
game-theoretical problems besides facility location to form our understanding
of how a lack of coordination colludes with the online nature found in a lot of
problems.
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Abstract. In this paper, we consider the classical scheduling problem
on parallel machines with capacity constraints. We are given m identical
machines, where each machine k can process up to ck jobs. The goal is
to assign the n ≤ ∑m

k=1 ck independent jobs on the machines subject
to the capacity constraints such that the makespan is minimized. This
problem is a generalization of the c-partition problem where ck = c for
each machine. The c-partition problem is strongly NP-hard for c ≥ 3
and the best known approximation algorithm of which has a perfor-
mance ratio of 4/3 due to Babel et al. [2]. For the general problem where
machines could have different capacities, the best known result is a 1.5-
approximation algorithm with running time O(n log n + m2n) [14]. In
this paper, we improve the previous result substantially by establishing
an efficient polynomial time approximation scheme (EPTAS). The key
idea is to establish a non-standard ILP (Integer Linear Programming)
formulation for the scheduling problem, where a set of crucial constraints
(called proportional constraints) is introduced. Such constraints, along
with a greedy rounding technique, allow us to derive an integer solution
from a relaxed fractional one without violating constraints.

Keywords: Scheduling · Approximation algorithms · Capacity
constraints · Integer programming

1 Introduction

We consider a scheduling problem with machine capacity constraints (SMCC).
There are m identical machines, where each machine k can process at most ck

jobs. The goal is to schedule n ≤ ∑m
k=1 ck independent jobs on these machines

such that the makespan is minimized subject to the capacity constraints.
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The SMCC problem has many real-world applications, such as distributing
students in a university [20], crew scheduling in airline industries [18]. It is also of
practical interests in the optimization of assembly lines for printed circuit boards
(PCB) [17]. The cardinality constraint is actually a very natural and important
consideration in combinatorial optimization and has received considerable much
attention. We refer readers to a nice survey of this topic [4].

The classical scheduling problem without capacity constraints is one of the
well-studied NP-hard problems in combinatorial optimization and computer
science. For this problem, Hochbaum and Shmoys [8] give a polynomial-time
approximation scheme (PTAS), which, given any instance I, outputs a schedule
of length (1+ε)OPT (I) in time bounded by some polynomial in the length of the
input |I|. An efficient polynomial time approximation scheme (EPTAS) which
runs in f(1/ε)poly(|I|) is later given by Alon et al. [1] where the function f is
doubly exponential in 1/ε. Such a result is further improved recently by Jansen
and others [11,12], where an EPTAS of a running time that almost matches the
lower bound [5] is presented. As a consequence, an EPTAS is also expected for
scheduling with capacity constraints.

Previous Work. The special case of the SMCC problem where machines have
a uniform capacity, i.e., ck = c, is also know as the c-partition problem. Kellerer
and Woeginger [16] first analyze the performance of LPT for c = 3 and show a
worst-case ratio of 4/3 − 1/(3m). This result is improved later by Kellerer and
Kotov [15], where a 7/6-approximation algorithm is given. For an arbitrary c, a
4/3-approximation algorithm is provided in [2].

As for the SMCC problem where there could be different capacities for
machines, Dell’Amico et al. [6] analyzes its lower bounds and gives heuristic algo-
rithms. Woeginger [19] devises an FPTAS when the number of machines is fixed.
Later Zhang et al. [20] present a 3-approximation algorithm by applying the iter-
ative rounding method proposed by Jain [9]. Subsequently, a 2-approximation
algorithm is designed by Barna and Aravind [3] to solve the problem in a more
general setting, i.e., the unrelated machine scheduling problem with capac-
ity constraints. Recently, Kellerer and Kotov [14] give a 1.5-approximation
algorithm.

Our Contribution. In this paper we consider the SMCC problem and provide
a non-standard ILP (Integer Linear Programming) formulation for it. In this
ILP we introduce a set of special constraints which we call as proportional con-
straints. An interesting fact is that, such constraints are unnecessary for the ILP
formulation, but if we relax the integer variables, then they provide additional
properties of the fractional solution. With a greedy rounding technique, we are
able to round such a fractional solution into an integral one.

With the above-mentioned ILP formulation, we are able to prove the follow-
ing theorem.
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Theorem 1. There is an EPTAS for the problem of scheduling n jobs on m
machines with capacity constraints that outputs a (1+ ε)-approximation solution
in almost linear time f(1/ε) + O(n log n log log n), where

f(1/ε) = 2O(1/ε2 log2 (1/ε) log log(1/ε)).

Briefly speaking, the algorithm is carried out in three steps.
First, we design an algorithm called Best-Fit schedule for the SMCC prob-

lem. The Best-Fit schedule returns a (2 + ε)-approximation solution running in
O(n log n(log log n + log(1/ε))) time. It is implemented first to provide an initial
value T in [OPT, 3OPT ] (by choosing ε = 1). Using this value we scale the
processing times of jobs in the standard way. Notice that we aim to derive an
EPTAS whose running time is nearly linear in n, yet all the previously known
constant ratio approximation algorithms [3,14,20] run in Ω(n2) time in the worst
case, and could not be used to compute such an initial value.

Second, we introduce the proportional constraints and establish an ILP for
the SMCC problem based on the scaling of jobs. Using the Best-Fit schedule
in step 1 as a subroutine and also the special structure of the fractional solu-
tion based on the proportional constraints, we are able to relax the majority of
integer variables in the MILP . The relaxation of the MILP contains only con-
stant number of integer variables, and could be solved efficiently using Kannan’s
algorithm [13]. Indeed, an EPTAS is already achievable now, except that the
running time is still large (which is approximately 22

O(1/ε)
poly(n)).

The third step is to modify the (relaxed) MILP we derive in the second
step so that we can solve it in a more efficient way. The key idea is to reduce
the number of fractional variables and integer variables at the cost of a slight
increase in the makespan.

2 Preliminaries

As described in Zhang et al. [20], we have the following standard integer linear
program (ILP) formulation for the SMCC problem:

minimize t (1)

subject to

n∑

j=1

pjxjk ≤ t, 1 ≤ k ≤ m (2)

n∑

j=1

xjk ≤ ck, 1 ≤ k ≤ m (3)

m∑

k=1

xjk = 1, 1 ≤ j ≤ n (4)

xjk ∈ {0, 1}, 1 ≤ j ≤ n, 1 ≤ k ≤ m (5)

Here pj is the processing time of job j, and xjk = 1 indicates that job j is on
machine k, otherwise xjk = 0.
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If ck > n for some k, we just change it to n since no schedule could assign
more than n jobs on this machine. For simplicity we use n̂ to denote the original
number of jobs and let n =

∑m
j=1 cj by adding n−n̂ dummy jobs with processing

time of 0. We replace the inequalities (3) by
∑n

j=1 xjk = ck for k = 1, 2, . . . ,m.
Note that dummy jobs do not contribute to the makespan, but each of them
takes up a machine capacity of 1. Since ck ≤ n̂ and m ≤ n̂, it can be easily seen
that n̂ ≤ n ≤ n̂2.

3 Best-Fit Schedule

In this section we provide our Best-Fit Schedule that returns a (2 + ε)-
approximate solution in O(n̂ log n(log log n + log(1/ε))) time.

Throughout this section, we sort the m machines such that 1 ≤ c1 ≤ c2 ≤
· · · ≤ cm, and the n (=

∑m
j=1 cj) jobs that 0 ≤ p1 ≤ p2 · · · ≤ pn. For simplicity

we call a job as a zero job if its processing time is zero, and call it as a nonzero
job otherwise.

The basic idea of this algorithm is simple: each time we pick one machine, say
machine 1, and try to assign it exactly c1 consecutive jobs in the job sequence
(recall that they are in nondecreasing order of processing times) such that the
load of this machine (the total processing time of jobs on it) could be slightly
larger than the optimal makespan but not much, then we close this machine,
delete scheduled jobs from the job list and consider the next machines in the
same way. Formally speaking, we have the following lemma:

Lemma 2. If there is a feasible solution for the following linear system LPr:
n∑

j=1

pjxjk ≤ tk 1 ≤ k ≤ m

n∑

j=1

xjk = ck 1 ≤ k ≤ m

m∑

k=1

xjk = 1 1 ≤ j ≤ n

0 ≤ xjk ≤ 1 1 ≤ j ≤ n, 1 ≤ k ≤ m

then an integer solution satisfying:
n∑

j=1

pjxjk ≤ tk + pmax 1 ≤ k ≤ m

n∑

j=1

xjk = ck 1 ≤ k ≤ m

m∑

k=1

xjk = 1 1 ≤ j ≤ n

xjk ∈ {0, 1} 1 ≤ j ≤ n, 1 ≤ k ≤ m

could be obtained in O(n̂ log n) time, where pmax = maxj{pj} = pn.
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Proof. We prove the lemma by induction on m. When m = 1, this result is
trivially true. Suppose this lemma holds for m = m′. Consider the problem
when m = m′ + 1.

Let x∗
jk be the feasible solution for LPr. For machine 1, we know that

∑c1
j=1 pj ≤ t1, because if the total processing time of the smallest c1 jobs is

greater than t1, then there would be no feasible solution for LPr.
If

∑n
j=n−c1+1 pj > t1, then there exists an index τ such that

∑τ+c1−2
j=τ−1 pj ≤ t1

and
∑τ+c1−1

j=τ pj > t1, we assign jobs from τ to τ +c1−1 on machine 1. Otherwise
we have

∑n
j=n−c1+1 pj ≤ t1, and we put the biggest c1 jobs on machine 1, in

this case let τ = n − c1 + 1.
Notice that we could not determine the value of τ directly through binary

search. The summation of c1 nonzero jobs costs Ω(c1) time, yet we might end up
by putting c1 zero jobs on it. Then in the worst case we use at least Ω(

∑
k ck)

time, which could be Ω(n̂2).
To avoid the above problem, we determine τ in the following way. Suppose i is

the least index such that pi > 0, and κ is the integer such that 2κ−1 < c1 ≤ 2κ.
We then test one by one the sets of jobs STl = {pi, pi+1, · · · , pi+2l−1−1} for
l = 1, 2, · · · , κ, to see if their total processing times sum greater than t1.

Let L(STl) =
∑i+2l−1−1

j=i pj , if there exists some l0 ≤ κ such that L(STl0−1) ≤
t1 < L(STl0), then τ ≤ i+2l0−1 − c1 +1, and we then apply binary search on τ .
For the binary search, we need to test at most �log n� values of τ , and for each
value, the summation from pτ to pτ+c1−1 takes at most O(2l0−1) computations
since there are at most 2l0−1 nonzero jobs as τ ≤ i + 2l0−1 − c1 + 1. Meanwhile
the computation for L(ST1) to L(STl0) takes at most O(2l0) time. Thus in all,
we put at least 2l0−2 nonzero jobs on machine 1 in O(2l0 log n) time.

Otherwise, L(STκ) ≤ t1, then τ + c1 − 1 ≥ i + 2κ−1 − 1. Again we apply
binary search on τ and sum the processing times of c1 jobs for each value of
τ , this consumes O(c1 log n) time, and the computation for L(ST1) to L(STκ)
takes O(2κ+1) time. Meanwhile as τ + c1 − 1 ≥ i + 2κ−1 − 1 we would put at
least 2κ−1 nonzero jobs on machine 1.

In all, the above procedure determines τ in at most O(4φ log n) time if it
puts φ nonzero jobs on machine 1.

Let S1 = {j|job j is put on machine 1}, and ĉ1 be the number of nonzero
jobs on machine 1, we will show that the following linear system LP ′

r:
∑

j �∈S1

pjxjk ≤ tk 2 ≤ k ≤ m′ + 1

∑

j �∈S1

xjk = ck 2 ≤ k ≤ m′ + 1

m′+1∑

k=2

xjk = 1 j �∈ S1

0 ≤ xjk ≤ 1 j �∈ S1, 2 ≤ k ≤ m′ + 1
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still admits a feasible solution, then according to the induction hypothesis, an
integer solution satisfying

∑

j �∈S1

pjxjk ≤ tk + pmax 2 ≤ k ≤ m′ + 1

∑

j �∈S1

xjk = cj 2 ≤ k ≤ m′ + 1

m′+1∑

k=2

xjk = 1 j �∈ S1

xjk ∈ {0, 1} j �∈ S1, 2 ≤ k ≤ m′ + 1

could be constructed in O((n̂ − ĉ1) log n) time. Since at most O(ĉ1 log n) time
is needed to determine jobs that are put on machine 1, in all O(n̂ log n) time is
needed to construct the integer solution for all machines and Lemma 2 follows
immediately.

The following part of this proof is devoted to show that LP ′
r admits a feasible

solution, indeed, we will construct such a solution from x∗
jk.

Notice that we have
∑τ+c1−1

j=τ pj ≥ ∑n
j=1 x∗

j1pj (this inequality holds strictly
if τ < n − c1 + 1). Rewrite it as

τ+c1−1∑

j=τ

αjpj ≥
τ−1∑

j=1

x∗
j1pj +

n∑

j=τ+c1

x∗
j1pj ,

where αj = 1 − x∗
j1 for j = τ, · · · , τ + c1 − 1. For simplicity, let αl =

∑τ−1
j=1 x∗

j1

and αu =
∑n

j=τ+c1
x∗

j1, define pl and pu as αlpl =
∑τ−1

j=1 x∗
j1pj and αupu =

∑n
j=τ+c1

x∗
j1pj (pl = pτ−1 if αl=0, and pu = pτ+c1 if αu = 0). Thus,

τ+c1−1∑

j=τ

αjpj ≥ αlpl + αupu,

τ+c1−1∑

j=τ

αj = αl + αu.

Now it can be easily seen that in order to construct a feasible solution for
LP ′

r, we only need to exchange αlpl and αupu that are scheduled on machine 1
in the solution x∗

jk with αjpj(τ ≤ j ≤ τ + c1 − 1) that are distributed among
other machines. More precisely, if we can find ξj , ηj such that for each j we have
τ ≤ j ≤ τ +c1−1, ξj +ηj = αj , ξjpu +ηjpl ≤ αjpj , and moreover,

∑τ+c1−1
j=τ ξj =

αu,
∑τ+c1−1

j=τ ηj = αl, then starting from the solution x∗
jk, we exchange jobs like

this: if βjpj (here τ ≤ j ≤ τ + c1 − 1 and βj > 0) is scheduled on some machine,
say k where k ≥ 2, then we move βjpj to machine 1 and put βj

αj
(ξjpu + ηjpl)

on machine k instead, or more precisely, put βj

αj
(ξj

∑n
j=τ+c1

x∗
j1pj

∑n
j=τ+c1

x∗
j1

+ ηj

∑τ−1
j=1 x∗

j1pj
∑τ−1

j=1 x∗
j1

)

on k. By doing so, the completion time of machine k doesn’t increase while the
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total fractional number of jobs on it remains the same, and thus a fractional
solution for LP ′

r is constructed.
Next we prove that such desired ξj and ηj do exist by constructing them.

If αu = 0, then setting ηj = αj and ξj = 0 is enough. Else if αl = 0 and
αu =

∑n
j=τ+c1

x∗
j1 �= 0, then τ < n − c1 + 1, it yields a contradiction with

∑τ+c1−1
j=τ αjpj > αlpl +αupu. Therefore, in the following we assume that αu �= 0

and αl �= 0, this implies that
∑τ+c1−1

j=τ αjpj > αlpl +αupu. We distinguish three
cases and determine ξj and ηj (τ ≤ j ≤ τ + c1 − 1) recursively as follows.

Case 1. If αj
pj−pl

pu−pl
≤ αu − ∑j−1

w=τ ξw and αj
pu−pj

pu−pl
≤ αl − ∑j−1

w=τ ηw, then let

ξj = αj
pj − pl

pu − pl
and ηj = αj

pu − pj

pu − pl
.

Case 2. If Case 1 holds for any j ≤ j0 − 1, while αj0
pj0−pl

pu−pl
> αu − ∑j0−1

w=τ ξw

(j0 is the first index that satisfying αj0
pj0−pl

pu−pl
> αu − ∑j0−1

w=τ ξw), then let

ξj0 = αu −
j0−1∑

w=τ

ξw, ηj0 = αj0 − ξj0 .

For j0 < j ≤ τ + c1 − 1, let ξj = 0 and ηj = αj .
Note that in both Case 1 and Case 2, we have ξj+ηj = αj , ξjpu+ηjpl = αjpj ,

for j ≤ j0 − 1, and ξj + ηj = αj , ξjpu + ηjpl ≤ αjpj , for j ≥ j0.

Case 3. Case 1 holds for any j ≤ j0 − 1, while αj0
pu−pj0
pu−pl

> αl − ∑j0−1
w=τ ηw. We

show that this case is impossible.
From

∑τ+c1−1
j=τ αjpj > αlpl + αupu we have (αl − ∑j0−1

w=τ ηw)pl + (αu −
∑j0−1

w=τ ξw)pu <
∑τ+c1−1

w=j0
αwpw. With αj0

pu−pj0
pu−pl

> αl −
∑j0−1

w=τ ηw we can deduce

(αl − ∑j0−1
w=τ ηw)pl + [αj0 − (αl − ∑j0−1

w=τ ηw)]pu > αj0pj0 . Furthermore, with
αl =

∑τ+c1−1
i=τ αj−αu and (αl−

∑j0−1
w=τ ηw)pl+[αj0−(αl−

∑j0−1
w=τ ηw)]pu > αj0pj0 ,

we can derive (αl − ∑j0−1
w=τ ηw)pl + (αu − ∑j0−1

w=τ ξw)pu >
∑τ+c1−1

w=j0
αwpw, which

is a contradiction (note that pu ≥ pj for any τ ≤ j ≤ τ + c1 − 1).
Thus Case 3 never happens, which means the ξj and ηj defined above satisfy

what we expect, i.e., for each j (τ ≤ j ≤ τ + c1 − 1), ξj + ηj = αj , ξjαu + ηjαl ≤
αjpj , and

∑τ+c1−1
j=τ ξj = αu,

∑τ+c1−1
j=τ ηj = αl. ��

Given the above lemma, a simple algorithm BFS could be derived. We choose
t1 = t2 = · · · = tm = t. Then through binary search we find the minimum t = t′

such that the application of the algorithm in the above lemma do not fail.
Notice that as long as t ≥ OPT the linear system LPr admits a feasible

solution, thus t′ ≤ OPT and our Best-Fit schedule returns a feasible solution
with makepan no more than OPT + pmax, which is of 2-approximation and the
overall running time is O(n log n log(npmax)).

Specifically, if we choose some constant 1/δ, and scale the numbers between
pmax and npmax into S = {pmax, (1 + δ)pmax, (1 + δ)2pmax, · · · , (1 + δ)ωpmax}
with ω = �log1+δ n� ≤ 1/δ log n, then we can apply binary search on the numbers
in S instead. A schedule of length at most OPT (2 + δ) could be determined in
O(n̂ log n log(1/δ · log n)) time.
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4 An Efficient Polynomial Time Approximation Scheme

The algorithm of the above section could provide us with some integer T sat-
isfying OPT ≤ T ≤ 3OPT in O(n̂ log n log log n) (by setting c0 = 1) time, and
given ε > 0, we would formulate an MILP in this section that for any fixed t
satisfying T/3 ≤ t ≤ T , it either determines there is no feasible schedule with
makespan no more than t, or produces a solution with makespan no more than
t(1 + ε), in which all the split jobs have tiny processing times.

We now scale the processing time of jobs using T in the standard way.
For simplicity we assume μ = 1/ε to be an integer greater than 10, and
let λ = �log1+ε μ�. Let SVb = {Tε(1 + ε), T ε(1 + ε)2, · · · , T ε(1 + ε)λ} and
SVs = {Tε2, T ε2(1 + ε), · · · , T ε2(1 + ε)λ} be the sets of scaled processing times.
For each job whose processing time is larger than Tε, we round it up to be its
nearest value in SVb, and call it as a big job. The remaining jobs are then called
small jobs.

We define containers. For each φ such that 1 ≤ φ ≤ μ, we define a φ-container
which contains exactly φ jobs, and is denoted by a (λ+2)-tuple (ν0, ν1, · · · , νλ, φ),
where νi ≤ φ (1 ≤ i ≤ λ) is the number of big jobs with rounded processing time
Tε(1+ε)i for 1 ≤ i ≤ λ in this container. Except for these big jobs, there are also
φ − ∑λ

i=1 νi small jobs in this container, we compute their average processing
time (their total processing time divided by φ − ∑λ

i=1 νi) and then round this
value up to be its nearest value in SVs. We use ν0 to represent such a scaled
average processing time. Specifically, if there is no small job in a container, then
ν0 = Tε2.

The reason for the introduction of containers is that the optimum solution
could always be seen as a schedule for m containers and the remaining small jobs.
To see why, consider each machine with capacity φ where 1 ≤ φ ≤ μ − 1. Obvi-
ously all jobs on this machine could be represented by a φ-container. Meanwhile
consider machine k with ck ≥ μ. Obviously the largest μ jobs on this machine
could be represented through a μ-container. Since there are at most μ big jobs on
each machine, the remaining (ck − μ) jobs on this machine are all small jobs.

Moreover, for each container (ν0, ν1, · · · , νλ, φ) where 1 ≤ φ ≤ μ, we define
∑λ

κ=1 νκTε(1 + ε)κ + ν0(φ − ∑λ
κ=1 νκ) as the load of this container. Suppose tk

is the load of machine k in the optimum solution (of the unrounded instance),
then if we use the load of the container on this machine to substitute the
total processing time of corresponding jobs, the new load of machine k becomes
t′k ≤ tk(1 + ε) + μTε2 ≤ OPT (1 + 4ε).

We classify small jobs into two parts. A small job which is contained in one
of the containers in the optimum solution is called an inner small job, otherwise
it is an outer small job. Our above analysis implies the following observation:

Observation. There exists a feasible schedule of makespan at most OPT (1+4ε)
such that

1. For 1 ≤ φ ≤ μ − 1, there is one φ-container on each machine of capacity φ.
2. There is one μ-container on each machine whose capacity is at least μ.
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3. Each big job is in one of the containers.
4. Each small job is either inside some container as an inner small job, or is

scheduled as an outer small job outside containers.

We denote the above solution as Sol∗. Before establishing the MILP , we have
the following estimation on the number of different containers.

Lemma 3. The number of all different containers is bounded by 2O(μ log log μ).

We sort φ-containers in non-increasing order of their loads and denote by
vφ

i = (νφ
0 (i), νφ

1 (i), · · · , νφ
λ (i), φ) the i-th one. Specifically, for μ-containers, we

also denote the i-th μ-container as vi = (ν0(i), ν1(i), · · · , νλ(i), μ) (i.e., vμ
i = vi,

νμ
κ (i) = νκ(i)) for simplicity and use Γi to denote its load.

To simplify our notation, we use GMφ (1 ≤ φ ≤ μ − 1) to denote the set of
machines with capacity exactly φ, and GMμ the set of machines with capacity
greater than or equal to μ. We further renumber the machines so that GMμ is
made up of machine 1 to machine m′ = |GMμ|, and μ ≤ c1 ≤ c2 ≤ · · · ≤ cm′ .
All the containers could then be classified similarly into μ groups with GCφ

(1 ≤ φ ≤ μ) being the set of all φ-containers. Meanwhile, containers could also
be classified into (λ + 1) groups according to the first coordinate of their tuples,
i.e., we define GSl = {vφ

i |νφ
0 (i) = Tε2(1 + ε)l, 1 ≤ φ ≤ μ, 1 ≤ i ≤ |GCφ|} for

0 ≤ l ≤ λ.
We first set up an ILP for the SMCC problem, in which the following integer

variables are used:
zφ

i : an integer variable denoting the number of the i-th φ-container (i.e., vφ
i )

that are used.
yik: a 0 − 1 integer variable for the μ-container vi. If yik = 1, then one

container of vi is on machine k, otherwise yik = 0.
xijk: a 0 − 1 integer variable for outer small jobs. If yik = 1, job j is on

machine k and is not inside the container vi, then xijk = 1. Otherwise xijk = 0.
wjl: a 0 − 1 integer variable for inner small jobs. If job j is an outer small

job, then wjl = 0 for any 0 ≤ l ≤ λ. Otherwise job j is an inner small job,
and is contained in some container. If this container is in group GSκ for some
0 ≤ κ ≤ λ, then wjκ = 1, wjl = 0 for l �= κ.

Let Nκ be the number of big jobs with rounded processing time Tε(1 + ε)κ

for 1 ≤ κ ≤ λ, n′ be the number of small jobs, and we sequence them as
p1 ≤ p2 ≤ · · · ≤ pn′ . Given any fixed t (T/3 ≤ t ≤ T ), we formulate an ILP (t)
as follows.

(1)

|GCφ|∑

i=1

zφ
i = |GMφ|, 1 ≤ φ ≤ μ

(2)
m′
∑

k=1

yik = zμ
i , 1 ≤ i ≤ |GCμ|

(3)

|GCμ|∑

i=1

yik = 1, 1 ≤ k ≤ m′
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(4)

μ∑

φ=1

|GCφ|∑

i=1

νφ
κ (i)zφ

i = Nκ, 1 ≤ κ ≤ λ

(5)

n′
∑

j=1

xijk = (ck − μ)yik, 1 ≤ i ≤ |GCμ|, 1 ≤ k ≤ m′

(6)
n′
∑

j=1

pjxijk ≤ (t − Γi)yik, 1 ≤ i ≤ |GCμ|, 1 ≤ k ≤ m′

(7)

|GCμ|∑

i=1

m′
∑

k=1

xijk +
λ∑

l=0

wjl = 1, 1 ≤ j ≤ n′

(8)
n′
∑

j=1

wjl =

μ∑

φ=1

∑

i:v
φ
i ∈GSl∩GCφ

(φ −
λ∑

κ=1

νφ
κ (i))zφ

i , 0 ≤ l ≤ λ

(9)

n′
∑

j=1

pjwjl ≤ Tε2(1 + ε)l
μ∑

φ=1

∑

i:v
φ
i ∈GSl∩GCφ

(φ −
λ∑

κ=1

νφ
κ (i))zφ

i , 0 ≤ l ≤ λ

(10) zφ
i = 0 if

λ∑

κ=1

νφ
κ (i)Tε(1 + ε)κ + νφ

0 (i)(φ −
λ∑

κ=1

νκ) > t

(11) zφ
i ∈ N, yik, xijk, wjl ∈ {0, 1}.

We explain these constraints. Constraint (1) shows that for 1 ≤ φ ≤ μ, the
number of φ-containers used equals to the number of machines in group GMφ.
Constraints (2) and (3) ensure that there is exactly one μ-container on each
machine of group GMμ, and the total number of container vi that are used is
zμ

i . Constraint (4) shows that each big job is contained in one of the containers.
As to constraints (5) and (6), notice that yik is either 0 or 1, thus for each k
there could be exactly one i such that yik = 1, while yi′k = 0 for i′ �= i. Then
from constraint (5), we know that xi′jk = 0. So, constraints (5) and (6) actually
show that for each machine k of group GMμ, the total number of jobs scheduled
won’t exceed ck, and the total processing time won’t exceed t. Constraint (7)
implies that each small job is scheduled, either as an inner small job or as an
outer one. Constraints (8) and (9) are for inner small jobs. Both sides of the
constraint (8) equals to the total number of inner jobs we use. The left side of
constraint (9) is the exact total processing time of all the inner small jobs, while
the right side is an upper bound of it (notice that we have round up the average
processing time of inner small jobs in each container). Constraint (11) ensures
that every container we use is feasible in the sense that its load won’t exceed t.

It can be easily seen that once we set t = t0 ≥ OPT (1 + 4ε), then Sol∗

satisfies all the above constraints and is thus a feasible solution for ILP (t0).
Thus, the smallest t such that ILP (t) admits a feasible solution is no greater
than OPT (1 + 4ε).

Here the constraints (5) and (6) are the so-called proportional constraints we
mention before.
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We remark that if yik are restricted to be 0 − 1 integer variables, then there
are actually other formulations which can be much simpler. However, in order
to solve the programming, we need to relax most of the integer variables so that
there are only a constant number of integer variables, and these proportional
constraints become crucial for the relaxation, as we will show in Lemma 5.

Consider ILP (t). By replacing the constraints xijk, wjl ∈ {0, 1} with 0 ≤
xijk ≤ 1 and 0 ≤ wjl ≤ 1, we derive a mixed integer linear programming and
denote it as MILP (t). Obviously any feasible solution of ILP (t) is a feasible
solution for MILP (t), thus the minimum integer t such that MILP (t) admits a
feasible solution is also no greater than OPT (1+4ε). Furthermore, the following
lemma follows from Lemma 2.

Lemma 4. Given a feasible solution of MILP (t) with t = t∗, a feasible schedule
for the SMCC problem with makespan no more than t∗ +Tε could be constructed
in O(n̂ log n) time.

With the above lemma, we only need to find the minimum t such that
MILP (t) admits a feasible solution. Through binary search, we need to deter-
mine whether MILP (t) admits a feasible solution for each fixed t. However,
we could not solve the MILP (t) directly in polynomial time since the number
of integer variables is Ω(m). We further replace the constraint yik ∈ {0, 1} in
MILP (t) to be 0 ≤ yik ≤ 1, and call such a relaxed MILP (t) as MILPr(t).
We have the following.

Lemma 5. Given a feasible solution of MILPr(t) for t = t∗, a feasible solution
of MILP (t) with t = t∗ could be constructed.

Proof. The proof is a constructive one. Note that there are m′ = |GMμ| machines
with capacity no less than μ and they are renumbered as machine 1 to machine
m′. All the containers we mention afterwards refer to μ-containers. All the con-
tainers used in the fractional solution are sorted in non-increasing order of their
load. In the following we will construct a feasible solution such that the h-th
largest container is on machine h through iteratively moving (fractions of) con-
tainers. To achieve this, it suffices to move container 1 onto machine 1 whereas
all the other containers could be moved in the same way.

To move container 1, we will alter x∗
ijk and y∗

ik while keeping other variables
(e.g., zφ∗

i ) intact. Specifically, we alter x∗
ijk and y∗

ik only in two ways.
One is to move jobs from some machine to another. We either move outer

small jobs as indicated by x∗
ijk or move containers.

The other way is to re-assign small jobs to containers. Notice that yik could
be fractional, thus there might be several fractions of containers on the same
machine. For simplicity, if x∗

ijk > 0, then we say x∗
ijk fraction of job j is assigned

to container i. By re-assigning, we could change x∗
ijk to x∗

ijk − δ (δ ≤ x∗
ijk) while

let x∗
i′jk become xi′jk + δ for some i′, which means now a fraction δ of job j on

machine k is assigned to a new container i′.
We need to ensure that constraints (1) to (11) are never violated during our

rounding procedure. Notice that if we only carry out the above mentioned two
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methods to alter variables, then zφ∗
i , w∗

jl won’t change. Moreover,
∑|GCμ|

i=1

∑m′

k=1

x∗
ijk and

∑m′

k=1 y∗
ik as a whole won’t change either, so to ensure that constraints

(1) to (11) are never violated, we only need to ensure that constraints (3), (5)
and (6) are never violated.

Now we will describe our rounding procedure. We focus on machine 1. Sup-
pose after applying the rounding procedure for some times we arrive at some
feasible solution xh

ijk and yh
ik for MILPr. If among the containers used the one

with the largest load is on machine 1, then yh
i1 are already 0 − 1 variables and

we close machine 1 and fix yh
i1 and xh

ij1 forever. Then we could simply renumber
machines so the remaining machines are machines 1 to m′ − 1, and again focus
on the first machine.

Otherwise we suppose without loss of generality that zh
1 > 0 and 0 ≤ yh

11 < 1,
then there exists a machine w with yh

1w > 0. If yh
11 + yh

1w ≤ 1, we would try to
move the fraction yh

1w of container 1 to machine 1, otherwise it’s enough by
moving only 1 − yh

11 fraction out of yh
1w of container 1. Define η = min{yh

1w, 1 −
yh
11}. To ensure (3), we exchange η fraction of container 1 on machine w with the

same fraction of other containers on machine 1, i.e., we let y′
11 = yh

11 + η, y′
i1 =

yh
i1(1 − α) for i > 1 where α = η

∑

i>1 yh
i1

= η
1−yh

11
, and meanwhile y′

1w = yh
1w − η,

y′
iw = yh

iw +αyh
i1. It can be easily verified that by doing so (4) is satisfied on both

machine 1 and w. If we could then alter xh
ijk so that (5) and (6) are satisfied, then

either yh
11 becomes 1, or we have successfully moved the fraction of container 1

on another machine to machine 1, and thus carry on such a procedure at most
m′ times yh

11 would become 1.
The above mentioned altering from yh

i1 to y′
i1 would actually be accomplished

in several steps, and in each step we only consider one of those yh
i1 (i > 1). Assume

without loss of generality that y21 > 0, then let

yh+1
11 = yh

11 + αyh
21, y

h+1
21 = yh

21(1 − α),

yh+1
1w = yh

1w − αyh
21, y

h+1
2w = yh

2w + αyh
21.

All the other yh
ik are kept intact, then (4) is satisfied, and we then need to change

xh
ijk on the two machines so that (5) and (6) are also satisfied.

Consider the following simple altering of xh
1j1, xh

2j1, xh
1jw and xh

2jw.

xh+1
1j1 = αxh

2j1 + xh
1j1, x

h+1
2j1 = (1 − α)xh

2j1,

xh+1
1jw = xh

1jw(1 − αyh
21/yh

1w), xh+1
2jw = xh

2jw + αyh
21/yh

1wxh
1jw.

By altering them this way we don’t actually move jobs between machine 1 and w,
but rather re-assign outer small jobs on the two machines, so the total number of
jobs along with total processing times on the two machines remain unchanged.
Also notice that xh+1

2j1 /xh
2j1 = yh+1

21 /yh
21 and xh+1

1jw /xh
1jw = yh+1

1w /yh
1w, so it follows

directly that
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(12)
n′
∑

j=1

xh+1
2j1 = c1y

h+1
21 ,

n′
∑

j=1

xh+1
1j1 = c1y

h+1
11

(13)

n′
∑

j=1

pjx
h+1
2j1 ≤ (t∗ − Γ2)y

h+1
21 ,

n′
∑

j=1

xh+1
1jw = cwyh+1

1w

(14)

n′
∑

j=1

xh+1
2jw = cwyh+1

2w ,

n′
∑

j=1

pjx
h+1
1jw ≤ (t∗ − Γ1)y

h+1
1w

We could also conclude that
∑n′

j=1 pjx
h+1
2jw ≤ (t∗ − Γ2)yh+1

2w , since
∑n′

j=1 pjx
h+1
2jw +

∑n′

j=1 pjx
h+1
1jw =

∑n′

j=1 pjx
h
2jw +

∑n′

j=1 pjx
h
1jw, thus

n′
∑

j=1

pjx
h+1
2jw =

n′
∑

j=1

pjx
h
2jw +

n′
∑

j=1

pjx
h
1jwαyh

21/yh
1w

≤ (t∗ − Γ2)y
h
2w + (t∗ − Γ1)y

h
1wαyh

21/yh
1w

≤ (t∗ − Γ2)y
h+1
2w

The last inequality follows from t∗ − Γ1 ≤ t∗ − Γ2.
So if

∑n′

j=1 pjx
h+1
1j1 ≤ (t∗ − Γ1)yh+1

11 , then we have successfully derived a new
feasible solution of MILPr(t∗).

Otherwise
∑n′

j=1 pjx
h+1
1j1 > (t∗ − Γ1)yh+1

11 , and we would have to exchange
outer small jobs on machine 1 with w, and meanwhile re-assign them.

Let yh+1
ik be defined as before. First we define again xh+1

2j1 = (1−α)xh
2j1, then

for each outer small job j on machine 1, we need to reduce a fraction of αxh
2j1

(either to move it out or to re-assign it) We put θαxh
2j1 onto machine w, where

θ ∈ [0, 1] is a parameter that to be fixed later. Then we re-assign the remaining
fraction (1 − θ)αxh

2j1 for each j to container 1.

Since in all
∑n′

j=1 θαxh
2j1 jobs are moved to machine w, we then need to

move the same number of jobs from machine w back to machine 1. Among the
∑n′

j=1 xh
1jw outer small jobs on machine w, suppose we move ϕ

∑n′

j=1 xh
1jw =

∑n′

j=1 θαxh
2j1, it follows that ϕ = c1

cw

η
yh
1w

yh
21

1−yh
11

θ ∈ [0, 1].

Meanwhile we set xh+1
1jw = xh

1jw(1− yh
21

1−yh
11

η
y1w

), then adding up the fraction of

ϕxh
1jw that is moved out, there is still a fraction of (1 − c1

cw
θ) yh

21
1−yh

11

η
yh
1w

xh
1jw left

for each j, and we re-assign them to container 2.
The above discussion implies that we set xh+1

ijk as follows

xh+1
1j1 = (α − θα)xh

2j1 + xh
1j1 + ϕxh

1jw,

xh+1
2j1 = (1 − α)xh

2j1,

xh+1
1jw = xh

1jw(1 − αyh
21/yh

1w),

xh+1
2jw = xh

2jw + θαxh
2j1 + (

yh
21

1 − yh
11

η

y1w
− ϕ)xh

1jw.
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The same argument shows that inequalities (12) to (14) are also satisfied.
We then set

∑n′

j=1 pjx
h+1
1j1 = (t∗ − Γ1)yh+1

11 . This is possible since

n′
∑

j=1

pjx
h+1
1j1 =

n′
∑

j=1

(α − θα)pjx
h
2j1 +

n′
∑

j=1

pjx
h
1j1 +

c1
cw

yh
21

1 − yh
11

η

yh
1w

θ
n′
∑

j=1

pjx
h
1jw

is linear in variable θ. And if θ = 0, then we actually do not exchange outer
small jobs between machine 1 and w, and thus

∑n′

j=1 pjx
h+1
1j1 > (t∗ − Γ1)yh+1

11 . If

θ = 1, simple computation shows that
∑n′

j=1 pjx
h+1
1j1 ≤ (t∗ −Γ1)(yh

11 + c1
cw

αyh
21) ≤

(t∗ − Γ1)yh+1
11 . Thus there exists some θ ∈ [0, 1], such that

∑n′

j=1 pjx
h+1
1j1 =

(t∗ − Γ1)yh+1
11 .

Now we only need to prove for such a θ,
∑n′

j=1 pjx
h+1
2jw ≤ (t∗ − Γ2)yh+1

2w .
Consider machine 1.

Γ1(y
h+1
11 − yh

11) + Γ2(y
h+1
21 − yh

21) +
n′
∑

j=1

(xh+1
1j1 + xh+1

2j1 − xh
1j1 − xh

2j1)pj

= t∗yh+1
11 − Γ1y

h
11 −

n′
∑

j=1

pjx
h
1j1 − α(Γ2y

h
21 +

n′
∑

j=1

xh
2j1pj)

≥ t∗yh+1
11 − Γ1y

h
11 − (t∗ − Γ1)y

h
11 − α[Γ2y

h
21 + (t∗ − Γ2)y

h
21] = 0

The total processing time of jobs on machine 1 doesn’t decrease, then the total
processing time jobs on machine w doesn’t increase.

Γ2y
h+1
2w +

n′
∑

j=1

pjx
h+1
2jw

≤ Γ2y
h
2w +

n′
∑

j=1

pjx
h
2jw + Γ1y

h
1w +

n′
∑

j=1

pjx
h
1jw − Γ1y

h+1
1w −

n′
∑

j=1

pjx
h+1
1jw

= Γ2y
h
2w +

n′
∑

j=1

pjx
h
2jw + αyh

21Γ1 + αyh
21

1

yh
1w

n′
∑

j=1

pjx
h
1jw ≤ t∗yh+1

2w

Then it follows
∑n′

j=1 pjx
h+1
2jw ≤ (t∗ − Γ2)yh+1

2w , and we complete our proof. ��
With the above lemma, given a feasible solution of MILPr(t∗), a feasible solution
of MILP (t∗) could be constructed in the following way. The integer variables
zφ

i of MILP (t∗) are taking the same value of that in MILPr(t∗). For each
1 ≤ φ ≤ μ − 1, we put (arbitrarily) a φ-container on a machine with capacity
φ. Then we schedule μ-containers greedily as Lemma 5 implies, i.e., we put the
μ-container with a larger load onto a machine (in GMμ) with a smaller capacity,
as we have mentioned in the proof. Such a schedule actually determines the value
of yik in MILP (t∗) in O(m) time. By fixing the value of all the integer variables
in MILP (t∗) in this way, it becomes a linear programming and Lemma 5 implies
that it admits a feasible solution.
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Now it suffices to solve MILPr(t), which only contains a constant number of
integer variables (which is 2O(μ log log μ)), and thus could be solved in polynomial
time via Kannan’s algorithm [13]. However, such a running time is far from linear.
To achieve the desired running time, we need to further modify MILPr(t) by
reducing the number of its fractional variables. The reader may refer to the
appendix for a full proof of the following lemma.

Lemma 6. There exists an algorithm that solves MILPr(t) in f(1/ε) +
O(n log n log log n) time, where f(1/ε) = 2O(1/ε2 log2(1/ε) log log(1/ε)).

Combining Lemma 6 with Lemma 4, Theorem 1 is proved.
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in Polynomial Space
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Abstract. It is well-known that the knapsack problem is NP-complete
and can be solved in pseudo-polynomial time if we use dynamic program-
ming. However, such dynamic programming approach requires pseudo-
polynomial space that makes the resultant algorithm impractical since
the computer memory is exhausted before the running time gets too long
to tolerate. To remedy this, recently, Lokshtanov and Nederlof presented
the first algorithm to solve the knapsack problem in pseudo-polynomial
time and polynomial space. This paper presents another algorithm for
solving the knapsack problem in pseudo-polynomial time and polynomial
space.

Keywords: Combinatorial optimization · Exact algorithm · Space effi-
ciency · Generating function

1 Introduction

The knapsack problem is to decide whether there exists a subset of a given set
of n items with weight and value such that the sum of weight in the subset is at
most a given positive integer W and the sum of value in the subset is at least a
given positive integer V . The knapsack problem is NP-complete [7]. Hence, it
is unlikely that the knapsack problem can be solved in polynomial time. On the
other hand, it is well-known that the knapsack problem can be solved in pseudo-
polynomial time O(nW ) if we use dynamic programming [8]. However, such
dynamic programming approach requires pseudo-polynomial space O(n+W ) [8]
that makes the resultant algorithm impractical with an increase of W since the
computer memory is exhausted before the running time gets too long to tolerate.

To remedy this, recently, Lokshtanov and Nederlof presented the first
algorithm LN [11,12] to solve the knapsack problem in pseudo-polynomial time
and polynomial space. The algorithm LN runs in Õ(n4 log2(V W )V W ) time and
O(n2 log(V W )) space where Õ(·) suppresses factors that are poly-logarithmic in
the input size. The algorithm LN reduces the knapsack problem to calculating
one of the coefficients of the corresponding generating function of two-variables.
To compute the coefficient, the algorithm LN utilizes the Discrete Fourier Trans-
form (DFT).
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 624–638, 2016.
DOI: 10.1007/978-3-319-48749-6 45
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This paper presents another algorithm for solving the knapsack problem in
pseudo-polynomial time and polynomial space. The proposed algorithm runs in
Õ((n + log((

∑n
j=1 wj)(

∑n
j=1 vj)))(

∑n
j=1 wj)(

∑n
j=1 vj)(n + log

∑n
j=1(wj + vj)))

time and O((n + log
∑n

j=1(wj + vj))(log(
∑n

j=1 wj)(
∑n

j=1 vj))) space where wj

and vj are respectively the weight and the value of the item j. The proposed
algorithm also reduces the knapsack problem to calculating one of the coefficients
of the corresponding generating function in the factorized form. However, the
proposed algorithm never uses DFT. Instead, the proposed algorithm calculates
the coefficient by gradually reducing the number of terms in the function while
preserving the coefficient without expanding the function. That is, we present
a novel technique to compute any coefficient of a complex generating function
only by dynamically transforming the generating function.

The remainder of this paper is organized as follows. First, Sect. 2 gives some
basic facts on generating functions and complex numbers. Next, Sect. 3 describes
the proposed algorithm in detail. The proposed algorithm requires multiple-
precision arithmetic. Therefore, Sect. 4 theoretically analyzes the required pre-
cision to show the time complexity and the space complexity of the proposed
algorithm. Finally, Sect. 5 gives concluding remarks and indicates some future
works.

2 Preliminaries

This section briefly reviews the basic facts required to understand this paper.
See [4,9] and so on for details.

2.1 Generating Functions

Let G(z) =
∑∞

j=0 cjz
j be a complex generating function. Then, the following

expressions hold:

(G(z) + G(−z))/2 =
∞∑

j=0

c2jz
2j (1)

(G(z) − G(−z))/2 =
∞∑

j=0

c2j+1z
2j+1 (2)

G(z)/(1 − z) =
∞∑

j=0

((
j∑

k=0

ck)zj) (3)

Note that the result of each expression is again a complex generating function.

2.2 Complex Numbers

Let z = x + yi = reiθ = r(cos θ + i sin θ) be a complex number where i is the
imaginary unit. We denote the real part and the imaginary part of z respectively
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by Re(z) and Im(z). The absolute value of |z| is defined as r =
√

x2 + y2. It
follows that |z| ≥ 0. Let v and w be complex numbers. Let m, p, and q be
positive integers.Then, the following expressions hold:

|v ± w| ≤ |v| + |w| (4)
|vw| = |v||w| (5)
|vm| = |v|m (6)

|v/w| = |v|/|w| (7)
|v/2| = |v|/2 (8)

z = reiθ ⇒ zm = rmeimθ (9)

z
q
p = (z

1
p )q (10)

z = reiθwith − π < θ ≤ π ⇒ √
z =

√
reiθ/2 (11)

3 The Proposed Algorithm

For a problem instance n,w1, w2, · · · , wn, v1, v2, · · · , vn,W, V of the knapsack
problem, consider a polynomial function P (x, y) =

∏n
j=1(1 + xwj yvj ). Let

Wtotal =
∑n

j=1 wj and Vtotal =
∑n

j=1 vj . Then, the polynomial P (x, y) can
be regarded as a polynomial

∑Wtotal

j=0 cjx
j of x where each cj is a polynomial

∑Vtotal

k=0 dj,kyk of y. The coefficients {dj,k} imply that there exist dj,k subsets
with weight j and value k. Therefore, the problem instance is a yes instance if
and only if

∑W
j=0

∑Vtotal

k=V dj,k ≥ 1. Hence, we can solve the knapsack problem by
computing

∑W
j=0

∑Vtotal

k=V dj,k.
The polynomial P (x, y) is a generating function of two-variables. Therefore,

from Eq. (3), P (x, y)/(1−x) =
∑Wtotal

j=0 (
∑

k≤j ck)xj +
∑∞

j=Wtotal+1 cxj where c is
some polynomial of y (In fact, c =

∑Wtotal

k=0 ck). Let Q(y) be the coefficient of the
term xW . Then, Q(y) =

∑W
j=0 cj =

∑W
j=0

∑Vtotal

k=0 dj,kyk =
∑Vtotal

k=0 (
∑W

j=0 dj,k)yk.
The polynomial Q(y) is a generating function of one-variable. Hence, from
Eq. (3), Q(y)/(1 − y) =

∑Vtotal

k=0

∑
h≤k(

∑W
j=0 dj,h)yk +

∑∞
k=Vtotal+1 dyk where

d is some constant. Let RV −1 (resp. RVtotal
) be the coefficient of the term

yV −1 (resp. yVtotal). Then, we have RVtotal
− RV −1 =

∑
h≤Vtotal

(
∑W

j=0 dj,h) −
∑

h≤V −1(
∑W

j=0 dj,h) =
∑Vtotal

h=V

∑W
j=0 dj,h =

∑W
j=0

∑Vtotal

k=V dj,k. Thus, if we can
compute arbitrary coefficients of a generating function in the above form, we
can solve the knapsack problem.

In Algorithm 1, we present an algorithm to compute any coefficient of
P (x, y)/(1−x) and Q(y)/(1−y). For a given generating function f0 in the above
form, Algorithm 1 recursively defines a sequence 〈f1, f2, · · · , fD〉 of generating
functions in the above form and finally returns the coefficient computed by fD.
Note that Algorithm 1 never expands f0 (i.e., P (x, y)/(1 − x) and Q(y)/(1 − y))
and that the representation of the generating functions defined in Algorithm1
is brief.
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The idea behind Algorithm1 is as follows. A given generating function f0(z)
is of the form

∑d0
j=0 cjz

j +
∑∞

j=d0+1 czj . We want to extract t0th order coefficient
of f0. Assume t0 is even. Let f1(z) = (f0(

√
z) + f0(−

√
z))/2, d1 = �d0/2	, and

t1 = �t0/2	. Then, from Eq. (1), the defined f1(z) is of the form
∑d1

j=0 c2jz
j +

∑∞
j=d1+1 czj and t1th order coefficient of f1 is equal to t0th order coefficient

of f0. Also in the case that t0 is odd, a similar argument holds if let f1(z) =
(
√

zf0(
√

z) − √
zf0(−

√
z))/2, d1 = 
d0/2�, and t1 = 
t0/2� because the defined

f1(z) is of the form
∑d1

j=0 c2j+1z
j +

∑∞
j=d1+1 czj from Eq. (2). This process can

be repeated until dD is reduced to 1 for some positive integer D. At that time,
the defined fD(z) is a generating function of the form c′

0 + c′
1z +

∑∞
j=2 czj

and tD = 1 (because tk ≤ dk and tk is never zero for any k). Let g(z) =
fD(z)− ((fD(

√
z)+fD(−√

z))/2−fD(0))z. Then, g(z) is equivalent to c′
0 + c′

1z.
Hence, we can extract c′

1 by computing (g(z′) − g(0))/z′ = (g(z′) − fk(0))/z′

for any complex number z′ except 1 + 0i. Note that we cannot use 1 + 0i as z′

because f0(z) has a denominator (1−z). Algorithm 1 selected 0+i as z′ because
complexity analysis in Sect. 4 requires |z′| = 1 and also because the division can
be easily computed ((a + bi)/i = (ai − b)/(−1) = b − ai).

In Algorithm 2, we present an algorithm to decide, using Algorithm1 as a
subroutine, whether a given knapsack problem instance is a yes instance or a no
instance.

Algorithms 1 and 2 are theoretical algorithms in the sense that it correctly
works if every computation is performed with infinite precision. Algorithm1
computes square roots of complex numbers (e.g.,

√−i) as shown in Lemma 7
in Sect. 4. These numbers cannot be represented exactly in binary notation
with finite precision. Therefore, we must do calculations with modestly large
precision. We analytically show in Sect. 4 that the required precision is at
most n + O(log

∑n
j=1(wj + vj)) bits. The analysis imposes some constraints to

Algorithm 1 and Algorithm 2 in order to guarantee that truncation errors are
within acceptable range. Hence, we need to slightly modify Algorithms 1 and
2 to work correctly with finite precision. We present a finite precision version
(a practical version) of Algorithm 2 in Algorithm 3. As for the modification to
Algorithm 1, we describe it in Sect. 4. The modification of both Algorithms 1
and 2 depends on our current analysis. Better analysis may lead another finite
precision version.

Algorithm 3 is slightly different from the idea described in the first two para-
graphs in this section. The difference is the use of division-by-two and the factors
(1 − i1/(2Wtotal)) and (1 − i1/(2Vtotal)) in the computations. These are required to
keep the absolute value of the operands of each multiplication and each addition
at most 1, which is required by our current analysis. The detail is described in
Sect. 4.

