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Abstract. In recent years, lots of data in various domain can be repre-
sented and described by uncertain graph model, such as protein interac-
tion networks, social networks, wireless sensor networks, etc. This paper
investigates the most reliable minimum spanning tree problem, which
aims to find the minimum spanning tree (MST) with largest probability
among all possible MSTs on uncertain graphs. In fact, the most reliable
MST is an optimal choice between stability and cost. Therefore it has
wide applications in practice, for example, it can serve as the basic con-
structs in a telecommunication network, the link of which can be unreli-
able and may fail with certain probability. A brute-force method needs to
enumerate all possible MSTs and the time consumption grows exponen-
tially with edge size. Hence we put forward an approximate algorithm in
O(d2|V |2), where d is the largest vertex degree and |V | is vertex size. We
point out that the algorithm can achieve exact solution with expected
probability at least (1−( 1

2
)(d+1)/2)|V |−1 and the expected approximation

ratio is at least ( 1
2
)d|V | when edge probability is uniformly distributed.

Our extensive experimental results show that our proposed algorithm is
both efficient and effective.

1 Introduction

Recently, lots of data in various domain can be represented by graph model, such
as the web, social networks, and cellular systems. Such networks are often subject
to uncertainties caused by noise, incompleteness and inaccuracy in practice [1].
Incorporating uncertainty to graphs leads to uncertain graphs, each edge of
which is associated with an edge existence probability to quantify the likelihood
that this edge exists in the graph. For example, in a telecommunication network,
a link can be unreliable and may fail with certain probability [14]; in a social
network, the probability of an edge may represent the uncertainty of a link
prediction [6]; in a wireless sensor network, communication links between sensor
nodes often suffer from inevitable physical interference [15]. The uncertain graph,
also referred as probabilistic graph, addresses such scenarios conveniently in a
unified way.

There has been extensive research on the minimum spanning tree on exact
graphs which are precise and complete. Given a connected exact graph G =
(V,E), each edge has a non-negative weight, a spanning tree T of G is a tree
whose edges connect all the nodes in G, the sum weight of all edges in T is the cost
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of T . Among all spanning trees the one with minimum cost is minimum spanning
tree, which is short for MST. A number of algorithms have been proposed to
compute MST for exact graph, among which Prim and Kruskal gave two classical
algorithms in polynomial time [2,3].

The problem of computing MST is fundamental for uncertain graphs, just
as they are for exact graphs. Obviously we can still obtain the MST with min-
imum cost in uncertain graph by neglecting the possibility of edges and treat
the uncertain graph as exact graph. We call the obtained MST minimum cost
MST, however, it suffers from low reliability and may fail to exist since we leave
the possibility of edges out of consideration. Actually we can obtain the MST
with largest probability by setting the weight of edge e to be −log(p(e)) and
executing MST algorithm for exact graphs. The MST obtained this way has the
largest existing probability but has no guarantee for the cost, we call it maxi-
mum probability MST for simplicity. To make a balance between those two types
of MST, we propose the most reliable MST which has largest probability among
all possible MSTs and it can be found in a wide range of network applications.

In a telecommunication network, the most reliable MST can serve as the
basic constructs to help connect all nodes in the network at least cost while the
stability of network can still be guaranteed [16]. In the scenario of advertise-
ment promotion in social network with edge uncertainty measures the intimacy
between two friends and edge weight quantifies the cost of spreading, the most
reliable MST can help discover a most effective propagation path with mini-
mum advertisement cost. Another practical application is data aggregation tree
in wireless sensor network [15]. Most reliable MST can serve as an optimal ini-
tial data aggregation tree with sink node to be the root and source nodes to be
leafs since it takes transmission energy cost and link failure probability into con-
sideration, which contributes to the construction of data aggregation tree that
maximizes the network lifetime.

In uncertain graph, possible instantiations of the graph are commonly
referred to as worlds or implicated graph, the probability of a world is calcu-
lated based on the probability of its edges, as will shown in later section. There
exists at least one MST in each connective implicated graph, all MSTs of the
connective implicated graphs form the MST set of the uncertain graph and the
most frequent MST in the set is the most reliable one, denoted by MSTmax.

