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Abstract The biological membrane covers all living cells and provides an effec-

tive barrier against the passage of biologically important water-soluble solutes. This

natural passage barrier is essentially overcome with the use of integral membrane

proteins known as solute transporters. These transport systems translocate solutes

across the membrane such as in the case of bacterial drug and multidrug resistance

efflux pumps. One of the largest groups of transporters is referred to as the major

facilitator superfamily. This group contains secondary active transporters such as

symporters and antiporters and passive transporters such as uniporters. The trans-

porters within the major facilitator superfamily share conserved structures and

primary amino acid sequences. In particular, several highly conserved amino acid

sequence motifs have been discovered and studied extensively, providing substan-

tial evidence for their critical functional roles in the transport of solutes across the

membrane.

1 Importance of Solute Transport in Living Organisms

All known living cells are surrounded by a biological membrane that provides an

effective barrier against the passage of aqueous-based solutes and ions. Living

cells, however, must be able to acquire helpful substances while also extruding

harmful ones. Biological membranes solve this barrier problem by using integral

membrane proteins that selectively catalyze the acquisition and efflux of helpful
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and harmful water-soluble molecules, respectively. Therefore, integral membrane

solute transporters are important for all life on Earth (Broome-Smith 1999).

When solute transporters are defective, medical disease may occur such as those

seen in glucose–galactose malabsorption (Wright et al. 2002), Fanconi–Bickel

syndrome (Santer et al. 2002), and De Vivo disease (De Vivo et al. 1991), which

are genetic diseases involving impaired transport of glucose across the membranes

of cells and develop from inheritable mutations which occur in the genes that

encode monosaccharide sugar transporters, thus impairing the uptake of mono-

saccharides into cells.

Bacteria use solute transporters to efflux multiple antimicrobial agents, often

causing loss of chemotherapeutic efficacy during treatment of infectious diseases

(Chopra 1992; Kumar and Varela 2013; Li et al. 2015). Solute transporters that

multidrug-resistant bacteria use to efflux antimicrobial agents can be grouped into

several protein families, such as the ABC (ATP-binding cassette) transporters

(Higgins 1992), the resistance-nodulation-cell division (RND) superfamily (Tseng

et al. 1999), the small multidrug resistance (SMR) superfamily (Chung and Saier

2001), the multidrug and toxic compound extrusion (MATE) superfamily (Kuroda

and Tsuchiya 2009; Kumar et al. 2013), and the major facilitator superfamily

(MFS) (Paulsen et al. 1996b; Pao et al. 1998; Saier et al. 1999; Kumar and Varela

2012; Andersen et al. 2015). This review will focus on the antimicrobial agent

efflux pumps of the MFS and especially MFS pumps of known structures. Particular

attention will be paid to studies which have involved amino acid residues that

belong to highly conserved sequence motifs A and C of the MFS (Griffith et al.

1992; Marger and Saier 1993).

2 Acquisition of Helpful Nutrients and Efflux of Harmful

Solutes

Substances are routinely transported across biological membranes of living organ-

isms. These substances include an extremely diverse range of water-soluble solutes

such as amino acids, Krebs cycle intermediates, sugars, nucleic acids, neurotrans-

mitters, antimicrobial agents, and other small molecules (Henderson et al. 1998).

Nutrient uptake via solute transport is a crucial process in which living cells acquire

and accumulate molecules from the external environment in order to support

metabolism, cell growth, and cell maintenance. On the other hand, living organisms

must be able to efflux toxic substances from the inside of their cells into the

extracellular milieu in order to maintain growth and survival. Living bacterial

cells, for example, have developed integral membrane proteins to facilitate efflux

of toxic molecules, a trait that confers antimicrobial resistance (Kumar and Varela

2013).
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3 Types of Solute Transporter Systems

Transport systems play important roles in the cellular uptake of helpful molecules

such as nutrients, ions, and small molecules and in the exit of harmful or inhibitory

molecules. Cellular entry and exit of solutes can occur in two general ways: passive

and active transport. Passive transport entails the movement of small molecules

across the membrane and does not require biological energy to do so (Mitchell

1967; West and Mitchell 1972). Active transport systems move solutes across the

membrane against their own solute concentration gradients (i.e., from low to high

concentrations), using integral membrane proteins, called pumps or active trans-

porters. This type of solute transport is referred to as active because of the energy

required to conduct transport across the biological membrane (Henderson 1991;

Hediger 1994).

3.1 Passive Solute Transport

In passive transport systems, solutes are translocated across the membrane from a

side of the membrane with relatively high solute concentration toward the side with

relatively low solute concentration, i.e., down the solute concentration gradient

(Hediger 1994). The passive solute transport systems generally do not require the

expenditure of biological energy. Transport systems use integral membrane carriers

to catalyze solute uniport, a facilitative diffusion process that enables a single

molecular species to be transported down their concentration gradients (Henderson

1991; Saier 2000).

3.1.1 Facilitated Diffusion

Facilitated diffusion refers to solute transport involving pore- or carrier-forming

molecules. In this process, solute reversibly binds to a solute-specific carrier protein

that resides integral to the membrane. The complex of solute and carrier oscillates

between the inner- and outer-facing surfaces of the biological membrane, thus

causing binding and release of the solute to the other side of the same membrane

(Henderson 1991).

A special class of integral membrane proteins, called porins, form large

nonspecific water-filled channels within the outer membrane to allow the acquisi-

tion of nutrients from the periplasm of Gram-negative bacteria. These channels are

also associated with the efflux of the waste products (Nikaido 1994). Many

so-called classical porins examined so far are OmpC, OmpF, and PhoE from

Escherichia coli (Nikaido and Vaara 1985; Nikaido 1992). These porins exist as

closely associated trimeric complexes that cannot be dissociated even with sodium

dodecyl sulfate (SDS), unless heated denatured beforehand (Reid et al. 1988).
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These porins show preferences on the basis of solute size and charge. In the case of

charge, OmpC and OmpF prefer cations slightly more compared to anions, and

PhoE prefers anions. OmpF allows translocation of relatively larger solutes com-

pared to OmpC, showing preferences according to the size of the solute (Nikaido

2003).

