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Abstract Tuberculosis (TB) remains a global health concern, despite availability

of antituberculosis drugs. Drug-resistant Mycobacterium tuberculosis strains were
identified shortly after the discovery and introduction of streptomycin for the

treatment of this disease. Subsequently, multidrug therapy was implemented for

TB treatment; however, this was soon followed by reports of multi-, extensively,

and totally drug-resistant tuberculosis cases globally. The amplification of this drug

resistance is due to the sequential accumulation of chromosomal alterations in

target genes in the Mycobacterium tuberculosis genome. It is also evident that the

presence of mutations that confer drug resistance results in the emergence of

compensatory mechanisms which restore bacterial fitness. The recent approval by

the Food and Drug Administration for bedaquiline as an antituberculosis drug

provided some hope. However, clinical resistance to this new drug has already

been reported. This underscores that it is imperative to understand drug resistance

and its associated mechanisms in order to direct research efforts to the development

of antituberculosis regimens with novel mechanisms of actions.

1 Introduction

In 2015 the World Health Organization (WHO) reported 9.6 million new cases of

tuberculosis (TB), with 3.3% of these and 20% of previously treated cases infected

with a multidrug-resistant (MDR) strain of Mycobacterium tuberculosis (WHO
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2015). More alarmingly, the average proportion of MDR-TB cases with extensively

drug-resistant TB (XDR-TB) is 9.7% (WHO 2015). Resistance to the first effective

anti-TB drug, streptomycin (STR), was observed shortly after its introduction in

1944 (Nachega and Chaisson 2003; Keshavjee and Farmer 2012), and this trend had

continued for many other TB drugs (Fig. 1). Numerous MDR-TB outbreaks were

identified in the early 1990s, emphasizing TB as a global health problem (Nachega

and Chaisson 2003) (Fig. 1). MDR-TB is characterized by a mycobacterial infec-

tion with M. tuberculosis strains that are resistant to rifampicin (RIF) and isoniazid

(INH) (Gupta et al. 2003). Outbreaks of XDR-TB have been reported globally

(Gandhi et al. 2006; Migliori et al. 2007b; Masjedi et al. 2010; Klopper et al. 2013;

Cohen et al. 2015), with XDR-TB defined as an infection with an MDR-TB strain

with further resistance to a fluoroquinolone (FQ) and one injectable drug, amikacin

(AMI), kanamycin (KANA), and capreomycin (CAP) (Holtz 2007; Holtz and

Cegielski 2007; Louw et al. 2009). Recently, M. tuberculosis strains resistant to

all available anti-TB drugs have been identified globally and have been named

totally drug-resistant TB (TDR-TB) (Migliori et al. 2007a; Velayati et al. 2009;

Udwadia 2012; Udwadia et al. 2012; Klopper et al. 2013; Udwadia and Vendoti

2013) (Fig. 1). Although this term is somewhat controversial, TDR-TB has been

defined as M. tuberculosis strains with in vitro resistance to all available first- and

second-line drugs tested (INH, RIF, STR, EMB, PZA, ETH, PAS, DCS, OFL, AMI,

CIP, CAP, KANA) (Parida et al. 2015). Factors fueling the drug-resistant TB

epidemic include the inadequacies of TB control in combination with HIV

coinfection.

The WHO recommends that new patients with pulmonary TB receive intensive

phase treatment (2 months duration) which consists of INH, RIF, PZA, and EMB.

Subsequently, a patient infected with a drug-sensitive M. tuberculosis strain is

treated with INH and RIF during the 4-month continuation phase treatment

(WHO 1997). Patient noncompliance is a consequence of the long treatment

duration, and these factors fuel the development of drug resistance. An 8-month
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Fig. 1 Illustration of the tuberculosis drug discovery timeline and drug resistance development

reports: STR streptomycin, PAS para-aminosalicylic acid, INH isoniazid, PZA pyrazinamide, DCS
D-cycloserine, KANA kanamycin, EMB ethambutol, ETH ethionamide, RIF rifampicin, CAP
capreomycin, AMI amikacin, OFL ofloxacin, LEVO levofloxacin, BDQ bedaquiline, MDR-TB
multidrug-resistant tuberculosis, WHO World Health Organization, XDR-TB extensively drug-

resistant tuberculosis, TDR-TB totally drug-resistant tuberculosis. aFirst report of BDQ resistance

identified in a TB patient (Bloemberg et al. 2015)
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retreatment regimen with first-line anti-TB drugs for previously treated patients

awaiting DST results consists of 2 months with INH, RIF, PZA, EMB, and STR;

1 month with INH, RIF, PZA, and EMB; and 5 months with INH, RIF, and EMB.

Treatment of MDR-TB requires a regimen with second-line drugs administered

over 18–24 months (Mukherjee et al. 2004). Recommendations for the treatment of

various forms of drug-resistant TB are tabulated in Table 1. Current drugs used for

TB treatment have limited efficacy against drug-resistant M. tuberculosis strains.
However, new anti-TB drugs in development, specifically drugs with different

modes of actions than the current drugs, could be effective against both drug-

sensitive and drug-resistant TB.