A brute-force method is to enumerate all connected implicated graphs and
compute MST for each of them, however, enumerating all implicated graph needs
O(2|E|)time, where |E| is the edge size. The exact algorithm is not feasible
since the scale of graph is large in practical applications. Hence we present an
approximate algorithm in O(d2|V |2), where d is the maximum degree of vertexes
and |V | is vertex size. Our theoretical analysis shows that it has pretty good
performance in aspects of accuracy and approximate ratio. Extensive experiment
results on synthetic sets show that our approximate algorithm outperforms the
other three algorithms in terms of stability and cost.

The rest of the paper is organized as follows. We define the most reliable MST
problem in Sect. 2. An approximate algorithm and its performance analysis is
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presented in Sect. 3. We show experimental studies in Sect. 4 and present related
work in Sect. 5. Finally, we conclude this paper in Sect. 6.

2 Problem Formulation

In this section, we formally present the uncertain graph model and introduce
the problem of most reliable MST in an uncertain graph.

2.1 Model of Uncertain Graphs

Let G = (V,E, P,W ) be an uncertain graph, where V and E denote the set of
vertexes and edges respectively. P : E → (0, 1] is a function assigning existence
possibility values to edges. W is weight function, and w(e) is the weight of edge
e ∈ E.

An uncertain graph has many existence forms due to the uncertainty of edges,
each deterministic form g = (V,Eg) is called implicated graph and is denoted by
G ⇒ g. Each edge e ∈ EG is selected to be an edge of g with probability P (e).
The total number of implicated graphs is 2|E| since each edge has two cases as to
whether or not that edge is present in the graph. We assume that all existence
possibilities of edges are independent, the probability of an uncertain graph G
implicating an exact graph g is

P (G ⇒ g) =
∏

e∈E(g)

P (e)
∏

e′∈E(G)\E(g)

(1 − P (e′)) (1)

where P (e) is the existence possibility of edge e. To gain more intuition on the
uncertain graph model and the implicated graph, We present a simple example
in the following.

Example 1. Consider the uncertain graph G in Fig. 1(a). There are 23 = 8 impli-
cated graphs, and the probability of each graph is calculated based on Eq. (1), as
shown in Fig. 1(b). Take g2 for example, P (G ⇒ g2) = 0.4×(1−0.9)×(1−0.7) =
0.012. The probability of the other implicated graphs are calculated in the same
way.

2.2 Most Reliable MST

There exists at least one MST in each connective implicated graph of uncertain
graph G with probability same as the implicated graph containing it, all possible
MSTs form MST set {MST1,MST2, · · · }, and MSTi denotes the edge set of the
ith MST.

Obviously a MST for an implicated graph may be MST for another implicated
graph, hence each MST in MST set is accompanied with certain frequency and
the one with maximum frequency is most reliable, that is MSTmax. The existing
probability P (MSTi) of MSTi is determined by the implicated graph it belongs
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Fig. 1. A simple example

to. As we mentioned above, MSTi could be MST of several implicated graphs,
so P (MSTi) is the sum probability of all implicated graphs whose MST is MSTi

and can be mathematically quantified as follows.

P (MSTi) =
∑

g∈Imp(G)

P (G ⇒ g) · I1(g) · I2(g) (2)

where I1(g) and I2(g) are indicator functions.

I1(g) =

{
1 if g is connected
0 otherwise

I2(g) =

{
1 if MSTi is MST of g
0 otherwise

Now we give the formal definition of MSTmax, that is the MST with maxi-
mum probability.

MSTmax = argmax{P (MSTi)} (3)

In the following example, we show how to exactly compute MSTmax of uncer-
tain graph G in Fig. 1(a).