Note that Algorithm 1 can be used to extract any coefficient of a given poly-
nomial fk(z) =

∑dk

j=0 cjz
j . In this case, Algorithm 1 can be slightly simplified

by replacing line 3 to 4 with “return fk(1)− fk(0)” because it follows that c = 0
for a polynomial.
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Algorithm 1. Calculate a coefficient of a given complex generating function
(an infinite precision version)

Input: a complex generating function fk such that fk(z) =
∑dk

j=0 cjz
j +
∑∞

j=dk+1 czj

where each coefficient is a complex constant or a complex generating function of a
variable other than z, target order tk(> 0)

Output: the tkth order coefficient of fk
1: function Coeff(dk, fk, tk) � Symbol � represents definition.
2: if dk = 1 then � Note that dk is not always 1 even if tk is 1.
3: h(z) � fk(z) − ((fk(

√
z) + fk(−√

z))/2 − fk(0))z
4: return (h(i) − fk(0))/i
5: end if
6: if tk is even then
7: tk+1 ← �tk/2�
8: dk+1 ← �dk/2�
9: fk+1(z) � (fk(

√
z) + fk(−√

z))/2
10: else
11: tk+1 ← �tk/2�
12: dk+1 ← �dk/2�
13: fk+1(z) � (

√
zfk(

√
z) − √

zfk(−√
z))/2

14: end if
15: return Coeff(dk+1, fk+1, tk+1)
16: end function

Algorithm 2. Solve the decision counterpart of the knapsack problem (an infi-
nite precision version)
Input: positive integers n, w1, w2, · · · , wn, v1, v2, · · · , vn, W, V such that n ≥ 1,

∀j(wj ≤ W, vj ≤ V ), W ≤∑n
j=1 wj and V ≤∑n

j=1 vj

Output:

{
yes (if the given problem instance is a yes instance)

no (otherwise)

1: function KnapsackDecision(n, w1, w2, · · · , wn, v1, v2, · · · , vn, W, V )
2: Wtotal ←∑n

j=1 wj ; Vtotal ←∑n
j=1 vj

3: f0(x, y) � (
∏n

j=1(1 + xwj yvj ))/(1 − x)

4: f(y) � Coeff(Wtotal, f0 as a generating function of variable x, W )
5: g0(y) � f(y)/(1 − y)
6: c1 ← Coeff(Vtotal, g0, Vtotal); c2 ← Coeff(Vtotal, g0, V − 1)
7: c ← c1 − c2
8: if Re(c) ≥ 1 then return yes
9: else return no

10: end if
11: end function
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Algorithm 3. Solve the decision counterpart of the knapsack problem (a finite
precision version)
Input: positive integers n, w1, w2, · · · , wn, v1, v2, · · · , vn, W, V such that n ≥ 1,

∀j(wj ≤ W, vj ≤ V ), W ≤∑n
j=1 wj and V ≤∑n

j=1 vj

Output:

{
yes (if the given problem instance is a yes instance)

no (otherwise)

1: function KnapsackDecision(n, w1, w2, · · · , wn, v1, v2, · · · , vn, W, V )
2: Wtotal ←∑n

j=1 wj ; Vtotal ←∑n
j=1 vj

3: Set arithmetic precision of fixed-point data to 2 bits for the integral part and �
bits for the fractional part where � = n + O(log

∑n
j=1(wj + vj)) bits.

4: Set rounding mode to “round toward zero” except the computations of (1 − x)
and (1− y) during evaluation of instances of f0 and g0, which require “round away
from zero”.

5: f0(x, y) � (
∏n

j=1((1 + xwj yvj )/2))((1 − i1/(2Wtotal))/(1 − x))

6: f(y) � Coeff(Wtotal, f0 as a generating function of variable x, W )
7: g0(y) � f(y)((1 − i1/(2Vtotal))/(1 − y))
8: c1 ← Coeff(Vtotal, g0, Vtotal); c2 ← Coeff(Vtotal, g0, V − 1)
9: c ← (c1 − c2)/(1 − i1/(2Wtotal))/(1 − i1/(2Vtotal))

10: if Re(c) < 2−n−1 then return no � if 2nRe(c) is approximately zero
11: else return yes � if 2nRe(c) is approximately at least one
12: end if
13: end function

4 Complexity Analysis

4.1 An Overview of the Analysis

Algorithm 3 computes the number of yes instances with finite precision. The
computed number includes accumulated error. If the accumulated error is small
enough, then the answer of Algorithm3 is correct. In the following, we analyze
the accumulation in bottom-up style from basic operations to higher level com-
putations in order to see how large the precision needs to be. For simplicity,
we shall be content with safe estimates of the precision, instead of finding the
best possible bounds. Therefore, the required precision obtained by our current
analysis may be improved.

4.2 Error Accumulation by Basic Operations

Lemma 1 [10]. Let v′ and w′ be computed approximate values of complex num-
bers v and w respectively. Then, we have |(v′ +w′)−(v+w)| ≤ |v′ −v|+ |w′ −w|.
Proof. From Eq. (4), |(v′ + w′) − (v + w)| = |(v′ − v) + (w′ − w)| ≤ |v′ − v
| + |w′ − w| �
This lemma implies that the absolute error of the sum of two approximate values
is at most the sum of the absolute errors of the two. Similar lemma follows for
the difference of two approximate values.
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Lemma 2. Let v′ and w′ be computed approximate values of complex numbers
v and w respectively. Then, we have |(v′ − w′) − (v − w)| ≤ |v′ − v| + |w′ − w|.
Lemma 3 [10]. Let v′ and w′ be computed approximate values of complex num-
bers v and w respectively. Then, we have |v| ≤ 1, |w| ≤ 1, |v′| ≤ |v|, |w′| ≤ |w| ⇒
|v′w′ − vw| ≤ |v′ − v| + |w′ − w|.
Proof. From Eqs. (4) and (5), |v′w′ − vw| = |(v′ − v)w′ + v(w′ − w)| ≤ |(v′ −
v)w′| + |v(w′ − w)| = |v′ − v||w′| + |v||w′ − w| �
Note that |v′| ≤ |v| and |w′| ≤ |w| are guaranteed if we round towards zero
instead of rounding-off when we compute approximate values [10]. This lemma
implies that the absolute error of the product of two approximate values is at
most the sum of the absolute errors of the two if the absolute values of the two
approximate values and the corresponding true values are at most 1.

Lemma 4. Let v′ and w′ be computed approximate values of complex numbers
v and w respectively. Then, we have

|v| ≤ 1, |v′| ≤ |v|, |w′| ≥ |w| ⇒ | v′

w′ − v

w
| ≤ |v′ − v|

|w| +
|w′ − w|

|w|2

Proof. From Eqs. (4), (5), and (7),

| v′

w′ − v

w
| = |v

′w − vw′

w′w
= | (v

′ − v)w − (w′ − w)v
w′w

|

≤ | (v
′ − v)w
w′w

| + | (w
′ − w)v
w′w

| =
|v′ − v||w|

|w′||w| +
|w′ − w||v|

|w′||w|
=

|v′ − v|
|w′| +

|w′ − w||v|
|w′||w| ≤ |v′ − v|

|w| +
|w′ − w|

|w|2
�

Note that |w′| ≥ |w| is guaranteed if we round away from zero instead of
rounding-off. This lemma means that the absolute error of a division is at most
the sum, of the absolute errors of the denominator and the numerator, divided by
the square of the true value of the denominator if we compute the denominator
by rounding away from zero and the numerator by rounding towards zero.

Lemma 5. Let z′ be a computed approximate value of a complex number z.
Then, |z| ≤ 1, |z′| ≤ |z| ⇒ |(z′)m − zm| ≤ m|z′ − z| for any positive integer m.

Proof. For m = 1, clearly the lemma follows. Assume that |(z′)k −zk| ≤ k|z′ −z|
follows for some k(≥ 1). Then, from Lemma 3, |(z′)k+1−zk+1| = |(z′)kz′−zkz| ≤
|(z′)k − zk|+ |z′ − z| ≤ k|z′ − z|+ |z′ − z| = (k +1)|z′ − z|. Therefore, the lemma
follows by induction. �
This lemma implies that the absolute error of a given approximate value to the
power m is at most m times the absolute error of the given value.
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4.3 Upper Bounds on Absolute Values of Complex Operands

The analysis in Sect. 4.2 assumes that the absolute values of complex operands
of basic operations are at most 1. This section proves that the absolute values of
the corresponding complex operands appeared in the computation of Algorithm3
are at most 1.

In the following, let D be the number of functions dynamically defined by
Algorithm 1 for given d0. That is, we assume Algorithm 1 dynamically defines
functions f1, f2, · · · , fD for given d0.

Lemma 6. It follows that D = Θ(log d0).

Proof. Algorithm 1 calls itself for roughly halved dk until dk = 1. Hence, we
can estimate the depth (i.e., the maximum k) of recurrence by estimating a
sequence 〈d0, d1, · · · 〉. It follows that dk+1 ≤ max(�dk/2	, 
dk/2�) = 
dk/2� ≤
dk/2+1/2 = (dk +1)/2 for any k. Therefore, dj ≤ (d0+2j −1)/2j for any j ≥ 1.
Since dj is an integer, it follows that j ≥ log2 d0 ⇒ dj ≤ 1. This implies that
D ≤� log d0
. Similarly, we have D > log d0−1 from dk+1 ≥ min(�dk/2	, 
dk/2�).

�
Lemma 7. Let z′ be any argument of f0 called by Algorithm1. Note that z′ is a
computed approximate value and there exist 2D instances of f0. Let z be the true
value of z′. Then, z ∈ {0} ∪ {±i

1+4j

2D |j ∈ {0, 1, 2, · · · , 2D−1 − 1}} ∪ {±i
1+8j

2D+1 |j ∈
{0, 1, 2, · · · , 2D−1 − 1}} ∪ {±i

5+8j

2D+1 |j ∈ {0, 1, 2, · · · , 2D−1 − 1}}.
Proof. From line 3 to 4 in Algorithm1, the true value of the argument of fD is
in {0, i,±√

i}.
When the true value of the argument of fD is zero, the true value of the argu-

ment of f0 is zero because the true value of the argument of fk is zero for any k.
When the true value of the argument of fD is i, we prove by induction

the proposition that the true value of the argument of f0 is in {±i
1+4j

2D |j ∈
{0, 1, 2, · · · , 2D−1 − 1}}. When D = 1, the true value of the argument of f0 is in
{±√

i}. Hence the proposition follows for D = 1. Assume the proposition follows
for D = k where k is some positive integer. Then, the true value of the argument
of f0 for D = k is in S = {±i

1+4j

2k |j ∈ {0, 1, 2, · · · , 2k−1 − 1}}. Thus, the true
value of the argument of f0 for D = k + 1 is in

{±√
s|s ∈ S}

= {±
√

+i
1+4j

2k |j ∈ {0, 1, 2, · · · , 2k−1 − 1}}

∪ {±
√

−i
1+4j

2k |j ∈ {0, 1, 2, · · · , 2k−1 − 1}}
= {±i

1+4j

2k+1 |j ∈ {0, 1, 2, · · · , 2k−1 − 1}} ∪ {±i
1+4j

2k+1 i|j ∈ {0, 1, 2, · · · , 2k−1 − 1}}
= {±i

1+4j

2k+1 |j ∈ {0, 1, 2, · · · , 2k−1 − 1}}
∪ {±i

1+4(j+2k−1

) 2k+1|j ∈ {0, 1, 2, · · · , 2k−1 − 1}}
= {±i

1+4j

2k+1 |j ∈ {0, 1, 2, · · · , 2k+1−1 − 1}}
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Hence the proposition follows by induction.
Similarly, we can prove the similar propositions in the case of the true value

of the argument of fD is in {±√
i}.

Therefore, the lemma follows. �
Lemma 8. Let z′ be any argument of f0 called by Algorithm1. Let z be the true
value of z′. Then, |1 − z| ≥ |1 − i1/2D+1 |.
Proof. From Lemma 7,

|1 − z| =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

|1 ∓ i
1+4j

2D | (j ∈ {0, 1, 2, · · · , 2D−1 − 1})

|1 ∓ i
1+8j

2D+1 | (j ∈ {0, 1, 2, · · · , 2D−1 − 1})

|1 ∓ i
5+8j

2D+1 | (j ∈ {0, 1, 2, · · · , 2D−1 − 1})

Since, for any positive integer p, i1/2p

is the result of p times application of
a square root operation to i, from Eqs. (9), (10), and (11), it follows that, for
any positive integer q, |1 ∓ i

q
2p | = 1 ∓ (i

1
2p )q| = (1 ∓ cos qπ

2p )2 + (∓ sin qπ
2p )2 =

2(1 ∓ cos qπ
2p ). Hence the lemma follows. �

Lemma 9. Let x and y be complex numbers. Let fk(x, y) (k ∈ {1, 2, · · · }) be
the function dynamically defined by Algorithm1 for the function f0(x, y) defined
by Algorithm3. Then, |x| ≤ 1, |y| ≤ 1 ⇒ |fk(x, y)| ≤ 1 for any non-negative
integer k.

Proof. From Eqs. (4) to (7),

|f0(x, y)| = |(
n∏

j=1

1 + xwj yvj

2
)((1 − i1/(2

∑n
j=1 wj))/(1 − x))|

= (
n∏

j=1

|1 + xwj yvj |
|2| )|1 − i1/(2

∑n
j=1 wj)|/|1 − x|

≤ (
n∏

j=1

|1| + |xwj yvj |
2

)|1 − i1/(2
∑n

j=1 wj)|/|1 − x|

= (
n∏

j=1

1 + |x|wj |y|vj

2
)|1 − i1/(2

∑n
j=1 wj)|/|1 − x|

From Lemmas 6 and 8,

|1 − x| ≥ |1 − i1/2D+1 |
≥ |1 − i1/2

1+log
∑n

j=1 wj |
= |1 − i1/(2

∑n
j=1 wj)|

Hence the lemma follows for k = 0.
Assume the lemma follows for k = j(≥ 0).
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– in the case that fj+1(x, y) = (fj(
√

x, y) + fj(−
√

x, y))/2
From Eqs. (4) and (8),

|fj+1(x, y)| = |fj(
√

x, y) + fj(−
√

x, y)
2

|

=
|fj(

√
x, y) + fj(−

√
x, y|)

2

≤ |fj(
√

x, y)| + |fj(−
√

x, y)|
2

– in the case that fj+1(x, y) = (
√

xfj(
√

x, y) − √
xfj(−

√
x, y))/2

From Eqs. (4), (5), and (8),

|fj+1(x, y)| = |
√

xfj(
√

x, y) − √
xfj(−

√
x, y)

2
|

=
|√xfj(

√
x, y) − √

xfj(−
√

x, y)|
2

≤ |√xfj(
√

x, y)| + |√xfj(−
√

x, y)|
2

=
|√x||fj(

√
x, y)| + |√x||fj(−

√
x, y)|

2

Since, from Eq. (11), |x| ≤ 1 ⇒ |√x| ≤ 1, | − √
x| ≤ 1, the lemma follows by

induction. �
A similar lemma follows also for the function gk(y). The proof is essentially

the same as that of Lemma 9.

Lemma 10. Let y be a complex number. Let gk(y) (k ∈ {1, 2, · · · }) be the
function dynamically defined by Algorithm1 for the function g0(y) defined by
Algorithm3. Then, |y| ≤ 1 ⇒ |gk(y)| ≤ 1 for any non-negative integer k.

Lemma 11. Let z′ be any argument of fk called by Algorithm1. Let z be the
true value of z′. Then, z = 0 or |z| = 1.

Proof. From line 3 to 4 in Algorithm1, if k = D then z ∈ {0, i,±√
i}. In the

case of z = 0 for k = D, the lemma follows since z′ = z = 0 also for any other k.
Therefore, in the following, we consider the case of z �= 0 for k = D. In this case,
|z| = 1 for k = D. Since fk+1(z) is defined in terms of fk(

√
z) and fk(−√

z)
for any other k, it follows that |z| = 1 also for any other k. Hence, the lemma
follows. �

This lemma implies that when fk(x, y) and gk(y) are evaluated in
Algorithm 3, it follows that |x| ≤ 1, |y| ≤ 1 for any k.
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4.4 Upper Bounds on Error of Complex Operands

From Lemmas 9 to 11, all complex numbers which appear in the computation
of Algorithm 3 (including intermediate results) have the absolute value at most
two. Therefore, in the following, we assume that any complex number is imple-
mented as rectangular form whose real part and imaginary part are respectively
implemented as a fixed point number such that integer part is of length 2 bits
and fractional part is of length � bits. Let δ� be the maximum truncation error
of such complex numbers. We have δ� = |2−� + 2−�i| = 21/2−� [10].

Let ωr be the complex 2r-th power root of unity. That is, ω1 = −1, ω2 =
i, ω3 = (1 + i)/

√
2, · · · . Let M(m) be the time complexity of a multiplication of

two integers of length m bits. Then, the following lemma follows.

Lemma 12. Let k be a given positive integer. Let ω be ωk. Then, for a given
non-negative integer j, an approximate value (ωj)′ of ωj such that |(ωj)′ −ωj | <
(2k−1)δ� can be computed in O(kM(�)) time and O(k�) space with preprocessing
in O(kM(�)) time and O(k�) space.

Proof. If ωr = xr + yri, then ωr+1 = xr+1 + yr+1i where xr+1 =
√

1+xr

2 and
yr+1 = yr

2xr+1
[13]. Each square root operation for a real number of length m

bits can be done in O(M(m)) [1]. As preprocessing, we compute ω1, ω2, · · · , ωk

in O(kM(�)) time and keep these values in O(k�) space. Once the ωr have been
calculated, we can compute any power ωj by noting that ωj = ω

jk−1
1 · · · ωj1

k−1ω
j0
k

if j = (jk−1 · · · j1j0)2 [10]. Since we can perform the computation with sufficient
precision to make |ω′

r −ωr| < δ�, it follows that |(ωj)′ −ωj | < (2k−1)δ� for all j,
because the error is due to at most k approximations and (k−1) truncations [10]
(See Lemma 3). Hence the lemma follows.

Lemma 13. Let z′ be any argument of fk called by Algorithm1. Let z be the
true value of z′. Then, |z′ − z| ≤ (2D − 2k + 5)δ�.

Proof. From line 3 to 4 in Algorithm1, if k = D then z ∈ {0, i,±√
i}. When

z = 0 for k = D, the lemma follows because z′ = z = 0 for any k. When z = i
(resp. ±√

i) for k = D, from the proof of Lemma 7, it follows that z = ±ωj
2+D−k

(resp. ±ωj
3+D−k) for any other k and some positive integer j. Therefore, from

Lemma 12, |z′ − z| < (2(3 + D − k) − 1)δ�. Hence the lemma follows. �
Let 〈f1, f2, · · · , fDf

〉 be a sequence of complex functions dynamically
defined by Algorithm1 for f0(x, y) defined in Algorithm 3. Then, based on
the one-variable complex function returned by Algorithm1, Algorithm 3 defines
g0(y) as

g0(y) �
fDf

(i, y) − (
fDf

(
√
i,y)+fDf

(−√
i,y)

2 − fDf
(0, y))i − fDf

(0, y)
i

((1 − i1/(2
∑n

j=1 vj))/(1 − y)) (12)

Let 〈g1,1, g1,2, · · · , g1,D1〉 and 〈g2,1, g2,2, · · · , g2,D2〉 be two sequences of functions
dynamically defined by Algorithm3, using Algorithm 1 twice, to compute two
complex numbers c1 and c2 respectively.
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Lemma 14. When f0(x, y) is evaluated in Algorithm3, |f0(x′, y′) − f0(x, y)| ≤
(2Df+5

2

∑n
j=1(wj + vj) + 5

2n + (2Df + 6)/|1 − i1/(2
∑n

j=1 wj)|2)δ�.

Proof. Since the result of the power operation is truncated, from Lemma5
and Lemma 13, |(x′)wj − xwj | ≤ wj(2Df + 5)δ� + δ� and |(y′)vj − yvj | ≤
vj(2Df + 5)δ� + δ�. Therefore, from Lemma 3, |(x′)wj (y′)vj − xwj yvj | ≤ (wj +
vj)(2Df + 5)δ� + 3δ� because the result of the multiplication is truncated. Since
the result of the division-by-two is truncated and an addition of fixed point
numbers never yields truncation, |(1 + (x′)wj (y′)vj )/2 − (1 + xwj yvj )/2| ≤
((wj + vj)(2Df + 5)δ� + 3δ�)/2 + δ�. On the other hand, we may assume
that |(i′)1/(2

∑n
j=1 wj) − i1/(2

∑n
j=1 wj)| ≤ δ� because i1/(2

∑n
j=1 wj) is the (1 +

log
∑n

j=1 wj)th root of unity and we can compute the kth root of unity within
the precision for any non-negative integer k [10] as shown in the proof of
Lemma 12. Since |1 − x| ≥ |1 − i1/(2

∑n
j=1 wj)| (as shown in the proof of

Lemma 9), |1 − i1/(2
∑n

j=1 wj)| ≤ 1, and a division is truncated, it follows that
|(1 − (i′)1/(2

∑n
j=1 wj))/(1 − x′) − (1 − i1/(2

∑n
j=1 wj))/(1 − x)| ≤ ((1 + 2Df +

5)δ�)/|1 − i1/(2
∑n

j=1 wj)|2 + δ� from Lemma 4. Since the result of each multi-
plication is truncated, |(∏n

j=1((1 + (x′)wj (y′)vj )/2))((1 − (i′)1/(2
∑n

j=1 wj))/(1 −
x)) − (

∏n
j=1((1 + xwj yvj )/2))((1 − i1/(2

∑n
j=1 wj))/(1 − x))| ≤ ∑n

j=1(((wj +
vj)(2Df +5)δ� +3δ�)/2+ δ�)+ ((2Df +6)δ�)/|1− i1/(2

∑n
j=1 wj)|2 + δ� +nδ� from

Lemma 3. �
Let 〈Uf,0, Uf,1, · · · , Uf,D〉 be a sequence of real numbers defined as follows.

Uf,0 = (
2Df + 5

2

n∑

j=1

(wj + vj) +
5
2
n + (2Df + 6)/|1 − i1/(2

∑n
j=1 wj)|2)δ�

Uf,k = Uf,k−1 + (2Df − 2k + 9)δ�

Then, the following lemma follows.

Lemma 15. When fk(x, y) is evaluated in Algorithm3, |fk(x′, y′) − fk(x, y)| ≤
Uf,k.

Proof. From Lemma 14, the lemma follows for k = 0.
Assume the lemma follows for k = j(≥ 0). Then, we have |fj(

√
x′, y′) −

fj(
√

x, y)| ≤ Uf,j and |fj(−
√

x′, y′) − fj(−
√

x, y)| ≤ Uf,j .

– in the case that fj+1(x, y) = (fj(
√

x, y) + fj(−
√

x, y))/2
|fj+1(x′, y′) − fj+1(x, y)| ≤ 2Uf,j/2 + δ�.

– in the case that fj+1(x, y) = (
√

x, yfj(
√

x, y) − √
xfj(−

√
x, y))/2

From Lemma 13, | ± √
x′ − ±√

x| ≤ (2D − 2j + 5)δ�. Therefore, |fj+1(x′, y′) −
fj+1(x, y)| ≤ 2(Uf,j + (2D − 2j + 5)δ� + δ�)/2 + δ�.

Hence the lemma follows by induction. �
It follows that Df ≥ 1 ⇒ Uf,Df

= Uf,0 +
∑Df

k=1(2Df − 2k + 9)δ� =
(2Df+5

2

∑n
j=1(wj + vj) + 5

2n + (2Df + 6)/|1 − i1/(2
∑n

j=1 wj)|2 + Df
2 + 8Df )δ�.

This equation follows also for Df = 0. Hence, we have the following corollary.
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Corollary 1. It follows that Uf,Df
= (2Df+5

2

∑n
j=1(wj + vj) + 5

2n + (2Df +
6)/|1 − i1/(2

∑n
j=1 wj)|2 + Df

2 + 8Df )δ�.

Similar propositions follow also for the sequences 〈g0, g1,1, g1,2, · · · , g1,D1〉
and 〈g0, g2,1, g2,2, · · · , g2,D2〉. The proofs are essentially the same as that for
〈f0, f1, · · · , fDf

〉.
From Eq. (12), we have the following lemmata.

Lemma 16. When g0(y) is evaluated in Algorithm3, |g0(y′)− g0(y)| ≤ 4UDf
+

3δ� + (2D1+6)δ�

|1−i
1/(2

∑n
j=1 vj)|2

for 〈g0, g1,1, g1,2, · · · , g1,D1〉.

Lemma 17. When g0(y) is evaluated in Algorithm3, |g0(y′)− g0(y)| ≤ 4UDf
+

3δ� + (2D2+6)δ�

|1−i
1/(2

∑n
j=1 vj)|2

for 〈g0, g1,1, g1,2, · · · , g1,D2〉.

Let U1,D1 = 4Uf,Df
+ 3δ� + (2D1+6)δ�

|1−i
1/(2

∑n
j=1 vj)|2

+ (D1
2 + 8D1)δ� and U2,D2 =

4Uf,Df
+ 3δ� + (2D2+6)δ�

|1−i
1/(2

∑n
j=1 vj)|2

+ (D2
2 + 8D2)δ�. Then, the following lemmata

follow.

Lemma 18. When g1,D1(y) is evaluated in Algorithm3, |g1,D1(y
′)−g1,D1(y)| ≤

U1,D1 .

Lemma 19. When g2,D2(y) is evaluated in Algorithm3, |g2,D2(y
′)−g2,D2(y)| ≤

U2,D2 .

4.5 Required Precision

Theorem 1. Algorithm3 correctly works if � = n + O(log
∑n

j=1(wj + vj)).

Proof. In line 9 of Algorithm3, the computed c is the number of solutions of a
given knapsack instance devided by 2n. Since the value of c includes accumulated
truncation errors, Algorithm3 judges a given knapsack instance is a no instance
iff the computed number of solutions (i.e., c times 2n) is less than 1/2. Hence,
Algorithm 3 works correctly if the truncation errors accumlated in the computed
c is less than 2−n−1. Thus we obtain |c′ − c| < 2−n−1 as a sufficient condition
for Algorithm 3 to work correctly. On the other hand, from Lemmas 18 and 19,
we have |g1,D1(y

′) − g1,D1(y)| ≤ U1,D1 and |g2,D2(y
′) − g2,D2(y)| ≤ U2,D2 . Since

it follows that

|c′ − c| ≤
(U1,D1+U2,D2 )+δ�

|1−i
1/(2

∑n
j=1 wj)|2

+ δ� + δ�

|1 − i1/(2
∑n

j=1 vj)|2 + δ�

and log(x + y) = log x + log(1 + y/x), from Lemma 6, we have � = n +
O(log

∑n
j=1(wj + vj)) − O(log |1 − i1/(2

∑n
j=1 wj)|) − O(log |1 − i1/(2

∑n
j=1 vj)|).

Since O(− log |1 − i1/(2x)|) = Θ(log x), the theorem follows. �
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4.6 Complexity of the Proposed Algorithm

Theorem 2. Algorithm3 runs in Õ((n + log((
∑n

j=1 wj)(
∑n

j=1 vj)))(
∑n

j=1 wj)
(
∑n

j=1 vj)(n + log
∑n

j=1(wj + vj))) time and O((n + log
∑n

j=1(wj + vj))
(log(

∑n
j=1 wj)(

∑n
j=1 vj))) space if � = n + O(log

∑n
j=1(wj + vj)).

Proof. The complex numbers (1 − i1/(2
∑n

j=1 wj)) and (1 − i1/(2
∑n

j=1 vj)) are
enough to be computed only once. We compute them using the method
described in the proof of Lemma 12. The complexity of them is O((log

∑n
j=1 wj +

log
∑n

j=1 vj)M(�)) time and O((log
∑n

j=1 wj + log
∑n

j=1 vj)�) space.
The complexity of computing c1 is greater than that of computing c2 because

D1 ≥ D2. The dominant part of computing c1 is computing instances of
f0, f1, · · · , fDf

. To keep the accumulated truncation errors within acceptable
range, each instance of f0(x, y) generates the value of its argument x and y
using the methods described in the proofs of Lemmas 7 and 12 before starting
its computation. Similarly, each instance of fk+1(x, y) (k ≥ 0) generates the value√

x if necessary and the value y before starting its computation. This requires
O((Df + D1)M(�)) time each and O(�max(D1,Df )) space as a whole. (The
required preprocessing is already done when we compute (1− i1/(2

∑n
j=1 wj)) and

(1 − i1/(2
∑n

j=1 vj)).) Computing an instance of f0 requires 2n power operations,
(n + 1) additions, n divisions-by-two, 2n multiplications, and one general divi-
sion. Computing an instance of fk+1 (k ≥ 0) requires one negation, at most two
multiplications, one addition, and one division-by-two. The number of instances
of fk (k ≥ 0) is 2D1+Df −k.

Therefore, from Lemma 6, Algorithm 3 performs O(n(
∑n

j=1 wj)(
∑n

j=1 vj))
power operations, O(n(

∑n
j=1 wj)(

∑n
j=1 vj)) additions, O(n(

∑n
j=1 wj)

(
∑n

j=1 vj)) divisions-by-two, O(n(
∑n

j=1 wj)(
∑n

j=1 vj)) multiplications,
O((

∑n
j=1 wj)(

∑n
j=1 vj)) negations, and O((

∑n
j=1 wj)(

∑n
j=1 vj)) general divi-

sions for complex numbers such that mantissas of real part and imaginary part
are of length O(�) bits.

Each negation, addition, multiplication, and division-by-two for complex
numbers can be implemented respectively with O(1) negations, O(1) additions,
O(1) multiplications followed by O(1) additions, and O(1) divisions-by-two for
real numbers. For a complex number z, an integer d, and real numbers x and y, it
follows that zd = edLog z, Log z = ln |z|+iArg(z), and ex+iy = ex cos y+iex sin y
where Arg(z) is the principal value of argument of z which can be computed
with arctan Im(z)

Re(z) . Therefore, raising a complex number to an integer power
can be implemented with O(1) elementary functions, O(1) multiplications, O(1)
additions, and a square root operation for real numbers.

Each negation, addition, multiplication, division-by-two, power operation,
general division, and each of the elementary functions for real numbers of length
� bits respectively can be done in O(1), O(�), O(M(�)), O(�), O(M(�) log �) [10],
O(M(�)) [2], and O(M(�) log �) [3], time. The best known upper bound of M(m)
is O(m log m·2O(log∗ m)) [5,6] where log∗ m ≤ 6 even if m is astronomically large.

Hence the theorem follows. �
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Note that the proof of Theorem 2 requires that Algorithm3 should be added
the preprocessing to compute ω1, ω2, · · · , ω1+max(log

∑n
j=1 wj ,log

∑n
j=1 vj) and also

that each of functions fk(x, y) and gk(y) defined in Algorithms 1 and 3 should be
modified to compute its arguments x and y by itself (rather than to be passed
by fk+1 or gk+1) from the pre-computed values ω1, ω2, · · · .

5 Conclusions and Future Works

We have presented an algorithm for the knapsack problem which runs in pseudo-
polynomial time and polynomial space.

Our analysis of the required precision may be not tight. Therefore, one of
future works is to estimate the complexity of the presented algorithm more pre-
cisely by giving more precise analysis. In this paper, we have tackled the knap-
sack problem. However, our algorithmic technique to represent a combinatorial
optimization problem as a two-variable generating function and to compute an
arbitrary coefficient of the complex generating function can be probably applied
to other problems. Hence, another future work is to apply our technique to other
various combinatorial optimization problems.
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An Incentive Mechanism for Selfish Bin Covering
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Abstract. In this paper, we consider the selfish bin covering problems,
which can be viewed as the bin covering problems in game theoretic
settings. Our main contribution is an incentive mechanism with better
price of anarchy. Under this mechanism, for any instance with a Nash
equilibrium (NE), we show that price of anarchy is 2/3. For the cases
that the NE does not exist, we propose a concept of modified NE, named
M-NE, which can be obtained in finite steps from any initial state. We
further show that for M-NE, the price of anarchy is 1/2 and the price of
stability is 1.

Keywords: Selfish bin covering · Incentive mechanism · Nash equilib-
rium · Price of anarchy (PoA) · Price of stability (PoS)

1 Introduction

Consider an item set L = {a1, a2, · · · , an}, each item has its own size s(ai) ∈
(0, 1]. Assume that there are sufficiently many bins with unit capacity 1. A bin
is called covered if the total size of items assigned to it is no less than 1. The
bin covering problem is to assign the items into bins in order to maximize the
number of covered bins. It was shown that the bin covering problem is NP-hard,
and there exist no approximation algorithm with approximation ratio better than
1/2, unless P = NP [2,3]. Although Assmann et al. [3] showed that the simple
next-fit algorithm for bin covering problems has the worst case performance ratio
of exactly 1/2, quite a few approximation algorithms with better asymptotic
approximate ratios were investigated, such as the algorithms with asymptotic
ratio 2/3, 3/4 [2,3,6] and AFPTAS in [7,11].

There are many interpretations of the simple bin covering model in the real
world. Take a company with n employees as an instance. Let s(ai) denote the
ith employee’s ability, the company has many projects to be completed and
each employee can only participate one project in the meantime. To complete
each project needs at least 1 ability in total and will bring one unit benefit
to the company. The company wishes to give an assignment of employees to
maximize the number of completed projects. Note that there is a premise that
every employee should obey the assignment without complaint. However, the

The work is partially supported by National Natural Science Foundation of China
(NSFC) (NO. 11271341 and 11501316).
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premise may be difficult to realize in the real world since employees are usually
selfish, that is, they prefer taking actions to pursue their own interests rather
than the overall interests. This kind of problem in which players are considered
to be self-interested is called selfish bin covering problem.

The selfish bin covering problem (SBC) was first studied by Cao and Yang [5].
A critical question of SBC is how to design a mechanism, i.e., a payoff scheme for
the actions of players (i.e., employees), to lead the selfish players to achieve the
desired social welfare (in SBC, the social welfare is the number of covered bins).
The Price of Anarchy (PoA) and Price of Stability (PoS) [12,14] are usually
used as the measure of the quality of the equilibria under a mechanism. PoA
is defined as the ratio between the social welfare of the worst equilibrium and
the social optimum, and PoS is defined formally as the ratio between the social
welfare of the best equilibrium and the social optimum. Given an instance I of
SBC, denote OPT(I) the maximum number of covered bins and NE(IM) the
number of covered bins in the state of NE under a given mechanism M. For a
class of SBC problems under a given mechanism M, the corresponding PoA and
PoS are defined as

PoA(SBC) = inf
I∈SBC

min
NE

NE(IM)
OPT(I)

PoS(SBC) = inf
I∈SBC

max
NE

NE(IM)
OPT(I)

.

The bin covering problem, which can be considered as a dual version of the
classical bin packing problem, is also called the dual bin packing problem. Except
for Cao and Yang’s paper, there are few results on the mechanism design of SBC,
compared with that of selfish bin packing problems(SBP). The mechanism of
SBP with proportional rule was first introduced by Bilò [4] in 2006. He proved
that the bin packing game converges to a pure NE in a finite sequence of selfish
improving steps (however, the number of steps may be exponential), starting
from any feasible packing and provided non-tight bounds on PoA1, i.e., 8/5 ≤
PoA ≤ 5/3. In [10], Epstein and Kleiman gave nearly tight bounds for the PoA
of NE, i.e., 1.6416 ≤ PoA ≤ 1.6428. More investigation on various mechanisms
were shown in [1,8,9,13,15]. Unfortunately, the mechanism design techniques of
SBP offer little to that of SBC.

Cao and Yang [5] analyzed the selfish bin covering problem in the propor-
tional rule. Under the mechanism, there always exists an NE where all the items
are assigned in one bin, which makes the PoA bad enough (PoA=0). To get rid
of it, they defined three types of fireable Nash equilibrium, denoted by FNE(I),
FNE(II) and FNE(III), the PoAs and PoSs of which are 1/2 and 1, respectively.
In this paper, we design a new mechanism to prevent this situation and improve
the PoA. The payoff scheme, i.e., the mechanism, is designed based on the idea
that gives redundant items the motivation to move from covered bins into uncov-
ered bins. Under this mechanism, when an NE exists, we show that the PoA is
2/3. To overcome the weakness of the non-existence of NE, we further propose
1 The PoA of selfish bin packing is defined contrary to that of SBC.
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a modified Nash equilibrium (M-NE), and show that PoA is 1/2 and PoS is 1.
Our work provides a new idea for mechanism design for SBC.

This paper is organized as follows. In Sect. 1, we introduce the background
and related work on bin covering problem and the selfish bin packing problem.
In Sect. 2, an incentive mechanism called No-Redundance mechanism for SBC
is proposed. In Sect. 3, we show for the instances which admit an NE, the PoA
of No-Redundance mechanism is 2/3. In Sect. 4, we propose a modified Nash
equilibrium which can be obtained in finite steps. Under the No-Redundance
mechanism, the PoA and PoS of the modified Nash equilibrium is 1/2 and 1,
respectively. Further discussion is given in Sect. 5.

2 Incentive Mechanism

Denote the item set as L={a1, a2, · · · , an}. For i = 1, · · · , n, the size of item ai

is denoted by s(ai) and we assume 0 < s(ai) ≤ 1. There are sufficiently many
bins, each of which has the same capacity 1. Let π = {B1, B2, · · · , Bm} be a
partition of L, i.e., ∪m

i=1Bi = L and Bi ∩ Bj = ∅ for all 1 ≤ i �= j ≤ m. Bi is
regarded as a bin or the set of items assigned in this bin. Denote by Bj,π the
member in π which item j is assigned in and s(Bi) the total size of items in Bi,
i.e., s(Bi) =

∑
aj∈Bi

s(aj). In particular, s(L) =
∑

ai∈L s(ai).
A bin B is covered if the total size of items in B is greater than or equal to 1,

i.e.,
∑

ai∈B s(ai) ≥ 1. A covered bin B is minimally covered if the removal of any
of its member causes it uncovered, that is, let amin(B) = min{aj : j ∈ B} and
1 ≤ s(B) < 1 + amin(B). In particular, a bin B is exactly covered if s(B) = 1.
A partition π is reasonable if there is at most one uncovered bin. Further, π is
rational if it is reasonable and all the covered bins are minimally covered. Denote
by p(π) the social welfare of the partition π, i.e., the number of covered bins in π.

We will formulate an incentive mechanism for SBC under which redundance
can be avoided spontaneously. The payoff scheme of the No-Redundance (NR)
mechanism are formulated as follows.

No-Redundance Mechanism

Payoff scheme for a covered bin
Denote B = {a1, . . . , am} as a covered bin, sort the items in non-increasing

order of their sizes. Without loss of generality, assume that s(a1) ≥ · · · ≥ s(am).
There must be a positive integer k, 1 ≤ k < m, such that

∑k
i=1 s(ai) < 1 and

∑k+1
i=1 s(ai) ≥ 1. ak+2, · · · , am are called redundant items.
If s(a1) > 1/2, the payoff function is

p(ai) =

⎧
⎪⎨

⎪⎩

s(a1), i = 1,

(1 − s(a1)) × s(ai)
∑k+1

i=2 s(ai)
, i = 2, 3, . . . , k + 1,

−ε, k + 1 < i ≤ m.

(1)
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If s(a1) ≤ 1/2, the payoff function is

p(ai) =

{
s(ai)

∑k+1
i=1 s(ai)

, i = 1, 2, . . . , k + 1,

−ε, k + 1 < i ≤ m.
(2)

(Where ε > 0 and can be considered as the penalty of redundance. If there are
two or more items of the same size, we assume that items of smaller index have
higher priority.)

Payoff scheme for an uncovered bin
The payoff function p(ai) is defined by proportion rule, that is,

p(ai) = −s(ai)
s(B)

× ε1, (3)

(where ε1 > 0 and can be considered as a penalty of unproductive occupation.
Assume that ε > ε1.)

Remark. Under the NR mechanism, the migration of items have the following
properties.

(1) Items whose size is larger than 1/2 have an absolute advantage on smaller
items—that is, any migration of smaller ones will not influence their benefit,
which is different from the proportional rule.

(2) Smaller redundant items would rather migrate to an uncovered bin or even
open an empty bin than stay in a covered bin.

3 Nash Equilibrium

In this section, we discuss existence of NE and PoA under the NR mechanism.

Lemma 1. In an NE, there exists at most one uncovered bin.

Proof. Suppose there exist two or more uncovered bins in an NE. Denote two of
them as B0, B

′
0. Without loss of generality, let s(B0) ≥ s(B

′
0). Then any item in

B
′
0 will be better off by moving into B0, which is a contradiction. 	


Lemma 2. In an NE, every covered bin is minimal covered.

Proof. Suppose there exists a covered but not minimal covered bin in an NE.
Denote the smallest item in this bin as amin and the payoff of amin is −ε. It is
straightforward that amin will benefit by moving into an empty bin, which is a
contradiction. 	


Based on the above two lemmas, we have the following conclusion.

Theorem 1. For a given instance of SBC, an NE must be a rational partition.



An Incentive Mechanism for Selfish Bin Covering 645

3.1 The Existence of an NE

Before discussing the PoA of SBC under the NR mechanism, we need to verify
whether an NE exists. In this subsection, we prove that to decide whether an
NE exists is NP-hard.

Theorem 2. Under the NR mechanism, to decide whether an NE exists is NP-
hard.

Proof. We show this by reduction from the partition problem: given a set
of integers: e1, e2, . . . , en, is there a subset S ⊆ {e1, e2, . . . , en} such that∑

ei∈S ei =
∑

ei /∈S ei ?
For any instance of the partition problem: e1, e2, . . . , en, we construct an

instance of the selfish bin covering problem as follows. Consider an item set
L = {a1, a2, . . . , an+2}, which satisfies s(a1) = 2e1/(

∑n
i=1 2ei + 1), s(a2) =

2e2/(
∑n

i=1 2ei + 1), . . . , s(an) = 2en/(
∑n

i=1 2ei + 1), ands(an+1) = s(an+2) =
(
∑n

i=1 ei + 1)/(
∑n

i=1 2ei + 1). There are sufficiently many bins, each of which
has the capacity of one unit. It is not difficult to find that the sizes of an+1, an+2

are greater than 1/2 and the total size of all the items is exactly 2. Then we
only need to prove that the answer of the partition problem is “yes” if and only
if there exists an NE for the item set under the NR mechanism.

The necessity is trivial. If the answer of the Partition problem is “Yes”, i.e.,
there exists a subset S ⊆ {e1, e2, . . . , en} such that

∑
ei∈S ei =

∑
ei /∈S ei. Let

B0 = {ai|ei ∈ S} ∪ {an+1} and B1 = L \ B0. It is not difficult to check the
partition {B0, B1} is an NE.

Now we need to show the sufficiency—that is, if there exists an NE, prove
that the answer to the partition problem is “yes”.

First, we claim that an+1 and an+2 are not in the same bin in an NE. Suppose
they are in the same bin, this bin only consists of these two items and the other
ones are packed in another uncovered bin, according to Lemmas 1 and 2. Then
the item an+2 will move to the uncovered bin, which is a contradiction with NE.

Considering that the total size of all the items is 2 and Lemmas 1 and 2, the
NE must be composed of two bins—that is, the NE can be expressed as {B0, B1},
where s(B0) ≥ s(B1). We claim that both B0 and B1 are exactly covered.
Suppose the claim is invalid, then B0 is a minimal covered but not exactly
covered bin and B1 is an uncovered bin. By the first claim, an+1 and an+2 must
be in different bins. Without loss of generality, suppose an+1 ∈ B0, an+2 ∈ B1.
an+2 will be strictly better off by move to B0, which contradicts NE.

Above all, an NE is composed of two exactly covered bins B0, B1, where
an+1 ∈ B0 and an+2 ∈ B1. Let S = {ei|ai ∈ B0 \ {an+1}} and the answer to the
Partition problem is “Yes”. 	


In some special cases it is polynomial-time to decide whether an NE exists.

Theorem 3. For a given item set L, if each of them has a size larger than 1/2,
to decide whether an NE exists can be done in polynomial time.
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Proof. We discuss the question in two cases.

Case 1. The number of items is even. Denote L = {a1, a2, . . . , a2n} in non-
increasing order of their sizes. Let B1 = {a1, a2n}, B2 = {a2, a2n−1}, . . ., Bn =
{an, an+1}, and it is straightforward that the partition {B1, . . . , Bn} is an NE.

Case 2. The number of items is odd. Denote L = {a1, a2, . . . , a2n+1} in non-
increasing order of their sizes and we will show that there exists no NE. Suppose
an NE exists. By Lemmas 1 and 2, in the NE there must be an unique uncovered
bin which only contains one item, and n minimal covered bins, each of which
contains exactly two items. Denote the uncovered bin as B0. There are three
possibilities: Case 2.1. B0 = {a1}; Case 2.2. B0 = {a2n+1}; Case 2.3. B0 =
{ak}, 2 ≤ k ≤ 2n.

In case 2.1, a1 will benefit by moving to any covered bin, which contradicts
the NE.

In case 2.2, a2n is in the same covered bin with one larger item and will
benefit by moving to B0, which contradicts the NE.

In case 2.3, denote by B1 the covered bin which contains ak+1. ak will be
better off by moving to B1, which contradicts the NE.

So there exists no NE in case 2.
Above all, we can decide whether an NE exists by counting the number of

items which can certainly be done in polynomial time. 	


3.2 The Tight Lower Bound for an NE

In the case which admits an NE, we will show that the PoA of the NR mechanism
is 2/3.

Lemma 3. Under the NR mechanism, for an item set L = {a1, . . . , an} which
admits an NE, |NE(L)| ≥ 2/3 · (OPT (L) − 1), where OPT (L) is the social
optimum of L.

Proof. Sort all the items in non-increasing order of their sizes, and suppose that
s(a1) ≥ s(a2) ≥ · · · ≥ s(an), without loss of generality. Denote |NE(L)| as |NE|,
without confusion. Our discussion is started in two cases.

Case 1. s(a1) ≤ 1/2. Then the size of each item is less than or equal to 1/2. By
Lemma 2, in an NE each covered bin is also minimal covered, so the size of each
covered bin is less than 3/2. As there is at most one uncovered bin in an NE, it
implies

3/2 · |NE| + 1 ≥ s(L). (4)

Since s(L) ≥ OPT(L), we get

|NE| ≥ 2/3 · (OPT(L) − 1). (5)

Hence the conclusion holds in this case.



An Incentive Mechanism for Selfish Bin Covering 647

Case 2. s(a1) > 1/2. First, we divide all the items into two categories, according
to their sizes.

(1) s(x1) ≥ s(x2) ≥ · · · ≥ s(xp) > 1/2 (X − subset)
(2) 1/2 ≥ s(y1) ≥ s(y2) ≥ · · · ≥ s(yr) > 0 (Y − subset)

Clearly, p + r = n. And we analyze the lower bound for the NE in two cases.

Case 2.1. p ≤ |NE|. We characterize the NE as Proposition 1.

Proposition 1. In an NE, when p ≤ |NE|, there exists no covered bin which
contains two X-subset items.

Proof. Suppose that there exists a covered bin which contains two X-subset
items. By Lemma 2, the bin only consists of these two items, denoted as xi,
xj , and assume s(xi) ≥ s(xj). Under the NR mechanism, p(xi) = s(xi) and
p(xj) = 1 − s(xi) < s(xj). Since p ≤ |NE|, there must exist a covered bin which
only consists of Y -subset items, denoted as B0. xj will be better off by moving
to B0, which contradicts the NE. 	


By Lemma 2 and Proposition 1, each covered bin is minimal covered and
contains at most one X-subset item, which implies the size of each covered bin
does not exceed 3/2. Thus the conclusion also holds in case 2.1.

Case 2.2. p > |NE|. We characterize the NE as Proposition 2.

Proposition 2. Under the NR mechanism, when p > |NE|, an NE has the
following structure, see Figure 1.

(1) x1, x2, . . . , x|NE| must be in different covered bins, denoted as B1, . . . , B|NE|
respectively;

(2) x|NE|+1 and x|NE|, x|NE|+2 and x|NE|−1,. . . , xp and x2|NE|+1−p must be
in the same (covered) bins, respectively;

(3) The size of the unique uncovered bin (if there exists, denoted as B0) is less
than 1 − s(x|NE|+1).

Proof. (1) Suppose there exists an item xi (1 ≤ i ≤ |NE|) in the uncovered bin.
Then must be a covered bin which does not contain any of x1, x2, . . . , x|NE|. xi

will benefit by moving to the bin, which contradicts the NE. Thus x1, x2, . . .,
x|NE| must be in covered bins.

Suppose xi and xj (1 ≤ i < j ≤ |NE|) are in a same bin. Then the bin is
covered and s(xi) ≥ s(xj). The payoff of xj is p(xj) = 1 − s(xi) < s(xj). On the
other hand, there must exist a covered bin that contains none of x1, x2, . . . , x|NE|.
Then xj will be better off by moving to the bin, which contradicts the NE.

Thus (1) holds.
(2) First prove that x|NE| and x|NE|+1 are in the same bin. Since p >

|NE|, the item x|NE|+1 must be in the same bin with some xi, where i ∈
{1, 2, . . . , |NE|}, and have a payoff 1−s(xi). Then xi = x|NE|, otherwise x|NE|+1

will migrate for more benefit, which contradicts the NE.
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Fig. 1. The structure of NE

The other pairs can be proved similarly.
(3) If it does not hold, x|NE|+1 will move to the uncovered bin for more

benefit, which contradicts the NE. 	

Based on the structure, call the set of all the largest and the smallest items

in Bi (i = 1, 2, . . . , |NE|) type-B and the set of the remaining items type-A.
k = 2|NE| − p. Consider the optimal covering and define

kA := the number of covered bins in the optimal covering with only type-A
items,

kAB := the number of covered bins in the optimal covering with exactly one
type-B item,

kBB := the number of covered bins in the optimal covering with more than
one type-B items.

Clearly,
OPT(L) = kA + kAB + kBB . (6)

Since each covered bin in an NE is minimally covered, we have

∑

ai∈type-A

s(ai) +
k∑

i=1

s(xi) < k + 1/2. (7)

By (7), we obtain an upper bound of kA + kAB , that is

kA + kAB ≤
∑

ai∈type-A

s(ai) +
kAB∑

i=1

s(xi) < k + 1/2 +
kAB∑

i=1

s(xi) −
k∑

i=1

s(xi) (8)

To make the upper bound precisely, we first prove the following claim.

Proposition 3. kAB ≤ |NE|.
Proof. Suppose kAB > |NE|, then it holds that

kAB ≤ the total size of the kAB covered bins in the optimal covering
with exactly one type-B item

≤
∑

ai∈type-A

s(ai) + the total size of the largest kAB type-B items
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= [
∑

ai∈type-A

s(ai) +
|NE|+1∑

i=1

s(xi)] + the total size of the largest (kAB

−(|NE| + 1)) type-B items excluding x1, . . . , x|NE|+1

< |NE| + 1 + (kAB − (|NE| + 1)) = kAB . (9)

It is a contradiction. Thus kAB ≤ |NE|. 	

Now we discuss the upper bound of kBB . Considering that the number of type-
B is 2|NE|, the number of the remaining type-B items in covered bins which
contain more than one type-B item is 2|NE| − kAB . Therefore

kBB ≤ (2|NE| − kAB)/2. (10)

The conclusion is proved in three cases.