3.2 Active Transporter Systems

Two main energy-requiring solute transporter systems, i.e., primary active transport

(energized by hydrolysis of ATP) and secondary active transport (energized by ion

gradients), are used to efflux biomolecules from bacteria (Mitchell 1966, 1972,

1991, 2011; Harold 2001). Among the dozens of primary and secondary active

transporter families, two such superfamilies in particular occur in a ubiquitous

manner across all taxonomic categories of living organisms. These systems include

a superfamily called the ATP-binding cassette (ABC) transporters and another

group called the major facilitator superfamily (MFS) of transporters (Pao et al.

1998; Saier et al. 1999; Davidson and Maloney 2007; Law et al. 2008).

3.2.1 Primary Active Solute Transporters

In primary active transport, the free energy required for solute transport against the

electrochemical gradient is provided by the very protein performing the transport.

They do so by the hydrolysis of adenosine triphosphate (ATP) (Tarling et al. 2013).

Often referred to ABC transporters (Higgins 1992), these primary active trans-

porters represent a large group of integral membrane proteins that couple the

transport of a substrate like amino acids, ions, sugars, lipids, and drugs across the

membrane (Chang 2003) to the hydrolysis of the phosphate bond between the γ-
and the β-phosphate of ATP (ter Beek et al. 2014). It includes both importers and

exporters (Locher 2009), bringing nutrients and other molecules into cells or

exporting toxins, drugs, and lipids across membranes (Rees et al. 2009). To attain

export, ABC transporters use four types of subunits called domains, two transmem-

brane domains (TMDs) plus two nucleotide binding domains (NBDs). TMDs

provide specificity and form the binding sites for ligand, and NBDs undertake

ATP hydrolysis to accomplish the translocation across the membrane of its bound

solute. However, import requires an additional periplasmic binding domain (PBP)

(Linton 2007; Procko et al. 2009). A conformational change in the TMDs occurs

once substrate binds, followed by transmission to the NBDs to initiate ATP

hydrolysis (Higgins 2001). ABC transporters adopt at least two conformations,

i.e., the cis-side or the trans-side. The binding site for the solute is exposed when the

transporter is in either one of these two conformations. Alternation between the two

conformations allows substrate translocation to occur across the membrane (ter

Beek et al. 2014).
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3.2.2 Secondary Active Transporters

Secondary active solute transport systems have significant roles in the uptake and

efflux of biologically important molecules. Metabolic and bioenergetic systems of

organisms convert the energy stored in nutrients during catabolism into an electro-

chemical energy of protons or sodium ions, generating proton-motive or sodium-

motive forces (Mitchell 1967, 1991). These energies are then used to drive biolog-

ical work such as the translocation of solutes across the membrane against their

concentration gradients to accumulate solute on one side of the membrane

(Poolman and Konings 1993; Krämer 1994; Wilson and Ding 2001). In the

chemiosmosis mode of biological energy generation during respiration and fermen-

tation, light, chemical, or redox energies are converted to electrochemical energies,

which in turn are used to drive other biological work. This bioenergetic process

takes place by coupling biochemical reactions to the transport of solutes, ions, and

other small molecules across the cell and plasma membranes. In bacteria, protons,

and sodium are the coupling ions that are used during energy transduction (Krämer

1994).

4 The Major Facilitator Superfamily

The MFS has become an extremely well-studied and important compilation of

solute transporters across all taxa of living organisms (Maloney 1994; Paulsen

et al. 1996b; Saier et al. 1999; Pao et al. 1998; Law et al. 2008). The substrates or

solutes of these MFS transporters are extremely diverse and include structurally

distinct small molecules like sugars, amino acids, intermediary metabolites, nucleic

acids, antimicrobial agents, and ions. To date, the MFS encompasses thousands of

members conveniently stored and organized in a well-maintained database called

the Transporter Classification Database (TCD) www.tcdb.org (Saier et al. 2014),

which currently includes well over 15,000 proteins of the MFS (Saier et al. 2014).

4.1 Discovery of the MFS

As integral membrane solute transporters were refractory to isolation and purifica-

tion by traditional biochemical approaches, making their study difficult, molecular

biological approaches became available and, thus, quite useful in the cloning of the

genes that encoded solute transporters (Teather et al. 1978). Gene cloning, in turn,

allowed almost the immediate determination of the nucleotide sequences encoding

solute transporters (Büchel et al. 1980). Soon after the cloning and DNA sequence

determinations of additional genes that encoded solute transporters became avail-

able, a remarkable discovery was made by Henderson and colleagues in which
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comparison of the sequences between several sugar transporters from prokaryotic

and eukaryotic organisms demonstrated that these seemingly distinct proteins were

in fact homologous (Maiden et al. 1987), indicating a shared or common evolu-

tionary origin. As many more transporter gene sequences were determined and

compared, investigators began to compile these transporters in families and super-

families, referred to initially as the transporter superfamily (TSF) (Henderson

1993), the uniporter–symporter–antiporter (USA) family (Goswitz and Brooker

1995), and the generally accepted term major facilitator superfamily (MFS)

(Marger and Saier 1993).

4.2 General Features of the MFS

These transporter members of the MFS include (a) uniporters, which catalyze

facilitated diffusion of solute across the membrane down their solute concentration

gradients; (b) symporters, which catalyze ion-driven secondary active transport of

solutes in the same directions across the biological membrane; and (c) antiporters,
which catalyze ion-driven secondary active solute transport across the membrane in

opposite directions (Mitchell 1991). These transporters have on average between

approximately 400 and 600 amino acids along their polypeptide chains (Pao et al.

1998; Law et al. 2008).

The MFS transporters catalyze the translocation of water-soluble solutes across

the membrane using the energy stored in chemiosmotic ion gradients (Marger and

Saier 1993). The ions, for instance, are either protons (i.e., Hþ) or sodium (i.e., Naþ),
and their gradients across the membrane are formed by the respiratory chain during

catabolism of nutrients (Mitchell 1991; Harold 2001). The substrate will accumulate

extracellularly in an energy-dependent fashion. Thus, these substrate/Hþ antiport

(efflux) systems allow all cells, including bacteria, to survive and grow while in the

presence of potentially inhibitory molecules. Therefore, these biomolecule efflux

systems allow bacteria to tolerate unusually high concentrations of potentially lethal

molecules, such as antimicrobial agents, heavy metals, industrial waste molecules,

etc. An interesting and unique property of several MFS efflux systems is that they

have the ability to transport multiple structurally different substrates (Levy 1992,

2002; Lewis 1994; Piddock 2006). Also known as uniporter–symporter–antiporter

superfamily (Goswitz and Brooker 1995), members include both passive and sec-

ondary active transport systems.