Example 2. There are 8 implicated graphs of G as shown in Fig. 1(b), only 4 of
them are connected, namely, g5, g6, g7 and g8. After computing the MST of
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Fig. 2. MST set of graph G

the four subgraphs respectively, we get three different MSTs, MST1, MST2 and
MST3 as shown in Fig. 2. The MSTs of g6 and g8 are actually same to each
other, that is MST2. We can compute the existing probability of MSTi using
Eq. (3), i ∈ 1, 2, 3.

P (MST1) = P (G ⇒ g5) = 0.108
P (MST2) = P (G ⇒ g6) + P (G ⇒ g8) = 0.028 + 0.252 = 0.28
P (MST3) = P (G ⇒ g7) = 0.378.

According to Eq. (3), MSTmax is the MST with largest probability in MST
set, which refers to MST3 in our example, thus we obtain the most reliable MST
MSTmax = {AC,BC}, and P (MSTmax) = P (MST3) = 0.378. We denote the
cost of MST as |MST |, then |MSTmax| = |MST3| = 5 + 2 = 7.

An intuitive way to compute MSTmax is to enumerate all implicated sub-
graphs and compute corresponding MSTs of the connected subgraphs, each MST
is with a corresponding existing probability and the one with largest probability
is the MSTmax. Detailed algorithm is shown in Algorithm1.

Algorithm 1. Naive Algorithm
Input: Uncertain graph G = (V,E, P,W )
Output: The edge set A of MSTmax

1: MST Edge = ∅;MST P = 0;MST W = 0; Imp = ∅;
2: map < Edge, (P,W ) > MST SET
3: for i ← 2|V |−1 − 1 to 2|E| − 1 do
4: Transform i to its binary form, denoted by i binary // i.e.100111
5: if The number of 1’s in i binary is not smaller than |V | − 1 then
6: Add all edges whose index corresponds to 1 in i binary in Imp
7: MST P =

∏
e∈Imp P (e)

∏
e′∈E\Imp(1 − P (e′))

8: MST Edge, Imp W = Prim(Imp)
9: if MST Edge is not in MST SET then

10: Add (MST Edge, (MST P,MST W )) in MST SET
11: else if MST Edge is in MST SET then
12: Modify P = MST P · P in original < Edge, (P,W ) > pair whose Edge =

MST Edge
13: return Edge with maximum probability in MST SET
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In Naive Algorithm, we enumerate all implicated algorithms and compute
MST using Prim algorithm. To find the MST with largest frequency, we use a
map whose key is edge set of MST, and value is a pair of probability and weight,
the map can hash all MSTs with same edge set together. After computing all
MSTs of connected implicated graphs, we find the one with largest probability,
that is MSTmax. There are total 2|E| implicated graph of G, the efficiency of the
brute-force algorithm is unsatisfactory when applied to large-scale graphs due
to its exponential growing rate.

2.3 Edge Induced Combinational Method

According to the definition of most reliable MST in Sect. 2.2, it is not easy to
find the most reliable MST in polynomial time. However, we find out another
way to compute the probability of MST in a combinational way. Without lose
of generality, we suppose that the edge weight is different from the others. For
MSTi in MST set, the set of all edges not in MSTi is denoted by Ri, Ri =
E − MSTi by definition. For an edge ei in Ri, adding ei in MSTi will form a
circle due to the connectivity of MSTi. Next we give the definition of safe edge
and dangerous edge in Ri.

Definition 1. Safe edge. For an edge ei in Ri, it is a safe edge to MSTi if it
has largest weight in the circle when adding ei in MSTi.

Definition 2. Dangerous edge. For an edge ei in Ri, it is a dangerous edge to
MSTi if it does not has largest weight in the circle when adding ei in MSTi, in
other words, there exists an edge whose weight is larger than e′

is.

Based on the above definition, we divide the remaining edge set Ri into two
separate sets, namely, RSi and RDi. All safe edges in Ri are placed in RSi, and
all dangerous edges are in RDi. Now we move on to give a combinational way to
compute the probability of MSTi and we prove that the probability computed
in this way is same as that given by Eq. 2.

