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Preface

Human beings interact with almost all kinds of living beings. The interaction is

complexed by the influence of environmental factors. These interactions assume

various relationships ranging from symbiotic at one end of the spectrum to patho-

genic/parasitic at the other end. Human body—cells, tissues, and organs—has a

complete network of metabolic activities and systems, which are well organized.

Human systems are tuned to recognize and sense almost all kinds of living and dead

molecules and organisms. Taking advantage of these human senses, vaccines are

developed to protect humans against pathogenic organisms. Vaccine development

being a very complex phenomenon has been pursued for a limited number of

diseases. Interestingly, in spite of the presence of a mechanism to prevent entry

of foreign entities, human bodies house a large number of microbes on the skin

surface, within the gut all the times. A third set of microbes infect the human body

and are labeled as pathogenic. Here, bacteria start multiplying at different rates. The

bacteria choose to either stay back and cause infectious diseases such as tubercu-

losis—Mycobacterium tuberculosis, Pseudomonas aeruginosa, and Burkholderia
cepacia—or multiply rapidly and hurriedly leave the human body such as in the

cases of diarrhea, cholera, and septicemia. However, in all cases, microbes cause

enormous damage to human health. Discovery of antibiotics provided mankind

with much needed relief from diseases, which had been assuming epidemic dimen-

sions. Incidentally, this discovery could not sustain for long since microbes started

reacting to this environmental stress. Microbes developed resistance to antibiotics.

This provoked scientists to discover newer antibiotics. This game of success and

failure has reached a virtual dead end. From single antibiotic-resistant microbes, we

have now seen multiple drug-resistant and extremely drug-resistant microbes. The

pathogens have evolved resistance to almost all the antibiotics, which thus are

proving ineffective. Scientific morale is going down as pharmaceutical companies

are not showing any interest in investing money in this area. Thus, the need is to

look for novel drug targets and drugs. We have to develop innovative systems to

beat microbial intelligence. The question which is being raised repeatedly is: Shall

we mutely witness this onslaught or prepare novel antibacterial?
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Research for human welfare needs a strong team of dedicated scientific minds.

The young researchers and brilliant scientists can make innovative and significant

contributions. This book provides recent developments in the area of Drug Resis-

tance, which can provide leads to the young ignited minds and enable them to

translate them into novel drugs for the benefits of the society. In this book, scientists

with extremely strong academic knowledge and practical experience have agreed to

share their recent research works. This book is a compilation of the research works

of dedicated teams of scientific workers who are committed to human welfare. I am

sincerely humbled by the contributions made by each of the respected authors. I am

really thankful to them for their efforts. Words are not sufficient enough to truly and

adequately acknowledge the worthiness of their efforts. My true inspirations to

write this book were bestowed on me by the constant faith and support of my

mother (Late Mrs. Kanta Kalia), who passed away, during the preparation of this

book; my father (Mr. R.B. Kalia); Amita (wife), Sunita and Sangeeta (sisters); Ravi,

Vinod, and Satyendra (brothers); Daksh and Bhrigu (sons), my teachers, especially

Dr. A.P. Joshi; and my friends Rup, Hemant, Yogendra, Rakesh, Atya, Jyoti,

Malabika, Neeru, and Ritusree. I must also acknowledge the support of my young

friends Asha, Sadhana, Sanjay, Mamtesh, Subhasree, Shikha, Jyotsana, Ravi,

Priyanka, and Rahul.

Delhi, India Vipin Chandra Kalia
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Emerging Themes in Drug Resistance

Gunjan Arora, Ankur Kulshreshtha, Kriti Arora, Puneet Talwar,

Rishi Raj, Gurpreet Grewal, Andaleeb Sajid, and Ritushree Kukreti

Abstract In the last century, advances in biomedical sciences led to improvements

in quality of human life mainly by decreasing the disease burden and providing

various healthcare innovations. Effective medications were developed for most

infectious diseases, lifestyle disorders, and other diseases. For once, we all believed

that we can create a disease-free world; however, the excessive use of medications

generated drug-resistant human pathogens leading to untreatable forms of many

diseases. In the last few decades, the focus has been to understand the evolution of

drug resistance, tackle the current drug-resistant disease agents, and develop new

drugs that are potent and reliable for long-term usage. In this chapter, we will

discuss the emerging themes in drug resistance research. As biologists are gaining

deeper understanding of cellular complexity and disease agents, numerous modern

themes have been pursued. The focus is to identify novel drug targets and develop

specific drug molecules detrimental for the disease causing pathogens, and to

harness host immunity. For the scope of this chapter, we will primarily discuss
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pharmacogenomics, therapeutic antibodies, cell-to-cell communication, exosomes,

structuromics, and posttranslational modifications.

1 Pharmacogenomics

1.1 Introduction

The completion of human genome project in 2003 followed by emergence of high-

throughput sequencing and genotyping technologies has led to the initiation of a

new era in the research field with central focus on genomics. This has changed the

way of looking at conventional study approaches leading to merging of different

domains, which resulted in the opening of new research frontiers such as pharmaco-

genomics, network medicine, and systems pharmacology to name a few. In this

section, we aim to provide a broad overview of the pharmacogenomics, including

major developments that have occurred in this field and finally highlighting the

significant achievements and future perspective.

Pharmacogenomics (PGx) and pharmacogenetics (PGt) involve individual’s
genetic signatures to study drug response and/or drug toxicity behavior often

referred to as phenotype. PGx differs from PGt in terms of the involvement of

entire genome instead of few selected genes with no prior hypothesis. Genetic

signature refers to the markers such as single-nucleotide polymorphisms (SNPs)

and copy number variations (CNVs). Drug response phenotype implies to individ-

ual who responds well to the treatment (the good responder) and to one who doesn’t
(the poor responder) based on drug metabolism profile categorized into extensive

metabolizer, intermediate metabolizer, and poor metabolizer. Individuals with

extensive-metabolizer phenotype excrete the drug from the body completely earlier

than expected, failing to achieve its desired therapeutic effect. These individuals

require higher doses than the normal individuals which are basically intermediate

metabolizers. Poor metabolizers accumulate the drug in the body and may experi-

ence adverse drug reactions (ADR). Some people also show drug toxicity due to

hypersensitivity reactions that may also be due to the individual specific genetic

signatures such as genes in the human leukocyte antigen (HLA) system. So, these

individuals may require a lower dose or switch to another drug.

Several factors affect the outcome of a PGx/PGt study including ethnicity,

disease (brain disorders-serum drug levels are not useful), genetics (host suscepti-

bility genes) and environment (diet, smoking, alcohol); and therefore these are

considered an important part of study design based on the study hypothesis. The

steps involved in a PGx/PGt study are depicted in Fig. 1.

2 G. Arora et al.



1.2 Role of Pharmacogenomics in Drug Resistance

The ultimate goal of pharmacogenomics is the development of optimized drug

therapy based on the genetic makeup of an individual with maximum efficacy. The

drug effects are determined by number of drug-metabolizing genes categorized into

three groups—phase I (functionalization by cytochrome P450 superfamily), phase

II (conjugation by conjugating enzymes such as sulfotransferases and

UDP-glucuronosyltransferases), and phase III (excretion by drug transporters).

The genetic variation in these genes may lead to differential response to drug

treatment which can have important clinical implications. Drug transporters

(phase III) have pivotal role in regulating the absorption, distribution, and excretion

of many medications. There are number of studies where inherited variation in

these transporters has been associated with differential response in different dis-

eases and development of drug resistance in many diseases. Few such studies are

discussed below.

1.2.1 Tuberculosis

Rifampicin is a first-line drug used to treat tuberculosis. Weiner et al. conducted a

pharmacokinetics study in pulmonary tuberculosis patients from Africa, North

America, and Spain compared with North American healthy controls to investigate

the reasons for the interindividual variations in rifampicin levels. The study found

that polymorphisms in the SLCO1B1 gene (encodes drug transporter OATP1B1—

Optimizing the drug 

dose

Genotype –phenotype 

correlation

Identifying underlying genetic factors 

contributing towards drug response

From diagnosis to prognosis; Choosing the drug 

of choice; Predicting drug adverse reaction

PGx
Test

Validation 
and 

Regulatory 
approvals

Identification of genetic marker 
for poor response or ADR

Fig. 1 Steps toward personalized medicine: To date around 136 FDA-approved drugs are

available with pharmacogenetics information in their labeling
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organic anion transporter peptide) had a significant influence on rifampicin expo-

sure. Approximately 36% lower exposure of rifampicin was found in patients with

SLCO1B1 463 CA genotypes than CC genotypes (Weiner et al. 2010).

1.2.2 Epilepsy

There are number of studies in epilepsy where poor or no response to antiepileptic

drugs (AEDs) is associated with variation in drug transporters. Siddiqui et al.

investigated the role of genetic variation in ABCB1 (ATP-binding cassette subfam-

ily, B1), encoding P-glycoprotein (P-gp) for multidrug resistance in epilepsy

(Siddiqui et al. 2003). ABCB1 can efflux AEDs out of the cells. They studied

ABCB1 C3435T variant (rs1045642) in 200 patients with drug-resistant epilepsy,

115 patients with drug-responsive epilepsy, and 200 controls, all of European

ancestry. It was found that multidrug-resistant epilepsy patients were more likely

to have the CC genotype than the TT genotype (Siddiqui et al. 2003).

1.2.3 HIV

The pharmacokinetics profile of antiretroviral drugs used in HIV therapy is also

dependent on genetic differences in drug transporters. Anderson et al. conducted a

study to understand the relationship of antiretroviral drug pharmacokinetics and

pharmacodynamics with polymorphisms in drug-metabolizing genes. They

observed that “indinavir” oral clearance was 24% faster in individuals having

multidrug resistance-associated protein 2 (MRP2)-24C/T variant which can inter-

fere with drug efficacy as indinavir is a substrate of MRP2 and thus can limit drug

absorption and accelerate drug clearance (Anderson et al. 2006).

1.3 Role of Pharmacogenomics in Drug Discovery

The information from PGx can help in drug discovery and development. The

example of Herceptin (trastuzumab), a humanized monoclonal antibody against

ErbB2 receptor used in breast cancer treatment (Vogel and Franco 2003; Noble

et al. 2004), explains how well PGt tests can help in progressing drug discovery and

development. It has been observed that more positive response was observed in

patients with tumors overexpressing ErbB2. With PGt testing, individuals having

overexpression of ErB2 and appropriate for Herceptin treatment can be identified

(McCarthy et al. 2005). Similar approach can be used with drug transporters. One

approach can be the use of specific inhibitors against transporters to stop efflux of

drugs to overcome drug resistance in subgroup where overexpression of specific

transporter is observed. The other approach can be identifying the molecular

players like nuclear receptors regulating expression of transporters as their genetic

4 G. Arora et al.



variability is responsible for nonresponsiveness to drugs and drugs can be designed

against those molecular players to achieve therapeutic efficacy. More research in

PGx and development of specific technologies can really help in progress of

medicinal sciences.

2 Therapeutic Antibodies for Bacterial Diseases

2.1 The Growing Problem of Antimicrobial Resistance

Antibiotics are the most commonly prescribed class of therapeutic agents both

prophylactically and therapeutically. However, the use of antibiotics is not just

limited to clinical settings. In an attempt to make food safer to eat, antibiotics have

been introduced in poultry and dairy farms. In addition, several antibiotics are also

being exploited in water sources for irrigation to prevent crop from diseases. This

indiscriminate use of antibiotics has contributed heavily to the spread of antimi-

crobial resistance. Resistance to most antibiotics has been observed within 4–7

years of their introduction (Clatworthy et al. 2007). This has led to reemergence of

infectious diseases, which had previously been effectively controlled by chemo-

therapy. This has in turn prompted surveillance programs by the World Health

Organization (WHO) and Centers of Disease Control and Prevention (CDC) and

European Center for Disease Prevention and Control (ECDC) to monitor the rise

and spread of antibiotic resistance (http://www.who.int/drugresistance/global_

action_plan/en/, http://www.cdc.gov/drugresistance/cdc_role.html, http://ecdc.

europa.eu/en/healthtopics/antimicrobial_resistance/database/Pages/database.aspx).

According to current estimates by the CDC, there were two million cases of

infections with 23,000 deaths from antibiotic-resistant organisms every year in the

United States alone (2013 Threat Report, CDC http://www.cdc.gov/drugresistance/

threat-report-2013/index.html). Several bacterial and fungal pathogens have made a

comeback and have once again become an unmet clinical need of infectious disease

(Fauci and Morens 2012). The ESKAPE pathogens, namely, Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudo-
monas aeruginosa, and Enterobacter species, are posing a serious challenge in the

nosocomial environment and are rapidly becoming pan resistant to all known

classes of antibiotics used against them (Rice 2008).

2.2 The Need for New Therapeutic Interventions

Owing to the growing problem of antimicrobial resistance, there is an urgent need

for development of new therapeutic agents against infectious pathogens. Antimi-

crobial resistance has surfaced against all known classes of drugs including colistin

Emerging Themes in Drug Resistance 5
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which has been considered the last-resort antibiotic against several multidrug-

resistant pathogens (Liu et al. 2016). With the exhaustion of the clinically useful

antibiotic repertoire, attention is now being focused on other biologics that can

serve to incapacitate pathogens. The post-antibiotic era has begun, and with that

drug discovery programs are shifting focus toward large-molecule therapies which

are based on an understanding of the host’s own immune defenses. Antibodies are

one such class of agents that have historic precedence for use in successful

treatment of certain infections. In the pre-antibiotic era, as early as the 1890s,

antibodies were being used for the treatment of select infections, but with the

discovery of antibiotics, antibody therapies took a backseat. As a result, their

potential was neither fully realized nor exploited.

2.3 The Foundations of Antibody Therapy

The discovery of passive antibody immunotherapy for infectious diseases is

credited to Emil von Behring and Shibasaburo Kitasato. They were the first to

show that serum from guinea pigs infected with a sublethal dose of Corynebacte-
rium diphtheriae could be used to protect healthy guinea pigs from a lethal

challenge of the organism. Similar protection was also shown by them against

another bacterial pathogen, Clostridium tetani (Von Behring and Kitasato 1965,

1991). For this discovery in 1901, von Behring secured the first physiology/med-

icine Nobel Prize. As is evident, the protection was afforded by antibodies directed

against the diphtheria or tetanus toxins. At the same time, Paul Ehrlich made his

contribution to the field by standardizing the therapeutic dose by titrating the

antiserum in infected animals and establishing methods for generation of high-

titer antiserum using large animals such as horses (Bosch and Rosich 2008). This

was an important advancement in dose determination for immune-based therapies

for which he was awarded the Nobel Prize in 1908 (along with Élie Metchnikoff for

his discovery of phagocytosis). In the United States, the mass production of

diphtheria antiserum for therapeutic use began in 1895 by the H. K. Mulford

Company in Glenolden, Philadelphia (later Merck Sharp & Dohme Corp. in

1929). Subsequently, antiserum was successfully used in the treatment of some

bacterial diseases such as diphtheria, tetanus, pneumococcal pneumonia, and men-

ingitis (Casadevall 1996). These early advances not only helped lay the foundations

of vaccinology but also established the therapeutic potential of antibodies. How-

ever, despite these early achievements, interest in serum-based therapies rapidly

declined in the 1930s. The reasons for this decline included the problem of serum

sickness (due to the presence of foreign animal proteins), unpredictable therapeutic

outcomes (which was due to instability of preparations, differences in batches, and

a lack of understanding of disease stage at the time of administration), and most

importantly perhaps the rise of antibiotics. While antibodies continued to be

exploited for vaccine discovery, their application to treatment of infections quickly

decreased. After the discovery of penicillin by Alexander Fleming in 1928,

6 G. Arora et al.



antibiotics quickly became the magic bullets for treatment of life-threatening and

nonlife-threatening microbial infections.

2.4 Antibody Structure

The typical immunoglobulin G (IgG) molecule is a Y-shaped molecule which has

two longer heavy chains each of which is in turn linked to two shorter light chains

by disulfide bonds. The heavy chains are also linked to each other by disulfide

bonds. The light chains and their associated heavy-chain regions which form the

fork of the “Y,” known as the Fab fragment, are involved in antigen binding. The

stem of the “Y” which is composed of the two heavy chains is known as the Fc

portion and is involved in binding to receptors on the surface of phagocytic cells.

The Fab and Fc fragments are separated from each other by a hinge region which

allows flexibility of movement to the Fab fragment. Further, the heavy and light

chains are divided into distinct domains known as the variable and constant regions.

Each heavy chain has three constant regions (CH1, CH2, and CH3) and one variable

(VH) region. Each light chain has one constant (CL) and one variable (VL) region.

Each Fab fragment is therefore composed of the VH and VL regions (which form the

V region) and the CH1 and CL regions (which form the C region). The amino acid

residues in the variable region define the specificity of the Ab. The V region of the

Fab fragment which makes contact with the antigen is known as the paratope, and it

is complementary to the residues on the antigen which form the antigen’s epitope
(Putnam et al. 1979; Litman et al. 1993; Mattu et al. 1998; Maverakis et al. 2015).

2.5 Types of Therapeutic Antibody Molecules

Therapeutic antibodies come in many flavors (Chames et al. 2009). From the

conventional polyclonal sera to antibodies with multiple specificities and uncon-

ventional structure, all forms are currently being explored in therapy (Fig. 2).

1. While polyclonal antibodies are not as common in development anymore,

monoclonal antibodies are still at the forefront of antibody therapies.

2. Chimeric antibodies combine the portions of mouse and human antibodies where

the human portion makes up to 70%, allowing better specificity of the Fc region

and reduced toxicity.

3. Further advancement of technology has made possible the generation of human-
ized antibodies which are 85–50% human, and these therefore have even better

safety profiles.

4. Antibody fragments comprising solely of the VL and VH domains, termed scFv
(single-chain variable fragment), are used to provide specificity in the absence of

Fc receptor-mediated opsonophagocytosis.
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5. Two scFv linked together with a very short linker make a structure known as the

diabody.

2.6 Clinical Pipeline

The first monoclonal antibody to be approved for clinical use against an infectious

agent was Palivizumab/Synagis for respiratory syncytial virus (RSV) in 1998.

Palivizumab has been developed by MedImmune against the F protein of RSV

(Johnson et al. 1997), for treatment of severe respiratory infection in high-risk

infants. In recent years, antibody therapies have been in development against many

infectious pathogens. Antibody therapies are being developed to enable pathogen

clearance by diverse approaches.

2.6.1 Neutralization of Viruses and Toxins

Direct neutralization by formation of antigen-antibody complexes which can be

cleared by the immune system.

Hc
antibody

Antibody bound toxin
or immunotoxin

Bispecific Antibody Bispecific Fab’2 Bs Fab Diabody

Fc
region

Fab region

Antibody

Fab’ region

BiTE (bispecific
T-cell engager)

scFv
(single chain 

variable fragment) Di-scFv

A                           B                          C                                D                         E

F                                 G                                   H                       I                            J

Fig. 2 Therapeutic antibody structural representation: (a) basic antibody structure, (b) single-

chain variable fragment, (c) dimer of single-chain variable fragment, (d) toxin/therapeutic com-

pound bound to single-chain variable fragment, (e) bispecific T-cell engager, (f) bispecific

antibody, (g) bispecific F(ab)2 region, (h) bispecific Fab region, (i) diabody, and (j) heavy-chain

only antibody
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2.6.2 Opsonophagocytic Killing

Antibodies specific for proteins on the pathogen’s surface. The Fc region is in turn

able to bind the Fc receptors on surface of phagocytic cells. This allows the

phagocyte to directly engulf and mediate killing of the pathogen.

2.6.3 Complement Activation

Binding of antibodies can also lead to complement activation which in turn can lead

to pathogen lysis by formation of the membrane attack complex (particularly in

Gram-negative bacteria and fungi).

2.6.4 Antibody-Drug Conjugates

Antibody-drug conjugate is a novel class of biologics where an antibody provides a

means of delivery of a small-molecule chemotherapeutic agent.

There are several candidates currently in clinical development that are based on

one or more of the abovementioned approaches (ter Meulen 2007, 2011;

Bebbington and Yarranton 2008; Nagy et al. 2008; Saylor et al. 2009). These

therapies are frequently directed against surface structures of the pathogens which

are often critical for attachment, toxin injection, and immune evasion. Also, many

candidates in development are directed against bacterial toxins which continue to

cause injury to the host even after elimination of the pathogen. Some of them are

discussed below:

Bacillus One such target is the protective antigen (PA) of Bacillus anthracis. PA is

a pore-forming protein of B. anthracis which heptamerizes, forming a pore in the

endosomal membrane through which it delivers lethal factor (LF) and edema factor

(EF) into the cell cytosol of host. All the antibodies in development against

B. anthracis PA act by blocking the binding of PA to its receptor. Raxibacumab

(Human Genome Sciences, NCT02016963), AVP-21D9 (Emergent BioSolutions,

NCT01202695), Anthim (Elusys Therapeutics, NCT01453907), and Valortim

(PharmAthene, NCT00964561) are antibodies in development for anthrax.

Raxibacumab has recently been approved for treatment of inhalation anthrax in

combination with antibiotics (Tsai and Morris 2015).

Clostridium Toxin neutralization is also an effective strategy for Clostridium
botulinum. There are seven toxins elaborated by C. botulinum BoNT/A-G. Of

these BoNT/A is the most devastating toxin causing paralysis. A mixture of three

IgG monoclonal antibodies with humanized regions, XOMA 3AB, is currently

under development against BoNT/A (Nayak et al. 2014) (NCT01357213). The

antibody targets different regions of the BoNT/A toxin. Clostridium difficile,
which causes pseudomembranous colitis or diarrhea associated with antibiotics,
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exerts its effects by production of toxins A (TcdA) and B (TcdB), which mediate

damage to epithelial cells (Voth and Ballard 2005). A combination of human

monoclonal antibodies to TcdA (GS-CDA1) and TcdB (MDX-1388) is currently

in development by Medarex (NCT00350298). Similarly, Merck Sharp & Dohme

Corp. is also developing actoxumab-bezlotoxumab (a mixture of monoclonal anti-

bodies to TcdA and TcdB which has completed phase III clinical trial

(NCT01513239, Yang et al. 2015)).

Staphylococcus Staphylococcus aureus produces many surface-associated as well

as secreted virulence factors and toxins (such as proteases, adhesins, superantigens,

leukocidins, autolysins) that serve as good targets for antibody therapy (Sause et al.

2016). Altastaph is a polyclonal IgG preparation directed against capsular poly-

saccharides 5 and 8 which has completed phase II trial (NCT00063089). Another

polyclonal antibody in development (from Bristol-Myers Squibb) is Veronate

which is directed against fibrinogen-binding protein, clumping factor A (ClfA)

(DeJonge et al. 2007), but it failed to show any significant protection in the phase

III trial (NCT00113191). Similarly a monoclonal Ab, Aurexis/tefibazumab (also

developed by Bristol-Myers Squibb) directed against ClfA and aimed to be used in

combination with antibiotic therapy has also completed phase IIa dose-escalation

study (NCT00198289). Pagibaximab (Biosynexus Inc.) is a monoclonal antibody

directed against lipoteichoic acids of staphylococcal cell wall and is in development

for sepsis in neonates (NCT00646399). Aurograb (NeuTec Pharma.) has completed

phase III trial for use in combination with vancomycin for treatment of methicillin-

resistant S. aureus infections. Sanofi is developing SAR279356 (NCT01389700) a

monoclonal antibody against the surface polysaccharide poly-N-acetylated glucos-

amine (PNAG) (Kelly-Quintos et al. 2006).

Escherichia coli Chimeric monoclonal antibodies to Shiga toxins 1 and 2 (Stx

1 and 2) are in development by Thallion Pharmaceuticals (NCT01252199) against

bacteria that produce Shiga toxin such as “Shiga toxin-producing E. coli (STEC).”
This organism can cause hemolytic uremic syndrome and acute renal failure.

Pseudomonas Pseudomonas aeruginosa is one of the most recalcitrant nosocomial

pathogens. Pseudomonas pathogenesis relies on production of cytotoxins, surface

adhesion molecules, and biofilms. Panobacumab (also known as KBPA-101 and

Aerumab11) is a pentameric IgM monoclonal antibody targeting the O11 lipopoly-

saccharide of P. aeruginosa which is being developed by Kenta Biotech Ltd. and

has completed phase IIa safety and pharmacokinetics trial (NCT00851435, Lazar

et al. 2009; Que et al. 2014). Pseudomonas infections are particularly problematic

in cystic fibrosis patients. KB001-A is a humanized monoclonal antibody targeting

the pcrV structural component of the Pseudomonas type III secretion system,

essential for translocation of Pseudomonas cytotoxins, and is being developed by

KaloBios Pharmaceuticals (NCT01695343) for treatment of cystic fibrosis patients.

MedImmune is developing MEDI3902 which is a bispecific antibody against

P. aeruginosa. The antibody simultaneously targets the PcrV protein as well as

Psl (a capsular lipopolysaccharide) and has shown promise for use independently as
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well as an adjunct to existing chemotherapeutic regimens (DiGiandomenico et al.

2014). It has recently completed a phase I clinical trial (NCT02255760).

2.7 Advantages and Disadvantages of Antibody Therapy

Antibody therapeutics offer several advantages over antibiotic therapy. First and

foremost, antibodies have a good safety profile (especially monoclonals) and hence

are better tolerated. Owing to their specificity, they suffer less from off-target and

nonspecific effects. Also due to their specificity, antibodies do not have adverse

effects on normal microflora of the body. However, the extreme specificity of

antibodies makes them very narrow-spectrum therapeutics which in turn makes

them less attractive for pharmaceutical companies. Nevertheless, antibodies have

multifunctional capabilities. They don’t just exert their effects by directly blocking

epitopes but also enhance immune function by mediating opsonization, agglutina-

tion, complement activation, and engagement of toxic cells by antibody-dependent

cellular cytotoxicity (ADCC). Thus, they not only block pathogen attack but also

aid in pathogen clearance from tissue spaces and bloodstream. When used in

combination with antibiotics, they can work in conjunction with curtail pathogens

and in some instances have even been shown to work synergistically to enhance the

efficiency of antibiotics to which resistance has developed (DiGiandomenico et al.

2014). Another important advantage of antibodies is that they can be used not only

therapeutically but also prophylactically.

Antibody therapies do suffer from several challenges as well. Besides being

extremely narrow in their spectrum, they also pose the risk of being rendered

ineffective if epitopes that they are directed against undergo a change. Bacterial

and viral pathogens are known to show antigenic variation which can make

antibodies ineffective. However in such a case, the paratope on the antibody may

be modified to allow targeting of the new epitope. Further, since these antibodies

are proteins, there is a chance that the immune system could mount a response

against the antibody itself. Such anti-idiotypic antibodies can neutralize the thera-

peutic molecule, and they have been documented in treatment with therapeutic

antibodies at least in case of rheumatoid arthritis (Isaacs et al. 1992). Additionally,

certain types of antigens are only elaborated by select strains of the pathogen

making such antigens less attractive for clinical development. Knowledge of the

antigenic epitope is also crucial for developing an antibody therapeutic.
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3 Development of Drug Resistance Through

Inter- and Intracellular Communication

Cell-to-cell communication is the key to cellular adaptation and survival. Different

types of cells have developed ways to communicate with each other. Initially, the

intercellular communication was believed to be maintained by soluble paracrine

and endocrine factors and by physical cell-to-cell contacts. The first of such

contacts discovered were cell-cell synapses, gap junctions, plasmodesmata, and

cellular projections (Abounit and Zurzolo 2012). In eukaryotes, one of these ways is

through formation of nanotubular networks that provide valuable communicative

means. Tunneling nanotubes, the long extensions of membrane between two cells

placed distantly, and their networks were first discovered in plant and animal cells

(Tarakanov and Goncharova 2009). In 2011, Dubey et al. showed how bacteria

communicate with each other by nanotubes (Dubey and Ben-Yehuda 2011). Inter-

estingly, bacteria can form nanotubes not only between same species but between

different species as well (Dubey and Ben-Yehuda 2011; Pande et al. 2015). These

nanotubes have been shown to be involved in cargo transport and antibiotic

resistance (Dubey and Ben-Yehuda 2011; Pande et al. 2015). It is not clear if

these bacterial nanotubes are just a communication mechanism or a survival

strategy to counteract drug pressure.

Further, the molecular mechanisms of nanotube formation are still unknown.

The study by Pande et al. has shown that bacteria form nanotubes during stress

conditions such as nutrient starvation (Pande et al. 2015). These bacterial nanotubes

reflect complex social behavior as bacteria from different species can form

nanotubes to communicate (Dubey and Ben-Yehuda 2011; Pande et al. 2015).

Hence, such nanotube formation may be a mechanism to exchange nutrients and

other metabolites in bacterial communities such as biofilms. Biofilm-forming

bacteria are known to survive drug pressure, and it is possible that in community

some bacteria transfer metabolites to protect others from drug-induced pressure.

The fitness advantage can answer how some bacteria survive drug pressure and

acquire antibiotic resistance by staying metabolically quiescent for very long time.

Further, mechanism of this vectorial transport also needs to be elaborated. One of

the ways to maintain directionality is quorum sensing, the other could be electrical

coupling. Also, concentration-dependent gradient between the two bacteria may

help in determining the direction of flow.

Structurally, bacterial nanotubes resemble vectorial structure. Temperature may

affect membrane motility, permeability, and membrane potential that in turn may

affect nanotube composition, structure, and number. Another mode of intracellular

communication is synapse, a link between nerve cells that are separated by a small

gap across which neurotransmitters can be diffused through to generate an impulse.

Synapse has also been proposed in plants and between immune and target cells,

long after the corresponding notion of neuronal synapse in animals. Tunneling

nanotubes have been shown to regulate neuronal synapses. These F-actin-based

structures are involved in organelle transfer and electrical coupling between cells
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(Wang and Gerdes 2015). These nanotubes may help drug-sensitive cancer cell to

connect with drug-resistant mutant cells and survive drug pressure (Wang and

Gerdes 2015). Although tunneling nanotubes are absent in bacteria, similar struc-

tural forms are involved in antibiotic resistance indicating divergent evolution.

Nanotubes have been shown to transport proteins, plasmids, and other macro-

molecules between the cells. This mechanism may confer high levels of resistance

markers being transferred between the cells. Consequently, nanotubular structures

will be an important target for designing new drugs to overcome development of

drug resistance. These drugs can be given in addition to other drugs that kill the

target cells. Thus, combination therapies can be developed targeting bacterial

physiology as well as nanotube formation. These therapies would be sensitive as

well as specific for a given disease, considering the fact that nanotubular structures

are specific for a given cell type.

4 Exosome-Mediated Drug Resistance

4.1 Extracellular Vesicles as Carriers of Drug-Resistant
Traits Across Pathologies

Drugs impart an evolutionary selection pressure on the target cells. The phenom-

enon of transmission of drug resistance across population involves multiple mech-

anisms and helps in selecting for resistant cells from heterogeneous population. One

recently discovered mechanism that has garnered much attention is the transfer of

these traits by means of secreted vesicles, also termed as extracellular vesicles

(EVs) (Yanez-Mo et al. 2015). These vesicles are further subclassified depending

upon their size and density as either large oncosomes derived from cancerous cells

(ranging in size from 1 μm to 10 μm), microvesicles (100 nm to 1 μm), and

exosomes (30–100 nm) (Minciacchi et al. 2015). While large oncosomes and

microvesicles are the recent focus of attention, exosomes have long been studied,

and sufficient evidence exist that implicate their role in pathologies (Robbins and

Morelli 2014; Braun and Moeller 2015; Campos et al. 2015; Coleman and Hill

2015; Fujita et al. 2015; Mahmoudi et al. 2015; Schorey et al. 2015).

4.2 Vesicle-Mediated Drug Resistance in Noncommunicable
Disorders

A major impediment in managing the epidemic of noncommunicable disorders

(NCDs) is the emergence of resistance to the existing line of drugs. Drug resistance

is a phenomenon that comes across disease boundaries including emergence of

steroid-resistant asthma (Luhadia 2014), insulin resistance leading to non-insulin-
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dependent diabetes mellitus, obesity, hypertension, dyslipidemia, atherosclerosis

(DeFronzo 1997), and most importantly chemoresistance in cancers (Singh and

Settleman 2010). While the direct role for exosomes has not been established for

other conditions, their role in cancer drug resistance has been documented in

several studies. Acquired and de novo resistance to existing therapies including

chemotherapy, radiation therapy, and other targeted therapies has become a huge

concern in the treatment of cancer (Meads et al. 2009), and exosomes have been

implicated in several of these mechanisms (Azmi et al. 2013).

Radiation therapy employs high-energy waves, such as X-rays, electron beams,

gamma rays, or protons for eliminating cancer cells, and theoretically this presents

an attractive therapeutic choice; however, few cancerous cells were found to

survive these high-energy radiations, the detailed cause for which is still being

investigated. It has emerged recently that one of the mechanisms by which cancer-

ous cells counters radiations is by secreting “survivin” which is a member of the

inhibitor of apoptosis protein (IAP) family in exosomes (Khan et al. 2009). This

creates a microenvironment that promotes further metastasis and drug resistance.

Cancer cells have been shown to use exosomal pathway to physically efflux drugs,

cisplatin, and doxorubicin that are one of the most widely used drugs (Shedden et al.

2003; Safaei et al. 2005). Similarly, in a breast cancer cell line that expresses Her2,

the resistance to trastuzumab (monoclonal antibody-targeting Her2 receptor) arises

due to exosomes that overexpress and secrete Her2. These exosomes are released by

cancer-associated fibroblasts that increase cancer stem cells and induce several anti-

apoptotic pathways (Ciravolo et al. 2012). Exosomes transferred from stroma to

breast cancer cells lead to resistance against chemotherapy and radiation through

antiviral and NOTCH3 pathways (Boelens et al. 2014). Tumor microenvironment

has classically been associated with chronic hypoxia that can affect the DNA

damage repair pathways and thereby induce DNA replication errors. This leads to

genetic instability contributing to radiation resistance (Bristow and Hill 2008).

Horizontal transfer of miRNAs and phosphorylated glycoproteins by drug-resistant

breast cancer cell lines has also been suggested to be a novel mechanism of

transmission of chemoresistance (Chen et al. 2014). Substantiating this principle,

it was found that exosomes from docetaxel (DOC ⁄exo)-resistant MCF-7 breast

cancer cells can confer drug resistance in drug-sensitive variant MCF-7 cell line

(MCF-7/S).

Exosomes also play a role in thwarting body’s own defense mechanisms against

cancerous cells as was demonstrated in several studies. It was reported that can-

cerous cells avoid complement-mediated lysis by exosomal secretion of protein

mortalin (Pilzer and Fishelson 2005; Pilzer et al. 2005). Another study reported that

TNF-α, which is secreted in association with exosomes, prevents cell death induced

by activation of cytotoxic T cells (Zhang et al. 2006). Separately, lymphoma

exosomes were found to protect target cells from attack of antibodies by releasing

CD20 (Aung et al. 2011).

Exosomes carry several proteins that are unique to cancer cells. While some

promote drug resistance, others have been used for cancer detection as biomarkers;

for instance, exosome-associated glypican-1 (GPC-1) has been shown to sensitively
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differentiate between healthy individuals and patients with pancreatic cancer (Melo

et al. 2015). Apart from this exosome, encapsulated DNA has also been used for

cancer detection as well as to determine mutational status of parental tumor cells

(Skog et al. 2008; Guescini et al. 2010; Thakur et al. 2014). Thus, exosomes play

multifaceted roles in several noncommunicable disorders.

4.3 Vesicle-Mediated Drug Resistance in Pathogenic
Disorders

Most human pathogens are bacterial species that lack typical machinery required

for exosome production; however, they are known to produce outer membrane

vesicles (OMVs) that bud from their plasma membranes and are known to carry

proteins, phospholipids, lipopolysaccharides, and nucleic acids. OMVs of bacteria

play a variety of roles on extracellular activities within intra- and interspecies

microbes. Experimental data suggests that these vesicles often act as bacterial

virulence factor and play significant role in pathogenesis. They’ve also been

implicated in transmission of drug resistance by bacterial species such as

S. aureus and P. aeruginosa to entire polymicrobial community by transfer of

vesicle enclosed β-lactamase enzyme that allows recipient gram-positive and

gram-negative bacteria to survive in the presence of antibiotic penicillin (Ciofu

et al. 2000; Lee et al. 2013).

Transfer of plasmid containing genes for antibiotic resistance has been a classic

route by which drug resistance can rapidly spread across population. Several of the

gram-negative, but not gram-positive, eubacteria-derived vesicles were shown to

carry nuclease-protected linear or supercoiled DNAs (Dorward and Garon 1990). In

a laboratory demonstration of similar phenomenon in malaria parasite Plasmodium
falciparum, Neta Regev-Rudzki et al. demonstrated that strains that were separately

transfected with plasmids conferring resistance to WR99210 or blasticidin S upon

co-culture allowed parasite to grow in the presence of both the drugs, while

culturing them separately didn’t allowed growth of parasite (Regev-Rudzki et al.

2013).

Though much is known about the role of extracellular vesicles from bacteria and

fungi in pathogenesis, the details of the role played by them in drug resistance is

still an active area of research. Future research in extracellular vesicles is expected

to shed new lights on the mechanisms of emergence and transmission of drug

resistance across various physiological and pathological processes.
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5 Structuromics

Transcription is one of the most important and basic steps for a cellular system.

During transcription, RNA is formed using DNA as a template along with RNA

polymerase and different kinds of modulator proteins. After transcription, primary

transcript forms and additional modifications make mature RNAs, which are

subsequently used for their respective functions. Mature RNA molecules retain

some conserved sequences responsible for the formation of signature secondary

structures for the interaction with different set of proteins. These secondary struc-

tures remain the same at a given time in the cell. But, these structures may change

when RNA interacts with different set of proteins to maintain the physiology of the

cell. Level of a given protein varies with time and requirement. It is intriguing to

understand how the protein concentration varies for a given protein with time,

keeping the sequence and hence the signature secondary structures the same. It

suggests that RNA sequence or secondary structure is being modulated in response

to specific signal. Thus, variations in different protein concentrations keep the cells

alive and healthy in temporal environment (biotic and abiotic stress).

A highly informative concept came as “structuromics” by Howard Y. Chang’s
group, which gave the comprehensive analysis of in vivo RNA secondary structure.

The approach which they named “in vivo click selective 20-hydroxyl acylation and

profiling experiment (icSHAPE)” utilizes biochemical modifications of unpaired

RNA bases and determines the structural dynamics of whole-cell RNA modules

(Spitale et al. 2015). Understanding of this machinery will provide information

such as protein-binding sites within specific secondary structures.

5.1 Role of Structuromics in Deciphering the Drug
Resistance Mechanism

Exploring the structure of RNAs and analyzing their interaction with protein

molecules in vivo will shed light on intracellular regulatory networks. These

mechanisms resemble hidden weapons of bacteria and they are activated by the

cell when needed. If we know the way and time of their activation, we can target

those modules by making them nonfunctional. For example, RNAIII of S. aureus,
which is 514 nucleotides long RNA molecule, regulates many genes encoding

exportins and cell wall-associated proteins (Waters and Storz 2009). RNAIII

interacts with different sets of proteins with its 50 and 30 domains and regulate

their expression. It also controls expression of many virulence factors; these factors

keep them viable and give strength to fight against host (Morfeldt et al. 1995;

Boisset et al. 2007; Novick and Geisinger 2008; Chevalier et al. 2010; Liu et al.

2011). Targeting the modules formed by RNAIII under specific conditions will help

in reducing the virulence of S. aureus. Though most of these structures arise during

infection of the host and, hence, are difficult to target technically. In such cases,
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RNA structuromics might play a significant role, giving the vision of RNAIII

complexes.

5.2 Role of Structuromics in Drug Designing

Till now, siRNA-mediated drugs have been used for some of the diseases like

age-related macular degeneration (AMD), pachyonychia congenita (PC, a rare form

of hereditary keratoderma that can affect the skin, mouth, hair, and eyes), and

coronary artery disease and are also being used in HIV (Rossi 2006; Kleinman et al.

2008; Smith et al. 2008). Deciphering the structure of RNA-protein complexes (for

some specific cases) either by structuromics or by cryo-electron microscopy will

explore the mechanism of action of specific targets of siRNA molecules. This may

play a crucial role in understanding the possible mechanisms of cells becoming

resistant to an siRNA-based drug molecule. Subsequently, with the available

information, chemical modifications within an siRNA molecule might provide

additional information in its target inhibition. For example, addition of a drug

(e.g., cross-linker which will inhibit the dissociation of protein and RNA molecule

at its specific time of action) with siRNA will improve its stability as well as its

action. Thus, RNA structuromics is a revolutionary aspect of RNA-based drug

discovery.

6 Posttranslationally Modified Protein Networks as Drug

Targets

In cellular information transfer, the most important transducers are proteins that

define vital nature of the cell. For long, the central dogma of molecular information

was thought to be DNA to RNA to protein. However, the translated proteins are

often only the preprocessed forms which need further modifications to make them

the elegant biological devices. The most common post-transnational modifications

are phosphorylation, acetylation, glycosylation, and ubiquitinylation. Interestingly,

these conserved modifications modify the protein activity, localization, and stabil-

ity in both prokaryotes and eukaryotes. Therefore, these modifications and the

enzymes responsible for carrying out these modifications are considered one of

the most promising drug targets against many diseases such as cancer, malaria, and

tuberculosis, among others. Specific posttranslationally modified (PTM) events are

crucial in clinical manifestations and successful infections in most infectious

disease. Therefore, targeting these modifications can be more effective than aiming

a single drug target.

InM. tuberculosis, there are 11 Ser/Thr protein kinases, 2 Tyr phosphatases, and
1 Ser/Thr phosphatase. The genome also encodes at least one protein lysine acetyl
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transferase and one deacetylase (Nambi et al. 2010, 2013; Singhal et al. 2015).

These enzymes together modify at least 400 important proteins reversibly to help

the bacteria handle the stress and adapt by physiological changes (Prisic et al. 2010;

Singhal et al. 2015). Another related pathogenM. ulcerans that causes Buruli ulcer
has a kinase present in pathogenicity-related plasmid pMUM001 (Arora et al.

2014). This kinase phosphorylates some other structural proteins, also coded by

virulence-associated plasmid, and helps the pathogen in successful infection (Arora

et al. 2014). Interestingly, while proteins such as PrkC or PknB are conserved in

most gram positive and actinomycetes, there are some other kinases that are

exclusive and possess dual specificity (Arora et al. 2012, 2013). Two such kinases

present in B. anthracis: one is the first DYRK-like kinase of prokaryotes PrkD and

another is Ser-/Thr-/Tyr-specific enzyme PrkG (Arora et al. 2012). B. anthracis has
evolved for its pathogenic lifestyle needs, lost tyrosine kinases, and expressed dual

specificity protein kinases that are important for growth and possibly pathogenicity

of the organism (Arora et al. 2012). Interestingly, all Ser/Thr protein kinases, dual

specificity protein kinases, Tyr kinases, and acetyltransferases are shown to modify

and regulate key physiological pathway proteins such as glycolysis, protein trans-

lation, and one-carbon metabolism (Arora et al. 2010, 2012, 2013; Singhal et al.

2013, 2015; Maji et al. 2015; Pereira et al. 2015; Prisic et al. 2015; Sajid et al.

2015). Several of these modifications regulated the key metabolic events in

overlapping manner. The network of such signaling events forms nodes that fine-

tune cellular response and help in adaptation and thriving under different stress

conditions. Therefore, identification and targeting such nodes will be key to novel

drug discovery.

7 Conclusions

The human genome has 46 chromosomes and around 20,000–25,000 protein-

coding genes. Interestingly, the total number of human diseases known is estimated

to be 10,000–30,000. In the years before the discovery of antibiotics, the general

perception was humankind will never be able to successfully combat the pathogens

such as tuberculosis, malaria, and cholera. In the next hundred years, we have

achieved an unparallel understanding of life at the molecular level. Medical science

has provided limited but effective solutions to combat major diseases. However,

drug-resistant disease forms have constantly challenged our success. The emer-

gence of drug-resistant forms has resulted in prolonged illness and increased rate of

death even for common infections. According to WHO estimate, people infected

with drug-resistant form of MRSA are 64% more likely to die than compared to

nonresistant forms. To end our misery from palpable drug-resistant diseases, in the

future we will have to adapt cooperative drug discovery strategies and benefit from

emerging themes such as immunotherapy, pharmacogenomics, and structuromics

to annihilate these enemies of mankind. It is a necessity to use new and powerful

beacons that target different disease forms. To achieve this, discovery of effective
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therapeutic agents that can provide protection against both acute and chronic forms

along with better disease management is urgently required. With the experience of

combating these diseases in last century, we must not rely on conserved drug target

strategies and may have to develop multiple subordinate strategies each potent

enough to strike pestilence effectively.
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Molecular Mechanism of Drug Resistance:

Common Themes

C.M. Santosh Kumar

Abstract Antibiotics are the chemical or biochemical moieties that specifically

and effectively inhibit the growth of a pathogen but not the host organism and thus

are employed in the treatment of the infection by the pathogen. However, the

survival pressure in the presence of antimicrobial agents forces a minor fraction

of the bacterial population to evolve mechanisms that evade the inhibitory effects of

the administered antibiological agent, thereby emerging as a drug-resistant variety

and consequently challenging the treatment regime. Additionally, the emergence of

multidrug-resistant (MDR) variants of the pathogens that are capable of resisting

several structurally dissimilar drugs is becoming very common and resulting in the

infections that are difficult or impossible to treat. To counter the vast array of

chemically and structurally dissimilar antibiotics within their lifestyle boundaries,

different bacteria have developed different antibiotic- and pathogen-specific resis-

tance mechanisms. Although distinct and involving several molecular events, these

mechanisms can be broadly classified into two modes, the intrinsic and the acquired

modes of resistance, which are further classified into subclasses. This chapter

reviews recent advances and current understanding of the molecular details of

these mechanisms.

1 Introduction

The discovery of antibiotics strongly supported modern lifestyle with their variety

of applications, such as insecticides, herbicides and chemotherapeutic agents in

treatment of bacterial, viral and parasitic infections and even cancer (Hayes and

Wolf 1990; Blair et al. 2015). Therefore, research aimed at identifying new

antibiotics had been the top priority once, and the resulted broad-spectrum drugs

provided extraordinary clinical efficacy. Ironically, however, for any effective
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antibiotic that is employed in human therapies, clinically significant resistance

appears typically in the period of a few months to years (Davies 1996). For

example, resistance to the popular drug penicillin has been observed as soon as

2 years of its discovery during mid-1940s (Abraham and Chain 1988). Although the

vulnerability of antibiotic resistance is implicated in several medical conditions

including cancer, scope of this chapter is limited to the hazards of antibiotic

resistance in human pathogens. Incidentally, the list of microbes that have emerged

resistance to various classes of drugs is alarmingly expanding with increasing

instances of the multidrug-resistant bacterial infections that agonizingly include

several untreatable infections. Understandably, the incidence of drug resistance is

of major economic importance owing to its grave consequences to health, and

therefore, the World Economic Forum listed antibiotic resistance as the second

greatest threats to human health owing to a sharp increase in the infections through

the past years (Blair et al. 2015). Antimicrobial Resistance Global Report 2014 on

Surveillance of the World Health Organization estimates annual deaths due to

multidrug-resistant bacteria in Europe and the United States at 25,000 and

23,000, respectively, while costs estimated to 1.5 billion euros annually. Under-

standably, these figures are much higher in countries with limited medical facilities.

As explained in the earlier chapters, the bacterial infectious diseases pose a serious

public health and economic threat, thereby signifying the need to comprehend the

molecular mechanisms that confer the resistance to the antibiotic drugs. During the

past four decades, studies towards empathizing the mechanisms of drug resistance

have been increasingly popular, and the resulting research involving the classical

genetic tools and the modern recombinant DNA technologies dissected the intricate

details of the variety of mechanisms involved. Principally the drug resistance in the

pathogens can be classified into two modes, the intrinsic and acquired modes of

resistance (Hayes and Wolf 1990). While the intrinsic resistance arises due to

inherent structural or functional features of the bacteria, the acquired resistance is

attained largely either through mutations or horizontal transfer of resistance con-

ferring genes or several other means. Understanding the numbers, bacteria dwell in

large numbers in an infection cycle (about 1010 bacteria) with rapid generation time

(about 20 min for E. coli to 23 h toM. tuberculosis) that is supplemented with high

mutation rate (one mutation in 107 bases replicated). So, in one generation time, the

population of bacteria gets mutated at around thousand loci. If any of these

mutations result in antibiotic resistance, the bacteria survive the drug load and

multiply into dominant form in the population (Walsh 2000).

2 Mechanisms of Drug Resistance

The modes of resistance could be classified for the practical purpose as following.

While the case of pathogen being initially drug resistant represents intrinsic (natural

or de novo) resistance, the pathogen becoming resistant only after treatment

represents acquired resistance. Thus, the aim of this chapter is to highlight the
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molecular mechanisms and biochemical events that are responsible for the anti-

biotic resistance and to discuss the possible modes of evolution and contradiction of

this phenomenon.

2.1 Intrinsic Resistance

Intrinsic resistance is described as a characteristic feature of an organism, which

allows a population of the organism to tolerate the encountered antibiotic. Since

every organism evolves to adopt to its habitat, it is reasonable to presume that

organisms living in an antibiotic-rich environment might have evolved the said

resistance features to combat the antibiotic stress. Therefore, during the course of

evolution, some microorganisms have developed intrinsic resistance to antibiotics

via the pathways that are probably guided by the exposure levels and chemical

nature of the encountered drug. Consequently, the intrinsic resistance is largely

genetic and chromosome encoded. Let us understand the intrinsic resistance with

the following examples. Considering a simplest example of the Streptomyces,
which produce several clinically useful natural antibiotics (Kieser et al. 2000;

Bibb 2013), has evolved mechanisms to resist the adverse effects of their own

product antibiotics prior to the evolution of the antibiotic production pathways

(Hayes and Wolf 1990). Another example relates to the membrane targeting

lipopeptide, daptomycin, which acts on the membranes by inserting into the anionic

phospholipid membranes and thus ineffective against Gram-negative bacteria

owing to lower phospholipid content in their cytoplasmic membrane (Zhu et al.

2010). Likewise, membrane impermeability in Gram-negative bacteria resulted in

the intrinsic resistance to many compounds, for example, the glycopeptide anti-

biotic vancomycin acts by binding to D-Ala-D-Ala peptides and inhibiting peptido-

glycan cross-linking (Randall et al. 2013). Another interesting example is of a

popular antimicrobial drug, triclosan, which effectively acts against the Gram-

positive and several Gram-negative bacteria but ineffective against the members

of the genus Pseudomonas, since these bacteria lack the target enzyme, the lipid

anabolic enoyl-ACP reductase (Zhu et al. 2010; Blair et al. 2015). Interestingly, this

resistance has been earlier attributed to increased efflux of the antibiotic

(Chuanchuen et al. 2003).

2.2 Acquired Resistance

Apart from the intrinsic resistance, bacteria gain resistance, termed acquired resis-

tance, through either genetic (largely nonchromosomal) routes that include muta-

tions in existing DNA and acquisition of new DNA or nongenetic processes (Walsh

2000). Unlike the intrinsic mode of resistance, the acquired resistance is broad-

casted faster since the latter relies on the spread of the antibiotic resistance genes
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between different bacterial cells and species (Davies 1994) through the mobile

genetic elements such as plasmids (Arthur and Courvalin 1993; Walsh et al. 1996)

and transposons (Schentag et al. 1998). A simple example of acquired resistance is

observed in surgical hospitals, wherein methicillin is administered to counter the

enterobacteria, Staphylococcus aureus and Enterococcus faecalis, that inhabit

abdominal cavity following a surgical procedure. However, these bacteria rapidly

acquire resistance to methicillin (Barber 1961) and vancomycin (Schentag et al.

1998) within 7 and 14 days after administering the drugs, respectively. Methicillin

resistance, which results in the popular MRSA phonotype, is acquired from resis-

tant bacteria through horizontal transfer of a mobile genetic element: the staphylo-

coccal cassette chromosome mec (sccMec) element, which encodes a mutant

penicillin-binding protein (PBP2) that enables cell wall biosynthesis even in the

presence of the antibiotic (Shore et al. 2011). Additionally, resistance to vanco-

mycin emerges in MRSA via the acquisition of genetic elements contributing to the

vancomycin-resistant enterococci (VRE) phenotype. This emphasizes the speed

and the frequency with which resistant phenotypes can emerge by acquisition of

genetic elements from neighbouring bacteria. The mechanisms of the acquired

resistance are broadly classified into three modes: (a) diminution of the intracellular

antibiotic load, either by preventing the entry of the antibiotic (Baroud et al. 2013)

or by increasing antibiotic efflux (Ogawa et al. 2014); (b) modification of the target

molecules, either by mutating the gene encoding the target molecule (Gao et al.

2010) or by post-translationally modifying the target molecule (Cannatelli et al.

2013); and (c) inactivation of the antibiotic, either by hydrolytically cleaving the

drug (Woodford et al. 2011; Johnson andWoodford 2013) or by modifying the drug

by adding functional groups (Qin et al. 2012; Romanowska et al. 2013). All these

mechanisms have been well established with support of the vast documentation

obtained through the past decade (Nikaido and Takatsuka 2009; Wright 2011;

Fernández and Hancock 2012), as summarized in the following sections.

2.2.1 Diminution of Intracellular Antibiotic Load: The External Affairs

Reaching the target molecule and rapidly mounting to therapeutic levels are

essential for any antibiotic to be effective. Therefore, the primary defence of any

pathogen to counter an antibiotic is to deplete it from the cell by blocking/mini-

mizing its entry into the pathogen and/or quickly expelling it out by enhancing the

efflux mechanisms (Fig. 1a). Different bacteria employ different mechanisms and

players in reducing the intracellular levels of antibiotics as described in the follow-

ing sections.

2.2.1.1 Reducing Permeability: The Consular Affairs

One of the early understood mechanisms of drug resistance involves the prevention

of the entry of the antibiotic into the cell (Kumar and Schweizer 2005). For
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example, owing to their cell wall’s lipopolysaccharide (LPS), several Gram-

negative bacteria like Escherichia coli (Kojima and Nikaido 2013), P. aeruginosa
(Strateva and Yordanov 2009), Vibrio cholera (Kitaoka et al. 2011) and Salmonella
enterica (Gunn 2008) are intrinsically less permeable and thus resistant to many

hydrophobic antibiotics (Wiese et al. 1999; Delcour 2009), such as the erythro-

mycin, roxithromycin, clarithromycin and azithromycin. Besides, the outer membrane

porin channels confer reduced permeability by imposing a size threshold for the

antibiotic molecules (Kumar and Varela 2013) and thus allowing passage to only

small-sized antimicrobial agents (Pages et al. 2009) although the major porins, the

OmpF and OmpC, function as non-specific channels (Kojima and Nikaido 2013;

Tran et al. 2013a). Therefore, to limit toxic antibiotic entry into the cell, the drug-

resistant bacteria either downregulate the porins or replace the porins with more

selective channels (Lin et al. 2002). Using this well-established mechanism, several

clinically dreadful bacterial pathogens such as Serratia marcescens, E. cloacae,
S. enterica, E. aerogenes, Klebsiella pneumoniae (Papagiannitsis et al. 2013;

Poulou et al. 2013) and P. aeruginosa (Page 2012) acquire resistance to several

antimicrobial agents such as the aminoglycosides, β-lactams, chloramphenicols and

fluoroquinolones. Surprisingly, similar mechanism has been effective in resisting

the newer drugs such as carbapenems and cephalosporins by several

Fig. 1 Mechanisms of drug resistance. (a) Intracellular drug load is reduced by either limited

permeability to certain antibiotics or increased efflux. Bulkier or hydrophobic antibiotics (red
hexagon) are prevented from entering the cell, while the antibiotics (green diamond) that can enter
the cell via the porin channels are efficiently removed by efflux. A few antibiotics (blue circle),
however, reach their target and inhibit the target activity. (b) Modification of the target molecules

by mutations (red circle) that result in a functional target that are unable to bind the drug

efficiently. Alternatively, target biomolecules are modified by post-translational

(or transcriptional) modifications (PTM), which limit the access for the antibiotic and thus prevent

antibiotic binding. (c) Antibiotics are inactivated by enzymatic hydrolysis that prevent their

binding to the target molecules and thereby conferring resistance. Antibiotics that resist hydrolysis

are modified by enzymatic addition of different functional groups, which alter antibiotic structure,

sterically prevent target binding and thereby confer resistance
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Enterobacteriaceae, Pseudomonas spp. (Tamber and Hancock 2003) and

Acinetobacter spp. (Sugawara and Nikaido 2012), in addition to the usual enzy-

matic degradation of these drugs. Interestingly, the bacteria lacking the production

of the carbapenem hydrolase, the carbapenemase, have demonstrated resistance

owing to either reduced (Baroud et al. 2013) or mutant (Wozniak et al. 2012) porin

production. In addition, the exposure to carbapenems has been demonstrated to

accumulate rapid mutations in porin genes in E. coli (Tängdén et al. 2013) and

several Enterobacter spp. (Novais et al. 2012; Lavigne et al. 2013).

2.2.1.2 Enhancing the Efflux: The Deporting Mechanisms

Parallel to the reduced permeability, persistent efflux of the drugs from the bacterial

cells is another common drug-resistant mechanism (Webber and Piddock 2003) that

is mediated by a family of proteins called energy-driven drug efflux pumps

(Fig. 1a), which pump out the drugs faster than they can diffuse in, thereby

maintaining the ‘intra-bacterial’ concentrations of the drug at sub- or

non-inhibitory levels (Levy 1992; Paulsen et al. 1995). These ubiquitous efflux

pumps are variants of the lipophilic/amphipathic metabolite pumps (Ross et al.

1995; Paulsen et al. 1995; Zgurskaya and Nikaido 2000) and can be mechanically

classified into two types: (1) the primary active transporters—ATP-binding cassette

(ABC) (Higgins 1992), also known as the permeability glycoprotein (Pgp) trans-

porters (Davidson and Maloney 2007)—that utilize energy from ATP hydrolysis to

efflux the drugs out of the cell and (2) the secondary active transporters that are

major players in conferring drug resistance (Kumar and Varela 2012) and utilize ion

gradient for drug efflux (Mitchell et al. 1998; Henderson and Strauss 1991). The

classical example for efflux-induced drug resistance is the resistance to tetracycline

by several Gram-positive and Gram-negative bacteria, which is conferred by

overproducing a set of plasmid-encoded proteins, the Tet A, B and C proteins

that are membrane-located secondary active transport pumps (McMurry and Levy

1978; McMurry et al. 1980; Chopra 1984, 1986). However, unlike the tetracycline

pumps, several efflux pumps transport a plethora of structurally unrelated chemical

moieties and thus are known as multidrug-resistant (MDR) efflux pumps, examples

of which are alarmingly increasing in several bacteria such as MdeA in Strepto-
coccus mutans (Huang et al. 2004), FuaABC in Stenotrophomonas maltophilia
(Hu et al. 2012), KexD in K. pneumoniae (Ogawa et al. 2012) and QacA (Tennent

et al. 1989; Brown and Skurray 2001) and LmrS (Floyd et al. 2010) in S. aureus. In
addition, examples of secondary active multidrug efflux pumps have been identified

in several prokaryotes and eukaryotes such as the multidrug and toxic compound

extrusion (MATE) efflux pump family (Kuroda and Tsuchiya 2009), resistance-

nodulation-division (RND) superfamily pumps (Nikaido and Takatsuka 2009;

Nikaido 2011) and major facilitator superfamily (MFS) (Marger and Saier 1993;

Paulsen et al. 1996; Saidijam et al. 2006). In summary, understanding the molecular

mechanisms of the bacterial efflux pumps might lead to the novel chemical
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modulators that could regulate the efflux and facilitate the antibiotic action in the

novel treatment regimens.

2.2.2 Modification of the Target: The Blacking Out

In addition to the membrane-borne resistance mechanisms above, bacteria defend

the antibiotics by structurally altering the target molecules to reduce drug-binding

affinity. This type of drug resistance often results either from a mutation in the

target molecule by genetic means or modification of the target by post-translational

modifications (Fig. 1b). The major cellular targets of different antibiotics and their

possible modes of action have been understood over the past few decades (Table 1).

Table 1 Cellular processes affected by the major classes of antibacterial drugs

Cellular

process Antibiotic Target Mode of action

Resistance

mechanism

Membrane

biogenesis

β-Lactams Transpeptidases/

transglycosylases

(PBPs)

Blocking of

cross-linking

enzymes in cell

wall peptidogly-

can layer

Hydrolysis by

β-lactamases, PBP

mutants

Vancomycin D-Ala-D-Ala ter-

mini of peptido-

glycan and lipid II

Sequestrating

the cross-

linking substrate

Employing altered

building blocks: D-

Ala-D-Lac or D-

Ala-D-Serin place of

D-Ala-D-Ala

Folic acid

metabolism

Sulphonamide Dihydropteroate

synthase (DHPS)

Blocking folate

synthesis

Mutations in DHPS

Overproduction of

PABA

Trimethoprim Dihydrofolate

reductase

(DHFR)

Blocking of the

formation of

THFA

Reduced permeabil-

ity

Mutant DHFR

production

Nucleic

acid

metabolism

Fluoroquinolones DNA gyrase Inhibiting DNA

replication

Gyrase mutants to

drug resistance

Rifampacin RNA polymerase Blocking DNA

transcription

Mutations in RNA

polymerase gene

Protein

synthesis

Macrolides

(erythromycin

class)

Peptidyl transfer-

ase, centre of the

ribosome

Protein synthe-

sis Inhibition

rRNA methylation,

drug efflux
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2.2.2.1 Mutation of the Target

Generally, antibiotics bind their specific targets with high affinity either competing

with the substrate for the active site or binding to an allosteric site and preventing

access for the substrate and consequently blocking the normal activity of the target

(Spratt 1994; Chu et al. 1996). Therefore, changes to the target structure, often by

point mutations, that prevent antibiotic binding without affecting the function of

target can confer resistance (Fig. 1b). In the large population of pathogens at the site

of infection, a single point mutation in the target gene in a single bacterium that

bestows resistance can result in the strains, which proliferate to form a population of

the resistant bacteria. The classical example of drug target modification is the

penicillin resistance mechanism in staphylococci, which, in addition to the expres-

sion of the hydrolase β-lactamase (Fisher et al. 2005), arises due to various

alterations of the penicillin-binding proteins (PBPs) and converting them to

lower-affinity forms (Katayama et al. 2000). S. aureus, which causes several

infectious diseases, has been resistant to penicillin and its derivative methicillin

by different mechanisms including (a) mutation in PBP (Hackbarth et al. 1995; Gao

et al. 2010), (b) overexpression of PBP (Boyle-Vavra et al. 2000) and, principally,

(c) horizontal acquisition of staphylococcal cassette chromosome mec (sccMec)

element, which harbours the mecA gene that codes for the β-lactam-insensitive

PBP2a protein, which takes over the cell wall biogenesis from the β-lactam-

inhibited wild-type PBP (Dowson et al. 1989; Katayama et al. 2000). These

mechanisms therefore present the molecular basis for the methicillin-resistant

S. aureus (MRSA) phenotype (Schentag et al. 1998). Another example of target

protein mutation is exhibited by the vancomycin-resistant enterococci (VRE),

wherein the resistance to the antibiotic vancomycin, which inhibits cell wall

biogenesis by binding to the D-Ala-D-Ala dipeptides and preventing the peptido-

glycan cross-linking, is conferred by a three-gene cassette, vanHAX, that encodes a
new pathway enzyme (D’Costa et al. 2011). The product of the first gene, vanH,
reduces pyruvate to D-lactate, and the product of the second gene, vanA, ligates D-

alanine to produce D-Ala-D-Lac, followed by the product of the third gene, vanX,
which selectively hydrolyses the normal dipeptide D-Ala-D-Ala but not D-Ala-D-

Lac (Walsh et al. 1996). Therefore, D-Ala-D-Lac serves as the building block for

peptidoglycan cross-linking rather than D-Ala-D-Ala (Reynolds and Courvalin

2005), thereby lowering the affinity to vancomycin by about 1000-fold (Bugg

et al. 1991) and enabling the bug to dwell at 1000-fold higher levels of the

antibiotic. On the other hand, resistance to streptomycin in Mycobacterium tuber-
culosis is due to the mutations in the rrs genes encoding ribosomal subunits that

lead to altered ribosomal protein targets and thereby prevent binding of this

aminoglycoside (Finken et al. 1993).Other examples for target mutation include

the amino acid substitution in DNA gyrase that confers resistance to quinolone

antimicrobials (Robicsek et al. 2006; F�abrega et al. 2009), mutations leading to

structural changes in the β-subunit of bacterial RNA polymerase that confer resis-

tance to rifampin (Wehrli 1983) and rifampacin (Goldstein 2014) and mutations in

the folate metabolic enzymes DHPS and DHFR that confer resistance to
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sulphonamides (Sk€old 2000) and trimethoprim (Huovinen and Kotilainen 1987),

respectively.

2.2.2.2 Protection or Modification of the Target

In addition to the mutation-borne alterations, bacteria have developed ways to resist

the antibiotic by specifically modifying the target biomolecules such that the

antibiotic affinity is considerably reduced (Fig. 1b).Recent studies have demon-

strated that several clinically relevant bacteria have employed modification of the

target molecules, notably the ribosomal components (Table 1), as the principal

mechanism of drug resistance. For example, site-specific mono- or di-methylation

of 16S (Jana and Deb 2006) and 23S rRNA (Xiong et al. 2000) by the erythromycin

ribosomal methylases (ERM) irreversibly alters the drug-binding sites of

macrolide, lincosamine and streptogramin classes of antibiotics (Bussiere et al.

1998; Lambert 2005). Such modifications do not, however, impair protein biosyn-

thesis function of these ribosomal components but lower affinity for the erythro-

mycin and pristinamycin classes of antibiotics. This plasmid-encoded ERM

mechanism is the self-defence mechanism in erythromycin-producing organisms

and the main resistance mechanism in resistant S. aureus and other bacteria that

acquire this plasmid (Leclercq and Courvalin 2002). Another example of target

modification is the methylation of 23S rRNA at A2503 by the chloramphenicol-

florfenicol resistance (cfr) methyltransferase (Zhang et al. 2014). The plasmid-

borne cfr is widely distributed among Gram-positive and Gram-negative bacteria

(Shen et al. 2013) and confers resistance to at least six different classes of anti-

biotics (Atkinson et al. 2013) including the phenicols, pleuromutilins,

streptogramins, lincosamides and oxazolidonones (Long et al. 2006). Moreover,

resistance to the aminoglycoside protein synthesis inhibitors is facilitated by

methylation of the 16S rRNA by the rRNA methyltransferases (Jana and Deb

2006) that are widely distributed in resistant Enterobacteriaceae strains worldwide
and encoded by armA (Fritsche et al. 2008) and rmt genes (Gutierrez et al. 2012).
Furthermore, resistance to tetracyclines has also been demonstrated to be due to the

mutations and substitutions in the peptidyl transferase loop of the 23S rRNA

(Roberts 1996; Schnappinger and Hillen 1996; Widdowson and Klugman 1998).

Apart from the ribosomal RNA, modification of several protein and lipid targets

has been reported to confer resistance. The qnr families of quinolone resistance

genes encode pentapeptide repeat proteins (PRPs) that bind the DNA gyrase and

topoisomerase IV and protect from quinolones, which otherwise result in double-

strand DNA breaks (Vetting et al. 2011). Another example includes the resistance

to polymyxin antibiotics, the cyclic antimicrobial peptides with long hydrophobic

tail, which bind to lipopolysaccharide (LPS) and disrupt cell membranes (Lim et al.

2010; Cai et al. 2012). Resistance to polymyxins is generally linked to the expres-

sion levels of the regulators that affect the levels of LPS. Mutations which bring

about over expression of pmrC (Beceiro et al. 2011) result in the increased addition

of phosphoethanolamine to lipid A and reduced negative charge on the LPS, which
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consequently reduces colistin binding. In addition, mutations in the K. pneumoniae
PhoPQ that increases expression of the PmrAB system have been demonstrated to

induce polymyxin resistance (Miller et al. 2011; Cannatelli et al. 2013, 2014, 2015).

Furthermore, daptomycin is an antibiotic secreted by Gram-positive bacteria to

eradicate surrounding bacteria by disrupting multiple aspects of bacterial cell

membrane function, including leakage of intracellular contents and loss of mem-

brane potential (Blake and O’Neill 2013; Randall et al. 2013). Therefore,

daptomycin has been employed in the treatment of several infections by multiple

drug resistance strains (Davlieva et al. 2013). Similar to polymyxin, the resistance

to daptomycin occurs due to the remodelling of the phospholipid content of the

membrane upon the addition of L-Lys to the phosphatidylglycerol by the action of a

mutant peptide resistance factor (Mishra and Bayer 2013). In addition, a novel

pathway of resistance to daptomycin wherein relocation of the target away from the

primary binding site has been reported in enterococci (Tran et al. 2013b).

2.2.3 Neutralization of the Antibiotic: Warhead Destruction

In addition to keeping the intracellular levels low and protecting the target bio-

molecules, bacteria have also developed ways to directly inactivate the antibiotics

by either hydrolytic cleavage or addition of functional groups to the antibiotics

(Fig. 1c). We will discuss the examples for these two modes of drug neutralization

in the following sections.

2.2.3.1 Hydrolytic Cleavage of the Antibiotic

The enzyme-catalysed fragmentation of antibiotics has been the principal mecha-

nism of antibiotic resistance since the introduction of the first antibiotic, penicillin,

and its hydrolase, the β-lactamase (Philippon 1985). Incidentally, the discovery of

the β-lactamase has actually preceded the discovery of penicillin itself, and the

enzyme was then believed to play an important role in the peptidoglycan assembly

(Abraham and Chain 1988). Discovery of thousands of enzymes that can either

degrade or modify different classes of antibiotics, such as the aminoglycosides,

β-lactams, macrolides and phenicols, has followed in the later years (Livermore

et al. 2008; Nordmann et al. 2011; Voulgari et al. 2013). Moreover, the enzymes

that specifically degrade different antibiotics within the same class have been

classified into subclasses, for example, different β-lactamases that hydrolyse

different β-lactams; for example, the penicillins, cephalosporins, clavams,

carbapenems and monobactams have been classified accordingly (Livermore

et al. 2008; Nordmann et al. 2011; Voulgari et al. 2013). The mechanism of action

of β-lactam class of antibiotics includes the acylation and irreversible modification

of the cell wall cross-linking PBPs, using a characteristic strained four-membered

lactam ring. The β-lactamases, on the other hand, hydrolyse the β-lactam ring and

convert the antibiotic into the inactive penicilloic acid product, which no longer
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binds PBP and thus is ineffective as a drug. In terms of the numbers, since one

β-lactamase molecule can hydrolytically inactivate a thousand penicillin molecules

per second (Walsh 2000), a pool of about 105 β-lactamase molecules secreted per

cell can hydrolyse 100 million penicillin molecules every second, creating an

alarmingly difficult task for the clinicians. Moreover, the less-threatening early

β-lactamases, such as AmpC β-lactamase, were active against the first-generation

β-lactams and were less mobilized owing to the chromosomal localization of their

bla gene (Jacoby 2009), albeit rare instances of plasmid-borne versions (Coudron

et al. 2003). However, several β-lactamases identified later in Gram-negative

bacteria are plasmid-borne, such as the TEM-1 β-lactamase of E. coli (Datta and

Kontomichalou 1965), SHV-1 (sulfhydryl variable active site) (Livermore 1995),

IMP (imipenemase) (Lynch et al. 2013), VIM (Verona integron-encoded

metallo-β-lactamase), carbapenemase (KPC) from Klebsiella pneumoniae
(Voulgari et al. 2013), OXA (oxacillinase) (Gniadkowski 2001) and NDM (Johnson

andWoodford 2013). Wider dissemination of these enzymes among Gram-negative

bacteria, however, resulted in evolution of β-lactamase variants that efficiently

hydrolyse a broad range of β-lactam derivatives (Philippon 1985) and thus led to

the development of the extended-spectrum β-lactamases (ESBLs) (Johnson and

Woodford 2013). In other words, the expansion of antibiotic classes for improved

derivatives has been countered by the emergence of novel hydrolytic enzymes,

which thereby reinforced the rapid emergence of resistance in several bacterial

pathogens to these novel antibiotics, exposing a serious clinical concern (Lynch

et al. 2013). In addition, a novel and extremely diverse class of ESBLs, the

cefotaxime degrading enzyme (CTX-M) class, has been identified in Gram-

negative bacteria (Bauernfeind et al. 1990). The CTX-M class ESBLs are believed

to have followed a complex diversification pathway, beginning with the escape of

the chromosomal genes from soil bacteria, followed by ISEcp1-mediated insertion

and conjugation-mediated transfer (Rossolini et al. 2008) that finally resulted in

hundreds of variants of these enzymes (Bonnet 2004). These instances, therefore,

indicate that different evolutionary paths, (a) the expansion of the resistant bacterial

clones and (b) plasmid-meditated mobilization of resistant genes, have operated

towards the emergence of the β-lactamase variants resulting in the rapid develop-

ment and dissemination of resistance. As a consequence, several pathogenic bac-

teria that are capable of producing multiple ESBLs have emerged and have been

compounding the medical threat.

In addition to the β-lactamases, the macrolide esterases from several

Enterobacteria cease that hydrolyse the lactone ring of erythromycin A and olean-

domycin (Barthélémy et al. 1984), and fosfomycin epoxidases that cleave the

functional epoxide ring fosfomycin (Rigsby et al. 2005) have been characterized.

Besides, a novel mechanism of fosfomycin inactivation has been demonstrated,

wherein the carbon-phosphorus lyase enzyme complex hydrolyses the carbon-

phosphorus bond in the antibiotic (McGrath et al. 1998).
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2.2.3.2 Addition of Functional Group

Although the inactivation of the antibiotic by hydrolysis is the prevalent mechanism

leading to resistance, for the antibiotics that lack hydrolysable groups, bacteria have

developed enzymes that can decorate the surface of the antibiotic with different

chemical substituents, thereby sterically preventing the binding of the antibiotic to

its target molecule (Fig. 1c). The list of functional groups that are transferred

currently includes acyl, nucleotidyl, phosphoryl, ribitoyl and thiol moieties and is

continuously increasing with the discovery of several new inactivating enzymes

and understanding their mechanisms (Wright 2005).

The aminoglycoside antibiotics, the rRNA-binding protein synthesis inhibitors,

lack hydrolysable bonds and resist to hydrolysis but susceptible to modification

owing to several exposed amide and hydroxyl groups on these large molecules

that are attacked majorly by three classes of enzymes, acetyltransferases,

phosphotransferases and nucleotidyltransferases, which add acetyl, phosphoryl

and adenyl groups, respectively (Shaw et al. 1993), thereby reducing the affinity

of the antibiotic to the ribosome and rendering the drug ineffective (Jana and Deb

2006). Although these three classes of enzymes bind to similar class of antibiotics

by mimicking the rRNA-binding cleft (Norris and Serpersu 2013), they are evolu-

tionarily and mechanistically diverse (Romanowska et al. 2013). Surprisingly,

structural studies on the phosphotransferases indicated a close structural relation

with the eukaryotic protein kinases (Hon et al. 1997), suggesting horizontal acqui-

sition of these enzymes by the resistant bacteria. Moreover, the genome of the food-

borne Campylobacter coli harbours a genomic island of 14 genes, which includes

six genes for the aminoglycoside-modifying enzymes that span the three classes

(Qin et al. 2012) and paradoxically pose an immense challenge for the treatment

of the campylobacter infectious intestinal disease (IID) (Tam et al. 2003). In

addition, other examples for enzyme-catalysed modification of the antibiotics

include chloramphenicol acetyltransferase (CAT)-mediated acetylation of chlor-

amphenicol (Schwarz et al. 2004); streptogramin acetyltransferase (SAT)- and

virginiamycin acetyltransferase (VAT)-mediated acetylation of streptogramins

and virginamycins, respectively (Allignet and El Solh 1997); macrolide

phosphotransferase (MPH)- and glycosyltransferase (MGH)-mediated phosphory-

lation and glycosylation of macrolide antibiotics, respectively (Wright 2005);

glutathione-induced fosfomycin inactivation by FosA and FosB (Arca et al.

1997); ADP-ribosyltransferase (ARR)-mediated ADP-ribosylation of rifampin

(Spanogiannopoulos et al. 2014); and TetX (a flavin-dependent monooxygenase)-

mediated reduction of tetracycline (Yang et al. 2004).
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3 Multi-, Extreme- and Pan-Drug Resistance: The Current

Threats

Over and above the resistance to single antibiotics as explained in the above

sections, several bacteria have developed simultaneous resistance to various

drugs leading to the multiple, extensive or pan-drug-resistant isolates worldwide,

the MDR, XDR or PDR ‘superbugs’ (Magiorakos et al. 2012), which pose threat-

ening clinical consequences and public health crisis (Watanabe 1963; Alekshun and

Levy 2007; Nikaido 2009; Nikaido and Takatsuka 2009). Rapid advent of new

resistance mechanisms blended with the decrease in treatment efficacy leads to the

emergence of MDR and XDR phenotypes in several dreadful bacteria: E. coli
against cephalosporin and fluoroquinolones, K. pneumoniae against cephalosporin
and carbapenems, S. aureus against methicillin, S. pneumoniae against different

β-lactams, non-typhoidal Salmonella and different species of Shigella against

fluoroquinolones (Nikaido 2009), Neisseria gonorrhoeae against cephalosporin

and M. tuberculosis against rifampicin, isoniazid and fluoroquinolone (Sharma

and Mohan 2006). Additionally different infecting agents such as the fungi

(Loeffler and Stevens 2003), virus (Margeridon-Thermet and Shafer 2010; Strasfeld

et al. 2010) and protozoan parasites (Ullman 1995; Bansal et al. 2006) have

demonstrated DR phenotypes. Since the MDR strains could simply employ the

combination of the mechanisms that resist individual drugs (Tanwar et al. 2014),

emergence of MDR has become a rapid and unavoidable natural hazard. In addi-

tion, inappropriate use of antimicrobial drugs, inadequate sanitation and meagre

infection control practices promote the further spread of MDR, therefore persuad-

ing for an urgent need to understand mechanisms and means of combating the

microbial infections by the superbug variants.

4 Conclusions and Future Perspectives

Bacteria isolated from several pristine sites, including isolated caves (Bhullar et al.

2012) and permafrost (Hernández et al. 2012), have exhibited antibiotic resistance

indicating a natural course of evolution for billions of years has been instrumental

in shaping the antibiotic resistance even in the absence of human activity (D’Costa
et al. 2011). Although antibiotic resistance is a natural phenomenon, wide and

especially indiscriminate use of antibiotics in human medicine, veterinary medi-

cine, different forms of agriculture and genetic manipulation studies has ironically

hurried the evolution of antibiotic-resistant bacteria. Fortunately, system level

understanding of the biology of the pathogens employing genomic, transcriptomic

and proteomic approaches and advances in structural tools in understanding the

molecular details of antibiotic action has uncovered and will continue to uncover

the precise events underpinning resistance, which could boost the discovery and

development of novel drugs and advanced therapeutic strategies to counter the
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current resistance mechanisms. Therefore, rapid evaluation of the novel antibiotics

for potential resistance emanation and early identification of the pathways involved

in the emanation of resistance will aid in the development of agents that are unlikely

either to develop resistance or become ineffective for microbiological reasons. In

addition, strategies needed to be developed that can enhance the life span of the

antibiotics. However, since resistance is a continuously evolving process, develop-

ment of next-generation antibacterial drugs using the available technologies, infor-

mation and expertise is the current and continuous challenge in the field. Moreover,

early understanding of the mechanisms of drug resistance with the continuous cross

talk between the academic institutions and industry might counter this perennial

problem.
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Molecular Mechanism of Drug Resistance

Shilpa Ray, Susmita Das, and Mrutyunjay Suar

Abstract The treatment of microbial infections has suffered greatly in this present

century of pathogen dominance. Inspite of extensive research efforts and scientific

advancements, the worldwide emergence of microbial tolerance continues to

plague survivability. The innate property of microbe to resist any antibiotic due

to evolution is the virtue of intrinsic resistance. However, the classical genetic

mutations and extrachromosomal segments causing gene exchange attribute to

acquired tolerance development. Rampant use of antimicrobials causes certain

selection pressure which increases the resistance frequency. Genomic duplication,

enzymatic site modification, target alteration, modulation in membrane permeabil-

ity, and the efflux pump mechanism are the major contributors of multidrug

resistance (MDR), specifically antibiotic tolerance development. MDRs will lead

to clinical failures for treatment and pose health crisis. The molecular mechanisms

of antimicrobial resistance are diverse as well as complex and still are exploited for

new discoveries in order to prevent the surfacing of “superbugs.” Antimicrobial

chemotherapy has diminished the threat of infectious diseases to some extent. To

avoid the indiscriminate use of antibiotics, the new ones licensed for use have

decreased with time. Additionally, in vitro assays and genomics for anti-infectives

are novel approaches used in resolving the issues of microbial resistance. Proper use

of drugs can keep it under check and minimize the risk of MDR spread.

1 Introduction

With the advent of technological advancements, the rising scientific era witnessed

the emergence of infectious diseases. This led to a sharp increase in global mortality

and morbidity rate. Hence the research community held up the war against these

pathogens by investigating deep into their molecular mechanisms, their host–

pathogen interaction, and their epidemiology for the discovery of fine effective

antimicrobial measures for host survival and safety. The researchers treated the
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pathogenic ailments with useful inventions for long-term medication. Drug gener-

ally implies to foreign elements or agents that have some medicinal properties for

common therapeutic usage. They can be used for bacterial infections, even as

antifungal or antiparasitic agents, for cancer treatments, etc. The discovery of

antibiotics was the greatest medical intervention affecting human survivability

and health regime (Chain 1979; Fleming 1944; Dougherty and Pucci 2011; Ligon

2004). However indiscriminate usage had dramatically introduced new biological

problems that are hard to confront with the present-day scientific solutions. Hence

failure of medications did set the dawn of a post-antimicrobial era. The time of the

Second World War had limited access to these expensive, rare, systemic medica-

tions (sulfonamides, penicillin, etc.). With time, simplified production of formula-

tions eased the use of such treatments. Gradually, these antimicrobial agents mostly

antibiotics became the elixir for the ailments from time then (Dougherty and Pucci

2011). Moreover the discoverer of penicillin Sir Alexander Fleming warned the

surfacing of resistant forms of Staphylococcus aureus due to improper penicillin

usage which would cause serious host complications (Hartman and Tomasz 1984).

Few years later resistant forms emerged with 50% of susceptible strains becoming

resistant to the drug. Similar trend was observed in many other microbial species

switching their drug sensitivity approach to a severe resistance mechanism thereby

affecting healthy non-vulnerable population. This section will discuss in detail the

emergence of drug-resistant microbial populations and the factors that govern their

drug-resistant feature. The major focus of this segment will highlight the molecular,

cellular, clinical, and genetic factors that bring about this severe cause of drug

resistance. Beginning from the natural microbial resistance to the evolutionary

alteration in the pathogen’s genome, this chapter will cover the idea of how dealing

with the conventional drug resistance mechanisms in the twenty-first century will

create new frontiers for innovative therapeutic development. The problems and the

complex challenge of dealing the multidrug resistance (MDR) mechanism at the

molecular level will enable strategies for futuristic drug development for combating

fungal, bacterial, and viral resistance mechanism.

2 Emergence of Drug Resistance: The Road So Far

Adaption is a very essential condition for survival as well as sustenance. All living

organisms nurture themselves with crucial components from their living system. In

addition to fundamental requirements, adaption against the toxic agents also

requires armors of endurance. The adage “survival of the fittest” also applies to

the environmental sustenance of microbes. This microbial tolerance has enabled the

mechanism of resistance as one of the means to combat the harmful environmental

effects. This results in conferring multiple drug resistance within pathogens against

idle treatments. The first drug resistance occurred against penicillin and sulfon-

amides against S. aureus (Rammelkamp and Maxon 1942; Sabath et al. 1977). The

discovery of antibiotics led to the emergence of antibiotic resistance in the
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following two or more decades. The pathogens in the hospitals were not only

reported to be resistant to the therapeutics but also remained viable for further

infecting the vulnerable individuals with weakened immune system. The nineteenth

century had an impressive pattern of increased tolerance mechanism among the

pathogens from sulfonamide and penicillin-resistant S. aureus to multidrug-

resistant M. tuberculosis. Some gastroenteric pathogens like Shigella, Salmonella,
V. cholera, E. coli, P. aeruginosa, etc., also developed resistance against many

antimicrobials during the course of time. Some strains also enabled community-

dependent infection spread like Streptococcus developing resistance to penicillin

and S. aureus and Enterococcus developing resistance to vancomycin.

2.1 History of Antibiotic Resistance Development: A
Problem Getting Worse

The emergence of drug resistance has always been a major concern worldwide right

after the introduction of drugs for common use. The crucial role of microbes in

causing diseases led to the discovery of antimicrobial drugs (Davies and Davies

2010). Penicillin was the first of its kind as mentioned before to be introduced by

Alexander Fleming in 1928 (Fleming 1944). Its effectiveness was against the

Gram-positive bacteria, especially Staphylococcus aureus followed by few more

antibiotics including streptomycin, tetracycline, chloramphenicol, vancomycin,

macrolides, nalidixic acid, etc. (J. T. Park and Stromistger 1957). However, differ-

ent drug-resistant microorganisms also started to show up with due time course. In

the 1950s, penicillinase-producing S. aureus found its way to the society resulting

in the gradual emergence and spread of multidrug-resistant S. aureus. To combat

the harmful effects of penicillinase-producing S. aureus, methicillin was developed,

but to utter disappointment, methicillin-resistant Staphylococcus aureus (MRSA)

thwarted mankind in the UK (Brumfitt and Hamilton-Miller 1989; Klevens et al.

2007). Meanwhile, ampicillin and piperacillin were produced as broad-spectrum

antibiotics, which also proved to be effective against Gram-negative

Enterobacteriaceae and Pseudomonas aeruginosa, respectively. In the 1960s, a

new genre of drugs named cephems was designed and widely used (Bryskier 2000).

With time, different generations of cephems were developed according to their

antimicrobial spectra. But simultaneously, there was emergence of penicillin-

intermediate S. pneumoniae (PISP) in the latter half of 1967 and penicillin-resistant
S. pneumoniae (PRSP) in the 1970s. Frequent use of cephems was believed to be

responsible for the increase of PRSP. Ampicillin, which was earlier effective

against Haemophilus influenzae, failed in the 1980s, when the strains gained

resistance against antibiotic by producing β-lactamase (Rubin et al. 1981). In the

1990s, β-lactamase-producing strains reduced in Japan, but highly resistant

β-lactam strains increased in number through mutations in their PBP (penicillin-

binding protein) genes. Such were named β-lactam-negative ampicillin-resistant
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(BLNAR) strains which were more common in Japan than in other parts of the

world. In the latter half of the 1990s, vancomycin-resistant S. aureus (VRSA) was
reported in the USA, which was thought to acquire the antibiotic resistance gene

from vancomycin-resistant enterococci (VRE) via horizontal gene transfer

(Goldrick 2002; Sung and Lindsay 2007). In the early twenty-first century, the

increased use of third-generation cephems and carbapenem, quinolones gave rise to

increased risk of resistant Gonococci, multidrug-resistant P. aeruginosa (MDRP),

and quinolone-resistant E. coli. A relatively new concern in this field is the

multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis.

According to 2013 reports, out of all TB cases worldwide, approximately 5%

were estimated to be MDR-TB where the bacterium is resistant to minimum two

of the most powerful first-line anti-TB drugs, isoniazid and rifampicin (Klopper

et al. 2013). When MDR-TB becomes resistant to at least one drug from each group

of second-line anti-TB drugs like fluoroquinolones and other injectable drugs, it’s
defined as XDR-TB. Apart from resistance in microbes, resistance to chemotherapy

by cancer cells emerged to be a major concern in cancer research.

3 Factors for Drug Resistance Development: The Ongoing

Phenomena

Antibiotic resistance is a serious global issue that has seized the roots of develop-

ment. Antimicrobial resistance affects host immune profile, modulates with path-

ogen’s fitness cost, and influences the genetic co-selection of resistant species with

their frequency of reversibility potential (Andersson and Hughes 2010). The bio-

logic mechanisms of the microbe are mostly responsible for such a resistant feature

to fight the environmental toxic conditions. The inherent property of the pathogen,

i.e., the natural resistance of the microbe, is a reason of resistance emergence. The

major causative factor of resistance development is also the frequency of appear-

ance of resistant bacteria due to genetic mutations or evolutionary horizontal gene

transfer (Dzidic and Bedeković 2003; Thomas and Nielsen 2005). These mutations

can modulate with the pathogen’s drug uptake and efflux ability along with

target alteration. Secondly the exposure of the pathogen to the drug/therapeutic

influences the screening of resistant strains. The drug pharmacokinetic properties

which affect pathogen’s sustenance and clearance directly measure the degree of

resistance mechanism. Human microflora is a hub of microbes and the release or

exposure of wide-spectrum antibiotics can trigger resistant microbes to flourish and

spread their tentacles of tolerance. Antibacterial agents mostly target bacterial cell

wall synthesis, protein synthetic machinery, DNA duplication, and repair processes

or transcriptional regulatory processes. Thereby the resistant mutants lack biolog-

ical fitness. Hence, the natural selection theory suggests less prevalence of antibi-

otics to decrease the emergence of resistant species. Even the frequency with which

the genetic alterations occur within the microbe affecting varying degree of
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resistance is another factor. The antibiotic selection pressure is another factor of

modifying the host’s microbiota. The host system is subjected to a phenomenon of

“selective pressure” when treated with antibiotics during infection. With a greater

activity scale, the resistance frequency increases. This results in the resistant

species surviving in the host population as compared to the susceptible strain

with the harsh effect of the antibiotic. So being a reservoir increases the chances

of infection spread to a greater extent. Antibiotics like cephalosporins,

azithromycin, and fluoroquinolones bring about this effect of “selective pressure”

in eukaryotic hosts. A careful and considerate use of antimicrobials is highly

recommended for human safety. This high-end technical and materialistic world

should concern the appropriate prescription of a much selective and narrow-range

antibiotic thereby minimizing the risk of resistance development. Other factors

include the drug exposure properties and concentration dosage dealing with their

pharmacokinetic profile, the drug-pattern usage and its distribution scale, the

immune system of the host (immunocompromised individuals are more prone to

infection), pathogen’s fitness cost of tolerance, and influence of nonresistant ther-

apeutics, thereby affecting the pathogen’s transmission intensity. However the poor

and developing nations are reeling under the burden of drug resistance which

directly affects their economic turnover. As a consequence, one has to raise the

standards of high-end sophisticated health services and prevent the prevalence of

community-associated infections.

Different factors acts as fulcrum in the process of drug resistance development

(Wright and Poinar 2012). But which factors determine the most influential param-

eter for developing resistance and which factors remain insignificant are still under

investigation. It’s yet to be defined that how adaptation enable the microbe to

culminate their survival strategy with resistance development. The understanding

of the molecular and clinical mechanisms that ignite the “trigger responses” for

microbial acclimatization has just begun. The literature of therapeutic invention has

led to the conclusion that the once susceptible strains have developed weapons of

resistance against the sensitive drug. For instance, a span of five decades made

Streptococcus species resistant to penicillin and S. aureus resistant to vancomycin.

This will enable one to formulate new mechanisms for restructuring new designs

for drug development against many life-threatening diseases. Among the risk

factors responsible for the emergence of drug resistance, illogical and rampant

use of antibiotics is one of the crucial reasons for such an issue (Alanis 2005). The

uncontrolled application of drugs in agricultural industry and in animals is becom-

ing another rising factor for not only food production but also resistance develop-

ment. Moreover treating immunocompromised individuals with life-saving drugs,

increasing the survival chances of patients with unrestrained drug usage, and

greater usage of invasive processes are other factors adding to the therapeutic

tolerances. Greater medical advancements have led to control of infection and

increased life expectancy of many patients. Even minor causes like lack of effective

methods of hygiene and restrictions while handling infected patients can minimize

the risk level of resistance to some extent. Not only widespread use of antibiotics

but also harsh chemicals like herbicides, organic pesticides, and other toxic agents
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along with chemotherapies for cancer and viral, parasitic, and fungal treatments

have raised the concern for resistance emergence. The resistance mechanism in

microbes, plants, and humans portrays certain homology in the proteins conferring

such tolerance mechanism. Microbial genetics play a central role in shaping up the

molecular structure for centralizing the mechanistic studies of drug resistance. The

horizontal gene transfer influencing resistance linkage enables the co-selection of

resistant species with tolerance to more than drug (Alonso et al. 2001; Baker-Austin

et al. 2006). Reduced use of one drug can’t revert back the resistance if the genetic

alterations already support other resistance genes. Moreover co-selection can also

lead to clonal substitution of the resistance-linked allele. Similar structural frame-

work of drugs can even confer co-selection. This again challenges the regulatory

checks. Drug resistance can be categorized into intrinsic and acquired resistance.

The detailed mechanistic approach will be discussed in the sections ahead. Intrinsic

mechanism deals with the natural ability of the microbe as an innate immunity

mechanism, whereas acquired mechanism deals with the environmental influence

bringing about genetic modification, thereby giving a new dimension to resistance

aspect.

4 General Mechanism of Drug Resistance

Drug development still forms the top headed research enterprise globally due to

unsuccessful therapeutic reign of potent drugs over microbial weapons. The term

“drug” is generally applied to all foreign chemicals including antibiotics, herbi-

cides, and therapeutic agents against virus, parasites, cancer, etc. The host–microbe

warfare has led to the compromise of clinical interventions and rise of multidrug-

resistant species (Streptomyces). Resistance to seven or more antibiotics has even

led to a resistance phenotype for around 20 drugs. Such mechanisms have made the

environment emerge into a reservoir of pathogen tolerance. The emergence of new

infectious agents causing AIDS, SARS, etc., has modulated the resistance standards

with raised clinical challenges. The fast-growing drug resistance mechanism will

become the signature of potent microbes inhabiting the environment with new

emerging diseases and higher tolerance level causing mortality and morbidity.

Understanding of microbial genetics and gene manipulation modes will give a

greater insight and provide a new dimension into fighting the resistance mecha-

nisms (Hayes and Wolf 1990). The molecular mechanism of resistance can be

categorized into intrinsic and acquired mode of tolerance. Intrinsic relates to the

inherent and integral property of the microbe that has built up evolutionarily for

resistance characteristics (Cox and Wright 2013). Additionally the procedure of

mutations and selective characterization forms the major genetic changes for

resistance emergence. Methods of gene transfer, gene alterations in stress-

regulating genes causing altered protein expression, and gene amplification can

bring about the change in the pathogen’s genetic constitution. Both the molecular
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approaches of resistance mechanisms will be discussed in detail in the following

sections.

4.1 Intrinsic Resistance

Intrinsic resistance is defined as the ability of an organism to resist the antimicro-

bial/chemical compounds using a characteristic feature, which is an inherent or

integral property developed by virtue of evolution. This can also be referred to as

“insensitivity” due to the invulnerable nature of the organism toward that particular

drug. The natural resistance feature, though less prevalent, sometimes undergoes

spontaneous genomic alterations due to the absence of antibiotic-based selective

pressure. However mostly the antibacterial-based microecological pressure triggers

the stimulus for pathogen adaptation by the development of drug resistance.

Mutations or evolutionary competition enables drug resistance gene uptake. It can

arise due to certain events as outlined in Fig. 1 and mentioned below:

Absence/Modification of Target Site Microbial uptake of an antimicrobial drug

is essential for a target-oriented action. Porins serve as the passageways for the

drugs to cross the outer membrane of the bacterial cell. Some bacteria have the

ability to manipulate their cell wall or membrane in order to protect themselves

Fig. 1 Schematic presentation of multiple diverse molecular mechanism of microbial resistance
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from foreign drugs. For example, certain Gram-negative bacteria can significantly

lessen the uptake of certain antibiotics like aminoglycosides by altering the mem-

brane porin frequency, size, and selectivity. On the other hand, the modification in

the PBP (penicillin-binding protein) site led to the insensitivity toward the β-lactam
antibiotics (Malouin and Bryan 1986).

Species-Specific Structure of Target Site Although the mode of action of anti-

biotics is almost similar across the same community of bacteria, species specificity

has been detected in some cases. This is due to the lack of affinity of the drug to its

target site. Different species under a single genus of a bacterium can alter the

binding site of the drug by presenting various structural motifs for the same target,

thus developing resistance. For example, the crystal structures of the large ribo-

somal subunit in Staphylococcus aureus showed specific structural motifs and

binding modes for different antibiotics of same function as well as for a particular

drug against different species of the bacteria.

Inactivation of Antimicrobial Agents viaModification/Degradation Destroying

or manipulating the active component of the antimicrobial drug has always been

considered as one of the effective techniques adopted by microbes for protection.

For example, in penicillins and cephalosporins, the bacterial enzyme beta-

lactamase hydrolyzes and deactivates the beta-lactam ring producing inactive

penicilloic acid. It is then unable to bind to the PBPs, thereby maintaining the

cell wall synthesis of the bacteria (Waxman and Strominger 1983). This kind of

inactivation has been observed in many Gram-negative and Gram-positive bacteria

against chloramphenicol, aminoglycosides, etc., via acetylation, phosphorylation,

and adenylation.

Presence of Efflux Pumps A drug needs to be inside a bacterial system in high

concentrations for a longer period in order to exert a persistent effect. However,

some bacteria take advantage of their highly efficient drug efflux pumps that act as

an export or kick the drug out of the cell as soon as it enters leaving only a little

trace of the drug, insufficient for any significant effect. Some pumps specifically

extrude particular antibiotics such as macrolides, lincosamides, streptogramins, and

tetracyclines, whereas multiple drug resistance pumps throw away a variety of

structurally and functionally different drugs (Lewis 1994). Most drug efflux pro-

teins belong to five distinct protein families: the resistance–nodulation–cell division

(RND), major facilitator (MF), staphylococcal/small multidrug resistance (SMR),

ATP-binding cassette (ABC), and multidrug and toxic compound extrusion

(MATE) families (Stavri et al. 2007). Except for ABC transporters, efflux by

proteins of the above mentioned families is driven by proton (and sodium) motive

force and is known as secondary transport. On the other hand, the primary ABC

transporters drive efflux through ATP hydrolysis. These strategies have been

observed in:

(a) E. coli and other Enterobacteriaceae against tetracyclines
(b) Enterobacteriaceae against chloramphenicol

(c) Staphylococci against macrolides and streptogramins

(d) Staphylococcus aureus and Streptococcus pneumonia against fluoroquinolones
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High Detoxication Capacity Many bacteria secrete toxic compounds to protect

themselves from their predators and other competitors. But they also need to evade

the harmful effects of those noxious chemicals they produce. This is seen in the case

of antibiotic-producing bacteria such as Streptomyces spp. In their defense, they

develop resistance involving inactivation of their own antibiotic products strepto-

mycin and neomycin by phosphotransferases and acetyltransferases and also by

protecting the target site, i.e., rRNA by methylation in erythromycin-producing

S. erythraeus. Additionally, in higher organisms, protein expression related to

protection against chemicals is highly tissue specific. For example, the mammalian

lung withstands the damage due to oxygen-induced free radicals. So this tissue has

developed a large number of defense mechanisms including glucose-6-phosphate

dehydrogenase, α-tocopherol, glutathione, glutathione peroxidase, glutathione

reductase, superoxide dismutase, catalase, etc. Also, the bronchiolar epithelium

contains high levels of detoxication enzymes due to its direct exposure to the

environment. These features make sure that it has a natural resistance to many

drugs that work through the generation of free radicals or perform as alkylating

agents.

Low Drug Delivery This is due to low bioavailability and stability, fast metabo-

lism, and less time for circulation of the drug inside the host system. All these things

contribute to low drug delivery into the target site, but since the drug is exposed to

the environment, resistance can be developed by the microbes or harmful cells such

as tumor cells.

Cell Cycle Effects In mammalian cells, the rate of cell division is a major cause of

intrinsic drug resistance. This is due to the fact that the main dose-limiting deter-

minant in the cancer chemotherapy is the toxicity to the rapidly diving normal cells.

Mostly, the anticancer drugs are effective against the quickly proliferating malig-

nant cells. So, solid tumors that are slow growing develop resistance as most of the

cells are in G0 resting state.

Chemically Induced Adaptive Change Drugs or other types of toxic agents, upon

entry into the cell, evoke many biochemical changes inside that lead to adaptation

of the cells against the same or other compounds. The difference between intrinsic

resistance by adaptive changes and other forms of intrinsic resistance is that the

former is temporary and reversible in the absence of the toxic agent. This fact is

observed in clinical practices, especially in cancer therapy where it protects the

normal host cells but not the tumor cells from the adverse effects of the chemo-

therapeutic agent.

Stress Response Environmental factors other than drugs, such as pH, osmotic

shock, UV irradiation, heat, trauma, viral infection, anoxia, and oxidative stress,

can contribute to stimulate a genetic reflex in the cells that provide resistance not

only to the stress factors involved but also against drugs. Prokaryotes have mainly

four stress-induced regulons, namely, the SOS response, the oxyR network, the

heat-shock response, and the adaptive response to alkylating agents. Like in E. coli,
the groEL and dnaK heat-shock proteins are not only induced by hyperthermia but
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also by UV irradiation or nalidixic acid. Both of them affect the SOS response.

Similarly, in Salmonella Typhimurium, the ability of a cell to adapt to H2O2-

induced oxidative stress also gives resistance to heat killing. Many biochemical

events influence resistance development which mainly includes decreased drug

delivery and uptake, high efflux as mentioned above, greater inhibition of metabolic

drug activity, and drug sequestration mechanisms.

4.2 Acquired Resistance

Microbial drug resistance development is related to the organization of their genetic

material that becomes tolerant and the ease of uptake of exogenous DNA to alter

their inherent genetic makeup. The continued selective pressure has thereby led to

different modes of pathogen survival against the harsh medications. The emergence

of resistance mostly involves two categories of pathogen: one involving the sus-

ceptible group and the other heterogeneous group comprising at least one microbe

with drug-resistant determinant. The resistant group emerges fit with renewed

genetic composition coding for the resistance which further assists in its propaga-

tion. Efflux mechanisms, drug modulation, membrane permeability alteration, etc.,

form the bullets of superbug evolution as depicted in Fig. 1. Thus the MDRs like

Pseudomonas, Klebsiella, methicillin-resistant Staphylococcus aureus (MRSA),

and XDRs like Mycobacterium tuberculosis have evaded the clinician’s arsenal

with their remarkable virulence potential. For an insight into drug invention, an

understanding of molecular mechanism of drug resistance will help to sort out the

therapeutic trade-offs with novel approaches. As mentioned before, pathogen drug

resistance mechanism can be either intrinsic or acquired (Fig. 1). The “biological”

aspect of resistance development is either absent from a majority of microbial

population or is underexpressed before drug exposure. Microbial resistance has

its basis at the genetic level which is modified either by gene knockout or intro-

duction. This alters the genetic composition and cellular gene expression forming

myriads of biological resistance forms (Mazodier and Davies 1991). Where intrin-

sic mechanism is solely due to the inherent microbial property of natural chromo-

somal genes and efflux system, acquired mechanism involves genetic mutations or

gene transfer/exchange methods through the process of transformation, transduc-
tion, or conjugation (Fig. 1) (Flintoff 1989). Conjugation, the most general mode of

drug resistance transmission, is facilitated by plasmids by forming a temporary

“pilus” between two adjacent bacteria for genetic material exchange. Transforma-

tion is the process of uptake of exogenous DNA from the surrounding due to

microbial degradation/lysis for further incorporation into any recipient organism’s
genetic cassette. Transduction essentially requires a vector specifically viruses that

carry up the drug resistance genes for further introduction into bacterial host

(bacteriophage mode of resistance transmission). Gene transfer is not genus spe-

cific, so the divergence of genetic exchange has led to the evolutionary buildup of

the resistance reservoir. The independently replicating plasmids distinguishable
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with their origin of replication mostly contain the genes of antibiotic resistance.

Transposons encoding the resistance determinants are the “jumping genes” present

either on plasmids or host chromosome (Frost et al. 2005). The DNA terminal

sequences enable recombination and encode proteins which facilitate their stable

integration into host genome. Conjugative transposons bear unique plasmid-like

properties which add on the advantage of funneling up many endogenous extra-

chromosomal elements. Integrons comprise of gene cassettes that bear stable

recombination features of undergoing multiple gene exchange within a single

crossover. One super-integron was reported in Vibrio cholerae which comprised

of about 3% of host’s genetic makeup. Numerous plasmids existing within a single

microbe frame the genetic composition of the organism. They even comprise of “R

factors” annotated as the resistance units forming the means of resistance spread

among microbes. Shigella strains bearing self-replicating as well as self-

transferable elements were identified to exhibit sulfonamide tolerance. Streptomy-

cin, chloramphenicol, and tetracycline were used as optional medications; however

the susceptible strains started developing tolerance against all three antibiotics with

due time course.

After resistance gene transfer, the gene overexpression or mechanistic biological

activity modulates the drug treatment in a way to neutralize its effect. The biolog-

ical mechanism of resistance generally involves chemical/enzymatic degradation or

modification of the therapeutic agent rendering it inactive against the bug. Such is

the mode of resistance development in case of β-lactam antibiotics. Secondly, the

active drug efflux mechanisms, much intensified than influx modes, promote

effective resistance development. Efflux mode of microbial tolerance was evident

in tetracycline and fluoroquinolones. Thirdly, target modification involves the

microbe to alter the substrate binding affinity of the drug thereby hampering its

activity. Similar mechanistic methods involve structural conformational changes in

PBPs which renders penicillin resistance and DNA gyrase modulation which leads

to fluoroquinolone tolerance (Wolfson and Hooper 1985). The frequency of muta-

tions within the wild-type microbial population that has emerged irrespective of any

selective pressure or drug exposure is attributed to the natural selection of emer-

gence of acquired resistance. This differentiates from the intrinsic mechanism

where the genetic alteration becomes a part of the biological variation. Selection

of the microbial units that can withstand and sustain the chemical insult proves

superior. Examples include the PBPs in E. coli causing cephalosporin resistance

and alterations in acetylcholinesterase conferring tolerance to Rabon (Tripathi and

O’Brien 1973). Drugs or antimicrobials aren’t mutagenic. However, certain tumor

treatments involve mutagens in chemotherapy that can evolve the selection pressure

for resistance thereby causing genetic instability with high mutations or amplifica-

tions. In tumors specifically the differentiation between natural selection and

acquired tolerance is a highly debatable topic. Such phenomenon leads to the

constitutive expression of certain phenotypic changes instrumental for adaptive

response. In E. coli, the altered LexA repressor gene has an impact in regulation of

SOS signals (Little and Mount 1982). Even S. Typhimurium when resistant to

hydrogen peroxide modulates the expression of certain stress-regulating genes
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including catalase, SOD, glutathione peroxidase, etc. Changes at the transcriptional

level or early mutational occurrence influence significant mechanistic cascades that

lead to overexpression of proteins modulating the microbial genotype to display

resistance phenotype. The modes of development of acquired resistance involve

mutations, efflux systems, gene amplifications, drug modification, or

target alterations.

Chromosomal-Based Genetic Alteration Mutation in drug targets is basically

the most common mechanism of microbial resistance emergence. The fluoroquin-

olone resistance mechanism can be attributed to genetic alterations as well as efflux

pump machinery. The drug targets DNA gyrase as well as topoisomerase IV which

when altered confer fluoroquinolone resistance. These multi-subunit targets play a

pivotal role during DNA duplication each comprising of two subunits: GyrA and

GyrB for DNA gyrase and ParC/GrlA and ParE/GrlB for topoisomerase IV. One

subunit of these complexes functions for the DNA-binding role, whereas the other

carries up the ATP-binding and hydrolysis role. The quinolone-resistance deter-

mining-region in DNA-biding domain bears the mutational changes that confer

antibiotic resistance. Innumerable mutations impose additive effects to build up the

bacterium’s resistant trait. Similarly rifamycins form the front-line therapeutic

against tuberculosis infection either individually or in combination with isoniazid,

streptomycin, etc. However, RpoB point mutations prevent the drug-binding affin-

ity at the RNA polymerase subunit conferring combinatorial drug resistance

(Mariam et al. 2004). Sulfonamide targets dihydropteroate synthase whose alter-

ation results in decreased enzymatic activity for the drug. Trimethoprim blocks

dihydrofolate reductase enzyme whose mutation causes protein over-induction with

reduced drug affinity. Point mutations at 16S rRNA and 23S rRNA operons confer

tetracycline and MLS antibiotic resistance, respectively (Ross et al. 1998).

Genomic Duplication Gene alterations mainly include gene mutational events

along with gene amplification or overexpression. The method of genomic doubling

is quite prevalent in conferring drug resistance among eukaryotic cells, the sole

reason in tumors. This genetic induction leads to the modulation at the protein level

for augmented biosynthetic machinery leading to the overexpression of many

transporters. In E. coli, the genomic amplification of acrAB locus in tetracycline

exposure led to induction of the AcrAB efflux pump systems contributing to

multiple drug-resistant phenotype (Nikaido and Zgurskaya 2001). Such duplication

phenomenon has also been observed in S. aureus with respect to methicillin

resistance. Genome amplification forms one of the mechanisms of resistance

avoiding the boundaries of mutational aspects. However the absence of drug

made the microbes revert back to their normal phenotypes. So the tolerance

mechanism is basically unstable.

Enzymatic Approach of Drug Modification General mechanism of drug modi-

fication involves two specific classes of enzymes; one group which causes drug

degradation and another catalyzes chemical modifications. The β-lactamases

encoded by plasmids and transposons confer adaptive resistance as compared to
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the chromosomal chunk which attributes intrinsic property. The structural and

functional characterization classifies β-lactamases into two groups, one having

serine at the active catalytic site (classes A, C, D) and another with zinc-dependent

metalloenzyme (class B). Being zinc dependent, class B enzymes are susceptible to

EDTA and hydrolyze carbapenems. AmpC, a prototypic class C-type enzyme being

plasmid borne, is easily transferred among many Gram-negative strains like Sal-
monella spp., Klebsiella spp., etc. (Jacoby 2009). Even the acetyltransferases,

phosphotransferases, and adenylates that modify the aminoglycosides exist on

certain mobile genetic units or integrons where they enable resistance transmission.

The MLS antibiotics are inhibited by groups of esterases as well as

phosphotransferases that modulate 14- and 15-membered macrolides (Nakajima

1999). The acetyltransferases and hydrolases affect streptogramin A and B drugs,

respectively. The transferase enzyme concerned with nucleotidyl moiety transfer

bestows resistance to lincosamides antibiotics. Even chloramphenicol, which tar-

gets the protein biosynthetic machinery, is a bacteriostatic drug which is inactivated

by certain groups of acetyltransferases. Prevalent mostly in Enterococcus and

Staphylococcus, the enzyme’s translational attenuation depends on the regulation

of their protein expression and induction.

Modulated Drug Targets β-Lactamase-producing S. aureus was the first penicil-
lin- and methicillin-resistant strain. The mechanism involved genes contributing to

changes in PBPs that confers β-lactam resistance in Streptococcus as well as

Staphylococcus. This gene is encoded by mecA on a mobile genetic unit in resistant

Staphylococcus aureus (Wielders et al. 2001). The “staphylococcal cassette chro-

mosome” is the mobile element comprising of regulatory segments and enzymes

responsible for site-specific recombination. The cell wall synthetic process requires

a number of PBPs in Staphylococcus aureus. PBP2 enzyme plays dual role in

resistant S. aureus where the transpeptidase and transglycosylase activities switch

in accordance to drug exposure for imparting susceptibility or tolerance features in

the microbe (Brown and Reynolds 1980). The plasmid-borne qnr determinants

found widely in Gram-negative species of E. coli, Shigella, non-typhoidal Salmo-
nella, etc., affect fluoroquinolone sensitivity (Piekarska et al. 2011). The pentapep-
tide repeat protein family includes Qnr as well as MfpA which regulate

fluoroquinolone resistance by shielding DNA gyrase and topoisomerase II, respec-

tively. Qnr additionally protects topoisomerase from drug effect. Moreover MfpA

in Mycobacterium forms an identical structural outlook of B-DNA-inhibiting cip-

rofloxacin activity by interaction with DNA gyrase (Montero et al. 2001). Coupled

with other modes, Qnr and MfpA can amplify the resistance profile to higher

extents. Glycopeptides form the major example of bearing the drug resistance

feature due to drug target modifications in Gram-positive spherical bacteria. Mul-

tiple clustered proteins contribute to resistance by modulating the peptidoglycan

production. The complex elucidation of unveiling the glycopeptide resistance

concerns gene clusters like racemases or dehydrogenases forming serine and

lactate, respectively, which alter the peptidoglycan framework. The

two-component unit regulates the cellular biosynthetic mechanisms. With intact

Molecular Mechanism of Drug Resistance 59



D-Ala available, the reduced interaction efficiency with serine and lactate substrates

nullifies. The dipeptidase and carboxypeptidase act in accordance to their respec-

tive function of cleaving and removing the terminal D-alanine. The vanA gene

cluster conferring vancomycin resistance in Enterococcus has transferred its resis-

tance determinants even in S. aureus encoded on Tn1546 transposon. However,

plasmid from E. faecalis forms the initial mode of vanA transfer into Staphylococ-
cus. The erythromycin resistance methylase (erm) influences the macrolide drug-

binding affinity by methylation of adenine residues of 23S rRNA (Maravic 2004);

Vester and Douthwaite 2001. The resistance markers are usually constitutively

expressed or in certain cases MLS drug exposure induces expression.

Efflux Mechanisms and Membrane Permeability Channel Rather than

restricting drug uptake and internalization, resistance is mostly due to the failure

of undergoing drug interaction with cellular targets due to drug effusion (Fig. 1).

Efflux pump mechanism ejects the drug out of the cell and was initially observed

during tetracycline resistance development. The five protein transporter families

involved in efflux machinery are ATP-binding cassette (ABC) transporters,

resistance–nodulation–cell division (RND) protein superfamily, major facilitator

(MF) protein groups, small multidrug resistance (SMR) units, and multidrug and

toxic compound extrusion (MATE) protein superfamily (Poole 2005). ABC group

of primary transporters employ ATP hydrolysis for efflux mechanism, whereas the

rest secondary groups involve proton-motive gradient force for conferring drug

expulsion (Kobayashi et al. 2001). The drug discharge proteins are either catego-

rized into single protein component systems having narrow substrate range or bear

two proteins to facilitate the binding of variable structural compounds conferring

wide spectrum of resistance phenotypes. RND transporters enable efflux of cyto-

solic proteins through the inner and outer membrane barriers. The 20 tetracycline

efflux transporters comprise of transmembrane spanning regions where the protein

expression is regulated under the transcriptional repressor. The inactivation of the

repressor by the drug promotes the expression of the tetracycline efflux machinery.

TetA-E are the efflux proteins in Gram-negative bacteria, with TetK and L in Gram-

positive microbes, and TetR is the repressor (Schnappinger and Hillen 1996).

Certain proteins are also involved in electroneutral chemical reactions. Addition-

ally, macrolide and streptogramin tolerance is attributed by a group of ABC efflux

protein family called MsrA. Its homologues VgaA and VgaB in Staphylococcus
bring about streptogramin A and pristinamycin resistance, respectively (Lina et al.

1999). Mef efflux systems also confer macrolide resistance in Streptococcus.
Removal of efflux machinery can revert back the genetic profile to antibiotic

susceptibility even with the persistence of chromosomal alterations. E1–E8

are the groups of efflux protein superfamily that confer phenicol resistance.

CmlA is an efflux system aiding in chloramphenicol resistance, which promotes

an induced attenuation-based resistance mechanism (Bischoff et al. 2005). Porin

proteins enable the smooth flow of molecules across the cell membrane barrier in

Gram-negative bacteria (Delcour 2009). OmpF in Escherichia coli and OprD in

Pseudomonas act as checkpoints to monitor the nonspecific entry of many
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compounds. OprD mutational changes lead to imipenem tolerance. Simultaneous

expression and regulation of OprD and MexEF-OprM efflux complex will confer

carbapenem resistance (Lee and Ko 2012; Quale et al. 2006). The bacterial cell

envelop restricts and permits selective entry of many hydrophobic and hydrophilic

components. Resistance to polymyxin B however doesn’t involve porins but cell

envelope alterations. The PmrAB system regulates the LPS and lipid A moiety

changes which confers polymyxin B resistance in Salmonella Typhimurium (Gunn

2008).

5 Drug Resistance Mechanism (Disease Specific)

5.1 Tumor Drug Resistance: An Evolving Paradigm

After all the advancements in cancer research, emergence of drug resistance

restricted the efficacy of the therapies. Resistance to cancer chemotherapy results

from a range of factors, starting from individual variations in patients and somatic

cell genetic differences in tumor, even those from the same tissue of origin (Dean

et al. 2005). Resistance can be intrinsic as well as acquired. Chemotherapy resis-

tance occurs when cancers that have been responding to a drug suddenly stop

reacting. There are several possible reasons responsible which mainly include:

1. Some cancer cells that escape the harmful effects of the drug mutate and develop

resistance toward the drug. Later, upon multiplication, they become more

resistant.

2. Gene amplification: A cancer cell has the ability to produce hundreds of copies

of genes of a particular gene. This leads to the overexpression of the

corresponding protein, which in turn makes the anticancer drug ineffective.

3. With the help of a molecule called p-glycoprotein (P-gp), cancer cells pump out

the drug entering the system using their proficient drug efflux pumps.

4. Highly efficient DNA damage repair machinery, one of the survival secrets of

cancer cells, also plays vital role in contributing resistance against anticancer

drugs (Holohan et al. 2013).

5. Cancer cells may also develop strategies to inactivate the drugs (Holohan et al.

2013).

The molecular mechanisms of drug resistance in tumors are discussed in details

in the following segments:

1. Altered membrane transport: One of the most promising drug resistance mech-

anisms against antineoplastic agents is the method by which the cell flushes out

the cytotoxic compound with the help of some membrane proteins that helps to

reduce the inside drug concentration below the cell-killing threshold. These

proteins modulate absorption, distribution, and excretion of many pharmacolog-

ical compounds. ABC transporters are encoded by as many as 48 genes. In the
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clinical transport-associated MDR, the most commonly involved gene is the

MDR1 that encodes for the P-glycoprotein (P-gp; MDR1, ABCB1) which is a

phosphorylated and glycosylated 170 kDa protein. Other well-known ABC

transporters are the MDR-associated protein 1 (MRP1, ABCC1), the

mitoxantrone resistance protein (MXR1/BCRP, ABCG2), and the ABCB4

(MDR3) and ABCB11 (sister P-gp or BSEP) proteins involved in the secretion

of hepatic phosphatidylcholine and bile acids, respectively, as well as transport

of certain drugs. The most interesting feature of differentiating MDR proteins

from other mammalian transporters is their high substrate specificity. Unlike

classical transporters, MDR transporters translocate a variety of structurally

different hydrophobic compounds along with other unique compounds, and

this forms the platform for the cross-resistance to many chemically unrelated

compounds. Overexpression of MDR proteins in tumors like hepatomas and

lung or colon carcinomas often shows intrinsic resistance (Gottesman 2002;

Gottesman et al. 2002). The role of P-gp, in the absence of any therapeutic agent

or toxin, is thought to protect the cell from xenobiotics. However, several reports

suggest P-gp to have prognostic significance in certain types of neoplasms as

well as to play an important role in CNS penetration of drugs (Begley 2004). But

all these have failed to correlate with the clinical evidence. So, its mode of action

has always been controversial. According to some reports, MDR proteins are not

responsible for transporting drugs, but they alter ion transport or signal trans-

duction, thus later on affecting drug distribution. In tumor cells, anticancer drugs

and cytotoxic cytokines like TNF/Fas ligand family play an important role in

induction of apoptosis and tumor therapy (Reed 2003). Drug-resistant tumor cell

lines show resistance to Fas-induced caspase-3 activation and apoptosis which is

reported to be mediated by P-gp. The cells expressing P-gp are resistant to a lot

of stimuli responsible for the activation of caspase apoptotic cascade, whereas it

is not the case in caspase-independent cell death where cell dies by the action of

pore-forming proteins GzB.

2. Genetic responses: Drugs such as methotrexate inhibit key enzymes involved in

the proliferation pathway of mammalian cells. When transcription of the gene

encoding for the enzyme increases, large amount of enzyme is produced that

leads to faster proliferation. But the concentration of the drug is limited which

cannot block the additional enzyme that is produced. Thus the cells develop

resistance against the drug. One way to overexpress the enzyme is by the

amplification of the gene encoding the enzyme, which is achieved by replication

of a region from the chromosome that results in multiple copies of the same

gene. Several drug-resistant cancer cell lines and DNA from two drug-resistant

leukemic patients have shown gene rearrangements in their chromosome

resulting in the initial activation or enhanced expression of MDR1 gene. More-

over, therapy with rifampicin has also shown to induce MDR1 expression in

healthy individuals. Hence, MDR1 overexpression can be affected by gene

amplification/rearrangement, rifampicin induction, etc. Another important factor

responsible in drug-resistant cancer is the mutation in the apoptotic gene p53.

p53 usually induces apoptosis in cells which have undergone DNA damage
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(Chen et al. 1996). Thus, the target DNA won’t be affected and will continue

replicating in the presence of mutated p53. So, the drugs that increase DNA

damage will come to no use in certain cancers. In many cancer cases, deletion of

p53 was reported to be linked to MDR. Also, reduced expression of p53 in

human breast cancer cells altered response to paclitaxel and 5-FU. Other genes

involved in apoptotic pathway, like h-ras and bcl2/bax, have also been observed

to contribute to drug resistance (Davis et al. 2003). Thus drug resistance arising

from genetic responses affects a large variety of anticancer drugs and increases

the percentage of surviving mutant cells, which in turn leads to greater tumor

heterogeneity.

3. Enhanced DNA repair: Cancer cells develop resistance to drugs such as cisplatin
by an enhanced ability to remove cisplatin-DNA adducts and to repair the

cisplatin-induced lesions with the help of certain DNA repair proteins like

XPE-BF (xeroderma pigmentosum group E binding factor). ERCC1 (excision

repair cross-complementing protein), a DNA-binding protein, has the ability to

recognize cisplatin-induced DNA damage and thus its level increases in

cisplatin-resistant cells (Siddik 2003). The level of ERCC1 is also found to

increase in carboplatin-resistant tumors.

4. Alterations in target molecules: Modifications in the target of a drug is a

common way to develop resistance against the same. As seen in antiestrogen

(e.g., tamoxifen) therapy for breast cancer, patients undergo a transition from a

responsive state to an endocrine-resistant state due to an apparent loss of

estrogen receptors in the resistant cancer cells (Ring and Dowsett 2004). So

they finally stop responding to tamoxifen treatment, while the growth of their

tumors can still be inhibited for a short span by estrogen synthesis inhibitors like

aromatase inhibitors followed by complete unresponsiveness to any endocrine

modification. Hence, the surviving cancer cells no longer depend on estrogen for

growth and the original drug that targets estrogen receptors becomes useless.

Another example is a tyrosine kinase inhibitor, imatinib, which induces apopto-

sis in cancer cells by disabling the damaged bcr-abl receptors, preventing ATP

binding (Capdeville et al. 2002). But reports suggest that during clinical trials,

the chronic myeloid leukemic patients in remission had reactivated bcr-abl

activity, few patients had amplified copies of the bcr-abl gene, and others had

a single point mutation within the ATP-binding site of the gene. Hence, this gene

shows to play an important role in initiation and maintenance of cancer and thus

related to anticancer drug resistance (Dean et al. 2005). Mutation in the topo-

isomerase gene is another cause of drug resistance due to its vital role in DNA

replication process. Chemotherapeutic drug like etoposide that targets topoisom-

erase II suffers from resistance when cancer cells mutate the latter in a way to

alter its nuclear localization. Chromosomal losses are very common in cancer,

and due to its aneuploid nature, there has been the emergence of MDR. While

undergoing repeated cell division for a number of times, a cancer cell has the

chance of losing the drug-sensitive gene from the chromosome, and also chro-

mosomal rearrangement during mitosis can contribute to the activation or

inactivation of different biochemical pathways that can affect the mode of action
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of the drug. The size of the tumor also matters as the center part of most tumors

has limited blood supply. So, the larger the tumor, the lower the drug efficacy.

Apart from this, some metabolic enzymes, either alone or together with trans-

porters like P-gps, can alter the drug absorption, distribution, metabolism, and

excretion. For example, enzymes like cytochrome p450s (cyp450) in combina-

tion with P-gp greatly affect the drug absorption and bio-distribution to the

tissues preventing intestinal transcellular permeability, biliary disposition in

the liver, urinary elimination through the kidney, and placental transport.

5. Metabolic effects: Effective clearance of drugs can often be achieved by some

xenobiotics that have the ability to modify high-density apolipoprotein or by

overexpression of the drug-metabolizing enzymes and/or carrier molecules. The

increased production of glutathione or ubiquitin leads to drug inactivity by the

formation of conjugates that are excreted, for example, cisplatin that becomes

resistant to ovarian carcinomas after the overexpression of dihydrodiol dehy-

drogenase. In some cases, the underexpression of few drug-metabolizing

enzymes (e.g., deoxycytidine kinase) can also lessen drug (e.g., arabinosidase)

activity in a situation where the drug needs to be catalytically cleaved to be in its

active form. Additionally, protein kinase C has been found to have increased

activity in the drug-resistant breast carcinoma cells because of its role in both

drug exclusion and apoptosis (Caponigro et al. 1997). Breast cancer cells have

shown resistance against paclitaxel and vincristine due to the involvement of the

extracellular matrix as well. The ligation of the b1 integrins by the extracellular

matrix inhibits apoptosis mediated by these two drugs.

6. Growth factors: High levels of serum interleukin-6 (IL-6) have been observed in

different drug-resistant cancer cells, whereas cells sensitive to the chemotherapy

did not produce any detectable IL-6. The reason behind this resistance was

attributed to the activation of the CCAAT enhancer-binding protein family of

transcription factors and induction of MDR1 gene expression (Okamura et al.

2004). Reports have also suggested that extracellular factors can contribute to

drug resistance against a particular cancer. Like increased levels of acidic and

basic fibroblast, growth factors in the media of solid and metastatic tumors can

affect the broad-spectrum drug (paclitaxel, doxorubicin, and 5-FU) efficacy and

lead to develop resistance. When applied in combination, these two growth

factors can give rise to a tenfold increase in drug resistance.

5.2 Antibiotic Resistance: The Bacterial Weapons

The era of the twentieth century witnessed the discovery of essential antibacterial

drugs to control bacterial proliferation for limiting infectious agents. Even though

vaccines and other public health agendas were instrumental, still antimicrobial

therapy checked the further transmission of infectious pathogens (Donadio et al.