2 Mode of Action and Mycobacterial Drug Resistance

Mechanism

2.1 Cell Wall Synthesis Inhibitors

2.1.1 Isoniazid

INH is a prodrug that inhibits mycolic acid biosynthesis (Vilcheze and Jacobs

2007). This inhibition occurs via multiple mechanisms and results in the loss of

trehalose monomycolate, trehalose dimycolate, and mycolates (Vilcheze and

Jacobs 2007). INH is activated by KatG, which is a catalase-peroxidase, encoded

by the katG gene. Upon activation, INH forms an adduct with NAD (Rozwarski

et al. 1998) and binds and inhibits inhA, encoded by the enoyl-acyl carrier protein

reductase InhA (NADH dependent), which is part of the fatty acid synthase type II

system (Marrakchi et al. 2000). The INH-NAD adducts inhibit the activity of InhA,

thereby resulting in intracellular accumulation of long-chain fatty acids, decreased

mycolic acid biosynthesis, and subsequent cell death.

Table 1 Treatment for the various forms of TB (WHO 2008)

Resistance pattern Treatment

Sensitive INH-RIF-PZA-EMB

INH RIF-PZA-EMB

INH-RIF PZA-STR-LEVO-ETH-DCS-PAS

INH-RIF-EMB

INH-RIF-PZA-EMB STR-LEVO-ETH-DCS-PAS

INH-RIF-STR KANA-LEVO-ETH-DCS-PAS

INH-RIF-EMB-STR

INH-RIF-EMB-PZA-STR

INH isoniazid, RIF rifampicin, EMB ethambutol, PZA pyrazinamide, STR streptomycin, LEVO
levofloxacin, ETH ethionamide, DCS cycloserine, PAS para-aminosalicylic acid, KANA anamycin
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The loss of activation of INH by KatG is one of the mechanisms of INH

resistance in mycobacteria. Mutations in the katG gene lead to a reduction in

catalase activity. This results in a decrease in activated INH and a decreased

capacity to form the INH-NAD adduct to inhibit InhA and subsequent high-level

INH resistance (Heym et al. 1999; Ramaswamy et al. 2003). The Ser315Thr

mutation in the katG gene is reported to be the most frequent mutation found in

clinical M. tuberculosis strains resistant to INH (Seifert et al. 2015). Mutations

within the inhA promoter (�15T and �8A loci) result in overexpression or mod-

ification of inhA and subsequently confer low-level INH resistance and ETH cross-

resistance (Banerjee et al. 1994). Mutations in the structural gene are less frequent,

but the Ser94Ala inhA mutation has been reported to be associated with low-level

INH resistance (Quemard et al. 1995). Approximately 10% of INH resistance is not

attributed to mutations in katG and inhA, suggesting that additional resistance

mechanisms contribute to INH resistance in mycobacteria. Additional genes

(kasA, ahpC, ndh, and the ahpC-oxyR intergenic region) have been implicated in

INH resistance; however, their direct impact on clinical INH resistance is not fully

understood (Vilcheze et al. 2005; Vilcheze and Jacobs 2007; Campbell et al. 2011).

2.1.2 Ethionamide

The second-line drug, ETH, has a common molecular target to INH, namely, InhA

of the FAS II system (Banerjee et al. 1994; Marrakchi et al. 2000). ETH is a prodrug

and INH structural analog, which also inhibits mycolic acid biosynthesis. It was

shown that M. tuberculosis strains with low-level INH resistance also exhibit

resistance to ETH (Banerjee et al. 1994). ETH is activated by the monooxygenase,

ethA, with subsequent formation of an ETH-NAD adduct. Even though the

ETH-NAD adduct inhibits InhA, in the same manner as the INH-NAD adduct,

the activating enzymes of the different compounds are distinct.

Numerous mutations in the ethA gene, resulting in a failure to activate ETH,

have been reported to contribute to ETH resistance (Morlock et al. 2003; Brossier

et al. 2011). The TetR-like repressor, EthR, negatively regulates the expression of

ethA and interacts directly with the ethA promoter region, and EthR overexpression

leads to ETH resistance (Baulard et al. 2000; DeBarber et al. 2000). Intragenic inhA
mutations (Ser94Ala, Ser94Trp, Leu11Val) in addition to inhA promoter mutations

(�102A and �47C) have also been identified in ETH-resistant M. tuberculosis
isolates (Morlock et al. 2003; Brossier et al. 2011).

Approximately 50% of ETH-resistantM. tuberculosis strains exhibit an absence
of mutations in inhA or ethA, suggesting an alternative resistance mechanism

(Boonaiam et al. 2010). Recently, mutations in the mshA gene (including a

Val171Gly-Ala187Val double mutation) were identified in ETH-resistant isolates

(Vilcheze et al. 2008; Brossier et al. 2011). MshA is a glycosyltransferase that is

involved in mycothiol biosynthesis, and mutations in mshA have been proposed to

result in the failure to activate ETH (Vilcheze et al. 2008). Interestingly, it was also

observed that mutations in ndh resulted in defects in NdhII activity, subsequently
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leading to increased intracellular NADH/NAD+ ratio (Vilcheze et al. 2005). The

increase in the NADH levels protects against InhA inhibition by either the

INH-NAD or ETH-NAD formed when INH and ETH is activated, subsequently

leading to ETH and INH co-resistance (Vilcheze et al. 2005). Even with the

identification of the additional gene mutations, it is evident that additional resis-

tance mechanisms exist that could contribute to ETH resistance.