Case 2.2.1. kAB < k. By (8) and considering that s(xi) > 1/2, we have

kA + kAB ≤ k + 1/2 −
k∑

i=kAB+1

s(xi) < (k + kAB)/2 + 1/2

≤ (|NE| + kAB)/2 + 1/2. (11)

Thus, we obtain

OPT(L) ≤ (|NE| + kAB)/2 + (2|NE| − kAB)/2 + 1/2 = 3|NE|/2 + 1/2. (12)

Case 2.2.2. kAB = k. By (8) and considering that s(xi) < 1, we have

kA + kAB = kA + k < k + 1/2, (13)

which implies that kA < 1/2.
Since kA is an integer, we have kA = 0, thus

OPT(L) = kAB + kBB ≤ (2|NE| + kAB)/2 ≤ 3|NE|/2. (14)

Case 2.2.3. k < kAB ≤ |NE|. By (8) and considering that s(xi) > 1/2, we have

kA + kAB < k + 1/2 +
kAB∑

i=k+1

s(xi)

< k + 1/2 + kAB − k = kAB + 1/2, (15)

which implies that kA < 1/2.
Similar to Case 2.2.2, we have

OPT(L) = kAB + kBB ≤ (2|NE| + kAB)/2 ≤ 3|NE|/2. (16)

Above all, |NE(L)| ≥ 2/3 · (OPT(L) − 1). 	
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Fig. 2. OPT(L) = n + 2

Fig. 3. |NE(L)| = 2n+4
3

Considering that there exists no NE in some cases, we focus on those instances
which admit an NE. Denote the set of instances of SBC which admit an NE as
A and we can define the PoA of NE confined on A as

PoA(A) = inf
L∈A

min
NE

|NE(L)|
OPT(L)

. (17)

Theorem 4. Under the NR mechanism, PoA(A) = 2/3.

Proof. By Lemma 3, we have PoA(A) ≥ 2/3.
For any n and a positive number ε which is small enough, construct an

instance as follows. There are 3n + 6 items in total: two items with the size
1/2 + ε, 2n + 2 items with the size 1/2 − 2ε, n items with the size 4ε and two
items with the size ε. There exists an optimal partition, where all the bins are
exactly covered, see Fig. 2. OPT(L) = n + 2.

Let ε = 1/(9n). It is not hard to check that the partition in Fig. 3 is an NE
under the NR mechanism, thus we have

|NE(L)| =
2n + 4

3
. (18)

Since

lim
n→∞

|NE(L)|
OPT(L)

=
2
3
, (19)

we have the theorem. 	
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4 Modified Nash Equilibrium

The No-Redundance mechanism energizes and mobilizes all redundant items,
however, by assigning larger items priorities. An item will always egoistically try
to migrate so long as there exists a bin consisting of smaller items since smaller
ones will be first kicked out. The flexibility of larger items causes the situation
in which the migration is difficult to terminate and there may not be an NE.

Based on the idea that the migration of items should be constrained and the
size of the resulted bin should maintain small enough to make the remaining
items cover more bins, we induce a concept of modified Nash equilibrium (M-
NE) under the NR mechanism. For simplicity, we denote the set of redundant
items in covered bin B as R(B).

Definition 1. A partition π = (B1, B2, . . . , Bm) is called a modified Nash equi-
librium if and only if there exist no item aj ∈ L and a bin Bi(1 ≤ i ≤ m,Bi �=
Bj,π) such that:

(1) aj will strictly benefit by moving to Bi;
(2) s(B

′
i) < min{δ(Bj,π), δ(Bi)},

where B
′
i = Bi ∪ {aj}, if s(Bi) + s(aj) < 1; and B

′
i is the minimally covered bin

after redundant items migrate from Bi ∪{aj}, i.e. B
′
i = Bi ∪{aj}\R(Bi ∪{aj}),

if s(Bi) + s(aj) ≥ 1. For any bin B,

δ(B) =
{

s(B), if B is covered,
+∞, otherwise.

Theorem 5. Under the NR mechanism, an M-NE must be a rational partition,
i.e. there exists at most one uncovered bin and each covered bin is minimally
covered.

Proof. The proof is similar to Theorem 1. 	

In the setting of M-NE, the migration will continue until there exists no

item and a bin satisfying the two conditions in Definition 1. Will the constrained
best response dynamic process eventually terminate? Or can an M-NE always
be obtained from any initial partition in finite steps?

To prove the existence of M-NE, we first define a vector valued potential
function. Let P (·) be the potential function, π = (B1, B2, . . . , Bm) is a reasonable
partition, and Bm is the unique uncovered bin, then

P (π) = (s(B
′
1), s(B

′
2), . . . , s(B

′
m−1)), (20)

where (B
′
1, . . . , B

′
m−1) is a rearrangement of (B1, B2, . . . , Bm−1) in non-

decreasing order of their sizes.
For two vectors v = (v1, . . . , vs), w = (w1, . . . , wt), we say that v is lexico-

graphically smaller than w, which is denoted by v ≺ w, iff there exists an integer
j0, 1 ≤ j0 ≤ min{s, t}, such that vj0 < wj0 and vj = wj , ∀j < j0.
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Lemma 4. For any reasonable partition π which is not an M-NE, there exists
a reasonable partition π

′
, such that P (π

′
) ≺ P (π) and p(π

′
) ≥ p(π).

Proof. Denote the unique uncovered bin (if there exists) as Bm. We can design
a constrained best response (CBR) algorithm as follows.

Since π is not an M-NE, there exists an item aj and a bin Bi satisfying the
two conditions in Definition 1. The fact that aj will strictly benefit by moving
to Bi implies that aj /∈ R(Bi ∪ {aj}). Then the migration of aj can be classified
into three cases.

Case 1. Both Bj,π and Bi are covered. We can construct a new reasonable
partition π

′
as follows.

1. Move aj to Bi.
2. Take out redundant items in Bi∪{aj} and obtain a minimally covered bin B

′
i .

3. Run FFD2 on items in Bj,π \{aj}∪R(Bi∪{aj})∪Bm and we get a reasonable
partition π

′
.

Since s(B
′
i) < s(Bi), we have s(aj) < s(R(Bi ∪ {aj})). Thus s(Bj,π \ {aj} ∪

R(Bi ∪ {aj})) > s(Bj,π) ≥ 1.

Case 2. Bj,π is covered and Bi is the unique uncovered bin. We construct π
′
in

two cases.

Case 2.1. s(Bi) + s(aj) ≥ 1.

1. Move aj to Bi.
2. If R(Bi ∪ {aj}) �= ∅, take out redundant items in Bi ∪ {aj} and obtain a

minimally covered bin B
′
i .

3. Run FFD on items in Bj,π \ {aj} ∪ R(Bi ∪ {aj}) and we get a reasonable
partition π

′
.

Case 2.2. s(Bi) + s(aj) < 1. It implies that aj ∈ R(Bj,π). Move aj to Bi. B
′
i is

uncovered and Bj,π \{aj} is still covered. Thus we get a reasonable partition π
′
.

Case 3. Bj,π is the unique uncovered bin and Bi is covered.

1. Move aj to Bi.
2. Take out redundant items in Bi∪{aj} and obtain a minimally covered bin B

′
i .

3. Run FFD on items in Bj,π \ {aj} ∪ R(Bi ∪ {aj}) and we get a reasonable
partition π

′
.

It is not hard to check that P (π
′
) ≺ P (π) and p(π

′
) ≥ p(π). 	


2 First Fit Decreasing, which is described as follows. First sort the items in non-
increasing order of their sizes, then puts the items one by one in this order to a bin
until the bin is covered. Open a new bin and repeat the above actions until all the
items are assigned.
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Theorem 6. M-NE always exists and can be obtained from any partition in
finite steps without decreasing the social welfare.

Proof. For any partition, first unify all the uncovered bins and obtain a rea-
sonable partition without decreasing the social welfare. Denote the reasonable
partition as π0 and the unique uncovered bin (if there exists) as Bm.

If π0 is not an M-NE, run CBR in Lemma 4 on π0. And we get a reasonable
partition π1 such that P (π1) ≺ P (π0) and p(π1) ≥ p(π0).

The migration of items will continue until an M-NE arrives. Denote the
partition after the t-th migration be πt. If πt is not an M-NE, run CBR on
πt. We will obtain a reasonable partition πt+1 such that P (πt+1) ≺ P (πt) and
p(πt+1) ≥ p(πt), and so on.

Since the number of reasonable partitions is finite for a given instance of
SBC, we get immediately that M-NE exists and can be obtained in finite steps
without decreasing the social welfare. 	


For a given instance I of SBC, denote by NE(I) the set of NEs of I and
M−NE(I) the set of M-NEs of I. It is straightforward that NE(I) ⊆ M−NE(I).

Theorem 7. (1)PoAM−NE = 1/2; (2)PoSM−NE = 1.

Proof. (1) Theorem 5 guarantees that PoAM−NE ≥ 1/2. We construct an
instance as follows. There are 6n items in total: 2n large items with s(a1) = · · · =
s(a2n) = 1−1/(2n), 4n small items with s(a2n+1) = · · · = s(a6n) = 1/(4n). It is
easy to check that the partition that each bin contains either two large items or
4n small items is an M-NE. And the partition that each bin contains one large
item and two small items is optimal. Since (n + 1)/(2n) → 1/2 as n → ∞, we
complete the proof.

(2) It is followed directly by Theorem6. 	


5 Conclusion and Further Discussion

In this paper, we mainly discussed mechanism design for the selfish bin covering
problem. We formulated an incentive mechanism called as no-redundance mech-
anism under which the worst NE has good properties. Considering that there
exist instances of SBC which does not admit NE, we proposed a modified Nash
equilibrium which always exists under the NR mechanism, and showed that PoA
and PoS of M-NE is 1/2 and 1, respectively.

There are several directions for the future research, such as, to study what
kind of instances of SBC admit an NE under the NR mechanism, to design a
new mechanism under which there always exists a pure NE and the PoA is good
enough.
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Abstract. We study a new class of games which generalizes conges-
tion games and its bottleneck variant. We introduce congestion games
with mixed objectives to model network scenarios in which players seek
to optimize for latency and bandwidths alike. We characterize the exis-
tence of pure Nash equilibria (PNE) and the convergence of improvement
dynamics. For games that do not possess PNE we give bounds on the
approximation ratio of approximate pure Nash equilibria.

Keywords: Congestion games · Bottleneck congestion games ·
Pure nash equilibrium · Existence · Convergence · Complexity ·
Approximation

1 Introduction

Resource allocation problems in large-scale scenarios such as networks often
cannot be solved as a single optimization problem. The size of the problem, the
distributed nature of information, or control preclude a centralized approach. As
a consequence, decisions are delegated to local actors or players. This gives rise
to strategic behavior as these players often have economic interests. Game theory
has studied the effect of such strategic interaction in various models of resource
allocation and scheduling. One of the most prominent ones is the class of atomic
congestion games [20], in which players allocate sets of resources. The cost of a
resource depends on the number of players allocating it. The cost of a player is
the sum of the costs of her allocated resources. The appeal of this model stems
not only from its applicability to prominent problems like scheduling, routing
and load balancing, but also from desirable game theoretic properties. Conges-
tion games always possess pure Nash equilibria and the natural improvement
dynamics converge to a pure Nash equilibrium since these games are poten-
tial games. In fact, the class of congestion games is isomorphic to the class of
potential games [19], which shows their expressiveness. When modeling network
routing with congestion games and most of its variants like weighted [11] or
player-specific congestion games [18] one faces deficiency due to the nature of
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the players’ cost functions. As a player’s cost is determined by the sum of the
resource costs, congestion games are not well suited to model effects like band-
width allocation, as here the cost of a player is determined only by the bottleneck
resource. Hence, Banner and Orda [4] introduced bottleneck congestion games
where the cost of a player is the maximum cost of her chosen resources. Again,
due to the nature of the cost functions, this class of games and most of its vari-
ants [14,16] only model the bottleneck effects and are unable to describe latency
effects. It is not difficult to envision scenarios in which both effects, latency and
bandwidth, are relevant to decision makers - especially in today’s IT infrastruc-
tures where we find techniques with shared resources, for example in the context
of cloud computing or in software-defined networking. Many users with lots of
different applications and therefore different objectives interact in one network
and compete for the same resources. Consider, for example, on the one hand
media streaming and on the other hand video gaming. In one application, band-
width is the most important property, in the other it is latency.

Therefore, we study a game theoretic model in which players may have het-
erogeneous objectives. We introduce the model of congestion games with mixed
objectives. In this model, resources have two types of costs, latency cost and
bottleneck cost, where the latter corresponds to the inverse of bandwidth. The
players’ costs may depend on both types of cost, where we allow different players
to have different preferences regarding the two cost types.

Our Contribution. We show that pure Nash equilibria exist and can be com-
puted in polynomial time in singleton games and in some matroid games. How-
ever, we show that the matroid property alone is not sufficient for the existence.
Additionally, it is necessary that either the players are only interested in latency
or bottleneck cost, or that the cost functions have a monotone dependence. For
the latter case, we show convergence of best-response dynamics while the remain-
ing cases are only weakly acyclic. For matroid games that do not satisfy one of
the additional properties, we show that pure equilibria might not exist and it
is even NP-hard to decide whether one exists. To overcome these non-existence
results, we consider approximate pure Nash equilibria. For several classes, we
can show that there exist β-approximate pure Nash equilibria where β depends
on the size of the largest strategy.

Related Work. Milchtaich [18] studies the concept of player-specific conges-
tion games and shows that in the singleton case these games always admit pure
Nash equilibria. Ackermann et al. [1] generalize these results to matroid strat-
egy spaces and show that the result also holds for weighted congestion games.
Furthermore, they point out that in a natural sense the matroid property is
maximal for the guaranteed existence of pure Nash equilibria in player-specific
and weighted congestion games. Moreover, Milchtaich [18] examines congestion
games in which players are both weighted and have player-specific cost func-
tions. By constructing a game with three players, he shows that these games
do not necessarily possess pure Nash equilibria, even in the case of single-
ton strategies. Mavronicalas et al. [17] study a special case of these games in
which cost functions are not entirely player-specific. Instead, the player-specific
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resource costs are derived by combining the general resource cost function and a
player-specific constant via a specified operation (e.g. addition or multiplica-
tion). They show that this restriction is sufficient to guarantee the existence of
pure Nash equilibria in games with three players. Dunkel and Schulz [9] show
that the decision problem of whether a weighted network congestion game pos-
sesses a pure Nash equilibrium is NP-hard. The equivalent result is achieved for
player-specific congestion games by Ackermann and Skopalik [3].

Banner and Orda [4] study the applicability of game-theoretic concepts in
network routing scenarios. In particular, they derive bounds on the price of anar-
chy in network bottleneck congestion games with restricted cost functions and
show that a pure Nash equilibrium which is socially optimal always exists. Cole
et al. [8] further investigate the non-atomic case, they especially consider the
impacts of variable traffic rates. In contrast, Harks et al. [16] concentrate on the
atomic case and study the lexicographical improvement property, which guaran-
tees the existence of pure Nash equilibria through a potential function argument.
They show that bottleneck congestion games fulfill this property and, hence, they
are potential games. Harks et al. [15] consider the complexity of computing pure
Nash equilibria and strong equilibria in bottleneck congestion games. Moreover,
they show this property in matroid bottleneck congestion games.

Chien and Sinclair [7] study the convergence towards approximate pure
Nash equilibria in symmetric congestion games. Skopalik and Vöcking [21] show
inapproximability in asymmetric congestion games, which is complemented by
approximation algorithms for linear and polynomial delay functions [5,10], even
for weighted games [6]. Hansknecht et al. [13] use the concept of approximate
potential functions to examine of approximate pure Nash equilibria in weighted
congestion games under different restrictions on the cost functions.

Preliminaries. A congestion game with mixed objectives is defined by a tuple
Γ = (N,R, (Σi)i∈N , (αi)i∈N , (�r)r∈R , (er)r∈R), where N = {1, . . . , n} denotes
the set of players and R denotes the set of resources. For each player i let Σi ⊆ 2R

denote the strategy space of player i and αi ∈ [0, 1] the preference value of player
i. For each resource r let �r : N → R denote the non-decreasing latency cost
function associated to resource r, and let er : N → R denote the non-decreasing
bottleneck cost function associated to resource r. For a state S = (S1, . . . , Sn) ∈
Σ1×. . .×Σn, we define for each resource r ∈ R by nr(S) = |{i ∈ N | r ∈ Si}| the
congestion of r. The latency cost of r in state S is given by �r(S) = �r(nr(S)),
and the bottleneck cost by er(S) = er(nr(S)). The total cost of player i in state S
depends on αi and is defined as ci(S) = αi ·

∑
r∈Si

�r(S)+(1−αi)·maxr∈Si
er(S).

For a state S = (S1, ..., Si, ..., Sn), we denote by (S′
i, S−i) the state that is

reached if player i plays strategy S′
i while all other strategies remain unchanged.

A state S = (S1, . . . , Sn) is called a pure Nash equilibrium (PNE) if for all i ∈ N
and all S′

i ∈ Σi it holds that ci(S) ≤ ci(S′
i, S−i) and a β-approximate pure

Nash equilibrium for a β ≥ 1, if for all i ∈ N and all S′
i ∈ Σi it holds that

ci(S) ≤ β · ci(S′
i, S−i).

A singleton congestion game with mixed objectives is a congestion game
with mixed objectives Γ with the additional restriction that all strategies are
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singletons, i. e., for all i ∈ N and all Si ∈ Σi we have that |Si| = 1. A matroid
congestion game with mixed objectives is a congestion game with mixed objec-
tives in which the strategy spaces of all players form the bases of a matroid on the
set of resources. We say that the cost functions of a congestion game with mixed
objectives have a monotone dependence if there is a monotone non-decreasing
function f : R → R, such that er(x) = f(�r(x)) for all r ∈ R. We call the players
α-uniform if there is an α ∈ [0, 1] such that αi = α for all players i ∈ N . We say
the players have pure preferences if αi ∈ {0, 1} for all players i ∈ N .

2 Existence of Pure Nash Equilibria

Congestion games with mixed objectives are more expressive than standard or
bottleneck congestion games. Consequently, the existence of pure Nash equilib-
ria is guaranteed only for special cases. Unlike, e. g., player-specific congestion
games, the matroid property is not sufficient for the existence of PNE. We show
that we have the existence of PNE in singleton games or for matroid games
with players that have pure preferences or cost functions that have a monotone
dependence.

Theorem 1. A congestion game with mixed objectives Γ contains a pure Nash
equilibrium if Γ is a

1. singleton congestion game, or
2. matroid congestion game and the players have pure preferences, or
3. matroid congestion game and the cost functions have a monotone dependence.

A pure Nash equilibrium can be computed in polynomial time.

Proof. We prove the theorem by reducing the existence problem of a pure Nash
equilibrium in a congestion game with mixed objectives to the existence problem
of a PNE in a congestion game with player-specific cost functions. The existence
of PNE is guaranteed in singleton [18] and matroid [1] player-specific congestion
games and polynomial time complexity immediately follows [1,2].

We will utilize the following lemma which states that an optimal basis with
respect to sum costs is also optimal w.r.t. maximum costs.

Lemma 1. Let M be a matroid, and let B = {b1, . . . , bm} be a basis of M
which minimizes the sum of the element costs. Then for any other basis B′ =
{b′

1, . . . , b
′
m} it holds that max1≤i≤m bi ≤ max1≤i≤m b′

i.

Proof (Lemma). Let B = {b1, . . . , bm} be an optimal basis, and assume by
contradiction that there is a different basis B′ = {b′

1, . . . , b
′
m} with b′

m < bm

(w. l. o. g. assume that bm and b′
m are the most expensive resources in B and B′,

respectively). Since B and B′ are both bases and bm /∈ B′, there is an element
b′
i ∈ B′ such that B′′ = B \ {bm} ∪ {b′

i} is a basis of M . By assumption we have
b′
i ≤ b′

m < bm, which implies that B′′ has a smaller total cost than B. Therefore,
B cannot be optimal, which gives a contradiction. �	
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We now proceed to prove Theorem 1 and consider the three different cases:

1. The cost of player i in a state S with Si = {r} is ci(S) = αi · �r(S) +
(1 − αi) · er(S). By defining the player-specific cost functions ci

r(x) = αi ·
�r(x) + (1 − αi) · er(x) for every i ∈ N and r ∈ R, we obtain an equivalent
singleton player-specific congestion game.

2. Using Lemma 1, we can treat all the players who strive to minimize their
bottleneck costs as if they were striving to minimize the sum of the bottleneck
costs of their resources. Hence, we can construct a player-specific congestion
game in which the player-specific cost functions correspond to the latency
functions for those players with preference value 1, and to the bottleneck cost
functions for those players with preference value 0.

3. A player i who allocates the resources {r1, . . . , rk}, where w. l. o. g. rk is
the most expensive one, in a state S, incurs a total cost of ci(S) = αi ·
∑k

j=1 �rj
(S) + (1 − αi) · erk

(S). Due to Lemma 1, we know that �rk
(S) is

minimized if
∑k

j=1 �rj
(S) is minimized. The monotonicity of f with er(x) =

f(�r(x)) implies that erk
is also minimized. Observe that monotonicity also

ensures that rk is the bottleneck resource. Hence, a PNE of a congestion game
with cost functions �r for every r ∈ R is a PNE of Γ . �	
We show that the matroid property is not sufficient for the existence of PNE.

Even for linear cost functions and uniform players, there are games without PNE.

Theorem 2. There is a matroid congestion game with mixed objectives Γ with
linear cost functions and α-uniform players which does not possess a pure Nash
equilibrium.

Proof. We construct a two-player game with linear cost functions and αi =
0.5 for both players. The set of resources is R = {r1, . . . , r7}. The strategies
for player 1 are Σ1 = {{ri, rj , rk} | i, j, k ∈ {1, . . . , 6}} and the strategies for
player 2 are Σ2 = {{ri, rj} | i, j ∈ {4, . . . , 7}}. The latency and bottleneck cost
functions for the first three resources are �r1(x) = �r2(x) = �r3(x) = 0 and
er1(x) = er2(x) = er3(x) = 200 · x, respectively. For resource r4 and r5 the cost
functions are �r4(x) = �r5(x) = 20 · x and er4(x) = er5(x) = 50 · x. For resource
r6 the cost functions are �r6(x) = 8 · x and er6(x) = 80 · x. For resource r7 the
cost functions are �r7(x) = 0 and er7(x) = 160 · x.

We note that for player 1 only the strategies S1,1 := {r1, r2, r3} and S1,2 :=
{r4, r5, r6} can be best-response strategies in any state, since {r1, r2, r3} strictly
dominates all remaining strategies. Hence, with respect to the existence of pure
Nash equilibria, we can restrict player 1 to these two strategies. In the analogous
way, we can restrict player 2 to the strategies S2,1 := {r4, r5} and S2,2 := {r6, r7}.
This yields a game with only four states and, as we can easily verify, a best-
response improvement step sequence starting from any of these states runs in
cycles:
(

100 45
S1,1 S2,1

)
1−→

(
94 90

S1,2 S2,1

)
2−→

(
108 88
S1,2 S2,2

)
1−→

(
100 84
S1,1 S2,2

)
2−→

(
100 45
S1,1 S2,1

)
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The numbers above the strategies give the costs of the respective player in the
described state, and the numbers on the arrows indicate which player changes
her strategy from one state to the next one. �	
Note that the nature of the existence proofs of Theorem 1 implies that a PNE
can be computed in polynomial time. However, if existence is not guaranteed,
the decision problem whether a matroid game has a pure Nash equilibrium is
NP-hard:

Theorem 3. It is NP-hard to decide whether a matroid congestion game with
mixed objectives possesses at least one pure Nash equilibrium even if the players
are α-uniform.

Proof. We reduce from Independent Set (IS), which is known to be NP-complete
[12]. Let the graph G = (V,E) and k ∈ N be an instance of IS. We construct a
matroid congestion game Γ that has a pure Nash equilibrium if and only if G
has an independent set of size at least k.

We begin by describing the structure of Γ . The game contains the following
groups of players:

– For each node v ∈ V , there is one player who can allocate all edges adjacent
to v, but has a profitable deviation to a special strategy if and only if a player
of a neighboring node allocates one of the adjacent edges.

– There are two players who play a game that is equivalent to the game in the
proof of Theorem2 if an additional player allocates a certain resource r7, but
possesses a PNE otherwise.

– Finally, there is one connection player for whom it is profitable to allocate r7
if and only if at least n − k + 1 of the node players deviate from their “edge
strategy”.

Clearly, if we can achieve this dynamic, the existence of a PNE in Γ is
equivalent to the existence of an independent set in G. Let V = {v1, . . . , vn},
and for every vi ∈ V we denote by Evi

= {e ∈ E | vi ∈ e} the set of edges
adjacent to vi, and by d(vi) = |Evi

| the degree of vi in G. Let d = maxv∈V d(v)
be the maximum degree in G. We can assume that d ≥ 2.

We now give a formal definition of Γ = (N,R, (Σi)i∈N , (αi)i∈N , (�r)r∈R ,
(er)r∈R). The set of players is N = {v1, . . . , vn, c, 1, 2} and the set of resources is
R = {re | e ∈ E} ∪ {rj

i | i ∈ {1, . . . , n}, j ∈ {1, . . . , d(vi) − 1}} ∪ {rc, r1, . . . , r7}.
The strategies for the vertex players vi are all subsets of size d(vi) from a set con-
sisting of the adjacent edge resources, some alternative resources, and resource rc:
Σvi

=
{

{X | X ⊆
(
{re | e ∈ Evi

} ∪ {q1i , . . . , q
d(vi)−1
i , rc}

)
and |X| = d(vi)

}
.

Our choice of cost functions will ensure that in an equilibrium every ver-
tex player vi either allocates all resources re that belong to her adjacent edges
e ∈ Evi

or the resources qi and rc. The two strategies of the connection player
are Σc = {{rc}, {r7}}. Finally, there are the players 1 and 2 with strategies
Σ1 = {{ri, rj , rk} | i, j, k ∈ {1, . . . , 6}} and, Σ2 = {{ri, rj} | i, j ∈ {4, . . . , 7}},
respectively.
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The cost functions for the edge resources are �re
(x) = 1000 ·x and ere

(x) = 0
for all e ∈ E, for the alternative resources �qj

i
(x) = 0 and eqj

i
(x) = 1000 ·d(vi)+1

for all 1 ≤ i ≤ n and 1 ≤ j ≤ d, and for the connection resource �rc
(x) = 0 and

erc
(x) = 0 for x ≤ n− k +1, erc

(x) = 1000 for x > n− k +1. The cost functions
of the resources r1, . . . , r7 are �r1(x) = �r2(x) = �r3(x) = 0, er1(x) = er2(x) =
er3(x) = 200 · x, �r4(x) = �r5(x) = 20 · x, er4(x) = er5(x) = 50 · x, �r6(x) =
8 · x, er6(x) = 80 · x, �r7(x) = 0, er7(x) = 80 · x. We choose the value αi = 0.5
for all players.

It remains to show that this game has a pure Nash equilibrium if and only if G
has an independent set of size k. If there is an independent set, we can construct
an equilibrium as follows: Each node player that corresponds to a node in the
independent set chooses the strategy that contains all her edge resources. Each
remaining node player chooses a strategy that contains only her q-resources and
the resource rc. The connection player chooses resource rc. Player 1 chooses
{r1, r2, r3} and player 2 chooses {r6, r7}. It is easy to verify that this is indeed
a pure Nash equilibrium.

If there is no independent set of size at least k, we argue that in an equilibrium
there are more than n − k of the node players on resource rc. Observe that for a
node player that allocates at least one of the q-resources it is the best response
to allocate the remaining q-resources and the resource rc for no additional cost.
Furthermore, if two node players allocate the same edge resource, their best
response is to choose the q-resources and rc. Hence, the best response of the
connection player is {r7} and players 1 and 2 will play the subgame defined in
Theorem 2 that does not have a pure Nash equilibrium. �	
In Theorem 1 we characterized restrictions on the preference values and cost
functions that guarantee the existence of PNE in congestion games with mixed
objectives, when combined with the matroid property of strategy spaces. The
following theorem shows that the matroid property is necessary even if we impose
the additional constraint that bottleneck and latency cost functions are identical
and linear.

Theorem 4. There exists a congestion game with mixed objectives with linear
cost functions �r = er for all resources r ∈ R, and either

1. pure preferences, or
2. α-uniform players

which does not possess a pure Nash equilibrium.

Proof. We show the correctness of the statement by constructing two games
which fulfill the preconditions stated in the two cases of the theorem and which
do not have a pure Nash equilibrium.

1. We define the game with two players with α1 = 0 and α2 = 1. The game
has six resources R = {r1, r2, . . . , r6}. Each player has two strategies, thus
Σ1 = {{r1}, {r2, r3, r4, r5}} and Σ2 = {{r2, r3, r4}, {r5, r6}}. The latency and
bottleneck costs are given by �r1(x) = 6 · x, �r2(x) = �r3(x) = �r4(x) = 2 · x,
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�r5(x) = 4 ·x, �r6(x) = 3 ·x with er(x) = �r(x) for all r ∈ R We utilize the fact
that bottleneck players prefer to allocate many cheap resources, while players
who are interested in latency are more willing to share a single expensive
resource.

Let S1,1 and S1,2 denote the strategies of player 1, and S2,1 and S2,2 the
strategies of player 2. Then we have the following cycle of improvement steps
which visits all four states:
(

6 6
S1,1 S2,1

)
1−→

(
4 12

S1,2 S2,1

)
2−→

(
8 11

S1,2 S2,2

)
1−→

(
6 7

S1,1 S2,2

)
2−→

(
6 6

S1,1 S2,1

)

The numbers above the strategies give the cost of the respective player in the
associated state, and the numbers on the arrows indicate which player has to
change her strategy in order to get to the next state. As we see, every change
in strategy decreases the cost of the player performing it. Hence, none of the
four states is a pure Nash equilibrium.

2. We prove the theorem for the example α = 0.5. However, it is easily general-
izable to arbitrary values between 0 and 1. The idea is to construct a game
with two players in which one player always allocates an expensive resource.
In addition this, both players allocate two resources and share exactly one of
these resources. In detail we have the resources R = {r1, r2, . . . , r5} and the
strategy sets Σ1 = {{r1, r2, r4}, {r1, r3, r5}} and Σ2 = {{r2, r5}, {r3, r4}}.
The latency and bottleneck costs are given by �r1(x) = 32 · x, �r2(x) =
�r3(x) = 14 · x and �r4(x) = �r5(x) = 12 · x + 8 with er(x) = �r(x) for all
r ∈ R. Depending on which resource is shared, the players allocate either two
resources with medium costs or one cheap and one expensive resource, where
the sum of the two resource costs is slightly smaller in the latter case.

The second player prefers the first alternative, since she has to pay an
additional price for her most expensive resource. On the other hand, the first
player always allocates an expensive resource, hence she incurs no additional
costs when allocating a cheap and an expensive resource.
The strategy spaces are constructed in such a way that in every state the
players share exactly one of the resources {r2, . . . , r5}. Let S1 denote a state
in which r2 or r3 is shared, and S2 a state in which r4 or r5 is shared. Then
the players incur the following costs: c1(S1) = 56, c2(S1) = 38, c1(S2) =
55, c2(S2) = 39.

As we see, player 1 prefers the state S2, while player 2 prefers S1. Since
both players always have the possibility to deviate to the other state, there
is no state in which none of the players can improve her costs, and hence Γ
possesses no pure Nash equilibrium. �	

3 Convergence

In this section we investigate in which games convergence of best-response
improvement sequences to a pure Nash equilibrium can be guaranteed.
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Perhaps surprisingly, there are singleton games in which best-response
improvement sequences may run in cycles. This is even true for games with
pure preferences.

Theorem 5. There are singleton congestion games with mixed objectives and
pure preferences in which best-response improvement sequences may run in
cycles.

Proof. We prove the theorem by constructing a singleton game with three play-
ers and showing that there exists a cyclic best-response improvement sequence
in certain states. The game consists of three resources R = {r1, r2, r3} and
the players have the strategy sets Σ1 = {{r1}, {r2}}, Σ2 = {{r1}, {r3}} and
Σ3 = {{r2}, {r3}}. Two players prefer the latency costs α1 = α2 = 1, one
the bottleneck costs α3 = 0. The latency and bottleneck costs are given by
�r1 = (2, 5), �r2 = (3, 4), �r3 = (1, 6) and er2 = (1, 4), er3 = (2, 3). The first num-
ber in the cost functions gives the cost if the resource is used by one player, the
second number gives the cost if two players use it. The bottleneck cost function
of r1 is irrelevant since it is only used by players 1 and 2.

In this game, the following cycling best-response improvement sequence can
occur (set braces omitted for better readability):

(
5 5 1
r1 r1 r2

)
1−→

(
4 2 4
r2 r1 r2

)
2−→

(
4 1 4
r2 r3 r2

)
3−→

(
3 6 3
r2 r3 r3

)

1−→
(

2 6 3
r1 r3 r3

)
2−→

(
5 5 2
r1 r1 r3

)
3−→

(
5 5 1
r1 r1 r2

)

The numbers on the arrows indicate which player has to change her strategy
in order to reach the next state. The variable ri denotes the resource which is
used by the corresponding player and the number on top gives the cost value
for this player. We can verify that each change in strategy is beneficial for the
player performing it (since every player has only two strategies, every improving
strategy is a best-response strategy).

Hence, we have a cycle of six states that are visited during this best-response
improvement sequence. The pure Nash equilibria (r1, r3, r2) and (r2, r1, r3) are
never reached. �	
Note that due to our reduction in the proof of Theorem1, we know that there
exists a sequence that leads to an equilibrium [1].

Corollary 1

1. Singleton congestion games with mixed objectives are weakly acyclic.
2. Matroid congestion games with mixed objectives that have pure preferences

are weakly acyclic.

We now turn to matroid games with a monotone dependence and show that
they converge quickly to a PNE if the players perform lazy best-response moves.
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That is, if players perform a best response move, they choose the best-response
strategy that has as many resources in common with the previous strategy as
possible.

Theorem 6. Let Γ be a matroid congestion game with mixed objectives with
cost functions that have a monotone dependence. Then any sequence of lazy
best-response improvement steps starting from an arbitrary state in Γ converges
to a pure Nash equilibrium after a polynomial number of steps.

Proof. The proof idea is based on the proof by Ackermann et al. [2] which shows
that matroid congestion games guarantee polynomial convergence to PNE.

We consider an increasingly ordered enumeration of all latency values that
can occur in Γ (an enumeration of the values {�r(x) | r ∈ R, x ∈ N}). Let �′

r(x)
denote the position of the respective cost value in the enumeration.

We define the following variant of Rosenthal’s potential function: Φ(S) =
∑

r∈R

∑nr(S)
i=1 �′

r(i). If n = |N | denotes the number of players, and m = |R| the
number of resources in Γ , then there are at most n · m different cost values in
the game. Hence, the value of Φ is upper bounded by n2 · m2. Thus, it suffices
to show that every lazy best-response improvement step decreases the value of
Φ by at least 1.

If a player replaces a single resource r by another resource r′ in a lazy best-
response with αi ·�r′(S′)+(1−αi) ·er′(S′) < αi ·�r(S)+(1−αi) ·er(S), then due
to the monotone dependence, we have �r′(S′) < �r(S). Hence �r′(S′) must occur
before �r(S) in the increasingly ordered enumeration of the cost values and we
have �′

r′(S′) < �′
r(S). Thus, every sequence of lazy best-response improvement

steps in Γ terminates after a polynomial number of steps. �	
We remark that the only reason to restrict the players to lazy instead of arbitrary
best-response strategies is that the players may have a preference value of exactly
0. If a player’s cost is determined solely by her most expensive resource, she might
be playing a best-response strategy by replacing her most expensive resource by
a cheaper one and additionally replace another resource by a more expensive
one. This additional exchange does not necessarily increase her costs, but it
could lead to an increase in the value of the potential function. However, if all
players have preference values different from 0, the theorem holds for arbitrary
best-response improvement steps.

4 Approximate Pure Nash Equilibria

As PNE do not exist in general, we study the existence of approximate equilibria.
However, in general we cannot achieve an approximation factor better than 3.

Theorem 7. There is a congestion game with mixed objectives, in which all cost
functions are linear, that does not contain a β-approximate pure Nash equilibrium
for any β < 3.
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Proof. We show the theorem by constructing a game with 10 players, in which
in every state there is at least one player who can improve her costs by a factor
of 3. A formal definition of the game is given by:

Γ = (N,R, (Σi)i∈N , (αi)i∈N , (�r)r∈R , (er)r∈R)with

N = {1, . . . , 10}, R =
{
ri
1, r

i
2 | i ∈ N \ {5, 6}} ∪{

ri,j
1,1, r

i,j
1,2, r

i,j
2,1, r

i,j
2,2 | i < j and (i, j ∈ {1, 2, 3, 4} or i, j ∈ {7, 8, 9, 10})

}
,

Σi =
{

{ri
1} ∪ {rj,k

1,1, r
j,k
2,1 | j = i or k = i},

{ri
2} ∪ {rj,k

1,2, r
j,k
2,2 | j = i or k = i}

}
for all i ∈ N \ {5, 6}

Σ5 =
{

{r11, . . . , r
4
1, r

7
1, . . . , r

10
1 , ri,j

1,2, r
k,l
1,2 | i, j ∈ {1, . . . , 4}, k, l ∈ {7, . . . , 10}

}

∪
{

{r12, . . . , r
4
2, r

7
2, . . . , r

10
2 , ri,j

1,1, r
k,l
1,1 | i, j ∈ {1, . . . , 4}, k, l ∈ {7, . . . , 10}

}

Σ6 =
{

{r11, . . . , r
4
1, r

7
2, . . . , r

10
2 , ri,j

2,2, r
k,l
2,1 | i, j ∈ {1, . . . , 4}, k, l ∈ {7, . . . , 10}

}

∪
{

{r12, . . . , r
4
2, r

7
1, . . . , r

10
1 , ri,j

2,1, r
k,l
2,2 | i, j ∈ {1, . . . , 4}, k, l ∈ {7, . . . , 10}

}

αi = 1 for all i ∈ N \ {5, 6} and αi = 0 for i ∈ {5, 6},
�r(x) = x and er(x) = 0 for all r ∈ {

ri
j | i ∈ N \ {5, 6}, j ∈ {1, 2}},

�r(x) = 0 and er(x) = x for all r ∈
{

ri,j
k,l | i, j ∈ N \ {5, 6}, k, l ∈ {1, 2}

}

The game contains three different groups of players and two different groups
of resources. Players 1 to 4 and 7 to 10 each have two personal resources ri

1 and
ri
2 among which they have to choose. These are the only resources on which they

incur costs.
In addition to these resources, there are two times two resources correspond-

ing to each set consisting of two players from the same group (either 1 to 4
or 7 to 10). The two resources represent the two strategies which are available
to these players, and exist distinctly for both players 5 and 6. If player i plays
her first strategy, then she also allocates all resources that correspond to sets in
which i is contained and represent the first strategy.

In every state, the players 5 and 6 allocate one of the personal resources ri
j

for each player i ∈ {1, . . . , 4} and i ∈ {7, . . . , 10}, where the j is the same for
all players among a group. Additionally, for both groups they have to allocate a
resource that corresponds to one pair of players and represents the j that they
are not using (e. g., if player 5 allocates resource ri

1 for all players i ∈ {1, . . . , 4},
she must also allocate a resource that corresponds to a pair of players from
{1, . . . , 4} and represents strategy 2, and an analogous resource for the players
in {7, . . . , 10}).

These two additional resources are the ones on which players 5 and 6 incur
costs. Since they are interested in their bottleneck costs, their costs are equal to
the more expensive of the two.
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We can analyze this game by considering an arbitrary state. The strategy
sets of players 5 and 6 are constructed in such a way that in every state they
allocate the same personal resources of all players in {1, . . . , 4} or {7, . . . , 10}.

W. l. o. g. assume that they both allocate the resources r11, . . . , r
4
1. This implies

that the players 1 to 4 have a cost of 3 if they use the first resource, and a
cost of 1 if they allocate their second resource. Hence, this state cannot be a
β-approximate PNE with β < 3 if any of them play their first strategy.

If, on the other hand, all these players play their second strategy, players 5
and 6 incur a cost of 3 on their resources ri,j

1,2 and ri,j
2,2, respectively, independent of

which i and j they are using, since all players in {1, . . . , 4} allocate the resources
corresponding to strategy 2. Both player 5 and 6 could decrease the cost of the
resource corresponding to the first group to 1 by switching the strategy. However,
we have to take the other group into account as well.

If player 5 switches her strategy, she allocates the resource rk,l
1,1 for freely

selectable k and l in {7, . . . , 10}, which yields a cost of 1 if at least two players
from {7, . . . , 10} play the second strategy. Analogously, player 6 incurs a cost
of 1 on the resource corresponding to the second group if at least two play-
ers from this group play their first strategy. One of the two cases must hold,
which implies that either player 5 or player 6 can improve her cost from 3 to
1. Hence, in every state there is at least one player who can improve her cost
by a factor of 3, and there exists no β-approximate pure Nash equilibrium for
any β < 3. �	
On the positive side we can show small approximation factors for small strategy
sets. Besides matroid games, we can show approximation factors which are inde-
pendent of the structure of the strategy sets, but depend on either α-uniform
players or on equal cost functions:

Theorem 8. Let Γ be a congestion game with mixed objectives. Let d =
maxi∈N,Si∈Σi

|Si| be the maximal number of resources a player can allocate.

1. If Γ is a matroid congestion game, then Γ contains a d-approximate pure
Nash equilibrium.

2. If the players are α-uniform, then Γ contains a d-approximate pure Nash
equilibrium.

3. If er = �r for all resources r ∈ R, then Γ contains a
√

d-approximate pure
Nash equilibrium.

4. If the players are α-uniform and er = �r for all resources r ∈ R, then Γ
contains a β-approximate pure Nash equilibrium for β = d

α·(d−1)+1 .

Proof

1. The proof relies on the fact that PNE always exist in player-specific matroid
congestion games [1]. We define a player-specific congestion game Γ ′ with the
following cost functions: ci

r(S) = αi · �r(S) + (1 − αi) · er(S).
We show that every PNE in Γ ′ is a d-approximate pure Nash equilibrium

in Γ . Since PNE always exist in matroid player-specific congestion games, the
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claim follows. We denote by ci(S) the costs of player i in state S in Γ , and
by cp

i (S) the costs in Γ ′. Let Si be a best-response strategy w. r. t. S−i in Γ ′.
Then we get for all strategies S′

i ∈ Σi:

ci(S′
i, S−i) = αi ·

∑

r∈S′
i

�r(S′
i, S−i) + (1 − αi) · max

r∈S′
i

er(S′
i, S−i)

≥ αi ·
∑

r∈S′
i

�r(S′
i, S−i) + (1 − αi) · 1

d
·
∑

r∈S′
i

er(S′
i, S−i)

≥ 1
d

· cp
i (S

′
i, S−i) ≥ 1

d
· cp

i (Si, S−i) ≥ 1
d

· ci(Si, S−i)

2. We show that the function Φ(S) =
∑

r∈R

∑nr(S)
i=1 (α · �r(i) + (1 − α) · er(i))

is a d-approximate potential function, i. e., its value decreases in every d-
improvement step. Consider a state S and a player i who improves her costs
by a factor of more than d by deviating to the strategy S′

i:

Φ(S′
i,S−i)−Φ(S)

=
∑

r∈R

nr(S
′)∑

i=1

(α·�r(i)+(1−α)·er(i))−
∑

r∈R

nr(S)∑

i=1

(α·�r(i)+(1−α)·er(i))

≤α·
∑

r∈S′
i

�r(S′)+(1−α)·max
r∈S′

i

er(S′)+(1−α)·
∑

r∈S′
i

er(S′)−(1−α)·max
r∈S′

i

er(S′)

−
(

α·
∑

r∈Si

�r(S)+(1−α)·max
r∈Si

er(S)

)

≤ci(S′)−ci(S)+
∑

r∈S′
i

(1−α)·er(S′)−(1−α)·max
r∈S′

i

er(S′)

≤ci(S′)−ci(S)+(d−1)·ci(S′)<ci(S′)−d·ci(S′)+(d−1)·ci(S′)=0

3. We show that Φ(S) =
∑

r∈R

∑nr(S)
i=1 �r(i)2 is a

√
d-approximate potential

function. Consider a state S that is minimizing Φ and player i who deviates to
the strategy S′

i. Note that Φ(S)−Φ(S′
i, S−i) =

∑
r∈S �r(S)2 −∑

r∈S′ �r(S′)2.
Hence,

∑
r∈S �r(S)2 ≤ ∑

r∈S′ �r(S′)2.

ci(S′
i, S−i) =

∑

r∈S′
i

αi · �r(S′) + (1 − αi)max
r∈S′

i

�r(S′)

≥ αi ·
⎛

⎝
∑

r∈S′
i

�r(S′)2

⎞

⎠

1
2

+ (1 − αi) ·
(

max
r∈S′

i

�r(S′)2
) 1

2

≥ αi ·
(

1√
d

·
∑

r∈Si

�r(S)

)

+ (1 − αi) ·
(

1
d

·
(

∑

r∈Si

�r(S)2
)) 1

2

≥ αi√
d

·
∑

r∈Si

�r(S) +
1 − αi√

d
· max

r∈Si

�r(S) =
1√
d

· ci(S).
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4. We argue that Φ(S) =
∑

r∈R

∑nr(S)
i=1 �r(i) is an approximate potential

function. If the latency and bottleneck cost functions are identical for each
resource, we use the fact that the cost of the bottleneck resource is at least
as high as the average latency cost, i. e., maxr∈Si

er(S) ≥ 1
|Si|

∑
r∈Si

�r(S) ≥
1
d

∑
r∈Si

�r(S), which implies ci(S) = α·∑r∈Si
�r(S)+(1−α)·maxr∈Si

�r(S) ≥
(
α + 1−α

d

) ∑
r∈Si

�r(S).
Consider a state S and a player i who improves her costs by a factor of more
than β = d

α·(d−1)+1 by deviating to the strategy S′
i.

Φ(S′
i,S−i)−Φ(S)≤ci(S′)−ci(S)+

∑

r∈S′
i

(1−α)·�r(S′)−(1−α)·max
r∈S′

i

�r(S′)

≤ci(S′)−ci(S)+(1−α)·
(

1−1
d

)

·
∑

r∈S′
i

�r(S′)

≤ci(S′)−ci(S)+(1−α)·
(

1−1
d

)

· ci(S′)
α+ 1−α

d

=

(

1+
(1−α)·d−1

d

α+ 1−α
d

)

ci(S′)−ci(S)

=
(

1+
d−1

α·(d−1)+1
−1+

1
α·(d−1)+1

)

ci(S′)−ci(S)

=
d

α·(d−1)+1
ci(S′)−ci(S)<0

�	
We remark that the β given in the fourth case of Theorem8 is bounded from
above by 1

α . However, if α is close to 0, the bound of
√

d derived for general
games with �r = er for all resources, but without restrictions on the preference
values, may give a better approximation guarantee.

5 Conclusions

We studied a new class of games in which players seek to minimize the sum of
latency costs, the maximum of bottleneck costs, or a combination thereof. As
a promising avenue for future work it would be interesting to consider other
types of cost aggregation. This would be useful in scenarios with heterogeneous
players with different interests in which the resources represent not only links in
a network but also servers, routers, or any network functions in general.
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Abstract. Mastermind is a famous two-player game which has attracted
much attention in literature within the last years. In this work we inves-
tigate the static (also called non-adaptive) variant of Mastermind. The
principal rule is that the codemaker has to choose a secret consisting of
p pegs and c colors for each peg and the codebreaker may give a number
of guesses at once, where for each guess he receives information from
the codemaker. Using this information he has a final guess for the cor-
rect secret. The aim of the game is to minimize the number of guesses.
Whereas Goddard has investigated the static version of original Mas-
termind in 2003, we do such an investigation of its black-peg variant,
where the received information consists only of a number of black pegs
which corresponds to the number of pegs matching in the corresponding
question and the secret. As main result we present a strategy for this
game for p = 2 pegs and arbitrarily many colors c ≥ 3 colors and prove
its feasibility and optimality. Furthermore, by computer search we found
optimal strategies for 9 other pairs (p, c).

Keywords: Game theory · Logic game · Strategy · Static Mastermind

1 Introduction

Mastermind is a board game invented by Meirowitz in 1970 with interesting
applications in cryptography [7] and bioinformatics [8]. Mastermind is played
by two players, the codemaker and the codebreaker. Whereas the codemaker
chooses a secret code consisting of 4 pegs and 6 possible colors for each peg, the
codebreaker does not know this code and has to give several guesses, also called
questions, until the correct secret has been found. After each guess the code-
maker gives an answer how good the guess is. This answer consists of black and
white pegs, where each black peg corresponds to a peg of the codebreaker’s guess
which is correct in position and color, and each white peg corresponds to another
peg which is correct only in color. Clearly, the codebreaker wants to minimize
the number of questions needed to find the secret. For original Mastermind with
4 pegs and 6 colors an optimal strategy needs 5625/1296 ≈ 4.34 questions in the
average case [18], and 5 questions in the worst case [17]. Within the last years

c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 670–682, 2016.
DOI: 10.1007/978-3-319-48749-6 48
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much research has been done for Mastermind and its variants. Stuckman and
Zhang showed that the decision problem corresponding to Generalized Master-
mind with p pegs and c colors, i.e., the problem, whether a secret exists which sat-
isfies a given set of questions and answers, is NP-complete [19]. Further theoret-
ical results about the hardness of Mastermind can be found in [5,20]. An analysis
of optimal strategies has been presented for original Mastermind [3,10,12], and
for several of its variants, e.g., for the black-peg variant, where the white pegs
are ignored in the answers [11,13], the AB game, where the colors in all question
and in the secret must be different [2,15], and Constant-Size Memory Master-
mind, where the codebreaker may only store a constant number of questions and
answers during the game [6,14,16].

In this work we investigate a further variant of Mastermind, called Static
Mastermind (or Non-Adaptive Mastermind), where the codebreaker has to give
all questions at the beginning of the game, then receives all codemaker’s answers,
and finally, has to give the correct answer. For fixed p, c ∈ N, define s(p, c) as
the worst case number of questions of an optimal strategy of (p, c)-Static Mas-
termind. Chvátal showed that for fixed c it holds that s(p, c) = O(p/ log p) [4].
Goddard developed an optimal �2c/3�-strategy for two pegs, an optimal (c− 1)-
strategy for three pegs and an optimal (c − 1)-strategy for four pegs, where c is
sufficiently large [9]. An application of Static Mastermind for string and vector
databases was given in [1].

Consider the black-peg variant of this game, i.e., we only allow to give a
number of black pegs as an answer, where each black peg stands for one peg
which is correct in position and color. We call this variant Static Black-Peg
Mastermind. To the best of our knowledge, this variant has not been investigated
in literature.

As main result we present a strategy for the case of two pegs and arbitrarily
many colors c ≥ 3 and prove that this strategy is feasible and optimal.

This work is organized as follows. In Sect. 2 we give some basic notations and
explanations. In Sect. 3 we present a �(4c − 1)/3�-strategy for the case of two
pegs and arbitrarily many colors c ≥ 3, in Sect. 4 we prove its feasibility and in
Sect. 5 its optimality. In Sect. 6 based on computer search we provide optimal
strategies for 9 other pairs (p, c) and feasible strategies for 11 other pairs (p, c).
Finally, we give some suggestions for future work.