2010). Antibiotics literally implies “against life” but scientifically are compounds

that hinder with the normal functioning of the bacterium without interfering with
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the biological processes of the eukaryotic host harboring the microbe (Fischbach

and Walsh 2009). The present scientific world now struggles to combat the issue of

antimicrobial resistance. The frequency in resistance has constrained the mob to

question the efficacy of these conventional medications. The discovery of every

drug is followed by the bacterial strategic mechanisms to overcome the stringency

by developing tolerance. This has also led the researchers to investigate into the

pathogen’s clinical, molecular, and cellular factors that make them the superbugs of

resistance (Arnold 2007; Neu 1992). Hence the new drugs have raised question on

their proficiency to avoid the emergence of multidrug resistance microbes. The

MDR pathogenic strains of M. tuberculosis, S. pneumonia, S. aureus, etc., have
posed innumerable challenges for further antibiotic development (Wright and

Poinar 2012). With few antimicrobials in hand, the post-antimicrobial era seems

to be approaching soon. Antibiotics can be either bacteriocidal (bacterial death) or

bacteriostatic (bacterial growth inhibition). The last five decades had enabled the

discovery of many natural antibiotics like fungal penicillins and cephalosporins that

kill the bacteria. Even streptomycin, tetracycline, etc., are known microbial targets

from Streptomyces. Certain semisynthetic alterations led to the production of

second- and third-generation antibiotics like β-lactams of penicillin and

azithromycin from erythromycin. However, a complete synthetic antibiotic like

ciprofloxacin came later into existence.

The targets of antibacterial drugs and their mechanism of action will help one to

understand the emerging resistance profile among these bugs. The antibacterial

drugs normally target the genes responsible for bacterial cell wall synthesis (Green
2002), genes involved in protein biosynthetic pathway, and the ones modulating the

microbial DNA replication and repair. The rigid, flexible peptidoglycan lining of

the bacterial cell is a meshwork of peptide and glycan cross-links which provides

integrity and osmotic balance to the microbe. The transpeptidases and

transglycosylases act on the amide and glycan links, respectively, to strengthen

the osmotic rigidity of the cell. Both these enzymes are the antibacterial targets of

β-lactam in penicillin and cephalosporin. These pseudosubstrates enable acetyla-

tion at the enzymatic active site which leads to weak cross-linkage of peptide bonds

in the glycan lining, thereby making the cell susceptible to lysis. Even vancomycin

targets the peptidoglycan layer, but not the cross-linking factor rather alters the

substrate interaction with the enzyme. Target alteration weakens the cell integrity

subjecting the bacteria to lysis. The high reactivity of vancomycin is due to the

hydrogen bonds with the D-alanine dipeptide of peptidoglycan side chain. Both

β-lactam and vancomycin work synergistically on the substrate and the enzyme

when used in a combined recipe. Secondly, with distinct prokaryotic RNA and

protein synthetic machinery, certain classes of antibiotics like erythromycin, tetra-

cycline, and aminoglycosides selectively target the microbial survival by hindering

with essential steps of ribosomal functioning. The new class of protein synthesis

inhibitor have a huge spectrum of antibacterial target as the ribosomal machinery

involves the protein synthesis steps of initiation, elongation, and termination of

codons to build up the peptide chain. So the protein synthesis inhibitors target such

large supramolecular machinery with essential biosynthetic process that further
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alters the binding and catalysis of many enzyme-catalyzed reactions. The third

group of antibacterial compounds disrupt with the DNA doubling and repair

mechanism. For instance, DNA gyrase that helps in DNA strand uncoiling is

targeted by the fluoroquinolones like ciprofloxacin. DNA topoisomerases are cat-

egorized as Type I and Type II in accordance to the single- or double-stranded

breaks. Moreover, DNA gyrase is a Type II topoisomerases, and ciprofloxacin acts

by forming a complex between the transient double-stranded break and inactive

enzyme. Since the cleaved DNA mounts up, an SOS repair mechanism ultimately

leads to the death of the microbe. Similarly topoisomerase IV is a major target in

Staphylococcus aureus. The antibacterial drugs alter and modulate with the cell

wall, protein, and DNA synthetic pathway. They act in a selective biochemical

manner to target the microbial machinery as compared to that of host. The present

generation of antibiotics not only require better efficacy and less toxicity use but

also new unaltered targets for universal and regulatory acceptance.

The epidemiological studies have implicated the feature of selective advantage

for pathogens. For instance, prior antibiotic exposure is a crucial factor causing

salmonellosis. Secondly, antibiotic-resistant microbes are known to be more viru-

lent with an overexpression of adhesins and toxins on R-plasmids thereby increas-

ing the scale of virulence. Resistance can also lead to increased frequency of the

disease. An infected individual with MDRs will be the carrier of infection causing

transmission risk as compared to the susceptible strains. So reservoirs are quite

important in the persistence of infectious agents. They also enable genetic elements

swap and selective pressure exposure adds on to the evolution of resistance mech-

anism. A study hereby reported the clinical isolates of S. aureus and S. epidermidis
to have similar drug-resistant profile obtained from the same hospital source during

S. aureus epidemic (Cohen et al. 1982). Hence S. epidermidis served an important

reservoir affecting the emergence and chances of resistance occurrence. Treating

drug-resistant microbes requires more effort and expenditure for long-term

antibacterial medications. Literature has suggested variant microbial properties,

environmental factors, and frequent use of antimicrobial agents to be responsible

for the incidence of drug-resistant microbes. A case occurred where a woman under

the medication of chloramphenicol died due to chloramphenicol-resistant S.
Typhimurium infection (Tacket et al. 1985). So chloramphenicol was no longer

the drug option against salmonellosis. This further leads either to the emergence,

persistence, or transmission of resistant ability. A case illustrates that the medica-

tions with cephalosporins lead to the augmentation of resistance in enterococci

(Dahms et al. 1998). Where reservoirs are concerned, infants in nurseries serving as

a depot for producing greater number of staphylococci were termed as “cloud

babies.” Even certain microbes are posing health problems due to high-end tech-

nological and societal advancements which are influencing their resistant transmis-

sion. Economic changes are also a major factor destabilizing the health

infrastructure in many advanced countries like the USA. These enable the applica-

tion of certain control programs for the curtailment of pathogenic infections.
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5.2.1 Survival Strategies

The invention of an antibiotic and its widespread acceptance for clinical use have

limited time period for their medications. From months to few years, these antibi-

otics have proven to emerge resistant to their targeted bacterial strain (Bush et al.

2011). For instance, penicillin developed resistance among the bacterial

populations within a span of 2 years after its global use. Similarly, vancomycin

resistance against enterococci did spread at an alarming rate within 5 years of its

introduction during the late 1980s. The resistance involves a collective action of

five genes, the major reason why vancomycin resistance took a greater time to

evolve (Walsh et al. 1996). The clinically important resistance is dependent bacte-

rial doubling time, where the intrinsic resistance can lead to genetic alterations in

1:100 ratio finally amassing a pool of resistant superbugs. In this population, if the

resistant species proves superior and tolerates the antibiotic, then the pool of

sensitive population are killed where the resistant species fills up the numbers of

the susceptible ones with their own dominant resistant type. A subtherapeutic

medication assures practical resistant species outgrowth. Antibacterial resistance

generally involves four basic mechanisms of target modification, drug inactivation,

decreased drug uptake, and increased efflux systems (Alekshun and Levy 2007).

Bacterial drug resistance thereby can be intrinsic due to the inherent property of the

microorganism or acquired due to the evolutionary process of spontaneous muta-

tions or gene uptake. Intrinsic mechanism makes bacterium naturally resistant to

antibiotics like all mycoplasma withstand β-lactam action due to lack of peptido-

glycan wall. A primary reason for resistance development is due to the spread of the

antibiotic resistance genes on the plasmids that get multiplied independently and

carried over to the next-generation doublets thereby conferring resistance

(Yoneyama and Katsumata 2006). In certain cases, such genes can be evenly

segregated onto the mobile genetic elements like transposons that can jump from

one DNA locus into another. Similar occurrence happens in Enterococcus-resistant
vancomycin strain where the five genes of microbial cargo hop into variant genomic

locales. In medical environments, selective antibiotic pressures on pathogens like

S. aureus and Enterococcus faecalis enable them to switch their antibiotic-

susceptible profile to resistant ones. For instance, the methicillin-susceptible strain

of S. aureus (MSSA) becomes resistant (MRSA) in patients with surgical treat-

ments within a span of 5 days in hospitals. These isolates become resistant to

vancomycin treatment. Hence, the antibiotic pressure alters the sensitivity genomic

contour of the pathogen triggering the antibiotic resistance switch, for which new

discoveries should target the molecular approach of resistance that makes these

pathogens superbugs (Walsh 2000).

The major antibacterial drug resistance strategy involved is mostly the efflux
pump mechanism where the microbe pumps out the antibiotic preventing their

disruption of cellular processes (Poole 2005). The intrinsic mechanism of resistance

is known to induce the expression of efflux pump systems. In Pseudomonas
aeruginosa, the disruption of the functioning of MexB pump raises the sensitivity
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to antibiotics like tetracyclines, chloramphenicol, β-lactams, etc. (Lomovskaya

et al. 2001). Hence antibiotics can regulate the efflux pump expression in microbes

at the transcription level of gene function. Transporters can be expressed due to the

modulation of these regulators. In Neisseria gonorrhoeae, the efflux machinery

encoded by the mtr operon eases the transport of antimicrobial components.

However, mutation in the mtrR gene increases the bug’s resistance to penicillins,

macrolides, as well as rifamycins (Veal et al. 2002). Secondly in P. aeruginosa,
exposure to fluoroquinolones leads to mutations in the genes encoding for efflux

proteins as well as topoisomerases. Again mutation in efflux genes augments the

resistance level to fluoroquinolones in P. aeruginosa. Streptococcus pneumoniae is
known to be resistant mostly due to the drug efflux pumping out bacterial strategy.

The resistance in Streptococcus occurs in a stepwise regulated way initiating in

parCmutations, followed by gyrA and then PmrA pump (Jones et al. 2000; Piddock

et al. 2002). Each level of mutation confers to a greater degree of resistance. In the

1980s, active efflux became major players in antibiotic resistance that led to the

emergence of multiple drug-resistant strains (MDRs). Efflux transporters are known

to be polyspecific where they eject out a huge diversity of structurally nonidentical

components (Piddock 2006b). Additionally the MDR efflux systems eject out toxic

compounds enabling the microbe to escape the classic antibiotic therapy (Paulsen

2003). There are five basic protein families that form the category of bacterial efflux

pump system. Two well-known protein families are the ABC superfamily

(ATP-binding cassette) along with the MFS (major facilitator superfamily). Other

three small units include the SMR (small multidrug resistance), the RND

(resistance–nodulation–cell division), and the MATE (multidrug and toxic com-

pounds extrusion) family (Piddock 2006a). Other than ABC family pumps, the rest

transporters are termed as secondary transporters conjugated to proton influx, hence

called as H1-drug antiporters. Conversely, the primary transporters, i.e., ABC,

utilize ATP for their activity.

5.2.2 Antibiotic Efflux Pump System

Antibiotics require a particular site of action and minimal level of concentration for

targeting microbial cellular processes. For instance, if the antibiotics have to target

the protein biosynthetic pathway, then the membrane barrier has to be surpassed for

disrupting the protein assembly at high accumulated concentrations. The Gram

(+ve) and the Gram (�ve) bacterial strains have overexpressed the active efflux

pumps to expel out tetracycline to gain antibiotic tolerance (Nikaido 1996). A huge

variety and diversity of export pumps are employed for a large spectrum of

lipophilic or amphipathic compounds to keep the diffusion level low for unhindered

bacterial sustenance. Some examples show the export pumps to be expressed by the

antibiotic-producing cells for expelling out the antibacterial compounds as a pro-

tective shield to prevent the suicidal death of the microbe by its intrinsic weapon.
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Efflux Transporters The most important factor in causing bacterial death is the

accumulation of harsh antibiotics within the cytoplasmic fraction for inhibitory

effects or growth attenuation. With Gram-positive bacteria lacking an outer plasma

membrane barrier, the production of transporters enables the efflux mechanism to

confer resistance within such species. Additionally the tough exterior of Gram-

negative bacteria avoids drug buildup. As mentioned above, the Gram-positive

bacteria comprise of three protein transporter superfamilies, namely, the ABC

family of transporters which harnesses cytoplasmic ATP for antibiotic ejection

and MF and SMR transporter protein groups which exploit an electrochemical

proton gradient for efflux mechanism (Markham and Neyfakh 2001). The molec-

ular mechanism of relating the ATP and proton exchange with drug efflux is still

under investigation. Failures in X-ray structural characterization of transporter

molecules have also raised major scientific concern. The examples of substrate-

specific efflux pumps are either macrolide specific or tetracycline targeted

(TetKLZ) which confer an additional function of immunity for the microbe. The

issue of drug recognition can be resolved by getting an insight into the structural

aspect of proteins regulating the efflux protein expression. The TetR protein binds

to tetracycline leading to the overexpression of tetracycline substrate-specific

transporter. This drug DNA-binding repressor undergoes a conventional van der

Waals mode of interaction where the H bonds facilitate the linkage of tetracycline–

Mg2+ complex with the polar amino acids bound with water molecules. The ligand

binding occurs proper with a defined chemical architecture. So tetracycline trans-

porters undergo substrate-specific interaction that governs their efflux mechanism.

Another level of interaction occurs in the transcriptional regulator of the well-

known bacterial species of Bacillus subtilis. The BmrR regulator induces the

production of Bmr multidrug efflux protein which expels out intracellular hydro-

phobic cations (Paulsen 2003). In such case of regulators, the ligand binding occurs

by means of both electrostatic and hydrophobic interactions rather than hydrogen

bonds. So the dependency on structural outlook of substrate specificity becomes

limited. The substrate specificity of the transporters is linked to its multidrug

abilities. For instance, the evolutionarily distinct transporters of B. subtilis (Bmr,

Blt) and S. aureus (NorA) share functional and sequence homology with trans-

porters of Lactococcus lactis (LmrP) and Staphylococcus (QacA) itself as they

belong to the identical MF family. They are much more homologous to the

tetracycline transporters of Gram-negative bacteria. Even there is very insignificant

identity among the same group of transporters like tetracycline, efflux proteins

TetK and TetL bear very less similarity to TetZ of C. glutamicum. Both TetK and

TetL share much similarity rather than the multidrug efflux units of Staphylococcus
QacA. Another example to illustrate the mechanism of substrate recognition and

binding is the class of lipocalins (Gunn 2008). These proteins share a similar

tertiary structural outlook and bear high binding affinity for diversified substrates

(ligands). Some lipocalins are even identical to multidrug efflux units enabling the

organic compounds to interact with the hydrophobic protein core. The diversity of

substrate binding by lipocalins was well demonstrated through mutagenesis of the

hydrophobic binding residues. This resulted in switching the affinity partially
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toward the hydrophilic fluorescein moieties. This led to the modulation of substrate

recognition. Hereby, Gram-positive bacterial species bear different modulated

transporters under the ABC, MF, and SMR family to force out the harsh antimi-

crobial agents.

There are around a dozen or two efflux membrane transporters in Gram-positive

bacteria. One or more efflux transporters can also be present on the same microbe

forming multiple drug transporters with an array of substrates. In B. subtilis, around
four multidrug transporters have been reported, namely, Bmr, Bmr3, and Blt MF

efflux systems (Ahmed et al. 1995), and one SMR family protein EbrAB. The

sequence homologies screened many other hypothetical transporter genes in Bacil-
lus. Efflux mechanism can be an opportunistic attempt by these multidrug trans-

porters. For instance, tetracycline transporters have an additional function of

transporting monovalent ions like Na+ and K+; other than tetracycline and genetic

alterations of such transporters confers antibiotic and saline susceptibility. Exam-

ples of such transporters are TetL and TetK from B. subtilis and S. aureus, respec-
tively. Being translationally regulated by tetracycline, these transporters channel

the transport of monovalent ions as a side effect of drug transport. Similarly in

B. subtilis, the two specific multidrug transporters Bmr and Blt are distinctly and

differentially regulated at the transcriptional level (Ahmed et al. 1995). Blt and Bmr

transporters extrude polyamines from the bacterium. However the Bmr–BmrR

combination functions to assure toxin protection. Specific transporters when stud-

ied, their functional relevance for multiple purposes comes into significance.

The MLS class of antibiotics hinder protein synthesis by targeting the 50S

ribosomal subunit. Other than target modulation and enzymatic blockage, the efflux

pump mechanism in these antibiotic classes showcases tolerance features in Gram-

positive strains. The efflux mechanism was due to msrA and msrB genes discovered

in Staphylococcus and msrC gene in Enterococcus provided 200-fold and eightfold
increase in resistance, respectively (Schmitz et al. 2000). In macrolide-resistant

Streptococcus, the mefA or mefE genes augment tolerance level to 60-fold. These

genes code for MF family transporters. The mef genes account for macrolide

resistance in many Gram-positive as well as Gram-negative pathogens. It is present

within mobile transposons; thereby, the tolerance mechanism will spread rapidly

among other pathogenic species. Similarly, tetracycline transporters TetK and TetL

predominantly account for antibiotic tolerance in Staphylococcus as well as Entero-
coccus. For greater antibiotic efficiency, decreased affinity of tetracycline deriva-

tives via efflux pump mechanism has been approached, for example, glycyclines.

The second approach encourages the use of tetracycline analogs in conjugation with

the antibiotic blocking efflux transporters. Fluoroquinolone resistance occurs due to

topoisomerase and DNA gyrase modulation by multidrug efflux transporters, for

instance, NorA of S. aureus belonging to MF family. Greater NorA expression

leads to acquired ciprofloxacin tolerance in addition to intrinsic fluoroquinolone

resistance. Targeting efflux pump mechanisms increases the response of pathogen

to antimicrobials as well as promotes drug accumulation within the bacterium.

Cationic peptides target different resistance mechanism of Pseudomonas against
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antimicrobials, namely, efflux method and target site modification to highlight the

role of membrane barrier as a target for overcoming pathogen tolerance (Lin et al.

2010).

5.2.3 Degradation of Antibiotic

The second strategy involves degradation of the chemically active component of

the antibiotic weapon. Accumulation or expelling out antibacterial agents from

cells doesn’t modulate with the structure of the antibiotic. Like in penicillins and

cephalosporins, the inactivation of β-lactam ring will cripple the efficacy of the

antibiotic itself. B-lactamase is the enzyme that catalyzes this modulation. The

active ring enables acetylation and modulation of the peptidoglycan cross-links,

whose disruption renders the antibiotic nonfunctional. The lactamase enzyme is

produced in the bacterial periplasm to inactivate the cytoplasmic antibiotic targets.

A single enzyme can cripple about hundred penicillin particles, so the greater the

enzyme, the higher the intensity of antibiotic destruction and the more efficient the

strategy. However, other antibacterial compounds like aminoglycosides aren’t
prone to such hydrolytic cleavage. Aminoglycosides target the protein synthetic

machinery and bear three specific chemical alternates that bring modulation in the

ribosomal RNA binding. The aminoglycoside resistance can be due to the adenylyl,

phosphoryl, or acetyl transferases which insert either an AMP moiety or phosphate

group or bring about amino acid acetylation. These modifications decrease the RNA

binding affinity and disrupt with the protein synthesis. The structural elucidation of

phosphotransferase shows a direct evidence of evolutionary link to kinase enzyme

thereby facilitating the recruitment of bacterial resistance strategies.

5.2.4 Alteration of Bacterial Target

The third resistance approach employed by the microbes involves the modulation or

reprogramming of the target enzyme in the resistant pathogen. This camouflage

mechanism can occur in conjugation with the efflux mechanism thereby adding up

to the resistance strategy. For example, the erythromycin-resistant strains alter the

adenine moieties by methylation in the peptidyl transferase loop of ribosomal RNA

unit (McCusker and Fujimori 2012). The erythromycin ribosomal methylase gene

targets the decreased RNA affinity for erythromycin as well as pristinamycin drugs

without blocking the protein synthesis. This method of methylation is the prime

machinery of resistance in the virulent species of S. aureus and acts as immunity

armor against erythromycin-expressing strains. Other than erythromycin, target

modulation is also observed in vancomycin-resistant enterococci (VRE) to escape

the harsh antibiotic effects. In the resistant Enterococcus, the vanHAX gene encodes

a pathway where these three genes play different modulatory roles for providing a

survival advantage to the bacterium (Sood et al. 2008). vanH gene enables pyruvate

reduction to D-lactate followed by vanA forming D-Ala-D-Lac and vanX hydrolyzing
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the D-alanine dipeptide rather than D-Ala-D-Lac linkage. Overall, the accumulation

of D-Ala-D-Lac substrate becomes the point of elongation and extension at the

peptidoglycan terminal strands. This remodulation of the D-alanine dipeptide to D-

Ala-D-Lac affects the degree of vancomycin binding by 1000-folds without

impairing the glycan and peptide cross-linking efficiency. This tolerance confers

a greater profile of vancomycin resistance. Consequently not only does β-lactamase

production affect the resistance mechanism, but also the penicillin-binding proteins

bring about lower antibiotic affinity. In Staphylococcus aureus, the characterization
of a penicillin-binding protein encoded by the mecA gene will help to elucidate the

molecular mechanism of MRSA phenotype.

5.3 Tuberculosis: The Unsolved Puzzle

The last millennium has witnessed the generations of antibiotic development with

the startling increase in resistance against those antibacterial drugs. Among the life-

threatening species, Mycobacterium tuberculosis has become a global threat for

mortality with time. The major survival advantage ofM. tuberculosis is its dormant

stage which sustains in asymptomatic hosts that later on leads to disease. Myco-
bacterium tuberculosis makes use of all the efflux transporters for their survival.

The major two mechanisms thought to play a pivotal role in mycobacterial drug

resistance are the cell wall barrier and the efflux pump machinery (Silva and

Palomino 2011). The genes that encode for efflux transporters have been exten-

sively studied as they encode for proteins that channelize compounds like tetracy-

cline, fluoroquinolones, aminoglycosides, and drugs like isoniazid used for

tuberculosis treatment itself. Hence, the balance between pumping out antibiotics

and enabling cellular drug intake is yet to be explored further for new inventions

(De Rossi et al. 2006). In spite of the BCG vaccine, resistance has also been

observed against many anti-TB compounds. With the course of time, the

M. tuberculosis strains have developed mutations that have actively targeted the

drug stimulation giving rise to MDR-TB strains. For instance, the streptomycin

resistance develops due to changes in the genes like rrs and rpsL which alters the

ribosomal binding site for streptomycin. Even the pncA gene alteration leads to

pyrazinamidase resistance in this notorious bug. Isoniazid has drug targets that are

involved in the cell wall biosynthesis (mycolic acid), but they don’t entirely confer

resistance. The prime reason of natural resistance in M. tuberculosis is decreased
cell wall permeability due to high lipid content which limits cellular drug intake.

Another factor that comes into play is the efflux system that forces out antimicrobial

agents. The microbial efflux and influx balance thereby contributes to the microbial

sustenance.
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5.4 Antifungal Drug Resistance

The evolutionary problem of resistance has become well documented with time.

Antifungal drug resistance also isn’t exempted from such threat, though

antibacterial resistance is a greater concern. The microbial world encompasses

various carriers of infections among which fungal pathogens flourish in adaptable

population. Under the administration of antifungal agents, the sensitive fungal lot

evolves resistance mechanism against the drugs. The era of the 1980s had a very

thorough study on the biochemical, genetic, and clinical aspect of antifungal

resistance, but presently the elucidation of cellular and molecular mechanisms is

under investigation (Anderson 2005). The drug targets are mostly designed for the

fungus and less for the host, so a depth of understanding into the molecular

mechanism of antifungal resistance can promote a divergent long-term host sur-

vivability. However the pathogen fitness on environmental impact and evolution of

potential mutations causing divergent resistance can be explored further with

experimentation. The strategy implementation for combating drug resistance

would require hindering with the pathogen’s evolutionary sustenance approach. A

study of mutation, pathogen fitness, and multiresistant factor interacting in combi-

nation for a collective phenotype can undoubtedly modulate with the pathogen’s
gene expression and help us reduce the chances of increased drug resistance.

Greater incidence of resistant fungal pathogens has increased the risk factor of

mortality in patients bearing severe immunosuppression. Though novel drugs have

come up, still patients under long-term antifungal medication undergo a microflora

transition during the course of time which further leads to the development of an

apparent resistance mechanism.

The nineteenth century had witnessed drug resistance problem pertaining to a

range of infectious diseases like tuberculosis, salmonellosis, HIV, etc. The scien-

tific world also came across the problem of fungal infections during that time which

posed a threat to health and life. This was mainly due to a change in the immune

profile of the patients who were inflicted with AIDS or cancer or had undergone any

sort of transplantation. That time demanded the urgent requirement of new inven-

tion of antifungal drugs as compared to the conventional ones with least side effects

and with more impact on combating infections rather than being resistant to the new

emerging pathogens. One study reported 33% of patients with AIDS did bear

resistance against Candida albicans (Sanglard et al. 1995). About 200 out of the

1.5 million species within the fungal kingdom are associated with human diseases.

Some are commensals, whereas others like Candida are opportunistic species

which infect when the host’s immune system cripples down. Though skin infections

are initial symptoms, systemic fungal infections causing dissemination are difficult

for diagnosis and cause greater incidence of mortality. The epidemiological survey

lists Candida, Aspergillus, and Cryptococcus species to be the causative agents of

infection-related mortality. Mostly azole antifungals are used to treat infections and

fluconazole usage decreases Aspergillus infection from 10% to 20%. However
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azole resistance has emerged due to acquired mechanism in the opportunistic

species or due to selection pressure in the innate resistant strains.

The drug resistance mechanism among the fungal pathogens is mostly due to the

reason of increased efflux where there happens to be an overexpression of certain

transporters of cell membrane (Cannon et al. 2009). This mutational change in the

transcriptional regulator confers a resistance characteristic. Secondly, an alteration

in the protein target causes either a change in antifungal drug binding or allosteric

inactivation of the enzyme. Some minor changes in amino acid sequences bestow

the pathogen with such resistant phenotype by altering the drug activity. However,

higher extent of amino acid alteration leads to functional loss of protein and

accumulation of unwanted products called toxin with no significance of the drug.

Thereby, altering metabolism also confers resistance mechanism. The standardized

measurement of antifungal drug resistance is with the protocol of minimum inhib-

itory concentration (MIC) where the terms “drug sensitive” and “drug resistant” are

outlined. However when MIC is not clear during growth transition, parameters of

fitness analysis can be used to quantify resistance. At times, tolerance assays can be

used for lethal drug measurements though it’s not positively related to drug

resistance.

The resistance in microbial population is due to evolutionary processes. How-

ever in a mixture of resistant and sensitive strains, the phenotype of resistance is not

clearly defined. The population size and mutational effects confer drug resistance

within the eukaryotic environment. With high incidence of opportunistic fungal

pathogens, the immunocompromised individuals fall into the trap of mortality of

these invasive species. Candida and Aspergillus being the most threatening species

of concern are the cause of death rate of about 40–50%. The antifungal resistance

has mainly risen up due to triazole drugs that have conferred both primary as well as

secondary resistance with apparent shift of colonization markers in the susceptible

strains. Triazoles like fluconazole, posaconazole, etc., are mostly used to treat

Candida infections. A study done over a decade showed 140,000 Candida strains

to be resistant to fluconazole and voriconazole by 6% and 3%, respectively (Pfaller

et al. 2010). The Netherlands and UK reported triazole resistance to shoot up to

sixfolds over a period of 14 years. This section will outline the details of antifungal

drug resistance mechanism and the strategies to combat such problems in the future.

5.4.1 Antifungal Agents and Their Mechanism of Action

The mechanism of action of different antifungal drugs is an essential prerequisite

for getting an insight into their resistance mechanism. The choice of the antifungal

drug should be based on factors concerning the host specificities and drug proper-

ties like its absorption and toxicity features (Odds et al. 2003). The host immune

profile, the pathogen specificities (i.e., fungal species and its response to drugs)

affecting the site of infection, and the pharmacokinetic properties of the antifungal

agent should be taken into consideration. Very less antimycotic agents have been

used to treat systemic infections. According to the action mechanism, the antifungal

74 S. Ray et al.



drugs are categorized into four different classes, namely, polyenes, azoles, nucleic

acid synthesis inhibitors, and inhibitors of glucan synthesis. Their mode of action

enabled a clear understanding and elucidation of their resistance mechanism. Out of

these, three antimycotic agents, namely, polyenes, azoles, and allylamines, have

their antifungal effect due to their inhibitory property on synthesis/interaction of

ergosterol, a major fungal membrane component.

5.4.2 Ergosterol Biosynthesis Inhibitors (Azoles and Triazoles)

The 1970s witnessed the discovery of azoles, clotrimazole being the first azole-

based drugs for systemic infections. These N-substituted imidazoles are compounds

ranging from miconazole to ketoconazole and fluconazole. Due to certain limita-

tions of miconazole, ketoconazole became the first commercialized oral antifungal

medication against chronic candidiasis (Petersen et al. 1980), with an exception to

C. glabrata. For human use, itraconazole and fluconazole were the triazoles for oral

as well as intravenous administration. The safety and efficiency of fluconazole has

been clinically approved for global use. Itraconazole was used against Candida spp.
as well as Aspergillus spp. (Pfaller et al. 2005). Similarly, fluconazole intake could

decrease invasive candidiasis in patients undergoing chemotherapy or transplanta-

tions. The frequent use of fluconazole has led to a resistant host microflora against

the medication. The twentieth century witnessed the clinical approval of

voriconazole for global use in the USA. Additionally, two other triazoles, namely,

posaconazole and ravuconazole, were scrutinized for their action and efficacy

against Candida species. Voriconazole, structurally and functionally similar to

fluconazole and itraconazole, was used in conjugation with liposomal AmB for

medication. Posaconazole was effective against Candida spp., Aspergillus, as well
as Cryptococcus. From experimentation, posaconazole was found to be the most

efficient triazole against itraconazole-sensitive strains. Ravuconazole also showed

additional effect on Fusarium, histoplasma, Blastomyces, etc. The triazole drugs

differ in their mechanism of action, resistance, as well as cross-resistance pattern

among microbes. For instance, a voriconazole-resistant Aspergillus isolate has

slight cross-resistance among itraconazole, posaconazole, as well as voriconazole.

Similarly for Scedosporium strains, no cross-resistance was observed among

triazole drugs like miconazole, itraconazole, or voriconazole. Neither was any

sort of resistance reported against posaconazole medication.

The plasma membrane bioregulator ergosterol maintains the fungal cell integ-

rity. The demethylation of lanosterol is catalyzed by 14a-demethylase in a cyto-

chrome P-450-dependent manner. Alteration of this target enzyme results in

structural and functional modulation of fungal membrane. Azoles inhibit the syn-

thesis of ergosterol, an essential fungal membrane component by blocking the

activity of the enzyme lanosterol demethylase which catalyzes the reaction of

ergosterol biosynthetic pathway (Bossche 1985). The heme domain of the enzyme

is bound with the nitrogen atom of azole ring to prevent lanosterol’s demethylation.

Azoles also target methylsterol synthetic pathway. Azole resistance is prevalent in
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patients with HIV infections which undergo long-term treatment procedures to

combat mucosal or oral Candida colonization (Lupetti et al. 2002). This frequency

of azole resistance has markedly increased with the course of time. With the amount

of CD4 cells, pathogen load, and therapy dosage, the incidence of resistance varies.

A study reported the presence of resistant C. neoformans from a healthy patient

without having any previous fluconazole medication (Orni-Wasserlauf et al. 1999).

Another study reported the HIV-infected patients bearing C. albicans infection to

be resistant to clotrimazole (Pelletier et al. 2000). Certain cases also witness a

profile of cross-resistance (Müller et al. 2000). Many species of Candida like

C. krusei have an intrinsic resistant characteristic to fluconazole which is prevalent

in patients infected with HIV, cancer, or undergoing transplantation. Azole

antimycotic drugs have an array of heterogeneous functions ranging from acting

as inhibitors of membrane-bound enzymes to the blockage of lipid biosynthetic

pathway. Furthermore, azoles like fluconazole and itraconazole bring about the

aggregation of sterol precursors in Cryptococcus by the reducing obtusifolione.

Even the demethylation affects the cholesterol synthesis in mammals by a greater

dosage of azoles. A study done by Hitchcock et al. reported that 50% inhibitory

concentration of voriconazole had 250-fold more activity against the mammalian

demethylase as compared to the fungal enzyme (Martin et al. 1997). So azoles have

their action to be genus based.

Azole resistance mechanisms are mostly similar to antibacterial mechanism like

the target enzyme modification, the efflux pump resistance mechanism, and the

aminoglycoside tolerance with membrane alterations. The specificity against azoles

is still a question as cross-resistance among this class of drugs is quite common.

Bacterial strains have best evolved with efflux pumps for resistance mechanism like

the mar (multiple antibiotic resistance) genes in E. coli (Cohen et al. 1993;

Alekshun and Levy 1999). These genes are also associated for chloramphenicol

and tetracycline resistance. These multidrug efflux pumps have also conferred

resistance in S. aureus and P. aeruginosa against fluoroquinolones and β-lactams,

respectively. The phospholipid and fatty acid content influence the membrane

permeability as well as miconazole resistance in C. albicans. Similarly, in

P. aeruginosa diminished membrane D2 porin expression as well as enhanced

amphotericin β-lactamase expression enables imipenem resistance. No mutation

in the gene; just the membrane composition can alter the microbe tolerance levels.

Vancomycin’s size exclusion by the bacterial membrane is another factor for its

resistance.

Alteration of Drug Efflux Efflux pump machinery is mostly responsible for the

dominance of resistance mechanism among the fungal pathogens. This is a common

mechanism of antibiotic resistance in S. pneumoniae. The two efflux pumps in

pathogens conferring azole resistance comprise of proteins belonging to the major

facilitator superfamily (MFS) and ATP-binding cassette (ABC) superfamily.

Moreover, ABC (ATP-binding cassette) transporters are the major culprits of

drug resistance. MFS protein pumps involve the passage of structurally diverse

components. MDR1 in fluconazole-resistant Candida strains were known to encode
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resistance for benomyl as well as methotrexate. The ABC transporters require ATP

for substrate channelization for which they bear two ATP-binding cytoplasmic

moieties. Other than that, there are four core integral domains that span the

membrane a couple of times. In S. cerevisiae, the ABC transporters recognized

are classified into MDR, CFTR, YEF, and PDR families. Five CDR (Candida drug

resistance) genes in Candida are responsible for azole resistance (White et al.

2002). CDR1 present in Cryptococcus and Candida is structurally similar to

human P-glycoprotein. When C. albicans was experimented for its ability to

mount up fluconazole, an overexpression of CDR1 levels was found with reduced

drug concentrations. Secondly, reduced fluconazole accumulation could be due to

the ATP-dependent drug efflux mechanism. A study by Sanglard et al. carried out

experiments involving 16 C. albicans clinical isolates from five individuals with

HIV infections (Sanglard et al. 1995). The aim was to observe the accumulation of

fluconazole with treatment. Fewer amounts of fluconazole levels did correspond to

tenfold higher CDR1 mRNA profile. However, with overexpressed CaMDR1

mRNA level, normal CDR1 transcriptomic levels were observed. This concludes

that CDR1 is mostly involved in the transport of azole antifungals, whereas

CaMDR1 gene specifically enables fluconazole resistance development. A CDR1

mutation enabled greater susceptibility of C. albicans to triazoles. Similarly, CDR2

induction resulted in azole resistance. A double knockout mutant (CDR1 and CDR2

deletion) strain showed greater susceptibility than a single gene disruption. More-

over using membrane potential as the driving force, MDR1 overexpression also

leads to azole resistance. A study reported the accumulation of a fluorescent

rhodamine 123 dye in C. albicans and C. glabrata (Clark et al. 1996). This dye is

specifically transported by the MDR machinery. This mechanism also leads to a

phenomenon of efflux competition. Additionally, ABC transporters overexpression

is a crucial factor in promoting azole resistance in C. glabrata isolates. However,

exposure to azoles can contribute to a transcriptional alteration in CDR profiling.

The sterol composition doesn’t influence resistance; rather the genes like ERG16,

MDR1, and CDR1 are involved in microbial tolerance mechanism. Secondly

continuous azole exposure can lead to an induced expression of ERG16 as well as

CDR1 genes, thereby leading to cross-resistance among other azole medications.

Alteration of the Target Enzyme The most common example with respect to

enzyme alteration is lanosterol demethylase whose overexpression confers azole

resistance in C. glabrata. The modification of this enzyme plays a pivotal role in

conferring azole resistance mechanism. No difference in sterol distribution was

found in two fluconazole resistant and susceptible C. krusei strains. The inhibitory
effect of fluconazole was 20–40% higher in C. krusei than C. albicans. This is due
to greater active efflux mechanisms in C. krusei isolates. With respect to

14a-demethylase enzyme modification, the azole-susceptible units were found to

have an altered peak in the carbon monoxide spectra of the cytochrome. Moreover,

this enzyme has low affinity for azole drugs. Whether alteration of the enzyme is the

sole factor remains still a question. Thereby, certain cases have reported the

overexpression as major criteria for resistance mechanism. The overexpression
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leads to enhanced copies of the enzyme which promotes ergosterol synthesis and

enables resistance development against fluconazole as well as itraconazole. Here

the ergosterol increase could be attributed to the overexpressed enzyme as well as to

the less susceptibility of both azoles and amphotericin B. Some studies have

focused on P-450 levels for conferring cross-resistance in azoles. But in

C. albicans, the increased expression doesn’t have much of an impact. Azoles are

inhibitors of ergosterol synthesis by modulating the binding with the demethylase

enzyme. Further the ERG11 gene was investigated for its role in drug selection

pressure. Sequence analysis in C. albicans targeted amino acid substitutions at the

active site of the enzyme (i.e., the heme domain) to be responsible for resistance

development. ERG11 (ERG16) is the gene encoding for the protein, also termed as

CYP51A1 in C. albicans (Marichal et al. 1999). Any alteration or mutation in this

gene conferred azole tolerance. Lysine substitution with arginine at 467th residue

near the heme domain brought about functional alteration to the enzymatic activity.

Even a 464th residue substitution in C. albicans caused heme domain alteration

contributing to fluconazole resistance with reduced activity. A study reported a

T315A substitution in C. albicans showed twofold reduction in lanosterol

demethylase catalytic activity and diminished affinity for fluconazole (Lamb

et al. 1997). These substitutions also lead to decreased accessibility of the enzyme

active site as was observed when the 105th phenylalanine residue was replaced with

leucine in C. albicans. The antifungal agent fluconazole has a channelized entry

into the active site where certain point mutations alter the accessibility of the

substrates. These mutations are huddled up around three specific regions that are

linked with resistance.

Alteration of the ERG3 Genes ERG3 gene encodes for sterol D(5,6) desaturase

and an alteration or mutation in this gene confers azole resistance. In sensitive

species, the azole exposure enables 14-methyl-3,6-diol accumulation causing a

fungistatic property, however the mutation in ERG3 gene together with the accu-

mulation of the precursor (14-methylfecosterol) promotes fungal growth.

S. cerevisiae has shown to exhibit azole resistance due to ERG3 gene mutation

(Martel et al. 2010). Some clinical isolates of HIV patients bearing resistant

C. albicans showed an amassing of 14-methylfecosterol due to an impaired sterol

D(5,6) desaturase. This impairment has also led to azole resistance in the fungi

U. maydis (Joseph-home et al. 1995).

Alteration of the Drug Influx The drug uptake can be influenced by the plasma

membrane composition and fluidity; for instance, the sterol content can affect the

cellular drug influx. An alteration in the cell membrane constituents of C. albicans,
like the phospholipids as well as the fatty acid content, can confer resistance to

miconazole. A study by Hitchcock and Whittle reported a greater lipid profile and

less polar to neutral lipid content in C. albicans-resistant strain as compared to wild-

type one (Hitchcock and Whittle 1993). This hints reduced membrane permeability

and decreased azole intake. Some reports demonstrated the fluconazole-resistant

Candida albicans species to have reduced amount of ergosterol as well as low

phosphatidylcholine: phosphatidylethanolamine profile (L€offler et al. 2000). Such
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phenomenon modulates with the fluconazole uptake and intracellular accumulation.

C. krusei also had decreased itraconazole accumulation rather than modulations in

drug efflux mechanism or alteration in ergosterol amounts.

A study observed 20 isolates from HIV patients with oropharyngeal candidiasis

(both susceptible and resistant to fluconazole) previously treated with azoles for the

resistance frequency (Perea et al. 2001). About 85% of those resistant strains had

overexpression of drug efflux pumps with similar expression profile of CDRs and

MDR1 gene. Around 60% isolates showed alteration in the lanosterol demethylase

enzyme with 35% having an overexpression of the gene encoding the enzyme.

Around 75% of these strains showed multiple mechanisms of resistance. Another

study reported only overexpression of CDR genes in resistant strains without any

correlation of tolerance to amino acid substitution or MDR1, ERG11 expression

profile (Marr et al. 1998). CDR-encoded pumps (CDR1 and CDR2) play a regula-

tory role in conferring azole resistance mechanism.

5.4.3 Polyenes

Action and Resistance Mechanism From the 1950s, polyenes (AmB) have been

known to be the standard treatment for systemic fungal infections. Amphotericin B,

the broad-spectrum antifungal agent, targets ergosterol and is active against Can-
dida species, Cryptococcus neoformans, strains of Aspergillus, Zygomycetes, etc.
(Brajtburg et al. 1990). The polyene-susceptible pathogens are known to bear

sterols in their cell membrane as compared to the resistant ones. The literature

suggests sterol addition for counterbalancing the fungal inhibitory effect of poly-

enes. The physicochemical interplay between membrane sterols and polyene anti-

fungals restricts the binding affinity of drugs. Their interaction can be directly

quantified with UV absorbance. The mode of action of amphotericin B involves the

aggregation of 8–10 polyene molecules to form a porin channel within bilayer

membrane for disrupting fungal ionic gradient by loss of potassium ions. This pore

enables polyene hydroxyl moieties to protrude inward thereby causing altered

permeability and loss of essential cytosolic components. The fatty acyl components

also render polyene antifungal susceptibility in yeast. Additionally, amphotericin B

also acts as an oxidative load on fungal membranes thereby causing the death of

C. albicans. At higher doses, polyenes also hamper the functioning of fungal chitin

synthase enzyme. For the unpleasant activity of AmB, the research developed

conjugated AmB with liposomes for better functioning in host and least toxicity.

Some examples include Amphotec, AmBisome, etc. During liposome and AmB

formulation, selective transfer method enables the AmB’s transfer from donor

liposome to target the membranal ergosterol facilitated by phospholipases (either

pathogen or host) (Boswell et al. 1998). A formulation of liposomal nystatin and

polyene Nyotran is under clinical trials for evaluation.

Primary resistance to amphotericin B has been reported in the isolates of

Candida like C. lipolytica, Candida lusitaniae, etc. Intrinsic resistance has been
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observed on Trichosporon beigelii, Pseudallescheria spp., as well as

Scopulariopsis spp. Secondary resistance against polyenes has been described in

C. neoformans and many species of Candida. Some hypotheses have led to the

conclusion that initial medications with azoles can lead to amphotericin B resis-

tance. The resistance mechanism can be either due to the category of sterol or the

fungal membrane composition. In one study, cross-resistance was observed to

amphotericin B in fluconazole-resistant Candida strains from HIV-infected indi-

viduals due to modulation in ergosterol synthesis (Heinic et al. 1993). The same

isolates also showed cross-resistance to nystatin. Such polyene (AmB as well as

nystatin) resistance has also been observed in trauma patients with compromised

immune profile. The lipid complexes with AmB have the active amphotericin

moiety released from tissue lipases in vivo. This confers resistance to AmB

contributing to less drug efficacy but with lipid formulations; the edge shifts to

increased efficacy and uptake during drug administration. An alteration in the

membrane’s lipid composition due to deficit ergosterol amount lowers the affinity

of amphotericin B for binding to plasma membrane. However, the resistance is

conferred majorly due to ergosterol and not due to altered sterol composition.

Another factor for resistance mechanism is deposition of β-1,3 glucans in the

pathogen’s cell wall which enables greater access of larger molecules to membrane

due to high cell wall stability.

Polyene tolerance develops by selection pressure when certain resistant isolates

multiply naturally within small number of population. These naturally developed

resistant strains produce altered sterols for binding nystatin at decreased affinity.

The binding of nystatin to sterol influences cell membrane damage. With greater

affinity, the membrane damage increases. Generally, the resistant strain is expected

to grow slow as compared to the susceptible one. Polyene tolerance is lost after

certain passages in media devoid of nystatin. However, sterol contents result in

increased affinity for nystatin. So it’s mutation that plays a role in tolerance

development rather than selection. Polyene resistance is mostly studied using

cells grown in increasing or gradient concentration of antifungals that generates

mutants. The biochemical hypothesis outlines resistance to be a qualitative as well

as quantitative factor of sterol content in cells. Altered sterol content decreases the

binding of polyenes in resistant cells either due to complete lack of cellular

ergosterol amount without associated change in overall sterol composition or by

replacing the higher affinity polyene-binding sterols with less binding ones. At

times steric modification or thermodynamic alteration in polyene binding can also

lead to the resistance mechanism. However the major reason of tolerance due to

decreased ergosterol content is not caused due to enzymatic degradation but

blockage on synthetic pathway which leads to decreased polyene susceptibility.

However it was reported that certain Candida strains possessed certain key sterols

that enabled the resistance to polyenes (Hamilton-Miller 1972). D8 sterols

possessing strains are more resistant to polyenes than the ones bearing D7 sterols.

In one study, AmB resistance in Leishmania species was attributed to ergosterol

substitution in the membrane which alters the membrane fluidity and binding of

amphotericin B (Mbongo et al. 1998). The interaction of polyenes with the
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membrane components have been extensively studied and explored by researchers.

Stationary phase cells are more prone to polyene resistance as compared to their

exponential counterparts because of less active cells involved in synthesis of cell

wall components during static phase. So the access to membrane slows down.

Thereby drug modulation can’t influence polyene tolerance mechanism. Efflux

pump method can’t be involved in polyene resistance development. The genetic

basis of polyene resistance in S. cerevisiae is related to the mutations in pol genes
(Molzahn and Woods 1972). The mutants had a decreased amount or complete lack

of ergosterol which establishes the much talked about antifungal resistance

mechanism.

Allylamines The functional and chemical aspect of allylamines makes them

distinct from the group of ergosterol biosynthetic inhibitors. These antifungal

agents like terbinafine are effective against dermatophytes and azole-resistant

Candida as well as Cryptococcus species. Squalene accumulation during ergosterol

biosynthetic pathway at the step of squalene epoxidation is the direct target of

allylamine inhibition (Ryder 1992). Squalene epoxidase is essential for allylamine

activity, thereby hinting fungal death due to higher levels of squalene rather than

ergosterol deficiency. Accumulation of squalene leads to greater membrane per-

meability and obstruction to cellular organization. However, extensive usage of

terbinafine and naftifine can confer cross-tolerance to fluconazole-resistant Can-
dida strains. Azoles, polyenes, and allylamines play similar mechanism of action

targeting cell wall synthesis like penicillin, vancomycin, and other antibacterial

agents.

5.4.4 5-Fluorocytosine: Nucleic Acid Synthesis Inhibitors

Action and Resistance Mechanism A fluorinated pyrimidine fluorocytosine has

been prevalent for use against fungal infections since the era of 1960. With an

efficient penetrating capability into body fluids, 5-FC was targeted against Candida
as well as C. neoformans. However, the incidence of primary resistance among

fungal pathogens led to the combinational therapy of 5-FC along with other

antifungal drugs like amphotericin B along with fluconazole. The cytosine perme-

ase enzyme aids the absorption of 5-FC into the fungal cells (Andriole 1999).

Immediate to its entry, the compound undergoes modification to 5-fluorouracil by

deaminase enzyme. This compound undergoes conversion to fluorouridine triphos-

phate by UMP pyrophosphorylase which after further phosphorylation is incorpo-

rated into the fungal RNA chain, thereby blocking the protein synthesis.

Fluorouracil also undergoes conversion to 5-fluorodeoxyuridine monophosphate

which disrupts with the functioning of thymidylate synthase, which aids in DNA

synthesis. Thereby, 5-FC disrupts with DNA, RNA, as well as protein synthesis of

pathogen cell. The resistance mechanism have been widely investigated and hence

have related the disrupted functioning of the enzyme cytosine permease or deam-

inase (which enables two consecutive absorption and conversion steps of 5-FC) to
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diminished drug uptake by fungal cells. This is due to a mutational change that not

only promotes primary but also intrinsic resistance. Secondly, less catalytic activity

of uridine monophosphate pyrophosphorylase and uracil phosphoribosyltransferase

also confers 5-FC resistance in C. albicans. Both cytosine deaminase and uracil

phosphoribosyltransferase are involved in the pyrimidine salvage pathway and are

unessential for de novo synthesis. A change in the bases due to mutation in either

one of these salvage pathway enzymes confers resistance in C. albicans and

Cryptococcus neoformans. In C. albicans, less phosphoribosyltransferase activity

was linked to 5-FC resistance in a dose-dependent manner. Resistance to 5-FC due

to decreased uptake has been well observed in S. cerevisiae and C. glabrata
(Vandevelde et al. 1972). However, this mechanism is not of significance in

C. albicans or Cryptococcus neoformans.

5.4.5 Inhibitors of Glucan Synthesis: Fungal Cell Wall Compounds

Mode of Action and Resistance Mechanism The multilayer fungal cell wall

consists of unique components like α- and β-glucans, mannan, chitin, etc., which

provide antifungal drug targets for safe use in mammalian hosts. These compounds

have selective toxicity benefits in host. The medically important pathogen

C. albicans has a multilayered cell wall comprising of β-glucan and mannoprotein

(80% of cell mass) along with chitin. Among the glucan synthesis inhibitors, chitin

biosynthetic genes are disrupted by compounds named as nikkomycins which have

been scientifically investigated for commercial use. The three groups categorized as

glucan synthesis inhibitors are aculeacins, echinocandins, and papulacandins which

disrupt the functioning of β-(1,3)-glucan synthetase enzyme that leads to synthesis

of 1,3-β, D-glucan. However among the inhibitors, the lipoproteins, i.e.,

echinocandins, are clinically approved for global use due to their safety, efficacy,

and tolerance level. Echinocandins are tested to be potently active against Candida
spp., Aspergillus strains, dimorphic molds, and Pneumocystis carinii. Three

antimycotic compounds under echinocandins have been thoroughly investigated

for safe use, namely, caspofungin, FK-463, and VER-002. No cross-resistance was

observed against these three compounds in isolates resistant to triazoles. These

inhibitors form a noncompetitive inhibition with secondary effects on either the

chitin content or ergosterol content of fungal cell. One study reported the in vitro

comparative activity analysis of echinocandin in fluconazole-resistant Candida
strains with itraconazole and amphotericin B as test parameters (Cuenca-Estrella

et al. 2000). The results showed echinocandin to have potent activity against a range

of Candida spp. like C. albicans, C. tropicalis, C. krusei, etc. However,

echinocandins showed to have less activity against C. parapsilosis and

C. guilliermondii. Nevertheless, in C. neoformans, the reduced activity of

echinocandins is due to decreased fungal glucan synthase activity (Maligie and

Selitrennikoff 2005). The resistance mechanism of pathogens against echinocandin

is very limited. Kurtz and Douglas experimented with the laboratory-resistant

mutants of S. cerevisiae. Echinocandins target the β-glucan synthase enzyme
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which is mainly encoded by two genes called FKS1 and RHO1 and regulated by a

third gene (Sekiya-Kawasaki et al. 2002). FKS2 is another gene in S. cerevisiae
which is homologous to FKS1. Any base alteration in FKS1 genetically causing

mutations leads to the development of in vitro resistance to echinocandins

(Balashov et al. 2006). This is specifically due to the alteration of the target enzyme,

glucan synthase. Some sort of resistance is also developed due to mutations in

GNS1 gene coding for fatty acid chain synthesis in cell wall. Conversely, changes in
FKS2 gene does not attribute to resistance. The resistance mechanisms for azoles

include efflux pumps and fungal membrane composition, which howsoever seems

inappropriate for echinocandins as they don’t undergo cytosolic pathway of pene-

tration. Since they don’t traverse the fungal membrane barrier, the entry mecha-

nisms don’t serve as the methods of resistance development in lipopeptides. Even

MDR-like gene activation doesn’t confer resistance mechanism to echinocandins.

These results finally conclude that FKS1 mutation can alter the protein forming the

catalytic target of glucan synthase enzyme, thereby facilitating lipopeptide resis-

tance development in S. cerevisiae. Lastly, a study established that both

S. cerevisiae and C. albicans have similar mechanism of resistance to β-glucan
synthase inhibitors (Douglas et al. 1994).

5.5 Antiviral Drug Resistance

In the late twentieth century, the development of potent antiviral drugs was

considered as an important achievement in the field of biomedical science. Highly

effective drugs against a wide range of viruses like herpes, HIV, hepatitis B,

influenza, human papillomavirus, respiratory viruses, enteroviruses, hepatitis C,

etc., have been designed and proved to be of human benefit. But sadly, with time,

antiviral drug resistance has emerged at a considerably higher rate. The resistance

to antiviral agents is considered to be a natural phenomenon because of the rapid

replication ability of the virus under a selective pressure (Richman 2006). On

prolonged drug exposure only those mutants survive which can replicate continu-

ously in that environment and thus become resistant. The development of resistance

is a major point of concern in the immunocompromised patients too (Strasfeld and

Chou 2010). Quick diagnosis of the resistance type can be made by observing the

different mutations in the genome of the viruses that made them resistant. A lot of

literatures describe drug resistance in influenza virus, retroviruses (HIV), herpes

simplex virus, cytomegalovirus, varicella-zoster virus, and hepatitis B virus

(discussed in detail below).

5.5.1 Drug-Resistant Influenza Virus

Adamantanes like amantadine and rimantadine are drugs mainly given for treating

influenza A viral infections. But clinical studies have shown this virus to be
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increasingly resistant to both the drugs, especially amantadine in both animal and

human isolates (Englund et al. 1998). The drug-resistant strains showed point

mutations in a recognized second reading frame of the M segment of the influenza

RNA genome. This region, named as M2 encodes for a tetrameric, transmembrane

H+ ion channel, required for pH mediated entry of the viral ribonucleoprotein into

the cytoplasm. Amantadines used to block this channel, hence preventing viral

replication. Early experiments with viral neuraminidase inhibitory drugs like

oseltamivir and zanamivir showed sensitivity toward both influenza A and B

viruses, but recent reports show incidence of higher resistance for oseltamivir

than zanamivir. A seasonal influenza H1N1 virus found to be mutated in its

neuraminidase gene (H274Y) and thus contribute for developing resistance against

oseltamivir (Control and Prevention 2009). Some isolates of avian influenza A virus

(H5N1) have also been adamantane resistant.

5.5.2 Drug-Resistant Herpes Simplex Virus

Mucocutaneous HSV infections are usually administered with acyclovir,

valacyclovir, and famciclovir, whereas the first is always preferred in the treatment

of serious invasive disease like encephalitis. Drug-resistant acyclovir was first

encountered as early as in the year 1982 when the drug was systemically circulated,

but later drug-resistant strains have been isolated from patients without any history

of preexposure to the drug (Nugier et al. 1992). Resistance of HSV to acyclovir is

often associated with the viral TK or DNA polymerase mutations (Morfin and

Thouvenot 2003). This mutation can lead to a loss of TK function or a modification

in TK substrate specificity. Mutations in the TK gene are mainly due to addition or

deletion of nucleotides in homopolymer runs of guanines and cytosines, resulting in

frame shifting and loss of its function. Drug-resistant TK mutants retain suscepti-

bility to drugs like foscarnet and cidofovir that are independent of viral-mediated

phosphorylation, unless a viral DNA polymerase mutation is also present. Given the

essential role of DNA polymerase in viral replication, mutations in this gene occur

less frequently and have been found to cluster in functional domains II and III.

5.5.3 Drug-Resistant Varicella-Zoster Virus

Normally, the same drugs are administered for VZV as in the case of HSV.

Acyclovir is less effective in this case, while famciclovir and valacyclovir prove

to be more competent. Like in the case of HSV, drug resistance in VZV is also

attributed to the TK mutations in the viral genome (Lacey et al. 1991). It mainly

results due to a premature stop codon that leads to a TK-deficient virus. Other

mutations related to resistance appear to cluster at particular VZV TK gene loci.

Cross-resistance is seen for drugs acyclovir and penciclovir in some in vitro studies.
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5.5.4 Drug-Resistant Cytomegalovirus

CMV is usually an opportunistic pathogen associated with AIDS patients. The

principle drugs currently being administered for CMV infections are ganciclovir

and valganciclovir. But shortly after the introduction of ganciclovir in the late

1980s, cases of drug resistance came into picture (Akalin et al. 2003). On prolonged

exposure to ganciclovir, 90% of resistant CMV isolates were found to have

characteristic mutations in the viral UL97 kinase gene (Chou 2008). These muta-

tions apparently reduce the ganciclovir phosphorylation without impairing the

major functions of the kinase in viral replication. CMV UL97 drug resistance

mutations cluster tightly at codons 460, 520, and 590–607. Mutations M460V/I,

H520Q, C592G, A594V, L595S, and C603W are among the most frequently

encountered in ganciclovir-resistant isolates. Apart from this, CMV UL54 DNA

polymerase mutations can lead to resistance against almost all the available drugs

for CMV infection. Many ganciclovir resistance mutations are located in the

exonuclease domains and typically confer cross-resistance to cidofovir whereas

mutations in and between the catalytic domains can contribute to foscarnet resis-

tance as well as cross-resistance in cidofovir and ganciclovir in a low grade.

Usually, UL97 mutation occurs first with ganciclovir resistance, followed by one

or more UL54 mutations after prolonged therapy.

5.5.5 Drug-Resistant Hepatitis B Virus

There are currently seven FDA-approved agents for the treatment of hepatitis B out

of which, three are nucleoside analogs (lamivudine, entecavir, and telbivudine) and

two are nucleotide analogs (adefovir and tenofovir). All of these target HBV DNA

polymerase, which includes reverse transcriptase activity. These kinds of drugs are

phosphorylated by cellular enzymes to active form and then incorporated into

growing DNA, resulting in premature chain termination, among other inhibitory

functions associated with viral replication. Due to the high viral replication rate and

the error-prone nature of HBV reverse transcriptase, there has been the emergence

of resistance against the above said classes of drugs. Reports suggest that signature

mutations in the reverse transcriptase domains of the viral polymerase gene are the

main causes of drug resistance as it changes the interaction between the virus and

drugs. High-level lamivudine resistance is mostly caused by M204I/V mutations,

which are in the YMDD (tyrosine–methionine–aspartate–aspartate) motif in the C

domain of the polymerase gene and infrequently by A181V/T mutations. The

M204I mutation confers high-level cross-resistance to telbivudine, either alone or

in association with the secondary mutations L80I/V or L180M. The N236T muta-

tion, on the other hand, decreases viral replicative capacity in vitro and provides

cross-resistance to tenofovir but not to lamivudine or telbivudine. During continued

entecavir treatment, additional mutations at I169T and M250V or T184G and S202I

are selected, conferring resistance to the same. Report on tenofovir resistance has
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been seen in two HBV/HIV co-infected patients with prior lamivudine exposure

(L180M/M204V mutations) and an extra A194T mutation (Lacombe et al. 2010).

5.5.6 Drug-Resistant HIV

Resistance of HIV to antiretroviral drugs is one of the most common causes for

therapeutic failure in HIV-infected patients. Despite of continuous research and

anti-HIV drug development, no combination of drug studied till date has shown to

completely block viral replication. Instead, the virus has developed smart mutations

in its different survival pathways and continues to be a threat to mankind. Antire-

troviral drugs are either nucleoside reverse transcriptase inhibitors (NRTIs),

non-nucleoside reverse transcriptase inhibitors (NNRTIs), or protease inhibitors.

Two important mechanisms by which NRTIs work involve mutations (e.g.,

M184V, K65R, Q151M) occurring at or near the drug-binding site of the reverse

transcriptase gene, leading to increased drug discrimination by this gene, and

another way is to make key mutations that actually work to undo the action of the

drugs, even if they bind to their target RT correctly (Clavel and Hance 2004).

NRTIs behave like plugs by blocking nonextendable nucleoside analog

monophosphate to the 30 end of the growing proviral DNA chain, thus inhibiting

viral replication. But this phenomenon can be reversed by a reverse transcriptase

reaction where the chain-terminating residue is removed and an extendable primer

is reinstated. This kind of reverse reaction of DNA polymerization is called

pyrophosphorolysis, and it enables reverse transcription and DNA synthesis to

resume. This mechanism can be enhanced by some mutations, mostly those

selected by zidovudine (Retrovir) and stavudine. As these two drugs are thymidine

analogs, these mutations are often referred to as thymidine analog mutations

(TAMs).

The mechanism of drug resistance that NNRTIs follow is simpler. All the drugs

falling under NNRTIs are designed in such a way to bind to the amino acids packed

in a hydrophobic binding pocket within the reverse transcriptase. This pocket does

not belong to the active site of the enzyme but near to it and is found only in the

presence of the drug. The drugs open this pocket, thus blocking some enzymatic

movements inhibiting DNA synthesis. Different mutations conferring resistance to

NNRTIs like L100I, Y181C, G190S/A, and M230I involve the amino acids that

form the hydrophobic binding pocket. However the K103N mutation is slightly

different in the aspect that instead of forming the pocket, it is present near the

entrance of the same and it creates a hydrogen bond in the unliganded enzyme. This

bond makes the pocket entrance closed for the drug to enter.

Now, the HIV protease gene acts as a homodimer; each of the units constitutes

two chains composed of 99 amino acids that make gag (p55) and gag-pol (p160)

polyprotein products into active core proteins and viral enzymes (Park and Morrow

1991). These proteases cleave the polyproteins immediately after or during the

budding process at nine different positions to give rise to various structural proteins

(p17, p24, p7, and p6), reverse transcriptase, integrase, and protease. All the
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available protease inhibitors bind to the active site amino acids at the center of the

homodimer and prevent cleavage of gag and gag-pol protein precursors in severely

infected cells. Hence it arrests the maturation and infection by nascent virions. The

virus particles develop resistance by mutations which force the pocket at the center

of the homodimer to widen, resulting the drug to freely float and not able to bind to

its target tightly.

5.6 Antiparasitic Drug Resistance

Parasitic infections have continuously dwindled the global health status, most

prominently in the tropical regions. The protozoan and helminth-related diseases

have led to the invention of many drugs for their specific treatment decades ago. At

that time, about 0.1% of the global financial asset was invested in therapeutic

inventions for tropical diseases including malaria, leishmaniasis, etc. The invention

of any drug against targeted pathogens or their structural aspects is an iterative

process which involves specific strategies followed by target recognition and

validation. The assays after development undergo a thorough screening process to

detect structural hits for activity inhibition and their further assessment, and anal-

ysis will tag the leads for clinical evaluation. In the case of malaria, drug resistance

has been well observed in three malarial species, namely, P. falciparum, P. vivax,
and P. malariae (White 2004). With time the parasites have been able to flourish

well and replicate within the host system in spite of the drug dosage and absorption.

With greater access to parasitic system or the infected erythrocyte, the pharmaco-

kinetics of malarial drugs and understanding of host metabolism have reached new

insights. It essentially requires pharmacologically active metabolites for therapeutic

purposes. Antiparasitic drug discovery has evolved with new impetus with

advancements in genome sequencing, international collaborations, and national

programs for fund generation toward this significant impact.

Emergence and Spread The emergence of antiparasitic drug resistance has

transformed the global epidemiology profile. Drug dosage and pharmacodynamic

properties affect the efficiency of any therapeutic regime. The resistance emergence

generally initiates with a genetic change followed by a selection process offering

the parasite an endurance profile within host for its survival. Parasitic treatment

failures depend on the host immune system as well as parasitic factor. Drug dosage,

administration frequency, the period of transition from susceptible to resistant form,

time point of host infection, and the fitness cost effects influence the resistance

transmission. Acquired tolerance, cross-resistance, drug adherence, and absorption

features lead to parasite recrudescence. Cross-resistance is a factor which compli-

cates the administration of different classes of antiparasitic compounds with varied

modes of action which are rendered futile due to superbug tolerance mechanisms.

The aminoquinolines and antifolates are mostly affected. In malaria, for instance,

the non-clearance of asexual parasites leads to gametocyte assembly which
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transmits resistance determinants. The resistance development occurs in two phases

of tolerance emergence and spread (Klein 2013). Initially a rare, random, and

spontaneous genetic mutation provides the parasite a survival advantage which

later gets selective, replicates, and becomes insusceptible to treatment. Other than

chromosomal mutations, even the gene copies influence the drug target alteration or

efflux of therapeutics. A single de novo mutation can lead to multiple events;

however, non-immune individuals acting as parasite reservoirs can even contribute

to de novo tolerance. Selection of the resistant parasites occurs due to

subtherapeutic drug concentration exposure where the sensitive lot succumbs and

leads to the drug resistance spread. The time frame for selection and resistance

transmission of parasites portrays the “fitness cost” which enables subsequent

gametocyte production and cessation of drug activity. The major factors for emer-

gence and spread of antiparasitic drug resistance include the intrinsic frequency of

the parasitic genetic mutation, the fitness cost of tolerance, the drug selection

pressure, drug pharmacokinetic properties and dosage, host immune profile, and

transmission profile. There is a list of extrinsic as well as intrinsic factors that

contribute to the emergence of resistance. Access and availability of drugs due to

economical hindrances, distribution statistics, and reluctance of usage are the

general factors of reduced remedial aid. Additionally, complex antimalarial drug

regimes are being self-prescribed by individuals with the threat of inadequate

adherence. Unregulated pharmaceutical trade can lead to the commercialization

and use of counterfeit antiparasitic drugs. Other than the above mentioned extrinsic

factors, the intrinsic elements include parasite’s cellular, molecular, and clinical

features, their species-based innate resistance, drug activity spectrum, and drug

response to parasite’s stage susceptibility. All these influence drug resistance in the
presence of complete therapeutic adherence. Among parasites, the malarial infec-

tions are symptomatic and thereby the individuals develop partial immune response

(premunition) against these bugs which keeps a check on the resistance spread.

Infection-based immune response selectively eliminates the blood parasites includ-

ing the de novo resistant strains. The immune status of individuals infected with

parasite hereby affects the drug efficiency level. Among the drugs, amphotericin B

is the most widely used treatment against leishmaniasis. But the developed resis-

tance is species dependent. The vector control and effective case management

hence will enable a check on parasitic diseases.

5.6.1 Genetics of Antimalarial Resistance

With increased resistance, the treatment against the parasites slows down causing

increased parasitic recrudescence. The fraction of drug-resistant bugs as compared

to sensitive parasites drives the spread of resistance determinants. So with increased

resistance, the treatment failures augment accelerating the transmission of resis-

tance. The intracellular parasitic drug concentrations are dependent on the genetic

composition of the parasite. The rare spontaneous genetic alterations, additions, or

mutations in the genes encoding the drug targets or efflux machinery influence the
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parasite tolerance to drug (Wernsdorfer 1991). Changes in the genes may be linked.

Mutations regulate the pathogen’s fitness disadvantage independent of the drug

exposure. Chromosomal mutations are linked to pathogen fitness which reduces

with drug exposure. In P. falciparum, chloroquine resistance is developed due to

alterations in the gene encoding PfCRT and PfMDR1 transporters (Wellems and

Plowe 2001). Cytochrome b (cytB) single-base deletions cause atovaquone toler-

ance. Pyrimethamine resistance is due to alterations in dihydrofolate reductase

(dhfr) gene (Cowman et al. 1988). Additionally another factor that modulates

spontaneous genetic changes is host immunity. Host immunity takes its own time

to reach its peak with all weapons to ward off the immune evasion parasitic

strategies. The resistance mechanism is specific to the provision of antiparasitic

treatment. For instance, most antimalarial treatments are given in response to the

asymptomatic features without dipstick confirmation which reduces the chances of

resistance selection. Host defense system restricts the parasitic survival by limiting

the gametocyte production due to asexual stage as well as antigametocyte immu-

nity. There are even other mechanisms contributing to the parasitic multigenic

tolerance. The var gene encodes the P. falciparum erythrocyte membrane protein

1 (PfEMP1) which undergoes alterations during the course of asexual parasitic

cycle. This expresses antigenically variant epitopes for immune responses contrib-

uting to distinct surface phenotype. These variant subpopulations don’t hamper the

transmissible densities. The genomic duplication in Pfmdr gene is significantly

responsible for contributing to P. falciparum resistance to mefloquine (Sidhu et al.

2005). Pfmdr is also linked to environmental stress responses and codes Pgh, an
ATP-dependent P-glycoprotein pump. Antifols tolerance is related to stepwise

acquisition of chromosomal mutations in dhfr gene. The tolerance for the syner-

gistic recipe of sulfonamides and sulfones with antifols can be attributed due to

changes in dihydropteroate synthase gene. PfATPase6 polymorphism confers

artemisinin resistance. Limiting spread of resistance can only put a check on global

resurgence of parasitic infections. However, a single point mutation isn’t the sole

contributor of such events, so deep assessment of Pfdhfr gene sequences will cater
to very limited advantage. A check on the activation of the gametocytogenesis

process can help build up therapeutics. Resistance profile augments the gametocyte

carriage which if targeted can curb the resistance spread.

Antimalarial Pharmacokinetics The unbound drug in the host plasma contrib-

utes to its therapeutic effect. Innumerable factors like parasitic behavioral, meta-

bolic, and molecular attributes influence the drug effects, and even the drug’s
pharmacokinetic properties affect the pathogen’s response to subtherapeutic treat-

ment levels. The degree of absorption and distribution links the drug’s bioavail-
ability within host. The therapeutic ratio and oral bioavailability influences the

emergence of resistance. The extended half-life during the drug’s elimination phase

increases the chances of parasitic encounter with selective drug concentrations. For

instance, as chloroquine resistance augments, the drug elimination phase gathers

insufficient drug amounts, which decreases the selective nature of tolerance. How-

ever, prolonged drug exposure extends the selective capacity of parasites in host
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blood system. The transmission again depends on the host immune profile, drug

exposure, parasite duplication profile, and host intracellular processes which influ-

ence drug-sensitive pathogens. Repeated drug exposure and parasite subpopulation

can contribute to drug resistance. The bar of sensitive parasitic MIC if raised will

cause a decrease in the susceptible as well as the selective resistant generations. The

balance between de novo resistance and drug elimination phase imposes a discrim-

inatory filter for resistance development and susceptibility inhibition. This selection

gives an edge for tolerance in parasites highlighting the elimination phase to be

instrumental in conferring antiparasitic resistance. The major challenge is the

failure in surpassing phase II clinical trials for antiparasitic drugs. The drug

synthesis is economically viable and isn’t driven by commercial requirements.

Yet the detailed insight into the genomics profile for unraveling the translational

formulations for novel drug discovery is still a challenge. Secondly, effective

partnership for antiparasitics is lacking mainly because they are basically field

driven. Proper resources with high-throughput screening for molecular targets

that enable optimization of treatment regime will drive the preclinical setups.

The approaches for novel antiparasitic drug discovery will require different

entities for innovative therapeutic formulations. Monitoring the therapeutic resis-

tance by investigating into pathogen’s phenotypic susceptibility and cellular and

molecular alterations in response to drug and developing molecular probes for

limiting tolerance can be one of the strategies for refining the present approaches

(Pink et al. 2005). The cost and supply of drugs, the diagnostic methodology, and

the design of combinatorial therapies can enhance the efficacy of antiparasitic

treatments. The combinations are designed in formulations for increased spectrum

of activity with either synergistic or additive effect, reduced toxicity, and dosage

requirement and prevention of resistance, for instance, combinations like

eflornithine and melarsoprol for trypanosomiasis. The combinational therapy

works best for combating parasitic infections particularly malaria. Two or more

drugs with identical pharmacokinetic properties and different modes of action can

slacken the resistance development. Mostly artemisinin derivatives are potent

combinatorial medications against malaria due to their pathogen-killing efficiency,

reduced toxic effects, and preventive drug resistance features. In combination with

mefloquine, artemisinin leaves the mefloquine “tail” unshielded. This drug “tail”

eradication phase edges the sieve for resistance emergence. However, the chal-

lenges in combination therapeutics that can cause resistance emergence are insuf-

ficient treatment and partial population coverage.

Artemisinins are potent drugs for combating malarial infections. The point of

remedial action concerns stage specificity. Additionally, parasite doubling and

survival have a greater impact and drug targets can inhibit the further disease

progression. Antimalarial drug formulations have also employed resistance reverser

mechanism. Another approach will involve refining the conventional drugs for

broadening the spectrum of drug action. Such indication for therapeutics had

been observed in pneumonia medication, DB289, which is now being clinically

tested for malaria as well as African trypanosomiasis (Legros et al. 2002). However,
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the reluctance of companies to experiment with the risk of testing and toxicity

remains an economic challenge. Other strategies involve modulation in drug design

for better functioning, like in the case of malarial drugs pyrimethamine whose

analogs are being developed to surmount dihydrofolate reductase chromosomal

mutations. Antimalarial drug ferroquine bears a chloroquine-like nucleus but with

an altered side chain ferrocenic group which lights up its excellent antiparasitic

activity against resistant strains (Biot et al. 2005). In vitro tests and molecular

approaches ease the parasitic drug monitoring and validation of their therapeutic

profile. Chloroquine resistance has been experimented nowadays for producing

agents for resistance reversal. Still opportunities for new targets and renewed

treatments are being sorted out in the research world today for a ray of anticipation

and optimism to combat drug resistance.

6 The Future Ahead

The genesis of drugs/antimicrobial medications gave the world a new hope of

survival for fighting the superbugs. Nevertheless, this explosive augmentation of

widespread drug usage in the last 20 years has worsened the present global health

status by stirring up the tolerance level in microbes. This has also led to the

restricted approval of drugs for the present generation of microbial threats. Innu-

merable complex factors intertwined together contribute to the paucity in the rate of

innovative drug development. These multiple forces aren’t individually insur-

mountable, but when combined, their effect imposes a significant and steady

proportionate crisis on public welfare with unforeseen consequences. The grave

crisis of therapeutic efficacy to combat the microbial resistance mechanisms initi-

ated the introduction of novel strategies and approaches for not only monitoring the

drug standards but also limiting the drug tolerance level. This led to the major

objective of keeping public health as a priority. Keeping in consideration the past

issues, the new generation drugs will employ molecular targets as the line of action

against resistance and in vitro tests with molecular markers for drug validation.

New drugs specifically new class antibiotics will continue their journey of devel-

opment for the need of mankind. For instance, medication for multidrug tubercu-

losis is very much under health requirement. Similarly, Shigella outbreaks on a

global scale demand cheap antibiotics for oral administration. Generally a huge gap

exists between drug development and their clinical approval for worldwide use.

This has led to the use of combinational therapies which were found to be effective

against many disease outbreaks, malaria being one of them. With a possibility of

allergic reactions, these therapies however demanded high-end cost for medica-

tions. The problem of generating host-specific “selective pressure” would result in

the continued emergence of microbial tolerance. Nevertheless approaches to make

sensible usage of drugs along with other essential strategies have decreased the

factor of selective pressure. Secondly, early diagnosis might also encourage

narrow-range drugs in practice. Two factors are equally important: the duration
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of drug therapy and the efficacy of the medication. A keen observation on these

parameters would open the doors for the blueprints of next-generation drugs

keeping the microbial tolerance level in check. Such surveillance systems also

consider the frequency of occurrence, persistence, and spread of drug-resistant

organisms to make vital public welfare decisions. Major consideration should

focus on the prevention of resistance transmission rather than illness cure when

time demands. Vaccine development against fatal diseases and infection control

strategies can rather maintain a line of limitation for resistance transmission to

humans. The greater incidence of drug resistance puts forward a direct link between

clinicians and general public health. The present time demands a greater effective

approach to combat resistance for the development of ultra-new class of medica-

tions against the superbugs of this era. Otherwise there won’t be any delay in the

commencement of post-microbial era.

6.1 The Major Hurdles: Challenges

The steady pace of time has enabled the surfacing of fatal infectious pathogens like

HIV, human metapneumovirus, etc. Such life-threatening diseases have constrained

the pharmaceutical industries for the discovery of safe, novel, effective antiviral

drugs with not only increased host life but also limitation in pathogen spread. With

such emergence, certain new targets have been defined and unfolded lately. This

has resulted in the advancement of medications for AIDS patients either individu-

ally or in combinational therapies for increased life expectancy. These life-saving

drug discoveries have increased the economical pressure on the R&D sections that

have directed their investments for new antiviral drugs at the expense of other

general antibiotics. The 5-year report in the USA (1998–2003) shows figuratively

similar levels of antibacterial and anti-HIV agents to be discovered and approved by

pharmaceuticals and FDA, respectively, during that span of time. Hence,

antibacterial research has faced unexpectedly decreased productivity due to greater

attrition in the discovery of new antibacterial agents. Even hi-tech throughout

techniques and molecular modulations into genome research and computational

advancements have failed to stand up to the expectations of defined goals of

antibacterial development (Bush et al. 2011). This hindrance elevates the barrier

of antibacterial requirement and discovery. The design of present era antibiotics

requires certain modified criteria that need to be etched onto the discovery panel for

withstanding the present-day challenges of multidrug resistance (Walsh 2003). The

same problem continues to persist. Ultimately due to other factors of manufacturing

defects, efficacy problem, and economic concerns, there happens to be a halt or

delay in the pipeline of antibiotic discovery. The world today requires an urgent

transformational change in the field of antibiotic development (Wright 2014). The

conventional chemical structures can no longer be experimented with for safe and

effective drug breakthroughs. A radical change in invention requires an approach

from a different perspective targeting new microbial mechanisms and biological
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aspects for a truly novel platform of antibiotic production. An appropriate novel

resource intensive strategy will involve greater time and economy as compared to

the approach of alteration to the classical drugs. A partnership among the govern-

ment, academic, and pharmaceutical units can promote the investments for lucra-

tive antibiotic market discoveries. The major limitation is on the restricted

antibiotic use for microbial resistance check. These control measures rationalize

drug usage thereby lowering their market value and making investments less

striking. The challenge of drug development now concerns demand, market profits,

as well as technical superiority with desired potency, apt activity, and necessary

safe profile for enduring microbial tolerance.

With an expansion of the pathophysiological mechanisms and molecular targets,

the spectrum of drug synthesis has increased the opportunities for business turn-

over. A defined set of “priorities” can enable better investments for refining public

lifestyle. Private organizations pool out better drug discovery as compared to the

government units, for instance, a 10-year report enlisted a clean sweep of 93%

antibiotic discovery from private organizations as compared to the 3% from

government and academic bodies. The investments are not only a means for

meeting the medical needs but also a profitable turnover payoff to stand up for

return investment. The pharmaceutical industries invest around 800 million dollars

for drug discovery to approval. This figure has significantly increased around

fourfold from the nineteenth century. Conversely the increased manufacture cost

with prolonged time of 10–12 years of research for drug development (from

formulation to clinical approval), patent span of 20 years from the date of invention,

and economic burden on pharmaceutical industries have restrained the companies

to channelize their priorities for targeted developments. This has narrowed down

the spectrum of anti-infective discoveries and their research programs. Overall the

combinatorial effects have led to an alarming diminution in antibiotic development.

Some incentives can lure private companies for investment start-up in the anti-

infective production field. Nevertheless the problem of drug resistance can only be

dealt with if more inputs, collaborations, and research are involved in the academic

units and research wings for innovative, effective, and safe medications.

6.1.1 Targeting Resistance with Strategic Approach

A deep understanding of pathogen’s survival strategy against the drug will provide

insights into the molecular targets for discovery of new class of microbial therapy

for combating the problem of resistance. For instance, β-lactam resistance facili-

tated the target alteration of the warhead at the first shot (Mark et al. 2011). With

greater clinical menace, β-lactamase-producing strains were targeted for the hydro-

lase enzyme by mechanistic-oriented inhibition. Augmentin, the combinational

therapy of clavulanate and amoxicillin, formed the façade of antibacterial therapy.

Another combinational mix with sulbactam and ampicillin marketed under the

name of Unasyn was another essential therapy. Sulbactam was an inhibitor of

β-lactamase activity similar to other combinational antibacterial treatments like
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Timentin and Zosyn. Modulation of tetracycline and erythromycin structures with

alteration in their efflux pump strategies would be appropriate antibacterial therapy.

Augmentin is under experimentation with certain additive changes of efflux pump

inhibition in combination with macrolides or tetracycline. Even certain semisyn-

thetic analogs of vancomycin have been designed for effective activity against

vancomycin-resistant strains. The analogs comprise of a vancosamine biphenyl

sugar moiety substitution with higher hydrophobicity and more membrane-oriented

and greater activity inhibition between transpeptidases and transglycosylases. Even

pristinamycin a combination of two synergistic drugs (quinupristin and

dalfopristin) inhibits protein synthetic machinery of vancomycin-resistant

pathogens.

Another approach to increase microbial drug susceptibility is to disrupt the outer

protective barrier that shields the pathogen from the harsh external environment or

to target their efflux pump machinery that expels out undesired products thereby

preventing drug accumulation. Genetic alteration in E. coli (AcrAB) and Pseudo-
monas aeruginosa (Mex efflux machinery) producing efflux knockout strains

compromises with the pathogen’s resistance mechanism. The synergy among

drug resistance mechanisms enables the efflux systems even to affect non-efflux

modes of drug tolerance. The inhibitors of MF and RND transporters in Pseudo-
monas and E. coli have been well discussed. With such inhibitors, even gyrA and

parC targets against fluoroquinolone resistance are undermined (Cluzet et al. 2015).

Such activity of inhibitors even restricted the pathogen tolerance profile of

H. influenza, Klebsiella, etc. The membrane permeabilization mechanism involves

cationic peptides as one of the drug-targeted options. A study in Pseudomonas
reports the cationic peptides having efflux targets along with β-lactamase directed

inhibition to highlight interplay of variant modes of microbial resistance (Gellatly

and Hancock 2013).

The contribution of multidrug efflux pumps in conferring intrinsic or acquired

resistance mechanism isn’t validated. In E. coli, about seven genes and nine

operons have been studied to regulate the intrinsic efflux mechanism, from which

very few contribute to antimicrobial resistance. The roles of transporter pump

systems like RND, MF, etc., for antimicrobial resistance in Gram-negative bacteria

are still under analysis. Many of the functions of these efflux pumps target the

release of internal cellular constituents instead of securing the cell from exogenous

toxins. Elucidation of substrate recognition mechanism by efflux transporters is still

a challenging aspect. Basically the DNA array technique for detection of

co-regulated genes with efflux systems in induced strains can explicate the func-

tioning of such pumping machinery (Card et al. 2013, 2014). Secondly, certain

genetic alterations of mutant generation can result in the accumulation of intracel-

lular metabolites, thereby leading to the functional annotation of many transporters.

The genomic profile can provide distinct picture for identification of essential

multidrug transporter targets that do contribute to intrinsic resistance or can be a

factor for acquired resistance mechanism.

The structural delineation of many proteins opens gateways to the understand-

ing of molecular mechanism of action. This is true even for elucidation of multidrug
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resistance mechanism. The crystal structure of dimeric MarR drug resistance

regulator of E. coli was solved at 2.3 Å with a DNA-binding domain (Duval et al.

2013). Similar approaches have been employed in deciphering the roles of other

transporters that confer resistance mechanism, namely, SmeDEF as well as AcrAB-

TolC pump systems. Additionally identification of tolC homologue will help to

investigate into the mode of antimicrobial resistance in Vibrio cholerae.

7 Monitoring Drug Efficacy and Resistance

The four basic methods for monitoring drug efficacy mainly include some in vitro

tests, utilization of molecular markers, drug concentration analysis, and detailed

drug efficacy studies. Therapeutic effectiveness deals with the direct inspection of

drug activity and efficacy over a prolonged period of treatment duration. This

clinical standard acts as a blueprint for monitoring subtle alterations consistently

for making therapeutic policy outcomes. Following the standard protocol of ther-

apeutic efficacy studies, additional information is also required for the necessary

drug characterization and surveillance aspect. Other methods concern the in vitro

survival aspect of superbugs and their phenotype depiction, molecular marker

experiments regarding genetic knockouts, and drug concentration analysis. The

need for a protocol requires a standard test to monitor the in vivo response of the

superbugs’ resistance causing the disease, for instance, chloroquine resistance

against P. falciparum (Witkowski et al. 2013). These protocols are modified and

revised with the changing drug patterns over time for monitoring the therapeutic

proficiency, emergence of resistant strains, and new medications for their treatment.

The therapeutic efficacy studies mostly comprise of certain inclusive and exclusive

standards, required sample size, assessment parameters, case follow-up strategy,

data management and analysis units, ethical committees, and quality check man-

agement as the methods of drug evaluation. The treatment is comprised of early

medications, clinical failure assessment, and then pathogen response validation.

The standard guidelines also involve some national control programs for effective

cure policies. However, therapeutic efficacy studies aren’t universal methods for

monitoring drug remedy parameters. The limitations deal with mostly low sample

size of patients for which other surveillance methods and validation techniques

(molecular markers/in vitro assessment) can be employed.

7.1 In Vitro Assays

In vitro methods enable to monitor drug efficacy and resistance by evaluating the

intrinsic susceptibility of the pathogen to the drugs. The pathogens are given varied

drug concentration for generating an optimized and standardized methodology to
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gauge their sensitivity profile. These studies can complement the epidemiological

breakout of diseases. In vitro studies offer a more broad objective perspective to the

problem for determining the resistance mechanism. These tests don’t consider host
factors to puzzle with the outcome which makes them different from therapeutic

efficacy protocols. Most importantly, multiple sample tests can be experimented

with a range of drug concentrations against the microbes/parasites. Conversely, the

innumerable methods and testing approaches question the comparability as well as

compatibility of test outcomes. The various tests include certain radioactive-labeled

isotope approach followed by antibody-specific ELISA and certain fluorometric

assays. Every step presents a new metabolism profile for data quantification.

Different laboratories vary with the same set of experimentations. Data presentation

in geometric means scales rather percentage profile can solve the issue of standard

protocol requirement. In comparison to therapeutic studies, the outcomes are

mostly inconsistent due to lack of a stringent protocol and limitation in monitoring

the resistance threshold. In vitro studies have huge complexity with a folly in

organization of methodologies. These in vitro tests have a greater advantage to

study the combinatorial effects of two or more against the conventional ones

(Palomino et al. 2014). A synergistic, antagonistic additive profile can enable useful

drug combinations for human welfare. Some factors influencing drug trends can be

examined through extended time lengths in such studies. With high technical

difficulties and significant variability, the present research encourages the invention

of other high-throughput assays for detecting drug resistance and efficacy profile.

7.2 Molecular Markers: Approach for Insights into Drug
Resistance

For determination of drug efficacy and understanding of drug resistance mecha-

nism, molecular markers serve one of the most crucial methods. The major genetic

alterations responsible for microbial tolerance once identified can be validated and

explained with molecular approach. Serving advantageous over other methods,

molecular biology experiments can involve greater sample numbers for detection

or analysis within restricted time period and the ease of sample storage and

transportation as compared to in vitro tests. The genes potentially involved in

conferring resistance to drugs after being detected needs to be screened for identi-

fication of the molecular markers. Any point mutation at the targeted gene

strengthens the pathogen’s tolerance level to therapeutics. The greater the fre-

quency and the higher the number of mutational changes, the greater the degree

of resistance. For instance, the parasitic dihydrofolate reductase gene is instrumen-

tal in contributing to resistance to antimalarial drugs. Sulfadoxine resistance is

conferred due to five specific mutations in dihydrofolate reductase gene (Sharma

et al. 2015). Higher degree of resistance is contributed due to genetic alterations at

three specific positions of 436, 581, and 613, whereas the other positions 437 and
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540 add to some amount of parasitic tolerance. The genetic composition of the

microbe and the drug response is controlled by many microbial and host factors

including drug pharmacokinetic properties. Cumulative genetic modifications

forming variant mutants can also influence pathogen clearance and spread of

resistance. Increased copy numbers can even attribute to resistance features in

pathogens which hampers medication. Several transporter genes encoding putative

sodium hydrogen exchange pumps are associated with low drug response. Molec-

ular detection of drug efficacy provides an early indication for geographical mon-

itoring. Such molecular biology methods are essential for detecting the frequency of

mutations with drug introduction or withdrawal. Certain drugs bearing technical

difficulties of solubility and suspension can be easily tested with such molecular

approach. Molecular markers are a direct predictive approach to test the drug

efficacy or therapeutic failures that might have led to the selective emergence of

resistant species. However, challenges on method sensitivity still continue to persist

due to rising mixed pathogen infections in widespread areas. The tests if sensitive

will prevent the camouflage of resistant species and avoid discordant outcomes.

Due to high consistency in this approach, greater collaborations between research

wings and national programmes are being encouraged.

7.3 Drug Concentration Measurement: A Yardstick for Drug
Efficacy

The drug design, invention, and its clinical approval take into consideration various

physical and absorptive properties of the therapeutic agent before host administra-

tion. Thereby it’s very essential for understanding the pharmacological and phar-

macokinetic properties of any drug before being metabolized and distributed

throughout the host system. Intracellular drug absorption, its interaction, host

metabolism of drug, and its elimination from the body will influence the dosage

of the medication in accordance to its pharmacokinetic properties. The decision of

the drug dosage will be required for enabling proper adaptation to the diversified

population. For instance, in antimalarial treatment, the poor host absorption prop-

erty gives rise to variant blood concentrations as the pharmacodynamic features of

the drug vary universally. Majorly monitoring the drug efficacy requires consider-

ation of the success rate of the drug or the treatment failures either due to improper

dosage or arising microbial resistance strategy. During treatment failure, the drug

amount might be slightly less than the MIC of the proliferating superbugs. A lower

therapeutic agent dose implies reappearance of the sensitive pathogen after removal

of the administered drug with certain drug modulations. Such situations form the

argumentative base of microbial resistance mechanism. The drug dosage thereby

becomes a very crucial factor for influencing the pharmacological population

kinetics of drug variability. Together with such features, certain software modules

can formulate these pharmacokinetic attributes and drug characteristic differences
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to understand interindividual disparity. For assessing the minimum inhibitory

concentrations, research on the drug properties should be intense for further

in vivo evaluation. Simple assay method protocols are developed for an approxi-

mation of drug exposure. This initiates national control programmes for monitoring

the therapeutic agent effectiveness into a routine wide-scale schedule. Additionally,

result interpretation would require proper analysis of factors influencing either

reduced drug dosage or microbial survival contributing to resistance.

8 Novel Approaches for Drug Development and Resistance

Control

The thirst for new drug development with refined microbial targets is under

progress. This has led to the development of novel synthetic structures with higher

activity range and adequate potency. For instance, the class of oxazolidinones

disrupts the protein synthesis by modulating the binding with 23S ribosomal

RNA subunit close to the peptidyl transferase junction (Koleva et al. 2015;

Jadhavar et al. 2015). Linezolid is an example of clinically approved synthetic

oxazolidinones with unmatched potency and selectivity. Another cyclic lipid pen-

tapeptide named ramoplanin equivalent to vancomycin targets substrates of cell

wall synthesis. This acts against the vancomycin-resistant Enterococcus. The

mechanism of drug resistance puts forth two essential queries that require urgent

research attention. The first is the approaches that bring up the formulation of new

antibiotics and strategies to undermine the resistance development. The first objec-

tive necessitates novel approaches for better formulated drugs molecules with

efficient delivery and killing mechanism. The second objective requires careful

and considerate usage of drug for treating infections.

8.1 Genomics for Anti-Infectives: Quest for Novel Molecular
Targets to Circumvent Resistance

The present century now encompasses a huge genomic library database with whole

genome sequences of many bacterial pathogens which can further give the

researchers a keen insight into the divergent pathogenesis factors (Farhat et al.

2013). Complete sequences of pathogenic strains like S. aureus, Streptococcus spp.,
Salmonella spp., M. tuberculosis, V. cholerae, etc., provide a detailed genome

profile of the operons regulating the functioning of their antibiotic synthetic mech-

anism and organization. The gene functional annotation with identical sequences in

the database enables identification of targets for mutant library generation. Such

functional interruption narrows down the room of choice for targeting the virulence

attributes of the pathogen. Such microbial immunomodulatory pathogenic
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components enable efficient sustenance within host. These defined pooled down

targets responsible for forming the pathogen’s survival weaponry once optimized

can form a database for automated screening and assessment of inhibitors. The hits

of the protein targets can be validated for specificity and efficacy. These hits after

validation and optimization can undergo in vitro screening process in cell lines

followed up by in vivo mechanistic studies. Such strategies offer significant and

secured targets for antibiotic generation. Many examples bring up such bioinfor-

matics analysis (Gautam et al. 2016) followed by wet lab validation for greater

success rates of drug development. The famous bacterial metallopeptidase, i.e.,

peptide deformylase, is the sweet target of many potent drugs which mainly blocks

the formyl group transfer (Kumari et al. 2013). The major virulence determinants of

microbes that are mostly being screened and targeted for drug development involve

the secretion system and the signaling cascade mechanism. The bacterial secretion

system forms an injection system that punctures into the membrane barrier for

transport of virulence proteins modulating with host functioning. The signaling

pathway mainly targets either the two-component network system comprising of a

sensor kinase and regulatory transcriptional factor or the quorum sensing mecha-

nism involving differential gene expression in conditional responses. Such diverse

spectrum of targets opens up the opportunities for development of novel medica-

tions with potential antimicrobial activity.

The library development is categorized into more effective synthetic analogs and

natural products. The synthetic groups are large, divergent, and modulated struc-

turally with chemical substitutes and functional groups. Some architectural sub-

stitutions are a manner to depict the natural formulations. An in situ library

approach of combinational therapy is under research which involves the cloning

of the entire stretch of the antibiotic biosynthetic operon clustered within 100 kb of

the genome especially for polyketides. This gains advantage over nonculturable

microbes. In the interim, the multimodular compilation of the polyketide synthase

domain facilitates domain programming, module rearrangement, and swap, substi-

tution, and encoding strategies to formulate a new library of transformed

polyketides. The same approach has also been for erythromycin derivative gener-

ation. The prospective of such process will require defined and targeted objectives

of required mutations, active domain substitutions, and domain swap elements that

can form a combinational assembly for new formulations. The libraries can involve

many tailoring enzymes involved in the multiple steps of antibiotic biosynthesis be

it the additive sugars to the macrocyclic lactone scaffold moiety which are active

targets of erythromycin or providing alternate deoxy and amino sugars for in vivo

studies.

8.2 New Avenues for Increasing Drug Life Span

The emergence of drug resistance mechanism is competing at par in pace with the

development of antibiotics. An inevitable interplay between resistance and
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discovery brings in new challenges either to preserve the efficacy of the present

therapeutics or to expand the life of such drugs. This explicit approach had to be

central to the present era of resistant bacterial havoc. A check has been imposed for

considerate drug prescription for the patients as well as for physicians. Inappropri-

ate and unnecessary antibiotic prescription in developed countries can lead to

intermittent therapeutic availability, uncertain effectiveness due to regular use, or

chances of self-medication leading to worse consequences. Generally

subtherapeutic drug dosage can lead to inhabitation of certain bacterial strains at

their dormancy state which cause acute complications during medical crisis. At this

juncture, the resistance proves dominant over the infection mechanism. So the

major issues are with the carriers of dormant infective strains termed as reservoirs.

To conserve the efficacy of drugs as the final resort, a rotation principle of antibiotic

usage was implied which led to a devastating scenario in the occurrence of

vancomycin-resistant MRSA. Not only swap and switch principle but also combi-

national primary medications have been approved for life-threatening infections

where two units work for neutralizing a specific target, but mixture of variant

classes target different activities concomitantly. Examples are Augmentin and

Synercid specifically. This combinatorial strategy is a standard approach for anti-

cancer regimes and even for antiretroviral therapy to control cancer and AIDS

progression. However, the likelihood of emergence of microbial multidrug toler-

ance increases. Major cases of drug resistance arise during the extended tenure of

treatment therapy (McNairy et al. 2013). Previously there have been reports for

widespread use of antibiotics as growth promoters in cattle feed. This results in

cross-resistance between different host systems which further reduces the antibiotic

life span. A study reported the usage of 1000-fold higher vancomycin for human

infections when a vancomycin derivative avoparcin was used for animals in the

same year (Walsh 2000). When the Enterococcus isolates from those animals were

screened, similar five operons encoding for vancomycin resistance were found as in

the non-infected human carriers. This led to a complete ban of avoparcin. Similar

cases have also been reported due to tolerance mechanism of Enterococcus against
quinupristin/dalfopristin therapy. This resistance was mostly developed due to the

use of virginiamycin in Europe in cattle feed since two decades which led to acetyl

transferase effect in animal carriers (Walsh 2000). From then, stringency was

employed in the approval and usage of antibacterial compounds in cattle feed.

The “waste” in feed would cause “haste” in drug development for deteriorating

human health. Overall, the modern molecular and high-throughput approaches can

enable screening of microbial genes for candidate targets forming the library of

novel synthetic and natural molecules that can be experimented and formulated

structurally for better functioning. This will crave new genera of modern antibiotics

having effective broad-spectrum activity against the conventional ones. The new

age antibiotics will however not hamper the resistance cycle, but haphazard use can

affect behavioral changes which would be difficult in achieving with regard to

antibiotic value.
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9 Conclusion

Drug resistance is one of the greatest concerns of modern science. With grave

impacts on survival, the potential biochemical and molecular factors for resistance

complexity are still under investigation. The research and understanding of patho-

gen’s fitness cost and tolerance dynamics have evolved new opportunities in

clinical field for a greater biological interest. The intrinsic procedures make the

reversibility process to be sluggish. The quest and urgency for developing new

drugs is in pipeline with strategies to circumvent microbial tolerance. New molec-

ular markers, reduced probability of reversibility, and co-selection of resistance

mechanism can be used to exploit the fitness cost for choosing drug targets enabling

decent predictions on resistance emergence.

9.1 Key Terms and Definitions

1. A drug is a natural or synthetic agent which when ingested into the host system

stimulates therapeutic effects for disease treatment or prevention.

2. The term drug resistance is the reduction in the drug efficacy that defines the

ability of microbes to bear or tolerate the drug (chemical or natural agent) dosage

that would otherwise inhibit the growth or kill the pathogen.

3. Intrinsic resistance defines the inherent/innate property of the microbe to resist

the effect of therapeutics due to evolutionary virtue.

4. Acquired resistance is the ability the pathogen obtains to withstand the anti-

microbial effect due to exogenous gene transfer/exchange methods or majorly

due to genetic mutations.

5. MDR abbreviates for multiple drug resistance exhibited by the microbe for its

insensitivity to a range of antimicrobials.

6. Antimicrobials are agents or drugs (natural or synthetic) that modulate the

natural functioning of a microbe either by inhibiting the microbial growth or

by killing them. Their primary mode of action against microbes designates their

classification as antifungals against fungi or antibiotics against bacteria.

7. Pharmacokinetics deals with the fate of the drugs after administration within

host system. The kinetics of drugs, their absorption, localization, distribution,

metabolism, and elimination are the processes studied in pharmacokinetics.

8. Antibiotics are medications used to treat bacterial infections, hence termed as

antibacterials, for example, penicillins, cephalosporins, etc.

9. Antimicrobial susceptibility defines the sensitivity of a particular bacterium or

fungus to the dosage of antimicrobial agent thereby affecting the pathogen’s
growth or survivability.
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Abstract The biological membrane covers all living cells and provides an effec-

tive barrier against the passage of biologically important water-soluble solutes. This

natural passage barrier is essentially overcome with the use of integral membrane

proteins known as solute transporters. These transport systems translocate solutes

across the membrane such as in the case of bacterial drug and multidrug resistance

efflux pumps. One of the largest groups of transporters is referred to as the major

facilitator superfamily. This group contains secondary active transporters such as

symporters and antiporters and passive transporters such as uniporters. The trans-

porters within the major facilitator superfamily share conserved structures and

primary amino acid sequences. In particular, several highly conserved amino acid

sequence motifs have been discovered and studied extensively, providing substan-

tial evidence for their critical functional roles in the transport of solutes across the

membrane.

1 Importance of Solute Transport in Living Organisms

All known living cells are surrounded by a biological membrane that provides an

effective barrier against the passage of aqueous-based solutes and ions. Living

cells, however, must be able to acquire helpful substances while also extruding

harmful ones. Biological membranes solve this barrier problem by using integral

membrane proteins that selectively catalyze the acquisition and efflux of helpful
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and harmful water-soluble molecules, respectively. Therefore, integral membrane

solute transporters are important for all life on Earth (Broome-Smith 1999).

When solute transporters are defective, medical disease may occur such as those

seen in glucose–galactose malabsorption (Wright et al. 2002), Fanconi–Bickel

syndrome (Santer et al. 2002), and De Vivo disease (De Vivo et al. 1991), which

are genetic diseases involving impaired transport of glucose across the membranes

of cells and develop from inheritable mutations which occur in the genes that

encode monosaccharide sugar transporters, thus impairing the uptake of mono-

saccharides into cells.

Bacteria use solute transporters to efflux multiple antimicrobial agents, often

causing loss of chemotherapeutic efficacy during treatment of infectious diseases

(Chopra 1992; Kumar and Varela 2013; Li et al. 2015). Solute transporters that

multidrug-resistant bacteria use to efflux antimicrobial agents can be grouped into

several protein families, such as the ABC (ATP-binding cassette) transporters

(Higgins 1992), the resistance-nodulation-cell division (RND) superfamily (Tseng

et al. 1999), the small multidrug resistance (SMR) superfamily (Chung and Saier

2001), the multidrug and toxic compound extrusion (MATE) superfamily (Kuroda

and Tsuchiya 2009; Kumar et al. 2013), and the major facilitator superfamily

(MFS) (Paulsen et al. 1996b; Pao et al. 1998; Saier et al. 1999; Kumar and Varela

2012; Andersen et al. 2015). This review will focus on the antimicrobial agent

efflux pumps of the MFS and especially MFS pumps of known structures. Particular

attention will be paid to studies which have involved amino acid residues that

belong to highly conserved sequence motifs A and C of the MFS (Griffith et al.

1992; Marger and Saier 1993).

2 Acquisition of Helpful Nutrients and Efflux of Harmful

Solutes

Substances are routinely transported across biological membranes of living organ-

isms. These substances include an extremely diverse range of water-soluble solutes

such as amino acids, Krebs cycle intermediates, sugars, nucleic acids, neurotrans-

mitters, antimicrobial agents, and other small molecules (Henderson et al. 1998).

Nutrient uptake via solute transport is a crucial process in which living cells acquire

and accumulate molecules from the external environment in order to support

metabolism, cell growth, and cell maintenance. On the other hand, living organisms

must be able to efflux toxic substances from the inside of their cells into the

extracellular milieu in order to maintain growth and survival. Living bacterial

cells, for example, have developed integral membrane proteins to facilitate efflux

of toxic molecules, a trait that confers antimicrobial resistance (Kumar and Varela

2013).
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3 Types of Solute Transporter Systems

Transport systems play important roles in the cellular uptake of helpful molecules

such as nutrients, ions, and small molecules and in the exit of harmful or inhibitory

molecules. Cellular entry and exit of solutes can occur in two general ways: passive

and active transport. Passive transport entails the movement of small molecules

across the membrane and does not require biological energy to do so (Mitchell

1967; West and Mitchell 1972). Active transport systems move solutes across the

membrane against their own solute concentration gradients (i.e., from low to high

concentrations), using integral membrane proteins, called pumps or active trans-

porters. This type of solute transport is referred to as active because of the energy

required to conduct transport across the biological membrane (Henderson 1991;

Hediger 1994).

3.1 Passive Solute Transport

In passive transport systems, solutes are translocated across the membrane from a

side of the membrane with relatively high solute concentration toward the side with

relatively low solute concentration, i.e., down the solute concentration gradient

(Hediger 1994). The passive solute transport systems generally do not require the

expenditure of biological energy. Transport systems use integral membrane carriers

to catalyze solute uniport, a facilitative diffusion process that enables a single

molecular species to be transported down their concentration gradients (Henderson

1991; Saier 2000).

3.1.1 Facilitated Diffusion

Facilitated diffusion refers to solute transport involving pore- or carrier-forming

molecules. In this process, solute reversibly binds to a solute-specific carrier protein

that resides integral to the membrane. The complex of solute and carrier oscillates

between the inner- and outer-facing surfaces of the biological membrane, thus

causing binding and release of the solute to the other side of the same membrane

(Henderson 1991).

A special class of integral membrane proteins, called porins, form large

nonspecific water-filled channels within the outer membrane to allow the acquisi-

tion of nutrients from the periplasm of Gram-negative bacteria. These channels are

also associated with the efflux of the waste products (Nikaido 1994). Many

so-called classical porins examined so far are OmpC, OmpF, and PhoE from

Escherichia coli (Nikaido and Vaara 1985; Nikaido 1992). These porins exist as

closely associated trimeric complexes that cannot be dissociated even with sodium

dodecyl sulfate (SDS), unless heated denatured beforehand (Reid et al. 1988).

Functional Roles of Highly Conserved Amino Acid Sequence Motifs A and C in. . . 113



These porins show preferences on the basis of solute size and charge. In the case of

charge, OmpC and OmpF prefer cations slightly more compared to anions, and

PhoE prefers anions. OmpF allows translocation of relatively larger solutes com-

pared to OmpC, showing preferences according to the size of the solute (Nikaido

2003).

3.2 Active Transporter Systems

Two main energy-requiring solute transporter systems, i.e., primary active transport

(energized by hydrolysis of ATP) and secondary active transport (energized by ion

gradients), are used to efflux biomolecules from bacteria (Mitchell 1966, 1972,

1991, 2011; Harold 2001). Among the dozens of primary and secondary active

transporter families, two such superfamilies in particular occur in a ubiquitous

manner across all taxonomic categories of living organisms. These systems include

a superfamily called the ATP-binding cassette (ABC) transporters and another

group called the major facilitator superfamily (MFS) of transporters (Pao et al.

1998; Saier et al. 1999; Davidson and Maloney 2007; Law et al. 2008).

3.2.1 Primary Active Solute Transporters

In primary active transport, the free energy required for solute transport against the

electrochemical gradient is provided by the very protein performing the transport.

They do so by the hydrolysis of adenosine triphosphate (ATP) (Tarling et al. 2013).

Often referred to ABC transporters (Higgins 1992), these primary active trans-

porters represent a large group of integral membrane proteins that couple the

transport of a substrate like amino acids, ions, sugars, lipids, and drugs across the

membrane (Chang 2003) to the hydrolysis of the phosphate bond between the γ-
and the β-phosphate of ATP (ter Beek et al. 2014). It includes both importers and

exporters (Locher 2009), bringing nutrients and other molecules into cells or

exporting toxins, drugs, and lipids across membranes (Rees et al. 2009). To attain

export, ABC transporters use four types of subunits called domains, two transmem-

brane domains (TMDs) plus two nucleotide binding domains (NBDs). TMDs

provide specificity and form the binding sites for ligand, and NBDs undertake

ATP hydrolysis to accomplish the translocation across the membrane of its bound

solute. However, import requires an additional periplasmic binding domain (PBP)

(Linton 2007; Procko et al. 2009). A conformational change in the TMDs occurs

once substrate binds, followed by transmission to the NBDs to initiate ATP

hydrolysis (Higgins 2001). ABC transporters adopt at least two conformations,

i.e., the cis-side or the trans-side. The binding site for the solute is exposed when the

transporter is in either one of these two conformations. Alternation between the two

conformations allows substrate translocation to occur across the membrane (ter

Beek et al. 2014).
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3.2.2 Secondary Active Transporters

Secondary active solute transport systems have significant roles in the uptake and

efflux of biologically important molecules. Metabolic and bioenergetic systems of

organisms convert the energy stored in nutrients during catabolism into an electro-

chemical energy of protons or sodium ions, generating proton-motive or sodium-

motive forces (Mitchell 1967, 1991). These energies are then used to drive biolog-

ical work such as the translocation of solutes across the membrane against their

concentration gradients to accumulate solute on one side of the membrane

(Poolman and Konings 1993; Krämer 1994; Wilson and Ding 2001). In the

chemiosmosis mode of biological energy generation during respiration and fermen-

tation, light, chemical, or redox energies are converted to electrochemical energies,

which in turn are used to drive other biological work. This bioenergetic process

takes place by coupling biochemical reactions to the transport of solutes, ions, and

other small molecules across the cell and plasma membranes. In bacteria, protons,

and sodium are the coupling ions that are used during energy transduction (Krämer

1994).

4 The Major Facilitator Superfamily

The MFS has become an extremely well-studied and important compilation of

solute transporters across all taxa of living organisms (Maloney 1994; Paulsen

et al. 1996b; Saier et al. 1999; Pao et al. 1998; Law et al. 2008). The substrates or

solutes of these MFS transporters are extremely diverse and include structurally

distinct small molecules like sugars, amino acids, intermediary metabolites, nucleic

acids, antimicrobial agents, and ions. To date, the MFS encompasses thousands of

members conveniently stored and organized in a well-maintained database called

the Transporter Classification Database (TCD) www.tcdb.org (Saier et al. 2014),

which currently includes well over 15,000 proteins of the MFS (Saier et al. 2014).

4.1 Discovery of the MFS

As integral membrane solute transporters were refractory to isolation and purifica-

tion by traditional biochemical approaches, making their study difficult, molecular

biological approaches became available and, thus, quite useful in the cloning of the

genes that encoded solute transporters (Teather et al. 1978). Gene cloning, in turn,

allowed almost the immediate determination of the nucleotide sequences encoding

solute transporters (Büchel et al. 1980). Soon after the cloning and DNA sequence

determinations of additional genes that encoded solute transporters became avail-

able, a remarkable discovery was made by Henderson and colleagues in which

Functional Roles of Highly Conserved Amino Acid Sequence Motifs A and C in. . . 115

http://www.tcdb.org/


comparison of the sequences between several sugar transporters from prokaryotic

and eukaryotic organisms demonstrated that these seemingly distinct proteins were

in fact homologous (Maiden et al. 1987), indicating a shared or common evolu-

tionary origin. As many more transporter gene sequences were determined and

compared, investigators began to compile these transporters in families and super-

families, referred to initially as the transporter superfamily (TSF) (Henderson

1993), the uniporter–symporter–antiporter (USA) family (Goswitz and Brooker

1995), and the generally accepted term major facilitator superfamily (MFS)

(Marger and Saier 1993).

4.2 General Features of the MFS

These transporter members of the MFS include (a) uniporters, which catalyze

facilitated diffusion of solute across the membrane down their solute concentration

gradients; (b) symporters, which catalyze ion-driven secondary active transport of

solutes in the same directions across the biological membrane; and (c) antiporters,
which catalyze ion-driven secondary active solute transport across the membrane in

opposite directions (Mitchell 1991). These transporters have on average between

approximately 400 and 600 amino acids along their polypeptide chains (Pao et al.

1998; Law et al. 2008).

The MFS transporters catalyze the translocation of water-soluble solutes across

the membrane using the energy stored in chemiosmotic ion gradients (Marger and

Saier 1993). The ions, for instance, are either protons (i.e., Hþ) or sodium (i.e., Naþ),
and their gradients across the membrane are formed by the respiratory chain during

catabolism of nutrients (Mitchell 1991; Harold 2001). The substrate will accumulate

extracellularly in an energy-dependent fashion. Thus, these substrate/Hþ antiport

(efflux) systems allow all cells, including bacteria, to survive and grow while in the

presence of potentially inhibitory molecules. Therefore, these biomolecule efflux

systems allow bacteria to tolerate unusually high concentrations of potentially lethal

molecules, such as antimicrobial agents, heavy metals, industrial waste molecules,

etc. An interesting and unique property of several MFS efflux systems is that they

have the ability to transport multiple structurally different substrates (Levy 1992,

2002; Lewis 1994; Piddock 2006). Also known as uniporter–symporter–antiporter

superfamily (Goswitz and Brooker 1995), members include both passive and sec-

ondary active transport systems.

4.3 Key Secondary Active Transporters of the MFS

The energy of ion gradients drives solute transport across the membrane during

secondary active solute transport. Many of the solute transporters that are members

of the MFS use these particular types of ion gradient energies for the cellular uptake
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and efflux of solutes (Poolman and Konings 1993; Krämer 1994; Kumar and Varela

2013). The term symport is used to describe the co-transport movement of solute

and ion in the same direction across the cell or plasma membrane; that is, ion

translocation down its gradient drives solute transport up its gradient. On the other

hand, the term antiport is used to describe the co-transport of solute and its driving

ion in the opposite directions across the same types of biological membranes; again,

the ion moves down its concentration gradient to mediate solute transport against its

own gradient. In both of these symport and antiport systems, the transported solute

accumulates on one side of the membrane (Saier 2000).

The lactose permease, LacY, a secondary active transporter from E. coli, has
been studied in the laboratories of Brooker (Brooker 1990), Kaback (Guan and

Kaback 2006), and Wilson (Varela and Wilson 1996) and is considered to be a

useful model system for investigation of newer transport systems of the major

facilitator superfamily, such as novel multidrug efflux pumps (Floyd et al. 2013).

LacY was originally described as an important component of the well-known lac
operon and is encoded by lacY, a regulated structural gene contained within operon
itself (Müller‐Hill 1996; Varela and Wilson 1996). Using protons, the LacY

symporter transports lactose and other related sugars across the inner membrane,

and it uses the energy of the electrochemical gradient of protons to couple this

movement of sugar and proton symport. This causes sugar to accumulate against a

concentration (Mitchell 1967, 1991; Varela and Wilson 1996).

EmrD is a proton-dependent multidrug efflux pump of E. coli that belongs to
MFS family (Sulavik et al. 2001). EmrD transports detergents, such as

benzalkonium chloride and sodium dodecyl sulfate (Nishino and Yamaguchi

2001). Not only does it confer resistance to detergents, the EmrD efflux pump

influences the formation of biofilm (Matsumura et al. 2011). The X-ray crystal

structure of EmrD exhibits hydrophobic interiors which is a means for transporting

various substrates in the drug efflux mechanism. An additional area consisting of

two long helical regions that are located on cytoplasmic side can provide additional

substrate specificity and transport (Yin et al. 2006).

TetA(B) is the most extensively studied efflux pump of the MFS family,

members of which transport sugar, intermediate metabolites, and drugs (Buivydas

and Daugelavièius 2006). The gene has been encoded on transposon Tn10 and

represents a metal–tetracycline/Hþ antiporter (Tamura et al. 2003). The efflux of

tetracycline from bacteria is driven by a proton gradient as the driving force

(Kaneko et al. 1985). The presence of TetA(B) in Bacillus cereus represents the
transfer of the antibiotic resistance genes from other bacteria (Rather et al. 2012).

This efflux pump actively expels tetracycline by a membrane-associated protein,

resulting in the reduction in the accumulation of tetracycline (Levy 1992; Nelson

and Levy 2011).

The bacterial pathogen S. aureus harbors many antimicrobial agent efflux pumps

that are members of the MFS of transporters, and several are well studied (Hooper

2000; Brown and Skurray 2001; Costa et al. 2013; Andersen et al. 2015). One of the

most intensively studied is QacA (Brown and Skurray 2001; Saidijam et al. 2006), a

plasmid-encoded multidrug pump that confers resistance to multiple antiseptics,

diamidines, and dyes (Tennent et al. 1989). The deduced sequence shows
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514 residues, and QacA is the first MFS discovered to have 14 TMS instead of 12 as

has previously been observed in other superfamily members. The

14-transmembrane domain topology was supported by fusion studies of QacA

with enzymatic reporters (Paulsen et al. 1996a). Presently, many MFS efflux

pumps have the 14 TMS motif (Saidijam et al. 2006). QacA transports ethidium

bromide using the proton gradient as the driving force (Littlejohn et al. 1992).

Another MFS efflux pump for multiple structurally distinct antimicrobial agents

is NorA of S. aureus (Ubukata et al. 1989; Yoshida et al. 1990). NorA has

388 amino acid residues and 12 predicted transmembrane segments (Yoshida

et al. 1990). Originally discovered in a clinical isolate (Ubukata et al. 1989),

NorA was thought to be a single-drug efflux pump for the antimicrobial agent

norfloxacin. NorA is now well known to be a multidrug transporter (Neyfakh et al.

1993) which is closely related to Bmr from Bacillus subtilis (Neyfakh 1992).

Physiological studies show that NorA transports structurally different antimicrobial

agents like the fluoroquinolones (e.g., ciprofloxacin and norfloxacin), dyes (e.g.,

rhodamine and ethidium), and quaternary ammonium compounds (e.g.,

benzalkonium chloride and tetraphenylphosphonium) (Yoshida et al. 1990; Kaatz

et al. 1993; Neyfakh et al. 1993; Kaatz and Seo 1995). Recent primary studies of

NorA have emphasized on efflux pump inhibitors of NorA (Holler et al. 2012a, b;

Kalia et al. 2012; Roy et al. 2013; Shiu et al. 2013; Thai et al. 2015) and regulation

of NorA expression (Fournier et al. 2000, 2001; Truong-Bolduc et al. 2003, 2005;

Kosmidis et al. 2010; Deng et al. 2012), both topics of which are beyond the scope

of this review but have been reviewed elsewhere (Zhang and Ma 2010; Costa et al.

2013).

The protein MdeA from S. aureus is predicted to have 479 amino acids,

14 transmembrane domains (Huang et al. 2004; Yamada et al. 2006), and transport

Hoechst 33342 and ethidium bromide (Yamada et al. 2006). Predictions also

indicate that MdeA confers resistance to tetraphenylphosphonium chloride,

norfloxacin, rhodamine 6G, doxorubicin, and daunorubicin (Yamada et al. 2006;

Huang et al. 2004). The MdeA efflux pumps of S. aureus N315 (Yamada et al.

2006) and S. aureus Buttle (Huang et al. 2004) are 99% identical, differing at five

key residues and likely explaining why MdeA from S. aureus Buttle confers

resistance to benzalkonium chloride while MdeA from S. aureus N315 does not.

Additionally, it was shown that piperine inhibits MdeA transport activity and

potentiates the effects of the antimicrobial agent mupirocin (Mirza et al. 2011).

A more recently discovered multidrug efflux pump, LmrS, encoded on the

chromosome and cloned from a clinical isolate of a methicillin-resistant S. aureus
(MRSA) strain, actively transports ethidium bromide and confers resistance to

structurally dissimilar substrates, such as linezolid, lincomycin,

tetraphenylphosphonium chloride, chloramphenicol, erythromycin, florfenicol,

fusidic acid, gatifloxacin, kanamycin, oxytetracycline, streptomycin, and trimetho-

prim (Floyd et al. 2010). The LmrS multidrug efflux pump is predicted to harbor

14 transmembrane domains, which is identical to that predicted for QacA (Paulsen

et al. 1996a; Floyd et al. 2010). Furthermore, LmrS shares homology with LmrB of

118 P. Kakarla et al.



B. subtilis (Kumano et al. 1997), VceB from V. cholerae (Colmer et al. 1998), and

EmrB from E. coli (Lomovskaya and Lewis 1992).

4.4 Structures of MFS Transporters

Generally, these MFS transporters contain 12 (Fig. 1) or 14 transmembrane-

spanning domains (TMS), with an occasional duplication of two 12 TMS to

constitute 24 TMS transporters (Moir and Wood 2001; Hirai et al. 2003; Saidijam

et al. 2006). Thus far, high-resolution crystal structures have been elucidated for

more than a dozen of these MFS transporters. These known MFS protein crystal

structures include the multiple drug efflux pump, EmrD, from E. coli (Yin et al.

2006); the fucose transporter, FucP, from E. coli (Dang et al. 2010); the glucose–Hþ

symporter, GlcPSc, from Staphylococcus epidermidis (Iancu et al. 2013); the glyc-

erol-3-phosphate transport protein, GlpT, from E. coli (Huang et al. 2003); the

glucose transporter, GLUT1, from Homo sapiens (Sun et al. 2012); the lactose–

proton symporter, LacY, from E. coli (Abramson et al. 2003); the nitrate/nitrite

exchange transporter, NarK, from E. coli (Zheng et al. 2013); the nitrate/nitrite

antiport protein, NarU, from E. coli (Yan et al. 2013); the oligopeptide–Hþ symport

protein, PepTSo, from Shewanella oneidensis (Newstead et al. 2011); the phosphate
transport protein, PipT, from Piriformospora indica (Pedersen et al. 2013); the

xylose transporter, XylE, from E. coli (Sun et al. 2012); the multidrug transporter,

YajR, from E. coli (Jiang et al. 2013); the peptide transport protein, YbgH, from

E. coli (Zhao et al. 2014); the multiple drug efflux pump, MdfA, from E. coli (Heng
et al. 2015); and, more recently, the mammalian fructose transporter, GLUT5, from

Rattus norvegicus and Bos taurus (Nomura et al. 2015).

Thus far, these high-resolution protein structures support the general notion that

the MFS transporters harbor two structurally symmetrical and functionally asym-

metrical bundles or domains (Pao et al. 1998; Saier et al. 1999) composed of the

first half (N-terminus) 6 TMDs and second half (C-terminus) 6 TMDs, at least for

the 12-TMD solute transporters, which is not surprising given the early observation

that the two halves of the modern MFS transporter likely arose from an internal

sequence duplication and subsequent tandem repeat of a common ancestor with

Fig. 1 Two-dimensional

topology model of an MFS

transporter
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6 TMDs (Griffith et al. 1992). Another feature apparently common to the known

crystal structures of the MFS transporters is the presence of a large central aqueous

cavity formed by the two halves, supporting previous genetic analyses of the

tetracycline efflux pump, TetA(C), where the N- and C-termini bundles or domains

interact functionally (McNicholas et al. 1992, 1995), plus low-resolution structural

data for the oxalate transporter, OxyT (Heymann et al. 2001, 2003), and Mitchell’s
notion of a proton gradient as an energy source for driving solute transport across

the membrane (Mitchell 1977, 1991). Considering how these structural features

related to the mechanism by which solute is translocated across the membrane, the

so-called alternating access mechanism has been invoked to explain this important

biological process in which the substrate binding site alternately faces one or the

other sides of the membrane (Jencks 1980; West 1980, 1997; Tanford 1982). In

principle, the substrate binding site of the MFS transporter faces one side of the

biological membrane and then upon binding of the substrate orients itself via a

conformational change such that the substrate binding site faces the other side to

facilitate transport (Henderson 1991; Law et al. 2008), and these MFS transporters,

in general, use their flexible gating structures to form inward- or outward-facing

states that are occluded in order to prevent unwanted leakage and dissipation of the

ion gradients (Stelzl et al. 2014). As shown in Fig. 2, intrinsic in the conserved

structure is the so-called MFS fold consisting of inverted triple helices that are

repeated four times to form four 3-helix inverted-topology repeats that make up the

MFS fold in MFS transporters (Radestock and Forrest 2011).

4 5 6 7 8 9 12 10113 2 1

A DCB

Fig. 2 The MFS fold. A transporter is shown residing in a membrane (horizontal lines) with the

transmembrane α-helices (numbered vertical rods). The shaded rectangles A, B, C, and D depict

of the four inverted triple helix structural motifs, each known as the MFS fold. Adapted from

Radestock and Forrest (2011), Yaffe et al. (2013)
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5 Evolutionarily Conserved Sequence Motifs Involving

Amino Acid Sequences in Transporters of the MFS

Early studies that discovered the high degree of relatedness between members of

the MFS also definitively demonstrated their shared evolutionary conservation of

certain amino acid sequences (Fig. 3) (Henderson 1990a, b; Rouch et al. 1990;

Griffith et al. 1992; Henderson et al. 1993). These investigators further discovered

that members of the MFS shared similar hydrophobicity profiles and similar

predicted secondary structures (i.e., 12 or 14 TMDs), suggesting that these family

members share conserved three-dimensional structures and, thus, a common ances-

tral origin. Taken together, these findings suggested that the MFS transporters share

a common solute transport mechanism, independent of the transporters’ substrate
specificities and modes of energy (Henderson and Maiden 1990; Rouch et al. 1990;

Griffith et al. 1992; Marger and Saier 1993; Pao et al. 1998; Saier et al. 1998, 1999).

6 Motif A “G X X X D R/K X G R R/K” and Functional

Roles

This highly conserved amino acid residue sequence motif from the MFS was

discovered by Henderson and coauthors in 1987 (Maiden et al. 1987; Henderson

and Maiden 1990). Now known as Motif A, it is widely accepted that elements of

this motif reside in a hydrophilic loop between helices 2 and 3 of virtually all

transporters of the MFS (Griffith et al. 1992; Pao et al. 1998; Saier et al. 1999;

Kumar and Varela 2012; Andersen et al. 2015; see Fig. 3a). Hence, the functional

importance of this motif cannot be understated. Perhaps the earliest clues to the

importance of residues in Motif A arose well before it was established that elements

in this protein region were conserved. First, in a series of studies working with

lactose permease, LacY, a key transporter first purified from E. coli by Newman and

Wilson (Newman and Wilson 1980), truncated LacY protein fragments were later

generated by limited proteolysis and deletion mutation analyses by the laboratory of

Ehring and colleagues, who found that residues of the N-terminal region where

Motif A resides must be important for lactose transport across the membrane

(Stochaj et al. 1986, 1988; Stochaj and Ehring 1987). Subsequent follow-up studies

were conducted in which co-expression of inactive truncated nonoverlapping LacY

fragments functionally complemented each other, restoring active lactose transport,

thus further demonstrating the important functional roles of N-terminal residues

(Wrubel et al. 1990, 1994).
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6.1 Early Studies of Motif A

Perhaps, the first site-directed mutational analysis of individual amino acid residues

of Motif A in an MFS transporter was conducted by the laboratory of Yamaguchi

Fig. 3 Highly conserved sequence motifs A and C in 12-TMS and 14-TMS MFS transporters.

Figure (a) indicates 12 different transmembrane helices joined together by loops. The white
arrows point to conserved motif A [G X X X (D/E)(R/K) X G X (R/K)(R/K)] and motif C

[G (X)8 G (X)3 G P (X)2 G G] of the multidrug efflux pump EmrD-3 (Smith et al. 2009; Floyd et al.

2010) from the microorganism Vibrio cholerae, a pathogenic bacterium. Figure (b) indicates

14 different transmembrane helices joined together by intra-helical loops. The white arrows point
to conserved motif A [G X X X (D/E)(R/K) X G X (R/K)(R/K)] and motif C [G (X)8 G (X)3 G P

(X)2 G G] in the multidrug efflux pump LmrS from the bacterial pathogen Staphylococcus aureus.
These figures were generated using TMHMM and Tmpres2D servers
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(Yamaguchi et al. 1990). The Ser-65–Asp-66 dipeptide of the motif was closely

examined (Yamaguchi et al. 1990) in the Tn10 TetA(B) tetracycline efflux pump,

which was discovered in the laboratory of Levy (McMurry et al. 1980). Because

replacements at position Ser-65 but not at Asp-66 in the Motif A of TetA

(B) showed some transport activity, it was concluded that a negative charge and

the loop were both necessary for gating but not for substrate binding in the channel

(Yamaguchi et al. 1990). The possibility remained, however, that the residues in the

loop between helices 2 and 3 did participate in initial substrate binding, as previ-

ously postulated (Chopra 1986), as later studies involving Cys-scanning mutagen-

esis showed that residues in helix 3 (Asp-84) and elements of Motif A (Gly-62,

Asp-66, Arg-70, and Ser-77) were also implicated in forming a tetracycline trans-

port pathway and further interpreted as together undergoing conformational

changes during transport (Yamaguchi et al. 1993a; Kimura et al. 1998b). The

importance of the conserved Asp residue at this locus in TetA(B) was confirmed

also in KgtP, an α-ketoglutarate permease (Seol and Shatkin 1992), and TetA(C), a

plasmid-encoded tetracycline efflux pump from E. coli (McNicholas et al. 1992).