P (MSTi) =
∏

ei∈MSTi

p(ei) ·
∏

ej∈RDi

(1 − P (ej)) (4)

Theorem 1. The probability calculated by Eq. 4 is equal to that obtained by
Eq. 2.

Proof. We only give a sketch of the proof, the detailed proof is omitted due
to page limit. Apparently, the MSTi itself is a implicated graph whose MST
is MSTi, based on this we can further add any safe edge to MSTi and they
will not affect the MST of newly constructed implicated graphs, that is MSTi.
This is because safe edge has largest weight in the circle and will be discarded.
Further more, we can prove that any dangerous edge added to MSTi will affect
the original structure, therefore all edges in RDi can not exist, which is shown
in Eq. 4.
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Example 3. BC is a dangerous edge to MST1, according to Eq. 4, we have
P (MST1) = P (AB) · P (AC) · (1 − P (BC)) = 0.4 × 0.9 × (1 − 0.7) = 0.108,
which is same as the result in Example 2. P (MST2) and P (MST3) can be com-
puted in a similar way.

3 Greedy Algorithm

In this section, we present an approximate algorithm of the most reliable MST.
The detailed algorithm description is shown in Sect. 3.1 and we analyse the
performance of our approximate algorithm in Sect. 3.2. The complexity analysis
is in Sect. 3.3.

3.1 Algorithm Description

The greedy algorithm on uncertain graph is similar to Prim algorithm on exact
graph. Specifically, given connective uncertain graph G = (V,E, P,W ), we main-
tain a tree A, which starts from a random root r and spans an edge at each step
until A covers all nodes in V . At each step, a light edge with largest proba-
bility connecting A and an isolated node in GA = (V,A) will be added in A,
GA = (V,A) is a forest whose node set is same to G, but edge set is A. Initially
GA = (V,A) is a forest with |V | isolated nodes, with the spanning of A, GA adds
edges in A increasingly. Intuitively A spans an edge whose one endpoint is in A
but the other one is not. light edge refers to edge with minimum weight in E,
the light edge with largest probability is defined as follows.

Definition 3. Light edge with largest probability(LELP). Add all edges connect-
ing A and isolated node in forest GA = (V,A) into queue S, sort S by edge weight
in ascending order, for the ith edge in S, say ei, the probability of adding ei to
A is calculated by Eq. 5, denoted by P̂ (ei), which is called join probability, the
edge with largest join probability in S is LELP.

P̂ (ei) = (
i−ni−1∏

j=1

(1 − P (ej))) · P (ei) (5)

where 1 ≤ i ≤ |S|. ni is the number of edges whose weight is same to the ith
edge but position is ahead of it.

The complete algorithm is outlined in Algorithm2. The input is an uncertain
graph G and the edge set A of MSTmax is the output. The probability of A is
given in Eq. 6, which is the product of the join probability of all edges in A. To
gain a better understanding of Algorithm2, we compute MSTmax of a simple
uncertain graph step by step in the following example.

P̂ (A) =
∏

ei∈A

P̂ (ei) (6)
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Algorithm 2. Greedy Algorithm
Input: Uncertain graph G = (V,E, P,W )
Output: The edge set A of approximate MSTmax

1: MST V = ∅;A = ∅;S = ∅; P̂ (A) = 1
2: Randomly select a root node , say r, add it in MST V
3: Add all edges connected with r in queue S
4: while |MST V | < |V | do
5: Sort S by weight in ascending order
6: Calculate the probabality of each edge joinning in A by Eq. 5;
7: Get the edge with maximum probabiity by max heap, say (u, v)
8: Add (u, v) in A, suppose u is already in MST V , v is not,then add v in MST V

9: Update P̂ (A) = P̂ (A) · P̂ (u, v)
10: Delete all edges connecting v in S
11: Add edges whose one endpoint is v but the other endpoint is not in MST V in S
12: return A

Example 4. The input uncertain graph G′
is in Fig. 3 with four vertexes and four

edges, the weight and existence probability are labeled as binary group on edges.