2 Preliminaries

Let p denote the number of pegs and c the number of colors. If p and c are fixed,
we call the game (p, c)-Static Black-Peg Mastermind. The possible answers are
written as 0B, 1B, 2B, . . . , pB. Each strategy for Static Black-Peg Mastermind
with r questions starts with r − 1 questions which the codebreaker has to ask
at the beginning of the game. We call these questions main questions. After
the codebreaker has received all r − 1 answers to these main questions, he has
to ask the final question, which has to be correct and thus receive the answer
pB. We call each such strategy a feasible r-strategy, and only feasible strategy,



672 G. Jäger

if we do not focus on the number of questions. If after answering the r − 1
main questions at least two secrets are possible, then we call the corresponding
strategy an infeasible r-strategy or only infeasible strategy. The strategy is called
optimal, if there is no feasible r′-strategy with r′ < r. For fixed p, c ∈ N, define
sb(p, c) as the worst case number of questions of a an optimal strategy of (p, c)-
Static Black-Peg Mastermind. Obviously, regarding optimal strategies it makes
no sense to ask the same question twice. Thus, we can assume that the questions
within a strategy are pairwise disjoint. In the following let the pegs be numbered
by 1, 2 . . . , p and the colors by 1, 2, . . . , c.

The following observation enables us to speed up a computer based brute
force search.

Observation 1. For Static Black-Peg Mastermind (and also for original Black-
peg Mastermind) it holds that for a given question the codemaker can answer
each peg independently by 0B or 1B and receive the overall answer by adding all
answers 1B. E.g., if we consider p pegs and c colors, there would be an equivalent
game containing pc colors, where each peg has c separate colors.

It follows:

Proposition 1. Each strategy of Static Mastermind can be assumed to start
with (1, 1, . . . , 1) as first main question.

We implemented a computer program in the programming language C++
which checks for given values of p, c and r ∈ N, whether there exists a feasi-
ble r-strategy for (p, c)-Static Black-Peg Mastermind or not. This program is
a naive brute force search algorithm, which checks all possible strategies, i.e.,
all combinations of questions, for being a feasible strategy or not. Note that by
Proposition 1 we can fix the first question in this computer program and thus
significantly reduce the search space. The program also allows to check whether
a given strategy is feasible or not, and thus it can verify the theoretical result
of this work for p = 2. All experiments were done on a standard desktop in a
Unix-based system. The source code of this computer program is available online
at [21].

Remark 1. Note that the cases c = 1 and p = 1 are trivial:

(a) For c = 1, without any main questions the correct secret can be identified in
one final question as (1, 1, . . . , 1). Thus, it holds that sb(p, 1) = 1 for all p.

(b) For p = 1, after c − 1 main questions the correct secret can be identified in
the final question. Thus, it holds that sb(1, c) = c for all c.

3 Two Pegs Strategy

In this section and the following sections let p = 2. We introduce a �(4c − 1)/3�-
strategy for each c, where we distinguish between the cases c ≡ 0mod 3,
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c ≡ 1mod 3, c ≡ 2mod 3. For the number k := �(4c − 1)/3� − 1 of main
questions it holds that

k =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

4
3

· c − 1 = 4 · c

3
− 1 ≡ 3 mod 4 for c ≡ 0 mod 3

4
3

· c − 4
3

= 4 · c − 1
3

≡ 0 mod 4 for c ≡ 1 mod 3

4
3

· c − 2
3

= 4 · c − 2
3

+ 2 ≡ 2 mod 4 for c ≡ 2 mod 3

.

Strategy 1 (�(4c − 1)/3�-strategy for p = 2 and arbitrary c ≡ 0 mod 3).

1. Divide the k main questions into two blocks of questions, the first (k − 1)/2
questions and the second (k + 1)/2 questions.

2. The first peg contains the colors 1, 2, . . . , (k − 1)/2 in the first block and the
colors (k+1)/2, (k+1)/2, (k+1)/2+1, (k+1)/2+1, . . . , 3(k+1)/4−1, 3(k+
1)/4 − 1(= c − 1) in the second block.

3. The second peg contains the colors (k + 1)/2 + 1, (k + 1)/2 + 1, (k + 1)/2 +
1, (k + 1)/2 + 2, (k + 1)/2 + 2, . . . , 3(k + 1)/4 − 1, 3(k + 1)/4 − 1 in the first
block and the colors 1, 2, . . . , (k + 1)/2 in the second block (note that the first
number (k + 1)/2 + 1 occurs three times, not only twice).

4. The last color k = 3(k + 1)/4 = c is not used in the questions at all.
5. Finally, the secret has to be asked as final question Qk+1.

Strategy 2 (�(4c − 1)/3�-strategy for p = 2 and arbitrary c ≡ 1 mod 3).

1. Divide the k main questions into two blocks of questions, the first k/2 ques-
tions and the second k/2 questions.

2. The first peg contains the colors 1, 2, . . . , k/2 in the first block and the colors
k/2 + 1, k/2 + 1, k/2 + 2, k/2 + 2 . . . , 3k/4, 3k/4(= c− 1) in the second block.

3. The second peg is received from the first peg by switching the role of the two
blocks.

4. The last color k = 3k/4 + 1 = c is not used in the questions at all.
5. Finally, the secret has to be asked as final question Qk+1.

Strategy 3 (�(4c − 1)/3�-strategy for p = 2 and arbitrary c ≡ 2 mod 3,
c �= 2).

1. Divide the k main questions into two blocks of questions, the first k/2 ques-
tions and the second k/2 questions.

2. The first peg contains the colors 1, 2, . . . , k/2 in the first block and the colors
k/2+1, k/2+1, k/2+1, k/2+2, k/2+2 . . . , 3(k−2)/4+1, 3(k−2)/4+1(= c−1)
in the second block (note that the first number k/2+1 occurs three times, not
only twice).

3. The second peg is received from the first peg by switching the role of the two
blocks.

4. The last color k = 3(k − 2)/4 + 2 = c is not used in the questions at all.
5. Finally, the secret has to be asked as final question Qk+1.
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As examples, the main questions of Strategy 1 for p = 2 and c = 9 with
k = 11 questions, Strategy 2 for p = 2 and c = 10 with k = 12 questions, and
Strategy 3 for p = 2 and c = 11 with k = 14 questions are listed in Table 1a–c,
respectively.

Table 1. Examples for Strategies 1, 2 and 3 with p = 2.

Peg 1 2
Q1 1 7
Q2 2 7
Q3 3 7
Q4 4 8
Q5 5 8
Q6 6 1
Q7 6 2
Q8 7 3
Q9 7 4
Q10 8 5
Q11 8 6

(a) c=9.

Peg 1 2
Q1 1 7
Q2 2 7
Q3 3 8
Q4 4 8
Q5 5 9
Q6 6 9
Q7 7 1
Q8 7 2
Q9 8 3
Q10 8 4
Q11 9 5
Q12 9 6
(b) c=10.

Peg 1 2
Q1 1 8
Q2 2 8
Q3 3 8
Q4 4 9
Q5 5 9
Q6 6 10
Q7 7 10
Q8 8 1
Q9 8 2
Q10 8 3
Q11 9 4
Q12 9 5
Q13 10 6
Q14 10 7

(c) c=11.

Remark 2. Strategy 3 for the trivial case p = 2 and c = 2 containing 2 questions
(the main question (1, 1) and the final question) is not feasible, as the possible
secrets (1, 2) and (2, 1) are indistinguishable. By Propostion 1, there is also no
other feasible strategy with only two questions. However, the strategy with the
two main questions (1, 1) and (1, 2) is feasible.

For proving the following result we need to define the notion of neighboring
main questions.

Definition 1. For a given strategy for two pegs, two main questions are called
neighboring main questions, if they have one color in common in exactly one
peg. We say that they overlap in this peg.

E.g., in Table 1a the main question 1, which is (1, 7), and the main question 3,
which is (3, 7), are neighboring main questions as well as the main question 4,
which is (4, 8), and the main question 5, which is (5, 8).
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Observation 2. For the three Strategies 1, 2 and 3 it holds:

1. The last color c does not occur in any main question, but all other colors
occur in both pegs of the main questions.

2. There are exactly two blocks of questions.
3. Each main question contains one color which occurs only once in the corre-

sponding peg of the main questions, and another color which occurs twice or
three times in the corresponding peg.
E.g., consider the main question (6, 2) in Table 1a. Then the first color 6
occurs twice, namely in the main questions (6, 1) and (6, 2), whereas the sec-
ond color 2 occurs only once, namely in the main question (6, 2).

4. Each main question has one or two neighboring main questions.
E.g., the main question (6, 2) has one neighboring main question, which is
(6, 1).

5. The case that one color occurs more than twice, namely three times, appears
only in the second peg of Strategy 1 and in the first and second peg of
Strategy 3.

4 Feasibility of Two Pegs Strategy

Theorem 1. Strategies 1, 2 and 3 are feasible �(4c − 1)/3�-strategies for p = 2
and for the corresponding c ≥ 3.

Proof. Consider the Strategies 1, 2 and 3. We use Observation 2 and illustrate the
argumentation by examples from Table 1a. We have to show that each possible
secret (a, b) can be uniquely determined by the combination of answers. We
distinguish the following cases:

1. One answer is 2B.
Clearly, the possible secret is uniquely determined by this answer.

2. All answers are 0B.
By Observation 2.1, the color c occurs twice in the possible secret, i.e., the
only possible secret is (c, c).
E.g., in Table 1a, this possible secret is (9, 9).

3. One answer is 1B and the other answers are 0B.
Let the main question corresponding to the answer 1B be (a, b).
If a occurs only once in the first peg of the main questions, then by Observa-
tion 2.3, b occurs at least twice in the second peg of the main questions. As
there is only one answer 1B, a is correct in the first peg, and for the second
peg only the color c remains. I.e., the only possible secret is (a, c).
E.g., for the possible secret (4, 9) the main question (4, 8) receives the answer
1B, and all other answers are 0B.
If a occurs at least twice in the first peg, analogously the only possible secret
is (c, b).
E.g., for the possible secret (9, 3) the main question (7, 3) receives the answer
1B, and all other answers are 0B.



676 G. Jäger

4. Two answers are 1B and the two corresponding main questions are not neigh-
boring main questions. The other answers are 0B.
Let the two main questions corresponding to the answers 1B be (a, b) and
(d, e)1, where b �= e and w.l.o.g., a < d. Then a occurs only once in the
first peg of the main questions and e occurs only once in the second peg of
the main questions, while by Observation 2.3, b occurs at least twice in the
second peg of the the main questions and d at least twice in the first peg
of the main questions. As there are only two answers 1B, a is correct in the
first peg, and e in the second peg. I.e., the only possible secret is (a, e).
E.g., for the possible secret (3, 2) the main questions (3, 7) and (6, 2) receive
the answer 1B, and all other answers are 0B.

5. Two answers are 1B and the two corresponding main questions are neigh-
boring main questions. The other answers are 0B.
W.l.o.g., the two main questions overlap in the second peg. Let the two main
questions corresponding to the answers 1B be (a, b) and (d, b). By Observa-
tion 2.3, a and d occur only once in the first peg of the main questions, and
b is correct in the second peg. For the first peg only the color c remains. I.e.,
the only possible secret is (c, b).
E.g., for the possible secret (9, 8) the main questions (4, 8) and (5, 8) receive
the answer 1B, and all other answers are 0B.

6. Three answers are 1B and the three corresponding main questions are pair-
wise neighboring main questions. The other answers are 0B.
W.l.o.g., the three pairwise neighboring main questions overlap in the second
peg. Let the three main questions corresponding to the answers 1B be (a, b),
(d, b) and (e, b). Analogously to case 5, the only possible secret is (c, b).
E.g., for the possible secret (9, 7) the main questions (1, 7), (2, 7) and (3, 7)
receive the answer 1B, and all other answers are 0B.

7. Three answers are 1B and the three corresponding main questions are not
pairwise neighboring main questions. The other answers are 0B.
Then two of the three main questions are neighboring main questions.
W.l.o.g., they overlap in the second peg. Let the three main questions corre-
sponding to the answers 1B be (a, b), (d, b) and (e, f). Analogously to case 5,
b is correct in the second peg. As also the main question (e, f) receives the
answer 1B, the only possible secret is (e, b).
E.g., for the possible secret (3, 8) the main questions (3, 7), (4, 8) and (5, 8)
receive the answer 1B, and all other answers are 0B.

8. Four answers are 1B and two pairs of corresponding main questions are
neighboring main questions. The other answers are 0B.
One pair of neighboring main questions overlaps in the first peg, and the
other pair in the second peg. Let the four main questions corresponding to
the answers 1B be (a, b), (a, d), (e, f) and (g, f). By Observation 2.3, a is
correct in the first peg and f in the second peg. Thus, the only possible
secret is (a, f).

1 Note that the parameter c is reserved for the number of colors. So we use the
parameters a, b, d, e, . . . here.
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E.g., for the possible secret (6, 8) the main questions (4, 8), (5, 8), (6, 1) and
(6, 2) receive the answer 1B, and all other answers are 0B.

9. Four answers are 1B and three corresponding main questions are pairwise
neighboring main questions. The other answers are 0B.
W.l.o.g., let the three pairwise neighboring main questions overlap in the
second peg. Let the four main questions corresponding to the answers 1B
be (a, b), (d, b), (e, b) and (f, g). Analogously to case 5, b is correct in the
second peg. As also the main question (f, g) receives the answer 1B, the only
possible secret is (f, b).
E.g., for the possible secret (4, 7) the main questions (1, 7), (2, 7), (3, 7) and
(4, 8) receive the answer 1B and all other answers are 0B.

10. Five answers are 1B, and the other answers are 0B.
Then three main questions are pairwise neighboring main questions. W.l.o.g,
they overlap in the second peg. Let the five main questions corresponding to
the answers 1B be (a, b) (d, b), (e, b), (f, g) and (f, h). Analogously to case 5,
b is correct in the second peg and f in the first peg. Thus, the only possible
secret is (f, b).
E.g., for the possible secret (6, 7) the main questions (1, 7), (2, 7), (3, 7), (6, 1)
and (6, 2) receive the answer 1B, and all other answers are 0B.

11. Six answers are 1B, and the other answers are 0B.
This case can only hold for Strategy 3. Then there are three main questions
which are pairwise neighboring main questions and three further main ques-
tions which are also pairwise neighboring main questions. Let the six main
questions corresponding to the answers 1B be (a, b) (d, b), (e, b), (f, g), (f, h)
and (f, i). Analogously to case 5, b is correct in the second peg and f in the
first peg. Thus, the only possible secret is (f, b).
E.g., for the possible secret (8, 8) (here in Table 1c!) the main questions
(1, 8), (2, 8), (3, 8), (8, 1), (8, 2) and (8, 3) receive the answer 1B, and all
other answers are 0B. 	


5 Optimality of Two Pegs Strategy

Theorem 2. Strategies 1, 2 and 3 are optimal for p = 2 and for the corre-
sponding c ≥ 3, i.e., sb(2, c) = �(4c − 1)/3� for arbitrary c.

For proving this main theorem we need one definition and two lemmas.

Definition 2. Let a strategy for Static Black-Peg Mastermind with two pegs
be given. A main question of this strategy is called (1, 1)-question, if the first
color of the question occurs only once in the first peg of all main questions and
the second color of the question occurs only once in the second peg of all main
questions.

Lemma 1. For Static Black-Peg Mastermind with two pegs it holds for each
feasible strategy that there exists at most one color which does not occur in the
first peg of all main questions of the strategy, and at most one color which does
not occur in the second peg of all main questions.
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Proof. Assume that for a feasible strategy there are two colors a and b which
do not occur in the first peg of the main questions. Consider an arbitrary
color x. Then the possible secrets (a, x) and (b, x) receive the same combina-
tion of answers in the main questions. Thus, they are indistinguishable, and the
secret cannot be found after the main questions in all cases. So we have a con-
tradiction, and the strategy is not feasible. Thus, there exists at most one color
which does not occur in the first peg of the main questions.

Analogously, it can be shown that there exists at most one color which does
not occur in the second peg of the main questions. 	

Lemma 2. For Static Black-Peg Mastermind with two pegs it holds:

(a) Each feasible strategy contains at most one (1, 1)-question in the main
questions.

(b) If a feasible strategy contains exactly one (1, 1)-question in the main ques-
tions, then in at least one of the two pegs of the main questions, all c colors
must occur.

Proof. (a) Assume that a feasible strategy contains two different (1, 1)-questions
in the main questions, say (a, b) and (d, e), where a �= d and b �= e. Then the
possible secrets (a, e) and (d, b) receive the answer 1B for each of the questions
(a, b) and (d, e), and 0B for all other questions of the main questions, i.e., the
same combination of answers. Thus, these possible secrets (a, e) and (d, b) are
indistinguishable, and the secret cannot be found after the main questions in all
cases. So we have a contradiction, and the strategy is not feasible. Therefore,
the assertion follows.
(b) Let a feasible strategy contain exactly one (1, 1)-question in the main ques-
tions, say (a, b). Assume that there is a color d which does not occur in the first
peg of the main questions and a color e which does not occur in the second
peg of the main questions. Then the possible secrets (a, e) and (d, b) receive the
answer 1B for the question (a, b), and 0B for all other questions of the main
questions, i.e., the same combination of answers. Thus, these possible secrets
(a, e) and (d, b) are indistinguishable, and the secret cannot be found after the
main questions in all cases. So we have a contradiction, and the strategy is not
feasible. Therefore, the assertion follows. 	

Proof of Theorem 2. The case c = 1 is trivial, as �(4 · 1 − 1)/3� = 1. The case
c = 2 has been considered in Remark 2 and is also clear, as �(4 · 2 − 1)/3� = 3.
Thus, in the following let c > 2. Assume that there are better strategies than
the Strategies 1, 2 and 3.

By Lemma 1, in each of the two pegs we have at least c − 1 colors. To find
a better strategy, there should be as many colors as possible which occur only
once in the corresponding peg. However, by Lemma 2(a) there is a restriction
that at most one (1, 1)-question may occur in the main questions. Clearly, all
other of the c − 1 or c colors should occur twice, and if some main questions
remain, also three or more times. We distinguish the following cases:
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1. c ≡ 0 mod 3:
Assume now that there is a better feasible strategy than Strategy 1. It is
sufficient to assume that there is a strategy which is better by one question,
i.e., which needs 4

3 · c − 2 = �(4c − 1)/3� − 2 main questions. Furthermore,
assume that at most 2

3 · c− 1 colors occur only once in one peg. Then at least
c − 1 − (

2
3 · c − 1

)
colors occur twice or more times. Then the cardinality of

main questions is at least

2
3

· c − 1 + 2 ·
(

c − 1 −
(

2
3

· c − 1
))

=
4
3

· c − 1

I.e., there is one main question too much. Thus, at least 2
3 · c colors occur

only once. Because of

2 · 2
3

· c =
4
3

· c − 2 + 2

there are two (1, 1)-questions in the main questions. By Lemma 2(a), the
received strategy is not feasible. Thus, there is no better feasible strategy
than Strategy 1.

2. c ≡ 1 mod 3:
Assume now that there is a better feasible strategy than Strategy 2. It is
sufficient to assume that there is a strategy which is better by one question,
i.e., which needs 4

3 · c − 7
3 = �(4c − 1)/3� − 2 main questions. Furthermore,

assume that at most 2
3 · c− 2

3 colors occur only once in one peg. Then at least
c − 1 − (

2
3 · c − 2

3

)
colors occur twice or more times. Then the cardinality of

main questions is at least

2
3

· c − 2
3

+ 2 ·
(

c − 1 −
(

2
3

· c − 2
3

))

=
4
3

· c − 4
3

I.e., there is one main question too much. Thus, at least 2
3 · c+ 1

3 colors occur
only once. Because of

2 ·
(

2
3

· c +
1
3

)

=
4
3

· c − 7
3

+ 3

there are three (1, 1)-questions in the main questions. By Lemma 2(a), the
received strategy is not feasible. Thus, there is no better feasible strategy
than Strategy 2.

3. c ≡ 2 mod 3:
Assume now that there is a better feasible strategy than Strategy 3. It is
sufficient to assume that there is a strategy which is better by one question,
i.e., which needs 4

3 · c− 5
3 = �(4c − 1)/3�−2 main questions. We consider two

sub-cases:
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(i) One color is not used in any main question.
Assume that at most 2

3 · c − 4
3 colors occur only once in one peg. Then

at least c − 1 − (
2
3 · c − 4

3

)
colors occur twice or more times. Then the

cardinality of main questions is at least

2
3

· c − 4
3

+ 2 ·
(

c − 1 −
(

2
3

· c − 4
3

))

=
4
3

· c − 2
3

I.e., there is one main question too much. Thus, at least 2
3 · c − 1

3 colors
occur only once. Because of

2 ·
(

2
3

· c − 1
3

)

=
4
3

· c − 5
3

+ 1

there is one (1, 1)-question in the main questions. By assumption and by
Lemma 2(b), the received strategy is not feasible.

(ii) In one peg of the main questions all colors are used.
W.l.o.g., let this peg be the first peg. Assume that at most 2

3 · c − 1
3

colors occur only once in the first peg. Then at least c− (
2
3 · c − 1

3

)
colors

occur twice or more times in the first peg. Then the cardinality of main
questions is at least

2
3

· c − 1
3

+ 2 ·
(

c −
(

2
3

· c − 1
3

))

=
4
3

· c +
1
3

I.e., there are two main questions too much. Thus, at least 2
3 · c+ 2

3 colors
occur only once in the first peg.
Analogously to (i) it can be shown that at least 2

3 · c− 1
3 colors occur only

once in the second peg.
Because of

(
2
3

· c +
2
3

)

+
(

2
3

· c − 1
3

)

=
4
3

· c − 5
3

+ 2

there are two (1, 1)-questions in the main questions. By Lemma 2(a), the
received strategy is not feasible. Thus, there is no better feasible strategy
than Strategy 3. 	


6 Summary of Results and Future Work

As main result of this work we have introduced a �(4c−1)/3�-strategy for Static
Black-Peg Mastermind for the case of p = 2 pegs and arbitrarily many colors
c ≥ 3 and proved its feasibility and optimality.

By doing additional tests with our computer program we received opti-
mal strategies for the following 9 pairs (p, c): (3, 2), (3, 3), (3, 3), (4, 2), (4, 3),
(5, 2), (5, 3), (6, 2) and (7, 2), and give upper bounds for 11 other pairs (p, c).
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Table 2. Summary of results for values sb(p, c).

p
1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
2 2 3 4 5 5 6 7 ≤ 8 ≤ 9
3 3 4 5 6 6 ≤ 7 ≤ 8 ≤ 9 ≤ 10

c 4 4 5 7
5 5 7 ≤ 8
6 6 8 ≤ 10
7 7 9 ≤ 12
8 8 11 ≤ 13
9 9 12 ≤ 15

We summarize our results in Table 2, where we give for the relevant pairs of
values (p, c) either exact values sb(p, c) or upper bounds.

Our suggestion for future work is to find optimal strategies for more pairs
(p, c), where p is a small constant (other than p = 2) and c is arbitrary, or c is
a small constant and p is arbitrary.

Another research direction would be to create a more effective program for
finding optimal strategies, which is able to find optimal strategies for significantly
more pairs (p, c).
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Abstract. The incentive ratio measures the utility gains from strate-
gic behaviour. Without any restrictions on the setup, ratios for linear,
Leontief and Cobb–Douglas exchange markets are unbounded, showing
that manipulating the equilibrium is a worthwhile endeavour, even if it
is computationally challenging. Such unbounded improvements can be
achieved even if agents only misreport their utility functions. This pro-
vides a sharp contrast with previous results from Fisher markets. When
the Cobb–Douglas setup is more restrictive, the maximum utility gain
is bounded by the number of commodities. By means of an example,
we show that it is possible to exceed a known upper bound for Fisher
markets in exchange economies.

Keywords: Incentive ratio · Competitive equilibrium · Equilibrium
manipulation · Utility function · Exchange economy

1 Introduction

General equilibrium theory and (noncooperative) game theory are among the
most succesful and well-studied areas in economic theory. The former seeks to
explain the existence of equilibria in multiple markets at the same time. The
latter serves as the primary tool for predicting, analysing and describing the
behaviour of rational agents’ actions both in and out of equilibrium.

Here we try to combine the two approaches for exchange economies. Specif-
ically, we ask how much any individual agent can gain from strategically mis-
reporting his utility function. The results presented here suggest that, contrary
to previous findings in Fisher markets, the gains from strategic behaviour may
be significant, even allowing an agent to improve his equilibrium utility without
bound. If we impose (common) restrictions, the utility gain in Cobb–Douglas
markets is bounded by the number of commodities, but it may exceed the upper
bound from Fisher markets, which can be shown by means of an example. The
results obtained show a sharp contrast with the findings in the Fisher market
setup [6,7]: there, incentive ratios are bounded by the small constants 2, 2 and
e1/e ≈ 1.44 for linear, Leontief and Cobb–Douglas markets, respectively.

1.1 Related Work

In a Fisher market [3] agents possess an amount of money rather than a bun-
dle of commodities as in exchange economies. The idea that an agent may act
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 685–692, 2016.
DOI: 10.1007/978-3-319-48749-6 49
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strategically in such a market by misreporting his utility function in order to
get a better equilibrium bundle, compared to the scenario where everyone is
truthful, was already considered in [1] for the case of linear utility functions.
The incentive ratio was first coined in [7], where the strategic variable of interest
is the (Leontief) utility function of a player and bidding the true budget is a
dominant strategy. In [5,6], a slightly more sophisticated version of the incen-
tive ratio is presented, in which players may also strategise on their endowments.
The “exchange market game” is introduced in [11], and agents have linear utility
functions. They may lie about their utility function to manipulate the outcome
of the exchange process. It is consequently shown that a symmetric strategy pro-
file is a Nash equilibrium if and only if it is conflict-free. In [4], price of anarchy
bounds are computed for linear, Leontief and Cobb–Douglas markets in Fisher
markets. The strategic variable of interest is the utility function. It primarily
differs from the analysis presented here in that it focuses on welfare of all agents
rather than measuring the benefits of strategic behaviour for one specific agent.
It is known that the Walrasian mechanism is susceptible to manipulation via
endowments: via withholding endowments and recovering it fully [13], recover-
ing part of it [15,16] and even destroying part of one’s initial endowment [2].
However, the aforementioned studies only show that manipulation of the equi-
librium is possible, but do not quantify it.

The rest of this paper is organised as follows. Section 2 discusses the nec-
essary machinery, definitions and introduces some notation. Section 3 presents
the results for incentive ratios in Linear, Leontief and Cobb–Douglas exchange
economies. The latter receives most attention. Finally, Sect. 4 concludes and
provides some directions for future research.

2 Preliminaries

We use the following notation. Suppose x, y ∈ R
n. Then x · y =

∑n
k=1 xkyk

denotes the dot product of x and y. x ≤ y means xk ≤ yk for k =
1, . . . , n. For a vector u = (u1, . . . , un), by u−i we mean the vector
(u1, . . . , ui−1, ui+1, . . . , un) (i.e. all entries except the i-th). We write (ui, u−i)
for (u1, . . . , ui−1, ui, ui+1, . . . , un). For positive integer n, we use [n] as shorthand
notation for the set {1, . . . , n}. Im is the m × m identity matrix. The transpose
of a matrix M is denoted by MT , its determinant by |M | and its adjugate by
Adj(M). If f : Rm → R

n, then Df(x) represents the Jacobian matrix of f at x.
We start with the definition of an exchange economy.

Definition 1 (Exchange Economy). An (exchange) economy is a tuple ξ =
((ui)n

i=1, (ei)n
i=1), where ui : Rm

+ → R is the utility function of agent i ∈ [n] and
ei ∈ R

m
+ is a vector where eij indicates how much agent i ∈ [n] possesses of

commodity j ∈ [m].

In an economy, agents obtain a bundle xi ∈ R
m
+ by trading commodities

given a price vector p ∈ R
m. If p is such a price vector, then every agent solves

the following consumer problem (CP).
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Definition 2 (Demand).

maximize ui(xi)
subject to p · xi ≤ p · ei

xi ≥ 0
(CP)

We call the set of solutions to problem (CP) the demand of agent i (at prices p).

We can write xi(p, p ·ei) to show explicitly that demand depends on endowments
and prices. Since prices are in turn determined by endowments and utility func-
tions, we may also write xi(ui, u−i, e) or, when it is understood that u−i and e
are fixed, simply as xi(ui). We also need the notion of Walrasian or competitive
equilibrium.

Definition 3 (Competitive/Walrasian Equilibrium). A competitive equi-
librium is a pair (p, x) ∈ R

m × (Rm
+ )n such that:

1. For all j ∈ [m],
∑n

i=1 xij =
∑n

i=1 eij i.e. markets clear.
2. For all i ∈ [n], xi is a solution to (CP), i.e. xi is the best bundle among the

bundles that he can afford.

2.1 Incentive Ratio

Every agent is characterized by two parameters, his endowment ei and his utility
function ui. Generally, different endowments and different utility functions will
lead to different equilibria. What if an agent purposely misreports his utility
function, thereby trying to get a better equilibrium allocation?

The incentive ratio is a concept introduced in [7]. It attempts to measure the
(maximum) benefits of manipulating the equilibrium by strategically misreport-
ing personal parameters. Formally, we define it as follows (adapted for exchange
economies, the original definition was for Fisher markets, see also [5–7]):

Definition 4 (Incentive Ratio). The incentive ratio of agent i in a market
M (e.g. linear, Cobb–Douglas or Leontief), denoted ζM

i , is defined as:

ζM
i = max

u−i∈U−i,e−i∈(Rm
+ )n−1

max
u′
i∈Ui

maxx′∈E(u′
i)

ui(x′
i(u

′
i, u−i, e))

minx∈E(ui) ui(xi(ui, u−i, e))
.

The incentive ratio of market M is subsequently defined as ζM = maxi∈[n] ζ
M
i .

Remark 1. In this definition:

– Variables with a prime (′) refer to the scenario in which agent i misreports
his parameters (and all other agents report truthfully). That is, he reports
u′

i and as a result, obtains a bundle x′
i(u

′
i, u−i, e). Notice that this bundle is

evaluated by the true utility function.
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– Given that player i reports ũi (i.e. truthful or not) as his utility function (the
other players report u−i), we denote by E(ũi) the set of equilibrium allocations,
that is, E(ũi) = {x ∈ (Rm

+ )n| ∃p ∈ R
m
+ (p, x) is a Walras equilibrium}. Under

some (mild) assumptions this set is nonempty, but it could contain multiple
equilibrium allocations.

– Ui contains the admissible strategies/utility functions for player i, including
the one that agent he chooses when he misreports his utility function. We
denote U−i =

∏
k �=i Uk. We will only consider the case where all Uk’s are

equal, thus U−i = Un−1.
– From the preceding arguments, we may restrict attention to agent i, thus we

may rewrite the incentive ratio for the market M as

ζM = max
u−i∈Un−1,e−i∈(Rm

+ )n−1
max
u′
i∈U

maxx′∈E(u′
i)

ui(x′
i(u

′
i, u−i, e))

minx∈E(ui) ui(xi(ui, u−i, e))
.

We will, without loss of generality, restrict ourselves to scenarios where ei ∈
[0, 1]m for all i ∈ [n] and

∑n
i=1 eij = 1 for all j ∈ [m]. The following Leontief

example shows that the consequences from the nonuniqueness of equilibrium can
be significant.

Example 1. e1 = (1 − ε, ε), e2 = (ε, 1 − ε), u2(x2) = min{x21, x22}, ε > 0, small

Truthful Nontruthful

u1(x1) = min{x11, x12} u′
1(x

′
1) = min{x′

11, x
′
12}

then then
p = (δ, 1) p′ = (1, 1)
x1 = ((ε + δ − δε)/(1 + δ), (ε + δ − δε)/(1 + δ)) x′

1 = (1/2, 1/2)
x2 = (1 − ε + δε)/(1 + δ), (1 − ε + δε)/(1 + δ)) x′

2 = (1/2, 1/2)

We have u1(x′
1)/u1(x1) = (1 + δ)/(2(ε + δ − δε)). Letting δ, ε tend to 0, the

incentive ratio tends to ∞.

In [6,7], the following markets are considered, with arbitrarily many agents
and commodities: Linear, i.e. U = {u(x) = α · x | α ∈ R

m
+}; Leontief, i.e.

U = {u(x) = minj∈[m]{xj/αj} | α ∈ R
m
++}; Cobb–Douglas, i.e. U = {u(x) =∏m

j=1 x
αj

j | 0 ≤ αj ≤ 1 for all j ∈ [m],
∑m

j=1 αj = 1}. The tight bounds for Fisher
markets are 2, 2 and e1/e for linear, Leontief and Cobb–Douglas respectively.

3 Results

The incentive ratio is a first step to quantifying the possible gains of misre-
porting in exchange economies. From Example 1, even destroying part of one’s
initial endowment (in the case ei is the strategic variable of interest), can let the
incentive ratio tend to infinity.

Without any further restrictions on the setup presented in [6,7], also incentive
ratios in linear and Cobb–Douglas exchange economies are unbounded. We treat
here linear markets; see [12] for details on the Cobb–Douglas case.
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Proposition 1. The incentive ratio for linear exchange economies equals +∞.

Proof. e1 = (ε, 1 − ε), e2 = (1 − ε, ε), u2(x2) = x21 + δ
1−εx22, δ, ε > 0, small

Truthful Nontruthful

u1(x1) = x11 u′
1(x

′
1) = x′

11 +
δ

1 − ε
x′
12

p = (1, δ/(1 − ε)) p′ = (1, δ/(1 − ε))
x1 = (δ + ε, 0), x2 = (1 − δ − ε, 1) x′

1 = (1, 0), x′
2 = (0, 1)

We have u1(x′
1)/u1(x1) = 1/(δ + ε). Letting both δ, ε tend to 0, the incentive

ratio tends to ∞. 	

Henceforth we focus on Cobb–Douglas markets and make the following assump-
tion to ensure all equilibrium prices are positive; this is rather standard in algo-
rithmic game theory.1

Assumption 1

– (Positivity of endowments). Every agent possesses a strictly positive amount
of every commodity: ∀i ∈ [n],∀j ∈ [m] eij > 0.

– (Strong competitiveness (see e.g. [4])). Every commodity is demanded by at
least one agent: ∀j ∈ [m] ∃i ∈ [n] αij > 0 and this remains true when agent i
reports α′

i.

This entails that the demand of agent i ∈ [n] for commodity j ∈ [m] is given
by xij(p, p · ei) = αijp · ei/pj and the economy excess demand function z(p) :=∑n

i=1(xi(p, p · ei) − ei) =
∑n

i=1 xi(p, p · ei) − 1 has the gross substitute property,
which implies that the equilibrium price is unique (see e.g. [10]). For markets
with two commodities we have (for a proof see [12]), as in Fisher markets [6]:

Proposition 2. Consider a Cobb–Douglas market, n ≥ 2, m = 2. The incentive
ratio is e1/e and this bound is tight.

The following example shows we can exceed the e1/e bound.

Example 2 (Incentive ratio > e1/e). Suppose the market is as follows:
⎧
⎪⎪⎨

⎪⎪⎩

e1 = (.99, .01, .01), e2 = (.01, .99, .99)
u1(x1) = x.2

11x
.3
12x

.5
13

u2(x2) = x.4
21x

.6
12

u′
1(x

′
1) = x′

11
.85

x′
12

.1
x′
13

.05

then

⎧
⎪⎪⎨

⎪⎪⎩

p = (.398, .597, .201)
x1 ≈ (.202, .202, 1)
p′ = (.4045, .1344, .0201)
x′
1 ≈ (.845, .299, 1),

Therefore the incentive ratio is u1(x′
1)/u1(x1) ≈ 1.50.

The remainder of this section is devoted to the proof that the incentive ratio for
Cobb–Douglas markets is bounded. The following lemma is crucial. We only pro-
vide a sketch the proof here due to space constraints; see [12] for complete proofs.
1 Alternatively, we could assume the existence of a nonmanipulating agent who pos-
sesses at least a little bit of all commodities and who desires every commodity.
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Lemma 1

(i) pj(αi) reaches its maximum when αij = 1 and αik = 0 for all k �= j. I.e.
for any chosen normalisation, pj is maximal when αij = 1.

(ii) α′
ij/p′

j(α
′
i) reaches its maximum when α′

ij = 1 and α′
ik = 0 for all k �= j.

I.e. for any chosen normalisation, α′
ij/p′

j(α
′
i) is maximal when α′

ij = 1.
(iii) Let A = (αji)1≤i≤n,1≤j≤m and similarly A′ when agent i reports α′

i, E =
(eji)1≤i≤n,1≤j≤m. Then the first row of Adj(EAT − Im) (Adj(E(A′)T −
Im)) contains the equilibrium price vector p (p′) (upto a nonzero constant).
Moreover, p · ei = p′ · ei.

Proof (sketch). For the first two points, w.l.o.g. we focus on commodity m.
(i) This follows from the implicit function theorem applied to [Dp̂ẑ(p(α);α)]−1,
a matrix in which all entries are negative, where p(α) is the equilibrium price
when players report strategies according to α = (α1, . . . , αn), p̂ and ẑ are vectors
with the first m − 1 entries from p and z(p(α)).
(ii) The extreme value theorem assures a maximum is attained. Using necessary
conditions for a maximum (see [9]) and homogeneity of degree 0 we get the proof.
(iii) This uses an argument along the lines of [14] and the fact that an equilibrium
price vector p satisfies (see [8]) pT (EAT −Im) = 0. The budget of agent i, p·ei, can
be written as a matrix determinant that does not change following the increase
of αij to α′

ij and a decrease of equal magnitude of αik to α′
ik, 1 ≤ j �= k ≤ m. 	


Theorem 1. The incentive ratio for Cobb–Douglas markets is at most m.

Proof

ui(x′
i)

ui(xi)
=

m∏

j=1

(
α′

ij

αij

p′ · ei

p · ei

pj

p′
j

)αij

≤
m∏

j=1

(
1

αij

p′ · ei

p · ei
max

α′
i

α′
ij

p′
j

max
αi

pj

)αij

≤
m∏

j=1

(
1

αij

)αij

≤ m,

where the second inequality follows from the lemma above and the last inequality
from the weighted AM–GM inequality. 	

We summarize the results presented here in Table 1.

Table 1. Upper bounds on the incentive ratio in n × m exchange economies.

Market Fisher [6,7] Exchange

Leontief 2 ∞
Linear 2 ∞
Cobb–Douglas (Without Assumption 1, n = 2, m = 2) e1/e ∞
Cobb–Douglas (With Assumption 1, any n, m = 2) e1/e e1/e

Cobb–Douglas (With Assumption 1, any n, m ≥ 3) e1/e m
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4 Conclusion

Results for incentive ratios in Fisher markets were encouraging: the maximum
gains from strategic behaviour were bounded by small constants and therefore
equilibrium mechanisms could be expected to work rather well, meaning that
the profits from (computationally challenging) strategic behaviour were small
relative to the costs, and thus, not worthwhile on most occassions. However,
the results here indicate that in the more general setup of exchange economies,
results are diametrically different and without further restrictions, all ratios are
unbounded. The Cobb–Douglas case demonstrates that, when equilibrium prices
(and hence allocations and utilities) are unique, the incentive ratio is bounded by
the number of commodities. Therefore it may be argued that, unlike in Fisher
markets, gains from strategic behaviour can be significant and manipulation
could be worthwhile.

For Cobb–Douglas markets, the case m = 2 demonstrates that the bound
m is unlikely to be tight. This, and the question of the incentive ratio when
agents are allowed to misreport their endowments in linear and Cobb–Douglas
markets, are left as directions for future research. Allowing groups of agents to
misreport their utility function and extending the results from Cobb–Douglas
markets to, for example, any other market satisfying weak gross substitution,
are other interesting possibilites.
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Abstract. Let T be a weighted tree with a positive number w(v) asso-
ciated with each of vertices and a positive number l(e) associated with
each of its edges. In this paper we show that each least (w, l)-central
subtree of a weighted tree either contains a vertex of the w-centroid or
is adjacent to a vertex of the w-centroid. Also, we show that any two
least (w, l)-central subtrees of a weighted tree either have a nonempty
intersection or are adjacent.

Keywords: Tree · w-centroid · (w, l)-central subtree · Least (w, l)-
central subtree

1 Introduction

The “central part” of a graph has many important applications in the location
of industrial plants, warehouses, distribution centers, and public service facil-
ities in transportation networks, as well as the location of various facilities in
telecommunication networks. Much research has been devoted to the topic on
central part of a tree [1,3,4].

The central subtrees, and least central subtrees in trees were introduced
in [4]. Nieminen and Peltola [4] described the general properties of a least central
subtree of a tree, and gave some connections between the least central subtree
and the center/centroid of a tree. Moreover, they proved that the intersection of
two least central subtrees is nonempty. Hamina and Peltola [2] further studied the
relationship between the least central subtrees and the center and the centroid
of a tree, and proved that every least central subtree of a tree contains the center
and at least one vertex of the centroid of the tree.

Let T be a weighted tree with a positive number w(v) associated with each
of vertices and a positive number l(e) associated with each of its edges. The
w-centroid for weighted trees was defined in [3]. For a subtree S of T , we define
the weight of S by w(S) =

∑
v∈V (S) w(v). For v ∈ V (T ), denote by T − v the

graph obtained from T by removing v, and let Tv,1, Tv,2, . . . , Tv,d(v) be all the
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subtrees of T −v, where d(v) is the degree of v in T . We define the branch weight
of the vertex v to be B(v) = max1≤i≤d(v){w(Tv,i)}. The w-centroid CR(T ) of a
tree T is the set of all vertices v for which the largest component of T − v has as
small weight as possible, i.e., B(v) = minu∈V (T ){B(u)}. In particular, if every
vertex of T has weight 1, then the w-centroid is the centroid in trees.

The aim of this paper is to generalize the concept of the least central subtree
in trees to weighted trees. We introduce the (w, l)-central subtree of weighted
trees, and we give the connection between least (w, l)-central subtrees and the
w-centroid of a weighted tree. Furthermore, we find the differences between the
two versions of unweighted trees and weighted trees.

The median graph GLW for a weighted tree T is defined as a weighted graph
with vertex set V (GLW ) and edge set E(GLW ), where

V (GLW ) = {S |S is a subtree of a weighted tree T},
E(GLW ) = {SiSj |Si ⊂ Sj and |Sj | = |Si| + 1, or Sj ⊂ Si and |Si| = |Sj | + 1},

and the length (weight) of each edge SiSj in GLW is defined as

l(SiSj) =
{
w(Sj) − w(Si) if Si ⊂ Sj ;
w(Si) − w(Sj) if Sj ⊂ Si.

Let P (S1, S2) be a path joining vertices S1 and S2 in the graph GLW , the
length l(P (S1, S2)) of path P (S1, S2) be the sum of the weights of edges in
P (S1, S2). The distance dL(S1, S2) between vertices S1 and S2 in GLW is the
length of a shortest S1-S2 path in GLW . Let eL(S) = max{dL(S, S′) |S′ is a sub-
tree of T} be the L-eccentricity of the subtree S. Clearly, eL(S) is the eccentricity
of the vertex S1 in GLW . A subtree S is a (w, l)-central subtree of a weighted
tree T if it has the minimum eccentricity eL(S) in GLW . A (w, l)-central sub-
tree with the minimum vertex weight is called a least (w, l)-central subtree of a
weighted tree T . When w(v) = l(e) = 1 for each vertex v and edge e in T , the
(w, l)-central subtree and the least (w, l)-central subtree are the ordinary central
subtree and least central subtree of T defined in [2,4], respectively.

In this paper we show the connection between least (w, l)-central subtrees
and the w-centroid of a weighted tree. Formally, we prove that each least (w, l)-
central subtree of a weighted tree either contains a vertex of the w-centroid or is
adjacent to a vertex of the w-centroid. Also, we prove that any two least (w, l)-
central subtrees of a weighted tree either have a nonempty intersection or are
adjacent.

2 Notation and Preliminaries

In this section let us introduce some notation and terminology.
The vertex set of a graph G is referred to as V (G) and its edge set as E(G).

The number of vertices of G is its order, written as |G|. If U ⊆ V (G), G[U ] is
the subgraph of G induced by U and we write G−U for G[V (G) −U ]. In other
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words, G−U is obtained from G by deleting all the vertices in U∩V (G) and their
incident edges. If U = {v} is a singleton, we write G − v rather than G − {v}.

For two subtrees S1 and S2 of a weighted tree T , the distance dT (S1, S2)
between S1 and S2 in T is the length of the shortest weighted path joining two
vertices of S1 and S2 in T . In particular, if S1 = {x} and S2 = {y}, write dT (x, y)
instead of dT ({x}, {y}). For subtrees S1 and S2 of a tree T , the meet S1 ∧ S2

of subtrees S1 and S2 is defined as the subtree induced by the intersection of
the vertex sets of S1 and S2 whenever the intersection is nonempty, and the join
S1 ∨ S2 is the least subtree of T containing the subtrees S1 and S2. In other
words, S1 ∨ S2 is the subtree induced by the union of vertices of S1 and S2

whenever the intersection of the vertex sets of S1 and S2 is nonempty. In the
case of non-intersection subtrees, S1 ∨ S2 is the subtree induced by the union of
vertices of S1 and S2 together with the vertices of the path from S1 to S2.

3 Least (w, l)-Central Subtrees and w-Centroids

In this section we describe the connection between (w, l)-least central subtrees
and the w-centroid of a weighted tree. For this purpose, we first give the following
lemmas.

Lemma 1. Let S1 and S2 be two subtrees of a weighted tree T . If V (S1) ⊂
V (S2), then dL(S1, S2) = w(S2) − w(S1).

Lemma 2. Let S1 and S2 be two subtrees of a weighted tree T . If V (S1) ∩
V (S2) �= ∅, then dL(S1, S2) = w(S1) + w(S2) − 2w(S1 ∧ S2).

If V (S1)∩V (S2) = ∅, then S1 and S2 is connected in T by a path from S1 to
S2. Let us denote PT (S1, S2) the path in T from S1 to S2, and Pin(S1, S2) the
path induced by the internal vertices of path PT (S1, S2).

Lemma 3. Let S1 and S2 be two subtrees of a weighted tree T . If V (S1) ∩
V (S2) = ∅, then dL(S1, S2) = w(S1) + w(S2) + 2w(Pin(S1, S2)).

Proof. Let Pin(S1, S2) = v1v2 . . . vk and let P (S1, S2) be a shortest S1-S2 path
in GLW . To obtain S2 from S1, each vertex in S2 needs to be added to S1,
each vertex in S1 needs to be removed from S1, and each vertex in Pin(S1, S2)
needs to be added to S1 and then removed. For each vertex v ∈ V (S2), if
Sij is the first subtree containing v among all subtrees in P (S1, S2), i.e., v �∈
V (Sij−1), v ∈ V (Sij ), then l(Sij−1Sij ) = w(v). For each vertex v ∈ V (S1), if
Sik is the last subtree containing v among all subtrees in P (S1, S2), i.e., v ∈
V (Sik), v �∈ V (Sik+1), then l(SikSik+1) = w(v). For each vertex v in Pin(S1, S2),
if Sil is the first subtree containing v among all subtrees in P (S1, S2), i.e., v ∈
V (Sil), v �∈ V (Sil−1), then l(Sil−1Sil) = w(v). Assume that Sim is the last subtree
containing v among all subtrees in P (S1, S2), i.e., v ∈ V (Sim), v �∈ V (Sim+1),
then l(SimSim+1) = w(v). So l(P (S1, S2)) ≥ w(S1) + w(S2) + 2w(Pin(S1, S2)).
Hence,

dL(S1, S2) = l(P (S1, S2)) ≥ w(S1) + w(S2) + 2w(Pin(S1, S2)). (1)
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On the other hand, among all S1-S2 paths that pass through the ver-
tex S1 ∨ S2 in GLW , let P ∗(S1, S2) be a shortest one. Then l(P ∗(S1, S2)) =
dL(S1, S1 ∨ S2) + dL(S2, S1 ∨ S2). By Lemma 1, dL(S1, S1 ∨ S2) = w(S1 ∨ S2) −
w(S1) = w(S2) + w(Pin(S1, S2)) and dL(S2, S1 ∨ S2) = w(S1 ∨ S2) − w(S2) =
w(S1) + w(Pin(S1, S2)). So dL(S1, S2) ≤ l(P ∗(S1, S2)) = w(S1) + w(S2) +
2w(Pin(S1, S2)). Combining this with (1), we obtain dL(S1, S2) = w(S1) +
w(S2) + 2w(Pin(S1, S2)). �
By the above lemmas and using the similar approach in [2], we obtain the fol-
lowing key properties of least (w, l)-central subtrees.

Lemma 4. Let CL be a least (w, l)-central subtree of a weighted tree T and v
be a vertex adjacent to CL, let Cv be the subtree of T induced by V (CL) ∪ {v}.
If subtree S∗

v satisfies eL(Cv) = dL(Cv, S
∗
v ), then S∗

v �= T and

(1) if V (CL) ∩ V (S∗
v ) �= ∅, then v �∈ V (S∗

v ),
(2) if V (CL) ∩ V (S∗

v ) = ∅, then v does not lie in the path joining CL and S∗
v

in T .

Proof. First by Lemma 1, we observe that dL(Cv, T ) = w(T )−w(CL)−w(v) <
w(T ) − w(CL) ≤ eL(CL). So S∗

v �= T . We distinguish two cases depending on
whether or not V (CL) and V (S∗

v ) meet.

Case 1. V (CL) ∩ V (S∗
v ) �= ∅. If v ∈ V (S∗

v ), then, by Lemma 2, we have

eL(Cv) = dL(Cv, S
∗
v )

= w(Cv) + w(S∗
v ) − 2w(Cv ∧ S∗

v )
= w(CL) + w(v) + w(S∗

v ) − 2(w(CL ∧ S∗
v ) + w(v))

= dL(CL, S
∗
v ) − w(v)

≤ eL(CL) − w(v) < eL(CL),

which contradicts the fact that CL is the least (w, l)-central subtree of T . Thus
v �∈ V (S∗

v ).

Case 2. V (CL) ∩ V (S∗
v ) = ∅. If v ∈ V (S∗

v ), then w(Pin(CL, S
∗
v )) = 0. By Lem-

mas 2 and 3, we have

eL(Cv) = dL(Cv, S
∗
v )

= w(Cv) + w(S∗
v ) − 2w(Cv ∧ S∗

v )
= w(CL) + w(v) + w(S∗

v ) − 2w(v)
= w(CL) + w(S∗

v ) + w(Pin(CL, S
∗
v )) − w(v)

= dL(CL, S
∗
v ) − w(v)

≤ eL(CL) − w(v) < eL(CL).
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This contradiction implies that v �∈ V (S∗
v ). If v �∈ V (S∗

v ), and v lies in the CL-S∗
v

path in T . Hence, w(Pin(CL, S
∗
v )) = w(Pin(Cv, S

∗
v )) + w(v). By Lemma 3,

eL(Cv) = dL(Cv, S
∗
v )

= w(Cv) + w(S∗
v ) + 2w(Pin(Cv, S

∗
v ))

= w(CL) + w(v) + w(S∗
v ) + 2(w(Pin(CL, S

∗
v )) − w(v))

= w(CL) + w(S∗
v ) + 2w(Pin(CL, S

∗
v )) − w(v)

= dL(CL, S
∗
v ) − w(v)

≤ eL(CL) − w(v) < eL(CL),

a contradiction. Thus v does not lie in the CL-S∗
v path in T . �

Let SL be the component of T − v containing CL, and let Sv = T \ V (SL).

Lemma 5. Let Cv, S
∗
v be defined as in Lemma 4. Then dL(Cv, S

∗
v ∨ Sv) =

dL(Cv, S
∗
v ) + w(Sv) − w(Pin(S∗

v , Sv)) − 2w(v).