Follow-up studies from the Yamaguchi laboratory systematically investigated the

rest of the residues in Motif A of TetA(B) and found that only the Asp and Arg

residues of the Motif A in the loop 2-3 were essential for tetracycline transport

(Yamaguchi et al. 1992a, b), further solidifying the notion that the conserved loop

structure participated in a gating function, as previously postulated (Baker and

Widdas 1973), while the two Gly residues of the motif were interpreted to function

in the formation of a supportive structure in order to stabilize a β-turn in the

conserved loop (Yamaguchi et al. 1993b). In a study evaluating the functional

roles of Arg residues of TetA(B), Arg-67, Arg-70, and Arg-71, all belong to

Motif A, only replacements for Arg-70 lost both tetracycline resistance and trans-

port (Kimura et al. 1998a). Along these lines, a defective primary mutation in TetA

(B), in which Asp-66 changed to a Cys, was suppressed by a second-site mutation

where Ala-40 was also changed to Asp, supporting the notion that a charged residue

is an important requirement for transport (Yamaguchi et al. 1995). Similarly, a

defective mutation in which Gly-62 of Motif A was changed to Leu was compen-

sated for by a second-site mutation on the other side of the same membrane in

which Leu-30 was changed to a Ser residue, and the authors interpreted this finding

as the double mutation providing a “conformational hook” that blocks deleterious

conformational changes at a remote location elsewhere in the protein (Kimura et al.

1997). A similar so-called remote conformational suppression effect was observed

later when the primary mutation in Motif A in which Gly-62 changed to Leu in

TetA(B) was suppressed by the second-site mutation where Ala-354, also on the

other side of the cytoplasmic membrane, was changed to Asp (Kawabe and

Yamaguchi 1999). This latter effect was interpreted as TetA(B) having a close

structural proximity between helices 2 and 11 on the periplasmic side of the

cytoplasmic membrane (Kawabe and Yamaguchi 1999). The seminal discovery

of salt bridges in the E. coli lactose permease, LacY, by the Wilson laboratory,

reviewed in ref Varela and Wilson (1996) and see Lee et al. (1996), prompted an

evaluation of possible salt bridges in TetA(B) in which Arg-70 of the Motif A was

Functional Roles of Highly Conserved Amino Acid Sequence Motifs A and C in. . . 123



found to interact with Asp-120, which resides at the distal end of helix 4 (Someya

et al. 2000). Similarly, using molecular simulation dynamics of the proton-coupled

oligopeptide symporters PepTSo from Shewanella oneidensis and PepTSt from

Streptococcus thermophilus, a salt bridge involving a Motif A residue, Asp-79,

was predicted to form with Lys-84 which resides near helix 3 (Fowler et al. 2015).

This salt bridge was further predicted to stabilize the outward-facing conformation

of PepTSo, thus potentially participating in the gating topology of symporters in this

closely related family (Fowler et al. 2015). In a separate study of the TetA(P) efflux

pump for tetracycline from Clostridium perfringens, the site-directed mutations at

Pro-61 and Arg-71 abolished tetracycline resistance levels (Bannam et al. 2004).

6.2 More Recent Studies of Motif A

Interestingly, a human glucose transporter, GLUT-1, expressed in red blood cells,

was studied in patients with GLUT-1 deficiency syndrome, and mutations were

found in elements of Motif A: Gly-91 changed to Asp and Arg-93 changed to Gln or

Trp (Pascual et al. 2008). These mutations showed reduced glucose transport, and it

was concluded from these findings that Gly-91 may be important for substrate

docking within the recognition site and that Arg-93 may serve to help anchor

GLUT-1 to the membrane (Pascual et al. 2008). Additionally, a study of autosomal

dominant missense mutations showed that alteration of the Motif A residue Gly-91

to either Asp or Ala in GLUT1 from Homo sapiens, when expressed Xenopus
oocytes, had severely reduced glucose transport activities (Klepper et al. 2001). In a

separate study involving another eukaryotic organism, the fungus Aspergillus
nidulans, various mutations in the high-affinity nitrate transporter, NrtA, were

isolated (Kinghorn et al. 2005). Of this set of mutations, residues of Motif A were

altered in which Cys-90 was changed to Phe and Gly-91 was changed to Ser, and

both mutants showed reduced nitrate uptake compared to wild-type NrtA

(Kinghorn et al. 2005).

The internal duplication event postulated to occur for MFS transporters (Hen-

derson and Maiden 1990; Griffith et al. 1992), particularly the tetracycline efflux

pumps (Rubin et al. 1990), prompted the evaluation of the residues of the loop

between helices 8 and 9 of TetA(B) (Yamaguchi et al. 1993b). In this analysis, only

Gly-273 of TetA(B) in the second loop between helices 8 and 9 was demonstrated

to be essential for tetracycline transport (Yamaguchi et al. 1993b).

6.3 Studies of Motif A in Symporters

Prior to the discovery of Motif A, the roles of glycine residues along the LacY

protein of E. coli (including glycines of Motif A) had been examined in the

laboratory of Kaback (Jung et al. 1995), and it had been deemed that no such
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glycines throughout the symporter were critical for the transport of lactose. The first

systematic study using site-directed mutagenesis to specifically address the func-

tional importance of Motif A residues in LacY (Brooker 1990; Varela and Wilson

1996) was conducted in the laboratory of Brooker (Jessen-Marshall et al. 1995). In

their first study, most amino acid replacements for Gly-64 and Asp-68 showed

dramatic losses of lactose transport activities, while replacements for Lys-69,

Gly-72, Arg-73, and Lys-74 showed only moderate to no loss of lactose transport

(Jessen-Marshall et al. 1995), and it was concluded that the loop 2-3 structure

formed by Motif A facilitates access of lactose entry into the cell by allowing

conformational changes to occur upon sugar binding to the symporter (Jessen-

Marshall et al. 1995). Using the mutation in which Asp-68 was changed to Thr,

second-site revertant mutants were isolated that compensated for the defect con-

ferred by the primary mutation, and it was found that most second sites were located

in proximal ends of helices 2, 7, and 11 at the periplasm–membrane juncture

(Jessen-Marshall and Brooker 1996). These results were interpreted as the suppres-

sor mutations having altered the protein topology in order to facilitate the interac-

tion between the two bundles of the symporter and helix 2 behaving as an interface

between these two symmetrical bundles (Jessen-Marshall and Brooker 1996;

Pazdernik et al. 1997a), a finding later supported by extensive molecular physio-

logical analyses (Green et al. 2000; Green and Brooker 2001). In another study,

Brooker used second-site suppressor analysis with Gly-64 mutations as the first-site

mutation and found second sites dispersed throughout the symporter concluding

that Gly-64 allows conformational changes to occur that are necessary for lactose

transport across the membrane and that this residue is at the interface between two

symmetrical bundles of the LacY protein (Jessen-Marshall et al. 1997; Pazdernik

et al. 1997a). As mentioned above, the primary amino acid sequences of the

N-terminal halves of the MFS transporters are closely related to their corresponding

C-terminal halves. Motif A in the loop between helices 2 and 3 of these transporters

is thus duplicated at the cytoplasmic loop between helices 8 and 9 (Griffith et al.

1992). Thus, the functional roles of these conserved amino acids in the loop 8-9 of

LacY were evaluated and determined that they, too, serve to facilitate conforma-

tional changes that are believed to occur in these transporters during solute and ion

transport catalysis (Pazdernik et al. 1997b; Cain et al. 2000).

6.4 Studies of Motif A in Multidrug Efflux Pumps

In the multidrug transporter LmrP from Lactococcus lactis (Bolhuis et al. 1995), the
functional role of Asp-68, which resides in Motif A, was explored. First, molecular

physiological evidence showed that an interaction between Asp-68 and phosphati-

dylethanolamine, a polar head group of the biological membrane, provides a sensor

mechanism for detection of a proton gradient by the cell (Hakizimana et al. 2008).

This particular notion that in this position of Motif A, a conserved Asp plays a role

in proton gradient sensing, is supported by an apparent lack of conservation of Asp
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in this location of Motif A within MFS transporters that are not proton driven, such

as in the case of the glucose facilitators (Hruz and Mueckler 2001), and the family

of organic anion transporters (OATs), which are instead sodium driven (Zhou and

You 2007). In another study using a biophysical analysis and molecular simulation

dynamics of LmrP, it was found that during substrate transport, protonation of

Asp-68 facilitated an outward-facing closed and inward-facing open conformation

of the transporter, and deprotonation of Asp-68 to release protons into the cyto-

plasm favored a resetting back to the resting state conformation (Masureel et al.

2014); that is, Asp-68 plays a functional role in mediating conformational switching

of the transporter during the multidrug efflux pump transport cycle. A study of the

crystal structure of a proton-dependent oligopeptide transporter, YbgH from E. coli,
combined with mutagenesis and comparisons with previously elucidated trans-

porter crystal structures, found that a variant of Motif A, called Motif 1, functions

as a conformational switch mechanism in order to stabilize YbgH in an outward-

facing conformation (Zhao et al. 2014). An interesting development occurred with

respect to Motif A and the mechanism of solute transport with the recent crystal

structure determination of an E. coli outward-facing multidrug efflux pump, YajR,

with a clearly defined loop 2-3 structure (Jiang et al. 2013). Based on this YajR

crystal structure, the investigators provided structural and functional roles for

individual residues of Motif A (Jiang et al. 2013). For instance, Gly-69 of YajR is

believed to interact with Gly-337 and Gly-341, which are located on helix 11 of the

same protein, thus forming an interface between the two domains (i.e., bundles) and

allowing the formation of the outward-facing conformation of the pump (Jiang et al.

2013). Additionally, since Asp-73 was buried deep within the interface between the

two bundles adjacent to helix 11 in the YajR structure, it is thus thought that this

residue stabilizes both helix 11 and the bundle interface via a dipole-helix interac-

tion; in support of this notion, the mutation Asp-73 changed to Arg decreased the

melting temperature, suggesting that Asp-73 becomes solvent accessible (i.e.,

unburied) during the formation of an inward-facing conformation (Jiang et al.

2013). The Arg-74 residue is believed to interact with membrane phospholipid,

thus possibly stabilizing the YajR protein within the membrane (Jiang et al. 2013).

Gly-76 may stabilize the interaction within the N-terminal bundle, i.e., Gly-76 may

confer an intra-domain stabilization (Jiang et al. 2013). Arg-77, on the other hand,

is believed to form salt bridges with both Asp-73 (of Motif A) and Asp-126, the

latter residue of which is located at the C-terminal end of helix 4 (Jiang et al. 2013).

Incidentally, this same type of salt bridge formation is known to occur in LacY, in

which Lys-319 interacts with both Asp-240 and Glu-269 to form alternating ion

pairs (Lee et al. 1993). Lastly, Lys-73 of YajR is thought to interact with the

C-terminal portion of helix 6 (Jiang et al. 2013). Taken together, the residues of

Motif A in the YajR multidrug efflux pump are thought to stabilize the outward-

facing conformation of the protein and thus participate in the conformational

changes between the outward- and inward-facing stages of the transporter (Jiang

et al. 2013). Strikingly, these investigators further found that elements of Motif A of

loop 2-3 (called L2-3) are also present to a certain extent in three other loops of

YajR, i.e., those loops between helices 5 and 6 (L5-6), 8 and 9 (L8-9), and 11 and
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12 (L11-12), suggesting a widespread influence in the solute transport cycle for

Motif A and Motif A-like sequences not only throughout a given MFS transporter,

but in all transporters of the MFS as well (Jiang et al. 2013). Recently, the three

crystal structures were elucidated for the multidrug efflux pump, MdfA, from

E. coli in which each structure was bound to its substrate chloramphenicol or one

of its analogs deoxycholate or n-dodecyl-N,N-dimethyl-amine-N-oxide (Heng et al.

2015). Since Motif A is known to stabilize the outward-facing conformation, as

mentioned above for YajR (Jiang et al. 2013), the structural element conferred by

this conserved motif is apparently not involved in dictating the inward-facing

conformation seen in any of the three MdfA crystal structures (Heng et al. 2015).

7 Motif C “G (X)8 G X X X G P X XG G” and Functional

Roles

This conserved sequence motif was discovered by Rouch et al. to reside within the

fifth TMD of transporters of the MFS (Rouch et al. 1990; see Fig. 3b). Initially

thought to be found only with antiporters of the MFS but not in symporters or

uniporters, Motif C was referred to as the “antiporter motif” (Varela et al. 1995;

Varela and Griffith 1993). Recently, however, manual adjustments were performed

during an extensive multiple sequence comparative analysis to surprisingly dis-

cover that sequence elements of the so-called antiporter motif are apparently found

in the symporters and uniporters of the MFS as well (Yaffe et al. 2013).

7.1 Early Studies of Motif C in Efflux Pumps
for Tetracycline

One of the earliest studies conducted to address the functional importance of Motif

C was performed by Varela et al. in which they systematically replaced the most

highly conserved residue of the motif, namely, Gly-147 of the tetracycline efflux

pump, TetA(C), encoded on plasmid pBR322, with all other 19 amino acid residues

(Varela et al. 1995). Interestingly, these investigators found that only Ala and Ser

residues were acceptable in place of Gly-147 as tetracycline resistance was reduced

to only 26% and 19% of the wild-type TetA(C), respectively (Varela et al. 1995).

Molecular modeling analysis indicated a slight bend or kink in the fifth helix in the

wild-type protein (Varela et al. 1995). Taken together, these investigators con-

cluded that the residues of motif C dictate subtle structural differences inherent in

determining substrate specificities and direction of solute transport (Varela et al.

1995). A study by Ginn et al. directly examined the structure–function relationships

for all residues of Motif C of the TetA(K) tetracycline efflux pump from S. aureus
by site-directed mutagenesis and tetracycline efflux assays (Ginn et al. 2000). These
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investigators found that tetracycline efflux pump activities were moderately to

severely reduced for those mutants in which only the conserved residues of the

motif were altered by mutation (Ginn et al. 2000). Thus, it was demonstrated in this

study that the conserved residues of Motif C confer active tetracycline efflux;

furthermore, because of the relative abundance of glycine residues in the motif, it

was concluded that such flexible residues mediate conformational changes neces-

sary for the efflux pump to respond to its immediate microenvironment (Ginn et al.

2000). Cysteine-scanning mutagenesis and accessibility of such mutations to the

aqueous microenvironment that were studied by the laboratory of Yamaguchi and

colleagues who showed that all residues of Motif C within TMD-5 of the Tn10-

derived tetracycline efflux pump, TetA(B) from E. coli, line a water-filled channel

and are thus probably able to bind substrate to facilitate transport (Iwaki et al.

2000). Additionally, these authors concluded that residues of TMD-5 of TetA(B),

along with residues of TMD-4, form a permeability barrier that serves to avoid

undesirable uncoupling (Iwaki et al. 2000). The laboratory of Levy conducted a

second-site suppressor study in which four second-site mutations that

complemented a defective mutation at Gly-247 of TetA(B) were found in TMD-5

indicating that residues of Motif C interact with residues of TMD-8 to stabilize their

close association to each other (Saraceni-Richards and Levy 2000). These authors

further concluded that residues of Motif C that are forming the permeability barrier

in TetA(B) mediate conformational switching that occurs during solute transport

across the membrane (Saraceni-Richards and Levy 2000).

7.2 Studies of Motif G

As mentioned earlier, bioinformatics evidence indicated an internal tandem repeat

of a primordial 6-helix ancestor to form a modern 12-helix structure (Griffith et al.

1992) implying that Motif C is duplicated as well. The duplicated Motif C, denoted

Motif G, was found in TMD-11 of the 12-helix MFS transporters (Paulsen et al.

1996b). This notion was confirmed experimentally in a study by Levy and col-

leagues in which they characterized Mdt(A), a multiple drug efflux pump encoded

on a plasmid originating from Lactococcus lactis, and found the two Motif C-like

sequences, one residing in TMD-5 and the other in TMD-9 (Perreten et al. 2001).

Remarkably, these investigators also found an ATPase domain, which is routinely

found in primary active transporters (Perreten et al. 2001). In another study

involving Mdt(A) from a naturally occurring drug-susceptible variant of

Lactococcus garvieae, Motif C was found two be altered in two of the canonical

residues, thus possibly explaining the observed drug susceptibilities (Walther et al.

2008).
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7.3 The Glycine–Proline Dipeptide in Motif C

A molecular mechanics and modeling study showed that a glycine–proline

(GP) dipeptide within Motif C specified a bend or kink within the TMD-5 of the

MFS efflux pumps (Varela et al. 1995). This particular notion was evaluated by the

laboratory of Krulwich in which they closely examined mutations at these two

residues, Gly-155 and Pro-156, of the tetracycline efflux pump, TetA(L), from

Bacillus subtilis and found that the replacements showed, in general, tetracycline

binding and a potassium leak, but not transport of tetracycline, suggesting that the

GP dipeptide from Motif C is important for tight helix packing and leak proofing of

the pump and providing an explanation for observed discrepancies between trans-

port and resistance levels (Jin and Krulwich 2002; De Jesus et al. 2005).

The sole conserved proline residue of Motif C (of the GP dipeptide) was closely

studied in QacA, a 14-TMD efflux pump encoded on the chromosome of S. aureus
in a study focusing mainly on intramembranous Pro residues (Hassan et al. 2006).

Replacement of Pro-161 of Motif C with Gly, Ser or Ala residues did not abolish

resistance to any QacA substrates, but did show slightly altered drug resistance

levels in host cells, suggesting this Pro residue may help form the permeability

barrier and allow molecular motions or interactions with substrate to occur during

transport of monovalent dyes (Hassan et al. 2006).

7.4 A Conformational Switch and Motif C

An analysis of residues of Motif C in a vesicular acetylcholine transporter, VAChT,

from a eukaryote, Rattus norvegicus, showed profound loss of acetylcholine trans-

port across the membrane and altered kinetic behavior of transport, indicating that

minor and relatively stiff kinks in TMD-5 of VAChT are formed by residues of

Motif C and that the motif not only allows conformational flexibility, i.e.,

switching, but also confers a tight proton seal to prevent dissipation of the mem-

brane potential (Chandrasekaran et al. 2006). Another study of VAChT using

homology modeling and molecular dynamics simulations found both kinking and

wobbling behavior in structures formed by residues of Motif C and a lowering of

the energy barrier for structures in which residues of Motif C were mutated (Luo

and Parsons 2010). The authors of this study concluded that the structure formed by

Motif C is at the interface between two helical bundles, consisting of TM helices

1–6 and 7–12 of VAChT, and that Motif C forms a complex hinge region between

the two helical bundles in order to provide an energy barrier during conformational

changes that occur during solute transport (Luo and Parsons 2010). Motif C from

another eukaryotic MFS efflux pump, CaMdr1p from Candida albicans, which
transports antifungal agents, was studied for its functional importance (Pasrija et al.

2007), and the investigators concluded that residues of this motif possibly mediate

helix packing. A recent study of VMAT2 from R. norvegicus discovered that Motif
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C plays a significant role in forming a so-called molecular hinge structure in which

helices 5 and 8 interact with helices 2 and 11 to mediate the conformational

switching between the two symmetric bundles that is thought to transpire during

solute transport (Yaffe et al. 2013).

In a more recent study in which the crystal protein structure was determined for

the E. coli MdfA multidrug efflux pump, it was shown that the protein was

complexed with chloramphenicol or one of two substrate analogs; and it was further

demonstrated that elements of Motif C (Ala-150, Ala-153, and Pro-154) (Rouch

et al. 1990; Varela et al. 1995) surrounded two critical acidic residues Glu-26 and

Asp-34 that reside in helix 1 of MdfA, thus constituting part of a central aqueous

substrate binding cavity, a seemingly ubiquitous property of MFS solute trans-

porters (Heng et al. 2015).
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Krämer R (1994) Functional principles of solute transport systems: concepts and perspectives.

Biochim Biophys Acta 1185:1–34. doi:10.1016/0005-2728(94)90189-9

Kumano M, Tamakoshi A, Yamane K (1997) A 32 kb nucleotide sequence from the region of the

lincomycin-resistance gene (22 degrees-25 degrees) of the Bacillus subtilis chromosome and

identification of the site of the lin-2 mutation. Microbiology 143:2775–2782. doi:10.1099/

00221287-143-8-2775

Kumar S, Varela MF (2012) Biochemistry of bacterial multidrug efflux pumps. Int J Mol Sci

13:4484–4495. doi:10.3390/ijms13044484

Kumar S, Varela MF (2013) Molecular mechanisms of bacterial resistance to antimicrobial agents.

In: Méndez-Vilas A (ed) Microbial pathogens and strategies for combating them: science,

technology and education. Formatex Research Center, Badajoz, Spain, pp 522–534. ISBN

978-84-939843-9-7

Kumar S, Floyd JT, He G, Varela MF (2013) Bacterial antimicrobial efflux pumps of the MFS and

MATE transporter families: a review. Recent Res Dev Antimicrob Agents Chemother 7:1–21,

ISBN: 978-81-308-0465-1

Kuroda T, Tsuchiya T (2009) Multidrug efflux transporters in the MATE family. Biochim Biophys

Acta 1794:763–768. doi:10.1016/j.bbapap.2008.11.012

Law CJ, Maloney PC, Wang DN (2008) Ins and outs of major facilitator superfamily antiporters.

Annu Rev Microbiol 62:289–305. doi:10.1146/annurev.micro.61.080706.093329

Lee JI, Hwang PP, Wilson TH (1993) Lysine 319 interacts with both glutamic acid 269 and

aspartic acid 240 in the lactose carrier of Escherichia coli. J Biol Chem 268:20007–20015,

http://www.ncbi.nlm.nih.gov/pubmed/8104184

134 P. Kakarla et al.

http://www.ncbi.nlm.nih.gov/pubmed/8517696
http://www.ncbi.nlm.nih.gov/pubmed/8517696
http://dx.doi.org/10.1093/jac/dks232
http://dx.doi.org/10.1016/0014-5793(85)80149-6
http://dx.doi.org/10.1016/S0014-5793(99)01032-7
http://dx.doi.org/10.1021/bi9631879
http://dx.doi.org/10.1021/bi973188g
http://dx.doi.org/10.1021/bi973188g
http://www.ncbi.nlm.nih.gov/pubmed/9478980
http://dx.doi.org/10.1534/genetics.104.036590
http://dx.doi.org/10.1093/hmg/10.1.63
http://dx.doi.org/10.1016/j.ijantimicag.2010.05.015
http://dx.doi.org/10.1016/0005-2728(94)90189-9
http://dx.doi.org/10.1099/00221287-143-8-2775
http://dx.doi.org/10.1099/00221287-143-8-2775
http://dx.doi.org/10.3390/ijms13044484
http://dx.doi.org/10.1016/j.bbapap.2008.11.012
http://dx.doi.org/10.1146/annurev.micro.61.080706.093329
http://www.ncbi.nlm.nih.gov/pubmed/8104184


Lee JI, Varela MF, Wilson TH (1996) Physiological evidence for an interaction between Glu-325

and His-322 in the lactose carrier of Escherichia coli. Biochim Biophys Acta 1278:111–118.

doi:10.1016/0005-2736(95)00209-X

Levy SB (1992) Active efflux mechanisms for antimicrobial resistance. Antimicrob Agents

Chemother 36:695–703. doi:10.1128/AAC.36.4.695

Levy SB (2002) Active efflux, a common mechanism for biocide and antibiotic resistance. Symp

Ser Soc Appl Microbiol 31:65S–71S. doi:10.1046/j.1365-2672.92.5s1.4.x

Lewis K (1994) Multidrug resistance pumps in bacteria: variations on a theme. Trends Biochem

Sci 19:119–123. doi:10.1016/0968-0004(94)90204-6

Li XZ, Plesiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in Gram-

negative bacteria. Clin Microbiol Rev 28:337–418. doi:10.1128/CMR.00117-14

Linton KJ (2007) Structure and function of ABC transporters. Phys Chem Chem Phys 22:122–130.

doi:10.1152/physiol.00046.2006

Littlejohn TG, Paulsen IT, Gillespie MT, Tennent JM, Midgley M, Jones IG, Purewal AS, Skurray

RA (1992) Substrate specificity and energetics of antiseptic and disinfectant resistance in

Staphylococcus aureus. FEMS Microbiol Lett 74:259–265. doi:10.1111/j.1574-6968.1992.

tb05376.x

Locher KP (2009) Structure and mechanism of ATP-binding cassette transporters. Philos Trans R

Soc Lond B Biol Sci 364:239–245, http://www.jstor.org/stable/40486111

Lomovskaya O, Lewis K (1992) Emr, an Escherichia coli locus for multidrug resistance. Proc Natl

Acad Sci U S A 89:8938–8942, http://www.ncbi.nlm.nih.gov/pubmed/1409590

Luo J, Parsons SM (2010) Conformational propensities of peptides mimicking transmembrane

helix 5 and motif c in wild-type and mutant vesicular acetylcholine transporters. ACS Chem

Neurosci 1:381–390. doi:10.1021/cn900033s

Maiden MC, Davis EO, Baldwin SA, Moore DC, Henderson PJ (1987) Mammalian and bacterial

sugar transport proteins are homologous. Nature 325:641–643. doi:10.1038/325641a0

Maloney PC (1994) Bacterial transporters. Curr Opin Cell Biol 6:571–582. doi:10.1016/0955-

0674(94)90079-5

Marger MD, SaierM H Jr (1993) A major superfamily of transmembrane facilitators that catalyse

uniport, symport and antiport. Trends Biochem Sci 18:13–20. doi:10.1016/0968-0004(93)

90081-W

Masureel M, Martens C, Stein RA, Mishra S, Ruysschaert JM, McHaourab HS, Govaerts C (2014)

Protonation drives the conformational switch in the multidrug transporter LmrP. Nat Chem

Biol 10:149–155. doi:10.1038/nchembio.1408

Matsumura K, Furukawa S, Ogihara H, Morinaga Y (2011) Roles of multidrug efflux pumps on the

biofilm formation of Escherichia coli K-12. Biocontrol Sci 16:69–72. doi:10.4265/bio.16.69
McMurry L, Petrucci RE Jr, Levy SB (1980) Active efflux of tetracycline encoded by four

genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad

Sci U S A 77:3974–3977, http://www.ncbi.nlm.nih.gov/pubmed/7001450

McNicholas P, Chopra I, Rothstein DM (1992) Genetic analysis of the tetA(C) gene on plasmid

pBR322. J Bacteriol 174:7926–7933, http://www.ncbi.nlm.nih.gov/pubmed/1459940

McNicholas P, McGlynn M, Guay GG, Rothstein DM (1995) Genetic analysis suggests functional

interactions between the N- and C-terminal domains of the TetA(C) efflux pump encoded by

pBR322. J Bacteriol 177:5355–5357, http://www.ncbi.nlm.nih.gov/pubmed/7665527

Mirza ZM, Kumar A, Kalia NP, Zargar A, Khan IA (2011) Piperine as an inhibitor of the MdeA

efflux pump of Staphylococcus aureus. J Med Microbiol 60:1472–1478. doi:10.1099/jmm.0.

033167-0

Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol

Rev Camb Philos Soc 41:445–502. doi:10.1111/j.1469-185X.1966.tb01501.x

Mitchell P (1967) Translocations through natural membranes. Adv Enzymol Relat Areas Mol Biol

29:33–87. doi:10.1002/9780470122747.ch

Mitchell P (1972) Chemiosmotic coupling in energy transduction: a logical development of

biochemical knowledge. J Bioenerg 3:5–24. doi:10.1007/BF01515993

Functional Roles of Highly Conserved Amino Acid Sequence Motifs A and C in. . . 135

http://dx.doi.org/10.1016/0005-2736(95)00209-X
http://dx.doi.org/10.1128/AAC.36.4.695
http://dx.doi.org/10.1046/j.1365-2672.92.5s1.4.x
http://dx.doi.org/10.1016/0968-0004(94)90204-6
http://dx.doi.org/10.1128/CMR.00117-14
http://dx.doi.org/10.1152/physiol.00046.2006
http://dx.doi.org/10.1111/j.1574-6968.1992.tb05376.x
http://dx.doi.org/10.1111/j.1574-6968.1992.tb05376.x
http://www.jstor.org/stable/40486111
http://www.ncbi.nlm.nih.gov/pubmed/1409590
http://dx.doi.org/10.1021/cn900033s
http://dx.doi.org/10.1038/325641a0
http://dx.doi.org/10.1016/0955-0674(94)90079-5
http://dx.doi.org/10.1016/0955-0674(94)90079-5
http://dx.doi.org/10.1016/0968-0004(93)90081-W
http://dx.doi.org/10.1016/0968-0004(93)90081-W
http://dx.doi.org/10.1038/nchembio.1408
http://dx.doi.org/10.4265/bio.16.69
http://www.ncbi.nlm.nih.gov/pubmed/7001450
http://www.ncbi.nlm.nih.gov/pubmed/1459940
http://www.ncbi.nlm.nih.gov/pubmed/7665527
http://dx.doi.org/10.1099/jmm.0.033167-0
http://dx.doi.org/10.1099/jmm.0.033167-0
http://dx.doi.org/10.1111/j.1469-185X.1966.tb01501.x
http://dx.doi.org/10.1002/9780470122747.ch
http://dx.doi.org/10.1007/BF01515993


Mitchell P (1977) Vectorial chemiosmotic processes. Annu Rev Biochem 46:996–1005. doi:10.

1146/annurev.bi.46.070177.005024

Mitchell P (1991) Foundations of vectorial metabolism and osmochemistry. Biosci Rep

11:297–344. doi:10.1007/BF01130212

Mitchell P (2011) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation.

Biochim Biophys Acta 1807:1507–1538. doi:10.1016/j.bbabio.2011.09.018

Moir JW, Wood NJ (2001) Nitrate and nitrite transport in bacteria. Cell Mol Life Sci 58:215–224.

doi:10.1007/PL00000849

Müller‐Hill B (1996) The Lac Operon. Walter de Gruyter, Berlin

Nelson ML, Levy SB (2011) The history of the tetracyclines. Ann N Y Acad Sci 1241:17–32.

doi:10.1111/j.1749-6632.2011.06354.x

Newman MJ, Wilson TH (1980) Solubilization and reconstitution of the lactose transport system

from Escherichia coli. J Biol Chem 255:10583–10586, http://www.ncbi.nlm.nih.gov/pubmed/

7000781

Newstead S, Drew D, Cameron AD, Postis VL, Xia X, Fowler PW, Ingram JC, Carpenter EP,

Sansom MS, McPherson MJ, Baldwin SA, Iwata S (2011) Crystal structure of a prokaryotic

homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2. EMBO J

30:417–426. doi:10.1038/emboj.2010.309

Neyfakh AA (1992) The multidrug efflux transporter of Bacillus subtilis is a structural and

functional homolog of the Staphylococcus NorA protein. Antimicrob Agents Chemother

36:484–485. doi:10.1128/AAC.36.2.484

Neyfakh AA, Borsch CM, Kaatz GW (1993) Fluoroquinolone resistance protein NorA of Staph-
ylococcus aureus is a multidrug efflux transporter. Antimicrob Agents Chemother 37:128–129.

doi:10.1128/AAC.37.1.128

Nikaido H (1992) Porins and specific channels of bacterial outer membranes. Mol Microbiol

6:435–442. doi:10.1111/j.1365-2958.1992.tb01487.x

Nikaido H (1994) Porins and specific diffusion channels in bacterial outer membranes. J Biol

Chem 269:3905–3908, http://www.jbc.org/content/269/6/3905.full.pdfþhtml

Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol

Mol Biol Rev 67:593–656. doi:10.1128/MMBR.67.4.593-656.2003

Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol

Rev 49:1–32, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC373015/

Nishino K, Yamaguchi A (2001) Analysis of a complete library of putative drug transporter genes

in Escherichia coli. J Bacteriol 183:5803–5812. doi:10.1128/JB.183.20.5803-5812.2001
Nomura N, Verdon G, Kang HJ, Shimamura T, Nomura Y, Sonoda Y, Hussien SA, Qureshi AA,

CoinconM, Sato Y, Abe H, Nakada-Nakura Y, Hino T, Arakawa T, Kusano-Arai O, Iwanari H,

Murata T, Kobayashi T, Hamakubo T, Kasahara M, Iwata S, Drew D (2015) Structure and

mechanism of the mammalian fructose transporter GLUT5. Nature 526:397–401. doi:10.1038/

nature14909

Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev

62:1–34, http://www.ncbi.nlm.nih.gov/pubmed/9529885

Pascual JM, Wang D, Yang R, Shi L, Yang H, De Vivo DC (2008) Structural signatures and

membrane helix 4 in GLUT1: inferences from human blood-brain glucose transport mutants. J

Biol Chem 283:16732–16742. doi:10.1074/jbc.M801403200

Pasrija R, Banerjee D, Prasad R (2007) Structure and function analysis of CaMdr1p, a major

facilitator superfamily antifungal efflux transporter protein of Candida albicans: identification
of amino acid residues critical for drug/Hþ transport. Eukaryot Cell 6:443–453. doi:10.1128/

EC.00315-06

Paulsen IT, Brown MH, Littlejohn TG, Mitchell BA, Skurray RA (1996a) Multidrug resistance

proteins QacA and QacB from Staphylococcus aureus: membrane topology and identification

of residues involved in substrate specificity. Proc Natl Acad Sci U S A 93:3630–3635, http://

www.ncbi.nlm.nih.gov/pubmed/8622987

136 P. Kakarla et al.

http://dx.doi.org/10.1146/annurev.bi.46.070177.005024
http://dx.doi.org/10.1146/annurev.bi.46.070177.005024
http://dx.doi.org/10.1007/BF01130212
http://dx.doi.org/10.1016/j.bbabio.2011.09.018
http://dx.doi.org/10.1007/PL00000849
http://dx.doi.org/10.1111/j.1749-6632.2011.06354.x
http://www.ncbi.nlm.nih.gov/pubmed/7000781
http://www.ncbi.nlm.nih.gov/pubmed/7000781
http://dx.doi.org/10.1038/emboj.2010.309
http://dx.doi.org/10.1128/AAC.36.2.484
http://dx.doi.org/10.1128/AAC.37.1.128
http://dx.doi.org/10.1111/j.1365-2958.1992.tb01487.x
http://www.jbc.org/content/269/6/3905.full.pdf+html
http://www.jbc.org/content/269/6/3905.full.pdf+html
http://dx.doi.org/10.1128/MMBR.67.4.593-656.2003
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC373015/
http://dx.doi.org/10.1128/JB.183.20.5803-5812.2001
http://dx.doi.org/10.1038/nature14909
http://dx.doi.org/10.1038/nature14909
http://www.ncbi.nlm.nih.gov/pubmed/9529885
http://dx.doi.org/10.1074/jbc.M801403200
http://dx.doi.org/10.1128/EC.00315-06
http://dx.doi.org/10.1128/EC.00315-06
http://www.ncbi.nlm.nih.gov/pubmed/8622987
http://www.ncbi.nlm.nih.gov/pubmed/8622987


Paulsen IT, Brown MH, Skurray RA (1996b) Proton-dependent multidrug efflux systems.

Microbiol Rev 60:575–608, http://www.ncbi.nlm.nih.gov/pubmed/8987357

Pazdernik NJ, Cain SM, Brooker RJ (1997a) An analysis of suppressor mutations suggests that the

two halves of the lactose permease function in a symmetrical manner. J Biol Chem

272:26110–26116, http://www.ncbi.nlm.nih.gov/pubmed/9334175

Pazdernik NJ, Jessen-Marshall AE, Brooker RJ (1997b) Role of conserved residues in hydrophilic

loop 8-9 of the lactose permease. J Bacteriol 179:735–741, http://www.ncbi.nlm.nih.gov/

pubmed/9006028

Pedersen BP, Kumar H, Waight AB, Risenmay AJ, Roe-Zurz Z, Chau BH, Schlessinger A,

Bonomi M, Harries W, Sali A, Johri AK, Stroud RM (2013) Crystal structure of a eukaryotic

phosphate transporter. Nature 496:533–536. doi:10.1038/nature12042

Perreten V, Schwarz FV, Teuber M, Levy SB (2001) Mdt(A), a new efflux protein conferring

multiple antibiotic resistance in Lactococcus lactis and Escherichia coli. Antimicrob Agents

Chemother 45:1109–1114. doi:10.1128/AAC.45.4.1109-1114.2001

Piddock LJ (2006) Multidrug-resistance efflux pumps – not just for resistance. Nat Rev Microbiol

4:629–636. doi:10.1038/nrmicro1464

Poolman B, Konings WN (1993) Secondary solute transport in bacteria. Biochim Biophys Acta

1183:5–39. doi:10.1016/0005-2728(93)90003-X

Procko E, O’Mara ML, Bennett WD, Tieleman DP, Gaudet R (2009) The mechanism of ABC

transporters: general lessons from structural and functional studies of an antigenic peptide

transporter. FASEB J 23:1287–1302. doi:10.1096/fj.08-121855

Radestock S, Forrest LR (2011) The alternating-access mechanism of MFS transporters arises

from inverted-topology repeats. J Mol Biol 407:698–715. doi:10.1016/j.jmb.2011.02.008

Rather MA, Aulakh RS, Gill JPS, Mir AQ, Hassan MN (2012) Detection and sequencing of

plasmid encoded tetracycline resistance determinants (tetA and tetB) from food–borne Bacillus
cereus isolates. Asian Pac J Trop Med 5:709–712. doi:10.1016/S1995-7645(12)60111-4

Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol

Cell Biol 10:218–227. doi:10.1038/nrm2646

Reid J, Fung H, Gehring K, Klebba P, Nikaido H (1988) Targeting of porin to the outer membrane

of Escherichia coli. Rate of trimer assembly and identification of a dimer intermediate. J Biol

Chem 263:7753–7759, http://www.jbc.org/content/263/16/7753

Rouch DA, Cram DS, DiBerardino D, Littlejohn TG, Skurray RA (1990) Efflux-mediated anti-

septic resistance gene qacA from Staphylococcus aureus: common ancestry with tetracycline-

and sugar-transport proteins. Mol Microbiol 4:2051–2062. doi:10.1111/j.1365-2958.1990.

tb00565.x

Roy SK, Kumari N, Pahwa S, Agrahari UC, Bhutani KK, Jachak SM, Nandanwar H (2013) NorA

efflux pump inhibitory activity of coumarins from Mesua ferrea. Fitoterapia 90:140–150.

doi:10.1016/j.fitote.2013.07.015

Rubin RA, Levy SB, Heinrikson RL, Kezdy FJ (1990) Gene duplication in the evolution of the two

complementing domains of gram-negative bacterial tetracycline efflux proteins. Gene 87:7–13.

doi:10.1016/0378-1119(90)90489-E

Saidijam M, Benedetti G, Ren Q, Xu Z, Hoyle CJ, Palmer SL, Ward A, Bettaney KE, Szakonyi G,

Meuller J, Morrison S, Pos MK, Butaye P, Walravens K, Langton K, Herbert RB, Skurray RA,

Paulsen IT, O’Reilly J, Rutherford NG, Brown MH, Bill RM, Henderson PJ (2006) Microbial

drug efflux proteins of the major facilitator superfamily. Curr Drug Targets 7:793–811. doi:10.

2174/138945006777709575

Saier MH (2000) A functional-phylogenetic classification system for transmembrane solute trans-

porters. Microbiol Mol Biol Rev 64:354–411. doi:10.1128/MMBR.64.2.354-411.2000

Saier MH Jr, Paulsen IT, Sliwinski MK, Pao SS, Skurray RA, Nikaido H (1998) Evolutionary

origins of multidrug and drug-specific efflux pumps in bacteria. FASEB J 12:265–274, http://

www.ncbi.nlm.nih.gov/pubmed/9506471

Functional Roles of Highly Conserved Amino Acid Sequence Motifs A and C in. . . 137

http://www.ncbi.nlm.nih.gov/pubmed/8987357
http://www.ncbi.nlm.nih.gov/pubmed/9334175
http://www.ncbi.nlm.nih.gov/pubmed/9006028
http://www.ncbi.nlm.nih.gov/pubmed/9006028
http://dx.doi.org/10.1038/nature12042
http://dx.doi.org/10.1128/AAC.45.4.1109-1114.2001
http://dx.doi.org/10.1038/nrmicro1464
http://dx.doi.org/10.1016/0005-2728(93)90003-X
http://dx.doi.org/10.1096/fj.08-121855
http://dx.doi.org/10.1016/j.jmb.2011.02.008
http://dx.doi.org/10.1016/S1995-7645(12)60111-4
http://dx.doi.org/10.1038/nrm2646
http://www.jbc.org/content/263/16/7753
http://dx.doi.org/10.1111/j.1365-2958.1990.tb00565.x
http://dx.doi.org/10.1111/j.1365-2958.1990.tb00565.x
http://dx.doi.org/10.1016/j.fitote.2013.07.015
http://dx.doi.org/10.1016/0378-1119(90)90489-E
http://dx.doi.org/10.2174/138945006777709575
http://dx.doi.org/10.2174/138945006777709575
http://dx.doi.org/10.1128/MMBR.64.2.354-411.2000
http://www.ncbi.nlm.nih.gov/pubmed/9506471
http://www.ncbi.nlm.nih.gov/pubmed/9506471


Saier MH Jr, Beatty JT, Goffeau A, Harley KT, Heijne WH, Huang SC, Jack DL, Jahn PS, Lew K,

Liu J, Pao SS, Paulsen IT, Tseng TT, Virk PS (1999) The major facilitator superfamily. J Mol

Microbiol Biotechnol 1:257–279. doi:10.1111/j.1742-4658.2012.08588.x

Saier MH Jr, Reddy VS, Tamang DG, Vastermark A (2014) The transporter classification

database. Nucleic Acids Res 42:D251–D258. doi:10.1093/nar/gkt1097

Santer R, Groth S, Kinner M, Dombrowski A, Berry GT, Brodehl J, Leonard JV, Moses S,

Norgren S, Skovby F, Schneppenheim R, Steinmann B, Schaub J (2002) The mutation

spectrum of the facilitative glucose transporter gene SLC2A2 (GLUT2) in patients with

Fanconi-Bickel syndrome. Hum Genet 110:21–29. doi:10.1007/s00439-001-0638-6

Saraceni-Richards CA, Levy SB (2000) Second-site suppressor mutations of inactivating sub-

stitutions at gly247 of the tetracycline efflux protein, Tet(B). J Bacteriol 182:6514–6516.

doi:10.1128/JB.182.22.6514-6516.2000

Seol W, Shatkin AJ (1992) Site-directed mutants of Escherichia coli alpha-ketoglutarate permease

(KgtP). Biochemistry 31:3550–3554. doi:10.1021/bi00128a032

ShiuWK, Malkinson JP, Rahman MM, Curry J, Stapleton P, GunaratnamM, Neidle S, Mushtaq S,

Warner M, Livermore DM, Evangelopoulos D, Basavannacharya C, Bhakta S, Schindler BD,

Seo SM, Coleman D, Kaatz GW, Gibbons S (2013) A new plant-derived antibacterial is an

inhibitor of efflux pumps in Staphylococcus aureus. Int J Antimicrob Agents 42:513–518.

doi:10.1016/j.ijantimicag.2013.08.007

Smith KP, Kumar S, Varela MF (2009) Identification, cloning, and functional characterization of

EmrD-3, a putative multidrug efflux pump of the major facilitator superfamily from Vibrio
cholerae O395. Arch Microbiol 191:903–911. doi:10.1007/s00203-009-0521-8

Someya Y, Kimura-Someya T, Yamaguchi A (2000) Role of the charge interaction between Arg

(70) and Asp(120) in the Tn10-encoded metal-tetracycline/Hþ antiporter of Escherichia coli. J
Biol Chem 275:210–214, http://www.ncbi.nlm.nih.gov/pubmed/10617606

Stelzl LS, Fowler PW, Sansom MS, Beckstein O (2014) Flexible gates generate occluded

intermediates in the transport cycle of LacY. J Mol Biol 426:735–751. doi:10.1016/j.jmb.

2013.10.024

Stochaj U, Ehring R (1987) The N-terminal region of Escherichia coli lactose permease mediates

membrane contact of the nascent polypeptide chain. Eur J Biochem 163:653–658. doi:10.1111/

j.1432-1033.1987.tb10914.x

Stochaj U, Bieseler B, Ehring R (1986) Limited proteolysis of lactose permease from Escherichia
coli. Eur J Biochem 158:423–428. doi:10.1111/j.1432-1033.1986.tb09770.x

Stochaj U, Fritz HJ, Heibach C, Markgraf M, von Schaewen A, Sonnewald U, Ehring R (1988)

Truncated forms of Escherichia coli lactose permease: models for study of biosynthesis and

membrane insertion. J Bacteriol 170:2639–2645, http://www.ncbi.nlm.nih.gov/pubmed/

3286614

Sulavik MC, Houseweart C, Cramer C, Jiwani N, Murgolo N, Greene B, DiDomenico B, Shaw KJ,

Miller GH, Hare R (2001) Antibiotic susceptibility profiles of Escherichia coli strains lacking
multidrug efflux pump genes. Antimicrob Agents Chemother 45:1126–1136. doi:10.1128/

AAC.45.4.1126-1136.2001

Sun L, Zeng X, Yan C, Sun X, Gong X, Rao Y, Yan N (2012) Crystal structure of a bacterial

homologue of glucose transporters GLUT1-4. Nature 490:361–366. doi:10.1038/nature11524

Tamura N, Konishi S, Yamaguchi A (2003) Mechanisms of drug/Hþ antiport: complete cysteine-

scanning mutagenesis and the protein engineering approach. Curr Opin Chem Biol 7:570–579.

doi:10.1016/j.cbpa.2003.08.014

Tanford C (1982) Simple model for the chemical potential change of a transported ion in active

transport. Proc Natl Acad Sci U S A 79:2882–2884, http://www.ncbi.nlm.nih.gov/pubmed/

6283549

Tarling EJ, de Aguiar Vallim TQ, Edwards PA (2013) Role of ABC transporters in lipid transport

and human disease. Trends Endocrinol Metab 24:342–350. doi:10.1016/j.tem.2013.01.006

138 P. Kakarla et al.

http://dx.doi.org/10.1111/j.1742-4658.2012.08588.x
http://dx.doi.org/10.1093/nar/gkt1097
http://dx.doi.org/10.1007/s00439-001-0638-6
http://dx.doi.org/10.1128/JB.182.22.6514-6516.2000
http://dx.doi.org/10.1021/bi00128a032
http://dx.doi.org/10.1016/j.ijantimicag.2013.08.007
http://dx.doi.org/10.1007/s00203-009-0521-8
http://www.ncbi.nlm.nih.gov/pubmed/10617606
http://dx.doi.org/10.1016/j.jmb.2013.10.024
http://dx.doi.org/10.1016/j.jmb.2013.10.024
http://dx.doi.org/10.1111/j.1432-1033.1987.tb10914.x
http://dx.doi.org/10.1111/j.1432-1033.1987.tb10914.x
http://dx.doi.org/10.1111/j.1432-1033.1986.tb09770.x
http://www.ncbi.nlm.nih.gov/pubmed/3286614
http://www.ncbi.nlm.nih.gov/pubmed/3286614
http://dx.doi.org/10.1128/AAC.45.4.1126-1136.2001
http://dx.doi.org/10.1128/AAC.45.4.1126-1136.2001
http://dx.doi.org/10.1038/nature11524
http://dx.doi.org/10.1016/j.cbpa.2003.08.014
http://www.ncbi.nlm.nih.gov/pubmed/6283549
http://www.ncbi.nlm.nih.gov/pubmed/6283549
http://dx.doi.org/10.1016/j.tem.2013.01.006


Teather RM, Müller-Hill B, Abrutsch U, Aichele G, Overath P (1978) Amplification of the lactose

carrier protein in Escherichia coli using a plasmid vector. Mol Gen Genet 159:239–248.

doi:10.1007/BF00268260

Tennent JM, Lyon BR, Midgley M, Jones IG, Purewal AS, Skurray RA (1989) Physical and

biochemical characterization of the qacA gene encoding antiseptic and disinfectant resistance

in Staphylococcus aureus. J Gen Microbiol 135:1–10, http://www.ncbi.nlm.nih.gov/pubmed/

2778425

ter Beek J, Guskov A, Slotboom DJ (2014) Structural diversity of ABC transporters. J Gen Physiol

143:419–435. doi:10.1085/jgp.201411164

Thai KM, Ngo TD, Phan TV, Tran TD, Nguyen NV, Nguyen TH, Le MT (2015) Virtual screening

for novel Staphylococcus Aureus NorA efflux pump inhibitors from natural products. Med

Chem 11:135–155. doi:10.2174/1573406410666140902110903

Truong-Bolduc QC, Zhang X, Hooper DC (2003) Characterization of NorR protein, a

multifunctional regulator of norA expression in Staphylococcus aureus. J Bacteriol

185:3127–3138. doi:10.1128/JB.185.10.3127-3138.2003

Truong-Bolduc QC, Dunman PM, Strahilevitz J, Projan SJ, Hooper DC (2005) MgrA is a multiple

regulator of two new efflux pumps in Staphylococcus aureus. J Bacteriol 87:2395–2405.

doi:10.1128/JB.187.7.2395-2405.2005

Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A, Saier MH Jr (1999) The RND

permease superfamily: an ancient, ubiquitous and diverse family that includes human disease

and development proteins. J Mol Microbiol Biotechnol 1:107–125, http://www.ncbi.nlm.nih.

gov/pubmed/10941792

Ubukata K, Itoh-Yamashita N, Konno M (1989) Cloning and expression of the norA gene for

fluoroquinolone resistance in Staphylococcus aureus. Antimicrob Agents Chemother

33:1535–1539. doi:10.1128/AAC.33.9.1535

Varela MF, Griffith JK (1993) Nucleotide and deduced protein sequences of the class D tetracy-

cline resistance determinant: relationship to other antimicrobial transport proteins. Antimicrob

Agents Chemother 37:1253–1258. doi:10.1128/AAC.37.6.1253

Varela MF, Wilson TH (1996) Molecular biology of the lactose carrier of Escherichia coli.
Biochim Biophys Acta 1276:21–34. doi:10.1016/0005-2728(96)00030-8

Varela MF, Sansom CE, Griffith JK (1995) Mutational analysis and molecular modelling of an

amino acid sequence motif conserved in antiporters but not symporters in a transporter

superfamily. Mol Membr Biol 12:313–319. doi:10.3109/09687689509072433

Walther C, Rossano A, Thomann A, Perreten V (2008) Antibiotic resistance in Lactococcus

species from bovine milk: presence of a mutated multidrug transporter mdt(A) gene in

susceptible Lactococcus garvieae strains. Vet Microbiol 131:348–357. doi:10.1016/j.vetmic.

2008.03.008

West IC (1980) Energy coupling in secondary active transport. Biochim Biophys Acta

604:91–126. doi:10.1016/0005-2736(80)90586-6

West IC (1997) Ligand conduction and the gated-pore mechanism of transmembrane transport.

Biochim Biophys Acta 1331:213–234. doi:10.1016/S0304-4157(97)00007-5

West I, Mitchell P (1972) Proton-coupled beta-galactoside translocation in non-metabolizing

Escherichia coli. J Bioenerg 3:445–462, http://www.ncbi.nlm.nih.gov/pubmed/4570991

Wilson TH, Ding PZ (2001) Sodium-substrate cotransport in bacteria. Biochim Biophys Acta

1505:121–130. doi:10.1016/S0005-2728(00)00282-6

Wright EM, Turk E, Martin MG (2002) Molecular basis for glucose-galactose malabsorption. Cell

Biochem Biophys 36:115–121. doi:10.1385/CBB:36:2-3:115

Wrubel W, Stochaj U, Sonnewald U, Theres C, Ehring R (1990) Reconstitution of an active lactose

carrier in vivo by simultaneous synthesis of two complementary protein fragments. J Bacteriol

172:5374–5381, http://www.ncbi.nlm.nih.gov/pubmed/2203750

Wrubel W, Stochaj U, Ehring R (1994) Construction and in vivo analysis of new split lactose

permeases. FEBS Lett 349:433–438. doi:10.1016/0014-5793(94)00719-5

Functional Roles of Highly Conserved Amino Acid Sequence Motifs A and C in. . . 139

http://dx.doi.org/10.1007/BF00268260
http://www.ncbi.nlm.nih.gov/pubmed/2778425
http://www.ncbi.nlm.nih.gov/pubmed/2778425
http://dx.doi.org/10.1085/jgp.201411164
http://dx.doi.org/10.2174/1573406410666140902110903
http://dx.doi.org/10.1128/JB.185.10.3127-3138.2003
http://dx.doi.org/10.1128/JB.187.7.2395-2405.2005
http://www.ncbi.nlm.nih.gov/pubmed/10941792
http://www.ncbi.nlm.nih.gov/pubmed/10941792
http://dx.doi.org/10.1128/AAC.33.9.1535
http://dx.doi.org/10.1128/AAC.37.6.1253
http://dx.doi.org/10.1016/0005-2728(96)00030-8
http://dx.doi.org/10.3109/09687689509072433
http://dx.doi.org/10.1016/j.vetmic.2008.03.008
http://dx.doi.org/10.1016/j.vetmic.2008.03.008
http://dx.doi.org/10.1016/0005-2736(80)90586-6
http://dx.doi.org/10.1016/S0304-4157(97)00007-5
http://www.ncbi.nlm.nih.gov/pubmed/4570991
http://dx.doi.org/10.1016/S0005-2728(00)00282-6
http://dx.doi.org/10.1385/CBB:36:2-3:115
http://www.ncbi.nlm.nih.gov/pubmed/2203750
http://dx.doi.org/10.1016/0014-5793(94)00719-5


Yaffe D, Radestock S, Shuster Y, Forrest LR, Schuldiner S (2013) Identification of molecular

hinge points mediating alternating access in the vesicular monoamine transporter VMAT2.

Proc Natl Acad Sci U S A 110:E1332–E1341. doi:10.1073/pnas.1220497110

Yamada Y, Shiota S, Mizushima T, Kuroda T, Tsuchiya T (2006) Functional gene cloning and

characterization of MdeA, a multidrug efflux pump from Staphylococcus aureus. Biol Pharm
Bull 29:801–804. doi:10.1248/bpb.29.801

Yamaguchi A, Ono N, Akasaka T, Noumi T, Sawai T (1990) Metal-tetracycline/Hþ antiporter of

Escherichia coli encoded by a transposon, Tn10. The role of the conserved dipeptide, Ser65-

Asp66, in tetracycline transport. J Biol Chem 265:15525–15530, http://www.ncbi.nlm.nih.gov/

pubmed/2168416

Yamaguchi A, Akasaka T, Ono N, Someya Y, Nakatani M, Sawai T (1992a)Metal-tetracycline/Hþ

antiporter of Escherichia coli encoded by transposon Tn10. Roles of the aspartyl residues

located in the putative transmembrane helices. J Biol Chem 267:7490–7498, http://www.ncbi.

nlm.nih.gov/pubmed/1313805

Yamaguchi A, Someya Y, Sawai T (1992b) Metal-tetracycline/Hþ antiporter of Escherichia coli
encoded by transposon Tn10. The role of a conserved sequence motif, GXXXXRXGRR, in a

putative cytoplasmic loop between helices 2 and 3. J Biol Chem 267:19155–19162, http://

www.ncbi.nlm.nih.gov/pubmed/1326546

Yamaguchi A, Akasaka T, Kimura T, Sakai T, Adachi Y, Sawai T (1993a) Role of the conserved

quartets of residues located in the N- and C-terminal halves of the transposon Tn10-encoded

metal-tetracycline/Hþ antiporter of Escherichia coli. Biochemistry 32:5698–5704, http://

www.ncbi.nlm.nih.gov/pubmed/8389190

Yamaguchi A, Kimura T, Someya Y, Sawai T (1993b) Metal-tetracycline/Hþ antiporter of

Escherichia coli encoded by transposon Tn10. The structural resemblance and functional

difference in the role of the duplicated sequence motif between hydrophobic segments 2 and

3 and segments 8 and 9. J Biol Chem 268:6496–6504, http://www.ncbi.nlm.nih.gov/pubmed/

8384213

Yamaguchi A, Inagaki Y, Sawai T (1995) Second-site suppressor mutations for the Asp-66–>Cys

mutant of the transposon Tn10-encoded metal-tetracycline/Hþ antiporter of Escherichia coli.
Biochemistry 34:11800–11806. doi:10.1021/bi00037a018

Yan H, Huang W, Yan C, Gong X, Jiang S, Zhao Y, Wang J, Shi Y (2013) Structure and

mechanism of a nitrate transporter. Cell Rep 3:716–723. doi:10.1016/j.celrep.2013.03.007

Yin Y, He X, Szewczyk P, Nguyen T, Chang G (2006) Structure of the multidrug transporter

EmrD from Escherichia coli. Science 312:741–744. doi:10.1126/science.1125629
Yoshida H, Bogaki M, Nakamura S, Ubukata K, Konno M (1990) Nucleotide sequence and

characterization of the Staphylococcus aureus norA gene, which confers resistance to

quinolones. J Bacteriol 172:6942–6949, http://www.ncbi.nlm.nih.gov/pubmed/2174864

Zhang L, Ma S (2010) Efflux pump inhibitors: a strategy to combat P-glycoprotein and the NorA

multidrug resistance pump. Chem Med Chem 5:811–822. doi:10.1002/cmdc.201000006

Zhao Y, Mao G, Liu M, Zhang L, Wang X, Zhang XC (2014) Crystal structure of the E. coli
peptide transporter YbgH. Structure 22:1152–1160. doi:10.1016/j.str.2014.06.008

Zheng H, Wisedchaisri G, Gonen T (2013) Crystal structure of a nitrate/nitrite exchanger. Nature

497:647–651. doi:10.1038/nature12139

Zhou F, You G (2007) Molecular insights into the structure-function relationship of organic anion

transporters OATs. Pharm Res 24:28–36. doi:10.1007/s11095-006-9144-9

140 P. Kakarla et al.

http://dx.doi.org/10.1073/pnas.1220497110
http://dx.doi.org/10.1248/bpb.29.801
http://www.ncbi.nlm.nih.gov/pubmed/2168416
http://www.ncbi.nlm.nih.gov/pubmed/2168416
http://www.ncbi.nlm.nih.gov/pubmed/1313805
http://www.ncbi.nlm.nih.gov/pubmed/1313805
http://www.ncbi.nlm.nih.gov/pubmed/1326546
http://www.ncbi.nlm.nih.gov/pubmed/1326546
http://www.ncbi.nlm.nih.gov/pubmed/8389190
http://www.ncbi.nlm.nih.gov/pubmed/8389190
http://www.ncbi.nlm.nih.gov/pubmed/8384213
http://www.ncbi.nlm.nih.gov/pubmed/8384213
http://dx.doi.org/10.1021/bi00037a018
http://dx.doi.org/10.1016/j.celrep.2013.03.007
http://dx.doi.org/10.1126/science.1125629
http://www.ncbi.nlm.nih.gov/pubmed/2174864
http://dx.doi.org/10.1002/cmdc.201000006
http://dx.doi.org/10.1016/j.str.2014.06.008
http://dx.doi.org/10.1038/nature12139
http://dx.doi.org/10.1007/s11095-006-9144-9


How Pathogens Survive Drug Pressure?

Brijendra Kumar Tiwari, Gunjan Kak, Deepika Sharma,

and Krishnamurthy Natarajan

Abstract Antibiotic resistance can be a consequence of repeat-induced point (RIP)

mutation and even by horizontal gene transfer in the pathogen genome for every

chromosomal replication. On the account of a few vital antibiotic agents, point

mutation of chromosomally encoded proteins is the essential instrument for resis-

tance. Another procedure that may add to the development of resistance in the

course of treatment is adaptive or induced change. Notwithstanding RIP mutation,

resistance may likewise be interceded by enzymes that change the antibiotic and the

target protein or lessen the intracellular concentration of the antibiotics. These

systems of resistance are dispersed between microscopic organisms by horizontal

gene transfer. Drug resistance grants bacterial development in the nearness of an

antibiotic; in any case, it is by all account not the only variable adding to treatment

failure. The resistance is also reflected in cases wherein the antibiotic fails to clear

the infection regardless of the absence of resistant microbes. These microbes are

tolerant, and clinical reports advocate that the level of tolerance to treatment failure

and mortality in a few diseases can be as crucial as the nature of antibiotic

resistance. Intelligent methodologies and awareness of potential harmful effects

of drugs will expect to promise continuous worldwide access to efficient antibiotics.

1 Introduction

Antibiotic discovery was one of the momentous advances in the field of modern

medicine. Antibiotics remain as a mainstay in therapeutic regimes. Antibiotics have

saved numerous lives afflicted with bacterial infections and other life-threatening

infections. The successful discovery of the first β-lactam, penicillin G, prompted the

exploration and subsequent development of additional and effective antibiotics.

This quest eventually led to the production of countless antimicrobial compounds,
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which are in widespread usage today. However, the major obstacle towards this end

was the rapid emergence of drug resistance amongst various microorganisms,

which thwarted the efficacy of therapeutic interventions. The first known resistance

was seen in Staphylococcus aureus alongside penicillin (Keeney et al. 1979).This

ultimately led to reduced usefulness of the drug and consequently limited thera-

peutic options. Till date, almost all known drugs have counterattack by their target

microorganisms (Table 1). According to various reports, steady rise of resistance in

Plasmodium falciparum against artemisinin-based combination therapy, spread of

methicillin-resistant Staphylococcus aureus (MRSA) amongst hospital-acquired

infections, resistance of Neisseria gonorrhoeae to cephalosporins and Escherichia
coli to fluoroquinolones, etc. are emerging threats to the healthcare of modern

society (Espadinha et al. 2013; Johnson et al. 2013; Ashley et al. 2014; Bharara

et al. 2015; Pham et al. 2015). Resistance leads to life-threatening disease condi-

tions and prolongs infection and prognosis. It aggravates mortality and cost of

treatment, too. Drug resistance refers to the phenomenon when microorganisms

such as bacteria, viruses, fungi and parasites alter ways such that the medications

used to cure the infections are rendered ineffective. When the microorganisms

become resistant to most antimicrobial compounds, they are often referred as

“superbugs” (Khan and Khan 2016). This can give rise to major health crisis

because such a deadly resistance may culminate into a fatal infection and lead to

spread to others imposing huge treatment costs. Thus, it can have severe impact on

healthcare and wreak havoc on individuals and society.

Microbes conquer antibiotic drug pressure by various biological processes

(Fig. 1), which could be of two main types. First, it occurs when the microorganism

has never encountered the drug against which it exhibits resistance. Second, as

acquired resistance and it manifests itself following drug exposure. Antimicrobial

drugs usually target a vital metabolic pathway or cell wall synthesis. To combat this

threat, the microbe may either alter the target site of the drug (seen in fungi by

altering cell wall composition rendering resistance to antifungal compounds) or

might chemically modify it (e.g. aminoglycoside modification) (Shi et al. 2013), or

plasmid-encoded degradative enzymes such as β-lactamases cleave the drug, thus

hampering its action (Renneberg and Walder 1989). Genes of resistance are either

plasmid-borne (Perlin and Lerner 1979) or present on mobile genetic elements

(transposons) (Domingues et al. 2012) which may easily disseminate through

conjugation, etc. This leads to spread of resistance in a population.

2 Aminoglycoside Resistance

Aminoglycosides represent important class of drugs. Chemically these contain an

amino sugar attached to the aminocyclitol. These antibiotics are so essential

attributable to their expansive range of movement against range of microscopic

organisms. Amikacin, gentamicin, kanamycin, streptomycin and tobramycin are

some examples and most effective in treatment of gram-negative and gram-positive
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Table 1 Outline of resistance mechanism(s) of various classes of antibiotics

Antibiotic class Target

Mechanism(s) of

resistance Example(s)

Reference

(s)

Aminoglycosides Translation Phosphorylation,

acetylation,

nucleotidylation,

efflux, altered

target

Gentamicin,

streptomycin,

spectinomycin

Bryan and

Kwan

(1983),

Busse et al.

(1992),

Mahbub

et al. (2005)

β-Lactams Peptidoglycan

synthesis

Hydrolysis, efflux,

altered target

Penicillins

(ampicillins),

cephalosporins

(cephamycins),

penems

(meropenems)

Spratt and

Cromie

(1988),

Philippon

et al. (1989),

Pournaras

et al. (2005)

Cationic peptides Cell membrane Efflux, altered

target

Colistin Cai et al.

(2012)

Glycopeptides Peptidoglycan

synthesis

Reprogramming

peptidoglycan

synthesis

Vancomycin,

teicoplanin

Arthur and

Courvalin

(1993)

Lincosamides Translation Nucleotidylation,

efflux, altered

target

Clindamycin Leclercq

and

Courvalin

(1991),

Leclercq

(2002)

Lipopeptides Cell membrane Altered target Daptomycin Tenover

(2006),

Boucher and

Sakoulas

(2007)

Macrolides Translation Hydrolysis, efflux,

altered target,

glycosylation,

phosphorylation

Erythromycin,

azithromycin

Ross et al.

(1990),

Leclercq

and

Courvalin

(1991),

Leclercq

(2002)

Oxazolidinones Translation Efflux, altered

target

Linezolid Prystowsky

et al. (2001),

Meka and

Gold (2004)

Phenicols Translation Acetylation, efflux,

altered target

Chloramphenicol Schwarz

et al. (2004),

Mingoia

et al. (2007)

(continued)
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bacterial infection. The drug elicits its effect by binding to the bacterial ribosome

irreversibly and hindering protein synthesis though drug interactions (Chen and

Murchie 2014; Dunkle et al. 2014; Song et al. 2014). Drug-modifying enzymes

make the drug inactive by introducing chemical changes. Several aminoglycoside-

modifying enzymes are known (Fluit and Schmitz 1999; Schmitz et al. 1999).

Resistance to aminoglycoside drugs can be mediated through enzymatic chemical

modifications like phosphorylations, adenylations and acetylations. Phosphoryla-

tions are catalysed by ATP-dependent O-phosphorylation (APH),

nucleotidyltransferases catalysed O-adenylation (ANT) and acetyltransferases

mediate N-acetylation which requires acetyl-coA-cofactor (AAC) (Marengo et al.

1974; Araoz et al. 2000; Chesneau et al. 2007). These transformations make the

drug incapable of binding to the ribosome, and hence translation process remains

uninhibited. In addition to enzymatic aminoglycoside-modifying enzymes, efflux

pumps and ribosomal RNA mutations also contribute to reduced drug susceptibility

(Kriengkauykiat et al. 2005; Corcoran et al. 2006; Takaya et al. 2013).

Table 1 (continued)

Antibiotic class Target

Mechanism(s) of

resistance Example(s)

Reference

(s)

Pyrimidines C1 metabolism Efflux, altered

target

Trimethoprim Huovinen

(2001),

Holmes

et al. (2016)

Quinolones DNA

replication

Acetylation, efflux,

altered target

Ciprofloxacin Ferrero et al.

(1995),

Webber and

Piddock

(2001),

Jacoby

(2005)

Rifamycins Transcription ADP-ribosylation,

efflux, altered

target

Rifampin Palomino

and Martin

(2014)

Streptogramins Translation C-O lyase (type B

streptogramins),

acetylation (type A

streptogramins)

Synercid Jensen et al.

(2000)

Sulphonamides C1 metabolism Efflux, altered

target

Sulphamethoxazole Huovinen

(2001),

Sanchez and

Martinez

(2015)

Tetracyclines Translation Monooxygenation,

efflux, altered

target

Minocycline,

tigecycline

Fluit et al.

(2005),

Linkevicius

et al. (2015)
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3 Resistance to β-Lactam

The very first β-lactamase was identified from Escherichia coli long before peni-

cillin came in clinical use. Kirby (Kirby and Burnell 1954) extracted “penicillin

inactivators” from Staphylococcus aureus. The surge in the usage of β-lactam
antibiotics has put a kind of selection pressure on bacteria, which ultimately

resulted in the survival of drug-resistant bacteria that have the capacity to express

multiple β-lactamases. Until date, several β-lactamases have been acknowledged.

These enzymes have the potential to degrade the antibiotic by hydrolysing the

β-lactam ring of antimicrobial drugs like cephalosporins, penicillin, etc. (Kasik and

Peacham 1968). Through this mechanism of degradation of β-lactamases, antibi-

otics lead to lowering down of the efficacy of these molecules, ultimately leading to

the survival of the bacterial species in the presence of the drug pressure. Different

β-lactamases exhibit different specificities towards the substrate and differ in host

range (Hanaki et al. 2007). Various types of β-lactamases are usually secreted by

gram-negative bacteria which can degrade some cephalosporins like cephalothin. In

few bacterial species, these enzymes are encoded by chromosomes, for example,

cephalosporinases of Pseudomonas. In other bacteria such as Enterobacteriaceae,
these enzymes result due to the presence of plasmid that encodes them. As found by

Dhara and Tripathi (2014), plasmid-encoded enzymes also degrade a number of

penicillins, and this effect can be overcome by the presence of β-lactamase inhib-

itors like clavulanic acid (Song et al. 2010). β-Lactam antibiotics elicit their

response by targeting and inhibiting the action of key enzymes involved in the

synthesis of bacterial cell wall. The basic mechanisms linked to resistance of this

Fig. 1 Diverse biological processes used by microbes against drug pressure
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class of antibiotics are bacterial synthesis of β-lactamase enzymes that has the

potential to degrade antibiotic β-lactam (Song et al. 2010). This form of resistance

mechanism is the most important and prevalent mode especially in gram-negative

bacteria. Alteration in penicillin-binding protein (PBP) active site may be another

means of attaining drug resistance that results in lower drug binding affinity

(e.g. low-affinity PBP2x of Streptococcus pneumoniae) (Moisan et al. 2010). This

mechanism has been reported in Neisseria spp. and Streptococcus spp. (Zapun et al.
2008). By the rigorous recombination and transformation mechanisms, these two

bacterial species have developed low-affinity PBPs that are highly resistant to

antibiotics. Overexpression of mecA gene that translates into penicillin-binding

proteins 2a which in turn confer methicillin resistance to Staphylococcus spp. and
moreover mecA overexpression desensitise bacteria against high concentrations of

cephalosporins and penicillins by allowing them to synthesise new cell wall even

under drug pressure (Laible et al. 1989). This antibiotic-resistant bacterial strain

poses a great clinical challenge to today’s medicinal world (Neu 1984).

Lowering down the expression of outer membrane proteins (OMPs) is yet

another vital mechanism of resistance. OMPs facilitate the drug to traverse through

them and interact with PBPs present on the inner side of the plasma membrane in

gram-negative bacteria. For example, resistance against carbapenems in some

Enterobacteriaceae (Klebsiella pneumoniae and Enterobacter spp.) has been

developed due to downregulation of these OMPs (Doumith et al. 2009); lowering

down the expression of OprD gene is also linked with resistance towards imipenem

and decrease in efficacy of meropenem in non-fermenter Pseudomonas aeruginosa
(Moghoofei et al. 2015; Rodriguez-Beltran et al. 2015). Resistance against

meropenem and imipenem has been reported due to downregulation of the CarO

outer membrane protein (OMP) in multidrug-resistant clinical isolates of

Acinetobacter baumannii (Fernandez-Cuenca et al. 2011). Various point mutations

or insertion sequences in the genes coding for these porins proteins can produce

altered OMPs that have loss in function or retarded function and permeability.

Activation of efflux pumps provides intrinsic or acquired resistance phenotype.

These efflux pumps are main determinants of multidrug resistance in various gram-

negative pathogens, above all in Acinetobacter spp. and Pseudomonas aeruginosa
(Morita et al. 2012). In P. aeruginosa, upregulation of the MexA-MexB-OprD

framework and organism’s low outer membrane permeability have been reported

in several reports (Tamber et al. 2006), which have been attributed to formidable

drug resistance such as decreased susceptibility against antibiotics like tetracycline

(tet), penicillins, cephalosporins, chloramphenicol and quinolones. Moreover,

upregulation of efflux pumps (e.g. AdeABC which is resistance-nodulation-divi-

sion (RND) family sort efflux pump ordinarily found in A. baumannii) has been
reported to confer carbapenem resistance by synthesising catalytically poor form of

β-lactamase (del Mar et al. 2005).
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3.1 Penicillin Resistance

The most potent mechanism of evading the action of penicillin by pneumococci is

elicited through alteration in the penicillin-binding proteins (PBPs). These proteins

are absolutely essential for the cell wall synthesis and serve to enforce the efficacy

of β-lactam antibiotics by binding to them; therefore these alterations substantially

decrease the affinity of PBPS to the drug and related classes of drugs, hence

effectively hampering drug action and effect (Dowson et al. 1990). “Mosaics”

comprising of mixed regions of native and acquired foreign DNA segments are

responsible for encoding these altered PBPs. More often than not, the DNA from

foreign source belongs to the more resistant strains like viridians streptococci.

There are evidences about the transfer of such mixed and hybrid genetic elements

between pneumococci and gram-positive bacteria like Streptococcus oralis (Sibold
et al. 1994).

4 Quinolone Resistance

Nalidixic acid was the first discovered quinolone. Many derivatives have been

made available since then, fluoroquinolones being the most important ones

(Emmerson and Jones 2003). These compounds possess a fluorine substitution at

sixth position on the quinolone moiety, making it highly efficient against gram-

positive to gram-negative bacteria and anaerobes. Quinolone drug action is brought

about by inhibiting an important class of enzymes called as bacterial

topoisomerases (DNA gyrase and topoisomerase IV) (Chen et al. 1996). These

enzymes play an important role in bacterial DNA replication and are central to the

maintenance of bacterial replication fork by modifying the topology of double-

stranded DNA. Enzyme structure comprises of two subunits, namely, A and B that

are heterotetrameric in nature making it highly efficient against gram-positive to

gram-negative bacteria and anaerobes (Chen et al. 1996; Higgins et al. 2003).

Two principal mechanisms can very well explain the resistance seen against

quinolones. Firstly by modifying the target enzyme and second by limiting the

permeability of the drug (Nikaido 1998; Hernandez et al. 2011). Quite plausibly,

most changes are centred at the active domains of the enzyme, which drastically

reduce drug binding. DNA gyrase activity is mostly inhibited in gram-negative

bacteria, but in gram-positive either DNA gyrase or topoisomerase IV can be

inhibited depending on the choice of fluoroquinolones used (Jacoby 2005). In

majority of the cases, there is an amino acid substitution in quinolone-resistance-

determining region, which introduces a bulky hydrophobic residue instead of a

polar hydroxyl group (Mehla and Ramana 2016). Mutations in gyrA gene modify

the enzyme-binding site or alter a charge that leads to conformational changes

essential in maintaining drug enzyme interaction. Alterations in the outer mem-

brane structure culminate into resistance as displayed by most gram-positive
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bacteria (Ferrero et al. 1994). Consequently, there is reduced drug influx and

uptake. More unexpectedly, resistance mechanism spread by transmission leading

to fluoroquinolone inactivation has also surfaced. This mechanism has cropped up

because of the ability of aminoglycoside N-acetyltransferases to modify a second-

ary amine on the fluoroquinolones thus leading to lowered activity. The latter

mechanism confers a low-level tolerance favouring the selection of resistance

mutants (Robicsek et al. 2006). Mycobacterium smegmatis and Mycobacterium
bovis elicit a basal and low-level resistance to several fluoroquinolones (Montero

et al. 2001). The chromosomal gene called MfpA expression is plasmid encoded,

the plasmid being present in multiple copies within the bacterium. Conversely,

MfpA gene disruptions enhance drug efficacy and making wild type M. smegmatis
more prone to drug action. Hence, drug susceptibility is directly linked to MfpA

expression level.

A very fascinating mechanism of resistance against fluoroquinolones has been

investigated in Mycobacterium tuberculosis. Studies elucidating M. tuberculosis
MfpA structure have unfolded a unique three-dimensional structure of MfpA that

shows similarity to bacterial DNA double helix. It is speculated that MfpA could

serve to sequester the entire drug and free the bacterial DNA from drug effect.

Therefore, target mimicry seen in mycobacterium affords protection against

fluoroquinolones (Hegde et al. 2005). In addition, point mutations in genes like

cytochrome b, or dihydrofolate reductase, are known to cause atovaquone resis-

tance or pyrimethamine resistance, respectively (Meneceur et al. 2008).

5 Tetracycline Resistance

The ease of availability, broad range of activity and cost-effectiveness make

tetracyclines as the most favourite and widely used antibiotics. Since their discov-

ery in the 1940s, they have been readily used for therapeutic interventions (Nguyen

et al. 2014). The drug elicits its inhibitory effects by impeding bacterial translation

through the prevention of aminoacyl-tRNA attachment to the ribosomes (Connell

et al. 2013). These antibiotics successfully combat pathogenic challenges from a

wide array of microorganisms including gram-positive and gram-negative

microbes, atypical life forms, for example, protozoan, Chlamydiae, Rickettsiae
and Mycoplasma parasites. Tetracyclines include agents like tetracycline,

minocycline, oxytetracycline and doxycycline (Rasmussen et al. 1997). The phe-

nomenon of resistance against this class of drugs can be due to drug efflux,

protection of bacterial ribosomes or chemical modification of the drug. Export

proteins can contribute to the resistance by mediating drug efflux (Piddock et al.

2000). These gatherings of proteins have a place with the real facilitator superfam-

ily. Tetracycline (tet) efflux pumps encode these fare proteins and subsequently

encourage drug efflux (Stavropoulos and Strathdee 2000; Tuckman et al. 2000).

The expulsion of drug ultimately lowers the drug concentration, and the inhibitory

effects on the ribosomes are diminished. Ribosome protection proteins that are
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cytoplasmic in nature aid ribosomal protection. This mode of resistance is mostly

prevalent in case of doxycycline and minocycline, whereas drug efflux is the major

mechanism imparting resistance against most other classes of tetracyclines

(Kobayashi et al. 2007). These efflux proteins share a marked homology with

other class of efflux proteins that confer multidrug resistance to various other

classes of antibiotics (Wang et al. 2004). Large plasmids, encoding for such efflux

genes, are transmitted through conjugation and are believed to confer resistance to

gram-negative bacteria (Roberts 1997). Another important means of resistance

involves enzymatic inactivation of the drug. The role of tet (X) gene has been

implicated in altering tetracycline function. The tet (X) gene encodes a 44 kDa

product that is capable of modifying tetracycline chemically in the presence of

oxygen and NADPH. This resistance gene is present on transposons and found in

anaerobic Bacteroides species (Speer et al. 1991). More recently tetracycline

destructases have been discovered. These are a novel class of inactivating enzymes

belonging to flavoenzyme family and catalyse oxidation of the drug. Consequently,

there is modification in the structure and function of the drug (Forsberg et al. 2015).

6 Peptide-Based Drug Resistance

The intrinsic and widespread resistance to most common and rampantly used

antibiotics has led to the emergence of enterococci garnering the ability to survive

in a hospital-borne environment (Canton et al. 1999). Their extensive survival and

resilience to the most front-line drugs used in trauma care and hospital can be

attributed to wide arrays of genomic changes such as mutations, acquisition of

foreign genetic element harbouring resistance genes, plasmid transfer, transposons,

etc. (Rossi et al. 2014; Hu et al. 2015a). The commonest resistance ensues against

drugs of classes β-lactam and glycopeptides. Synergising antibiotics such as gly-

copeptides with an aminoglycoside can prove to be extremely fruitful in

circumventing the deleterious emergence of hospital-borne antibiotic resistance

(Hu et al. 2015b). A highly regulated clustered gene unit termed as operon is

believed to mediate the acquisition of glycopeptide resistance in enterococci

(James et al. 2012). This operon encodes an alternative pathway responsible for

the production of a transformed cell wall component. Consequently, vancomycin

binds to this modified precursor peptidoglycan more readily as the normal substrate

remains unaffected and available for cell wall synthesis. Thus, the progression of

the normal biosynthetic pathway remains unhindered (Fraise et al. 1997). Innate

resistance to vancomycin can be attributed to two types of gene cluster designated

as vanA and vanB gene clusters (Grissom-Arnold et al. 1997; Baptista et al. 1997).

These confer resistance by modifying target from D-alanine-D-alanine to D-alanine-

D-lactate (Marshall et al. 1997).
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7 Resistance to Echinocandins and Azoles

Reduced susceptibility to echinocandins can be linked to genetic events such as

mutations or instigation of an adaptive stress response (Astruey-Izquierdo et al.

2011). Mutations are mostly centred around regions known as “hot spots”. These

are much conserved gene clusters and are hubs of intrinsic point mutations.

Mutation in FKS gene encoding, fungal FKS subunits of β(1,3)D-glucan synthase

lead to cross resistance and decreased drug efficacy (Marti-Carrizosa et al. 2015;

Dichtl et al. 2015). The drug-induced threat is bypassed by fungal cells through

commencement of a stress response. This compensates for the drug-induced loss of

a cell wall component by overproducing one or more other constituents.

The cell wall synthesis is highly regulated. In response to the drug, chitin levels

are unregulated to balance the inhibition by echinocandins (Prasad et al. 2016).

These elaborate metabolic changes are believed to be mediated via high-osmolarity

glycerol, protein kinase C responses and Ca2+-calcineurin signalling pathways.

This helps in negating the fatal effects of echinocandins (Walker et al. 2010). A

pivotal role is also played by genomic plasticity in aggravating resistance. This is

achieved by loss of heterozygosity and is acquired by genetic rearrangements and

amplifications majorly at genetic regions that are linked with resistance (Niimi et al.

2010). Frequent and rampant use of antifungal compounds, particularly flucona-

zole, has prompted the rise of resistance amongst different types of Candida
species. These organisms display varied levels of susceptibility depending on the

amount of selection pressure and the prevalence of infections (Mane et al. 2016).

The activity of an important enzyme catalyst, i.e. lanosterol 14-α-sterol
demethylase involved in cell wall biosynthesis, is inhibited by azoles (Warrilow

et al. 2012). Additionally, accrual of a toxic by-product, namely, 14-α-methyl-3,6-

diol, further contributes to the inhibitory effects of the antifungal agent (Warrilow

et al. 2012). As a result, cell wall structure, with regard to ergosterol content, is

altered leading to disruptions in membrane integrity and functioning.

Candida species are adept in manifesting resistance and can successfully evade

prophylactic and therapeutic regimes. Three major mechanisms dictate this first

mechanism involves upregulation and overexpression of efflux pumps. This leads

to significantly lowered drug levels inside the cells (Niimi 2004). Efflux pumps of

Candida spp. are CDR gene encoded belonging to ATP-binding superfamily or are

products of MDR1 locus which encode major facilitator superfamily (MFS) pro-

teins (Shao et al. 2016). Enhanced expression of CDR gene product culminating

into expanded no. of efflux pumps presents imperviousness to all known azoles.

Nevertheless, MDR-encoded efflux pumps bolster just fluconazole resistance.

Examples of Candida spp. evoking azole resistance are as per the following:

Candida glabrata (CgCDR1, CgCDR2) and C. albicans (CDR1, CDR2, MDR1)

(Shao et al. 2016). One more resistance mechanism comprises the alteration or

overproduction of the target molecule. A key player determining this mode of

resistance is ERG11 gene that codes for the enzyme lanosterol 14-a-demethylase.

Mutations pertaining to this gene lead to subtle modifications in the target enzyme
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that change the binding affinity of the enzyme to the drug (Martel et al. 2010).

Lowered susceptibility of ERG11p to fluconazole as seen in C. krusei is due to this
kind of altered binding (Martel et al. 2010). Overproduction of ERG11p makes the

antifungal agent ineffective at its normal dosage, which is due to the outnumbering

of target molecules with reference to drug molecules. Consequently, drug is present

in insufficient amounts as compared to its target to successfully exhibit the inhib-

itory effects (Wang et al. 2009). ERG3 gene mutations circumvent the accumula-

tion of toxic metabolic products and lead to formation of proper and functional cell

membrane. Devising an alternate/bypass biosynthetic pathway paves way for

another mechanism of resistance in fungi (Wang et al. 2009; Lo et al. 2015).

8 Methicillin-Resistant Staphylococcus aureus

The presence of MRSA has been detected in both the community-acquired and

hospital settings. These are found to express mecA gene, which confers them

resistance against methicillin and other β-lactams (Neu 1984). However, mecA

gene’s genetic environment is found to be different for the hospital-acquired and

community-acquired isolates. Nosocomial MRSA is an example of multidrug

resistance (Panda et al. 2016). Imperviousness to methicillin and a few other

β-lactams has been connected to the ability of mecA to encode low-affinity peni-

cillin-binding protein PBP2a (Roychoudhury et al. 1994). PBP2a-encoding mecA

gene is located on a genetically mobile element that is termed as staphylococcal

chromosomal cassette (SCC-mec) (Hososaka et al. 2007). In particular, resistance

towards fluoroquinolone is regarded as a hallmark for nosocomial MRSA. Expres-

sion of EMRSA-17 lead to development of resistance towards a wide range of

antibiotics like methicillin, macrolides (erythromycin), fluoroquinolones (cipro-

floxacin), tetracycline, fusidic acid, aminoglycosides (kanamycin, streptomycin,

gentamicin and neomycin) and rifampicin (Aucken et al. 2002).

9 Prospective

Augmentation in a number of diabetic patients and burn patients increases the

susceptibility to acquired infections and spread of resistance. The resistant strains

may evolve naturally when microorganisms replicate themselves in an erroneous

fashion or by the exchange of resistant traits between them. Our abuse of antibiotics

in people incomprehensibly quickened the procedure of drug resistance; however

drug administration in intensive care units of hospitals and treatment of immuno-

compromised patients further leads to expansion of multidrug resistance and

prevalence of nosocomial infections. To contain antibiotic resistance, motivating

forces for drug organisation, clinics, specialist and patients have to be devised to act

in ways that may restrain the exhaustion of antimicrobial efficacy.
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of Mobile Group II Introns
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and Chandrahasya N. Khobragade

Abstract Bacteria, Archaea, and Eukarya include numerous thermophiles that are

ubiquitous and have been detected in a variety of environments covering a really

broad range of temperatures among factors. This suggests a great adaptability to

both environmental conditions and nutrient sources which places thermophiles as a

major target for environmental and evolutive studies with a great biotechnological

potential as source for thermophilic enzymes and the biodegradation of various

recalcitrant pollutants. While growth under optimal laboratory conditions is well

studied, the potential for thriving under nonoptimal conditions, far from those

considered ideal for a microorganism, remains to be studied. This chapter high-

lights possible development of novel methodology for the analysis of thermophilic

microorganisms, which is applicable to other organisms, under natural conditions

and for a broad range of extreme environments ranging from cold to hot temper-

atures, water activity, pH, and salinity as major naturally occurring extreme events.

The mobile group II intron (MGI) functional diversity and abundance are assumed

to represent a key feature indicator for the use of the full potential of microbial

enzymes and a basic physiological process needed to understand microbial capa-

bilities to grow and thrive under extreme conditions.

1 Mobile Group II Introns: A Novel Tool for Biotechnology

Mobile group II introns (MGIs) are “autocatalytic (self-splicing) genetic ele-

ments—‘ribozymes’—found in bacterial and organellar DNAs of few eukaryotic

organisms.” These are evolutionary ancestors of spliceosomal introns,

retrotransposons, and spliceosomes and in higher organisms, i.e., eukaryotes.
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These lines present a novel and promising perspective to better understand the

ubiquity, genetic diversity, and abundance of microorganisms under the broadest

range of environmental conditions described on Earth. This chapter focuses on

understanding the diversity and potential of MGI and their relationship to compre-

hend the microbial capacity to conquer a wide range of environments, including

those representing extreme conditions and the ability of microorganisms to thrive

and adapt to suboptimal environmental conditions. A listing of currently known

group II introns in microorganisms is presented in later part of this chapter. This

clearly indicates the broad distribution of these introns in prokaryotes and induces

to believe that a large number of additional MGI can be discovered and described in

the next years through extensive investigation based on new-generation sequencing

platforms and the huge quantities of high-quality sequence data that is becoming

available at the present time. Understanding the potential for the environmental and

biotechnological application of microorganisms and specifically of their group II

introns is a matter for the development in the next few years (Zimmerly 2014), and

it deserves to be highlighted.

2 Current State of Mobile Group II Introns

Some research has been carried out on MGI from extreme environments world-

wide, but there is scarce work performed on MGI functional diversity and its

consequences for microbial growth, evolution, and their applications. Toro et al.

(2007) studied the mobility of bacterial MGI and their splicing mechanisms. They

have described reported gene-targeting-based recent development in MGI research.

They have also discussed on bacterial MGI, phylogeny, and behavior of MGI in

prokaryotes (bacteria). Dai and Zimmerly (2002) suggested that bacterial MGI

behaves like retroelements, and their fundamental strategy is different from introns

found in eukaryotes. Lambowitz and Zimmerly (2004) described the development

of programmable and target-specific MGI into “targetrons.” Jones et al. (2004)

suggested that MGI represents a novel class of agent which has functions in targeted

genetic repair. Chee and Takami (2005) reported the presence of active MGI in the

recA gene of Geobacillus kaustophilus. Pyle (2010) reported the structure and

molecular data of MGI-based location of domain six (D-VI) and additional domain

sites of the group IIA and IIB introns. Perutka et al. (2004) developed a computer-

based algorithm to allow a swift and proficient disruption/simulation of bacterial

gene. The algorithm drew target site recognition in limelight, and E. coli DExH/D-
box protein and DNA helicase disruptants found in Escherichia coli were success-
fully analyzed in relationship to the function of these proteins. Further research on

the role and applicability of MGIs in microorganisms, above all, on those thriving

under extreme environments, will significantly contribute to our understanding on

microbial functional diversity and its evolutionary significance.
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3 Diversity of MGI

Numerous new MGIs are recorded in bacteria followed by archaea, in fungi and

higher organisms (Fig. 1). More than 324 MGIs were detected in bacteria with ORF

domain up to X (i.e., 10). Most of them were located on the chromosome, followed

by the variety of plasmids, transposons, and integrons. As compared to bacteria, in

archaea (few more than 16) MGIs were discovered. Most of them were located on

the chromosome. The ORF-less MGIs also detected in bacteria and archaea were

very few in number. All of them were located on the chromosome, followed by the

plasmid. Similarly, remarkable numbers of intron fragments were found in bacteria

as well as in archaea. All of them were located on chromosome followed by plasmid

and transposons. Unlike prokaryotes, mobile group II introns were discovered on

eukaryotes on mitochondrial DNA. Eukaryote such as liverwort, green plants,

algae, fungi, yeasts, and Ichthyospora possesses mitochondrial MGI. Most of

these were found in ORF domain RT 2-10 and RT-X. Liverworts, fungi, and yeasts

possess MGI fused with upstream exons (Dai et al. 2003; Simon et al. 2008;

Candales et al. 2012; Zimmerly 2014).

Fig. 1 Distribution and percentage of mobile group II introns among different life forms
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4 Applications of MGI

Bacterial species are considered as dispersion-unlimited organisms due to its small

dimensions and the broad range of metabolic capabilities. Thus, bacteria are able to

reach and grow practically everywhere although the environment selects which

species can develop under specific conditions (Prosser 2012). Joined to the huge

bacterial diversity (Curtis et al. 2002) in our planet, the potential for developing

under highly variable conditions turns into a surprising potential for bacterial

growth on Earth and perhaps in other planets. Bacteria under optimum conditions,

such as those provided in the laboratory, are able to show fast growth; however,

scarce information is available on the functioning of bacteria in the environment

and specifically under generally considered extreme conditions such as low or high

temperatures (near 0 �C and up to 80 �C), low or high pH values, reduced water

content, and high salinity, as the most typical examples occurring in nature.

Seasonality is another cause of natural variability reaching extreme conditions

above all as a result of current climate change events (Davidson and Janssens

2006; Rekadwad and Khobragade 2015, 2016). Genomes present a pool of all

bacterial information available to thrive under easy and hardish conditions. How-

ever, our current understanding of the functional diversity of genes and the plas-

ticity and flexibility of genomes is very limited. Recently, the diversity and

abundance of tRNA genes have been suggested to be directly related to bacterial

growth (Dana and Tuller 2014). Thus, growth and the events occurring on RNA and

protein-processing mechanisms are essential to improve the understanding of

functional capabilities and the genomic regulatory mechanisms of microbial metab-

olism and physiology (Table 1).

Thermophilic microorganisms including prokaryotes and eukaryotes are capable

of growing under diverse and extreme environments such as high to low temper-

ature, soil to water, acidic to alkaline, low-nutrient content, low water activity, etc.

Base compositions in microorganisms are different and vary among species

(Gomes and Steiner 2004). The genomic and physiological features developed by

these microorganisms represent key adaptative mechanisms that are in need of

further study in order to understand adaptation to extreme environments and their

potential biotechnological application (Portillo et al. 2012; González et al. 2015;

Santana and González, 2015). MGIs consist of a catalytically active intron RNA

(ribozyme) and an intron-encoded protein (IEP). The combined activities of ribo-

zyme and intron-encoded protein enable the proliferation of introns within

genomes. The ribozyme (i.e., MGI-RNA) catalyzes its self-splicing through

transesterification exactly similar that of spliceosomal introns, which yield spliced

exons and an excised-intron-lariat RNA (LTR). The formed IEP is a

multifunctional non-LTR-retrotransposon RT and related RT which assists splicing

through stabilization of catalytically active RNA structure. It then remains a hurdle

to LTR in a ribonucleoprotein (RNP) complex that invades DNA sites. DNA

invasion caused ribozyme activity of intron (MGI-RNA), which reverses spliced

into a host DNA strand. After invading host DNA strand, it’s transcribed back into
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new DNA by the IEP. Repeated cycles/invasion results in RNA splicing, and

reverse splicing enables the invading introns to proliferate to new DNA sites and

minimal impairing gene expression (Lambowitz and Zimmerly 2011). During the

protein synthesis, each tRNA is changed and delivered into the ribosomes. Expres-

sion of tRNA genes has implications on the differential expression of different

functional and structural proteins. Nowadays, the fast pace development in the field

of transcriptomics and genomics has revealed structure and functions of many

noncanonical tRNA genes. Disruption, fragmentation, rearrangement, minimiza-

tion of tRNA and their re-coding, the relevance of non-coding RNAs, and a variety

of small RNA sequences are included in these areas (Hartmann et al. 2004; Kanai

2013). At present, tRNA splicing is a boiling topic of hot debate because of their

key role in the protein synthesis and influence in biological evolutions (Randau and

Soll 2008; Di Giulio 2012).

5 Importance of MGI and Future Perspectives

MGIs are important elements present in microorganisms and organellar DNAs.

Nevertheless, there is very limited information on their role and relevance in the

adaptation of microorganisms to thrive under broadly variable environments

and extreme conditions. Specifically, future perspectives on this topic will be

focused on understanding the metabolic and physiological regulatory mechanisms

Table 1 Spotlight on recently identified species having MGI

Species MGI/enzyme Ref.

Thermosynechococcus
elongatus, Geobacillus
stearothermophilus

Ribozyme Mohr et al. (2013), Collins

and Nilsen (2013)

Sinorhizobium meliloti,
Sinorhizobium medicae

RmInt1 Toro et al. (2014)

Clostridium thermocellum Catalytic RNAs, artificial

nucleases, nucleic acid ana-

logs, and peptide nucleic acids

Xylanase, cellulase

Akinosho et al. (2014),

Nakashima and Miyazaki

(2014), Thomas et al.

(2014)

Lactobacillus lactis Ll.LtrB

Podospora anserine Possesses 15 group I introns

and 1 MGI

Aguileta et al. (2014)

Coralline algae, Gelidium
vagum, Gelidium elegans

MGI in the chlB gene

Gracilaria chilensis, Gracilaria
salicornia, Gracilaria
tenuistipitata var. liui,
Grateloupia taiwanensis

MGI in trnMe tRNA Lee et al. (2016)

Liverwort MGI Hammani and Giege (2014)
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involving mobile group II introns, and this will be carried out in the base to the

current large availability of massive sequencing datasets that have daily been added

to public genomic (DNA) and transcriptomic (RNA) repositories.

Thermophiles have been reported to represent a highly diverse bacterial group

showing extreme adaptability to broad ranges of conditions for different environ-

mental factors. Their ubiquity and genomic diversity make them a major group

of interest for biotechnology (including, e.g., the search for highly efficient and

stable enzymes) and environmental bioremediation through biodegradation of

recalcitrant pollutants. The biotechnological potential of this group is starting to

be discovered, and it involves interdisciplinary perspective to understand their

roles, their potentials, and their applications (Sakaff et al. 2012; Santana et al.

2013, 2015). Thermophilic MGIs have important roles in a variety of processes

such as biorecuperation, bioremediation, and the biotechnological use of their

enzymes under the highly diverse set of working conditions. Future research will

clarify all these aspects and will contribute decisively to the development of our

understanding of microbial evolution and physiology and their biotechnological

potential.

The applications of the ongoing research and current knowledge of biotechnol-

ogy are presumed to expand exponentially in the following years. An example

(Fig. 2) is provided on a current application of mobile group II introns. Additional

applications are about to be described, and the future opens a wide range of

possibilities for the development of MGI-derived technologies. Future studies on

MGI must be focused on gene-targeting vector (genetic tools)-based development.

The bacterial MGI is independent upon recombination, which makes this

Fig. 2 Thermostable MGI

reverse transcriptase

(RT) (Enyeart et al. 2014)
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technology broadly applicable. This extra feature of retroelements proved them-

selves as a potential tool for genetic manipulation in higher organisms (plants and

animals) with lower chances of recombination. Additionally, certain host factors

used by bacterial MGI contribute to intron-RNA folding and their mobility. In the

near future, scientists should focus their research on the identification of factors

(molecules) involved in increased functionality of bacterial MGI.

Studies on different aspects of MGI involving the architectural and functional

organization are continuously helping us to understand the splicing mechanism of

actively involved ribozymes and push us for parallel investigations on MGI and

MGI-related elements such as retrotransposons and spliceosomes. Recently

detected bacterial circular intron supports above statements that more study is

needed to be performed in this particular area because MGI may be cosmopolitan

in nature than we already thought. The mechanisms lying behind the splicing which

occurred in MGI resulting in circle formation—formation of bacterial circular

intron—and biological roles of such circles (circular introns) in MGI remain key

issues expected to be resolved in the next few years.
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Bacterial Resistance Against Antibiotics

Anil Kumar and Nikita Chordia

Abstract From the time when discovery of penicillin was done in 1928, antibiotics

are considered to be critical for public health that save the lives of millions of

people around the world. Antibiotics are considered to be bactericidal which means

capable of killing the bacteria. Some people call them as bacteriostatic which cease

bacterial multiplication. These act without killing or damaging the body of the

person. In recent years, it has been observed that more and more bacteria are

becoming resistant to most of the frequently prescribed antibiotics. This situation

is getting alarming day by day, and cure for even common diseases is becoming

more expensive. Bacteria develop resistance to adapt their environments and ensure

their survival. Drug/antibiotic resistance can be innate or acquired; there are many

ways to acquire the resistance. It is becoming difficult to effectively treat wide

variety of infections due to multidrug resistance. To control the drug resistance,

misuse of antibiotics should be stopped, and regulations must be followed. In

addition to control of drug resistance, it can be overcome by using additional

molecules with antibiotics. Bacteria are finally overrunning our way of defense,

so there is an urgent necessity to discover more antibiotics to combat the bacterial

infections. To speed up the research, there is a need to advance the microbial

informatics, particularly the development of databases and tools. Bioinformatics

is the hope to help in easy availability of the information regarding resistance genes,

associated proteins, available literature, cluster of orthologs (COG), pathways, and

all other information concerning antibiotics.

1 Introduction

We all are exposed to the tiny microbes including bacteria, viruses, fungi, and

protozoan. Some of them cause infection and are called pathogens, and others are

even harmless inhabitants of our body. Human body has natural defense system

against these pathogens, but sometimes it fails to control the infection. This leads to

the development of the antibiotics (also called antimicrobials) which interfere with
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the specific life processes of the organism. These are the medicines that kill

pathogens without harming humans. These include both synthetic and semisyn-

thetic antibiotics (Davison et al. 2000). Antibiotics are unique therapeutic agents

that are directed to invade organism. They block the key reaction(s) in the patho-

genic bacteria causing its death and/or inhibiting its multiplication. These are the

drugs which can be taken orally, intravenously, or intramuscularly resulting in

counter of the infection. This helps the immune system to fight against the infection.

However, sometimes, excess use of antibiotics in an individual may affect the

microbial ecology of the host (Monroe and Polk 2000). No single antibiotic is

effective against all pathogenic bacteria. The antibiotics, viz., gentamicin and

amoxicillin, which affect diverse variety of bacteria have been named as broad-

spectrum antibiotics, whereas the antibiotics like vancomycin and penicillin which

affect selective bacteria have been named as narrow-spectrum antibiotics

(Heinemann 1999).

Since the introduction of penicillin in 1940s, more than hundreds of antibiotics

have been discovered. Penicillin was hailed as a “miracle drug,” and future was

predicted as free of infectious diseases (Bentley 2005). The antibiotics are classified

based on the spectrum as broad or narrow, similarly based on the route of admin-

istration as injectable or oral, and on the type of activity as bactericidal or bacte-

riostatic. Besides, antibiotics have also been named as β-lactam, macrolides,

tetracyclines, fluoroquinolones, sulfonamides, aminoglycosides, imidazoles, pep-

tides, and lincosamides on the basis of structural aspects. Structurally homologous

antibiotics exhibit similar antibacterial activity (Kohanski et al. 2010; Wong et al.

2012).

Bacterial resistance can be of two types, viz., intrinsic or innate and acquired

resistance. Innate resistance relies on the physiology and biochemistry of the

bacteria and is considered to be peculiar property of specific bacteria. However,

acquired resistance in a bacteria is developed by different means like transforma-

tion of specific gene(s) using bacterial and/or phage vectors, jumping genes,

integrons, and site-directed mutagenesis in bacterial gene(s) itself or by a combi-

nation of these (Giedraitienė et al. 2011). A list of few resistant bacteria and names

of the antibiotics for which bacteria is resistant is given in Table 1.

The frequent prescription of antibiotics by the doctors and habit of taking

antibiotics without consulting the doctor especially in the developing countries

are considered to be the main causes of resistance in bacteria against a particular

antibiotic or a combination of antibiotics. In many cases, it has been observed that

initially a particular bacteria remains sensitive to an antibiotic; however, it adapts

slowly and ultimately becomes resistant to it. Many times, doctors change the

prescription with different antibiotics which may lead in acquiring resistance

against one or more drugs, and the condition is called as multidrug resistance

(MDR) (Giedraitienė et al. 2011). Nowadays, many multidrug-resistant bacteria

are known and to mention a few are specific strains of Staphylococcus aureus,
Enterococcus faecalis, Klebsiella pneumoniae, and Pseudomonas aeruginosa.

In many bacteria, mode of adaptation for antibiotic resistance has been eluci-

dated which include drug-inactivating enzyme, drug removal from the cell,
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acquisition of a target, modification in current target, and reducing cell permeabil-

ity. Still, critical new aspects of drug-resistance mechanism are continued to be

discovered (Livermore 2003).

Table 1 Bacteria and their resistance to antibiotics

Bacteria Resistant to antibiotics References

Acinetobacter baumanii Imipenem, meropenem, antipseudomonal

agents, fluoroquinolones, carbapenems

Lee et al. (2012)

Clostridium difficile Fluoroquinolone antibiotics, such as

ciprofloxacin and levofloxacin

Loo et al. (2005)

Enterococcus faecium/
vancomycin resistant-

enterococci (VRE)

Vancomycin, streptomycin, gentamicin,

penicillin, ampicillin

Landman and

Quale (1997), Arias

et al. (2010)

Escherichia coli (ESBL
strain)

Oral cephalosporins, TMP/SMX,

fluoroquinolones

Prakash et al.

(2009)

Klebsiella pneumoniae-
extended spectrum beta-

lactamases (ESBL)

Second-, third-generation cephalospo-

rins, aztreonam, carbapenem

Paterson et al.

(2004), Woodford

et al. (2004)

Methicillin-resistant Staphy-
lococcus aureus (MRSA)

β-Lactam ringed, viz., ampicillin,

amoxicillin, penicillin

Liu et al. (2011)

Multidrug resistant Myco-
bacterium tuberculosis
(MDR-TB)

Isoniazid, rifampin, possibly

streptomycin

Keshavjee and

Farmer (2012)

Mycobacterium tuberculosis Isoniazid, rifampin Gillespie (2002)

Neisseria gonorrhoeae Penicillins, tetracyclines,

fluoroquinolones, macrolides,

cephalosporins

Farhi et al. (2009)

Pseudomonas aeruginosa Cephalosporin, cefepime, tobramycin,

gentamicin

Lister et al. (2009)

Pseudomonas aeruginosa
(multidrug-resistant strains)

Resistance against combination of more

than one antibiotics, viz., meropenem,

cephalosporins, etc.

Mesaros et al.

(2007)

Salmonella enteric Ampicillin, chloramphenicol, tetracy-

cline, sulfamethoxazole, trimethoprim,

fluoroquinolones

Quinn et al. (2006)

Staphylococcus aureus β-Lactam, fluoroquinolones, gentamicin Chambers and

DeLeo (2009)

Staphylococcus aureus
(cMRSA strain)

β-Lactam ringed antibiotics, cephalospo-

rins, erythromycin

Liu et al. (2011)

Staphylococcus aureus (par-
tially resistant to vancomy-

cin, VISA)

Vancomycin, β-lactam ringed antibiotics Weinstein (2001),

Fridkin (2001)

Staphylococcus epidermidis
(methicillin resistant)

Penicillin, amoxicillin Uçkay et al. (2009),

Fey and Olson

(2010)

Streptococcus pneumoniae
(multidrug resistant)

Resistance against combination of more

than one antibiotics, viz., penicillin,

erythromycin, doxycycline, etc.

Mandell et al.

(2007)
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There is more treatment cost, longer stay as indoor hospital patient, chances of

getting more infections, and more chance of death if a person is infected by drug-

resistant bacteria (Heymann 2006). Therefore, scientists have realized to discover

other ways of treatments such as specific vaccines for common bacterial infection.

Unfortunately, in spite of much requirement of new antibiotic therapies, not so

many new drugs/antibiotics have been approved by the controlling agencies like

FDA. Therefore, there is really a difficult situation due to bacterial resistance

against antibiotics.

Now, we have entered in the “post-antibiotic” era as choice for antibiotic is

declining (Gandra et al. 2014). The present situation arose due to frequent and not

judicious prescription of antibiotics to the patients and manufacturing of the same

by the industries. It is considered that antibiotic resistance and multidrug resistance

developed in pathogenic bacteria due to underuse and overuse of antibiotics.

Besides, the misuse of antibiotics, inadequate diagnostics, and use of antibiotics

in farming, aquaculture, and poultry contribute in resistance.

To treat the pathogens which are resistant to available treatment, new antibiotics

must be discovered. However, there is a need of new antibiotic, but the number of

newly approved drugs is continuously declining since new drugs are being pro-

duced either from natural compounds or by chemical modification of existing drugs

(Donadio et al. 2010). Many tools and databases are available that contain infor-

mation about resistant bacteria genome, drug-resistant genes, COG, annotation, and

many more. These databases will help in fast discovery of new compounds that can

treat the resistant microbes.

2 Mode of Action of Antibiotics

The different antibiotics work by inhibiting different bacterial cellular processes.

The main bacterial cellular processes which are inhibited by the different antibiotics

are biosynthesis of cell wall, polypeptide (protein), DNA, RNA, metabolic path-

ways, cell membrane, etc. (Sefton 2002; Kohanski et al. 2010; Wong et al. 2012).

2.1 Cell Wall Biosynthesis Inhibitors

It has been found that many antibiotics work by inhibiting the biosynthesis of cell

wall (Tomasz and Waks 1975). The antibiotics commonly target bacterial cell wall

formation because animal cells do not have cell walls. Bacterial growth is prevented

by inhibiting peptidoglycan synthesis which is an important part of cell wall. This is

particularly important when bacteria are dividing, because it is needed for the new

cell that is forming. As the bacterium starts to replicate, it first elongates to about

twice its normal size. So, more peptidoglycan is made for the extra surface area. But

when these antibiotics are present, the peptidoglycan cannot cross-link properly, so
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the cell wall is very weak in places. These bacteria are subjected to osmotic lysis

and subsequently die. It means that all of these antibiotics that inhibit peptidoglycan

synthesis are bactericidal because they directly kill bacteria (Fisher et al. 2005).

It is found that β-lactam ringed antibiotics generally inhibit biosynthesis of

bacterial cell wall. The examples are penicillins, carbenicillin, ampicillin, cloxa-

cillin, cephalosporin, etc. The other classes of cell wall biosynthesis inhibitors are

glycopeptides. The examples are bleomycin, vancomycin, decaplanin, etc. These

glycopeptides are mono- or polycyclic peptides synthesized without involvement of

ribosomes and have bound carbohydrate (glycol) moiety in them. They do this by

binding with amino acids within the cell wall that prevents the addition of new units

to the peptidoglycan (Silver 2003). Table 2 shows the classes of antibiotics, names,

and their primary targets which inhibit cell wall biosynthesis.

2.2 Nucleic Acid Biosynthesis Inhibitors

Antibiotics can target nucleic acid (either RNA or DNA) synthesis. Nucleic acids

are very important for a cell as these are the instruction manuals of the cells. When a

cell divides, it must first replicate its DNA to give the new cell. Therefore,

inhibiting nucleic acid synthesis is a good strategy to hinder bacterial growth

(Goldberg 1965). The enzymes that carry out DNA and RNA syntheses are differ-

ent enough between eukaryotic and prokaryotic cells. So there is selective toxicity.

Prokaryotic replication and transcription processes include three steps: initiation,

elongation, and termination. Antibiotic drugs have been developed to target each of

these steps. For example, the antibiotic rifampin inhibits initiation process in RNA

biosynthesis by binding with DNA-dependent RNA polymerase which is involved

in the biosynthesis of RNA using DNA as a template. The antibiotic molecule is

Table 2 Cell wall biosynthesis inhibitory antibiotics

Antibiotic

class Name Primary target

β-Lactam Penicillins, carbenicillin, ampicillin,

penicillin G, cloxacillin, cephalosporins,

monobactams

Penicillin-binding proteins

Glycopeptides Vancomycin, teicoplanin, telavancin,

bleomycin, ramoplanin, and decaplanin

Terminal dipeptide having

alanyl moieties

Others Alafosfalin Terminal dipeptide having

alanyl moieties

Bacitracid Prenylation

Seromycin Alr and Ddl enzyme

Monurol/monuril MurA enzyme

Tunicamycin Conversion of the undecaprenyl

phosphate to the lipid I

intermediate
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thought to bind to the polymerase in such a way that it creates a wall that prevents

the chain of RNA from elongating. In the presence of rifampin, bacteria cannot

transcribe any gene that they need to carry out their normal functions, and therefore

they die (Boehme et al. 2010).

Another example is quinolones that inhibit DNA synthesis by interfering with

the coiling of DNA strands (Khodursky et al. 1995). During DNA replication, DNA

gyrase relieves the torsional stress. As the replication fork moves along the bacterial

chromosome, the strand of the DNA becomes supercoiled or excessively twisted.

DNA gyrase binds to the DNA and cuts one of the strands to untwist before

resealing. However, when quinolones are present, DNA gyrase gets inhibited and

cannot reseal the strand. This causes the bacterium chromosome to break into

smaller fragments and kills bacteria. Table 3 shows the classes of antibiotics,

names, and their primary target which inhibit nucleic acid biosynthesis.

2.3 Protein Biosynthesis Inhibitors

Many antibiotics inhibit the synthesis of new proteins resulting in inhibition of cell

growth/proliferation (Mukhtar and Wright 2005). Antibiotics inhibit bacterial pro-

tein synthesis at the ribosomal level and not eukaryotic protein synthesis due to the

difference in the prokaryotic and eukaryotic ribosomal structures. The bacterial and

eukaryotic ribosomal subunits have differences in RNA to protein ratio, size,

sequence, etc. Due to these distinctions, antibiotics destroy microbes by targeting

bacterial ribosomal subunits; however, eukaryotic ribosomal subunits are not

targeted. Antibiotics work at different levels of translation for inhibiting protein

synthesis like initiation, elongation, and termination. For example, tetracyclines

bind to the 30S ribosomal subunit at the A site and prevent the attachment of

aminoacyl-tRNAs. This hinders the next polypeptide string to be brought onto the

ribosome (Brodersen et al. 2000). Another antibiotic, chloramphenicol, interacts

with the larger (50S) ribosomal subunit and prevents peptide bond formation. When

chloramphenicol is around, the amino acid cannot be linked together into a poly-

peptide string (Wolfe and Hahn 1965). Table 4 shows the classes of antibiotics,

names, and their primary target which inhibit protein biosynthesis.

Table 3 Nucleic acid synthesis inhibitory antibiotics

Antibiotic class Name Primary target

Rifamycins Rifapentine, rifalazil RNA polymerase

(EC 2.7.7.6)

Resistomycins Resistomycin, resistoflavin RNA polymerase

Fluoroquinolones Gemifloxacin, levofloxacin, ofloxacin,

moxifloxacin

DNA gyrase

Sulfonamides Sulfafurazole, sulfacetamide, sulfisomidine Dihydropteroate synthase

Others Novobiocin DNA gyrase
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2.4 Metabolic Activity Inhibition

Chemicals that inhibit the essential component of the metabolism are called anti-

metabolites. These are used as antibiotics and inhibit the use of metabolite. These

are analogues of the physiological metabolites. These analogues compete with the

physiological metabolites resulting in retardation of cell growth or cell division

(Brodie et al. 1958). There are three main types of antimetabolite antibiotics. The

first is the antifolates which impair the function of folic acid leading to disruption in

the biosynthesis of nucleotides (Kompis et al. 2005). For example, methotrexate is

an analogue of folic acid, which inhibits biosynthesis of tetrahydrofolate by binding

and inhibiting dihydrofolate reductase enzyme resulting in ultimate inhibition of

both DNA and RNA biosynthesis (Hawser et al. 2006).

The second type of antimetabolite antibiotics consists of pyrimidine analogues

which mimic the structure of metabolic pyrimidines. Three nucleobases, cytosine

(C), thymine (T), and uracil (U), found in nucleic acids are pyrimidine derivatives,

and the pyrimidine analogues disrupt their formation and consequently disrupt

DNA and RNA synthesis (Kidwai et al. 2003).

The third type of antimetabolite antibiotics is purine analogues. They mimic the

structure of metabolic purines. Two of the four bases in nucleic acids, adenine

and guanine, are purines. Purine analogues disrupt nucleic acid production. For

Table 4 List of antibiotics that inhibit protein biosynthesis

Antibiotic class Name Primary target

Tetracyclines Oxytetracycline, doxycycline,

tetracycline, demeclocycline,

minocycline

Smaller (30S) ribosomal subunit and

subsequently, prevention of binding of

aminoacyl-tRNA onto the ribosome

Aminoglycoside Tobramycin, gentamicin,

amikacin, streptomycin,

spectinomycin

Smaller (30S) ribosomal subunit and

subsequently wrong amino acid incorpo-

ration due to misreading

Macrolides Fidaxomicin, telithromycin,

kitasamycin

Larger (50S) ribosomal subunit, interfere

in chain elongation by interfering in

addition of peptidyl-tRNA to incoming

amino acid

Amphenicols Chloramphenicol,

azidamfenicol

Larger (50S) ribosomal subunit, interfere

in chain elongation

Lincosamides Clindamycin, lincomycin Larger (50S) ribosomal subunit, interfere

in chain elongation by interfering in

addition of peptidyl-tRNA to incoming

amino acid

Pleuromutilins Valnemulin, azamulin Larger (50S) ribosomal subunit, interfere

in positioning of 30-end of tRNA resulting

in inhibition of peptide bond formation by

peptide transferase

Others Thiostrepton Inhibit ribosome-dependent EF-Tu and

EF-G GTPase
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example, azathioprine is the main immunosuppressive cytotoxic substance that is

widely used in transplants to control rejection reactions by inhibiting DNA synthe-

sis in lymphocytes (Plunkett and Saunders 1991).

There are also antimetabolites that are specific for the metabolism of certain

bacteria. That makes them suitable to use as an antibiotic against that bacteria.

Table 5 shows the classes of antibiotics, names, and their primary target which

inhibit metabolic activity.

2.5 Cell Membrane Alteration

Antibiotics damage the bacterial plasma membrane resulting in leaking the cell

contents and disruption of the cross-membrane potential (ionic gradients) and

ultimately leads in cell death (Ernst et al. 2000). Examples of antibiotics that disrupt

the cell membrane include gramicidin and polymyxin. Gramicidin is a heteroge-

neous mixture of six antibiotic compounds. Gramicidin stimulates the movement of

monovalent cations like sodium ions through unrestricted regions since bacterial

cell membrane becomes more permeable. This leads in destruction of ionic gradient

across the cell membrane. Polymyxin interacts with bacterial cell wall phospho-

lipids and damages the structure of the bacterial cell membrane (Mogi and Kita

2009). Table 6 shows the classes of antibiotics, names, and their primary target

which cause cell membrane alteration.

Table 5 Metabolic activity inhibitory antibiotics

Antibiotic class Name Primary target

Sulfonamides and

dapsone

Sulfamethazine, sulfapyridine,

sulfamethoxazole, sulfadiazine,

sulfamerazine, methotrexate

(1) Dihydropteroate synthase

(2) Compete with p-amino

benzoic acid (PABA) preventing

synthesis of folic acid

Pyrimidine analogues Decitabine, gemcitabine, pentostatin DNA synthesis

Purine analogues Azathioprine, mercaptopurine DNA synthesis

Table 6 Cell membrane altering antibiotics

Antibiotic class Name Primary target

Lipopeptides Polymyxin B Outer membrane by binding

with lipopolysaccharides

Heterogeneous peptide Gramicidin Ion channels in the membrane

Others Valinomycin, nonactin, salinomycin Membrane ionophore
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3 Development of Resistance in Bacteria

Antibiotic acts as a ligand for its target which is a specific molecule of the pathogen.

The binding of the antibiotic with the specific target causes killing of the pathogen.

As a natural response, antibiotic resistance emerges in the pathogen population

either through spontaneous changes or through acquisition of resistant genes from

other microbes. Prolonged repeated use of a particular antibiotic leads to a bulk of

resistant cells in the pathogen population (Heinemann 1999). The acquired resis-

tance can be attained by any one of the following biochemical mechanisms:

3.1 Production of Drug-Inactivating Enzymes

Bacteria modify the structure of the antibiotic resulting in their protection

(Alekshun and Levy 2007). They produce enzymes that destroy or inactivate the

antibiotic and thus becoming resistant to that antibiotic. A bacteria becomes

resistant to β-lactam ringed antibiotics by producing β-lactamase capable of break-

ing β-lactam ring in the antibiotic resulting in loss of antibiotic activity. For

example, after breaking the β-lactam ring of penicillin, penicilloic acid produced

is ineffective in binding to penicillin-binding proteins (PBPs), protecting the pro-

cess of cell wall synthesis (Livermore 1995).

Some bacteria protect themselves from aminoglycoside antibiotics, viz., neo-

mycin, netilmicin, tobramycin, gentamicin, and amikacin, by secreting a specific

enzyme which transfers a specific chemical group like phosphoryl group resulting

in loss of antibiotic activity (Mingeot-Leclercq et al. 1999).

3.2 Modification of an Existing Target

Antibiotics work by specifically binding on the target within the bacteria, and even

slight alteration in the target may affect binding of the antibiotic on it. Bacteria

develop resistance by causing alteration in the target site in the antibiotics. Some

bacteria modify their target sites to avoid recognition by the antibiotic. This is the

reason that sometimes even without modification in the antibiotic structure, there is

no binding of it with the target site in the bacteria resulting in no inhibition (Colas

et al. 2000). Change in the bacterial target site generally occurs due to mutagenic

change in the gene. Lambert (2005) reported mutation of DNA unfolding enzymes

and RNA synthesizing enzyme by quinolones and rifamycins, respectively.
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3.3 Alternate Target Production

This mechanism of antibiotic resistance is quite specific. In this mechanism,

bacteria produces a substitute target that is not attacked by an antibiotic. Mean-

while, bacteria also produces a native target that is sensitive to antibiotic. Bacteria

survives as alternative target adopts the role of the native target. Growth of a

specific Staphylococcus aureus does not get inhibited by flucloxacillin due to the

presence of an additional penicillin-binding protein, PB20, which does not bind to

β-lactams (Otero et al. 2013).

3.4 Reduced Cell Permeability

Antibiotic works only when it enters the bacterial cell and reaches up to its target

site where it can interfere with normal functioning of the cell. Antibiotic enters in

the bacterial cell through porin channels present in its outer membrane. Therefore,

some bacteria lose the porin channels which reduce the uptake of many hydrophilic

drugs across the cell wall. This stops the antibiotic from entering across the

bacterial cell wall. A variety of microbes which do not retain violet stain modify

the cell membrane porin channel frequency, size, and selectivity that reduce the

uptake of certain antibiotics, viz., aminoglycosides and β-lactam ringed. The

prohibited entry prevents these antibiotics from reaching their intended targets

(Nguyen and Gutmann 1994).

3.5 Drug Removal from the Cell

Antibiotics can be effective only when they are present in a certain amount at the

target site. Sometimes bacteria throw out the antibiotics almost at the same rate as it

can enter with the help of membrane proteins, which act as export or efflux pump.

Efflux pumps can be specific to antibiotics. The continuous outward flow of

antibiotic from the cell leads to the low concentration of the antibiotic which is

insufficient to elicit any response. Most of the efflux pumps are multidrug trans-

porters capable to flow outward many unrelated antibiotics. This causes multidrug

resistance (Li et al. 1994; Levy 2002a).
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4 Misuse of Antibiotics

Antibiotics are the important drugs. They play important role in counteracting

bacterial infection(s), hinder the spread of the disease, and reduce the complica-

tion(s) if any due to that particular disease. The overuse and misuse of antibiotics

are the main causes for antibiotic resistance including multidrug resistance

(Patterson 2001).

Overuse of the drug is caused when an antibiotic is taken for a condition that

cannot be treated like viral infection or taking wrong doses. Overuse of drug may

happen because of self-prescription and selling of the drug in the open market. This

is because of the lack of imposition of legislation laws that leads to the sale of the

counterfeit drugs which may contain inappropriate quantities of active ingredients.

Overuse may also be because of overprescribing of antibiotics by the doctor that

leads to the excessive demand for antibiotics by the population which ultimately

results in antibiotic-resistant microbes. It has been observed that especially in the

developing countries, antibiotics are mostly prescribed empirically without

confirming bacterial confirmation in the pathology/microbiology laboratory.

Overuse of antibiotics affects the body’s normal flora and disrupts the balance

between beneficial bacteria that help digestion (Blaser 2011).

Underuse of the drug can be manifested by not finishing a course of antibiotics as

prescribed (stopping the antibiotic before the infection is fully cleared from the

body). In developing countries, the unavailability of the drug also leads to the

truncated treatment. This leads the infection to persist and proliferate and subse-

quently may threaten communities with new strains of infectious bacteria. The

situation becomes more difficult to cure and more expensive to treat (Gilberg et al.

2003).

Besides exploitation of antibiotics in the treatment of infection in humans,

antibiotics are also commonly used in farming, animal husbandry, and aquaculture.

The use of antibiotics as pesticides is also done for treating trees and other

agricultural products. Besides, antibiotics are added to animal feed for mass

prophylaxis against infections or for growth promotion particularly for pigs and

poultry farms. The sub-therapeutic doses of antibiotics are also used in water to

treat fish diseases (Smith et al. 1994). Excessive application of antibiotics in

intensive agricultural and farming units particularly pig and poultry farms is

found as a growing threat. This can result in resistant microorganisms, which can

spread to humans. Besides, there are indications that microbial resistance may get

transmitted among animals including humans through food consumption (Marshall

and Levy 2011). Therefore, there is a need to cut unnecessary use of antibiotics in

farming. Responsible antibiotic use in industry and good practice for patients and

physicians are essential to keep resistant bacterial strains curable and antibiotic

treatment affordable to patients (Phillips et al. 2004).
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5 Impact of Antibiotic Resistance

It is being observed that the number of antibiotic-resistant bacteria is increasing day

by day, and therefore, it has become a matter of great clinical and public health

concern (Sacks and Greene 2011). Some of the impacts of the antibiotic resistance

bacteria are:

5.1 Difficult to Treat Infections

Treatable diseases like pneumonia, tuberculosis, and even minor infections have

become incurable because of antibiotic resistance. This leads to the economic and

emotional hurdle on families and on our healthcare system. As many strains of

bacteria are resistant to several commonly used antibiotics, therefore, physicians

will have to think for different antibiotics on trial basis till patient gets relief (Levy

2002b; Klugman 2007).

5.2 Increased Cost and Length of Treatments

There is a correlation between spreading of antibiotic resistance, indoor stay in the

nursing home/hospital, financial cost of the treatment, and diagnostics (Cosgrove

2006). As bacteria are becoming resistant to antibiotics, drugs are becoming

ineffective. So the drugs are replaced with the second line of drugs that are more

expensive and may have more side effects. Infection with an organism/pathogen

that is resistant to multiple drugs results in expensive treatment due to the use of

multiple drugs (Niederman 2001).

5.3 Increased Morbidity and Mortality

Antibiotic resistance leads to inadequate or delayed therapy for several diseases that

shows adverse outcome of an infection. It also resulted in lesser probability to cure

diseases in humans and other eukaryotes including plants and animals. As per

Threat Report 2013 of the Center for Disease Control and Prevention, nearly

23,000 persons die annually after infections caused by drug-resistant bacteria in

USA. Many more patients die of other conditions complicated by infection with

resistant pathogens (Cosgrove 2006).
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6 Controlling Antibiotic Resistance

Antibiotic resistance has become a worldwide worry. It is apprehended that after

infection of an individual by an antibiotic-resistant microbe, there are chances of its

spread in other populations also in addition to tough way of treatment. Therefore, it

has become almost necessary to control the spreading of drug-resistant microbes

with the judicious use of drugs for prophylaxis and treatment. Antibiotic resistance

can be controlled by:

6.1 Prudent Use of Antibiotics

Uncontrolled use of antibiotics must be decreased to retain the potency of existing

antibiotics. To decrease the use of these valuable drugs, physicians, pharmacists,

and the public must avoid careless use. To control the spread of resistance,

antibiotics must be used smartly. Physicians must prescribe antibiotics for micro-

bial loads only and in proper dose for correct amount of time. Besides, doctors

should choose narrow-spectrum drugs to avoid killing populations of beneficial

bacteria along with the disease-causing bacteria. Antibiotic usage for

nontherapeutic purposes in farm animals and agriculture should be discouraged

(Phillips 2001; Bergeron 2014).

6.2 Infection Control

Effective infection control that impedes the growth of bacteria can be used.

Measures such as cleaning of water supplies, proper sanitation, and reduced

overcrowding should be taken to prevent the infection. Other personal preventative

measures like frequent hand washing should be taken. It would ensure that people

become lesser sick. This will lead to reduce transfer of resistant infections to others

(Weinstein 2001).

6.3 Use of Vaccines

Vaccines prevent infections and reduce the need for antibiotics. The need for

antibiotics can be reduced by using vaccines that may help in prevention of

infections. Vaccine can be used in young children who are more vulnerable to

infection. A promising solution of evolving this bacterial resistance is the develop-

ment of new vaccines. Efforts must be done that vaccines be effective for a longer
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period if not for lifetime. This would also be a solution to treat other infectious

diseases for which there is a lack of efficacious medication (Mishra et al. 2012).

6.4 Regulations

Regulations are required for the use of antibiotics, and these may be like a doctor’s
prescription requirement for a patient to purchase an antibiotic. There must be

mandatory requirement of the label on the antibiotic indicating that it must be taken

only on the advice of a doctor and for confirmed bacterial infection only. It must not

be sold without a photocopy of the prescription by a qualified doctor. Regulations

must be such that punitive action must be taken against the pharmacist if found

selling it without prescription (Gould 1999; Andersson and Hughes 2010).