2.1.3 Ethambutol

EMB is a bacteriostatic agent that targets the integral membrane

arabinosyltransferases involved in polymerizing arabinose into arabinan compo-

nents of arabinogalactan (Takayama and Kilburn 1989; Zhu et al. 2004; Wolucka

2008; Xu et al. 2015). Resistance to EMB is primarily attributed to mutations in the

arabinosyltransferases encoded by embB, with 60% of EMB-resistant isolates

carrying a mutation at embB306 (Ramaswamy et al. 2000; Zhang and Yew 2009;

Safi et al. 2013; Xu et al. 2015). However, several studies report discordance

between genotypic and phenotypic resistance testing; this could be due to inaccu-

rate diagnostic tests that are dependent on the medium used (Sreevatsan et al. 1997;

Johnson et al. 2006a; Plinke et al. 2010; Xu et al. 2015).

Mutations in the embC, embA, and embR genes have also been implicated in

EMB resistance, with alterations located in the embC-embA intergenic region

conferring high-level EMB resistance (Cui et al. 2014; Xu et al. 2015). embR has

been reported to modulate the level of arabinosyltransferase activity in vitro in a

phosphorylation-dependent manner, acting downstream of the Ser/Thr-kinase

PknH (Belanger et al. 1996). Interestingly, mutations were identified in the ubiA
gene in EMB-resistant XDR-TB isolates lacking shared embBmutations (Motiwala

et al. 2010; He et al. 2015), and these mutations were associated with high-level

EMB resistance (Safi et al. 2013). The ubiA gene is essential for growth of

M. tuberculosis and is involved in the synthesis of decaprenylphosphoryl-D-arabi-

nose (Huang et al. 2005). It was recently reported that overexpression of wild-type

ubiA gene resulted in an increase in EMB resistance in M. tuberculosis (He et al.

2015). This indicates that multiple mechanisms could result in the EMB resistance

phenotype in mycobacteria.

2.1.4 SQ109

One of the newer anti-TB drugs, SQ109, was identified by screening a library of

EMB derivatives based on the upregulation of the iniBAC operon promoter (Lee

et al. 2003; Protopopova et al. 2005). Exposure of mycobacteria to SQ109 leads to

the inhibition of trehalose dimycolate production and concomitant upregulation of

trehalose monomycolate levels (Li et al. 2014b). This results in failure to attach

mycolic acids to the cell wall arabinogalactan (Grzegorzewicz et al. 2012; Tahlan

et al. 2012). The MIC for SQ109 ranges from 0.16 to 0.78 μg/ml for all
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M. tuberculosis strains tested (Jia et al. 2005), and synergy was observed between

INH/RIF and SQ109 in in vitro and in vivo analysis (Nikonenko et al. 2007).

M. tuberculosis has a low spontaneous mutation rate of 2.55� 10�11 for SQ109

resistance (Sacksteder et al. 2012).

The mycobacterial transport protein responsible for trehalose dimycolate trans-

port, MmpL3, has been identified as the target of SQ109 (Sacksteder et al. 2012;

Tahlan et al. 2012). Attempts to generate mutants against SQ109 have been

unsuccessful. However, whole genome sequencing of in vitro mutants generated

against analogs of SQ109 revealed that mutations in the mmpL3 gene led to SQ109
and SQ109 analog resistance without cross-resistance to EMB (Tahlan et al. 2012).

Mmpl3 mutations (Ala700Thr, Gln40Arg, and Leu567Pro) were reported to result

in a greater than fourfold increase in SQ109 resistance level (Tahlan et al. 2012),

with cross-resistance being observed between other MmpL3 inhibitors (Li et al.

2014b). Recently, it was observed that SQ109 inhibits enzymes involved in

menaquinone synthesis, respiration, and therefore ATP synthesis (Li et al.

2014a). Additionally, SQ109 disrupts the proton motive force, thereby acting as

an uncoupler (Li et al. 2014b). This effect on the proton motive force may also

impact MmpL proteins, since it is suggested that the resistance-nodulation-division

transporters catalyze the export of substrates via a proton anti-port mechanism

(Li et al. 2014b).

2.1.5 D-Cycloserine

DCS is recommended by the WHO for the treatment of drug-resistant TB, despite

severe side effects (WHO 2000). Resistance to DCS is attributed to overexpression

of alrA inM. smegmatis (Caceres et al. 1997). AlrA encodes for D-alanine racemase

that is involved in D-alanine synthesis. D-Alanine is an integral component of

peptidoglycan which is an essential component of the cell wall. L-Alanine is

converted to D-alanine by the catalytic activity of AlrA (Chacon et al. 2002).