Proof. By Lemma 4, V (S∗
v ) ⊆ V (SL). So there exists a vertex x ∈ V (S∗

v ) such
that dT (v, x) = dT (v, S∗

v ) = dT (Sv, S
∗
v ). We consider the following two cases

depending on whether CL meets S∗
v in T .

Case 1. V (CL) ∩ V (S∗
v ) �= ∅. By Lemma 4, v �∈ V (S∗

v ), and so x ∈ V (CL). For
the subtree S∗

v ∨ Sv, we have

w(S∗
v ∨ Sv) = w(S∗

v ) + w(Sv) + w(Pin(S∗
v , Sv)),

w((S∗
v ∨ Sv) ∧ Cv)) = w(S∗

v ∧ Cv) + w(Pin(S∗
v , Sv)) + w(v).

Then, by Lemma 2, we have

dL(Cv, S
∗
v ∨ Sv)

= w(Cv) + w(S∗
v ∨ Sv) − 2w((S∗

v ∨ Sv) ∧ Cv))
= w(Cv) + w(S∗

v ) + w(Sv) + w(Pin(S∗
v , Sv))

− 2(w(S∗
v ∧ Cv) + w(Pin(S∗

v , Sv)) + w(v))
= dL(Cv, S

∗
v ) + w(Sv) − w(Pin(S∗

v , Sv)) − 2w(v).

Case 2. V (CL) ∩ V (S∗
v ) = ∅. By Lemma 4, v does not lie in the CL-S∗

v path in
tree T . Then x �∈ V (CL) and so x �= v. Hence,

w(S∗
v ∨ Sv) = w(S∗

v ) + w(Sv) + w(Pin(S∗
v , Sv))

= w(S∗
v ) + w(Sv) + w(Pin(v, x)).

Let v′ ∈ V (Cv) be the vertex satisfying dT (v, v′) = dT (Sv, S
∗
v ) − dT (Cv, S

∗
v ).

Note that (S∗
v ∨ Sv) ∧ Cv is v′-v path PT (v′, v) in T . So, by Lemma 3, we have

w((S∗
v ∨ Sv) ∧ Cv) = w(PT (v′, v)) = w(Pin(x, v)) − w(Pin(x, v′)) + w(v).
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Hence, by Lemmas 2–3, we have

dL(Cv, S
∗
v ∨ Sv) = w(Cv) + w(S∗

v ∨ Sv) − 2w((S∗
v ∨ Sv) ∧ Cv))

= w(Cv) + w(S∗
v ) + w(Sv) + w(Pin(S∗

v , Sv)) − 2w(PT (v′, v))
= w(Cv) + w(S∗

v ) + w(Sv) + w(Pin(S∗
v , Sv))

− 2(w(Pin(x, v)) − w(Pin(x, v′)) + w(v))
= w(Cv) + w(S∗

v ) + 2w(Pin(x, v′)) + w(Sv) + w(Pin(S∗
v , Sv))

− 2w(Pin(x, v)) − 2w(v)
= dL(Cv, S

∗
v ) + w(Sv) − w(Pin(S∗

v , Sv)) − 2w(v),

as desired. �
Lemma 6. Let Cv, S

∗
v be defined as in Lemma 4. Then w(Sv) ≤

w(Pin(S∗
v , Sv)) + 2w(v).

Proof. By Lemma 5, we obtain

eL(Cv) ≥ dL(Cv, S
∗
v ∨ Sv)

= dL(Cv, S
∗
v ) + w(Sv) − w(Pin(S∗

v , Sv)) − 2w(v)
= eL(Cv) + w(Sv) − w(Pin(S∗

v , Sv)) − 2w(v).

Therefore, w(Sv) ≤ w(Pin(S∗
v , Sv)) + 2w(v). �

The following lemmas provide essential properties of the w-centroid in a weighted
tree.

Lemma 7 [3]. For a vertex v of a weighted tree T , v ∈ CR(T ) if and only if
B(v) ≤ w(T )/2.

Lemma 8 [1,3]. For a weighted tree T , the w-centroid CR(T ) in T consists of
either one vertex or two adjacent vertices. In the latter case, we have B(v) =
w(T )/2 for each v ∈ CR(T ).

By the above lemmas, we are now ready to prove the main results in this
paper.

Theorem 1. For a weighted tree T , if w-centroid CR(T ) consists of two adjacent
vertices, then any least (w, l)-central subtree of T contains at least a vertex of
CR(T ).

Proof. Suppose to the contrary that there does exist a least (w, l)-central sub-
tree CL of T such that V (CL) ∩CR(T ) = ∅. Let CR(T ) = {u, u1}. By Lemma 8,
u1 and u are adjacent in T . For notational simplicity, we identify CR(T ) with
the subtree induced by CR(T ) in T . Let u1 ∈ CR(T ) be the vertex such that
dT (u1, CL) = dT (CR(T ), CL). Let v be the neighbor of CL such that v lies in
the path from u to CL. Then the u-CL path passes through u1, and so v �= u.
Let SL, SR be the subtrees of T − v, T − u containing CL respectively, and let
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Su = T \ V (SR). Clearly, V (S∗
v ) ⊆ V (SL) by Lemma 4 (S∗

v is defined as in
Lemma 4). As noted already in Lemma 5, there exists a vertex x ∈ V (S∗

v ) such
that dT (v, x) = dT (v, S∗

v ) = dT (Sv, S
∗
v ) (Sv is defined as in Lemma 5).

Note that V (SL) ∪ {v} ⊆ V (SR). By Lemma 7, w(SR) ≤ w(T )/2. Then

w(SL ∪ {v}) ≤ w(SR) ≤ w(T )
2

. (2)

Hence,

w(Sv) = w(T \ (SL ∪ {v})) + w(v) ≥ w(T )
2

+ w(v). (3)

By Lemma 6, we have

w(Sv) ≤ w(Pin(S∗
v , Sv)) + 2w(v)

≤ w(SL ∪ {v}) − w(v) − w(x) + 2w(v)
= w(SL ∪ {v}) − w(x) + w(v).

Then

w(SL ∪ {v}) ≥ w(Sv) − w(v) + w(x)

≥ w(T )
2

+ w(x) (by (3))

>
w(T )

2
.

This is a contradiction to (2). �
Theorem 2. For a weighted tree T , if the w-centroid CR(T ) consists of a single
vertex, then any least (w, l)-central subtree of T either contains CR(T ) or is
adjacent to CR(T ).

Proof. Let CR(T ) = {u}. It is sufficient to prove that for any least (w, l)-central
subtree CL of T , if it is not adjacent to CR(T ) then it contains the vertex in
CR(T ). Suppose to the contrary that there does exist a least (w, l)-central subtree
CL of T such that V (CL) ∩ CR(T ) = ∅ and CL is not adjacent to CR(T ). Let v
be the neighbor of CL such that v lies on the path from CL to CR(T ). Since CL

is not adjacent to CR(T ), u �= v. A similar argument, as described in Theorem1,
yields a proof of this result. �
Theorem 3. Any two least (w, l)-central subtrees of a weighted tree T either
have a nonempty intersection or are adjacent.

Proof. For the case when the w-centroid CR(T ) of T is not a single vertex, we
know that the set CR(T ) consists of two adjacent vertices, so the result follows
directly from Theorem 1. We next may assume that the set CR(T ) consists of a
single vertex, say v. Let CL1 and CL2 be two least (w, l)-central subtrees of T .
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If either CL1 or CL2 contains the centroid v, then CL1 and CL2 are adjacent by
Theorem 2. So we may assume that neither CL1 nor CL2 contain v.

The following proof is by contradiction. Suppose that V (CL1) ∩V (CL2) = ∅.
By Theorem 2, both CL1 and CL2 are adjacent to v. Let Cv = CL1 ∪{v} and S∗

v

be the subtree such that eL(Cv) = dL(Cv, S
∗
v ). By Lemma 4, S∗

v �= T, and

dL(Cv, S
∗
v ) ≥ eL(CL1). (4)

Suppose that V (S∗
v ) ∩ V (Cv) �= ∅. By Lemma 4, v �∈ V (S∗

v ). Then V (S∗
v ) ∩

V (CL2) = ∅. Since V (CL1) ∩ V (CL2) = ∅ and v is adjacent to both CL1

and CL2 , the path from CL2 to S∗
v in T goes through the centroid v. Then

w(Pin(CL2 , S
∗
v )) ≥ w(v), so, by Lemmas 2–3,

eL(CL2) ≥ dL(CL2 , S
∗
v )

= w(CL2) + w(S∗
v ) + 2w(Pin(CL2 , S

∗
v ))

≥ w(CL2) + w(S∗
v ) + 2w(v)

≥ w(CL1) + w(v) + w(S∗
v ) − 2w(Cv ∧ S∗

v ) + w(v)
= w(Cv) + w(S∗

v ) − 2w(Cv ∧ S∗
v ) + w(v)

= dL(Cv, S
∗
v ) + w(v)

> eL(CL1). (by (4))

This contradicts the fact that e(CL1) = e(CL2).
Suppose that V (S∗

v )∩V (CL1) = ∅. By Lemma 4, v is not on the CL1 -S
∗
v path

in T . Since V (CL1) ∩ V (CL2) = ∅ and v is adjacent to both CL1 and CL2 , the
path from CL2 to S∗

v in T goes through the vertex v. Then w(Pin(CL2 , S
∗
v )) ≥

w(v) + w(Pin(CL1 , S
∗
v )), so, by Lemmas 3–4,

eL(CL2) ≥ dL(CL2 , S
∗
v )

= w(CL2) + w(S∗
v ) + 2w(Pin(CL2 , S

∗
v ))

≥ w(CL2) + w(S∗
v ) + 2w(Pin(CL1 , S

∗
v ) + 2w(v)

= w(Cv) + w(S∗
v ) + 2w(Pin(Cv, S

∗
v ) + w(v)

= dL(Cv, S
∗
v ) + w(v)

> eL(CL1). (by (4))

We obtain a contradiction again. Therefore, V (CL1)∩V (CL2) �= ∅, the assertion
follows. �

4 Conclusion

In this paper we describe the connection between least (w, l)-central subtrees and
the w-centroid of a weighted tree. It is an interesting question to determine the
structures of the trees with unique least (w, l)-central subtree. Another question
of interest is how to find a least (w, l)-central subtree of a weighted tree?
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Abstract. Vehicle Routing Problem (VRP) is widely studied under the
real logistics environments. For the reason that customers’ demands
could appear dynamically and need to be served within fuzzy time
windows, the dynamic vehicle routing problem with soft time windows
(DVRPSTW) is studied in this paper. We use the improved large neigh-
borhood search algorithm(iLNS) and the hybrid Particle Swarm Opti-
mization(hPSO) to solve the problem. The performance of both algo-
rithms comparing with benchmarks shows that our methods can solve
DVRPSTW efficiently with more customers.

Keywords: DVRPSTW · iLNS · hPSO

1 Introduction

The vehicle routing problem(VRP) has been well studied since it was proposed
by Dantzig and Ramser [1]. VRP is a combinatorial optimization problem which
is NP hard, and hence cannot be exactly solved in polynomial time. In real
logistics environments, customers’ demands appear dynamically and need to
be served in a fuzzy time windows. As far as we know, the Dynamic Vehicle
Routing Problem with Soft Time Window (DVRPSTW) has not been studied
before. There are many related works on dynamic VRP [2–6] and VRP with
soft time windows [7–12], however, none of them considered the environments in
which customers may allow vehicle to come earlier before the releasing time or
later after the deadline. So, we use the natural idea of dividing the working day
into multiple time slices, in which customers’ demands are collected, and then
design the improved large neighborhood search(iLNS) and the hybrid particle
swarm optimization(hPSO) to generate the optimized routes in each time slice.

The remaining parts of this paper are organized as follows. Section 2 describes
DVRPSTW and gives the mathematical formulation of the studied problem.
Section 3 proposes the iLNS algorithm and the hPSO algorithm. Finally, com-
putational results are described in Sect. 4.

c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 702–709, 2016.
DOI: 10.1007/978-3-319-48749-6 51
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2 Problem Description and Mathematical Formulation

The dynamic vehicle routing problem with soft time window has one depot,
K vehicles to serve N customers among which M customers are the those not
serviced in yesterday and left to today. The route for each vehicle is denoted as
pi (1 ≤ i ≤ K). V = {vi|i ∈ (0, 1, · · · n)} is the vertex set containing n vertices
and one depot. Each vehicle starts from the depot to service customers with the
speed F and goes back to depot when capacity Q is met. E = {(vi, vj) |vi, vj ∈
V, i �= j} is the set of edges, with the distance dij (i, j = 0, 1, · · · n) for each edge.
A customer’s demand is denoted as a quantity variable Ci (i = 1, 2, · · · n) and a
location variable (xi, yi) (i = 1, 2, · · · n, j = 1, 2, · · · n). Each vertex is associated
with a time window [ai, bi] (i = 0, 1, · · · , n), where ai is releasing time and bi is
the deadline. The arrival time and the leaving time of each vehicle at vertex i are
si and li, respectively. The service duration for vertex i is sti. We take punitive
measures denoted by a vector [α, β, pvi] where α is punishment coefficient for
the arriving earlier than the time window and β is the punishment coefficient for
the arriving later than the time window. pvi is the largest punishment interval
so that a customer cannot be served if the vehicle comes out of pvi, and T is the
longest service time in one day.

The mathematical formulation of DVRPSTW can be described as follows:

xk
ij =

{
1 if vehicle k drives from customer i to j
0 else

(1)

yk
i =

{
1 if vehicle k goes througth customer i
0 else

(2)

All vehicles must satisfy the following constraints:
n∑

i=0

ciy
k
i ≤ Q (3)

n∑

j=0

k∑

k=1

xk
ij = 1 i ∈ (1, 2, · · · , n) (4)

n∑

i=0

k∑

k=1

xk
ij = 1 j ∈ (1, 2, · · · , n) (5)

n∑

j=1

xk
0j ≤ 1 k ∈ (1, 2, · · · ,K) (6)

n∑

i=1

xk
i0 ≤ 1 k ∈ (1, 2, · · · ,K) (7)

n∑

i=0

xk
ir −

n∑

j=0

xk
rj = 0 r ∈ (1, 2, · · · , n) k ∈ (1, 2, · · · ,K) (8)
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si + sti = li i ∈ (1, 2, · · · , n) (9)

ai − pvi ≤ si ≤ bi + pvi i ∈ (1, 2, · · · , n) (10)
n∑

i=0

n∑

j=0

xl
ij · dij

F
+

n∑

i=1

Sti ≤ K · T (11)

The expression (3) is the capacity constraint. For each customer, the expres-
sion (4) guarantees that there is only one vehicle leaves out it and expression (5)
guarantees that only one vehicle arrives at it. Expressions (6) and (7) together
ensure that all the vehicles must start from and end at the depot. The expres-
sion (8) ensures that each route is continuous. Expression (9) means that the
leaving time of a vehicle is equal to the service duration plus the arriving time.
Expression (10) indicates the arriving time should be inside the soft time win-
dow. The expression (11) requests all the customers only can be served within
the prescribed time, otherwise they will serve in the next day.

The objective function of DVRPSTW is as follows, which minimizes the
driving distance, penalty value and the number of abandon customers.

min

⎛

⎝α ·
n∑

i=0

n∑

j=0

k∑

l=1

dijx
l
ij + β ·

n∑

i=l

penalty (x) + δ · count (Abandon)

⎞

⎠ (12)

3 The iLNS and hPSO Algorithms

The solving framework for DVRPSTW contains two main components, sched-
uler and solver. Scheduler mainly receives and collects new customers’ demands,
and then sends them to solver in every time slice. Solver containing iLNS and
hPSO will deal with customers’ demands and generate the route for each vehicle.
Algorithm 1 describs the scheduler in detail.

Algorithm 1. Scheduler Procedure
1: Initialize the position of vehicle and get non-served demands
2: Initialize the time slices and the capacity of vehicle
3: Get part solution by the optimized algorithm
4: Write the solution to database
5: Increase the time slice
6: Update the current position and the remaining capacity of vehicle
7: while the time slice does not reach to the end do
8: Get rid of the served vertex from the solution.
9: Insert the customer vertex in the new time slice

10: Get part Solution by the optimized algorithm
11: Write the solution to database
12: Update the current position and the remaining capacity of vehicle
13: Increase the time slice
14: end while
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If a vehicle violates the time window, a penalty value related with customers’
satisfaction degree will be given. As shown in expression (13) (EET and ELT are
the boundaries of the penalty interval, and y1 = Penalty(EET )), if the vehicle
arrives earlier than ai and later than EET , there is no loss for customer but
the costed time increases for the logistics company. When a customer is served
between bi and ELT , the unsatisfied degree of customer grows exponentially.
The relationship between penalty value and time window is described as below:

Penalty (x) =

{
ex−bi − 1 (pvi = ELT − bi, bi ≤ x ≤ ELT )
− y1

pvi
(x − ai) (pvi = ai − EET,EET ≤ x ≤ ai)

(13)

3.1 Improved Large Neighborhood Search

Large neighborhood search mainly uses the insert-remove heuristic to optimize
result. In this paper, we will take an activity scheduling based greedy algo-
rithm shown in Algorithm3, which is more suitable for VRPSTW. Algorithm2
describes the iLNS algorithm.

Algorithm 2. improved Large Neighborhood Search(iLNS)
1: Get initial solution Pi0 by activity scheduling based greedy
2: Initialize the current solution pool Pigc = φ and previous solution pool Pigp = φ;
3: while stopping criteria is not satisfied do
4: Fill up the current solution pool by the initial solution
5: end while
6: while <= iteration Li do
7: Transfer the solution into Pigc to Pigp and Pigc = φ.
8: bestResult = findBestResult(Pigp);
9: while <= iteration Ni do

10: Random select a solution Pi from Pigp;
11: Remove customer vertices from Pi by removing rules;
12: Re-insert the removed vertices into Pi:
13: Check whether the result of Pi is improved. If the count of the unimproved

of Pi more than Mi, break this loop.
14: if Pi is better than the worst solution in Pigc then
15: insert Pi into Pigc
16: end if
17: end while
18: end while

3.2 Hybrid Particle Swarm Optimization

Particle swarm optimization [13,14] mainly simulates social behaviors like bird
swarm. Every particle in swarm is a candidate solution which searches in the
solution space in the way of approaching to the best solution of its own history
and the best solution of the whole swarm. The pseudo code of hPSO is shown in
Algorithm 4. The structure of particle is crucial to the hPSO. We take a 2 × D
dimensional vectors as the structure of particle and D is the number of customer
vertices.
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Algorithm 3. Activity scheduling based greedy strategy
1: Initialize solution = null
2: while The static vertex set is not null do:
3: Sort all the vertices according to the releasing time in ascending order
4: Scan the array from the first vertex and put the vertex into the route if the

subsequent vertices satisfy the time window constraint
5: Delete the selected vertices from the static vertex set
6: put the route into solution
7: end while

Algorithm 4. Hybrid PSO Optimization Algorithm
1: Initialize the number of swarm and particles
2: Generate the initial solution by Grasp()
3: Calculate the fitness of each particle
4: Get optimal solution of each particle
5: Get optimal solution of the whole particles
6: while stopping criteria is not satisfied do
7: Update the velocity and position of each particle by formulation (18) and (19)
8: Search in adjacent space of each particle by PathRelink();
9: Update optimal solution of each particle

10: Update optimal solution of the whole paricle
11: Update the inertia weight w by formulation (20).
12: end while
13: return the best solution

Generating the Initial Solution. A good initial solution for PSO can acceler-
ate convergence velocity, nevertheless many researchers simply generate random
initial solution. In this paper, we will use greedy randomized adaptive search
procedure (GRASP) which was first proposed by Feo and Resende [15]. This
method needs to build a restricted candidate table and select candidate vertices
from the table, then insert it into routes by greedy strategy.

Optimizing the Result. This method called path relinking strategy is mainly
to optimize the solution further by exploring in adjacent routes. The current
solution will be regard as start solution and the optimal solution will be as target
solution. And the start solution and target solution may exchange the role of
each other. When exploring the space between start solution and target solution,
a better solution may be found, then the start position or target solution may
change as the result of target solution must be better than the start solution. Due
to the solution is numerical arrays, we explore between the starting solution and
ending solution by exchanging some vertices. In this way, the inversion number
corresponding to the numerical array will change. The difference between two
inversion number will be as judgment standard for optimal process.
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4 Computional Results

This paper proposes iLNS and hPSO working on Solomon’s benchmark in http://
web.cba.neu.edu/∼msolomon/problems.htm. In order to evaluate the perfor-
mance of our algorithms, we compare these two methods with a hybrid large
neighborhood search algorithm in [5], and we call it hLNS short for hybrid Large
Neighborhood Search. There are two differences between hLNS and iLNS. One is
the method to create initial solution. The hLNS uses Clarke-Wright algorithm [5]
while our solution takes the activity scheduling based greedy algorithm. Another
one is the removing strategy. We abandon the complicated removing strategy
about time window and select the simple random removing strategy considering
complicated constraints. Table 1 shows the comparison between hPSO, iLNS and
hLNS on type 1 benchmark. The hLNS in [5] works on DVRP with hard time
windows, and the results of hPSO and iLNS are about DVRPSTW. The dynamic
degree is set to 0.5 and penalty interval is set to 20. For description convenience,
the column (1) is called C1 and the column (2) is called C2 and so on. In the
computational results of parameter, Td denotes travel distance, Ra denotes ratio
of abandoned customers, time of CPU and Nv denotes number of vehicles. The
Re in C7 is short for relative error of Td which equals to (C6-C2)/C2*100 %, Re
in C9 is relative error of Ra in C8 equals to (C8-C3)/C3*100 %, Re in C13 is
relative error of Td between iLNS and hLNS equaling to (C12-C2)/C2*100 %,
Re in C15 equals to (C14-C3)/C3*100 %. In order to appropriately evaluate the
algorithms, we calculate the average of one type instance, like in row 12, the
average row is the average of 9 instances of type C1. The Re of Td is positive
and the Re of Ra is negative, meaning that the solution of these two methods can
serve more customers and travel longer distance for all the type instances. The
reason is that the problem of DVRPSTW allows vehicles to come earlier or later
which is more relaxed than DVRPTW for vehicles. The iLNS and hPSO need
more computing time than hLNS, meanwhile the vehicles of these two methods
for serving are more than hLNS, since more customers will be served.
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Abstract. A set C of vertices of a graph is P3-convex if every vertex
outside C has at most one neighbor in C. The convex hull σ(A) of a set
A is the smallest P3-convex set that contains A. A set M is convexly
independent if for every vertex x ∈ M, x /∈ σ(M − x). We show that
the maximal number of vertices that a convexly independent set in a
permutation graph can have, can be computed in polynomial time. (Due
to space limit, the missing proofs are presented in the full paper. Please
see https://drive.google.com/file/d/0B1Ilu0-p1dDsSkpsZFZsR1Y4Uk0/
view or http://arxiv.org/abs/1609.02657).

1 Introduction

Popular models for the spread of disease and of opinion are graph convexities.
The P3-convexity is one such convexity, and it is defined as follows.

Definition 1. A set S of vertices in a graph G is P3-convex if every vertex
outside S has at most one neighbor in S.

The P3-convexity will be the only convexity studied in this paper, so from now
on we use the term convex, instead of P3-convex. For a set A of vertices we let
σ(A) denote its convex hull, that is, the smallest convex set that contains A.1

For a set of points A in Rd and a point x in its Euclidean convex hull, there
exists a set F ⊆ A of at most d + 1 points such that x ∈ σ(F), i.e., x is in
the Euclidean convex hull of F. This is Carathéodory’s theorem. For convexities
in graphs one defines the Carathéodory number as the smallest number k such
that, for any set A of vertices, and any vertex x ∈ σ(A), there exists a set F ⊆ A

with |F| � k and x ∈ σ(F). For a set S, let

∂(S) = σ(S) \
⋃

x∈S

σ(S − x). (1)

A set is irredundant if ∂(S) �= ∅. Duchet showed that the Carathéodory number
is the maximal cardinality of an irredundant set.
1 In his classic paper, Duchet defines a graph convexity as a collection of ‘convex’ sub-

sets of a (finite) set V that contains ∅ and V, and that is closed under intersections,
and that, furthermore, has the property that each convex subset induces a connected
subgraph. This last condition is, here, omitted.

c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-48749-6 52

https://drive.google.com/file/d/0B1Ilu0-p1dDsSkpsZFZsR1Y4Uk0/view
https://drive.google.com/file/d/0B1Ilu0-p1dDsSkpsZFZsR1Y4Uk0/view
http://arxiv.org/abs/1609.02657


Convex Independence in Permutation Graphs 711

Definition 2. A set S is convexly independent if

for all x ∈ S, x /∈ σ(S − x). (2)

Notice that, if a set is convexly independent then so is every subset of it (since
σ is a closure operator).

It appears that there is no universal notation for the maximal cardinality
of a convexly independent set.2 In this paper we denote it by βc(G). Every
irredundant set is convexly independent, thus the convex-independence number
βc(G) is an upperbound for the Carathéodory number. For example, for paths
Pn with n vertices, and for cycles Cn with n vertices, we have equality;

βc(Pn) = 2 ·
⌊n

3

⌋
+ (n mod 3) and βc(Cn) = βc(Pn−1). (3)

Other examples, for which the Carathéodory number equals the convex indepen-
dence number, are leafy trees, which are trees with at most one vertex of degree
two. It is easy to check, that

T is a leafy tree ⇒ βc(T) = the number of leaves in T . (4)

Examples for which the Carathéodory number is strictly less than the convex-
independence number are disconnected graphs. If S is an irredundant set then
σ(S) is necessarily connected. However, βc(G) is the sum of the convexly inde-
pendence numbers of G’s components. Notice also that βc(P6) = 4, but there
exists a maximum convexly independent set S for which σ(S) = S and is discon-
nected, and, thence, redundant.

A set S is a 2-packing if it is an independent set in G2, that is, no two
vertices of S are adjacent or have a common neighbor. Every 2-packing S is
convexly independent, as σ(S) = S. For splitgraphs with minimal degree at least
two, a maximal convex-independent set is a 2-packing, unless it has only two
vertices. It follows that computing the convexly independence number is NP-
complete for splitgraphs (it is Karp’s set packing, problem 4). For biconnected
chordal graphs (including the splitgraphs mentioned above), every vertex is in
the convex hull of any set of two vertices at distance at most two. Thus, the
Carathéodory number for those is two.

Ramos et al. show that computing the convexly independence number
remains NP-complete for bipartite graphs, and they show that it is polynomial
for trees and for threshold graphs.

The intersection graph of a collection of straight line segments, with end-
points on two parallel (horizontal) lines, is called a permutation graph. Dushnik
and Miller characterize them as the comparability graphs for which the comple-
ment is a comparability graph as well. In this paper we show that the convexly
independence number of permutation graphs is computable in polynomial time.

This seems a good time to do a warm-up; let’s have a close look at convex
independence in cographs (Fig. 1).
2 Ramos et al. call it the ‘rank’ of the graph, but this word has been used for so many

different concepts that it has lost all meaning.
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Fig. 1. The heavy dots specify an irredundant set S with σ(S) = V. The second
figure shows the intersection model, i.e., the ‘permutation diagram,’ for ladders. This
example shows that the Carathéodory number for biconnected permutation graphs is
unbounded.

2 Convex Independence in Cographs

Definition 3. A graph is a cograph if it has no induced P4, the path with 4
vertices.

Cographs are characterized by the property that every induced subgraph is
disconnected or else, its complement is disconnected. In other words, cographs
allow a complete decomposition by joins and unions. It follows that cographs
are permutation graphs, as also this class is closed under joins and unions.

Ramos et al. analyze the convex-independence number for threshold graphs.
Threshold graphs are the graphs without induced P4, C4 and 2K2, hence, thresh-
old graphs are properly contained in the class of cographs. In the following the-
orem we extend their results.

Theorem 1. There exists a linear-time algorithm to compute the convex-
independence number of cographs.

Proof. Let G be a cograph. First assume that G is a union of two smaller
cographs, G1 and G2. In that case, the convex-independence number of G is
the sum of βc(G1) and βc(G2), that is,

G = G1 ⊕ G2 ⇒ βc(G) = βc(G1) + βc(G2). (5)

Now, assume that G is a join of two smaller cographs G1 and G2. In that
case, every vertex of G1 is adjacent to every vertex of G2. Let S be a convex-
independent set. If S has at least one vertex in G1 and at least one vertex in G2,
then |S| = 2, since G[S] cannot have an induced P3 or K3.

Consider a convex-independent set S ⊆ V(G1). Assume that |S| > 1 and that
|V(G2)| � 2. Then, any two vertices of S ∩ V(G1) generate V(G2) ⊆ σ(S), and,
in turn, V(G) is in their convex hull. This implies that S cannot have any other
vertices, that is,

|V(G2)| � 2 ⇒ |S| � 2.

Next, assume
S ⊆ V(G1) and |V(G2)| = 1.
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Say u is in the singleton V(G2), that is, u is a universal vertex. Let C1, . . . ,Ct

be the components of G1. We claim that

|S ∩ Ci| � min { 2, |Ci| }.

To see that, assume that |Ci| � 2. Then, since G[Ci] is a connected cograph,
G[Ci] is the join of two cographs, say with vertex sets A and B. If S has three
vertices in A, then each of them is in the convex hull of the other two, since
B ∪ {u} is contained in their common neighborhood, and this set contains at
least two vertices.

Assume S has vertices in at least two different components of G1. Assume
furthermore that one component Ci has at least two vertices of S, say p and
q. Let ζ be a vertex of S in another component. Then u ∈ σ({p, ζ}), because
[p,u, ζ] is an induced P3.

The induced subgraph G[Ci] is a join of two smaller cographs, say with vertex
sets A and B. If p and q are both in A, then q ∈ σ(S−q), since p and u generate
B ⊂ σ(S), and B ∪ {u} contains two neighbors of q. If p ∈ A and q ∈ B, then q

has two neighbors in σ(S − q), namely p and u. Thus, again, q ∈ σ(S − q).
In fine, either each component of G1 contains one vertex of S, or else |S| � 2. 
�

3 Monadic Second-Order Logic

In this section we show that the maximal cardinality of a convex-independent
set is computable in linear time for graphs of bounded treewidth or rankwidth.
To do that, we show that there is a formulation of the problem in monadic
second-order logic. The claim then follows from Courcelle’s theorem.

By definition, a set of vertices W ⊆ V is convex if

∀x∈V x /∈ W ⇒ |N(x) ∩ W| � 1. (6)

Let S ⊆ V. To formulate that a set W = σ(S) we formulate that (i) S ⊆ W,
(ii) W satisfies (6), and (iii) For all W′ for which the previous two conditions
hold, W ⊆ W′. Finally, a set S is convexly independent if

∀x∈V x ∈ S ⇒ x /∈ σ(S − x). (7)

Actually, to show that x /∈ σ(S − x) it is sufficient to formulate that (for every
vertex x ∈ S) there is a set Wx such that

Wxis convex and S \ {x} ⊆ Wx and x /∈ Wx. (8)

The formulas (6)—(8) show that convex independence can be formulated in
monadic second-order logic (without quantification over subsets of edges). By
Courcelle’s theorem we obtain the following.

Theorem 2. There exists a linear-time algorithm to compute the convex-
independence number for graphs of bounded treewidth or rankwidth.
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3.1 Trees

Let T be a tree with n vertices and maximal degree Δ. Ramos et al. present an
involved algorithm, that runs in O(n log Δ) time, to compute a convexly indepen-
dent set. By Theorem 2, there exists a linear-time algorithm that accomplishes
this. We propose a different algorithm.

Theorem 3. There exists a linear-time algorithm that computes the convexly
independence number of trees.

Proof. Let T be a tree. Decompose T into a minimal number of maximal, vertex-
disjoint, leafy trees, F1, . . . , Fs, and a collection of paths. The endpoints of the
paths are separate leaves of the trees Fi or pendant vertices. By Equation (4),
each leafy tree Fi has a maximum convexly independent set consisting of its
leaves. The convexly independence numbers of the connecting paths are given
by Equation (3). Notice that each path has a maximum, convexly independent
set that contains the two endpoints. 
�

4 The Convex-Independence Number of Permutation
Graphs

In the following discussion, let G be a permutation graph with a fixed permuta-
tion diagram. We refer to S as a generic convex-independent set in G.

Definition 4. Let S be a convex-independent set in G. Let x ∈ V \ S. A 2-path
connecting x to S is a sequence of vertices

Δ = [s1, s2, x1, . . . , x] (9)

in which every vertex has two neighbors that appear earlier in the sequence, or
else it is in S.

Lemma 1

x ∈ σ(S) ⇔ there is a 2-path connecting x to S. (10)

Proof. Following Duchet, let I(x,y) be the ‘interval function’ of the P3-convexity,
that is, for two vertices x and y, I(x,y) is {x,y} plus the set of vertices that are
adjacent to both x and y.3 For a set S, we let

I0(S) = S and Ik+1(S) = I(Ik(S) × Ik(S)). (11)

Then,
σ(S) =

⋃

k∈N∪{0}

Ik(S). (12)

In other words, a vertex is in Ik+1(S) if it is in Ik(S), or else it has two neighbors
in Ik(S). This is expressed by the existence of a 2-path (Fig. 2). 
�
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Fig. 2. The figure shows three examples of 2-paths from a vertex x to a set S. The heavy
dots represent vertices of S. Notice, however, that the binary tree is not a permutation
graph (since it has an asteroidal triple). The second example is a simple path in which
each vertex, except x, is replaced by a twin. Permutation graphs are closed under
creating twins, so, since paths are permutation graphs, this second example is so also.

Lemma 2. Each component of G[S], i.e., the subgraph induced by S, is a single
vertex or an edge. In a permutation diagram for G, there is a linear left-to-right
ordering of the components of G[S].

Proof. Since S is convexly independent, G[S] cannot contain K3 or P3. Thus each
component of G[S] is an edge or a vertex.

Fix a permutation diagram for G. The line segments that correspond to the
vertices of S form a permutation diagram for G[S]. Each component of G[S] is
a connected part of the diagram, and the left-to-right ordering of the connected
parts in the diagram yields a total ordering of the components of G[S]. 
�
Definition 5. The last component of S is the rightmost component in the linear
ordering as specified in Lemma 2.

We say that a vertex /∈ S is to the right of the last component if its line
segment appears to the right of the last component, i.e., the endpoints of the
line segment, on the top line and bottom line of the diagram, appear to the right
of the endpoints of the last component.

Definition 6. The border of σ(S) is the set of the two rightmost endpoints, on
the top line and bottom line of the permutation diagram, that are endpoints of
line segments corresponding to vertices of σ(S).

We say that a line segment is to the left of the border if both its endpoints
are left of the appertaining endpoints that constitute the border.

Lemma 3. (i) If the elements of the border of σ(S) are the endpoints of a single
line segment, then this is the line segment of a vertex in S. (ii) For every vertex
in σ(S) \ S there exist two vertex-disjoint paths to S with all vertices in σ(S).
(iii) Let the line segment of a vertex x be to the right of the last component of
S. Then x ∈ σ(S) if and only if x’s line segment is to the left of the border.
3 Duchet proved that, for interval convexities, the Carathéodory number is the smallest

integer k ∈ N such that every (k + 1)-set is redundant. Thus, the fixed-parameter
Carathéodory number is polynomial.
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Our algorithm performs a dynamic programming on feasible last components
of S and the border of σ(S). By Lemma 3, the last element of S and the border
supply sufficient information to decide whether a ‘new last component,’ to the
right of the previous last component, has a vertex in σ(S) or not.

Let S∗ = S∪X, where X is either a single vertex or an edge, and assume that
X has no vertex x ∈ X∩σ(S∗ −x). To guarantee that S∗ is a convex-independent
set (with last component X), we need to check that, for any s ∈ S, s /∈ σ(S∗ − s).
The figure below shows that the last component of S and the border of σ(S) do
not convey sufficient information to guarantee that S∗ is convexly independent.

In the following, let L be the last component of S, let X be a feasible, ‘new,’
last component of G[S∗], to the right of L, where S∗ = S ∪ X. (Of course, both L

and X are either single vertices or edges, and no vertex of L is adjacent to any
vertex of X.) The feasibility of X is defined so that:

∀x∈X x /∈ σ(S∗ − x). (13)

In our final theorem, below, we prove that it is sufficient to maintain a constant
amount of information, to enable the algorithm to check the convexly indepen-
dence of S∗. First we define a partial 2-path. We consider two cases, namely
where |X| = 1 and where |X| = 2. To define it, we ‘simulate’ X by an auxiliary
vertex, or an auxiliary true twin, that we place immediately to the right of L.

Definition 7. When |X| = 1, add one vertex s′ with a line segment whose end-
points are immediately to the right of the rightmost endpoint of L on the top line
and the rightmost endpoint of L on the bottom line. When |X| = 2, then replace
the vertex s′ above by a true twin s′

1 and s′
2. Let X′ = {s′} when |X| = 1 and

X′ = {s′
1, s

′
2} when |X| = 2. Finally, let S′ = S ∪ X′. A partial 2-path from u ∈ S

to S∗ − u is a 2-path from u to S′ − u, from which S′ is removed.

Theorem 4. There exists a polynomial-time algorithm to compute a convexly
independent set of maximal cardinality in permutation graphs.

Proof. Consider a vertex u ∈ S for which u ∈ σ(S∗ − u). We may assume that
u /∈ L, because L is available to the algorithm and so, it is easy to check the
condition for elements of L. Then there is a 2-path Δ = [s1, s2, . . . ,u] from u to
S∗ − u. If no vertex of X is in this 2-path, then u ∈ σ(S − u), which contradicts
our assumption that S is convexly independent. We may assume that at least
one of s1 and s2 is an element of X.

Since Δ contains two vertex-disjoint paths from u to S∗ − u, at least one of
these paths must contain some vertex of N(L). Partition the vertices of N(L)
in two parts. One part contains those vertices that have their endpoint on the
top line to the right of L, and the other part contains those vertices that have
their endpoint on the bottom line to the right of L. We claim that both parts
are totally ordered by set-inclusion of their neighborhoods in the component of
G − N[L] that contains X. To see that, consider two elements a and b of N(L).
Say that a and b both have an endpoint on the top line, to the right of L. If
that endpoint of a is to the left of the endpoint of b, then every neighbor of a

in the component of G − N[L] that contains X is also a neighbor of b.
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We store subsets with two vertices, y1 and y2 in N(L), for which there is
a partial 2-path from some vertex u ∈ S to y1 and y2. It is sufficient to store
only those two vertices y1 and y2 that they have a maximal neighborhood. In
other words, we choose y1 and y2 such that their endpoints on the top line and
bottom line are furthest to the right, or, if they are both in the same part, the
two that have a maximal neighborhood.

One other possibility is, that a 2-path from u to σ(S∗−u) has only one vertex
y ∈ N(L) on a path from u to X. Of those 2-paths, We also store the element y,
with a largest neighborhood in the component of G − N[L] that contains X.

To check if S∗ is convexly independent it is now sufficient to check if one of
the partial paths to y1 and y2, or to the single element y, extend to X. 
�
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Abstract. In this paper, we study a variant of the p-center problem on
cactus graphs in which the p-center is asked to be connected, and this
problem is called the connected p-center problem. For the connected p-
center problem on cactus graphs, we propose an dynamic programming
algorithm and show that the time complexity is O(n2p2), where n is
number of vertices.

Keywords: Location problem · Connected p-center problem · Cactus
graph · Dynamic programming

1 Introduction

This paper concerns the connected p-center location problem on cactus graphs.
Given a simple graph G = (V,E) with n vertices and m edges, a classical p-
center problem on a graph G = (V,E) is to determine a p-vertex set Vp in G
such that the maximum distance between Vp and V is minimized.

The p-center problem on an arbitrary graph has been known to be NP-
hard [3,4]. Olariu [5] presented an O(n) time algorithm for the 1-center prob-
lem on interval graphs. Tamir [6] showed that the weighted and un-weighted
p-center problems on networks can be solved in O(npmp log2 n) time and
O(np−1mp log3 n) time, respectively. Frederickson [2] showed how to solve this
problem for trees in optimal linear time using parametric search.

The connected p-center problem is proposed by Yen and Chen [7]. They
showed that the CpC problem is NP-hard even when the underlying graph is
a bipartite graph or a split graph, and gave an O(n) time algorithm to solve
the problem on tree graphs. In [8], Yen proved that the CpC problem on block
graph is NP-hard even when (1) w(v) = 1, for all v ∈ V , and l(e) ∈ {1, 2}, for
all e ∈ E, and (2) w(v) ∈ {1, 2}, for all v ∈ V , and l(e) = 1, for all e ∈ E,
respectively.
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2 Notations and Basic Properties

Let G = (V,E) be a simple cactus graph, where each vertex v ∈ V is associated
with a unit weight w(v) = 1 and each edge e ∈ E is associated with a length
l(e) > 0. Denote by P [u, v] the shortest path in G from u to v, u, v ∈ V .

In order to facilitate the overview of the proposed algorithms for the center
problems in cactus networks, we start with the well-known tree structure of a
cactus network [1]. The vertex set V is partitioned into three different subsets:
C-vertices, G-vertices and hinges.

It is easy to see that a cactus consists of blocks, which are either a cycle or a
graft. Thus, we can use a tree TG to represent the skeleton over G, where each
element in TG represents a block or a hinge of G.

To make the tree TG ready for use as intended, we convert it into a rooted
tree as follows: We pick an arbitrary block, e.g., B0, as the “root” of TG. For
each block B in TG, we define the level Lev(B) of B to be the number of edges
on P [B,B0]. Denote by L = maxB∈TG

{Lev(B)}. If it exists, the father of a
block B is always a hinge h, called its companion hinge. For simplicity, we pick
an arbitrary vertex h0 ∈ B0 as the virtual companion hinge of B0. Denote by
Bh the block B whose companion hinge is h.

For each block Bh in TG, denote by Gh the sub-cactus of G induced by the
vertices of Bh and all sub-cacti hanging from Bh. Specially, G = Gh0 . For each
hinge h of Gh0 , denote by gh the vertex of Gh0 \ Gh which is the farthest to h.
Denote by g(h) = d(h, gh).

Let δGh
(Vk) be the maximum weighted distance from a k-vertex set Vk to a

sub-cactus Gh, that is,

δGh
(Vk) = max

u∈V (Gh)
{w(u)d(u, Vk)},

where d(u, Vk) = minv∈Vk
d(u, v).

The Connected p-Center (CpC) Problem: Given a connected graph G =
(V,E) and a positive integer p ≥ 2, identify a p-vertex set Vp ⊆ V such that
δG(Vp) is minimized under the restriction that the subgraph induced by Vp is
connected. Vp is called a connected p-center of G.

For each graft Bh, we define a problem P (Gh, v, k): Given a vertex v of Bh

and a positive integer k ≤ p, identify a connected k-vertex set V (Gh, v, k) of
Gh such that δGh

(V (Gh, v, k)) is minimized, under the restriction that v is the
closest vertex to h in V (Gh, v, k) ∩ V (Bh). V (Gh, v, k) is called a v-restricted
connected k-center of Gh.

For each cycle Bh with s indexed vertices v1 = h, v2, . . . , vs, we
define a problem P (Gh, {vi, vj}, k) (P co(Gh, {vi, vj}, k)): Given two vertices
vi, vj ∈ V (Bh) with i ≤ j, and a positive integer k ≤ p, identify
a connected k-vertex set V (Gh, {vi, vj}, k) (V co(Gh, {vi, vj}, k)) of Gh such
that δGh

(V (Gh, {vi, vj}, k)) (δGh
(V co(Gh, {vi, vj}, k))) is minimized, under the

restriction that V (Gh, {vi, vj}, k)∩V (Bh) contains only the vertices of the path
from vi to vj on Bh in clockwise (counter-clockwise) direction. V (Gh, {vi, vj}, k)
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(V co(Gh, {vi, vj}, k)) is called a {vi, vj}-restricted clockwise (counter-clockwise)
connected k-center of Gh.

For all sub-cacti Gh, denote by V1 (resp. V2) the set of V (Gh, v, p) (resp.
V (Gh, {vi, vj}, p) and V co(Gh, {vi, vj}, p)).

Lemma 1. There exists a connected p-center of Gh0 in V1 ∪ V2.

Proof. Let Vp be a connected p-center of Gh0 . We assume that v ∈ Vp is the
closest vertex to h0, and Bh is the block that contains v. We distinguish the
following two cases.

Case 1. Bh is a graft of Gh0 , assume that V (Gh, v, p) is a v-restricted connected
p-center of Gh. It is easy to see that:

δGh0
(Vp) = max{δGh

(Vp), d(v, h) + g(h)}
≥ max{δGh

(V (Gh, v, p)), d(v, h) + g(h)}
= δGh0

(V (Gh, v, p)),

which implies V (Gh, v, p) is also an optimal solution to CpC problem.

Case 2. Bh is a cycle of Gh0 . W.l.o.g., we only consider the case Vp ∩ V (Bh)
contains only the vertices of the path from vi to vj on Bh in clockwise direc-
tion, where i ≤ j (the other case can be handled similarly). Assume that
V (Gh, {vi, vj}, p) is a {vi, vj}-restricted connected p-center of Gh. By the similar
discussion in Case 1, we have:

δGh0
(Vp) = max{δGh

(Vp),max{d(vi, h), d(vj , h)} + g(h)}
≥ max{δGh

(V (Gh, {vi, vj}, p)),max{d(vi, h), d(vj , h)} + g(h)}
= δGh0

(V (Gh, {vi, vj}, p)),

which implies V (Gh, {vi, vj}, p) is also an optimal solution to CpC problem. �	
Based on Lemma 1, we are going to devise an algorithm to identify all

restricted connected p-centers in V1 ∪ V2.

3 Algorithm for the CpC Problem on Cactus Graphs

3.1 Procedure GRAFT(B, h)

Given a graft T = Bh. Root T at the vertex h. Let leaf(T ) be all leaves of T .
For each vertex v of T , we define the level lev(v) of v to be the number of edges
on P [h, v] and L′

m = maxv∈V (T ) lev(v). If v 
= h, then by removing the last edge
of P [h, v], we obtain two subtrees of T . Let Tv be the subtree that contains v,
and let T c

v = T \ Tv. Similarly, we let Gv be the subgraph of Gh induced by the
vertices of Tv and the sub-cacti hanging from Tv, and Gc

v = Gh \ Gv.
For each vertex v in T , let E(v) be the edges of Tv which are adjacent to v.

Denote by s(v) = |E(v)|. We define an arbitrary order among the edges of E(v),
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and we denote the lth edge in E(v) by e(v, l). If vl is the other endpoint of the
e(v, l), then we say that vl is the lth son of v, and v is the father fa(vl) of vl.
Denote by son(v) be the sons of v. Denote by Te(v,l) the maximal connected
subgraph of Tv which contains v but does not contain any edge e(v, j) for j > l.
In particular, Te(v,0) = v and Te(v,s(v)) = Tv. Similarly, we define Ge(v,l) to be
the subgraph of Gv induced by the vertices of Te(v,l) and all sub-cacti hanging
from Te(v,l).

Let e(v, l) be an arbitrary edge of T . Let S(e(v, l), k) be a connected k-vertex
set of Gv which contains v but does not contain any vertex vj ∈ son(v) for j > l.
Then we define a partial distance-value of S(e(v, l), k) over Ge(v,l).

Definition 1. Let e(v, l) be any arbitrary edge of T . For each positive integer
k, 1 ≤ k ≤ min{p, |Ge(v,l)|}, we define:

R∗(e(v, l), k) = min
S(e(v,l),k)⊆G(e(v,l))

δGe(v,l)(S(e(v, l), k)).

The corresponding set to R∗(e(v, l), k) is denoted by S∗(e(v, l), k).

Next, for the vertices in Gc
v, we define the value R∗(Gc

v, v) as follow:

R∗(Gc
v, v) = δGc

v
(v),

which is in fact the distance-value of the 1-center v over Gc
v.

Once we obtain the values R∗(e(v, s(v)), k) and R∗(Gc
v, v), the distance-value

of V (Gh, v, k) can be computed as:

δGh
(V (Gh, v, k)) = max{R∗(e(v, s(v)), k), R∗(Gc

v, v)}. (1)

According to our assumption, when the block Bh to be processed, we can
assign for each v in leaf(T ) the following values. For each vertex v of degree 0
in G, we assign:

R∗(e(v, 0), 1) = 0

and
S∗(e(v, 0), 1) ← {v}.

For each vertex v which is the companion hinge of some block Bv, if Bv is a
graft, we assign:

R∗(e(v, 0), k) = δGv
(V (Gv, v, k))

and
S∗(e(v, 0), k) ← V (Gv, v, k).

Otherwise, we assign:

R∗(e(v, 0), k) = δGv
(V (Gv, {v, v}, k))

and
S∗(e(v, 0), k) ← V (Gv, {v, v}, k).
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The Computation of R∗(e(v, l), k) and S∗(e(v, l), k). We assume that, when
the jth stage begins, the value R∗(e(v, s(v)), k) has been computed for each
vertex v ∈ T of level lev(v) ≥ L′

m − j + 1. During the jth stage, we search
through all vertices of level L′

m − j. For each such a vertex v, we compute all
values R∗(e(v, s(v)), k) and go on the next vertex of level L′

m − j.
Let v be a vertex of level L′

m − j. We start by assigning:

R∗(e(v, 0), 1) = max
u∈son(v)

{d(v, u) + R∗(e(u, 0), 1)}.

Assume that we already known the values R∗(e(v, l′), k) for all l′ < l, and we
now compute the value R∗(e(v, l), k) as follows:

R∗(e(v, l), k) = min
{

min
0≤k′≤k−1

max{R∗(e(v, l − 1), k′), R∗(e(vl, s(vl), k − k′)},

max{R∗(e(v, l − 1), k), �(v, vl) + R∗(e(vl, s(vl)), 1)}}. (2)

On the right-hand side of (2), the first term corresponds to vl ∈ S∗(e(v, l), k),
and the second term corresponds to vl 
∈ S∗(e(v, l), k).

If vl ∈ S∗(e(v, l), k), assign:

S∗(e(v, l), k) ← S∗(e(v, l − 1), k′′) ∪ S∗(e(vl, s(vl)), k − k′′), (3)

where k′′ is the number such that the first term of the right-hand side of (3) is
minimized. Otherwise, assign:

S∗(e(v, l), k) ← S∗(e(v, l − 1), k).

We can compute all values R∗(e(v, l), k) by passing through all edges in T .
Note that there are at most |T |p values R∗(e(v, l), k) must be computed, each of
those computations involved the finding of a minimum over at most 2k terms.
Thus, the total time complexity is O(|T |p2).
The Computation of R∗(Gc

v, v). The value R∗(Gc
v, v) can be computed by

using the distances matrix of T and the values R∗(e(u, 0), 1), u ∈ leaf(T ), that is:

R∗(Gc
v, v) = max

u∈leaf(T )
{d(v, u) + R∗(e(u, 0), 1)}.

It is easy to see that the total time is O(|T |2) to compute the values R∗(Gc
v, v).

3.2 The Procedure CYCLE(C, h)

Let C be the cycle Bh with s clockwise indexed vertices v1 = h, v2, . . . , vs. For
any pair vi, vj ∈ V (C) (i ≤ j), denote by Cvi,vj

( Cco
vi,vj

) the subgraph induced by
the vertices of the path from vi to vj in clockwise direction (in counter-clockwise
direction), and Gvi,vj

(Gco
vi,vj

) the subgraph induced by Cvi,vj
(Cco

vi,vj
) and the

sub-cacti hanging from it. Let Gc
vi,vj

= Gh \ Gvi,vj
.