7 Overcoming the Drug Resistance

Researchers are engaged to search alternate ways to combat antibiotic resistance

which will strengthen the potency of prevailing drugs. It can be done by modifying

the antibiotics in such a way that bacterial enzymes responsible to cause modify the

antibiotics could not attack them. It may also be done by using additional enhancer

like silver that enhances the potency of the antibiotic against gram-negative bacte-

ria (Morones-Ramirez et al. 2013). Reactive oxygen species like superoxide can be

used with drugs which can make them more effective as they affect the bacterial

physiology (Kohanski et al. 2010). Physicians may be advised to prescribe “decoy”

molecules along with the antibiotic. The “decoy” contains the qualities of an

antibiotic but is not the actual antibiotic. The antibiotic is hidden behind the

decoy molecule, and the secreted bacterial enzyme is unable to attack the antibiotic.

Decoy molecules, viz., clavulanic acid, have been tried for making the secreted

enzyme ineffective against the β-lactam ringed family. This is the best solution

because it does not require the development of a new antibiotic. If more antibiotics

are produced and new antibiotics are replacing the older ones, the bacteria will

continue to grow resistance against the new antibiotic (Shamnas et al. 2013).

Another approach to solve the problem of antibiotic resistance is to interfere in

the mechanism that promotes resistance instead of the attempt to kill bacteria. As an

example, if a mechanism that duplicates or moves the bacteria’s genetic material is

interfered, then it can lead to the elimination of the transfer of resistant genes

between bacteria.
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8 New Antibiotic: Teixobactin

The fate of modern medicines depends on the potent antibiotics (So et al. 2010).

Between 1930 and 1962, there are reports of more than 20 novel classes of

antibiotics which have been discovered globally (Coates et al. 2011). These dis-

coveries provided effective cure for many present-day known diseases. However,

with increased cases of drug resistance, requirement is being felt for new com-

pounds (Thomson et al. 2004). Almost after 30 years, in 2015 a new antibiotic

called teixobactin has been found to treat many common microbial diseases, viz.,

tuberculosis and septicemia. Ling et al. (2015) showed its mode of action that it

binds with the lipid II and lipid III which are precursors of peptidoglycan and cell

wall’s teichoic acid, respectively. This binding inhibits the biosynthesis of bacterial
cell wall.

Teixobactin has been found in soil bacteria and using a high-throughput screen-

ing device called the iChip. The iChip has many plates with a large number of wells

covered by twofold of semipermeable membranes. It is used for concurrent isola-

tion and growth of uncultured microbes. Teixobactin is produced from the bacteria

named Eleftheria terrae. Teixobactin has been found effective on mice infected

with specific S. aureus, antibiotics tolerant strains of Mycobacterium tuberculosis
and Streptococcus pneumonia. The properties of this compound may be exploited

in developing new antibiotics likely to avoid development of resistance.

9 Databases and Tools

9.1 CARD

It is a database available at http://arpcard.mcmaster.ca. This database includes a

variety of data that describe the resistance genes and associated proteins, antibiotics

and their target, and literature concerning antibiotic resistance. CARD is updated

continuously and curated using concurrently published data and continuous increas-

ingly Antibiotic Resistance Ontology (ARO). At present, CARD is having a

sequence of over 1600 antibiotic-resistant genes. It is integrated with other

resources like NCBI and PDB. This may be used for searching all publications

related to gene annotations, ontology, and connections with other online databases

(McArthur et al. 2013).

9.2 ARDB

Antibiotic Resistance Genes Database (ARDB) contains data about tolerance and

nucleic acid sequences annotated with much information regarding linkages to
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other nucleic acid and protein sequence databases, CDD annotations, COG, ontol-

ogy, tolerance profile, mode of action, etc. It can be accessed from http://ardb.cbcb.

umd.edu/. Till last update, this database has details for 23,137 tolerant genes,

632 genomes, 267 genera, 1737 species, and 2881 vectors and plasmids. Users

can access the ARDB either by keyword search and browsing or by BLAST. Any

user can identify and annotate new antibiotic-tolerant genes by blasting ARDB

sequences. For that, one may use regular BLAST and/or RPS-BLAST tools avail-

able within the ARDB database (Liu and Pop 2009).

9.3 ARGO

ARGO stands for Antibiotic Resistance Genes Online that is featured to collect and

archive antibiotic-resistance genes in bacteria. The current version of ARGO

includes genes that are responsible for resistance to tetracycline, β-lactams, and

vancomycin. It is available at http://www.argodb.org/. The ARGO can be searched

either by sequence, gene finder, or classification of antibiotic. It is having links of

APUA, ROAR, CDC, NRSA, EARSS, and VRSA databases and many more

(Scaria et al. 2005).

9.4 MvirDB

It can be accessed at http://mvirdb.llnl.gov/. This contains detailed information

regarding microbial virulence factors, antibiotic-tolerant genes, and proteinaceous

toxins. The MvirDB collects data from various other online sources like SCOR-

PION, Tox-Prot, the PRINTS virulence factors, VFDB, TVFac, ARGO, Islander,

and subset of VIDA. MvirDB provides BLAST tool that can be used to align

sequences of proteins and nucleic acids within it. To access the useful information,

user can use browser tool. This database has automated system that updates the

database weekly. It is having fast annotation system that automatically annotates

protein entries (Zhou et al. 2007).

9.5 ARG-ANNOT

This is a tool which identifies the prevailing and suspected new antibiotic-tolerant

genes in microbial genomes. It uses local blast program in Bio-Edit software to

analyze sequences without user interface. Information required regarding

antibiotic-tolerant genetic determinants to run the tool is taken from the literature

and databases. To test the software, a database has been built that included 1689

antibiotic-resistant genes. Web interface for ARG-ANNOT is available on http://en.
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mediterranee-infection.com/article.php?laref¼283%26titre¼arg-annot-. This link

provides access to Bio-Edit and other tools for BLAST and post-BLAST analyses

and tutorials to create a local database (Gupta et al. 2014).

9.6 ResFinder

ResFinder identifies acquired antimicrobial-resistant genes in total or partial

sequenced isolates of bacteria. It is publically accessible at https://cge.cbs.dtu.dk/

services/ResFinder/. ResFinder is updated continuously for newly identified

antibiotic-tolerant genes. The tolerant genes can be identified for one or more

antimicrobial classes at a same time using BLAST. ResFinder was created using

1862 sequences having 1411 antibiotic-tolerant genes and 23 de novo-sequenced

isolates from which it identifies the acquired resistant genes. ResFinder is a web

server that easily identifies the acquired antibacterial-tolerant genes in sequenced

isolates (Zankari et al. 2012).

10 Conclusion

Development of antibiotic resistance has limited our repertoire of effective drugs,

which creates a problematic situation to treat the bacterial infections. This threatens

the effective prevention and treatment of resistant microbes.

Hence, there is a requirement of action in society and all government sectors.

Although antibiotic resistance is a natural phenomenon, it is rapidly spreading due

to human activities. Activities like misuse of antimicrobial drug in animal hus-

bandry and farming support the disclosure and assemblage of antibiotic-tolerant

strains. In addition, low-quality preventive measures and ways to curb menaces also

aid in development of antibacterial tolerance. As antimicrobial resistance is rapidly

growing, it will cause difficulty in treating bacterial infection, and there will be

increased cost and length of treatments and more side effects because of the use of

multiple and more powerful medications. Resistance can be overcome by strength-

ening the existing antibiotics either by using an additional molecule or to interfere

with the mechanisms that promote resistance. Research is needed to find the best

strategies for the optimal use of antibiotics and to find the novel class of antibiotics.

To enhance research about antibiotics, various databases and tools are available

containing data from bacterial population, genomics, drugs, mechanism of action,

ontology, COG, CDD annotations, and many more. Now it is being realized that

antibiotics must be taken as special category medicines, and efforts must be done to

protect them as these are the wealth for humanity.
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Drug-Resistant Tuberculosis

Lili Liang, Yun Ma, Xin liu, and Yamin Lv

Abstract The incidence of drug-resistant tuberculosis (TB), particularly

multidrug-resistant TB and extensively drug-resistant TB, is increasing and is a

major complication in global attempts to control TB. New anti-TB drugs and rapid

diagnostics have been developed; however, the pathogenesis of drug resistance

remains unclear. Fragmented treatment regimens, efflux pumps, and pharmacoki-

netic variability may all play a part in the rise of drug-resistant pathogens. Drug-

resistant TB continues to be associated with poor treatment outcomes and high

mortality rates.

1 Introduction

Tuberculosis (TB) is an ancient disease and one of the world’s deadliest commu-

nicable diseases. The World Health Organization (WHO) TB estimates for 2013

included approximately 9.0 million cases and 1.5 million deaths. Although global

rates of new TB cases have been decreasing since 2005, cases of multidrug-resistant

TB (MDR TB) and extensively drug-resistant TB (XDR TB) have been increasing

and are out of control in some regions, including Africa. Drug-resistant TB is

currently one of the most important threats to global control of the disease (Dye

et al. 2002). The proportion of MDR TB is higher among people who have been

treated previously (20.5%) and lower among new cases (<3%). Eastern European

and central Asian countries have the highest levels of MDR TB: 35% of new cases

and 75% of previously treated cases. Drug-resistance surveillance data from 108 of

144 countries (75%) indicate that approximately 480,000 individuals developed

MDR TB in 2013. Furthermore, approximately 9% of MDR TB cases were actually
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XDR TB. More than half of these MDR TB cases were estimated to have occurred

in India, China, and the Russian Federation.

Mortality rates for untreated TB are high. Tiemersma et al. (2011) conducted a

natural history study of TB and found that around 70% of HIV-negative patients

with sputum smear-positive pulmonary TB and 20% of patients with culture-

positive (but smear-negative) TB died within 10 years.

According to WHO, satisfactory treatment of XDR TB requires an 8-month

intensive phase and a 20-month minimum overall treatment duration. Treatment

regimens including second-line drugs are more toxic, more expensive, and less

convenient than the standard anti-TB regimen. Drug-resistant TB, particularly

MDR TB and XDR TB, requires a longer duration of treatment and has worse

outcomes than drug-susceptible TB (Dheda et al. 2010a; Jacobson et al. 2010;

Kvasnovsky et al. 2011). For instance, only 48% of patients with MDR TB are

treated successfully, with the disease incurring mortality rates of 15% and a rate of

lost of 28%. Treatment outcomes for patients with XDR TB are worse, with a

success rate of 33% and a mortality rate of 26% (WHOGlobal Tuberculosis Report

2013).

Analysis suggests the proportion of new MDR TB cases remained at approxi-

mately 3.5% over the period 2008–2013. However, although drug-resistant TB,

especially MDR TB and XDR TB, represents a small proportion of the patients with

TB in countries with a high TB burden, these patients consume a large proportion of

TB-control resources. In South Africa, the per-patient cost of treating XDR TB was

US $26,392 (in 2011), four times greater than that for MDR TB and 103 times

greater than that for drug-sensitive TB. Although drug-resistant TB represents only

a fraction (2.2%) of the total case burden, it consumes 32% of the total estimated

national TB budget in South Africa (Pooran et al. 2013). This disproportionate

amount of total TB costs is due to the high cost of managing drug-resistant TB, high

drug prices (Kang et al. 2006), implementation of the new Xpert MTB/RIF assay as

the primary TB diagnostic test (Theron et al. 2011), and the need for extensive

supervised patient care, all of which are likely to increase substantially.

2 Pathogenesis and Mechanisms of Drug-Resistant

Tuberculosis (TB)

Drug-resistant TB develops in two ways. The first is primary or initial drug

resistance: an individual is infected with a strain of M. tuberculosis that is already
drug resistant. This kind of infection usually occurs in regions with a high preva-

lence of drug-resistant TB. The second is acquired or secondary drug resistance:

resistance to the TB treatment develops as a result of inadequate or incorrect

treatment regimens, efflux pumps, and genotype. Treating drug-susceptible TB

with monotherapy increases the risk of drug-resistant mutations being selected

and eventually becoming the dominant strain.
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2.1 Selection of Drug Resistance

Spontaneous gene mutations of chromosomes that encode the target of anti-TB

drugs and related M. tuberculosis metabolic enzymes are an important cause of

single-drug resistance, and MDR is due to a variety of these drug-target gene

mutations occurring. Luria and Delbruck (1943) famously showed that resistance-

related M. tuberculosis genetic mutations were independent of selection pressure.

Although the rate of spontaneous mutation is low in individual patients, there is

concern that, given the large bacterial burden of up to 109 units and the level of

bacterial replication, pre-existingM. tuberculosis resistant to one anti-TB drug may

be possible in some patients.

The probability of pre-existing drug resistance to two or three anti-TB drugs is

very small. However, resistance can be acquired, for example, if a patient receives

long-term monotherapy, does not comply with treatment regimens, or receives a

drug combination that is a pharmacokinetic mismatch (e.g., drugs in the combina-

tion have markedly different pharmacokinetic half-lives). The pharmacokinetic

mismatch between rifapentine and isoniazid is thought to be a reason for the high

rate of acquired rifamycin resistance among patients co-infected with TB and HIV

who were treated with once-weekly rifapentine and isoniazid (Vernon et al. 1999).

In this situation, patients actually received monotherapy. The initial drugs killed

most of the susceptible M. tuberculosis subpopulation, and the pre-existing drug-

resistant subpopulation was then able to replicate, eventually replacing the drug-

resistant population. This form of resistance is known as acquired resistance, and

accumulation of acquired resistance may cause MDR and XDR TB.

2.2 Acquired Drug Resistance Based on Drug
Concentrations and Efflux Pumps

In some cases, drug-sensitive TB will progress to drug-resistant TB even if patients

adhere to treatment (Calver et al. 2010). Some studies have shown that patients with

low serum levels of isoniazid and rifampin may have a longer time to culture

conversion and a worse overall treatment outcome, with the low concentration of

anti-TB drugs possibly playing a role in acquired drug resistance (Blumberg et al.

2003; Jayaram et al. 2004; Weiner et al. 2005; Park et al. 2015). Studies using the

hollow fiber system model of TB have shown that when one fluoroquinolone drug is

used to kill M. tuberculosis, the bacteria easily develop resistance to that drug

despite the drug concentration being much higher than the minimum inhibitory

concentration (Gumbo et al. 2004, 2005). Other studies using the hollow fiber

system model of TB also showed rapid development of resistance to isoniazid,

rifampin, pyrazinamide, and ethambutol (Gumbo et al. 2007a, b, 2009). Acquired

drug resistance is associated not only with the area under the curve but also with

peak drug concentrations. Pasipanodya et al. (2012) conducted a meta-analysis and

Drug-Resistant Tuberculosis 195



found that the faster the isoniazid underwent acetylation, the higher the rate of

acquired drug resistance. Another study found that drug concentrations and phar-

macokinetics varied widely between patients. Among a sample of 142 patients, the

ratio of the highest to lowest dose for isoniazid, rifampin, and pyrazinamide was

2.7; the ratios of the highest peak concentration to lowest concentration was 102 for

rifampin, 31 for isoniazid, and 63 for pyrazinamide, and peak drug concentration

and the area under the curve predicted more than 91% of treatment failures.

Patients with low rifampin and isoniazid peaks and area under the curve concen-

trations developed acquired drug resistance (Pasipanodya et al. 2013).

Acquired drug resistance is also associated with many resistance efflux pumps,

which can protect M. tuberculosis replication and enable generation of chromo-

somal mutations (Srivastava et al. 2010; Pasipanodya and Gumbo 2011). Dose-

scheduling studies found that once-weekly therapy regimens, which are associated

with more abrupt changes in drug concentrations than are regular daily therapy

regimens, were associated with efflux pump-related resistance. Efflux pumps are

also a cause of clinically relevantM. tuberculosis drug resistance (Jiang et al. 2008;
Spies et al. 2008).

2.3 Drug-Resistant TB Genotypes

Given M. tuberculosis has a low mutation rate and a slow replication rate, it is

unclear how M. tuberculosis acquires resistance to multiple anti-TB drugs, espe-

cially under treatment with multiple drugs. The target encoding gene mutation of

clinical drug-resistant M. tuberculosis isolates is closely related to drug resistance.

The biological variability of M. tuberculosis is the main molecular cause of drug

resistance; Table 1 shows the M. tuberculosis genes that are resistant to common

anti-TB drugs. Recently, whole genome sequencing of clinical M. tuberculosis
isolates has revealed the importance of mutation in the emergence of drug resis-

tance (Ioerger et al. 2010; Casali et al. 2012). Sequencing of M. tuberculosis from
patients for whom drug treatment failed revealed that multiple new drug-resistance

mutations can occur (Sun et al. 2012). Multidrug resistance may pre-exist in some

patients who were initially infected with a drug-susceptible strain of

M. tuberculosis (Ford et al. 2013). Moreover, several studies have suggested that

certain strains of M. tuberculosis may be associated with multi-drug resistance

(Borrell and Gagneux 2009). Some drug-susceptible TB treated with ‘DOTS’
(directly observed treatment, short-course) progressed to MDR TB, which might

be due to hypermutable M. tuberculosis strains in patients who also rapidly metab-

olize first-line drugs (Gumbo 2013). Mutation rates can differ both between and

within genotypes, and the reasons for this are unclear. Some whole genome

sequencing studies have shown that target-encoding mutations are relative to

compensatory mutations in the M. tuberculosis genome (Comas et al. 2012; Sun

et al. 2012). It is possible that the drug-resistance encoding mutation could affect

both the strain structure and the antigen of M. tuberculosis.
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3 Diagnosis of Drug-Resistant TB

Laboratory testing is important for the confirmation of TB, especially drug-resistant

TB. The identification of drug-resistant TB needs to detect M. tuberculosis, culture
it, and then identify the bacterial species and strains. A drug-sensitivity test (DST)

is then conducted using either liquid or solid methods or a WHO-approved molec-

ular method.

3.1 Definitions of Drug-Resistant TB (WHO, 2013)

Mono-resistance: resistance to one first-line anti-TB drug only.

Poly-resistance: resistance to more than one first-line anti-TB drug, other than both

isoniazid and rifampin.

MDR: resistance to at least isoniazid and rifampin.

XDR: resistance to any fluoroquinolone and at least one of three injectable second-

line drugs (capreomycin, kanamycin, and amikacin), in addition to multidrug-

resistance.

Rifampin resistance: resistance to rifampin detected using phenotypic or genotypic

methods, with or without resistance to other anti-TB drugs. It includes any

resistance to rifampin, whether mono-resistance, poly-resistance, MDR,

or XDR.

Table 1 Genetic mutations related to drug-resistant Mycobacterium tuberculosis

Anti-tuberculosis

drug

Mutated

gene

Minimum inhibitory

concentration

Percentage of

mutation Gene product

Isoniazid katG
inhA

0.02–0.2 50–95 Catalase peroxidase

reductase analog

Rifampin rpoB 0.05–1 95 Subunit of RNA

polymerase

Pyrazinamide pncA 16–50(PH 5.5) 72–97 Pyrazinamidase

Ethambutol embB 1–5 47–65 Arabinosyltransferase

Streptomycin RpsL rrs
gidB

2–8 52–59; 8–21 Ribosomal protein S12

16S rRNA

Amikacin rrs 2–4 76 16S rRNA

Capreomycin tlyA Methyl transferase

Fluoroquinolones gyrA
gyrB

0.5–2.5 75–94 DNA gyrase A subunit

Ethionamide etsA
etsB

2.5–10 37 Nitric oxide

Paminosalicylic

acid

inhA
thyA

1–8 36–56 Synthesis of thymidine

Drug-Resistant Tuberculosis 197



3.2 Phenotypic Drug Sensitivity Test (DST)

3.2.1 Liquid and Solid Methods

Solid DST methods can be used for sputum, other body fluids, and other samples to

detect different concentrations of first-line and second-line anti-TB drugs. How-

ever, the specificity of the solid method is low, the process is complex, and

biological security is difficult to maintain. These problems limit the clinical appli-

cation of the conventional solid methods (Martin et al. 2008; Visalakshi et al. 2010).

The liquid method can shorten the detection time but still needs 4–6 weeks to

obtain a DST result, and the instrument and reagents are expensive (van Kampen

et al. 2010).

3.2.2 Drug-Resistance Test by Phage

Subramanyam et al. 2013 reported that the sensitivity and specificity of phage lysin

in detecting M. tuberculosis from sputum specimens was 90% and 81%, respec-

tively, compared with conventional Lowenstein–Jensen (LJ) medium. The agree-

ment between the methods was 87%, and the rate of contamination was 9.3%

3.2.3 Microscopic Observation Drug Susceptibility

Microscopic observation drug susceptibility (MODS) entails using an inverted

microscope to identify bacteria by observing the structure of the strain in the liquid

medium. Anti-TB drugs can be added to the liquid and the DST completed directly.

Agarwal et al. 2014 reported that the identification rate between the MODS assay

and the reference solid LJ/liquid mycobacteria growth indicator tube (MGIT)

culture was 94.8% (95% confidence interval 92.3–96.5). Huang et al. (2013)

reported that the sensitivity and specificity of the MODS assay to detect resistance

to pyrazinamide were 97.8% and 96.5%, respectively. MODS is the best method

with which to detect pyrazinamide-resistant TB in resource-limited regions.

3.3 Genotype DST

The molecular DST (MDST) provides a rapid TB diagnosis and detection of drug

resistance with satisfactory sensitivity and specificity. These new molecular tests

can detect TB drug resistance within 2 h. The Xpert MTB/RIF assay is a new test

that can detect whether the TB is active and whether theM. tuberculosis is resistant
to rifampin.
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3.3.1 Line Probe Assay

The GenoType MTBDRplus assay can rapidly detect M. tuberculosis genes that

confer resistance to rifampicin and isoniazid; both sensitivity and specificity are

satisfied (Crudu et al. 2012; Raveendran et al. 2012; Aubry et al. 2014). WHO

recommends this testing for the detection of MDR TB.

3.3.2 Xpert MTB/RIF Assay

The Xpert MTB/RIF assay can both detect M. tuberculosis and complete DST for

rifampin within 2 h. Its advantages include that it deals directly with sputum

specimens, it avoids contamination and biological hazards, and the operation

process is simple (Menzies et al. 2012). The Xpert MTB/RIF assay is validated

for sputum, and research indicates it can be used to diagnosis extra-pulmonary TB

(Causse et al. 2011; Hillemann et al. 2011; Vadwai et al. 2011; Biadglegne et al.

2014).

4 Therapy of Drug-Resistant TB

To gain worldwide control of TB, treatments for drug-resistant TB, especially MDR

TB and XDR TB, are urgently needed. Treatment strategies for drug-resistant TB

should be based on the specific drug resistance and treatment history, among others.

Treatment for drug-resistant TB currently involves an integrated strategy that

includes chemotherapy, immunotherapy, interventional therapy, surgery, tradi-

tional Chinese medicine, and nutritional support.

4.1 Chemotherapy for Drug-Resistant TB

Chemotherapy remains the primary treatment for drug-resistant TB. The chemo-

therapy regimen should be based on anti-TB medication history, drug resistance,

and the prevalence of M. tuberculosis strains in the region.

Mono-resistant TB often involves initial drug resistance or primary drug-

resistant TB, and the standard chemotherapy for the particular category of TB

will be effective. However, the lack of four effective core drug combinations within

the standard chemotherapy regimens means the potential does exist for the cure rate

to decrease or the relapse rate to increase. As a result, especially for mono-

resistance to rifampin, the chemotherapy regimen should be adjusted appropriately

to avoid the possibility of treatment failure and the risk of acquired drug resistance.
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MDR or poly-resistant TB are both more complex than mono-resistant TB. Drug

resistance takes many forms but usually falls into one of three combinations:

resistance to two drugs, resistance to three drugs, or resistance to four drugs.

Patients with TB treated with the standard chemotherapy regimen are at greater

risk for MDR TB, and treatment regimens should be adjusted to ensure patients

receive four drugs that are effective or to which the TB is likely susceptible.

WHO (2011) recommends three basic treatment strategies for MDR TB—

standardized, individualized, or empirical—as outlined in the following sections.

4.1.1 Standardized Treatment

Standardized treatment is a group of treatment regimens designed according to DST

information and categories of patients within a country or region; patients with the

same type of disease should be treated with the same treatment regimen within a

country or region.

4.1.2 Individualized Treatment

Individualized treatment is based on the history of anti-TB treatment received and

DST results for each patient (often DST is conducted for both first- and second-line

drugs). Different patients should receive different individualized treatment

regimens.

4.1.3 Empirical Treatment

Each patient’s treatment regimen should be determined according to their anti-TB

medication history and the DST of a country or region. The treatment regimen

should be adjusted according to DST results (often DST is conducted only for a

limited number of drugs). This type of treatment is mainly suitable for regions in

which individual DST is not available. The basic strategy also applies to other types

of drug-resistant TB.

The principles for the treatment of MDR TB with chemotherapy are as follows:

(1) Regimens include at least four drugs to which the isolate is (or probably is)

susceptible. (2) Regimens include a later-generation fluoroquinolone (e.g.,

moxifloxacin or levofloxacin) plus an injectable drug (e.g., amikacin or kanamy-

cin), any first-line drug to which the isolate is susceptible, and a fourth drug (e.g.,

cycloserine, terizidone, ethionamide). (3) Injectable drugs are used for at least

6 months, and the total duration of treatment is 18–24 months.

Effective chemotherapy for the treatment of XDR TB is still lacking. Treatment

is often based on nutritional support, symptom relief, improving respiratory func-

tion, and other measures to control infection with other pathogens. For disease with

low-level resistance to a fluoroquinolone but sensitive to a later-generation
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fluoroquinolone (moxifloxacin is often used even when a DST indicates resistance

to fluoroquinolones) (Jacobson et al. 2010) and possibly sensitive to a drug such as

amikacin or capreomycin (administered via injection), the anti-TB treatment reg-

imen could consist of the above-mentioned later-generation Fluoroquinolone,

Amikacin, or Capreomycin and two drugs from the fifth group of anti-TB drugs

(see Table 2). Linezolid and bedaquiline may shorten the time of sputum negative

conversion for patients with XDR TB, but the cost and toxic effects are significant

issues (Lee et al. 2012; Worley and Estrada 2014; Guglielmetti et al. 2015).

4.2 Immune Therapy

About 20% of TB cases self-cured before the age of anti-TB chemotherapy, which

supports the theory of immune-mediated clearance of M. tuberculosis. Some

studies have reported immune-mediated clearance (Eum et al. 2010; Basile et al.

2011; Lindau et al. 2013). The most two active and acceptable immune agents are

cytokine and Mycobacterium vaccine.

Many studies have shown the ability of immunomodulatory drugs to improve

TB treatment outcomes (Dlugovitzky et al. 2006; Dheda et al. 2010b; Faujdar et al.

2011; Gao et al. 2011; Yang et al. 2011; Butov et al. 2012; Gupta et al. 2012a, b;

Skrahin et al. 2014). Immunomodulatory drugs currently in clinical use include

mycobacterium vaccae, interferon-γ, recombinant human interleukin 2, steroids,

and tumor necrosis factor antagonists, among others. Immune agents are not

recommended for patients with mono-resistant TB who are in good physical

condition. Patients in poor physical condition can be treated with one kind of

immune agent. Patients with MDR TB or XDR TB can be treated with one or

two select immune agents depending on their physical and financial status.

Table 2 Alternative grouping of anti-tuberculosis agents (2011)

Grouping Drugs

Group 1: first-line oral agents Isoniazid (H); rifampin (R); ethambutol (E);

pyrazinamide (Z); rifabutin (Rfb)

Group 2: injectable agents Kanamycin (Km); amikacin (Am); capreomycin

(Cm); streptomycin (S)

Group 3: fluoroquinolones Moxifloxacin (Mfx); levofloxacin (Lfx); ofloxacin

(Ofx)

Group 4: oral bacteriostatic second-line

agents

Ethionamide (Eto); protionamide (Pto); cycloserine

(Cs); terizidone (Trd); P-aminosalicylic acid (PAS)

Group 5: agents with unclear efficacy

(not recommended by WHO for routine

use in patients with MDR TB)

Clofazimine (Cfz); linezolid (Lzd); amoxicillin/

clavulanate (Amx/Clv); thioacetazone (Thz);

imipenem/cilastatin (Ipm/Cln); high-dose isoniazid

(high-dose H); clarithromycin (Clr)
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4.3 Interventional Therapy

The widespread clinical use of bronchoscopy in recent years means anti-TB drugs

administered via percutaneous lung puncture or bronchoscopy have become an

effective treatment method for drug-resistant TB, particularly MDR TB.

Interventional therapy is gradually being used as a supplementary treatment

method to cure drug-resistant TB (Yang et al. 2012), and we suggest that, as long

as conditions permit, interventional therapy should be used as early as possible for

drug-resistant TB, particularly MDR TB.

4.4 Surgical Therapy of Drug-Resistant TB

In the past 10 years, the increase in drug-resistant TB has seen a corresponding

increase in the number of patients requiring surgical treatment. Surgical therapy has

become more important in the treatment of drug-resistant TB, especially MDR TB.

The current theory for surgical therapy is that, for MDR TB, as long as lesions or

cavities are confined to one lung or a lung lobe, surgery should be undertaken early

to ensure a high cure rate and the lowest possible spread rate (Branscheid et al.

2003; Cummings et al. 2012; Suarez-Garcia and Noguerado 2012; Weyant and

Mitchell 2012; Marrone et al. 2013; Calligaro et al. 2014; Mordant et al. 2014).

However, surgery is not the end therapy for MDR TB. Generally, patients with

MDR TB should receive more than 2 months of anti-TB chemotherapy before

surgery as the chemotherapy could reduce spread to the surrounding lung tissue.

Patients still require 12–24 months of chemotherapy after surgery.

4.5 Traditional Chinese Medicine Treatment and Nutrition
Support

Traditional Chinese medicine can improve the immune function, physical condi-

tion, and clinical symptoms of patients with drug-resistant TB (Wang et al. 2015).

Treatment of drug-resistant TB can lead to malnutrition, which can lead to wors-

ening of drug-resistant TB. Therefore, patients with drug-resistant TB require

nutritional support (Chisti et al. 2013; Hood 2013).
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5 Perspectives

The early diagnosis of TB and drug-resistant TB is necessary for the global control

of this disease. The slow growth of M. tuberculosis is the greatest obstacle to rapid

diagnosis and DST. The further development of diagnostic tools, especially molec-

ular methods, mean rapid detection of M. tuberculosis and specific chromosome

mutations associated with phenotypic resistance to treatment will be possible.

However, the cost efficiency of and appropriate settings for these new molecular

methods will limit their clinical use. We hope more new laboratory tests and anti-

TB drugs will be used clinically to improve drug-resistant TB-related mortality

rates and treatment outcomes.
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Emergence of Drug Resistance

in Mycobacterium and Other Bacterial

Pathogens: The Posttranslational

Modification Perspective

Manu Kandpal, Suruchi Aggarwal, Shilpa Jamwal,

and Amit Kumar Yadav

Abstract Microbes portray an immense capacity to colonize their niche by seques-

tering all resources for themselves and producing antibiotics to thwart the growth of

other microbes. Antibiotic resistance by microbes evolved to overcome this chal-

lenge. Humans have long exploited the antibiotics to control infectious diseases.

This development greatly improved the global health and decreased the mortality

rate, thereby increasing average life expectancy. Drug resistance also arose like

natural antibiotic resistance and is accelerating at an alarming rate which poses a

foreboding challenge for global health. Posttranslational modifications (PTMs)

have been recognized for their role in regulating cellular dynamics. Their role in

development of drug resistance seems to be hidden but fundamental. For effective

drugs against infectious pathogens, it is imperative to understand the basis of drug

resistance and persistence. Here, we initially discuss the mechanisms of drug resis-

tance in Mycobacterium and other bacterial species and eventually consider

how PTMs are involved in emergence of intrinsic or adaptive drug resistance.

This chapter aims to motivate the researchers in the field to dig deeper into the

proteomes of pathogens to map the role of PTMs in drug resistance. A deep under-

standing of the roles might be the boost required for designing better antibiotics for

tackling disease burden in the future.
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1 Introduction

Antibiotics have been in existence since the antiquity. Salvarsan, a synthetically

developed antibiotic (Hüntelmann 2012), dates back more than a century (1907)

and was subsequently followed by development of penicillin and sulphonamides
(italics is used for drug names). Penicillin, discovered serendipitously in 1928 by

Alexander Fleming, paved the way for naturally occurring antibiotics. It also

inspired several synthetic antibiotics (Cohen 2000), which were developed and

used extensively to treat infectious diseases for several decades in the mid-1900s.

The antibiotic boom lasted for a short while due to emergence of drug resistance

in pathogens. The emergence of multidrug-resistant pathogens such as Myco-
bacterium tuberculosis (Mtb), Clostridium difficile, Klebsiella pneumoniae, and
many more was a huge blow to the promise of antibiotics (Oldfield and Feng 2014).

Parasitic bacteria like Mtb invade the host cells and subvert their defense mecha-

nism and exploit the host metabolism for their own benefit. The first antibiotic

against tuberculosis was designed in 1933, but as soon as the cure got popular, a

major hurdle arose in the form of antibiotic resistance. Drug resistance in several

other bacteria was also observed soon after the introduction of the corresponding

antibacterial irrespective of the pathogen. Since most bacterial drugs are antibiotics,

we will use the terms “antibiotic” and “drug” interchangeably from here on.

Antibiotic resistance has emerged as a major evolutionary fight back mechanism

of pathogens which helps them survive in the face of competitive challenge from

other organisms. This weakens an extremely important tool for treating various

infectious diseases. There are several modes of combating drug resistance in

bacteria but majorly these can be intrinsic or acquired. In intrinsic resistance,

resistant bacterial mutants exist before drug/antibiotic treatment and are positively

selected if they can survive the drug insult. Another mechanism is adaptive resis-

tance wherein the bacterial pathogens develop resistance by altering its molecular

physiology in response to the antibiotic encounter.

Mass spectrometry (MS)-based proteomics has shown that not only eukaryotes

but even prokaryotes decorate their proteins with a large number of posttrans-

lational modifications. Recently, phosphoproteomes of two strains of Myco-
bacterium have been thoroughly characterized to identify the differences in their

phosphoproteomes of the two strains to characterize their virulence. With the help

of such decisive works, it has now been established that PTMs are very important in

bacterial physiology and virulence (Szymanski et al. 2002). Methods of PTM

enrichment and identification have improved a lot in the last few decades. Bacteria

exploit several different mechanisms to modulate its metabolism to escape the

effects of drugs. A protein in a single conformation cannot do many functions.

Bacteria, being simple unicellular organisms, have small genome and therefore

small proteome. To bring about quick changes at molecular level and to increase the

repertoire of available proteins, bacteria use posttranslational modifications (PTMs)

that are simple chemical additions to already existing proteins that provide an addi-

tional layer of functionality. PTMs like phosphorylation and acetylation are
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involved in various signaling cascades; thus addition and removal of PTMs brings

about crucial changes in protein structure and function. Most signaling changes are

perceived and transduced by receptors aided by their PTM level changes. Bacteria

are known to regulate their metabolism and virulence through posttranslational

modifications (Broberg and Orth 2010). Resistant strains of bacteria have also

devised alternate ways to regulate the metabolism through manipulating the

PTMs, which help in developing drug resistance by diverse mechanisms. PTMs

are thus important not only in developing resistance but also in deciding the bacte-

rial sensitivity against the drugs.

There are several known mechanisms of drug resistance in bacteria. The major

ones include: thickening the cell wall to prevent drug entry, active efflux pumps,

modification of the drugs, horizontal gene transfer of resistance related genes,

rewiring of metabolism, DNA damage response, etc. In this chapter, we enumerate

examples to explore how PTM modulation can induce drug resistance in bacteria.

In all the mechanisms discussed for bacterial drug resistance, we broadly cover

simple chemical modifications on either the proteins or another bacterial cell com-

ponent (DNA, lipopolysaccharide (LPS), etc.) or sometimes even on the drug itself

that can help bacteria develop resistance. Although all these chemical modifications

are not specifically PTMs in the classical sense, we focus majorly on PTM level

modulations but also discuss few non-PTM changes for ensuring broad coverage of

the resistance topic. Knowledge of the role PTMs play in drug resistance will help

us in designing new therapeutic cures for bacterial diseases and counter the emerg-

ing resistance problem in efficient ways.

2 Mechanisms of Bacterial Drug Resistance

The two basic mechanisms of drug resistance are intrinsic or acquired. Drug resis-

tance can be imparted either directly or indirectly by the gain or loss of PTMs. The

role of PTMs has been observed in almost all known drug resistance mechanisms

like resistance through reduced permeability to antibiotics, alteration in target sites,

acquisition of alternative metabolic pathways, enzymatic degradation/modification

of the antibiotics, and active efflux of antibiotics from the cell. Apart from these,

sometimes even the DNA damage repair mechanisms induced by the drug may lead

to mutations in pathogens which may lead to drug resistance. The PTMs involved in

this process are critical for the pathogens’ survival. Also, the bacterial SOS mecha-

nism makes all the effort to keep it alive, and if the proteins inducing SOS are

modified, apoptosis may be triggered in the cell. This shows that PTMs are not only

involved deeply in drug resistance mechanisms known traditionally but also the

pro-survival mechanisms that are recently linked to resistance. Since the role of

PTMs in bacteria is beginning to be appreciated, not much attention was given to

the role of PTMs apart from few sporadic studies (Cain et al. 2014; Grangeasse

et al. 2015). Although we make an attempt to discuss PTM-specific cases, some

examples may not be direct. These speculative examples will be based on indirect
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evidences and comparative studies across different genera and have been carefully

crafted from critical literature appraisal and, therefore, worth pursuing future

research directions for interested researchers in the field. The following subsections

deal with each one of the mechanisms in detail and the possible role of PTMs that

were hidden from the focus until now. A summary of these mechanisms and role of

PTMs is also tabulated in Table 1.

2.1 Alterations in Cell Wall Permeability

Outer membranes or the cell walls of bacteria are the primary defense mechanisms

against any antibacterial attack. These structures are exceptionally elaborate macro-

molecular organizations that provide the necessary defense to the bacteria and still

allow the exchange of selective nutrients. Reducing the permeability of cells to drug

is the first line of defense mechanism of bacteria. This is triggered by harsh or

stressful environment, leading to expression of multitude of virulence expression

factors. InMycobacterium, persistence of the bug in a metabolically inactive state is

a major cause of resistance since the drugs are designed to target a specific bio-

logical/metabolic function in which the bug shuts down and evades it (Koul et al.

2008). Large amounts of concerted research efforts have been traditionally directed

at resolving this outer wall and membrane structure to comprehend the persistence

mechanism (Jarlier and Nikaido 1994). It is clear that this permeability check has a

profound impact on antibiotic susceptibility of bacteria (Jarlier and Nikaido 1994).

In case of Mtb, the enzyme Rel (GTP pyrophosphokinase) is known to increase

resilience to antimicrobial mechanisms and brings about alteration in metabolism to

modulate the host immune response through phosphorylation. The enzyme exhibits

both synthetase and hydrolase activity. Mtb Rel synthetase is known to be signifi-

cantly expressed during stress and latency. Rel downregulates translational appa-

ratus modulated by phosphorylations from the polyphosphate [poly (p)] molecules

and influences the virulence-associated factors, cell wall modification factors, poly-

ketide synthesis, antigenic variation, potent mycobacterial antigens, and so on

(Kornberg et al. 1999; Thayil et al. 2011; Morrissey et al. 2012).

The accumulating levels of poly (P) are controlled by phosphate kinases and

exophosphatases, mediated by controlled expression of Rel. Many mycobacterial

exophosphatases such as Rv1026/PPX2 and MT0516) can hydrolyze long-chain

poly (P), which are otherwise inhibited by (p) ppGpp as in many bacteria. Accu-

mulation of poly (P) has been seen in Mtb during starvation and osmotic stress and

also in antibiotic presence. The expression of exophosphatases is also regulated by

stress conditions that further increase the accumulation of poly (P). The increased

poly (P) levels increase cell wall thickness and reduce drug permeability. The

dynamic interplay of these kinases and exophosphatases control bacterial resistance

and persistence of microbes (Chuang et al. 2015). Resistance toward multiple drugs

may also result due to biofilm formation by decreasing permeability although the

mechanisms remain unclear. Biofilms limit the access to nutrients, and this is
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probably recognized as a stress situation leading to accumulation of (p) ppGpp in

the cytoplasm. Tolerance to otherwise toxic drugs in some bacterial species is

dependent on the biofilm induced levels of (p) ppGpp (Sahal and Bilkay 2014;

Sahal et al. 2015).

Phosphorylation of Wag31, which is a DivIVA homolog, has also been associ-

ated with drug resistance inM. smegmatis. Wag 31 is mainly responsible for main-

taining cell shape and cell wall synthesis in mycobacteria, and the activity of

Wag31 can be modulated with change in the environmental stress by phosphoryl-

ation. It also interacts with ACCase enzyme subunit AccA3 and regulates lipid and

mycolic acid synthesis. AccA3 plays an essential role in elongation of acyl chains

by converting acetyl-CoA to malonyl-CoA. AccA3 overexpression in

M. smegmatis is seen to increase the resistance to rifampicin and novobiocin
leading to decreased permeability. Wag31-AccA3 interaction has been implicated

in facilitating the complex stability of cell wall and also being considered as a

potential drug target (Xu et al. 2014). The mycobacterial kinase, PknA, is associ-

ated with phosphorylating Wag31 regulating morphological changes (Chaba et al.

2002). Wag31 phosphorylation helps in its protein-protein interaction. It also

regulates and contributes to peptidoglycan (PG) biosynthesis (Lee et al. 2014).

While the role of Wag31 in drug resistance has been shown inM. smegmatis but not
yet in M. tuberculosis, it will be an interesting lead to follow for researchers in the

field. The role may be similar owing to the protein homology in the two species, or

the differences, if any, might reflect important species-specific patterns of resis-

tance development.

Phosphorylation regulates PG biosynthetic pathway either directly or indirectly

by interacting with enzymes in the pathway or by affecting the stability of cross-

linking PG moieties (Jani et al. 2010). Wag31 is also reported to interact with cwsA

to regulate polar PG synthesis (Plocinski et al. 2012). The key mycobacterial cell

wall components are long-chain mycolic acids ranging from C60 to C90 alpha-

alkyl beta hydroxyl fatty acids produced by all mycobacteria. The mermycolate

chain up to C56 and a long saturated alpha branch of carbon 24–26 are the chemical

modifications decorating the mermycolate. There are several enzymes in mycolic

acid synthesis pathway that includes KasA and KasB (condensing enzymes), MabA

(keto reductase), dehydratase (uncharacterized), and InhA (enoyl reductase). The

mycolic acid pathway requires the phosphorylation of these enzymes by myco-

bacterial kinases to trigger and control the whole process (Bhatt et al. 2007).

The complex integration of proteins with sugar and lipid decorations plays a key

role in their sensitivity toward antibiotics and development of resistance. Anti-

biotics gain entry across the outer membrane via diffusion through porin proteins or

translocation mediated by lipid chains. Another potential mode of entry is by

permeabilizing outer membranes. To counter these, bacteria have evolved mecha-

nisms to disrupt their entry. The pathogens mount a formidable resistance to anti-

biotic entry as reflected by the modifications in the outer membrane structures by

either thickening it or by adding components that increase the cross-linking of outer

membrane components to form a compact packing. Contrarily, porins aid the move-

ment of hydrophilic compounds across the membrane. The central hydrophilic pore
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is restrictive in allowing the ions to pass through based on their size. As revealed by

several studies, these structures are not fixed and the functions may be altered in

response to specific modulators. In drug-resistant microbes, the pore size has been

observed to be narrower, restricting the entry of antibiotics (Fernandez and Han-

cock 2012). Alterations of porin-mediated diffusion can arise by either the absence

of porin or constriction of the hydrophilic pore structures (Bornet et al. 2000).

Recently, posttranslational modification of porins in cell envelops of Coryne-
bacterium glutamicum was shown, wherein mycoloylation of PorA was observed at

serine 15. The presence of mycoloylated PorA was also confirmed in other species

of the order Corynebacteriales such as C. efficiens and multidrug-resistant

C. diphtheriae. The modification is implicated to be important for the pore-forming

activity of porin and may play a role in multidrug-resistant nature of the microbe

(Huc et al. 2010). Mycoloylations are carried by mycoloyltransferases that carry out

the fatty acid transfer to generate O-mycoloylated polypeptides (Huc et al. 2010).

Mycolic acids are known to play roles in rendering low permeability and resistance

to antibiotics in mycobacteria as well (Collins et al. 1982; Brennan and Nikaido

1995; De Smet et al. 1999) (Fig. 1A).

The resistance to polymyxin has been observed in case of Salmonella typhi-
murium and even Escherichia coli (Dame and Shapiro 1976; Zhou et al. 2001).

Polymyxin-resistant S. typhimurium strains bind only 25% of polymyxin in com-

parison to wild type (Dame and Shapiro 1976; Vaara et al. 1979). LPS of the poly-
myxin B-resistant strain has decreased negative charge due to increase in

4-arabinose and phosphoethanolamine. Decreased negativity leads to decrease in

the repulsion between adjacent LPS molecules making the layer compact causing

resistance to polymyxin B, PMBN, EDTA, and cationic peptides. This modification

of lipid-A under antibiotic stress is controlled by PmrA/PmrB two-component

system which is regulated by PhoP/PhoQ (Zhou et al. 2001; Nikaido 2009). It

also plays a role in providing resistance against cationic antimicrobial peptides and

polymyxin in Salmonella typhimurium (Moskowitz et al. 2004).

Cationic antimicrobial peptides are about 20–40 amino acids in length. Their

mechanism of action is not yet clear, though it is speculated that they kill the

bacteria by disrupting the cell membrane (Moskowitz et al. 2004). Activation of

PhoQ by a cationic peptide that binds to its periplasmic sensor domain results in its

autophosphorylation which phosphorylates PhoP to activate it. Phosphorylated

PhoP regulates the transcription of pag and prg (pho-P activated and repressed

genes respectively), which control pagB-pmrAB operon. Activation of pagP

encodes palmitate acyl transferase that leads to addition of palmitate to lipid. Palmi-

tate together with aminoarabinose and phosphoethanolamine increases the resis-

tance of bacteria (Guo et al. 1998; Kato and Groisman 2004).
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2.2 Active Efflux of Antibiotics

Efflux pumps in bacteria are used to expel the toxic substances and antibiotics. Of

the entire bacterial genome, ~5–10% is estimated to be involved in transport and a

large ratio encodes for efflux pumps (Lomovskaya et al. 2001; Saier and Paulsen

2001). These efflux pumps are specific to one or more antibiotics leading to

resistance.

There are five major classes of drug efflux pumps in bacteria: (1) the MFS pumps

(major facilitator superfamily), (2) the SMR pumps (small multidrug-resistant

superfamily), (3) the MATE pumps (multi-antimicrobial extrusion protein super-

family), (4) the ABC transporter pumps (ATP-binding cassette superfamily), and

(5) the RND pumps (resistance-nodulation-cell division superfamily). All of these
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Fig. 1 Mechanisms of drug resistance and their regulation by posttranslational modifications

(PTMs) in bacteria. (A) Mycoloylations of porin proteins reduces permeability to entry of drug

molecules. (B) Non-phosphorylated mgrA (transcription factor) controls NorA expression. NorA

is an efflux pump that expels the drug out of the cell. (C) MurA catalyzes thiol group transfer to

fosfomycin that inactivates the drug. (D) SarA is a global transcription factor controlling biofilm

formation and virulence factors which is inhibited by ceftriaxone binding. Loss of phosphorylation
site in SarA due to C to E mutation decreases the drug binding affinity while keeping normal

function of the protein intact. (E) Vancomycin attaches to D-Ala-D-Ala depsipeptide which blocks

cell wall biosynthesis. Bacteria replace D-Ala-D-Ala with D-Ala-D-Lac in the peptidoglycan

causing resistance. (F) DNA damage triggers RecA-mediated SOS mechanism. (G) RecA induces

by UNAG phosphorylation mediated by PezT, which halts the cell growth. (H) Increase in

transcription of SOS genes results in phosphorylation of UmuDC, inducing DNA repair.

(I) Failure of all DNA repair mechanism leads to CidA activation ultimately leading to autolysis

of the cell. (The open source DNA clipart has been used from https://openclipart.org/detail/1941/

dna-helix)
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efflux pumps are found in Mtb and all utilize ATP hydrolysis to efflux the drug

molecule out of the cell, except ABC family.

First multidrug efflux pump, discovered in Bacillus subtilis, is encoded by bmr
gene (Neyfakh et al. 1991). Thereafter, many more multidrug efflux pumps have

been discovered in diverse bacteria. The efflux pumps are regulated by a variety of

factors. Regulation by PTMs is an important factor controlling the function of these

pumps. For example, NorA multidrug efflux pump encoded by gene norA was first

discovered as fluoroquinolone efflux pump in Staphylococcus aureus (Ubukata

et al. 1989). NorA is a 388-amino acid-long membrane protein with 45% hydro-

phobic amino acids and containing 12 hydrophobic transmembrane regions

(Yoshida et al. 1990; Neyfakh et al. 1993). By increased transcription, increased

stabilities of NorA transcripts or promoter mutation elevates resistance (Kaatz et al.

2003, 2005). NorA effluxes the drug using H+-ATPase transmembrane proton

pumps (Andersen et al. 2015). There are a number of inhibitors which block

NorA like verapamil, kaempferol, etc. (Andersen et al. 2015). NorA belongs to a

class of proton motive force (PMF)-dependent pumps of major facilitator super-

family (MFS) (Kaatz et al. 2005; Andersen et al. 2015) and is regulated by MgrA.

Truong-Bolduc et al. showed that the phosphorylation of MgrA at Ser110 and Ser

113 by serine/threonine kinase PKnB decreases the expression of NorA and the

dephosphorylation of phospho-MgrA by RsbU increases the expression. MgrA in

phosphorylated form functions as the repressor of NorA gene transcription, as

phosphorylated MgrA loses its NorA promoter binding, causing deactivation of

transcription of norA (Truong-Bolduc and Hooper 2010) (Fig. 1B).

Another efflux pump of norfloxacin and ciprofloxacin called NorB, a transmem-

brane protein, is also regulated by MgrA but in an antagonistic manner. Here MgrA

acts as a deactivator of transcription while phosphorylated MrgA marks active

transcription of NorB (Truong-Bolduc and Hooper 2010).

2.3 Direct Modification of Antibiotics

This type of resistance is commonly observed against the self-made antibiotic. The

enzyme involved modifies the drug by transferring some chemical group to the drug.

This modification deactivates the drug, by decreasing its binding affinity to the target.

The enzyme family that transfers these chemical groups is the largest family of resistance

causing enzymes that includes acetyltransferases, phosphotransferases, thioltransferases,

nucleotidytransferases, ADP-ribosyltransferases, and glycosyltransferases (Wright

2005). We enumerate the major modifying enzymes although these are not PTMs in a

classical sense.
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2.3.1 Acetyltransferases

Acetyltransferases transfer acetyl group to the hydroxyl or the amine group of the

antibiotics (Wright 2005). For example, in the case of aminoglycosides which block
translation, the aminoglycoside acetyltransferase (AAC) modifies the amine and

hydroxyl group changing the net charge of antibiotic (Nikaido 2009). This blocks

the interaction of aminoglycoside with the 16s rRNA, at the A-site of the ribosome.

As a result, the ribosome can perform normal translation leading to resistance to

aminoglycosides.

2.3.2 Phosphotransferases

Aminoglycosides, vancomycin, erythromycin, etc. get deactivated by the action of

phosphotransferases. Phosphotransferases are kinases that catalyze transfer of

phosphate with nucleoside trinucleotide acting as a cofactor (Wright 2005). MPH

(20) 302-amino acid-long protein, coded by mphB gene in E. coli, inactivates
erythromycin (Trieu-Cuot and Courvalin 1983). This protein is highly specific for

inactivating the 14-member-ring macrolides using ATP, ITP, and GTP as cofactors

(O’Hara et al. 1989).
In case of aminoglycosides, the kinases known as aminoglycoside phospho-

transferases (APH) are generally encoded by plasmid genes, probably shared

between various bacterial species by horizontal gene transfer. The phosphorylation

of antibiotic blocks the binding to the A-site of the ribosome (Wright 2005)

rendering it ineffective. APH(30) has been characterized in seven classes based on

resistant mechanism. This diversity of these enzymes has been the major cause of

resistance to aminoglycosides and a great example of accumulation of resistance

genes through horizontal gene transfer (Shaw et al. 1993; Hastings et al. 2004).

2.3.3 Thioltransferases

UDP-N-acetylglucosamineenolpyruvyl transferase (MurA) catalyzes the first step

in cell wall biosynthesis in a number of bacteria, e.g., Mtb (Quan et al. 1997) and

E. coli (Skarzynski et al. 1996). This step is inhibited by antibiotic fosfomycin,
which enters the bacterial cell using the glycerol phosphate and glucose-6-phos-

phate transport system. The enzyme-encoding fosfomycin resistance gene is also

found on plasmid (Trieu-Cuot and Courvalin 1983). Two well-characterized genes

responsible for fosfomycin resistance are fosA and fosB. FosB gene encodes for a

metalloenzyme which confers resistance by acting in the presence of thiol substrate

and divalent metal ion Mg2+. In this reaction, the nucleophilic ring of fosfomycin
opens up making the antibiotic inactive (Wright 2005) (Fig. 1C).
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2.3.4 Nucleotidytransferases

These enzymes transfer nucleotide monophosphate from the nucleotide triphos-

phate to the hydroxy group of the antibiotic. They modify aminoglycosides and

lincomycin by O-adenosyl transferases (ANTs) in S. aureus and Lin protein in

S. haemolyticus, respectively (Wright 2005).

2.3.5 ADP-Ribosyltransferases

These enzymes donate ADP-ribosyl group to antibiotics, thus blocking their attach-

ment to the target. For example, in M. smegmatis, ADP-ribosyltransferases donate
ADP-ribosyl using NAD as cofactor to rifampin. Rifampin is a semisynthetic

antibiotic that blocks beta-subunit of RNA polymerase (Wright 2005). Ribosylation

of rifampin makes the antibiotic inactive decreasing the susceptibility of

M. smegmatis to this antibiotic (Brown-Elliott et al. 2012). This process of ribo-

sylation is catalyzed by Arr enzyme. Old form of rifampin as well as natural product
of rifamycin SV and new modified agents like rifaximin are all the substrates of Arr
enzyme (Stallings et al. 2011). Most modified forms of rifampin are generated by

modifying naphthyl ring in the drug and ansa-bridge at position 23 of the drug. Arr

enzyme is tolerant to modification in this ring. As every available form of rifampin
is deactivated by this enzyme, potential Arr inhibitors should be used to overcome

the risk of next-generation rifampin drug inactivation (Brown-Elliott et al. 2012).

2.3.6 Glycosyltransferases

Glycosyltransferases can modify the antibiotic by transferring a glycosyl group to

the antibiotic that attenuates its binding capacity, thus causing resistance. Glyco-

sylation of rifampin is reported in Nocardia which was first described in 1994

(Yazawa et al. 1994). This inactivation mechanism for rifampin is not reported in

any bacteria outside Nocardia genus.

2.4 Alterations in Target Site

This is the most common mechanism used by bacteria for acquiring resistance

against drugs. Several bacterial species alter the drug targets for developing resis-

tance, e.g., Haemophilus influenza, Helicobacter pylori, Proteus mirabilis,
Acinetobacter baumannii, Pseudomonas aeruginosa, Streptococcus pyogenes, and
Listeria monocytogenes. Modification of the target site decreases or blocks the

affinity for drug binding but the normal activity of the target is not disturbed.
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Isoniazid (INH), a prodrug used most widely against TB is activated by KatG, an

enzyme having both catalase and peroxidase property. It has a critical role in

oxidative stress management of bacteria. The KatG protein oxidizes INH to an

acylated species, i.e., to acyl-nicotinamide adenine dinucleotide adduct, an acti-

vated form of INH which is bactericidal in nature. Natural mutants of KatG contain

a S315T mutation which may result in a loss of function of the protein, but

succinylation at K310 near this mutation assists the enzyme to retain its native

activity, i.e., catalase-peroxidase, while the INH activating property of KatG is

reduced by almost 30%. By decreasing INH activation KatG is able to increase the

minimum inhibitory concentration (MIC) of bacteria up to 200-folds. This protein

has been reported to have nine succinylation sites, and succinylation at K310 of

KatG is responsible for drug resistance in Mtb (Xie et al. 2015).

SarA is a global transcription regulator of Mtb. Antibiotics targeting the cell

wall, like vancomycin and ceftriaxone, decrease cysteine phosphorylation of SarA

which inhibits its interactions with the promoters of transcriptional targets. SarA is

phosphorylated by Stk1. The kinase activity of Stk1 is regulated by stp1. An in vivo

mouse model study reports elevated phosphorylation of SarA reducing the viru-

lence. To resist this process, bacteria convert Cys to Glu in SarA, mimicking the

phosphorylation of SarA and making bacteria resistant (Cain et al. 2014). Another

way Mtb protects itself is by the modification of target site making it inaccessible

for drug action. Chloramphenicol-florfenicol resistance (cfr) methyltransferase

adds methyl group to the A2503 in the 23S rRNA of S. aureus and provides

resistance against a wide range of drugs like phenicols, lincosamides, oxazo-
lidonones, pleuromutilins, and streptogramins. The phenotype for resistance to

above classes of drugs is named PhLOPSA (Long et al. 2006) (Fig. 1D).

The phosphorylated elongation factor (EF-P) is a protein that modulates anti-

biotic resistance in several bacteria (Escherichia coli, Salmonella enterica, etc.),
thus contributing to their virulence, causing many infectious diseases. The post-

translational modification of beta-lysylation at Lys-34 activates EF-P and also

provides resistance. EF-P is required for proficient protein synthesis, specifically

for poly-proline motif synthesis during translation. P. aeruginosa lack any PoxA

protein which is needed for beta-lys transfer to EF-P. P. aeruginosa have evolved a
special mechanism, which posttranslationally modify Arg-32 containing EF-P by

attaching rhamnose moiety. This PTM has similar effect as beta-lys in E. coli and
S. enterica, thus providing drug resistance to the organism as the drug is designed to

target phosphorylation and not rhamnose. The glycosyltransferase EarP attaches

rhamnose to R32. Lack of glycosylation at phosphorylated EF increases its anti-

biotic susceptibility, as a result of decreased expression of poly-proline. Since the

glycosylated EF-P might be required for MexA synthesis, an essential component

for beta-lactam specificity, this PTM is responsible for drug resistance in its

absence (Rajkovic et al. 2015).

E. coli has developed resistance to three classes of drugs, i.e., (1) macrolides,
(2) lincosamides, and (3) type B streptogramins, called the MLS phenotype.

N-methyltransferase of erm (erythromycin ribosome methylation) gene class usu-

ally coded by plasmid transfers methyl group to the N6-purine ring of 23sRNA at

Emergence of Drug Resistance in Mycobacterium and Other Bacterial. . . 221



A2058 blocking antibiotic binding, because of loss of its H-bonding property

(Brodersen et al. 2000).

Colistin attaches to the negative LPS layer at lipid-A in A. baumannii killing the
bacteria. However, the resistant strains contain pmrB gene mutation which induces

the upregulation of pmrAB. This protein helps in increased expression of pmrC,

which modifies lipid-A by phosphoethanolamine addition. This addition decreases

the negativity of LPS layer, thereby making the attachment of positively charged

colistin unfavorable, causing resistance (Beceiro et al. 2011; Cai et al. 2012).

2.5 Metabolic Reprogramming (Acquisition of Alternative
Metabolic Pathways)

In addition to other mechanisms of antibiotic resistance, microbes evolve alternate

metabolic pathways to bypass the drug effect.

In Enterococcus faecium and E. faecalis, the changes in their peptidoglycan

layer help them escape the effects of vancomycin. In the growing peptidoglycan cell
wall, the drug binds to D-Ala-D-Ala depsipeptide forming a complex through five

hydrogen bonds. Production of acyl-D-alanyl-D-lactate, an isosteric depsipeptide,

provides resistance against the drug. It replaces the amide bond of D-alanyl-D-

alanine with an ester linkage hindering the hydrogen bond formation which inhibits

the attachment of drug (Wright 2011).

This resistance mechanism involves five proteins, of which two (vanS and vanR)

are responsible for regulation. VanS catalyzes ATP-dependent autophosphorylation

of His-164 and His-233 mediated through its cytoplasmic domain. The transcrip-

tional control element (VanR) is thus phosphorylated at Asp-53. VanS has both

kinase and phosphatase activity for VanR. In the presence of antibiotics, VanR

induces the expression of VanH, VanA, and VanX, the other three proteins. VanX

specifically cleaves D-alanyl-D-alanine, VanH is a D-lactate dehydrogenase that

generates D-lactate, and VanA is a ligase that catalyzes the synthesis of acyl-D-

alanyl-D-lactate. The components generated by this reprogramming now get incor-

porated in new cell wall and provide resistance (Depardieu et al. 2007; Wright

2011) (Fig. 1E).

2.6 DNA Damage Response

Bacterial cells have evolved around a toxin-antitoxin (TA) system for their survival.

This system usually corresponds to the “addiction modules” presented by the

plasmids. In this system, a toxin which is generally a long-lasting protein is conti-

nuously being neutralized by the antitoxins which have small life due to early

degradation by serine proteases. Both the toxin and the corresponding antitoxin are
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encoded by the plasmids. Bacterial cells have used this TA system to respond to

DNA-damaging agents like fluoroquinolone (Neyfakh et al. 1993). When DNA

damage is observed in the bacterial cell, the cellular processes are halted with the

help of “mazEF” TA system to initiate the SOS response in the cell (Yarmolinsky

1995; Moritz and Hergenrother 2007; Mutschler et al. 2011; Sadeghifard et al.

2014; Wang et al. 2014). mazEF system was extensively observed and studied in

E. coli but the functionality is also observed in Mtb and other bacteria (Kolodkin-

Gal and Engelberg-Kulka 2009; Fortuin et al. 2015; Ramisetty et al. 2015). In this

system, mazF protein acts as a toxin and halts the growth process. mazF is a

endonuclease that cuts the mRNA at a specific site between A and C in the ACA

sequence, thus controlling the translation process by chopping off mRNA. In

normal conditions, the bacteria keep growing by blocking mazF with mazE, its

antitoxin. Interestingly, when DNA damage is observed in bacteria, mazEF interact

in a unique way to stop mazE synthesis, thus letting mazF chop off mRNAs and

stop cell growth. Once growth is halted, all energy and proteins are directed toward

the repair of the DNA (Kreuzer 2013; Bayles 2014; Ramisetty et al. 2015).

In another TA system PezT-PezA, the degradation of antitoxin PezA releases

PezT kinase in stress conditions. PezT phosphorylates UNAG and converts it to

UNAG-3P, which inhibits peptidoglycan synthesis (Sedwick 2011). Slow dividing

bacteria can survive this condition in contrast to rapidly growing bacteria which

undergo cell lysis. Autolysis of the cell releases a toxin, pneumolysin, which is a

major factor for S. pneumoniae virulence. This fractional autolysis and inhibition of
polysaccharides of murine layer by UNAG-3P favors biofilm formation (Mutschler

et al. 2011) (Fig. 1G). The biofilm formation of the bacteria reduces bacterial

susceptibility to number of drugs. This reduced susceptibility to drugs is achieved

by several processes (Hoiby et al. 2010) as mentioned below:

(a) Reducing the rate of penetration, the antibiotic inactivating enzyme plays a

critical role in providing resistance to the pathogen.

(b) Most of the bacterial cell in a biofilm is in a stationary or the slow growing

phase which helps the bacteria to escape the effect of the antibiotics like

penicillin, and the factors which are involved in slow growth of the cell also

alter antibiotics. For example, availability of oxygen alters the action of

aminoglycosides.
(c) Adaptive response of bacteria helps the cell to live in stress conditions, like

increasing the expression of drug efflux pumps.

(d) Some of the bacterial cells survive even after long period of antibiotic treatment

as they enter in a highly safe or spore-like state.

There are 79 TA systems known inMycobacterium till now that aid in regulation

of various cellular processes to aid in protection and survival. The regulation of

DDR in higher eukaryotes has depicted plentiful examples of regulation by PTMs

to refactor the metabolism toward DNA repair. With the ever-increasing examples

of PTM regulation in bacteria (Broberg and Orth 2010; Cain et al. 2014) and their

roles in virulence and resistance (Sun et al. 2012; Rajkovic et al. 2015), it is not
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unimaginable to draw a simile here to speculate that many PTMs might be involved

in bacterial DDR as well, waiting to be discovered.

2.6.1 SOS Response in Bacteria

When a bacterial cell is exposed to DNA-damaging elements like UV radiation or

chemical agents likemetronidazole, a SOS response is triggered to evade the effects

of the stress introduced. The SOS response is a pathway to repair DNA in most

bacterial species including Mycobacterium. It consists of two major proteins that

start the DNA repair pathway—the inducer RecA and the repressor LexA. In

normal stress-free condition, LexA forms a dimer and binds to the SOS boxes on

the bacterial DNA to stop the transcription of SOS genes. When stress is introduced

in the bacterial cell, RecA is activated and it binds to LexA to induce auto-

proteolysis of LexA leading to the removal of LexA from SOS boxes and causing

the expression of SOS genes. Once the SOS response is activated, DNA poly-

merases start the error-prone repair of bacterial DNA (Kreuzer 2013; Zgur-Bertok

2013) (Fig. 1F).

In H. pylori, it has been shown that RecA is posttranslationally modified for the

protein to function as an inducer. On initial sequencing, a glycosylation site similar

to C. jejuni was found in its sequence, suggesting that it may be a potential site for

the modification in RecA protein, which was confirmed using Western blotting. It

was also experimentally observed that the modification is required for the fully

functional protein in DNA repair mechanism (Fischer and Haas 2004).

To properly understand the autoproteolysis activity of LexA protein, Oliviera

and Lindblad performed a series of experiments to understand the mechanism of

autoproteolysis in LexA. They observed that LexA is both posttranscriptionally and

posttranslationally modified during the SOS response. The authors were not able to

identify the modification due to low mass spectrometric resolution and low cover-

age, but could observe the mass difference was small. They also found two more

forms of LexA apart from the normal one, confirming the presence of modified

LexA during proteolysis (Oliveira and Lindblad 2011).

The autoproteolysis of LexA is due to posttranslational modifications, and

similar observation was also made for DNA polymerase V activity in SOS res-

ponse. During SOS response, DNA polymerase V, also known as umoDC, is

present in two forms—umoD that participates in a checkpoint for DNA damage

and umoD0 which forms a complex with umoC to initiate DNA damage repair. The

umoD form is 24 bp larger than the umoD0. Initially the polymerase is present in its

umoD form, but when a lesion is identified in the DNA, it is cleaved by the RecA/

ss-DNA-mediated autodigestion to form umoD0. This posttranslational modifi-

cation acts as a molecular switch between the two forms of DNA polymerase V

to regulate its functions in DNA damage repair (Sutton et al. 2002) (Fig. 1H).

Apart from the above examples for the posttranslational modifications driving

the DNA damage response in bacterial cells, the differences in the phospho-

proteomes of two Mycobacterium species M. smegmatis and M. bovis BCG
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highlighting a number of phosphorylation sites present in DNA polymerases of

stress response proteins have been recently enumerated (Nakedi et al. 2015). These

phosphosites might be of interest for studying their role in the DNA damage

response and can be explored by interested researchers.

2.6.2 Programmed Cell Death

When the damage in the cell is beyond the repair, it undergoes a cellular suicide

mechanism widely known as programmed cell death (PCD). Although it is debat-

able whether PCD exists for a unicellular organism, compounding evidences

suggest that bacterial cells have mechanisms to undergo programmed cell death,

indicating the evolutionary selection of apoptosis from a unicellular organism to

complex mammals (Bayles 2014). It is an altruistic mechanism rather than being

beneficial to the individual cell directly. A number of bactericidal antibiotics induce

DNA fragmentation, chromosome condensation, and phosphatidylserine exposure

at outer membrane (biochemical marker for apoptosis).

Apparently, some myxobacteria undergo PCD to provide raw material to the

fruiting body (Yarmolinsky 1995); others use it as a mechanism to produce raw

material for the formation of biofilms to protect the colony. A mechanism of

quorum sensing is also used in the conditions where a stress signal (ppGpp) has

to be generated by the cell to warn the colony members of the introduced cell signal.

But for PCD to get activated, the cell should reach a damaging condition in which

any amount of repair cannot restart the cellular machinery. In such a case of point of

no return, BapE (bacterial apoptosis endonuclease) is used to induce apoptosis like

cell death or autolysis, based on the signal induced. BapE is an endonuclease that

will fragment the bacterial DNA to promote apoptosis like cell death in bacteria.

Another mechanism by which cell death can occur in the bacterium is through

the autolysis of the bacterial cell. In this context, holin-antiholin systems have been

extensively studied for all bacterial forms. Here, a holin protein Cida dissipates

membrane potential to activate murein hydrolase activity that degrades the cell wall

and thus causes lysis. A counter mechanism also exists in the form of antiholin

(lrgA), which oligomerizes with the CidA and inhibits its activity until the signal is

received (Rice et al. 2003; Yang et al. 2005; Ranjit et al. 2011) (Fig. 1I).

3 Conclusion

Apart from phosphorylation, the discovery of PTMs in bacterial regulation has been

recent. The hidden layer of metabolic regulation has sprung up many surprises as

their roles have discovered in a wide array of functions in a short time span. PTMs

are now known to regulate bacterial growth, survival, and virulence (Broberg and

Orth 2010; Cain et al. 2014; Grangeasse et al. 2015). We have just started to under-

stand the role of PTMs and the technological advances in mass spectrometry-based
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quantitative proteomics can help us elucidate many more PTMs and their functions.

It is time the research community focuses the efforts toward understanding their

roles in developing drug resistance, a major economic and health burden in modern

society. We have attempted to depict their importance by discussing classical and

other known examples in a new light. Combinations of drugs developed from a

deep understanding of metabolic connections that can block alternate routes for

drugs helped by the modifications can be the next shot in the arm for developing

next-generation antibiotics.
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Implications of Chromosomal Mutations

for Mycobacterial Drug Resistance

Gail E. Louw and Samantha L. Sampson

Abstract Tuberculosis (TB) remains a global health concern, despite availability

of antituberculosis drugs. Drug-resistant Mycobacterium tuberculosis strains were
identified shortly after the discovery and introduction of streptomycin for the

treatment of this disease. Subsequently, multidrug therapy was implemented for

TB treatment; however, this was soon followed by reports of multi-, extensively,

and totally drug-resistant tuberculosis cases globally. The amplification of this drug

resistance is due to the sequential accumulation of chromosomal alterations in

target genes in the Mycobacterium tuberculosis genome. It is also evident that the

presence of mutations that confer drug resistance results in the emergence of

compensatory mechanisms which restore bacterial fitness. The recent approval by

the Food and Drug Administration for bedaquiline as an antituberculosis drug

provided some hope. However, clinical resistance to this new drug has already

been reported. This underscores that it is imperative to understand drug resistance

and its associated mechanisms in order to direct research efforts to the development

of antituberculosis regimens with novel mechanisms of actions.

1 Introduction

In 2015 the World Health Organization (WHO) reported 9.6 million new cases of

tuberculosis (TB), with 3.3% of these and 20% of previously treated cases infected

with a multidrug-resistant (MDR) strain of Mycobacterium tuberculosis (WHO
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2015). More alarmingly, the average proportion of MDR-TB cases with extensively

drug-resistant TB (XDR-TB) is 9.7% (WHO 2015). Resistance to the first effective

anti-TB drug, streptomycin (STR), was observed shortly after its introduction in

1944 (Nachega and Chaisson 2003; Keshavjee and Farmer 2012), and this trend had

continued for many other TB drugs (Fig. 1). Numerous MDR-TB outbreaks were

identified in the early 1990s, emphasizing TB as a global health problem (Nachega

and Chaisson 2003) (Fig. 1). MDR-TB is characterized by a mycobacterial infec-

tion with M. tuberculosis strains that are resistant to rifampicin (RIF) and isoniazid

(INH) (Gupta et al. 2003). Outbreaks of XDR-TB have been reported globally

(Gandhi et al. 2006; Migliori et al. 2007b; Masjedi et al. 2010; Klopper et al. 2013;

Cohen et al. 2015), with XDR-TB defined as an infection with an MDR-TB strain

with further resistance to a fluoroquinolone (FQ) and one injectable drug, amikacin

(AMI), kanamycin (KANA), and capreomycin (CAP) (Holtz 2007; Holtz and

Cegielski 2007; Louw et al. 2009). Recently, M. tuberculosis strains resistant to

all available anti-TB drugs have been identified globally and have been named

totally drug-resistant TB (TDR-TB) (Migliori et al. 2007a; Velayati et al. 2009;

Udwadia 2012; Udwadia et al. 2012; Klopper et al. 2013; Udwadia and Vendoti

2013) (Fig. 1). Although this term is somewhat controversial, TDR-TB has been

defined as M. tuberculosis strains with in vitro resistance to all available first- and

second-line drugs tested (INH, RIF, STR, EMB, PZA, ETH, PAS, DCS, OFL, AMI,

CIP, CAP, KANA) (Parida et al. 2015). Factors fueling the drug-resistant TB

epidemic include the inadequacies of TB control in combination with HIV

coinfection.

The WHO recommends that new patients with pulmonary TB receive intensive

phase treatment (2 months duration) which consists of INH, RIF, PZA, and EMB.

Subsequently, a patient infected with a drug-sensitive M. tuberculosis strain is

treated with INH and RIF during the 4-month continuation phase treatment

(WHO 1997). Patient noncompliance is a consequence of the long treatment

duration, and these factors fuel the development of drug resistance. An 8-month
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Fig. 1 Illustration of the tuberculosis drug discovery timeline and drug resistance development

reports: STR streptomycin, PAS para-aminosalicylic acid, INH isoniazid, PZA pyrazinamide, DCS
D-cycloserine, KANA kanamycin, EMB ethambutol, ETH ethionamide, RIF rifampicin, CAP
capreomycin, AMI amikacin, OFL ofloxacin, LEVO levofloxacin, BDQ bedaquiline, MDR-TB
multidrug-resistant tuberculosis, WHO World Health Organization, XDR-TB extensively drug-

resistant tuberculosis, TDR-TB totally drug-resistant tuberculosis. aFirst report of BDQ resistance

identified in a TB patient (Bloemberg et al. 2015)
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retreatment regimen with first-line anti-TB drugs for previously treated patients

awaiting DST results consists of 2 months with INH, RIF, PZA, EMB, and STR;

1 month with INH, RIF, PZA, and EMB; and 5 months with INH, RIF, and EMB.

Treatment of MDR-TB requires a regimen with second-line drugs administered

over 18–24 months (Mukherjee et al. 2004). Recommendations for the treatment of

various forms of drug-resistant TB are tabulated in Table 1. Current drugs used for

TB treatment have limited efficacy against drug-resistant M. tuberculosis strains.
However, new anti-TB drugs in development, specifically drugs with different

modes of actions than the current drugs, could be effective against both drug-

sensitive and drug-resistant TB.

2 Mode of Action and Mycobacterial Drug Resistance

Mechanism

2.1 Cell Wall Synthesis Inhibitors

2.1.1 Isoniazid

INH is a prodrug that inhibits mycolic acid biosynthesis (Vilcheze and Jacobs

2007). This inhibition occurs via multiple mechanisms and results in the loss of

trehalose monomycolate, trehalose dimycolate, and mycolates (Vilcheze and

Jacobs 2007). INH is activated by KatG, which is a catalase-peroxidase, encoded

by the katG gene. Upon activation, INH forms an adduct with NAD (Rozwarski

et al. 1998) and binds and inhibits inhA, encoded by the enoyl-acyl carrier protein

reductase InhA (NADH dependent), which is part of the fatty acid synthase type II

system (Marrakchi et al. 2000). The INH-NAD adducts inhibit the activity of InhA,

thereby resulting in intracellular accumulation of long-chain fatty acids, decreased

mycolic acid biosynthesis, and subsequent cell death.

Table 1 Treatment for the various forms of TB (WHO 2008)

Resistance pattern Treatment

Sensitive INH-RIF-PZA-EMB

INH RIF-PZA-EMB

INH-RIF PZA-STR-LEVO-ETH-DCS-PAS

INH-RIF-EMB

INH-RIF-PZA-EMB STR-LEVO-ETH-DCS-PAS

INH-RIF-STR KANA-LEVO-ETH-DCS-PAS

INH-RIF-EMB-STR

INH-RIF-EMB-PZA-STR

INH isoniazid, RIF rifampicin, EMB ethambutol, PZA pyrazinamide, STR streptomycin, LEVO
levofloxacin, ETH ethionamide, DCS cycloserine, PAS para-aminosalicylic acid, KANA anamycin

Implications of Chromosomal Mutations for Mycobacterial Drug Resistance 235



The loss of activation of INH by KatG is one of the mechanisms of INH

resistance in mycobacteria. Mutations in the katG gene lead to a reduction in

catalase activity. This results in a decrease in activated INH and a decreased

capacity to form the INH-NAD adduct to inhibit InhA and subsequent high-level

INH resistance (Heym et al. 1999; Ramaswamy et al. 2003). The Ser315Thr

mutation in the katG gene is reported to be the most frequent mutation found in

clinical M. tuberculosis strains resistant to INH (Seifert et al. 2015). Mutations

within the inhA promoter (�15T and �8A loci) result in overexpression or mod-

ification of inhA and subsequently confer low-level INH resistance and ETH cross-

resistance (Banerjee et al. 1994). Mutations in the structural gene are less frequent,

but the Ser94Ala inhA mutation has been reported to be associated with low-level

INH resistance (Quemard et al. 1995). Approximately 10% of INH resistance is not

attributed to mutations in katG and inhA, suggesting that additional resistance

mechanisms contribute to INH resistance in mycobacteria. Additional genes

(kasA, ahpC, ndh, and the ahpC-oxyR intergenic region) have been implicated in

INH resistance; however, their direct impact on clinical INH resistance is not fully

understood (Vilcheze et al. 2005; Vilcheze and Jacobs 2007; Campbell et al. 2011).

2.1.2 Ethionamide

The second-line drug, ETH, has a common molecular target to INH, namely, InhA

of the FAS II system (Banerjee et al. 1994; Marrakchi et al. 2000). ETH is a prodrug

and INH structural analog, which also inhibits mycolic acid biosynthesis. It was

shown that M. tuberculosis strains with low-level INH resistance also exhibit

resistance to ETH (Banerjee et al. 1994). ETH is activated by the monooxygenase,

ethA, with subsequent formation of an ETH-NAD adduct. Even though the

ETH-NAD adduct inhibits InhA, in the same manner as the INH-NAD adduct,

the activating enzymes of the different compounds are distinct.

Numerous mutations in the ethA gene, resulting in a failure to activate ETH,

have been reported to contribute to ETH resistance (Morlock et al. 2003; Brossier

et al. 2011). The TetR-like repressor, EthR, negatively regulates the expression of

ethA and interacts directly with the ethA promoter region, and EthR overexpression

leads to ETH resistance (Baulard et al. 2000; DeBarber et al. 2000). Intragenic inhA
mutations (Ser94Ala, Ser94Trp, Leu11Val) in addition to inhA promoter mutations

(�102A and �47C) have also been identified in ETH-resistant M. tuberculosis
isolates (Morlock et al. 2003; Brossier et al. 2011).

Approximately 50% of ETH-resistantM. tuberculosis strains exhibit an absence
of mutations in inhA or ethA, suggesting an alternative resistance mechanism

(Boonaiam et al. 2010). Recently, mutations in the mshA gene (including a

Val171Gly-Ala187Val double mutation) were identified in ETH-resistant isolates

(Vilcheze et al. 2008; Brossier et al. 2011). MshA is a glycosyltransferase that is

involved in mycothiol biosynthesis, and mutations in mshA have been proposed to

result in the failure to activate ETH (Vilcheze et al. 2008). Interestingly, it was also

observed that mutations in ndh resulted in defects in NdhII activity, subsequently
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leading to increased intracellular NADH/NAD+ ratio (Vilcheze et al. 2005). The

increase in the NADH levels protects against InhA inhibition by either the

INH-NAD or ETH-NAD formed when INH and ETH is activated, subsequently

leading to ETH and INH co-resistance (Vilcheze et al. 2005). Even with the

identification of the additional gene mutations, it is evident that additional resis-

tance mechanisms exist that could contribute to ETH resistance.

2.1.3 Ethambutol

EMB is a bacteriostatic agent that targets the integral membrane

arabinosyltransferases involved in polymerizing arabinose into arabinan compo-

nents of arabinogalactan (Takayama and Kilburn 1989; Zhu et al. 2004; Wolucka

2008; Xu et al. 2015). Resistance to EMB is primarily attributed to mutations in the

arabinosyltransferases encoded by embB, with 60% of EMB-resistant isolates

carrying a mutation at embB306 (Ramaswamy et al. 2000; Zhang and Yew 2009;

Safi et al. 2013; Xu et al. 2015). However, several studies report discordance

between genotypic and phenotypic resistance testing; this could be due to inaccu-

rate diagnostic tests that are dependent on the medium used (Sreevatsan et al. 1997;

Johnson et al. 2006a; Plinke et al. 2010; Xu et al. 2015).

Mutations in the embC, embA, and embR genes have also been implicated in

EMB resistance, with alterations located in the embC-embA intergenic region

conferring high-level EMB resistance (Cui et al. 2014; Xu et al. 2015). embR has

been reported to modulate the level of arabinosyltransferase activity in vitro in a

phosphorylation-dependent manner, acting downstream of the Ser/Thr-kinase

PknH (Belanger et al. 1996). Interestingly, mutations were identified in the ubiA
gene in EMB-resistant XDR-TB isolates lacking shared embBmutations (Motiwala

et al. 2010; He et al. 2015), and these mutations were associated with high-level

EMB resistance (Safi et al. 2013). The ubiA gene is essential for growth of

M. tuberculosis and is involved in the synthesis of decaprenylphosphoryl-D-arabi-

nose (Huang et al. 2005). It was recently reported that overexpression of wild-type

ubiA gene resulted in an increase in EMB resistance in M. tuberculosis (He et al.

2015). This indicates that multiple mechanisms could result in the EMB resistance

phenotype in mycobacteria.

2.1.4 SQ109

One of the newer anti-TB drugs, SQ109, was identified by screening a library of

EMB derivatives based on the upregulation of the iniBAC operon promoter (Lee

et al. 2003; Protopopova et al. 2005). Exposure of mycobacteria to SQ109 leads to

the inhibition of trehalose dimycolate production and concomitant upregulation of

trehalose monomycolate levels (Li et al. 2014b). This results in failure to attach

mycolic acids to the cell wall arabinogalactan (Grzegorzewicz et al. 2012; Tahlan

et al. 2012). The MIC for SQ109 ranges from 0.16 to 0.78 μg/ml for all
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M. tuberculosis strains tested (Jia et al. 2005), and synergy was observed between

INH/RIF and SQ109 in in vitro and in vivo analysis (Nikonenko et al. 2007).

M. tuberculosis has a low spontaneous mutation rate of 2.55� 10�11 for SQ109

resistance (Sacksteder et al. 2012).

The mycobacterial transport protein responsible for trehalose dimycolate trans-

port, MmpL3, has been identified as the target of SQ109 (Sacksteder et al. 2012;

Tahlan et al. 2012). Attempts to generate mutants against SQ109 have been

unsuccessful. However, whole genome sequencing of in vitro mutants generated

against analogs of SQ109 revealed that mutations in the mmpL3 gene led to SQ109
and SQ109 analog resistance without cross-resistance to EMB (Tahlan et al. 2012).

Mmpl3 mutations (Ala700Thr, Gln40Arg, and Leu567Pro) were reported to result

in a greater than fourfold increase in SQ109 resistance level (Tahlan et al. 2012),

with cross-resistance being observed between other MmpL3 inhibitors (Li et al.

2014b). Recently, it was observed that SQ109 inhibits enzymes involved in

menaquinone synthesis, respiration, and therefore ATP synthesis (Li et al.

2014a). Additionally, SQ109 disrupts the proton motive force, thereby acting as

an uncoupler (Li et al. 2014b). This effect on the proton motive force may also

impact MmpL proteins, since it is suggested that the resistance-nodulation-division

transporters catalyze the export of substrates via a proton anti-port mechanism

(Li et al. 2014b).

2.1.5 D-Cycloserine

DCS is recommended by the WHO for the treatment of drug-resistant TB, despite

severe side effects (WHO 2000). Resistance to DCS is attributed to overexpression

of alrA inM. smegmatis (Caceres et al. 1997). AlrA encodes for D-alanine racemase

that is involved in D-alanine synthesis. D-Alanine is an integral component of

peptidoglycan which is an essential component of the cell wall. L-Alanine is

converted to D-alanine by the catalytic activity of AlrA (Chacon et al. 2002).

Subsequently, the D-alanine/D-alanine ligase (Ddl) catalyzes the dimerization of

D-alanine into D-alanyl-D-alanine (Chacon et al. 2002). Studies indicate that alrA
overexpression is a result of a G!T transversion in the alrA promoter (Caceres

et al. 1997). These reports also show that M. smegmatis alrA null mutants have the

ability to grow in the absence of D-alanine, suggesting the presence of another

pathway of D-alanine biosynthesis (Chacon et al. 2002). Moreover, these alrA null

mutants were more susceptible to DCS. It was also observed that a mutation

(Gly122Ala) in the cycA gene, which encodes a D-serine/alanine/glycine trans-

porter, partially contributes to the DCS resistance phenotype in M. bovis BCG

vaccine strains (Chen et al. 2012). From these reports it is evident that more

research needs to be done on DCS in order to elucidate and understand its resistance

mechanisms fully.
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2.2 Inhibitors of DNA Replication

2.2.1 Fluoroquinolones

Quinolones are synthetic compounds active on the enzymes essential for DNA

replication, the DNA gyrases (Ginsburg et al. 2003). By interfering with DNA

gyrase activity, the FQs disrupt DNA supercoiling, thereby inhibiting cell division

and gene expression. DNA gyrase is comprised of two alpha and two beta subunits,

encoded by the gyrA and gyrB genes, respectively (Takiff et al. 1994). Scientific

reports indicate that spontaneous mutations develop at a frequency of 2� 10�6 to

10�8 (Alangaden et al. 1995).

Approximately 90% of FQ resistance in M. tuberculosis is attributed to muta-

tions in a region named the quinolone-resistance-determining region (QRDR) in the

gyrA and the gyrB gene (Takiff et al. 1994; Aubry et al. 2006). Mutations at codons

90 and 94 in the gyrA gene are most commonly observed among clinical isolates

(Aubry et al. 2006), along with a Ser95Thr polymorphism in gyrA that is also

present in FQ-sensitive clinical isolates (Maruri et al. 2012). Double mutations in

gyrA and gyrB have been reported to exhibit high-level OFL resistance (Isaeva et al.

2013; Nosova et al. 2013). Mutations in gyrA (e.g., Ser91Pro, Asp94Ala, Ala90Val)

also result in OFL, MOXI, and LFX cross-resistance with MIC90> 4 μg/ml

(Kambli et al. 2015; Willby et al. 2015). Although the majority of clinical FQ

resistance is attributed to mutations in the gyrA and gyrB genes, additional mech-

anisms that can contribute to FQ resistance include efflux and DNAmimicry (Pasca

et al. 2004). The clinical significance of these mechanisms has not been extensively

investigated yet.

2.3 Inhibitors of Transcription

2.3.1 Rifampicin

RIF is a highly effective rifamycin that interferes with transcription by inhibiting

the DNA-dependent RNA polymerase (RNAP) enzyme (McClure and Cech 1978).

The majority of RIF-resistant M. tuberculosis strains harbor mutations in an 81 bp

RIF resistance-determining region (RRDR) of the rpoβ gene, which encodes the

β-subunit of RNAP (Telenti et al. 1993). Mutations at different loci in the RRDR of

the rpoβ gene result in different RIF resistance levels (Louw et al. 2011), with

His526Arg, His526Asp, His526Pro, His526Tyr, and Ser531Leu mutations being

among the most common among RIF-resistant M. tuberculosis isolates (Telenti

et al. 1993; Bodmer et al. 1995). Mutations in the RRDR are not the sole contrib-

utors to RIF resistance; mutations outside of the RRDR (Heep et al. 2001; Siu et al.

2011), along with the significant upregulation of efflux pumps upon RIF exposure

(Louw et al. 2011), have been associated with RIF resistance. In 2011, the WHO

endorsed the implementation of an automated test, Xpert® MTB/RIF assay, to
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rapidly detect TB and RIF-resistant TB (Friedrich et al. 2013). Assessments of the

assay indicates that despite the cost limitations, it does provide rapid results, and it

significantly increases detection of TB and RIF resistance in culture-confirmed

cases, compared to smear microscopy (Steingart et al. 2014).

2.4 Inhibitors of Translation

2.4.1 Aminoglycosides

2.4.1.1 Streptomycin, Amikacin, and Kanamycin

The aminoglycosides inhibit protein synthesis by binding to the 30S subunit of the

mycobacterial ribosome (Ramaswamy and Musser 1998), with mutations in the

rpsL, rrs, gidB, and eis genes implicated in aminoglycoside resistance (Maus et al.

2005a; Zaunbrecher et al. 2009; Georghiou et al. 2012; Reeves et al. 2013).

Mutations in the essential rpsL gene, which encodes the 12S protein, result in

resistance to STR, with the most common rpsL mutations being K43R and K88R

(Ali et al. 2015). Mutations in the rrs gene, encoding for 16S rRNA, result in high-

level resistance to STR, AMI, and KANA, with the A1401G mutation being the

most frequently observed in AMI and KANA co-resistance (Campbell et al. 2011).

Various different mutations in the gidB gene, which encodes a 7-methylguanosine

methyltransferase that specifically modifies residues on 16S rRNA, have been

identified in STR-resistant M. tuberculosis strains. These mutations result in the

failure to methylate specific residues on the 16S rRNA molecule, thereby leading to

resistance conferred by loss-of-function mutations (Ali et al. 2015). It was reported

that promoter mutations in the 50 untranslated region of the eis gene, encoding an

aminoglycoside acetyltransferase, confer clinical low-level resistance to KANA.

This acetyltransferase acetylates KANA, thereby leading to its inactivation, which

subsequently prevents the drug from binding to the 30S ribosome (Zaunbrecher

et al. 2009). To date, these mutations have been relatively selective for KANA

resistance; therefore many strains with eis mutations would be classified as AMI

susceptible. Interestingly, it has recently been reported that mutations in the 50

untranslated region of the eis transcriptional activator, whiB7, also results in KANA
resistance. These mutations in whiB7 lead to an upregulation of eis, thereby

resulting in KANA degradation and subsequent resistance (Reeves et al. 2013).

2.4.2 Cyclic Peptides

2.4.2.1 Capreomycin and Viomycin

CAP and VIO are cyclic peptides that inhibit protein synthesis. VIO has been

shown to bind both the 30S and 50S ribosome subunits and to inhibit ribosomal
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translocation by interference with the peptidyl tRNA acceptor site (Yamada et al.

1978). VIO and CAP cross-resistance occurs in M. tuberculosis. Cross-resistance
between CAP and AMI/KANA has been reported, but cross-resistance between

CAP and STR is rare (Maus et al. 2005a). Mutations at A1401G, C1402T, and

G1484T are associated with CAP resistance, with additional mutations at various

positions in the tlyA gene, an rRNA methyltransferase reported to exhibit VIO and

CAP resistance (Maus et al. 2005a, b).

2.4.3 Oxazolidinones

2.4.3.1 Linezolid

Linezolid (LIN) was first introduced to treat gram-positive infections, including

staphylococcal and streptococcal infections (Perry and Jarvis 2001). In vitro

linezolid MICs for susceptible M. tuberculosis strains ranged from 0.25 to 1 μg/ml

with an MIC90 of 0.5 μg/ml. Development of resistance against linezolid was

considered to be rare (Richter et al. 2007). Reported in vitro frequencies for linezolid

resistant mutants were 2� 10�8 to 5� 10�9 (Hillemann et al. 2008). Sequencing of

the 23S rRNA gene in linezolid resistant mutants revealed the presence of a G to T

nucleotide substitution at either position 2061 or position 2576 (Richter et al. 2007).

The level of resistance for LIN mutants with the nucleotide substitution at position

2061 was 32 μg/ml, whereas those with a nucleotide substitution at position 2576

had a resistance level of 16 μg/ml (Richter et al. 2007). Interestingly, the predom-

inant mutation identified in clinical and in vitro selected LINmutants was in the rplC
gene, encoding the L3 ribosomal protein, at T460C (Beckert et al. 2012).

2.5 Anti-TB Drugs That Target Energy Metabolism

2.5.1 Pyrazinamide

Pyrazinamide (PZA) susceptibility testing is technically difficult due to the acidic

medium required for DST tests (Hoffner et al. 2013). PZA-resistantM. tuberculosis
strains emerge due to a lack of pyrazinamidase (PZase) activity. PZase is required to

convert PZA to its active form pyrazinoic acid (POA) (Konno et al. 1967). The

protonated form, HPOA, enters the cell, accumulates, and eventually kills the cell

(Zhang and Mitchison 2003). The PZA MIC of M. tuberculosis ranges from 6.25 to

50 μg/ml at pH 5.5 (Stottmeier et al. 1967). However, a PZAMIC> 2000 μg/ml has

been reported for M. avium and M. smegmatis due to intrinsic PZA resistance as a

result of efflux.M. bovis is also naturally resistant to PZA due to C!Gnt169 in pncA,
whereas M. kansasii has weak PZase activity and exhibits an MIC of 250 μg/ml

(Ramirez-Busby and Valafar 2015). PZA resistance inM. tuberculosis is mostly due

to mutations in the pncA gene (Whitfield et al. 2015a); however, pncA
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polymorphisms that do not confer the PZA-resistant phenotype have also been

identified (Whitfield et al. 2015b). Mutations in rspA, involved in trans-translation,

have also been identified in PZA-resistant strains (Louw et al. 2006; Shi et al. 2011;

Feuerriegel et al. 2013; Simons et al. 2013b; Tan et al. 2014). Interestingly,M. canetti
is naturally resistant to PZA due to a mutation (Met117Thr) in panD (Zhang et al.

2013). Subsequently, panD mutations in PZA-resistant M. tuberculosis strains

lacking rpsA or pncA mutations have also been identified (Shi et al. 2014). POA

inhibits enzymatic activity of panD, and it was observed that anti-TB activity of POA

could be antagonized by B-alanine or pantothenate (Dillon et al. 2014).

2.5.2 Bedaquiline

Bedaquiline (BDQ) (Sirturo or TMC207) is the first anti-TB drug in 40 years to be

FDA approved for treatment of sensitive and MDR-TB. The use of BDQ in addition

to the standard TB therapy in the murine model accelerated the bactericidal effect

(Andries et al. 2005; Lounis et al. 2006; Ibrahim et al. 2007). The minimum

inhibitory concentrations of BDQ for M. tuberculosis H37Rv and drug-susceptible

strains ranged from 0.03 to 0.12 μg/ml (Table 1) (Andries et al. 2005). Computa-

tional models suggest that BDQ restricts the rotational activity of ATP synthase,

thereby inhibiting ATP production (deJonge et al. 2007). Spontaneous mutant

selection and subsequent whole genome sequence analysis of the resistant

M. tuberculosis and M. smegmatis mutants identified mutations (Ala63Pro and

Asp32Val) in the c-subunit of ATP synthase encoded by the atpE gene (Andries

et al. 2005; Koul et al. 2007). Mutations in atpE partially account for the BDQ

resistance phenotype, with the report of spontaneous mutants without atpE gene

mutations (Andries et al. 2005; Huitric et al. 2007, 2010). Recently, clofazimine

(CFZ)-BDQ cross-resistance was observed in CFZ-resistant in vitro mutants. In the

absence of atpE mutations, these mutants harbored mutations in the transcriptional

repressor, Rv0678, which subsequently resulted in the upregulation of the Rv0678
and the mmpL5-mmpS5 efflux system (Milano et al. 2009; Hartkoorn et al. 2014).

This upregulation led to a four- to eightfold increase in the level of resistance for

CFZ and BDQ, which could be reversed with the addition of verapamil and

reserpine (Andries et al. 2014; Hartkoorn et al. 2014).

2.6 Multi-target Drugs

2.6.1 PA-824/Pretomanid

PA-824 is a member of the nitroimidazole family containing a nitroimidazopyran

nucleus. The MIC for PA-824 ranges from 0.039 to 0.25 μg/ml for sensitive strains

compared to 0.015–0.513 μg/ml for drug-resistant strains, with a mutation fre-

quency of 1.9� 10�5 to 6.38� 10�7 (Stover et al. 2000). PA-824 is a prodrug
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that is activated to its toxic form, by the mycobacterial membrane-bound

nitroreductase Ddn, a deazaflavin F420-dependent enzyme. This activation leads

to the inhibition of mycolic acid synthesis, resulting in cell death (Singh et al.

2008). Investigation on the modes of action of PA-824 has shown that intermediate

metabolites of PA-824 act as intracellular nitric oxide donors, therefore encourag-

ing intracellular killing of M. tuberculosis in anaerobic conditions (Singh et al.

2008; Manjunatha et al. 2009). When bacteria are in a hypoxic nonreplicating state,

PA-824 kills as a nitrous donor (Manjunatha et al. 2009). Interestingly,M. leprae is
intrinsically resistant to PA-824 due to the lack of the ddn gene (Manjunatha et al.

2006).

Another mode of action for PA-824 is suggested by the observation that an fbiC
knockout mutant in H37Rv, which is deficient for F420 production, is hypersensi-

tive to oxidative stress and INH, moxifloxacin, and CFZ (Gurumurthy et al. 2013).

By isolating PA-824-resistant mutants from the H37Rv M. tuberculosis back-

ground, it was observed that 29% of isolates harbored mutations in the ddn gene

and 26% ( fbiC), 19% ( fbiA), 7% ( fgd1), and 2% in the fbiA gene. The mutation

Ser11STOP in ddn gene conferred high-level PA-824 resistance; however, approx-
imately 17% of mutants lacked mutations in target genes screened, suggesting a

different resistance mechanism (Haver et al. 2015).

2.6.2 OPC67683/Delamanid

Delamanid belongs to the nitro-dihydro-imidazooxazole class of antibiotics that

inhibit mycolic acid synthesis (Barry and O’Connor 2007). Delamanid has an

MIC90 of 0.006–0.05 μg/ml (Diacon et al. 2011), with an in vitro mutation

frequency of 6.44� 10�6 to 4.19� 10�5 (Szumowski and Lynch 2015). Mutations

in F420 biosynthetic genes also result in PA-824-delamanid cross-resistance.

2.6.3 Clofazimine

CFZ is lipophilic riminophenazine developed in 1957 for the treatment of MR-TB

(Van Deun et al. 2010). It is a prodrug that is reduced by NADH dehydrogenase

(Ndh2), and subsequently re-oxidized by O2, to release reactive oxygen species

(ROS). The production of ROS and subsequent cell death have been reported in

M. smegmatis treated with CFZ and CFZ analogs (Yano et al. 2011). In vitro

isolation of CFZ mutants reported cross-resistance to BDQ due to the presence of

mutations in the transcriptional repressor, Rv0678, and subsequent upregulation of

efflux pumps mmpL5-mmpS5 (Hartkoorn et al. 2014). Recently, whole genome

sequence analysis of spontaneous CFZ mutants revealed mutations in two addi-

tional genes that conferred the CFZ-resistant phenotype. These mutations were

Glu89STOP in the putative peptidase, PepQ, resulting in the inactivation of this

protein (Zhang et al. 2015a). The authors suggest that PepQ could be involved in

CFZ activation. The additional mutation, Val351Ala, was identified in a possible
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permease, Rv1979c, which is involved in amino acid transport (Zhang et al. 2015a).

Although it is suggested that this protein could be involved in CFZ uptake and

transport, it is evident that the direct effect of these two additional genes on CFZ

resistance should be investigated further.

2.7 Anti-TB Drugs That Target Pathways

2.7.1 Para-aminosalicylic Acid

PAS is used as a second-line drug that targets the mycobacterial folate pathway

(WHO 2000; Chakraborty et al. 2013). This prodrug is a structural analog of para-

aminobenzoic acid (PABA) that is the substrate of the dihydropteroate synthase,

encoded by folP1/folP2. The condensation of PABA and 6-hydroxymethyl-7,8-

dihydropterin pyrophosphate to 7,8-dihydropteroate is catalyzed by

dihydropteroate synthase. This is subsequently converted to dihydrofolate and

reduced by dihydrofolate reductase, encoded by dfrA, to produce tetrahydrofolate

(Table 2).

Rengarajan and colleagues showed that PAS resistance is attributed to mutations

in the thyA gene, encoded for by thymidylate synthase A, which is essential for

thymine synthesis. In addition, thyA gene mutations were also present in clinical

M. tuberculosis isolates resistant to PAS, indicating that PAS functions as a folate

antagonist (Rengarajan et al. 2004; Fivian-Hughes et al. 2012). The dihydrofolate

synthase, FolC, is essential for the activation of PAS, and mutations in folC have

been reported to result in the PAS-resistant phenotype (Zhao et al. 2014). In

addition, mutations in ribD, encoded for by the alternate dihydrofolate reductase,

have been reported to result in its overexpression, thereby leading to PAS resistance

(Zheng et al. 2013; Zhao et al. 2014; Zhang et al. 2015b). It was suggested that

overexpression of ribD confers resistance by compensating for the inhibition of

DfrA function.

3 Drug Resistance Mechanisms Other Than Chromosomal

Mutations

Drug resistance in M. tuberculosis is not attributed to horizontal gene transfer, due

to the lack of plasmids in this bacillus (Zainuddin and Dale 1990). Alternative

mechanisms that contribute to mycobacterial drug resistance include (a) the pro-

duction of drug-modifying enzymes, (b) the production of enzymes that inactivated

the drug, (c) low cell wall permeability resulting in a decrease in drug influx, and

(d) efflux-related mechanisms leading to a reduction in intracellular drug concen-

tration (Davies and Courvalin 1977; Dabbs et al. 1995; Liu et al. 1996; Takiff et al.
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1996; Davies and Wright 1997; Quan et al. 1997; Imai et al. 1999; Nikaido 2001;

Brennan 2003; Draker et al. 2003; Li et al. 2004; Ashenafi et al. 2014) (Fig. 2).

3.1 Permeability Barrier and Activation of Efflux Pumps

Certain mycobacterial species exhibit an intrinsic drug-resistant phenotype that is

not the result of antibiotic exposure (Fajardo et al. 2008). Intrinsic drug resistance is

attributed to the activation of efflux pumps and an inherently low permeability of

the mycobacterial cell wall (Nikaido 2001; Borges-Walmsley et al. 2003; Louw

et al. 2009). Recently, knockdown of Rv1026 (ppx2), an exopolyphosphatase, was

shown to result in increased bacterial cell wall thickness and decreased INH

permeability (Nikaido 2001; Brennan 2003; Chuang et al. 2015). This indicated a

molecular basis contributing to decreased permeability and intrinsic drug

resistance.

Whole genome sequencing of M. tuberculosis revealed the presence of various

efflux pumps that may enable the bacilli to evade the antimycobacterial killing

action. Efflux pumps export various toxic compounds including antibiotics and

metabolites, resulting in a decrease in intracellular concentration (Pages et al. 2005;

Gupta et al. 2006). This phenomenon has been extensively studied in mycobacteria

recently (Li et al. 2004; Morris et al. 2005; Buroni et al. 2006; Zechini and Versace

2009; Adams et al. 2011; Louw et al. 2011; Rodrigues et al. 2011, 2012; Balganesh

et al. 2012; Hartkoorn et al. 2014).

RESISTANCE

INTRINSIC 

RESISTANCE

Activation of efflux pumps 
Decrease in intracellular drug 
concentration 

Active efflux of drugs

Drug Exposure 

Limited drug influx due 

to permeability barrier Decrease in intracellular 
drug concentration 

INTRINSIC

RESISTANCE

Production of drug 
inactivating and modifying 
enzymes 

Fig. 2 Mycobacterial drug resistance mechanisms other than chromosomal alterations. Mecha-

nisms such as the activation of efflux pumps and limited drug influx due to the decreased drug

permeability lead to a reduction in the intracellular drug concentration and subsequent intrinsic

resistance. The production of drug-inactivating and drug-modifying enzymes also results in drug

resistance
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In vivo and in vitro studies have revealed that antibiotic exposure of mycobac-

terial cells resulted in the significant upregulation of efflux pumps. It was shown

that exposure to RIF resulted in an increase in expression of Rv1258c, which is a

tap-like efflux pump (Adams et al. 2011, 2014), and arise in the RIF resistance

level. Treatment with efflux pump inhibitors, verapamil, reserpine, and tetrandrine,

along with RIF, INH, and EMB, could reverse the resistance phenotype of these

anti-TB drugs (Adams et al. 2011, 2014; Louw et al. 2011). Studies have also

shown that the exposure of M. tuberculosis to anti-TB drugs such as EMB, INH,

RIF, OFL, STR, and PAS results in the upregulation of efflux pumps like drrA,
drrB, efpA, mmr, jefA, Rv1634, whiB7, Rv1456c-Rv1457c-Rv1458c, Rv1258c, and
pstB (Morris et al. 2005; Ramon-Garcia et al. 2012; Gupta et al. 2014; Hartkoorn

et al. 2014; Garima et al. 2015; Li et al. 2015; Zhang et al. 2015c). The upregulation

of the efflux pumps results in an MDR phenotype. Interestingly, the organosilicon

compound, SILA-421 and thioradazine, both shown to have efflux pump inhibitory

activity, demonstrated time- and concentration-dependent activity against

M. tuberculosis as well as the enhanced killing of intracellular XDR-TB (Martins

et al. 2009; Simons et al. 2013a; de Knegt et al. 2014, 2015). These compounds also

enhanced the activity of INH and RIF in vitro and prevented the emergence of INH-

and RIF-resistant mutants. However, they did not show in vivo activity enhance-

ment of INH and RIF in M. tuberculosis-infected mice treated with INH-RIF-PZA

for 13 weeks (de Knegt et al. 2014, 2015).

3.2 Production of Drug-Modifying and Inactivating Enzymes

M. smegmatis has been confirmed to be naturally resistant to RIF due the rifampin

ADP-ribosyltransferase (Arr-ms), encoded by the chromosome, which assists in

covalently adding a ribose group to RIF. This addition modifies and inactivates RIF,

thus resulting in intrinsic resistance inM. smegmatis to RIF (Dabbs et al. 1995; Imai

et al. 1999; Quan et al. 1997; Baysarowich et al. 2008).

The production of inactivating enzymes, e.g., the acetyltransferase AAC (20)—Ic

and the phosphotransferase encoded by the Rv3225c gene, APH (6)-la and APH (6)-

ld from producer strain Streptomyces griseus, has been associated with STR

resistance (Davies and Courvalin 1977; Davies and Wright 1997; Draker et al.

2003; Ashenafi et al. 2014). Similarly, the lack of antimicrobial activity in

M. abscessus of aminoglycosides could be reversed by disruption of the chromo-

somally encoded aac(20) gene (Maurer et al. 2014, 2015) (Fig. 2). By using

M. smegmatis, it was shown that the activity of acetyltransferase was significantly

induced in response to aminoglycoside, thereby resulting in the inhibition of protein

synthesis.
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4 Compensatory Mechanisms, Fitness, and Drug

Resistance

Some resistance-causing mutations have been found to incur a fitness cost

(Gagneux et al. 2006). The fitness cost may be compensated for by the acquisition

of secondary mutations at a different site during the evolution of resistant bacteria

(Bjorkman et al. 2000). The mutant carrying the chromosomal alteration can

become extinct, or the mutations might be fixed in the population by means of

compensatory evolution (Bottger and Springer 2008). These compensatory mech-

anisms can reduce the cost by restoring physiological functions impaired by the

resistance mutations without altering the level of bacterial resistance (Schrag and

Perrot 1996).

Recently, whole genome sequencing of RIF-resistant M. tuberculosis strains

with rpoB mutations revealed novel mutations in rpoA and rpoC that emerged over

time. Strains with these mutations exhibit high competitive fitness in vitro and

in vivo and lead to MDR strains with high fitness (Comas et al. 2012). Previously, it

was shown by in vitro pair-wise competition experiments that the wild-type rpoB
M. tuberculosis strains outcompeted strains harboring the Ser522Leu, His526Tyr,

and Ser531Trp mutations (Billington et al. 1999; Mariam et al. 2004). The extent of

fitness loss was dependent on the specific rpoB mutation, with the Ser531Leu rpoB
mutation only exhibiting a minor fitness defect compared to other mutations

(Billington et al. 1999; Gagneux et al. 2006; Mariam et al. 2004). Additionally,

mutations in rpoC illustrated that epistatic interactions between mutations that

confer drug resistance, compensatory mutations, and diverse strain genetic back-

ground might influence compensatory evolution (de Vos et al. 2012).

In INH resistance, mutations in katG eliminate catalase-peroxidase activity,

thereby preventing the activation of INH (Heym et al. 1999). It was shown that

the expression of KatG or the alkyl hydroperoxidase, AhpC, exhibited a protective

effect against organic peroxides in bacilli. The overexpression of AhpC, due to the

presence of a mutation in ahpC, enabled INH-resistant katG mutants to survive

during infection (Sherman et al. 1996).

These alternative mechanisms compensating for the loss of fitness caused by

genetic mutations are difficult to detect using PCR-based methods as these methods

only target mutation hotspots associated with drug resistance. Thus, it is imperative

to also consider these compensatory mechanisms upon designing and developing

new drugs and treatment regimens.

5 Perspectives

The history of TB drug development and use provides numerous examples of

chromosomally encoded resistance, which often emerges very rapidly after the

introduction of new drugs. This highlights the need for a diverse product portfolio
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entering the TB drug development pipeline. Fortunately, there are several promis-

ing new drugs at various stages within the TB drug development pipeline. These

include bactericidal compounds in the benzothiazinone class, targeting the enzyme

decaprenylphosphoryl-β-D-ribose 20-oxidase (DprE1), which is essential for cell

wall synthesis (Makarov et al. 2015). However, as with all TB drugs, there is a need

for a better understanding of mechanisms of drug resistance and consequences of

mutations that confer drug resistance. The emergence of compensatory mechanisms

following the evolution of drug resistance-conferring mutations, after selective

pressure, is an additional factor to consider upon rational drug design. Recently,

bacterial collateral resistance and sensitivity to various combinations of anti-TB

drugs have been reported. However, it is evident that the collateral sensitivity and

resistance networks are complex, thereby complicating tailoring specific treatment

regimens based on existing drug treatments. It would be desirable to explore

alternative approaches to treatment, including the inclusion of efflux pump inhib-

itors or immunomodulators. Ideal treatment regimens would eliminate the forma-

tion of bacterial persisters, reduce the selection of resistant mutants, and ultimately

offer a much-reduced treatment regime, to increase compliance.
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Glycogen as Key Energy Storehouse

and Possibly Responsible for Multidrug

Resistance in Mycobacterium tuberculosis

Anil Kumar Gupta, Amit Singh, and Sarman Singh

Abstract Tuberculosis (TB) is a major public health problem with a high mortality

rate worldwide due to Mycobacterium tuberculosis (M. tuberculosis) pathogen,

claiming 9.6 million total cases were estimated in 2014 and more than 1.5 million

people dead.M. tuberculosis and other pathogenic mycobacterial species produce a

variety of glycogen or glycogen-associated molecules like lipoarabinomannan

(LAM), trehalose monomycolate (TMM), phenolic glycolipids (PGLs), trehalose

dimycolate (TDM), phosphatidylinositol-containing mannosides (PIMs), etc., that

represent as major glycans present in the outermost layer of M. tuberculosis. The
M. tuberculosis accumulate glycogen during harsh environmental condition, i.e.
presence of reactive oxygen and nitrogen intermediates, limited nutrients availabil-

ity and depletion of other essential elements required for their survival within the

host. The glycosyltransferases (GTs) enzyme involves two families, glycogen

transferase-3 (eukaryotes) and GTs-5 (eubacterial and archaeal), that play a major

role in the regulation of glycogen metabolism. In bacteria, regulation of glycogen

anabolism involves several glycogen synthase enzymes, i.e. α-D-glycogen synthase

A (glgA), 1,4-α-D-glucan 6-glucosyltransferase (glgB) and glucose-1-phosphate

adenylyltransferase (glgC), while catabolism involves glycogen phosphorylase

(glgP) enzyme. In recent years, role of glycogen was investigated enormously in the

pathogenesis of M. tuberculosis. Two major glycogen conjugates present in the cell

wall ofM. tuberculosis are TDM and TMM. These conjugates serve as precursors for

the synthesis of mycolic acid that plays a key role in the invasion and pathogenesis of

M. tuberculosis. This chapter summarizes the current updates of the presence of

glycogen/glycoconjugates and their physiological role in the survival and pathogen-

esis mechanisms of M. tuberculosis during antagonistic conditions. Also, the chapter
summarizes evidence of the putative GTs in the Mycobacterium spp.
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Abbreviations

ACP reductase Enoyl-acyl carrier protein reductase

ADP Adenosine diphosphate

AM Arabinomannan

CR-3 Complement receptor 3

G1P Glucose-1-phosphate

G6P Glucose-6-phosphate

glgA α-D-Glycogen synthase A

glgB 1,4-α-D-Glucan 6-glucosyltransferase

glgC Glucose-1-phosphate adenylyltransferase

glgP Glycogen phosphorylase

glgX Glucan hydrolase

GS Glycogen synthase

GTB Glycosyltransferase B

GTs Glycosyltransferases

KGD α-Ketoglutarate decarboxylase
LAM Lipoarabinomannan

LPS Lipopolysaccharide

M. tuberculosis Mycobacterium tuberculosis
MGLP 6-O-Methylglucosyl-containing lipopolysaccharides

NPP Nucleotide pyrophosphate

ODHc 2-Oxoglutarate dehydrogenase complex

PAMP Pathogen-associated molecular patterns

PGLs Phenolic glycolipids

PGM Phosphoglucomutase

PI Phosphatidyl-myo-inositol

PIMs Phosphatidylinositol-containing mannosides

STRE Cis-element stress response element

TB Tuberculosis

TLR2 Toll-like receptor

TMM Trehalose monomycolate

UDP Uridine diphosphate

1 Introduction

All living things store glucose (energy source) as glycogen (kingdom Monera,

Protista, Fungi and Animalia) or starch (kingdom Plantae, some fungi and protists)

(Roach et al. 1998; Gupta et al. 2014; Asención-Diez et al. 2015). Glycogen, a

polysaccharide present in the cytosol of the cell, is principally used by bacteria,

fungi or animals, while starch is synthesized and stored in plastids by plants, some

protists or planktons (Calder 1991; François and Parrou 2001; Ball and Morell

2003; Preiss 2006). Glycogen has similar structure to amylopectin and is mostly
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branched but more compact than starch. Glycogen is present in the cytosol/cyto-

plasm of cells in granular form and plays a significant role in the glucose metabolic

cycle. Glycogen acts as energy reserve that can be quickly mobilized to overcome

the quick need of glucose, because glycogen is less compact than other energy

reserves such as triglycerides (lipids).

In humans, glycogen is produced and stored primarily in the liver and muscle

cells in the hydrated form with three or four parts of water (Preiss 2006). The

glycogen is stored as the chief energy store in the liver adipose tissues. In the liver

cells (known as hepatocytes), glycogen can comprise up to 8% of its dry weight

(100–120 g in an adult) soon after a meal (Campbell et al. 2006), whereas only

small amount (1–2%) is present in the muscle cells. The common glycogen storage

organs/tissues other than the liver and muscles are red blood cell (Moses et al. 1972;

Ingermann and Virgin 1987). Nevertheless, in mammals, glucose uptake and its

utilization is well regulated. Any error in the glucose regulation pathways results in

the induction of different glycogen storage diseases (Buschiazzo et al. 2004).

The presence of glycogen molecules/granules in the cytoplasm has been

described in more than 40 species of bacteria (Preiss and Romeo 1994). Both

sugar molecules (glycogen and starch) are compact glucose polymers and act as

reservoir of spontaneously accessible carbon and energy source in diverse organ-

isms representing archaea, eubacteria, yeasts, plants and animals (Henrissat et al.

2002). In bacteria, it is usually synthesized when growth is limited by the nitrogen

source, and the presence of excess amount of carbon source in in-vitro conditions.

Hence, accumulation of glycogen supports the survival of bacteria under nutritional

stresses. The inverse relation is observed between growth rate and the amount of the

glycogen accumulation during the nitrogen restrictions. Its accumulation is quite

rapid just prior to sporulation initiation in Bacillus cereus and exopolysaccharide

production in all Corynebacteriaceae family members such as Corynebacterium
diphtheriae and M. tuberculosis (Schwebach et al. 2002).

M. tuberculosis is an aerobic, gram positive and acid-fast bacillus that causes TB

in humans. It accumulates glycogen during the unreceptive conditions—accumu-

lation of reactive oxygen and intermediates of nitrogen, depletion of nutrients, low

pH and during starvation for their survival within the host (Antoine and Tepper

1969). However, the accumulation of glycogen does not happen during the expo-

nential growth ofM. tuberculosis under laboratory conditions, but its presence may

enhance the sustainability of M. tuberculosis during these hostile conditions. The

role of glycogen in the pathogenic behaviour of M. tuberculosis has been reported

by Pal et al. (2010). It was validated that if the bacteria are physically inactivated

for long period of time, their stored sugar fulfils all energy needs of bacterium and

becomes very important molecules for its survival. Various research groups have

reported that glycogen or its intermediates may regulate biological pathways by

binding glycogen molecules to their respective proteins/enzymes and that of lipids

during the process of post-translational modifications. Quite a few uncharacterized

glycosyltransferase (GTs) of M. tuberculosis are of major interest and will be

discussed in detail in following prokaryotes.
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The chapter presents the current status of the information about the various

enzymatic processes leading to bacterial glycogen synthesis or degradation path-

ways that play critical role in the survival and possible drug resistance mechanisms

in M. tuberculosis. Also, the chapter summarizes evidences of the putative GTs in

the Mycobacterium spp.

2 Existence and Structure of Glycogen

The storage materials are usually accumulated as granular form in the cytosol of the

bacteria. This accumulation conventionally takes place in response to depletion of

nutrients or in the presence of excess of the relevant harmful substrates. These

granules are superficially dispersed within the cytoplasm of bacteria. The size of

granules is 20–100 nm in diameter and exists in the form of non-membrane-

enclosed inclusions. However variations in the shape and size of the granules

have been reported (Preiss 2006). In Cyanobacteria, glycogen stores may occur in

the form of crystals, spherical or in rod forms. Glycogen stores can also be found in

membrane-enclosed polyglucose inclusion bodies in several strains of Clostridia

(Preiss 2006) with granule sizes ranging from 160 to 300 nm in diameter.

Glycogen accumulation is generally initiated in the stationary phase (Wilson

et al. 2010). In a large number of bacteria, glycogen accumulates, while bacterial

growth reaches to stationary phase due to the limitations of essential nutrients such

as phosphorus, nitrogen or sulphur. Glycogen structure resembles that of amylo-

pectin (a component of starch) with alpha glycosidic linkages. However, it is even

more branched and has extra glucose units than amylopectin (Ball and Morell

2003). The complex molecules—glycogen and amylopectin—comprise of α-1-4-
linked D-glucose unit with α-1-6-branching point. Branches are covalently linked to
the main chain from which they are branching off by the glycosidic bonds. The

glycosidic bond is formed between the first glucose (C-1) of the new branch and

sixth glucose (C-6) on the stem chain. The branching takes place at every interval of

8–10 units of glucose, whereas in amylopectin 12–20 glucose units segregate the

branches.

The variation in the size of branches (length and number) depends on the

organism and size of the glycogen granules (Belanger and Hatfull 1999; Cid et al.

2002). In Mycobacterium smegmatis (M. smegmatis), the degree of branching is

less and the rate of sedimentation coefficient is more due to bigger size of glycogen

granules. Mycobacterium phlei (M. phlei) possesses a glycogen molecular weight

1.2� 108 (Antoine and Tepper 1969) in comparison with 8.2� 107 of Escherichia
coli (E. coli) (Preiss and Romeo 1994) (Fig. 1). The branches of glycogen are

extremely important to the quick response to metabolic needs, because the biosyn-

thesis and degradation of glycogen molecules only happen from the non-reducing

ends of amylose chain. Therefore, extremely branched glycogen has higher number

of reducing ends per molecules of glycogen, which generate more glucose
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molecules at single time. Branches also increase solubility of glycogen in the water

(Zmasek and Godzik 2014).

3 Glycogen: As Energy Storehouse

Many bacteria accumulate glucose in the form of glycogen, a polysaccharide

comprising the glucose connected with α-1,4 glycosidic linkage and α-1,6 linked

branched oligosaccharide chains with molecular weight of about 107–108 kDa. It

acts as chief carbon source and provides energy to the organisms. Wilson et al.

(2010) expressed that the compounds with energy-storage functions should fulfil

three criteria:

1. Be accumulated intracellularly, in the presence of excess energy supplements.

2. Be consumed when the limited external carbon supplies are present for the

growth maintenance or related processes necessary for the cell growth. The

storage compound should be degradable to the energy for consumption by the

cell for their survival or respond well to the environment.

Since glycogen meets all these criteria, it is one of the best storage materials in

living things.

Glycogen Amylopectin Amylose

Fig. 1 Branched structure of glycogen and its component showing the helical structure known as

amylose (α-1,4 linkage) and branched amylopectin (α-1,6-glucosyl linkages) structure
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4 Biological Functions of Glycogen

It has been observed that glycogen-rich cells of E. coli, Streptococcus mitis
(S. mitis) and Enterobacter aerogenes (E. aerogenes) present in media without

exogenous or other carbon sources displays prolonged viability in comparison with

glycogen-deficient strains during starvation. Under these conditions, glycogens

containing E. coli and E. aerogenes do not degrade their protein components and

nucleic acid to ammonia, while cells without glycogen rapidly degrade their pro-

teins and their nucleic acid. Therefore, the presence of glycogen may protect

cellular components in the stationary phase. However, survival rates of glycogen-

rich and glycogen-deficient cells, in 0.5–1.0 mM magnesium chloride (MgCl2)

containing media, are similar. The possible reason behind this action could be

that MgCl2 is known to enhance the strength of the ribosomal constituents in the

cell, resulting in the reduction of turnover rates of RNA and protein. There is a high

probability that glycogen may prove effective in preserving and conserving the

intracellular Mg2+ concentration. In Clostridia, up to 60% of the cell dry mass may

be accumulated as glycogen, prior to the beginning of sporulation (Shively 1974).

This polysaccharide degrades rapidly during spore formation which suggests that

glycogen serves as a solitary carbon and energy source for the development of

spores and their maturation. Similarly, in sporulating hyphae of Streptomyces
viridochromeogenes (S. viridochromeogenes), glycogen granules reach a maximal

number in the beginning of maturation. In later stages of maturation, granules

decrease in the fungal hyphae and accumulate in mature spores. Glycogen accu-

mulation also occurs in Bacillus cereus (B. cereus) during early stage of sporulation
and degrades during its maturation (Slock and Stahly 1974). Hence, it has been

presumed in the sporulating microorganisms that glycogen acts as carbon and

energy source. Several investigators suggested that glycogen helps bacteria to

survive during starvation. However, some other observations are contrary to the

concept of glycogen being an energy-storage house. As revealed earlier, the

presence of higher amount of magnesium enhances survival rates of E. aerogenes
and E. coli cells and is independent of the presence of glycogen (Shively 1974),

while Sarcina lutea (S. lutea) dies at a faster rate in glycogen-rich conditions during
starvation in the phosphate media (Rose and Tempest 1989). More efforts are

needed to elucidate the role of glycogen in bacteria.

5 Glycosyltransferases: An Enzyme Vital for Glycogen

Synthesis

Glycogen biosynthesis is facilitated by the action of GT enzymes (Rini et al. 2009).

A large number of enzymes grouped in GTs are involved in the biosynthesis of

oligosaccharides, polysaccharides and other glycogen conjugates (Pederson et al.

2000; Pedersen et al. 2003). The GTs have immense diversity but mediate a
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comprehensive variety of functions—structural and storage— important for molec-

ular signalling. These enzymes are widely present in prokaryotic organisms and in

eukaryotic organisms also, but illustrate enormous specificity for the glycosyl

acceptor and donor molecules. In eukaryotes, many structural oligosaccharides

are produced during the glycosylation process in Golgi apparatus (Breton et al.

2006; Possner et al. 2015). Prokaryotes produce different glycol conjugates and

other polysaccharides, which vary in structures and complexity. In E. coli, glucose-
1-phosphate adenylyltransferase (glgC), alpha-D-glycogen synthase (glgA) and

1,4-α-D-glucan 6-glucosyltransferase (glgB) genes encode for enzymes responsible

for its synthesis, while glycogen phosphorylase (glgP) and glucan hydrolase (glgX)
genes encode for its degradation. glgC gene is responsible for creation of charged

glucose nucleotide pyrophosphate (NPP) and glgA gene for linear glucan chain.

Glycogen branching enzyme (glgB), transfers 6–7 glucose units from the hydroxyl

group of carbon number 6 of the non-reducing end, either on the similar or adjacent

chains. GlgB in bacteria (Seibold et al. 2011) and fungi is responsible for glycogen

branches. Additionally, bacterial glycans that include numerous unusual sugars

such as Kdo, heptoses and modified hexoses (absent in vertebrates) take part in

the pathogenesis of bacteria. Also, some other molecules, i.e. lipids coupled with

glucose/mannose or a precursor of dolichol oligosaccharide, are responsible for the

peptidoglycan, lipopolysaccharide (LPS) and capsules assembly (Rini et al. 2009).

6 Functional Classification of Glycosyltransferase

Enzymes

According to nucleotide sequence and structural comparisons, glycogen synthase

(GS) enzymes have been categorized as glycosyltransferase B (GTB). The struc-

tural characteristics of GS include two Rossmann fold domains among the catalytic

and substrate-binding sites. Further, enzymes of GTB have been subclassified into

GT3 and GT5 families (Fig. 2). The GT5 family consists of both eubacterial and

archaeal GS enzymes, and GT3 family consists of eukaryotic enzymes and is

regulated by the inhibitory phosphorylation and allosteric activator (G6P) (Unligil

and Rini 2000).

The major difference between prokaryotic and eukaryotic enzymes is the use of

adenosine diphosphate (ADP) glucose in bacteria and uridine diphosphate (UDP)-

glucose in the eukaryotes. Apart from that, archaeal enzymes are proficient in

utilizing ADP and UDP-glucose as substrates. Three-dimensional structures of

the GT5 family members (three) have been determined in E. coli as monomeric,

Agrobacterium tumefaciens (A. tumefaciens) as dimeric and in Pyrococcus abyssi
(P. abyssi) as trimeric enzymes. This information is not proving very effective on

elucidating the regulatory mechanisms in eukaryotes.
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7 Mechanisms of Action of Glycotransferase Enzyme

The mode of action of GT enzymes depends upon the activated donor, like NPP

sugar, nucleoside monophosphosugar or lipid phosphor sugar and hydroxyl group

of amino acid that acts as acceptor molecules. Monosaccharide component of

activated nucleotide sugar is transferred to the glycosyl and forms glycosidic

bonds. Inversion of GTs is supposed to resemble the inverting glycosyl hydrolase

enzymes with an acidic amino acid that is responsible for the activation of the

acceptor OH group by the deprotonation (Breton et al. 2006).