4.3 Key Secondary Active Transporters of the MFS

The energy of ion gradients drives solute transport across the membrane during

secondary active solute transport. Many of the solute transporters that are members

of the MFS use these particular types of ion gradient energies for the cellular uptake
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and efflux of solutes (Poolman and Konings 1993; Krämer 1994; Kumar and Varela

2013). The term symport is used to describe the co-transport movement of solute

and ion in the same direction across the cell or plasma membrane; that is, ion

translocation down its gradient drives solute transport up its gradient. On the other

hand, the term antiport is used to describe the co-transport of solute and its driving

ion in the opposite directions across the same types of biological membranes; again,

the ion moves down its concentration gradient to mediate solute transport against its

own gradient. In both of these symport and antiport systems, the transported solute

accumulates on one side of the membrane (Saier 2000).

The lactose permease, LacY, a secondary active transporter from E. coli, has
been studied in the laboratories of Brooker (Brooker 1990), Kaback (Guan and

Kaback 2006), and Wilson (Varela and Wilson 1996) and is considered to be a

useful model system for investigation of newer transport systems of the major

facilitator superfamily, such as novel multidrug efflux pumps (Floyd et al. 2013).

LacY was originally described as an important component of the well-known lac
operon and is encoded by lacY, a regulated structural gene contained within operon
itself (Müller‐Hill 1996; Varela and Wilson 1996). Using protons, the LacY

symporter transports lactose and other related sugars across the inner membrane,

and it uses the energy of the electrochemical gradient of protons to couple this

movement of sugar and proton symport. This causes sugar to accumulate against a

concentration (Mitchell 1967, 1991; Varela and Wilson 1996).

EmrD is a proton-dependent multidrug efflux pump of E. coli that belongs to
MFS family (Sulavik et al. 2001). EmrD transports detergents, such as

benzalkonium chloride and sodium dodecyl sulfate (Nishino and Yamaguchi

2001). Not only does it confer resistance to detergents, the EmrD efflux pump

influences the formation of biofilm (Matsumura et al. 2011). The X-ray crystal

structure of EmrD exhibits hydrophobic interiors which is a means for transporting

various substrates in the drug efflux mechanism. An additional area consisting of

two long helical regions that are located on cytoplasmic side can provide additional

substrate specificity and transport (Yin et al. 2006).

TetA(B) is the most extensively studied efflux pump of the MFS family,

members of which transport sugar, intermediate metabolites, and drugs (Buivydas

and Daugelavièius 2006). The gene has been encoded on transposon Tn10 and

represents a metal–tetracycline/Hþ antiporter (Tamura et al. 2003). The efflux of

tetracycline from bacteria is driven by a proton gradient as the driving force

(Kaneko et al. 1985). The presence of TetA(B) in Bacillus cereus represents the
transfer of the antibiotic resistance genes from other bacteria (Rather et al. 2012).

This efflux pump actively expels tetracycline by a membrane-associated protein,

resulting in the reduction in the accumulation of tetracycline (Levy 1992; Nelson

and Levy 2011).

The bacterial pathogen S. aureus harbors many antimicrobial agent efflux pumps

that are members of the MFS of transporters, and several are well studied (Hooper

2000; Brown and Skurray 2001; Costa et al. 2013; Andersen et al. 2015). One of the

most intensively studied is QacA (Brown and Skurray 2001; Saidijam et al. 2006), a

plasmid-encoded multidrug pump that confers resistance to multiple antiseptics,

diamidines, and dyes (Tennent et al. 1989). The deduced sequence shows
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514 residues, and QacA is the first MFS discovered to have 14 TMS instead of 12 as

has previously been observed in other superfamily members. The

14-transmembrane domain topology was supported by fusion studies of QacA

with enzymatic reporters (Paulsen et al. 1996a). Presently, many MFS efflux

pumps have the 14 TMS motif (Saidijam et al. 2006). QacA transports ethidium

bromide using the proton gradient as the driving force (Littlejohn et al. 1992).

Another MFS efflux pump for multiple structurally distinct antimicrobial agents

is NorA of S. aureus (Ubukata et al. 1989; Yoshida et al. 1990). NorA has

388 amino acid residues and 12 predicted transmembrane segments (Yoshida

et al. 1990). Originally discovered in a clinical isolate (Ubukata et al. 1989),

NorA was thought to be a single-drug efflux pump for the antimicrobial agent

norfloxacin. NorA is now well known to be a multidrug transporter (Neyfakh et al.

1993) which is closely related to Bmr from Bacillus subtilis (Neyfakh 1992).

Physiological studies show that NorA transports structurally different antimicrobial

agents like the fluoroquinolones (e.g., ciprofloxacin and norfloxacin), dyes (e.g.,

rhodamine and ethidium), and quaternary ammonium compounds (e.g.,

benzalkonium chloride and tetraphenylphosphonium) (Yoshida et al. 1990; Kaatz

et al. 1993; Neyfakh et al. 1993; Kaatz and Seo 1995). Recent primary studies of

NorA have emphasized on efflux pump inhibitors of NorA (Holler et al. 2012a, b;

Kalia et al. 2012; Roy et al. 2013; Shiu et al. 2013; Thai et al. 2015) and regulation

of NorA expression (Fournier et al. 2000, 2001; Truong-Bolduc et al. 2003, 2005;

Kosmidis et al. 2010; Deng et al. 2012), both topics of which are beyond the scope

of this review but have been reviewed elsewhere (Zhang and Ma 2010; Costa et al.

2013).