Initially, we select a node randomly, say a, add a in MST V and add edges
connecting a in S, that is (a, b) and (a, h). sort S in ascending order of weight.
We calculate the probability for each edge adding in A using Eq. 4. P̂ (a, b) =
P (a, b) = 0.8, P̂ (a, h) = (1 − P (a, b)) · P (a, h) = 0.12. We maintain a max heap
H to obtain the edge with maximum probability, (a, b) in this case. Add (a, b)
in A and the new node b in MST V .

Next adjust S, delete edges which contains vertex b in S, that is (a, b), then
add all edges whose one endpoint is b but the other one is not in MST V ,
that is (b, h) and (b, c). Sort S again according to edge weight. Compute the
probability of edges in S, P̂ (a, h) = P (a, h) = 0.6, P̂ (b, c) = P (b, c) = 0.2,
P̂ (b, h) = (1 − P (a, h)) · (1 − P (b, c)) · P (a, b) = 0.224. The edge with largest
probability is (a, h), add it to A and vertex h in MST V and delete (a, h) and
(b, h) in S. Only (b, c) is in S, so we add it in A directly and insert vertex
c into MST V , the MSTmax edge set A = (a, b)(a, h)(b, c), P̂ (MSTmax) =
P̂ (a, b) · P̂ (a, h) · P̂ (b, c) = 0.096.

Fig. 3. Uncertain graph G
′
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3.2 Greedy Selectivity

In this section, we will evaluate the performance of the greedy algorithm we
proposed from two aspects, namely, accuracy rate and approximate ratio. To
begin with, we analyse the greedy selectivity of our problem.

Suppose we have already known the structure of MSTmax, that is edges in
MSTmax are given, we can redefine the join probability P̂ (ei) as Eq. 7. For the
ith edge ei in queue S, we put all edges whose weight is lighter than ei in a set
SAi, SAi = {e1, e2 . . . ei−ni−1}.

P̂
′
(ei) = P (ei) · (

i−ni−1∏

j=1

(1 − P (ej)) +
|SAi|∑

k=1

∑

ez1...ezk∈SAi

{
x=k∏

x=1

P (ezx) ·
∏

em �= ezj
j ∈ [1, k]
em ∈ SAi

(1 − P (em)) · I3(ez1 . . . ezk)})
(7)

where I3(ez1 . . . ezk) is a indicator, which indicates whether there exists a path
from ezx to ei in MSTmax so that w(ei) is smaller than some edge on that path,
x ∈ [1, k]. If no such edge exists, another case in which I3(ez1 . . . ezk) = 1 is that
there is no path from ezx to ei for all x ∈ [1, k].

I3(ez1 . . . ezk) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 ∃x ∈ [1, k], w(ei)is smaller than
some edge on the path from ezx

to ei or ∀x ∈ [1, k] there has no
path from ezx to ei in MSTmax

0 otherwise

We modify line 6 of Algorithm 2 by using Eq. 7 instead of Eq. 5, the other
lines remain unchanged. The MST obtained this way is denoted by MSTnew and
the MST obtained by original algorithm is named MSTold. The probability of
MSTnew is P (MSTnew) =

∏
ei∈MSTnew

P̂
′
(ei) and we can prove the following

theorem is true. We omit the proof due to the page limit.

Theorem 2. For 2-connected uncertain graph G = (V,E, P,W ), MSTnew

obtained from modified Algorithm2 is same as MSTmax in Algorithm1, that
is they have the same edge set and their probability and weight are equal. For-
mally, MSTnew = MSTmax, P (MSTnew) = P (MSTmax) and W (MSTnew) =
W (MSTmax)

Next we will analyse the performance of the approximate algorithm we pro-
posed in Sect. 3.1. Suppose the queue S contains {e1, e2, e3 · · · } in ascending
order of their weight currently, then we have the following lemma.