8 Synthesis and Regulation of Glycogen in Eukaryotes

In higher eukaryotic organisms, glycogen is synthesized when the nutrients are

non-unlimiting. In eukaryotes, skeletal muscles, the liver, and red blood cells

(RBCs) to some extent store glycogen. Several other organs like brain, adipose

tissue, pancreas and kidney also synthesize minute amount of glycogen. In the

skeletal muscles, glycogen is converted into glucose-6-phosphate (G6P) and enters

into glycolysis cycle for the generation of ATP molecules, which are chiefly

consumed as energy source for muscular contraction. Liver glycogen plays signif-

icant role in glucose homeostasis during fasting. Genetic or functional changes in

the enzymes responsible for metabolizing glycogen result in the development of

various glycogen storage diseases, affecting the liver, muscle, etc., and may be life-

threatening (Gupta et al. 2014).

Yeast (Saccharomyces cerevisiae) is an unicellular eukaryotic microorganism,

which is commonly present in the sugar-rich ingredients such as fruits, berries,

plant exudates, etc. Yeast glycogen has structural similarity to other eukaryotic

organisms (Wilson et al. 2010). Yeast glycogen is one of the chief reservoirs of

Glycotransferase 
(GTs) enzymes

Glycotransferase(GTs)-3

Glycotransferase (GTs)-5

Animal & Fungal 
enzymes

Bacterial & Plant 
enzymes

Archaeal 
enzymes

• UDP-Glu
• Allosteric activation
• Reversible covalent 

modification

• ADP-Glu
• No allosteric activation
• No reversible covalent 

modification

• ADP-Glu & UDP-Glu
• No allosteric activation
• No reversible covalent 

modification

Fig. 2 Classification of prokaryotic and eukaryotic glycotransferase (GTs) enzymes, based on

sugar donor molecule
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carbohydrate like several bacteria and it covers almost 20% of the yeast cell mass.

The quantity of glycogen accumulation increases exponentially in the stationary

phase or in enervation of vital nutrients like nitrogen and phosphorus. Moreover,

several studies supported that glycogen accumulation occurs in exponentially

growing yeast when exposed to high temperature, salt, ethanol or oxidizing agents.

Here, the yeast uses stored glycogen for survival (Silljé et al. 1999; Baskaran et al.

2010). The regulation of glycogen is done by various enzymes such as glycogen

synthase (Farkas et al. 1991; Baskaran et al. 2010), glycogenin (Cheng et al. 1995),

branching and de-branching enzymes (Wilson et al. 2010) and numerous other

mechanisms including covalent modification (Lin et al. 1995), functioning of

allosteric activators and translocation inside the cells. The regulation of GTs occurs

via phosphorylation (Ramaswamy et al. 1998) and allosteric activation by G6P.

However, the biological processes that inhibit these regulatory controls vary from

tissue to tissue of the same or different organisms. Yeast has two isoforms of GS,

which are designated as GSY-1 and GSY-2, from which the nutritionally regulated

isoform-2 (GSY-2) is an utmost essential enzyme for glycogen accumulation in the

cells. Predominantly, transcriptional and enzymatic mechanisms are involved in

regulating glycogen metabolism. The transcription-mediated regulation is typically

dependent on the promoter region of the genes, i.e. cis-element stress response

element (STRE), while enzyme-mediated regulation of glycogen accumulation is

completed by activation of the GS via G6P and inactivation of GPH via phosphor-

ylation. The introduction of nutrients to the starved cells stimulates GPH, resulting

in inhibition of GS and vice-versa.

9 Synthesis and Regulation of Glycogen in Prokaryotes

Biosynthesis and degradation processes of glycogen is highly conserved in pro-

karyotes (Ballicora et al. 2003; Preiss 2006). The enzymatic action of carbohydrate

phosphotransferase system (PTS) takes up the extracellular glucose and converts it

into G6P. Further G6P is then transformed into G1P via phosphoglucomutase

(PGM) enzyme and in the end into ADP glucose (ADPG) in the presence of ATP

molecules and Mg2+ (Ballicora et al. 2003). glgA utilizes ADPG as sugar donor

nucleotide and produces linear glucose chain (amylose). Thereafter, development

of branched oligosaccharide chain is initiated by the action of glgB by the formation

of α-1,6-glucosidic linkages (Preiss 2006). Based on the genetic evidences of

glycogen synthesis, it has been proposed that glgC is the solitary enzyme for

generating ADPG (Leung et al. 1986; Ballicora et al. 2003).

The glycogen metabolism regulation has been extensively studied in E. coli. The
regulation of glycogen synthesis and degradation contain a complex set of factors,

which adjust the biological and energy level of the cell (Alonso-Casajús et al. 2006;

Montero et al. 2009), expression of analogous genes and communication between

cells (Morán-Zorzano et al. 2008). At genomic level, numerous factors control

glycogen accumulation in the bacteria such as allosteric regulation, etc. (Deutscher
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et al. 2006; Preiss 2006). The higher level of glgC protein indicate the presence of

higher amount of carbon and energy contents, while the existence of higher amount

of inhibitors in growth medium may represent low metabolic energy levels inside

the cells. The allosteric control of glgC has been broadly reviewed recently, which

included structural and functional connections between glgA, glgB and glgC

(Ballicora et al. 2003; Preiss 2006).

The glgP takes part in glycogen degradation pathway. The enzyme eliminates

glucose monomers from the non-reducing ends (Dauvillée et al. 2005; Alonso-

Casajús et al. 2006). These glucose-6-phosphate molecules enters in the glycolysis

cycle. Through surface plasmon resonance (SPR) ligand fishing analysis (technique

used for the detection and characterization of molecular interactions between

interactive partners), it has been observed that glgP shows the specific interaction

between glgP and HPr (Deutscher et al. 2006). Once HPr is wholly phosphorylated,

it reduces the activity of glgP enzyme in log phase of bacteria and vice-versa. At

this stage, binding of glgP to HPr is maximal. It has been projected that glgP

activity is controlled by the phosphorylation level of HPr, which allows the

glycogen to accumulate at the beginning of the stationary phase especially under

situations where glucose is in excess (Seok et al. 2001; Deutscher et al. 2006).

10 Glycogen Metabolism in Mycobacterium tuberculosis

The biosynthesis of glycogen is an endergonic reaction involving monomers of

uridine diphosphate (UDP)-glucose. The biosynthesis and degradation of glycogen

pathways inM. tuberculosis are similar to E. coli that is widely studied. Three genes
reported as glgA, glgB and glgC encode glycogen biosynthesis enzymes, and other

two genes glgX and glgP encode enzymes for glycogen degradation (Dauvillée

et al. 2005; Bourassa and Camilli 2009). It is assumed that M. tuberculosis synthe-
sizes glycogen through glgC-glgA pathway as shown in Fig. 3. The nucleotide

diphosphoglucose pyrophosphorylase (glgC) utilizes G1P phosphate and generates

activated glucose nucleotide diphosphate which is followed by generation of linear

glucans by the action of glgA enzyme (Ball and Morell 2003; Chandra et al. 2011).

After that, glgB enzyme transforms linear glucan into glycogen via addition of

oligoglucan to the non-reducing end of the residual chain (at position 6) for the

elongation of side chains (Palomo et al. 2009; Chandra et al. 2011). The regulation

of gene expressions of glgA and glgC happens in bacteria via intracellular signals,

which indicates the energy status of the cell (Fig. 4) (McMeechan et al. 2005). Any

defect, or mutations in the glgC gene, prevents the synthesis of glycogen (Preiss and

Romeo 1994). Few scientific reports are available in the database, which suggest

that glgC-deleted mutant strains could be able to synthesize small amount of

glycogen during the growing stage of bacteria under specific conditions (Leung

et al. 1986; Bourassa and Camilli 2009). Another enzyme glgS is also involved in

the glycogen synthesis pathway; however its role is still not clear. Recent studies

suggest that it could play significant role in glycogen accumulation in E. coli
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(Hengge-Aronis and Fischer 1992; Morán-Zorzano et al. 2007; Bourassa and

Camilli 2009).

The glycogen degradation in M. tuberculosis is mediated by the joint action of

two enzymes, glgP and glgX, and this degradation produces G1P, which is conse-

quently consumed by the bacteria (Chandra et al. 2011). The glgP removes glucose

units serially and glgX eliminates α-1,6 linkages of glycogen through hydrolysis

(Dauvillée et al. 2005). Both glycogen-degrading enzymes glgX and glgP regulate

energy requirement of cells by glycogen degradation process (Fig. 4). Bourassa and

Camilli (2009) reported that deletion of either glgX or glgP or both genes make

the bacteria unable to degrade glycogen internally.

11 Possible Role of Glycogen in Mycobacterium
tuberculosis Drug Resistance Development

The emergence of drug-resistant tuberculosis has increased significantly during the

past decade in several countries. Generation of resistance to individual

antitubercular drug occures after mutations in the concerned genes or chromosomal

genes, resulting overproduction of particular gene product (protein), which alter the

drug target against existing drugs. The multidrug-resistant (MDR) strains of

M. tuberculosis display resistance to isoniazid and rifampicin anti-tuberculosis

drugs. Rifampicin is a bactericidal antibiotic, which inhibits bacterial RNA syn-

thesis by obstructing bacterial DNA-dependent RNA polymerase, hence blocking

of RNA transcription. The mechanism of the generation of drug resistance against

rifampicin has been determined and found mutation in the ß subunit of rpoB gene of

RNA polymerase (Kumar and Jena 2014). The mutations have been detected in the

81-bp region (codons 507–533) of the rpoB gene, and codons 516, 526 and 531 are

the most dominant mutations in the rpoB subunit (Koch et al. 2014; Singh et al.

2014).

Isoniazid is a prodrug activated by the action of catalase/peroxidase enzyme that

is encoded by katG gene. The activated isoniazid inhibits mycolic acid synthesis

through the action of inhA-encoded enzyme NADH-dependent enoyl-acyl carrier

protein (ACP) reductase (Palomino and Martin 2014). Several mutations have been

detected in the katG, inhA, ahpC, oxyR and kasA genes, which take part in the

development of drug resistance against isoniazid. The detailed mechanism of

isoniazid resistance is shown in Fig. 5.

The mycobacterial cell wall accounts around 2–3% of bacterial dry mass and are

generally of polysaccharide and proteins (94–99%). The structure of

M. tuberculosis cell wall has been represented as pathogen-associated molecular

patterns (PAMP), which includes glycolipids, LAM, lipopeptides, etc. The arrange-

ment of triglycerides and glycolipids on the outer surface of the mycobacterial cell

wall protects the bacilli against degradation by host enzymes, impenetrability to
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poisonous macromolecules (antibiotics), inactivation of reactive oxygen and nitro-

gen derivatives (Korf et al. 2005).

Trehalose, a disaccharide typically found in mycobacteria, acts as storage

compound and is used as energy reservoir, and a stress protectant such as survival

under desiccation, cold, osmotic and other traumatic situations (Argüelles 2000;

Bolat 2008) consists of α-1-1 linkage of di-glucose. InM. tuberculosis, trehalose is
synthesized from all three pathways; these are using TreY-TreZ, TreS, (De Smet

et al. 2000) and GalU-OtsA-OtsB pathway (Pan et al. 2004). It serves as the

precursor for the synthesis of mycolyl acetyl trehalose (also known as cord factor

or mycolic acid) (Gibson et al. 2002; Chen and Haddad 2004; Takayama et al.

2005). The combined association of mycolic acid and peptidoglycan has

Fig. 5 Schematic illustration of proposed isoniazid drug resistance mechanism ofMycobacterium
tuberculosis. Alternate mechanism of activation of INH (dashed green lines), normal mechanism

of activation of INH (blue lines) and possible mechanism involved in drug resistance (dashed
red lines). 1KatG (encoding catalase and peroxidase) gene harbouring mutation resulting

in compromised activation of prodrug molecule of INH into active form. The expression of

superoxide dismutase may activate INH to overcome the oxidative stress caused by the INH

action. 2fixA gene is reported to be involved in INH activation in a cell-harbouring KatG gene

mutation. Probable pntAA protein and PEP kinases are stress-related protein, and overexpression of

pntAA protein may favour the INH resistance. 3The kasA, kasB and fabG4 are primarily involved in

fatty acid metabolism, which are known primary target of INH. The overexpression of these proteins

supports that INH mechanism of action. 4wag31 (cell division protein) and Rv1827 (FHA domain-

containing protein associated with exponential phase growth and glycogen accumulation) were

overexpressed while acquiring resistance to INH and RIF. Both these proteins regulate cell growth,

size and morphology through signal transduction pathway primarily regulated by serine/threonine

protein kinases. Only three (PknA, PknB and PknG) out of 11 STPKs inM. tuberculosis are essential
for sustained growth. Rv1827 protein having a unique phosphorylation site for PknB and PknG and

playing a regulatory role in glycogen metabolism (Unpublished data from Amit Singh,

Krishnamoorthy Gopinath and Sarman Singh)
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established the core of the cell wall (Crick et al. 2001). The peptidoglycan layer is

interconnected by a variety of glycolipids, i.e. TMM, LAM, PGLs, PIMs and TDM,

which increase the rigidity of M. tuberculosis cell wall. Hence, this complexity of

the M. tuberculosis cell wall restricts the entry of drug within the cell and prompt

phagocytosis (Elbein et al. 2003; Carroll et al. 2007).

Antoine and Tepper (1969) demonstrated that if the concentration of nitrogen/

sulphur contents is dropped in medium of M. phlei and M. tuberculosis, the

accumulation of glycogen and lipids increased significantly. In the deficiency of

exogenous carbon, these substrates or accumulated glycans are consumed by the

bacteria and sustain their growth. Besides energy sources, glycogen also prevents

M. tuberculosis phagocytosis by macrophages and also participates in host-

pathogen interaction during the entry of the pathogen by altering the cell wall

permeability, resulting in chronicity of the disease (Geurtsen et al. 2009). Glycogen

or its intermediates (UDP-glucose) serve as precursor for production of 6-O-

methylglucosyl-containing lipopolysaccharides (MGLP) and trehalose. The path-

way of biosynthesis of MGLP is shown in Fig. 6. The MGLP is present in slow- and

rapid-growing mycobacteria and plays a critical role in the control of fatty acid

synthesis. A cluster of genes has been identified in M. smegmatis and

M. tuberculosis and plays the main role in the MGLP biosynthesis. It has been

observed that overexpression of the putative GT enzyme (encoded by Rv3032 and

Rv3030) in M. tuberculosis significantly increased MGLP production, and disrup-

tion of Rv3032 gene dramatically reduces the amounts of MGLP vice-versa, which

results in accumulation of UDP-glucose in the M. tuberculosis and ultimately

reduction of glycogen contents in M. tuberculosis (Stadthagen et al. 2007). Signif-

icant changes were found in the glycogen contents between MDR-TB strains and

drug-sensitive TB strains grown under drug pressure in initial stage (Singh et al.

2015). The mRNA level of corresponding gene (GarA) was confirmed by real-time

PCR. The glycogen accumulation was relatively higher from the 7th day to 15th day

only (Figs. 7 and 8), but no significant changes were observed after 15th day of

growth (Singh et al. 2015). This observation confirmed the role of GarA gene in the

multidrug-resistant tuberculosis at initial stage.

Apart from that, we have found that protein kinases and GarA ofM. tuberculosis
H37Rv play an important role in acquisition of drug resistance (Singh et al. 2015).

Significant amount of glutamate production was also observed when pknG deletion

mutants were retreated with ethambutol. The positive impact of deletion of PknG
on glutamate formation may be a consequence of an increased level of

unphosphorylated odhI and results in inhibiting 2-oxoglutarate dehydrogenase

complex (ODHc) action and an elevated efflux of 2-oxoglutrate towards glutamate.

pknG may also be involved probably with other kinases in the switch-on or switch-

off mechanisms among active (unphosphorylated) and inactive (phosphorylated)

forms of GarA gene. GarA also modulates the activities of α-ketoglutarate decar-

boxylase (KGD) and glutamate dehydrogenase, and the OdhI phosphorylation is

grossly determined by PknG (Fig. 9). The proteomic analysis of M. smegmatis has
revealed glutamate-1-semialdehyde-2 and 1-aminomutase (hemL) overexpressed in
exposure to EMB which suggested its role in glutamate efflux. Interestingly, our
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Fig. 6 MGLP synthesis pathway in M. tuberculosis. Grey shades represent confirmed activities,

white boxes indicate putative/deduced enzyme activities. Orange box carries information on genes

linked to the MGLP pathway: GpgS (Rv1208), GpgP (Rv2419), DggS and glucosyltransferases

(Gupta et al. 2014)

Fig. 7 Comparison of glycogen content in sensitive vs. MDR strain of M. tuberculosis (Singh
et al. 2015)
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Fig. 8 Glycogen staining of sensitive and MDR isolates. (a) Sensitive isolate (Isolate A), (b)

MDR isolate (Isolate B), (c) MDR isolate (Isolate C), (d) MDR isolate (Isolate D), (e) glycogen

stained (Isolate A), (f) glycogen stained (Isolate B), (g) glycogen stained (Isolate C), (h) glycogen

stained (Isolate D) (unpublished data from Amit Singh, Krishnamoorthy Gopinath and Sarman

Singh)

Fig. 9 PknG-Rv1827 signal cascade mechanism modulates the late growth effect. PknG—protein

kinase G senses environment, involved in arresting the fusion of phagolysosome, regulates

glutamine uptake and modulates the stationary phase growth of M. tuberculosis. Protein kinase

A and protein kinase B (PknA, PknB) playing pivotal role in regulating cell morphology and size.

Wag31—cell division protein, overexpressed when PknA-B acting together. GlgB, GlgE—genes

regulating glycogen metabolism. Rv1827—(GarA—glycogen accumulation regulator)—FHA

containing protein, phosphorylated by PknG and PknB. Regulates glycogen metabolism and

expressed during exponential phase (Unpublished data from Amit Singh, Krishnamoorthy

Gopinath and Sarman Singh)
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study identified glutamyl-tRNA (gatA, Rv3011c, spot 11) overexpressed in MDR

strains (Singh et al. 2015).

12 Glycogen in the Pathogenesis of Tuberculosis

Glycogen not only offers major nutrition to organisms but also plays significant role

during host-pathogen interaction (Pal et al. 2010). Glycogen plays a minor role in

colonization of M. tuberculosis within the host, but plays significant role in the

intracellular survival of M. tuberculosis (McMeechan et al. 2005; Pal et al. 2010;

Chauhan et al. 2012). The arabinomannan (AM) and α-glucans, which are the major

composition of mycobacterial capsule and are located on the outer side of the

mycolic acid layers in the cell wall and serve as receptor during host-pathogen

interactions (Berg et al. 2007). The capsule mediates the adhesion to the host cell

receptors and penetration of bacilli into the host cells (Daffé and Etienne 1999).

Thereafter, mycobacterium modulates the environment conditions inside the host

cell for their survival (Korf et al. 2005).

13 Immunology of Mycobacterium tuberculosis Glycans

in the Host-Pathogen Interaction

Capsule of M. tuberculosis contains glycans, which can be up to 80% of the

extracellular polysaccharides, and is composed of α-4-D-Glc-1 core, which is

branched at position 6 of each 5/6 residues by 4-α-D-Glc-1 oligoglucosides

(Lemassu and Daffé 1994; Ortalo-Magné et al. 1995; Dinadayala et al. 2008).

Since the discovery of capsular carbohydrates, with their role in bacterial patho-

genesis, the focus has been on the macrophage receptors, which take part in the

binding and phagocytosis of this microbe. The utility of carbohydrates in patho-

genic mycobacterial species has followed the findings of the mycobacterial capsule

(Dinadayala et al. 2008; Mendes et al. 2011). The AG, a disaccharide, contains 2–3

branched sugar chains and helps in the pathogenic role played by mycolic acid.

These branched chains are connected at position 5 to Galf residue of the galactan’s
chain towards the reducing ends, consisting 22 Araf residues in D-arabinan chain

(Besra et al. 1995). The D-arabinan contains backbone of α-1,5-linked Araf with

numerous α-1,3-linkages and non-reducing ends are always terminated by

β-1,2-Araf, resulting in hexa-arabinoside (Ara6) motifs shifted to the AG, and the

dimers [β-D-Araf-1,2-α-D-Araf] form connecting site of mycolic acid. Both pepti-

doglycan and arabinoglycans form together covalently linked between mycolic acid

layer and plasma membrane. Due to this, the cell wall of mycobacteria is enor-

mously robust and difficult to penetrate by the drugs (Berg et al. 2007).
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Unlike AG, cell envelope components are non-covalently bound to the LAM and

might be linked to the mycolic acid layer or plasma membrane or both via

phosphatidyl-myo-inositol (PI) unit. The reducing ends of the LAM show structural

resemblances to the PIMs. The inositol residues of the phosphatidylinositol are

mannosylated at the positions 2 and 6 of the LAM (Berg et al. 2007). The

mycobacterial cell wall moieties (LAM) bind to the macrophage and prevent the

attachment of mycobacteria to the complement receptors (Stokes et al. 2004). The

capsular polysaccharides of M. tuberculosis facilitate non-opsonic binding of the

bacteria to the complement receptor (CR-3) (Cywes et al. 1997; Dinadayala et al.

2008). Additionally, these glycans are able to generate innate immune responses

through the attachment to the toll-like receptor (TLR2), CD14 and myeloid differ-

entiation primary response gene-88 (MyD88-TLR) receptors (Bittencourt et al.

2006). Similarly, capsular components of the M. tuberculosis showed anti-

phagocytic characteristics like that of macrophages (Stokes et al. 2004) and induced

monocytes for proliferation and transformed into altered dendritic cells. These

modified dendritic cells could not present lipid antigens to the CD1-restricted T

cells (Gagliardi et al. 2007).

14 Glycans: Novel Drug Targets for MDR-TB

The emergence of MDR strains of M. tuberculosis (Koch et al. 2014) emphasizes

the urgent need to find out the novel drug targets forM. tuberculosis (De Smet et al.

2000; Shriver et al. 2004). To find out the effective drugs, it is essential that

appropriate drug targets are discussed before. The enzymes that take part in

glycogen metabolism or those that mediate in the biosynthesis of vital components

of M. tuberculosis cell envelope, cell wall or its survival machinery could be

promising drug targets against mycobacteria. It has been validated that glgB

auxotrophic strain of M. tuberculosis accumulates toxic polymers within the cells

and induces cell death in M. tuberculosis. The deficiency of glycogen did not

disturb macrophage infection by mycobacterium mutants; however, its presence

showed the defending role during hostile stage of mycobacteria infections

(Kalscheuer et al. 2010). Moreover, glgE-dependent pathway of glycogen synthesis

was identified in mycobacteria. The product of glgE gene transfers activated

glucose molecule to the maltose-1-phosphate through α-1-4 glycosidic linkage.

Another enzyme Pep2 (encoded by Rv0127) is known to phosphorylate maltose

and activate glycogen polymerization. Hence, the glgE enzyme induces cell death

by two processes, the one known as glgE-dependent (induce self-poisoning via

accumulation of maltose-1-phosphate followed by feedback inhibition of glgE) and

the other glgE-independent mechanisms. Therefore, obstructing glgE activation

could be an exciting drug target (Kalscheuer et al. 2010; Leiba et al. 2013).

Apart from that, biosynthesis of trehalose from glycogen is extensively studied

in mycobacteria, and involved enzymes could also be possible drug targets, because
of its significant role in bacterial cytosol and appearance in toxic glycolipids
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(De Smet et al. 2000). It has been observed that any disruption in the enzyme—

trehalose mycolyltransferase through 6-azido-6-deoxy-a,a-trehalose—inhibits

growth of M. tuberculosis in-vitro (Belisle et al. 1997). In summary, the

glycotransferase enzymes that are responsible for the synthesis of essential ele-

ments of the cell envelope inM. tuberculosis need to be explored as potential novel
drug targets against mycobacterial pathogen.
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Role of External and Environmental Factors

in Drug Resistance Emergence: Gut

Microbiota

Daniel Ryan, Sangeeta Jaiswal, and Mrutyunjay Suar

Abstract The gut possesses a diverse microbial community comprising bacteria,

eukaryotes, archaea, and viruses, all of which make up the gut microbiome. The

interactions between these various organisms are complex and difficult to model;

however, they greatly influence our human health in a variety of ways. Commensals

form the majority of this community and have a great impact on our immunity and

resistance to disease. Consequently, the genetic pool or “metagenome” of the gut

microbiome is a valuable resource into studies on human health. Metagenomic

studies have revealed the presence of several genes contributing to drug resistance

in the microbiome. These may have arisen either as a by-product of an essential

survival pathway for the microbe or through spontaneous mutations. Another

possible mode of entry is through pathogens carrying drug-resistant genes that

may be introduced into the gut environment in a variety of ways, food being a

significant point of entry. Consequently, all of the above factors contribute to an

increasing number of drug-resistant genes in the gut microbiome. To add to this

phenomenon, transmission of these genes through members of the microbiome may

occur by horizontal gene transfer mechanisms adding to the diversity of organisms

exhibiting resistance. Moreover, the administration of antibiotics for routine treat-

ments has been found to further exacerbate this by deleting the beneficial commen-

sal pool. Thus, it is of utmost importance to investigate and impede the emergence

of resistance in the gut microbiome to benefit long-term human health.

1 Introduction

The human gut possesses a vast microbial community consisting of several trillion

cells far outnumbering the number of human cells by a considerable margin. This

community of microbes resident in the gut is termed the gut microbiome and
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includes bacteria, archaea, eukarya, and viruses. The human microbiome refers to

the entire set of genetic elements of all the organisms comprising the microbiota.

The term metagenomics refers to a study of the functions and interactions of all of

these organisms inferred from their genomic data. The gut microbiome plays

several essential functions, namely, the development of both adaptive and innate

immunity, maintaining the integrity of the intestinal lining, energy production,

synthesis of several vitamins, and factors and protection from colonization of

invasive pathogens. To this effect, the Human Microbiome Project was constituted

by the National Institute of Health to gain a deeper understanding of this diverse,

complex microbial community with the following points of focus:

1. Complete characterization of the resident communities.

2. Is there a core community shared by all?

3. To study the effects of changes to this community on human health (The

NIHHMPWG et al. 2009).

The use of antibiotics affects not only a specific target but also a broader population,

some of which are beneficial to the host. Such is the effect exerted by antibiotics on

the gut microbiome. The use of antibiotics or consumption of plant, animal, and

dairy products containing antibiotics exerts an impact on these microbiota resulting

in their destabilization or emergence of resistance. Destabilization has conse-

quences on the host resulting in diarrhea and other opportunistic infections, while

emergence of resistance leads to further complication for much longer periods of

time. Thus, a study of the gut microbiome and the effects of drugs on its constituent

communities are essential in determining the benefits and consequences to human

health.

2 The Normal Gut Microbiota

The terms “normal” and “healthy” in context of the human gut microbiome are

somewhat difficult to define primarily due to the significant interindividual differ-

ences that are prevalent. Thus, defining a “core microbiota” poses a greater chal-

lenge as opposed to defining “core functions” as a more unifying term. Several

factors have been attributed to differences in the human gut microbiome, namely,

age, gender, ethnic background, and environmental factors (diet, medication, stress,

smoking, and infections) (Mueller et al. 2006).

A large proportion of gut bacteria (�80%) cannot be cultured in vitro by

standard microbiological techniques, primarily due to their stringent nutrient

requirements, anaerobic nature of their niche, and interdependence on one other

(Dethlefsen et al. 2007). Consequently, several molecular techniques such as 16S

rRNA sequencing, terminal restriction fragment length polymorphism (TRFLP),

denaturing gradient gel electrophoresis (DGGE), and fluorescent in situ hybridiza-

tion have proved useful in this regard for the identification and characterization of

constituent members of the human microbiome. Studies have revealed large,
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diverse microbial communities to reside in the oral cavity and distal gastrointestinal

(GI) tract with simpler groups residing in the esophagus, stomach, and small

intestine. There have been very few studies on the latter group, and thus identifying

them as resident bacteria or just transient travelers presents a significant challenge.

Predominant members of the oral cavity include Firmicutes, Bacteroidetes,
Proteobacteria, Fusobacteria, and Actinobacteria constituting about 99% of the

total members present. The remainder is composed of Cyanobacteria, Spiro-
chaetes, TM7, and several others. The distal esophagus harbors a microbial com-

munity that is similar to the oral cavity with exception that most of the members

could be cultured microbiologically (Ahn et al. 2011). Earlier, it was believed that

the stomach with its extremely low pH possessed a transient microbial community

with a simpler communal structure; however, gastric biopsies of 23 human patients

presented a 16S rRNA library comprising diverse microbes, including members of

Actinobacteria, Proteobacteria, Fusobacteria, and more (Bik et al. 2006). This

community was found to differ considerably from communities of the mouth and

esophagus. The microbial constitution of the small intestine was found to be rich in

facultative anaerobic species; however, there are relatively few studies, and thus

much more work needs to be done in this area. The colon on the other hand

presented the greatest concentration of microbes with approximately 1011 to 1012

cells per gram of feces and a twofold greater number of microbial genes as

compared to the human genome itself (Ley et al. 2006). The dominant phyla in

the colon include Firmicutes and Bacteroides with seven other groups

(Fusobacteria, Actinobacteria, Verrucomicrobia, Proteobacteria, Spirochaetes,
Cyanobacteria, and VadinBE97) also serving as residents (Backhed et al. 2005).

The Metagenome of the Human Intestinal Tract consortium studied the

metagenomes of 124 fecal specimens utilizing the Illumina Genome Analyzer.

Specimens were isolated from healthy, overweight, and obese individuals and

those suffering from inflammatory bowel disease (IBD) residing in Spain or

Denmark (Arumugam et al. 2011). Data from the study revealed the human gut

microbiota to comprise of about 1150 different species (Arumugam et al. 2011).

Additionally, they identified 536,112 unique genes of which 99% were found to be

bacterial. At least 40% of the bacterial genes from each specimen were found to be

present within about half of the remaining specimens. These conserved genes were

found to cluster to pathways involved in digestion and degradation of complex

sugars, short-chain fatty acid production, and vitamin biosynthesis. The study also

revealed the presence of a set of core functions that the microbiome performs,

rather than a core group of organisms.

The establishment of the gut microbiome occurs at birth and continues to evolve

and develop throughout the lifetime of the host. Studies have found variations in the

gut microbiome of infants depending on the mode of delivery. 16S rRNA

pyrosequencing revealed that infants delivered naturally possessed bacterial com-

munities that resembled the vaginal microbiota of their mothers (Lactobacillus,
Prevotella, etc.), while those delivered by Caesarian section possessed communi-

ties resembling those on the surface of the skin (Staphylococcus,
Propionibacterium, etc.). These initial species termed as “founder species” undergo
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evolution within each host under both extrinsic and intrinsic factors that may be

genetic, physiological, and environmental and ultimately constitute the gut

microbiome.

Gut microbiota dysbiosis could lead to several pathological conditions. Diar-

rheal infections pose a significant challenge worldwide with a large proportion of

them being food-borne. The most common bacterial infections are caused by

Salmonella, Shigella, Campylobacter, Vibrio cholerae, etc., while viral pathogens
include Norovirus, Rotavirus, etc. and Giardia, Cryptosporidia, etc. constitute the
parasites. Antibiotic-associated diarrheal infections such as those caused by Clos-
tridium difficile are due to a dysbiosis induced by the use of antibiotics. This leads to
a loss of colonization resistance normally provided by the microbiota that subse-

quently allows overgrowth of Clostridium difficile and production of toxins A and B

that bring about colonic damage, diarrhea, and, in severe cases, even death. Short

bowel syndrome is a disorder that causes malabsorption due to either dysfunction of

a large portion of the intestine or surgical removal of part of the intestine, or in some

cases, it may be congenital. In such patients, the colon serves as an extremely

important organ for energy salvage; however, in some cases, excess bacteria from

the colon may lead to overgrowth, causing small intestinal bacterial overgrowth

(SIBO). Studies have revealed a link between interaction of the host and microbiota

in inflammatory bowel syndrome (IBS) pathology. Thus, the focus is now under-

way as to what antigens are present in the normal microbiota that may drive chronic

inflammation in predisposed individuals.

3 Factors Affecting Drug Resistance

The spread of bacteria and genes responsible for the emergence of antibiotic

resistance in the microbiota of the gut is dependent on a variety of factors, the

most important of which is antibiotic use. Additional factors that play a role in the

emergence and persistence of drug-resistant strains include their rate of adaptabil-

ity, frequency of mutations that confer resistant traits, and ability to undergo various

mechanisms of horizontal gene transfer (HGT) such as transformation, transduc-

tion, and conjugation. When exposed to a particular antibiotic, the acquisition of

resistance by the bacterium endows it with an advantage in that particular environ-

ment. On the flipside, if the particular selective pressure, in this case an antibiotic, is

removed, the resistant bacterium may not survive as well as its susceptible other.

A number of studies investigating the effects of antibiotic use on gut flora have

shown resistant genes to be detected in members of the microbiota several years

after treatment. Thus, bacteria are able to persist and transfer resistance traits for a

considerable amount of time even after antibiotic use has been discontinued. For

example, a study by Sjolund et al. revealed the ermB gene responsible for confer-

ring clarithromycin resistance to be present in enterococci up to 1 year

posttreatment (Sjolund et al. 2003). Interestingly, one particular patient was

detected to have a resistant clone 3 years posttreatment. Such results reveal crucial
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clinical consequences since there remains an extended window during which

resistance genes may be transferred to other species as well.

The intestine presents a highly suitable environment for the transfer of resistant

genes. It provides a warm moisture-laden environment having an abundance of

nutrients and a diverse bacterial population that could serve as a source and targets

for acquiring resistance. Once particular resistance genes have been selected in the

commensals, they may then be transferred to more pathogenic bacteria, thus posing

a severe risk to health. The selection pressure provides a double blow with an

increase in the number of bacteria possessing the resistant gene that could in turn

further transfer it through the microbiota. Several bacteria are not residents rather

passing through the intestine along with food. These may well serve as additional

sources of resistant genes that could be transferred to commensal bacteria. Another

potential source of selective pressure could be from agriculture. The use of certain

compounds may impose selective pressure leading to the emergence of resistant

genes in the microbiota when foods containing them are consumed.

4 External and Environmental Factors

4.1 Antibiotics

There is a delicate ecological balance that exists between the gut-associated micro-

organisms and their human host. This balance is however quite easily disturbed by a

number of factors, the most important of which is antibiotic use. Major consequences

of this are a decreased ability of commensal bacteria to resist colonization of an

invasive species and the emergence of drug-resistant strains. While there are several

studies investigating the short-term effects of the use of such antibiotics, their long-

term effects are still relatively less studied. The effects induced on the microbiota by

an antibiotic depend on a number of factors such as the dosage, administration route,

time course, spectrum (broad or narrow), and mode of action. Antibiotic use that

results in discharge into the gut may gravely affect the resident microbiota and

consequently have an adverse impact on health by creating unforeseen complication

such as Clostridium difficile infections (Sullivan et al. 2001).

Intestinal microbiota are dominated by anaerobic and facultative anaerobic

species which play a major role in the production of volatile fatty acids, however

many of which serve as specific targets for antibiotics resulting in destabilizing of

the microbiota. As an example, the broad-spectrum antibiotic, clindamycin, has

been found in high levels in the bile and fecal matter of treated individuals.

However, it has also been associated in decreasing the colonization resistance of

the resident microbiota resulting in C. difficile infections (Sullivan et al. 2001). This
organism is normally present in relatively few numbers in healthy individuals;

however, its numbers rapidly increase as a result of antibiotic-induced microbiota

disturbances. Other side effects of this antibiotic include diarrhea, gastritis,

Role of External and Environmental Factors in Drug Resistance Emergence: Gut. . . 291



intestinal pain, and swelling. Another drug of interest is amoxicillin, the use of

which has been associated with an increase of antibiotic-resistant bacteria as well as

a reduction in the number of gram-positive cocci. Several metagenomic techniques

including DGGE have revealed a change in the microbiota constitution with the use

of this antibiotic (Brugere et al. 2009). The Helicobacter pylori infection treatment

protocol consists of the use of a combination of three drugs, namely, omeprazole,

metronidazole, and clarithromycin. Dramatic disturbances in the gut microflora

have been reported as a result of this treatment regimen with effects lasting for

several years after treatment.

4.2 Food Animals

For a long time, the practice of administering antibiotics to animals reared for food,

as a means to promote growth or for treatment, has been the norm. However,

several studies have highlighted this as a potential source for the transfer of

pathogens harboring antibiotic-resistant genes to humans. For example, a study

by Levy et al. demonstrated that the use of the antibiotic oxytetracycline to enhance

growth in chickens favored the selection of tetracycline-resistant Escherichia coli
in them, which were subsequently detected in people that consumed them (Levy

et al. 1976a, b). Another more recent example relates to the use of avoparcin in

animals and its link to the emergence of vancomycin-resistant enterococci (VRE)

which are highly pathogenic to humans. Thus, animals used for food, as well as pets

and wild animals, can serve as sources of antibiotic-resistant genes. Additionally,

several metals and compounds used in the veterinary industry have also been found

to induce cross-resistance to various antibiotics. Not limited to animals but animal

products such as milk and other dairy items were found to contain lactobacilli and

other bacteria that possessed antibiotic-resistant genes.

4.3 Aquaculture

The fairly recent field of aquaculture is another example of the indiscriminate use of

antibiotics by direct addition to water or direct administration, to promote growth or

treatment of fish. This has resulted in antibiotic-resistant gene pools emerging in fish

that are spread throughout the aquatic environment and ultimately to us. Several

classes of antibiotics used are related or identical to those used to treat human

infections, as a result of which cross-resistance has emerged in intestinal gut

microbes. This has been well documented in several Aeromonas strains of fish origin
that were able to transfer their antibiotic-resistant plasmids to human pathogens in the

gut, such as E. coli and Salmonella (Cabello 2006). Another recent example is the

emergence of Salmonella enterica serotype Typhimurium DT104 as responsible for

outbreaks in the United States and Europe most likely originated from an aquaculture
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setup (Cabello 2006). The gene encoding a resistance to florfenicol which is widely

used in aquaculture was isolated from these pathogens. Another source for the

acquisition of antibiotic-resistant genes is through direct consumption of water or

fish products that were contaminated.

4.4 Raw Fruits and Fresh Vegetables

Fruits and vegetables could also serve as a source of antibiotic-resistant genes if not

washed or cooked adequately before consumption. As an example, Pseudomonas
aeruginosa strains that were resistant to several commonly used antibiotics such as

chloramphenicol, sulfamethoxazole, and ampicillin were isolated from several

sources such as lettuce, tomatoes, cucumbers, and carrots (Allydice-Francis and

Brown 2012). Another frequently reported source occurs through the consumption

of salads and other meals that utilize uncooked vegetable and fruit products.

5 Methods to Study the Gut Resistome

One of the major limitations to study the human gut resistome is the unavailability

of techniques to fully characterize resistance genes. In addition, determination and

functional characterization of gene sequences providing resistance to antibiotics are

challenging. Thus, in order to characterize a gut resistome completely, a combina-

tion of methods should be employed.

The simplest method to detect resistance genes present in gut commensals is to

isolate strains and characterize them under laboratory conditions. These techniques

were used frequently during the 1970s and 1980s to determine antibiotic resistance

in gut commensals belonging to the Bacteroidales and Clostridiales phyla. How-
ever, owing to a large number of bacteria present in the gut microbiome, it is

practically impossible to culture every gut commensal under laboratory conditions.

Therefore, culture-based techniques cannot reveal the complete resistance profile of

microbes present in the gut. Furthermore, this approach does not provide informa-

tion about the mobility of resistance genes. Recent advances in laboratory culture-

based techniques have made it possible to perform comparative genome analysis

for Bacteroidales (Coyne et al. 2014) and Enterococcaceae (Palmer et al. 2012;

Lebreton et al. 2013). However, this approach is very extensive, and it is unclear

whether it can capture the entire gut resistome.

Culture-independent techniques have been found to be fairly useful for the

analysis of the gut resistome. Often, PCR and microarray hybridization techniques

are used to determine resistance gene reservoirs in the human gut. DNA can be

isolated from fecal samples and analyzed for the presence of antibiotic-resistant

genes by PCR, using gene-specific primers. Alternatively, isolated DNA samples

can be hybridized with known antibiotic-resistant gene sequences (probes) and
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detected through a technique known as DNA microarray. With the help of quanti-

tative PCR, the relative abundance of specific antibiotic resistance can also be

determined (Jernberg et al. 2007; Buelow et al. 2014). The advantage of DNA

microarray over PCR-based technique is that large numbers of resistance genes can

be detected within a short time period. PCR on the other hand is comparatively

slower and yields less information. A major limitation of the above techniques is the

detection of known resistance markers as opposed to detection of novel resistance

genes (Card et al. 2014; Lu et al. 2014). Furthermore, these techniques do not

provide information about the bacterium harboring the resistance gene.

Metagenomic sequencing has proved to be a useful technique for the genetic and

functional characterization of the human gut resistome. In this approach, DNA

samples are purified from feces and sequenced. With the advent of next-generation

sequencing platforms such as the Roche 454 sequencer, the Genome Analyzer of

Illumina, and the SOLiD system of Applied Biosystems, sequencing costs have

reduced dramatically with considerable increases in throughput. The sequence data

sets thus obtained are assembled to form large contiguous DNA fragments and

analyzed through bioinformatics tools. This technique not only allows the detection

of resistance genes in any sample but also reveals the phylogenetic composition of

the microbiota. Additionally, antibiotic-resistant genes in any microbiome can be

quantified through these techniques (Forslund et al. 2014). However, even this

approach cannot be used to discover new antibiotic resentence genes. On the

other hand, functional metagenomics has proved useful in this regard, in which

random fragments of metagenomic DNA are cloned in E. coli vectors and screened
for antibiotic-resistant clones. From this library of antibiotic-resistant clones, gene

sequences conferring resistance are determined. Although functional

metagenomics is labor intensive, the major advantage of this approach is the

identification of novel antibiotic-resistant genes.

6 The Gut Resistome as the Epicenter of Drug-Resistant

Genes

Recent advances in metagenomic approaches have dramatically enhanced our

knowledge about the gut microbiome (The NIHHMPWG et al. 2009). HGT is a

common biological phenomenon in Enterobacteriaceae and has also been found to
occur between pathogens and gut microflora particularly when the intestinal barrier

is altered (Schjorring and Krogfelt 2011; Cremet et al. 2012; Stecher et al. 2012).

The gut receives a wide number of bacteria from different sources such as hands,

pharyngeal, food, water, beverages, nasal secretions, etc. Neonates acquire envi-

ronmental microflora rapidly, and in some cases, sepsis occurs due to translocation

of new microflora (Tezuka and Ohteki 2010; Das et al. 2011). Surprisingly, in

healthy individuals, the gut microflora is stable, and pathogens ingested through

food and water are cleared from the gut due to the presence of commensals.
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Thus, it is essential to explore the gut microbiota for the presence of antibiotic-

resistant genes and subsequently expand our knowledge on mechanism of emer-

gence of multidrug-resistant pathogens. All resistance genes contributed by the gut

microbiota have been termed as the “gut resistome.” Antibiotic resistance may arise

by two mechanisms, namely, “by chance” or “by mutation.” The former mechanism

describes a gene having a specific role in the host and accidentally neutralizes an

antibiotic due to substrate or target similarity. Mutations, on the other hand,

generate phenotypic resistance such as target modification, antibiotic inactivation,

etc. Thus, antibiotic resistance may naturally be present or can be acquired through

the accumulation of mutation. Resistance acquired through any method may be

transferred to phylogenetically distant microorganisms sharing a similar ecological

niche.

Antibiotics have been the cornerstone of defense against pathogenic infections,

particularly after the Second World War. In natural environments, antibiotics

provide selective advantage to the producing bacteria and prevent invasive com-

petitors from establishing themselves. Besides, antibiotics may also function as

signaling molecules, triggering developmental processes such as biofilm formation

(Aminov 2009). Resistance to antibiotics is acquired in a population of susceptible

bacteria that accumulate mutations. One such example is the occurrence of point

mutation in DNA gyrase which confers resistance to quinolones. Besides this, many

bacteria acquire antibiotic-resistant genes that protect microbial cells from the

lethal action of antibiotics. Antibiotic-resistant genes confer phenotypic resistance

against antibiotics through a variety of mechanisms which include enzymatic

inactivation of antibiotics, modification of targets of antibiotics, and pumping

antibiotics out of the cells through efflux pumps, thereby preventing accumulation

of lethal doses (Martinez 2008, 2014; Allen et al. 2010). Antibiotic-resistant genes

have been present in the environment for millennia. For instance, the beta-

lactamases have been found to originate about 2 billion years ago (Hall and Barlow

2004). This is evident from the finding that OXA-type beta-lactamases carried on

plasmids have been moved between different bacterial phyla for millions of years

(Barlow and Hall 2002). Of note, genes conferring antibiotic resistance may have

entirely different functions in the original host. For example, 20-N-acetyltransferase
encoded by a gene in a Gammaproteobacterium, namely, Providencia stuartii, is
involved in peptidoglycan modification; however, aminoglycosides are structurally

similar to the natural substrate of 20-N-acetyltransferase and hence are inactivated

by the enzyme. Therefore, Providencia stuartii are naturally resistant to

aminoglycosides. Such genes can be termed as “accidental resistance genes,” and

when acquired by any pathogen, these genes can provide resistance against

aminoglycosides making them antibiotic resistant (Martinez 2008). Emergence of

antibiotic resistance among human pathogens has become a major threat to modern

medicine. Therefore, identification of niches where microbes acquire antibiotic

resistance is of great importance. Further, the mechanisms by which this antibiotic

resistance is mobilized to pathogens are also equally important.

There is adequate evidence to suggest that the gut can serve as a reservoir for

opportunistic pathogens, which under immunocompromised conditions may cause
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severe infections. These findings raise a concern particularly for hospitalized

patients who undergo antibiotic therapy to prevent infections. Treatment of immu-

nocompromised patients with various antibiotics may provide selective advantage

to multidrug-resistant opportunistic pathogens present in the gut.

Since commensals and pathogens present in the gut share similar ecology,

therefore, gene transfer is more likely to occur between them (Smillie et al.

2011). Consequently, it becomes very important to understand the nature of the

human gut resistome and its role in the spread of antibiotic-resistant genes among

members of the gut microflora, particularly between commensals and opportunistic

pathogens (Penders et al. 2013).

As previously mentioned, the human gut presents an environment where mil-

lions of phylogenetically distinct bacteria may colonize and interact with each other

which increases the possibility for the existence of ample antibiotic-resistant genes

contributing to the genetic pool. Available facts about the human gut resistome

raise concern in light of the emergence of multidrug-resistant opportunistic patho-

gens. A metagenomic study of 252 fecal samples performed by Forslund et al.

revealed the presence of resistance genes for 50 classes of antibiotics accounting for

21 antibiotic-resistant genes per sample collected from different countries

(Forslund et al. 2013). In a similar study, 1093 antibiotic-resistant genes were

identified in 162 individuals from Denmark, China, and Spain (Hu et al. 2013).

The most commonly found resistance genes are tet32, tet40, tetO, tetQ, and tetW
which provide resistance against tetracycline and are found to be present in gut

microflora of almost all individuals. Several such genes are ubiquitously present in

bacterial genomes such as ant(6)-Ia, bacitracin (bacA), and glycopeptide vanco-

mycin (vanRA and vanRG). These genes are thought to confer resistance to

aminoglycosides. Similarly, metagenomic screening of gut resistomes of hospital-

ized patients also revealed many antibiotic-resistant genes in the gut microbiota of

patients, which appeared to increase with increasing antibiotic therapy (Perez-

Cobas et al. 2013; Buelow et al. 2014). For instance, Buelow et al. reported that

genes conferring resistance to aminoglycosides expanded during a hospital stay,

especially in intensive care units (Buelow et al. 2014). The observed expansion of

the gut resistome was linked with the use of tobramycin which is an aminoglycoside

used for selective decontamination of the digestive tract (de Smet et al. 2009). This

treatment regime is generally used as a prophylactic measure for patients admitted

to intensive care units in order to lower the risk of infection of opportunistic

pathogens. Notably, antibiotic use is not always associated with expansion of the

gut resistome in patients; rather, in certain cases, resistant genes may be lost during

antibiotic treatment (Perez-Cobas et al. 2013; Buelow et al. 2014). This is generally

observed during combination therapy in which bacteria carrying resistance against

one antibiotic are still susceptible to another one and are thus lost from the

microbial population.
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7 From the Gut Resistome to Multidrug-Resistant

Pathogens

Pathogenic bacterial loads in the gut are generally lower than that of commensal

bacteria. Interestingly, the majority of antibiotic-resistant genes are found on the

genome of commensals. Despite this, multidrug-resistant pathogens are emerging at

an alarming rate posing a serious threat to the future of medicine. Thus, an

understanding of the mechanism of transfer of antibiotic resistance from commen-

sals to pathogens is of particular interest. There are two basic mechanisms by which

antibiotic-resistant pathogens can emerge: one by opportunity and another by

horizontal gene transfer (HGT). In the former, a small population of drug-resistant

pathogenic strains exists naturally which, under suitable conditions such as an

immunocompromised state of the host, multiply and increase in number. In the

second mechanism, a pathogen acquires antibiotic-resistant genes from commen-

sals by HGT.

8 Mobility of Antibiotic-Resistant Genes

Since antibiotic-resistant genes provide acute fitness in various environments, they

are often encoded on mobile elements such as conjugative elements, extra chromo-

somal DNAs, and viral particles. An estimated 1–3% of people from the developed

world undergo antibiotic treatment daily making the gut environment a dynamic

niche (Costello et al. 2012). Conjugative elements with resistance genes have been

found to be associated with a large number of single-nucleotide polymorphism

(SNP) (Schloissnig et al. 2013). Besides point mutation, HGT is also one of the

sources of variability. Mobility of resistance genes is further augmented by the

tendency of several antibiotics to facilitate gene transfer. For instance, antibiotics

which inhibit DNA synthesis are known to induce interspecific transfer of integrat-

ing conjugative elements containing multidrug-resistant genes (Beaber et al. 2004).

In the mice gut, tetracycline increases the rate of conjugation between Enterococ-
cus faecalis and Listeria monocytogenes (Doucet-Populaire et al. 1991). Besides

conjugation, antibiotics also enhance phage mobility by activating bacterial DNA

damage response having cross talk with phage regulation. Treatment with antibi-

otics has been shown to increase the connectivity between phage and bacterial

networks, increasing the accessibility of the microbial genome to phages (Modi

et al. 2013). Gut commensals play an important role in host defense against

pathogenic microbes by outcompeting for space and nutrients (Brandl et al. 2008;

Fukuda et al. 2011; Costello et al. 2012) and inducing host immune responses

(Brandl et al. 2008; Fukuda et al. 2011). Antibiotic treatment disrupts the highly

organized microbial population structure of the gut, thus exposing a new niche for

pathogens and increasing the availability and mobility of resistance genes to

virulent species. For instance, methicillin-resistant Staphylococcus aureus
(MRSA) emerged by obtaining a gene cluster from Staphylococcus epidermis
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which is a skin commensal. This gene cluster improved the colonization of host

sites (Diep et al. 2006). There are several other examples of gene cluster movement

between different bacteria. For example, a specialized polysaccharide degradation

gene cluster which is typically present in marine bacteria was found to be present in

the gut microbiota of Japanese individuals. Most likely, the gene cluster was

transferred to the gut microbiome due to consumption of seaweeds over a long

period of time. Besides this, there is evidence for the exchange of antibiotic-

resistant genes between soil bacteria and human pathogens (Forsberg et al. 2012).

Generally, exchange of antibiotic-resistant genes between bacteria from differ-

ent environments is more frequent than within the same environment, probably

because of adaptive advantage provided by the resistance genes (Smillie et al.

2011). However, exchange of antibiotic-resistant genes between gut microbiota

and the pathogenic gene pool is yet to be confirmed. Metagenomic analysis of the

human gut resistome has revealed that functional sequences of antibiotic-resistant

genes present in the gut microbial gene pool share very low homology to those

present on known pathogens. Possible uncharacterized barriers hinder the transfer

of resistance genes between commensals and pathogens resulting in the compart-

mentalization of the resistome of gut commensals and pathogens. Although antibi-

otic treatment has been shown to have significant implications, the mechanisms

which govern the flow of genes in vivo have yet to be elucidated. For instance,

antibiotic-induced HGT may improve the ability of gut microbiota to withstand a

particular stress. One such example is the transfer of carbohydrate-active enzymes

across phylogenetically distinct commensal bacteria which in turn helps diverse

communities withstand shared challenges encountered in a dynamic gut environ-

ment. Antibiotic treatment in mice has been reported to enrich a carbohydrate-

active enzyme encoded by phages. This finding suggests that increased gene

transfer during antibiotic treatment helps the gut microbiota store and access

functional genes that facilitate niche recolonization (Modi et al. 2013).

9 Acquisition of Genes by Pathogens

Human pathogens may acquire antibiotic-resistant genes from the gut reservoir by

HGT which can occur by several mechanisms such as transformation, conjugation,

and transduction (Fig. 1). In transformation, naked DNA is taken up by competent

bacteria. Thus, if the DNA carries an antibiotic-resistant gene, it will be transferred

to the recipient bacterium. Transformation is a common phenomenon, and many

bacteria have been reported to be naturally competent to take up DNA from

different species. Conjugation is a mating process in which exchange of genetic

material takes place through a conjugative bridge. During this process, resistance

genes can spread from donor cells to recipients. Transduction is mediated by

bacteriophages. Several bacteriophages encode antibiotic-resistant genes which

can be transferred and integrated into the chromosome or transferred from one

cell to another (Furuya and Lowy 2006). Among the three processes, transformation
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does not contribute significantly to HGT in the human gut (Nordgard et al. 2012).

However, conjugation and transduction play an important role in the exchange of

antibiotic genes among gut microflora. Most commonly, gene transfer in the human

gut occurs through conjugative plasmids or transposons (Coyne et al. 2014).

Genome and plasmid sequence analyses indicate that though conjugation between

closely related bacteria is more frequent than remotely related ones, it plays a

significant role in the dissemination of antibiotic-resistant genes (Jones et al. 2010;

Tamminen et al. 2012). Conjugative transfer of antibiotic resistance from gut

commensals to pathogens is evidenced from the finding that the vanB gene respon-

sible for vancomycin resistance is present on a transposon of a commensal belong-

ing to the phylum Firmicutes which serves as the source of vancomycin resistance

in the nosocomial pathogen E. faecium (Stinear et al. 2001; Graham et al. 2008;

Howden et al. 2013). Inside the gut, gene transfer takes place in both directions, i.e.,

from commensals to pathogens and from pathogens to commensals. The most

common gram-negative bacteria that play an important role in gene transfer in

the gut belong to the phylum Bacteroidetes as they are capable of acquiring DNA

from a wide range of bacteria including the gram-positives E. faecalis and Clos-
tridium perfringens. Thus, Bacteroidetes can serve as a source of resistance genes

for other bacteria within the gut (Coyne et al. 2014). These groups of bacteria

contain a conjugative transposon CTnDOT which plays an active role in the spread

of erythromycin and tetracycline resistance inside the gut (Waters and Salyers

2013). Besides obligate anaerobes, facultative anaerobic commensals of the gut

Fig. 1 Spread of drug-resistant genes in the gut microbiome. The figure depicts the mechanisms at

play that contribute to the emergence of drug resistance in the gut microbiome. Drug resistance

may arise as the mutation of a gene to prevent it from serving as a drug target or an unrelated

enzyme whose secondary function serves to inactivate the effect of a drug. Conjugation, transfor-

mation, and transduction serve as mechanisms that aid the spread of drug resistance in a population

either from pathogens to commensals and vice versa or between the commensals themselves
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such as lactic acid bacteria are also involved in channeling gene transfer in the

intestinal tract (Ogilvie et al. 2012). Among others, enterococci are exceptionally

efficient in trafficking drug-resistant genes in human gut (Werner et al. 2013).

Furthermore, pathogens of Enterobacteriaceae can also easily exchange

plasmid-bearing antibiotic-resistant and virulent genes during gut colonization

(Goren et al. 2010). Conjugative exchange of genetic material inside the gut is

not only determined by bacterial factors but also affected by host factors. Human

epithelial cells produce several proteinaceous compounds which can lower the

conjugation efficiency of resistance-encoding plasmids in E. coli strains (Machado

and Sommer 2014). On the contrary, gut inflammation facilitates conjugation

between pathogenic bacteria and gut commensals (Stecher et al. 2012). Besides

bacteria, phages also play an important role in gene transfer in the intestinal tract.

The prophages carrying antibiotic-resistant genes that remain integrated into the

genome of commensals often enter into the lytic cycle and can thereby transfer

antibiotic-resistant genes to other bacteria (Quiros et al. 2014; Waller et al. 2014).

In a recent study involving metagenomic analysis of phage DNA from the gut, it

was found that 70% of the samples contained antibiotic-resistant genes such as

beta-lactamase resistance gene blaTEM and the quinolone resistance gene qnrA.
The role of bacteriophages in HGT in the gut has been proved experimentally as

well where antibiotic-resistant genes increased considerably in the phage

metagenome after treatment with ampicillin or ciprofloxacin (Modi et al. 2013).

Phages isolated from mice treated with antibiotics show higher gene transfer rates

as compared to those isolated from untreated mice (Modi et al. 2013). Thus, the gut

presents a highly dynamic niche where constant gene transfer takes place among

different communities by several methods.

10 Geographical Signature of Antibiotic-Resistant Genes

Although the human gut has been found to harbor a large number of resistance

genes, there are country-specific variations (although small, approximately 1.5- to

twofold) in the gut resistome of individuals. This could be due to differential use of

antibiotics in different countries because individuals from countries such as Den-

mark with restricted use of antibiotics have been found to contain lower levels of

antibiotic-resistant genes than the countries like Spain and China where the use of

antibiotic is relatively higher. However, the relation between variation of resistome

and incidences of antibiotic-resistant infections in different countries still remains

to be determined.

Interestingly, analysis of SNPs in the antibiotic-resistant genes isolated from

different geographical locations indicates that there is a specific geographical

signature present in antibiotic-resistant genes. For example, sequences of antibiotic

resistance isolated from Chinese individuals form a distinct cluster than those

isolated from Danish and Spanish individuals (Hu et al. 2013). Similar to

geographic-level variation, regional-level differences were also observed when

resistance genes from different populations of China were analyzed.
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11 Conclusion

The human gut environment presents a dynamic niche for microbes where millions

of bacteria belonging to different phyla can colonize and exchange chemical and

genetic information. In addition, gut microbes can exchange genetic material with

microbes from the external environment through food, water, and beverages. This

phenomenon has the result of accumulation of resistance genes in the gut

Fig. 2 A summary of the emergence and modes of transmission of drug-resistant genes in the gut

microbiome. The figure illustrates the major external and environmental factors contributing to the

emergence of drug resistance in the gut microbiome, namely, antibiotic use and the spread of

antibiotic-resistant pathogens from various sources such as fruits, vegetables, animals, and fish.

The effects of antibiotic use are the destabilization of the gut and selection of drug-resistant strains

that in turn serve as sources of drug resistance, thus contributing to the pool of resistance genes in

the population
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commensals. Hence, the gut commensals have been depicted as the epicenter of

antibiotic resistance. Antibiotic treatment has become an integral part of modern-

day medicine. However, the disruptions to gut bacteria caused by antibiotic treat-

ment are raising concerns, highlighting the need for new antibacterial therapies. A

major concern from the extensive use of antibiotics is the emergence of multidrug-

resistant bacterial strains and the widespread transfer of their resistance genes to

surrounding nonpathogenic bacteria such as gut commensals (Fig. 2). Thus, the

extensive use of antibiotics is shaping our gut microbiota contributing significantly

to the emergence of multidrug-resistant pathogens.
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Efflux-Mediated Drug Resistance

in Staphylococcus aureus

Nitin Pal Kalia

Abstract An intrinsic property of Staphylococcus aureus is that it is naturally

susceptible to virtually every antibiotic ever developed. Various mechanisms are

responsible for multidrug resistance, but efflux pumps play a crucial role in the

emergence of multidrug-resistant bacteria by expelling the antimicrobials from

inside the cell. These membrane proteins are also involved in a variety of physio-

logical roles. Therefore, there is a need to identify inhibitors and develop strategies

to overcome multidrug resistance. One possible option is the use of efflux pump

inhibitors (EPIs) in combination with already available antimicrobial agents/anti-

biotics. Different approaches have been developed for the evaluation of EPIs,

ranging from high-throughput screening to bioassay-guided purification. The

greatest hurdle to their clinical use is toxicity, as is the case for the existing EPIs,

verapamil and reserpine. To date, no single EPI has been approved for use in

clinical settings because of uncertainty around their potency and their intolerable

adverse effects, particularly inhibition of cytochrome P450. Currently, the use of

test active EPIs is limited to epidemiological studies. However, the search for more

specific and effective EPIs will continue because of their significant benefits. The

development of new chemotherapeutic agents requires contemplation of efflux

pump substrate selectivity.

1 Introduction

Staphylococcus aureus, a well-known commensal organism, is considered to be the

cause of various life-threatening infections. The incidence of nosocomial and

community-associated S. aureus infections has increased greatly over the past

20 years because of a rise in antibiotic-resistant strains—specifically, methicillin-

resistant S. aureus (MRSA) and, more recently, vancomycin-resistant strains
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(Sievert et al. 2008). Although the factors involved in the evolution of virulent and

drug-resistant organisms are not well understood, empirical therapy, abuse of

antimicrobials, and the use of substandard pharmaceuticals are clearly contributing

factors (Ughachukwu and Unekwe 2012). Bacteria have developed various strate-

gies to escape the action of antibacterial agents, including modification/degradation

of the antibiotic (e.g., enzyme-like β-lactamases and transferases for

aminoglycosides), permeability modifications (e.g., target accessibility or efflux),

and target-site modification. In particular, gram-positive bacteria chromosomes or

plasmids are considered to be involved in mediating these resistance mechanisms.

Increase in efflux and decrease in uptake are resistance-contributing factors for

many antimicrobials, and these factors have recently been recognized as affecting

drug concentration within the cell. The development of a multiple-resistance

phenotype may be due to nonspecific behavior of these mechanisms. Studies have

revealed that efflux pumps are important in more than merely antibiotic export; they

may also facilitate the movement of the organism’s virulence factors and their

survival in respective ecological niches. The literature reveals that efflux pumps

help bacteria invade professional phagocytes such as macrophages and even affect

the survival of S. aureus inside neutrophils (Garzoni and Kelley 2009). These drug

transporters become active when they receive a stimuli in the form of stress or some

chemical entity and may affect colonization, virulence, and intracellular commu-

nication (Kumar and Schweizer 2005; Piddock 2006a; Nishino et al. 2009). How-

ever, these effects may belong to only a few transmembrane proteins, which reveals

their crucial role in evolution (Krulwich et al. 2005). Inhibitors of one or more

efflux pump systems could restore, and would significantly improve, the efficacy of

the drug that is a substrate for that particular pump.

2 Efflux Pumps

2.1 Classification of Bacterial Efflux Pumps

Depending on their structural variation, energy source, and mechanisms, efflux

pumps have been categorized into five major classes that are of prime importance in

bacterial pathogens:

(A) MFS: major facilitator superfamily

(B) MATE family: multidrug and toxic compound extrusion family

(C) SMR family: small multidrug resistance family

(D) RND superfamily: resistance nodulation division superfamily

(E) ABC superfamily: adenosine triphosphate binding (ATP) cassette superfamily.

The pumps classified under the first four categories are known as secondary

transporters because of their energy source; they utilize the proton motive force (H+

antiport) to expel specific chemicals from inside the cell. The Na+ gradient serves as
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a source of energy for the MATE family. Efflux pumps classified as ABC are

considered primary transporters because they use ATP as a source of energy

(Fig. 1).

2.1.1 Major Facilitator Superfamily (MFS)

This group of membrane transporters consists of secondary active transporters

known for the efflux of multiple substrates, including NorA, QacA, Bmr, Blt,

MdfA, and LmrP. These membrane proteins are antiporters and behave as mono-

mers. However, in Gram-negative bacteria, these pumps work as a part of tripartite

systems and membrane fusion proteins along with outer membrane channels. This

system as a whole enables efflux pumps to effectively remove the drugs across the

double membranes. This is in contrast to several other pumps in this group, which

can extrude drugs to periplasm only (Li and Nikaido 2004).

2.1.2 Multidrug and Toxic Compound Extrusion (MATE) Family

The group consists of the NorM efflux pumps of Vibrio parahaemolyticus, which
transport several toxic agents that are cationic (such as fluoroquinolones) as H+ or

Na+ antiporters. The list of substrates for the MATE family is usually narrower than

those for RND transporters. Despite this, to date, only a small number of trans-

porters have been characterized under this group (Kuroda and Tsuchiya 2009); the

proteins of this class are present in almost all the kingdoms of life, and genome

sequences hold many more examples (Omote et al. 2006). Most of the transporters

in this group have been identified by expressing the gene encoding these proteins in

antimicrobial-hypersusceptible Escherichia coli. Hence, the exact function and

contribution of this group of efflux pumps in the actual host bacteria is usually

unclear.

MFS

H+

MATE

Na+

RND

H+

H+

ATP                ADP + Pi

ABCSMRMembrane

Cytoplasm

Fig. 1 Drug efflux from inside of bacterial cells is facilitated with the help of energy sources in the

form H+ or Na+ ions or adenosine triphosphate binding (ATP) hydrolysis
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2.1.3 Resistance Nodulation Division (RND) Superfamily

RND efflux systems, widespread in Gram-negative bacteria, drive the energy from

proton gradients across the membrane for its functioning, that is, in the form of

proton/drug antiporters. These pumps actively efflux a range of antibacterial agents,

including many clinically important antibiotics and synthetic drugs. Detailed stud-

ies have recently been conducted to predict the structure and function of proteins

belonging to this family using AcrAB-TolC of E. coli and MexAB-OprM of

Pseudomonas aeruginosa. These transmembrane proteins (i.e., AcrB and MexB)

are in the form of tripartite complexes, which have large periplasmic domains as

well as outer membrane channels (TolC and OprM) (Nikaido and Takatsuka 2009).

2.1.4 Small Multidrug Resistance (SMR) Family

More than 250 annotated members form this group, which are further

sub-categorized into (1) the small multidrug pumps, (2) the paired SMR proteins,

and (3) suppressors of groEL mutant proteins. These proteins are expressed by

genes present on the genomic DNA or on plasmids and are probably associated with

integrons. These proteins not only extrude the disinfectants but are also involved in

the expulsion of clinically relevant aminoglycosides (Bay et al. 2008; Li et al.
2003). In most cases, these pumps work in conjunction with RND pumps to efflux

substrates from inside the cell.

2.1.5 Adenosine Triphosphate Binding cassette (ABC) Superfamily

The ABC family of multidrug efflux pumps is highly conserved throughout the

phyla (bacteria to humans) but export a broad range of chemically diverse com-

pounds by using ATP as a source of energy. Better understanding of ABC-mediated

drug efflux has been obtained from the Sav1866 multidrug efflux pump of

S. aureus, which is homologous with human multidrug-resistant (MDR)

P-glycoprotein (P-gp) (Dawson and Locher 2006). ATP binding triggers the

outward-facing conformation of Sav1866 and hence reflects the ATP-bound state,

a central cavity comprising two transmembrane domains in conjunction with two

nucleotide-binding domains, assumed to be the path for drug translocation (David-

son and Chen 2004). Separation of adenosine diphosphate (ADP) and phosphate

(hydrolysis product of ATP) support the inward-facing conformation and therefore

confirms that the substrate binding site is accessible to an inhibitor.
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Table 1 Classification of efflux pumps and their respective substrates

Efflux

pump Family Regulator Substrates References

Chromosomally-encoded efflux systems

NorA MFS MgrA,

NorG(?)

Hydrophilic fluoroquinolones, quaternary

ammonium salts, dyes (e.g., ethidium bromide,

rhodamine)

Handzlik

et al. (2013)

NorB MFS MgrA,

NorG

Fluoroquinolones (both hydrophilic and

hydrophobic), tetracycline, QACs (e.g.,

tetraphenylphosphonium, cetrimide), dyes

(e.g., ethidium bromide)

NorB MFS MgrA,

NorG

Fluoroquinolones (e.g., hydrophilic: ciproflox-

acin; hydrophobic: moxifloxacin), dyes (e.g.,

rhodamine)

MepA MATE MepR Fluoroquinolones (e.g., hydrophilic: ciproflox-

acin, norfloxacin; hydrophobic: moxifloxacin,

sparfloxacin), glycylcyclines (e.g.,

tigecycline), QACs (e.g.,

tetraphenylphosphonium, cetrimide,

benzalkonium chloride), dyes (e.g., ethidium

bromide)

MdeA MFS N.I. Hydrophilic fluoroquinolones (e.g., ciproflox-

acin, norfloxacin), virginiamycin, novobiocin,

mupirocin, fusidic acid, QACs (e.g.,

tetraphenylphosphonium, benzalkonium chlo-

ride, dequalinium), dyes (e.g., ethidium

bromide)

SepA N.D. N.I. QACs (e.g., benzalkonium chloride),

biguanidines (e.g., chlorhexidine), dyes (e.g.,

acriflavine)

SdrM MFS N.I. Hydrophilic fluoroquinolones (e.g.,

norfloxacin), dyes (e.g., ethidium bromide,

acriflavine)

LmrS MFS N.I. Oxazolidinone (linezolid), phenicols (e.g.,

chloramphenicol, florfenicol), trimethoprim,

erythromycin, kanamycin, fusidic acid, QACs

(e.g., tetraphenylphosphonium), detergents

(e.g., sodium dodecyl sulphate), dyes (e.g.,

ethidium bromide)

QacA MFS QacR QACs (e.g., tetraphenylphosphonium,

benzalkonium chloride, dequalinium),

biguanidines (e.g., chlorhexidine), diamidines

(e.g., pentamidine), dyes (e.g., ethidium

bromide, rhodamine, acriflavine)

Handzlik

et al. (2013)

QacB MFS QacR QACs (e.g., tetraphenylphosphonium,

benzalkonium chloride), dyes (e.g., ethidium

bromide, rhodamine, acriflavine)

Smr SMR N.I. QACs (e.g., benzalkonium chloride,

cetrimide), dyes (e.g., ethidium bromide)

(continued)
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3 Efflux Pumps in Staphylococcus aureus

Drug expulsion is one of the most important resistance mechanisms in S. aureus. To
date, approximately ten such pumps have been found in S. aureus. Most are

members of the MFS; specifically, efflux pumps NorA, NorB, NorC, MdeA, and

SdrM are chromosomally encoded along with some plasmid-encoded QacA/B

pumps (Table 1).

4 Why Target Efflux Pumps

4.1 Contribution to Pathogenicity

Bacterial efflux pumps have a broad range of substrates and they export not only

antibiotics but also antimicrobial agents produced by the host in response to

bacterial entry. This information has revealed the role of these membrane-bound

transporters in evading such molecules and allowing bacteria to survive in their

ecological niches. Furthermore, recent studies have also proved the importance of

efflux pumps in the pathogenicity of the bacteria. Reports have revealed the role of

efflux pumps, wherein these pumps efflux not only antibiotics but also virulence-

determining factors such as adhesins, toxins, or other proteins that help in the

colonization of bacteria and cause infection of human and animal cells. To date,

the involvement of RND and MATE family members in pathogenicity has been

proven (Piddock 2006b).

Table 1 (continued)

Efflux

pump Family Regulator Substrates References

QacG SMR N.I. QACs (e.g., benzalkonium chloride,

cetyltrimethylammonium), dyes (e.g., ethidium

bromide)

QacH SMR N.I. QACs (e.g., benzalkonium chloride,

cetyltrimethylammonium), dyes (e.g., ethidium

bromide)

QacJ SMR N.I. QACs (e.g., benzalkonium chloride,

cetyltrimethylammonium), dyes (e.g., ethidium

bromide)

N.D.: The family of transporters to which SepA belongs is not yet elucidated; N.I.: The transporter

has no regulator identified to date

MATE multidrug and toxic compound extrusion family,MFS major facilitator superfamily, QACs
quaternary ammonium compounds, SMR small multidrug resistance family
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4.2 Efflux Pumps and Biofilm Resistance

Biofilms are formed by bacteria on a solid surface, and biofilm-associated bacteria

are more resistant to antibacterial compounds than are their planktonic counterparts

(Mah et al. 2003). This bacterial strategy is most similar to persister cells that close

their metabolism rendering targets no longer available to antibacterials that do not

kill the cell. Many reasons exist for biofilm-mediated drug resistance, such as slow

growth and reduced penetration due to the accumulation of extracellular poly-

saccharides; however, efflux pumps also play a significant role (Tegos et al.

2011). These drug transporters may influence drug-specific resistance in biofilms,

such as in ofloxacin and azithromycin, where expression of the MexAB-OprM

pump (Brooun et al. 2000) and the MexCD-OprJ, respectively, serve as a biofilm-

specific mechanism for resistance (Gillis et al. 2005).

4.3 Colonization and Virulence

The role of MDR pumps (e.g., MFS and RND) in bacterial colonization within the

host has been reported. A Salmonella strain, in the absence of all nine major

transporters, failed to kill mice. Furthermore, S. aureus in which the norA gene

was deleted did not invade macrophages. On the other hand, invasion increased in a

norA-overexpressing strain compared with in a wild-type strain (Kalia et al. 2012).

Whereas such findings may not indicate direct involvement of pump activity with

‘virulence’ they do provide evidence and support for the investigation of the role of
efflux pumps in transporting virulence factors.

4.4 Quorum Sensing

Quorum sensing in bacteria requires the creation and recognition of extracellular

signaling molecules called autoinducers, which control cell density and environ-

mental factors, mediating gene expression (Camilli and Bassler 2006). The most

thoroughly studied molecules are N-acyl homoserine lactones. Quorum-sensing

studies have validated the role of RND pumps, but more data analysis is required

to elucidate why some cells in regular batch cultures produce autoinducers (pro-

ducers), whereas other cells (receivers) respond to these autoinducers. When a

specified transporter sends a signal, it is difficult to predict the response because

of the conflicting effects on these two types of cells. Furthermore, diffusion of

N-acyl homoserine lactones across any membrane is easy because of its lipophilic

nature; therefore, it is difficult to conclude whether or not an RND pump is required

for its expulsion. Hence, we conclude there is no proof that RND pumps secrete

N-acyl homoserine lactones, and the overexpression of these pumps is likely to
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obstruct autoinducers from entering receiver cells. In fact, overexpression of the

MexEF-OprN pump reduces the production of autoinducers from the total popula-

tion. However, the available literature focuses on the role of RND pumps in quorum

sensing without considering these facts, and reports of the myth of RND pump-

mediated autoinducer transport continue to appear (Li and Nikaido 2004).

5 Clinical Importance of Efflux Pumps of S. aureus

In bacterial pathogens, clinically important efflux-mediated drug resistance can

involve both antibiotics and biocides. Antibiotic resistance due to efflux activity

may involve (1) efflux pumps responsible for expelling a specific single antibiotic

only (e.g., Tet determinants cause resistance to tetracycline) or (2) the expulsion of

different groups of antibiotics by efflux pumps such as NorA, which are known for

multiple substrate expulsion. Overexpression can lead to MDR pumps promoting

resistance to a chemically diverse class of antibiotics but also reducing susceptibil-

ity to biocides, resulting in an MDR phenotype. These MDR phenotypes are not

only a great risk to therapeutic success but also play a crucial role in co-selection

and cross-resistance between efflux-mediated antibiotic and biocide resistance,

which is particularly alarming when considering drug-resistant strains such as

MRSA (Costa et al. 2013).

6 Strategies to Overcome Efflux-Mediated Resistance

We can reduce the effect of efflux pumps in a number of ways: (1) modify the

structure of existing antibiotics to reduce their affinity to binding sites of these

proteins; (2) permeabilize membranes to increase the influx of antibiotics, increas-

ing the intracellular drug concentration; (3) suppress efflux pump-encoding genes

and/or reduce the activity of active efflux pumps in the bacterial membrane;

(4) interfere with the energy source that helps transport the drug; (5) block the

assembly of important and active efflux pump parts; (6) place a plug block into

membrane channels that transport antibiotics (within pump cavities or at pump exit

channels); or (7) create antagonism between the antibiotic and the substrate during

transport across the membrane through these pumps (Handzlik et al. 2013).

7 Efflux Pump Inhibitors: Resistance-Modifying Agents

Overexpression of multidrug efflux pumps in clinical isolates results in decreased

susceptibility to antibiotics. Therefore, antibiotic resistance in both Gram-positive

and Gram-negative pathogens must be considered during antibiotic drug discovery
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and development. Augmentin (GlaxoSmithKline) is an outcome of the concept

whereby clavulanic acid, which inhibits β-lactamase-mediated resistance in a

bacterium, may be used with an amoxicillin (β-lactam). Clavulanic acid signifi-

cantly improved the stability of amoxicillin and inhibited β-lactamases; the com-

bination is used against community-acquired pneumonia or acute bacterial sinusitis

caused by β-lactamase-producing bacteria. Chemical entities that play a role in

resistance modification may also modulate multidrug resistance mechanisms.

Efflux pumps that are present in membranes have a diverse range of substrates

and transport antibiotics out from inside the bacterial cell, leaving the cell unable to

achieve the concentration required to kill bacteria. An inhibitor combined with the

antibiotic substrates of these efflux pumps increases the concentration of the

antibiotic inside the cell and therefore helps restore the potency of the drug.

These inhibitors may also influence the emergence of antibiotic-resistant variants

(Mullin et al. 2004). Prediction and determination of the structure of these trans-

membrane proteins helps determine the mechanisms of multidrug binding and

expulsion as well as the structure-based approaches that can be used to discover

efflux pump inhibitors (EPIs).

7.1 Bacterial Efflux Pump Inhibitors (EPIs)

The above discussion and available data confirm the involvement of efflux pumps

in the development of resistance and hence their potential as effective antibacterial

targets. New effective, safe, and less toxic chemical entities need to be developed as

bacterial EPIs (Renau et al. 1999; Li and Nikaido 2004). For molecules to be

considered as EPIs, they must be able to decrease the emergence of bacterial

resistance to existing antibiotics, modulate resistance in strains with mutations at

multiple sites and targets, and reduce the inherent resistance of bacteria to antibi-

otics (Kriengkauykiat et al. 2005). Different strategies can be used to identify

effective EPIs. Modifications in antibiotics that are being effluxed can be used as

efflux pumps to stop binding and/or transport. EPIs known and validated against

other efflux systems can be used as MDR efflux pumps. Testing of known drugs

other than antibiotics (Kristiansen and Amaral 1997) might be cost effective and

time saving, as ample data related to their safety index and pharmacokinetics are

already available. Another approach would be to screen chemical libraries or

biodiverse compounds to identify new possibilities; studies of structure–activity

relationships may help in lead optimization. The exact mode of action of these

inhibitors is not yet clear, but one proposed mechanism is via binding directly to the

pump (Kumar et al. 2013) and thereby blocking it via either a competitive or a

non-competitive relationship with the substrates. Interfering directly with and

depleting its energy source, either by blocking ATP-binding or by disconnecting

the proton gradient across the membrane, can also be considered as another mode of

action of such inhibitors. Studies have revealed the affinity of inhibitors for
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substrates of MDR pumps (Zloh et al. 2004). Therefore, the large size of inhibitor–

antibiotic complexes will prevent their expulsion from inside the cell.

7.2 EPIs of Plant Origin

Natural molecules specifically of plant origin have the potential to be lead EPIs and

effective antimicrobial agents. Focus on evaluating natural molecules as drug

candidates has increased and is promising. Molecules need to satisfy the following

criteria to be used as an EPI:

1. They should increase the potential of almost all the substrates of the pump.

2. They should have no effect on antibiotics not being effluxed.

3. They must have no activity for knock strains efflux pumps.

4. They must increase the intracellular concentration of efflux pump substrates and

reduce their expulsion.

5. They should not disturb the membrane potential across the inner membrane.

Reserpine, an alkaloid isolated from Rauwolfia vomitoria Afz., was initially

evaluated for its antihypertensive activity. The Bmr efflux pump of Bacillus
subtilis, which mediates tetracycline resistance, served as a target to evaluate

reserpine as an EPI where it directly interacts with the Bmr protein and binds to

the cavity formed by Phe-143, Val-286, and Phe-306. In combination with tetracy-

cline, reserpine reduced the minimum inhibitory concentration (MIC) of tetracy-

cline fourfold against two clinical isolates of MRSA possessing Tet(K) efflux

proteins, IS-58 and XU212 (Gibbons and Udo 2000). Reserpine also reversed

NorA-conferred multidrug resistance and significantly improved the potential of

norfloxacin against S. aureus.
Diospyrin (Diospyros montana) a naphthoquinone, was tested along with some

of its derivatives against Mycobacterium aurum A+. Some of the derivatives

showed better activity as EPIs in a ciprofloxacin accumulation assay at a concen-

tration of 100 μM and increased ciprofloxacin accumulation (Chakrabarty et al.

2002).

Piperine is a major component of Piper nigrum and Piper longum and signifi-

cantly improves the activity of ciprofloxacin against S. aureus and MRSA 15187

(Khan et al. 2006). To establish the mechanism of action of piperine, ethidium

bromide (EtBr) was tested in combination with piperine. A reduction in MIC was

observed against a ciprofloxacin-resistant strain of S. aureus, exhibiting an

increased MIC against EtBr. Both ciprofloxacin and EtBr are substrates for NorA;

therefore, piperine can be considered an inhibitor of this bacterial pump.

Phenylpropanoid ailanthoidiol and two other benzophenanthridine alkaloids,

oxychelerythrine and oxynitidine, were isolated from Zanthoxylum capense
(Thunb.) Harv. (Rutaceae) and evaluated as EPIs against S. aureus. Enhanced
EtBr accumulation was observed at a concentration of 50 mg/l. Oxychelerythrine
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and oxynitidine belong to a similar class as berberine, a known inhibitor of bacterial

efflux pumps (Stavri et al. 2007).

Daidzein of Glycine max, a known P-gp inhibitor (Limtrakul et al. 2005) was

evaluated for its EPI activity against Mycobacterium smegmatis mc2

155 ATCC700084, E. coli, and P. aeruginosa (Lechner et al. 2008). Its effect on

the accumulation of EtBr in the presence of daidzein 16 mg/l was promising.

Carbonyl cyanide m-chlorophenylhydrazone (CCCP) was used as a positive control

in this study.

Cucurbitane-type triterpenes of Momordica balsamina were tested as EPIs

against Enterococcus faecalis and MRSA COLOXA cells. Balsaminagenin B at a

concentration of 30 μM showed better EtBr accumulation in E. faecalis cells

(Ramalhete et al. 2011). Similarly, this compound was also active as a P-gp

inhibitor (Ramalhete et al. 2009).

Karavilagenin C and balsaminol F were active in MRSA COLOXA (NorA

overexpressing) cells at a concentration of 3 μM when evaluated using an EtBr

accumulation assay. None of the triterpenes tested were active when tested against

Gram-negative bacteria. Furthermore, no cytotoxicity was observed in an experi-

ment performed against human lymphocytes (Ramalhete et al. 2011).

Capsaicin, a main constituent of Capsicum annuum and a p-gp inhibitor, was

evaluated as an inhibitor of the NorA efflux pump of S. aureus. EtBr accumulation

and efflux assay also revealed the potential of capsaicin as an EPI when tested

against S. aureus 1199B (NorA overproducing). An effect of capsaicin on reducing

the macrophage invasion of S. aureus was also observed (Kalia et al. 2012).

Phenylpropanoids of Alpinia galanga (L.) Wild. (Zingiberaceae) significantly

inhibited efflux and accumulation of EtBr in M. smegmatis mc2 155. Specifically,

10-S-10–acetoxy eugenol acetate showed a dose-dependent effect when compared

with reserpine for efflux and accumulation (Roy et al. 2012).

The compounds paradol and gingerol from the seeds of Aframomum melegueta
K. Schum. (Zingiberaceae) have been evaluated as EPIs against M. smegmatis mc2

155 using an EtBr efflux assay (Groeblacher et al. 2012).

A flavonoid, sarothrin of Alkanna orientalis inhibited NorA pump S. aureus at
concentration of 100 μM. Results of EtBr-accumulation studies were similar to

those obtained with CCCP (Bame et al. 2013).

Synthetic analogs of bonducellin, a homoisoflavonoid obtained from

Caesalpinia digyna Rottler (Leguminosae-Caesalpinioideae), were tested against

M. smegmatis mc2 155; bonducellin and its seven derivatives showed better dose-

dependent EtBr efflux and accumulation than did verapamil (Roy et al. 2013a).

Coumarins from Mesua ferrea L. (Calophyllaceae) were evaluated for EPI

activity using EtBr efflux and accumulation assays. A dose-dependent effect was

observed when tested against NorA-overproducing S. aureus strains. Furthermore,

coumarins were not cytotoxic at a concentration of 200 mg/l (Roy et al. 2013b).

Carnosic acid from Rosmarinus officinalis and Salvia officinalis is already

known for its EPI activity against the NorA-overproducing S. aureus 1199B strain.

This compound was further evaluated against E. faecalis ATCC 29212 and found to
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be active. Carnosic acid acts by altering the membrane potential without affecting

membrane permeability (Ojeda-Sana et al. 2013).

Extract from the leaves of Baccharoides adoensis showed EPI activity when

tested against P. aeruginosa and S. aureus. An uptake assay using rhodamine 6G

dye was performed against both the bacteria to validate the extract as an EPI

(Chitemerere and Mukanganyama 2014).

Extract of Callistemon citrinus (Myrtaceae) had EPI activity when tested against

P. aeruginosa and S. aureus using a rhodamine 6G uptake assay. Chemical analysis

found α-pinene to be a main constituent of the extract. Furthermore, a diSC3-5

experiment confirmed a role in increasing membrane permeability (Chitemerere

and Mukanganyama 2014).

Ursolic acid from of Eucalyptus tereticornis and its semi-synthetic esterified

analogs performed better than reserpine in an EtBr efflux experiment. A concen-

tration range of 25–50 mg/l was used against an MDR strain of E. coli (Dwivedi
et al. 2014).

Resveratrol of Vitis vinifera has already been evaluated for its potential as an EPI
of M. smegmatis (Lechner et al. 2008). A dose-dependent effect was observed for

EtBr accumulation when tested against Arcobacter butzleri LMG 10828 and

Arcobacter cryaerophilus LMG 10829. The compound also impaired the metabolic

activity of these bacteria (Ferreira et al. 2014).

Linoleic acid from Portulaca oleracea inhibited EtBr efflux in MRSA strains

(64 mg/l) with an effect similar to that of reserpine. MRSA strains tested were

erythromycin-resistant and overproducing MsrA efflux pump of the ABC family

(Chan et al. 2015).

Extract of Acer saccharum Marshall (Sapindaceae) showed potential as an EPI

against E. coli, Proteus mirabilis, and P. aeruginosa strains. The extract signifi-

cantly promoted the accumulation of the EtBr bacteria, similarly to CCCP, a known

EPI (Maisuria et al. 2015).

The essential oil of Eucalyptus grandis was evaluated as an EPI against Kleb-
siella pneumoniae and Moraxella catarrhalis. Observed EPI activity was better

than that for berberine (Sewanu et al. 2015).

7.3 From Tactics to Strategies

Plant-based natural compounds play a crucial role in drug discovery particularly in

the identification of novel EPIs and effective antimicrobial agents. Over the last

decade, antimicrobial drug discovery using natural resources has increased and is

considered extremely promising. Fewer natural product libraries exist because of

the time-consuming isolation, extraction, characterization, and identification of

every single compound required. High-throughput screening for EPIs from natural

and synthetic libraries lags behind because of the considerable disadvantages, such

as the more specific and precise secondary and tertiary evaluation assays required.

Improved and highly effective functional EPI assays for screening, followed by
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comprehensive secondary validation flowcharts, will help considerably in over-

coming these limitations (Tegos et al. 2011).

8 Relevance of EPIs in Clinical Settings

The role of EPIs is clearer, and they are considered capable of restoring the activity

of antibiotics that have lost their potential against emerging resistant strains. This

combination approach is a promising tool against resistant bacteria (Cabral et al.

2015). Another use of these test-active compounds is in the restoration of the

potential of anticancer drugs that have lost their activity due to overexpression of

P-gp (ABC transporter) in resistant cancer cells. Semi-synthetically modified

lamellarins have been found to be active against P-pg pumps of mammalian cells

and the NorA pump of S. aureus (Bharate et al. 2015). Hypericin, a natural

molecule and inhibitor of ABC transporters, was effective when used alongside

light therapy against cancer cells (Kourtesi et al. 2013). The safety profiles and

toxicities of these molecules limit their use to research only (Fernandez and

Hancock 2012). To be used in antimicrobial regimens, EPIs should be specific

only to bacterial efflux pumps (Kourtesi et al. 2013). There is only a single report

available for the use of EPIs in the antimicrobial combination MP-601,205, avail-

able in an aerosol formulation for respiratory infections due to cystic fibrosis and

ventilator-associated pneumonia. Another EPI, piperine, known as an inhibitor of

NorA (S. aureus) and Rv1258c (Mycobacterium tuberculosis), has been formulated

at a concentration of 10.0 mg with rifampicin 20.0 mg and isoniazid 30.0 mg; the

combination is known as risorine. Piperine plays a crucial role in bioequivalence,

and the combination showed similar results to those of available rifampicin 450-mg

preparations being marketed in India by Cadila Pharmaceuticals Ltd (Sharma et al.

2014).

9 Conclusion

The potential of S. aureus to become resistant to every available drug means it is a

supremely important pathogen. This microorganism is capable of developing resis-

tance to antibiotics via different mechanisms, such as modifications at the target site

and the inactivation of antibiotics. To develop multidrug resistance, a bacterium

must acquire multiple mechanisms, as each mechanism provides resistance only to

a single class of compound. Efficient drug efflux is a sophisticated mechanisms

where, with the help of drug efflux pumps, bacteria effectively efflux chemically

diverse substrates, both antibacterial and non-antibacterial. These efflux pumps are

not merely involved in antibiotic efflux; recent studies have also confirmed their

involvement in the pathogenicity and survival of the organism. Efflux pumps help

bacteria survive within phagocytes such as macrophages and even in neutrophils.
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Drug efflux helps in greater selection of resistant mutants with mutations at the

target site (Kalia et al. 2012). Overexpression of a broad range of multi-component

multidrug efflux systems may cause efflux of intracellular concentrations of such

components, which plays a significant role in clinical efficacy. It is also crucial that

the frequency of efflux-mediated resistance is higher than the resistance mediated

by target alterations (Lomovskaya and Bostian 2006). These are the reasons that

validate and support the development of EPIs for adjuvant therapies. Outstanding

work has been undertaken in the study of regulatory mechanisms and physiological

functions of multidrug efflux pumps in recent years. Structure prediction of efflux

pumps, substrates, and inhibitors with X-ray crystallography techniques continue to

expand our knowledge of this important aspect of multidrug resistance and are

helpful for the development of EPIs. The combination of antibiotics and EPIs is a

promising tool with which to fight infections by drug-resistant pathogens. There-

fore, drug efflux and related mechanisms should be given prime importance in the

development of new antibiotics and in future drug discovery programs. Targeting

transcription regulators to prevent the overexpression of efflux genes can be

considered an alternative strategy. Furthermore, to enable the clinical application

of EPIs, future research must focus on decreasing cytotoxicity, increasing solubil-

ity, and exploring new EPI candidates.
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Tackling the Antibiotic Resistance: The

“Gut” Feeling

Richa Misra, Richa Virmani, Darshan Dhakan, and Abhijit Maji

Abstract Antibiotic resistance is a threat to human health worldwide. The ever-

increasing multidrug-resistant (MDR) strains of many bacterial pathogens are para-

lyzing our efforts to treat many deadly infections. An important measure to deal

with the menace is to better understand the process and manage the reservoirs or

risk areas. Over the recent past, the importance of gut bacteria in various aspects of

human health and physiology has been highlighted. Also, studies are now being

carried out to better understand its role in antimicrobial resistance and grave conse-

quences of antibiotic exposure on gut microbiota. This chapter highlights the

importance of gut microbiota in better understanding of antibiotic resistance and

summarizes the burden imposed by antibiotic use in the healthcare sector. Due to

close contact of pathogens with dense human microbiota during the disease pro-

gression, gene transfer events might occur frequently. In this context, our micro-

biome warrants special attention since it can possibly act as one of the most

accessible reservoir of antibiotic resistance genes. It seems pertinent to evaluate

antimicrobial therapies in the context of this microbial framework, as many life-

threatening infections can arise due to antibiotic-associated alterations in the gut

microbiota.

1 Introduction

In 1928, when Alexander Fleming discovered penicillin, the first natural chemical

compound with antibiotic properties (Fleming 1980), the world rejoiced and called

it a “wonder drug.” Since then, the discovery of antibiotics has probably been one of
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the most successful forms of antimicrobial treatment in the history of medicine.

Little did we know that unaccounted use and misuse of many of these wonder drugs

would lead to a grave situation of “antimicrobial resistance,” where the deadly

pathogens would smartly change in ways that make the drugs ineffective! Resistant

microorganisms stop responding to the standard drugs, which were originally

effective for treatment. This increases the burden of the disease, as it not only

lengthens the regular time course of treatment, which in turn increases the risk of

spread to others. Moreover, in case of serious pathological conditions, this long

treatment exposure also increases the chances of death due to susceptibility to other

opportunistic infections.

1.1 Antibiotics

Selman Waksman, the famous soil microbiologist who discovered streptomycin,

proposed the term “antibiotic.” Although he and his colleagues referred this term to

the activity of the compound produced by microbes against other microbes, the

term has since then popularly been used for any organic molecule with antibacterial

properties (Waksman and Flynn 1973; Davies and Davies 2010). Microbes produc-

ing antibiotics are studied largely for exploiting their therapeutic potential; how-

ever, these compounds are known to play multifaceted role in microbial community

including acting as signaling molecules (Kalia et al. 2007; Kalia and Purohit 2011;

Kumar et al. 2013; Sengupta et al. 2013; Kalia 2014; Sajid et al. 2015; Koul et al.

2016). We now understand that antibiotics and antibiotic resistance genes

coevolved in the organism to confer a trait, advantageous to the organism in face

of selection pressure (Kalia 2013; Arora et al. 2014; Bhaduri et al. 2014; Kalia et al.

2014). So, antibiotic resistance is a naturally evolved phenomenon, without any role

of human intervention. However, we also know that the recent upsurge in antibiotic

resistance is due to the immense selection pressure created at various levels by

anthropogenic activities. The unaccounted use of antibiotics that has resulted in the

emergence of drug-resistant strains of Mycobacterium tuberculosis is a grim

reminder of powerful adaptation of nature (Velayati et al. 2009).

Administration of most antibiotics is associated with adverse effects that range

from nausea, fever, allergic reactions, and diarrhea. While antibiotics inhibit patho-

genic bacteria, they also exert detrimental effects on the commensal bacterial com-

munity that contribute to human health. One such widely studied condition is the

antibiotic-associated diarrhea (AAD). Antibiotics affect the human microflora by

disrupting the species composition in the gastrointestinal (GI) tract or gut, which

leads to overgrowth of pathogenic bacteria, such as Clostridium difficile, which is

responsible for conditions like diarrhea to pseudomembranous colitis in patients

(Cotter et al. 2012). As compared to its presence in healthy individuals, C. difficile
population is reported to increase in number due to antibiotic-induced disturbances.

Most antibiotics have the potential of creating a bacterial imbalance in intestines,

and exposure to antibiotics early in life has been implicated to lead to long-term

326 R. Misra et al.



health effects such as development of allergic sensitization and pathogen-induced

colitis (Willing et al. 2011). This is most pronounced in case of antibiotics with

broad target range. The molecular targets aimed by these broad-spectrum anti-

biotics (e.g., cell wall components, RNA polymerase, DNA gyrase, etc.) are often

highly conserved across many bacterial species, genetically as well as structurally.

So, the use of an antibiotic against a pathogenic bacterium most likely also targets

the bacterial community sharing the niche with the pathogen. The brazen use of

broad-spectrum antibiotics has been pushed in part by the pharmaceutical industry,

which focuses largely on the development of broad-spectrum antibiotics, which can

be utilized to treat a variety of different infections. Moreover, most of these are

available as “over-the-counter” medicines in some countries and are often admin-

istered to treat infections of unknown/little known etiology. However, it is only in

recent years that the consequence of widespread use of antibiotics has caught our

attention. With the help of high-throughput DNA sequencing and related techno-

logies, we are just beginning to comprehend the effect of antibiotic use on the gut

microbiota of humans. Over the years, the consumption of antibiotics has led to

collateral damage faced by indigenous host-associated microbes, which results in

physiological turmoil.

1.2 Microbiome

The collection of microorganisms present in our body is commonly referred as

human microbiota/microbiome. It is estimated that microbes constitute 100 trillion

cells in our body, almost tenfold the number of human cells (Eckburg et al. 2005;

Sears 2005). These microbes colonize mostly all body surfaces like the gut, oral

cavity, auditory canal, nares, and skin surfaces (Costello et al. 2009). Of all the

microbial population associated with our body, 99% of the population is bacterial

and the majority resides in the gut (Gill et al. 2006; Qin et al. 2010). Of the known

phylogenetic categories, bacterial phylotypes, Bacteroidetes, and the Firmicutes
constitute over 90% of the distal gut microbiota. Populations of Proteobacteria,
Actinobacteria, Fusobacteria, and Verrucobacteria are present in minor propor-

tions, and change in their relative proportions is indicative of some pathological

conditions (Eckburg et al. 2005; Sears 2005; Kalia 2014). It is now well appreciated

that these microbes play an important role in the human physiology and health.

Some of the crucial processes governed by gut microbes include nutrition, modu-

lation of immune system, and pathogen invasion (Round and Mazmanian 2009; Qin

et al. 2010). Since we have been unable to culture most of these bacteria, our

understanding of this microbial pool began with the advent of high-throughput

sequencing technologies. The microbiome studies have shown substantial diversity

of gut microbes between healthy individuals, with lifestyle and diet playing a

crucial role in establishing the diversity (Dicksved et al. 2007; Flint et al. 2007;

Jernberg et al. 2010). It is now known that the GI tract of a fetus is sterile, and

microbiota is acquired primarily during passage through the birth canal in an infant,
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with the mother’s vaginal microbiota being the most common influence. In this

context, the mode of infant delivery also governs the microbe diversity and, in turn,

susceptibility to various infections (Mändar and Mikelsaar 1996; Huurre et al.

2008). Apart from this, the illness and use of antibiotics are known to cause a

drastic change in microbiota or dysbiosis (Dethlefsen and Relman 2011; Faith et al.

2013).

2 Burden of Antibiotic Resistance

Since the first report of antibiotic usage and resistance, the burden of resistance

among bacteria has progressively increased and has accelerated within the last

decade. In an alarming trend, a survey carried out to account for global consump-

tion of antibiotics from year 2000 to 2010 revealed an increase of 36% in antibiotic

consumption in 71 countries over this period, with India, Brazil, China, Russia, and

South Africa accounting for 76% of this increase. India also emerged as the largest

consumer of antibiotics (Van Boeckel et al. 2014). Antibiotic resistance is now

established to be a cause of grave concern to human health and welfare. The

problem is even intense in developing countries such as India where comprehensive

surveillance system is lacking in healthcare sector to monitor the burden of anti-

microbial resistance. Due to lack of surveillance data, often the scenario is under-

represented. Depending upon the degree of resistance, most people with antibiotic

resistance remain infected for longer. This not only increases the cost of healthcare

in medical centers but also increases the chance of death. For example, according to

the World Health Organization (WHO), methicillin-resistant Staphylococcus
aureus-infected patients are 64% more likely to die as compared to patients

infected with a nonresistant form of the bacteria. Similarly, people infected with

multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of

M. tuberculosis require much longer courses for treatment of tuberculosis (http://

apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf). According

to the US Center for Disease Control and Prevention (CDC), treatment of

C. difficile infections requires at least $1 billion in excess medical costs per year

(CDC, Antibiotic Resistance Threats in the United States, 2013).

Bacterial infections can be broadly classified into healthcare-associated infec-

tions (HAIs) or nosocomial infections and community-acquired infections (CAI).

CAIs are infections developed outside of a healthcare setting or an infection present

on admission, while HAIs are infections that patients contract during the course of

receiving treatment for other conditions within a healthcare setting. A large pro-

portion of infections reported in hospitals reveal that HAIs are on a rise, and,

usually, strains causing HAIs tend to be naturally more resistant to antibiotics. In

a review by Wattal et al., the authors have provided a beautiful summary of the

burden of resistance, associated with HAI and CAI, in India (Wattal and Goel

2014). According to the CDC report, at least two million people in the United States

acquire bacterial infections that are resistant to one or more of the antibiotics
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designated to cure those infections, each year (CDC, Antibiotic Resistance Threats

in the United States, 2013). The WHO also in its report on resistance surveillance

highlighted the serious threat to public health globally due to antibiotic resistance

(World Health Organization, “Antimicrobial resistance: Global report on surveil-

lance, 2014”).

Some of the key findings from these reports and others are summarized below:

• Resistance to carbapenem antibiotics in Klebsiella pneumonia, a common cause

of HAI, has spread all over the world.

• One type of HAI—C. difficile—is directly associated with administration of

antibiotics and may prove to be life-threatening, especially in older adults under

medical care.

• Resistance to first-line drugs to treat infections caused by S. aureus—a common

cause of CAI and HAI—is also widespread.

• MDR and XDR M. tuberculosis infections are an increasing threat, globally.

• Acinetobacter strains, a cause of pneumonia or bloodstream infections among

critically ill patients, are resistant to nearly all antibiotics including

carbapenems.

• Enterococcus strains have become resistant to vancomycin, making treatment

difficult.

• Salmonella typhi and non-typhoidal Salmonella infections are also reported to be
resistant to drugs such as ceftriaxone and ciprofloxacin.

• In 10 countries, millions of people die of gonorrhea, a sexually transmitted dis-

ease, because Neisseria gonorrhoeae has become resistant to even the last

recourse of treatment—the third-generation cephalosporins. An impending dan-

ger looms wherein gonorrhea may soon become untreatable, as no alternative

treatment measure is currently under development.

• The treatment of urinary tract infections, mainly due to strains of Escherichia
coli, involves administration of one of the most widely used antibiotic—the

fluoroquinolones—resistance to which is very widespread.

• Resistance in Vibrio cholerae has also been reported against commonly used

antibiotics like furazolidone, co-trimoxazole, and fluoroquinolones (Sharma

et al. 2007).

• High prevalence of resistance to first-line drugs is reported in Shigella spp., and

the recent emergence of ceftriaxone resistance in Shigella has led to the use of

carbapenems for the treatment of a simple community-acquired diarrheal dis-

ease (Taneja et al. 2012).

• Many other infectious agents are increasingly bearing multidrug resistance traits

such as Campylobacter spp. and Aeromonas spp.
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3 Source of Antibiotic Resistance in Pathogens

Antibiotic resistance genes (ARGs) have been present in bacterial populations from

ancient times (D’Costa et al. 2011), and cycling of ARGs in environmental settings

is well documented (Vaz-Moreira et al. 2014; Berendonk et al. 2015). Resistance is

known to arise in bacteria either by spontaneous mutations in their genomes (Bagel

et al. 1999) or by means of horizontal gene transfer (Frost et al. 2005; Modi et al.

2014) (Fig. 1). Antibiotic resistance genes are often encoded on mobilizable genetic

elements, called integrons, in environmental bacteria and commensals and can

move between diverse bacteria to disseminate resistance genes, when microbial

communities communicate with each other under high selection pressure (Alekshun

and Levy 2006). These conditions include communication under highly dense

bacterial populations subjected to sub-therapeutic antibiotic concentrations. These

interactions can be seen not only in environmental conditions that are subjected to

anthropogenic pressure, such as municipal wastewater systems, pharmaceutical

manufacturing units, and animal husbandry facilities, but also in hospital settings

(Berendonk et al. 2015). The occurrence of New Delhi metallo-beta-lactamase-1

(NDM-1) containing bacteria in water samples in New Delhi is one such

stark example of the gravity of the situation (Walsh et al. 2011). The use of

sub-therapeutic doses of antibiotics or related compounds in the agricultural indus-

try and animal husbandry to promote animal growth creates a perpetual selective

Gut

iii) Transformation

ii) Transduction

i) Conjugation

microbiota
b

a

Spontaneous genetic 
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Transfer of 
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Fig. 1 Acquisition of antibiotic resistance in bacteria. Bacteria are known to acquire resistance to

antibiotics by two mechanisms: (a) spontaneous genetic mutations which enable bacterium to

resist antibiotics either by inactivating them directly or indirectly by modifying the targets/route of

entry and (b) acquired resistance genes from another source by means of (i) conjugation, which
involves direct cell–cell contact with another bacteria; (ii) transduction, which is virus-mediated

transfer of DNA; and (iii) transformation, which is the ability to acquire naked DNA from the

environment

330 R. Misra et al.



pressure which in turn facilitates resistance to develop and may possibly contribute

to a larger global resistance reservoir (Heuer and Smalla 2007; Berendonk et al.

2015). In fact, a study reveals that usage of antibiotics in beekeeping in the United

States has led to accumulation of extensive tetracycline resistance genes in the

microbiota of honeybees (Tian et al. 2012). There is evidence of horizontal transfer

of genes encoding carbohydrate-active enzymes between marine bacteria and gut

microbiome of Japanese individuals with seaweed-rich diet (Hehemann et al.

2010), which suggests that one such niche can also be the human gut microbiome

of healthy individuals, which acts as a reservoir of ARGs, although the direct

experimental evidence of in vivo transfer of antibiotic resistance genes within the

human microbiome is very limiting (Doucet-Populaire et al. 1991; Ley et al. 2006;

Smillie et al. 2011). There is enough alarming evidence to endorse the view that the

transfer of ARGs in humans is possible to overcome persistent antibiotic selective

pressure, and our urgent attention is warranted to tackle the situation.

4 Effect of Antibiotics on Gut Microbiota

Antibiotics affect the microbial composition in two different ways. Firstly, it

decreases the competition for resources for microbes in turn opening up many

ecological niches for opportunistic pathogens. In addition, lysis of susceptible bac-

teria releases carbon sources which can then be utilized by the remaining members

of the microflora (Willing et al. 2011). For example, upon disruption of resident

microbiota due to antibiotics, two distantly related antibiotic-associated pathogens,

S. enterica serovar Typhimurium and C. difficile, utilize the microbiota-liberated

sialic acids for their proliferation (Ng et al. 2013). With the help of culture-based

approach and next-generation sequencing technologies, many studies have now

investigated the effect of administration of antibiotics on persistence of resistance

in gut microbiota. These studies have highlighted the potential of gut microbiota as

a reservoir accessible to pathogens under extreme antibiotic selection pressure.

Some of the key examples from various studies are:

• Helicobacter pylori, a gram-negative bacterium colonizing the gastric mucosa,

is the main causative agent of peptic ulcer and gastric cancer. Its treatment

requires a triple therapy combination with clarithromycin, metronidazole, and

omeprazole. It was revealed in a study that apart from the short- and long-term

disruption of indigenous microbiota in the throat and in the lower intestine

region, there was enrichment of macrolide resistance gene, even after 4 years

of treatment (Jakobsson et al. 2010). In an independent study, this treatment

regimen was compared with another combination containing amoxicillin and

was suggested better for treatment of H. pylori since it resulted in emergence of

lesser resistant strains, so it can be considered better from an ecological per-

spective (Adamsson et al. 1999).
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• An overgrowth of resistant enterobacterial species was observed on adminis-

tration of amoxicillin with or without clavulanate (Sullivan et al. 2001).

• Administration of cephalosporin leads to decrease in the abundance of entero-

bacteria and increased the levels of enterococci, which are known to be intrin-

sically resistant to this antimicrobial agent (Rafii et al. 2008).

• Another report showed that even short-term exposure to clindamycin treatment

led to long-term impacts on the intestinal microbiota and results in dramatic

increase in levels of specific resistance genes (Jernberg et al. 2007).

• Karami et al. have demonstrated β-lactamase gene transfer between two E. coli
strains co-residing in the human gut of a child who was administered ampicillin

(Karami et al. 2007).

• Sommer et al. characterized the gut microbes of unrelated healthy individuals

who for at least 1 year were not exposed to antibiotics. Surprisingly, with the

help of metagenomic as well as culturing approaches, they could decipher many

resistance genes that were identical to genes harbored by pathogens, while many

were evolutionarily distant from known resistance reservoir. This alarming fact

underscored the potential of commensal microbiota of healthy individuals acting

as reservoirs of resistance genes, with an imminent contribution to antibiotic

resistance (Sommer et al. 2009).

The disturbance in microbiota has also been associated to many disease pheno-

types. In many instances, downstream regulation of innate defenses has been asso-

ciated with antibiotic-induced disruption of microbiota, leading to colonization of

other microbes (Brandl et al. 2008; Willing et al. 2011). Antibiotic-associated

diarrhea (AAD), a condition characterized by administration of antibiotics and

not any other obvious causes, is one of the most common complications arising

in hospitals. Although the frequency of AAD can vary between different antibiotics,

it is believed that AAD can affect up to 25% of the patients receiving a particular

antibiotic (Young and Schmidt 2004). It is also reported that cephalosporin use

during early childhood leads to increased susceptibility to asthma (Kozyrskyj et al.

2007). Kanamycin administration during infancy led to modulation of gut micro-

biota and was associated with the development of atopic dermatitis-like skin lesions

in a mice model (Watanabe et al. 2010). Furthermore, importance of gut microbiota

is also emphasized by the fact that fecal microbial transplantation (FMT) has

proved to be successful in treatment of recurrent C. difficile infection (Seekatz

et al. 2014). However, the mechanism and long-term effects of this treatment still

remain to be elucidated. In addition, effectiveness of FMT in other diseases still

needs to be ascertained.
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5 Road to Future

Many steps need to be taken worldwide to tackle the emergence and spread of

antibiotic resistance. Firstly, we need to have better understanding about the health

and physiology of healthy individuals and the tussle between host and pathogen by

modulating various physiological processes (Sachdeva et al. 2010; Maji et al.

2015). Furthermore, detailed understanding about the relationship between the

various human-associated and environmental reservoirs that harbor distinct resis-

tance genes need to be attained. With advent of metagenomic approach and

advancement in whole-genome sequencing methods, our knowledge about the

human microbiome functional diversity and impact of antibiotic treatment on

microbial community is improving (Fig. 2). This information needs to be expanded

further and applied for effective monitoring of antibiotic load and better formula-

tion of guidelines for therapies. In view of the challenges faced by the community,

the WHO focus for the World Health Day in 2011 was antimicrobial resistance, and

it also recently concluded the first “Antibiotic Awareness Week” in November

2015. The campaign was aimed to increase awareness in people about the rising

antibiotic resistance globally and to encourage good practices among the health

practitioners as well as general public to avoid further emergence and spread of

drug resistance. However, poor implementation poses a significant challenge

toward reaping the benefits of these programs. In order to turn the tide on
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antimicrobial resistance, we need to have a better infrastructural framework, which

ensures strict implementation of good practices. Unrestricted use of antibiotics in

all sectors, such as healthcare, agricultural, etc., should be curtailed. Examination of

antibiotic resistance in environmental samples like sludge, soil, and manure sam-

ples should be carried out. Greater importance should be given toward strict imple-

mentation of these guidelines for antibiotic therapies. We need to formulate and

follow laws against antibiotic dispensing without prescription. The general public

should be educated and made aware of the flip side of using antibiotics for any

medical problem. Moreover, mandatory refresher courses should be framed for

medical practitioners, both in rural and urban settings, to update them about the

global medical trends. Improvement in diagnostic facilities, treatment facilities,

and overall infrastructural advancement can go a long way in curtailing this

deadly menace.
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Huurre A, Kalliomäki M, Rautava S, Rinne M, Salminen S, Isolauri E (2008) Mode of delivery –

effects on gut microbiota and humoral immunity. Neonatology 93:236–240. doi:10.1159/

111102

Jakobsson HE, Jernberg C, Andersson AF, Sj€olund-Karlsson M, Jansson JK, Engstrand L (2010)

Short-term antibiotic treatment has differing long-term impacts on the human throat and

gut microbiome. PLoS One 5, e9836. doi:10.1371/journal.pone.0009836

Tackling the Antibiotic Resistance: The “Gut” Feeling 335

http://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf
http://dx.doi.org/10.1126/science.1177486
http://dx.doi.org/10.1126/science.1177486
http://dx.doi.org/10.1128/MMBR.00016-10
http://dx.doi.org/10.1038/nature10388
http://dx.doi.org/10.1073/pnas.1000087107
http://dx.doi.org/10.1128/AEM.02223-06
http://dx.doi.org/10.1126/science.1110591
http://dx.doi.org/10.1126/science.1237439
http://dx.doi.org/10.1111/j.1462-2920.2007.01281.x
http://dx.doi.org/10.1038/nrmicro1235
http://dx.doi.org/10.1126/science.1124234
http://dx.doi.org/10.1038/nature08937
http://dx.doi.org/10.1111/j.1462-2920.2006.01185.x
http://dx.doi.org/10.1111/j.1462-2920.2006.01185.x
http://dx.doi.org/10.1159/111102
http://dx.doi.org/10.1159/111102
http://dx.doi.org/10.1371/journal.pone.0009836


Jernberg C, L€ofmark S, Edlund C, Jansson JK (2007) Long-term ecological impacts of antibiotic

administration on the human intestinal microbiota. ISME J 1:56–66. doi:10.1038/ismej.2007.3

Jernberg C, L€ofmark S, Edlund C, Jansson JK (2010) Long-term impacts of antibiotic exposure on

the human intestinal microbiota. Microbiology 156:3216–3223. doi:10.1099/mic.0.040618-0

Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245. doi:10.

1016/j.biotechadv.2012.10.004

Kalia VC (2014) Microbes, antimicrobials and resistance: the battle goes on. Indian J Microbiol

54:1–2. doi:10.1007/s12088-013-0443-7

Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug

targets. Crit Rev Microbiol 37:121–140. doi:10.3109/1040841X.2010.532479

Kalia VC, Rani A, Lal S, Cheema S, Raut CP (2007) Combing databases reveals potential

antibiotic producers. Expert Opin Drug Discov 2:211–224. doi:10.1517/17460441.2.2.211

Kalia VC, Wood TK, Kumar P (2014) Evolution of resistance to quorum-sensing inhibitors.

Microb Ecol 68:13–23. doi:10.1007/s00248-013-0316-y

Karami N, Martner A, Enne VI, Swerkersson S, Adlerberth I, Wold AE (2007) Transfer of an

ampicillin resistance gene between two Escherichia coli strains in the bowel microbiota of an

infant treated with antibiotics. J Antimicrob Chemother 60:1142–1145. doi:10.1093/jac/

dkm327

Koul S, Prakash J, Mishra A, Kalia VC (2016) Potential emergence of multi-quorum sensing

inhibitor resistant (MQSIR) bacteria. Indian J Microbiol 56:1–18. doi:10.1007/s12088-015-

0558-0

Kozyrskyj AL, Ernst P, Becker AB (2007) Increased risk of childhood asthma from antibiotic use

in early life. Chest 131:1753–1759. doi:10.1378/chest.06-3008

Kumar P, Patel SK, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechno-
logical applications. Biotechnol Adv 31:1543–1561. doi:10.1016/j.biotechadv.2013.08.007

Ley RE, Peterson DA,Gordon JI (2006) Ecological and evolutionary forces shapingmicrobial diver-

sity in the human intestine. Cell 124:837–848. doi:10.1016/j.cell.2006.02.017

Maji A,Misra R, Kumar AM, Kumar D, Bajaj D, Singhal A, Arora G, Bhaduri A, Sajid A, Bhatia S,

Singh S, Singh H, Rao V, Dash D, Baby SE, Michael JS, Chaudhary A, Gokhale RS, Singh Y

(2015) Expression profiling of lymph nodes in tuberculosis patients reveal inflammatory milieu

at site of infection. Sci Rep 5:15214. doi:10.1038/srep15214
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In Silico Analytical Tools for Phylogenetic

and Functional Bacterial Genomics

Vipin Chandra Kalia, Ravi Kumar, and Shikha Koul

Abstract Microbial significance in human lives has been gaining importance due

to their biotechnological applications and ability to cause diseases. The use of

antibiotics to kill them has proved counterproductive. Bacterial resistance to anti-

biotics has caused huge economic losses. Many bacteria have turned highly drug

resistant due to modifications in their genetic reservoirs. It has been recognized that

bacteria had another mechanism to circumvent the impact of antibiotics. Bacteria

causing infectious diseases form biofilm at high cell density. Biofilm protects

bacteria from even extremely high dosages of antibiotics. Under all these condi-

tions, the most important aspect to initiate treatment is to diagnose the organism

responsible for the disease. Bacterial identification through the rrs gene sequence

has been the most prevalent and effective approach. The trouble arises in two main

situations: (1) high similarity among gene sequences and (2) the presence of

multiple copies of rrs gene within a genome. An obvious solution is to employ

other highly conserved genes (housekeeping genes), which is uneconomical in

terms of time and money. However, a few studies have revealed the presence of

latent features within rrs. A set of genomic tools allowed identification of organ-

isms up to the species level from their previous status of genus level identity. The

most interesting aspect is that the strategy can be extended to all genes from all

kinds of organisms.
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1 Introduction

Human interest in microbes has been growing steadily as their applications in our

daily life have gained importance (Kalia 2015b; Moroeanu et al. 2015). The role of

bacteria in causing diseases has always been studied with the intention of finding

mechanisms to kill them. The discovery of antibiotics proved extremely helpful in

reducing human misery. Since antibiotics are targeted to kill bacteria (Alipiah et al.

2015), they respond to this stress and undergo genetic changes, which are expressed

as functional changes. The immediate impact of these changes has been the

evolution of drug resistance in bacteria (Saxena et al. 2014). It was also realized

that without undergoing any genetic change, bacteria under certain conditions may

show enhanced antibiotic resistance. This acquired antibiotic resistance was attrib-

uted to the biofilm formed by bacteria by quorum sensing (QS), a phenomenon

which is controlled by cell density. Bacteria under the regulation of QS express

virulent metabolic behavior. Under this new regime, the approach is to inhibit QS

and prevent bacteria from acquiring resistance to antibiotics (Gui et al. 2014; Kalia

2013a, 2014a, b; Prakasham et al. 2014). Hence, QS system is turning out to be a

novel drug target (Kalia and Purohit 2011; Agarwala et al. 2014; Shang et al. 2014;

Hema et al. 2015; Kaur et al. 2015; Koul et al. 2015b; Arya and Princy 2016). In all

these scenarios, the need is to identify bacteria and provide a rapid diagnosis, which

will permit the treatment to proceed.

Initially, phenotypic and biochemical characteristics were used as the basis for

their identification and classification. The developments in molecular biology,

genomic, and bioinformatics have changed the pace of research in these organisms.

The turning point in the new era of genomics came into effect primarily because of

the insights provided by Prof. Carl R. Woese (Kalia 2013b; Prakash et al. 2013;

Mahale et al. 2014). Microbiologists around the world have used the tools devel-

oped in the last three to four decades to identify bacteria: PCR-ribotyping, micro-

array analysis, restriction endonuclease (RE) digestion, amplified fragment length

polymorphism, multi-locus sequence analysis, DNA hybridization, isotope distri-

bution analysis, molecular connectivity, etc. (Sharma et al. 2008; Kapley and

Purohit 2009; Nguyen et al. 2013; Prakash et al. 2014; Wang et al. 2014; Yu

et al. 2014, 2015; Meza-Lucas et al. 2016; Yagnik et al. 2016).

2 Bacillus

Bacillus is a versatile organism, which has been exploited for a large number of

biotechnological applications. This genus has encompassed such a large number of

diverse organisms that may be equated with Pseudomonas, as the “dumping”

ground for gram-positive organisms (Porwal et al. 2009). This genus represents a

lot of phenotypic and genotypic heterogeneity, such that an unambiguous identifi-

cation up to species level has been a tough task (Porwal et al. 2009). Members of
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Bacillus subtilis group, B. cereus group, B. licheniformis, and B. sphaericus are

some of the most notorious trouble spots among Bacillus spp. High genomic

similarity between B. subtilis and B. halodurans is recorded for GþC content,

genome size, and the characteristics of their ABC transporter genes, ATPases, etc.

Information presented by the complete genome of B. halodurans show similarity

for the enzymes transposases and recombinases, with those recorded among

Anabaena, Clostridium, Enterococcus, Lactococcus, Rhodobacter, Staphylococ-
cus, and Yersinia species. It clearly hints that Bacillus needs further segregation

into new genera: Aneurinibacillus, Ureibacillus, Virgibacillus, Brevibacillus, and
Paenibacillus. In fact, Bacillus stearothermophilus, B. thermoleovorans,
B. kaustophilus, and B. thermoglucosidasius are categorized as Geobacillus,
whereas B. pasteurii, B. globisporus, and B. psychrophilus are now known as

Sporosarcina spp. (Fig. 1). The members of Bacillus marinus are presently classi-

fied as Marinibacillus marinus (Yoon et al. 2001).

3 Clostridium

The biotechnological importance of Clostridium has made researchers to monitor

this organism with curiosity and precision. The bacteria is benign on one hand as it

can produce solvents, enzymes, biofuels like butanol, ethanol, hydrogen, etc. and is

extremely dangerous on the other hand, with the ability to produce deadly toxins

(Carere et al. 2008; Bhushan et al. 2015). The heterogeneity of Clostridium has

been recorded in phenotypic, biochemical, and genotypic characteristics. For quite

Bacillus spp. redesignated as
Alicyclobacillus; Aneurinibacillus; Brevibacillus; 
Geobacillus; Gracibacillus; Paenibacillus; 
Salibacillus; Ureibacillus; Virgibacillus.

B. kaustobacillus,  B. stearothermophilus    as Geobacillus

Pseudomonas spp.:  or “Dumping ground”
Redesignated as 
(i) Comamonas,  (ii) Acidovorax, (iii) Burkholderia and later as 

Ralstonia, (iv) Brevundimonas, and (v) Stenotrophomonas.

Clostridium spp.:  
G+C content - 28 to 53 %mol 
Too wide  for a single genus

Fig. 1 Reorganization of bacterial systematics: Bacillus, Pseudomonas, and Clostridium (Porwal

et al. 2009; Kalia et al. 2011a, b; Bhushan et al. 2013)
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some time, the issue of accommodating organisms varying in GC content from as

low as 24 mol% (Clostridium perfringens) to as high as 58 mol% (Clostridium
barkeri) did not appear justified (Fig. 1) (Kalia et al. 2011a).

4 Pseudomonas

Just like Clostridium and Bacillus, another equally important organism is Pseudo-
monas. In spite of these developments, there are still quite a few bacteria which

were otherwise clubbed together and needed reclassification. Almost all organisms

which were difficult to categorize were labeled as Pseudomonas. It was comprised

of phenotypically and biochemically highly diverse organisms and was named the

“dumping ground” (Fig. 1). They have a versatile metabolic ability to infect and

degrade almost everything and no doubt are among the most widely studied

pathogens and biodegraders (Bhushan et al. 2013). Pseudomonas has been

subjected to repeated taxonomic revisions (Lalucat et al. 2006; Peix et al. 2009).

Combined use of housekeeping genes such asgyrB, rpoB, rpoD, recA, atpD, and
carA and the classic gene—rrs—was found to be effective in distinguishing

different species of Pseudomonas: P. flavescens, P. mendocina, P. resinovorans,
P. fluorescens, P. chlororaphis, P. aeruginosa, P. syringae, P. putida, P. stutzeri,
etc. (Spiers et al. 2000; Hilario et al. 2004; Aremu and Babalola 2015).

5 Stenotrophomonas

Another highly versatile organism is Stenotrophomonas spp. The phylogenetic

diversity of Stenotrophomonas spp. is quite interesting as its members were initially

grouped under Pseudomonas and Xanthomonas. Presently, eight recognized

Stenotrophomonas spp. exist: S. maltophilia, S. nitritireducens, S. acidominiphilia,
S. rhizophila, S. koreensis, S. terrae, S. humi, and S. chelatiphaga. Stenotrophomonas
dokdonensis has been transferred to Pseudoxanthomonas as P. dokdonensis. As far

as the functional abilities of Stenotrophomonas species are concerned, they are

able to treat aromatic compounds either individually or in combination with

Bacillus, Pseudomonas, Flavimonas, and Morganella spp. Ecological and meta-

bolic (genetic and functional) diversity of S. maltophilia implies high taxonomic

heterogeneity (Anzai et al. 2000; Peix et al. 2007; Tourkya et al. 2009; Verma

et al. 2010, 2011; Aremu and Babalola 2015).
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6 Streptococcus

The genus Streptococcus has a big number of species with important clinical

relevance. Severe and acute diseases are known to be caused by species such as

S. agalactiae, S. pneumoniae, and S. pyogenes. Different analytic methods enable

identification to a limited extent and are laborious to apply. The genetic variability

among different Streptococcus groups is quite low, and distinguishing them is a

tough task (Lal et al. 2011; Kalia et al. 2016).

7 Helicobacter

Another group of organisms, which have great economic importance and are a

cause of worry for health departments, belong to the genus Helicobacter (Puri et al.
2016). These organisms cause many diseases in human beings. Among the different

species of Helicobacter, the following show high genetic variability: H. cinaedi,
H. pylori, H. felis, H. bilis, and Candidatus H. heilmannii. Previously, Helicobacter
spp. were categorized as Campylobacter sp. (Goodwin et al. 1989). Since H. pylori
is responsible for 50% of the infections caused by different relatives of

Helicobacter (Suerbaum and Michetti 2002), it happens to be the most extensively

studied species with 450 sequenced genomes. Biochemical assays, including urease

test, are cheap but may not be very accurate. Molecular techniques like PCR and

MLSA have also not proved to be highly precise (Puri et al. 2016).