The protein MdeA from S. aureus is predicted to have 479 amino acids,

14 transmembrane domains (Huang et al. 2004; Yamada et al. 2006), and transport

Hoechst 33342 and ethidium bromide (Yamada et al. 2006). Predictions also

indicate that MdeA confers resistance to tetraphenylphosphonium chloride,

norfloxacin, rhodamine 6G, doxorubicin, and daunorubicin (Yamada et al. 2006;

Huang et al. 2004). The MdeA efflux pumps of S. aureus N315 (Yamada et al.

2006) and S. aureus Buttle (Huang et al. 2004) are 99% identical, differing at five

key residues and likely explaining why MdeA from S. aureus Buttle confers

resistance to benzalkonium chloride while MdeA from S. aureus N315 does not.

Additionally, it was shown that piperine inhibits MdeA transport activity and

potentiates the effects of the antimicrobial agent mupirocin (Mirza et al. 2011).

A more recently discovered multidrug efflux pump, LmrS, encoded on the

chromosome and cloned from a clinical isolate of a methicillin-resistant S. aureus
(MRSA) strain, actively transports ethidium bromide and confers resistance to

structurally dissimilar substrates, such as linezolid, lincomycin,

tetraphenylphosphonium chloride, chloramphenicol, erythromycin, florfenicol,

fusidic acid, gatifloxacin, kanamycin, oxytetracycline, streptomycin, and trimetho-

prim (Floyd et al. 2010). The LmrS multidrug efflux pump is predicted to harbor

14 transmembrane domains, which is identical to that predicted for QacA (Paulsen

et al. 1996a; Floyd et al. 2010). Furthermore, LmrS shares homology with LmrB of
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B. subtilis (Kumano et al. 1997), VceB from V. cholerae (Colmer et al. 1998), and

EmrB from E. coli (Lomovskaya and Lewis 1992).

4.4 Structures of MFS Transporters

Generally, these MFS transporters contain 12 (Fig. 1) or 14 transmembrane-

spanning domains (TMS), with an occasional duplication of two 12 TMS to

constitute 24 TMS transporters (Moir and Wood 2001; Hirai et al. 2003; Saidijam

et al. 2006). Thus far, high-resolution crystal structures have been elucidated for

more than a dozen of these MFS transporters. These known MFS protein crystal

structures include the multiple drug efflux pump, EmrD, from E. coli (Yin et al.

2006); the fucose transporter, FucP, from E. coli (Dang et al. 2010); the glucose–Hþ

symporter, GlcPSc, from Staphylococcus epidermidis (Iancu et al. 2013); the glyc-

erol-3-phosphate transport protein, GlpT, from E. coli (Huang et al. 2003); the

glucose transporter, GLUT1, from Homo sapiens (Sun et al. 2012); the lactose–

proton symporter, LacY, from E. coli (Abramson et al. 2003); the nitrate/nitrite

exchange transporter, NarK, from E. coli (Zheng et al. 2013); the nitrate/nitrite

antiport protein, NarU, from E. coli (Yan et al. 2013); the oligopeptide–Hþ symport

protein, PepTSo, from Shewanella oneidensis (Newstead et al. 2011); the phosphate
transport protein, PipT, from Piriformospora indica (Pedersen et al. 2013); the

xylose transporter, XylE, from E. coli (Sun et al. 2012); the multidrug transporter,

YajR, from E. coli (Jiang et al. 2013); the peptide transport protein, YbgH, from

E. coli (Zhao et al. 2014); the multiple drug efflux pump, MdfA, from E. coli (Heng
et al. 2015); and, more recently, the mammalian fructose transporter, GLUT5, from

Rattus norvegicus and Bos taurus (Nomura et al. 2015).

Thus far, these high-resolution protein structures support the general notion that

the MFS transporters harbor two structurally symmetrical and functionally asym-

metrical bundles or domains (Pao et al. 1998; Saier et al. 1999) composed of the

first half (N-terminus) 6 TMDs and second half (C-terminus) 6 TMDs, at least for

the 12-TMD solute transporters, which is not surprising given the early observation

that the two halves of the modern MFS transporter likely arose from an internal

sequence duplication and subsequent tandem repeat of a common ancestor with

Fig. 1 Two-dimensional

topology model of an MFS

transporter
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6 TMDs (Griffith et al. 1992). Another feature apparently common to the known

crystal structures of the MFS transporters is the presence of a large central aqueous

cavity formed by the two halves, supporting previous genetic analyses of the

tetracycline efflux pump, TetA(C), where the N- and C-termini bundles or domains

interact functionally (McNicholas et al. 1992, 1995), plus low-resolution structural

data for the oxalate transporter, OxyT (Heymann et al. 2001, 2003), and Mitchell’s
notion of a proton gradient as an energy source for driving solute transport across

the membrane (Mitchell 1977, 1991). Considering how these structural features

related to the mechanism by which solute is translocated across the membrane, the

so-called alternating access mechanism has been invoked to explain this important

biological process in which the substrate binding site alternately faces one or the

other sides of the membrane (Jencks 1980; West 1980, 1997; Tanford 1982). In

principle, the substrate binding site of the MFS transporter faces one side of the

biological membrane and then upon binding of the substrate orients itself via a

conformational change such that the substrate binding site faces the other side to

facilitate transport (Henderson 1991; Law et al. 2008), and these MFS transporters,

in general, use their flexible gating structures to form inward- or outward-facing

states that are occluded in order to prevent unwanted leakage and dissipation of the

ion gradients (Stelzl et al. 2014). As shown in Fig. 2, intrinsic in the conserved

structure is the so-called MFS fold consisting of inverted triple helices that are

repeated four times to form four 3-helix inverted-topology repeats that make up the

MFS fold in MFS transporters (Radestock and Forrest 2011).