The Connected p-Center Problem on Cactus Graphs 723

The Computation of V (Gh, {vi, vj}, k). Let V ({vi, vj}, k) be a connected k-
vertex set of Gvi,vj

that contains the vertices vi and vj . Then we define the
partial distance-value of V ({vi, vj}, k) over Gvi,vj

as follow:

R∗
1({vi, vj}, k) = min

V ({vi,vj},k)⊆Gvi,vj

δGvi,vj
(V ({vi, vj}, k)).

Let em(j,i) be the edge that contains the midpoint of the path from vj to vi
in clockwise direction. Particularly, if the midpoint happens to be a vertex, then
it coincides with vm(j,i). By deleting the edge em(j,i) from Gc

vi,vj
, we obtain two

subgraphs Gc,1
vi,vj

and Gc,2
vi,vj

, which contain vm(j,i) and vm(j,i)+1, respectively.
Now we define the following values:

R∗
2({vi, vj}, vj) = δGc,1

vi,vj
({vj})

and
R∗

3({vi, vj}, vi) = δGc,2
vi,vj

({vi})

to represent the partial distance-values of vj and vi, respectively.
Once we obtain all values defined above, the distance-value of

V (Gh, {vi, vj}, k) can be computed as:

δGh
(V (Gh, {vi, vj}, k)) = max{R∗

1({vi, vj}, k), R∗
2({vi, vj}, vj), R∗

3({vi, vj}, vi)}.

Note that the values R∗
1({vi, vj}, k) can be computed by applying the proce-

dure GRAFT(B, h), and the total time is O(|C|2p2).
Given an edge em = (vm, vm+1) in C. Let P(em) = {{vl1 , vr1}, {vl2 , vr2}, . . .,

{vlt , vrt}} be all vertex pairs of C with their middle edges are em, where l1 ≥
l2 ≥ . . . ≥ lt. Let V = {vl1 , vl2 , . . . , vlt}.

Because of the recursion

R∗
2({vrk , vlk}) = max{R∗

2({vrk−1 , vlk−1}, vlk−1) + d(vlk + vlk−1),
max

lk−1>j′≥lk
{d(vlk , vj′) + R∗

1({vj′ , vj′}, 1)}}, (4)

we can calculate all values R∗
2({vrk , vlk}, vlk) for l1 ≤ lk ≤ lt by passing through

all vertices in V and cost O(|C|) time for comparing and adding operations.
Thus, all values can be computed in O(|C|2) time since there O(|C|2) values
must be computed and O(|C|) edges in C.

The Computation of V co(Gh, {vi, vj}, k). Let V co({vi, vj}, k) be a connected
k-vertex set of Gco

vi,vj
that contains the vertices vi and vj , let em(i,j) be the

edge that contains the midpoint of the path from vi to vj in clockwise direction.
Particularly, if the midpoint happens to be a vertex, then it coincides with vm(i,j).

Next we define the partial value:

R∗
4({vi, vj}, k) = min

V co({vi,vj},k)⊆Gco
vi,vj

δGco
vi,vj

(V co({vi, vj}, k)),
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as well as the values R∗
5({vi, vj}, vi) and R∗

6({vi, vj}, vj), similar to R∗
2({vi, vj},

vj) and R∗
3({vi, vj}, vi), respectively. Therefore, we can compute the distance-

value of V co(Gh, {vi, vj}, k) as:

δGh(V
co(Gh, {vi, vj}, k)) = max{R∗

4({vi, vj}, k), R∗
5({vi, vj}, vi), R∗

6({vi, vj}, vj)}.
It is easy to see that all values R∗

4({vi, vj}, k), R∗
5({vi, vj}, vi), R∗

6({vi, vj}, vj)
can be computed similarly as above, and the time complexity is O(|C|2p2).

3.3 Algorithm for the CpC Problem

By Lemma 1, we can now identify a connected p-center V ∗
p from V1 ∪ V2. The

distance-value of V ∗
p can be computed by the following relation:

δ(V ∗
p ) = min

{
min

V (Gh,v,p)∈V1
{max{δGh(V (Gh, v, p)), d(v, h) + g(h)}},

min
V (Gh,{vi,vj},p)∈V2

max{δGh(V (Gh, {vi, vj}, p)),max{d(vj , h), d(vi, h)}+ g(h)},

min
V co(Gh,{vi,vj},p)∈V2

max{δGh(V
co(Gh, {vi, vj}, p)), g(h)}

}
. (5)

We can now formulate the algorithm for the CpC problem.

Algorithm 1. Connected p-Center on Cactus Graphs.
1Input: A cactus graph G(h0), the corresponding skeleton TS(B0) and its

maximal level Lm.
Output: A connected p-center V ∗

p and its distance-value.
2 for i = 1; i <= Lm; i + + do
3 for each block B of level 2Lm − 2i + 1 do
4 if B is a graft then
5 Let h be the companion hinge of B, let L′

m be the maximal
level of B;

6 for j = 1; j <= L′
m; j + + do

7 Call GRAFT(B, h) to compute the values V (Gh, v, k) for
each vertex v of level j and 1 ≤ k ≤ min{p, |Gv|};

8 end
9 end

10 if B is a cycle then
11 Let h be the companion hinge of C;
12 Call CYCLE(B, h) to compute the values V (Gh, {vi, vj}, k)

and V co(Gh, {vi, vj}, k) for all pair vi, vj ∈ V (C) (i ≤ j) and
all possible numbers k;

13 end
14 end
15 end
16 return Identify a connected p-center V ∗

p by using the Eq. (5).
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As a preprocessing for Algorithm 1, we first compute the distance-matrix of
the given cactus. Then we find a skeleton of the given cactus and compute g(h)
for each companion hinge h in the skeleton. This preprocessing requires O(n2)
steps. Then we can find a p-center from V1 ∪ V2 by using the binary search
method.

Theorem 1. The CpC problem on a cactus graph of n vertices can be solved in
O(n2p2) time.

4 Conclusions

In this paper we consider the connected p-center on graphs. We devise a dynamic
programming algorithm of the complexity O(n2p2) for the problem on cac-
tus graphs. In the future, it is very meaningful to extend our algorithm to
other classes of graphs, such as interval graphs, circular-arc graphs and planar
graphs, etc.
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1 ENSTA ParisTech (and CEDRIC-Cnam) 828,
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Abstract. We consider the (QAP ) that consists in minimizing a
quadratic function subject to assignment constraints where the variables
are binary. In this paper, we build two families of equivalent quadratic
convex formulations of (QAP ). The continuous relaxation of each equiv-
alent formulation is then a convex problem and can be used within a
B&B. In this work, we focus on finding the “best” equivalent formula-
tion within each family, and we prove that it can be computed using
semidefinite programming. Finally, we get two convex formulations of
(QAP ) that differ from their sizes and from the tightness of their con-
tinuous relaxation bound. We present computational experiments that
prove the practical usefulness of using quadratic convex formulation to
solve instances of (QAP ) of medium sizes.

Keywords: Quadratic assignment problem · Convex quadratic
programming · Semidefinite programming · Experiments

1 Introduction

We consider the general version of the Quadratic Assignment Problem (QAP )
where we are given a four-dimensional array Q = (qijkl) of coefficients. The
problem can be formulated as:

(QAP )

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min f(x) =
∑

(i,j,k,l)∈I4

qijklxijxkl

n
∑

i=1

xij = 1 j ∈ I (1)

n
∑

j=1

xij = 1 i ∈ I (2)

xij ∈ {0, 1} (i, j) ∈ I2 (3)

where I is the set of n facilities or locations and the decision variable xij corre-
sponds to facility i being assigned to location j, and qijkl is the cost incurred by
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 726–734, 2016.
DOI: 10.1007/978-3-319-48749-6 54
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assigning facility i to location j and facility k to location l. Sahni and Gonzalez
[11] have shown that the (QAP ) is NP-hard. The (QAP ) remains one of the
hardest optimization problems. In the more general case, when the Hessian
matrix is fully dense, no exact algorithm can solve problems of size n > 35.
Several algorithms were introduced for solving this problem. The majority of
them are based on B&B technics. To compute polynomial bounds, many authors
have proposed linearizations of the quadratic objective function by introducing
additional variables. Semidefinite programming relaxations for the (QAP ) were
also considered by several authors. In terms of quality, the bounds obtained by
semidefinite programming and convex programming are competitive with the
best existing lower bounds for the (QAP ). We refer the reader to the recent
survey [6] for more references.

We introduced in [2,3] the Mixed Integer Quadratic Convex Reformulation
(MIQCR) approach. This method handles general mixed-integer quadratic prob-
lems (QP ) by designing the tightest possible equivalent program to (QP ) with a
convex objective function, within a convex reformulation scheme. In this paper,
we present two algorithms to solve (QAP ) based on the reformulation of the orig-
inal problem into an equivalent quadratic problem whose continuous relaxation
is convex. These algorithms are specializations of method MIQCR to (QAP ).

In Sect. 2, we introduce a new family of equivalent formulations to (QAP )
where we stay in the same space of variables than in the original (QAP ). In
Sect. 3, we introduce another family of equivalent formulations to (QAP ) in
an extended space of variables. In Sect. 4, we present computational results on
instances of (QAP ) to show the effectiveness of the approaches. Section 5 draws
a conclusion.

Notation: We denote by v(P ) the optimal value of (P ), by Sn the set of n × n
symmetric matrices, by S+

n the set of positive semidefinite matrices of Sn and
M � 0 means that M ∈ S+

n , by 〈A,B〉 the scalar product of matrices A ∈ Sn

and B ∈ Sn, i.e. 〈A, B〉 = tr(AB) =
∑

i,j

aijbij.

2 A Compact Equivalent Quadratic Convex Formulation

We consider the problem of reformulating (QAP ) into an equivalent quadratic
0–1 program. This reformulation consists in a perturbation of the Hessian matrix
of the objective function f(x) such that the new objective function is convex.
The continuous relaxation of the new quadratic 0–1 program is thus a polynomial
problem, and it is easy to develop a B&B based on this relaxation. To build this
reformulation, we add to f(x) a combination of three sets of functions where
each of these functions vanishes on the feasible solution set. More precisely, we
consider: (i) equalities (x2

ij − xij) = 0 for all (i, j) ∈ I2, that are satisfied for
any 0 − 1 variable. Using the matrix notation, each identity (x2

ij − xij) = 0
can be rewritten 〈Q1

ij , xxT 〉 − xij = 0, where Q1
ij is the matrix associated to the
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equality (i, j) which all entries equal to 0 except the diagonal entry corresponding
to variable xij which is equal to 1. (ii) Equalities xijxil = 0 for all (i, j, l) ∈ I3 :
j < l coming from the fact that a facility cannot be affected to more than one
location. Using the matrix notation, each identity xijxil = 0 can be rewritten
〈Q2

ijl, xxT 〉 = 0, where Q2
ijl is the matrix associated to the equality (i, j, l) which

all entries equal to 0 except the entry corresponding to the row of variable xij

and the column of variable xil which is equal to 1. (iii) Equalities xijxkj = 0 for
all (i, j, k) ∈ I3 : i < k coming from the fact that a location cannot be affected
to more than one facility. Using the matrix notation, each identity xijxkj = 0
can be rewritten 〈Q3

ijk, xxT 〉 = 0, where Q3
ijk is the matrix associated to the

equality (i, j, k) which all entries equal to 0 except the entry corresponding to
the row of variable xij and the column of variable xkj which is equal to 1.

We now introduce real scalar parameters: βij ∀ ∈ (i, j) ∈ I2, λijl ∀(i, j, l) ∈
I3 : j < l, and λ′

ijk ∀(i, j, k) ∈ I3 : i < k. We define a new objective function as
follows:

fβ,λ,λ′ (x) =f(x) +
∑

(i,j)∈I2

βij(x
2
ij − xij) +

∑

(i, j, l) ∈ I3

j < l

λijlxijxil +
∑

(i, j, k) ∈ I3

i < k

λ
′
ijkxijxkj

It is clear that if x is feasible for (QAP ) (i.e. if x satisfies Constraints (1)–(3)),
then f(x) = fβ,λ,λ′(x). We then obtain the following equivalent problem:

(QAPβ,λ,λ′)
{

max
(1)(2)(3)

fβ,λ,λ′(x)

where the objective function can be rewritten as follows: fβ,λ,λ′ (x) = 〈Qβ,λ,λ′ , xxT 〉−
βT x with Qβ,λ,λ′ = Q +

∑

(i,j)∈I2

βijQ
1
ij +

∑

(i, j, l) ∈ I3

j < l

λijlQ
2
ijl +

∑

(i, j, k) ∈ I3

i < k

λ
′
ijkQ

3
ijk

Varying parameters (β, λ, λ′) gives rise to (QAPβ,λ,λ′) as a family of equiv-
alent problems to (QAP ). To use these equivalent problems into a B&B, we
are interested by parameters (β, λ, λ′) such that fβ,λ,λ′(x) is a convex function.
Moreover, in order to have a good behavior of the B&B, we will focus on those
that give the tightest continuous relaxation bound.

Denoting (QAP β,λ,λ′) the continuous relaxation of (QAPβ,λ,λ′), this amounts
to solve the following problem

(P )
{

max
Qβ,λ,λ′�0

{v(QAP β,λ,λ′)}

Here, we prove that an optimal solution to (P ) can be deduced from a dual
solution of the following program (SDPR2) introduced in [12] which is also a
semidefinite relaxation of (QAP ):
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(SDPR2)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min f(X, x) = 〈Q, X〉
(1)(2)

Xijij − xij = 〈Q1
ij , X〉 − xij = 0 (i, j) ∈ I2 (4)

Xijil = 〈Q2
ijl, X〉 = 0 (i, j, l) ∈ I3, j < l (5)

Xijkj = 〈Q3
ijk, X〉 = 0 (i, j, k) ∈ I3, i < k (6)

(

1 x

xT X

)

� 0, x ∈ R
n2

X ∈ Sn2 (7)

Theorem 1. The optimal value of (P ) is equal to the optimal value of (SDPR2).

Proof. Let us firstly prove that v(P ) ≤ v(SDPR2). Let (β̄, λ̄, λ̄′) be any feasible
solution to (P ). To prove that v(P ) ≤ v(SDPR2) we prove that from any feasible
solution (X̄, x̄) to (SDPR2), we can build a feasible solution x to (QAP β̄,λ̄,λ̄′)
with a lower objective value, i.e., satisfying fβ̄,λ̄,λ̄′(x) ≤ f(X̄, x̄). Take x = x̄, this
solution is feasible to (QAP β̄,λ̄,λ̄′). Indeed, Constraints (1) and (2) are obviously
satisfied, and by Constraints (4) and (7), we have 0 ≤ x ≤ 1. We now prove that
fβ̄,λ̄,λ̄′(x) ≤ f(X̄, x̄) or equivalently that Δ = fβ̄,λ̄,λ̄′(x)−f(X̄, x̄) ≤ 0. We have:

Δ = 〈Qβ̄,λ̄,λ̄′ , x̄x̄T 〉−β̄T x̄−〈Q, X̄〉 = 〈Qβ̄,λ̄,λ̄′ , x̄x̄T 〉−β̄T x̄−〈Q, X̄〉−
∑

(i,j)∈I2

β̄ij(〈Q1
ij , X̄〉−x̄ij)

−
∑

(i, j, l) ∈ I3

j < l

λ̄ijl〈Q2
ijl, X̄〉 −

∑

(i, j, k) ∈ I3

i < k

λ̄
′
ijk〈Q3

ijk, X̄〉 = 〈Qβ̄,λ̄,λ̄′ , x̄x̄
T − X̄〉 − β̄

T
x̄ + β̄

T
x̄ ≤ 0

Let us secondly prove that v(P ) ≥ v(SDPR2) or equivalently v(P ) ≥
v(DSDPR2) where (DSDPR2) is the dual of (SDPR2):

(DSDPR2)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

max g(β, λ, λ
′
, ρ, ρ

′
) = −

∑

i∈I
(ρi + ρ

′
i)

Q +
∑

(i,j)∈I2

βijQ
1
ij +

∑

(i, j, l) ∈ I3

j < l

λijlQ
2
ijl +

∑

(i, j, k) ∈ I3

i < k

λ
′
ijkQ

3
ijk � 0 (8)

β +
∑

i∈I
(ρi + ρ

′
i) ≥ 0 (9)

βij ∈ R, λijl ∈ R, λ
′
ijk ∈ R, ρi ∈ R, ρ

′
i ∈ R

where βij ∈ R are the dual variables associated with constraints (4), λijl ∈ R,
and λ′

ijk ∈ R are the dual variables associated with constraints (5) and (6),
respectively, and ρi ∈ R, and ρ′

i ∈ R are the dual variables associated with
constraints (1) and (2), respectively. Let (β̄, λ̄, λ̄′, ρ̄, ρ̄′) be a feasible solution to
(DSDPR2), then, we build the following positive semidefinite matrix:

Qβ̄,λ̄,λ̄′ =Q +
∑

(i,j)∈I2

β̄ijQ
1
ij +

∑

(i, j, l) ∈ I3

j < l

λ̄ijlQ
2
ijl +

∑

(i, j, k) ∈ I3

i < k

λ̄
′
ijkQ

3
ijk

By Constraint (8), we have Qβ̄,λ̄,λ̄′ � 0, and therefore (β̄, λ̄, λ̄′) form a feasible
solution to (P ). The objective value of this solution is equal to v(QAP β̄,λ̄,λ̄′).
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We now prove that v(QAP β̄,λ̄,λ̄′) ≥ v(DSDPR2). For this, we prove that for any
feasible solution x̄ to (QAP β̄,λ̄,λ̄′), the associated objective value is not smaller
than g(β̄, λ̄, λ̄′, ρ̄, ρ̄′). Denote by Δ the difference between the objective values:

Δ =〈Qβ̄,λ̄,λ̄′ , x̄x̄
T 〉 + β̄

T
x̄ +

∑

i∈I
(ρ̄i + ρ̄

′
i) ≥ β̄

T
x̄ +

∑

i∈I
(ρ̄i + ρ̄

′
i) ≥ (β̄ +

∑

i∈I
(ρ̄i + ρ̄

′
i))

T
x̄ ≥ 0 �

Algorithm 1.
step 1: Solve the semidefinite program (SDPR2)

step 2: Deduce an optimal solution (β∗, λ∗, λ
′∗): β∗ is the vector of optimal dual variables asso-

ciated with constraints (4), λ∗ is the vector of optimal dual variables associated with

constraints (5), λ
′∗ is the vector of optimal dual variables associated with constraints (6).

step 3: Solve the program (QAP
β∗,λ∗,λ

′∗ ) by a MIQP solver.

(Its continuous relaxation is a convex program with an optimal value equal to the
optimal value of (SDPR2))

From Theorem 1 we can deduce Algorithm 1 to solve (QAP ). An interesting
remark concerning this equivalent convex formulation is that we do not add any
variable and constraint to build it. Moreover, the Step 1 of Algorithm1 requires
the solution of a semidefinite problem with a reasonable size (i.e. O(n4) variables,
and O(n3) constraints). We will see in the experiments of Sect. 4 that solving
(SDPR2) with an appropriate algorithm based on a bundle method, as in [4], is
practicable. Furthermore, the reasonable size (n2) of (QAPβ∗,λ∗,λ′∗), that will be
solved at each node of the B&B is clearly an advantage. However, by remaining in
the same space of variables, we limit the sharpness of the bound at the root node
of the B&B and consequently, this method cannot handle instances of (QAP )
of large sizes.

3 An Extended Quadratic Convex Equivalent
Formulation

In this section, we describe another family of quadratic convex reformulations
of (QAP ) that is built in an extended space of variables. The basic idea is the
same as for the algorithm described in Sect. 2, but in this family of reformula-
tions, we will use additional variables and constraints in order to strengthen the
continuous relaxation value of the equivalent formulation. In other words, we
will use a tighter semidefinite relaxation of (QAP ) to build an equivalent convex
formulation. We first introduce new variables y that will satisfy:

yijkl = xijxkl ∀(i, j, k, l) ∈ I4 : i 	= k and j 	= l (C1)

Then, as in Sect. 2, we consider functions that vanish on the feasible solution
set defined by the original (QAP ) (i.e. Constraints (1)–(3)) and by (C1). More
formally, in addition to the combination of the three sets of functions intro-
duced in Sect. 2, we consider the following equalities: xijxkl − yijkl = 0 for all
(i, j, k, l) ∈ I4 : i 	= k and j 	= l. Using the matrix notation, these equalities can
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be rewritten as 〈Q4
ijkl, xxT 〉−yijkl = 0, where Q4

ijkl is the matrix which all entries
are equal to 0 except the entry corresponding to the row of variable xij and the
column of variable xkl which is equal to 1. Then, we introduce non-negative real
parameters φijkl and we consider the following new quadratic function:

fβ,λ,λ′,φ(x, y)=fβ,λ,λ′ (x)−
∑

(i, j, k, l) ∈ I4

i �= k; j �= l

φijkl(〈Q4
ijkl, x̄x̄

T 〉−yijkl)=〈Qβ,λ,λ′,φ, xx
T 〉−β

T
x+φ

T
y

where Qβ,λ,λ′,φ = Qβ,λ,λ′ −
∑

(i, j, k, l) ∈ I4

i �= k; j �= l

φijklQ
4
ijkl.

Finally, we have to enforce Condition (C1) using linear constraints. As φijkl ≥
0, and since additional variables yijkl only appear in the objective function, it is
easy to see that in an optimal solution yijkl will be set to its smallest possible
value. Hence, problem (QAP ) is equivalently stated as:

(QAPβ,λ,λ′,φ)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

min fβ,λ,λ′,φ(x, y) = 〈Qβ,λ,λ′,φ, xx
T 〉 − β

T
x + φ

T
y

(1)(2)(3)

yijkl ≥ xij + xkl − 1 (10)
yijkl ≥ 0 (11)

Here again, we build an infinite family of equivalent problems to (QAP ), and
we now state the problem to find the best semidefinite matrix Qβ,λ,λ′,φ in terms
of continuous relaxation bound:

(P
′
)

{

max
Q

β,λ,λ′,φ
�0

{v(QAP β,λ,λ′,φ)}

Following the same reasoning steps as in Sect. 2, we claim that this best matrix
can be deduced from the dual of the following semidefinite relaxation of (QAP )
denoted by (SDPR4) and introduced for (QAP ) in [10]:

(SDPR4)

⎧

⎪

⎨

⎪

⎩

min f(X, x) = 〈Q, X〉
(1)(2)(4)(5)(6)(7)

−Xijkl = 〈−Q
4
ijkl, X〉 ≤ 0 (i, j, k, l) ∈ I4, k 
= i, j 
= l (12)

Theorem 2. The optimal value of (P ′) is equal to the optimal value of
(SDPR4).

Proof. A proof can be deduced from the proof of Theorem 1 and the fact that
constraints: Xijkl − 1 − xij − xkl ≥ 0 are redundant in (SDPR4) (this can be
deduced from [1]). 
�

From Theorem 2 we can deduce Algorithm 2 to solve (QAP ). In this quadratic
convex reformulation we use a semidefinite relaxation that is well known to be
very sharp. Hence, we will start Step 3 of our algorithm with a good continuous
relaxation bound, but it is obtained by solving a quite large semi-definite prob-
lem. We will see in our experiments that solving (SDPR4) with an appropriate
algorithm based on a bundle method [4], is still practicable.
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Algorithm 2.
step 1: Solve the semidefinite program (SDPR4)

step 2: Deduce an optimal solution (β∗, λ∗, λ
′∗, φ∗): β∗, λ∗, λ

′∗ are deduced as in Algorithm1,
φ∗ is the vector of optimal dual variables associated with constraint (12).

step 3: Solve the program (QAP
β∗,λ∗,λ∗′

,φ∗ ) by a MIQP solver.

(Its continuous relaxation is a convex program with an optimal value equal to the
optimal value of (SDPR4))

4 Computational Results

In this section, we present experiments on the Nugent instances from
QAPLIB [7]. In these instances, the distance matrix contains Manhattan dis-
tances of rectangular grids. We compare our algorithms, Algorithms 1 and 2,
with the solver Cplex12.6.2.

Experimental Environment and Parameters: Our experiments were car-
ried out on a server with 2 CPU Intel Xeon each of them having 12 cores and
2 threads of 2.5 GHz and 4 ∗ 16 GB of RAM using a Linux operating system.
For solving (SDPR2) and (SDPR4) we used CSDP [5] together with the Conic
Bundle [8], as done in [4]. We used the C interface of the solver Cplex 12.6.2 [9]

Table 1. Computational results for Algorithm 1, Algorithm 2, and Cplex12.6.2 for
Nugent instances from QAPLIB (time limit of 3 hours)

Name Algorithm 1 (R2) Algorithm 2 (R4) Cplex12.6.2

Gap Time Nodes Gap Time Nodes Gap Time Nodes

nug03 0.0 1 0 0.0 0 0 100 2 0

nug06 5.5 4 0 0.9 1 0 100 3 0

nug12 9.3 33 8900 3.5 69 2674 100 1273 2989838

nug14 6.7 87 64725 1.7 213 2164 100 (49.0 %) 1377491

nug15 8.4 153 306446 2.4 380 7126 100 (58.2 %) 1074602

nug16a 6.2 309 668740 1.8 658 8172 100 (71.3 %) 745267

nug16b 12.9 1847 13305362 4.2 779 92580 100 (56.6 %) 870424

nug17 7.5 1119 4308236 2.5 1281 37483 100 (75.6 %) 643233

nug18 7.8 6436 26403844 3.0 3499 196915 100 (76.9 %) 470523

nug20 9.1 (5.0 %) 29662294 3.6 (2.6 %) 326868 100 (86.8 %) 249492

Average 7.3 1110 (9) 5007361 2.4 764 (9) 38568 100 426 (3) 996613

Name: nug n, where n is the number of facilities and of locations. Gap:
∣

∣

∣

∣

Opt − Cont

Opt

∣

∣

∣

∣

∗
100, where Cont is the optimal value of the continuous relaxation, and Opt the optimal
solution value of the instance. Time (Total CPU in seconds - limited to 3 hours): Ref
+ Cplex where Ref is the CPU time for Step 1 and Cplex the CPU time for Step 3.

We present the final gap (g%), g =

∣
∣
∣
∣
Opt − b

Opt

∣
∣
∣
∣ ∗ 100 where b is the best bound obtained

within the time limit. Nodes: Number of nodes visited by the B&B.
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for solving (QAP β∗,λ∗,λ′∗) and (QAP β∗,λ∗,λ′∗,φ∗) and for the direct submission
of the problems to Cplex. We set parameters as follows: Step 1: Parameters
axtol, aytol of CSDP [5] are set to 10−5. The Conic Bundle [8] stops if the
Euclidean norm of the latest aggregate subgradient is smaller than 10−1, or if
the precision of 10−5 is satisfied. Step 3 or direct Cplex: the relative mipgap is
10−5 and the absolute gap is 0.999. objdiff is set to 0.999, and varsel to 4.
We use the multi-threading version of Cplex12.6.2 with up to 48 threads.

In Table 1, we compare the solution of the 10 Nugent instances with up to
n = 20 by Algorithm 1, Algorithm 2, and Cplex12.6.2. We observe that Algo-
rithms 1 and 2 outperform Cplex12.6.2 in terms of initial gap and Total CPU
time. Then, we notice that the initial gap obtained with Algorithm2 is always
smaller (factor of 3 in average) than the gap obtained by Algorithm1. As a conse-
quence, the number of nodes visited during the B&B is significantly smaller with
Algorithm 2 in comparison with Algorithm1 (factor 128) and with Cplex12.6.2
(factor 29). Finally, Cplex12.6.2 is unable to solve instances with n > 12 while
Algorithms 1 and 2 solve instances with up to n = 18 within the 3 hours of CPU
time. A last remark concerns the CPU time for Step 1, for Algorithm 1 it is about
3 times faster than for Algorithm2. This is due to the number of Constraints
of (SDPR4). However, this longer time spent is profitable when we consider the
total computational time.

5 Conclusion

Our two algorithms differ by the sizes of their reformulations and by the tightness
of their continuous relaxation bounds. While the first is compact since it remains
in the same space of variables as in the initial (QAP ), it is limited by its initial
gap when we solve the reformulation. The second works in an extended space
of variables and in spite of a larger size, it allows us to solve the considered
instances faster. We report computational results and we show that our methods
are efficient for solving instances of medium sizes.
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Abstract. This paper addresses the problem of verifying heap evolu-
tion properties of pointer programs. To this end, a new unified model
checking approach with MSVL (Modeling, Simulation and Verification
Language) and PPTLSL is presented. The former is an executable subset
of PTL (Projection Temporal Logic) while the latter is an extension of
PPTL (Propositional Projection Temporal Logic) with separation logic.
MSVL is used to model pointer programs, and PPTLSL to specify heap
evolution properties. In addition, we implement a prototype in order to
demonstrate our approach.

Keywords: Heap verification · Model checking · MSVL · PPTL ·
Separation logic

1 Introduction

Pointers are indispensable in real-world programs or applications. Reasoning
about pointer programs is quite challenging since pointer usage is often complex
and flexible. Potential bugs encountered in pointer programs such as null pointer
dereference, memory leaks, or shape destruction are due to the nature of pointers.
The problem is more serious for concurrent programs since we need to consider
all possible execution sequences of processes. Alias analysis, as the name implies,
is a point-to analysis which naively checks whether pointers can be aliased. Shape
analysis is another form of pointer analysis that attempts to discover the possible
shapes of heap structures. It aims to prove that these structures are not misused
or corrupted.

Reynolds [1] proposes a famous Hoare-style logic known as separation logic
which has received much attention. For the last decade, many works extend sep-
aration logic to do automated assertion checking [2] and shape analysis [3] in
real-world applications. PTL (Pointer Assertion Logic) is a notation for express-
ing assertions about the heap structures of imperative languages. PALE (PAL
Engine) is a complete implementation of PAL that encodes both programs and
partial assertions as formulas in monadic second-order logic. However, loop
invariants have to be manually provided so that it is not fully automatic.

This research is supported by the National Natural Science Foundation of China
Grant Nos. 61133001, 61322202, 61420106004, and 91418201.
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In this paper we intend to apply the model checking framework to verify heap
evolution properties. As the property-specification language we use a variant of
temporal logic namely PPTLSL [4]. PPTLSL is a two-dimensional (spatial and
temporal) logic by extending PPTL (Propositional Projection Temporal Logic)
[5] with a decidable fragment of separation logic. For the program part, our
method makes use of a temporal logic programming language, which is an exe-
cutable subset of PTL (Projection Temporal Logic), called MSVL (Modeling,
Simulation and Verification Language) [6], to model heap programs. PPTLSL

can be translated (preserving satisfiability) into a strict subset of PTL. Spec-
ifications and models lie in the same logic framework, hence the name unified
model checking. The previous unified model checking approach [7] cannot verify
heap evolution properties. We extend the approach in [7] by replacing PPTL
with the more expressive specification language PPTLSL such that heap evo-
lution properties can be verified, and also the corresponding model checking
approach is developed in this paper.

The work in [8] studies the problem of establishing temporal properties,
including liveness properties of Java programs with evolving heaps. A specifica-
tion language Evolution Temporal Logic (ETL) is defined which is a first-order
linear temporal logic with transitive closure. ETL mainly focuses on describ-
ing behaviors of large granularity heap objects and high-level threads. Naviga-
tion Temporal Logic (NTL) [9] extends LTL with pointer assertions on single-
reference structures including primitives for the birth and death of entities. The
abstracted model checking algorithm for NTL is a non-trivial extension of the
tableau based algorithm for LTL, which can be applied for both sequential and
concurrent pointer programs. The major disadvantage of the approach of [9] is
that it can only verify programs manipulating singly-linked lists. In [10], Rieger
presents an abstraction and verification framework for pointer programs oper-
ating on unbounded heaps. In his work, two abstraction techniques are intro-
duced, one is for singly-linked structures and the other employs context-free
hyperedge replacement graph grammars to model more general heap structures.
A two-dimensional (time and space) logic named maLTL is developed in [11] by
combining temporal logic LTL and CTL, which is suitable to deal with pointers
and heap management in the context of C programs. Since both dimensions of
maLTL are realized by temporal logics that makes the difference between the
two dimensions unclear.

2 Projection Temporal Logic

Let V ar be a countable set of typed variables consisting of static and dynamic
variables, and Prop a countable set of propositions. B represents the boolean
domain {true, false}, and D denotes the data domain. The terms e and formulas
Q of PTL are given by the following grammar:

e ::= x | ©e | -©e | fun(e1, . . . , en)

Q ::= q | e1 =e2 | Pred(e1,. . ., en) | ¬Q | Q1∨Q2 | ∃y :Q | ©Q | Q∗ | (Q1,. . ., Qm) prj Q
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where q ∈ Prop is a proposition, x ∈ V ar a variable, and fun a function of arity
n and Pred is a predicate of arity n.

A state s is defined to be a pair (Iv, Ip) of state interpretations Iv and Ip,
Iv : V ar → D ∪ {nil}, Ip : Prop → B. An interval σ = 〈s0, s1, . . .〉 is a non-
empty sequence of states, finite or infinite. The length of σ, denoted by |σ|,
is ω if σ is infinite, otherwise it is the number of states minus one. To have
a uniform notation for both finite and infinite intervals, we will use extended
integers as indices. That is, we consider the set N0 of non-negative integers, and
define Nω = N0 ∪ {ω}, and extend the comparison operators, =, <, ≤, to Nω

by considering ω = ω, and for all i ∈ N0, i < ω. Moreover, we define � as
≤ −{(ω, ω)}. With such a notation, σ(i..j)(0 ≤ i � j ≤ |σ|) denotes the sub-
interval 〈si, . . . , sj〉 and σ(k)(0 ≤ k � |σ|) denotes the suffix interval 〈sk, . . . , s|σ|〉
of σ. The concatenation of σ with another interval σ′ is denoted by σ ·σ′. Further,
let σ = 〈sk, . . . , s|σ|〉 be an interval and r1, . . . , rh be integers (h ≥ 1) such that
0 ≤ r1 ≤ r2 ≤ · · · ≤ rh � |σ|. The projection of σ onto r1, . . . , rh is the interval,
σ ↓ (r1, . . . , rh) = 〈st1 , . . . , stl〉, where t1, . . . , tl is obtained from r1, . . . , rh by
deleting all duplicates.

An interpretation for a PTL formula is a triple I = (σ, k, j) where σ =
〈s0, s1, . . .〉 is an interval, k a non-negative integer and j an integer or ω such
that k � j ≤ |σ|. We write (σ, k, j) |= Q to mean that a formula Q is interpreted
over a sub-interval σ(k..j) of σ with the current state being sk. The notation sk =
(Ik

v , Ik
p ) indexed by k represents the k-th state of an interval σ. The semantics

of terms and PTL formulas are defined by:

I[x]=

{
Ik

v [x]=Ii
v[x] x is static,

Ik
v [x] otherwise.

I[fun(e1,. . ., en)]=

{
I[fun](I[e1],. . ., I[en]) if i<k,

nil otherwise.

I[©e] =

{
(σ, i, k + 1, j)[e] if k < j,

nil otherwise.
I[ -©e] =

{
(σ, i, k − 1, j)[e] if i < k,

nil otherwise.

I |= q iff Ik
p (q) = true. I |= e1 = e2 iff I(e1) = I(e2).

I |= P red(e1, . . . , en) iff Pred(I[e1], . . . , I[en]) = true and I[ei] �= nil, for all i.

I |= ¬Q iff I �|= Q. I |= ∃y : Q iff ∃σ′ such that σ′
(k..j)

x
= σ(k..j) and (σ′, k, j) |= Q.

I |= Q1 ∨ Q2 iff I |= Q1 or I |= Q2. I |= ©Q iff k < j and (σ, k + 1, j) |= Q.

I |= (Q1, . . . , Qm)prj Q iff ∃k = r0 ≤ r1 ≤ · · · ≤ rm � j such that (σ, r0, r1) |= Q1,

(σ, rl−1, rl) |= Ql(1 < l ≤ m), (σ′, 0, 0, |σ′|) |= Q for one of the σ′ : (a) rm < j and

σ′ = σ ↓ (r0, . . . , rm) · σ(rm+1..j)(b) rm = j and σ′ = σ ↓ (r0, . . . , rh) for 0 ≤ h ≤ m.

I |= Q∗ iff ∃r0, . . . , rn ∈ Nω such that k = r0 ≤ r1 ≤ · · · ≤ rn−1 � rn = j(n ≥ 0) and

(σ, r0, r1) |= Q and for all 1 < l ≤ n, (σ, rl−1, rl) |= Q; or ∃k = r0 ≤ r1 ≤ r2 ≤ · · ·
such that lim

i→∞
ri = ω and (σ, r0, r1) |= Q and for l > 1, (σ, rl−1, rl) |= Q.
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A formula Q is satisfied over an interval σ, written σ |= Q, if (σ, 0, |σ|) |= Q
holds. Also we have the following derived formulas:

ε
def
= ¬ © true more

def
= ¬ε Q1; Q2

def
= (Q1, Q2) prj ε Q+ def

= Q; Q∗

♦Q
def
= true; Q �Q

def
= ¬♦¬Q len(n)

def
= ©len(n − 1) skip

def
= len(1)

where ε (or len(0)) denotes an interval with zero length, “;” and “+(∗)” are used
to describe sequential and loop properties respectively.

3 Modeling, Simulation and Verification Language

MSVL is an executable temporal logic with framing technique which is recently
extended with function calls [12] and groups of types such as basic data types,
pointer types and struct types [13]. Thus it is capable of modeling pointer pro-
grams. The arithmetic and boolean expressions of MSVL can be defined as:

e ::=n | x | ©x | -©x | e1+e2 | e1−e2 | e1×e2 | e1/e2 b ::=¬b | b1∨b2 | e1 =e2 | e1 <e2

Some useful elementary statements of MSVL can be inductively defined as
follows. A convenient way to execute MSVL programs is to transform them into
their equivalent normal forms (Definition 1).

empty
def
= ε x <== e

def
= x = e ∧ px Q1 and Q2

def
= Q1 ∧ Q2 Q1 or Q2

def
= Q1 ∨ Q2

x := e
def
= ©x = e ∧ ©px ∧ skip if b then Q1 else Q2

def
= (b → Q1) ∧ (¬b → Q2)

while b do Q
def
= (Q ∧ b)∗∧�(empty → ¬b) lbf(x)

def
= ¬af(x)→∃b : ( -©x = b ∧ x = b)

frame(x)
def
= �(more → ©lbf(x)) Q1‖Q2

def
= (Q1 ∧ (Q2; true)) ∨ (Q2 ∧ (Q1; true))

await(b)
def
= frame(x1, . . . , xn) ∧ �(empty ↔ b) where xi ∈ {x | x appears in b}

Definition 1 (Normal Form of MSVL). An MSVL program Q is in normal

form if Q
def=

n′
∨

i=1

Qei
∧ε∨

n∨

j=1

Qcj ∧©Qfj
, where Qfj

is a general MSVL program,

whereas Qei
and Qcj are true or all are state formulas of the form: (x1 = e1) ∧

· · · ∧ (xm = em) ∧ ·
qx1 ∧ · · · ∧ ·

qxm
.

·
q denotes either q or ¬q.

The normal form divides the formula into two parts: the present part and
the future part. A key conclusion is that any MSVL program can be reduced
to its normal form [5,6]. Therefore, we can use an incremental way to execute
MSVL programs based on normal form.

Theorem 1. Any MSVL program Q can be reduced to its normal form.

Using normal form of MSVL as a basis, a graph can be constructed, namely
Normal Form Graph (NFG) [5,6], by recursively progressing the future part of
a normal form, which explicitly illustrates the state space of an MSVL program.
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3.1 Examples of MSVL Programs Manipulating Pointers

Producer-consumer program. Consider the producer-consumer problem encoded
in MSVL below. The producer process and the consumer process share a buffer
which is realized as a global singly-linked list. The producer repeatedly generates
new items by allocating new memory heap cells, and adds them to the tail x of
the buffer, whereas the consumer removes items from the head y of the buffer
and disposes them.

The parallel operator “||” in MSVL considers the true concurrency semantics
of programs. In order to simulate the interleaving semantics of the two concurrent
processes, the await statement is employed to force a process to sleep when the
waiting condition is false, otherwise the process will continue to execute.

struct Node { Node *nxt };
frame(PC, x, y, t, r) and (

int PC<==0 and Node *x<==NULL, *y<==NULL, *t<==NULL, *r<==NULL and empty;

y:=(Node*)malloc(sizeof(Node)) and x := (Node*)malloc(sizeof(Node));

y->nxt:=x and (PC:=0 or PC:=1);

//Producer //Consumer

while(true) { while(true) {
await(PC=0); if(x!=y) then {
t:=(Node*)malloc(sizeof(Node)); await(PC=1);

x->nxt:=t and (PC:=0 or PC:=1); || r:=y and (PC:=0 or PC:=1);

await(PC=0); await(PC=1);

x:=x->nxt and (PC:=0 or PC:=1) y:=y->nxt and (PC:=0 or PC:=1);

} await(PC=1);

next(free(r)) and (PC:=0 or PC:=1)

} else {
await(PC=1);(PC:=0 or PC:=1)

}
}

)

4 The Two-Dimensional Logic PPTLSL

Previously, we integrate a decidable fragment of separation logic (referred to
as SL) with PPTL to obtain a two-dimensional logic. The logic, referred to
as PPTLSL [4], allows us to express heap evolution properties. We assume a
countable set PV ar of variables with pointer type, and a finite set Loc of memory
locations. PV al = Loc∪{null} denotes the set of pointer values which are either
locations or null. The syntax of PPTLSL formulas P is defined by the grammar:

e: := null | l | x φ: := e1 = e2 | e0 �→ {e1, . . . , en} | ¬φ | φ1 ∨ φ2 | φ1#φ2 | ∃x : φ

P : := φ | ¬P | P1 ∨ P2 | ©P | (P1, . . . , Pm) prj P | P ∗

l ∈ Loc, x ∈ PV ar, φ represents SL formulas, and P PPTLSL formulas. Formula
e0 �→ {e1, . . . , en} denotes that e0 points to e1, . . . , en, where e0 represents an
address in the heap and e1, . . . , en the consecutive values held in that address.
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The formula φ1#φ2 specifies properties holding respectively for disjoint portions
of the current heap, one makes φ1 true and the other makes φ2 true. The temporal
operators as well as their semantics are taken from PTL.

We refer to a pair (Is, Ih) as a memory state, Is : PV ar ⇀ PV al, Ih : Loc ⇀⋃n
i=1PV ali, where Is represents a stack and Ih a heap. Is serves as valuations of

pointer variables and Ih as valuations of heap cells. We write dom(f) to denote
the domain of mapping f . Given two mappings f1 and f2, the notation f1 ⊥ f2
means that f1 and f2 have disjoint domains. Moreover, we use f1 · f2 to denote
the union of f1 and f2. The semantics of SL formulas is given by:

(Is, Ih)[null] = null (Is, Ih)[l] = l (Is, Ih)[x] = Ih(x)

Is, Ih |=SL e1 = e2 iff (Is, Ih)[e1] = (Is, Ih)[e2]. Is, Ih |=SL ¬φ iff Is, Ih �|=SL φ.

Is, Ih |=SL e0 �→ {e1, . . . , en} iff dom(Ih) = {(Is, Ih)[e0]} and Ih((Is, Ih)[e0]) =

((Is, Ih)[e1], . . . , (Is, Ih)[en]). Is, Ih |=SL φ1 ∨ φ2 iff Is, Ih |=SL φ1 or Is, Ih |=SL φ2.

Is, Ih |=SL φ1#φ2 iff ∃Ih1 , Ih2 : Ih1 ⊥ Ih2 and Ih = Ih1 · Ih2 and Is, Ih1 |=SL φ1

and Is, Ih2 |=SL φ2. Is, Ih |=SL ∃x : φ iff ∃v ∈ PV al such that Is[x → v], Ih |=SL φ.

The semantics of P is similar to that of Q since the only difference is their
state formulas (formulas without temporal operators). Therefore, we only give
the interpretation of state formulas, i.e., I |= φ iff Ik

s , Ik
h |=

SL
φ. We abusively

use the notation I |= P , and in this case P is interpreted over an interval of
memory states.

SL can describe various heap structures, we present the following derived
formulas expressed in SL which are related to singly-linked lists.

e �→ {−1, . . . , −n} def
= ∃x1, . . . , xn : e �→ {x1, . . . , xn}#true

e ↪→ {−, . . . , −} def
= e �→ {−, . . . , −}#true alloc(e, n)

def
= e ↪→ {−1, . . . , −n}

alloc(e)
def
=
∨

n
i=1alloc(e, i) emp

def
= ¬∃x : alloc(x) �e≥n

def
= #n

i=1(∃xi : xi ↪→{e})

e1
�−→ e2

def
= alloc(e1, 1) ∧ (e2 �= e1 → ¬alloc(e2, 1) ∧ �e1 = 0) ∧ (∀x : x �= e2 →

(�x = 1 → alloc(x, 1))) ∧ (∀x : x �= null → �x ≤ 1) ∧ (∀x : alloc(x) → alloc(x, 1))

ls(e1, e2)
def
= e1

�−→ e2 ∧ ¬(e1
�−→ e2#¬emp)

e1 →+ e2
def
= ls(e1, e2)#true e1 →∗ e2

def
= e1 = e2 ∨ e1 →+ e2

Here, ls(e1, e2) describes a list segment starting from the location e1 to e2, e1 →+

e2 and e1 →∗ e2 mean that e2 is reachable from e1 via certain pointer links. emp
denotes an empty heap, and alloc(e) indicates the address e is allocated in the
current heap. Formulas describing other heap structures can also be derived.

4.1 Specify Heap Evolution Properties

For the producer-consumer program with a shared list, some interesting heap
evolution properties can be specified by PPTLSL:
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(1) Absence of memory leaks, i.e., any item can be reached by certain variable
during the execution of the program: �(∀z : alloc(z) → (x →∗ z ∨ y →∗

z ∨ t →∗ z ∨ r →∗ z)).
(2) The tail of the list is never deleted nor disconnected from the head:

©2�(alloc(x) ∧ y →∗ x).
(3) Shape integrity of the buffer, i.e., the shape of the buffer is repeatedly formed

as a linked list within every five time units: ©2((len(5) ∧ ♦ls(y, null))+).

In [4], we have proved that PPTLSL is decidable by an equisatisfiable transla-
tion. The key idea is that all the formulas expressing heaps in SL are reduced into
the first-order theory. Since the model of first-order set has no heap ingredient,
we use extra variables to simulate it. Let H denote a vector of n tuples of pointer
variables, i.e., H = ((H1,1, . . . , H1,m1), . . . , (Hn,1, . . . , Hn,mn

)). The translations
f(φ,H) and F (P,H) generate an equisatisfiable state formula φ′ to φ and an
equisatisfiable temporal formula P ′ to P respectively. Both φ′ and P ′ belong
to PTL. The detailed definitions of f and F can be found in [4]. Analogous
to MSVL, by using a very similar approach, we can construct a graph struc-
ture (also called NFG) that explicitly characterizes the model for any reduced
PPTLSL formula. The detailed proofs are given in [4], here we only give a brief
summary.

Theorem 2. PPTLSL is decidable, and its complexity is the same as PPTL,
i.e., non-elementary.

5 Model Checking with MSVL and PPTLSL

Our model checking approach is similar to the traditional automata-based model
checking except that ours is based on NFG. The starting point is a pointer
program modeled by an MSVL program M , and a PPTLSL formula P that
formalizes the desired heap evolution property on M .

In general, the model checking procedure in this framework first creates the
NFG GM of an MSVL program and the NFG G¬P of the negation of the input
PPTLSL formula, then constructs the product G of the two NFGs. The nodes
(edges) of G are conjunctions of nodes (edges) in GM and G¬P . If there exist a
valid path in G, a counterexample is found, otherwise M satisfies P .

We have developed a unified model checking tool (prototype) based on the
approach presented in this paper. As shown Fig. 1, the tool structure consists
of three essential modules: MSV, PPTLSL solver and unified model checker. An
MSVL program M is feeded into MSV, and a property P is given to the PPTLSL

solver. MSV constructs the NFG of M and PPTLSL solver builds the NFG of
¬P . The Model checker does not try to build the complete production of the
two NFGs in practice. Instead, it works in “on the fly” manner and tries to find
one valid path as early as possible. The SMT solver Z3 is called when checking
whether an edge in the product NFG is satisfied or not. We have successfully
verified the producer-consumer program with respect to the corresponding heap
evolution properties mentioned in Sect. 4.
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Fig. 1. Tool architecture.

6 Conclusion

In this paper, we propose a unified model checking approach with MSVL and
PPTLSL. We can apply this approach to verify heap evolution properties of
pointer programs, including both safety and liveness properties on heap struc-
tures. Since PPTLSL is able to be reduced to a subset of PTL so that programs
and properties both belong to the same logic framework which makes the verifi-
cation more convenient. We have developed a model checking tool that exploits
the SMT solver Z3 as the verification engine. In the future, more case studies
on various heap structures in addition to singly-linked structures will be carried
out.
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Abstract. We study heuristics to accelerate existing state-of-the-art
algorithms for the minimum-volume enclosing ellipsoid problem. We pro-
pose a new filtering heuristic that can significantly reduce the num-
ber of distance computations performed in algorithms derived from
Khachiyan’s first-order algorithm. Our experiments indicate that in high
dimensions, the filtering heuristic is more effective than the elimination
heuristic proposed by Harman and Pronzato. In lower dimensions, the
elimination heuristic is superior.

Keywords: Minimum-volume enclosing ellipsoids · Löwner ellipsoids ·
Approximation algorithms · Heuristics · Filtering · Pruning

1 Introduction

The problem of computing the minimum-volume enclosing ellipsoid (MVEE),
also known as the Löwner ellipsoid, of a given set of points recurs in a variety of
application areas such as computational geometry [5,20], computer graphics [4],
robotics [15], statistics [2,18], and optimal experimental design [17]. For example,
MVEEs can provide satisfactory approximations of complex geometric shapes,
which makes them useful in, e.g., collision detection [14]. Indeed, it was shown
by John [9] that the MVEE of any d-dimensional set, if scaled about its center
by 1/d, is fully enclosed by the convex hull of the set.

Given a set of points P := {p1, p2, . . . , pn} ⊂ R
d, an enclosing ellipsoid EQ,c

of P is specified by a d × d symmetric positive-definite matrix Q and a center
point c ∈ R

d satisfying

(pi − c)�Q(pi − c) ≤ 1 for i = 1, 2, . . . , n. (1)

The orthonormal axes of EQ,c are given by the eigenvectors of Q, and their
lengths are given by the square roots of the reciprocals of the corresponding
eigenvalues. Provided that the affine hull of P is R

d, EQ,c has a positive volume
given by

vol EQ,c = η det Q−1/2, (2)

where η is the volume of the d-dimensional unit ball. For ease of discussion, we
will assume this is the case throughout the rest of this paper. The enclosing
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 744–753, 2016.
DOI: 10.1007/978-3-319-48749-6 56
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ellipsoid of P with minimum volume, which we denote by MVEE(P), is thus
given by the Q and c that minimize (2) subject to the n conditions (1) and the
condition that Q is symmetric positive-definite.

In low dimensions, the MVEE problem can be solved exactly by locating
the set of at most d(d + 3)/2 support points, which are points pi that satisfy (1)
with equality [5,20]. In applications dealing with higher dimensions, on the other
hand, it is more practical to settle for approximate solutions. Given a tolerance
parameter ε > 0, a (1 + ε)-approximation of MVEE(P) is an enclosing ellipsoid
Eε of P such that vol Eε ≤ (1 + ε) vol MVEE(P). The problem of efficiently
computing (1+ ε)-approximate MVEEs has received considerable attention, and
several algorithms have been proposed in the literature [12,13,16,18,19].