8 The Novel Approach to Exploit Hidden Talents of rrs

With constant research efforts over the last three decades, rrs gene sequencing

technique has been simplified to such an extent that almost all research laboratories

around the globe have adopted it as routine assay. The RDP database has become a

rich referral center, to which the newly sequenced rrs gene is subjected and the best
match is used for identifying the organism. It must, however, be realized that RDP

database can identify the new organism only against what is already known and

deposited. The database cannot classify a gene sequence which has not been seen by

it so far. It therefore requires a novel overture, wherein we need to first define the

taxonomic and phylogenetic limits of each known species and key out the disrup-

tions in the evolutionary scale. In a serial publication of works undertaken in this

guidance, extensive genomic analyses were performed to look for any potential

characteristics of rrs genes, which have not been elucidated so far. In the following
text, a few case studies will be described to elucidate the approach, its validity, and

significance (Fig. 2) (Kalia 2015a).
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9 Bacillus

9.1 Phylogenetic Framework

The first step was to define the phylogenetic boundaries of a species within a given

genus. Bacillus was the first genus to be studied to evaluate the potential of this

approach. Out of the available information in the database (at that time), 1121 rrs
gene sequences of 10 Bacillus species were taken into consideration:

B. thuringiensis, B. anthracis, B. pumilus, B. cereus, B. subtilis, B. megaterium,
B. sphaericus, B. clausii, B. halodurans, and B. licheniformis (36–211 strains)

(Figs. 3 and 4) (Porwal et al. 2009). Phylogenetic trees developed on the basis of

Multiple Alignments
Variability in the terminal regions of the rrs gene sequences

Nucleotide Signatures
Specificity in the rrs gene sequences 

Restriction Endonuclease Activity 
Digestion pattern of the rrs gene sequences 

Fig. 2 Novel molecular techniques to explore the microbial taxonomy and phylogeny (Porwal

et al. 2009; Kalia et al. 2011a; Lal et al. 2011; Bhushan et al. 2013; Puri et al. 2016)

Bacillus spp.:
2146 rrs gene sequences  

(≥ 1200 nucleotides)

Bacillus spp. (10): 1121 sequences

Bacillus sp.:           1025 sequences

Clostridium spp.:
0756 rrs gene sequences

(≥ 1200 nucleotides)

Clostridium spp. (15): 404 sequences

Clostridium sp.:           352 sequences

Pseudomonas spp.:
5486 rrs gene sequences

(≥ 1200 nucleotides)

Pseudomonas spp. (05): 1350 sequences

Pseudomonas sp.:           2985 sequences

Fig. 3 Number of rrs gene sequences of Bacillus, Clostridium, and Pseudomonas used for

developing phylogenetic framework—(1) identified up to species level and (2) those identified

only up to genus level (Porwal et al. 2009; Kalia et al. 2011a; Bhushan et al. 2013)
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1121 allowed their segregation into 89 clusters. From each cluster, the outermost

and innermost rrs gene sequence was considered as representative of the limits of

the species. In case, there were a large number of sequences in a cluster; additional

1–2 sequences were also taken into account. In all cases, the type strain of the

species was also used to develop the phylogenetic framework. On the basis of these

criteria, a comprehensive framework consisting of 34 rrs sequences representing
10 different Bacillus species were established (Fig. 5). With this genomic tool in

hand, 305 Bacillus strains which were identified only up to genus level could be

reclassified as members of these 10 known species (Fig. 6) (Porwal et al. 2009). On

the basis of this genomic study, it was proposed to segregate the strains of B. subtilis
into two species/subspecies. It was revealed in the literature that on the biochemical

basis, B. subtilis can be divided into subspecies—subtilis and spizizenii (Nakamura

et al. 1999). The study was limited only to 10 species out of around 189 species

which are reported to be known today. This indicates that there is a lot of scope to

extend this work.

10 Unique Signatures

In order to validate the authenticity of the segregation of rrs sequences of strains
which could be classified among known Bacillus species, 20–30 nucleotide long

unique signatures were identified among the 10 known species using MEME

program (http://meme.nbcr.net/meme/meme.html). The uniqueness of these

Organism No. of rrs gene 
sequences

No. of aligned 
groups

Bacillus anthracis 153 04
B. cereus 211 04
B. thuringiensis 108 10
B. subtilis 271 26
B. licheniformis 131 10
B. pumilus 83 12
B. megaterium 47 08
B. sphaericus 42 06
B. clausii 39 06
B. halodurans 36 04
Bacillus sp.

Total 1121 90

Fig. 4 Segregation of rrs gene sequences of Bacillus species into multiple sequence alignment

groups on the basis of variability in the terminal regions (Adapted from Open Access article:

Porwal et al. 2009. doi:10.1371/journal.pone.0004438)
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signature sequences was verified by carrying out a blast search against all the

sequences available at NCBI (Fig. 7) (Porwal et al. 2009). The motifs (signature

sequences) were reported to be unique to a species, if these were absent from other

species. Two to five 29–30 nucleotide long unique signatures were detected for

Organism Accession numbers of Reference  rrs gene sequence(s)
Bacillus thuringiensis DQ286308(T)a, DQ286339, DQ328630, AE017355,  DQ286329
B. anthracisb AB190218, AE017334, AE017225
B. cereusb DQ372919, DQ289988
B. subtilis AB042061(T), DQ420172, AY995569, DQ504376, AY583216, 

AY881635, AY631853
B. licheniformis AB039328(T), CP000002, AF234855
B. pumilus AY260861(T), AY876289, DQ523500
B. megaterium AJ717381(T), AY373358, AY505510, AY373360
B. sphaericus AJ310084(T), DQ286309
B. clausii X76440(T), AB201793, AY960116
B. halodurans AY423275(T), AY856452

Total 34 strains

Fig. 5 Phylogenetic framework sequences of rrs genes of ten Bacillus species. aType strain. bFor
B. cereus group as a whole, only one type strain was used (Adapted from Open Access article:

Porwal et al. 2009. doi:10.1371/journal.pone.0004438)

Bacillus sp. No. 

B. cereus 
B. thuringiensis 
B. anthracis
B. sphaericus
B. licheniformis
B. halodurans
B. megaterium
B. pumilus
B. subtilis
B. clausii

75
02
01
23
21
07
69
32
44      
31

Total    305 / 1025

Pseudomonas sp. No. 

P. aeruginosa
P. fluorescens
P. putida
P. stutzeri
P. syringae

219
463
347
197
141

Total  1367 / 2985

Clostridium sp. No. 

15 species 179

Total  179 / 352 

Fig. 6 Number of rrs gene sequences of different organisms identified up to species level with the

help of genomic frame work (Data on Bacillus has been adapted from Open Access article: Porwal

et al. 2009. doi:10.1371/journal.pone.0004438) (Porwal et al. 2009; Kalia et al. 2011a; Bhushan

et al. 2013)
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Bacillus cereus, B. thuringiensis, B. clausii, B. pumilus, B. megaterium,
B. sphaericus, and B. halodurans. In the cases of B. anthracis, B. licheniformis,
and B. subtilis, unique signatures were not detectable.

A very interesting observation was made among signatures detected in rrs gene
sequences of organisms which were identified only as Bacillus sp. Their nucleotide
signatures indicated that either these organisms belong to those Bacillus spp. which
have not been used in this study (Porwal et al. 2009) or they represent some other

genus/genera. A few of these signatures did show a close resemblance to organisms

belonging to Virgibacillus, Geobacillus, Jeotgalibacillus, Brevibacillus,
Marinibacillus, Paenibacillus, and Pontibacillus (Porwal et al. 2009). A survey

of published works revealed that some of these organisms (still classified as

Bacillus sp.) had been reclassified and belong to Virgibacillus, Geobacillus,
Jeotgalibacillus, Brevibacillus, Marinibacillus, Paenibacillus, and Pontibacillus
(Heyndrickx et al. 1999; Nazina et al. 2001). It reflected on the strength of the

study, which with the help of in silico analysis alone provided evidences that these

Bacillus spp. needed segregation as new genera or species.

11 Restriction Endonuclease Digestion Analysis

Another unique feature to further support the segregation of organisms on the basis

of rrs gene was the identification of RE, which elucidated a unique digestion

pattern. Here the best part was the number of fragments, their size (nucleotides),

and the order in which they occur within the gene.

Fourteen type II REs (Table 3) were used: (1) four base pair cutters (AluI,HaeIII,
DpnII, BfaI, Tru9I, and RsaI), (2) six base pair cutters (EcoRI, BamHI, NruI, SmaI,
HindIII, PstI, and SacI), and (3) eight base pair cutter (NotI) (rebase.neb.com/

rebase/rebase.html). These REs were selected due to the occurrence of highly

specific cleavage sites. It was realized that out of these 14 REs, only four base

Bacillus spp. and Nucleotide Signatures

Bacillus cereus      AAAGTGGAATTCCATGTGTAGCGGTGAAAT

B.  thuringiensis ATAACATTTTGAACTGCATGGTTCGAAATT       

B. clausii AATCCCATAAAGCCATTCTCAGTTCGGATT

B. halodurans ATAATAAAAAGAACTGCATGGTTCTTTTTT

B. pumilus AAGGTTTAGCCAATCCCACAAATCTGTTCT

B. megaterium ATGATTGAAAGATGGTTTCGGCTATCACTT

B.  sphaericus TAAAACTCTGTTGTAAGGGAAGAACAAGTA

Fig. 7 Representative unique nucleotide signatures for rrs gene sequences of different Bacillus
species. No unique signature was detectable for B. anthracis, B. subtilis, and B. licheniformis (Data
adapted from Open Access article: Porwal et al. 2009. doi:10.1371/journal.pone.0004438)

In Silico Analytical Tools for Phylogenetic and Functional Bacterial Genomics 347

http://dx.doi.org/10.1371/journal.pone.0004438


pair cutter could be exploited as these REs generated 5–9 fragments with sizes,

which can be easily distinguished even under experimental conditions (Figs. 8 and

9). RE-RsaI digestion of rrs of different Bacillus spp. resulted in 2–6 fragments

ranging in size from 11 to 502 nucleotides. B. cereus group members gave similar

digestion patterns and were indistinguishable among them. B. halodurans and

B. pumilus were easily distinguished from others based on their unique RE diges-

tion patterns (Fig. 8). B. clausii and B. sphaericus could be identified as distinct on

digestion with RE HaeIII (Fig. 8). In silico digestion of rrs of B. megaterium, and
B. pumilus, gave a unique pattern with RE Tru9I (Fig. 9). The presence of two sets

of unique digestion patterns in rrs sequences belonging to B. subtilis with RE AluI
(Fig. 9) provided a strong evidence of the potential segregation of this group into

two subspecies or as separate species. This observation was made in the phyloge-

netic framework analysis described above. It may be remarked that certain species

segregate together in one RE can be distinguished by analyzing the digestion

patterns with another RE.

Rsa I

502409B. pumilus
5024071119B. subtilis
4964051118B. sphaericus
5014061119B. licheniformis

356       1464061119B. clausii
356 1464061116B. megaterium
357 146171        235B. halodurans
355 146406B. cereus
355 146406B. thuringiensis
355 146     406Bacillus anthracis

HaeIII

45859922B. pumilus
45760022B. subtilis
4525962278B. sphaericus
45759822B. licheniformis

85         216       2642278B. clausii
4595782278B. megaterium
4595982278B. halodurans
457565                   3422B. cereus
457568                   3422B. thuringiensis
456565                   3422Bacillus anthracis

Fig. 8 In silico restriction endonuclease digestion of rrs gene sequences of different Bacillus
species with RsaI and HaeIII. Values represent the fragment size (nucleotides). The filled symbol
represents the RE action site (Data adapted from Open Access article: Porwal et al. 2009. doi:10.

1371/journal.pone.0004438)
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12 Clostridium

The approach described above for developing genomic tools for phylogenetic

analysis were extended to rrs gene sequences of Clostridium (Kalia et al. 2011a).

Here 756 rrs sequences of 110 Clostridium species were taken into consideration.

Clostridium botulinum rrs gene sequences were segregated into four groups. Out of
these four groups of C. botulinum, 10 rrs sequences were selected to represent

128 sequences (Fig. 3). By drawing phylogenetic trees of 15 different Clostridium
species, 56 rrs gene sequences were selected for creating a phylogenetic frame-

work. It defined the phylogenetic limits of the C. acetobutylicum, C. butyricum,
C. beijerinckii, C. perfringens, C. botulinum, C. chauvoei, C. baratii,
C. pasteurianum, C. colicanis, C. sardiniense, C. subterminale, C. novyi,
C. sporogenes, C. kluyveri, and C. tetani.With this genomic tool in hand, 356 Clos-
tridium strains identified only up to genus level could be classified among these

15 known species (Kalia et al. 2011a). A confirmation of this initial reclassification

was achieved through nucleotide signature analysis and unique RE digestion

patterns. In this case also, REs—HaeIII, AluI, RsaI,DpnII, Tru9I, and BfaI—proved

effective in providing relevant information. RE—AluI—was instrumental in

Alu1

Tru9I

13486331B. pumilus
18113489278B. subtilis

13686278B. sphaericus
13486278B. licheniformis
13486270              8B. clausii
13786280B. megaterium
13686270              8B. halodurans

4413485270              8527B. cereus
4413486270              8527B. thuringiensis
4413486270 8527Bacillus anthracis

265185     430    20785          88B. pumilus
42                779164

265186     431    207173B. subtilis
265615             209175B. sphaericus
265822136        33B. licheniformis

186     218    41985          88B. clausii
123265615             20986          88B. megaterium

824173B. halodurans
186         21       58224     581    42174B. cereus
186         21       58225             599174B. thuringiensis
185         21       58224             599174Bacillus  anthracis

374

Fig. 9 In silico restriction endonuclease digestion of rrs gene sequences of different Bacillus
species with Tru9I and AluI. Values represent the fragment size (nucleotides). The filled symbol
represents the RE action site (Data adapted from Open Access article: Porwal et al. 2009. doi:10.

1371/journal.pone.0004438)
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clearly segregating C. chauvoei, C. acetobutylicum, C. kluyveri, C. perfringens,
C. colicanis, C. pasteurianum, and C. subterminale (Fig. 10) (Kalia et al. 2011a).

13 Pseudomonas, Helicobacter, and Streptococcus

Using approaches similar to those defined above for Bacillus and Clostridium spp.,

it was found that effective and meaningful phylogenetic and taxonomical informa-

tion can be retrieved also in the cases of Stenotrophomonas, Streptococcus, Pseu-
domonas, andHelicobacter (Verma et al. 2010, 2011; Lal et al. 2011; Bhushan et al.

2013; Puri et al. 2016).

14 Functional Genomics

In addition to using the genomic tools primarily for bacterial identification, it was

realized that these can be extended to derive meaningful information in other genes

as well. In attempts to inhibit the virulent behavior of bacteria causing infectious

diseases, a search for organisms producing bioactive molecules to act as

antibacterial was conducted. Since most infectious diseases are caused by organ-

isms which produce biofilm through QS system, anti-QS molecule producers were

targeted. Two enzymes—acyl-homoserine lactone acylase and acyl-homoserine

lactone lactonase—have been shown to inhibit QS. Phylogenetic and functional

Fig. 10 In silico restriction endonuclease digestion of rrs gene sequences of different Clostridium
species with AluI. Values represent the fragment size (nucleotides). The filled symbol represents
the RE action site (Data adapted from Open Access article: Kalia et al. 2011a. doi:10.1186/1471-2-

2164-12-18)
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genomic analyses of the genes responsible for the production of these enzymes

were carried out. Unique signatures and RE digestion patterns enabled to establish

the phenomenon of horizontal gene transfer as well (Kalia et al. 2011b). The unique

signatures were proposed as candidates for designing primers for detecting such

organisms in unknown samples. On the basis of this functional genomic analysis,

three organisms were traced, which possessed genes for both the AHL inhibitory

enzymes (Kalia et al. 2011b; Kalia 2014a). The RE digestion of AHL-lactonase

with Tru9I, RsaI, and DpnII could validate the phylogenetic segregation of the

organisms based on rrs gene (Huma et al. 2011). Diversity analysis of Citrobacter
species isolated from diverse niches was carried out to check their abilities to

degrade aromatic compounds. Nine strains having genes, which coded for aromatic

ring-hydroxylating dioxygenases, were analyzed using a diversity of REs—DpnII,
RsaI, and HaeIII. Unique signature analysis in combination with RE showed that

genomic similarity in a few specific strains supported their closeness in metabolic

functions as well (Selvakumaran et al. 2011). Functional genomics of

Stenotrophomonas diversity in effluent treatment plants was established with pre-

cision using RE digestion strategy. This enabled the development of a consortium

to be used for bioremediation (Verma et al. 2010, 2011).

More recently, the genomic tool—RE digestion pattern—has been extensively

used for identification of organisms, which are economically highly significant for

health departments. The primary objective was to find novel markers to be used for

diagnostic purposes (Arasu et al. 2015). The use of functional genes was necessi-

tated by the multiple copies of rrs genes in different species of Clostridium, Vibrio,
Yersinia, Staphylococcus, Streptococcus, and Lactobacillus (Kalia et al. 2015,

2016; Kalia and Kumar 2015; Kekre et al. 2015; Koul et al. 2015a; Koul and

Kalia 2016; Kumar et al. 2016).

15 Opinion

Phylogenetic analysis based on gene sequences is a very handy and effective tool.

The gene most widely used for bacterial identification and overall taxonomical

purposes is rrs. Although it is a widely employed technique, it leads into trouble

quite frequently. Often, the most obvious choice is to employ other highly con-

served genes (HKGs). It, however, implies higher inputs of time and money.

Invariably, additional 7–8 HKGs are required to resolve the issue. To circumvent

the efforts needed for identifying bacteria using a single gene—rrs—a fresh round

of studies were conducted, to develop genomic tools: phylogenetic framework,

signatures, and RE digestion patterns. Once again, these tools ran into trouble in

case of organisms which possessed multiple copies of rrs. The potential solution

seems to lie in the genes common to all the species within a genus. Unique gene-RE

digestion pattern allowed identification of novel biomarkers. It thus can be envis-

aged that the use of specific REs-gene combinations can be used for all kinds of

phylogenetic and functional genomic analysis.
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Exploiting Bacterial Genomes to Develop

Biomarkers for Identification

Ravi Kumar, Shikha Koul, and Vipin Chandra Kalia

Abstract Bacteria have unique abilities to adjust itself to diverse environmental

conditions. Under adverse conditions, their genetic reservoir provides necessary

help. Although bacteria have been perceived as pathogens to most living beings, the

most critical are the ones which infect human being. Bacteria also harbour the

human gut and skin and have been shown to be helpful. The pathogenic bacteria

cause diseases and contribute to ill health. The need is to identify them rapidly,

diagnose the disease and initiate the treatment. Most bacteria can be easily identi-

fied on the basis of their 16S rRNA (rrs) gene. However, in case where multiple

copies of rrs are present within a bacterial genome, it is difficult to identify

them, since they show great homology with other species of a genus. Here, novel

approaches have been reviewed, which rely upon certain genes which are common

to a large number of species of Clostridium, Lactobacillus, Staphylococcus, Strep-
tococcus, Vibrio and Yersinia and show unique digestion patterns on treatment with

restriction endonucleases.

1 Introduction

Bacteria have been bestowed with inherent abilities to withstand extreme environ-

mental conditions and undergo genetic changes to evolve rapidly (Kalia 2010).

Their interactions with human beings are extremely varied. The benign type of

bacteria persists within the human gut while quite a few exist and survive well on

the human body (Yu et al. 2014; Arasu et al. 2015). The pathogenic bacteria are a
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major threat to human health (Gautam et al. 2014; Wang et al. 2014). Bacteria

invade the human body and then cause extensive damage, especially in the cases of

infectious diseases. The bacterial pathogens may live and survive inside the body

for a long term, e.g. tuberculosis, or for a short term as in diarrheas. In these two

extreme scenarios, the former are slow growers with an excellent ability to evade

the human immune system. In the latter case, the growth is rapid and the expression

turns violent. Among the pathogens, which are a worry for Health Departments,

notable ones are Streptococcus, Shigella, Helicobacter, Vibrio, Clostridium,
Yersinia, Salmonella, etc. (Mahale et al. 2014; Kalia et al. 2015, 2016; Kalia and

Kumar 2015; Kekre et al. 2015; Koul et al. 2015a, b; Koul and Kalia 2016; Kumar

et al. 2016; Meza-Lucas et al. 2016; Puri et al. 2016; Yagnik et al. 2016). The

discovery of antibiotics turned out to be a blessing for human beings. However, this

arsenal invariably used to get rid of these pathogens didn’t live up to its expecta-

tions. Bacteria could develop resistance to most of the antibiotics. Few research

groups are still showing courage to invest time and money to develop novel

antibiotics (Agarwala et al. 2014; Saxena et al. 2014; Prakasham et al. 2014;

Alipiah et al. 2015; Sajid et al. 2015). Pharmaceutical companies have completely

lost interest in investing in this area. It is now for the governments to look into this

societal issue. A mechanism which is adding fuel to the fire is the bacterial ability to

become “resistant” to antibiotics, without undergoing any genetic changes. Here,

they multiply silently without any evident signs of their presence. Once they reach a

threshold population density, they start expressing genes which never get expressed

while the bacteria are in low numbers. This phenomenon of quorum sensing is

responsible for the expression of pathogenic factors (Kalia and Purohit 2011; Kalia

et al. 2011b; Gui et al. 2014; Hema et al. 2015; Kaur et al. 2015; Koul et al. 2015b;

Arya and Princy 2016). Among these biofilm formation is one of the most danger-

ous activities. It provides a shield to the bacteria which thus show “resistance” to

antibiotics (Shang et al. 2014). There seems to be a battle which is always going on

between bacteria and antibiotics (Kalia 2013a, 2014, 2015b). Under all these

circumstances, the need is to rapidly identify the pathogen and diagnose the disease

in an unambiguous manner before it becomes unmanageable.

2 The Conventional Ways

A wide range of bacterial identification methods is employed depending upon the

need and available facilities: amplified fragment length polymorphism (AFLP),

microarray, restriction endonuclease digestion (RE), PCR-ribotyping, multilocus

sequence analysis, randomly amplified polymorphic DNA and DNA-DNA

re-association (Prakash et al. 2014). One of the most frequently employed molec-

ular markers to identify microbes is the 16S rRNA (rrs) gene sequence. The

evidence for its popularity among researchers can be gauged from the Ribosomal
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Database Project (RDP), which contains around 3.2 million rrs entries (https://rdp.
cme.msu.edu/). The credit goes to the innovative thinking of Prof. Carl R. Woese

(Kalia 2013b; Prakash et al. 2013). In certain cases, the rrs gene sequence does not
prove helpful, especially if the organisms belong to closely related taxa. As an

alternative to rrs gene, people resort to the usage of a few housekeeping genes

(HKGs), which are also highly conserved throughout the bacterial world—recA,
gyrA, gyrB, rpoB, etc. These HKGs are used in various combinations and have

proved effective in distinguishing closely related organisms (Porwal et al. 2009;

Bhushan et al. 2015). Here, invariably up to eight genes are required to achieve

meaningful result, which obviously amounts to higher investments of time,

resources and money.

3 Exploring the Hidden Potential of rrs

At times, full length comparisons of rrs genes from different species or strains don’t
prove effective enough to distinguish and identify the bacteria unambiguously.

Variable regions of rrs and their combinations have also been employed for

establishing their identity and phylogenetic relations. More recent efforts have

revealed the presence of a few features, which have not been exploited for bacterial

identification. Molecular markers like unique nucleotide signatures and specific

endonuclease restriction digestion patterns were developed for Bacillus, Clostrid-
ium and Pseudomonas. Another interesting parameter developed in these studies

was the phylogenetic frame work, which could define the phylogenetic limits of a

species (Porwal et al. 2009; Kalia et al. 2011a; Bhushan et al. 2013, 2015; Kalia

2015a). It could be extrapolated to identify those bacteria which are yet to be seen

by the databases. These genomic tools have been extended to identify members of

the genus Streptococcus (Lal et al. 2011) and Helicobacter (Puri et al. 2016).

4 The Trouble with rrs Genes

In the organisms like Clostridium, Lactobacillus, Staphylococcus, Streptococcus,
Vibrio and Yersinia, each genome possesses multiple copies (4–13) of the rrs gene
(Table 1). (Klappenbach et al. 2001; Kalia et al. 2015, 2016; Kalia and Kumar 2015;

Kekre et al. 2015; Koul et al. 2015a; Koul and Kalia 2016; Kumar et al. 2016). This

is expected to result in overestimation of bacterial populations. The other limitation

is a high level of similarity observed between rrs copies of genomes from different

species, which may lead to mislabelling of the organism.
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5 The Potential Alternatives to rrs Gene

Molecular tools used for distinguishing Lactobacillus, Staphylococcus, Streptococ-
cus and Vibrio species involve a wide range of genes (Table 2). The molecular tools

like (1) loop-mediated isothermal amplification (LAMP), (2) LAMP combined with

lateral flow dipstick (Surasilp et al. 2011; Plaon et al. 2015; Thongkao et al. 2015),

(3) a silicon-based optical thin-film biosensor chip (Bai et al. 2010), (4) Fourier

transform infrared spectroscopy and (5) matrix-assisted laser desorption/ionization

time-of-flight mass spectrometry (Kuhm et al. 2009; Ayyadurai et al. 2010; Stephan

et al. 2011) are highly sensitive but costly as well.

Most of these genes had been effective in identifying bacteria up to the species

level (Table 2) (Brown et al. 2005; Carvalho et al. 2007; Naser et al. 2007;

Tarr et al. 2007; Bishop et al. 2009; Abdeldaim et al. 2010; Kingston et al. 2010;

Table 1 Characteristics of sequenced genomes of certain Gram-positive bacteria: Lactobacillus,
Clostridium and Staphylococcus species (www.ncbi.nlm.nih.gov)

Organism

Genome

ReferencesSize (Mb) %GC

No. of

genes

No. of

proteins

rrs
copies

Clostridium 2.54–6.00 27.40–32.02 3911–4057 2315–5020 8–13 Kekre et al.

(2015)

Lactobacillus 1.37–3.36 33.01–51.50 1434–3148 1298–3004 4–9 Koul and

Kalia (2016)

Staphylococcus 2.56–3.07 32.05–37.60 2386–3163 2275–3041 5–6 Kumar et al.

(2016)

Streptococcus 1.75–2.38 35.60–41.60 1693–2408 1762–2270 4–7 Kalia et al.

(2016)

Vibrio 4.03–6.32 38.37–47.49 3656–5807 3406–5574 7–11 Kalia et al.

(2015)

Yersinia 3.60–4.96 46.95–48.05 3219–5596 3079–5498 6–8 Kalia and

Kumar (2015)

Table 2 Genes commonly used for identifying different bacterial species

Genus Genes Reference

Lactobacillus recA, pheS, pyrG, tuf, sphI,
mub, fbp, bsh

Naser et al. (2007), Sarmiento-Rubiano

et al. (2010), Nguyen et al. (2013), Yu et al.

(2015), Koul and Kalia (2016)

Staphylococcus coa, femA, femB, gyrA, spa,
mecA, atlE, tuf, ileS

Brown et al. (2005), Pichon et al. (2012),

Roberts (2014), Kumar et al. (2016)

Streptococcus cpsA, gdh, groESL, lytA, psaA,
pspA, recA, recN, rpoA, rpoB,
sodA

Carvalho et al. (2007), Bishop et al. (2009),

Abdeldaim et al. (2010), Kalia et al. (2016)

Vibrio rpoB, hsb60, sodB, flaE Tarr et al. (2007), Taneja et al. (2012),

Bhattacharyya and Hou (2013), Kalia and

Kumar (2015)
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Sarmiento-Rubiano et al. 2010; Pichon et al. 2012; Taneja et al. 2012;

Bhattacharyya and Hou 2013; Liu et al. 2013; Nguyen et al. 2013; Roberts 2014;

Illeghems et al. 2015; Kalia and Kumar 2015; Kalia et al. 2015, 2016; Yu et al.

2015; Koul and Kalia 2016; Kumar et al. 2016). A major limitation with the

previous studies has been the use of genes which were not present in all the species

of a given genus, e.g. Yersinia and Lactobacillus (Bhagat and Virdi 2007; Kishore

et al. 2012; Raftis et al. 2014; Illeghems et al. 2015; Moroeanu et al. 2015; Petrova

et al. 2015). In addition, multiple gene analyses have also been employed in many

cases. The use of different genes in different studies reflects that in spite of their

usage over a long period, no consensus gene has been identified as yet.

6 Screening Genomes for Biomarkers

An innovative approach for searching novel markers in organisms possessing

multiple copies of rrs has been developed recently (Table 1) (Kalia et al. 2015,

2016; Kalia and Kumar 2015; Kekre et al. 2015; Koul et al. 2015a; Koul and Kalia

2016; Kumar et al. 2016). It involves finding genes, which are common to almost all

the species of a genus. From this pool of common genes, 8–34 representative genes

(200–4000 nucleotides) were selected (Table 3) (Kalia et al. 2015, 2016). In silico

digestion of each of these genes with ten type II restriction endonucleases (REs)

(4–6 base cutters) revealed interesting size and sequence of fragments. Unique RE

digestion patterns are selected out and can be used for identification of particular

organism with high precision (Table 4). Biomarkers for identifying strains have

been deduced by using combination of REs (AluI, BfaI, BfuCI, CviAII, HpyCH4V,
RsaI, TaqI and Tru9I) and common genes (Table 4): (a) Clostridium—(i) recN,
dnaJ, secA,mutS and grpB (Kekre et al. 2015)(b) Lactobacillus—dnaA, dnaJ, gyrB,
pusA, recA and ruvB (Koul and Kalia 2016)(c) Staphylococcus—argH, argR, cysS,
gyrB, purH, pyrE and recA (Kumar et al. 2016)(d) Streptococcus—dnaA, dnaK,
gabG, mraY, purH, purK and pyrH (Kalia et al. 2016)(e) Vibrio—dapF, hisD, ilvH,
lpxC, recF, recR, rph and ruvB (Kalia et al. 2015)(f) Yersinia—aceE, cysJ, fadJ,
gltB, gyrB, leuD, ligA,mukB, rpoB and secA (Kalia and Kumar 2015)This approach

allows detection of bacteria even in a mixed population. It also offers a choice to

select a single gene or a combination of genes. Since it does not involve any costly

and sophisticated equipment, which demands time, money and highly skilled

manpower, the chances of its being exploited on a large scale are high. Thus, the

rapidity with which the bacteria can be identified will allow the treatment to initiate

quickly.

It was interesting to learn that in the case of the genes which are common to

different genera, this approach still has the potential to prove effective in

distinguishing them unambiguously (Tables 5 and 6):(1) The dnaJ gene in Clos-
tridium and Lactobacillus and the gyrB of Lactobacillus and Yersinia species were

found to provide unique digestion patterns with RE—AluI (Table 5).(2) purH gene

in Staphylococcus and Streptococcus showed unique patterns on digestion with REs
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(CviAII and BfuCI) and recA gene in Lactobacillus and Staphylococcus with REs—
CviAII and HpyCH4V (Table 6).(3) The ruvB gene–TaqI combinations in Lacto-
bacillus and Vibrio species (Table 5).

7 Opinion

Very closely related species and strains possess genes which differ only in a few

nucleotides. Efforts to exploit these differences on a global scale don’t provide any
clues for their being distinct. The search for nucleotide signatures unique to a

species along with a unique RE digestion pattern allowed clear-cut distinction

to a large extent. However, this approach is likely to fail in case of organisms

possessing multiple copies of rrs. In either scenario where rrs is not able to

distinguish organisms, an obvious approach is to go in for exploiting other

HKGs. In fact, most studies which used HKGs were successful only on employing

information from six to eight genes. Here again, the selection of genes may be

limited by the fact that the same genes may not be present in all the strains or

Table 5 Unique restriction endonuclease digestion patterns in genes common to different generaa

Genus Genes Restriction endonuclease References

AluI

Clostridium dnaJ 74•33•26•190•491•175•47 Kekre et al. (2015)

Lactobacillus dnaJ 84•268•66•330•109•287•20 Koul and Kalia (2016)

Lactobacillus gyrB 1041•391•280•238 Koul and Kalia (2016)

Yersinia gyrB 884•266•12•775•216•262 Kalia and Kumar (2015)

Staphylococcus gyrB – Kumar et al. (2016)

TaqI

Lactobacillus ruvB 344•271•184•171•50•27 Koul and Kalia (2016)

Vibrio ruvB 19•121•218•117•30•253•319 Kalia and Kumar (2015)
aThese patterns are representative of the genus.

Table 6 Unique restriction endonuclease digestion patterns in genes common to different generaa

Genus Genes

Restriction endonucleases

CviAII BfuCI HpyCH4V

Staphylococcus purH 208•207•33•222•98•8•44•

477•63•72•47

234•284•784•

108•78

+

Streptococcus purH 15•211•36•21•144•413•8•

448•267

117•318•438•

261•414

–

Lactobacillus recA 299•232•232•231•80•24 + 296•242•228•202•

52•33

Staphylococcus recA 133•57•447•47•204•445•32 – 145•237•153•509

References: Kalia et al. (2016), Koul and Kalia (2016), Kumar et al. (2016)
aThese patterns are representative of the genus

Exploiting Bacterial Genomes to Develop Biomarkers for Identification 365



species of a genus. Thus, the need is to bank upon genes which are present in most if

not all the species of a genus. The approach used in these works relied primarily on

genes common to all the sequence genomes. And in case two strains seem quite

close in their nucleotide sequences, an additional gene–RE combination can be

searched using in silico approach and primers can be developed accordingly. This

approach has the potential to be extended to other genes of an organism.
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Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii
using a combination of molecular and comparative genomics methods. BMC Genomics

11:504. doi:10.1186/1471-2164-11-504

Saxena A, Mukherjee M, Kumari R, Singh P, Lal R (2014) Synthetic biology in action: developing

a drug against MDR-TB. Indian J Microbiol 54:369–375. doi:10.1007/s12088-014-0498-0

Shang Z, Wang H, Zhou S, Chu W (2014) Characterization of N-acyl-homoserine lactones

(AHLs)-deficient clinical isolates of Pseudomonas aeruginosa. Indian J Microbiol

54:158–162. doi:10.1007/s12088-014-0449-9

Stephan R, Cernela N, Ziegler D, Pflueger V, Tonolla M, Ravasi D, Fredriksson-Ahomaa M,

Haechler H (2011) Rapid species specific identification and subtyping of Yersinia
enterocolitica by MALDI-TOF mass spectrometry. J Microbiol Methods 87:150–153.

doi:10.1016/j.mimet.2011.08.016

Surasilp T, Longyant S, Rukpratanporn S, Sridulyakul P, Sithigorngul P, Chaivisuthangkura P

(2011) Rapid and sensitive detection of Vibrio vulnificus by loop-mediated isothermal ampli-

fication combined with lateral flow dipstick targeted to rpoS gene. Mol Cell Probes

25:158–163. doi:10.1016/j.mcp.2011.04.001

Exploiting Bacterial Genomes to Develop Biomarkers for Identification 369

http://dx.doi.org/10.1007/s12088-013-0384-1
http://dx.doi.org/10.3389/fphys.2015.00081
http://dx.doi.org/10.3389/fphys.2015.00081
http://dx.doi.org/10.1093/jac/dks221
http://dx.doi.org/10.1080/08997659.2015.1037468
http://dx.doi.org/10.1080/08997659.2015.1037468
http://dx.doi.org/10.1371/journal.pone.0004438
http://dx.doi.org/10.1007/s12088-013-0401-4
http://dx.doi.org/10.1007/s12088-014-0461-0
http://dx.doi.org/10.1007/s12088-014-0452-1
http://dx.doi.org/10.1007/s12088-016-0575-7
http://dx.doi.org/10.1186/1471-2164-15-771
http://dx.doi.org/10.1007/978-1-62703-736-5_3
http://dx.doi.org/10.1007/978-1-62703-736-5_3
http://dx.doi.org/10.1146/annurevmicro-020415-111342
http://dx.doi.org/10.1146/annurevmicro-020415-111342
http://dx.doi.org/10.1186/1471-2164-11-504
http://dx.doi.org/10.1007/s12088-014-0498-0
http://dx.doi.org/10.1007/s12088-014-0449-9
http://dx.doi.org/10.1016/j.mimet.2011.08.016
http://dx.doi.org/10.1016/j.mcp.2011.04.001


Taneja N, Sangar G, Chowdhury G, Ramamurthy T, Mishra A, Singh M, Sharma M (2012)

Molecular epidemiology of Vibrio cholerae causing outbreaks & sporadic cholera in northern

India. Indian J Med Res 136:656–663

Tarr CL, Patel JS, Puhr ND, Sowers EG, Bopp CA, Strockbine NA (2007) Identification of Vibrio
isolates by a multiplex PCR assay and rpoB sequence determination. J Clin Microbiol

45:134–140. doi:10.1128/JCM.01544-06

Thongkao K, Longyant S, Silprasit K, Sithigorngul P, Chaivisuthangkura P (2015) Rapid and

sensitive detection of Vibrio harveyi by loop-mediated isothermal amplification combined with

lateral flow dipstick targeted to vhhP2 gene. Aquac Res 46:1122–1131. doi:10.1111/are.12266

Wang R, Fang S, Xiang S, Ling S, Yuan J, Wang S (2014) Generation and characterization of a

scFv antibody against T3SS needle of Vibrio parahaemolyticus. Indian J Microbiol

54:143–150. doi:10.1007/s12088-013-0428-6

Yagnik B, Patel S, Dave M, Sharma D, Padh H, Desai P (2016) Factors affecting inducible

expression of outer membrane protein A (OmpA) of Shigella dysenteriae Type-1 in

Lactococcus lactis using nisin inducible controlled expression (NICE). Indian J Microbiol

56:80–87. doi:10.1007/s12088-015-0556-2

Yu S, Peng Y, Chen W, Deng Y, Zheng Y (2014) Comparative genomic analysis of

two-component signal transduction systems in probiotic Lactobacillus casei. Indian J

Microbiol 54:293–301. doi:10.1007/s12088-014-0456-x

Yu S, Peng Y, Zheng Y, Chen W (2015) Comparative genome analysis of Lactobacillus casei:
insights into genomic diversification for niche expansion. Indian J Microbiol 55:102–107.

doi:10.1007/s12088-014-0496-2

370 R. Kumar et al.

http://dx.doi.org/10.1128/JCM.01544-06
http://dx.doi.org/10.1111/are.12266
http://dx.doi.org/10.1007/s12088-013-0428-6
http://dx.doi.org/10.1007/s12088-015-0556-2
http://dx.doi.org/10.1007/s12088-014-0456-x
http://dx.doi.org/10.1007/s12088-014-0496-2


Current Antifungal Therapy and Drug

Resistance Mechanisms in Dermatophytes

Pawan Kumar, Chitra Latka, and Bhupesh Taneja

Abstract Dermatophytosis is the invasion of keratinized tissue by a group of

specialized keratinolytic filamentous fungi called dermatophytes. It is the most

common superficial fungal infection affecting millions of people annually world-

wide. Dermatophytes have the unique ability to infect immunocompetent people

and are associated with considerable morbidity and socioeconomic trauma. The

annual estimated burden of treatment of superficial cutaneous fungal infections is

nearly $1.7 billion due to direct drug costs in the USA alone.

Among the major current antifungal agents to treat dermatophytosis are poly-

enes, azoles, griseofulvin and allylamines. While there are many reports of devel-

opment of drug resistance to azoles in yeasts and molds; dermatophytes usually

respond well to antifungal agents. Although treatment of dermatophytosis is usually

long term, with several cases of recurrence and numerous side effects, drug

resistance in dermatophytes is rare. However, several recent cases of drug resis-

tance in dermatophytes are beginning to emerge. Here, we describe the available

therapeutics against fungal infections and some of the resistance mechanisms in

fungi and finally highlight the current understanding of drug resistance mechanisms

in dermatophytes.

1 Introduction

Fungi are a diverse group of eukaryotic organisms that can exist both in unicellular

and multicellular forms in widely diverse environments. As many as 1.5 million

species of fungi are known (Hawksworth 1991), many of which cause infections in

humans, animals, and plants (Fisher et al. 2012). Fungi have several ecological

niches in the human body as well. While the skin harbors many microbes
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asymptomatically, some of the fungal species may cause infections. As much as

10–20% of the world population is estimated to carry a cutaneous fungal infection

of one type or another during any calendar year (Bickers et al. 2006). Fungal

infections in humans may range from superficial common infections, such as

dermatophytoses, to deep invasive and disseminated infections (including oppor-

tunistic infections), such as candidiasis and aspergillosis. Superficial fungal infec-

tions may be caused by dermatophytes or non-dermatophytes. Dermatophytes are a

group of highly specialized keratinolytic fungi, belonging to three major fungal

genera, namely, Trichophyton spp., Microsporum spp., and Epidermophyton spp.

that cause dermatophytosis, commonly referred to as ringworm infections.

Dermatophytosis is also referred to as “tinea” infections and named with reference

to the area of the infected body part, e.g., tinea barbae (ringworm of facial area with

beard and mustache), tinea capitis (ringworm of scalp), tinea corporis (ringworm of

the trunk, shoulder, or limbs), tinea cruris (ringworm of groin), tinea manuum

(ringworm of the hand), tinea pedis (athlete’s foot), tinea unguium (infection of

nails) and so on (Weitzman and Summerbell 1995).

Dermatophytosis is the most commonly observed superficial fungal infection

that affects millions of people annually worldwide (Weitzman and Summerbell

1995; Brown et al. 2012; Fisher et al. 2012). It is associated with considerable

morbidity and socioeconomic trauma. Total annual direct costs attributed to treat-

ment of cutaneous fungal infections is approximately $1.7 billion in the USA alone,

and another estimated $282 million are attributed to indirect costs due to lost

productivity of the patients (Bickers et al. 2006). Dermatophyte infections can

last for months, even when treated, and affect the quality of life of the patient due

to associated symptoms such as pain or itching that may occur due to the infections.

Despite significant understanding of the causative pathogens, the mechanistic

details for dermatophytes to be confined to the superficial areas of the skin

(in immunocompetent people) are poorly understood. Delivery of drugs to these

areas at effective therapeutic levels is a major limitation in the clearance of the

pathogen. Consequently, intervention methods to treat dermatophyte infections are

usually required for long periods of time resulting in several side effects. Poor

patient compliance with the long-term therapy as a result of these associated side

effects results in several cases of recurrence. The problem is further compounded if

they become resistant to currently available therapeutics. Drug resistance in der-

matophytes to some of the common antifungal agents is now beginning to emerge

(Mukherjee et al. 2003; Alipour and Mozafari 2015; Ghannoum 2016). In the

subsequent sections, we briefly describe the currently available clinical antifungal

agents and associated resistance mechanisms in yeast and other fungi and finally

highlight the current understanding of drug resistance mechanisms in

dermatophytes.
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2 Fungal Infection and Antifungal Drugs

Antifungal agents in current clinical use are limited to few distinct molecular

classes that differ in their efficacies depending on type and site of infections. For

instance, azoles, fluoropyrimidine analogs, glucan synthesis inhibitors, and poly-

enes are generally used to treat systemic fungal infections (Georgopapadakou 1998;

Sanglard 2002; Sanglard and Odds 2002), while the use of allylamines, viz.,

terbinafine, is limited to superficial infections due to adverse side effects during

systemic treatments (Vandeputte et al. 2012; Sanglard 2016). All these agents

appear to target one of the three distinct fungal metabolic pathways, i.e., synthesis

of fungal cell wall component, ergosterol pathway, and nucleotide synthesis. These

classes are described below. Representative structures of antifungal agents from

each major class described are given in Fig. 1.

2.1 Fluoropyrimidines

Molecular Properties and Mechanism of Action Pyrimidine analogs, viz.,

5-fluorocytosine and 5-fluorouracil, are synthetic structural analogs of DNA or

RNA nucleosides.

5-Fluorocytosine (Fig. 1a) is a prodrug that enters the fungal cell through

specific transporters (such as cytosine permeases) and is then converted into

5-fluorouracil by cytosine deaminase. 5-Fluorouracil is then converted into

5-fluorouracil monophosphate (5-FUMP) by uridine phosphoribosyltransferase

and finally to its corresponding nucleotide triphosphate, 5-fluorouracil triphosphate

Fig. 1 Structures of commonly used antifungal agents. (a) 5-Fluorocytosine, (b) amphotericin B,

(c) fluconazole, (d) ketoconazole, (e) caspofungin, (f) terbinafine, and (g) griseofulvin. All

chemical structures were drawn using Marvin 16.8.22 (2016), ChemAxon (http://www.

chemaxon.com)
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(5-FUTP). 5-FUTP may then be incorporated into RNA instead of UTP and inhibit

protein synthesis (Bossche et al. 1994; Georgopapadakou 1998). In addition,

5-FUMP may also be converted into the corresponding deoxynucleotide,

5-fluorodeoxyuridine monophosphate, which inhibits thymidylate synthase,

thereby inhibiting cell replication and resulting in growth arrest.

Targeted Organisms 5-Fluorocytosine is often used to successfully treat systemic

candidiasis and cryptococcal meningitis infections. However, it is not effective

against filamentous fungi, viz., Aspergillus and dermatophytes. Moreover, 5-FC is

rarely used as monotherapy due to rapid emergence of resistance, and its use is

more common as a combination therapy with amphotericin B or azoles (Bennett

et al. 1979).

Known Mechanisms of Resistance When used alone, mutations in enzymes

required for conversion of 5-FC to other pyrimidine analogs for incorporation of

DNA or RNA have been observed. For instance, mutations in cytosine deaminase

of Candida albicans or Candida glabrata (Hope et al. 2004; Edlind and Katiyar

2010; Vandeputte et al. 2011) or in UMP pyrophosphorylase of C. albicans have
been reported in clinical isolates, resulting in drug resistance.

2.2 Polyenes

Molecular Properties and Mechanism of Action Polyenes, viz., amphotericin B

(Fig. 1b), are cyclic amphiphilic organic molecules that were first identified from

Streptomyces species (Caffrey et al. 2001). They have a 20–40 carbon macrolactone

ring structure conjugated with a D-mycosamine group. The amphiphilic properties

of polyenes are conferred by the presence of numerous conjugated double bonds on

one side (hydrophobic side) of the macrolactone ring and those of hydroxyl residues

on the opposite side (hydrophilic side).

The amphipathic structure of polyenes enables them to integrate into the lipid

bilayer and bind to ergosterol and results in destabilization of the membrane

function. Amphotericin B, the most common antifungal polyene, binds to eight

ergosterol molecules through their hydrophobic moieties thereby resulting in for-

mation of a central hydrophilic channel. This channel enables leakage of several

intracellular components and essential ions, resulting in cell lysis (Lemke et al.

2005).

Targeted Organisms Amphotericin B has a broad range activity and is used to treat

several systemic infections, including candidiasis, cryptococcosis, and aspergillosis

(apart from parasitic infections). It is ineffective against some fungi, viz., Candida
glabrata, Scedosporium prolificans, or Aspergillus terreus as these fungi have been
shown to have intrinsic poor susceptibility to amphotericin B (Ellis 2002).

Known Mechanisms of Resistance Amphotericin B possesses slight affinity toward

cholesterol, leading to several side effects. It also exerts intrinsic hepato- and
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nephrotoxicity, which may be overcome with liposomal formulations to minimize

the side effects (Barrett et al. 2003). Intrinsic clinical resistance in the targeted

pathogens, viz., Candida and Aspergillus, is less common, and toxicity remains a

bigger challenge. The few reported cases of drug resistance have been found to be

associated with alteration in membrane lipids. Some of these changes have been

found to be low levels of ergosterol in the mutants or disturbance in the levels and

composition of phospholipids (Sokol-Anderson et al. 1988). Mutations in ERG2,
ERG3, and ERG11 genes, involved in the ergosterol biosynthetic pathway, have

been reported. Treatment with polyenes induces oxidative stress in fungal cells;

resistant strains, hence, may exhibit alterations in the enzymes involved in oxida-

tive stress response (Warn et al. 2004; Cuenca-Estrella 2014).

2.3 Azoles

Molecular Properties and Mechanism of Action Azoles are synthetic organic

cyclic molecules that are now widely used as antifungal agents. They are classified

as imidazoles, viz., miconazole and ketoconazole (Fig. 1d), or triazoles, viz.,

itraconazole, fluconazole (Fig. 1c), and voriconazole, on the basis of whether they

have two or three nitrogen atoms in the five-membered azole rings.

Azoles act on ergosterol biosynthesis at the C-14 demethylation step by

inhibiting ERG11, cytochrome P450 lanosterol 14-alpha demethylase, thereby

resulting in depletion of ergosterol as well as accumulation of lanosterol and

other intermediates in the fungi, and eventually disrupting the integrity of the

plasma membrane in the fungi (Georgopapadakou 1998; Vandeputte et al. 2012).

Targeted Organisms Azoles are fungistatic with a broad-spectrum activity against

several yeast as well as filamentous fungi, including dermatophytes.

Known Mechanisms of Resistance Although azoles of both classes have been

popular in antifungal therapy despite associated side effects, drug resistance mech-

anisms have been reported for azoles in several fungi, leading to search of new

generation triazoles. Drug resistance against azoles has been reported in yeast,

Candida, and Aspergillus and typically arises through multiple distinct mecha-

nisms, including mutations in the target ERG11, mutations in the promoter of

ERG11, buffering of mutations by Hsp90 chaperone, increase in multidrug trans-

porters, changes in membrane composition, or alterations in sterol biosynthesis

(Cowen and Lindquist 2005; Vandeputte et al. 2012; Abdolrasouli et al. 2015;

Sanglard 2016).
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2.4 Glucan Synthesis Inhibitors

Fungal cell wall majorly consists of a β-(1, 3)-D-glucan polysaccharide which are

homopolymers of β-(1, 3)-linked residues with occasional side chains involving

β-(1, 6)-linkages. The biosynthesis of β-glucans is essential for fungal viability and

is brought about by β-(1, 3)-glucan synthase. The catalytic subunit of glucan

synthase is hence an important target for antifungal agents (Georgopapadakou

1998).

Molecular Properties and Mechanism of Action Echinocandins were originally

identified as naturally produced lipopeptides produced by several fungi.

Echinocandins, viz., micafungin, caspofungin (Fig. 1e), and anidulafungin, are

synthetic derivatives of these lipopeptides that act as noncompetitive inhibitors of

glucan synthase. Echinocandins thus target polysaccharides of cell wall, thereby

weakening the rigidity of the cell wall and eventually leading to clearance of the

fungal infection (Georgopapadakou and Tkacz 1995; Stone et al. 2002).

Targeted Organisms Echinocandins show a wide range of effectiveness against

different fungi. They are fungicidal against Candida spp. and fungistatic in Asper-
gillus. However, they are ineffective against certain Fusarium spp., Cryptococcus
neoformans, or dermatophytes, viz., Trichophyton spp.

Known Mechanisms of Resistance Molecular resistance to echinocandins is rare.

The poor efficacy of echinocandins in C. neoformans has been attributed to unique

polysaccharide composition in this species, rather than mutations in FKS1 or FKS2
(that encode different isoforms of glucan synthase) (Maligie and Selitrennikoff

2005).

2.5 Allylamines

Molecular Properties and Mechanism of Action Allylamines are a class of syn-

thetic organic molecules that act to inhibit components of the ergosterol biosyn-

thetic pathway. Terbinafine (Fig. 1f), the most widely used allylamine, is a

noncompetitive inhibitor of ERG1, squalene epoxidase, an enzyme involved in

cyclization of squalene to lanosterol in the ergosterol biosynthesis pathway. The

resulting depletion of ergosterol and accumulation of squalene inside the cell

affects membrane structure and nutrient uptake (Ryder 1991; Georgopapadakou

and Bertasso 1992; Georgopapadakou 1998).

Targeted Organisms Terbinafine shows a wide spectrum of activity in vitro against

Aspergillus spp. and other filamentous fungi, including dermatophytes, but is not

effective against Candida spp. However, pharmacokinetic studies have limited the

clinical efficacy of allylamines primarily to topical treatment, and oral usage is

limited due to associated side effects and adverse drug reactions. Terbinafine is
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hence the primary drug of choice for treatment of superficial dermatophyte infec-

tions (Elewski 1998).

Known Mechanisms of Resistance Clinical drug resistance against terbinafine is

largely unreported. There have been a few reported cases of relapses but were

attributed to the inability of the drug to penetrate the site of infection (viz., nail

plate) rather than acquired drug resistance. The few reported cases of clinical drug

resistance of dermatophytes to terbinafine are discussed in Sect. 3.2.

2.6 Microtubules Assembly Synthesis Inhibitors

Molecular Properties and Mechanism of Action Griseofulvin (Fig. 1g) is one of the

oldest molecules being used for selective inhibitory activity against fungi. It acts by

disrupting microtubules inside the fungal cell.

Microtubules form highly organized structures and important components of

cytoskeleton in all eukaryotic cells. Microtubules are long, dynamic polymers made

up of α- and β-tubulin dimers. Griseofulvin is active against growing hyphae and

arrests fungal cell mitosis in metaphase through inhibition of microtubule assembly

(Elewski 1998; Georgopapadakou 1998).

Targeted Organisms With the availability of several other antifungal agents of

comparative higher efficacy, griseofulvin currently finds limited use primarily to

clear some dermatophyte infections.

Known Mechanisms of Resistance There have been only few reported cases of

treatment failures to griseofulvin and have mostly been attributed to host factors.

Some of the dermatophyte-related reported cases are discussed in the specific

section later.

In summary, there are several albeit limited classes of therapeutic agents available

against fungi. The molecular details of inhibition by these agents and their molec-

ular targets are now beginning to be understood and are summarized in Fig. 2.

However, not all of these agents are effective against all manifestations of fungal

infections, and the pathogen may develop different mechanisms to evade clearance.

Although an exhaustive description of the molecular details of these drug resistance

mechanisms is beyond the scope of this current review, the most well-understood or

common mechanisms have been briefly described with the specific therapeutic

agent. Drug resistance in dermatophytes, on the other hand, is rare. However,

new cases are beginning to emerge. We next describe the current understanding

of this upcoming and emerging area of interest.
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3 Dermatophytosis: Treatment and Evasion by

the Pathogen

3.1 Available Therapy and Limitations of Antifungal Agents
in Dermatophytes

Dermatophytes have the unique ability to infect immunocompetent people,

resulting in superficial infections, as well as immunocompromised people, resulting

in deep-seated systemic infections. Current antifungal medications include poly-

enes, viz., amphotericin B; azoles, viz., ketoconazole and itraconazole; and

allylamines, viz., terbinafine and griseofulvin. While griseofulvin is active against

growing hyphae and arrests fungal cell mitosis in metaphase through inhibition of

microtubule assembly, all other currently prescribed antifungal agents act to inhibit

specific enzymes of the ergosterol biosynthesis pathway. Early or mild cases of

infection by dermatophytes are usually dealt to appropriate levels with topical

treatments. However, effective clearance of superficial and often deep-seated

infections with currently available antifungal agents presents several limitations

in clinical treatment.

Limitations in Dermatophyte Treatments Topical treatment of dermatophytosis is

often ineffective in treating certain cases of dermatophytosis, viz., onychomycosis,

when the drug fails to penetrate the nail unit and hence is unable to completely

eradicate the infection. Systemic therapy is, hence, often necessary to treat persis-

tent or severe infections. Most antifungal agents interact with many medications

and have other associated problems. For instance, terbinafine interacts with several

agents and medications, most notably, caffeine and cimetidine, while ketoconazole

is less preferred due to several associated instances of hepatotoxicity and has

Fig. 2 Diagrammatic representation of antimycotic agents and their molecular targets
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largely been replaced by the more effective triazole derivatives, namely, flucona-

zole and itraconazole (reviewed in Elewski 1998). Moreover, none of the antifun-

gals are generally advised during pregnancy.

As part of therapy, intervention methods to treat dermatophyte infections are

usually long term due to limited delivery of drug at therapeutic levels at the site of

infection, with several cases of recurrence and numerous side effects. For instance,

certain T. rubrum infections have been found to persist within villous hair shafts

and follicles (Weitzman and Summerbell 1995), leading to chronic recurrences of

the infection. In a few other instances of systemic treatment of onychomycosis with

pulse itraconazole or continuous or intermittent terbinafine, a high relapse rate of

approximately 20% in patients followed up to 3 years after treatment was observed

(Tosti et al. 1998). Similarly, unsuccessful treatment of dermatophytes with the

fungistatic griseofulvin is common and reported in several cases (Artis et al. 1981;

Robertson et al. 1982). However, there have been only limited reports of

nonresponder dermatophyte strains exhibiting generalized resistance to most anti-

fungal agents.

3.2 Drug Resistance in Dermatophytes

The strong biological variability of dermatophytes has prevented the emergence

and/or availability of a single drug regimen that may be effective against all

manifestations of dermatophytoses. Owing to the limited therapeutics and poorly

defined molecular targets in many cases, the molecular aspects involved in the

resistance of dermatophytes to available antifungals remain obscure. Only few

cases of drug resistance in dermatophytes are known so far (Mukherjee et al.

2003; Alipour and Mozafari 2015; Ghannoum 2016). The major biochemical

mechanisms that may contribute to drug resistance phenotype in dermatophytes

are hence thought to be similar to those observed earlier in different bacterial and

fungal pathogens, namely, (1) modification of delivery pathways, (2) metabolism or

degradation of the drug by the pathogen, (3) sequestration of the drug in intracel-

lular compartments, (4) alterations in interaction of drug and target, (5) mutations/

genic deletions in molecular target, (6) overexpression of target, and (7) increased

incidences of efflux. While one or more of these mechanisms may come into play in

drug-resistant dermatophytes, only a few drug-resistant cases have been observed

against currently used antifungal agents so far (Martinez-Rossi et al. 2008; Peres

et al. 2010) and are next described.

Griseofulvin One of the first reported studies of clinical drug resistance against

griseofulvin was in the dermatophyte Microsporum gypseum (Lenhart 1970). Two

different unlinked loci, grf-1 and grf-2, were identified that were found to be

associated with drug resistance in this pathogen. However, further genetic studies

were restricted as most of the other griseofulvin-resistant mutants did not cross with

wild type. Although in vitro development of drug resistance has been reported in a
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few cases (Martinez-Rossi et al. 2008), clinical resistance to griseofulvin remains

rare, possibly due to its limited use.

Terbinafine and Efflux Pumps The first reported case of terbinafine resistance in

dermatophytes was reported in 2003 (Mukherjee et al. 2003). The resistance in the

clinical strain was ascribed to mutations leading to amino acid substitutions in

conserved residues, (L393F) (Osborne et al. 2005) and (F397L) (Osborne et al.

2006) of ergA, encoding squalene epoxidase. These remain the only reported cases

of drug resistance to terbinafine in dermatophytes till date. However, apart from

mutations in the target genes, alternate mechanisms may also be utilized by the

fungi to evade drug response. For instance, in T. rubrum, ATP-binding cassette

(ABC) transporters involved in drug efflux, TruMDR1 and TruMDR2, have also

been shown to aid drug resistance in some mutant strains (Cervelatti et al. 2006;

Fachin et al. 2006; Maranhao et al. 2007). Molecular details in most of these limited

cases of drug resistance, however, remain obscure as clinical resistance to antifun-

gal agents in dermatophytes is largely unknown or unreported. This is somewhat

surprising as spontaneous T. rubrum mutants to terbinafine and amorolfine were

generated in a recent in vitro study, although at a low frequency of 10�9 (Ghelardi

et al. 2014). However, in a recent analysis of in vitro antifungal susceptibility with

previously isolated clinical isolates from Iran, several Trichophyton
mentagrophytes exhibited in vitro resistance (Alipour and Mozafari 2015). Further

studies will be required to identify the molecular basis of resistance. Nevertheless,

these recent reports further endorse urgent attention in this area.

Azoles and Other Drugs Drug resistance to azoles in dermatophytes is now begin-

ning to emerge through several reports across the world (Goh et al. 1994; Ghannoum

et al. 2006; Manzano-Gayosso et al. 2008). In a recent study to investigate the

in vitro response to different drugs, including ketoconazole, in T. rubrum (Yu et al.

2007), transcriptional profiles of the response to these drugs were studied by

microarray analysis. Changes in expression of several genes involved in lipid

biosynthesis of the cell, viz., lipid and sterol metabolism, were observed, suggesting

expression of several alternate pathways and compensatory genes to overcome the

effect of the drug. Clinical drug resistance to azoles in dermatophytes and their

clinical implications have been recently reviewed (Ghannoum 2016), though the

molecular basis of drug resistance is yet to be established.

3.3 Future Perspectives in Dermatophyte Research

Dermatophytes present their own unique problems of persistence and/or inaccessi-

bility to topical therapeutic agents. Hence, molecular studies specific to dermato-

phytes are required to obtain a detailed understanding of pathogen-specific response

and to unravel the molecular basis of emerging drug resistance. However, the

absence of efficient molecular tools for genetic manipulations of dermatophytes,

poor efficiency of transformation of exogenous DNA, and low observed rates of

homologous recombination (White et al. 2008) pose further hurdles in detailed
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investigations. Whole genome sequences of several dermatophytes have become

available in recent years (see Table 1 for summary of genome sequence data of

dermatophytes, Burmester et al. 2011; Martinez et al. 2012; Latka et al. 2015) and

offer an opportunity to understand genomic context of dermatophyte variability,

pathogenicity, as well as drug resistance.

4 Conclusion

Combating the drug resistance problem in fungi, including dermatophytes, is

extremely important for effective clearance of these pathogens. While there are

many reports of the development of drug resistance to antifungal agents in yeasts

and molds, drug resistance cases in dermatophytes are beginning to emerge only

recently. It is now becoming clear that commonly used antimycotic agents used

against dermatophytes, namely, azoles and terbinafine, have a potential for induc-

ing drug resistance in dermatophytes and resistance mutants could be generated in

the lab at a frequency of 10�7 or 10�9, respectively (Ghelardi et al. 2014). Clinical

cases of drug resistance in dermatophytes to these agents are now being reported

from all across the world. With the availability of whole genome sequences of

several dermatophyte strains from different locations across the world, integrated

genome sequence-based studies will help understand fungal pathogenesis and

associated drug resistance in greater details.

5 Opinion

Both primary and opportunistic fungal pathogens are a major cause of morbidity

and/or mortality in immunocompromised as well as immunocompetent people.

However, our understanding of pathogenesis of pathogens of eukaryote origin,

viz., protozoa or fungi, lags far behind that of bacteria. Treatment modes of fungal

pathogens, especially dermatophytes, are limited, and research in this area is scarce.

One of the reasons is the technical challenges encountered in dermatophyte

research, viz., slow growth of dermatophytes in the lab or limited tools for efficient

genetic manipulations in dermatophytes. Next-generation sequencing (NGS)‐based
methods, hence, offer an important key to address the emerging problem of drug

resistance in dermatophytes. Whole genome sequences of at least eight different

dermatophyte strains have been published in recent years and many more are

available in NCBI. Detailed comparative analysis of whole genomes of these

organisms with drug-resistant strains will help understand the genomic context of

drug resistance through identification of mutations either in genic or promoter

regions of key genes and drug targets. Such interdisciplinary approaches that utilize

the strength of modern sequencing-based technologies in a clinical context of drug

resistance may hold the key to tackle drug resistance problems in the future.
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Abstract Pathogenic fungi causing severe infections in humans with immunocom-

promised immune system have been the major reasons of deaths in the world.

Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus are among

the most prevalent human fungal pathogens. The most widely used therapy used for

the invasive fungal infections is the treatment with azole antifungal drugs; however,

drug resistance against azole drugs is a major limitation in treatment of fungal

infections. High-throughput techniques such as genomics and proteomics have

been applied to understand the molecular mechanisms involved in drug resistance

against azole drugs in human pathogenic fungi. These studies could be useful to

prevent the increase in drug resistance and better response to antifungals. Here, we

focus on the incidences of drug resistance against azole antifungal drugs in human

fungal pathogens, molecular mechanisms of drug resistance, and new strategies for

combating drug resistance to improve clinical treatment of invasive fungal

infections.
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1 Introduction

Opportunistic fungal infections are among the most difficult diseases to manage in

patients. These infections frequently endanger the success of cancer treatments,

transplant and surgery complications, autoimmune disease therapies, and also

intensive care. In spite of several antifungal drugs and prophylaxis available,

there is an increase in reported invasive fungal infections (IFIs). Worldwide

mortality due to candidiasis, by Candida albicans (C. albicans) and related species,
was 46–75%; aspergillosis, by Aspergillus fumigatus (A. fumigatus) and related

species, was 30–95%; and mortality rate of cryptococcosis mainly caused by

Cryptococcus neoformans (C. neoformans) worldwide was 20–70% (d’Enfert
2009).

Fungal infections are established by fungi that are ubiquitous in nature and

routinely inhaled by us in daily life. However, only individuals with compromised

or diminished immunity are susceptible to invasive mycoses. Pathogenic fungi

mainly C. albicans, A. fumigatus, and C. neoformans are leading pathogens

among IFIs in humans. C. albicans is common microflora in human that may

cause systemic infections in individuals with immunocompromised immune system

leading to high mortality rates approaching up to 40% (d’Enfert 2009). Other
Candida species colonizes specific locations in the hosts, mainly in the gastroin-

testinal tract, genital tract, and the skin, whereas C. glabrata and C. parapsilosis
also cause IFIs. Opportunistic pathogens, such as A. fumigatus and C. neoformans,
are ubiquitously present in the soil. Normally host innate immunity, especially

alveolar macrophages, manages these fungal spores, yeasts, or mycelial fragments.

However, inhaled fungal spores can survive for extended period in macrophages

and can establish infection when host immunity is weakened. The common caus-

ative agent of invasive aspergillosis is the filamentous mold A. fumigatus, with
mortality rates up to 40–90% (Dagenais and Keller 2009). The other opportunistic

fungal pathogen known to cause infections in immunocompromised individuals is

C. neoformans that leads to complications in central nervous system (CNS) such as

cryptococcal meningitis among acquired immune deficiency syndrome (AIDS)

patients (Sloan and Parris 2014). Pneumocystis spp. among other pathogenic

fungi causes pneumonia in immunocompromised hosts.

These fungi have developed molecular mechanisms to combat the defense

system in immunocompromised hosts. Detailed understanding of the complex

interactions between genetic variations and its contributions to the disease pheno-

type is lacking and essential to study. Insight into host-pathogen interactions with

respect to host genetic susceptibility can improve the identification of novel ther-

apeutic targets and the design of better antifungal prophylaxis strategies.

It is a challenge to develop new techniques for early diagnosis of IFIs and

effective treatment considering the increased burden of the disease and death in

patients with their vulnerable immune status (Panackal et al. 2006). Diagnosis is

extremely challenging, due to lack of sensitive or specific diagnostic methods, and

results from currently used test are often available too late to be clinically useful.
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Considering the population at risk for fungal infections and the presence of wide

range of fungal pathogens in the environment niche, these opportunistic fungi

present significant challenge for diagnostics and therapeutics. In comparison to

the bacterial antibiotics, few antifungal drugs have been reported with minimum

risk of side effects and the occurrence of resistance.

Resistance to first-line drugs in most of the pathogenic fungi causing invasive

infections ranges from 0 to almost 100%. Though the evaluation of the overall

impact of drug resistance in health is difficult, it is quite clear that morbidity and

mortality due to resistant pathogens have increased in view less effective treatment

[WHO global strategy for containment of antimicrobial resistance, 2001]. Resis-

tance to various antifungal drugs, azoles in particular, has been reported in patho-

genic fungi (Warris et al. 2002). Rates of resistance to widely used azole and

fluconazole (FLC) have been reported between 10% and 25% in invasive candi-

diasis. Cross-resistance to other azole agents like voriconazole and itraconazole has

also been reported among some of these FLC-resistant isolates (Cuenca-Estrella

et al. 2006; Arendrup et al. 2013). Resistance rate to triazoles in Aspergillus spp. is
less common and assumed to be below 5% in most of countries (Snelders et al.

2008; Alastruey-Izquierdo et al. 2013). However, resistance in A. fumigatus seems

to increase majorly due to evolution of resistant isolates in response to azole

fungicides that is being widely used in Europe for crop protection (Snelders et al.

2008). Several factors have been reported to be associated to drug resistance against

azoles in pathogenic fungi including upregulation of functional genes controlling

drug efflux, alterations in sterol synthesis, mitochondrial dysfunctioning, decreased

affinity for the cellular target and chromosomal abnormalities, and high-osmolarity

glycerol (HOG) pathway. The major factor for resistance to azoles involves alter-

ation in target enzyme, 14α-demethylase, and specific drug efflux pumps in terms of

the quantity or quality (Ghannoum and Rice 1999; Nascimento et al. 2003), mainly

two classes of efflux transporters, class ATP-binding cassette (ABC) and major

facilitator superfamily (MFS) (Slaven et al. 2002; da Silva Ferreira et al. 2006).

Here, we have focused on incidences of drug resistance and molecular mecha-

nism in three of the major human pathogenic fungi, Candida, Aspergillus, and
Cryptococcus, against azole drugs.

2 Pathogenic Fungi and Invasive Fungal Infections

Pathogenic fungal infections are categorized as primary or opportunistic. Primary

infections may develop in immunocompetent hosts, while opportunistic fungal

infections are frequent in “high-risk” populations of immunocompromised individ-

uals undergoing treatment for cancer, organ transplant cases, and autoimmune

disease; in patients who are at risk of infection after prosthetic surgery or under

the treatment of broad-spectrum antibiotics leading to changes in the normal flora;

and in patients with HIV with immune deficiency (Nanjappa and Klein 2014).

Opportunistic fungal infections could be superficial or systemic. IFIs have
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increased in the last two decades with increased use of steroids. Opportunistic

fungal pathogens include Candida, Aspergillus, and Cryptococcus species. Figure 1
shows pathogenic fungi belonging to these genus and percentage of infection

caused by these fungi.

2.1 Candida spp.

Candida species are Ascomycota group of fungi of the order Saccharomycotina,

normally commensal organisms in mucous membranes, mainly gastrointestinal

tract. There are a total of 150 Candida spp., and only 15 of them are commonly

associated with humans as colonizers or opportunistic pathogens (Kam and Xu

2002). Of these, Candida albicans is the frequently isolated human commensal and

pathogen (Krcmery and Barnes 2002). C. albicans, Candida tropicalis, and Can-
dida glabrata are more virulent species, while Candida parapsilosis and Candida
krusei are less virulent spp. Infections due to C. parapsilosis are more prevalent

among children, and C. glabrata are frequently encountered among older adults

(Yapar 2014; Kullberg and Arendrup 2015). These species have the differences in

virulence as well as susceptibility to the azoles and the echinocandin drugs.

C. albicans is a dimorphic fungus and has ability to transform into different

morphologies such as yeast, hyphae, and pseudohyphae upon perception of envi-

ronmental signals (van der Meer et al. 2010). Most healthy individuals carry

C. albicans, which harmlessly colonizes mucous membranes in different anatom-

ical sites. Candida spp. are predominant constituents of the vaginal microflora

Fig. 1 Pathogenic fungi causing invasive fungal infections among transplant recipients. Candida
spp. predominates among pathogenic fungi followed by Aspergillus spp. and Cryptococcus spp. as
reported by Pfaller et al. (2009)
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(Seed 2014). However, it is an efficient invasive pathogen for establishing infec-

tions in individuals with ineffective adaptive cellular immunity and in patients

lacking neutrophils. Candida spp. cause invasive candidiasis which is mostly

reported among immunocompromised patients. Candidemia, also known as

blood-borne systemic candidiasis, generally develops in neutropenic patients or in

patients exposed to contaminated indwelling catheters during surgery (Yapar

2014). For this, Candida is majorly the cause of Candidemia associated with

healthcare in the USA (Magill et al. 2014). Despite of proper antifungal therapy

being given to the patients, mortality rate has still been reported as high as 40%.

Non-albicans Candida species is also gaining attentions as it is emerging resistance

to antifungal drugs (Kullberg and Arendrup 2015).

C. albicans infections are usually prevented by our defense system by mucosal

tissues and the peripheral circulation. Polymorphic nuclear leukocytes (PMNL) are

the first-line defense against blood-borne Candida infections. Neutrophil defects,

decrease in neutrophil counts, and dysregulation in Th-cell reactivity are main risk

factors which contribute to severe Candida infections (Romani 2004; Netea et al.

2004). C. albicans induces immunosuppression and leads to production of

CD4þCD25þ T-regulatory cells. Further, the presence of specific antibodies also

protects against fungal infections (Polonelli et al. 2000).

2.2 Aspergillus spp.

The Aspergillus species are Ascomycota group of fungi of the order Eurotiales,
which grow on high osmotic concentrations and on carbon-rich sources. Aspergillus
has 339 identified species (Samson et al. 2014); however, only few of them, namely,

A. fumigatus, A. flavus, A. niger, and A. terreus, have been considered to be

pathogenic to humans. A. fumigatus is the common etiological agent of human

aspergillosis accounted for �90% of cases; A. flavus, A. niger, and A. terreus are
secondary agents. Aspergillus species causes extensive spectrum of diseases with

clinical manifestations that ranges from colonization of fungi in the organs leading

to asthma, allergic bronchopulmonary aspergillosis (ABPA), and invasive asper-

gillosis (IA). The major site of Aspergillus infection is the lung (Ellis et al. 2009).

A. fumigatus is a ubiquitous, saprophytic mold that releases airborne conidia which

are inhaled by humans everyday (Latge 1999). A. fumigatus causes IA which

primarily occurs in transplant recipients and hematological malignancy patients.

The smaller (�2 μm) conidial size of A. fumigatus gives the fungus advantage to

remain airborne for long periods and enter human alveoli. Conidia are coated with

hydrophobic proteins and with the chemoprotectant melanin (Pihet et al. 2009) to

withstand harsh environment in air and in vivo. On the onset of their germination,

hyphae are recognized by innate immune cells in paranasal sinus or the lung. The

airway mucus serves as a physical, chemical, and biological barrier secreting fluids

that contain glycoproteins, proteoglycans, lipids, etc. and lead to clearance of

fungal conidia (McCormack and Whitsett 2002).
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A. fumigatus also produces various metabolites, e.g., gliotoxin, fumagillin, and

helvolic acid which damages epithelium and can have inhibitory effects on ciliary

movement (Amitani et al. 1995). Host proteins such as pattern recognition receptors

(PRRs), lung surfactant proteins A and D (SP-A and SP-D), mannan-binding lectin

(MBL), and toll-like receptors (TLRs) (Walsh et al. 2005; Johnson et al. 2014) are

significant for the host defense against Aspergillus, and any alterations in these

molecules may affect susceptibility to Aspergillus infections in the individuals

(Johnson et al. 2014).

2.3 Cryptococcus and Other Pathogenic Fungi

Cryptococcus causes fatal infections in patients with weak immune status such as

those associated with T-lymphocyte deficiency, common in AIDS patients. These

infections are frequently reported in patients with stem cell recipients and malig-

nancy, though 15–40% of Cryptococcus cases are reported in HIV-negative

patients (Speed and Dunt 1995). Glucuronoxylomannan (GXM) capsule of Cryp-
tococcus is a well-known virulence factor that suppresses the host inflammatory

response and prevents phagocytosis of the fungus (Speed and Dunt 1995).

The use of antifungal prophylaxis has become more prevalent for common and

also uncommon fungal pathogens thus complicating clinical management. The

other fungal pathogens include Fusarium spp., zygomycete, and the opportunistic

yeastlike fungi such as Histoplasma capsulatum and Pneumocystis spp.; Fusarium
species causes onychomycosis and fungal keratitis. Fusarium infections in the

lungs majorly cause allergic bronchopulmonary fusariosis and hypersensitivity

pneumonitis. Although radiological indications for fusariosis is similar to invasive

aspergillosis, frequent occurrence of disseminated nodular skin lesions and blood

culture positivity is the classical marker of Fusarium infection which is to differ-

entiate it from aspergillosis (Nucci et al. 2015). Members of Fusarium genus may

affect humans and cause mycotoxicosis by ingestion of toxin-contaminated food

(Bennett and Klich 2003). Mucormycosis is another fungal infections usually found

in spreading pneumonia due to invasion in blood vessels (Saxena et al. 2015).

3 Current Diagnosis and Clinical Treatment

3.1 Diagnosis

Early diagnosis of the infection along with species differentiation are of great

importance for improved treatment of IFIs. Standard criteria for systemic fungal

infections are histopathologic examination for the presence of fungus in the tissue

or culture and isolation of etiologic agent from clinical sterile specimens (blood,
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sputum, urine, cerebrospinal fluid, or tissue biopsy). Radiological tests are used for

diagnosis of patients where invasive procedures for sample collection are very

difficult and risky due to low immune status. Pulmonary lesions or nodules,

infiltration, and halo signs are indicative of pulmonary fungal infections such as

aspergillosis, fusariosis, scedosporiosis, or zygomycosis (Greene et al. 2007; Godoy

et al. 2012). Among non-culture methods, serological tests are considered as

standard practice for the diagnosis of fungal infections. Commercially available

ELISA kits are available for Candida and Aspergillus antigens which detect

mannan and galactomannan, respectively, and demonstrate good specificity but

variable sensitivity (Musher et al. 2004). Detection of fungal DNA signatures in

body fluids using polymerase chain reaction (PCR) assay in combination with

serological test in high-risk patients is also viable diagnostic option. Advances in

the qualitative methods, such as panfungal PCR, for fungal DNA in human blood

samples, tissues, bronchoalveolar lavage, and other body fluids, are now in clinical

practice as reliable test for fungal infections (Orsi et al. 2015).

3.2 Treatment

Standard antifungal drugs in use are polyenes, azoles, and echinocandins.

Amphotericin B (AMB) deoxycholate, AMB-D and lipid formulations of AMB,

and L-AMB are polyene drugs in use. Fluconazole and voriconazole are mainline

azole compounds in use. Caspofungin, micafungin, and anidulafungin are

recommended antifungal echinocandins. Fluconazole remains the choice of drug

for invasive candidiasis, while for Candida species known to be susceptible to

fluconazole, other compounds like echinocandins and AMB or AMB-D are

recommended (Pappas et al. 2009a). Voriconazole is recommended for the primary

treatment of invasive aspergillosis in most patients including infections resistant to

AMB (also with Aspergillus terreus and Aspergillus nidulans) (Walsh et al. 2008).

Recommended antifungal therapy for major fungal infections in adults is discussed

in Table 1.

4 Azoles and Other Antifungal Drugs

The use of potassium iodide (KI) for treating sporotrichosis was the first successful

chemotherapy in 1903. After this, nystatin, the polyene compound, was success-

fully used as antifungal followed by amphotericin B in 1956, which is still the

standard antifungal drug to evaluate new systemic antifungals (Al-Mohsen and

Hughes 1998). The antifungal drugs include the natural products (polyenes, gris-

eofulvin, and echinocandins) and the synthetic chemicals (azoles, allylamines,

flucytosine, and phenylmorpholines). The available antifungal drugs are broadly
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classified into azoles, polyenes, nucleoside analogues, and echinocandins based on

their mechanism of action.

4.1 Azoles

Azole antifungal agents are now considered to be important for therapeutics of

systemic fungal infections. Fluconazole (FLC), itraconazole (ITC), voriconazole

(VRC), posaconazole (POS), and ketoconazole (KTC) are some of the most widely

used antifungal agents (Gallagher et al. 2003). Triazole drugs are more effective

against many fungal pathogens with no severe nephrotoxic effects in comparison to

AMB. Among azoles, FLC remains an effective and low-cost drug for the treatment

of candidiasis and cryptococcosis. It is the first line of drug used for Candida
(except Candida krusei and glabrata) and cryptococcal infections including

Table 1 Summary of recommendations for the treatment of major IFIs in adult

Fungal infection Primary antifungal therapy

Alternative

antifungal therapy References

Invasive pulmonary asper-

gillosis, extrapulmonary

aspergillosis, Aspergillus
infections of the heart,

eyes, or cutaneous

Voriconazole

IV or orally

L-AMB, ABLC,

caspofungin,

micafungin,

posaconazole,

itraconazole

Walsh

et al.

(2008)

Allergic

bronchopulmonary

aspergillosis

Itraconazole Oral voriconazole

or posaconazole

Candidemia,

nonneutropenic adults

Fluconazole or an

echinocandin

L-AMB or AMB or

voriconazole

Pappas

et al.

(2009a)Candidemia, neutropenic

patients

Echinocandin or L-AMB Fluconazole or

voriconazole

CNS and disseminated

cryptococcosis

Induction therapy, AMB-D

and 5-FC (B); consolidation

therapy, fluconazole; sup-

pressive therapy,

fluconazole

Induction therapy,

AMB-D

Third line, 5-FC

plus fluconazole

Thursky

et al.

(2008)

Mucormycosis L-AMB Posaconazole Chang

et al.

(2014)
Fusarium species

infections

Voriconazole or L-AMB Posaconazole

Scedosporium Commence voriconazole

with terbinafine

–

Rare and emerging fungal

infections such as

Paecilomyces spp.,
Phaeohyphomycosis spp.

Voriconazole,

posaconazole, and

itraconazole

–

AMB amphotericin B, L-AMB liposomal amphotericin B, AMB-D amphotericin B deoxycholate,

5-FC flucytosine
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non-meningeal coccidioidal infections. This drug is safe; however, it is not effec-

tive against filamentous fungi. VRC has been effective for the treatment of asper-

gillosis; however, its use is limited by significant drug interactions. It is effective

against most of the Candida and Aspergillus spp. ITC is effective in vitro and

in vivo against A. fumigatus, Candida spp., C. neoformans, and the dimorphic

fungi. Finally, POS is the latest addition to the azole drugs and is effective against

the zygomycetes. POS is effective against most Candida and Aspergillus species
in vitro. It is also active against C. neoformans and Fusarium spp. (Zonios and

Bennett 2008). KTC was the azole that was available for oral usage and was found

with constant levels in blood; however, its use is limited due to hepatotoxicity and

resistance reported in patients with candidiasis or AIDS and esophageal and

oropharyngeal candidiasis.

Azoles inhibit fungal cytochrome P450 demethylase (an enzyme encoded by

CYP51 or ERG11 gene) which converts lanosterol to ergosterol. This leads to

reduced amount of ergosterol in the cell membrane of the fungus (Andriole and

Bodey 1994; Georgopapadakou and Walsh 1996; Andriole 1998, 1999). In order to

understand the molecular targets of azole drugs, various high-throughput studies

have been carried out. Altered expression of Saccharomyces cerevisiae with dif-

ferent classes of antifungal compounds (KTC, amphotericin B, caspofungin, and

5-fluorocytosine) was carried out to identify altered gene expression specific to

each drug. Exposure of KTC led to altered levels of genes involved in ergosterol

biosynthesis pathway as well as sterol uptake, while exposure to caspofungin led to

altered levels of genes belonging to cell wall integrity, and exposure to 5-FC led to

altered levels of genes involved in DNA damage repair, DNA synthesis, protein

synthesis, and regulation of cell cycle. On the other hand, exposure to AMB led to

altered levels of genes involved in cell stress, membrane reorganization, cell wall

integrity, and transport (Agarwal et al. 2003). In order to understand the molecular

targets of antifungal azoles, VRC, and ITC, high-throughput techniques have been

used. Using microarray hybridization, 2271 genes were found as differentially

expressed in wild-type strain which describes decrease in biosynthesis of genes

involved in ergosterol biosynthesis and increased mRNA level of gene-encoding

transporters (da Silva Ferreira et al. 2006). Proteomic profiling of A. fumigatus on
exposure to ITC (ITC) using 2-DE followed by mass spectrometric analysis led to

identification of 54 differentially expressed proteins including proteins related to

cell stress, carbohydrate metabolism, and amino acid metabolism.

4.2 Other Antifungal Drugs

The polyene antifungal agents are fungicidal with large spectrum of antifungal

activity than any other antifungal agents. Amphotericin B, the polyene compound,

has been proposed to interact with ergosterol that leads to the production of aqueous

pores (Holz 1974). These pores result in dysregulated permeability and leakage of

necessary cytoplasmic components leading to the killing of the organism (Kerridge
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1980; Kerridge 1985). Intravenous amphotericin B has been recommended for

severe and for invasive aspergillosis, Candida infections of CNS, blastomycosis,

coccidioidomycosis, and mucormycosis (Andriole and Kravetz 1962; Andriole and

Bodey 1994; Andriole 1998, 1999). Liposomal amphotericin B has reduced neph-

rotoxicity than conventional AMB (Hiemenz and Walsh 1996; Groll et al. 1998).

Flucytosine 5-FC is a fluorinated pyrimidine deregulating RNA and protein

synthesis in the fungal cell mainly targeting pyrimidine metabolism (Andriole

1998, 1999; Groll et al. 1998). Flucytosine activity in vitro has been reported

against Aspergillus spp., Candida spp., C. glabrata, and C. neoformans. However,
if treated with it alone, it is less effective and has increased chances of developing

fungal resistance in Candida and cryptococcal organisms. Echinocandins are cyclic

lipopeptide agents with fungicidal activity through inhibition of cell wall enzyme,

1,3-β-D-glucan synthase, not expressed in mammalian cells, and hence form a

potential antifungal target (Georgopapadakou and Walsh 1996; Groll et al. 1998).

The investigational compound, LY 303366, an inhibitor of β-1, 3-beta-D-glucan
synthase, is found to be active against Candida and Aspergillus organisms

(Andriole 1998, 1999).

5 Drug Resistance to Azoles in Human Fungal Pathogens

Antifungal drug resistance is among the major causes of therapeutic failure in

invasive fungal infections other than low bioavailability of the antifungal drug,

weakened immune function, or a higher metabolism of the drug. Primary resistance

occurs in organisms which are not at all exposed to the specific drug, while

secondary or acquired resistance is due to exposure of an organism to the drug.

Clinical resistance is reversion of infection due to therapeutic failure in an organism

and is not linked to in vitro resistance (Rex et al. 1997).

For effective treatment of IFI, we need to be familiar with the susceptibility of

the resistant fungal isolates to the antifungal drugs. The Clinical Laboratory Stan-

dard Institute (CLSI) in the USA and the European Committee on Antimicrobial

Susceptibility Testing (EUCAST) in Europe have recommended protocols for

antifungal susceptibility testing. The minimum inhibitory concentration (MIC) of

the drug is calculated as the threshold levels of drugs leading to in vitro growth

inhibition. The CLSI has recommended antifungal MIC breakpoints to separate

susceptible and resistant population for azoles and echinocandins by analyzing the

in vitro susceptibility data, in vitro outcome, and pharmacokinetics/pharmacody-

namic studies, while EUCAST has defined the breakpoint derived from MIC as the

epidemiological cutoff value (ECV) to avoid confusion with clinical breakpoints.

ECVs are the MIC values that capture >95% of the observed population. In this

chapter, we discuss antifungal drug susceptibility for three major pathogenic fungal

spp. against azole drugs (Fig. 2).
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5.1 Candida spp.

In vitro antifungal drug susceptibility of Candida spp. against different azole drugs
(FLC, ITC, VRC, KTC) has been carried out each year for an update on the trends

on resistant clinical isolates. Table 2 provides the ECV/MIC data compiled from

various studies carried out in the last 2 years for five major Candida species. The
comparative analysis of resistant isolates for four azole drugs ITC, FLC, VRC, and

Fig. 2 Molecular mechanisms of drug resistance to azoles in human pathogenic fungi. Various

mechanisms involved in fungal drug resistance are numbered from 1 to 8. Pathogenic fungi are

shown with sign closed circle (Candida spp.), closed triangle (Aspergillus spp.), and closed square
(Cryptococcus spp.). (1) Mutations in the target enzyme (lanosterol 14α-demethylase) result in the

complete inhibition of the binding of the azole drug to its target. (2) The two different drug efflux

systems in fungi, i.e., the ATP-binding cassette (ABC) superfamily and the major facilitator

superfamily (MFS), contribute to azole drug resistance by pumping out the azole drugs out of

the fungal cell leading to their less accumulation. (3) Modifications in the composition of plasma

membrane affect the membrane asymmetry which alters the uptake of the drug. (4) Increased

levels of target enzyme (lanosterol 14α-demethylase) may overwhelm the drug entering the cell,

thereby resulting in increased level of resistance. Overproduction of the enzyme also results in

cross-resistance between azoles. (5) The cell has a bypass pathway that balances for the loss-of-

function inhibition due to the drug activity. (6) The HOG pathway negatively regulates the

expression of ergosterol biosynthetic genes. Thus HOG mutants exhibit a decreased sensitivity

toward azoles. (7) Chromosomal abnormalities have been linked with azole resistance in Candida
and Cryptococcus species. Candida spp. acquire azole resistance by increasing the copy number of

ERG11 (disomy) present on chromosome 5, whereas in Cryptococcus azole resistance is associ-

ated with chromosomes 1 and 4. (8) Loss of mitochondrial genome and changes in mitochondria

membrane structures lead to the potential activation of drug resistance pathway in Candida spp.
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KTC showed maximum number of resistant isolates to FLC in C. albicans, i.e.,
68 isolates (5.7 %) and 83 isolates (89.24 %); C. glabrata, 70 isolates (7.9 %)

and 17 isolates (94.4 %); to VRC in C. glabrata, i.e., 96 isolates (18.4 %);

C. tropicalis, 36 isolates (17.6 %); to ITC in C. albicans i.e. 8 isolates (8.6 %);

C. tropicalis i.e. 4 isolates (4.8 %); to KTC in C. albicans i.e. 23 isolates

(24.7 %); C. glabrata i.e. 3 isolates (16.6 %) (Fothergill et al. 2014; Al-mamari

et al. 2014; Zhang et al. 2015; Won et al. 2015; 83 isolates (Al-mamari et al. 2014);

C. glabrata, 111 isolates (Fothergill et al. 2014); to VRC in C. albicans, i.e.,
82 isolates (Fothergill et al. 2014); C. glabrata, 258 isolates (Fothergill et al.

2014); and C. tropicalis, 94 isolates (Fothergill et al. 2014) (refer Table 2). The

trend of increasing resistance of FLC leads to therapeutic failure and raises the need

of new effective azoles for treatment. Reports of low resistance rates in VRC

suggest that VRC may be used with confidence for the treatment of candidiasis

(98% success rates of VRC and 95% in case of FLC) against FLC-resistant isolates

(Ally et al. 2001).

There are several reports suggesting correlation of resistant isolates against

different azoles and mutations in ERG11 gene in Candida spp. ERG11

(CnCYP51) gene encodes lanosterol 14α-demethylase enzyme which appears to

be important target for azole antifungal drug. In a detailed study, ERG11 genes

from 17 clinical isolates of C. albicans were analyzed for FLC resistance. These

strains were observed to have 27 point mutations in ERG11 gene. Out of these, five

mutations mainly Y132H, A114S, Y257H, G464S, and F72S substitutions were

most prevalent in resistance spp., while two novel substitutions, T285A and S457P,

in hotspot regions were relevant (Wang et al. 2015a). In the clinical isolates of

C. albicans, the correlation between naturally occurring mutations in a gene for

multidrug resistance regulator 2 (MRR2) and FLC resistance was analyzed. In a

group of 20 FLC-resistant C. albicans isolates, 12 isolates showed overexpression

of Candida drug resistance 1 (CDR1) gene. Of these, only three FLC-resistant

isolates showed 11 identical missense mutations in MRR2 gene, 6 of which were

among azole-resistant isolates. In addition, the role of MRR2 mutations in CDR1

overexpression and thus to FLC resistance was verified using recombinant strains

with mutated MRR2 gene (Wang et al. 2015b). Hence, increasing rates of azole

resistance in these species emphasize on the development of antifungal strategies

with greater efficacy toward azole class of antifungals.

5.2 Aspergillus spp.

Appearance of azole resistance in strains of A. fumigatus has become a serious

public health problem. Antifungal drug susceptibility in Aspergillus against differ-
ent azoles has been performed by several groups. We looked for the data on

antifungal drug susceptibility of Aspergillus spp. against different azole drugs

from major studies in the last 10 years in literature. The comparative analysis of

resistant isolates for three azole drugs in A. fumigatus, A. flavus, and A. niger
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showed maximum number of resistant isolates to VRC in A. fumigatus [3.1%

(Espinel-Ingroff et al. 2010), 0.8% (Pfaller et al. 2009), and 2.2% (Rodriguez-

Tudela et al. 2008)], to ITC in A. flavus (5.6%), and to POS in A. niger (8.8%)

(Espinel-Ingroff et al. 2010) (see Table 3). The data suggest increased resistance to
VRC, first line of therapy for invasive aspergillosis, in A. fumigatus (Mikulska et al.

2012). This is in line with the observation that VRC treatment is failing due to

resistant isolates in the patients as mentioned earlier (Verweij et al. 2007).

There are several reports suggesting correlation of resistant isolates against

different azoles and mutations in CYP51A1 gene in A. fumigatus (Denning et al.

1997). In a study (Bader et al. 2013), 527 clinical isolates of A. fumigatus were

analyzed and found that 17 (3.2%) strains showed increased MIC0 values. Out of

these 17 isolates, 14 were found to have resistance to ITC (MIC0> 32 mg/l) and

1 was highly resistant to POS [MIC0> 32 mg/l]. All the resistant isolates showed

mutations in CYP51A1, and most common mutation was TR/L98H. Recently, ITC

resistance also has been found to be increased due to TR/L98H mutations in

CYP51A1 (Snelders et al. 2008). In another study, 38 clinical isolates were

analyzed, where 3 isolates showed multi-azole resistance to ITC, VRC, and POS.
It was found that all three isolates also showed exclusively TR34/L98H mutations in

CYP51A1 gene, not present in the remaining 35 azole-susceptible isolates (Wu et al.

2015).

5.3 Cryptococcus spp.

The antifungal drug susceptibility for azoles in C. neoformans and C. gatti is
provided in Table 4. Molecular typing for Cryptococcus spp. done using molecular

methodologies like AFLP and PCR fingerprinting identified eight molecular types

of Cryptococcus. An in vitro antifungal susceptibility test was done for the

abovementioned molecular types of Cryptococcus species using the CLSI broth

dilution method (Espinel-Ingroff et al. 2012). In C. neoformans strains with high

FLC MICs (�32 μg/ml), it was observed that a point mutation (involving the

glycine to serine substitution at 484th position) in the ERG11 (CnCYP51) gene

resulted in an alteration in the binding site of the target enzyme (Rodero et al. 2003).

Earlier work done by Sanguinetti et al. showed a reduction in concentration of FLC

in C. neoformans due to overexpression of the gene C. neoformans Antifungal

Resistance 1 (CnAFR1) which codes for an ABC transporter, a membrane efflux

pump (Sanguinetti et al. 2006).

Cross-resistance among pathogenic fungi against azoles is expected as their

target of action is similar, but azole cross-resistance is rarely seen among the

Cryptococcal strains. In C. neoformans, cross-resistance between ITC and FLC is

not observed due to the dual targets of ITC (the lanosterol 14α-demethylase and the

3-ketosteroid reductase). In C. neoformans isolates, the cross-resistance is also

reported between FLC (MICs >64 μg/ml) and VRC (MICs� 2 μg/ml), but no

cross-resistance was seen between FLC and ITC. The fluconazole-voriconazole
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cross-resistance was attributed to a missense mutation [involving tyrosine to phe-

nylalanine (Y145F) substitution] in the ERG11 gene (Espinel-Ingroff et al. 2012).

In addition, the level of heteroresistance to FLC was found to be more in C. gattii
than in C. neoformans isolates (Kwon-Chung and Rhodes 1986). Heteroresistance

is the expression of different resistance profiles in subpopulations of a strain (Nunes

et al. 2007).

6 Molecular Mechanism of Drug Resistance to Azoles

Resistance to first line of therapy such as FLC and VRC has increased in recent

years. Several high-throughput studies with clinical isolates and in vitro-developed

resistant isolates of Candida spp. have been carried out in order to understand the

genes/proteins and pathways involved in drug resistance. Table 5 represents high-

throughput studies using transcriptomic, proteomic, and lipidomic analysis to

understand molecular pathways involved in drug resistance. Here, we discuss the

factors associated with drug resistance against azoles in major pathogenic fungi.

6.1 Alteration in Ergosterol Biosynthesis Pathway Enzyme

As discussed earlier, azoles generally target lanosterol 14α-demethylase which is a

cytochrome P450-dependent enzyme encoded by CYP51 or ERG11 gene. This is an
oxidative process which involves the removal of 14α-methyl group from lanosterol.

Azole binds to the ferric ion moiety of the heme-binding site and blocks the

enzyme’s natural substrate lanosterol, disrupting the biosynthetic pathway (Odds

et al. 2003). Amino acid substitutions in the drug target that inhibit drug binding are

common azole drug resistance mechanisms in fungi.

Azole resistance in Candida species is attributed to the point mutation in ERG11

gene resulting in the alteration of drug target that inhibits the azole drug from

binding to its target (Vandeputte et al. 2012). In a study on Candida, five different
mutations in CYP51A1 gene (G129A, Y132H, S405F, G464S, and R467K) were

observed. In the clinical isolates of C. albicans, combined mutations in CYP51A1

gene resulted in a greater decrease in binding affinity of the drugs and then single

mutations (Sanglard et al. 1998). Studies on C. albicans and C. glabrata also found
that overproduction of drug target (lanosterol demethylase) which resulted from

genome rearrangement and chromosome duplication was another factor for an

increased azole resistance (Marichal et al. 1997; Selmecki et al. 2008). In another

study, a zinc transcription factor, CaUpc2, was essential for controlling the regu-

lation of ERG genes in the subsistence of ergosterol biosynthesis inhibitors

(Vandeputte et al. 2012). Further, in other study the binding capacity of CaUpc2

to the promoter region of ERG11 in C. albicans was confirmed (MacPherson et al.

2005).
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C
.
g
la
b
ra
ta

(S
ev
en

p
ai
rs

o
f
su
sc
ep
ti
bl
e

an
d
re
si
st
an

t
is
o
ge
n
ic

is
ol
at
es
)

F
L
C

(M
IC

ra
n
g
e
fo
r

re
si
st
an
ce
—

1
2
8
–
5
1
2
μg

/m
l)

D
N
A

m
ic
ro
-

ar
ra
y
an
d

q
R
T
-P
C
R

E
x
p
re
ss
io
n
o
f
4
5
g
en
es

w
as

si
g
n
ifi
ca
n
tl
y
al
te
re
d
in

at

le
as
t
o
n
e
cl
in
ic
al

p
ai
rs
.
O
f

th
es
e
1
9
w
er
e
u
p
re
g
u
la
te
d
in

m
aj
o
ri
ty

o
f
th
e
re
si
st
an
t

is
o
la
te
s

A
ll
th
e
re
si
st
an
t
is
o
la
te
s
h
ad

ac
q
u
ir
ed

m
u
ta
ti
o
n
in

C
.
gl
ab

ra
ta

p
le
io
tr
o
p
ic

d
ru
g
re
si
st
an
ce

(C
g
P
D
R
1
)
o
p
en

re
ad
-

in
g
fr
am

e.
T
ra
n
sc
ri
p
t
an
al
y
si
s
sh
o
w
ed

tw
o
fo
ld

u
p
re
g
u
la
ti
o
n
o
f
C
g
P
D
R
1
an
d

it
s
k
n
o
w
n
ta
rg
et

g
en
es

in
al
l
th
e
se
v
en

re
si
st
an
t
is
o
la
te
s.
T
h
e
st
u
d
y
sh
o
w
ed

th
at

g
ai
n
-o
f-
fu
n
ct
io
n
m
u
ta
ti
o
n
s
in

C
g
P
D
R
1
w
er
e
as
so
ci
at
ed

w
it
h
az
o
le

re
si
st
an
ce

T
sa
i
et

al
.

(2
0
1
0
)

C
.
g
la
br
a
ta

(F
L
C
su
sc
ep
ti
b
le

an
d

re
si
st
a
nt

is
og

en
ic

st
ra
in
s)

F
L
C

(M
IC

fo
r
re
si
s-

ta
n
ce
—

>
2
5
6
μg

/m
l)

M
ic
ro
ar
ra
y

an
d
q
R
T
-

P
C
R

3
7
9
g
en
es

q
R
T
-P
C
R
an
al
y
si
s
o
f
F
L
C
su
sc
ep
ti
b
le

an
d
re
si
st
an
t
is
o
g
en
ic

st
ra
in
s
sh
o
w
ed

th
e
re
si
st
an
t
is
o
la
te

ex
h
ib
it
ed

m
it
o
-

ch
o
n
d
ri
al
d
y
sf
u
n
ct
io
n
an
d
u
p
re
g
u
la
ti
o
n

o
f
th
e
A
B
C
tr
an
sp
o
rt
er

g
en
es
,
C
.

g
la
b
ra
ta

C
D
R
1
(C
g
C
D
R
1
),
C
g
C
D
R
2
,

an
d
C
g
S
N
Q
2
,
in
v
o
lv
ed

in
d
ru
g
re
si
s-

ta
n
ce
.
F
u
rt
h
er
,
th
e
re
si
st
an
t
is
o
la
te

sh
o
w
ed

in
cr
ea
se
d
v
ir
u
le
n
ce

in
v
iv
o
in

b
o
th

sy
st
em

ic
an
d
v
ag
in
al

m
u
ri
n
e

in
fe
ct
io
n
m
o
d
el
s.
M
ic
ro
ar
ra
y
an
al
y
si
s

o
f
F
L
C
su
sc
ep
ti
b
le

an
d
re
si
st
an
t
is
o
-

g
en
ic

st
ra
in
s
fu
rt
h
er

co
n
fi
rm

ed
th
e

o
v
er
ex
p
re
ss
io
n
o
f
A
B
C
tr
an
sp
o
rt
er

g
en
es
,
C
.
gl
ab

ra
ta

C
D
R
1
(C
g
C
D
R
1
),

C
g
C
D
R
2
,
an
d
C
g
S
N
Q
2
an
d
ce
ll
w
al
l

p
ro
te
in
s,
G
P
I
an
ch
o
re
d
p
ro
te
in
s,

y
ap
si
n
s
(C
g
Y
p
s1
,
3
,
5
,
8
-1
1
).
O
v
er
al
l,

th
is
st
u
d
y
sh
o
w
ed

th
at

m
it
o
ch
o
n
d
ri
al

d
y
sf
u
n
ct
io
n
w
as

o
n
e
o
f
th
e
fa
ct
o
r
in

C
.

gl
ab

ra
ta

v
ir
u
le
n
ce

an
d
m
ay

se
rv
es

a

fo
u
n
d
at
io
n
fo
r
id
en
ti
fi
ca
ti
o
n
o
f
v
ir
u
-

le
n
ce

fa
ct
o
rs

in
C
.
gl
ab

ra
ta

F
er
ra
ri
et

al
.

(2
0
1
1
)

(c
o
n
ti
n
u
ed
)
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T
a
b
le

5
(c
o
n
ti
n
u
ed
)

C
an
d
id
a
sp
ec
ie
s/
st
ra
in
s

A
zo
le
s
te
st
ed

T
ec
h
n
iq
u
es

u
se
d

N
o
.
o
f
d
if
fe
re
n
ti
al
ly

ex
p
re
ss
ed

p
ro
te
in
s/
g
en
es

V
er
ifi
ca
ti
o
n
s/
fu
n
ct
io
n
al

st
u
d
ie
s

R
ef
er
en
ce
s

C
.
p
ar
a
ps
il
os
is

(F
L
C
re
si
st
an
t,
V
R
C
re
si
s-

ta
n
t,
P
S
C
re
si
st
an
t
st
ra
in
s)

(i
nv
it
ro

st
u
d
y
)

F
L
C
(M

IC
fo
r

re
si
st
an
ce

—
≥6

4
μg

/m
l)
,

V
R
C
(M

IC
fo
r

re
si
st
an
ce

—
≥4

μg
/m

l)
,

P
O
S
(M

IC
fo
r

su
sc
ep
ti
b
il
it
y

—
≤1

μg
/m

l)

cD
N
A

m
ic
ro
ar
ra
y

an
d
q
R
T
-

P
C
R

1
1
2
8
g
en
es

(i
n
F
L
C
re
si
s-

ta
n
t)
,

2
1
0
g
en
es

(i
n
V
R
C
re
si
st
an
t)
,

5
9
8
g
en
es

(i
n
P
S
C
re
si
st
an
t

st
ra
in
)

R
es
is
ta
n
t
C
.
pa

ra
ps
il
os
is
st
ra
in
s
w
er
e

o
b
ta
in
ed

af
te
r
co
n
st
an
t
ex
p
o
su
re

to

V
R
C
,
F
L
C
,
P
O
S
.
M
ic
ro
ar
ra
y
an
al
y
si
s

sh
o
w
ed

in
cr
ea
se
d
ex
p
re
ss
io
n
o
f
M
D
R
1

an
d
o
th
er

ef
fl
u
x
p
u
m
p
m
em

b
er
s,
M
F
S
,

an
d
tr
an
sc
ri
p
ti
o
n
fa
ct
o
r
M
R
R
1
,

in
v
o
lv
ed

in
re
g
u
la
ti
o
n
o
f
M
D
R
,
to

b
e

as
so
ci
at
ed

w
it
h
V
R
C
an
d
F
L
C
re
si
s-

ta
n
ce

in
C
.
pa

ra
ps
il
os
is
re
si
st
an
t

st
ra
in
s,
w
h
il
e
in
cr
ea
se
d
ex
p
re
ss
io
n
o
f

er
g
o
st
er
o
l
b
io
sy
n
th
es
is
g
en
es

an
d
tr
an
-

sc
ri
p
ti
o
n
fa
ct
o
rs
,
U
P
C
2
an
d
N
D
T
8
0
,

in
v
o
lv
ed

in
re
g
u
la
ti
o
n
o
f
er
g
o
st
er
o
l

b
io
sy
n
th
es
is
g
en
es
,w
er
e
as
so
ci
at
ed

w
it
h
P
S
C
re
si
st
an
ce
.
S
o
m
e
o
f
th
e
g
en
es

in
v
o
lv
ed

in
er
g
o
st
ro
l
b
io
sy
n
th
es
is
,

E
R
G
5
,
1
1
,
M
D
R
1
,
M
R
R
1
an
d
N
T
D
8
0
,

w
er
e
fu
rt
h
er

co
n
fi
rm

ed
b
y
q
R
T
-P
C
R

S
il
v
a
et

al
.

(2
0
1
1
)

P
ro
te
o
m
ic

st
u
d
ie
s

C
.
a
lb
ic
an

s
(F
L
C
re
si
st
an
t
an
d
se
n
si
ti
v
e

st
ra
in
s,
cl
in
ic
al

is
o
la
te
s)

F
L
C

(M
IC

fo
r
re
si
s-

ta
n
ce
—

≥6
4
μg

/

m
l)

2
D
-P
A
G
E

an
d

M
A
L
D
I-

T
O
F
M
S

1
5
p
ro
te
in
s

T
h
e
co
m
p
ar
at
iv
e
p
ro
te
o
m
ic

an
al
y
si
s

sh
o
w
ed

al
te
re
d
ex
p
re
ss
io
n
o
f
p
ro
te
in
s

w
as

m
aj
o
rl
y
in
v
o
lv
ed

in
en
er
g
y

m
et
ab
o
li
sm

an
d
am

in
o
ac
id

b
io
sy
n
th
e-

si
s
in

re
si
st
an
t
st
ra
in
.
P
ro
te
o
m
ic

an
al
y
-

si
s
re
v
ea
le
d
u
p
re
g
u
la
ti
o
n
o
f
al
co
h
o
l

d
eh
y
d
ro
g
en
as
e
(A

d
h
1
p
),
in
v
o
lv
ed

in

b
io
fi
lm

fo
rm

at
io
n
an
d
in
te
ra
ct
io
n
w
it
h

h
o
st
,
in

F
L
C
re
si
st
an
t
st
ra
in
,
w
h
ic
h
w
as

ea
rl
ie
r
re
p
o
rt
ed

to
b
e
as
so
ci
at
ed

w
it
h

F
L
C
re
si
st
an
ce

in
C
.
al
bi
ca
ns

u
si
n
g

d
if
fe
re
n
ti
al

d
is
p
la
y
-P
C
R
te
ch
n
iq
u
e

W
an
g
et

al
.

(2
0
1
2
)
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C
.
g
la
b
ra
ta

(F
L
C
re
si
st
an
t
an
d
su
sc
ep
ti
-

b
le

st
ra
in
s,
cl
in
ic
al

is
o
la
te
s)

F
L
C

(M
IC

fo
r
re
si
s-

ta
n
ce
—

6
4
μg

/

m
l)

2
D
S
D
S
-

P
A
G
E
an
d

L
C
-M

S
/M

S

6
5
p
ro
te
in
s

3
9
in
tr
ac
el
lu
la
r
an
d
2
6

m
em

b
ra
n
e
p
ro
te
in
s

T
h
e
st
u
d
y
an
al
y
ze
d
m
em

b
ra
n
e
an
d

ce
ll
u
la
r
p
ro
te
in
s
d
if
fe
re
n
ti
al
ly

ex
p
re
ss
ed

in
F
L
C
re
si
st
an
t
is
o
la
te
.

R
es
is
ta
n
t
st
ra
in
s
sh
o
w
ed

u
p
re
g
u
la
ti
o
n

o
f
m
em

b
ra
n
e
p
ro
te
in
s
w
h
il
e
ce
ll
u
la
r

p
ro
te
in
s
w
er
e
d
o
w
n
re
g
u
la
te
d
.
H
ea
t

sh
o
ck

p
ro
te
in

an
d
st
re
ss

re
sp
o
n
se

p
ro
-

te
in
s
w
er
e
o
b
se
rv
ed

to
b
e
u
p
re
g
u
la
te
d

in
m
em

b
ra
n
e
fr
ac
ti
o
n
s
o
f
re
si
st
an
t

st
ra
in
s

Y
o
o
et

al
.

(2
0
1
2
)

C
.
g
la
br
a
ta

(V
R
C
re
si
st
an
t,
su
sc
ep
ti
b
le
,

su
sc
ep
ti
b
le

d
o
se
-d
ep
en
d
en
t

st
ra
in
s,
cl
in
ic
al

is
o
la
te
s)

V
R
C

(M
IC

fo
r
re
si
s-

ta
n
ce
—

4
μg

/

m
l)

2
D
S
D
S
-

P
A
G
E
an
d

L
C
-M

S
/M

S

4
6
p
ro
te
in
s

1
5
in
tr
ac
el
lu
la
r
an
d
3
1

m
em

b
ra
n
e
p
ro
te
in
s

T
h
e
st
u
d
y
an
al
y
ze
d
m
em

b
ra
n
e
an
d

ce
ll
u
la
r
p
ro
te
in
s
d
if
fe
re
n
ti
al
ly

ex
p
re
ss
ed

in
V
R
C
re
si
st
an
t
is
o
la
te
.

T
h
is
st
u
d
y
sh
o
w
ed

th
at

th
er
e
w
as

o
v
er
ex
p
re
ss
io
n
o
f
h
ea
t
sh
o
ck

p
ro
te
in
7
0

(H
sp
7
0
)
is
o
fo
rm

s
in

in
tr
ac
el
lu
la
r
fr
ac
-

ti
o
n
an
d
d
ec
re
as
ed

ex
p
re
ss
io
n
o
f
n
in
e

H
sp
7
0
p
ro
te
in

is
o
fo
rm

s
in

m
em

b
ra
n
e

fr
ac
ti
o
n
s
o
f
su
sc
ep
ti
b
le
,
su
sc
ep
ti
b
le

d
o
se
-d
ep
en
d
en
t
an
d
re
si
st
an
t
C
.

gl
ab

ra
ta

st
ra
in
s
su
g
g
es
ti
n
g
th
at

th
is

p
ro
te
in

m
ay

b
e
as
so
ci
at
ed

w
it
h
V
R
C

re
si
st
an
ce

in
re
si
st
an
t
C
.g
la
br
at
a

st
ra
in
s

Y
o
o
et

al
.

(2
0
1
3
)

C
.
g
la
br
a
ta

(F
L
C
re
si
st
an
t
st
ra
in
)

(i
n
v
it
ro

st
u
d
y
)

F
L
C
(M

IC
fo
r

re
si
st
an
ce
—

>
2
5
6
μg

/m
l)

2
D
-P
A
G
E
,

M
A
L
D
I-

T
O
F
M
S
,

q
R
T
-P
C
R

2
5
p
ro
te
in
s

F
L
C
re
si
st
an
t
st
ra
in
s
o
f
C
.
gl
ab

ra
ta

w
er
e
g
en
er
at
ed

an
d
ei
g
h
t
o
f
th
e

se
le
ct
ed

m
u
ta
n
ts
w
it
h
la
rg
e
(n
=
4
)
an
d

sm
al
l
co
lo
n
ie
s
(n
=
4
)
an
al
y
ze
d
b
y

C
H
E
F
sh
o
w
ed

fo
u
r
g
en
o
ty
p
es

fo
r
th
es
e

m
u
ta
n
ts
.
T
w
o
o
f
th
e
ra
n
d
o
m
ly

se
le
ct
ed

st
ab
le

F
L
C
re
si
st
an
t
m
u
ta
n
ts
fu
rt
h
er

an
al
y
ze
d
b
y
p
ro
te
o
m
ic
an
al
y
si
s
sh
o
w
ed

S
am

ar
an
ay
ak
e

et
al
.
(2
0
1
3
)

(c
o
n
ti
n
u
ed
)
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T
a
b
le

5
(c
o
n
ti
n
u
ed
)

C
an
d
id
a
sp
ec
ie
s/
st
ra
in
s

A
zo
le
s
te
st
ed

T
ec
h
n
iq
u
es

u
se
d

N
o
.
o
f
d
if
fe
re
n
ti
al
ly

ex
p
re
ss
ed

p
ro
te
in
s/
g
en
es

V
er
ifi
ca
ti
o
n
s/
fu
n
ct
io
n
al

st
u
d
ie
s

R
ef
er
en
ce
s

a
to
ta
l
o
f
2
5
p
ro
te
in
s
to
b
e
d
if
fe
re
n
ti
al
ly

ex
p
re
ss
ed

in
re
si
st
an
t
m
u
ta
n
ts
,
so
m
e
o
f

th
em

,
E
R
G
1
1
,
C
D
R
1
,
C
D
R
2
,
M
F
S
,

M
T
I,
T
P
R
,
V
P
S
an
d
E
F
T
2
,
w
er
e
fu
r-

th
er

co
n
fi
rm

ed
b
y
q
R
T
-P
C
R
an
al
y
si
s.

In
te
re
st
in
g
ly
,
F
L
C
re
si
st
an
t
is
o
la
te
s

al
so

sh
o
w
ed

re
si
st
an
ce

to
o
th
er

an
ti
-

fu
n
g
al

az
o
le
-I
T
C
(M

IC
fo
r
re
si
st
an
ce

—
>
3
2
μg

/m
l)
,
K
et
o
co
n
az
o
le

(M
IC

fo
r

re
si
st
an
ce
—

>
3
2
μg

/m
l)
an
d
V
R
C

(M
IC

fo
r
re
si
st
an
ce
—

>
3
2
μg

/m
l)
.
T
h
e

st
u
d
y
al
so

sh
o
w
ed

in
cr
ea
se
d
b
u
d
fo
r-

m
at
io
n
o
f
y
ea
st
an
d
m
et
al
lo
th
io
n
ei
n

p
ro
d
u
ct
io
n
in

re
si
st
an
t
m
u
ta
n
ts
an
d

p
ro
p
o
se
d
th
es
e
p
h
en
o
ty
p
es

to
b
e
as
so
-

ci
at
ed

w
it
h
d
ru
g
re
si
st
an
ce

in
C
.

gl
ab

ra
ta

L
ip
id
o
m
ic
s
st
u
d
ie
s

C
.
a
lb
ic
an

s
(E
ig
h
t
p
ai
rs

o
f
F
L
C
su
sc
ep
-

ti
bl
e
an

d
re
si
st
an

t
cl
in
ic
a
l

is
o
la
te
s)

F
L
C
(M

IC

ra
n
g
e
fo
r
re
si
s-

ta
n
ce
—

1
6
to

1
2
8
μg

/m
l)

E
S
I-
M
S
/M

S
>
2
0
0
li
p
id
s
sp
ec
ie
sa

T
h
is
st
u
d
y
p
er
fo
rm

ed
co
m
p
ar
at
iv
e

li
p
id
o
m
ic

an
al
y
si
s
o
f
F
L
C
su
sc
ep
ti
b
le

an
d
re
si
st
an
t
cl
in
ic
al

is
o
la
te
s
(w

it
h

o
v
er
-e
x
p
re
ss
io
n
o
f
an

A
B
C
tr
an
sp
o
rt
er

en
co
d
in
g
g
en
e
C
aC

D
R
1
o
r
M
F
S

en
co
d
in
g
g
en
e,
C
aM

D
R
1
)
b
y
m
as
s

sp
ec
tr
o
m
et
ry
.
M
o
le
cu
la
r
li
p
id

sp
ec
ie
s

ra
n
g
in
g
fr
o
m

m
o
n
o
u
n
sa
tu
ra
te
d
to

S
in
g
h
an
d

P
ra
sa
d
(2
0
1
1
)
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p
o
ly
u
n
sa
tu
ra
te
d
fa
tt
y
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The azole resistance in A. fumigatus is majorly mediated by mutations in gene

CYP51A1. Target gene, cyp51 (ERG11), has two copies, i.e., CYP51A1 and

CYP51B, each encoding a different protein (Mellado et al. 2001); however, muta-

tions in CYP51A1 gene are reported as major cause of resistance in A. fumigatus
(Odds et al. 2003; Diaz-Guerra et al. 2003; Warrilow et al. 2010). In A. fumigatus
the first mutation to be identified was the glycine 54 (G54) point mutation detected

in clinical isolates resistant to ITC and POS (Mellado et al. 2007). A high-

throughput multiplex RT-PCR has been developed for detecting mutations in

A. fumigatus CYP51A1 that leads to ITC resistance (Balashov et al. 2005). In

another study, clinical isolates of A. fumigatus with reduced susceptibility were

identified, and it was seen that the resistance developed among these species may be

linked to two factors: firstly due to a point mutation involving substitution of

leucine by histidine at 98th position (L98H) in CYP51A1 gene and secondly due

to the presence of two copies of a 34-bp tandem repeats (TR) in the CYP51A1

promoter region (Snelders et al. 2010). Methionine 220 (M220) and glycine

138 (G138) are the less common mutations in A. fumigatus azole resistance strains
(Slaven et al. 2002). TR/L98H genotype is the most ubiquitous mutation responsi-

ble for resistance mechanism observed for azole-resistant strain (Willger et al.

2008). A recently identified mechanism in the CYP51A1 gene that decreases the

susceptibility of A. fumigatus against voriconazole consists single polymorphisms

mainly substitutions in tandem repeat of 46-bp in the promoter region (Dirr et al.

2010).

But a limited number of mutations in ERG11 has been reported in

C. neoformans, including Y145F (Espinel-Ingroff et al. 2012) and G484S (Rodero

et al. 2003). Study by Espinel-Ingroff et al. showed by sequencing the ERG11 gene

from clinical isolates of MRL862 (C. neoformans strain isolated from a

FLC-treated patient) that the strain MRL862 contained five unique mutations

compared to reference strain H99. Triazole susceptibility coupled with the molec-

ular changes in the ERG11 gene revealed that a single missense Y145F, tyrosine

replaced by phenylalanine, mutation resulted in high FLC resistance of the strain

(Espinel-Ingroff et al. 2012). The study by Rodero et al. analyzed five

C. neoformans isolates that were sequentially isolated from an AIDS patient with

frequent meningitis and found that out of five isolates, four were FLC susceptible

while FLC resistance was seen to be developed in the fifth isolate. The analysis

further revealed that a point mutation G484S (involving the glycine to serine

substitution at 484th position) in the ERG11 gene was the key to the development

of FLC resistance in the fifth isolate (Rodero et al. 2003). Studies by various groups

have demonstrated that this substitution confers an orientation change in the P450

heme-binding domain that leads to a decrease in the binding affinity of azole drug

as well as a decrease in the enzyme catalytic efficiency (Sanglard et al. 1998; Kelly

et al. 1999).

In C. albicans, point mutations in ERG3 gene result in the alteration of C5 sterol

desaturase enzyme; therefore, 14α-methyl-3,6-diol (toxic sterol) cannot be synthe-

sized. However, in the presence of azoles, ergosterol is replaced by sterol species

resulting in functional fungal cell membrane (Sanguinetti et al. 2015).
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6.2 Drug Efflux

There are two different drug efflux systems in fungi that contribute to azole drug

resistance. They belong to the superfamily ATP-binding cassette (ABC) and the

major facilitator superfamily (MFS). ABC proteins are the ATP-dependent trans-

porters, usually arranged in duplicates, comprise of two transmembrane span

(TMS) domains and the two cytoplasmic nucleotide-binding domains (NBDs)

which facilitate the ATP hydrolysis. In C. albicans drug resistance isolates, it was

reported that CDR1 and CDR2 are main contributors of azole resistance which

belongs to ABC transporters superfamily (Vandeputte et al. 2012). Studies on

regulation of CDR1 and CDR2 showed cis-acting regulatory elements: a basal

expression element (BEE), a drug-responsive element (DRE), two steroid respon-

sive elements (SREs), and a negative regulatory element (NRE) in CDR1, while the

CDR2 promoter contains only a DRE motif (de Micheli et al. 2002; Karnani et al.

2004; Gaur et al. 2005). Among these DRE was reported to be the exclusively

responsible element for overexpression/upregulation of both CDR1 and CDR2. In

azole-resistant clinical isolates of C. glabrata, three transporters mainly CgCDR1,

CgCDR2, and ABC transporter co-regulated with CgCDR1 and CgCDR2, called

SNQ2, were found to be upregulated and involved in azole resistance (Torelli et al.

2008). In A. fumigatus, atrF and AfuMDR4 were found to be upregulated in

itraconazole-resistant strains (Vandeputte et al. 2012). In C. albicans, a gene

encoding a protein CaNdt80p that was found to regulate CDR1 participating in

drug resistance mechanism was reported (Chen et al. 2004). In a study, it was

demonstrated that mutations lead to hyperactive alleles in C. albicans and conse-

quent loss of heterozygosity (LOH) at the transcriptional activator of CDR gene

(TAC1) and multidrug resistance 1 (MRR1) loci (Coste et al. 2009).

In azole resistance clinical isolates of C. albicans, multidrug resistance

1 (MDR1) transporter was reported as MFS transporter (Ben-Yaacov et al. 1994).

Among FLC-resistant isolates of C. albicans, nucleotide region, called MDR1 drug

resistance element (MDRE), was found to be responsible for the overexpression of

MDR1 (Riggle and Kumamoto 2006; Rognon et al. 2006). A study by Hiller et al.

reported three different cis-activating regions (regions 1, 2, and 3) in MDR1, and

regions 1 and 3, close to the MDRE region, were reported to be necessary for

controlling the expression of MDR1 in an azole-resistant isolate (Vandeputte et al.

2012). Studies of MRR1 gene deletion in azole-resistant strains were shown to

diminish the overexpression of MDR1 suggesting MRR1p identification as a main

controller of MDR1. The CdMDR1 and CtMDR1 are homologues of MDR1 in

C. dubliniensis and C. tropicalis, respectively, which are found to be upregulated in
azole-resistant strains (Pinjon et al. 2003, 2005; Vandeputte et al. 2005).

Drug efflux pumps are also responsible for resistance in A. fumigatus as they
mediate reduced accumulation of intracellular drugs (Coleman and Mylonakis

2009). A probe derived from CDR1 gene, ABC transporter genes for drug efflux

in C. albicans, was used to clone atrF gene from A. fumigatuswith characteristics of
multidrug resistance motifs. In A. fumigatus isolate, AF72 has approximately
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fivefold higher levels of expression of atrF compare to the susceptible isolates AF10

and H06-03 with sub-MIC levels of ITC (Slaven et al. 2002). In A. fumigatus,
overexpression of multidrug resistance 3 (AfuMDR3) or AfuMDR4 is linked to

high-level resistance against itraconazole due to the mutations at the drug target site

(Denning et al. 1997; Nascimento et al. 2003). In the biofilms of azole resistance of

A. fumigatus efflux pump, AfuMDR4 pump was seen to be upregulated that is

responsible for resistance to VRC (Rajendran et al. 2011).

In A. nidulans, high levels and differential expression of AtrA to AtrD genes

were reported in the presence of drugs such as camptothecin, imazalil, ITC,

hygromycin, and 4-nitroquinoline oxide using real-time RT-PCR. Further, AtrA

to AtrD expression levels were verified in the A. nidulans imazalil-resistant mutants

(Semighini et al. 2002). One of the four ABC-type transporter genes, abcD, was

reported to have two- to sixfold increased mRNA level expression following

exposure to miconazole, camptothecin, methotrexate, and ethidium bromide

(do Nascimento et al. 2002).

Many ABC proteins are found in C. neoformans in comparison to other patho-

genic fungi (Lamping et al. 2010), but only a few are linked to azole drug

resistance. The upregulation of the ABC transporter-encoding gene AFR1 in

C. neoformans is contributing to the in vitro resistance to FLC (Coleman and

Mylonakis 2009) and corelated to less azole accumulation. Sanguinetti et al. gen-

erated a set of recombinant strains of C. neoformans BPY22.17 (FLC-resistant

mutant strain), BPY444 (afr1 mutant strain), and BPY445 (AFR1-overexpressing

mutants), all derived from a FLC-susceptible isolate of C. neoformans strain

BPY22. In infectious mice model exposed to these strains showed, strain

BPY445 was more virulent than BPY22 and displayed enhanced intracellular

survival due to upregulation of AFR1 (Sanguinetti et al. 2006). In spite of several

studies on the role of ABC multidrug efflux transporter drug resistance, little is

known about the contribution of the Drug:Hþ Antiporter (DHA) family in azole

resistance. There are nine DHA1 and seven DHA2 transporters present in

C. neoformans which play role in antifungal drug resistance, but their role in

azole drug resistance has yet not been studied (Costa et al. 2014).

Influx of Drugs into the Cell Import of azoles occurs via facilitated diffusion

mediated by transporters in fungi such as C. albicans and C. neoformans, and
mutations in the transporter may greatly influence resistance. A study by Mansfield

et al. demonstrated that azole compounds utilized the same mechanism for incor-

porating drugs inside the cell membrane which was carried out by a transporter. The

mutation in that putative transporter resulted in the azole cross-resistance. Among

35 studied clinical isolates of C. albicans, 4 isolates showed overexpression of

genes; ERG11, MDR1, CDR1, and/or CDR2. A mutation is reported in ERG11

which significantly alters [3H]-FLC import suggesting that modification of azole

import mediated by mutated transporter may be associated with antifungal resis-

tance (Mansfield et al. 2010). Composition alterations in plasma membrane are

some other factor that affects fluidity and asymmetry of the membrane that leads to

a decreased drug uptake (Parks and Casey 1996).
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6.3 Chromosomal Abnormalities: Loss of Heterozygosity
and Aneuploidy

Azole drug resistance has been associated with multiple genomic alterations,

including loss of heterozygosity (LOH) of specific genomic regions (Coste et al.

2007; Selmecki et al. 2010), increase in the chromosome copy number, as well as

segmental or chromosomal aneuploidies.

Comparative genome hybridization (CGH) analysis showed that there were

37 aneuploid chromosomes in C. albicans strains (FLC-resistant and

FLC-sensitive strains). This aneuploidy was frequent on chromosome 5, while

segmental aneuploidy was present in eight FLC-resistant strains with extra copies

of chr5L which was confirmed by Southern blot analysis (Selmecki et al. 2006). In

C. albicans, events of LOH were observed antifungal drug-resistant strains

(Sanguinetti et al. 2015). It was shown in C. albicans that LOH events were

increased during in vitro exposure to heat stress (onefold to 40-fold), oxidative

stress (threefold to 72-fold), and treatment with antifungal agents (FLC, 285-fold)

(Forche et al. 2011) and led to the development of antifungal drug resistance.

Further, it was demonstrated that increasing extremity of stress was associated

with increased rates of LOH. Chromosomal rearrangements and duplications also

have a role in increased resistance toward azoles.

Numerous analyses of azole-resistant and azole-sensitive strains obtained by

comparative genome hybridization (CGH) from clinical and laboratory sources

reflects a clear link between “heteroresistance” (an azole-associated acquisition of

aneuploidy) and azole resistance (Kwon-Chung and Chang 2012). Among the

screened isolates of C. neoformans and C. gatti, it was showed that both the species
displayed intrinsic heteroresistance phenotype to FLC (Sionov et al. 2009), which

was observed to diminish upon release of drug stress. It was observed that the strain

resistance to FLC was always disomic for Chr1, and further elevation in drug level

resulted in disomy of Chr4. Infrequent doubling of chromosome 1 has been reported

in erg11 or afr1 mutants suggesting their role during times of stress (Sionov et al.

2010). Since both ERG11 and AFR1 were present on Chr1 in C. neoformans, it was
seen that the duplication of the chromosome has been an advantage during the

development of a resistant strain during FLC stress.