Subsequently, the D-alanine/D-alanine ligase (Ddl) catalyzes the dimerization of

D-alanine into D-alanyl-D-alanine (Chacon et al. 2002). Studies indicate that alrA
overexpression is a result of a G!T transversion in the alrA promoter (Caceres

et al. 1997). These reports also show that M. smegmatis alrA null mutants have the

ability to grow in the absence of D-alanine, suggesting the presence of another

pathway of D-alanine biosynthesis (Chacon et al. 2002). Moreover, these alrA null

mutants were more susceptible to DCS. It was also observed that a mutation

(Gly122Ala) in the cycA gene, which encodes a D-serine/alanine/glycine trans-

porter, partially contributes to the DCS resistance phenotype in M. bovis BCG

vaccine strains (Chen et al. 2012). From these reports it is evident that more

research needs to be done on DCS in order to elucidate and understand its resistance

mechanisms fully.
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2.2 Inhibitors of DNA Replication

2.2.1 Fluoroquinolones

Quinolones are synthetic compounds active on the enzymes essential for DNA

replication, the DNA gyrases (Ginsburg et al. 2003). By interfering with DNA

gyrase activity, the FQs disrupt DNA supercoiling, thereby inhibiting cell division

and gene expression. DNA gyrase is comprised of two alpha and two beta subunits,

encoded by the gyrA and gyrB genes, respectively (Takiff et al. 1994). Scientific

reports indicate that spontaneous mutations develop at a frequency of 2� 10�6 to

10�8 (Alangaden et al. 1995).

Approximately 90% of FQ resistance in M. tuberculosis is attributed to muta-

tions in a region named the quinolone-resistance-determining region (QRDR) in the

gyrA and the gyrB gene (Takiff et al. 1994; Aubry et al. 2006). Mutations at codons

90 and 94 in the gyrA gene are most commonly observed among clinical isolates

(Aubry et al. 2006), along with a Ser95Thr polymorphism in gyrA that is also

present in FQ-sensitive clinical isolates (Maruri et al. 2012). Double mutations in

gyrA and gyrB have been reported to exhibit high-level OFL resistance (Isaeva et al.

2013; Nosova et al. 2013). Mutations in gyrA (e.g., Ser91Pro, Asp94Ala, Ala90Val)

also result in OFL, MOXI, and LFX cross-resistance with MIC90> 4 μg/ml

(Kambli et al. 2015; Willby et al. 2015). Although the majority of clinical FQ

resistance is attributed to mutations in the gyrA and gyrB genes, additional mech-

anisms that can contribute to FQ resistance include efflux and DNAmimicry (Pasca

et al. 2004). The clinical significance of these mechanisms has not been extensively

investigated yet.

2.3 Inhibitors of Transcription

2.3.1 Rifampicin

RIF is a highly effective rifamycin that interferes with transcription by inhibiting

the DNA-dependent RNA polymerase (RNAP) enzyme (McClure and Cech 1978).

The majority of RIF-resistant M. tuberculosis strains harbor mutations in an 81 bp

RIF resistance-determining region (RRDR) of the rpoβ gene, which encodes the

β-subunit of RNAP (Telenti et al. 1993). Mutations at different loci in the RRDR of

the rpoβ gene result in different RIF resistance levels (Louw et al. 2011), with

His526Arg, His526Asp, His526Pro, His526Tyr, and Ser531Leu mutations being

among the most common among RIF-resistant M. tuberculosis isolates (Telenti

et al. 1993; Bodmer et al. 1995). Mutations in the RRDR are not the sole contrib-

utors to RIF resistance; mutations outside of the RRDR (Heep et al. 2001; Siu et al.

2011), along with the significant upregulation of efflux pumps upon RIF exposure

(Louw et al. 2011), have been associated with RIF resistance. In 2011, the WHO

endorsed the implementation of an automated test, Xpert® MTB/RIF assay, to
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rapidly detect TB and RIF-resistant TB (Friedrich et al. 2013). Assessments of the

assay indicates that despite the cost limitations, it does provide rapid results, and it

significantly increases detection of TB and RIF resistance in culture-confirmed

cases, compared to smear microscopy (Steingart et al. 2014).

2.4 Inhibitors of Translation

2.4.1 Aminoglycosides

2.4.1.1 Streptomycin, Amikacin, and Kanamycin

The aminoglycosides inhibit protein synthesis by binding to the 30S subunit of the

mycobacterial ribosome (Ramaswamy and Musser 1998), with mutations in the

rpsL, rrs, gidB, and eis genes implicated in aminoglycoside resistance (Maus et al.

2005a; Zaunbrecher et al. 2009; Georghiou et al. 2012; Reeves et al. 2013).

Mutations in the essential rpsL gene, which encodes the 12S protein, result in

resistance to STR, with the most common rpsL mutations being K43R and K88R

(Ali et al. 2015). Mutations in the rrs gene, encoding for 16S rRNA, result in high-

level resistance to STR, AMI, and KANA, with the A1401G mutation being the

most frequently observed in AMI and KANA co-resistance (Campbell et al. 2011).

Various different mutations in the gidB gene, which encodes a 7-methylguanosine

methyltransferase that specifically modifies residues on 16S rRNA, have been

identified in STR-resistant M. tuberculosis strains. These mutations result in the

failure to methylate specific residues on the 16S rRNA molecule, thereby leading to

resistance conferred by loss-of-function mutations (Ali et al. 2015). It was reported

that promoter mutations in the 50 untranslated region of the eis gene, encoding an

aminoglycoside acetyltransferase, confer clinical low-level resistance to KANA.

This acetyltransferase acetylates KANA, thereby leading to its inactivation, which

subsequently prevents the drug from binding to the 30S ribosome (Zaunbrecher

et al. 2009). To date, these mutations have been relatively selective for KANA

resistance; therefore many strains with eis mutations would be classified as AMI

susceptible. Interestingly, it has recently been reported that mutations in the 50

untranslated region of the eis transcriptional activator, whiB7, also results in KANA
resistance. These mutations in whiB7 lead to an upregulation of eis, thereby

resulting in KANA degradation and subsequent resistance (Reeves et al. 2013).