Lemma 1. If the existence probability of edge obeys uniform distribution in
(0,1), then the probability of P̂

′
(e1) > P̂

′
(ek) is at least 1

2 for k > 1.
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Proof. E[P (ei)] = 1
2 , P (P (ei) ≥ 1

2 ) = 1
2 , P (P (ei) < 1

2 ) = 1
2 , P̂

′
(e1) = P (e1) and

P̂
′
(e2) = P (e2)[(1 − P (e1)) + P (e1)I3(e1)], suppose P (I3(e1) = 0) = p0.
The first case is that P (e1) ≥ 1

2 and P (e2) ≥ 1
2 . If I3(e1) = 0, P̂

′
(e2) =

P (e2) · (1 − P (e1)) < 1
2P (e2) < 1

2 < P (e1) = P̂
′
(e1). However, if I3(e1) = 1,

P̂
′
(e2) = P (e2) > 1

2 , then P̂
′
(e1) has 1

2 probability larger than P̂
′
(e2). Thus the

probability in this case is 1
2 · 12 ·[p0+(1−p0)· 12 ]. The probability in the other three

cases can be computed in a similar way. The total probability of P̂
′
(e1) > P̂

′
(e2)

is 1
2 + 7p0

48 . Besides, the probability of P̂
′
(e1) > P̂

′
(ek) is obviously larger than

1
2 for k > 2.

Theorem 3. For 2-connected uncertain graphs G = (V,E, P,W ), if the edge
probability is independent and identically distributed in (0, 1) uniformly, the
greedy algorithm can obtain the accurate MSTmax with expected probability at
least (1 − ( 12 )d/2)|V |−1.

Proof. In our former analysis, we should select an edge ei with largest P̂
′
(ei)

at each step, so that we can obtain the accurate MSTmax. However, we apply
P̂ (ei) in our approximate algorithm, there are two cases that ei can still be
selected in MSTmax. The first case is that ei with largest P̂

′
(ei) also has largest

P̂ (ei) among all candidate edges in queue S. The second case is that all indicate
function I3(ek) = 0 for k ∈ [1, i − 1]. The expected correct probability for ei is
at least ( 12 + 1

2 · (1 − ( 12 )(d−1)/2)). The detailed proof is omitted due to the page
limit.

Theorem 4. The expected approximate ratio is at least (12 )d|V |.

Proof. We consider the worst case in which P̂
′
(ei) = P (ei) but P̂ (ei) = P (ei) ·∏k=i−1

k=1 (1 − P (ek)), the approximation ratio is r =
∏k=i−1

k=1 (1 − P (ek)). Due to
P (ei) is independent random variable, we have E[

∏
P (ei)] =

∏
E[P (ei)], hence

E[r] = E[
∏k=i−1

k=1 (1 − P (ek))] =
∏k=i−1

k=1 E[(1 − P (ek))] = (12 )i−1, for |V | − 1
edges, the ratio is r|V |−1 > ( 12 )d|V |

3.3 Complexity Analysis

In this section, we analyse running time in the worst case. We denote the maxi-
mum vertex degree as d, it is obvious to see 1 ≤ d ≤ |V − 1|, the length of S in
ith iteration is denoted as |Si|, then we have the following relations:

{
|S1| ≤ d

|Si+1| ≤(|Si − 1|) + (d − 1)
(8)

The general term formula of arithmetic progression is |Si| ≤ (d − 2) · i + 2 =
O(di). The total run time is T (n) =

∑|V |
i=1(O(d2i) + O(lgdi) + O(1) + O(di) +

O(d)) = O(d2|V |2).
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4 Experiments

In this section, we present experimental results studying the effectiveness and
efficiency of greedy algorithm.

4.1 Environment and Datasets

Our algorithms were implemented using C++ and the Standard Template
Library(STL), and were conducted on a 2.4 GHz Dual Core Intel(R) core(TM)
CPU with 2.0 GB RAM running Ubuntu 12.04.

We conduct our experiments on two kinds of synthetic datasets, one of which
is generated from real datasets and the other is generated randomly. The first
dataset is obtained by assigning a random weight to each edge of real uncer-
tain graphs, the weight is a integer among [0, 100], The real datasets in our
experiments are Nature and Flickr, Nature is a protein-protein interaction(PPI)
uncertain graph and Flickr is a social network, the scale and connectivity of
these two graphs is shown in Table 1, where N(MST ) is the number of con-
nected components in graph.