4 5 6 7 8 9 12 10113 2 1

A DCB

Fig. 2 The MFS fold. A transporter is shown residing in a membrane (horizontal lines) with the

transmembrane α-helices (numbered vertical rods). The shaded rectangles A, B, C, and D depict

of the four inverted triple helix structural motifs, each known as the MFS fold. Adapted from

Radestock and Forrest (2011), Yaffe et al. (2013)
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5 Evolutionarily Conserved Sequence Motifs Involving

Amino Acid Sequences in Transporters of the MFS

Early studies that discovered the high degree of relatedness between members of

the MFS also definitively demonstrated their shared evolutionary conservation of

certain amino acid sequences (Fig. 3) (Henderson 1990a, b; Rouch et al. 1990;

Griffith et al. 1992; Henderson et al. 1993). These investigators further discovered

that members of the MFS shared similar hydrophobicity profiles and similar

predicted secondary structures (i.e., 12 or 14 TMDs), suggesting that these family

members share conserved three-dimensional structures and, thus, a common ances-

tral origin. Taken together, these findings suggested that the MFS transporters share

a common solute transport mechanism, independent of the transporters’ substrate
specificities and modes of energy (Henderson and Maiden 1990; Rouch et al. 1990;

Griffith et al. 1992; Marger and Saier 1993; Pao et al. 1998; Saier et al. 1998, 1999).

6 Motif A “G X X X D R/K X G R R/K” and Functional

Roles

This highly conserved amino acid residue sequence motif from the MFS was

discovered by Henderson and coauthors in 1987 (Maiden et al. 1987; Henderson

and Maiden 1990). Now known as Motif A, it is widely accepted that elements of

this motif reside in a hydrophilic loop between helices 2 and 3 of virtually all

transporters of the MFS (Griffith et al. 1992; Pao et al. 1998; Saier et al. 1999;

Kumar and Varela 2012; Andersen et al. 2015; see Fig. 3a). Hence, the functional

importance of this motif cannot be understated. Perhaps the earliest clues to the

importance of residues in Motif A arose well before it was established that elements

in this protein region were conserved. First, in a series of studies working with

lactose permease, LacY, a key transporter first purified from E. coli by Newman and

Wilson (Newman and Wilson 1980), truncated LacY protein fragments were later

generated by limited proteolysis and deletion mutation analyses by the laboratory of

Ehring and colleagues, who found that residues of the N-terminal region where

Motif A resides must be important for lactose transport across the membrane

(Stochaj et al. 1986, 1988; Stochaj and Ehring 1987). Subsequent follow-up studies

were conducted in which co-expression of inactive truncated nonoverlapping LacY

fragments functionally complemented each other, restoring active lactose transport,

thus further demonstrating the important functional roles of N-terminal residues

(Wrubel et al. 1990, 1994).
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6.1 Early Studies of Motif A

Perhaps, the first site-directed mutational analysis of individual amino acid residues

of Motif A in an MFS transporter was conducted by the laboratory of Yamaguchi

Fig. 3 Highly conserved sequence motifs A and C in 12-TMS and 14-TMS MFS transporters.

Figure (a) indicates 12 different transmembrane helices joined together by loops. The white
arrows point to conserved motif A [G X X X (D/E)(R/K) X G X (R/K)(R/K)] and motif C

[G (X)8 G (X)3 G P (X)2 G G] of the multidrug efflux pump EmrD-3 (Smith et al. 2009; Floyd et al.

2010) from the microorganism Vibrio cholerae, a pathogenic bacterium. Figure (b) indicates

14 different transmembrane helices joined together by intra-helical loops. The white arrows point
to conserved motif A [G X X X (D/E)(R/K) X G X (R/K)(R/K)] and motif C [G (X)8 G (X)3 G P

(X)2 G G] in the multidrug efflux pump LmrS from the bacterial pathogen Staphylococcus aureus.
These figures were generated using TMHMM and Tmpres2D servers

122 P. Kakarla et al.



(Yamaguchi et al. 1990). The Ser-65–Asp-66 dipeptide of the motif was closely

examined (Yamaguchi et al. 1990) in the Tn10 TetA(B) tetracycline efflux pump,

which was discovered in the laboratory of Levy (McMurry et al. 1980). Because

replacements at position Ser-65 but not at Asp-66 in the Motif A of TetA

(B) showed some transport activity, it was concluded that a negative charge and

the loop were both necessary for gating but not for substrate binding in the channel

(Yamaguchi et al. 1990). The possibility remained, however, that the residues in the

loop between helices 2 and 3 did participate in initial substrate binding, as previ-

ously postulated (Chopra 1986), as later studies involving Cys-scanning mutagen-

esis showed that residues in helix 3 (Asp-84) and elements of Motif A (Gly-62,

Asp-66, Arg-70, and Ser-77) were also implicated in forming a tetracycline trans-

port pathway and further interpreted as together undergoing conformational

changes during transport (Yamaguchi et al. 1993a; Kimura et al. 1998b). The

importance of the conserved Asp residue at this locus in TetA(B) was confirmed

also in KgtP, an α-ketoglutarate permease (Seol and Shatkin 1992), and TetA(C), a

plasmid-encoded tetracycline efflux pump from E. coli (McNicholas et al. 1992).

Follow-up studies from the Yamaguchi laboratory systematically investigated the

rest of the residues in Motif A of TetA(B) and found that only the Asp and Arg

residues of the Motif A in the loop 2-3 were essential for tetracycline transport

(Yamaguchi et al. 1992a, b), further solidifying the notion that the conserved loop

structure participated in a gating function, as previously postulated (Baker and

Widdas 1973), while the two Gly residues of the motif were interpreted to function

in the formation of a supportive structure in order to stabilize a β-turn in the

conserved loop (Yamaguchi et al. 1993b). In a study evaluating the functional

roles of Arg residues of TetA(B), Arg-67, Arg-70, and Arg-71, all belong to

Motif A, only replacements for Arg-70 lost both tetracycline resistance and trans-

port (Kimura et al. 1998a). Along these lines, a defective primary mutation in TetA

(B), in which Asp-66 changed to a Cys, was suppressed by a second-site mutation

where Ala-40 was also changed to Asp, supporting the notion that a charged residue

is an important requirement for transport (Yamaguchi et al. 1995). Similarly, a

defective mutation in which Gly-62 of Motif A was changed to Leu was compen-

sated for by a second-site mutation on the other side of the same membrane in

which Leu-30 was changed to a Ser residue, and the authors interpreted this finding

as the double mutation providing a “conformational hook” that blocks deleterious

conformational changes at a remote location elsewhere in the protein (Kimura et al.