6.4 Mitochondrial Dysfunction

Mitochondrial dysfunction contributes greatly toward the virulence as well as drug

tolerance of fungal pathogens. Loss of mitochondrial genome and changes in

mitochondria membrane structures lead to the potential activation of drug resis-

tance pathway. In a study, FLC-susceptible and FLC-resistant strains of C. glabrata
showed upregulation of the ABC transporter genes, CgCDR1, CgCDR2, and

CgSNQ2 (Ferrari et al. 2011). A study by Vazquez et al. showed that deletion of
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the mitochondrial inner membrane translocase gene, OXA1, essential gene for the

assembly of mitochondrial-encoded subunits, activates the drug resistance pathway

in C. glabrata. In addition, C. glabrata modification of phosphatidylglycerol

synthase gene CgPGS1 responsible for synthesis of the phospholipids in mitochon-

dria has been associated with drug resistance (Shingu-Vazquez and Traven 2011).

6.5 High-Osmolarity Glycerol Pathway

The HOG pathway is often reported to play an important role in controlling various

activities like stress response, biosynthesis of ergosterol, production of virulence

factor, and differentiation in pathogenic fungi. In C. neoformans, transcriptome

analysis of the HOG pathway discovered Hrk1 (gene regulated by Hog1), encoding

a putative protein kinase. This gene plays a role in stress, virulence of the fungus in

Hog1-dependent and Hog1-independent manner, and thus antifungal drug suscep-

tibility (Kim et al. 2011). The HOG pathway controls expression levels of ergos-

terol biosynthesis genes and in turn affects azole drug susceptibility. Consequently,

the HOG mutants exhibit a decrease in drug sensitivity toward azoles such as FLC

and KTC (Ko et al. 2009).

6.6 Other Mechanisms

Stress response can regulate azole resistance in A. fumigatus but very little is known
about it. Sterol regulatory element-binding protein, SrbA, a highly conserved

transcription factor, was found to be mediating stress responses under hypoxic

conditions. It was further reported to be implicated in maintenance of sterol

biosynthesis, hyphal morphology, and specifically in azole resistance, such as

FLC and VRC (Willger et al. 2008). Another study involving mutants of MAP

kinase kinase 2 (Mkk2), which is generally associated with positive regulation of

calcium-mediated signaling, cellular response to salt stress, and cell wall integrity

pathway, showed increased sensitivity to both POS and VRC (Dirr et al. 2010). The

inhabitation of Hsp90 increases the efficiency of VRC in A. fumigatus suggesting
that it may have significant role in the azole resistance in A. fumigatus (Cowen

2009). There are several other mutations in protein-coding regions which were

found to favor azole resistance in A. fumigatus. HapE gene encodes for CCAAT-

binding transcription factor; mutation in this gene that substitutes proline to leucine

is one such example (Camps et al. 2012). However, the mechanism of resistance is

not clearly understood.
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7 Novel Strategies to Combat Drug Resistance

Due to the limited antifungal treatments available, antifungal agents with broad

spectrum of fungicidal activity using versatile mechanism of action are often

required. Specific treatment of resistant organisms with less toxicity is of para-

mount importance (Messer et al. 2009). Novel strategies as discussed below may be

considered for combating drug resistance.

Understanding the key molecular mechanisms in host-fungal interactions

in vitro and in vivo is the key to finding novel therapies. These may also uncover

the mechanisms behind the development of drug resistance. The present antifungal

agents in use can be altered in a way which can target fungal virulent genes, enzyme

inhibitors, and fungal metabolic pathways. Genome-wide analysis studies can be

performed to identify the genes responsible in fungal survival and can serve as

efficient targets. The catalogue of essential genes for C. albicans and Aspergillus
fumigatus has been studied by molecular techniques such as gene replacement and

conditional expression (GRACE) or conditional promoter replacement (CPR)

(Roemer et al. 2003; Hu et al. 2007). Such analyses provide specific drug targets

for designing effective antifungal drugs. Combinatorial antifungal therapy is used

as an alternate approach for primary and salvage treatment of fungal infections,

e.g., the use of amphotericin B deoxycholate and flucytosine is highly

recommended for cryptococcal meningitis treatment (Pappas et al. 2009b). How-

ever, the use of combination therapy for in invasive candidiasis and in aspergillosis

has mixed review and still awaits studies, which may come in near future.

The use of multifunctional approach using computational modeling and bio-

chemical studies can be employed to screen the large libraries of chemical com-

pounds effective against broad range of fungal pathogen. The use of in vivo model

of Caenorhabditis elegans–Candida albicans killing assay presents rapid and

economical approach for antifungal discovery (Breger et al. 2007) and presents

limited and definite compounds to be tested for in vivo models or in human clinical

trials. Compounds from natural sources (plants, sea, microorganisms) and chemical

sources should be screened for their antifungal properties and used as another novel

approach to overcome current drug resistance. A cysteine-rich antifungal protein

(AFP) isolated from Aspergillus giganteus is reported to exert potent antifungal

activity against pathogenic fungi without altering the viability of host mammalian

cells (Meyer 2008); however, its bioactivity is restricted to filamentous fungi. A

chitosan, a polymer isolated from crustacean exoskeletons, is another well-

researched compound known to be effective against C. neoformans biofilms formed

on indwelling surgical devices (Martinez et al. 2010). A compound named as

25-azalanosterol inhibits the growth of C. albicans in vitro and has potential as a

new class of anti-Candida agents with no toxic side effects in the mammalian host

(Wang and Wu 2008). Although it will be extremely useful to have new and

improved antifungal drugs, the immediate focus should be on improvisation of

strategies to use the antifungal treatment we possess at present.
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8 Conclusions

There has been an increase in incidences of IFIs and emergence of new human

pathogenic fungal species. One of the major factors for increased resistance to

antifungal drugs in these pathogenic fungi is due to exposure to the antifungal

drugs. In view of this, species identification and antifungal susceptibility testing to

identify resistant isolate needs are urgent needs for better treatment management of

IFIs. Clinical breakpoints have been defined for Candida species; however, more

studies are required for Aspergillus and Cryptococcus species. Various studies to
understand the molecular mechanisms of resistance in fungi have been carried out

majorly in C. albicans. However, such studies need to be performed in Aspergillus
and Cryptococcus species. A combinatorial therapy targeting multiple pathways

involved in drug resistance might help to combat drug-resistant isolates. Further,

new antifungals targeting survival genes would be helpful to in combating drug

resistance and improved treatment management of IFIs. Novel strategies in search

for antimycotic compounds that should be cost-effective along with high perfor-

mance and limited toxicity are required.

9 Opinion

The improved diagnostic method based on molecular and serologic techniques is an

urgent need for early diagnosis of IFI. Further, development of diagnostic platform

detecting drug-resistant isolates from clinical samples is imperative for better IFI

treatment. To improve the detection of antifungal resistance, novel assays identi-

fying fungal isolates, which possess mutations known to be associated with anti-

fungal resistance, should be developed and included in diagnostic platform. A

reproducible and clinically relevant antifungal susceptibility testing and its use in

routine clinical practice are needed. In view of the increasing resistance to antifun-

gal drugs leading to persistent fungal infections, focused research on understanding

molecular mechanisms involved in drug resistance should be promoted. Research

outcomes of such studies may be beneficial for designing new antifungal drugs to

combat these life-threatening infections and develop tools enabling the rapid

detection of resistance in fungal population of diverse origins. Novel antifungal

agents with better efficacy are required due to relative shortage of antifungal agents

for treating invasive mycoses diseases.
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Drug Resistance in Malaria

Santosh C.M. Kumar

Abstract Malaria is one of the most prevalent and most fatal parasitic disease

humans with 1–2 million fatalities every year. Although intense efforts to eradicate

malaria are progressing with several treatment regimens, emergence of drug-

resistant parasites impedes these efforts. Resistance has emerged to all the main-

stream antimalarial drugs including the artemisinin and therefore is responsible for

an immense increase in malaria-related mortality worldwide, particularly in Africa.

Fortunately, inherent emergence of resistance has been effectively prevented by the

combinatorial antimalarial drugs such as the artemisinin derivative combinations.

Therefore, sustained improvements in antimalarial medicines with comprehensive

understanding of the mechanism of action and resistance are essential to treat and

control malaria. This chapter presents the current understanding on the mechanism

of the evolution of drug resistance and the strategies followed to delay or curtail it.

1 Introduction

The members of Plasmodium genera, constituting the hematoprotozoan parasites,

cause human malarias that are transmitted through a certain species of the anoph-

eline mosquito vectors (Bray and Garnham 1982; Petersen et al. 2011). Among the

five species affecting humans, namely, Plasmodium falciparum, P. vivax, P. ovale,
P. malariae, and P. knowlesi, the P. falciparum accounts for the majority of

instances of morbidity and mortality causing approximately 225 million infections

and resulting in nearly one million deaths every year in the suburban Africa (White

2004; Cox-Singh et al. 2008; Petersen et al. 2011). Furthermore, P. vivax is the

second most common species that can cause a relapsing form of malaria principally

in the populations of Asia and South America (Prince et al. 2007). Each year, an

estimate of 300–500 million clinical cases of malaria occur that include 1.5–2.0
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million deaths, making malaria one of the most common infectious diseases

worldwide (World Malaria Report 2014). In addition, malaria occurs in over

97 countries worldwide, wherein 36% of the global population live in the risk

areas of malaria transmission, 7% reside in areas with limited control on the

transmission, and 29% live in areas where the transmission has been reestablished

(World Malaria Report 2014). Remarkably, the increase in the financing and

coverage of malaria control programs worldwide has resulted in significant reduc-

tion in malaria incidence and mortality rates. Interestingly, global estimates for

malaria case incidence rates fell by 30% between 2000 and 2013, while estimated

mortality rates fell by 47% (Fig. 1). Despite this tremendous progress, malaria still

remains an important public health concern in countries where transmission occurs

regularly and thus a global estimate of 3.3 billion people in 97 countries are still at

risk of malaria with 1.2 billion people at high risk (>1 case of malaria per 1000

population each year) (World Malaria Report 2014). Owing to its importance in the

world’s clinical manifestations, this year’s Nobel Prize has been awarded to the

Chinese scientist Prof. Youyou Tu for discovering artemisinin for the treatment of

malaria.

The classical discovery that mosquito mediates malarial transmission initiated

the malaria control measures that largely included protection from mosquito bites

and minimizing mosquito reproduction, which successfully limited disease trans-

mission and eliminated the disease from more than ten countries between 1900 and

1946 (Hay et al. 2004). Following this, the World Health Organization launched the

“Global Malaria Eradication Programme” in 1955, wherein chloroquine chemo-

therapy was implemented, which successfully increased the number of malaria-free

countries to 27 by the end of this program in 1969. However, despite the impressive

initial success, eradication in many countries failed due to technical, operational,

and socioeconomic difficulties, thereby leading to resurgence of malaria in many

parts of the world. Paradoxically, the initial malarial control has relied largely on

the inexpensive and easily available antimalarials (mainly chloroquine and

antifolate drugs). The extensive deployment of these drugs has imposed tremendous

selection pressure on human malaria parasites, particularly in P. falciparum, to
evolve the mechanisms of resistance, which has been a major contributor to the

global resurgence of malaria in the last three decades (Marsh 1998) and doubling of

malaria-attributable child mortality in southeast Africa (Korenromp et al. 2003).

These control programs, therefore, have been hampered by the spread of drug

resistance in the parasites and insecticide resistance in the mosquito vectors (Ballou

et al. 1987).The causative agents of malaria, the plasmodial parasites, are unicel-

lular protozoans with a complex life cycle that involves sexual and asexual repro-

ductive stages (Fig. 2). Parasites reproduce asexually while in human hosts,

whereas the sexual stage takes place inside the mosquito vector. During the sexual

stage, the recombination of parasitic genetic material occurs in the mosquito, which

increases the chances of resistance-causing mutations in proportion to the number

of sexual reproductions and the number of mosquitoes that participate in the

transmission of the parasite.
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Fig. 1 Incidence and spread of malaria across the globe. The maps depicting insecticide suscep-

tibility status for malaria vectors across the globe (a), classification of countries by stage of malaria

elimination (b), and trends in reported malaria incidence since 2000–2012 (c). The maps were

adopted from the World Malaria Report (2013)
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2 History of Malarial Drug Resistance

Malarial incidents and the ways of its treatment in ancient China, India, the Middle

East, Greece, and Rome date back to 4000 BC. Interestingly, application of one of

the current day antimalarials, artemisinin, was documented in the ancient Chinese

treatment in 168 BC. Moreover, quinine-based treatments have been reported since

seventeenth century with reasonable success, while the synthesis of its analog,

chloroquine in 1930, revolutionized malaria treatments. However, mutations within

P. falciparum that conferred resistance to chloroquine surfaced independently in

Columbia and Thailand and resulted in spreading of the resistant parasite through

most endemic areas increasing the mortality and morbidity. Further, sulfadoxine–

pyrimethamine (SP), a combination of two drugs, replaced chloroquine effectively,

and resistance to SP evolved rapidly and now occurs at high frequency in major

malarious regions (Laxminarayan 2004). Therefore, alternative drugs such as the

Fig. 2 Life cycle of Plasmodium. The cartoon representing the complex life cycle of the parasite,

which undergoes more than ten stages of cellular differentiation and invades at least four types of

cells within two different hosts. Mosquitoes inject sporozoites into the human bloodstream, which

enter the hepatocytes and initiate the exoerythrocytic stage. The sporozoites differentiate into

tissue schizonts followed by merozoites that are released into the bloodstream. Alternately,

sporozoites enter dormancy through hypnozoite for clinical relapse. During the erythrocytic

stages, the parasites differentiate into mature gametocytes. The circulating gametocytes upon

uptake by the mosquitoes begin the sexual cycle forming a motile ookinete that crosses the midgut

epithelium and differentiate into oocyst that releases, which enter the human blood stream upon

mosquito bite. The figure depicting the lifecycle of the malaria parasite is adopted with permission

from Müller et al. (2009a)
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artemisinin-based combination therapies have been deployed currently. Although

the development of other novel therapeutic agents is in progress, however, higher

production costs limit their application in major endemic areas. On the other hand,

the evolution of resistance against affordable drugs incurs an enormous societal

cost for combating the disease. Therefore, efforts on the understanding the routes of

the emergence of malarial drug resistance are in progress.

3 General Mechanisms of Drug Resistance in Malarial
Parasites

Understanding the mechanisms leading to the drug resistance will facilitate the

clinicians and health workers to devise ways to combat the drug-resistant varieties

of the parasite and, thereby, contain the disease progression. The important factors

for the transmission of malarial disease progression are defined largely by either the

geographically specific variables including the rates of transmission and migration

and host immunity or evolutionary-genetic mode of resistance, which includes the

number and fitness effects of mutated genes and their interactions. Understandably,

several mechanisms of drug resistance are observed for malarial parasites that are

believed to have emerged by the inadequate drug exposure, improper dosing, poor

pharmacokinetic properties, fake drugs, and reinfections during the drug elimina-

tion phase (Müller 2011). However, current understanding on molecular events

leading to this complex phenomenon is limited, which severely limits efforts to

analyze and evaluate treatment models. For the practical purposes, however, the

factors governing resistance can be classified in the following: (a) the rate of

mutations in the parasite, (b) the fitness costs associated with the resistance muta-

tions, (c) the parasite load, (d) the drug selection vigor, and (e) the treatment

compliance. Understandably, the mutation rate of the parasite has a direct influence

on the frequency at which resistance can emerge. Therefore, attempts to measure

the rate of spontaneous mutations in P. falciparum revealed a relatively low rate of

2.5� 10�9 mutations/replication in the dihydrofolate reductase gene (Paget-

McNicoL and Saul 2001). This means if an infected host carries 1011 parasites in

the body, at least 100 of them will be drug resistant, and the ratio of drug-resistant

varieties will be increasing because of the selective advantage of these varieties

over the drug-sensitive wild-type strains. However, upon changing the drug selec-

tion pressures, the parasite encounters increased rate of mutations, which results in

the “accelerated resistance to multiple drug” (ARMD) phenotype observed in the

isolates from Southeast Asia (Rathod et al. 1997). Additionally, since the mutations

inducing drug resistance often impart a fitness cost compelling the parasite to

balance between the selective advantage of drug resistance and the biological

cost owing to the mutated protein (Petersen et al. 2011), the parasite generally

mitigates this conundrum by the acquisition of compensatory mutations (Levin

et al. 2000), thereby eliminating the deleterious mutants while retaining the isolates
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with compensatory mutations, as observed in the high parasitemias (Hastings

2004). Additionally, in the high-transmission regions, reinfection after a treatment

regime often results in the exposure of parasites to subtherapeutic drug concentra-

tions and consequent selection of the drug-tolerant parasites with moderate to full

resistance (Hastings and Watkins 2006; Stepniewska and White 2008). Agoniz-

ingly, the drug-resistant parasites that emerge due to such reinfections result in

polyclonal infection with up to seven clones coexisting within one host (Färnert

et al. 2009). Different treatment regimens that have been used to combat the

parasite effectively resulted in the emergence of resistant varieties over the time,

thereby necessitating the need for the development of sustainable treatment regi-

mens that delay the emergence and spread of drug resistance.

4 Antimalarial Drugs and the Resistance Mechanisms

As noted before, chemotherapy, principally comprising the quinine derivatives, has

traditionally played an important role in the treatment and control of malaria.

Several structural variants of quinines, such as chloroquine and mefloquine, have

been employed in the treatment and containment of the malaria. However, success-

ful implementation of antimalarial drugs requires quick antimalarial action, afford-

ability, tolerability, and safety. Glaringly, drug-resistant varieties for several

individual first-line drugs have emerged making treatment regimen complicated

and thus leading to the combinatorial therapy of almost all the antimalarials.

Although the genetic basis of the emergence of drug resistance follows a typical

two-step path, the de novo selection of resistance followed by the spread of

resistance, with each drug targeting distinct mechanisms within the parasite, the

mechanism of action of these drugs and modes of the resistance follow the drug-

specific fashion (White 2004).

4.1 Quinine

The arylamino alcohol, quinine, is one of the oldest antimalarial agents and has

been used by the Quenchua of Peru in the form of “tonic water,” a mixture of

minced bark of cinchona trees and sweetened water, to halt shivering due to low

temperatures—the typical symptoms of malaria (Butler et al. 2010). Although the

first use to treat malaria was reported in Rome in 1631, the active alkaloid, quinine,

was first isolated from the cinchona bark in 1820 and the artificially synthesized in

1944 (Woodward and Doering 1945). Quinine has been widely used till 1940 to

treat severe cases of malaria but currently used as a second-line treatment in

combination with antibiotics such as tetracycline/doxycycline to treat resistant

malaria (Farooq and Mahajan 2004). Although molecular mechanism by which

quinine acts is only partly understood, its accumulation in the digestive food
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vacuoles of the parasite (Fitch 2004) and the multiple genes influencing its response

encode its transporters (Cooper et al. 2002; Sidhu et al. 2005; Cooper et al. 2007;

Nkrumah et al. 2009) suggest its action is dependent on the intra-parasitic concen-

tration. Biochemically, quinine is believed to act similar to its synthetic variant,

chloroquine, by inhibiting hemozoin crystallization during the heme detoxification

pathway thereby causing the accumulation of cytotoxic heme in the parasites (Egan

2008). In addition to the dose-dependent action, its short half-life of 8–10 h (Meng

et al. 2010; Briolant et al. 2011) and widespread administration (Farooq and

Mahajan 2004) are believed to have contributed to the emergence of antibiotic

resistance. The first case of quinine resistance was reported in South America in the

early 1900s and later in the Thai–Cambodian border in the mid-1960s

(Wongsrichanalai et al. 2002). Further emergence of clinically relevant resistance

to quinine followed a sporadic geographical pattern. It has been widespread in

Thailand (Wernsdorfer 1994) but noticed sporadically in Southeast Asia and west-

ern Oceania and less frequently in South America (Zalis et al. 1998) and Africa

(Jelinek et al. 2001).

4.2 Chloroquine

Owing to the expensive synthetic process of quinine (Woodward and Doering

1945) and its side effects on the pregnant women, children (McGready et al.

2001), and HIV-coinfected patients, an easily synthesizable derivative called chlo-

roquine has been introduced in the late 1940s and has been extensively used on a

massive scale for malaria treatment since then. Moreover, its long half-life of

60 days, efficacy, affordability, and safety made chloroquine a better successor to

quinine and in the treatment of malaria for many years that followed (AlKadi 2007).

Although the 60-day-long half-life of chloroquine is advantageous in providing a

chemoprophylactic effect during the drug elimination phase, it adversely exposes

the parasites for longer period of time after the drug concentrations fall below

therapeutic range thereby contributing to the selection for drug-resistant parasites

(Stepniewska and White 2008). Chloroquine-resistant parasites emerged approxi-

mately 10 years after its introduction, simultaneously along the Thai–Cambodian

border in Southeast Asia (Spencer 1985; Wernsdorfer and Payne 1991) and Colom-

bia in South America (Young and Moore 1961) in the late 1950s (Mita et al. 2009).

Since then, chloroquine resistance has been reported from all parts of the world

where malaria is endemic except in the Central America, Caribbean Hispaniola

Island, parts of the Middle East, and Central Asia (Hastings and D’Alessandro
2000). Genetic epidemiological data suggests that chloroquine-resistant

P. falciparum strains have spread in all endemic areas of South America by 1970,

Asia and Oceania by 1989, and Africa by late 1970s (Peters 1987). Furthermore,

chloroquine resistance spread from eastern Africa to Central and Southern Africa,

followed by the Western Africa by 1983 and sub-Saharan Africa by 1989

(Wongsrichanalai et al. 2002) and emerged independently in several parts of
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Asia, including Papua New Guinea and the Philippines (Mita et al. 2009). Although

chloroquine-resistant P. falciparum is widespread, clinical efficacy of the drug is

retained for the premune patients that have acquired partial immunity through the

reinfection (Wellems and Plowe 2001), and therefore it remains as the first-line

treatment of P. falciparum and P. vivax infections (Petersen et al. 2011).

Understanding the mechanism of action of chloroquine has been of great

research and medical interest for the past few decades. Although the exact mech-

anism is not understood, since most of the drug targets are localized in the acidic

food vacuole of the parasite (Geary et al. 1986; Krogstad et al. 1987), the accepted

model proposes inhibition of heme polymerization into the cytotoxic hemozoin by

chloroquine followed by the accumulation of cytotoxic heme within the parasite

(Egan 2008). Moreover, as a weak base with pKa values of 8.1 and 10.2, chloro-

quine remains neutral at the physiological pH and thus diffuses readily across

membranes (Martin et al. 2009). However, in the acidic food vacuole, chloroquine

becomes diprotonated and thus unable to transverse across the membrane, thus

accumulates inside the vacuoles, binds to hematin, prevents detoxification of the

heme, and ultimately leads to the death of the parasite. Therefore, the mechanism of

resistance, understandably, relies on increased capacity of the parasite to expel

chloroquine faster than the drug could reach optimal concentration for its action

(Foley and Tilley 1997). Moreover, the observations that resistant varieties have

been demonstrated to efflux chloroquine 40–50 times faster than the wild-type

parasites (Krogstad et al. 1987) and the chemicals which inhibit the efflux pumps

could effectively reverse the resistance (Martin et al. 1987) further support the

presumption on efflux-mediated resistance.

Therefore, the genes associated with the resistance essentially encode the trans-

port proteins; for example, the gene encoding multidrug-resistant transporter,

pfmdr-1 (located on chromosome 5), and the gene encoding a more specific

transporter, chloroquine-resistant transporter, pfcrt (located on chromosome 7),

have been implicated in the resistance phenotype (Fidock et al. 2004). Polymor-

phisms in the chloroquine-resistant transporter (PfCRT) have been demonstrated to

be the principal determinants of chloroquine resistance (Sidhu et al. 2002), while

mutations in the multidrug-resistant transporter (PfMDR1) have been demonstrated

to modulate chloroquine resistance (Barnes et al. 1992). The point mutation in

pfmdr-1 at Asp-Tyr (D86Y) has been demonstrated with chloroquine resistance

(von Seidlein et al. 1997; Póvoa et al. 1998; Price et al. 1999; Babiker et al. 2001),

while several other polymorphisms at F184, C1034, D042, and Y1246 have been

implicated in chloroquine resistance (Djimdé et al. 2001). Likewise, the point

mutation in pfcrt at Thr-Lys (T76K) has been associated with the resistance

mechanisms (Djimdé et al. 2001; Durand et al. 2001). Interestingly, the linkage

disequilibrium between PfMDR1 and PfCRT alleles in chloroquine-resistant para-

sites isolated from the Southeast Asia and African patients suggests a functional

interaction of both proteins (Hastings 2006; Osman et al. 2007).
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4.3 Mefloquine

Mefloquine drug introduced in the mid-1970s by the United States Department of

Defense (Trenholme et al. 1975) is a racemic mixture of two 4-methanolquinoline

enantiomers: (þ)-anti-mefloquine and (�)-anti-mefloquine (Rastelli and Coltart

2015) with a reasonably longer half-life of 14–18 days (Stepniewska and White

2008). Unlike the parental quinine, mefloquine is widely used for the treatment of

malaria in pregnancy (González et al. 2014) but is inefficient to act on the parasites

in the hepatocellular phase of the disease and thus administered in combination

with primaquines for the P. vivax patients (Schlagenhauf et al. 2010). Similar to

chloroquine, the resistance to mefloquine was first observed in the Southeast Asia

along the Thai–Cambodian border during the late 1980s (Shanks 1994;

Wongsrichanalai et al. 2001). Since then, resistance has been reported in several

other parts of Southeast Asia, in the Amazon region of South America, and

sporadically in Africa (Muckenhaupt 1995). Since the mechanism of action of

mefloquine is similar to its quinine synthetic analogs (Fitch et al. 1979; Eastman

and Fidock 2009), resistance to mefloquine is implicated to the copy number and

polymorphism of pfmdr-1 gene (Cowman et al. 1994). However, different resistant

isolates of the parasites showed geographically distinct behavior; for example,

while resistance in the Thai isolates correlated to the higher copy number of

pfmdr-1 (Price et al. 1999), the resistance in the Brazilian (Zalis et al. 1998) and

African (Basco et al. 1995) isolates was insensitive to the copy number. In addition,

functional studies on the mefloquine resistance employing recombinant parasites

have suggested a primary mode of action outside of the food vacuoles (von Seidlein

et al. 1997), probably targeting the transport function of PfMDR-1 (Martin et al.

1987). Notably, the D86Y mutation in pfmdr-1 that confers resistance to quinine

has been demonstrated to induce sensitivity to mefloquine, suggesting an inverse

relationship between mefloquine and chloroquine resistance phenotype (Prince

et al. 2001; Duraisingh et al. 2000). On the other hand, point mutations at

Ser-1034, Asn-1042, and Asp-1246 have been demonstrated to induce mefloquine

resistance (Reed et al. 2000), indicating a unique, yet unexplored, relation of pfmdr-
1 and mefloquine resistance.

4.4 The Antifolate Drugs

The antifolate drugs used for malarial therapy interfere with folate metabolism, a

pathway essential to the survival of the parasite. These synthetic antimicrobial

agents that contain the sulfonamide group and thus are also known as the sulfa

drugs comprise essentially two components: (a) sulfadoxine or dapsone that com-

petitively inhibits folate biosynthetic enzyme, the dihydropteroate synthetase

enzyme (PfDHPS) by competing with p-aminobenzoic acid (Bruce-Chwatt 1985),

and (b) pyrimethamine or proguanil, which principally inhibits the protozoan
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dihydrofolate reductase (PfDHFR) activity of the bifunctional dihydrofolate reduc-

tase/thymidylate synthase enzyme thereby preventing the synthesis of the active

form of folate, the tetrahydrofolate. These two drugs, therefore, are generally

administered in combination since they inhibit two different steps in the biosyn-

thesis of tetrahydrofolate. The drug combination of sulfadoxine–pyrimethamine

(SP), which possesses a half-life of approximately 4–5 days, was introduced in the

late 1970s as a drug of choice to treat chloroquine-resistant malaria (Winstanley

2001) which turned out as an effective, affordable, and well-tolerated single-dose

drug. Unfortunately, resistance to SP emerged rapidly (Uhlemann and Krishna

2005) with the first report from the Thai–Cambodian border (Bj€orkman and

Phillips-Howard 1990) followed by reports from parts of Southeast Asia, Southern

China, and Amazon basin in the early 1980s (Aramburu et al. 1999; Vasconcelos

et al. 2000). In addition, low degree of resistance has been reported from the west

coastal South America, southern Asia including Iran, and western Oceania (Bloland

and World Health Organization 2001). Notably, SP resistance occurred much later

in Africa with the first case in the 1980s, followed by an alarmingly rapid spreading

to the eastern Africa (Rønn et al. 1996). Owing to the emergence and fast-spreading

resistance, SP is currently limited to intermittent preventative malaria treatment

during pregnancy.

Unlike the quinine-derived drugs, the mechanisms of action of and resistance to

SP are well understood. Since these antifolate compounds inhibit the action of

DHFR and DHPS, plausibly, the resistance mapped to the point mutations in these

target enzymes. Five-point mutations in the dhps gene at S436A/P, A437G, K540E/
G, A581G, and A613S/T that are known to confer resistance by lowering enzyme

affinity have been identified from various parts of the world including Indonesia

(Nagesha et al. 2001), Malawi, Bolivia, Kenya (Plowe et al. 1997), Gabon (Mawili-

Mboumba et al. 2001), and South America (Urdaneta et al. 1999). Likewise, five-

point mutations in the dhfr gene at A16V, N51I, C59R, S108N, and T164L/I that

are known to elicit pyrimethamine resistance by reduction in drug-binding affinity

of the enzyme have been identified the isolates from Thailand (Farooq and Mahajan

2004). Although the precise relation between these mutations and SP resistance is

unclear (Peters 1987), the DHFR enzymes from the resistant strains have been

demonstrated to bind pyrimethamine with 400- to 800-fold lower affinity than the

enzymes from the drug-sensitive strains (Ferone 1970), indicating a direct relation

between the mutations and resistance. On the other hand, the other antifolate drug

combinations of dapsone–proguanil resulted in dapsone-driven hemolysis in

G6PD-deficient patients and have been immediately discontinued (Luzzatto 2010).

4.5 Artemisinins

Artemisinin (aka qinghaosu), a sesquiterpene lactone containing an unusual per-

oxide bridge that is required for antimalarial activity (Eastman and Fidock 2009),

and its semisynthetic endoperoxide derivatives are currently used in the treatment
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of P. falciparum malaria owing to its rapid action against the parasite (White

1997). Since all the mainstream drugs in the treatment of malaria have resulted in

the emergence of resistant parasites, the artemisinin combination therapies (ACT)

are now used as the linchpin in antimalarial chemotherapy worldwide, and conse-

quently artemisinin discovery has been awarded with this year’s Nobel Prize

in Medicine. Current ACTs include artemether–lumefantrine, artesunate–

mefloquine, artesunate–amodiaquine, artesunate–sulfadoxine–pyrimethamine,

dihydroartemisinin–piperaquine, and artesunate–pyronaridine (World Malaria

Report 2014). Artemisinin, as a natural product, is isolated from the Chinese

herbal plant, Artemisia annua (Chinese sweet wormwood), and the precursor

compound has been produced in yeast using recombinant DNA technology.

Since low bioavailability, high production cost, poor pharmacokinetic properties,

short half-life at 0.5–1.4 h (Bloland andWorld Health Organization 2001), and low

water solubility limit the use of the parental artemisinin, several semisynthetic

derivatives such as artemether, artesunate, and dihydroartemisinin have been

developed for clinical use (Bray et al. 2005). Conspicuously, since the use of the

drug as monotherapy is ineffective, therapies that combine artemisinin or its

derivatives with other antimalarial drugs have been effective (Fig. 3).

Although initial studies could not identify any clinically significant artemisinin

resistance except in an animal model, agonizingly, recent studies have identified

certain resistance isolates of the parasites. Initial widespread administration of

artemisinin derivatives as monotherapy in Southeast Asia along the Thai–Cambo-

dian border is believed to have resulted in the emergence of resistance as reported

Fig. 3 Principal antimalarial drugs. The biochemical structures and clinical limitations of the

principal drugs used currently in the treatment of human malarias are presented. The figure is

adopted with permission from Ridley (2002)
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sporadically from this region in the year 2008 (Noedl et al. 2008; Dondorp et al.

2009; Eastman and Fidock 2009). Following this, Thailand, Northern and North-

eastern Cambodia, Vietnam, Southern Laos, and Central and Eastern Myanmar

have reported cases of clinically significant artemisinin resistance (Ashley et al.

2014). Although the mechanism of action of artemisinin drugs is unclear, several

lines of evidence suggest that generation of oxygen free radicals through the action

of the endoperoxide bridge, which follows a series of biochemical events, ulti-

mately acts against the parasite (Ginsburg and Atamna 1994). Moreover, although

mutations in the gene encoding the Ca2þ-transporting ATPase 6 (pfatp6) (Jambou

et al. 2005) and polymorphisms in the gene encoding a deubiquitination enzyme

(ubp1) (Hunt et al. 2007) have been associated with increased artesunate resistance,
phenotypic association of these two candidates, however, with the parasites requir-

ing longer clearance time has not been correlated with the in vivo phenotype of

resistant parasites (Imwong et al. 2010). In addition to the other drugs,

overexpression of pfmdr1 has been demonstrated to significantly reduce parasite

susceptibility to artemisinin (Sidhu et al. 2005; Chavchich et al. 2010). In addition,

to avoid the artemisinin drug selection pressure, the parasites have been demon-

strated to enter quiescence during the intraerythrocytic development stage

(Witkowski et al. 2010). Surprisingly, genetic analyses have reported that the

reduction in artemisinin susceptibility bears a heritable component (Anderson

et al. 2010). Therefore, artemisinin derivatives are deployed in combination with

other antimalarial compound to prolong the lifespan of artemisinin drugs by

reducing the emergence of drug-resistant parasites (Müller et al. 2009b).

4.6 Other Drugs Used in Antimalarial Therapy

Several quinine derivatives such as amodiaquine (Stepniewska and White 2008; Sá

et al. 2009), piperaquine (Raynes 1999; Warhurst et al. 2007), lumefantrine (Ezzet

et al. 1998; Ashley et al. 2007), primaquine (Edwards et al. 1993; Wells et al. 2010),

and atovaquone (Hudson et al. 1991; Srivastava et al. 1997) have been used in the

treatment of human malaria over the years with different ranges of success.

However, since the broad mechanism of action of these quinine-derived drugs is

similar, resistant parasite strains have emerged readily with the polymorphisms in

the genes pfmdr-1 and pfcrt that encode efflux pumps (Gil et al. 2003).

5 Conclusions and Future Perspectives

With the emergence of drug resistance to several mainstream drug regimens

including the artemisinin derivatives—the primary stronghold in malaria

chemotherapeutical treatment—a novel and advanced therapeutic strategy needs

to be implemented to contain and curtail the spread of resistance. Applying
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advanced genomics, empirical and theoretical research in population genetics in

combination with the progress in drug discovery and development would be able to

present a larger choice of effective, appropriate, and affordable antimalarial drugs

and design promising strategies to delay the evolution of resistance against the

newly introduced antimalarial drugs. Since the current choice of drugs is limited, it

is difficult to balance the widespread administration of the effective drugs against

the reducing the emergence of resistance through controlled administration. There-

fore, currently the combinatorial therapies are applied to maximize the life span of

the individual antimalarials and to reduce the emergence and spread of parasites

resistant to any one particular antimalarial (Boni et al. 2008). In addition, public

awareness, training of the clinicians, adherence to the full treatment regimen, and

the vector control strategies are essential to pare down the emergence of drug-

resistant parasites and ensure adequate treatment of individual infections. There-

fore, combined with effective and rational drug treatment policies, the prevailing

tools should be able to further reduce morbidity and mortality. However, in addition

to the thorough understanding of the genetic mechanisms and pharmacological

factors that could impact treatment, successful curtailment of drug-resistant malaria

would require sustained financial support and political cooperation to monitor and

curtail the emergence of drug-resistant parasites. In conclusion, the reduction in the

global malaria burden and control of drug-resistant malaria require reducing the

overall drug pressure through more selective drug combinations (possibly vaccines)

that either are inherently less likely to foster resistance or have properties that do

not facilitate development or spread of resistant parasites.
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Sá JM, Twu O, Hayton K, Reyes S, Fay MP, Ringwald P, Wellems TE (2009) Geographic patterns

of Plasmodium falciparum drug resistance distinguished by differential responses to

amodiaquine and chloroquine. Proc Natl Acad Sci U S A 106:18883–18889. doi:10.1073/

pnas.0911317106

Schlagenhauf P, Adamcova M, Regep L, Schaerer MT, Rhein HG (2010) The position of

mefloquine as a 21st century malaria chemoprophylaxis. Malar J 9:357. doi:10.1186/1475-

2875-9-357

Shanks GD (1994) Drugs for prophylaxis and treatment of malaria. J Travel Med 1:40–47

Sidhu AB, Verdier-Pinard D, Fidock DA (2002) Chloroquine resistance in Plasmodium
falciparum malaria parasites conferred by pfcrt mutations. Science 298:210–213. doi:10.

1126/science.1074045

Sidhu AB, Valderramos SG, Fidock DA (2005) pfmdr1 mutations contribute to quinine resistance

and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. Mol Microbiol

57:913–926. doi:10.1111/j.1365-2958.2005.04729.x

Spencer HC (1985) Drug-resistant malaria–changing patterns mean difficult decisions. Trans R

Soc Trop Med Hyg 79:748–758

Srivastava IK, Rottenberg H, Vaidya AB (1997) Atovaquone, a broad spectrum antiparasitic drug,

collapses mitochondrial membrane potential in a malarial parasite. J Biol Chem

272:3961–3966

Stepniewska K, White NJ (2008) Pharmacokinetic determinants of the window of selection for

antimalarial drug resistance. Antimicrob Agents Chemother 52:1589–1596. doi:10.1128/AAC.

00903-07

Trenholme CM,Williams RL, Desjardins RE, Frischer H, Carson PE, Rieckmann KH, Canfield CJ

(1975) Mefloquine (WR 142,490) in the treatment of human malaria. Science 190:792–794.

doi:10.1126/science.1105787

Uhlemann AC, Krishna S (2005) Antimalarial multi-drug resistance in Asia: mechanisms and

assessment. Curr Top Microbiol Immunol 295:39–53

Urdaneta L, Plowe C, Goldman I, Lal AA (1999) Point mutations in dihydrofolate reductase and

dihydropteroate synthase genes of Plasmodium falciparum isolates from Venezuela. Am J

Trop Med Hyg 61:457–462

Vasconcelos KF, Plowe CV, Fontes CJ, Kyle D, Wirth DF, Pereira da Silva LH, Zalis MG (2000)

Mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase of

isolates from the Amazon region of Brazil. Mem Inst Oswaldo Cruz 95:721–728

von Seidlein L, Duraisingh MT, Drakeley CJ, Bailey R, Greenwood BM, Pinder M (1997)

Polymorphism of the Pfmdr1 gene and chloroquine resistance in Plasmodium falciparum in

The Gambia. Trans R Soc Trop Med Hyg 91:450–453

Warhurst DC, Craig JC, Adagu IS, Guy RK, Madrid PB, Fivelman QL (2007) Activity of

piperaquine and other 4-aminoquinoline antiplasmodial drugs against chloroquine-sensitive

446 S.C.M. Kumar

http://dx.doi.org/10.1002/anie.201507304
http://dx.doi.org/10.1038/35002615
http://dx.doi.org/10.1038/35002615
http://dx.doi.org/10.1038/415686a
http://dx.doi.org/10.1073/pnas.0911317106
http://dx.doi.org/10.1073/pnas.0911317106
http://dx.doi.org/10.1186/1475-2875-9-357
http://dx.doi.org/10.1186/1475-2875-9-357
http://dx.doi.org/10.1126/science.1074045
http://dx.doi.org/10.1126/science.1074045
http://dx.doi.org/10.1111/j.1365-2958.2005.04729.x
http://dx.doi.org/10.1128/AAC.00903-07
http://dx.doi.org/10.1128/AAC.00903-07
http://dx.doi.org/10.1126/science.1105787


and resistant blood-stages of Plasmodium falciparum. Role of beta-haematin inhibition and

drug concentration in vacuolar water- and lipid-phases. Biochem Pharmacol 73:1910–1926.

doi:10.1016/j.bcp.2007.03.011

Wellems TE, Plowe CV (2001) Chloroquine-resistant malaria. J Infect Dis 184:770–776. doi:10.

1086/322858

Wells TN, Burrows JN, Baird JK (2010) Targeting the hypnozoite reservoir of Plasmodium vivax:
the hidden obstacle to malaria elimination. Trends Parasitol 26:145–151. doi:10.1016/j.pt.

2009.12.005

Wernsdorfer WH (1994) Epidemiology of drug resistance in malaria. Acta Trop 56:143–156

Wernsdorfer WH, Payne D (1991) The dynamics of drug resistance in Plasmodium falciparum.
Pharmacol Ther 50:95–121

White NJ (1997) Assessment of the pharmacodynamic properties of antimalarial drugs in vivo.

Antimicrob Agents Chemother 41:1413–1422

White NJ (2004) Antimalarial drug resistance. J Clin Invest 113:1084–1092. doi:10.1172/

JCI21682

Winstanley P (2001) Modern chemotherapeutic options for malaria. Lancet Infect Dis 1:242–250.

doi:10.1016/S1473-3099(01)00119-0
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Drug Resistance in Cancer
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Abstract Cancer is currently a major public health problem worldwide. Recent

data estimates that approximately 40% of men and women will develop some form

of cancer, at some point during their lifetime. Major challenges in treating cancer

include delayed diagnosis, emergence of resistance toward existing drugs and

metastasis, etc. In majority of advance-stage cancers, the conventional therapies

are mostly ineffective. Targeted therapies raise new hope in several difficult-to-

treat cases, but their application is restricted by variable efficacies of these drugs in

different cancers (tissue backgrounds) and genetic backgrounds. Efflux of drugs,

inactivation of drugs, modification of drug targets, inhibition of cell death, induc-

tion of epithelial–mesenchymal transition (EMT), and enhanced DNA damage

repair activity are the most common mechanisms of drug resistance in cancer.

Here, we present an account of these drug resistance mechanisms in cancer and

recent breakthroughs in drug development, which have been successful in deceiv-

ing most of these mechanisms of drug resistance. Additionally, prognostic bio-

markers and approaches for diagnosis of drug resistance have also been discussed.
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1 Introduction

Cancer is the unrestrained proliferation of cells, which can invade and spread to

distant sites in the body. Usually, in a normal tissue, the growth of the cells and their

division proceed according to the need of the body and these processes are

stringently controlled. However, sometimes because of intrinsic or extrinsic rea-

sons, certain cells lose responsiveness to the growth control mechanisms. These

cells expand their population and produce a tumor or neoplasm. A tumor that does

not invade the surrounding tissue and does not spread is “benign,” whereas tumor

that attains the characteristic of continuous growth and invasiveness is considered

“malignant” or cancerous. In the process of being malignant, tumors acquire

characteristics of invasion and metastasis. During metastasis, cancerous cells get

dislodged from the original tumor and disperse and invade through the lymph and

blood vessels to the other tissues. These metastatic cells may also form secondary

tumors in the other tissues by continuous proliferation (NCI website: http://www.

who.int/cancer/en/; Goldsby et al. 2002; Mukherjee 2010). Cancers are classified

mainly in three groups, viz., carcinomas, leukemias/lymphomas, and sarcomas,

based on their tissue origin during embryonic development. About 90% of the

cancers in humans are malignancies of epithelial cells, the carcinomas. Leukemias

and lymphomas arise from the hematopoietic cells of bone marrow and are respon-

sible for roughly 8% of human cancers. Whereas leukemias tend to proliferate as

single cells, lymphomas grow as aggregates of tumor cells. Sarcomas, which are

relatively rare in humans (approximately 1% of total cancer cases), are solid tumors

of connective tissues (Cooper 2000; Goldsby et al. 2002).

1.1 Transformation and Hallmarks of Cancer

Cancer cells differ from normal cells in various ways that allow them to grow

indefinitely and become metastatic. Sometimes, normal cells in culture alter their

morphology and growth properties when treated with chemical carcinogens, DNA

damage-inducing irradiation, or certain oncogenic viruses, and occasionally this

may also impart tumor-producing ability to these cells, when injected into animals.

The process is referred to as “transformation” or “malignant transformation,” and

these cells exhibit very similar in vitro properties to those of cancer cells. Therefore,

malignant transformation has been used as a model to study the process of cancer

induction (Goldsby et al. 2002). Development of a cancer from its normal progenitor

cell is a multistage process, and interactions of the person’s genetic factors with that
of the environmental factors, such as physical, chemical, and biological carcinogens,

are considered responsible for this (Stewart and Wild 2014). There is accumulation

of these factors over the age which puts elderly people at the higher risk of

developing cancer. Infection with certain viruses, viz., hepatitis B and C viruses,

Kaposi’s sarcoma herpesvirus (KSHV, also known as human herpesvirus 8),
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Epstein–Barr virus (EBV, also known as human herpesvirus 4), and certain papil-

loma viruses, also causes cancer (Cai et al. 2012; de Martel et al. 2012; Upadhyay

et al. 2012; Jha et al. 2013).

Hanahan and Weinberg (2000) established an organizing principle to explain the

complexities of neoplastic disease and proposed the six lead changes which drive

the malignancy. These changes include sustained signaling for proliferation, eva-

sion from the influence of growth inhibitors, defiance to cell death, everlasting

replication ability, enhanced angiogenesis, and induction of invasion and metasta-

sis. Based on new progress in oncology research made during 2000–2010, they also

proposed two emerging hallmarks of cancer, which include ability of cancer cells to

reprogram energy metabolism and evade destruction by immune system (Hanahan

and Weinberg 2011) (Fig. 1).

1.2 Various Treatment Regimes of Cancer

The cancer management mainly involves surgery, chemotherapy, radiotherapy, and

targeted therapy. Surgery is the preferred method for “early-stage” cancers. A high
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dose of radiation is applied during radiotherapy to kill the cancer cells, and

sometimes it is also used in a localized setting, conjointly with surgical procedures.

Cytotoxic drugs are used during chemotherapy, which preferentially kill the rapidly

dividing cancer cells. On the contrary, “targeted therapy” targets specifically the

changes in cancer cells that help in their growth, cell division, and metastasis. Other

treatments include immunotherapy (which helps immune system to fight cancer),

hormone therapy (inhibits the hormone-dependent growth in cancers, used often for

treating breast cancer), and stem cell transplant (a procedure of restoring blood-

forming stem cells after high doses of chemotherapy and radiation therapy). Several

factors such as patient’s health, magnitude of the disease, pathological and molec-

ular specificities, and location of the cancer are empirically taken into consideration

to decide the suitable treatment regime(s). The ultimate goal of a therapy or

therapeutic combinations is to kill the cancer cells while minimizing the damage

to the normal tissue (http://www.cancer.gov/about-cancer/treatment/types;

Chorawala et al. 2012).

1.3 Inherent and Acquired Drug Resistance

Drug resistance in cancer can be categorized in two types, acquired and innate

(or intrinsic) resistance. Acquired drug resistance in cancer develops during treat-

ment, usually in response to therapy, while innate resistance preexists in cancer

cells, even before starting the treatment. Acquired resistance arises during the

course of treatment and could be due to mutations or adaptive responses to the

treatment regimens, including activation of alternative compensatory signaling or

upregulation of the therapeutic target(s) (Holohan et al. 2013). The drug resistance

can also be a result of therapy-induced selection of a small subgroup of resistant

cells present in tumors, which usually tend to display high degree of molecular

heterogeneity (Swanton 2012).

2 Mechanism(s) of Drug Resistance in Cancer

2.1 Drug Efflux

This mechanism relies on reducing accumulation of drug inside the cell by enhanc-

ing its efflux. ATP-binding cassette (ABC) transporters are most well-studied pro-

teins carrying out this function. More than 100 transporters from this evolutionarily

conserved protein family are distributed from prokaryotes to humans and are known

to move substrates in (influx) or out (efflux) of cells, or carry out their transport

across intracellular membranes. Substrates for ABC transporters may be endoge-

nous, such as metal ions, inorganic anions, amino acids, peptides, sugars,
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hydrophobic compounds, and metabolites, or exogenous substrates, such as drugs

and other xenobiotic compounds (Choi 2005; Vasiliou et al. 2009). ABC trans-

porters have two discrete domains—a nucleotide-binding domain (NBD) and a

transmembrane domain. Substrate binding at the transmembrane domain of protein

induces hydrolysis of ATP molecule at the nucleotide-binding site, which drives a

conformational change facilitating efflux of drugs. This efflux is important for

preventing the accumulation of drugs inside the cell. Expression of ABC trans-

porters is very high in the epithelial cells of the intestine and liver, where they carry

out efflux of drugs besides other harmful substrates into the intestinal lumen and

bile duct. Additionally, these proteins have crucial role(s) in the maintenance of

blood–brain barrier (Housman et al. 2014). The human genome codes for 49 ABC

transporters, from which at least 14 genes are implicated in human diseases,

including cystic fibrosis, drug-resistant tumors, ataxia, adrenoleukodystrophy,

Dubin–Johnson syndrome, Stargardt’s disease, Byler’s disease, X-linked

sideroblastic anemia, progressive familiar intrahepatic cholestasis, and persistent

hyperinsulinemic hypoglycemia in children (Choi 2005; Vasiliou et al. 2009).

“Multidrug resistance (MDR)” is an important mechanism implicated in the

development of resistance toward chemotherapeutic agents in many cancers. MDR

impacts cancers ranging from blood cancers to a variety of solid tumors (Persidis

1999). In human cancers, elevation of three ABC transporters, P-glycoprotein

(expressed from MDR1 gene), multidrug resistance-associated protein 1 (MRP1),

and mitoxantrone resistance protein (MXR, aliases: ABC-P, BCRP) have been

found to be linked with resistance to various antineoplastic drugs (Gottesman 2002;

Zahreddine and Borden 2013). Work on a doxorubicin-resistant lung cancer cell

line revealed that instead of P-glycoprotein, this cell line depends on another

protein, namely, MRP, for drug resistance. MRP was also identified as a member

of the ABC transmembrane transporter superfamily and a drug efflux pump

(Persidis 1999). P-Glycoprotein is the best studied ABC transporter involved in

drug resistance, whereas majority of multidrug transporters belong to the multidrug

resistance protein (MRP) family (alias ABCC family). Increased expression of

MDR1 has been recorded in cancerous tissue of the colon, liver, and kidney,

whereas in lung and breast tissues and prostate cells which lacks MDR1,

upregulation of MRP1 or MXR has been associated with drug resistance (Housman

et al. 2014). Increased expression of P-glycoprotein imparts resistance against

vinblastine, vincristine, doxorubicin, teniposide, daunorubicin, etoposide, and

taxol, whereas overexpressed MXR is known to provide resistance against topo-

isomerase I inhibitors, viz., anthracyclines and mitoxantrone (Gottesman 2002;

Chorawala et al. 2012; Zahreddine and Borden 2013). Yanase et al. have succeeded

in reversing BCRP (MXR)-mediated drug resistance in breast cancer cells by using

gefitinib, a tyrosine kinase inhibitor that blocks this transporter (Yanase et al. 2004).

MRP1 is ubiquitously expressed in normal tissues and human cancers (Chorawala

et al. 2012). This protein displays a broad spectrum of resistance for anticancer drug

and is involved in the transportation of glutathione (GSH)-/glucuronic acid-/sulfate-

conjugated drugs and natural product drugs which are negatively charged. Addi-

tionally, cotransport of glutathione with drugs which are positively charged, e.g.,
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vinblastine, has also been observed in certain cases (Gottesman 2002; Zahreddine

and Borden 2013). In a study of neuroblastoma, high levels of MRP1 have also been

associated with poor prognosis (Haber et al. 2006). In addition to MRP1, MRPs

2, 3, and 5 have also been implicated in drug resistance in cancers (Chorawala et al.

2012).

2.2 Inactivation of Drug

A number of drugs turn into their cytotoxic variants, after metabolic activation/

alteration by enzymes. Various researchers have shown that certain drug-resistant

cancer cells display reduced drug activation under the influence of selection

pressure exerted by the cytotoxic drugs (Kufe and Spriggs 1985; Bardenheuer

et al. 2005). This is usually achieved by abrogating the activity of enzyme

[by downregulation of expression or mutation(s) in the coding gene(s)] involved

in drug activation (Sampath et al. 2006). Cytarabine (also called AraC) is a

nucleoside analogue used for treating acute myelogenous leukemia (Sampath

et al. 2006; Zahreddine and Borden 2013). Multiple phosphorylations convert

AraC to AraC-triphosphate, which is a substrate for human DNA polymerases.

Downregulation at expression level, or mutation in the genes of the pathway, has

been identified as the common mechanism facilitating AraC drug resistance

(Sampath et al. 2006; Zahreddine and Borden 2013). Additionally, inactivation of

drugs is also used as a mechanism of development of resistance. One example is

conjugation of the drugs to glutathione, which is a potent cellular antioxidant

(Wilson et al. 2006). Conjugation of GSH to platinum drugs such as oxaliplatin

and cisplatin converts them into better substrates for ABC transporters resulting in

their efflux outside the cells (Zahreddine and Borden 2013). Elevation of GST

expression in cancer cells thereby leads to increased rate of detoxification of the

anticancer drugs, resulting into reduced cytotoxic damage to the cells (Peters and

Roelofs 1997; Holohan et al. 2013).

Irinotecan is a topoisomerase I inhibitor that is inactivated by UGT1A1-

mediated glucuronidation. Expression of UGT1A1 is usually suppressed by pro-

moter methylation, and induction of UGT1A1 expression by epigenetic means also

facilitates resistance to Irinotecan (Gagnon et al. 2006). Additionally, CYP450 is

also known to inactivate irinotecan during phase I metabolism (Xu and Villalona-

Calero 2002; Holohan et al. 2013; Zahreddine and Borden 2013).

2.3 Modification in Drug Target

Target alterations also lead to drug resistance in cancers. Signaling kinases are

among the most important drug targets for combating cancer. Constitutive activa-

tion of many of these kinases transmit signal for continuous cell division. Important
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components of this signaling include proteins belonging to the family of epidermal

growth factor receptor (EGFR) and the molecules involved in the downstream

signaling, e.g., Ras, Src, Raf, MEK, etc. Mutations are usually responsible for the

overactivation of these kinases; however, gene overexpression has also been found

to be responsible for similar functional outcome. In non-small cell lung carcinoma

(NSCLC), mutations which activate EGFR have been identified as key drivers of

carcinogenesis in 10–15% of European patients and approximately 30% of East

Asian patients (Rosell et al. 2009). Mutation of exon 21 (L858R) and exon

19 (delE746-A750) are two most common mutations which activate EGFR.

Patients with these EGFR mutations usually show excellent responses to therapy

with erlotinib or gefitinib, which are first-generation reversible inhibitors of EGFR

(Mok et al. 2009; Fukuoka et al. 2011; Rosell et al. 2012). However, despite of

significant initial response to treatment by erlotinib or gefitinib, there have been

reports of relapse in roughly 60% of patients after 9–14 months of therapy. This is

due to occurrence of a different point mutation at the amino acid position

790 (T790M) (Pao et al. 2005; Sharma et al. 2007; Sequist et al. 2011; Yu et al.

2013). By creating steric hindrance, the T790M mutation prevents binding of the

inhibitor in the ATP-binding pocket, ultimately leading to drug resistance

(Kobayashi et al. 2005; Kwak et al. 2005; Pao et al. 2005; Yun et al. 2008; Walter

et al. 2013). Few second-generation irreversible HER family tyrosine kinase inhib-

itors, viz., dacomitinib (PF299804) and afatinib (BIBW2992), revealed significant

efficacy in treating T790M mutants in vitro; however, response to these drugs was

not convincing in patients who have failed first-generation TKIs (Miller et al.

2012). PKC412 (midostaurin) is an indolocarbazole compound identified as a

potential inhibitor of T790M NSCLC (Lee et al. 2013); however, its clinical

application is also debatable due to its broad kinase inhibition profile (Karaman

et al. 2008; Walter et al. 2013). CO-1686 is a 2,4-disubstituted pyrimidine com-

pound that has recently been found to irreversibly and selectively inhibit drug

resistance due to T790M mutation, in NSCLC models. When CO-1686 is admin-

istered orally in transgenic mouse model of T790M mutation and in patient-derived

xenograft models, it resulted in significant tumor regression (Walter et al. 2013).

Phase I clinical trial of CO-1686 (Sequist et al. 2014) and another T790M-targeting

drug AZD9291 (Janne et al. 2014) in patients harboring T790M mutation, whose

disease aggravated after initial response to EGFR-targeted therapy, has shown

promising results. Remarkably, in around 60% of T790M-positive patients who

received CO-1686 and close to 50% of those who received AZD9291, shrinkage in

the tumor was observed. As the drugs CO-1686 and AZD9291 specifically target

mutant EGFR, they only insignificantly affect normal EGFR in the body, resulting

in fewer debilitating adverse effects (Masters et al. 2015). CO-1686 also received

the US FDA’s “breakthrough therapy” designation in May 2014 (Chernew 2014).

Inhibitors of topoisomerase II stabilize the (otherwise transient) interaction of

this enzyme on substrate (DNA), leading to DNA damage and ultimately inhibition

of cell division. Mutation in the gene coding for topoisomerase II has been

identified as one of the mechanisms by which various cell lines attain resistant to

topoisomerase II inhibitors (Hinds et al. 1991; Holohan et al. 2013; Housman et al.
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2014). Resistance to paclitaxel and other taxanes is another example of attaining

drug resistance (in ovarian cancers) by target alteration, by mutations in β-tubulin,
and by other means (Holohan et al. 2013; Housman et al. 2014).

2.4 Inhibition of Cell Death

Resistance to apoptosis is considered one of the six hallmarks of cancer and could

be a contributor toward drug resistance. However, surprisingly not many of the anti-

apoptotic proteins have actually been implicated in the drug resistance (Letai 2008).

The proteins which are known to have role in imparting resistance to apoptosis

include anti-apoptotic proteins of BCl-2 family, FLIP, a known inhibitor of caspase

8 and inhibitor of apoptosis proteins (IAPs). Enhancement in activities of these

proteins by any means (including mutation, chromosomal translocation,

overexpression, etc.) has been affiliated with several malignancies, as well as to

resistance against chemotherapy or targeted therapies. Expression of these anti-

apoptotic proteins is induced by transcription factors which are involved in

pro-survival signaling, e.g., STAT3 and NF-κB. The pro-survival signaling is

activated during tumorigenesis usually via oncogenic mutations in kinases that in

turn induces anti-apoptotic signaling, thereby bridging together two important

hallmarks of cancer (Holohan et al. 2013).

BCL-2 family members are among the most well-studied anti-apoptotic pro-

teins, in regulating responses to chemotherapy. In leukemic cells and mouse

thymocytes, overexpression of BCL2 imparts resistance to cytotoxic chemothera-

peutic drugs (Sentman et al. 1991; Miyashita and Reed 1992). Other BCL-2 family

proteins which regulate apoptosis induced by chemotherapy include BCL2 family

proteins which are anti-apoptotic in nature, e.g., BCL-XL and MCL1, and

pro-apoptotic family members, e.g., BAX, BAD, and BAK, and also BH3-only

proteins which antagonize functions of the anti-apoptotic BCL-2 family members

(Kitada et al. 1998; Wang et al. 2001; Holohan et al. 2013). Recently a method

called BH3 profiling has been developed that measures the level of “priming” of a

cell for undergoing apoptosis, and a good correlation between mitochondrial

priming level and clinical response to chemotherapy has been shown for many

cancer types (Ni Chonghaile et al. 2011). This shows the importance of BCL-2

family proteins in deciding cell fate after chemotherapy (Holohan et al. 2013;

Housman et al. 2014). Bcl-2-like protein 11, also known as BIM, has also been

shown to have important role in gefitinib- and erlotinib-induced apoptosis in EGFR-

mutated NSCLC and in imatinib-induced apoptosis in CML (Kuribara et al. 2004;

Costa et al. 2007; Gong et al. 2007). Interestingly, in East Asian patients, a deletion

in the BIM gene has shown resistance to growth inhibition by TKI therapies in

EGFR mutant lung cancer and chronic phase CML (Ng et al. 2012). BIM levels

have also been implicated as prognostic marker for predicting clinical responsive-

ness to EGFR inhibitors, ERBB2 (alias HER2) or PI3K (Faber et al. 2011).

Recently, a number of pharmacological inhibitors have been discovered for
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targeting proteins of BCL-2 family for cancer treatment, and most notable of them

is ABT-737 and its orally bioavailable derivative ABT-263 (or “navitoclax”). This

drug antagonizes the function of anti-apoptotic proteins BCL-2, BCL-XL, and

BCL-W and promotes the pro-apoptotic function of BAX and BAK (van Delft

et al. 2006). ABT-737/ABT-263 has revealed its effectiveness as a single agent

against various tumor types (Oltersdorf et al. 2005; Konopleva et al. 2006) and in

combination with chemotherapies or radiation as well (Oltersdorf et al. 2005).

However, the efficacy of these drugs is abrogated by the action of anti-apoptotic

protein MCL1, which is a member of BCL2 family. MCL1 has been shown to bind

with ABT-737, and higher expression level of MCL1 has been associated with

resistance to these agents (Konopleva et al. 2006; van Delft et al. 2006; Lin et al.

2007; Holohan et al. 2013; Housman et al. 2014). Apoptosis signaling is also

induced through the extrinsic signaling pathway via death receptors present on

the cell surface. Various recombinant forms of ligands that induce apoptosis (such

as TRAIL) and agonistic antibodies have been developed which recognize either

death receptor 4 (known as DR4 or TRAILR1) or DR5 (TRAILR2) (Holohan et al.

2013). However, despite of profound antitumor activity of these compounds in

xenograft and in vitro models, the use of recombinant TRAIL or agonistic anti-

bodies targeting TRAIL receptor as monotherapies has not been successful in

clinical trials. Translation of TRAIL to the clinic has also been largely unsuccessful

due to its short half-life, insufficient delivery methods, and presence of the TRAIL-

resistant cancer cell populations (Stuckey and Shah 2013; Housman et al. 2014).

Higher level of expression of IAPs has been found to be linked with

chemoresistance in cancer treatment (Hunter et al. 2007). To tackle with this

chemoresistance, researchers are exploring application of small molecule inhibitors

of IAPs, those are inspired by a tetrapeptide motif (AVPI) which is present in

SMAC, the endogenous antagonist of IAP. Therefore, SMAC-mimetic drugs are

being designed which act by inhibiting XIAP (an inhibitor of caspases 3, 7, and 9)

and by facilitating degradation of IAPs, 1 (BIRC3) and 2 (BIRC2) via the

ubiquitin–proteasome system. Therefore, the SMAC-mimetic drugs can stimulate

the activation of caspases 3, 7, 8, and 9 and could also sensitize various tumors for

the chemotherapeutic treatment or to the TRAIL (Chen and Huerta 2009). Further-

more, some SMAC mimetics have been evaluated and few others are under

examination, in patient-derived xenograft models (Benetatos et al. 2014), or clinical

trials [LCL against multiple myeloma, clinical trial identifier: NCT01955434;

birinapant against solid tumors or lymphoma (Holohan et al. 2013; Amaravadi

et al. 2015)].

2.5 Epithelial to Mesenchymal Transition

Recent studies suggest that during their progression, tumors undergo epithelial to

mesenchymal transition (EMT). During this transition, epithelial cells give up their

differentiation features such as cell–cell adherence, cell polarity, and immotile
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nature and instead gain mesenchymal characteristics which include invasiveness,

motility, and increased resistance to apoptosis (Polyak and Weinberg 2009). EMT

is not only implicated in metastasis, but owing to involvement of a number of

common transcription factors during EMT and induction of drug resistance, it is

also now considered responsible for acquired drug resistance (Holohan et al. 2013).

Numerous studies are indicative of correlation between MDR and cancer invasive-

ness. Recently, Saxena et al. have shown co-expression of various ABC transporters

with markers of EMT in invasive breast cancer cells, during treatment with che-

motherapeutic drugs. Additionally, induction of EMT phenotype in immortalized,

noninvasive cell lines was found sufficient to increase the expression of ABC

transporters, drug resistance, migration, and invasion. On the other hand, reversal

of EMT by knocking down EMT-promoting transcription factors reduced the

expression of ABC transporters, their chemoresistance, and invasion properties.

The promoter region of ABC transporters contains multiple binding sites for the

EMT-promoting transcription factors (Saxena et al. 2011). Promoter activity assay

showed that overexpression of FOXC2, Twist, and Snail could increase the expres-

sion of ABC transporters. Chromatin immunoprecipitation studies further unveiled

the binding of Twist to E-box elements of the ABC transporters. This study thus

provides the molecular justifications for the correlation between invasiveness and

MDR and suggests EMT-promoting transcription factors as molecular target for

simultaneously curbing the metastasis as well as the associated drug resistance in

cancer (Saxena et al. 2011).

A number of cell lines undergoing EMT show resistance to EGFR inhibitors

(Fuchs et al. 2008; Yao et al. 2010). In NSCLC cell lines, resistance to erlotinib and

gefitinib is also associated with EMT (Thomson et al. 2005; Yauch et al. 2005;

Witta et al. 2006). Erlotinib sensitivity of NSCLC cells harboring normal (wild-

type) EGFR depends on whether they express CDH1 (epithelial marker) or VIM

(mesenchymal marker) (Thomson et al. 2005). A recently developed 76-gene EMT

signature could characterize EMT in NSCLC. This signature has also been vali-

dated to successfully predict the efficacy of NSCLC cells toward the EGFR and

PI3K inhibitors (Byers et al. 2013). EMT has also been observed in clinical samples

of NSCLC, which showed resistance to EGFR inhibitors (Holohan et al. 2013).

More recent studies reveal the roles of EMT in conferring drug resistance to the

EGFR inhibitors and also in response to other mutations. These mutations are

present in K-Ras, EGFR (T790M), Alk, MEK, and BRAF and are associated with

EMT by various degrees and combinedly represent more than 70% cases of lung

adenocarcinoma (Seo et al. 2012). Receptor tyrosine kinase AXL has been recog-

nized as a potential therapeutic target to overcome the EMT-associated resistance to

EGFR inhibitors (Zhang et al. 2012; Byers et al. 2013). Additionally, an siRNA

screen identified MED12 as determinants of tumor sensitivity to inhibitors of ALK

and EGFR. MED12 is a component of the mediator transcription complex which is

often mutated in cancers. MED12 loss has been shown to activate the signaling via

transforming growth factor-β receptor (TGF-βR), which is a known inducer of EMT

phenotype. Inhibition of TGF-βR signaling resulted in restoration of drug sensitiv-

ity in MED12-depleted cells (Huang et al. 2012; Holohan et al. 2013).
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Interestingly, EMT-induced resistance provides protection to cancer cells not

only against targeted therapies but against chemotherapy and radiation therapy as

well (Huang et al. 2012; Gomez-Casal et al. 2013). Arumugam et al. characterized

patterns of resistance of pancreatic cancer cells to three common chemotherapeutic

agents with different mechanisms of action: gemcitabine, 5-fluorouracil (5-FU),

and cisplatin. Gene expression profiling shows that the cell line which is either

sensitive or resistant to these agents differed in expression of EMT-related genes.

E-Cadherin and Zeb-1 (transcriptional suppressor of E-cadherin) mostly show

inverse correlation in their expression patterns. Moreover, immunohistochemical

analysis also confirmed this inverse correlation between these two proteins, in

primary tumors. Silencing of Zeb-1 in the mesenchymal cells resulted in

upregulation of E-cadherin expression and restoration of drug sensitivity

(Arumugam et al. 2009). In a recent study, Meidhof et al. used HDAC inhibitor

mocetinostat to reverse ZEB1-associated EMT and drug resistance in cancer cells.

In this study, miR-203 was identified as a major drug sensitizer, and restoration of

its expression by mocetinostat successfully sensitized the cancer cells against

chemotherapy (Meidhof et al. 2015). EMT has also been implicated in

radioresistance, in prostate cancer, which was found to be associated with enhanced

cancer stem cell (CSC) phenotypes via activation of the PI3K/Akt/mTOR signaling.

A PI3K/mTOR inhibitor, BEZ235, effectively sensitized radioresistant prostate

cancer cells for treatment with radiation (Chang et al. 2013). In another study,

hypoxia or TGF-β-induced EMT was shown to reduce the expression of epithelial

markers and enhance the expression of mesenchymal markers in MCF7, A549, and

NMuMG epithelial cells. Transition to mesenchymal phenotype and E-cadherin

loss were associated with radioresistance in these cells (Theys et al. 2011). There-

fore, inhibition of EMT is now seen as a promising approach of inhibiting tumor

progression by inhibiting metastasis as well as drug/radiation resistance (Holohan

et al. 2013). Even the drug-resistant tumors could be resensitized for radiation or

chemotherapy by using EMT-inhibiting molecules (Kang et al. 2013; Wilson et al.

2014). EMT has been linked to the generation of cancer stem cells (Mani et al.

2008; Lan et al. 2013). These cells are multi-/pluripotent cells which have the

ability to initiate tumors and self-renew. They divide asymmetrically and generate

differentiated progenitors (Singh and Settleman 2010). As expression of ABC

transporters and anti-apoptotic proteins is high in cancer stem cells and these

cells also show enhanced DNA damage repair and aldehyde dehydrogenase

(ALDH) activities, they tend to display good degree of drug resistance (Holohan

et al. 2013) (Fig. 2).

2.5.1 Inducers of Epithelial–Mesenchymal Transition

Inflammation, hypoxia, and certain mutations (Table 1) are well-known inducers of

EMT. Inflammation is the body’s response to injury, infection, or perturbation in its
homeostasis by any other means. Although it is a protective response, however

uncontrolled inflammation is associated with the several disease pathologies
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including cancer. In cancer, pro-inflammatory cytokine interleukin-6 (IL-6) can

promote EMT through induced expression of SNAIL1 by Janus kinase (JAK)-

STAT3 signaling which leads to drug-resistant phenotype (Sullivan et al. 2009).

Hypoxia also guides EMT in cancerous condition by stabilizing hypoxia-inducible

factor-1 (HIF-1) transcription complex. HIF-1 binds to the hypoxia response ele-

ment in the proximal promoter of TWIST and induces its expression. Elevated

expression of TWIST has been shown to promote EMT in tumor environment

(Yang et al. 2008) (Fig. 2).

2.6 Enhanced DNA Damage Repair

Numerous chemotherapeutic agents work by damaging DNA. Additionally, many

others affect the DNA damage repair system by targeting topoisomerases. In

response to DNA damage, the cellular machinery is activated to repair it; however,

if repair is not achievable, cell death pathway is turned on to terminate the cell

lineage with damaged DNA (Holohan et al. 2013). p53 is a protein sometimes

referred to as “guardian of the genome” because of its important role in conserving

stability by preventing genome mutation (Lane 1992). Various cell cycle

Hypoxia

Inflamm
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Epithelial-
mesenchymal 
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& 
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Common 
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Fig. 2 EMT is driven by various factors and plays an important role in inducing drug resistance

and metastasis
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checkpoints are regulated by p53 and mutations in this gene can interfere with the

mechanism of cell cycle arrest induced by DNA damage. Another p53 function is to

induce apoptosis in case of failure of DNA damage repair, and therefore mutation in

p53 can also contribute to drug resistance by inhibition of apoptosis (Enoch and

Norbury 1995; Holohan et al. 2013). DNA damage response (DDR) mechanisms

are able to overturn the drug-induced damage and thereby can impart the drug

resistance characteristics to cancers. Therefore, damaging DNA by chemotherapy

along with targeting DDR pathways makes an efficient therapeutic combination

that could sensitize cancer cells and enhance the therapeutic efficacy (Housman

et al. 2014).

Cancer cells have many mutations accumulated in their genomes. Sometimes

mutation(s) in key gene(s) renders DDR pathways nonfunctional. This makes the

cell dependent on another pathway for the DDR function. Therefore, if one pathway

is inactivated by mutations, this provides opportunity to selectively kill cancer cells

by targeting another pathway by the use of specific inhibitors (Kaelin 2005; Chan

and Giaccia 2011). This concept is known as “synthetic lethality” and identification

of targetable synthetic lethal interactions always presents new opportunity of

anticancer drug discovery. For targeted anticancer therapies, a number of synthetic

lethal interactions are at the focus of many preclinical and clinical studies (Chan

and Giaccia 2011). Inhibitors of the poly(ADP–ribose) polymerase 1 (PARP1), an

Table 1 Contribution of EMT in drug/treatment resistance

Mutations implicated in drug resistance

K-Ras Tumors with K-Ras-activating mutations are among most

difficult to treat; interestingly, it is the only mutation that

shows statistically significant association with mesenchymal

phenotype in NSCLC tumors

Byers et al.

(2013)

EGFR, Alk,

MEK, BRAF

MED12 loss confers resistance to Alk, EGFR, BRAF, and

MEK inhibitors in NSCLC and various other cancer types by

activation of TGF-β signaling (or by EMT)

Huang et al.

(2012)

EGFR

(T790M)

Analysis of transcriptome of transgenic mice with T790M

mutation shows prominent expression of mesenchymal sig-

natures in lung tissue

GEO dataset:

GSE17373

Regales et al.

(2009)

Cancer therapies

Chemotherapy Cisplatin: reduced expression of MED12 (i.e., increased

TGF-β signaling or EMT) confers resistance to chemother-

apy drug cisplatin

Huang et al.

(2012)

Docetaxel: inhibition of zeb1 reverses EMT and

chemoresistance in docetaxel-resistant human lung adeno-

carcinoma cell line

Ren et al.

(2013)

5-Fluorouracil (5-FU): reduced expression of MED12 (i.e.,

increased TGF-β signaling or EMT) confers resistance to

chemotherapy drug 5-FU

Huang et al.

(2012)

Radiation

therapy

Non-small cell lung cancer cells that survived ionizing

radiation treatment display cancer stem cell and epithelial–

mesenchymal transition phenotypes

Gomez-Casal

et al. (2013)
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enzyme involved in the repair of the single-strand DNA breaks, are recommended

in ovarian and breast tumors harboring mutations in the BRCA1 or BRCA2 genes

(Farmer et al. 2005). However, when BRCA2-mutant tumors are treated with PARP

inhibitors, due to an in-frame deletion in BRCA2, its DNA repair function is

partially restored and these tumor cells survive treatment by chemotherapeutic

agents (Edwards et al. 2008; Sakai et al. 2008; Holohan et al. 2013). Similarly,

mismatch repair (MMR) deficiency has been associated with resistance to various

cytotoxic chemotherapies, such as resistance to carboplatin and cisplatin (Holohan

et al. 2013). In MSH2-deficient cells, accumulation of oxidative lesions, e.g.,

8-oxoguanine (8-oxoG), is caused by methotrexate, which induces apoptosis of

cancer cells (Martin et al. 2009; Holohan et al. 2013). Nucleotide excision repair is

an important signaling pathway involved in the repair of damaged DNA (Kirschner

and Melton 2010). Expression level of ERCC1 is an important determinant for

proper functioning of NER pathway, and its high expression has been linked to poor

chemotherapeutic outcome in many cancers, including NSCLC, ovarian cancer,

and gastric cancer (Lord et al. 2002; Kwon et al. 2007). Testicular cancers usually

have very low levels of ERCC1 and have been found to be very sensitive to

cisplatin treatment (Usanova et al. 2010; Holohan et al. 2013).

Some chemotherapy drugs induce guanine O6 alkylation. The

O6-methylguanine DNA methyltransferase (MGMT), repairs and revert it back to

guanine. Therefore, many tumors which have high levels of MGMT expression

show resistance to alkylating agents (Blanc et al. 2004). Inhibiting this repair

system, therefore, could sensitize cancers to alkylating agents. However, due to

their lack of cancer specificity, many of the MGMT-targeting drugs show signifi-

cant toxicity (Hegi et al. 2005; Rabik et al. 2008; Curtin 2012). Taking clue from

glioma patients whose disease-free and overall survival rates have increased

because of epigenetically silenced MGMT genes, recommendations are made for

individualizing dosage of O6-guanine alkylating agent by measuring MGMT-

promoter-CpG-methylation levels as a biomarker of sensitivity (Housman et al.

2014).

3 Prognostic Markers and Diagnosis of Drug Resistance

Numerous evidences suggest that the drug sensitivity of tumors is remarkably

affected by variations in the cancer genome. In chronic myeloid leukemia

(CML), selective targeting of BCR-ABL translocation with drugs has revolution-

ized the treatment, and 5-year survival rate of 90% has been achieved in treated

patients (Druker et al. 2006). Similarly, in NSCLC, a mutation which activates

EGFR is predictive of marked sensitivity to EGFR-TKIs. L858R point mutation

and exon 19 deletions of EGFR are linked with the sensitivity to EGFR TKIs (Janne

and Johnson 2006). In patients with tumors harboring these mutations, response

rates of >70% have been observed, when treated with either erlotinib or gefitinib

(Jackman et al. 2009; West et al. 2009). However, NSCLC patients with KRAS
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mutations in their tumors exhibited high degree of resistance to erlotinib and

gefitinib, with a response rate of �5%. Few other EGFR mutations, including

T790M and exon 20 insertions, are also associated with resistance to TKIs (Janne

and Johnson 2006). Clinical and histological features, up to some extent, may

correlate with selected genetic alterations; however, for precise identification of

the mutations associated with drug sensitivity or resistance, molecular testing needs

to be done. In order to link drug activity with the complexity associated with cancer

genomes, Garnett et al. screened several cancer cell lines representing most of the

tissue-type and genetic backgrounds of human cancers. Approximately 130 drugs

already under clinical and preclinical studies were tested in this screen. In addition

to classic oncogene addiction paradigms, the drug activity was influenced by tissue-

specific and/or expression biomarkers. On the other hand, sensitivity to a wide

range of therapeutic agents has been correlated well with certain frequently mutated

genes. The pharmacogenomic profiling studies in well-characterized cancer cell

lines and clinical samples therefore provide guide to better rationalize cancer

therapeutic strategies by utilizing biomarker discovery platform (Garnett et al.

2012).

Protein biomarkers of cancers have attracted attention of researchers earlier than

that at the level of nucleic acids (Lippert et al. 2011). The obvious focus has been on

cancer-derived and cancer-specific molecules present in the blood, and a number of

markers, viz., carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP), were

among the initial molecules assessed. Most of the markers explored for this purpose

turned out to be nonspecific to tumors. Tumor markers, those found their way to

clinical trials, include prostate-specific antigen (PSA) for prostate cancer, thyro-

globulin for thyroid cancer, CA 125 for ovarian cancer, and human chorionic

gonadotropin (HCG) for chorionepithelioma. These markers have also been useful

in examining the effectiveness of treatment (Lippert et al. 2011). Recently we’ve
proposed a subset of 13 proteins, including annexins A1, A2, and A3, reported to be

differentially expressed at tissue level, as circulatory markers of gall bladder

carcinoma (GBC), for clinical applications (Singh et al. 2015).

Cells and fragments of DNA shed by tumors into the bloodstream can now be

used for noninvasive screening of early-stage cancers as well as for monitoring

responses to treatment (Brock et al. 2015). Circulating tumor cells, cell-free DNA

(cfDNA), and exosomes (harboring DNA, RNA, proteins) are the important con-

stituents of these liquid biopsies. Liquid biopsies can be used for molecular

characterization of the tumor, and their noninvasive nature allows repeated sam-

pling to monitor the changes in molecular/cellular markers over time (Brock et al.

2015; Karachaliou et al. 2015). In certain cases, it becomes inevitable to examine

the drug resistance in actual tumor sample. For in vitro diagnosis of drug resistance,

a test based on 3H-thymidine uptake into cultured cells from tumor biopsies, in the

presence of various drugs, has been developed by IMPATH (Los Angeles, Calif.,

USA). An algorithm is applied to the data obtained from this experiment to

determine the probabilities of tumor responding to various drugs. This test has

been found to be very accurate in predicting the drug-resistant in vivo (Kern and

Weisenthal 1990; Chorawala et al. 2012). Positron emission tomography (PET) is
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another important method of diagnosis of drug resistance during cancer treatment.

PET has been in clinical use for many years for examining and localization of

cancer localization. Now it can be utilized to determine the metabolic activity of

tumors (Lippert et al. 2011).

4 Conclusion

Traditional therapeutic modalities for cancer, including radiation and chemother-

apy, have been the backbone of cancer therapy in the past and are still playing major

role in its treatment. However, systemic toxicity, relapse after treatment, and

non-applicability/reduced efficacy in advance stages are the major drawbacks of

these treatments. Genetic diversity among cancers, as well as in the constituent

cells, presents a major complication in devising successful, specific drugs for

cancer treatment. Variability in the tissue background, added by that in the tumor

microenvironment and in the epigenome, further makes the designing of specific

drugs cumbersome. As the classical hallmarks of cancer have been postulated to

understand components and progression of cancer, in a similar fashion, key target

pathways and molecules are being identified by researchers, and new compounds

are being developed, to specifically target these pathway/molecules. In the recent

past, new promising drugs have been approved and many of them are entering

clinical trials, though there is still very limited coverage of cancer-specific treat-

ments available across the myriad of neoplasms. There is an immense need of

expediting the drug discovery to widen the coverage of specific treatments and to

outpace the rate of evolution of drug resistance at the individual (cancer) cell level

to ensure the availability of drugs for intervening the continuously evolving resis-

tance mechanisms.

5 Opinion

With the establishment of the fact that genetic makeup (mutational status) and

resulting expressome of cancers constitute an important determinant in predicting

their sensitivity toward anticancer agents, a bigger challenge for researchers is to

develop new agents to cover treatments for diversity of tumor expressome(s).

Furthermore, there should be increased awareness in clinicians and patients across

the world, regarding carrying out genetic testing of cancers. A rigorous

campaigning should also be carried out for registration of patients in clinical trials,

particularly those with advance-stage cancers. Policy makers from across the world

should facilitate conduction of these trials at broader geographical and ethnic

levels. Adopting a comprehensive approach at the level of drug development,

such as finding newer agents for nano-targeting, EMT-inhibition, etc., would

provide more efficient treatment options in the future.
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BCL-2 Proteins and their Role in Cancer

Resistance

Hamida Thakur and Abid R. Mattoo

Abstract BCl2 family proteins are major players in regulating the mitochondrial

or intrinsic pathway of cell death. The BCL2 proteins are divided into prosurvival,

proapoptotic, and BH3-only proteins. The balance between the three classes of

proteins regulates the intrinsic or mitochondrial pathway of apoptosis. Defects in

the expression or regulation of these proteins have been reported in different

cancers. In fact the overexpression of prosurvival members of the BCL2 family

has been associated with the resistance of various cancers to current therapies.

Currently inhibitors are being developed for prosurvival members of the BCL2

proteins, some of which like ABT-199 have shown a very good response in

clinical trials. The early promise shown by these inhibitors in clinical trials has

opened avenues for therapeutic intervention of a number of highly resistant cancers,

alone or in combination with other currently available therapies.

1 Introduction

Apoptosis is the cellular process of programed cell death to remove unwanted cells

and maintain tissue homeostasis in multicellular organisms. The cell death is trig-

gered by a subset of proteases, called caspases which cleave several hundred cel-

lular substrates. There are two pathways of caspase activation which have been

identified so far. The extrinsic pathway is activated by involvement of death recep-

tors on the cell surface while as the intrinsic pathway or the mitochondrial pathway

involves BCL2 proteins. Various inputs like DNA damage, problems with cell sig-

naling, metabolic stress, and hypoxia can trigger apoptosis by activation of BCL2

proteins. The overexpression of BCL2 family proteins has been associated with
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different cancers and is one of the important reasons for cancer resistance to current

therapeutic drugs (Yip and Reed 2008). BCL2 family proteins are important players

involved in the regulation of cell death and have been shown to be involved in

varied cell death mechanisms that include apoptosis, necrosis, and autophagy

(Adams et al. 2005; Yip and Reed 2008). Changes in the expression and function

of BCL2 family proteins are responsible for the induction and progression of

human cancers.

2 Family of BCL2 Proteins

BCL2 family members have been clustered into three classes (Fig. 1). The first class

inhibits apoptosis (BCL2, BCL-XL, BCLW, MCL1, BCL2A1), while a second

class supports apoptosis (BAX, BAK, and BOK). A third diverse class includes

BH3-only proteins like BAD, NOXA, BID, BIK, BMF, BIM, and PUMA. These

BH3-only proteins have a conserved BH3 domain that can bind and regulate the

BCL2 proteins to support apoptosis. In response to cytoplasmic stress signals,

BH3-only proteins regulate the proapoptotic function both at the transcriptional

or posttranslational level, either by negating the activity of prosurvival BCL2

family proteins or by directly binding to and activating the proapoptotic proteins

BAX and BAK. Antiapoptotic or prosurvival proteins can bind directly to the BH3

domains of active BAK and BAX and thereby inhibit their proapoptotic activity.

All of the prosurvival proteins appear to bind BAX, but BAK appears to be inhi-

bited preferably by BCL-XL, A1, and MCL-1 (Shamas-Din et al. 2013). The affi-

nity of BH3-only proteins is variable toward prosurvival proteins. Some like Puma,

Bim, and Bid can interact with all the prosurvival molecules, whereas others have a

more defined affinity (Chen et al. 2005). Bad binds only to BCL2, BCL-XL, and

BCLW but does not bind to MCL-1 or A1. However, BH3-only proteins like Noxa

MCL-1
BCL2
BCL-W
BCL-XL
A1

Prosurvival

Proapopto�c

Multidomain: 
BAX,BAK,BOX

BH3 only: 
BIM,BAD,PUMA,BID,NO

XA,HRK,BMF,BIK

BH4 BH3 BH1 BH2 TM

BH4 BH3 BH1 BH2 TM

Receptor domain

BH3 TM

Ligand domain

Fig. 1 Classification of BCL2 family proteins
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show binding affinity only toward MCL-1 and A1 but not to other prosurvival

proteins. The BH3 domain has been shown to be involved in this interaction, and it

is through this interaction that BH3-only proteins regulate apoptosis. Moreover,

BH3-only proteins like Bid, Puma, and Bim were also shown to interact with BAX

(Marani et al. 2002; Willis et al. 2005). BH3 domains of proteins like Bid, Bmf, and

Bad achieve the active conformation upon binding to a prosurvival protein

(Czabotar et al. 2014).

The three classes of these BCL2 proteins collaborate with each other to regulate

the process of apoptosis. There are different models based on the interaction of

these proteins which have been put forth to explain how proapoptotic proteins

BAK/BAX are regulated and how these proteins regulate apoptosis. The direct

activation model is based on the affinities of binding of BH3 proteins to the BCl2

family proteins and based on their affinities they have been characterized into

activators or sensitizers (Letai et al. 2002). The BH3 activator proteins—Bim,

t-Bid, and Puma—can bind to both proapoptotic and prosurvival proteins. The

BH3 sensitizer proteins—Bad, Noxa, Bix, Bmf, Bnip3, and Hrk—bind to pro-

survival proteins and release activator BH3 proteins which in turn activate pro-

apoptotic proteins and promote membrane permeabilization. According to this

model, the prosurvival proteins bind to both activator and sensitizer BH3 proteins,

but they do not form complex with BAK and BAX. Hence, for a cell to protect from

apoptosis, prosurvival proteins must sequester the supply of BH3 proteins to

prevent BAK/BAX activation and apoptosis.

According to the indirect (displacement) model, BAX and BAK remain blocked

by antiapoptotic members of the family, which are displaced by BH3-only proteins

upon apoptosis initiation. Among BH3-only proteins, Bid, Bim, and PUMA are

believed to be more efficient because of their ability to bind all the prosurvival

members of the family (Shamas-Din et al. 2013).

The BAK and BAX proteins once released mediate pro-death function at mito-

chondrial outer membrane (MOM). They bind to MOM resulting in the perme-

abilization of the membrane and release of proteins from the mitochondrial

intermembrane space like cytochrome c, SMAC/DIABLO, endonuclease G, etc.

Cytochrome c binds to apoptotic protease-activating factor 1 (APAF1) and acti-

vates it, which in turn induces the formation of apoptosome. The apoptosome

triggers the recruitment and activation of Caspase 9, which is the initiator caspase.

Furthermore, Caspase 9 cleaves and activates caspase 3 and caspase 7 which are

considered as the executioner caspases. The release of second mitochondria-

derived activator of caspase (SMAC) from mitochondria blocks X-linked inhibitor

of apoptosis protein (XIAP)-mediated inhibition of caspase activity (Dewson and

Kluck 2009). The difference between these two proapoptotic proteins lies in the fact

that BAK has a high affinity for the antiapoptotic proteins, MCL-1 and Bcl-XL

(Willis et al. 2005; Shamas-Din et al. 2013). Another difference is that BAK is

found constitutively bound to the MOM, whereas BAX is primarily cytosolic but

shifts to the MOM after activation of apoptosis. The summary of events of the

intrinsic pathway is indicated in Fig. 2.
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3 Role of Antiapoptotic BCL2 Proteins in Cancer

Resistance

There are a number of instances where regulation of genes encoding pro- and anti-

apoptotic are altered in cancer. The discovery of BCl2 protein is related to its role in

translocations between chromosomes 14 and 18, observed in non-Hodgkin’s lym-

phomas. In this translocation, the BCl2 gene comes under the direct control of

enhancer of immunoglobulin gene on chromosome 14, thereby upregulating the

expression of BCl2 gene. MCL1 and BCL-XL are frequently amplified or over-

expressed in a number of hematological as well as solid tumors (Reed et al. 1996).

In addition to chromosomal translocations, other mechanisms which contribute to

overexpression of prosurvival BCL2 proteins include gene amplification, loss of

endogenous microRNA that repress BCL2 gene expression, and changes in epi-

genetic regulation of BCl2 genes. Moreover, posttranslational mechanisms that

negatively regulate protein degradation pathways may also contribute to elevated

expression of prosurvival BCL2 family proteins (Yip and Reed 2008; Hata et al.

BH3 only proteins (sensitizers)
Bad, NOXA, Bmf, Bik

BH3 only proteins (activators)
Bim, Bid, PUMA

Bak/Bax dimer
Prosurvival
(Bcl2, Mcl-1 )

Mitochondria

Cytochrome c

Caspase 3/7

Apoptosis

Apotosome
pro-caspase 9

Fig. 2 Mitochondrial pathway of apoptosis
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2015). For example, genetic inactivation of the ubiquitin ligase complex protein

FBW7 can result in overexpression of MCL1 due to enhanced stability of this

protein. Overexpression of BCl2 and other prosurvival proteins have been shown to

prevent cell death induced by external stimuli like oxidative stress, hypoxia, and

deprivation of growth factors. The most important outcome of this overexpression

of BCL2 proteins in cancers is that it makes the cancer cells resistant to cell killing

by cytotoxic anticancer drugs. This property to prevent apoptosis makes the BCL2

proteins important targets for cancer drug discovery.

4 Therapeutic Potential of BCl2 Family Protein Inhibitors

With the fact that BCl2 family proteins have been shown to mediate the apoptotic

response to cancer therapies, these proteins have the potential to serve as bio-

markers in predicting treatment response, particularly in cancers which overexpress

BCl2 proteins. Moreover, as discussed above the apoptotic response of the cell is

governed by relative balance of pro- and antiapoptotic BCl2 proteins. Therefore, for

the treatment of the cancers, which overexpress this family of proteins, direct inhi-

bition of BCL2 proteins alone or in combination with other drugs may be useful.

The protein inhibitors currently in clinical trials inhibit BCl2 proteins by binding

within the BH3-binding groove of BCL2 proteins and disrupting their interaction

with BH3 proteins and are thus termed “BH3 mimetics.” The BCL2 inhibitors

currently being developed are either pan-BCl2 inhibitors or inhibitors for BCL2/

BCL-XL/BCLW, BCL2 alone, or MCL-1 alone (Table 1). The most successful

among these inhibitors (BH3 mimetics) in terms of clinical utility target BCl2,

BCL-XL&BCLW, or BCl2 only. ABT-737 and its clinical analogue ABT-263 are

small molecules that target antiapoptotic BCL2 family proteins (BCL2, BCL-XL,

and BCLW). These two BH3 mimetics act by sequestering proapoptotic BH3

domain proteins, supporting BAX and BAK oligomerization and ultimately

resulting in programmed cell death of cancerous cells (Oltersdorf et al. 2005).

The preclinical activity of ABT-737 or ABT-263 as a single agent or in combi-

nation with various other drugs has shown promising activity against SCLC,

multiple myeloma, lymphoma, CLL, and acute lymphoblastic leukemia (Li et al.

2009; Reuland et al. 2012; Billard 2013; Mattoo and FitzGerald 2013; Mattoo et al.

2013, 2014). Although recent clinical trials of ABT-263 have demonstrated activity

in chronic lymphocytic leukemia (CLL), the efficacy of single-agent BCL2/BCL-

XL inhibitors in SCLC has been disappointing (Rudin et al. 2012). Moreover, since

BCL-XL is important for survival of platelets, the administration of ABT-263 to

patients results in platelet killing or thrombocytopenia. ABT-199 a selective BCl2

inhibitor does not cause platelet killing and has shown very good response in malig-

nancies which overexpress BCL2 like CLL and acute myeloid leukemia (AML)

(Souers et al. 2013). In fact a phase 1 clinical trial of ABT-199 in patients with

relapsed/refractory CLL including del(17p) and fludarabine refractory disease has

shown an overall objective response rate of 80% (Hata et al. 2015).
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Inhibition of MCL-1 alone or in combination with ABT-737/ABT-263/ABT-

199 has shown very good response in preclinical models for malignancies, which

are addicted to more than one BCl2 protein like SCLC, mesothelioma, pancreatic

cancers, etc. (Mattoo and FitzGerald 2013; Mattoo et al. 2013). But none of the

MCL-1 inhibitors developed so far have entered clinical trials because of the lack of

specificity toward MCL-1 protein for these inhibitors.

5 Perspective

Overexpression of BCL2 family proteins is one of the major factors responsible for

resistance of cancer cells to current therapies. The development of recent inhibitors

has shown promise in treatment of hematological cancers like CLL and AML, as a

single agent or in combination with other drugs. Since some cancers show over-

expression and addiction toward more than one BCL2 protein, lack of clinically

relevant inhibitors for BCL2 proteins like MCL-1 is still an area which needs to be

addressed. The rational use of these BCL2 inhibitors alone or in combination has a

potential in overcoming the resistance shown by current therapies and providing

novel treatment options for wide range of cancers.
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Table 1 BCL2 protein inhibitors in clinical development

Active agent Sponsor Target Stage

ABT-199/GDC-0199 Abbvie BCL2 Phase III

ABT-737/ABT-263 Abbott BCL2, BCL-XL, BCLW Phase I and

Phase II

Apogossypol Burnham Insti-

tute/NCI

BCL2, BCL-XL, MCL-1 Preclinical

Gossypol (AT-101) Ascenta BCL2, MCL-1, BCLW,

BCL-XL

Phase I and

Phase II

GX-15-070 (Obatoclox) Gemin X BCL2, BCL-XL, BCLW,

MCL-1

Phase I and

Phase II

Genasense (oblimersen

sodium)

Genta BCL2 Phase III

Antimycin A Univ. of

Washington

BCL2/BCL-XL Preclinical

TW-37 Univ. of Michigan MCL-1 Preclinical

MIM-1 Harvard Med.

School

MCL-1 Preclinical
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Perturbed Signaling and Role

of Posttranslational Modifications in Cancer

Drug Resistance

Suruchi Aggarwal, Manu Kandpal, Shailendra Asthana,

and Amit Kumar Yadav

Abstract Cancer is a complex disease in which erratic cellular signaling leads to

uncontrolled growth and proliferation. Several drugs and therapies have been

developed to control these signaling perturbations so as to kill the tumor cells.

Despite these advances, cancer is a compounding global health problem made

severe by the ever-increasing drug resistance. The number of new drugs approved

is hopelessly outpaced by the instances of drug resistance and relapses. Posttrans-

lational modifications (PTMs) are emerging as a hidden regulatory layer controlling

metabolism and homeostasis. Drugs usually target PTMs to kill tumor cells. PTMs

are also exploited by cancer cells to maintain their growth and survival by rewiring

survival signaling pathways that can introduce drug resistance, both intrinsic and

acquired. In this chapter, we discuss major known resistance mechanisms in cancer,

exemplify how PTMs are involved in those, and attract the attention of drug

discovery community toward this regulatory mechanism. A thorough understand-

ing of the role of PTMs in these signaling changes can play a significant role in

solving the drug resistance problem. We believe that combination therapies

exploiting the PTMs may have a better chance of treating cancer and averting the

intractable problems of drug resistance and cancer relapse.

1 Introduction

Cancer is a heterogeneous disease claiming 13% patient lives each year (2008

figures) and increasing (Ferlay et al. 2010; Singh and Settleman 2010). Every year,

hundreds of drugs are designed to combat widespread cancer in human population,

but the emergence of drug resistance toward most of these drugs is a persistent
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hurdle in the progression of drug development. Despite the success of currently

available drugs, the decrease in the mortality rate of cancer patients is only 1%

(Karimi et al. 2014). This is because of the rapid development of resistance against

drugs in cancer cells. Drug resistance is the leading cause of cancer treatment

failures across the globe. It can be either intrinsic, which is present in cancer cells

before treatment, or acquired, where resistance develops in response to treatment

(Holohan et al. 2013). In either case, the failure of drugs to alleviate the disease

condition is a critical issue that leads to reduced number of viable drug molecules

approved for cancer treatment.

Cancer cells have mechanisms to evade the harmful effects of chemotherapy,

targeted therapy or radiotherapy. Cancer cells survive the effect of harmful drugs by

accumulating genetic and epigenetic changes that bypass the molecular mecha-

nisms targeted by the drug molecules. Many of these mechanisms are linked to

mutations, amplifications, chromosomal translocations, and differential expression

of genes as reviewed previously (Goldie 2001; Gottesman 2002; Gillet and

Gottesman 2010; Holohan et al. 2013; Housman et al. 2014).

For decades, it has been known that posttranslational modifications are required

for critical signaling events for the cancer cells to undergo neoplastic transforma-

tion (Krueger and Srivastava 2006). While most of these changes are well charac-

terized from the genetic mutation perspective, the role of PTMs has largely

remained hidden or underappreciated. Though there are many amino acid sub-

stitutions/mutations occurring in cancer cells, not all mutations have a direct steric

effect on drug binding. Some of the mutations can lead to altered protein function

due to loss or gain of a PTM site or PTM refactoring (changing one PTM site to

another), making the cells either sensitive or resistant to the chemotherapy. It is also

possible that PTMs may not have any effect on the chemosensitivity of the cells but

they still cause system wide disruption and deregulation of important signaling

cascades by creating heterogeneity in metabolism which is a precursor to adaptive

resistance.

In this chapter, we enumerate some examples and the emergent generic mecha-

nisms of PTM-aided drug resistance in cancer. Although there are other mecha-

nisms of resistance like stress/environmental effects, horizontal gene transfer, faster

mutation rates, etc. to name a few, our major focus is to discuss the emergent role of

PTMs in inducing drug resistance. While major signaling events highlighted in

most of the mechanisms here are highly dominated by phosphorylation, since most

studies have been conducted on kinases and mechanisms are well understood, it is

worth noting that phosphorylation is not the only PTM involved. PTM crosstalk is

now recognized as a global regulatory phenomenon although techniques to suc-

cessfully tease out the crosstalk are still in infancy but developing at a high pace.

Next-generation proteomics advances have made such studies feasible and will act

as the much needed required shot in the arm for PTM crosstalk knowledge-driven

cancer therapeutic development.
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2 Mechanisms of Resistance

The basic mechanisms of drug resistance can either be intrinsic or acquired. The

role of PTMs may be to disrupt or enhance a specific binding or modulation of a

signaling pathway and could be either direct (disruption of binding site) or indirect

(upstream changes leading to pathway blockage). The role of PTMs is discussed

with reference to the classically known mechanisms like drug penetration and

efflux, inactivation/alteration in drugs or their targets, DNA damage repair, apo-

ptosis, epigenetics, cancer cell heterogeneity, etc. Also, newer mechanisms like

oncogenic bypass or “kinome reprogramming” and tumor microenvironment are

discussed. Although all of these mechanisms are not protein PTMs per se, broadly

chemical modifications or modifying enzymes are at play, and we are discussing

these for coherence and completeness. The role of PTMs in drug resistance is also

summarized in Table 1 with respect to the discussed mechanisms.

2.1 Drug Inactivation

Certain drugs require metabolic activation after reaching the tumor cell. The

activation includes interaction of the drug with other molecules in vivo that could

modify or partially degrade (by enzymes) or form a complex with the drug mole-

cules (by small molecule ligands) leading to their activation. This mechanism is not

regulated directly by modifications of proteins but by modifying enzymes that act

directly on the drug. The absence of any mechanism that could lead to drug acti-

vation will render it nonfunctional and eventually removed from the cells (Fig. 1a).

Shutting down drug activation mechanisms or denigrating them is one of the

abilities of cancer cells to protect themselves from the effects of the drugs. For

example, the administration of cytarabine (Ara-C) drug in the treatment of acute

myelogenous leukemia (AML) requires multiple phosphorylation events that con-

vert Ara-C to Ara-C triphosphate by deoxycytidine kinase (DCK), the activated

form of drug. Disruption or deactivation of the enzyme that leads to its multiple

phosphorylations can induce drug resistance in leukemia cells (Sampath et al. 2006;

Zahreddine and Borden 2013). Capecitabine is also administered in its pro-form,

but once it reaches inside the cancer cells, it is converted to 5-FU (5-fluorouracil)
by thymidine phosphorylase (TYMP). The absence of the phosphorylase enzyme

causes the inactivation of drug and thus resistance (Malet-Martino and Martino

2002). This theme has been covered in detail elsewhere and beyond the scope of

this review (Sampath et al. 2006; Michael and Doherty 2005; Shen et al. 2007).
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Glycosylation Phosphorylation Ubiquitination  Acetylation Methylation 

Fig. 1 The resistance mechanisms in cancer cells with the role of PTMs are broadly shown. (a)

The inactivation of drug Ara-C in tumor by the absence of phosphorylation by deoxycytidine

kinase (DCK) due to which Ara-C is effluxed out of the cell by MDR1 protein. (b) The alteration of

drug (gefitinib) target by mutation in the EGFR receptor at the gatekeeper mutation T790

(threonine) to M (methionine). Gatekeeper residue guides the entry of ATP as well as drug in

the binding pocket of the tyrosine kinase domain. In the case of mutated gatekeeper residue, ATP

can bind but the drug cannot, which causes resistance. (c) The phosphorylation and glycosylation

of MDR1 protein help its maturation and relocation to cell membrane. In normal cells, MDR1

production is controlled by ubiquitination at the motif of phosphorylation, blocking phosphoryl-

ation and leading the protein toward proteasomal degradation. (d) The DNA damage response in

the cancer cells can also cause resistance. In the case of DNA breaks, BRCA1 and CHK1/CHK2

get phosphorylated and in turn phosphorylate p53 which otherwise gets proteasomally degraded by

its interaction with MDM2. Once p53 is stabilized, it helps in GADD45 production that starts DNA

repair. (e) The regulation of cell death in cancer cells. When p53 gets stabilized, it may also trigger

the production of BAX and BAK that after translocation to cytoplasm initiate mitochondrial outer

membrane permeability (MOMP) to release cytochrome C, EndoG, SMAC, and AIF proteins from

intramembrane compartment that initiates caspase-dependent and caspase-independent cell apo-

ptosis. In cancer cells, once BAK and BAX are released in cytoplasm, MCL1 gets stabilized by

interacting with USP1 (DUB) and blocks BAK and BAX to oligomerize and form a channel in

mitochondria. To induce autophagy, rapamycin blocks mTORC1 from phosphorylating ATG-13

and thus forms a complex with ATG-1 and ATG-17. The cancer cells block the phosphorylation of

Vps34 thus blocking the activation of autophagy. (f) The protein SNAIL activates epithelial to

mesenchymal transition (EMT) due to its phosphorylation by PKD1 and ubiquitination by

FXBO11. In cancer cells, PKD1 is blocked epigenetically, and in the absence of phosphorylation

at SNAIL, ubiquitination cannot occur, leading to repression of E-cadherin by SNAIL and initi-

ation of EMT. (g) Represents the epigenetic control of gene expression by histone modifications.

Methylations wind up the DNA and stop transcription, while acetylation opens up the DNA to

activate transcription. Phosphorylation of H2AX helps in initiating DNA damage response. (h)

Represents the oncogenic bypass or kinome reprogramming in cancer cells. In cases where EGFR

receptor is blocked by the drug, HGFR receptor gets activated to initiate tyrosine signaling cascade

via RAS and PI3K
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2.2 Alterations in Drug Targets

Most drugs are designed to target a specific protein, inactivation or modification of

which will lead to death of cancer cells. To evade the unwelcome effects of these

drugs, cancer cells alter the target by decreasing its concentration or completely

stalling its production, thus rendering the drug ineffective (Housman et al. 2014).

Genetic mutations for drug target changes have been studied in detail. The muta-

tions can either aid or discourage drug binding, depending on the nature of

mutational change, and can impact cancer’s sensitivity to the drug. Genetic effect

is not direct. It is manifested as an alteration in target protein’s expression or

binding site. For example, in the tyrosine kinase domain of EGFR protein, a

gatekeeper mutation T790M inhibits the binding of erlotinib in the ATP-binding

cavity (Fig. 1b). The inhibitors were designed to target the ATP-binding pocket of

tyrosine kinase domain to inhibit the autophosphorylation of EGFR leading to

decreased or no signaling activity controlling the downstream processes governing

proliferation and division. The patients responded well to the drugs (like gefitinib,
erlotinib, crizotinib, etc.) but developed resistance within a year of treatment

(Kobayashi et al. 2005). These drugs have a high affinity for the ATP-binding

pocket. Moreover, the gatekeeper residue threonine in wild type is supposed to

enhance the binding of drug by creating hydrogen bonds with the drug molecule.

But in the cases where the threonine 790 was mutated to methionine, the drug

molecule could not enter the binding pocket because of the steric hindrance

introduced by methionine. Also, the methionine group lacks a hydroxyl group for

hydrogen bonding, thus inhibiting the binding of drug, but the binding of ATP can

still occur just as freely as in wild type, thus phosphorylating the activity of EGFR

inducing the downstream signaling cascade for functioning (Kobayashi et al. 2005;

Kosaka et al. 2011; Cortot and Janne 2014).

2.3 Drug Efflux

Drug resistance has also been linked to drug efflux mechanisms. As soon as the drug

enters the tumor cells, it is pumped out by a family of ATP-binding cassette (ABC)

membrane transporters protecting the cells. Till now, 49 members of this family

have been identified, but only three have been linked to drug resistance (Holohan

et al. 2013). These three proteins—MRP1/ABCC1, MDR1/P-glycoprotein, and

BCRP/ABC-P—are known to induce multidrug resistance in cancer tissues owing

to their regulation by PTMs. In many tumors, MDR1 protein is known to be over-

expressed leading to intrinsic drug resistance (Fig. 1c). Cancer stem cells also exhi-

bit a high level of drug efflux proteins portraying an intrinsically drug-resistant

phenotype toward many drugs (Gottesman et al. 2002).

The levels of ABC transporters (majorly p-glycoproteins) are modulated by

ubiquitin-mediated proteasomal degradation. However, in cancer cells the
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transporters evade this pathway by phosphorylating serine 683 that hinders with the

ubiquitination of the protein, thus preventing its degradation. After phosphoryl-

ation, the sequence motif allows glycosylation which matures the p-glycoprotein

and helps in its transport to the cell surface. The serine/threonine protein kinase,

Pim1, phosphorylates P-glycoprotein. It is a transcription factor that controls

expression of genes to suppress apoptosis and promotes cell migration, cell cycle

progression, and protein translation. It also phosphorylates threonine at position

362 in BCRP protein that helps in its dimerization at cell surface. In cancer cells, the

overexpression of ABC transporters has been positively correlated with increased

expression of PIM kinases (Katayama et al. 2014). Phosphorylation, glycosylation,

and ubiquitination are the important PTMs regulating the activity and dimerization

of transporter proteins that help in drug efflux.

2.4 DNA Damage Repair

Chemotherapeutic agents are designed to cause damage to the DNA either directly

or indirectly. DNA damage response (DDR) can either lead to cell cycle arrest,

apoptosis of the cell, or can repair the DNA to protect the cell. So, evading DNA

damage and inducing repair becomes a necessity for the cancer cell survival in

response to such chemotherapeutics. DDR induces a rapid but faulty repair mecha-

nism that can introduce mutations in the repaired DNA. This is a known vehicle for

rapid evolution to help cancer cells evade the harmful effects of drug-induced

damages. There have been studies that show how protein posttranslational modifi-

cations like phosphorylation, ubiquitination, and sumoylation help in regulating the

DNA damage response (DDR) proteins (Bergink and Jentsch 2009). Targeting the

proteins governing the DNA damage response pathway can aid in extermination of

cancer cells completely since the impaired DNA repair can activate p53-mediated

apoptosis or cell cycle arrest of cancer cells. There are certain checkpoints present

in the cell which govern the fate of the cell during cell division (Enoch and Norbury

1995). These checkpoints can halt the replication fork during DNA replication by

activating p53-mediated DNA damage response, thus preventing the cells with

faulty mutations to multiply (Bouwman and Jonkers 2012). In cancer cells, p53 is

either suppressed or mutated to render its function as tumor suppressor ineffective,

thus increasing DNA repair response (Brooks and Gu 2003). There are many

mechanisms in a cell to activate DNA repair based on the damage caused. There

are base excision repairs for single-stranded breaks, homologous recombination for

double-stranded breaks, mismatch repair for correcting the wrong base pair addi-

tion, nucleotide excision repair for removal of bulky groups added, and direct

reversal (Martin et al. 2008). The details of the biochemical pathways activating

these responses are discussed in depth in several articles (Tutt et al. 2001; Lord and

Ashworth 2008, 2012, 2013; Postel-Vinay et al. 2013). Usually the cancer cells are

targeted with DNA-damaging alkaloids in combination with PARP inhibitors,

topoisomerase inhibitors, or platinum-based drugs. But the DNA damage responses
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are buffered in response to drugs. When the single-stranded break excision repair

mechanism is blocked using PARP1 inhibitors, double-stranded break (DSB) exci-

sion repair mechanisms get activated. DSB is detected through the sensors in the

cell-like DNA-dependent protein kinase (DNA-PK) which in turn phosphorylates

checkpoint proteins CHK1 and CHK2 which act as a relay of signaling cascade to

activate p53 or BRCA1 or Nbs1 or cdc25C for DNA repair by homologous

recombination (Chen and Sanchez 2004; Smith et al. 2010).

Usually in normal cells, p53 is suppressed with the help of MDM2 protein which

is an E3 ligase that polyubiquitinates p53 and degrades it using the proteasomes.

However, in cells experiencing DNA damage, p53 is phosphorylated, and the

interaction with MDM2 gets blocked thus stabilizing p53. Subsequently, the phos-

phorylated p53 forms complexes with other proteins to result in transcriptional

activation of GADD45 (Fig. 1d), which initiates DNA repair and thus imparts

resistance to cancer cells from DNA-damaging drugs (Geske et al. 2000). This is

a very important example where specific protein–protein interaction (PPI) between

MDM2 and p53 is mediated by ubiquitination and the disruption of this PPI brings

about corrective DDR and the ensuing resistance to drugs.

Other way in which DNA repair gets activated is through nonhomologous end

joining, where the KU70 gets deacetylated due to activity of histone deacetylases

(HDAC) and interacts with FLIP to initiate DNA repair mechanism and thus

desensitizes cells to the DNA damage elements (Kerr et al. 2012). In normal

cells, KU70 with its interacting partner KU80 is acetylated by HATs (histone

acetyltransferases) to reduce its efficiency to bind to DNA and initiate DNA repair.

This in turn leads to activation of apoptotic signals in cells. However, when

DNA-damaging elements are introduced, HDAC activity reduces KU70 acetyl-

ation, and it forms complex with KU80, CBP, and PCAF which bind to DNA and

repair it through nonhomologous end joining method. Phosphorylation and its

dynamic interactions with acetylation, sumoylation, and ubiquitination thus drive

the DDR-related drug resistance in tumor cells.

2.5 Cell Death Inhibition (Apoptosis and Autophagy
Regulation)

Evading apoptosis and autophagy is an important regulatory event for cancer cells

to survive. The processes of apoptosis and autophagy are antagonistic to each other.

Though the stimuli to activate either pathway might be similar, but the activation

sometimes depends on mutual inhibition in either pathway. Deregulation of apo-

ptotic pathway for survival has been marked as a hallmark of cancer (Hanahan and

Weinberg 2000). The cancer cells are addicted to a small number of anti-apoptotic

proteins required for the deregulation of apoptotic pathway and subsequent survival

(Holohan et al. 2013). BCL-2 family proteins, inhibitor of apoptosis proteins (IAPs)

and FLIP, the caspase-8 inhibitor, are the most prominent proteins targeted for drug
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development. One of the examples of this type of drug resistance is found in MCL1

protein (a proapoptotic survival protein of BCL-2 family). Generally, cancer cells

induce cell survival via deregulation of apoptosis by increasing the expression of

pro-survival proteins. But in the case of MCL1, it can be achieved by altered ubi-

quitination posttranslationally. In normal cells, the MCL1 protein gets prote-

asomally degraded due to its ubiquitination. However, in cancer cells it interacts

with USP9x which is a deubiquitinating enzyme (DUB) that helps in removal of

ubiquitin from MCL1 and thus its overexpression leading to cancer cell survival

(Schwickart et al. 2010).

Autophagy is the eradication of cancer cells via lysosomal degradation pathway.

Even though this mechanism acts as a tumor suppressor pathway by degrading

tumor cells, this also doubles up as a drug resistance pathway, by degrading drug

molecule as soon as it enters the cells (Holohan et al. 2013). Activation of auto-

phagy depends on the stimulus induced by stress, ionizing radiations, and chemo-

therapeutic drugs that damage the DNA. In normal cells this pathway is kept in

check through multiple phosphorylations of ATG-13 (autophagy protein-13) by

mTOR Ser/Thr kinase. To treat cancer cells, rapamycin is given that inhibits phos-

phorylation of ATG-13 by mTOR, causing autophagy induction. In this condition,

ATG-13 remains dephosphorylated allowing it to bind to ATG-1 and ATG-17 to

form an active complex that initiates autophagy. To counterattack this process,

resistant cancer cells can inhibit the formation of type III PI3K complex by beclin-1

with VPS34, by dephosphorylating it. The Beclin 1-VPS34 protein complex drives

the autophagy pathway by autophagy induction and autophagosome maturation. If

this type III PI3K complex is not in place, autophagy cannot take place (Maiuri

et al. 2007). The phosphoactivation of class III PI3K and ULK complexes expands

the autophagosomal membrane by recruiting two ubiquitin-like conjugation sys-

tems. Atg7 (E1-like enzyme) and Atg10 (E2-like enzyme) mediated the formation

of Atg-5-Atg12-Atg-16L complex that binds to phagophore after self-oligomer-

ization (He and Klionsky 2009; He et al. 2009) (Fig. 1e). Atg8 (or LC3) is conju-

gated to phosphatidylethanolamine (PE), and delipidation of LC3-PE is carried out

by Atg4 to increase free LC3 pool. Ubiquitinated proteins bind to p62/SQSTM1

accumulated under oxidation stress and are delivered to autophagosomes followed

by lysosomal degradation (Komatsu et al. 2007; Kongara and Karantza 2012). Both

autophagy and apoptosis depend on mitochondrial outer membrane permeabil-

ization (MOMP) for their functioning. MOMP is the intrinsic pathway for cell

death. During DNA damage response when p53 is stabilized by phosphorylation, it

regulates the transcriptional activity of BAX or BAK which oligomerizes to mito-

chondrial outer membrane to form a channel between the cytoplasm and inter-

membrane space of the mitochondria, initiating the release of cytochrome C, Omi,

EndoG, and SMAC in the cytoplasm that leads to cell death. Cytochrome C

mediates caspase-dependent cell death, while the mode of cell death by the other

three proteins mediates caspase-independent cell death (Kroemer andMartin 2005).

But all these pathways are regulated by BCL-2 family proteins which act as senti-

nels to cell stress and regulate these pathways via posttranslational modifications

(Maiuri et al. 2007). In cancer cells, this pathway is blocked via three blocks.
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In class-A block, p53 is not activated, which in turn will not activate NOXA or

PUMA to activate and express BAX or BAK. Class-B block involves the deletion of

DNA segment for BAX or BAK, since without BAX and BAK, MOMP cannot be

triggered. Class-C blocks involve BCL-2 family proteins like MCL-1 to inactivate

BAX or BAK by binding to their BH3 binding cleft, thus blocking them for MOMP.

For BCL-2 family proteins to act, they need to be deubiquitinated which is facili-

tated by the deubiquitinating enzymes (DUBs) (Letai 2008; van de Kooij et al.

2013).

2.6 Epithelial–Mesenchymal Transition and Metastasis

The epithelial to mesenchymal transition is a process by which cancer cells trans-

form themselves to allow their movement from the site of origin to other sites where

the tumor can progress. This process is known as metastasis. Due to the molecular

and conformational changes occurring in the tumor cells, the drugs targeted at

specific proteins (mainly receptors) are rendered nonspecific and or ineffective thus

causing resistance. One of the major factors responsible for EMT induction and

metastasis in cancer cells is the tumor microenvironment (discussed in detail later)

that consists of extracellular matrix (ECM) and other soluble factors. Also linked

closely to cancer cell heterogeneity (CCH), this represents an intricate interplay

between these mechanisms although subtle but noteworthy differences warrant

their discussion under separate sections. Metastasis introduces heterogeneity in

tumor cell population by introduction of the metastatic stem cells (MSCs) which

are the major reason for tumor relapse after chemotherapy. Since these cells are

different from the targeted epithelial cells, they evade the effect of the drugs quite

easily (Voulgari and Pintzas 2009).

In EMT, the cancer cells lose apical–basal polarity and cell adhesion phenotype

to become mesenchymal in nature. During EMT, tumor cells experience a func-

tional loss of E-cadherin and gain of N-cadherins, vimentin, and fibronectin.

E-cadherins are glycoproteins (proteins modified with glycosylations) that help in

epithelial cell anchorage at the adherent junctions between cells that work in

concert along with β-catenins; N-cadherins have been suggested to destabilize the

adherent junctions that facilitate the motility even in the presence of E-cadherins.

The mesenchymal cells also express R-cadherin and cadherin-11. Moreover,

claudins, connexins, occludins, and zonula occluden proteins that are localized in

tight junctions are also perpetrated to be involved in EMT (Voulgari and Pintzas

2009). To reduce the expression of E-cadherins, cancer cells express SNAIL, a

transcription factor that induces EMT. In tumor cells, SNAIL is produced in low

quantities which are required to inhibit fructose-1,6-biphosphatase (FBP1) expres-

sion, to increase macromolecular biosynthesis, glucose uptake, and maintenance of

ATP production in hypoxic conditions. For maintaining the desired low level,

SNAIL is constantly being degraded by the ubiquitin proteasomal system in the

cells with the help of FBXO11 E3 ligase. But FBXO11 cannot interact with SNAIL
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until it has been phosphorylated, particularly at serine 11 by PKD1, which is a

serine/threonine protein kinase. The SNAIL protein is exported out of the nucleus

after the formation of phosphorylated SNAIL and FBXO11 for ubiquitination.

When EMT inducers are activated in tumor cells, the expression of PKD1 is halted

by epigenetically controlling its expression. If PKD1 is not present to phosphorylate

SNAIL, it will not form a complex with FBXO11 and in turn will repress the

expression of E-cadherin in tumor cells leading to metastasis (Fig. 1f).

Another mode in which SNAIL evades phosphorylation by PKD1 is by mutating

its serine at position 11. In the absence of a mutable serine at the particular position,

phosphorylation will not be possible, but the functioning of SNAIL is not affected

by it. Thus it will bind to the promoter of E-cadherin and thereby will repress its

activation (Zheng et al. 2014).

In a study on behavior of SNAIL in prostate cancer, it was found that phosphory-

lation of SNAIL at serine 246 leads to its activation by accumulation in nucleus and

thus repressing E-cadherin. Another kinase GSK-3β (glycogen synthase kinase—

3β) phosphorylates SNAIL and its subsequent ubiquitination exporting it from

nucleus for proteasomal degradation in cytosol (Zhou et al. 2004; Yook et al.

2005; Smith and Odero-Marah 2012). EMT is a highly dynamic process controlled

by phosphorylation, glycosylation, and ubiquitination posttranslational modifi-

cations also assisted by the epigenetic modifications of methylation and acetylation

along with several other histone modifications.

2.7 Cancer Cell Heterogeneity

The cancer cells are not made up of the same type of cells due to higher rate of

evolution; certain cells are inherently resistance to drugs. A tumor consists of

heterogeneous cell types like cancer cells and cancer stem cells (CSCs). There

are two modes in which heterogeneity develops in cancer—the cancer stem cell

model and clonal evolution model.

Cancer stem cell model states that the cancer population contains few cells with

the capacity of self-renewal. Termed cancer stem cells (CSCs), these cells can form

all other cell types present in a tumor. These stem cells may give rise to different

type of cancer cells which is one of the reasons of heterogeneity. Due to this hetero-

geneity, some cells may be intrinsically resistant to drugs owing to their molecular

phenotype. As most examples about the role of PTMs in drug resistance overlap

across the different mechanisms discussed in this chapter, we provide a passing

reference for such examples, since these are discussed in detail elsewhere. As we

have already discussed, CCH is also related to EMT and also with tumor micro-

environment (discussed in Sect. 2.10).

In chemoresistant hepatocellular carcinoma, overexpression of Oct4 helps in

persistence of stem cell-like properties (Wang et al. 2010). It is an important

transcription factor that maintains the self-renewal and pluripotency in mouse and

human embryonic stem cells (Kellner and Kikyo 2010). Oct4 is encoded by

Perturbed Signaling and Role of Posttranslational Modifications in Cancer. . . 495



POU5F1 gene that controls multiple drug-resistant ABCG2 gene expression. Oct4

is activated by phosphorylation mediated through the central AKT kinase. Oct4-

TCL1-AKT signaling pathway can affect cell survival and the sensitivity to drugs

by regulating the efflux pump, ABCG2, a protective efflux pump, thereby imparting

resistance. Phosphorylation of Oct4 also plays an important role in its stabilization

and resistance to apoptosis in cancer cells. Oct4 is an important substrate of AKT

for maintaining the self-renewal of stem-like cancer cells (Zhao et al. 2015). The

phosphorylation at threonine 235 (pT235) on Oct4 was not only detected in human

glioblastoma but also in liver cancer specimens (Zhao et al. 2015).

Cancer cell heterogeneity may also arise from clonal selection wherein the

tumor starts from a single mutated cell with the ability to mutate further. Each

accumulation step can give rise to subpopulations of heterogeneously mutated cells,

ultimately resulting in cancer cell heterogeneity (Fig. 2). Every subpopulation has a

different mutation which is the basis for a variable response to different therapies.

Some cells may intrinsically be resistant owing to their mutations, while others may

develop acquired resistance by subsequent selection pressure. Imatinib targets the
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Fig. 2 Tumor microenvironment and cancer cell heterogeneity. Cancer-associated fibroblasts

(CAFs), stromal cells, tumor-associated endothelial cells (TECs), vasculature, extracellular matrix

(ECM), exosomes (not shown), and immune cells (B-cells) make up the tumor microenvironment

and regulate cancer growth, sensitivity to drugs, and even drug resistance. Fibroblast cells in

response to DNA damage induce NF-κB-mediated signaling process leading to WNT16B-

facilitated activation of frizzled receptor increasing drug resistance. Epithelial cells are involved

in CXCL12-based signaling increasing tumor cell survival, proliferation, and angiogenesis.

B-cells are involved in the cytokine-based signaling. Stromal cell HGF secretion increases

tumor sensitivity to BRAF inhibitors. Cancer cell heterogeneity also adds to the resistance wherein

the intrinsically resistant cells are selected on drug application.Different colors and sizes of cells in
tumor depict cancer cell heterogeneity, where all light-colored cells are drug-sensitive and dark-

colored cells are resistant. Cells in purple color are cancer stem cells which on metastasis can give

rise to any type of cancer cell at the new tumor foci.
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signaling mediated by the fusion protein BCR-ABL (Hantschel et al. 2008). Muta-

tion in the kinase domain of ABL in BCR-ABL fusion protein inhibits drug binding

to the kinase domain and causes resistance in chronic myeloid leukemia (CML)

patients (Soverini et al. 2011). Mutations in ABL kinase domain are divided into

two groups—(1) Mutation in the residues, which directly interact with the drug

(e.g., T315, F317, F395), that block drug binding without affecting the ATP

binding. (2) Mutation in the distinct residues is responsible for conformational

changes that favor drug binding. For example, deformation of ATP phosphate-

binding loop (P loop) by mutations at residues G250, Q252, Y253, and E255 creates

a hydrophobic cage that hinders the binding of drug.

The resistance to imatinib allows normal dimerization of BCR-ABL and acti-

vates autophosphorylation, which in turn activates the kinase activity and causes

conformational changes allowing attachment of GRB2. BCR-ABL signaling acti-

vates many such pathways that enhance the survival of cancer cells, inhibit apo-

ptosis, and change cell adhesion and migration.

In glioblastomas (GBMs), cancer cell heterogeneity manifests itself in the form

of copy number variations in two receptor tyrosine kinases (RTKs), EGFR and

PDGFRA that drive the signaling through phosphorylation. A minute fraction of

cells have equal amplification of the genes, while most cells have mutually exclu-

sive amplification, apart from the spatial distribution of the amplification as shown

by PDGFRA-amplified cells which are present close to the endothelial cells. These

differentially amplified kinases provide heterogeneous response to drugs and pos-

sibly transient targets for phosphorylation (Little et al. 2012; Szerlip et al. 2012;

Sun and Yu 2015).

Another mechanism that can contribute to heterogeneous protein modification is

that some signals are transduced in oscillatory manner impacting different cells in a

pulse-like manner with different cells at different phases. For example, ERK

activation acts in such a pulsed manner. It has been hypothesized that the hetero-

geneity of the signal transductions which are thus possible could be functional,

some of which may be transient while others stable. As evolutionary selection

operates on both equally, some may acquire resistance.

Heterogeneity of cells has also been observed in EGFR mutations discussed

above (alterations in drug targets, Sect. 2.2). Same phenomenon has been observed

in resistance to anaplastic lymphoma. Mutation in the ALK tyrosine kinase domain

results in resistance against crizotinib. There are several mutations leading to more

than one resistance mechanism. Thus the tumor cells in this case depict hetero-

geneity in resistance mechanism (Katayama et al. 2012).