2.4.2 Cyclic Peptides

2.4.2.1 Capreomycin and Viomycin

CAP and VIO are cyclic peptides that inhibit protein synthesis. VIO has been

shown to bind both the 30S and 50S ribosome subunits and to inhibit ribosomal
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translocation by interference with the peptidyl tRNA acceptor site (Yamada et al.

1978). VIO and CAP cross-resistance occurs in M. tuberculosis. Cross-resistance
between CAP and AMI/KANA has been reported, but cross-resistance between

CAP and STR is rare (Maus et al. 2005a). Mutations at A1401G, C1402T, and

G1484T are associated with CAP resistance, with additional mutations at various

positions in the tlyA gene, an rRNA methyltransferase reported to exhibit VIO and

CAP resistance (Maus et al. 2005a, b).

2.4.3 Oxazolidinones

2.4.3.1 Linezolid

Linezolid (LIN) was first introduced to treat gram-positive infections, including

staphylococcal and streptococcal infections (Perry and Jarvis 2001). In vitro

linezolid MICs for susceptible M. tuberculosis strains ranged from 0.25 to 1 μg/ml

with an MIC90 of 0.5 μg/ml. Development of resistance against linezolid was

considered to be rare (Richter et al. 2007). Reported in vitro frequencies for linezolid

resistant mutants were 2� 10�8 to 5� 10�9 (Hillemann et al. 2008). Sequencing of

the 23S rRNA gene in linezolid resistant mutants revealed the presence of a G to T

nucleotide substitution at either position 2061 or position 2576 (Richter et al. 2007).

The level of resistance for LIN mutants with the nucleotide substitution at position

2061 was 32 μg/ml, whereas those with a nucleotide substitution at position 2576

had a resistance level of 16 μg/ml (Richter et al. 2007). Interestingly, the predom-

inant mutation identified in clinical and in vitro selected LINmutants was in the rplC
gene, encoding the L3 ribosomal protein, at T460C (Beckert et al. 2012).

2.5 Anti-TB Drugs That Target Energy Metabolism

2.5.1 Pyrazinamide

Pyrazinamide (PZA) susceptibility testing is technically difficult due to the acidic

medium required for DST tests (Hoffner et al. 2013). PZA-resistantM. tuberculosis
strains emerge due to a lack of pyrazinamidase (PZase) activity. PZase is required to

convert PZA to its active form pyrazinoic acid (POA) (Konno et al. 1967). The

protonated form, HPOA, enters the cell, accumulates, and eventually kills the cell

(Zhang and Mitchison 2003). The PZA MIC of M. tuberculosis ranges from 6.25 to

50 μg/ml at pH 5.5 (Stottmeier et al. 1967). However, a PZAMIC> 2000 μg/ml has

been reported for M. avium and M. smegmatis due to intrinsic PZA resistance as a

result of efflux.M. bovis is also naturally resistant to PZA due to C!Gnt169 in pncA,
whereas M. kansasii has weak PZase activity and exhibits an MIC of 250 μg/ml

(Ramirez-Busby and Valafar 2015). PZA resistance inM. tuberculosis is mostly due

to mutations in the pncA gene (Whitfield et al. 2015a); however, pncA
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polymorphisms that do not confer the PZA-resistant phenotype have also been

identified (Whitfield et al. 2015b). Mutations in rspA, involved in trans-translation,

have also been identified in PZA-resistant strains (Louw et al. 2006; Shi et al. 2011;

Feuerriegel et al. 2013; Simons et al. 2013b; Tan et al. 2014). Interestingly,M. canetti
is naturally resistant to PZA due to a mutation (Met117Thr) in panD (Zhang et al.

2013). Subsequently, panD mutations in PZA-resistant M. tuberculosis strains

lacking rpsA or pncA mutations have also been identified (Shi et al. 2014). POA

inhibits enzymatic activity of panD, and it was observed that anti-TB activity of POA

could be antagonized by B-alanine or pantothenate (Dillon et al. 2014).

2.5.2 Bedaquiline

Bedaquiline (BDQ) (Sirturo or TMC207) is the first anti-TB drug in 40 years to be

FDA approved for treatment of sensitive and MDR-TB. The use of BDQ in addition

to the standard TB therapy in the murine model accelerated the bactericidal effect

(Andries et al. 2005; Lounis et al. 2006; Ibrahim et al. 2007). The minimum

inhibitory concentrations of BDQ for M. tuberculosis H37Rv and drug-susceptible

strains ranged from 0.03 to 0.12 μg/ml (Table 1) (Andries et al. 2005). Computa-

tional models suggest that BDQ restricts the rotational activity of ATP synthase,

thereby inhibiting ATP production (deJonge et al. 2007). Spontaneous mutant

selection and subsequent whole genome sequence analysis of the resistant

M. tuberculosis and M. smegmatis mutants identified mutations (Ala63Pro and

Asp32Val) in the c-subunit of ATP synthase encoded by the atpE gene (Andries

et al. 2005; Koul et al. 2007). Mutations in atpE partially account for the BDQ

resistance phenotype, with the report of spontaneous mutants without atpE gene

mutations (Andries et al. 2005; Huitric et al. 2007, 2010). Recently, clofazimine

(CFZ)-BDQ cross-resistance was observed in CFZ-resistant in vitro mutants. In the

absence of atpE mutations, these mutants harbored mutations in the transcriptional

repressor, Rv0678, which subsequently resulted in the upregulation of the Rv0678
and the mmpL5-mmpS5 efflux system (Milano et al. 2009; Hartkoorn et al. 2014).