1997). A similar so-called remote conformational suppression effect was observed

later when the primary mutation in Motif A in which Gly-62 changed to Leu in

TetA(B) was suppressed by the second-site mutation where Ala-354, also on the

other side of the cytoplasmic membrane, was changed to Asp (Kawabe and

Yamaguchi 1999). This latter effect was interpreted as TetA(B) having a close

structural proximity between helices 2 and 11 on the periplasmic side of the

cytoplasmic membrane (Kawabe and Yamaguchi 1999). The seminal discovery

of salt bridges in the E. coli lactose permease, LacY, by the Wilson laboratory,

reviewed in ref Varela and Wilson (1996) and see Lee et al. (1996), prompted an

evaluation of possible salt bridges in TetA(B) in which Arg-70 of the Motif A was
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found to interact with Asp-120, which resides at the distal end of helix 4 (Someya

et al. 2000). Similarly, using molecular simulation dynamics of the proton-coupled

oligopeptide symporters PepTSo from Shewanella oneidensis and PepTSt from

Streptococcus thermophilus, a salt bridge involving a Motif A residue, Asp-79,

was predicted to form with Lys-84 which resides near helix 3 (Fowler et al. 2015).

This salt bridge was further predicted to stabilize the outward-facing conformation

of PepTSo, thus potentially participating in the gating topology of symporters in this

closely related family (Fowler et al. 2015). In a separate study of the TetA(P) efflux

pump for tetracycline from Clostridium perfringens, the site-directed mutations at

Pro-61 and Arg-71 abolished tetracycline resistance levels (Bannam et al. 2004).

6.2 More Recent Studies of Motif A

Interestingly, a human glucose transporter, GLUT-1, expressed in red blood cells,

was studied in patients with GLUT-1 deficiency syndrome, and mutations were

found in elements of Motif A: Gly-91 changed to Asp and Arg-93 changed to Gln or

Trp (Pascual et al. 2008). These mutations showed reduced glucose transport, and it

was concluded from these findings that Gly-91 may be important for substrate

docking within the recognition site and that Arg-93 may serve to help anchor

GLUT-1 to the membrane (Pascual et al. 2008). Additionally, a study of autosomal

dominant missense mutations showed that alteration of the Motif A residue Gly-91

to either Asp or Ala in GLUT1 from Homo sapiens, when expressed Xenopus
oocytes, had severely reduced glucose transport activities (Klepper et al. 2001). In a

separate study involving another eukaryotic organism, the fungus Aspergillus
nidulans, various mutations in the high-affinity nitrate transporter, NrtA, were

isolated (Kinghorn et al. 2005). Of this set of mutations, residues of Motif A were

altered in which Cys-90 was changed to Phe and Gly-91 was changed to Ser, and

both mutants showed reduced nitrate uptake compared to wild-type NrtA

(Kinghorn et al. 2005).

The internal duplication event postulated to occur for MFS transporters (Hen-

derson and Maiden 1990; Griffith et al. 1992), particularly the tetracycline efflux

pumps (Rubin et al. 1990), prompted the evaluation of the residues of the loop

between helices 8 and 9 of TetA(B) (Yamaguchi et al. 1993b). In this analysis, only

Gly-273 of TetA(B) in the second loop between helices 8 and 9 was demonstrated

to be essential for tetracycline transport (Yamaguchi et al. 1993b).

6.3 Studies of Motif A in Symporters

Prior to the discovery of Motif A, the roles of glycine residues along the LacY

protein of E. coli (including glycines of Motif A) had been examined in the

laboratory of Kaback (Jung et al. 1995), and it had been deemed that no such
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glycines throughout the symporter were critical for the transport of lactose. The first

systematic study using site-directed mutagenesis to specifically address the func-

tional importance of Motif A residues in LacY (Brooker 1990; Varela and Wilson

1996) was conducted in the laboratory of Brooker (Jessen-Marshall et al. 1995). In

their first study, most amino acid replacements for Gly-64 and Asp-68 showed

dramatic losses of lactose transport activities, while replacements for Lys-69,

Gly-72, Arg-73, and Lys-74 showed only moderate to no loss of lactose transport

(Jessen-Marshall et al. 1995), and it was concluded that the loop 2-3 structure

formed by Motif A facilitates access of lactose entry into the cell by allowing

conformational changes to occur upon sugar binding to the symporter (Jessen-

Marshall et al. 1995). Using the mutation in which Asp-68 was changed to Thr,

second-site revertant mutants were isolated that compensated for the defect con-

ferred by the primary mutation, and it was found that most second sites were located

in proximal ends of helices 2, 7, and 11 at the periplasm–membrane juncture

(Jessen-Marshall and Brooker 1996). These results were interpreted as the suppres-

sor mutations having altered the protein topology in order to facilitate the interac-

tion between the two bundles of the symporter and helix 2 behaving as an interface

between these two symmetrical bundles (Jessen-Marshall and Brooker 1996;

Pazdernik et al. 1997a), a finding later supported by extensive molecular physio-

logical analyses (Green et al. 2000; Green and Brooker 2001). In another study,

Brooker used second-site suppressor analysis with Gly-64 mutations as the first-site

mutation and found second sites dispersed throughout the symporter concluding

that Gly-64 allows conformational changes to occur that are necessary for lactose

transport across the membrane and that this residue is at the interface between two

symmetrical bundles of the LacY protein (Jessen-Marshall et al. 1997; Pazdernik

et al. 1997a). As mentioned above, the primary amino acid sequences of the

N-terminal halves of the MFS transporters are closely related to their corresponding

C-terminal halves. Motif A in the loop between helices 2 and 3 of these transporters

is thus duplicated at the cytoplasmic loop between helices 8 and 9 (Griffith et al.

1992). Thus, the functional roles of these conserved amino acids in the loop 8-9 of

LacY were evaluated and determined that they, too, serve to facilitate conforma-

tional changes that are believed to occur in these transporters during solute and ion

transport catalysis (Pazdernik et al. 1997b; Cain et al. 2000).

6.4 Studies of Motif A in Multidrug Efflux Pumps

In the multidrug transporter LmrP from Lactococcus lactis (Bolhuis et al. 1995), the
functional role of Asp-68, which resides in Motif A, was explored. First, molecular

physiological evidence showed that an interaction between Asp-68 and phosphati-

dylethanolamine, a polar head group of the biological membrane, provides a sensor

mechanism for detection of a proton gradient by the cell (Hakizimana et al. 2008).