Table 1. Synthetic datasets

Uncertain graph Graph scale(V,E) Connectivity N(MST)

Nature (2708,7123) No 63

Flickr (21594,1008258) No 1732

The second datasets is generated randomly, to be specific, the edges between
vertexes and the edge weight and probability are generated randomly after fixing
vertex size, edge weight is a integer among [0, 100] and the probability is among
(0, 0.99]. We generated three random datasets, the first one is characterized by
its average vertex degree, which is 1.23, but the size of vertexes grows from 1k
to 10k, we denote this dataset as man-made1. The second dataset contains 10
graphs whose vertex sizes are fixed to be 1k, but average vertex degree grows
from 3 to 7.5. The third dataset is a set of small uncertain graphs whose vertex
size is between 4 to 50 and average degree is 3, we denote it as man-made3.

4.2 Analysis of Greedy Algorithm

If the uncertain graph is not connective, we calculate the most reliable forest
MSFmax. Specifically, when greedy algorithm terminates with a spanning tree
A, the vertex size of A is smaller than that of G, we add A in MSFmax and
randomly select a new root node not in A at the same time, repeat this process
until all vertexes in G are covered by MSFmax. Next, we analyse the effect of
vertex size |V | and average vertex degree d, as they are two main factor affect
the runtime of greedy algorithm.
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Fig. 4. Execution time with different |V |

Effect of |V |. In this experiment, we tested the runtime under different graph
scales. We extracted subgraphs from 10 % to 100 % of Nature and Flickr and
executed greedy algorithm on subgraphs separately. the results are shown in
Fig. 4.

Through the curve in Fig. 4, we can see runtime exhibited parabolically trend
increase with the |V |, which agrees with our theoretical analysis in Sect. 3.3.
However, when we look into Fig. 4(b) carefully we find that the runtime at graph
scale (17273,102356) is less than that at (15113,97743) , this is because the
average vertex degree d of graph (17273,102356) is smaller than that of graph
(15113,97743). Therefore we tested the effect of d on running time in following
experiments.

Effects of d. We ran greedy algorithm on man-made1 dataset, since the average
degree on man-made1 is set to be 1.23, we can examine the single effect of |V |
on runtime, as shown in Fig. 5(a). The result shows that runtime grows more
smoothly when d is fixed and no outliers occur. Next we fix |V | and test the
effect of d on runtime, we apply greedy algorithm on man-made2 dataset whose
vertex size is fixed to be 1k and the edge size grows from 3k to7.5k, which means
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d is in [3, 7.5], the result of this experiment is shown in Fig. 5(b). We can see
that runtime grows linearly as d increases when |V | is fixed.

Accuracy. To quantify the accuracy of greedy algorithm, we compare probabil-
ity and weight of resulting MST with the other three algorithms. We conduct
our experiment on man-made3 dataset since the time complexity of exact algo-
rithm is in O(2|E|). Furthermore, the probability of MST is very small for graphs
whose edge existing probability is relatively small, with the increasing of edges in
MST, the probability decreases sharply and it is not convenient for us to record
and analyse. Hence we amplify the probability of each edge by computing its
log value since log function increases monotonically. Here we have the equation
log

∏
i Pi =

∑
i logPi.

We design two contrast experiments to see the effectiveness of our proposed
greedy algorithm. The first one is adapted Prim algorithm, which obtains the
MST with minimum cost by neglecting the probability on each edge. The other
one is a random algorithm, we randomly select one edge and add it in MST.

We compare the probability and weight of MSTs obtained from four algo-
rithms, namely, exact algorithm, greedy algorithm, Prim algorithm and Ran-
dom algorithm, as shown in Fig. 6(a) and (b). From the figures we can see that
the probability and weight of MST obtained by greedy algorithm is same as
exact algorithm in most cases. Furthermore, greedy algorithm provides a better
approximation to exact solution on probability compared with the other two
algorithms.