In this paper, we study acceleration techniques that can be applied to some
of these algorithms. Specifically, we focus on their application to the first-order
algorithm by Khachiyan [12], as well as some improved variants derived from
it [13,19]. Khachiyan’s algorithm can be viewed as the Franke–Wolfe algorithm
adapted for a dual formulation of the MVEE problem. It computes a (1 + ε)-
approximation of the MVEE in O(d([(1 + ε)2/(d+1) − 1]−1 + log d + log log n))
iterations, or O(d(d/ε + log log n)) iterations if ε ∈ (0, 1]. The cost of each iter-
ation is O(nd), which is due to a search for the farthest point in P from the
center of the current candidate ellipsoid, measured in the ellipsoidal norm. We
describe a new filtering heuristic to reduce the number of distance computations
performed during this search. This is achieved by caching distance information
across iterations and using conservative bounds on the new distances. As this
search constitutes the main bottleneck of the algorithm, this can improve the
performance substantially, especially for large problems with n � d.

2 Related Work

Prior to this work, a few acceleration heuristics have been developed for the
MVEE problem. Galkovskyi et al. [7] propose a domination heuristic for the
general class of LP-type optimization problems, and present a specialization for
the MVEE problem. The specialized heuristic is mainly applicable to MVEE
algorithms that generate candidate support sets as part of their operation. The
key idea is to compute the convex hull of each such candidate support set, and
then eliminate any input points that fall in its interior, as these points clearly
cannot be on the boundary of the MVEE. The main drawback of this approach is
that computing these convex hulls becomes prohibitively slow even in moderately
high dimensions. Nevertheless, they report large performance gains for the two-
dimensional case.

Harman and Pronzato [8] present a heuristic for the D-optimal design prob-
lem, which is equivalent to a dual formulation of the MVEE problem. Based on
a conservative bound on the distance from the center of the current ellipsoid to
the boundary of the MVEE, their heuristic can identify and remove points from
the input that cannot be support points. The bound itself takes O(nd) time to
compute, or O(1) time if the distance to the farthest input point is already given.
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Thus, the heuristic has a negligible overhead in any dimension. We will use this
heuristic for comparison in our experimental evaluation in Sect. 5.

Similar elimination heuristics have been investigated for the problem of com-
puting the minimum enclosing ball (MEB) of a set of points [1,11]. Moreover, we
have previously developed [10] a filtering heuristic for the MEB problem that,
similarly to the heuristic proposed here, reduces the number of distance compu-
tations by reusing distances computed in earlier iterations of the MEB algorithm.
Being specifically designed for the MEB problem, however, this heuristic is not
immediately applicable to the computation of MVEEs.

3 Khachiyan’s Algorithm

We begin with a brief review Khachiyan’s algorithm and its variants. For more
details, we refer to the original publications [12,13,19]. The algorithm is com-
monly described for the special case where P := {p1, p2, . . . , pn} is centrally
symmetric, i.e., where P = −P, in which case the MVEE is always centered
at the origin. The general case can be handled by replacing P by the lifted set
P̂ := {±p̂i : i = 1, 2, . . . , n} ⊂ R

d+1, where p̂i := (p�
i , 1)�, which is centrally

symmetric in d + 1 dimensions. A (1 + ε)-approximation of MVEE(P) can then
be recovered from the intersection of the computed (1 + ε)-approximation of
MVEE(P̂) and the hyperplane H := {(x�, 1)� : x ∈ R

d} ⊂ R
d+1. We will use

this lifting in the subsequent presentation.
The algorithm iterates through a sequence of feasible solutions to the follow-

ing dual of the MVEE problem:

maximizeu log detV (u)

subject to
n∑

i=1

ui = 1,

ui ≥ 0 for i = 1, 2, . . . , n,

where u := (u1, u2, . . . , un) is the decision variable and

V (u) :=
n∑

i=1

uip̂ip̂
�
i .

This problem is also known as the D-optimal design problem [17]. Each feasible
solution uk gives a trial ellipsoid EMk,0 ⊂ R

d+1 by

Mk :=
1

d + 1
V (uk)−1. (3)

Khachiyan’s original algorithm starts out with the initial solution u = u1,
where u1

i := 1/n for i = 1, 2, . . . , n. Then in each iteration k, the farthest point
p̂j in the ellipsoidal norm

√
x�Mkx is located, and its squared distance κ is

recorded, i.e.,

j := arg maxn
i=1p̂

�
i Mkp̂i, κ := p̂�

j Mkp̂j .



A Filtering Heuristic for the Computation of MVEEs 747

Note that due to weak duality, EMk,0 given by (3) is an under-approximation of
MVEE(P̂), i.e., vol EMk,0 ≤ vol MVEE(P̂). Thus, p̂j necessarily lies outside of
EMk,0 or on its boundary, which means that κ ≥ 1. If κ ≤ (1 + ε)2/(d+1) holds,
then the algorithm terminates. The current ellipsoid can then be scaled about
its center by

√
κ to provide the sought (1 + ε)-approximation of MVEE(P̂).

Otherwise, the algorithm proceeds with the updated solution

uk+1
i :=

{
(1 − β)uk

i + β i = j,

(1 − β)uk
i i �= j,

(4)

where β := (κ − 1)/((d + 1)κ − 1).
The matrices V (uk+1) and V (uk+1)−1 can be computed in O(d2) time as

V (uk+1) = (1 − β)V (uk) + βp̂j p̂
�
j , V (uk+1)−1 =

1
1 − β

V (uk)−1 − γq̂j q̂
�
j ,

(5)

where γ := [(1 − β)2/β + (1 − β)(d + 1)κ]−1 and q̂j := V (uk)−1p̂j . Similarly, if
denoting gk

i := p̂�
i Mkp̂i, the next distance gk+1

i := p̂�
i Mk+1p̂i is given by

gk+1
i =

1
1 − β

gk
i − γ(q̂�

j p̂i)2/(d + 1). (6)

By caching each distance gk
i , the new distance gk+1

i can thus be computed in
O(d) time as opposed to O(d2) time. The total cost of each iteration becomes
O(d2 + nd), which is O(nd) since we assume that the affine hull of P is R

d.
Kumar and Yıldırım [13] present a more sophisticated procedure to compute

an initial solution u1. It uses the volume approximation method by Betke and
Henk [3] to find min(2d, n) affinely independent points in P that define a reason-
ably large initial ellipsoid. The multipliers u1

i corresponding to these points are
set to 1/min(2d, n) and the remaining multipliers are set to zero. This initial-
ization reduces the number of iterations to O(d([(1 + ε)2/(d+1) − 1]−1 + log d)),
or O(d2/ε) if ε ∈ (0, 1].

As a byproduct, their modified algorithm also computes an ε-coreset X , which
is a subset of P with the property that it serves as a good approximation of the
whole set. Specifically, this means that there exists a (1+ ε)-approximation Eε of
MVEE(X ) such that Eε ⊃ P. Because vol MVEE(X ) ≤ vol MVEE(P), such an
ellipsoid is at the same time a (1+ε)-approximation of MVEE(P). The returned
coreset contains exactly the points pi such that ui > 0 in the final solution, and
satisfies |X | ∈ O(d2/ε) for ε ∈ (0, 1].

Todd and Yıldırım [19] further introduce away steps. Apart from finding
j+ := j and κ+ := κ in each iteration, their modification also locates j− :=
arg min1≤i≤n:uk

i >0 p̂�
i Mkp̂i and κ− := p̂�

j−Mkp̂j− , i.e., the closest point p̂j− to
the center of the current ellipsoid among points p̂i with a positive weight uk

i

(i.e., coreset points). If κ+ − 1 ≥ 1 − κ− holds, i.e., the point p̂j− is not farther
from the ellipsoid boundary than p̂j+ , the solution is updated as in the original
algorithm. Otherwise, it is updated using (4) with the substitutions j = j− and
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β = max
(

κ− − 1
(d + 1)κ− − 1

,
uj−

uj− − 1

)

. (7)

If this results in uk+1
j− = 0, the point pj− is dropped from the coreset. Their

modified algorithm retains the same asymptotic bounds as the Kumar–Yıldırım
algorithm on the number of iterations and the size of the coreset, but typically
requires fewer iterations and computes a smaller coreset in practice. It also uses
a stronger termination criterion that helps reducing the coreset size.

4 Approach

In iteration k + 1, the farthest point p̂j given by j := arg maxn
i=1 p̂�

i Mk+1p̂i can
be found in O(nd) time by applying (6) for each of the n points and recording
the largest distance. The goal of our heuristic is to reduce the number of appli-
cations of (6) from n to a much smaller value, while still finding the true far-
thest point. Using the matrix Mk from the previous iteration, define the matrix
H := M

1/2
k M−1

k+1M
1/2
k and denote its eigenvalues by λ1 ≤ λ2 ≤ · · · ≤ λd+1. The

following then holds for the farthest point p̂j :

1 ≤ p̂�
j Mk+1p̂j = p̂�

j M
1/2
k H−1M

1/2
k p̂j ≤ 1

λ1
p̂�

j Mkp̂j ,

where the last step follows from 1/λ1 being the largest eigenvalue of H−1. Since
this implies p̂�

j Mkp̂j ≥ λ1, any point p̂i satisfying

p̂�
i Mkp̂i < λ1 (8)

cannot be the farthest point p̂j . Figure 1 provides a geometric interpretation of
this. Condition (8) can be evaluated in constant time if the distance p̂�

i Mkp̂i was
cached from iteration k. When it is satisfied, the computation of p̂�

i Mk+1p̂i can
be skipped, or filtered out, which saves a O(d) cost when using (6). However,
because this means that the exact distance is never computed in iteration k +1,
the same condition cannot be used again in iteration k + 2. We return shortly
to how this problem can be solved.

Let eig(·) denote the set of distinct eigenvalues of a matrix. Letting Vk :=
V (uk) and Vk+1 := V (uk+1), and using (3) and (5), we have

eig(H) = eig(M1/2
k M−1

k+1M
1/2
k )

= eig(V −1/2
k Vk+1V

−1/2
k )

= eig(V −1/2
k ((1 − β)Vk + βp̂j p̂

�
j )V −1/2

k )

= eig((1 − β)I + β(V −1/2
k p̂j)(V

−1/2
k p̂j)�)

= {1 − β, 1 − β + β(V −1/2
k p̂j)�(V −1/2

k p̂j)}
= {1 − β, 1 − β + β(d + 1)κ},

(9)
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Fig. 1. Geometric interpretation of condition (8). Left: the trial ellipsoids EMk,0 and
EMk+1,0. Note that condition (8) implicitly defines the ellipsoid

√
λ1EMk,0 (shown dot-

ted), which is EMk,0 scaled about its center by
√

λ1. Clearly, only points outside of√
λ1EMk,0 make candidates to be the farthest point outside of EMk+1,0. Right: The

same ellipsoids under the linear transformation that turns EMk,0 into the unit ball.
Here it is clear that

√
λ1 is simply the length of the shortest axis of the transformed

EMk+1,0. Therefore,
√

λ1EMk,0 is EMk,0 shrunk just enough to fit inside EMk+1,0.

where I is the identity matrix. The expansion of eig(·) above follows from the
result of [6]. Note that the eigenvalue 1 − β has algebraic multiplicity d, but
is included only once in the set eig(H). Thus, we have λ1 = min eig(H) =
min(1 − β, 1 − β + β(d + 1)κ). In Khachiyan’s original algorithm, it always
holds that β > 0, which gives min eig(H) = 1 − β. In Todd and Yıldırım’s
modified algorithm, however, β < 0 after an away step (see (7)), which gives
λ1 = min eig(H) = 1 − β + β(d + 1)κ−. Note that in this case, j and κ in (9)
should be replaced by j− and κ−, respectively.

By replacing the left-hand side of (8) by an upper bound hk
i ≥ p̂�

i Mkp̂i, we
get the more conservative condition

hk
i < λ1. (10)

Note that this condition implies (8), and can therefore be used instead as the
filtering condition. If condition (10) fails, the corresponding upper bound hk+1

i

for the next iteration is simply set to the exact value of p̂�
i Mk+1p̂i. Otherwise,

hk+1
i is set to hk

i /λ1, which gives an upper bound on p̂�
i Mk+1p̂i because

p̂�
i Mk+1p̂i ≤ 1

λ1
p̂�

i Mkp̂i ≤ hk
i /λ1.

Thus, regardless of whether the filtering condition succeeds or not, each hk+1
i

can be computed in constant time.
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4.1 Practical Considerations

We now address a few important practical considerations for the proposed
heuristic. Firstly, note that if the distance p̂�

i Mkp̂i is filtered out in iteration
k, and the filtering condition then fails for the point p̂i in iteration k + 1, we
cannot use (6) to compute p̂�

i Mk+1p̂i in O(d) time because the cached distance
gk

i is not available. Our solution to this problem is to store, alongside each cached
distance gi, the iteration number when gi was last updated. Furthermore, the
values of β, γ, and q̂j from the d + 1 most recent iterations are saved in a cyclic
buffer of size O(d2). When a filtering attempt fails, but no more than d + 1
iterations have passed since gi was last updated, these saved values are used
to compute the distance using repeated applications of (6). This takes O(md)
time, where m is the number of iterations since gi was updated. In effect, this
“reverts” all filtering performed for point p̂i in the last m iterations. If more than
d + 1 iterations have passed, i.e., m > d + 1, it is more efficient to compute the
distance as p̂�

i Mk+1p̂i in O(d2) time. In difficult cases where the filtering heuris-
tic is ineffective, this measure ensures that the time complexity of the algorithm
remains unaffected.

Secondly, we note that if the search for the farthest point is implemented
as a sequential loop, then the right-hand side of the filtering condition (10) can
be replaced by λ1κ

′ whenever a new largest distance κ′ > 1 is encountered
during the search. This is clearly beneficial because it progressively improves
the filtering effectiveness throughout the loop.

Finally, we point out that when a coreset is maintained, as is done in our
implementation used in Sect. 5, additional optimizations are possible. We begin
each iteration by scanning the coreset X for the farthest point. This gives a
reasonably large candidate value κX for κ. Then the filtering condition hk

i <
λ1κX is evaluated for i = 1, 2, . . . , n, while at the same time setting each hk+1

i

to hk
i /λ1. No exact distances are computed at this stage. Instead, the values

of i for which the filtering test fails are collected in a list. Then a separate
loop computes the exact distances for the corresponding points p̂i and updates
the corresponding upper bounds hk+1

i . As the main overhead of the heuristic
comes from computing the hk+1

i and testing the filtering condition n times in
each iteration, it is beneficial to do this in a tight dedicated loop in this way.
Although this means that the right-hand side of the filtering condition cannot
be continuously enlarged during the farthest point search, we found empirically
that the benefits of using a dedicated filtering loop outweighed the benefits of
the above-mentioned optimization.

5 Experiments

For our experimental evaluation, we implemented the Todd–Yıldırım algorithm,
since it is the most efficient variant in practice. The algorithm was implemented
in C++ under Visual Studio 2012, and was run on a laptop PC with a 2.7 GHz
CPU and 16 GB of main memory. The filtering heuristic could be turned
on and off in the code using preprocessor directives. For comparison, we also
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implemented the elimination heuristic proposed by Harman and Pronzato [8],
which identifies and removes points from the input that cannot be support points
of the MVEE. For input we generated random point sets from a d-variate nor-
mal distribution, a uniform distribution confined to a d-dimensional hypercube,
and a uniform distribution confined to a d-dimensional ball. In all runs, we used
double-precision floating-point arithmetic, with ε = 10−3 as the target approxi-
mation quality.

Our computational results are shown in Table 1. The elimination heuris-
tic tends to be more effective than the filtering heuristic for low-dimensional
problems. This also leads to superior speedups in these dimensions. Indeed, the
speedup factors differ by almost an order of magnitude in a few cases. The
elimination heuristic is thus clearly the one to recommend for such input cases.
As the dimension is increased, however, the relative difference in effectiveness
decreases and eventually filtering becomes more effective. This can be observed
appreciably from d = 25 on the first two distributions. On the uniform distrib-
ution in a ball, filtering is consistently more effective. We remark that this type
of input is more challenging for the algorithm itself—which requires an order of
magnitude more iterations than on the normal distribution—as well as for the
heuristics. This is because a large portion of the input points tend to be close to
the boundary of the ball containing the points, particularly in the higher dimen-
sions. However, our filtering method appears to handle this type of input better
than the elimination method.

The elimination heuristic still exhibits the largest performance improvements
even in some cases where it is less effective than filtering in reducing distance
computations. This is explained by the larger overhead of the filtering heuristic:
in each iteration, all of the n upper bounds hk+1

i need to be computed and
the filtering condition tested for each point, resulting in a O(n) overhead per
iteration. With the elimination heuristic, on the other hand, it only takes O(n′)
time per iteration to test the elimination condition for the n′ points that have
not yet been eliminated, which might be significantly fewer than the points in
the original set. However, as the dimension increases, the O(n) overhead of the
filtering heuristic becomes increasingly negligible compared to the O(d) saving of
each skipped distance computation. Furthermore, we remark that the heuristic is
applicable also for other types of input objects, such as ellipsoids, and might pay
off even more in those cases due to the higher costs involved in computing the
distances. While this is true for the elimination heuristic as well, its advantage
of having a smaller overhead can be expected to be negligible in those scenarios.
For example, Yıldırım [21] proposes a procedure that takes O(dC) arithmetic
operations per input ellipsoid, where C is a constant larger than 3.

It is therefore an interesting direction for future work to evaluate both heuris-
tics for MVEE computations with, e.g., sets of ellipsoids as input. It would also
be interesting to evaluate a combination of the heuristics. Judging from Table 1,
the two appear to complement each other: the elimination heuristic has the
largest effect in low dimensions, whereas the filtering heuristic is more effective
in the higher dimensions.
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Table 1. Each row displays average results from ten point sets randomly generated
with the shown dimensions d and n. Execution times are shown for the baseline version
of the algorithm, with no heuristics enabled. Speedup factors and effectiveness are
shown for filtering and elimination, respectively. The effectiveness of each heuristic is
measured as the percentage of the distance computations that were avoided, compared
to the baseline. In all runs, ε = 10−3 was used.

Distrib. d n Iters |X | Time (sec) Speedup Effect. (%)

Filt. Elim. Filt. Elim.

Normal 5 10000 266.9 14.7 0.016 3.2 9.7 91.2 95.5

5 100000 559.0 16.5 0.333 3.9 25.5 94.1 98.1

5 1000000 665.8 17.6 4.002 3.6 31.1 96.0 99.2

10 10000 883.0 44.2 0.078 3.6 7.1 88.3 90.3

10 100000 879.5 45.6 0.790 3.8 8.9 89.9 93.2

10 1000000 1514.0 49.0 13.858 4.5 15.2 93.2 96.5

25 1000 1173.4 131.2 0.025 1.5 1.6 58.6 50.1

25 10000 2471.1 175.6 0.442 2.9 3.1 78.5 75.5

25 100000 3212.3 193.8 5.910 3.9 4.5 84.2 84.6

50 1000 2234.2 328.1 0.103 1.2 1.2 35.8 23.9

50 10000 4495.9 469.5 1.653 2.2 1.9 63.5 53.3

50 100000 6738.5 563.9 24.999 3.3 2.6 74.6 69.7

100 1000 3313.3 664.3 0.371 1.0 1.0 12.8 5.5

100 10000 8737.8 1222.7 7.023 1.6 1.4 46.9 31.4

100 100000 13688.4 1578.9 105.726 2.6 1.8 62.6 50.7

200 1000 3582.1 972.1 1.279 1.0 1.0 0.7 0.1

200 10000 15798.1 2866.5 28.811 1.2 1.1 28.3 12.9

Uniform (cube) 5 10000 770.3 15.7 0.046 3.3 10.6 91.3 93.8

5 100000 1248.6 15.6 0.735 4.0 25.8 94.1 97.1

5 1000000 939.0 15.1 5.608 2.8 19.3 93.1 97.3

10 10000 2021.4 51.0 0.177 3.7 6.5 88.6 88.2

10 100000 1681.9 49.0 1.498 3.7 7.4 89.5 90.5

10 1000000 2446.0 52.1 22.288 3.9 9.6 91.6 93.8

25 1000 2076.6 168.2 0.044 1.4 1.4 54.5 40.6

25 10000 4035.5 207.6 0.722 2.6 2.4 75.3 66.4

25 100000 6247.8 235.9 11.464 3.9 3.6 83.7 80.1

50 1000 3298.8 408.6 0.155 1.2 1.1 29.8 15.5

50 10000 7364.9 586.4 2.716 2.0 1.6 60.6 43.9

50 100000 11691.7 709.0 43.271 3.1 2.1 72.6 61.3

100 1000 4145.3 782.1 0.462 1.0 1.0 7.3 2.0

100 10000 13663.3 1579.4 11.033 1.5 1.2 42.4 21.6

100 100000 23255.3 2063.8 179.835 2.4 1.5 59.6 40.5

200 1000 3640.1 995.0 1.296 1.0 1.0 0.1 0.0

200 10000 23472.2 3759.5 43.229 1.1 1.0 22.4 6.2

Uniform (ball) 5 1000 2837.0 22.0 0.018 2.0 2.9 85.6 75.0

5 10000 5414.8 30.3 0.323 2.9 3.6 90.3 80.3

5 100000 6550.0 112.6 3.871 3.3 4.1 93.0 82.9

5 1000000 4027.0 320.8 23.928 2.1 2.1 92.0 80.9

10 1000 5476.2 63.6 0.054 1.8 1.7 73.8 53.1

10 10000 16524.3 79.3 1.467 2.7 2.1 83.9 63.3

10 100000 26764.0 170.6 24.110 3.3 2.1 87.9 68.6
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Abstract. A variable is said semicontinuous if its domain is given by
the union of two disjoint nonempty closed intervals. As such, they can
be regarded as relaxations of binary or integrality constraints appearing
in combinatorial optimization problems. For knapsacks and a class of
single-node flow sets, we consider relaxations involving unbounded semi-
continuous variables. We analyze the complexity of linear optimization
over such relaxations and provide descriptions of their convex hulls in
terms of linear inequalities and extended formulations.

Keywords: Semicontinuous variable · Semicontinuous knapsack set ·
Semicontinuous single-node flow set · Indicator variable

1 Introduction

In this work we consider sets of the form S := {x ∈ R
n : x ∈ P, xi ∈

[0, pi] ∪ [li,∞) ∀i ∈ N}, where n ≥ 2, N := {1, . . . , n}, P ⊆ R
n
+ is a nonempty

polyhedron, and 0 ≤ pi ≤ li for all i ∈ N . If pi < li, we say that variable xi is
semicontinuous, and continuous otherwise. Semicontinuity is a natural relaxation
of binary and integrality constraints found in combinatorial optimization prob-
lems. For instance, a binary variable belongs to the set {0}∪ [1,∞), while a non-
negative integer variable is contained in [0, k] ∪ [k + 1,∞) for any k ∈ Z+. They
also provide a means of modeling some simple disjunctions without including
additional binary variables as commonly done in textbook formulations. Recent
work using semicontinuous variables include scheduling in health care [3] and
lot-sizing with minimum order quantity [7], among others. We are interested in
studying conv(S), the convex hull of S, in terms of linear descriptions for two
classes of sets: knapsacks and single-node flow sets with variable upper bounds
and indicator variables. This extends the works of [4,5] and [1] as follows:

– For knapsacks with unbounded semicontinuous variables having positive and
negative signs, in Sect. 2 we show present a decomposition property and pro-
vide a description of its convex hull via an extended formulation of polynomial
size. Moreover, when all variables have positive signs, we provide complete lin-
ear descriptions in the original space.

c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 754–762, 2016.
DOI: 10.1007/978-3-319-48749-6 57
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– For single-node flow sets with variable upper bounds and indicator variables,
in Sect. 3 we propose to treat the indicator variables as semicontinuous. We
show that a decomposition property also holds and provide a complete linear
description without additional variables.

For i ∈ N , let ei denote the i-th unit vector in R
n. The polyhedrality of

conv(S) for any polyhedron P ⊆ R
n
+ follows from [1, Proposition 23] and its

proof.

Proposition 1. If S 	= ∅, then conv(S) is a nonempty pointed polyhedron and
its recession cone is equal to that of P .

2 Knapsack Sets

Given a real b > 0 and a partition (N+, N−) of N , let SK ⊆ R
n be defined by

∑

i∈N+

xi −
∑

i∈N−
xi ≥ b (1)

xi ∈ [0, pi] ∪ [li,∞) ∀i ∈ N. (2)

This set is general enough to be regarded as a relaxation of more complex sets.
Note that the coefficients 1 and −1 in (1) are without loss of generality since we
can redefine p and l in order to bring general coefficients to the above form. For
ease of exposition, we assume that p < l. Replacing (2) with

xi ≥ 0 ∀i ∈ N, (3)

we obtain the linear relaxation PK given by (1) and (3).

2.1 Basic Structure and Complexity

Proposition 2. conv(SK) is full-dimensional.

Let N+
∗ (x) := {i ∈ N+ : xi ≥ li > 0} and N−

∗ (x) := {i ∈ N− : xi ≥ li > 0}.

Proposition 3. If x is a vertex of conv(SK), |N+
∗ (x)| ≤ 1 and |N−

∗ (x)| ≤ 1.

Proof. Let x ∈ SK and suppose there exist i, j ∈ N+
∗ (x) with i 	= j, the case

i, j ∈ N−
∗ (x) being analogous. Consider the points x′ := x − xje

j + xje
i and

x′′ := x−xie
i+xie

j . We have x′, x′′ ∈ SK and x′ 	= x′′. Setting λ = xi

xi+xj
∈ (0, 1)

we obtain λx′ + (1 − λ)x′′ = λ(x − xje
j + xje

i) + (1 − λ)(x − xie
i + xie

j) =
x + (λxj − (1 − λ)xi)ei + (−λxj + (1 − λ)xi)ej = x + 0ei + 0ej = x. ��
Let (OptK) denote the problem min{c�x : x ∈ SK} for some c ∈ R

n. Recall
that by Proposition 1, conv(SK) is a polyhedron with the same recession cone
as PK , which is given by CK := {r ∈ R

n
+ :

∑
i∈N+ ri − ∑

j∈N− rj ≥ 0}.
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Proposition 4. Assume SK is nonempty. Then (OptK) is unbounded if and
only if either there exists i ∈ N+ with ci < 0 or there exist i ∈ N+ and j ∈ N−

such that ci + cj < 0.

Proof. Since (OptK) is equivalent to min{c�x : x ∈ conv(SK)} and SK 	= ∅,
(OptK) is unbounded if and only if there exists r ∈ CK such that c�r < 0.

If there exists i ∈ N+ with ci < 0, then taking r = ei, we have r ∈ CK and
c�r = ci < 0. If there exist i ∈ N+ and j ∈ N− such that ci + cj < 0, then
taking r = ei + ej , we have r ∈ CK and c�r = ci + cj < 0.

Now, suppose that ci ≥ 0 for all i ∈ N+ and ci + cj ≥ 0 for all i ∈ N+ and
j ∈ N−. Let c+ := mini∈N+{ci} and c− := minj∈N−{cj}. Note that c+ ≥ 0 and
c++c− ≥ 0. Let r ∈ CK . Then c�r =

∑
i∈N+ ciri+

∑
j∈N− cjrj ≥ ∑

i∈N+ c+ri+∑
j∈N− c−rj ≥ c+

∑
i∈N+ ri − c+

∑
j∈N− rj ≥ 0. Therefore, (OptK) cannot be

unbounded. ��
In view of Propositions 3 and 4, let us define P 0

K :={x∈SK : xk ∈ [0, pk] ∀k∈N},
P i
K := {x ∈ SK : xi ≥ li, xk ∈ [0, pk] ∀k 	= i} for i ∈ N , and finally P ij

K :=
{x ∈ SK : xi ≥ li, xj ≥ lj , xk ∈ [0, pk] ∀k 	= i, j} for i ∈ N+, j ∈ N−.

Let PK denote the collection comprising the O(n2) sets above defined. Note
that by Proposition 3, the vertices of conv(SK) are contained within the vertices
of the sets in PK . We obtain the following result.

Proposition 5. Solving (OptK) can be done by solving O(n2) LPs.

2.2 The Case N = N+

l i ≤ b for all i ∈ N

Proposition 6. If li ≤ b for all i ∈ N , then conv(SK) = PK .

Proof. The vertices of (1) and (3) are of the form bei for i ∈ N , and since b ≥ li
for i ∈ N , all such points belong to SK . ��
l i ≥ b for all i ∈ N

Proposition 7. If
∑

i∈N pi < b, then conv(SK) is given by (3) and

∑

i∈N

xi

li
≥ 1. (4)

Proof. Let x ∈ SK be a vertex of conv(SK). Since
∑

i∈N xi ≥ b and
∑

i∈N pi < b,
by Proposition 3, there exists a unique i ∈ N such that xi ≥ li and xj ∈ [0, pj ] for
all j 	= i. Moreover, since li ≥ b, then xi = li must hold for x to be a vertex. Now,
if there exists j 	= i with xj > 0, then consider x′ = x − xje

j and x′′ = x + lje
j ,

which belong to S. Taking λ = lj
xj+lj

∈ (0, 1), we obtain x = λx′ + (1 − λ)x′′, a
contradiction. Therefore xj = 0 for j 	= i and thus x = lie

i. In particular, all the
vertices of conv(SK) must be of this form, and the convex hull of all such points
is precisely the simplex given by (3) and (4). ��
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We now analyze the case
∑

i∈N pi ≥ b.

Definition 1. A subset R ⊆ N is a reverse cover if bR := b − ∑
i∈R pi > 0.

For each reverse cover R, consider the inequality

∑

i∈R

xi

li
+

(

1 −
∑

i∈R

pi
li

)
∑

i/∈R

xi

bR
≥ 1. (5)

Proposition 8. For each reverse cover R, (5) is valid for conv(SK).

Proposition 9. When
∑

i∈N pi = b, (5) is facet-defining if R = N \ {j} for
some j ∈ N such that pj > 0. When

∑
i∈N pi > b, (5) is facet-defining if either

R = ∅ and li = b for all i having pi = 0, or if pi > 0 for all i /∈ R.

Proof. Assume
∑

i∈N pi = b. Let R = N \ {j} for j ∈ N with pj > 0. Consider
the points xi := lie

i for i 	= j and xj := p, which belong to SK . Note that
bR = pj and (5) takes the form

∑
k �=j

xk

lk
+

(
1 − ∑

k �=j
pk

lk

)
xj

pj
≥ 1. Then it is

easy to see that the n points above defined satisfy (5) at equality. Finally, they
form a linearly independent set, and therefore (5) defines a facet.

Now assume
∑

i∈N pi > b and li = b if pi = 0. Let R = ∅ and p̄ :=
∑

i∈N pi.
For 0 < ε < 1, define the point x̄ := b

p̄ (1 − ε)p. Then x̄ satisfies x̄i = 0 if pi = 0,
0 < x̄i < pi if pi > 0, and

∑
i∈N x̄i = b− εb. Consider the points xi := x̄+ εbei if

pi > 0 and xi := lie
i = bei if pi = 0, all of them satisfying (1). For ε sufficiently

small, they also satisfy (2) and thus belong to SK . Note that bR = b and (5)
takes the form

∑
k∈N xk ≥ b. These n points satisfy (5) at equality. Finally, they

form a linearly independent set, and therefore (5) defines a facet.
Assume again

∑
i∈N pi > b, and let R be such that pi > 0 for all i /∈ R.

Let δ := bR
∑

i/∈R pi
∈ (0, 1) and define the point x̄ with x̄i = pi for i ∈ R and

x̄i = (1 − ε)δpi for i /∈ R, where 0 < ε < 1. Note that 0 < x̄i < pi if i /∈ R.
Also,

∑
i/∈R x̄i = (1 − ε)bR and thus

∑
i∈N x̄i = b − εbR. Finally, consider the

points xi := lie
i for i ∈ R and xi := x̄ + εbRei for i /∈ R, which satisfy (1). For

ε sufficiently small, they also satisfy (2) and thus belong to SK . For i ∈ R, it is
clear that xi satisfies (5) at equality. For i /∈ R, we have

∑

k∈R

xi
k

lk
+

⎛

⎝1 −
∑

k∈R

pk

lk

⎞

⎠
∑

k/∈R

xi
k

bR
=
∑

k∈R

x̄k

lk
+

⎛

⎝1 −
∑

k∈R

pk

lk

⎞

⎠
∑

k/∈R

x̄k

bR
+

⎛

⎝1 −
∑

k∈R

pk

lk

⎞

⎠
εbR

bR

=
∑

k∈R

pk

lk
+

⎛

⎝1 −
∑

k∈R

pk

lk

⎞

⎠ (1 − ε) +

⎛

⎝1 −
∑

k∈R

pk

lk

⎞

⎠ ε = 1

Thus, these points satisfy (5) at equality as well. Finally, the n points form a
linearly independent set, and therefore (5) defines a facet. ��
Theorem 1. If

∑
i∈N pi ≥ b, then conv(SK) is given by (3) and (5).
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Proof. Let c ∈ R
n \ {0} and consider the problem min{c�x : x ∈ SK}. We

assume that c ≥ 0 since otherwise the problem is unbounded. Following the
technique introduced in [6], we will show that there exists an inequality among
(3) and (5) that is satisfied at equality by all optimal solutions to min{c�x :
x ∈ SK}. Let x∗ ∈ SK be any optimal solution.

If cj = 0 for some j ∈ N , then there exists some i with ci > 0 and therefore,
by optimality, x∗ satisfies xi ≥ 0 at equality. Thus we may assume c > 0. This
and li ≥ b for i ∈ N , together with the optimality of x∗, imply x∗ ≤ l and
|{i ∈ N : x∗

i = li}| ≤ 1.
Suppose that all the entries of c are equal to a constant c̄. Since

∑
i∈N pi ≥ b,

by optimality, we have that x∗ satisfies (5) with R = ∅ at equality. If c is
nonconstant, let (N1, . . . , Nq) be a partition of N such that the entries of c
indexed by Nl are equal to a constant c̄l, and c̄l < c̄l+1 for all 1 ≤ l < q. If∑

i∈N1
pi ≥ b, then (5) with R = ∅ is satisfied by x∗ at equality. Otherwise, let

1 ≤ r < q be such that
∑r

l=1

∑
i∈Nl

pi < b and
∑r+1

l=1

∑
i∈Nl

pi ≥ b, and set
R := ∪r

l=1Nl. We claim that x∗ satisfies (5) for R at equality.
If x∗

j = lj for some j ∈ R, then (5) is tight. Thus assume x∗
i ≤ pi for all

i ∈ R. Now, suppose x∗
j = lj for some j /∈ R. Consider a vector y ∈ R

n
+ where

yi = pi for i ∈ R, the entries indexed by Nr+1 are set so that 0 ≤ yi ≤ pi
and

∑
i∈Nr+1

yi = bR, and the remaining entries are set to zero. Clearly, y ∈ SK .

Moreover, since cj ≥ c̄r+1, we have c�y =
∑k

l=1

∑
i∈Nl

c̄lyi =
∑r

l=1

∑
i∈Nl

c̄lpi+
c̄r+1bR < cj(b − bR) + cjbR = cjb ≤ c�x∗, a contradiction with the optimality
of x∗. Thus, we must have x∗

i ≤ pi for all i ∈ N . Moreover, it is easy to see that
x∗ must have the form of y, and therefore (5) is tight. ��

2.3 The General Case

Theorem 2. conv(SK) = conv
(
P 0
K ∪ (∪i∈NP i

K) ∪ (∪i∈N+, j∈N−P ij
K )

)
.

Proof. The reverse inclusion is easy since each set in PK is contained in SK .
For the forward inclusion, by Proposition 3, we already know that the vertices of
conv(SK) are contained in the sets in PK . It remains to show that the recession
cone of conv(SK), given by CK , is contained in that of the set on right-hand
side. Let r ∈ CK \ {0}. Define r+ :=

∑
i∈N+ ri and r− :=

∑
j∈N− rj . Note that

r+ > 0.
If r− = 0, then we have r =

∑
i∈N+

ri
r+ (r+ei) with r+ei in the recession

cone of P i
K . If r− > 0, then we have r =

∑
i∈N+

∑
j∈N−

rirj
r+r− (r+ei + r−ej) with

r+ei + r−ej in the recession cone of P ij
K . ��

3 Single-Node Flow Sets

Let N represent a set of nodes and let b > 0 be the required total flow from
nodes in N into another node 0. For i ∈ N , let yi be the flow from node i to node
0, and xi be the flow into node i. Let li and hi be the lower bounds on flows xi
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and yi whenever these variables are positive. Let zi and wi be semicontinuous
indicator variables satisfying constraints xi > 0 ⇒ zi ≥ 1, yi > 0 ⇒ wi ≥ 1,
xi = 0 ⇒ zi = 0 if li > 0, and yi = 0 ⇒ wi = 0 if hi > 0. Define SF ⊆ R

4n by
∑

i∈N

yi ≥ b (6)

yi ≤ xi ∀i ∈ N (7)
(xi, zi) ∈ {(0, 0)} ∪ [li,∞) × [1,∞) ∀i ∈ N (8)

(yi, wi) ∈ {(0, 0)} ∪ [hi,∞) × [1,∞) ∀i ∈ N. (9)

Note that if we minimize linear function c�x + d�y + p�z + q�w over SF with
p, q > 0, then any optimal solution satisfies z, w ∈ {0, 1}n.

3.1 Basic Structure and Complexity

Proposition 10. conv(SF ) is full-dimensional.

Proposition 11. Let (x, y, z, w) be a vertex of conv(SF ). Then there exists i
such that xi > 0 and xj = 0 for all j 	= i.

Proof. Let (x, y, z, w) ∈ conv(SF ) be such that xi > 0 and yi = 0. Noting that
zi ≥ 1, we have that (x, y, z, w) is the middle point between (x+xie

i, y, z+zie
i, w)

and (x − xie
i, y, z − zie

i, w), which are different points contained in SF .
Suppose now that xi > 0 and xj > 0. By the above observation, we may

assume yi > 0 and yj > 0. In particular zi, zj , wi, wj ≥ 1. Let λ = yi

yj
and note

that xi ≥ λyj and λxj ≥ yi. Then
(

x +
1
λ

xie
i − xje

j , y + yje
i − yje

j , z +
1
λ

zie
i − zje

j , w +
1
λ

wie
i − wje

j

)

,

(
x − xie

i + λxje
j , y − yie

i + yie
j , z − zie

i + λzje
j , w − wie

i + λwjw
j
)

are distinct points contained in SF and their convex combination with multipliers
λ and 1 − λ yields (x, y, z, w). ��
In a fashion similar to that of Sect. 2, conv(SF ) can be decomposed into n pieces
which are enough for linear optimization and provide an extended formulation
of polynomial size. More precisely, for i ∈ N , let

P i
F := {(x, y, z, w) ∈ SF : xj = yj = zj = wj = 0 ∀j �= i}

= {(x, y, z, w) : xi ≥ li, yi ≥ max{hi, b}, xi ≥ yi, xj = yj = zj = wj = 0 ∀j �= i}.

Proposition 12. Optimizing a linear function over SF can be done by solving
n linear programming problems. Moreover, conv(SF ) = conv(∪i∈NP i

F ).
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3.2 Polyhedral Description

Let L := {i ∈ N : max{hi, b} < li}. Let N be the collection of partitions
(Nx, Ny, Nz, Nw) of N where Nx ⊆ L. Consider the inequality

∑

i∈Nx

xi

li
+

∑

i∈Ny

yi
max{hi, b} +

∑

i∈Nz

zi +
∑

i∈Nw

wi ≥ 1. (10)

Proposition 13. Inequality (10) is valid for conv(SF ).

Proposition 14. Inequality (10) is facet-defining for conv(SF ).

Proof. Let φi := (max{li, hi, b}ei,max{hi, b}ei, ei, ei), i ∈ N . Consider

φi, φi + (0, εei, 0, 0), φi + (0, 0, εei, 0), φi + (0, 0, 0, εei) i ∈ Nx,

φi, φi + (εei, 0, 0, 0), φi + (0, 0, εei, 0), φi + (0, 0, 0, εei) i ∈ Ny,

φi, φi + (εei, 0, 0, 0), φi + (0, εei, 0, 0), φi + (0, 0, 0, εei) i ∈ Nz,

φi, φi + (εei, 0, 0, 0), φi + (0, εei, 0, 0), φi + (0, 0, εei, 0) i ∈ Nw.

The 4n points above belong to SF , satisfy (10) at equality, and are affinely
independent. Therefore, (10) defines a facet. ��
Theorem 3. The set conv(SF ) is given by (10) and the trivial inequalities y ≥
0, z ≥ 0, w ≥ 0, and x − y ≥ 0.

Proof. Let N j be the collection of partitions (Nx, Ny, Nz, Nw) of {1, . . . , j} with
Nx ⊆ {i ∈ L : i ≤ j}. By induction on 1 ≤ j ≤ n, we will show that Qj :=
conv(∪i≤jP

i
F ) is given by (10) restricted to N j , the trivial inequalities, and

xi = zi = wi = 0 for i > j. Then the result will follow from the case j = n.
For any 1 ≤ j ≤ n, P j

F is given by

xj ≥ li, yj ≥ max{hj , b}, zj ≥ 1, wj ≥ 1, xj − yj ≥ 0
xi = yi = zi = wi = 0 i 	= j.

Note that the first inequality is redundant if and only if max{hj , b} ≥ lj , while all
remaining inequalities are irredundant. Also, for j = 1, the first four inequalities
are obtained from the last row of equalities together with (10) for N 1. Thus
Q1 = P 1

F has the desired form.
Assume the result holds for 1 ≤ j < n. For j +1, we have conv(∪i≤j+1P

i
F ) =

conv(Qj∪P j+1
F ). By the inductive hypothesis, we have that Qj is given by (10) for

N j , the trivial inequalities, and xi = zi = wi = 0 for i > j. On the other hand,
P j+1
F is given by the above system. By disjunctive programming, Qj+1 admits

an extended formulation with additional variables λ ∈ [0, 1], (x′, y′, z′, w′) ∈
(1 − λ)Qj , and (x′′, y′′, z′′, w′′) ∈ λP j+1

F . The system has the form
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(x, y, z, w) = (x′, y′, z′, w′) + (x′′, y′′, z′′, w′′)
∑

i∈N ′
x

x′
i

li
+

∑

i∈N ′
y

y′
i

max{hi, b} +
∑

i∈N ′
z

z′
i +

∑

i∈N ′
w

w′
i ≥ 1 − λ (N ′

x, N ′
y, N

′
z, N

′
w) ∈ N j

x′
i − y′

i ≥ 0, y′
i, z

′
i, w

′
i ≥ 0 i ≤ j

x′
i = y′

i = z′
i = w′

i = 0 i > j

x′′
j+1 ≥ lj+1λ, y′′

j+1 ≥ max{hj+1, b}λ

z′′
j+1 ≥ λ, w′′

j+1 ≥ λ, x′′
j+1 − y′′

j+1 ≥ 0

x′′
i = y′′

i = z′′
i = w′′

i = 0 i 	= j + 1
0 ≤ λ ≤ 1.

From the above system, we have

(xi, yi, zi, wi) =

⎧
⎨

⎩

(x′
i, y

′
i, z

′
i, w

′
i) i ≤ j

(x′′
j+1, y

′′
j+1, z

′′
j+1, w

′′
j+1) i = j + 1

(0, 0, 0, 0) i > j + 1.

Replacing and projecting out (x′, y′, z′, w′) and (x′′, y′′, z′′, w′′), we obtain
∑

i∈N′
x

xi

li
+
∑

i∈N′
y

yi

max{hi, b}
+
∑

i∈N′
z

zi +
∑

i∈N′
w

wi ≥ 1 − λ (N ′
x, N ′

y , N ′
z , N ′

w) ∈ N j

xi − yi ≥ 0, yi, zi, wi ≥ 0 i ≤ j

xj+1 ≥ lj+1λ, yj+1 ≥ max{hj+1, b}λ

zj+1 ≥ λ, wj+1 ≥ λ, xj+1 − yj+1 ≥ 0

xi = yi = zi = wi = 0 i > j + 1

0 ≤ λ ≤ 1.

Finally, projecting out λ, we arrive at
∑

i∈Nx

xi

li
+

∑

i∈Ny

yi
max{hi, b} +

∑

i∈Nz

zi +
∑

i∈Nw

wi ≥ 1 (Nx, Ny, Nz, Nw) ∈ N j+1

xi − yi ≥ 0, yi, zi, wi ≥ 0 i ≤ j + 1
xi = yi = zi = wi = 0 i > j + 1.

��
Proposition 15. Inequalities (10) can be separated in O(n) time.

Proof. A point (x∗, y∗, z∗, w∗) satisfies all inequalities (10) if and only if we have
∑

i∈L min
{

x∗
i

li
,

y∗
i

max{hi,b} , z∗
i , w∗

i

}
+

∑
i∈N\L min

{
y∗
i

max{hi,b} , z∗
i , w∗

i

}
≥ 1. ��
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Unfolding the Core Structure of the Reciprocal
Graph of a Massive Online Social Network

Braulio Dumba(B) and Zhi-Li Zhang

University of Minnesota, Twin Cities, MN, USA
{braulio,zhzhang}@cs.umn.edu

Abstract. Google+ (G+ in short) is a directed online social network
where nodes have either reciprocal (bidirectional) edges or parasocial
(one-way) edges. As reciprocal edges represent strong social ties, we study
the core structure of the subgraph formed by them, referred to as the
reciprocal network of G+. We develop an effective three-step procedure
to hierarchically extract and unfold the core structure of this reciprocal
network. This procedure builds up and generalizes ideas from the existing
k-shell decomposition and clique percolation approaches, and produces
higher-level representations of the core structure of the G+ reciprocal
network. Our analysis shows that there are seven subgraphs (“commu-
nities”) comprising of dense clusters of cliques lying at the center of the
core structure of the G+ reciprocal network, through which other com-
munities of cliques are richly connected. Together they form the core to
which “peripheral” sparse subgraphs are attached.

Keywords: Reciprocal network · Google+ · Network core · Reciprocity

1 Introduction

Many online social networks (OSNs) such as Twitter, Google+, Flickr contain
both reciprocal edges, i.e., edges that have already been linked back, and paraso-
cial edges, i.e., edges that have not been or is not linked back [1], and thus
directed in nature. Reciprocity is defined as the ratio of the number of recip-
rocal edges to the total number of edges in the network, and has been widely
studied in the literature in various contexts, see, e.g., [1–6]. It is believed to
reciprocity plays an important role in the structural properties, formation and
evolution of online social networks. Empirical studies have shown that many
OSNs exhibit a nontrivial amount of reciprocity: Twitter is estimated to have a
reciprocity value of 0.22 [7], Google+ 0.32 [8] and Flickr 0.62 [9].

Reciprocal edges represent the most stable type of connections or relations
in directed OSNs: for example, in Twitter it represents users are mutually “fol-
lowing” each other, and in Google+ it represents two users are in each other’s
circles. Hence, reciprocal edges reflect strong ties between nodes or users [10–
12]. Most existing studies have focused on reciprocity (a single-valued aggregate
metric) to characterize massive directed OSNs, which we believe is inadequate.
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 763–771, 2016.
DOI: 10.1007/978-3-319-48749-6 58
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Instead, we consider the reciprocal graph (or reciprocal network) of a directed
OSN – namely, the bidirectional subgraph formed by the reciprocal edges among
users in a directed OSN. In a sense, this reciprocal network can be viewed as the
stable “skeleton” network of the directed OSN that holds it together. We are
interested in analyzing and uncovering the core structural properties of the recip-
rocal network of a directed OSN, as they could reveal the possible organizing
principles shaping the observed network topology of an OSN [2].

Using Google+ (thereafter referred to as G+ in short) as a case study, in this
paper we perform a comprehensive empirical analysis of the “core structure” of
the reciprocal network of G+. Based on a massive G+ dataset (see Sect. 2 for a
brief overview of G+ and a description of the dataset), we find that out of more
than 74 million nodes and ≈1.4 billion edges in (a snapshot of) the directed G+
OSN, more than two-third of the nodes are part of G+’s reciprocal network and
more than a third of the edges are reciprocal edges (with a reciprocity value
of roughly 0.34). This reciprocal network contains a giant connected subgraph
with more than 40 million nodes and close to 400 million edges (see Sect. 2 for
more details). Existence of this massive (giant connected) reciprocal (sub)graph
in G+ raises many interesting and challenging questions. How is this reciprocal
network formed? Does it contain a “core” network structure? If yes, what does
this structure look like?

In an attempt to address these questions, we develop an effective three-step
procedure to hierarchically extract and unfold the core structure of G+’s recipro-
cal network, building up and generalizing ideas from the existing k-shell decom-
position [13] and clique percolation [14] approaches. We first applied a modified
version of the k-shell decomposition method to prune nodes and edges of sparse
subgraphs that are likely to lie at the peripherals of the G+ reciprocal network
(see Sect. 3). We then performed a form of clique percolation to generate a new
directed (hyper)graphs where vertices are maximal cliques containing the nodes
in the dense “core” graph generated in the previous step, and there exists a
directed edge from clique Ci to clique Cj if half of the nodes in Ci are con-
tained in Cj (see Sect. 4). We found that this (hyper)graph of cliques comprises
of 2000+ connected components (CCs), which represent the core “communities”
of the G+ reciprocal network. Finally, we introduced three metrics to study
the relations among these CCs in the underlying G+ reciprocal network: the
number of nodes shared by two CCs, the number of nodes that are neighbors
in the two CCs, and the number of edges connecting these neighboring nodes
(see Sect. 5). These metrics produce a set of new (hyber)graphs that succinctly
summarize the (high-level) structural relations among the core “community”
structures and provide a “big picture” view of the core structure of the G+
reciprocal network and how it is formed. In particular, we found that there are
seven CCs that lie at the center of this core structure through which the other
CCs are most richly connected. In Sect. 6, we conclude the paper with a brief
discussion of the future work.

We summarize the major contributions of our paper as follows. To the best
our knowledge, our paper is the first study on the core structure of a “reciprocal
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network” extracted from a massive directed social graph. While this paper focuses
on G+, we believe that our approach is applicable to other directed OSNs: (i)
we develop an effective three-step procedure to hierarchically extract and unfold
the core structure of a reciprocal network arising from a directed OSN; (ii)
We apply our method to the reciprocal network of the massive Google+ social
network, and unfold its core structure. In particular, we find that there are seven
subgraphs (“communities”) comprising of dense clusters of cliques that lie at the
center of the core structure of the G+ reciprocal networks, through which other
communities of cliques are richly connected; together they form the core to which
other nodes and edges that are part of sparse subgraphs on the peripherals of
the network are attached.

2 G+ Dataset and Overview of the Reciprocal Network

In this section, we briefly describe key features of the Google+ service, a sum-
mary of our dataset and our methodology to extract the reciprocal network.

Platform Description: On June 2011 Google launched its own social network-
ing service called Google+ (G+). Previous works in the literature [5,6] labelled
G+ as a hybrid online social network because its features are similar to both
Facebook and Twitter. Similar to Twitter (and different from Facebook) the rela-
tionships in G+ are unidirectional. Similar to Facebook, each user has a stream,
where any activity performed by the user appears (like the Facebook wall). For
more information about the features of G+ the reader is referred to [15,16].