This particular notion that in this position of Motif A, a conserved Asp plays a role

in proton gradient sensing, is supported by an apparent lack of conservation of Asp
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in this location of Motif A within MFS transporters that are not proton driven, such

as in the case of the glucose facilitators (Hruz and Mueckler 2001), and the family

of organic anion transporters (OATs), which are instead sodium driven (Zhou and

You 2007). In another study using a biophysical analysis and molecular simulation

dynamics of LmrP, it was found that during substrate transport, protonation of

Asp-68 facilitated an outward-facing closed and inward-facing open conformation

of the transporter, and deprotonation of Asp-68 to release protons into the cyto-

plasm favored a resetting back to the resting state conformation (Masureel et al.

2014); that is, Asp-68 plays a functional role in mediating conformational switching

of the transporter during the multidrug efflux pump transport cycle. A study of the

crystal structure of a proton-dependent oligopeptide transporter, YbgH from E. coli,
combined with mutagenesis and comparisons with previously elucidated trans-

porter crystal structures, found that a variant of Motif A, called Motif 1, functions

as a conformational switch mechanism in order to stabilize YbgH in an outward-

facing conformation (Zhao et al. 2014). An interesting development occurred with

respect to Motif A and the mechanism of solute transport with the recent crystal

structure determination of an E. coli outward-facing multidrug efflux pump, YajR,

with a clearly defined loop 2-3 structure (Jiang et al. 2013). Based on this YajR

crystal structure, the investigators provided structural and functional roles for

individual residues of Motif A (Jiang et al. 2013). For instance, Gly-69 of YajR is

believed to interact with Gly-337 and Gly-341, which are located on helix 11 of the

same protein, thus forming an interface between the two domains (i.e., bundles) and

allowing the formation of the outward-facing conformation of the pump (Jiang et al.

2013). Additionally, since Asp-73 was buried deep within the interface between the

two bundles adjacent to helix 11 in the YajR structure, it is thus thought that this

residue stabilizes both helix 11 and the bundle interface via a dipole-helix interac-

tion; in support of this notion, the mutation Asp-73 changed to Arg decreased the

melting temperature, suggesting that Asp-73 becomes solvent accessible (i.e.,

unburied) during the formation of an inward-facing conformation (Jiang et al.

2013). The Arg-74 residue is believed to interact with membrane phospholipid,

thus possibly stabilizing the YajR protein within the membrane (Jiang et al. 2013).

Gly-76 may stabilize the interaction within the N-terminal bundle, i.e., Gly-76 may

confer an intra-domain stabilization (Jiang et al. 2013). Arg-77, on the other hand,

is believed to form salt bridges with both Asp-73 (of Motif A) and Asp-126, the

latter residue of which is located at the C-terminal end of helix 4 (Jiang et al. 2013).

Incidentally, this same type of salt bridge formation is known to occur in LacY, in

which Lys-319 interacts with both Asp-240 and Glu-269 to form alternating ion

pairs (Lee et al. 1993). Lastly, Lys-73 of YajR is thought to interact with the

C-terminal portion of helix 6 (Jiang et al. 2013). Taken together, the residues of

Motif A in the YajR multidrug efflux pump are thought to stabilize the outward-

facing conformation of the protein and thus participate in the conformational

changes between the outward- and inward-facing stages of the transporter (Jiang

et al. 2013). Strikingly, these investigators further found that elements of Motif A of

loop 2-3 (called L2-3) are also present to a certain extent in three other loops of

YajR, i.e., those loops between helices 5 and 6 (L5-6), 8 and 9 (L8-9), and 11 and
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12 (L11-12), suggesting a widespread influence in the solute transport cycle for

Motif A and Motif A-like sequences not only throughout a given MFS transporter,

but in all transporters of the MFS as well (Jiang et al. 2013). Recently, the three

crystal structures were elucidated for the multidrug efflux pump, MdfA, from

E. coli in which each structure was bound to its substrate chloramphenicol or one

of its analogs deoxycholate or n-dodecyl-N,N-dimethyl-amine-N-oxide (Heng et al.

2015). Since Motif A is known to stabilize the outward-facing conformation, as

mentioned above for YajR (Jiang et al. 2013), the structural element conferred by

this conserved motif is apparently not involved in dictating the inward-facing

conformation seen in any of the three MdfA crystal structures (Heng et al. 2015).

7 Motif C “G (X)8 G X X X G P X XG G” and Functional

Roles

This conserved sequence motif was discovered by Rouch et al. to reside within the

fifth TMD of transporters of the MFS (Rouch et al. 1990; see Fig. 3b). Initially

thought to be found only with antiporters of the MFS but not in symporters or

uniporters, Motif C was referred to as the “antiporter motif” (Varela et al. 1995;

Varela and Griffith 1993). Recently, however, manual adjustments were performed

during an extensive multiple sequence comparative analysis to surprisingly dis-

cover that sequence elements of the so-called antiporter motif are apparently found

in the symporters and uniporters of the MFS as well (Yaffe et al. 2013).

7.1 Early Studies of Motif C in Efflux Pumps
for Tetracycline

One of the earliest studies conducted to address the functional importance of Motif

C was performed by Varela et al. in which they systematically replaced the most

highly conserved residue of the motif, namely, Gly-147 of the tetracycline efflux

pump, TetA(C), encoded on plasmid pBR322, with all other 19 amino acid residues

(Varela et al. 1995). Interestingly, these investigators found that only Ala and Ser

residues were acceptable in place of Gly-147 as tetracycline resistance was reduced

to only 26% and 19% of the wild-type TetA(C), respectively (Varela et al. 1995).

Molecular modeling analysis indicated a slight bend or kink in the fifth helix in the

wild-type protein (Varela et al. 1995). Taken together, these investigators con-

cluded that the residues of motif C dictate subtle structural differences inherent in

determining substrate specificities and direction of solute transport (Varela et al.