Next we extend our experiment on larger scale graphs without exact algo-
rithm as shown in Fig. 7(a) and (b). We can see greedy algorithm can achieve
better probability all the time with a little loss of weight.

Through the experiments conducted above, we come to the following conclu-
sions. First, there are mainly two factors that effect runtime of greedy algorithm,
vertex size and vertex degree, furthermore, the grow trend of runtime roughly
agrees with our theoretical analysis. Second, our greedy algorithm provides a
good approximation to exact algorithm not only on probability but also on
weight.
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5 Related Work

The minimum spanning tree problem have been studied extensively in the litera-
ture under the term stochastic geometry. The main work focus on computing the
expected lengths of the MST in stochastic graphs, to the best of our knowledge,
there has no previous work on most reliable MST in uncertain graph. To begin
with, we survey the work about MST in stochastic graph model, specifically, it
mainly includes existential uncertainty model, locational uncertain model and
randomly weighted graph model.

Existential Uncertain Model. Given a complete, weighted undirected graph G =
(V,E), on n node and m edges, called the master graph, where each node vi
is active(or present) with independent probability pi. When a node is inactive,
all of its incident edges are also absent. We compute the expected minimum
spanning tree cost for G, namely,

∑
p(H)MST (H), where the sum is over all

node-induced subgraphs H of G, p(H) is the probability with which H appears,
and MST (H) is the cost of its minimum spanning tree. This problem has been
proven to be #P-hard by Kamousi and Suri in [7].

Locational Uncertainty Model. Given a metric space P . The location of each
node v ∈ V in the stochastic graph G is a random point in the metric space and
the probability distribution is given as the input. We assume the distributions
are discrete and independent of each other. We use pvs to denote the probability
that the location of node v is point s ∈ P . The expected length of MST is
E[MST ] =

∑
r∈R Pr[r] · MST (r), where r is a realization of G and can be

represented by an n-dimensional vector (r1, . . . , rn) ∈ Pn, where point ri is the
location of node vi for 1 ≤ i ≤ n, r occurs with probability Pr[r] =

∏
i∈[n] pviri ,

MST (r) is the length of the minimum spanning tree spanning all points in r.
Huang and Li in [8] showed that computing E[MST ] in this model is also #P-
hard.

Randomly Weighted Graph Model . In this model edge weights are indepen-
dent nonnegative variables, Frieze and Steele in [9,10] showed that the expected
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value of the minimum spanning tree on such a graph with identically and inde-
pendently distributed edges is ς(3)/D where ς(3) =

∑∞
j=1 1/j3 and D is the

derivative of the distribution at 0.
Another line is network reliability problem, which computes a measure of

network reliability given failure probabilities for the arcs in a stochastic network
where each arc can be in either of two states: operative or failed. The state of an
arc is a random event that is statistically independent of the state of any other
arc. J.Scott has proven that the functional reliability analysis of all-terminal
problem is #P-complete in [5].

So far we have quickly reviewed minimum spanning tree problem on stochas-
tic graphs, next we briefly survey problems under the semantic of uncertain.
Researchers have studied many kinds of queries on uncertain database, such as
Top-k query [12], k-nearest neighbors querey [1], Probabilistic skylines [13]. In
addition, lots of work have been done on uncertain graph, including discover-
ing highly reliable subgraphs [14], discovering frequent subgraphs [4] and so on.
However, to the best of our knowledge, there is no literature to date on discov-
ering most reliable minimum spanning tree on uncertain graphs. This paper is
the first one to investigate this problem.

6 Conclusion

This paper investigates the problem of the most reliable minimum spanning tree
on uncertain graph data. The most reliable MST is an optimal choice between
stability and cost, which has wide applications in practical. Since accurate algo-
rithms take exponential time to enumerate all possible worlds, an approximate
algorithm in polynomial time was proposed to discover an approximate MST and
we analysis the accuracy and approximation rate of the approximate algorithm
theoretically. The experimental results show that our greedy algorithm has high
efficiency and approximation quality.
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