This upregulation led to a four- to eightfold increase in the level of resistance for

CFZ and BDQ, which could be reversed with the addition of verapamil and

reserpine (Andries et al. 2014; Hartkoorn et al. 2014).

2.6 Multi-target Drugs

2.6.1 PA-824/Pretomanid

PA-824 is a member of the nitroimidazole family containing a nitroimidazopyran

nucleus. The MIC for PA-824 ranges from 0.039 to 0.25 μg/ml for sensitive strains

compared to 0.015–0.513 μg/ml for drug-resistant strains, with a mutation fre-

quency of 1.9� 10�5 to 6.38� 10�7 (Stover et al. 2000). PA-824 is a prodrug
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that is activated to its toxic form, by the mycobacterial membrane-bound

nitroreductase Ddn, a deazaflavin F420-dependent enzyme. This activation leads

to the inhibition of mycolic acid synthesis, resulting in cell death (Singh et al.

2008). Investigation on the modes of action of PA-824 has shown that intermediate

metabolites of PA-824 act as intracellular nitric oxide donors, therefore encourag-

ing intracellular killing of M. tuberculosis in anaerobic conditions (Singh et al.

2008; Manjunatha et al. 2009). When bacteria are in a hypoxic nonreplicating state,

PA-824 kills as a nitrous donor (Manjunatha et al. 2009). Interestingly,M. leprae is
intrinsically resistant to PA-824 due to the lack of the ddn gene (Manjunatha et al.

2006).

Another mode of action for PA-824 is suggested by the observation that an fbiC
knockout mutant in H37Rv, which is deficient for F420 production, is hypersensi-

tive to oxidative stress and INH, moxifloxacin, and CFZ (Gurumurthy et al. 2013).

By isolating PA-824-resistant mutants from the H37Rv M. tuberculosis back-

ground, it was observed that 29% of isolates harbored mutations in the ddn gene

and 26% ( fbiC), 19% ( fbiA), 7% ( fgd1), and 2% in the fbiA gene. The mutation

Ser11STOP in ddn gene conferred high-level PA-824 resistance; however, approx-
imately 17% of mutants lacked mutations in target genes screened, suggesting a

different resistance mechanism (Haver et al. 2015).

2.6.2 OPC67683/Delamanid

Delamanid belongs to the nitro-dihydro-imidazooxazole class of antibiotics that

inhibit mycolic acid synthesis (Barry and O’Connor 2007). Delamanid has an

MIC90 of 0.006–0.05 μg/ml (Diacon et al. 2011), with an in vitro mutation

frequency of 6.44� 10�6 to 4.19� 10�5 (Szumowski and Lynch 2015). Mutations

in F420 biosynthetic genes also result in PA-824-delamanid cross-resistance.

2.6.3 Clofazimine

CFZ is lipophilic riminophenazine developed in 1957 for the treatment of MR-TB

(Van Deun et al. 2010). It is a prodrug that is reduced by NADH dehydrogenase

(Ndh2), and subsequently re-oxidized by O2, to release reactive oxygen species

(ROS). The production of ROS and subsequent cell death have been reported in

M. smegmatis treated with CFZ and CFZ analogs (Yano et al. 2011). In vitro

isolation of CFZ mutants reported cross-resistance to BDQ due to the presence of

mutations in the transcriptional repressor, Rv0678, and subsequent upregulation of

efflux pumps mmpL5-mmpS5 (Hartkoorn et al. 2014). Recently, whole genome

sequence analysis of spontaneous CFZ mutants revealed mutations in two addi-

tional genes that conferred the CFZ-resistant phenotype. These mutations were

Glu89STOP in the putative peptidase, PepQ, resulting in the inactivation of this

protein (Zhang et al. 2015a). The authors suggest that PepQ could be involved in

CFZ activation. The additional mutation, Val351Ala, was identified in a possible
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permease, Rv1979c, which is involved in amino acid transport (Zhang et al. 2015a).

Although it is suggested that this protein could be involved in CFZ uptake and

transport, it is evident that the direct effect of these two additional genes on CFZ

resistance should be investigated further.

2.7 Anti-TB Drugs That Target Pathways

2.7.1 Para-aminosalicylic Acid

PAS is used as a second-line drug that targets the mycobacterial folate pathway

(WHO 2000; Chakraborty et al. 2013). This prodrug is a structural analog of para-

aminobenzoic acid (PABA) that is the substrate of the dihydropteroate synthase,

encoded by folP1/folP2. The condensation of PABA and 6-hydroxymethyl-7,8-

dihydropterin pyrophosphate to 7,8-dihydropteroate is catalyzed by

dihydropteroate synthase. This is subsequently converted to dihydrofolate and

reduced by dihydrofolate reductase, encoded by dfrA, to produce tetrahydrofolate

(Table 2).