1995). A study by Ginn et al. directly examined the structure–function relationships

for all residues of Motif C of the TetA(K) tetracycline efflux pump from S. aureus
by site-directed mutagenesis and tetracycline efflux assays (Ginn et al. 2000). These
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investigators found that tetracycline efflux pump activities were moderately to

severely reduced for those mutants in which only the conserved residues of the

motif were altered by mutation (Ginn et al. 2000). Thus, it was demonstrated in this

study that the conserved residues of Motif C confer active tetracycline efflux;

furthermore, because of the relative abundance of glycine residues in the motif, it

was concluded that such flexible residues mediate conformational changes neces-

sary for the efflux pump to respond to its immediate microenvironment (Ginn et al.

2000). Cysteine-scanning mutagenesis and accessibility of such mutations to the

aqueous microenvironment that were studied by the laboratory of Yamaguchi and

colleagues who showed that all residues of Motif C within TMD-5 of the Tn10-

derived tetracycline efflux pump, TetA(B) from E. coli, line a water-filled channel

and are thus probably able to bind substrate to facilitate transport (Iwaki et al.

2000). Additionally, these authors concluded that residues of TMD-5 of TetA(B),

along with residues of TMD-4, form a permeability barrier that serves to avoid

undesirable uncoupling (Iwaki et al. 2000). The laboratory of Levy conducted a

second-site suppressor study in which four second-site mutations that

complemented a defective mutation at Gly-247 of TetA(B) were found in TMD-5

indicating that residues of Motif C interact with residues of TMD-8 to stabilize their

close association to each other (Saraceni-Richards and Levy 2000). These authors

further concluded that residues of Motif C that are forming the permeability barrier

in TetA(B) mediate conformational switching that occurs during solute transport

across the membrane (Saraceni-Richards and Levy 2000).

7.2 Studies of Motif G

As mentioned earlier, bioinformatics evidence indicated an internal tandem repeat

of a primordial 6-helix ancestor to form a modern 12-helix structure (Griffith et al.

1992) implying that Motif C is duplicated as well. The duplicated Motif C, denoted

Motif G, was found in TMD-11 of the 12-helix MFS transporters (Paulsen et al.

1996b). This notion was confirmed experimentally in a study by Levy and col-

leagues in which they characterized Mdt(A), a multiple drug efflux pump encoded

on a plasmid originating from Lactococcus lactis, and found the two Motif C-like

sequences, one residing in TMD-5 and the other in TMD-9 (Perreten et al. 2001).

Remarkably, these investigators also found an ATPase domain, which is routinely

found in primary active transporters (Perreten et al. 2001). In another study

involving Mdt(A) from a naturally occurring drug-susceptible variant of

Lactococcus garvieae, Motif C was found two be altered in two of the canonical

residues, thus possibly explaining the observed drug susceptibilities (Walther et al.

2008).
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7.3 The Glycine–Proline Dipeptide in Motif C

A molecular mechanics and modeling study showed that a glycine–proline

(GP) dipeptide within Motif C specified a bend or kink within the TMD-5 of the

MFS efflux pumps (Varela et al. 1995). This particular notion was evaluated by the

laboratory of Krulwich in which they closely examined mutations at these two

residues, Gly-155 and Pro-156, of the tetracycline efflux pump, TetA(L), from

Bacillus subtilis and found that the replacements showed, in general, tetracycline

binding and a potassium leak, but not transport of tetracycline, suggesting that the

GP dipeptide from Motif C is important for tight helix packing and leak proofing of

the pump and providing an explanation for observed discrepancies between trans-

port and resistance levels (Jin and Krulwich 2002; De Jesus et al. 2005).

The sole conserved proline residue of Motif C (of the GP dipeptide) was closely

studied in QacA, a 14-TMD efflux pump encoded on the chromosome of S. aureus
in a study focusing mainly on intramembranous Pro residues (Hassan et al. 2006).

Replacement of Pro-161 of Motif C with Gly, Ser or Ala residues did not abolish

resistance to any QacA substrates, but did show slightly altered drug resistance

levels in host cells, suggesting this Pro residue may help form the permeability

barrier and allow molecular motions or interactions with substrate to occur during

transport of monovalent dyes (Hassan et al. 2006).

7.4 A Conformational Switch and Motif C

An analysis of residues of Motif C in a vesicular acetylcholine transporter, VAChT,

from a eukaryote, Rattus norvegicus, showed profound loss of acetylcholine trans-

port across the membrane and altered kinetic behavior of transport, indicating that

minor and relatively stiff kinks in TMD-5 of VAChT are formed by residues of

Motif C and that the motif not only allows conformational flexibility, i.e.,

switching, but also confers a tight proton seal to prevent dissipation of the mem-

brane potential (Chandrasekaran et al. 2006). Another study of VAChT using

homology modeling and molecular dynamics simulations found both kinking and

wobbling behavior in structures formed by residues of Motif C and a lowering of

the energy barrier for structures in which residues of Motif C were mutated (Luo

and Parsons 2010). The authors of this study concluded that the structure formed by

Motif C is at the interface between two helical bundles, consisting of TM helices

1–6 and 7–12 of VAChT, and that Motif C forms a complex hinge region between

the two helical bundles in order to provide an energy barrier during conformational

changes that occur during solute transport (Luo and Parsons 2010). Motif C from

another eukaryotic MFS efflux pump, CaMdr1p from Candida albicans, which
transports antifungal agents, was studied for its functional importance (Pasrija et al.

2007), and the investigators concluded that residues of this motif possibly mediate

helix packing. A recent study of VMAT2 from R. norvegicus discovered that Motif
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C plays a significant role in forming a so-called molecular hinge structure in which

helices 5 and 8 interact with helices 2 and 11 to mediate the conformational

switching between the two symmetric bundles that is thought to transpire during

solute transport (Yaffe et al. 2013).

In a more recent study in which the crystal protein structure was determined for

the E. coli MdfA multidrug efflux pump, it was shown that the protein was

complexed with chloramphenicol or one of two substrate analogs; and it was further

demonstrated that elements of Motif C (Ala-150, Ala-153, and Pro-154) (Rouch

et al. 1990; Varela et al. 1995) surrounded two critical acidic residues Glu-26 and

Asp-34 that reside in helix 1 of MdfA, thus constituting part of a central aqueous

substrate binding cavity, a seemingly ubiquitous property of MFS solute trans-

porters (Heng et al. 2015).
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