Dataset and Reciprocal Network: We obtained our dataset from an ear-
lier study on G+ [6]. The dataset is a directed graph (denoted as Γ ) of the
social links of the users1 in G+, collected from August 24th, 2012 to Septem-
ber 10th, 2012. It consists of 74,419,981 nodes and 1,396,943,404 edges. We use
Breadth-First-Search (BFS) to extract the largest weakly connected component
(LWCC) of Γ . We label the extracted LWCC as subgraph Ω (66,237,724 nodes
and 1,291,890,737 edges). Since the users Ω form the most important component
of the G+ network [6], we extract the subgraph G composed of nodes with at

Fig. 1. Degree distributions for subgraph H

1 In this paper we use the terms “user” and “node” interchangeable.
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least one reciprocal edge from Ω. Afterwards, we use BFS to extract G′s largest
connected component (LCC); we label this new subgraph as H. In this paper,
we consider this subgraph H as the “reciprocal network” of G+2. It consists of
40,403,216 nodes and 395,677,038 edges, with a density of 4.85 × 10−7, slightly
larger than the density of Ω (2.95 × 10−7).

Figure 1 shows the complementary cumulative distribution function (CCDF)
of the degrees of nodes in H. We can see that these curves have approximately
the shape of a power law distribution. The CCDF of a power law distribution
is given by Cx−α and x, α,C > 0. By using the tool in [17,18], we estimate
the exponent α that best models each of our distributions. We obtain α =
2.72 for mutual degree, α = 2.41 for out-degree and α = 2.03 for in-degree
distributions. The observed power-law trend in the distributions implies that a
small fraction of users have a disproportionately large number of connections,
while most users have a small number of connections – this is characteristics of
many social networks.

3 Extracting the Core Graph of the Reciprocal Network

Given its massive size (with more than 40 million nodes and nearly 400M edges),
we apply a modified version of the k-shell decomposition method [13] to prune
nodes and edges of sparse subgraphs that are likely to lie at the “periphery” of the
G+ reciprocal network. K-shell decomposition is a classical graph decomposition
technique which has been used as an analysis and visualization tool to extract
and study the “core” structure of complex networks, such as that of the Internet
AS graph [13]. The classical k-shell decomposition method works as follow: (a)
first, remove all nodes in the network with degree 1 (and their respective edges) –
these nodes are assigned to the 1-shell; (b) more generally, at step k = 2, . . .,
remove all nodes in the remaining network with degree k or less (and their
respective edges) – these nodes are assigned to the k-shell; and (c) the process

(a) Number of nodes per k-shell (b) 1st, 2nd, 3rd and 4th k-core LCCs

Fig. 2. k-shell (a) and k-core (b) as k varies from 1 to 308

2 It contains more than 90 % of the nodes with at least one reciprocal edge in G+.
Hence, our analysis of the dataset is eventually approximate.
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stops when all nodes are removed at the last step – the highest shell index is
labelled kmax. The network can be viewed as the union of all kmax shells, and
for each k, we define the k-core as the union of all shells with indices larger or
equal to k.

We apply the k-shell decomposition method to the G+ reciprocal network.
We find that the kmax = 308, and the kmax-core is a clique of size 298 nodes (the
maximum clique in the G+ reciprocal network). Figure 2(a) shows the number
of nodes belonging to the k-shell as k varies from 1 to 308: we see that 99 % of
the nodes in our network fall in the lower k-shells (from k = 1 to 100). This is
not surprising, as the majority of the nodes in our network have degree less than
100. Figure 2(b) shows the size of the largest as well as those of the 2nd, 3rd
and 4th largest connected components in the k-core, as k varies from 1 to 308.
We note that at step k = 121, a small subgraph containing the maximum clique
(of size 298) breaks off from the largest connected component which dissolves
after k = 253, whereas this subgraph containing the maximum clique persists
after k = 252 and becomes the largest component, and at kmax = 308, we are
left with the maximum clique plus 10 additional nodes that are connected to the
maximum clique. Closer inspection of nodes in the maximum clique reveals that
its users belong to a single institution in Taiwan, forming a close-knit community
where each user follows everyone else. We see that directly applying the standard
k-shell decomposition to the G+ reciprocal network produces a clique of size 298,
which we believe is unlikely to be the “core” of the G+ reciprocal network.

In order to extract a meaningful “core” of the G+ reciprocal network, we
therefore modify the standard k-shell decomposition method to stop the process
earlier using the following criterion: we terminate the process at kC when the
largest connected component breaks apart in two or more pieces where each
contains a dense subgraph (e.g., a clique of size q � kC , here we use a threshold
of q = 200). Applying this criterion, we terminate the k-shell decomposition
at kC = 120, which yields the kC-core graph with kC = 120: this core graph
G120 has 51,189 nodes and 7,133,227 edges, with an average degree of 139.4
and a density of approximately 0.0054, which is much smaller than that of the
reciprocal network H as a whole.

4 Clique Percolation Analysis and Core Clique Graph

In this section, given the dense core subgraph G120, we want to extract the mini-
mal set of the largest maximal cliques that cover every node in G120 and use these
cliques to build a new (hyber)graph that provides a higher-level representation of
the core structure of the G+ reciprocal network. To achieve this, we implement
an algorithm to extract a maximal clique containing a given node in a network.
The algorithm is a variation of the popular Bron-Kerbosh algorithm [19]. Hence,
we name it Simplified Bron-Kerbosh (SBK) and it is described in Algorithm1 –
the parameter t is used to set an upper bound on the size of the recursion tree.
Then, we develop a procedure to extract the minimal set of the largest maximal
cliques that cover every node in a given graph (Algorithm2). The resulting set of
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cliques returned from this procedure is always guaranteed to contain at least an
unique node per clique. We apply this procedure to subgraph G120. We obtain
37,005 maximal cliques with an average clique size of 22.26 nodes.

Algorithm 1. Simplified Bron-Kerbosh (SBK)
1: u : pivot vertex
2: R : currently growing maximal clique
3: P := N [u]: set of neighbors of vertex u
4: t : size of the largest clique allowed
5: SBK(R, P, u, t)
6: if P := 0 or R := t then
7: Report R as a maximal clique
8: else
9: Let unew be the vertex with highest number of neighbors in P
10: Rnew := R ∪ {unew}
11: Pnew := P ∩ N [unew]
12: SBK(Rnew, Pnew, unew, t)

Using the extracted 37,005 maximal cliques, we generate a new directed
(hyber)graph, where the vertices are (unique) cliques of various sizes, and there
exists a directed edge from clique Ci to clique Cj if more than half of the nodes in
Ci are contained in Cj , i.e., Ci → Cj if (|Ci| ∩ |Cj |)/|Ci| ≥ θ = 0.5. We vary the
parameter θ from 0.5 to 0.7, and find that it does not fundamentally alter the
connectivity structure of the (hyper)graph of cliques thus generated. We remark
that the maximal clique containing each node v can be viewed as the most stable
structure that node v is part of. The directed (hyper)graph of cliques captures
the relations among these stable structures each node is part of: intuitively, each
directed edge in a sense reflects the attraction (or gravitational pull) that one
clique (a constellation of nodes) has over the other. Hence this (hyber)graph of
cliques provides us with a higher-level representation of the dense core graph of
the G+ reciprocal network – how the most stable structures are related to each
other. This procedure can be viewed as a form of clique percolation [14].

Algorithm 2. Extract Minimal Set of Maximal Cliques from a Graph
1: procedure EMC(G(V, E))
2: construct a set W and W := V
3: construct a ordered list S of the nodes in V based on their degree (decreasing order)
4: select the first item in S, vertex i, as the pivot
5: apply the SBK algorithm using i as the pivot vertex
6: add the reported maximal clique ci containing i to the clique set Ctotal = [cn, cm, ..]
7: remove the nodes in ci from W : Wj = Wi − ci
8: select the next item in S, vertex j, as the next pivot vertex such that j �∈ Ctotal and repeat

steps(5), (6) and (7) until W = ∅

We find that this (hyper)graph of cliques comprises of 2,328 connected com-
ponents (CCs). The largest component has 4,411 cliques, 5,697 nodes and 799,076
edges, while the smallest has 1 clique, 21 nodes and 210 edges respectively. We
regard these connected components (CCs) as forming the core communities of
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the core graph of the G+ reciprocal graph: each CC is composed of either one
single clique (such a CC shares few than half of its members with other cliques
or CCs), or two or more cliques (stable structures) (where one clique shares at
least half of its member with another clique in the same CC, thus forming a
closely knit community).

5 Core Community Structure Analysis

In this section, we investigate the relationship between the connected compo-
nents (CCs) in our (hyper)graph of cliques constructed in the previous section
(Sect. 4), in particular the 65 largest CCs. First, regarding these CCs as the core
community structures (a dense cluster of cliques) of the G+ reciprocal network,
we define three metrics to study the relations among these CCs in the underly-
ing G+ reciprocal network: (i) Shared nodes: the number of nodes that CCi and
CCj have in common; (ii) Shared neighbors: the number of nodes in CCi that
have at least one edge to a node in CCj ; (iii) Cross-edges: the number of cross
edges between CCi and CCj . These metrics produce a set of new (hyber)graphs
that succinctly summarize the (high-level) structural relations among the core
community structures. They provide a big picture view of the core graph of the
G+ reciprocal network and yield insights as to how it is formed.

Figure 3(a) shows the (hyber)graph of the relationship between the compo-
nents based on the number of shared nodes. We observe that there are seven
CCs that lie at the center of this (hyber)graph through which the other CCs
are most richly connected. For the remaining two metrics, we observe that every
CCi has at least one cross-edge and consequently one neighboring node with
every other CCj ; thus the CC graph generated based on cross-edge or shared
neighbors forms a complete graph – a clique. Hence, we focus our analysis on
the strongest relationship between the CCs: for every CCi, we extract the CCj

that has the largest number of cross-edges with CCi; likewise, for the neighbor-
ing nodes. Figure 3 also shows the (hyber)graph of the relationship between the
CCs based on their number of “cross-edges” and “shared neighbors”: a node rep-
resents a CC and a directed edge CCi → CCj implies that CCi has the largest
number of cross edges (Fig. 3(b)) or neighboring nodes (Fig. 3(c)) to nodes in
CCj . These figures show that most CCs have the largest number of cross edges
and shared neighbors with the same seven CCs identified in Fig. 3(a). Based on
these results, we conclude that there are seven subgraphs (core communities)
comprising of dense clusters of cliques that lie at the center of the core graph of
the G+ reciprocal network, through which other communities of cliques are richly
connected. The 2,328 connected components (CCs) in the clique (hyper)graph
form the core graph of the G+ reciprocal network, to which other nodes and
edges that are part of sparse subgraphs on the peripherals of the network are
attached.

We note in particular that in the periphery of our (hyber)graphs, we find a
small CC composed with 35 of the largest cliques in the G+ reciprocal network.
The average, minimum and maximum sizes of the cliques in this CC are 237, 109
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(a) number of shared nodes

(b) number of cross-edges

(c) number of neighboring nodes

Fig. 3. (Hyper)Graphs for the core communities of the reciprocal network of G+ (Color
figure online)

and 298 – the latter is the maximum clique of the G+ reciprocal network. This
CC is highlighted by a “red circle” in the (hyper)graphs in Fig. 3. It shows this
CC lies more at the outer ring of G+s dense core structure. As mentioned earlier
in Sect. 3, the 298 users in this maximum clique of the G+ reciprocal network
belong to a single institution in Taiwan where every user follows every other. The
users in this clique also form close relations with many other users, forming 34
other cliques. Together, these 35 cliques form a close-knit community. However,
we see that this community in fact does not lie at the very “center” – instead lies
more at the outer ring – of the core graph of the G+ reciprocal network. Hence,
we see that simply applying the conventional k-shell decomposition method to
the G+ reciprocal network would yield the maximum clique in the G+ reciprocal
network, but not its core structure. In contrast, the seven CCs mentioned above
more likely lie at the “center” of the core graph of the G+ reciprocal network.

6 Conclusion

In this paper we have developed an effective three-step procedure to hierarchi-
cally extract and unfold the core structure of the reciprocal network of Google+,
building up and generalizing ideas from the existing k-shell decomposition and
clique percolation approaches. As part of ongoing and future work, we will
develop a more rigorous characterization of the core graph of the G+ reciprocal
network based on the (modified) k-shell decomposition, and provide a more in-
depth analysis of the (hyber)graph structures of the clique core graph and the
(high-level) structural relations among the core “community” structures. We also
plan to apply our method to other directed OSNs such as Twitter.
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Abstract. This work presents a polynomial algorithm to optimize any
given job sequence for the Common Due-Window (CDW) Problem. The
CDW problem comprises of scheduling and sequencing a set of jobs
against a due-window to minimize the total weighted earliness/tardiness
penalty. This due-window is defined by the left and right common due-
dates. Jobs that finish before (after) the left (right) due-date are termed
as early (tardy) jobs. We present an exact polynomial algorithm for opti-
mally scheduling a given fixed job sequence for a single machine with the
runtime complexity of O(n), where n is the number of jobs. The linear
algorithm and a heuristic based on the V-shaped property are then incor-
porated with a modified Simulated Annealing (SA) algorithm to obtain
the optimal/near-optimal solutions. We carry out computational exper-
iments to demonstrate the utility of our approach over the benchmark
instances and previous work on this problem.

1 Introduction

The Common Due-Window (CDW) scheduling problem consists of finding an
optimal sequence of jobs along with the optimal completion times of the jobs
such that the total weighted earliness and tardiness penalties is minimized. Each
job possesses a distinct processing time and asymmetric penalties per unit time in
case the job finishes its processing before or after the due-window. The jobs which
are completed between or at the due-window are called straddle jobs and do not
incur any penalty. Similar to the Common Due-Date (CDD) problem, the CDW
also occurs in mass production industry adopting the Just-in-Time philosophy.
The problem can be formulated as follows. Let n be the total number of jobs and
dl, dr be the left and right due-dates, respectively, of the common due-window.
We also define the processing time of any job as Pi and Ci as the completion
time of the jobs for all i = 1, 2, . . . , n. Any job which finishes its processing

c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 772–781, 2016.
DOI: 10.1007/978-3-319-48749-6 59
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before or after the due-date incurs an earliness or tardiness penalty, represented
as gi or hi, respectively. Mathematically, we can write gi = max{0, dl − Ci},
and hi = max{0, Ci − dr}, for all i. Corresponding to the earliness/tardiness
values, we also have the associated penalties which are expressed as αi and βi,
respectively. With this formulation, the objective of the problem is to schedule
the jobs against the due-window to minimize the total weighted penalty incurred
by the earliness and tardiness of all the jobs, as shown in Eq. (1).

min
∑n

i=1
{αi · gi + βi · hi} . (1)

CDW is an extension of CDD with the presence of a common due-window
instead of a common due-date. However, several important similar properties
hold for both problems. In 1994, Krämer and Lee studied due-window schedul-
ing for the parallel machine case and presented useful properties for the CDW [7],
explained later in the paper. Krämer and Lee also showed that the CDW with
unit weight case is also NP-complete and provided a dynamic programming algo-
rithm for the two machine case [7]. In 2005, Biskup and Feldmann dealt with the
general case of the CDW problem and approached it with three different meta-
heuristic algorithms, namely, Evolutionary Strategy, Simulated Annealing and
Threshold Accepting. They also validated their approaches on 250 benchmark
instances up to 200 jobs [2]. Wan studied the common due-window problem with
controllable processing times with constant earliness/tardiness penalties and dis-
tinct compression costs, and discussed some properties of the optimal solution
along with a polynomial algorithm for the solving the problem in 2007 [10]. In
2010, Yeung et al. formulated a supply chain scheduling control problem involv-
ing single supplier and manufacturer and multiple retailers. They formulated the
problem as a two machine CDW and presented a pseudo-polynomial algorithm
to solve the problem optimally [12]. Ji et al. study the due-window assignment
problem, where each job has a job-dependent due-window and an additional
penalty is associated with the due-window position [5]. In 2013, Janiak et al.
presented a survey paper on the common due-window assignment scheduling
problem and discussed more than 30 different variations of the problem [3]. In
2015, Janiak et al. also presented an extensive survey on scheduling against
due-window and provided computational complexities for several variants of the
problem [4].

In this work, we consider the single machine general case for the CDW
problem with asymmetric penalties for the general case, which is an NP-hard
problem [2]. Our solution approach is divided in two layers, (i) finding the
optimal/near-optimal job sequence, and, (ii) optimizing any given processing
sequence with an efficient polynomial algorithm. We present a linear exact algo-
rithm to optimize a given job sequence on a single machine. Henceforth, we
present a simple heuristic algorithm based on a V-shaped property, to evolve and
improve any job sequence. Our algorithm and the heuristic are then combined
with the Simulated Annealing algorithm to find the optimal/best job sequence.
We test the effectiveness of our approach on the benchmark instances provided
in [2] with the help of experimental analyses.
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2 The Exact Algorithm for a Given Job Sequence

In this section, we present and explain our exact algorithm for a given job
sequence of CDW, using useful and important properties proved in previous
works in the literature.

Property 1. There exists an optimal schedule without any machine idle time
where either the first job starts at time t = 0 or one of the jobs finishes at dl or
dr, i.e., Ci = dl or Ci = dr, for some i [7,11].

Property 2. In any optimal schedule, the early jobs are sequenced in non-
increasing order of the ratio Pi/αi and the tardy jobs are sequenced in non-
decreasing order of the ratio Pi/βi [2].

One important observation that can be inferred from the objective function
and the above properties is that moving the job sequence to the right gives
us a V-shaped trend for the objective function values, depending on where the
due-window falls on the schedule.

Property 3. If in the optimal schedule of any given job sequence of CDW problem
JE = {1, 2, . . . , r − 1, r} be the set of early jobs that are processed in that order
and r = arg max(Ci ≤ dl) for i = 1, 2, . . . , n and JT = {k, k+1 . . . , n} be the set
of tardy jobs such that k = arg min(Ci > dr) for i = 1, 2, . . . , n. Then we have,∑

i∈JT
βi <

∑
i∈JE

αi for minimum possible values of k and r [1].

This is an important property provided in [1] which basically proves that the
optimal schedule of any given job sequence can be obtained by right shifting
the jobs, as long as

∑
i∈JT

βi <
∑

i∈JE
αi holds. Using the above properties, we

now present our exact polynomial algorithm for the CDW problem to optimize
any given job sequence. As mentioned above in Property 1, we know that the
optimal schedule of the CDW has no idle time of the machine between C1 and
Cn. Hence, for our algorithm, the jobs are initialized with the first job starting at
time t = 0 and are shifted to the right by minimum deviation of the completion
times from the right and the left due-dates. This way, every shift ensures that
one of the jobs finishes at one of the due-dates (Property 1) and we do not skip
over the optimal position of the due-dates. Once Property 3 is satisfied, we have
our optimal schedule and no more shifting is required. This approach of right-
shifting-the-jobs is implemented in [1]. However, it requires the update of the
completion times Ci of all the jobs and thus accounts for a runtime complexity
of O(n) for each shift. We present a much faster approach where the calculation
of the completion times of all the jobs needs to be done only once, throughout
the algorithm.

The idea behind our approach lies in the fact that the calculation of the
objective function or checking Property 3, only requires the relative deviation
of the completion times of all the jobs with the left and right due-dates. Hence,
shifting all the jobs and due-dates together with the same amount does not affect
the objective function value, as well as the set of early and tardy jobs. For our
algorithm, we initialize the completion times of the jobs such that C1 = P1 and
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the subsequent jobs are followed without any machine idle time. The Ci values
remain fix for the whole algorithm. Thereafter, we find the optimal position of a
movable due-window (d′

l, d′
r) of the same length as of the original due-window.

This optimal position is calculated using Property 3, by shifting the movable due-
window from extreme right to left as long as the sum of the tardiness penalties
is less than the sum of the earliness penalties. If the optimal position of this new
due-window lies to the left of the original due-window i.e., d′

l < dl or d′
r < dr,

(note that both the inequalities will be satisfied simultaneously, since the due-
windows are of same lengths, d′

l < dl ⇒ d′
r < dr), then we take d′

l and d′
r

for calculating the final earliness/tardiness of the jobs. However, if the position
of this movable due-window lies to the right of the original due-window, i.e.,
d′

l > dl or d′
r > dr, then we retain the original due-dates for calculating the

final earliness/tardiness of the jobs. The reason for the above statements can
be proved by considering the two cases separately. If the optimal position of
the movable due-window is such that d′

l < dl, then it means that Property 3 is
satisfied for some value k but the original due-date falls at some job index i where
i > k. Thus, we need to shift all the jobs to the right such that jobs k, k+1, . . . , n
are tardy. Instead, we can just take the d′

l and d′
r as the due-dates to calculate

the final earliness/tardiness of the jobs to obtain the objective function value,
because of the fact that the earliness/tardiness are relative deviations with the
due-dates. However, if the optimal position of the movable due-window is such
that d′

l > dl, then it means that Property 3 is satisfied for some value k but
the original due-date falls at some job index i where i < k. In this case, we
are actually required to practically shift the jobs to the left, which can not be
done as the schedule of the jobs is already starting at time t = 0. Hence, for
this case we need to take the original due-window (dl, dr) to calculate the final
earliness/tardiness of the jobs. The case d′

l = dl is obvious.
Our algorithm first assigns the right due-date (d′

r) of the movable due-window
as Cn and d′

l = d′
r − dr + dl. This ensures that the right due-date falls at

the completion time of the last job and the left due-date is placed such that
Ci ≤ d′

l < Ci+1, where i < n. In the next steps, this movable due-window is
shifted to the left as long as we obtain the optimal position using Property 3.
We now formulate some parameters which are essential for the understanding of
the exact algorithm. We define ηl, ϕl, ηr, and ϕr as

ηl = arg max(Ci − d′
l < 0), ϕl = arg max(Ci − d′

l ≤ 0),
ηr = arg max(Ci − d′

r < 0), ϕr = arg max(Ci − d′
r ≤ 0), i = 1, 2, . . . , n . (2)

In the above equation, ηl depicts the last job which finishes strictly before the
left due-date d′

l, while ϕl is the last job which finishes at or before d′
l. ηr and

ϕr can be understood on the same lines, with respect to the right due-date d′
r.

Hence, one can write δl = d′
l − Cηl

and δr = d′
r − Cηr

. Clearly, min{δl, δr} is the
minimum possible left shift of the due-window required such that either one of
the left/right due-dates falls at the completion time of a job. Any left shift of
the due-window is basically made depending on the position of the left and the
right due-dates.
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Algorithm 1. Linear algorithm for any CDW job sequence.
1 Ci ←∑i

k=1 Pk ∀ i = 1, 2, . . . , n
2 d′

r ← Cn

3 d′
l ← d′

r − dr + dl

4 Compute ηl, ϕl, ηr, ϕr

5 δl ← d′
l − Cηl

6 δr ← d′
r − Cηr

7 pe ←∑ϕl
i=1 αi

8 pl ← 0
9 while pl < pe do

10 LeftDueDate ← d′
l

11 RightDueDate ← d′
r

12 δ ← min{δl, δr}
13 d′

l ← d′
l − δ

14 d′
r ← d′

r − δ
15 if (ηl < ϕl) then
16 pe ← pe − αϕl

17 ϕl ← ϕl − 1

18 if (ηr < ϕr) then
19 pl ← pl + βϕr

20 ϕr ← ϕr − 1

21 if δl < δr then
22 ηl ← ηl − 1
23 else if δr < δl then
24 ηr ← ηr − 1
25 else if δr = δl then
26 ηl ← ηl − 1
27 ηr ← ηr − 1

28 if ηl > 0 then
29 δl ← d′

l − Cηl

30 δr ← d′
r − Cηr

31 else
32 break

33 if LeftDueDate ≤ dl then
34 dl ← LeftDueDate
35 dr ← RightDueDate

36 Compute gi, hi, ∀i
37 return Sol ←∑n

i=1 (gi · αi + hi · βi)

3 Proof of Optimality and Runtime Complexity

In this section, we present the optimality of Algorithm 1 with respect to the
objective function value of Eq. (1), for any given job sequence.

Theorem 1. Algorithm 1 is optimal for any given job sequence of the CDW
problem, with respect to the objective function value, with a runtime complexity
of O(n).
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Proof. We first schedule the given job sequence such that the processing of the
first job starts at time t = 0 and the remaining jobs are processed without
any machine idle time, maintaining the sequence of the jobs. We then place
the movable due-window in a way such that d′

r = Cn for some n and d′
l =

d′
r − dr + dl, maintaining the length of the due-window same as the original.

From this point on, we refer to this movable due-window as the due-window
itself, unless mentioned otherwise. Meanwhile, we also calculate ηl, ϕl, ηr and ϕr

to keep track of the jobs that are closest to the due-dates. One can interpret
the η and ϕ values to indicate the position of the due-window. At each step
of the iterative left shift of δ where δ = min{δl, δr}, where δl = d′

l − Cηl
and

δr = d′
r − Cηr

. Apparently, any left shift of δ ensures that we do not skip over
any job while checking for Property 3. However, depending on the position of
the due-window (or the ηl, ϕl and ηr, ϕr values), we can have several different
cases that can occur during the left shift.

During the course of any left shift, if ηl < ϕl then we are certain that d′
l

falls at the completion time of some job. Hence, ηl < ϕl necessarily implies
that ϕl = arg max(Ci − d′

l ≤ 0) = u for some job u, such that Cu = d′
l and

ηl = u − 1. Moreover, at any instance of the algorithm, we never make a left
shift that is greater than δl. Hence, the value of pe will be reduced by αϕl

, since
for any shift which is greater than zero, job u will fall after the left due-date.
Likewise, whatever the left shift, the value of ϕl will also be reduced by 1, for the
same reason that u will no longer fall at d′

l, after the shift of the due-window.
Also note that the only possible case such that ηl = ϕl, is the one when d′

l

falls in between the completion time of two jobs, after the left shift, say u − 1
and u. Since, δ = min{δl, δr}, the maximum possible shift will lead to d′

l = Cu.
However, in this case we do not need to update pe and ϕl as per their definitions.
The value of ηl will indeed get reduced by 1, if the shift is made by δl, i.e., the
left due-date falls at the completion time of a job after the left shift of the due-
window. Hence, to check if ηl needs to be updated or not, we only need to check
if the shift if made by δl, as implemented in Algorithm 1. The same procedure
is adopted for the case when ηr < ϕr. After every left shift, we update the
values for ηl, ϕl, ηr, pe and pl depending on the position of the due-window and
the amount of left shift. Henceforth, we update the values of δl and δr with the
new values of ηl and ηr, respectively. Note that we need to check for a special
case where the earliness penalty of the first job is higher than the sum of the
tardiness penalties of the jobs which are completed after the right due-date. In
this case, the optimal schedule will occur when the left due-date falls at C1. It
is for this case, that we need to check that ηl > 0 before making a left shift,
as depicted in Algorithm 1 line 28. For the next iteration of the while loop in
line 9 of Algorithm 1, we update the positions of the left and right due-date by
δ = min{δl, δr} and repeat the same procedure as long as pl < pe, according to
Property 3. We then check if the optimal position of this movable due-window
lies to the left or the right of the original due-window as explained in Sect. 2.

As far as the runtime complexity is concerned, it can easily observed that
the complexity of the Algorithm 1 is O(n), since all the initialization steps and
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the calculation of the parameters all require O(n) runtime. As for the iterative
while loop, all the computations inside the loop are of O(1) as we update the
values of any parameter by simple one step computation. However, this iterative
left shift can take 2 · n steps in the worst case, however, it does not affect the
complexity of Algorithm 1. Hence, the complexity of Algorithm 1 is O(n). �

4 Computational Results

We now present the results of computational experiments for the problem dis-
cussed in this work. The experiments are carried out on the CDW benchmark
instances provided by Biskup and Feldmann in [2]. All the computations are
carried out using MATLAB on a 1.73 GHz PC with 2 GB RAM. We imple-
ment a modified Simulated Annealing algorithm to generate the job sequences,
while each job sequence is optimized with Algorithm 1 and further improved by
arranging the early jobs in non-increasing order of Pi/αi, while the tardy jobs
are arranged in the non-decreasing order of Pi/βi as per Property 2. Our exper-
imental analyses suggest that an ensemble size of 10 and the maximum number
of iterations of 150 ·n work best for the provided instances in general. The initial
temperature for SA is kept as twice the standard deviation of the energy at infi-
nite temperature: θET=∞ =

√〈E2〉T=∞ − 〈E〉2T=∞. This quantity is estimated
by randomly sampling the configuration space [9]. An exponential schedule for
cooling is adopted with a cooling rate of 0.9999. We implement two acceptance
criteria: the Metropolis acceptance probability, min{1, exp((−�E)/T )} [9] and a
constant acceptance probability of c · 10−2, where c is a constant less than 10. A
solution is accepted with this constant probability if it is rejected by the Metropo-
lis criterion. This concept of a constant probability is useful when the SA is run
for many iterations and the metropolis acceptance probability is almost zero,
since the temperature would become infinitesimally small. Apart from this, we
also incorporate elitism in our SA. Elitism has been successfully adopted in evo-
lutionary algorithms for several complex optimization problems [6]. Theoretical
studies have been made analysing speed-ups in parallel evolutionary algorithms
combinatorial optimization problems in [8]. As for the perturbation rule, we first
randomly select a certain number of jobs in any job sequence and permute them
randomly to create a new sequence. The number of jobs selected for this per-
mutation is taken as 3 + �√n/10�, where n is the number of jobs. In addition
to this, we also incorporate swapping of one job each from the set J ′

E and J ′
T

with each other. This swapping is specially useful for the instances with large
due-window size, as random perturbation might cause little to no effect on the
job sequence if all the jobs that are perturbed belong to the straddling set of
jobs JS . The reason for this is that changing the sequence of straddling jobs does
not change the objective function value. All our computation results are aver-
aged over 100 different replications of the SA algorithm, for each instance. We
present our results for the CDW where the due-window size for any instance is
calculated using the values of h1 and h2. A due-window has a left (dl) and right
(dr) due-date, where dl = �h1 · ∑n

i=1 Pi� and dr = �h2 · ∑n
i=1 Pi�, as described

in [2].
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Table 1. Average runtime in seconds and percentage gap of our solutions with the
benchmark results of [2], averaged over 10 different instances for each job size.

Jobs h1–h2 0.1–0.2 0.1–0.3 0.2–0.5 0.3–0.4 0.3–0.5 Average

10 %Δ 0.000 0.000 0.000 0.000 0.000 0.000

Time 0.000 0.000 0.000 0.000 0.001 0.000

20 %Δ −0.018 0.003 −0.010 −0.004 0.000 −0.006

Time 0.014 0.030 0.020 0.020 0.021 0.021

50 %Δ −0.037 0.020 0.219 −0.124 −0.021 0.011

Time 0.189 0.191 0.138 0.133 0.103 0.151

100 %Δ −0.029 −0.016 −0.079 −0.100 −0.214 −0.088

Time 0.680 0.804 0.897 0.846 0.885 0.822

200 %Δ −0.062 0.001 0.073 −0.109 −0.054 −0.030

Time 3.675 4.044 4.392 4.310 4.298 4.144

Let FREF
i represent the benchmark results provided in [2] and Fi be the

solution value obtained in this work for any instance i, then the percentage gap
%Δ is defined as (Fi − FREF

i ) · 100/FREF
i . Table 1 shows the average values

of percentage gap (%Δ) and the average runtime required by our algorithm.
The percentage gaps and the runtimes are averaged over 10 different benchmark
instances for each due-window, for 100 different replications of SA. For the first
50 instances with 10 jobs we obtain the optimal solution for all the instances.
For higher instances with 20, 50, 100 and 200 jobs, we achieve better results on
average with the average percentage gap of −0.006, 0.011,−0.088 and −0.030 %,
respectively. The negative values of the percentage gap in Table 1 indicate that
we obtain better results than the benchmark results of [2]. The runtime for all
the results is the time after which the solutions mentioned in Table 1 are obtained
on average after 10 different replication. Biskup and Feldmann do not provide
the runtime for their algorithms, hence we cannot compare our results on the
basis of the runtime. However, the quality of our results is certainly superior
than the benchmark results, owing to our approach. The average runtime over
10 different replications of our algorithm for job size of 20 and above is only
0.021, 0.151, 0.822 and 4.144 s. The previous approach for this problem involved
an O(n2) algorithm to optimize any job sequence [1]. However, the runtimes with
that approach for 10, 20 and 50 jobs on the same machine were 0.173, 0.465 and
6.028 s, respectively. Moreover, we also obtain better results than the previous
approach mentioned in [1]. We also present the graphical representation of the
average percentage error obtained by our algorithm. The negative value indicates
that we obtain better results than the benchmark solutions, in Fig. 1. Evidently,
the worst possible solution values by our approach are for the case when the
due-window size is as big as the 30 % of the total length of the schedule, i.e.,
with the due-window restriction factor of 0.2 to 0.5.
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Fig. 1. Comparative average percentage deviation of CDW along with its standard
deviation.

The reason behind it is the fact that the perturbation causes the least change
in the processing sequence of the jobs as several jobs belong to the straddling
set. In such a case, swapping of jobs from J ′

E to J ′
T is highly useful. However, it

must be noted that the percentage error values presented in Fig. 1 are averaged
over 100 different replications of SA and the worst value for average percentage
deviation over all the instances is only 0.2 %. Regardless, over all the replications
of SA, in the average case we still obtain solutions better than the best known
values as is clear from Table 1. Furthermore, the robustness of our approach
is highlighted by the small standard deviation values over all the instances, as
shown in Fig. 1. Our algorithm consistently obtains good quality solutions with
the worst possible standard deviation of just 0.177%. As far as the solution
quality is concerned, not only our approach is robust over all the instances, we
also improve several benchmark results provided in [2].

5 Conclusion

In this paper we present a novel O(n) algorithm for a the general case of the
CDW to optimize a given job sequence, proving its runtime complexity and its
optimality with respect to the solution value. Additionally, we also incorporate
the V-shaped property to locally improve a job sequence. We apply our algo-
rithms to the benchmark instances provided by Biskup and Feldmann [2] and
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obtain better results for 137 instances out of 150 benchmark instances for the
job size of 50 and higher. Our algorithm works in the same manner for the case
when the processing times of all the jobs are equal or of unit time length. Our
approach for that problem would be same except for the fact that on Algorithm 1
each shift will be equal to the length of the processing time. The remaining pro-
cedure of improvement heuristics and the SA can be utilized as described in this
work. Finally, we would also like to assert that our linear algorithm is well suited
for the CDW problem with assignable due-window of a given size, incorporating
penalty for due-window location. The only addition to our algorithm would be to
balance out the effect of the due-window assignment and the objective function
value, which is monotonic for constant penalty associated with the due-window
location.
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Abstract. Recently, the scaffold filling problem has attracted a lot
of attention due to its potential applications in processing incomplete
genomic data. However, almost all the current research assumes that a
scaffold is given as an incomplete sequence (i.e., missing genes can be
inserted anywhere in the incomplete sequence). This differs significantly
from most of the real genomic dataset, where a scaffold is given as a
sequence of contigs. We show in this paper that when a scaffold is given
as a sequence of contigs, and when the genome contains no duplication
of genes, the corresponding scaffold filling problem, with the objective
being maximizing the number of adjacencies between the filled scaffold
and a complete reference genome, is polynomially solvable.

1 Introduction

Since the first human genome was sequenced in 2001, the cost of sequencing a
genome has been reduced greatly, with the current cost being only around $1k.
On the other hand, the cost to finish these genomes completely has not been
decreased as much compared with a decade ago [3]. This results in a lot of draft
genomes, i.e., genomes not completely finished. Nonetheless, to analyze these
genomic data, many tools do need complete genomes as input. For instance,
to compute the reversal distance between two genomes, two complete genomes
must be given as input. Hence, there is a need to transform a draft genome into
a complete genome.

To make the result biologically meaningful, Munoz et al. first proposed the
scaffold filling problem (initially on multichromosomal genomes with no gene
repetitions) as follows [7]. Given a complete (permutation) genome R and an
incomplete scaffold S (composed of a list of contigs), fill the missing genes in
R−S into S to obtain S′ such that the genomic distance (or DCJ distance [11])
between R and S′ is minimized. It was shown that this problem can be solved in
polynomial time. In [5], Jiang et al. studied the case for singleton genomes with-
out gene repetitions (i.e., permutations), using the simplest breakpoint distance
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as the similarity measure. It was shown that this problem is solvable in poly-
nomial time; in fact, even for the two-sided case when both the input scaffolds,
being a reference to each other, are incomplete.

Most of the related research focuses on the case when the genomes and scaf-
folds contain gene repetitions, though they are not directly related to the research
in this paper. When there are gene duplications, using number of (string) adja-
cencies, the problem becomes NP-hard. (Formally, the problem is to fill an incom-
plete sequence scaffold I into I ′, with respect to a complete reference genome G,
such that the missing letters in G − I are inserted back to I to have I ′ and the
number of common adjacencies between G and I ′ is maximized.) Hence, most
of these research focuses on designing approximation algorithms and interested
readers are referred to [12] for a recent survey. Using the number of common adja-
cencies as a parameter k, it was shown that this problem is also fixed-parameter
tractable (FPT) — but this only handles that case when G and I ′ are not quite
similar so it is only theoretically meaningful [2].

Among the existing results, almost all papers covered genomes with gene
duplications and genomic scaffolds as incomplete sequences, with the exception
for [5,7] — as we have just mentioned. In [7], the genomes in consideration have
no gene duplication but are multichromosomal and the scaffolds are sequences
of contigs (after some preprocessing). In the first part of [5], the genomes in
consideration have no duplication but the scaffolds are incomplete sequences
(which means missing genes can be inserted anywhere in a scaffold). It is noted
that in practical genomic datasets, a scaffold is usually given as a sequence of
contigs, where a contig is usually computed through mature software tools like
Celera Assembler [1], hence should not be altered arbitrarily. Therefore, in [5],
a question was raised to solve the case when a scaffold is given as a sequence of
contigs.

In this paper, we consider this permutation scaffold filling (PSF) problem
which was left as an open problem in [5]. (In [5], a scaffold is just an incom-
plete sequence and a missing gene can be inserted anywhere.) A very sim-
ple example can be used to illustrate the difference between the two versions:
R = 〈1, 2, 3, 4, 5〉, S = 1,4,2,3 , and X = {5}. If S is a contig which cannot be
altered, then inserting 5 at the two ends of S cannot generate any adjacency. If
5 can be inserted anywhere in S, then one adjacency can be formed.

Now let us come back to the PSF problem. Assume henceforth that all the
genomes in consideration do not have gene duplications. The reference genome
R is a complete permutation. The scaffold S is given as a sequence of contigs.
We need to insert the missing genes in R − S into S to have S+ such that the
number of adjacencies between R and S+ is maximized. (As for two complete
permutations the number of breakpoints and adjacencies in either one sum to
their length minus one, i.e., a fixed number, the objective function is equivalent
to minimizing the number of breakpoints between R and S+).

The paper is organized as follows. In Sect. 2, we give the preliminaries. In
Sect. 3, we present the algorithm and the corresponding proofs. We conclude the
paper in Sect. 4.
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2 Preliminaries

Throughout this paper we focus only on singleton genomes with no gene dupli-
cation/repetitions (i.e., each is a permutation). But the results can be easily
adapted to multichromosomal genomes. At first, we review some necessary def-
initions on breakpoints and adjacencies in permutations. These ideas were orig-
inated in 1920s [8,9], though the more formal definitions were formulated in
1980s [10].

We assume that all genes and genomes are unsigned, and it is straightforward
to generalize the result to signed genomes. Given a gene set Σ = {1, . . . , n}, a
string P is called permutation if each element in Σ appears exactly once in
P . We use c(P) to denote the set of elements in permutation P . Given Σ, an
incomplete permutation P ′ is one where c(P ′) ⊂ Σ.

Given Σ = {1, . . . , n}, and two (complete) permutations P1, P2 on Σ, a 2-
substring ab ∈ P1 forms an adjacency if ab ∈ P2 or ba ∈ P2; otherwise ab is called
a breakpoint. (In this context, ab and ba are considered the same.) Let P1 and P2

be a reference to each other. Let a(Pi), b(Pi), i = 1, 2, be the set of adjacencies
and breakpoints in Pi respectively. It is a well-known fact that a(P1) = a(P2),
|b(P1)| = |b(P2)|; moreover, |a(P1)| + |b(P1)| = |a(P2)| + |b(P2)| = n − 1. For
example, when P1 = 〈1, 2, 3, 4, 5, 6〉 and P2 = 〈3, 2, 4, 5, 1, 6〉, we have a(P1) =
{23, 45}, b(P1) = {12, 34, 56}, a(P2) = {32, 45}, b(P2) = {24, 51, 16}. Clearly,
|a(P1)| + |b(P1)| = |a(P2)| + |b(P2)| = 5. (Note that when P1 or P2 contains
duplicated letters, this does not hold anymore).

We define a contig as a string over a gene set Σ whose contents should not
be altered. A scaffold S is simply a sequence of contigs 〈C1, . . . , Cm〉. We define
c(S) = c(C1) ∪ · · · ∪ c(Cm). Given a set of genes/letters X, let S + X be the set
of all possible resulting permutations after filling all the elements in X into S
such that the contigs in S are not altered. In this case, the elements in X can
only be inserted before or after Ci’s.

Now, we define the problem on permutation scaffold filling formally. As R is
a complete reference permutation, WLOG, we assume from now on that Σ =
{1, 2, . . . , n} and R = [n] is the identity permutation.

Definition 1. Permutation Scaffold Filling.

Input: A complete reference permutation R = [n] and a scaffold S =
〈C1, C2, . . . , Cm〉 where R and the contig Ci’s are over a gene set Σ, a set
X = c(R) − c(S) �= ∅.
Question: Find S+ ∈ S +X such that |a(S+)|, with respect to R, is maximized.

3 A Polynomial Time Algorithm for Permutation
Scaffold Filling

Before presenting our algorithm, we make the following definitions.
Let α(Ci), β(Ci) be the first and last letter of Ci respectively. (For conve-

nience, we use αi, βi from now on; and, αi could be the same as βi when |Ci| = 1).
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Then 〈βi, αi+1〉 (or simply βiαi+1) constitutes a slot where missing genes can
inserted between βi and αi+1. We write β0 = −∞ and αm+1 = +∞, where
〈−∞, α1〉 and 〈βm,+∞〉 are the leftmost and rightmost (open) slot respectively.

Define a type-1 (resp. type-2) substring s of length � ≥ 1, over X, as one
which can be inserted into the slot 〈βi, αi+1〉, for some i, to increase the total
number of adjacencies by � + 1 (resp. �).

Note that if βiαi+1 is already an adjacency with respect to R, then for a
general R (with gene repetitions) it is possible that s is inserted in the slot to
generate |s| + 1 adjacencies (while destroying the adjacency βiαi+1). When R is
a permutation, we will show that it is still possible that in an optimal solution
an existing adjacency βiαi+1 could be broken.

Similarly, define a type-3 substring s of length � ≥ 1, over X, as one which
can be inserted in the slot 〈βi, αi+1〉, for some i, to increase the number of
adjacencies by � − 1. Note that a type-3 substring can only form adjacencies
internally, hence it does not matter where we insert s — provided that it does
not destroy any existing adjacency. Due to the order of processing type-1, 2
and 3 substrings, a potential type-2 substring t could become type-3 since the
corresponding slot for it might not be available by the time t is inserted.

We show an example as follows:

R = 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13〉,

S = 〈 1,3 , 5,6,12 , 2 , 10,9,13 〉.
We have α1 = 1, β1 = 3, α2 = 5, β2 = 12, α3 = 2, β3 = 2, α4 = 10, β4 = 13.
Then, X = {4, 7, 8, 11} are missing from S; moreover, 4 is type-1, 11 is type-2,
and 〈7, 8〉 is type-3.

We now proceed with the following lemma.

Lemma 1. Let s be a type-1 substring to be inserted into S. There is an optimal
solution which does not break s.

Proof. Suppose that if s is inserted into the slot 〈βi, αi+1〉 then |s|+1 adjacencies
can be obtained. WLOG, suppose that in some solution s is broken into s1 and
s2; moreover, s1 and s2 are inserted at two different slots at least one of which
is not 〈βi, αi+1〉. Then, WLOG, inserting s1t into 〈βi, αi+1〉 and inserting s2
into another slot in S can obtain at most (|s1| + |t|) + (|s2| − 1) = |s| + |t| − 1
adjacencies. Then, swap the inserted contents t in the slot 〈βi, αi+1〉, which is
after s1, with s2 (or its reversal) would give us at least (|s|+1)+(|t|−1) = |s|+|t|
adjacencies. This is because that t must be a type-2 or type-3 substring in the
slot 〈βi, αi+1〉, and s2 must also be a type-2 or type-3 substring if not inserted
in the same slot after s1. The reason is that in R and any valid solution S′ each
gene appears exactly once. ��
This proof of lemma has a strong implication. If we color all letters in R that
are also in X red, and focus on all maximal red substrings in R. Then we have
the following corollary.
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Corollary 1. There is an optimal solution for PSF where all letters inserted
into S are maximal (red) substrings (or their reversals) in R, or, all type-i sub-
strings, i = 1, 2, 3, are maximal (red) substrings in R (or their reversals).

Proof. The above lemma shows the case for type-1 substrings (and the proof
works for type-2 and type-3 substrings). Obviously, an optimal solution can be
obtained by processing type-i substrings in the order of i = 1, i = 2 and i = 3.

��
We continue with more properties.

Lemma 2. Let s be a type-1 substring for the slot 〈βi, αi+1〉. Then, there is an
optimal solution which inserts s into the slot 〈βi, αi+1〉; moreover, no more gene
is inserted into the slot after s is inserted.

Proof. WLOG, suppose that, in some solution S′, s has been inserted into
the slot 〈βi, αi+1〉 and later some substring t is inserted in the same slot. By
Lemma 1, t could only be inserted right after βi or right before αi+1. Appar-
ently, at this point t is either type-2 or type-3. Then we could move t out of the
slot 〈βi, αi+1〉, say inserting it at the leftmost or the rightmost open slot in S′.
We hence obtain a new solution satisfying the conditions in this lemma, without
decreasing the number of adjacencies. ��
The above lemmas basically show that if s is a type-1 substring then we should
insert it at the corresponding slot and lock that slot so that no more gene can
be inserted there. The above lemma does not hold for the special case when
s = ∅ and βiαi+1 is already an adjacency. The reason is that we could insert two
type-2 substrings, one after βi and the other before αi+1. This case needs to be
specially handled. We show a simple example as follows. R = 〈1, 2, 3, 4, 5, 6, 7, 8〉,
S = 〈 8,6,2 , 3,7 〉, and X = {1, 4, 5}. The optimal solution is to have a S′ =

〈 8,6,2 , 1, 5, 4, 3,7 〉, resulting in 3 adjacencies. If the adjacency 〈2, 3〉 must be
kept, we could only obtain a total of two adjacencies.

After all the type-1 substrings have been inserted and the corresponding slots
locked, we will process all type-2 substrings. We have the following lemma.

Lemma 3. After all type-1 substrings have been inserted and the corresponding
slots locked, no new type-1 substring can formed by inserting type-2 substrings.

Proof. WLOG, assume to the contrary that t1 and t2 are both type-2 and
t1t2 could be inserted into slot αiβi+1 to obtain a type-1 substring. Then t1t2
would have been a type-1 substring and would have been processed by Lemmas 1
and 2. ��
With Lemma 3, we try to optimally insert the type-2 substrings as follows. First,
assume that all the type-1 maximal red substrings in R have been inserted into
S and the corresponding slots are locked. We then build a bipartite graph B. For
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each (unlocked) slot 〈βi, αi+1〉, we create two black vertices βi◦ and ◦αi+1, rep-
resenting the spots right after βi and before αi+1 respectively. (For the leftmost
and rightmost open slot, we would have only one black vertex.) Each remaining
maximal red substring in R forms a blue vertex. There is an edge 〈u, v〉, where
u, v are black and blue respectively, if the maximal red substring v in R can be
inserted at the position u to obtain |v| adjacencies. An example of the bipartite
graph B is shown in Fig. 1, where we use letters to denote genes.

Lemma 4. The maximum vertex degree of the bipartite graph B is four.

Proof. It is easy to see that (1) B is bipartite, and (2) in each connected compo-
nent of B the vertex degree is at most four. To see why each connected component
in B has a maximum degree 4, note that a contig could have only one gene. Then,
if we have two such singleton contigs i and j , the substring 〈i+1, i+2, . . . , j−1〉
(or its reversal) could be inserted at 4 possible locations: ◦i, i◦, ◦j and j◦. ��
With the above lemma, it is easy to obtain and insert the type-2 substrings:
we simply compute the maximum matching of B, which can be done in O(n2.5)
time [4], and all the corresponding maximal red substrings inserted according to
the matching are type-2. The remaining maximal red substrings are all type-3,
and we could put them at the two open slots in an arbitrary order, as long as
no existing adjacency is destroyed.

Fig. 1. A bipartite graph B for the type-2 substrings and the possible slots.

We now show the detailed algorithm. For convenience, when we say that
a letter x is appended at the beginning (resp. end) of a contig Ci, we mean
Ci ← x ◦ Ci (resp. Ci ← Ci ◦ x).
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Algorithm 1: PSF(R, S)
Input: R = [n], S = 〈C1, . . . , Cm〉, X = c(R) − c(S) �= ∅
1 In R, color all letters in X red. Identify all maximal red substrings in R.
2 Insert all (type-1) maximal red substrings at the right slots in between

Ci and Ci+1. Lock these slots so that no more genes can be inserted.
3 For all slots 〈βi, αi+1〉, if βiαi+1 = <j, j + 1> (resp. βiαi+1 = <j + 1, j>)

is already an adjacency and both j − 1, j + 2 ∈ X then append j − 1 at the
end of Ci and append j + 2 at the beginning of Ci+1 (resp. append j + 2 at
the end of Ci and append j − 1 at the beginning of Ci+1), update X and
the maximal red substrings accordingly; if at most one of j − 1, j + 2 is in X
then lock the slot 〈βi, αi+1〉 so that no gene can be inserted.

4 Build a bipartite graph B for all of the remaining maximal red strings and
the possible (unlocked) slots where they can be located and be type-2.
For each connected component of B, use the standard method to compute
the maximum matching and insert these (type-2) maximal red substrings
accordingly.

5 Put all the remaining (type-3) maximal red substrings in the leftmost or
rightmost slot, provided that no existing adjacency is destroyed.

The running time analysis can be done as follows. Step 1 takes O(n2) time.
Without using any advanced data structure, we could scan the genes in R and S,
color all the genes in R but not in S red, and then identify the correspondence
between αi, βi in S, for i = 1, . . . ,m, with their copies in R. This can be done
in O(n2) time. Then, naturally we could identify all maximal red substrings (in
fact, all type-1 substrings) in R. Steps 2, 3, 5 all take linear time. Step 4 takes
O(n2.5) time due to the computation of the maximum matching [4]. Hence, we
have the following theorem.

Theorem 1. The Permutation Scaffold Filling problem can be solved in O(n2.5)
time.

We comment that our algorithm in fact solves the dual version of Permuta-
tion Scaffold Filling, where the objective function is to minimize the number of
breakpoints between R and S+. Also, the bipartite graph we have used has a
maximum degree of 4, so it might be possible to improve the running time for
computing the maximum matching — hence improving the overall running time
of the algorithm.

4 Concluding Remarks

In this paper, we show that the permutation scaffold filling problem is polyno-
mially solvable. This answers partially an open question in [5]. We are currently
investigating the corresponding NP-complete problem where the genomes and
scaffolds could contain gene duplications. The current best approximation algo-
rithm only has a factor of 2 [6].
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