Rengarajan and colleagues showed that PAS resistance is attributed to mutations

in the thyA gene, encoded for by thymidylate synthase A, which is essential for

thymine synthesis. In addition, thyA gene mutations were also present in clinical

M. tuberculosis isolates resistant to PAS, indicating that PAS functions as a folate

antagonist (Rengarajan et al. 2004; Fivian-Hughes et al. 2012). The dihydrofolate

synthase, FolC, is essential for the activation of PAS, and mutations in folC have

been reported to result in the PAS-resistant phenotype (Zhao et al. 2014). In

addition, mutations in ribD, encoded for by the alternate dihydrofolate reductase,

have been reported to result in its overexpression, thereby leading to PAS resistance

(Zheng et al. 2013; Zhao et al. 2014; Zhang et al. 2015b). It was suggested that

overexpression of ribD confers resistance by compensating for the inhibition of

DfrA function.

3 Drug Resistance Mechanisms Other Than Chromosomal

Mutations

Drug resistance in M. tuberculosis is not attributed to horizontal gene transfer, due

to the lack of plasmids in this bacillus (Zainuddin and Dale 1990). Alternative

mechanisms that contribute to mycobacterial drug resistance include (a) the pro-

duction of drug-modifying enzymes, (b) the production of enzymes that inactivated

the drug, (c) low cell wall permeability resulting in a decrease in drug influx, and

(d) efflux-related mechanisms leading to a reduction in intracellular drug concen-

tration (Davies and Courvalin 1977; Dabbs et al. 1995; Liu et al. 1996; Takiff et al.
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1996; Davies and Wright 1997; Quan et al. 1997; Imai et al. 1999; Nikaido 2001;

Brennan 2003; Draker et al. 2003; Li et al. 2004; Ashenafi et al. 2014) (Fig. 2).

3.1 Permeability Barrier and Activation of Efflux Pumps

Certain mycobacterial species exhibit an intrinsic drug-resistant phenotype that is

not the result of antibiotic exposure (Fajardo et al. 2008). Intrinsic drug resistance is

attributed to the activation of efflux pumps and an inherently low permeability of

the mycobacterial cell wall (Nikaido 2001; Borges-Walmsley et al. 2003; Louw

et al. 2009). Recently, knockdown of Rv1026 (ppx2), an exopolyphosphatase, was

shown to result in increased bacterial cell wall thickness and decreased INH

permeability (Nikaido 2001; Brennan 2003; Chuang et al. 2015). This indicated a

molecular basis contributing to decreased permeability and intrinsic drug

resistance.

Whole genome sequencing of M. tuberculosis revealed the presence of various

efflux pumps that may enable the bacilli to evade the antimycobacterial killing

action. Efflux pumps export various toxic compounds including antibiotics and

metabolites, resulting in a decrease in intracellular concentration (Pages et al. 2005;

Gupta et al. 2006). This phenomenon has been extensively studied in mycobacteria

recently (Li et al. 2004; Morris et al. 2005; Buroni et al. 2006; Zechini and Versace

2009; Adams et al. 2011; Louw et al. 2011; Rodrigues et al. 2011, 2012; Balganesh

et al. 2012; Hartkoorn et al. 2014).

RESISTANCE

INTRINSIC 

RESISTANCE

Activation of efflux pumps 
Decrease in intracellular drug 
concentration 

Active efflux of drugs

Drug Exposure 

Limited drug influx due 

to permeability barrier Decrease in intracellular 
drug concentration 

INTRINSIC

RESISTANCE

Production of drug 
inactivating and modifying 
enzymes 

Fig. 2 Mycobacterial drug resistance mechanisms other than chromosomal alterations. Mecha-

nisms such as the activation of efflux pumps and limited drug influx due to the decreased drug

permeability lead to a reduction in the intracellular drug concentration and subsequent intrinsic

resistance. The production of drug-inactivating and drug-modifying enzymes also results in drug

resistance
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In vivo and in vitro studies have revealed that antibiotic exposure of mycobac-

terial cells resulted in the significant upregulation of efflux pumps. It was shown

that exposure to RIF resulted in an increase in expression of Rv1258c, which is a

tap-like efflux pump (Adams et al. 2011, 2014), and arise in the RIF resistance

level. Treatment with efflux pump inhibitors, verapamil, reserpine, and tetrandrine,

along with RIF, INH, and EMB, could reverse the resistance phenotype of these

anti-TB drugs (Adams et al. 2011, 2014; Louw et al. 2011). Studies have also

shown that the exposure of M. tuberculosis to anti-TB drugs such as EMB, INH,

RIF, OFL, STR, and PAS results in the upregulation of efflux pumps like drrA,
drrB, efpA, mmr, jefA, Rv1634, whiB7, Rv1456c-Rv1457c-Rv1458c, Rv1258c, and
pstB (Morris et al. 2005; Ramon-Garcia et al. 2012; Gupta et al. 2014; Hartkoorn

et al. 2014; Garima et al. 2015; Li et al. 2015; Zhang et al. 2015c). The upregulation

of the efflux pumps results in an MDR phenotype. Interestingly, the organosilicon

compound, SILA-421 and thioradazine, both shown to have efflux pump inhibitory

activity, demonstrated time- and concentration-dependent activity against

M. tuberculosis as well as the enhanced killing of intracellular XDR-TB (Martins

et al. 2009; Simons et al. 2013a; de Knegt et al. 2014, 2015). These compounds also

enhanced the activity of INH and RIF in vitro and prevented the emergence of INH-

and RIF-resistant mutants. However, they did not show in vivo activity enhance-

ment of INH and RIF in M. tuberculosis-infected mice treated with INH-RIF-PZA

for 13 weeks (de Knegt et al. 2014, 2015).

3.2 Production of Drug-Modifying and Inactivating Enzymes

M. smegmatis has been confirmed to be naturally resistant to RIF due the rifampin

ADP-ribosyltransferase (Arr-ms), encoded by the chromosome, which assists in

covalently adding a ribose group to RIF. This addition modifies and inactivates RIF,

thus resulting in intrinsic resistance inM. smegmatis to RIF (Dabbs et al. 1995; Imai

et al. 1999; Quan et al. 1997; Baysarowich et al. 2008).

The production of inactivating enzymes, e.g., the acetyltransferase AAC (20)—Ic

and the phosphotransferase encoded by the Rv3225c gene, APH (6)-la and APH (6)-

ld from producer strain Streptomyces griseus, has been associated with STR

resistance (Davies and Courvalin 1977; Davies and Wright 1997; Draker et al.

2003; Ashenafi et al. 2014). Similarly, the lack of antimicrobial activity in

M. abscessus of aminoglycosides could be reversed by disruption of the chromo-

somally encoded aac(20) gene (Maurer et al. 2014, 2015) (Fig. 2). By using

M. smegmatis, it was shown that the activity of acetyltransferase was significantly

induced in response to aminoglycoside, thereby resulting in the inhibition of protein

synthesis.
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4 Compensatory Mechanisms, Fitness, and Drug

Resistance

Some resistance-causing mutations have been found to incur a fitness cost

(Gagneux et al. 2006). The fitness cost may be compensated for by the acquisition

of secondary mutations at a different site during the evolution of resistant bacteria

(Bjorkman et al. 2000). The mutant carrying the chromosomal alteration can

become extinct, or the mutations might be fixed in the population by means of

compensatory evolution (Bottger and Springer 2008). These compensatory mech-

anisms can reduce the cost by restoring physiological functions impaired by the

resistance mutations without altering the level of bacterial resistance (Schrag and

Perrot 1996).

Recently, whole genome sequencing of RIF-resistant M. tuberculosis strains

with rpoB mutations revealed novel mutations in rpoA and rpoC that emerged over

time. Strains with these mutations exhibit high competitive fitness in vitro and

in vivo and lead to MDR strains with high fitness (Comas et al. 2012). Previously, it

was shown by in vitro pair-wise competition experiments that the wild-type rpoB
M. tuberculosis strains outcompeted strains harboring the Ser522Leu, His526Tyr,

and Ser531Trp mutations (Billington et al. 1999; Mariam et al. 2004). The extent of

fitness loss was dependent on the specific rpoB mutation, with the Ser531Leu rpoB
mutation only exhibiting a minor fitness defect compared to other mutations

(Billington et al. 1999; Gagneux et al. 2006; Mariam et al. 2004). Additionally,

mutations in rpoC illustrated that epistatic interactions between mutations that

confer drug resistance, compensatory mutations, and diverse strain genetic back-

ground might influence compensatory evolution (de Vos et al. 2012).

In INH resistance, mutations in katG eliminate catalase-peroxidase activity,

thereby preventing the activation of INH (Heym et al. 1999). It was shown that

the expression of KatG or the alkyl hydroperoxidase, AhpC, exhibited a protective

effect against organic peroxides in bacilli. The overexpression of AhpC, due to the

presence of a mutation in ahpC, enabled INH-resistant katG mutants to survive

during infection (Sherman et al. 1996).

These alternative mechanisms compensating for the loss of fitness caused by

genetic mutations are difficult to detect using PCR-based methods as these methods

only target mutation hotspots associated with drug resistance. Thus, it is imperative

to also consider these compensatory mechanisms upon designing and developing

new drugs and treatment regimens.

5 Perspectives

The history of TB drug development and use provides numerous examples of

chromosomally encoded resistance, which often emerges very rapidly after the

introduction of new drugs. This highlights the need for a diverse product portfolio
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entering the TB drug development pipeline. Fortunately, there are several promis-

ing new drugs at various stages within the TB drug development pipeline. These

include bactericidal compounds in the benzothiazinone class, targeting the enzyme

decaprenylphosphoryl-β-D-ribose 20-oxidase (DprE1), which is essential for cell

wall synthesis (Makarov et al. 2015). However, as with all TB drugs, there is a need

for a better understanding of mechanisms of drug resistance and consequences of

mutations that confer drug resistance. The emergence of compensatory mechanisms

following the evolution of drug resistance-conferring mutations, after selective

pressure, is an additional factor to consider upon rational drug design. Recently,

bacterial collateral resistance and sensitivity to various combinations of anti-TB

drugs have been reported. However, it is evident that the collateral sensitivity and

resistance networks are complex, thereby complicating tailoring specific treatment

regimens based on existing drug treatments. It would be desirable to explore

alternative approaches to treatment, including the inclusion of efflux pump inhib-

itors or immunomodulators. Ideal treatment regimens would eliminate the forma-

tion of bacterial persisters, reduce the selection of resistant mutants, and ultimately

offer a much-reduced treatment regime, to increase compliance.
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