Gatenby et al. propose “evolutionary double-blind therapy” in which two thera-

pies will be given to cancer patients consecutively—one making tumor cell adap-

tive in a specific way while making it vulnerable for the second therapy

(Cunningham et al. 2011). Improved knowledge of tumor heterogeneity can be

highly relevant for the drug development strategies in oncology and can provide

therapeutic advancement. Identification of driving cause, loss or gain of which may

lead to heterogeneity in cancer cells, will provide better modes of designing

therapies.
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2.8 Epigenetics

DNA methylation and histone modifications are the two main types of epigenetic

changes that influence growth and proliferation of tumor cells by controlling gene

activity and chromatin architecture. Of these, the histone modifications are post-

translational modifications, and the complex interplay involving crosstalk of these

modifications to control gene expression in specific ways has been termed as the

“histone code” (Jenuwein and Allis 2001). While DNA methylation has been

studied in great detail, the histone PTMs have been understudied as their role was

underappreciated for a long time. DNA methylation keeps DNA in heterochromatin

form and inaccessible to transcription factors, some of which express the tumor

suppressor genes. DNA methylation and histone modifications both mediate cell

growth by different modes of regulation. Histones get modified posttranslationally

to bind to or unwind DNA for transcription. DNA methylation silences the genes

that could regulate other proteins in cell survival. For example, in the case of

silencing of cytokine signaling-3 (SOCS-3) gene, the DNA is hypermethylated,

promoting the phosphorylation of STAT3 by JAK in cytokine signaling cascade.

The SOCS-3 protein is the inhibitor of JAK/STAT phosphorylation, but inhibition

of SOCS-3 expression promotes phosphorylation signaling in cancer cells.

Posttranslational modifications in histones influence chromatin structure by

recruiting enzyme pairs for reversible acetylation (histone acetyltransferases or

HATs and histone deacetylases or HDACs), methylation (histone methyl-

transferases or HMTs and histone demethylases or HDMs), phosphorylation

(kinases and phosphatases), ubiquitination (ubiquitination ligases, conjugases,

and deubiquitinases), etc., to add or remove functional groups (or PTMs). While

HATs help in opening up the chromatin by acetylation and thus induce gene expres-

sion, the HDACs on the opposite hand help making it inaccessible for transcription

by deacetylating the histones. Other pairs of enzymes also facilitate such reversible

functions. These PTMs expand the functional repertoire of the histones by creating

docking sites or desired binding regions for the specific interaction of proteins or

even for formation of protein complexes. The proteins that add, remove, or interpret

these modifications on histones are thus called as chromatin “writers”, “erasers” or

“readers” respectively (Marsh et al. 2014). The combination of different modifi-

cations at specific positions in the histone proteins is known to regulate the open or

closed configuration of the chromatin for transcription. For example, mono-

methylated histone 3 at lysine 79 (written as H3K79me), di- and trimethylated

histone 3 at lysine 4 (H3K4me2 and H3K4me3), monoubiquitinated of histone 2B

at lysine 120 (H2BK120ub), and several histone acetylations mark the open chro-

matin and active transcription, whereas monomethylated histone 3 at lysines 9 and

27(H3K9me and H3K27me) and of lysine 20 in histone 4 (H4K20me) mark the

closed configuration of the chromatin (Barski et al. 2007; Dawson and Kouzarides

2012; Easwaran et al. 2014) (Fig. 1g).

In cancer cells, few proteins of the ABC transporter family were found to be

overexpressed leading to reduced cellular permeability to drugs and higher drug
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efflux—the two basic mechanisms for cancer cells to develop inherent drug resis-

tance. Initially it was thought to be associated with promoter demethylation of

genes coding for ABC transporter proteins. But in 2007, it was observed that the

histones binding the genes of ABCG2 are hypoacetylated in normal cells. But in

cancer cells, hyperacetylation of H3K9 and K14 and increase in trimethylation of

H3K4 and decreased trimethylation of H3K9 increase its production and exhibit

resistance to the drugs like mitoxantrone, topotecan, and flavopiridol (To et al.

2008). Similar mechanism of regulation for protein MDR1 (P-glycoprotein) was

also observed. In cancer cells, the hyperacetylation in histone 3 and demethylation

at lysine 4 of histone 3 caused the enhanced expression of MDR1 protein leading to

drug resistance (Henrique et al. 2013).

During DNA damage response, phosphorylation of histone 2 (H2AX) by PI3K in

cancer cells promotes retention and accumulation of repair proteins at the damaged

site of the chromatin. This phosphorylation also mediates the association of HATs

at the damaged site, where it leads to relaxing of chromatin threads for the repair

proteins to bind and initiate repair mechanisms instead of signaling the apoptosis

(Sawan and Herceg 2010).

Epigenetic regulation of genes through histone modifications like phosphoryl-

ation, methylation, acetylation, ubiquitination, sumoylation, and their crosstalk thus

plays a very active role in regulation of mechanisms inducing resistance in cancer

cells.

2.9 Kinome Reprogramming or Oncogenic Bypass

Protein phosphorylation is the most widely observed modification on proteins for

controlling signaling changes and expansion of functions and interactions through

conformational changes. It is dynamically regulated in the cell with the help of

kinases and phosphatases, which add and remove phosphate group, respectively,

from specific amino acids on the protein. Protein kinases regulate most of the signal

transduction pathways in eukaryotes by phosphorylating other proteins (Graves

et al. 2013). There are about 518 protein kinases (Manning et al. 2002) and

156 phosphatases known till now in human proteome. Since the kinases act as the

key signaling nodes for cancer cells to function, shutting them will affect cell

metabolism, survival, and growth (Barouch-Bentov and Sauer 2011). When these

key nodes are inhibited by the drugs, cancer cells reprogram their cellular machin-

ery to activate alternate signaling pathways to compensate for the inhibited kinase.

This could also be termed as “adaptive molecular reprogramming” or “kinome

reprogramming.”

Molecular targeted therapeutics is gaining much popularity recently with more

than 25 oncology drugs approved as kinase inhibitors and hundreds in various

phases of clinical trials (Gross et al. 2015). But the targeting of single kinases

tends to trigger resistance quickly in cancer cells by activating other kinases

through mutation or rewiring of signaling networks. In malignant melanomas,

Perturbed Signaling and Role of Posttranslational Modifications in Cancer. . . 499



small inhibitors like sorafenib were designed to target B-Raf kinases to inhibit

MAPK signaling cascade. But a mutation in B-Raf at valine 600 to glutamic acid

helps in chronic activation of all three Rafs (A, B, and C), which after phosphoryl-

ation get activated and subsequently activate ERK1/ERK2 by phosphorylation,

leading to enhanced cancer cell proliferation or drug refractory tumors

(Hatzivassiliou et al. 2010; Osborne et al. 2012). In an already discussed example,

EGFR inhibition by erlotinib and gefitinib in tumors where the gatekeeper mutation

does not occur, amplification of MET is observed. MET or HGFR is another

tyrosine kinase that gets phosphorylated in cases where EGFR is blocked; and

through RAS, PI3K, and STAT; reactivates signaling cascades to promote tumor

growth and survival (Fig. 1h). As discussed in TME (Sect. 2.10), HGFR is contri-

buted not directly by tumor cells but by the microenvironment which helps in the

rewiring or reprogramming of the signaling cascades to bring about drug resistance

effects.

In light of the above observations, instead of single targeted therapy, combi-

nation therapies are being designed to overcome oncogenic resistance in these cases,

and several success stories are known. In combination therapies instead of targeting

a single kinase, many kinases in a single pathway are targeted to overcome the

kinome rewiring in tumor cells (Gross et al. 2015). But to be alert, cancer cells may

still rewire their signaling, and a deeper understanding of the kinase signaling net-

works can throw light on the possibilities of resistance and probably the counter-

acting mechanisms to prevent it.

2.10 Tumor Microenvironment (TME)

Cancer cells do not develop in isolation but in a complex microenvironment that

facilitates its survival, growth, and proliferation. Tumor microenvironment has

been shown to have an important supportive role in cancer development and

progression (Sung et al. 2007; Mao et al. 2013; Kise et al. 2015). Of late, its

contribution to therapeutic resistance is also starting to be understood (Shain

et al. 2000; Sung et al. 2007; Andre et al. 2010; Mao et al. 2013; Kise et al. 2015;

Mumenthaler et al. 2015; Sun 2015). TME can contribute toward decreased drug

penetration and helps in cancer cell proliferation and bypassing apoptotic pathways.

These processes do not require the cancer cells to undergo mutations or any epi-

genetic changes themselves. Figure 2 shows a schematic representation of TME—

tumor crosstalk.

Malignant cancer cells and benign stromal cells coevolve, and their intertwined

crosstalks are being recognized as a hallmark of cancer (Hanahan and Weinberg

2011). Most resistance mechanisms recognized in cancer revolve majorly around

mutational or epigenetic changes to bring about lowered permeability, efflux,

modification/degradation of drugs, metabolic alterations, strengthening DNA dam-

age machinery, enhancing pro-apoptotic pathways, etc. (Sun 2015). TME can

contribute not only to the development of therapeutic resistance via altered
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signaling pathways of cancer cells, modulating the major kinases through phos-

phorylation cascades by cytokines, but also may provide ways to treat the malig-

nancy by exploiting the growth factor treatment with antibodies disrupting the

tumor cell-TME crosstalk.

2.10.1 Stromal Cells

Hepatocyte growth factor (HGF) secretion by stromal cells has been shown to be

responsible for cancer resistance in BRAF-mutant melanomas (Straussman et al.

2012; Masuda and Izpisua Belmonte 2013; Lohr et al. 2014). Targeted therapy of

human lung adenocarcinoma with RAF, ALK, or EGFR kinase inhibitors leads to

therapy-induced signaling changes driven by TME which leads to drug resistance.

AKT pathway is hyperactivated, and dual inhibition of RAF and the PI3K/AKT/

mTOR intracellular signaling helps check the growth of drug-resistant cell popu-

lation, mitigating the TME secretome effects. This combination therapy can work

against relapse due to promotion of resistant clones by tumor microenvironment

secretome (Obenauf et al. 2015).

HGF also induces EMT by modulating the Hippo signaling pathway which

controls the tumor proliferation and apoptosis (Farrell et al. 2014). HGF not only

activates EMT-related c-MET pathway but also provides resistance to conventional

EGFR inhibitors in lung cancers (Wang et al. 2009). TME stromal contribution

seems to be the most powerful neutralizing factor against personalized cancer

therapy. For example, in prostate cancer, chemotherapy resistance develops after

stromal cells exposed to DNA damage induce NF-κB-mediated Wnt-16B expres-

sion. This promotes signaling changes that lead to tumor cell survival and enhances

treatment resistance (Sun et al. 2012).

2.10.2 Cancer-Associated Fibroblasts (CAFs)

The TME orchestrates disease progression and dominates therapeutic responses

with active help from fibroblasts. The normal cancer fibroblasts can turn into

cancer-associated fibroblasts (CAFs) on stimulation by fibroblast growth factor

(FGF), monocyte chemotactic protein 1 (MCP-1), platelet-derived growth factor

(PDGF), tissue inhibitor of metalloproteinase 1 (TIMP-1), and tumor transforming

growth factor β (TGF-β) (Quail and Joyce 2013; Song et al. 2015). Cancer-

associated fibroblasts proliferate aggressively, show enhanced ECM deposition,

and produce a secretome that triggers chemoresistance and consists of interleukins

and growth factors (HGF, IL-6, PDGF, SDF-1, VEGF, etc.) that modulate the

cancer tissue signaling toward aggressive growth and proliferation. These factors

promote angiogenesis and vascular permeability and are actively driven by phos-

phorylation cascades.
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2.10.3 Vasculature System

Tumor vasculature develops from new vessels and modification of old vessels by

differentiation of endothelial precursors from the bone marrow. The vasculature

develops by remodeling and is the major source of oxygen and nutrient transport to

the tumor tissue. Despite this vital task, the poorly developed and loosely formed

vasculature may lead to hypoxic conditions and limitations of growth factors. This

may form an infiltration gradient from tumor foci to the vasculature. Mesenchymal

stem cells (MSCs), tumor-associated macrophages (TAMs), and CAFs jointly

contribute to tumor vascularization and secrete several angiogenic growth factors

like vascular endothelial growth factor A (VEGFA) into the TME. VEGFA has

been inversely correlated with worsening prognosis in lung, renal, and colorectal

carcinomas (Kise et al. 2015; Mumenthaler et al. 2015; Sun 2015).

2.10.4 Tumor-Associated Endothelial Cells (TECs)

Tumor-associated endothelial cells (TECs) overexpress chemokine CXC motif

ligand receptor (CXCR7) that promotes angiogenesis through activating the

ERK1/ERK2 phosphorylation pathway. The ligand (CXCL12) for CXCR7 is

absent in normal endothelial cells. Since this CXCL12–CXCR7 autocrine loop is

involved in TEC-associated pro-angiogenesis, tumor growth, lung metastasis, and

resistance, it is a viable target for anti-angiogenesis therapies that are targeted to

disrupt the formation of tumor blood vessels (Sun 2015).

2.10.5 Extracellular Matrix

All cell types within a cancer microenvironment contribute to the formation of

extracellular matrix (ECM). ECM provides the basic structural support for the

tumor and serves as the framework for signal integration, movement for tumor

cells, proliferation, and progression. ECM also drives the cell adhesion-mediated

resistance to drugs constituting the integrins like fibronectin, collagen, and laminin,

which can attenuate activities of RTKs like EGFR (Bishop et al. 1995; Byron et al.

2011; Pontiggia et al. 2012).

2.10.6 TME-Derived Exosomes

Exosomes carry a large pool of bioactive compounds. Exosomes mediate growth

and metastasis by activating the receptor tyrosine kinase, MET-mediated signaling

by phosphorylation (Peinado et al. 2012). Therapeutic antibodies like rituximab and
trastuzumab are trapped by exosomes and rendered ineffective leading to resistance

(Aung et al. 2011; Ciravolo et al. 2012). Fibroblast-secreted exosomes induce Wnt
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signaling-dependent enhanced motility and protrusion of tumor cells. Upregulated

STAT1 and NOTCH3 signaling are also known to be associated with enhancing the

resistance of breast cancer subpopulations (Boelens et al. 2014). Tumor-derived

microvesicles mediate human breast cancer invasion through hyper-glycosylated

extracellular matrix metalloproteinase inducer (EMMPRIN). This modified

EMMPRIN brings about a pro-invasive effect by activating the p38/MAPK signal-

ing pathway in tumor cells (Menck et al. 2015).

2.10.7 Inflammatory/Immune Cells

Cells of the innate immune system provide a generic defense mechanism as well as

regulation of cellular homeostasis and wound healing, which are essential compo-

nents for tumor survival. Tumor cells are nurtured by tumor-associated macro-

phages (TAMs) by regulating signaling changes via the paracrine loop, that

involves EGF/CSF-1 signaling between TAMs and these two and also through

the activation of WNT signaling in these macrophages (Sun 2015). TAMs contri-

bute cysteine cathepsins to drive tumor progression by regulation of angiogenesis

and tumor growth. TAMs also secrete matrix metallopeptidases (MMPs) that not

only degrade the ECM but also increase the availability of ECM-bound factors such

as VEGFA, required for signaling changes leading to angiogenesis (Shain et al.

2000; Quail and Joyce 2013).

2.10.8 Cytokines and Growth Factors

Cytokines or interleukins are the small soluble molecules prominently found in

immunological or hematopoietic cells for signal transduction (Wormald and Hilton

2004). When cytokines bind to their receptors, the receptors dimerize and cause the

transphosphorylation of Janus kinase (JAK) at the tyrosine residues. Once JAK is

phosphorylated, it phosphorylates the tyrosine residues in the cytoplasmic domain

of the receptor, forming recognition sites for the signaling cascade proteins

(Mufson 1997).

One of the downstream processes mediated by cytokines/interleukins is the

activation of transcription factors like STAT through JAK phosphorylation. Once

STAT is phosphorylated, it dimerizes and translocates to the nucleus to regulate

transcription (Mufson 1997).

In tumor cells, this pathway is very important as STAT regulates the transcrip-

tion of BCL-2 family proteins, which are actively involved in regulation of apo-

ptosis. In normal cells, SOCS protein inhibits the activation of JAK/STAT pathway

to regulate normal apoptosis. But in cancer cells, hypermethylation of gene coding

for SOCS has been observed that causes the silencing of transcription of SOCS. In

the absence of silencing proteins, STAT is phosphorylated, and BCL-2 family

proteins are transcribed (Krebs and Hilton 2000).
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3 Conclusion

With the appreciation of existence of PTM codes (Creixell and Linding 2012)

governing the regulation of cellular signaling, growth, metabolism, and survival

(Karve and Cheema 2011), there has been an increase in studies identifying and

validating PTMs as the players involved in cancer cell resistance. In cancer cells,

modulations of posttranslational modifications can lead to drug resistance as exempli-

fied throughout the text. The recent therapeutic techniques that target the kinome of a

cell to induce cell death or reduce cellular signaling are displaying great results with

more than 25 drugs approved (Gross et al. 2015). This chapter provides a brief

understanding on how PTMs regulate various mechanisms of drug resistance.

Due to their central role in signaling and our deep understanding of phosphoryl-

ation (kinase signaling networks) as compared to other PTMs, kinase inhibition has

been the most powerful therapy till now for the treatment of various cancers

(Radivojac et al. 2008; Li et al. 2010). Most therapeutics aiming to overcome the

resistance problem are dependent on harnessing combination therapy, where multi-

ple checkpoints are controlled instead of one. With an increased understanding of

the role of other PTMs and their crosstalk along with phosphorylation signaling,

better therapeutic interventions can be developed.
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Ovarian Cancer and Resistance to Therapies:

Clinical and Laboratory Perspectives

Riyaz Basha, Zainab Mohiuddin, Abdul Rahim, and Sarfraz Ahmad

Abstract The cancer that originates in ovary is one of the most deadly gyneco-

logical malignancies. Despite advances in surgical and therapeutic options, patient

survival remains poor in ovarian cancer. Debulking surgery is the primary option to

manage patients with this malignancy. Radiation has been used in adjuvant therapy

for ovarian cancer patients but has largely been replaced with platinum-based

chemotherapy. Response of chemotherapy is impulsive in some patients, and

long-term analyses showed recurrence of disease in approximately half of the

patients. Several combinations or regimen were tested for achieving optimal

response and increasing ovarian cancer patient survival. Morbidity associated

with intensive therapy and resistance to widely used chemotherapy are the major

concerns in treating ovarian cancer patients. Therefore, it is important for develop-

ing effective strategies to sensitize malignant cells to standard therapy. Such

strategies have the potential in achieving improved response with minimal side

effects. Platinum-based drugs are abundantly used for treating initial malignancy

and recurrent disease, especially, improving the response of platinum-based che-

motherapy and addressing drug resistance is highly beneficial to treat relapsed

patients or the patients with advanced-stage disease. This chapter summarizes

research findings in this area with the support of current peer-reviewed literature

and elaborates future directions for improving the therapeutic response in ovarian

cancer.
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1 Introduction

Ovarian cancer typically occurs in the ovary, fallopian tubes, and primary perito-

neal cavity. It is the deadliest form of gynecologic malignancies. According to

recent estimates, in the United States, 21,290 new cases and 14,180 deaths are

expected to occur during the year 2015 (Siegel et al. 2015). Age is an important

factor for the incidences of this malignancy. The median age of ovarian cancer

patients is 65 years, and about 88% of patients are aged 45 years and older.

Unfortunately, due to the unsystematic nature of the disease at early stage and

limitations in effective screening, >75% of patients are diagnosed at advanced

stages (Das and Bast 2008).

The risk factors for this malignancy are not fully understood. Some of the

common risk factors include start of menstrual cycle before 12 years of age, late

menopause (after 52 years of age), first child at the older age than 30 years, family

history of ovarian or other cancers such as breast and colon, and infertility and/or

use of fertility medicines. Ashkenazi Jewish women’s heredity and mutations in

genes BRCA1 and BRCA2 are also among the common risk factors for this

malignancy (Nelson et al. 1993; Carlson et al. 1994; Satagopan et al. 2002;

Carcangiu et al. 2006).

To date, platinum- and taxane-based combination therapy has been the promi-

nent therapy for the effective treatment and management of patients with ovarian,

fallopian tube, and the primary peritoneal cancers. Unfortunately, a sizable number

of patients experience drug-related toxicity, and some of the side effects are so

serious that cause the discontinuation of therapy. Despite advances in therapeutic

options for ovarian cancer treatment, the disease prognosis and 5-year survival rate

are still relatively poor, and patients often develop resistance to therapy.

2 Biology of the Disease

2.1 Occurrence and Subtypes

Ovarian cancer consists of numerous related, albeit distinct, tumors. Depending on

the origin site and type of cells, ovarian cancer tumors are mainly of three types:

(1) epithelial, (2) germ cell, and (3) stromal. Transformation of surface epithelium

seems to contribute epithelial ovarian cancer. The exact mechanism associated with

this transformation is not yet fully uncovered. It has been implicated that

pro-inflammatory state may contribute to the ovarian carcinogenesis. Epithelial

cell type of ovarian malignancies is the predominant form and is responsible for

about 90% of the incidences (and the majority of deaths) due to this cancer.

Histologically, epithelial ovarian tumors are further divided in subtypes: (1) serous,

(2) mucinous, (3) endometrioid, (4) clear cell, and (5) transitional. Ovarian germ

cell tumors develop from the cells that produce the egg (or ova). Stromal tumors are
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typically rare in ovarian cancer. These tumors originate from the cells of connective

tissue, which support ovary and secreted hormones (Kalli et al. 2004; Rosen et al.

2009; Romero and Bast 2012). Similar to other cancers, patients with ovarian

cancer respond well if the disease is diagnosed at early stage. Since this disease is

mainly asymptomatic in the early stages, most patients are diagnosed at advanced

stage. Unfortunately, in such instances, especially due to metastasis, the treatment

options become somewhat less effective.

2.2 Hypercoagulability in Ovarian Cancer

Platelet activation and systemic coagulation often present in patients that charac-

terize the thrombotic form of ovarian cancer (Wang et al. 2005; Holmes et al. 2009).

Due to thromboembolic episodes, ovarian cancer patients are more likely to

develop blood clots. Factors underlying the hypercoagulable state in ovarian cancer

have been implicated with tumorigenesis and metastasis. Immunohistochemical

studies have shown that ovarian cancer cells can generate a complete coagulation

pathway. They are able to generate thrombin and activate platelets, causing both

inflammation and thrombosis (Amirkhosravi et al. 2013; Chen et al. 2013).

Correlation of hypercoagulability and high levels of activation markers is asso-

ciated in patients with recurrent and at advanced stage of the disease. Thus,

identification of hypercoagulable patients would be important not only for effective

thromboprophylaxis but also for possible future treatment strategies for histologi-

cally proven patients with ovarian cancer. Crucial laboratory markers/tests includ-

ing D-dimer, hemoglobin, platelet and leukocyte count, selectins (e.g., soluble

P-selection), tissue factor, factor VIII, and C-reactive protein can potentially aid

and/or predict the hypercoagulability in ovarian cancer (Amirkhosravi et al. 2013;

Tas et al. 2013).

2.3 Detection and Diagnostic Usefulness of Tumor
Biomarkers

It is well known that the lack of specific biomarkers makes it difficult to detect the

malignancy at a relatively early stage of the disease. This is mainly due to the fact of

complex classification of this malignancy. This classification of the disease is based

on clinical presentation, tumorigenesis, and the analysis of gene expression profiles.

Due to such complexity, it is challenging to identify precise biomarkers for the

disease prognosis. Following are some of the well-known biomarkers and their

clinical applications in ovarian cancer.

CA125 The glycoprotein antigen, cancer antigen 125 (CA125), also known as

mucin 16 (MUC16), typically presents on the cell surface of tissues derived from
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coelomic epithelia. Ovary and fallopian tube tissue expresses CA125. The sensi-

tivity of CA125 is about 50% in stage I ovarian cancer patients, but its association

is highly sensitive (~90%) for the patients with advanced-stage disease (van Nagell

et al. 2007). It has been approved by the Food & Drug Administration (FDA) as a

biomarker for determining residual or recurrent epithelial ovarian cancer (EOC)

patients, especially for the cases after their first-line therapy. Since approximately

80% of ovarian cancer patients show elevated levels of CA125 (Skates and Singer

1991), monitoring its levels is routinely used for determining the effectiveness of

the treatment. One of the limitations is the lack of specificity. Elevated levels of

CA125 can also be found in some benign conditions and other cancer patients

including breast, endometrial, colon, and pancreatic cancers. The levels of CA125

and sonographic analysis of the adnexal mass are used for determining the risk

stratification. The CA125 concentration, menopausal status (MS), and ultrasound

score (US) are used to measure the risk of malignancy index (RMI) (Anton et al.

2012). To calculate the RMI, the concentration of CA125 is multiplied by MS and

US (Anton et al. 2012).

HE4 Human epididymis protein 4 (HE4) is a member of whey acidic four disulfide

core (WFDC) family proteins. It is overexpressed in all endometrioid ovarian

carcinomas and some other non-mucinous carcinomas such as serous (93%) and

clear cell tumors (50%). HE4 was approved by the FDA in June 2008 to monitor

the progressive or recurrent disease in EOC patients. Notably, it is not approved as a

screening test for ovarian cancer in asymptomatic women. The biomarker is not

widely available on automated immunoassay platforms. Physicians often use both

HE4 and CA125 for assessing risk of ovarian cancer at the pelvic mass surgery in

women.

The use of ROMA (Risk of Ovarian Malignancy Algorithm) has recently been

proposed, which accounts for the concentration of the two analytes along with the

menopausal status of a given subject leading to the generation of score (at 0–10

scale). Based on this score, the low or high likelihood of the malignancy can be

determined utilizing appropriate cutoff values. Obviously, a subject with ROMA

scale higher than the cutoff level should be referred to gynecologic oncologist to

rule out the possibility of higher risk for the disease (along with other clinical

assessments/judgments, including the women’s pre- or postmenopausal status).

OVA1 This multi-analyte assay is relatively newer, which was FDA cleared in

2009 as an aid in assessing the risk of malignancy in subjects presenting with an

adnexal mass (when independent clinical/radiological evaluation for malignancy is

indeterminate). This assay measures serum levels of CA125, transthyretin

(prealbumin), apolipoprotein A1, β2-microglobulin, and transferrin together. The

assay utilizes two immunoassay platforms, i.e., Roche Elecsys (for CA125) and

Siemens BNII (for rest of the four analytes). The OvaCalc (company’s proprietary
software) uses the values of these analytes along with the menopausal status of the

subject in order to calculate the score. While a score of �5.0 in premenopausal

subject may suggest high probability of malignancy, a score of �4.4 in postmen-

opausal subject. Notably, OVA1 score above the cutoff is not a diagnosis of cancer,
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but indicative of increased risk of malignancy. One must recognize that this test

does not replace currently available other methods of risk assessment

(or screening). We summarize the clinical applications and usefulness of these

three widely available serum biomarkers for ovarian cancer testing in Table 1.

3 Treatment Options for Ovarian Cancer

3.1 Standard of Care

Similar to many malignancies, surgery and chemotherapy are used as the standard

options for treating patients with ovarian cancer. After the debulking surgery,

chemotherapy involving platinum-based drugs and taxane is given to patients

(Rueda et al. 2010; Schorge et al. 2010; Raja et al. 2012). Even though the initial

therapy is effective in most of the cases, almost all patients develop

chemoresistance, and the disease can relapse in a majority of patients.

The biological behavior of ovarian cancer suggests that the malignant portion is

confined to peritoneal cavity and hence chemotherapy is often delivered via intra-

peritoneal (IP) administration. The IP chemotherapy has limited systemic toxicity

and exposes higher drug concentrations to malignant area and highly effective for

improving the survival of ovarian cancer patients (Markman et al. 2001; Armstrong

et al. 2006; Frenel et al. 2011). While surgery and chemotherapy are part of the

standard of care, rarely radiation is used for the treatment of this malignancy.

Despite multiple clinical trials and attempts to improve the therapeutic efficacy,

still the outcomes remain poor. The current therapeutic options are often intensive

and cause severe side effects. The morbidities associated with current intensive

therapies support the development of alternative therapeutic strategies, which may

enhance the effectiveness of current treatment regimens.

Table 1 Useful clinical

applications of key serum

biomarkers for the detection

of ovarian cancer

Biomarkers

Useful applications CA125 HE4 OVA1

Screening No No No

Discrimination of pelvic masses Yesa Yesb Yes

Monitoring treatment Yes Yes No

Detection of disease recurrence Yes Yes No
aAs a component of the RMI or ROMA score
bAs a component of the ROMA score

CA125: Cancer antigen 125

HE4: Human epididymis protein 4

OVA1:A registered biomarker blood test measuring 5 candidates:

(1) CA-125, (2) apolipoprotein A1, (3) beta-2 microglobulin,

(4) transthyretin, and (5) transferrin

RMI: Risk of malignancy index

ROMA: Risk of ovarian malignancy algorithm
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Radiation therapy is commonly used as an adjuvant therapy (depending on the

tumor size and related histopathological features/assessments) in most cancers,

including ovarian cancer. In some cases, surgery and radiation therapy seem to be

more effective than just chemotherapy or surgery followed by chemotherapy

(Dembo 1992; Thomas 1993). Whole abdominal and pelvic irradiation (WART)

was used to treat certain subsets of ovarian cancer; however, now it is largely

switched to chemotherapy (Goldberg and Peschel 1988; Franchin et al. 1991; Fyles

et al. 1997; Firat et al. 2003). Recently, IP chemotherapy is showing higher

response when compared to intravenous (IV) administration (Markman 2003).

Use of radiation is primarily not encouraged due to its toxicity—and lack of proper

clinical trials also made it somewhat impossible to assess the benefits of radiation in

combination with current chemotherapeutic options.

3.2 Chemoresponse Assays

Chemoresponse assay, often referred to as chemotherapy sensitivity and resistance

assay (CSRA), reports a panel of markers characterizing a tumor’s response to

multiple chemotherapy agents (Brower et al. 2008). Different types of CSRAs are

used in testing. Adenosine triphosphate (ATP) and methylthiazolyl-diphenyl-tetra-

zolium bromide (MTT) assays are used for measuring cell growth inhibition. Other

assays include human tumor cloning assay (HTCA) and extreme drug resistance

(EDR) assay. These assays provide tumor response information aimed at aiding in

the selection of effective, individualized treatment regimens. The assays are gen-

erally based on phenotypic rather than molecular characterization. The advantages

and disadvantages of various CSRA methods are debatable and require further

validation.

Currently, two best validated assays are commercially available for solid tumors

in the United States, i.e., the Microculture-Kinetic (MiCK) assay (DiaTech Oncol-

ogy, Franklin, TN) and the ChemoFx® assay (Precision Therapeutics, Inc., Pitts-

burgh, PA). MiCK assay is based on drug-induced apoptosis. Validation of MiCK

assay is used for determining the overall survival of naive patients diagnosed at

advanced-stage primary ovarian cancer. This assay can serve as an independent

predictor for the survival of such patients. The ChemoFx® assay characterizes both

the sensitivity and resistance of the tumor, quantifying the chemotherapeutic effect

by direct visualization and enumeration of live cells following exposure to the

treatments (Grendys et al. 2014). The assay process is highly automated; hence the

process strongly contributes to the high throughput and reproducibility of the assay

requiring minimum specimens. Enormous peer-reviewed literature exists about the

analytical performance and clinical validation of ChemoFx® assay. It is relatively

inexpensive and rather more effective for predicting the treatment outcomes. Thus,

the inclusion of either chemoresponse assay results, in concert with other clinical

assessments/factors/biomarkers, proves to be quite helpful toward the management

of ovarian cancer patients.
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3.3 Role of Single Nucleotide Polymorphisms

Single nucleotide polymorphisms (SNPs) are employed to assess the risk of adverse

events in chemotherapy in ovarian cancer patients. SNPs in genes associated with

platinum and taxane metabolism/detoxification have been correlated to increased

risk of severe adverse events (AE) when patients receive these drugs (Moxley et al.

2013). In addition, SNPs in genes for drug resistance proteins and antiapoptotic

proteins have been associated with cardiotoxicity in adriamycin/doxorubicin-

treated patients and hematological toxicities in gemcitabine-treated patients (Oka-

zaki et al. 2010; Volkova and Russell 2011; Blanco et al. 2012). The combination of

platinum- and taxane-based regimen is used to treat most of the patients. While

initial response rates are extremely high (>90%), some patients experience severe

AE which can lead to discontinuation of the therapy. The Gynecologic Oncology

Group (GOG) and paclitaxel package insert include treatment guidelines that

involve a decreased dose regimen, if AEs are encountered. Hence, clinical valida-

tion of the genetic differences in these genes as biomarkers for severe AEs would be

helpful strategy for the treating physicians to alter dosing, thereby increasing the

time a patient could remain on the drug while decreasing side effects and unnec-

essary morbidity.

Another clinical utility of these genetic differences in ovarian cancer patient care

is the identification of such patients who may not benefit from IP chemotherapy or

dose-dense chemotherapy. While IP chemotherapy has been shown to improve the

patient outcomes, the side effects are much more frequent and severe due to the

high dose (Wenzel et al. 2007). Testing the patients prior to the treatment for

predictive genotypes may factor into a treating physician’s decision to forego IP

chemotherapy in favor of the standard IV delivery.

Dose-dense chemotherapy has demonstrated improvements in outcome but also

some increases in side effects (Katsumata et al. 2009; Glaze et al. 2013). In both

therapy regimens, the ability to stratify patients based on the risks of toxicities

associated with treatment may lead to a greater benefit of IP or dose-dense therapy

while minimizing side effects and associated healthcare costs. Furthermore, in the

recurrent setting, both doxorubicin and gemcitabine are treatment options

referenced in the guidelines of the National Comprehensive Cancer Network

(NCCN). Using genetic risk factors to personalize drug selection may minimize

side effects in the recurrent setting and improve drug response and outcomes.

It is well established that the expression of certain proteins such as p53,

glutathione S-transferase (GST), and Excision Repair Cross-Complementation

Group1 (ERCC1) potentially impacts the response to platinum-based treatment in

ovarian cancer patients (Hirazono et al. 1995; Ferrandina et al. 1999; Bali et al.

2004; Howells et al. 2004; Steffensen et al. 2008, 2009; Scheil-Bertram et al. 2010;

Milovic-Kovacevic et al. 2011). When SNP in the genes that encode these proteins

were evaluated, a correlation to AE in response to platinum-based therapies was

made (Khrunin et al. 2010; Sakano et al. 2010). Mutations that affected activity of

ERCC1 were associated with nephrotoxicity. Mutations in the GST family
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members were associated with neutropenia (GSTA1), neuropathy (GSTM3 and

GSTP1), or anemia and thrombocytopenia (GSTM3). Mutations in p53 were

associated with neutropenia. In these studies, mutations in XPD and XRCC1

were also found to be predictive of neutropenia (both XPD and XRCC1) and

anemia (XPD only). Hence, validating additional SNPs in patients with ovarian

cancer may further predict adverse events when treated with therapies that include

platinum, taxanes, doxorubicin, and/or gemcitabine. Using this technology (deter-

mination of genotypes for SNP in blood specimens) may stratify patients to

different dosing regimens and routes of administration or, in recurrent cancer to

aid in drug selection, may improve outcomes and potentially reduce the costs

associated with the management of drug-related side effects while not changing

the standard of care.

3.4 Cellular and Immune Therapies

New treatments improve short-term and median survivals, but not long-term sur-

vival or cure. Hence, the use of IP cellular therapy in combination with cytokines to

treat the disease has been advocated as a novel combination of enhanced immune

therapy. IP chemotherapy has been used in the United States since the late 1980s

and has resulted in an improvement in time-to-progression and overall survival

(Armstrong et al. 2006). Intra-tumoral T-cells are correlated with improvement in

survival indicating an important role of the immune system (Zhang et al. 2003a). In

addition, cytokines are currently being used to treat a variety of malignancies;

therefore, the combination of IP cellular therapy with known biologically active

cytokines is a rational hypothesis for an innovative approach to this localized

disease.

Cytokine-induced killer cells (CIK) are currently being investigated as effector

cells in cellular therapy treatment regimens. CIK are a heterogeneous population of

cells that exhibit nonmajor histocompatibility complex antitumor effect (Li et al.

2012). However, tumors are known to produce an immunosuppressive environ-

ment, which limits the immune system’s ability to fight the tumor and is a major

obstacle in the development of successful immunotherapeutic treatment regimens.

Myeloid-derived suppressor cells (MDSC) and T regulatory cells (Tregs) have been

identified in a majority of cancer types and are known to inhibit both innate and

adaptive immunity (Ostrand-Rosenberg and Sinha 2009).

Immunotherapy with stimulated immune cells also provided some evidence for

effectively treating ovarian cancer. Research from Zhang et al. (2003a) group

studied the overall survival of advanced-stage (III/IV) patients and reported that

infiltration of CD+ T-cells was associated with improved survival. The 5-year

overall survival was 4.5% and 38%, respectively, for the patients with low T-cell

infiltration and high T-cell infiltration. This report suggested a strong association of

immune system response in the survival of ovarian cancer patients (Zhang et al.
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2003a). It was also proposed that the patients with higher immune response possibly

will have a relatively longer disease-free survival (Nelson 2008).

Laboratory experimental observations demonstrated that healthy immune effec-

tor cells induce cytotoxicity in ovarian cancer cells. Preclinical studies also showed

that cytokines (IL-2: interleukin-2; IFNα-2b: interferon α-2b) in combination with

peripheral blood mononuclear cells (PBMC) caused higher inhibition of ovarian

cancer cell proliferation and tumor growth in mouse model (xenografts) for ovarian

cancer. The animal studies also suggested that this combination was not toxic and

did not result in overt hazard effects (Ingersoll et al. 2009, 2011, 2012). More

recently, using the xenograft mouse model, we further demonstrated that treatment

with healthy PBMC (IP) and IL-2 (IP) results in improved survival compared to

“only IL-2”-treated mice (Ingersoll et al. 2015). These preclinical results provided

the required evidence and facilitated to potentially initiate a phase 1 clinical trial for

the treatment of ovarian cancer.

3.5 Emerging Role of HIPEC in Ovarian Cancer

Use of hyperthermic intraperitoneal chemotherapy (HIPEC) procedure is a rela-

tively newer form of IP therapy. It is an alternative locoregional treatment strategy

employed for treating the advanced-stage ovarian cancer patients (Helm 2009).

This strategy is used instantly after the surgery and tumor resection. It is designed to

increase the distribution and penetration of chemotherapy for improved results.

Currently, there are several ongoing prospective clinical trials evaluating the

HIPEC approach to ascertain its definitive role in treating patients with ovarian

cancer.

The HIPEC delivery technique requires intraoperative perfusion machines,

elaborate logistics, and a high degree of organizational effort. Potential advantages

that make it a promising therapeutic option as part of a multimodality treatment are:

(1) a high volume of chemotherapy can be delivered, and a homogenous distribu-

tion can be achieved, (2) there is no interval between cytoreduction and chemo-

therapy, (3) hyperthermia has a pharmacokinetic benefit, including tumor

penetration of cisplatin and DNA cross-linking, and (4) low systemic exposure to

chemotherapy and higher distribution in IP compartments can be achieved (in a

single intraoperative treatment) (Oseledchyk and Zivanovic 2015).

It is to be cautioned, based on the currently available scientific evidence, that

HIPEC should not be considered yet a standard therapeutic option after optimal

cytoreduction in advanced ovarian cancer, nor should it be offered outside of a

clinical trial. One of the limitations with HIPEC approach is “small disease

volume” requirement; hence the fundamental question remains whether the hyper-

thermia is worth the risk of renal toxicity in the absence of greater insight into

platinum resistance and its reversal by hyperthermia. Indeed, as noted above, the

ongoing randomized clinical trials in ovarian cancer population may address some

of these concerns (Bakrin et al. 2014; Oseledchyk and Zivanovic 2015).
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4 Drug Resistance and Treatment Options

In ovarian cancer treatment, platinum-based drugs and taxane are used as the first-

line treatment (Parmar et al. 2003) while cisplatin, doxorubicin, gemcitabine, and

taxane derivatives are used as the second line of therapy (Pfisterer et al. 2006;

Ferrandina et al. 2008; Sehouli et al. 2008). Platinum-based therapy is effective in

majority of the patients with epithelial ovarian cancer, but relapse is common

among the advanced-staged disease patients. Cisplatin causes cytotoxicity via

inducing apoptosis through interacting with DNA. Drug resistance is responsible

for majority of deaths in these patients, and the underlying mechanisms associated

with drug resistance are not fully uncovered. In the patients treated at advanced-

stage disease (III and/or IV), even though they seem to respond well initially,

relapse is common in the majority of cases. Cisplatin is a commonly used drug in

both the first- and second-line chemotherapy (Januchowski et al. 2013).

Even though a few distinct markers are established, still sensitive biomarkers for

the early diagnosis of the disease and assessing the prognosis are lacking. There are

certain effective approaches that are being extensively tested, and a few are

currently under investigation to identify sensitive markers and effective path-

ways/candidates to target ovarian cancer treatment.

4.1 Modulators of Apoptosis

Bcl2 Family Apoptosis is biologically controlled cell death that is primarily

mediated by two important families, Bcl2 and inhibitor of apoptosis proteins

(IAP) (Oto et al. 2007). Bcl2 members include both pro- and anti-apoptotic

properties. Bcl-2 was first discovered and immensely studied as anti-death gene

in cellular processes (Yip and Reed 2008). Since Bcl-2 family proteins mediate cell

death, there are multiple studies that clearly elucidated the involvement of alter-

ations in antiapoptotic and/or proapoptotic members of the Bcl-2 family proteins in

ovarian cancer (Witham et al. 2007; Chaudhry et al. 2010, 2012; Yasmeen et al.

2011; Aust et al. 2013; Zhou et al. 2015). Inhibitors of Bcl-2 are tested for

evaluating their efficacy in ovarian cancer treatment and also on overcoming drug

resistance. Bcl-2 family proteins include both death agonists and antagonists and

regulate apoptosis in cells. Analysis of clinical specimens revealed that high

expression of death antagonists, Bcl-2 and Bcl-XL, is associated with low survival

rates, whereas high expression of death agonist, Bax, is known to a relatively longer

survival in epithelial ovarian cancer patients. It has also been established that

upregulation of Bcl-2 family proteins is associated with resistance to chemotherapy

in some cancers (Adams and Cory 2007; Vogler et al. 2009). The NCI panel of

60 cell lines representing several malignancies showed a negative correlation of

Bcl-XL and drug sensitivity (Amundson et al. 2000; Vogler et al. 2009). Overall, as

presented in Fig. 1, the overexpression of death agonists, Bcl-2, Bcl-XL, and Mcl-1,
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suppresses apoptosis, increases resistance to radiation/chemotherapy, and is asso-

ciated with poor survival, while the upregulation of death agonists, Bax, Bak, Bid,

and Bad, induces apoptosis, potentiates response to the treatments, and thereby

helps for longer survival (Wang et al. 2015). The imbalance between these two

categories of Bcl-2 family proteins impacts the biological features of carcinoma

(Giovannetti et al. 2006). Furthermore, screening of Bcl-2 inhibitors (e.g., TW-37)

demonstrated the anticancer activity and potentiation of the effect of chemothera-

peutic agent, cisplatin, in preclinical models of ovarian cancer (Zeitlin et al. 2008;

Wang et al. 2015).

Survivin The IAP family has eight members, which play roles in cell survival.

Specifically, DNA damage and activation of effector caspases are countered by the

members of the IAP family. Survivin is one of the best studied IAPs in cancer,

which mediates several biochemical and cellular functions and impacts the cell

survival. Studies have shown the functional roles of survivin in both the cell

division and apoptosis control (Deveraux and Reed 1999; Altieri 2006). Survivin

is overexpressed in several malignancies, and its upregulation is associated with a

relatively poor prognosis. It is also evident that the expression of survivin is

elevated in radiation-resistant cell lines, and inhibiting survivin causes sensitization

to radiation or chemotherapy (Lu et al. 2004; Shinohara et al. 2004; Rodel et al.

2005; Pennati et al. 2007; Konduri et al. 2009).

Death Antagonists

Bcl-2 Mcl -1 Bcl-XL

RDeath Agonists

Bax Bak BadBid

Resistance to
XRT/CheT

Cell survival

Long survival

Poor survival

Apoptosis

Fig. 1 Ovarian cancer: Distinct functions of Bcl-2 family proteins. The Bcl-2 family proteins

have both death antagonists and death agonists. Bcl-2, Bcl-XL, and Mcl-1 are classified as death

antagonists. Bax, Bak, Bid, and Bad are death agonists. Overexpression of Bcl-2, Bcl-XL, and

Mcl-1 suppresses apoptosis, induces resistance to radiation/chemotherapy, and causes poor sur-

vival. The upregulation of death agonists (Bax, Bak, Bid, and Bad) increases apoptosis, enhances

the response to therapy, and helps to achieve longer survival. The imbalance between the death

agonists and death antagonists impacts the distinct biological features of carcinoma
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c-Met It is a hepatocyte growth factor (HGF) receptor that belongs to tyrosine

kinase receptor family. c-Met is commonly found in epithelial cells and arbitrated

to several biological activities including mitogenesis and morphogenesis. Its asso-

ciation with cancer is well studied since this receptor is overexpressed/amplified in

multiple cancers including ovarian cancer (Kuniyasu et al. 1992; Di Renzo et al.

1994; Medico et al. 1996; Jin et al. 1997; Lamszus et al. 1997; Ayhan et al. 2005).

Di Renzo et al. (1994) reported that c-Met expression can impact the prognosis of

ovarian cancer patients and proposed it as a prognostic marker for this disease

(Di Renzo et al. 1994).

Research has shown the presence of c-Met in 70% of ovarian carcinomas and

overexpression in more than 30% of patient samples. It is believed that the

activation of c-Met and subsequent signaling mechanisms decreases cell prolifer-

ation, increases resistance to apoptosis, and induces the production of serine pro-

teases and ultimately contributes to cell mobility, tumor growth, and invasion

(Jeffers et al. 1996a, b). There is strong evidence that standard therapy (e.g.,

radiation) induces c-Met and that c-Met upregulation is also associated with

resistance to the treatment (Aebersold et al. 2001; Qian et al. 2003; Lal et al.

2005; Chu et al. 2006; Bhardwaj et al. 2012). De Bacco et al. (2011) showed that

radiation upregulates c-Met, and induction of Met causes resistance to radiation and

invasive growth of cancer cells (De Bacco et al. 2011). The study suggested that

radiation upregulates c-Met and subsequent signaling cascades that triggers

pro-survival activity, which diffuses the response of the standard treatment

(De Bacco et al. 2011). The activation of c-Met in cancer cells is also believed to

protect from DNA damage and c-Met inhibitor-caused radiosensitization (Welsh

et al. 2009). These studies strongly supported the role of c-Met in inducing the cell

survival and resistance to the standard treatment options and suggested that the

strategies to suppress its activation will be a viable option to enhance the response

of cancer treatment.

4.2 Targeting Sp Transcription Factors

The Specificity protein (Sp)-family of transcription factors have been shown to

regulate a variety of genes involved in critical processes (ranging from cell cycle,

proliferation, cell differentiation, and apoptosis). The specific Sp transcription

factors (i.e., Sp1, Sp3, and Sp4) bind to GC-rich promoter sites and regulate key

sets of genes associated with cancer. Hence, the role of Sp proteins is obvious in the

development of various cancers. The Sp1 expression correlates with the aggressive

disease and poor prognosis. Sp proteins also regulate vascular endothelial growth

factor (VEGF) and play key role(s) in tumorigenesis (Abdelrahim et al. 2006;

Bermudez et al. 2007).

An interesting link exists between Sp proteins and the other two candidates

(c-Met and survivin), as described above. While multiple candidates are involved in

the aggressive disease and poor prognosis, Sp1 and Sp3 transcription factors
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mediate the expression of both c-Met and survivin. High relevance of Sp proteins

have been implicated in the signaling cascade associated with c-Met activation.

Both c-Met and survivin contain GC-rich promoters, and specific Sp proteins (e.g.,

Sp1 and Sp3) mediate their expression (Zhang et al. 2003b; Papineni et al. 2009;

Basha et al. 2011; Colon et al. 2011; Sankpal et al. 2012). Recent preclinical studies

emphasize that downregulation of c-Met and survivin is well correlated with the

decrease in Sp1 and Sp3 expression (Papineni et al. 2009; Basha et al. 2011; Colon

et al. 2011).

Understanding the key players associated with the aggressive disease and induc-

ing resistance to therapy is critical in treating cancer. It is clear that both c-Met and

survivin are responsible for cancer cell survival, aggressive disease, and poor

prognosis and also induce resistance to radiation and chemotherapy. Research

focusing on the strategies to target either c-Met or survivin to induce sensitivity

to irradiation and/or chemotherapy has been attempted previously. It is plausible

that clinical response may be achievable using a strategy to target these two

candidates through transcriptional regulation. Targeting Sp1 and Sp3 potentially

modulates c-Met, survivin, and downstream cascades, thereby inhibiting tumor

development, and also induces radiosensitization.

Mithramycin A (Mit-A) is a known Sp protein inhibitor, which has been tested in

several cancers, including ovarian cancer (Blume et al. 1991; Previdi et al. 2010).

Despite its efficacy for inhibiting cancer cells and tumor growth, it has not been able

to gain popularity in cancer treatment due to apparent toxicity and side effects

(Parsons et al. 1971; Kofman et al. 1973; Margileth et al. 1973). The analogs of

Mit-A were introduced so as to enhance therapeutic efficacy and alleviate the issues

related to side effects, which are currently under preclinical testing (Previdi et al.

2010; Fernandez-Guizan et al. 2014, 2015; Vizcaino et al. 2014).

There is growing evidence to support the use of nonsteroidal anti-inflammatory

drugs (NSAIDs) as anticancer agents (Jacoby et al. 2000; Tarnawski and Jones

2003; Gately and Li 2004). Abdelrahim et al. (2006) screened the ability of various

structural classes of NSAIDs to better identify effective candidates with the ability

to decrease the levels of Sp proteins associated with cancer using the orthotopic

animal model for pancreatic cancer. This study identified a fenamate, tolfenamic

acid (TA), as a potent agent (also an NSAID) for inhibiting pancreatic cancer cell

proliferation and tumor growth in mice (Abdelrahim et al. 2006). TA activates the

degradation of specific Sp transcription factors (such as Sp1, Sp3, and Sp4), thereby

reduces the VEGF expression and decreases tumor growth and metastasis

(Abdelrahim et al. 2006). Recent studies from our laboratories and research col-

laborations further confirmed the relationship of Sp proteins in various cancers

models. These studies revealed that targeting Sp1 with TA serve as a promising

approach for cancer therapy (Abdelrahim et al. 2006; Konduri et al. 2009; Papineni

et al. 2009; Basha et al. 2011; Eslin et al. 2013; Sankpal et al. 2012; 2016). The

primary advantage of suppressing Sp proteins is to regulate their downstream

targets such as survivin, c-Met, and the proteins associated with cell cycle. Inhibi-

tion of survivin and c-Met potentially increases apoptosis and drug sensitivity.

Modulating the expression of candidates required to pass various phases (G0/G1, S,
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and G2) of cell cycle such as CDK4, cyclin D1, SKP2, E2F, and Rb can cause cell

cycle arrest, cease the cell division, and lead to cell growth inhibition. By targeting

the candidates involved in cell survival, drug resistance, and cell cycle phase

distribution, inhibitors of Sp proteins can effectively enhance the cancer cell

death in cancer cells (Fig. 2).

4.3 Multiple Drug Resistance

There are several mechanisms proposed to understand the drug resistance. The

ability of cancer cells to eliminate the drug from the cellular compartments via

transport proteins is an important mechanism known to cause drug resistance

(Stavrovskaya 2000; Kruh 2003). This may facilitate cancer cells to develop

insensitivity leading to multiple drug resistance (MDR). It is especially detrimental

since MDR in cancer cells may indiscriminately develop resistance to pharmaco-

logical agents along with anticancer (cytotoxic) agents (Januchowski et al. 2014).

Extensive research revealed the involvement of certain transmembrane proteins

that belong to ABC family for inducing MDR (Leonard et al. 2003). Glycoprotein P

(P-gp), MDR-related protein 1 (MRP1), and MRP2 are the important members of

Sp proteins

CDK4, Cyclin D1, 
SKP2, E2F, Rb

Drug
resistance 

IAPs
(eg., survivin)

APOPTOSIS

CELL
CYCLE 

c-MET

CELL 

DEATH

DRUG
SENSITIVITY 

TA, Mit-A, Mit-A-AFig. 2 Inhibition of Sp

proteins for inducing

anticancer activity. Sp

proteins regulate the

expression of survivin,

c-Met, and key proteins that

regulate cell cycle phase

distribution. Inhibition of

survivin and c-Met induces

cell death via increasing

apoptosis and sensitivity to

standard therapy. In a

complementary mechanism,

the inhibition of Sp proteins

can also modulate the

expression of CDK4, cyclin

D1, SKP2, E2F, and Rb,

which are required for cell

cycle phase distribution and

ceases the cell division

thereby inducing cell death

in cancer cells
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the ABC family proteins, which are implicated in the MDR (Januchowski et al.

2014). The expression of P-gp is often upregulated by chemotherapy leading the

cancer cells to acquire MDR. Overexpression of P-gp induces the removal of

multiple (approximately 20) anticancer agents including doxorubicin, paclitaxel,

and vincristine. MRP1 and MRP2 are associated with developing resistance to

cisplatin in ovarian cancer (Cole et al. 1992; Leonard et al. 2003; Surowiak et al.

2006; Januchowski et al. 2014). Januchowski et al. (2013) developed ovarian

cancer cell lines resistant to chemotherapeutic drugs such as cisplatin, doxorubicin,

methotrexate, paclitaxel, topotecan, and vincristine. These cells were tested for the

signatures of drug resistance and found to be correlated with P-gp overexpression

and resistance to doxorubicin, paclitaxel, and vincristine. The MRP1, MRP2, P-gp,

and breast cancer resistance protein (BCRP) are ABC family proteins, which are

encoded by ABCC1, ABCC2, ABCB1, and ABCG2, respectively. The non-ABC

family protein, lung resistance-related protein (LRP)/major vault protein (MVP) is

Vault 1 gene. All of these proteins are implicated in developing the resistance to

such chemotherapeutic drugs as doxorubicin, vincristine, cisplatin, paclitaxel,

topotecan, and etoposide. Drugs and the proteins that are associated with develop-

ing resistance are presented schematically in Fig. 3.

5 Economic Impact

It is generally recognized that ovarian cancer diagnosis could be a major event in a

person who is diagnosed with the disease and her loved ones also. Given the

complexity and often prolonged nature of the disease, the life of patient with

ovarian cancer and potentially the family members face multiple challenges,

including financial toxicity. A recent economic analysis of caregiving in advanced

ovarian cancer patients demonstrated that, in addition to the patient, there are

significant burdens that cancer treatment puts on the patients’ families and the

society at large (Angioli et al. 2015). Both direct and indirect medical costs are

attributable to the patients’ cancer leading to adverse economic impact (burden),

particularly to the elderly patients. The geographic location of the patient and

caregiving facilities also impacts the overall surgical and treatment economics.

As the number of new ovarian cancer patients is expected to increase in the future

due to life expectancy (despite trends in the overall improvement in the quality of

life and survival), the cost of cancer treatment is obviously expected go higher.

Likewise, this will have ripple effect on the families and caregivers with regard to

financial burden. Thus, healthcare professionals should identify the potential risk

and significant burden of the financial toxicities associated with the disease and be

considerate while treating/managing ovarian cancer patients.

Over the years, the clinical validation of chemoresponse assays has demon-

strated a significant increase in the overall survival of patients with recurrent

ovarian cancer that were treated with such therapies to which their tumor was

sensitive/resistant in the assay system. In a most recent study, cost-effectiveness of

Ovarian Cancer and Resistance to Therapies: Clinical and Laboratory Perspectives 525



using the assay during ovarian cancer recurrence (from the payer’s perspective) has
been reported (Plamadeala et al. 2015). The authors found that the cost-

effectiveness was associated with platinum-sensitive and platinum-resistant subject

treated with assay-sensitive therapies, which also concluded that the use of a

chemoresponse assay for treatment decisions in recurrent ovarian cancer patients

has the potential for cost-effectiveness in both platinum-sensitive as well as

platinum-resistant subjects. Early palliative care intervention has also been shown

to have the potential for reducing the costs associated with the end-of-life care for

recurrent and platinum-resistant ovarian cancer patients (Lowery et al. 2013).

ABC 

MRP1 MRP2 P-gp

Non-ABC 

BCRP LRP/MVP

ABCC1         ABCC2          ABCB1      ABCG2 

Paclitaxel

Etoposide

Doxorubicin

Vincris�ne

Cispla�n

Topotecan

VAULT 1

Fig. 3 Proteins implicated in multiple drug resistance (MDR). The ABC family proteins are

implicated in MDR. The MDR-related protein 1 (MRP1), MRP2, glycoprotein P (P-gp), breast

cancer resistance protein (BCRP) and non-ABC family protein, and lung resistance-related protein

(LRP)/major vault protein (MVP) are the ABC family proteins that play active role in developing

resistance to chemotherapeutic drugs. MRP1, MRP2, P-gp, BCRP, and LRP/MVP proteins are

encoded by ABCC1, ABCC2, ABCB1, ABCG2, and VAULT1 genes, respectively. Each protein

is given a symbol, and specific protein(s) associated with developing resistance to each drug is

indicated with the corresponding symbols

526 R. Basha et al.



6 Future Perspectives

Traditionally, chemotherapy has been utilized successfully to treat ovarian cancer;

however, peritoneal carcinomatosis is associated with a relatively poor prognosis

and survival. Surgery alone is inadequate at the microscopic level, and systemic

chemotherapy is of limited value because of the peritoneum–plasma barrier. Mul-

tiple alternate regimens have been utilized, most of them based on the platinum and

taxane standard, but augmented with additional therapies and/or altered sequenc-

ing. For patients with recurrent, persistent, or progressive ovarian cancer, chemo-

therapy choice is generally based on the duration and type of response to the initial

therapy. The greatest potential for ovarian cancer cure appears to be aggressive

cytoreductive surgery to no residual disease followed by IP chemotherapy.

Despite significant advances, there is urgent need and potential for developing

newer strategies to kill ovarian tumor cells because of aggressive relapsed disease

and drug-resistant cancers. Predictive biomarkers and its measurements in tumor or

blood specimens that can help to determine how well currently approved and

investigational agents work will be highly advantageous. Studying the compounds’
detailed mechanism(s) of action, their potential resistance mechanism(s), and how

to combine them with other therapeutic agents (and targets) will be promising

approach. Part of the success for combining drugs is not only to have better

therapeutic effects on the ovarian tumors but also to delay or overcome any kind

of resistance mechanisms. Studies are attempted to unraveling precise markers

associated with resistance to platinum drugs and finding new candidates including

ATP11B (Moreno-Smith et al. 2013) and microRNAs (e.g., let-7 family) (Cai et al.

2013). Apart from the compounds to modify Bcl2 family proteins (Witham et al.

2007; Wang et al. 2015), new agents for targeting DNA repair and inhibiting poly

(ADP-ribose) polymerase (Mukhopadhyay et al. 2010; Ratner et al. 2012; Wiggans

et al. 2015) are under rigorous screening in laboratory experiments (Fig. 4). Small

molecules such as buthionine sulfoximine, triethylenetetramine, colchicine, genis-

tein, and rapamycin are also under preclinical testing for using to reverse the

resistance to cisplatin (Yellepeddi et al. 2012). Research is much needed in this

direction to identify effective drugs for preventing tumors to acquire resistance

(Fig. 4). Silencing gene expression is an emerging technology for the applications

in cancer treatment. It took more than a decade since its inception to improve this

tool for using in therapeutic application. Precise knockdown of oncogenes using

short interfering RNAs (siRNAs) is under testing in several malignancies, including

ovarian cancer (Fig. 4).

Relative to the traditional treatment strategies using standard chemotherapeutic

agents, there are potentially excellent benefits for using the new technologies.

Research on understanding drug resistance including multiple drug resistance and

the specific markers associated with resistance to commonly used chemotherapeu-

tic drugs is currently underway. Targeted therapy using novel drug delivery systems

and microRNAs for diagnosis is gaining momentum. Gene silencing is also cur-

rently utilized as an effective tool in ovarian cancer research. The important
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advantages of gene silencing include the following: it requires less quantity (dose),

specifically targets the genes of interest, and is effective against complex druggable

targets (Bumcrot et al. 2006; Goldberg 2013). But the major limitations are stability

and delivering the compound to the target site (Pecot et al. 2011; Wu et al. 2014).

Future studies should focus on overcoming such constraints and bringing more

agents for clinical testing. Especially, improving the stability and developing

effective drug delivery systems could pave the way for utilizing the application

of personalized care for the treatment of ovarian cancer.

7 Conclusions

Ovarian cancer is the second most important malignancy occurring among women.

Despite significant advances in surgical and therapeutic methods, still serious

concerns exist for treating the patients with recurrent disease and the issues related

to drug resistance. Combination treatments using multiple chemotherapeutic agents

and involving other compounds such as small molecules are under screening and

some of these strategies are at various stages of clinical testing. Recently, more

sophisticated tools are becoming available to surgeons and medical oncologists to

apply in surgery and clinical interventions. Novel agents including the modulators

of Bcl2 family proteins, inhibitor of apoptosis family proteins, and small molecules

as chemo-sensitizers are showing promising results, at least in preclinical investi-

gations. Cellular and immune therapy coupled with genomic analysis and genetic

PARP inhibitors

RNAi

Bcl2 family 
modulators

Delivery 
systems

miRNAs

Chemo-
sensi�za�on

Small 
molecules

DRUG 
RESISTANCE APOPTOSIS

Fig. 4 Strategies for

improving therapeutic

response in ovarian cancer.

Multiple strategies are

currently under testing for

improving the therapeutic

response in patients with

ovarian cancer. Modulators

of Bcl2 family proteins,

PARP inhibitors, small

molecule microRNAs, and

RNAi technology are used

to induce apoptosis, while

some of these candidates

can also induce

chemosensitization or work

against drug resistance.

Effective drug delivery

systems are also under

development for

specifically introducing the

agents to the target site(s)
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tastings are especially adding further strengths for diagnosis in personalized care to

cancer patients. These tools are significant milestones in cancer therapy even

though optimal treatment options are not yet available for all patients. Recent

rapid advances in both diagnosis and therapy are expected to unfold existing

obstacles and provide effective personalized care for ovarian cancer patients to

improve quality of life and survival and may completely cure this devastating

disease someday.
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Abstract Introduction: Greater accessibility to antibiotics has resulted in their
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care treated according to guidelines. High rates of AMR are now seen across

countries and continents, resulting in AMR becoming one of the most critical

issues facing healthcare systems. It is estimated that AMR could potentially

cause over 10 million deaths per year by 2050 unless addressed, resulting in

appreciable economic consequences. There are also concerns with under-

treatment especially if patients are forced to fund more expensive antibiotics

as a result of AMR to first-line antibiotics and do not have available funds.

Overprescribing of antibiotics is not helped by patient pressure even when

physicians are aware of the issues. There is also extensive dispensing of

antibiotics without a prescription, although this is now being addressed in

some countries. Aim: Review interventions that have been instigated across

continents and countries to reduce inappropriate antibiotic prescribing and dis-

pensing, and associated AMR, to provide future guidance. Method: Narrative

case history approach. Findings: A number of successful activities have been

instigated to reduce inappropriate prescribing and dispensing of antibiotics

across sectors. These include the instigation of quality indicators, suggested

activities of pharmacists as well as single and multiple interventions among all

key stakeholder groups. Multiple interlinking strategies are typically needed to

enhance appropriate antibiotic prescribing and dispensing. The impact of ongo-

ing activities need to be continually analysed to provide future direction if AMR

rates, and their impact on subsequent morbidity, mortality and costs, are to be

reduced.
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1 Introduction

1.1 Extent and Threat of Antimicrobial Resistance and Its
Impact on Future Healthcare and Costs

Before the discovery of antibiotics, infectious diseases were the principal cause of

morbidity and mortality (Md Rezal et al. 2015). This changed with their advent

(Bosch and Roschi 2008; Alharbi et al. 2014; HMG 2014). Antibiotics have now

become the cornerstone of treatment for bacterial infections across healthcare

sectors (van de Sande-Bruinsma et al. 2008; Holloway et al. 2011; WHO Europe

2014; Laxminarayan et al. 2016) and are seen as an essential part of modern

medical practice (Hwang et al. 2015). As a result, they are now among the most

prescribed and dispensed medicines across healthcare settings (Larsson et al. 2000;

Jande et al. 2012; Kho et al. 2013; Almeman et al. 2014; Md Rezal et al. 2015;

Podolsky et al. 2015; Truter 2015). Antibiotic utilisation increased 36% globally

between 2000 and 2010, with Brazil, China, India, South Africa and Russia

accounting for 76% of this increase (Van Boeckel et al. 2014; Laxminarayan

et al. 2016). This is set to continue unless addressed.

Greater accessibility to antibiotics has resulted in their irrational and excessive

use, leading to increasing antimicrobial resistance (AMR) and a concomitant strain

on healthcare systems (Goossens et al. 2005; de Jong et al. 2008; van de Sande-

Bruinsma et al. 2008; Davies and Davies 2010; Kesselheim and Outterson 2010; de

Kraker et al. 2013; Barnett and Linder 2014; Versporten et al. 2014; Truter 2015;

Dyar et al. 2016). For instance in Pakistan, the average number of antibiotics

prescribed per physician encounter is 1.1 in ambulatory care and 2.4 for inpatient

care (Riaz et al. 2015). In Botswana, only 31% of children were correctly pre-

scribed an antibiotic, and 40.3% of children who did not require an antibiotic left

the health facility with a prescription for one (IMCI 2004). In Kenya, antibiotics

were prescribed in two thirds of patients seeing a physician for diarrhoea (Brooks

et al. 2006). In Kampala, Uganda, there was also appreciable self-purchasing of

antibiotics for acute respiratory tract infections (RTIs) including common colds,

mainly amoxicillin and co-trimoxazole, before patients or their families sought

medical help (Massele et al. 2015; Kibuule et al. 2016). Self-purchasing of antibi-

otics is also common in many other countries despite being illegal in most (Chat-

terjee and Fleck 2011; Godman et al. 2014; WHO Europe 2014; Massele et al.

2015; WHO 2015; Kalungia et al. 2016) and is strongly correlated with increasing

AMR rates in low-income and middle-income countries (LMICs) (Alsan et al.

2015).

The consumption patterns of antibiotics among humans and its use in agricul-

ture, especially in animal husbandry, have been found globally to correlate with the

development of AMR (Oduyebo et al. 2008; Goossens 2009; Meyer et al. 2013;

Adesokan et al. 2015; Velickovic-Radovanovic et al. 2015; Dyar et al. 2016).

Resistant strains of bacteria have been isolated from food animals, plant source

and dairy products in different parts of the world (Brooks et al. 2006; Goossens
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2009; de Kraker et al. 2013; WHO 2015). The HIV/AIDS epidemic, especially on

the African continent, coupled with the use of co-trimoxazole prophylaxis, has also

increased AMR rates (Cotton et al. 2008; Marwa et al. 2015).

In addition, only a limited number of ambulatory care patients with infections

are currently treated according to guidelines. Over 40% of prescriptions for anti-

biotics are considered inappropriate particularly for upper respiratory tract infec-

tions (URTIs), which are typically viral in origin (Gonzales et al. 2001; Holloway

et al. 2011; Little et al. 2013; Barnett and Linder 2014; Hassali et al. 2015; Dyar

et al. 2016). For instance, a study in the UK concluded that the complication rate

after URTIs is very low and antibiotic therapy is ineffective. As a result, the authors

estimated 4000 patients or more with URTIs need to be treated with antibiotics to

prevent a single episode of pneumonia (Petersen et al. 2007).

Overall, it is estimated that resistance rates of �50% are seen worldwide to

common bacteria such as Escherichia coli, Klebsiella pneumoniae and Staphylo-
coccus aureus (WHO 2014). In 15 European countries, more than 10% of blood-

stream S. aureus infections are due to methicillin-resistant S. aureus (MRSA), with

seven of these countries having resistance rates above 25% (ECDPC 2015; HMG

2014). High rates of antibiotic resistance are seen across Africa, the Middle East

and Asia (Table 1), with five out of six WHO regions reporting high resistance rates

leading to increased prescribing of second-line antibiotics (WHO 2014).

For instance, in Tanzania in children aged between 0 and 7 years with

septicaemia, AMR was a major risk factor for a poor outcome (Blomberg et al.

2007). In Uganda in patients with surgical site infections, extended spectrum beta-

lactamase (ESBL)-producing Enterobacteriaceae and MRSA organisms were also

major risk factors for a poor outcome (Seni et al. 2013). AMR is of particular

concern in community settings where infections are common and can easily be

transmitted among the population (NCCID 2010; WHO 2014). However, the true

burden of bacterial infections in many African countries, including South Africa,

remains unknown (Laxminarayan et al. 2016; Mendelson and Matoso 2015).

MRSA is also a common problem worldwide. New community-acquired strains

of MRSA (CA-MRSA) are also now emerging causing concern (FIP 2008).

Increasing AMR rates is now seen as one of the most critical problems facing

healthcare systems (WHO 2001; Sumpradit et al. 2012; Llor and Bjerrum 2014;

Barlam and Gupta 2015; Hoffman and Outterson 2015; Jinks et al. 2016). It is

estimated that AMR infections currently cause approximately 50,000 deaths a year

in Europe and the USA alone (HMG 2014). This increases to several hundred

thousand deaths each year when other countries are included (HMG 2014). The

continual rise in AMR could result in it becoming a leading cause of death

worldwide by 2050 with over 10 million deaths per year, potentially reducing

GDP by 2% to 3.5% and costing up to US$100 trillion (HMG 2014; Md Rezal

et al. 2015). Other authors have suggested lower costs; however, their estimates

typically fail to consider the costs for patients or health authorities after patients are

discharged from hospitals (Gandra et al. 2014).

As a result of increasing AMR rates, common infections are becoming more

difficult to treat, causing life-threatening illnesses and potentially death (Costelloe

et al. 2010). This combination of overuse of antibiotics, misuse, stopping treatment
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Table 1 Antibiotic resistance rates among African, Middle East and Asian countries

Country Antibiotic resistance patterns

Asia • High prevalence of AMR across Asian countries (Jean and

Hsueh 2011; Kim et al. 2012; Kang and Song 2013; Lai et al.

2014)

•The prevalence of Streptococcus pneumonia resistant to eryth-

romycin is 80.7% in Vietnam, 84.9% in Taiwan and 96.4% in

China (Song et al. 2004; Kim et al. 2012; Kang and Song 2013;

Lai et al. 2014)

Botswana • MRSA in 22.6% of isolates from skin and soft tissue infections

from hospitalised children and adults (Wood et al. 2009)

• Hospital antibiograms in 2013 and 2014 in a tertiary care hos-

pital in northern Botswana showed Klebsiella pneumoniae is
resistant to most beta-lactam antibiotics with less than 50% sen-

sitivities (Massele et al. 2015)

India and Pakistan • Up to 95% of adults have bacteria that are resistant to β-lactam
antibiotics. This includes the carbapenems (Reardon 2014)

Kenya • Multidrug-resistant (MDR) non‐typhi Salmonella was 42% in

2003 (Kariuki et al. 2005), and the estimated incidence of

community-acquired non‐typhi Salmonella was 166/100,000

people per year for children <5 years (Berkley et al. 2005a). 35%

of all non‐typhi Salmonella cases in newborns resulted in death in

a national referral hospital (Kariuki et al. 2006)

• MDR S. typhi was over 75% of all S. typhi among private clinics

and the main referral hospital in Nairobi (Kariuki et al. 2010), with

43% of S. pneumoniae isolates in Nairobi resistant to penicillin

(Kariuki et al. 2003). The prevalence of MRSA was 33% of

S. aureus isolates at a national referral hospital (Ngumi 2006)

• E. coli isolated from among hospital patients were highly resis-

tant to commonly used antibiotics including ampicillin, amoxy-

cillin/clavulanic acid and trimethoprim/sulphamethoxazole, with

less resistance to ciprofloxacin and third-generation cephalospo-

rins (Kiiru et al. 2012). In one region, resistance to E. coli was
85% to co-trimoxazole, 78% to amoxicillin and 42% to chlor-

amphenicol (Bejon et al. 2005)

• 50% of isolates of Haemophilus influenzae type B from children

with severe pneumonia were resistant to penicillin (Berkley et al.

2005b)

• 65% of the N. gonorrhoeae isolates were resistant to penicillin

and plasmid-mediated tetracycline resistance was 97%. In 2007,

quinolone-resistant N. gonorrhoeae first appeared, increasing to

50% in 2009 (Mehta et al. 2011)

Malaysia • The National Surveillance of Antibiotic Resistance in 2014

reported an increase in antibiotic resistance rates among common

strains of bacteria such as Streptococcus pneumonia, Enterobacter
cloacae and Salmonella spp. (Ahmad 2014)

• Hospital-acquired pneumonia associated with Acinetobacter spp.
showed a very high rate of resistance to imipenem (86.7%) (Kang

and Song 2013)

(continued)
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Table 1 (continued)

Country Antibiotic resistance patterns

• In a multicentre surveillance study, 60.6% of Streptococcus
pneumococcus isolates were resistant to erythromycin (Kim et al.

2012)

Nigeria • The susceptibility of antibiotics commonly used as empirical

treatment for many infections in hospitals—especially those of the

urinary tract, ear infections and post-operative wound infections—

has declined considerably, e.g. as many as 88% of Staphylococcus
aureus infections are resistant to methicillin (Reardon 2014)

• Studies have reported susceptibility rates to empiric antibiotics

below 60% in urinary tract isolates and over 98% resistance to

β-lactam antibiotics in post-operative wound infections(Okesola

and Aroundegbe 2011; Muoneke et al. 2012; Dibua et al. 2014)

• Studies have also reported susceptibility rates below 50% for

antibiotics used for empirical treatment of patients with

community-acquired pneumonia (Iroezindu et al. 2014)

South Africa (Mendelson

and Matoso 2015)

• 50% of all hospital-acquired S. aureus in public hospitals in

2010 were MRSA, with MRSA accounting for 75% of all

hospital-acquired S. aureus infections in a large tertiary-level

paediatric hospital

• Enterococcus faecium bloodstream isolates from the private

sector showed variable sensitivity to vancomycin, ranging

between 33 and 100% depending on the geographical location

• Up to 75% of K. pneumonia isolated from hospitalised patients

were ESBL-producing bacteria

• 16% of carbapenem-susceptible Enterobacteriaceae in the pri-

vate sector contained a carpapenemase-producing gene, and

carpapenemase-producing Enterobacteriaceae are widespread
among public hospitals in South Africa

Vietnam (Hoa et al. 2011;

Van Nguyen et al. 2013;

Van et al. 2014)

• Pneumococcal penicillin resistance rates are typically the highest

in Asia, with carbapenem-resistant bacteria (notably NDM-1)

recently emerging

• Streptococcus pneumoniae penicillin resistance rates increased

from 8 to 75% from 1999 to 2007 in Ba Vi, not helped by high

rates of self-purchasing of antibiotics (Table 3)

• More than 90% of isolates from principally patients in an

intensive care unit in Hanoi tested for resistance to A. baumannii
were resistant to tested β-lactamase inhibitors/β-lactamase,

carbapenems, cephalosporins, fluoroquinolones and trimethoprim/

sulfamethoxazole. Overall, 25.4% of isolates were resistant to all

tested aminoglycosides, β-lactams and quinolones

• There has been a significant increase in resistance of Strepto-
coccus suis to tetracycline and chloramphenicol in isolates

between 1997 and 2008, concurrent with an increase in multidrug-

resistant organisms
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before courses are finished, cultural differences and underuse due to a lack of access

and financial support is seen as key driver of AMR (Llor and Bjerrum 2014; WHO

Europe 2014; Klein et al. 2015; Laxminarayan et al. 2016; Md Rezal et al. 2015;

Dyar et al. 2016). These factors lead to the phenomenon which has been termed

selective pressure (WHO 2001). As mentioned, increasing antibiotic resistance

poses a threat to health and healthcare systems across countries as it can lead to

high associated costs (Van Nguyen et al. 2013), for example, forcing a shift to more

expensive and more broad-spectrum antibiotics (Laxminarayan and Heymann

2012; Md Rezal et al. 2015).

Improving the rational use of antibiotics is one of the best ways to slow down the

development and spread of AMR (van de Sande-Bruinsma et al. 2008; Sumpradit

et al. 2012; Earnshaw et al. 2013; Llor and Bjerrum 2014). This means addressing

issues such as physicians’ lack of adherence to treatment guidelines and their lack

of knowledge and training regarding antibiotics, the lack of diagnostic facilities as

well as uncertainty over the diagnosis, pressures from patients and the pharmaceu-

tical industry and finally fear of clinical failure (Little et al. 2013; Van Nguyen et al.

2013; Hassali et al. 2015; Md Rezal et al. 2015; Riaz et al. 2015). In LMIC countries

and others, this also includes implementing and enforcing regulations surrounding

the dispensing of antibiotics including self-purchasing where this is a concern

(Radyowijati and Haak 2003; Kotwani et al. 2010; Li et al. 2012; Van Nguyen

et al. 2013; Holloway and Henry 2014; Holloway et al. 2015; Kalungia et al. 2016).

Adoption of antimicrobial resistance strategies in countries including

South Africa and Vietnam as well as the WHO Europe strategic action plan on

AMR, the recent WHO global report on antimicrobial resistance documenting

alarming levels of AMR in many countries and the endorsement of the global

action plan on antimicrobial resistance in May 2015 are seen as important steps to

help reduce AMR (WHO Europe 2011; Department of Health RSA 2014; WHO

2014; Abdula et al. 2015; Cluzeau and Manandhar 2015; Mendelson and Matoso

2015).

1.2 Physician Attitudes Towards Antibiotics

A recent systematic review showed that physicians still have limited knowledge

and misconceptions about antibiotics and their prescribing (Md Rezal et al. 2015).

In addition, some physicians still prescribed antibiotics despite knowing they are

generally of limited benefit in a number of situations (Md Rezal et al. 2015). For

instance in Brazil, 38.2% of interviewed patients declared that they had taken

antibiotics in the previous 6 months. For patients who had received an antibiotic

prescription for oral/dental infections, only 9.3% presented with a fever, indicating

overprescribing of antibiotics by physicians (Del Fiol et al. 2010).

Several factors influence physician prescribing of antibiotics. These include the

severity and duration of infections, expectations of patients, uncertainty over

diagnosis, the risk of losing patients and pharmaceutical company influence

(Md Rezal et al. 2015). Inadequate knowledge regarding the prescribing of
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antibiotics appears prevalent among physicians across countries. However, many

physicians are interested in addressing this to help reduce AMR rates (Md Rezal

et al. 2015). Qualitative research undertaken by Thatoyaone Kenaope and col-

leagues also found that among pharmacists in South Africa, the socio-economic

status of patients, patient satisfaction, their knowledge of antibiotic indications and

the professional relationships between healthcare professionals also influenced

physician prescribing behaviour (Massele et al. 2015).

To be able to successfully reduce AMR rates, physicians need to be knowledge-

able about the prevailing epidemiology of infections and current antimicrobial

sensitivity status in their location as well as strictly comply with evidence-based

treatment guidelines. However, a cross-national study conducted among physicians

in England and France found only 31% and 26% of physicians, respectively, knew

the correct prevalence of antibiotic misuse and of MRSA in their hospitals (Pulcini

et al. 2011). Among medical doctors and students in the Congo Democratic

Republic, there was very limited knowledge of local antimicrobial resistance

patterns (Thriemer et al. 2013). These and other studies demonstrate the need to

tackle all key stakeholder groups to enhance appropriate prescribing and dispensing

of antibiotics (Jinks et al. 2016).

1.3 Antibiotic Prescribing and Dispensing in Pharmacies

There is a large body of literature discussing pharmacists’ antibiotic dispensing

practices across countries, e.g. in Kenya 25% of the population go to retail

pharmacies first before seeking outpatient care (Sharma et al. 2008; Thoithi and

Okalebo 2009). This is illustrated by 24% of patients with symptoms of acute RTIs

in rural Kenya already purchasing an antibiotic from pharmacies before seeing a

physician (Bigogo et al. 2010).

As mentioned, dispensing of antibiotics without a prescription, albeit unlawful,

is common. Countries where this happens include Albania (Hoxha et al. 2015),

Brazil (Rauber et al. 2009), Egypt (Dooling et al. 2014; Sabry et al. 2014), Greece

(Contopoulos-Ioannidis et al. 2001; Plachouras et al. 2010), India (Kotwani et al.

2012; Salunkhe et al. 2013), Iraq (Mikhael 2014), Jordan (Almaaytah et al. 2015),

Lebanon (Farah et al. 2015), Portugal (Roque et al. 2013,2014), Saudi Arabia

(Abdulhak et al. 2011; Emeka et al. 2012; Al-Mohamadi et al. 2013), Serbia

(Godman et al. 2014), Spain (Zapata-Cachafeiro et al. 2014), Syria (Bahnassi

2015), the UAE (Abasaeed et al. 2013), and Zambia (Kalungia et al. 2016). Table 2

illustrates the extent of self-purchasing across countries.

However in some countries such as Thailand, pharmacists are allowed to dis-

pense antibiotics without a prescription (Saengcharoen et al. 2008). Among the

wider European countries including former Soviet Union countries, it is also

currently possible and legal to purchase antibiotics over-the-counter (OTC) without

a prescription in 19 out of the 44 countries (WHO Europe 2014), and this is also

possible outside of pharmacies (12 out of 44 countries). In 5 out of the 44 countries

surveyed, it is also possible to purchase antibiotics over the Internet without a
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prescription (WHO Europe 2014). The situation is different in many high-income

countries where regulations are typically strictly implemented, e.g. New Zealand

(Dameh et al. 2012).

Among many Latin American countries, including Brazil and Mexico, restric-

tions on OTC sales of antibiotics were implemented in 2010 (Santa-Ana-Tellez

et al. 2015). This included the requirement for a prescription for antibiotics to be

dispensed even in private pharmacies. A prescription for antibiotics was always a

requirement among public pharmacies in Brazil. A recent study showed a reduction

in inappropriate penicillin use (as proxy for antibiotics use) among private phar-

macies in Mexico after this government initiative (Santa-Ana-Tellez et al. 2015),

although there was a limited reduction in Brazil. However, another study showed a

significant decrease in antimicrobial sales among private pharmacies in Brazil

following the restrictions in November 2010 (Moura et al. 2015). The impact of

the restrictions was greater in regions with overall higher socio-economic status

(Moura et al. 2015).

In a systematic review of published work on antibiotic self-medication in

developing countries, the overall prevalence of antimicrobial self-medication was

38.8%. Identified determinants of self-medication were citizens’ age, level of

education, sex, income, severity of their disease condition and history of previous

successful use of antibiotics (Ocan et al. 2015). Table 3 contains additional data on

the extent of self-purchasing.

Several studies have reported that pharmacists have dispensed antibiotics for

inappropriate conditions (Kotwani et al. 2012; Salunkhe et al. 2013; Dooling et al.

2014; Mikhael 2014; Sabry et al. 2014; Kalungia et al. 2016), e.g. in Iraq, 45% of

community pharmacists dispensed antibiotics for a common cold. Community

pharmacists also dispensed several types of antibiotics including amoxicillin, amox-

icillin/clavulanate, azithromycin and ciprofloxacin (Mikhael 2014). In India,

azithromycin was commonly dispensed for a sore throat in 51.2% of cases. Fur-

thermore, antibiotics for a sore throat were only dispensed in correct doses and

durations in 64.2% of cases (Salunkhe et al. 2013). In Zambia; pharmacy personnel

also dispensed antibiotics without justifiable causes (Kalungia et al. 2016).

Consequently, pharmacists in many countries play a key role with enhancing the

appropriate use of antibiotics given the extent of self-purchasing (WHO Europe

Table 2 Examples of the extent of dispensing antibiotics without a prescription

Authors Country

Extent of dispensing antibiotics

without a prescription (%)

Hoxha et al. (2015) Albania 80.0

Farah et al. (2015) Beirut, Lebanon 32.0

Volpato et al. (2005)a Brazil 74.0

Almaaytah et al. (2015) Jordan 74.3

Salunkhe et al. (2013) Pune, India 94.7

Abdulhak et al. (2011) Riyadh, Saudi Arabia 77.6
aNB: Studies conducted before prescription requirements in November 2010 among private

pharmacies
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Table 3 Extent of self-purchasing of antibiotics across continents and countries (building on

Table 2)

Countries Extent of self-purchasing

Brazila • In a study conducted in Tubar~ao, 85.0% of pharmacists

dispensed an antibiotic without a prescription, mainly for

the treatment of respiratory (62.8%) and urinary (12.0%)

tract disorders. In most cases, this was for adults (64.0%),

but also for children (27.8%), the elderly (3.3%) and

pregnant women (1.6%) (Rauber et al. 2009)

• In Jataı́, antibiotic self-medication was seen in 9.1% of

participants; however, 9.1% used antibiotics as

recommended by pharmacists in the last month. 20.5% of

responders also traditionally recommend the use of anti-

microbials to family and friends (Braoios et al. 2013)

• In a population-based study in Bambuı́, self-medication

in the last 90 days was reported for 28% of the 1221

residents and antibiotics and chemotherapeutics accounted

for 6.2% of non-prescribed drugs (Loyola Filho et al.

2002)

Ethiopia (Gebeyehu et al. 2015) • Antibiotic self-medication was common among commu-

nity dwellers with RTIs, diarrhoea and physical injury

Greece (Mitsi et al. 2005) • 74.6% of the general public reported taking

non-prescribed antibiotics

Northern Israel (Raz et al. 2005) • 18.7% of the general public reported taking antibiotics

without seeking medical advice

Kenya (Karambu 2011) • 70% of sampled pharmacies did not ask patients for a

prescription before dispensing antibiotics as required by

the law

• In addition, only 9% of pharmacies asked for a pre-

scription, and 18% declined to sell the antibiotics after a

prescription was presented

Malaysia (Islahudin et al. 2014) • 45.1% of patients did not consult a physician before

taking antibiotics

Middle East/Jordan • Specifically in Jordan among Middle East countries, self-

medication with antibiotics is high (39.5%). This is sig-

nificantly associated with age, education and income

(Al-Azzam et al. 2007)

• A high level of self-medication (40.7%) was also

reported in another Jordanian study (Sawair et al. 2009)

Nigeria (Enato et al. 2011). • In a community-based study conducted in the southern

part of Nigeria, over 93.6% of community dwellers who

reported they were ill self-medicated with antibiotics

Serbia • Illegal self-purchasing of antibiotics increased their

utilisation by 115–128% in recent years compared with

reimbursed utilisation (Godman et al. 2014)

• This resulted in Serbia having the third highest utilisation

for cephalosporins in 2007 among European countries,

highest for penicillins, second highest for macrolides and

third highest for quinolones (Bajcetic et al. 2012)

• Following this, there has been tightening of the regula-

tions regarding self -purchasing in pharmacies, leading to a

decrease in overall utilisation in recent years (Godman

et al. 2014)

(continued)
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2014) (Tables 2 and 3). This, coupled with concerns with appropriate prescribing

and rising AMR rates, led FIP (International Pharmaceutical Federation) to urge

pharmacists to undertake a number of activities to reduce this, supported by

suggested activities among health authorities and governments (Box 1).

Box 1: Suggested Activities of Pharmacists to Reduce AMR [Adapted

from FIP (2008)]

(A) FIP urges pharmacists to:

• Patients given proper counselling as well as provided with written

information that is appropriate when dispensing antibiotics. In addi-

tion, encourage patients to comply with the full prescribed regimen. If

not possible, ask them to dispose of any unused antibiotics

appropriately.

• Work with physicians to ensure patients complete their course and

correct antibiotics and doses are prescribed by providing up-to-date

information, similarly for other healthcare professionals influencing

or administering antibiotics.

• Monitor the supply of antibiotics.

• Recommend treatments other than antibiotics for minor conditions

such as a common cold.

• Become actively involved regarding hygiene and infection control

across healthcare settings.

(continued)

Table 3 (continued)

Countries Extent of self-purchasing

Vietnam (Van Nguyen et al. 2013;

Cluzeau and Manandhar 2015)

• The Pharmaceutical Law (2005) made antibiotics

prescription-only medicines; however, there are currently

no sanctions. In addition, no pharmacist has been penalised

for dispensing antibiotics without a prescription (as of

March 2013)

• Self-medication persists as it avoids lengthy and costly

consultations with physicians and others in the formal

healthcare systems

• 91% of children in Ba Vi, Vietnam, in 1991 with symp-

toms of acute RTIs were treated with broad-spectrum

penicillins, with 78% self-medicating. This corresponded

to 75% of all children in this particular community

• This is likely to change with the implementation of the

National Plan to reduce antimicrobial resistance rates in

Vietnam
aNB: All studies conducted before the changes in the law in Brazil
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Box 1 (continued)

(B) FIP urges governments and health authorities to:

• Implement antimicrobial surveillance plans nationally including mon-

itoring of antibiotic utilisation in agriculture, humans and veterinary

medicine.

• Implement measures to enhance the appropriate use of antibiotics as

well as stop their sale/dispensing without a prescription or order from

a qualified healthcare professional. This includes measures to

strengthen regulatory and legislative controls regarding the supply

of antibiotics including the enforcement of any statutes and regula-

tions to improve the rational use and dispensing of antibiotics.

• Impose restrictions on the prescribing of selected antibiotics, the

objective being to limit development of AMR.

• Conduct education campaigns among all key groups to help promote

the appropriate use of antibiotics. In addition, collaborate with all

health professional societies to develop and help implement educa-

tional and behavioural interventions to improve appropriate antibiotic

prescribing.

• Help with establishing infection control programmes to reduce AMR.

• Instigate methods to dispose of antibiotics where necessary that are

environmentally sound.

The WHO in Europe has also produced guidance encouraging the prudent use of

antibiotics including the role of pharmacists (WHO Europe 2014). This is alongside

documenting seven key areas on potential ways to reduce AMR rates across Europe

(Box 2).

Box 2: Seven Key Action Areas Identified by WHO Europe to Address

AMR [Adapted from WHO Europe (2014)]

• Strengthen co-ordination across healthcare sectors and personnel.

• Strengthen the surveillance of AMR rates as well as antibiotic utilisation

patterns among the countries in WHO Europe.

• Instigate measures to enhance the rational use of antibiotics (building on

existing programmes).

• Strengthen infection control across all healthcare settings.

• Instigate measures to help prevent emerging antibiotic resistance strains in

food and veterinary sectors.

• Help instigate appropriate measures that promote research into new anti-

biotics given their current scarcity.

• Improve awareness including partnerships to promote patient safety and

reduce AMR rates across Europe.
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Other authors and organisations have also endorsed the need for greater educa-

tion of pharmacists regarding antibiotics during their training (Ahmad et al. 2015).

1.4 Public Knowledge and Attitudes Towards Antibiotics

Published studies have shown that there is a general lack of knowledge about

antibiotics among the general public (Eng et al. 2003; McNulty et al. 2007a;

Grigoryan et al. 2008; You et al. 2008; André et al. 2010; Oh et al. 2011;

Al-Haddad 2012; Chan et al. 2012; Lim and Teh 2012; Napolitano et al. 2013;

Van Nguyen et al. 2013; Fatokun 2014; Islahudin et al. 2014; Gualano et al. 2015;

WHO 2015). Even in some countries in which public awareness campaigns on

antibiotics had been conducted, there was still widespread belief that antibiotics are

effective against viral infections (WHO 2014). Further inappropriate antibiotic

prescribing, including unnecessary prescribing of antibiotics, has heightened public

perceptions that these medicines are first-line treatment for common infections such

as URTIs. These perceptions do lead patients to pressurise physicians to prescribe

antibiotics regardless of the indication (Hassali et al. 2015; Md Rezal et al. 2015).

These pressures are enhanced by patients’ perception of antibiotics as powerful

therapies, with the ability to quickly stop symptoms (Sharma et al. 2008).

Gualano et al. (2015) recently conducted a systematic review regarding public

knowledge and attitudes towards antibiotics. The authors demonstrated that 53.9%

of the general public believed antibiotics can be used to treat viral infections, with

50.9% perceiving antibiotics can be used to reduce inflammation with 33.7%

unaware that antibiotics should only be used to treat bacterial infections.

There are also concerns that the public do not take their antibiotics according to

the instructions on the label, take incomplete courses, take leftover antibiotics from

previous treatments and share their antibiotics with others, particularly in LMICs

(Zarb and Goossens 2012). For instance in Bangladesh, 51.4% of the general public

did not take their antibiotics according to the label instructions (Sutradhar et al.

2014), and in Brazil, 30% of those interviewed could have had their antibiotic

treatment compromised by ignoring their current diagnosis (the indication for

which an antibiotic was prescribed), for not understanding the dosage and admin-

istration schedule or both (Nicolini et al. 2008).

In Asia, Europe, North America and Oceania, 47.1% of patients stopped taking

antibiotics when their symptoms disappeared (Gualano et al. 2015). In Tetovo in the

Republic of Macedonia, 60.8% of parents kept leftover antibiotics at home for

future use (Alili-Idrizi et al. 2014), whilst 25% of the general population in

Belgium, Colombia, France, Italy, Morocco, Spain, Thailand, Turkey and the UK

also saved leftover antibiotics for future use (Pechere 2001). In Taiwan, 13% of the

general public shared their antibiotics with their family and friends (Chen et al.

2005). This compares to 8% in similar studies in Hong Kong and Malaysia (You

et al. 2008; Al-Haddad 2012).
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Several studies have shown a strong association between patient expectations

and demands with excessive prescribing of antibiotics (Hamm et al. 1996;

Macfarlane et al. 1997; Mangione-Smith et al. 1999; Gonzales 2005; Mustafa

et al. 2014). In Malaysia, 73.8% of the general population expect physicians to

prescribe antibiotics for a common cold (Lim and Teh 2012), whilst in Oklahoma,

USA, approximately 65% of patients with respiratory infections expected to be

prescribed with antibiotics (Hamm et al. 1996). This may be because public

awareness of antibiotic resistance is low across countries (Hawkings et al. 2007;

Brooks et al. 2008; Brookes-Howell et al. 2012; Wun et al. 2013; Gualano et al.

2015; WHO 2015).

Several studies have also explored public knowledge and perceptions of antibi-

otic resistance in Europe (Brookes-Howell et al. 2012), South India (Chandy et al.

2013) and the UK (Hawkings et al. 2007; Brooks et al. 2008). Most of the public

had heard of antibiotic resistance but only a minority had the correct understanding

of this term. The public often understood the term ‘antibiotic resistance’ as the body
getting used to or becoming immune to antibiotics. Other members perceived

antibiotic resistance as the body becoming incompatible with antibiotics, the illness

becoming too strong for antibiotics to manage and a hereditary illness (Brookes-

Howell et al. 2012).

Most of the general public are also unaware of the causes and consequences of

antibiotic resistance. In addition, they attributed antibiotic resistance to external

factors such as overprescribing of antibiotics by physicians as opposed to internal

factors, e.g. non-adherence to antibiotic therapy. As a result, they typically do not

perceive themselves as being responsible for preventing the misuse of antibiotics

(Hawkings et al. 2007; Brooks et al. 2008).

1.5 The Need for Public Engagement to Combat Antibiotic
Resistance

In view of these misconceptions, public campaigns and engagement are needed to

increase patients’ knowledge about antibiotics and antibiotic resistance. Public

engagement has been broadly defined as ‘involving the general public in

decision-making and in the planning, design, governance and delivery of initia-

tives’ (O’Mara-Eves et al. 2013).

In this context, the School of Pharmaceutical Sciences of Universiti Sains

Malaysia, in collaboration with Action on Antibiotic Resistance (ReAct), has

taken the initiative to engage Yayasan Bina Ilmu (YBI) in addressing antibiotic

resistance at the community level in Jelutong District, Penang, Malaysia. The

school offers support and materials to the organisation to undertake relevant work

on antibiotic resistance, in line with their focus areas. Coordination, communication

and commitment among all stakeholders play a key role in making this approach a

success, with the findings used to support the development and implementation of a
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national policy to manage antibiotic resistance at the community level in Malaysia

(Irawati et al. 2015).

2 Aims

Given the global importance of AMR, there is a need to review potential interven-

tions and measures that have been instigated across continents, countries and

regions to improve antibiotic utilisation. Consequently, the aim of this chapter is

to review interventions that have been introduced to reduce inappropriate prescrib-

ing and dispensing of antibiotics, and associated reduction in AMR, and their

effectiveness to provide future guidance. This is seen as a conservatism strategy

(Hoffman and Outterson 2015).

It is recognised that alongside this, strategies must be instigated to enhance the

development of new antibiotics to address current unmet need as well as limit their

utilisation to much targeted populations once launched (Hoffman and Ottersen

2015; Hoffman and Outterson 2015; Outterson et al. 2015). This will potentially

involve new methods of funding research (Brogan and Mossialos 2013;

Balasegaram et al. 2015; Hwang et al. 2015; Outterson et al. 2015). There is also

a need for restrictions on the use of antibiotics in animals with, for instance, the

utilisation of antibiotics in animals in the USA at least three times greater than the

overall use in humans (So et al. 2015). However, new funding models for financing

antibiotic research as well as programmes to reduce antibiotic use in animals are

outside the scope of this chapter.

3 Methods

A narrative review of publications, including case histories, is known to the

co-authors to provide future guidance. This is because systematic reviews of

potential approaches to improve the utilisation of antibiotics have already been

undertaken by the co-authors and others (Huttner et al. 2010; Dar et al. 2016; Md

Rezal et al. 2015; Dyar et al. 2016).

We have undertaken similar approaches when reviewing measures to enhance

the prescribing and dispensing of generics as well as initiatives to optimise the use

of new medicines (Godman et al. 2012; Dylst et al. 2013; Godman et al. 2013;

Godman et al. 2014; Godman et al. 2015).
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4 Findings

The case histories will be divided into hospitals and ambulatory care. This will

include the findings of meta-analyses as well as country and regional studies. There

will also be a review of the impact of educational interventions on public knowl-

edge and attitudes towards antibiotics and resistance. Typically multifaceted

interventios are needed to change prescribing (Llor and Bjerrum 2014; Dyar et al.

2016).

4.1 Hospitals

Meta-analysis (Cochrane Review) (Davey et al. 2013)

• This meta-analysis included 95 interventions principally targeting antibiotic

prescribing. This included antibiotic choices as well as the timing of first dose

and the route of administration. There was reliable data from 76 interventions

including persuasive (majority), restrictive and structural interventions. Inter-

ventions that were restrictive in nature had a significantly greater impact on

subsequent outcomes at 1 month and 6 months. However, there were no signif-

icant differences between the different interventions on outcomes at 12 or

24 months.

There was a reduction in Clostridium difficile infections as well as a reduction in
the colonisation or infections with resistant bacteria, including cephalosporin-

resistant and aminoglycoside-resistant gram-negative bacteria, vancomycin-

resistant Enterococcus faecalis and MRSA, with interventions that sought to

reduce excessive antibiotic prescribing. There was also a significant reduction in

mortality in interventions instigated to improve antibiotic prescribing in patients

with pneumonia.

China (Zou et al. 2014)

• There have been considerable concerns regarding the overuse of antibiotics in

China, driven by incentive systems for hospitals and physicians encouraging the

use of IV versus oral antibiotics as well as their overuse (Reynolds and McKee

2009, 2011). However, antibiotic prescribing is changing following a nationwide

campaign instigating antibiotic stewardship programmes (ASPs) to address their

overuse and AMR rates. A recent study assessing the impact of this nationwide

campaign showed the following between 2011 and 2012:

– Decreasing antibiotic use (26.54 instead of 39.37 DDDs/100 inpatient days)

– Decreasing % of antibiotics among outpatient prescriptions and their use in

hospital inpatients over the 2 years

– Correlation between subsequent antibiotic utilisation and the type and size of

specialised hospitals, however not with the region
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Scotland

• The Scottish Antimicrobial Prescribing Group (SAPG) was established in Scot-

land in 2008 to coordinate a national antimicrobial stewardship programme

(Nathwani et al. 2011). The collection of prevalence data in 2009 led to the

development of two quality prescribing indicators: (1) the extent of compliance

with antibiotic policies among acute admission units and (2) surgical prophy-

laxis duration (Malcolm et al. 2013). Studies showed compliance with current

antibiotic policies (81.0%) was similar to other European countries; however,

the duration of surgical prophylaxis <24hr (68.6%) was higher than generally

seen across Europe.

Following the implementation of prescribing indicators, there was an improve-

ment in the indication noted in the patient records of �90%. Compliance with

antibiotic prescribing policies also increased to 90% (Malcolm et al. 2013), with

the mean proportion of patients receiving single-dose prophylaxis following

colorectal surgery exceeding 95% (the target). Overall, SAPG has shown that

the implementation of national prescribing indicators, which are acceptable to

clinicians and regularly audited, can improve subsequent antibiotic utilisation

(Malcolm et al. 2013).

Zambia (Mubita et al. 2013; Massele et al. 2015)

• Mubita et al. conducted a prospective quasi-experimental clinical audit project

among internal medicine wards at a University Teaching Hospital in Zambia.

The findings showed that the implementation of an antimicrobial prescribing

care bundle was associated with an improvement in the quality of antibiotic

prescribing in terms of compliance with its care elements.

A pilot study was undertaken to assess the implementation of an adapted

antimicrobial prescribing care bundle. Subsequently, compare compliance of

antimicrobial prescribing with the care elements (standards) of the antimicrobial

prescribing care bundle before and after implementation. Implementation of the

bundle involved educational programmes on antimicrobial stewardship. Topics

covered included the antimicrobial prescribing care bundle, standard treatment

guidelines on infections and the hospital antibiogram. Feedback on the control

phase results was communicated to the prescribers. Posters of the antimicrobial

stewardship treatment algorithm were displayed within the medical wards.

Pocket-sized cards of the prescribers’ checklist as an aide—memoire—were

distributed to all prescribers in internal medicine.

Outcome measures were compliance with the care bundle’s care elements as audit

standards as well as:

• Presence of clinical evidence of bacterial infection

• Documentation of the clinical indication for antibiotics, the duration or review

date as well as the route and dose of antibiotics prescribed

• Collection of appropriate culture specimens

• Appropriate empirical selection of antibiotics

• Documentation of appropriate prescribing decision option by 48 h of antimicro-

bial therapy
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Table 4 shows a summary of the findings of the clinical audit project.

This study recommended implementation of a formal antimicrobial stewardship

programme among internal medicine wards in Zambia. This would involve

establishing multidisciplinary antimicrobial stewardship teams in hospitals with

core membership comprising the following: an infectious diseases physician, a

clinical microbiologist and a clinical pharmacist with expertise in infectious

diseases.

4.2 Ambulatory Care (Settings, Regions and Countries)

4.2.1 Pharmacy Dispensing

Section 1.3 together with Boxes 1 and 2 describes potential ways forward for

pharmacists and others to reduce inappropriate dispensing and use of antibiotics.

We are already seeing a number of countries tighten illegal self-purchasing of

antibiotics, e.g. Brazil (private sector), Mexico and Serbia, and this will grow

(Godman et al. 2014; Moura et al. 2015; Santa-Ana-Tellez et al. 2015).

4.2.2 European Surveillance of Antimicrobial Consumption (ESAC)

ESAC have suggested a number of aggregated and patient-level quality indicators

to improve future use of antibiotics. These include:

Aggregated indexes (in defined daily doses/1000 inhabitants/day—DIDs)

(Coenen et al. 2007):

Table 4 Findings of the clinical audit project conducted in a teaching hospital in Zambia

Care element (audit standard)

Compliance level n (%)

p
Control phase

(n ¼ 128)

Intervention Phase

(n ¼ 128)

Clinical evidence of bacterial infection 112 (87.5) 116 (90.6) 0.022

Documentation of the clinical indication, the

duration or review date as well as the route and

dose of antibiotics

9 (7) 58 (45.3) 0.522

Culture specimens collected according to

standard treatment guidelines

84 (65.6) 92 (71.9) <0.001

Appropriate empirical selection of antibiotics,

i.e. prescribing according to standard treatment

guidelines at initiation of antibiotics

73 (57) 80 (62.5) 0.333

Documentation of appropriate prescribing

decision option by 48 h of antimicrobial

therapy

64 (50) 83 (64.8) <0.001

Overall compliance 7 (5.5) 46 (35.9) 0.044

556 B. Godman et al.



• % combination penicillins including β-lactamase-sensitive penicillins vs. all

antibiotics

• % of third- and fourth-generation cephalosporins vs. first- and second-generation

cephalosporins (and all antibiotics)

• % fluoroquinolones vs. all antibiotics

• % broad vs. narrow penicillins, cephalosporins and macrolides

Quality indicators where patient level data is available include (Adriaenssens

et al. 2011):

• % of patients between 18 and 75 years with acute bronchitis prescribed antibi-

otics (acceptable range 0–30%); within this % those receiving recommended

antibiotics (acceptable range 80–100%) or fluoroquinolones (acceptable range

0–5%)

• % of patients older than 1 year with upper respiratory tract infections (URTIs)

prescribed antibiotics for systemic use (acceptable range 0–20%); within this %

receiving recommended antibiotics (acceptable range 80–100%) or

fluoroquinolones (acceptable range 0–5%)

4.2.3 Internet-Based Training on Antibiotic Prescribing Rates

for Patients with Acute RTIs (Little et al. 2013)

Primary care practices among six European countries were randomised to (1) usual

care, (2) training in the use of a C-reactive protein (CRP) tests at the point of care,

(3) training in enhanced communication skills, or (4) both training in CRP and

enhanced communication via the Internet.

The study showed that antibiotic prescribing rates were lower with training in

CRP tests and lower in practices with enhanced-communication training than

without such. The greatest reduction in subsequent antibiotic prescribing was

seen when the interventions were combined.

The authors concluded that Internet training did achieve important reductions in

antibiotic prescribing for RTIs across languages and cultures, consequently a

potential way forward to enhance appropriate antibiotic prescribing across coun-

tries where resources are limited.

4.2.4 Belgium (WHO Europe 2011)

Since 2000, national campaigns among GPs and communities on the prudent use of

antibiotics have been organised by the Belgian Antibiotic Policy Coordination

Committee, alongside this, establishing surveillance systems across healthcare

sectors, improving legislation on hospital hygiene and disseminating guidelines

on the prevention and treatment of bacterial infections. These multifaceted cam-

paigns resulted in a steady decrease (6.2% per year) in the use of antibiotics in

ambulatory care in recent years. In addition, the correct use of antibiotics is also
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increasing across sectors and resistance to streptococcal infections steadily

declining.

Similar successful campaigns have been initiated in other countries including

France, Spain, Poland and the UK.

4.2.5 France (Sabuncu et al. 2009)

Among European countries, France typically has the highest rate of antibiotic

consumption and beta-lactam resistance in Streptococcus spp. This resulted in the

French government instigating in 2001 a programme entitled ‘Keep Antibiotics

Working’, the main component being ‘Les antibiotiques c’est pas automatique’
(‘Antibiotics are not automatic’).

Compared to the pre-intervention period (2000–2002):

• Decrease by 226.5% over 5 years in the number of antibiotic prescriptions,

adjusted for flu-like syndrome frequency during the winter season.

• This decline in antibiotic utilisation occurred throughout France, which affected

all antibiotic classes except quinolones.

• The greatest decrease in antibiotic utilisation was seen among young children

(6–15 years of age).

The authors concluded that this multifaceted campaign was associated with an

appreciable reduction in unnecessary antibiotic prescribing. This was particularly

the case in children.

4.2.6 Italy (Formoso et al. 2013)

Interventions to try and reduce antibiotic prescribing among the public included

posters, brochures and adverts in the local media. There was also a newsletter on

local antibiotic resistance targeting physicians and pharmacists. The design of the

materials and messages was facilitated by GPs and paediatricians working in the

intervention locality.

Antibiotic prescribing was significantly reduced in the intervention locality

compared with controls outside the locality. There was a greater decrease for

penicillins resistant to beta-lactamase, as well as a decrease in the prescribing of

penicillins susceptible to beta-lactamase, consistent with the content of the news-

letter. However, there was no difference with respect to knowledge and attitudes

regarding the correct use of antibiotics among the public in the two groups.
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4.2.7 Slovenia (F€urst et al. 2015)

Multifaceted interventions among all key stakeholder groups in Slovenia decreased

antibiotic utilisation by 2–9% per year from 1999 to 2012, overall by 31%. This

followed a 24% increase in antibiotic utilisation at the end of the 1990s in Slovenia.

There were also appreciable changes in the prescribing of different antibiotics.

Table 5 contains some of the multiple initiatives and policies undertaken in

Slovenia in recent years to reduce overall antibiotic utilisation as well as signifi-

cantly reduce the utilisation of seven out of ten antibiotics.

Table 5 Some of the activities undertaken in Slovenia to enhance the appropriate use of

antibiotics (adapted from Fürst et al. 2015)

Activity Institution (organiser)

Targeted

public

Introduction/

frequency

Two-day symposium on

antibiotics once a year

Department of Infectious Dis-

eases of the Ljubljana UMC

GPs 1995/every

year

Prescribing restrictions for

amoxicillin/clavulanic acid

and the fluoroquinolones

National Health Insurance All

physicians

2000/

permanent

Workshops in primary health

centres

Primary health centres, National

Health Insurance

GPs 2001/

sporadically

Informative budget targets

for prescribed drugs

National Health Insurance All

physicians

2001/

permanent

Guidelines on treatment of

infectious diseases

Medical professionals GPs 2002

Audits National Health Insurance All

physicians

2002/

regularly

Workshop on rational pre-

scribing of antibiotics

Faculty of Medicine, University

of Ljubljana

Specialising

GPs

2004/every

year

Prescribing restrictions for

cephalosporins

National Health Insurance All

physicians

2005/

permanent

Booklet ‘My Child Has a

Fever’
National Health Insurance,

medical professionals

Parents 2007/always

available

Workshops in regions with

the highest utilisation of

antibiotics

National Committee for the

Rational Use of Antimicrobials

GPs 2007/once a

year

Antibiotic Awareness Day Ministry of Health and the

National Committee for the

Rational Use of Antimicrobials

Lay public

and GPs

2008/every

year

Prescribing restrictions for

the macrolides

National Health Insurance All

physicians

2009/

permanent

Workshop on rational pre-

scribing of antibiotics

Slovenian Society of

Chemotherapy

Young

physicians

2010/every

year

Flyer ‘Get well without
antibiotics’

National Health Insurance,

medical professionals

Lay public 2010/always

available

Quality indicators including

antibiotics

National Health Insurance GPs 2011
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Streptococcus resistance to penicillin decreased, mirroring decreasing

utilisation. However, Streptococcus resistance to macrolides increased despite

their utilisation halving, and E. coli resistance to fluoroquinolones doubled despite

their utilisation decreasing by a third.

4.2.8 Thailand (Sumpradit et al. 2012; Antibiotic Smart use, Thailand,

2016)

The Antibiotics Smart Use programme was initiated to promote rational antibiotic

use and reduce AMR rates. Multifaceted interventions at individual and

organisational levels were implemented to increase public knowledge regarding

antibiotics and change antibiotic prescription practices among physicians. Inter-

ventions at the network and policy levels were used to maintain behaviour change

and scale up the various programmes. Key healthcare professionals, including

physicians and pharmacists, as well as community leaders, were trained to promote

rational antibiotic use in their healthcare settings and communities. Educational

materials were also provided for display or distribution to patients.

The findings showed that the combined interventions increased public knowl-

edge regarding antibiotics and changed their attitudes towards them. Antibiotic

utilisation decreased by 18–46% after the programme, and the percentage of

patients who were not prescribed with antibiotics for the three targeted illnesses,

i.e. acute diarrhoea, URTIs and simple wounds, increased by 29.1%. Furthermore,

almost all patients who were not prescribed antibiotics fully recovered within 7–10

days after the medical visits demonstrating that antibiotics were not necessary.

4.2.9 UK: Scotland (Nathwani et al. 2011; Colligan et al. 2015)

We have previously documented the initiation and activities of SAPG in Scotland

(Sect. 4.1), which significantly reduced Clostridium difficile infection rates. An

integrated approach to antimicrobial stewardship is being achieved through engage-

ment with key stakeholder groups at all levels, aided by implementation of data

management systems and training materials on antimicrobial stewardship. Improv-

ing the treatment of infections such as community-acquired pneumonia was also

helped by quality improvement methodologies.

A self-reported survey in 2014 evaluating stewardship activities by the regional

antimicrobial management teams (AMTs) as part of the SAPG programme dem-

onstrated good compliance with nine of the ten key European indicators. 50% of

the AMTs achieved all nine indicators and 100% achieved at least six out of the

nine indicators (67%). The authors concluded that collaborative working between

SAPG and AMTs, together with central funding, has been a key to achieving good

success, providing direction to other countries and regions.
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4.3 Impact of Educational Interventions on Public
Knowledge and Attitudes Towards Antibiotics
and Antibiotic Resistance

Numerous public education campaigns have been conducted, particularly in high-

income countries, to improve antibiotic utilisation (Finch et al. 2004; Rodis et al.

2004; Gonzales et al. 2005; Curry et al. 2006; Huttner et al. 2010; Greene et al.

2011; Holloway 2011; McKay et al. 2011; Fürst et al. 2015), some of which have

already been described earlier. All campaigns have tried to convey that AMR is a

major public health problem and, in addition, that the misuse of antibiotics con-

tributes to this. Furthermore, most campaigns have tried to educate the public that

most RTIs are viral in origin and consequently should not be treated with antibiotics

(Finch et al. 2004; Huttner et al. 2010).

The campaigns have used various means of communication. The most common

has been printed educational materials such as brochures, leaflets and posters. Some

campaigns have used mass media such as newspapers, radio, television, billboards

and public transport advertisements, whilst others have conducted public seminars

to provide opportunities for interactive education and behavioural change

(Freimuth et al. 2000; Finch et al. 2004; Huttner et al. 2010; Holloway 2011;

Fürst et al. 2015). Nearly all campaigns have used the Internet in some way

(Finch et al. 2004; Huttner et al. 2010).

Table 6 contains details of a number of the campaigns and their impact, building

on the experiences of Thailand and other countries described above.

Shehadeh et al. recently conducted a study to assess the impact of a pharmacist-

initiated educational intervention on public knowledge of antibiotics and antibiotic

resistance in Jordan (Shehadeh et al. 2016). The mean knowledge score for the pre-

and post-education was 59.4% and 65.9%, respectively. In addition, participants

within poor and adequate knowledge categories were significantly shifted to the

good knowledge category after the educational intervention. However, the authors

believed the improvement in participants’ knowledge may not always translate into

a change in subsequent antibiotic-seeking behaviour.

Despite these initiatives, it appears difficult in practice to educate the public

about the differences between bacterial and viral infections (Finch et al. 2004;

Goossens et al. 2006; Huttner et al. 2010). Telephone surveys among the public in

Canada did not show any impact of a campaign educating them of the bacterial or

viral nature of certain infections. Prior to the campaign, 54% of the public agreed

that antibiotics are effective for the treatment of viral infections. After the cam-

paign, 53% still did not know that antibiotics do not work against viruses (NIPA

2013). In New Zealand, a post-education survey demonstrated that the general

public still had misconceptions that antibiotics are needed to treat viral infections

(Curry et al. 2006), and in France 54% of the public still remained unaware that

most URTIs are caused by viruses and do not require antibiotic treatment despite

successive campaigns over 5 years (Huttner B et al. 2010). However, this should not

dissuade health authorities from instigating programmes in the future to try and
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educate patients regarding the appropriate use and requests for antibiotics given the

impact of inappropriate antibiotic use on increasing AMR rates.

Increasing knowledge of antibiotics among the public can result in a paradoxical

effect (Huttner et al. 2010). In the UK, studies have shown that public education

campaigns are associated with increased knowledge of antibiotics. However, they

also resulted in increased likelihood of self-medication, sharing antibiotics with

someone else and keeping leftover antibiotics (McNulty et al. 2007a; McNulty et al.

2007b). This needs to be factored into any future campaign.

Care is also needed when translating programmes from one country to another

where the health systems and context can be different (Holloway 2011). Typically,

educational approaches will only be effective if they are tailored to the local context

and able to address local educational needs and organisational barriers (Siddiqi

et al. 2005; Sumpradit et al. 2012).

Table 6 Influence of educational activities among patients

Country Programmes and their influence

Belgium (Goossens et al.

2006)

• The majority of the public (79%) who recalled the national

antibiotic campaign recalled information from the television

rather than other means of communication

• Compared with the pre-campaign, patient expectations to be

prescribed an antibiotic decreased significantly for acute bron-

chitis, cold, flu, diarrhoea and sore throats

Israel (Hemo et al. 2009) • Exposure to media campaigns was associated with positive

attitudes by patients towards antibiotics

• Parents exposed to the media campaign were more likely to

agree with current standards of the appropriate prescribing of

antibiotics and less likely to expect physicians to prescribe

antibiotics for RTIs, otitis media and pharyngitis than parents

not exposed to the campaign

USA—North Carolina

(Greene et al. 2011)

• A pharmacy student-driven education programme raised public

awareness of the threat of AMR and the appropriate use of

antibiotics

• After participating in the programme, 71% of patients stated

that they would not now be requesting antibiotics from their

physicians

USA—Ohio (Rodis et al.

2004)

• Patients’ knowledge about the appropriate indication for pre-

scribing antibiotics improved following a pharmacist-initiated

educational intervention

• The post-intervention survey demonstrated a significant

increase in the % of patients agreeing that antibiotics should not

be used for a cold as well as for influenza combined with cough

and body aches
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5 Conclusion

The threat of AMR with its impact on morbidity, mortality and costs is growing

and, as a result, becoming one of the most critical problems facing healthcare

systems worldwide. A number of interlinking strategies are needed to address

this. These include enhancing access where co-payments are an issue, reducing

inappropriate prescribing (conservatism) where this is a problem as well as encour-

aging the development of new antibiotics given the current scarcity (Hoffman and

Outterson 2015; O’Neill 2015). Knowledge regarding current utilisation and resis-

tance patterns in a country or region is a pre-requisite to instigating future inter-

ventions to improve future rational prescribing and dispensing of antibiotics (WHO

Europe 2014).

We have shown that multiple approaches, including all key stakeholder groups

such as health authorities, physicians, pharmacists and patients, are needed to

reduce inappropriate antibiotic prescribing. Within this, physicians and pharmacists

are particularly important with FIP urging a number of activities among pharma-

cists and governments (Box 1). This is endorsed by the WHO in Europe (Box 2).

Activities need to be continually analysed and sustained for maximum impact given

the misconceptions that can still remain coupled with people’s short memories from

one year to the next.

We will continue to monitor the impact of the interventions across regions and

countries to reduce future inappropriate prescribing and dispensing of antibiotics to

provide direction to others to address this critical area.
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In Silico Approaches Toward Combating

Antibiotic Resistance

Rahul Shubhra Mandal and Santasabuj Das

Abstract Drug-resistant infections have become a major concern to human health

worldwide, and the number of resistant bacteria is increasing each day. The

conventional drug designing approaches are time-consuming and involve huge

investment in addition to frequent failures at the clinical trial phase due to unwanted

side effects. Because of these reasons, pharmaceutical companies are losing interest

to invest in antibiotic research. Modern computational approaches have made the

early process of drug target identification and lead compound optimization a lot

easier. The anti-virulence strategy of target identification has proved to be safer as

compared to the bactericidal or bacteriostatic drugs, since the chance of resistance

development would be less due to non-interference with normal bacterial growth

and survival. Identification of druggable targets and the use of chemical compound

databases and computational tools made it possible to screen millions of molecules

within a reasonably short time, taking care of individual ADMET properties. The

early detection of potential drug targets and lead compounds is highly desirous in

antibiotic research as it demands less time and cost. Therefore, a healthy collabo-

ration between computational and experimental researchers is the future of novel

antibiotic discovery.

1 Introduction

Combating antimicrobial drug resistance is a major challenge to the scientific

community as it is spreading very fast. The emergence of drug resistances involves

multiple factors but arises due to the selection pressure on microbial organisms

imposed by the use of antimicrobial agents. This selection pressure alters microbial

gene regulation, rendering the drugs ineffective or partially effective. An organism

may become resistant to more than one drug, known as “multidrug resistance” or
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may be “extensively drug resistant” when almost all drugs are ineffective.

According to a WHO report (2014), multidrug-resistant tuberculosis (MDR-TB)

affected 480,000 individuals globally in the year 2013, and extensively drug-

resistant tuberculosis (XDR-TB) had spread to nearly 100 countries (http://www.

weforum.org/reports/global-risks-2014-report). Antibiotic resistance has been

declared as one of the greatest threats to human lives by the World Economic

Forum Global Risks Report (Davies et al. 2013).

Emergence of resistant bacterial strains is an evolutionary phenomenon that

occurs due to the genetic mutations or horizontal gene transfer from other micro-

organisms. Frequency of drug resistance increases with the overuse or misuse of

antimicrobial drugs, as it exerts evolutionary pressure that provides survival advan-

tage to the resistant microorganisms (Rice 2008). Overuse of antibiotics occurs

where public awareness about judicial antibiotic use is lacking or the drugs are

available over the counter. Inadequate infection control measures, poor sanitary

conditions, and improper food-handling practices further complicate the situation

by encouraging spread of antimicrobial resistance. In addition to the clinical

settings, stockpiles of animal feed also consume large quantities of antibiotics, an

increasing practice that contributes to the severity and spread of drug resistance. In

dietary animals, antibiotics are frequently used for nontherapeutic purposes, such as

prophylaxis and growth promotion (Palumbi 2001). Drug-resistant infections are a

major concern globally due to the high mortality, the transmissible nature of the

infections, and the huge economic burden they impose on the individuals and the

society. Nearly 25,000 people die every year in the Europe because of multidrug-

resistant bacterial infections, while two million people are getting infected in the

United States (USA) with similar number of deaths (Hampton 2013). Antimicro-

bials currently account for more than 30% sales from the hospital pharmacies in the

USA (Sipahi 2008).

While resistance to the existing antibiotics is on the rise, development of new

antibiotics has considerably slowed down. Salvarsan (Ehrlich and Hata 1910),

penicillin (Fleming 2001), and Prontosil (Domagk 1935) were the first three

antibiotics discovered during the first part of the nineteenth century. However, the

mass production and distribution of penicillin started only in the year 1945. Paul

Ehrlich was first to introduce the systematic screening approach during the discov-

ery of Salvarsan (Ehrlich and Hata 1910). Soon this became a standard practice in

the pharmaceutical industry for searching of new drug molecules. This strategy was

successfully used during the period of 1950–1970, the so-called golden era for

antibiotic discovery, leading to many new classes of antibiotics. In the succeeding

years, the discovery of novel antibiotics was drastically slowed down, and no new

drug with a completely different structure was developed.

Investment in antibiotic discovery research has significantly dropped in the

recent years. In 2004, antibiotics constituted around 1.6% of all drugs made by

the world’s 15 leading pharmaceutical companies that entered clinical trials. The

number was reduced to only four multinational companies in 2013 who were still

investing in antibiotic research (Boucher et al. 2013). On the other hand, govern-

ment agencies failed miserably in discovering novel antibiotics. As a consequence,
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antibiotic discovery is currently almost entirely dependent on small pharmaceutical

companies and academic institutions in the Western world (Sipahi 2008), while in

Japan, large pharmaceutical companies continue to invest in antibiotic development

(Jabes 2011; Moellering 2011; Boucher et al. 2013). Multiple factors contribute to

the reduced antibiotics output. First, antibiotics are typically administrated for a

very limited period of time, so it’s less profitable than the drugs used for chronic

diseases. Second, new antibiotics are usually kept in stock and only used when

known drugs fail. In contrast, new drugs are prescribed immediately for other

illnesses. This practice helps in delaying the emergence of resistant microbes but

becomes a limiting factor for the initial investment returns. Third, the requirements

of approval during clinical trials and other regulatory hurdles are raised in most

cases (Spellberg et al. 2008). Because of these factors, many big pharmaceutical

companies are dragging their feet from antibiotic research and development that

involves an estimated investment of $1.7 billion per drug over a period of 10 years

with less attractive return as profit (Projan 2003; Power 2006). The cost and

duration of drug development process may be greatly reduced by adopting modern

computational approaches, starting from determining targets to lead molecule

identification. We will give an overview of the above computational tools and

techniques and their application to drug discovery research in this chapter.

2 Computational Methods for Target Identification

2.1 The Antibacterial Drug Target

To become a potential drug target, a bacterial molecule should satisfy several

criteria:

1. It should be essential for bacterial survival (i.e., responsible for cell division,

metabolism, etc.).

2. The conservation of the target should be high enough, so that it can be used as a

broad-spectrum therapeutic target.

3. There should not be any mammalian homologue with similar function.

4. The target should be “druggable,” so that a ligand molecule could interact to the

active site and is capable of altering its biological function (Silver 2011). The

small molecule ligands should be highly selective toward its target to minimize

off-target interaction and are expected to have efficacy against both Gram-

positive and Gram-negative organisms.

5. The target molecule (protein/nucleic acid) should be evolutionarily stable (i.e.,

the occurrence of point mutation should be a rare event or should not interfere

with the small molecule binding).

6. The target should be soluble and stable enough to produce high-quality and well-

diffracting crystals, which are helpful for further investigation of the drug–target

interaction. To remain aware of these factors while choosing an appropriate drug

target is absolutely critical for a successful antibacterial drug discovery program

(Silver 2011).
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New antimicrobial drugs would either exploit alternative means to attack old

targets or find out new “druggable” targets. It is now well understood that the

bactericidal or bacteriostatic effects of available antibiotics enforce strong evolu-

tionary pressure on the microorganisms. This leads to genetic mutations in bacteria

making them drug resistant and giving significant survival advantage. Thus, scien-

tists had felt the urge for novel strategies, such as the development of very narrow

spectrum or even organism-specific antibiotics to avoid destruction of the beneficial

flora or the use of adjuvants like β-lactamase inhibitors to enhance the efficacy of

the currently available antibiotics against resistant organisms. Anti-virulence strat-

egies may also be highly effective in the treatment of bacterial infections, while

minimizing the chance of drug resistance. Drugs that target the virulence mecha-

nisms, such as adhesion and invasion of the host cells, biofilm formation, toxin

production, virulence gene expression, and secretion of virulence factors, will

inhibit pathogenesis without compromising growth or survival of the organisms

(Rasko and Sperandio 2010). Chemical inhibitors blocking toxins, pilins (Arm-

strong et al. 1995; Trachtman et al. 2003), quorum sensing molecules (Lesic et al.

2007), transcriptional regulators of virulence genes (Hung et al. 2005), type three

secretion systems (Kauppi et al. 2003; Muschiol et al. 2006; Felise et al. 2008;

Kline et al. 2008; Veenendaal et al. 2009), and histidine kinases (Rasko et al. 2008)

have been reported in the literature.

2.2 Genomics-Based Approaches for Target Identification

Genomics-based approaches are currently playing a major role in antimicrobial

drug discovery. Genome sequencing of microorganisms is essential to identify

genes/proteins required for microbial survival. This powerful technique allows us

to identify thousands of genes/proteins from humans and pathogenic microorgan-

isms, among which many are potential therapeutic targets for drug development

(Russ and Lampel 2005). Although genome sequence is an important resource for

the identification of novel drug targets, it requires a methodical approach toward

data analysis, and drug development against a potential target may not be possible

in every case (Gao et al. 2008). Thus, FabH and FabI were new targets identified

during the genomics era (Payne et al. 2007), but researchers have failed to establish

new lead compounds for these targets. This results in a recent shift back to the

classical methods, such as whole-cell-based phenotypic screening or reevaluation

of the ligand molecules discarded earlier. However, whole-cell-based approach

does not support the modern drug designing techniques, such as detection of

novel drug targets for antimicrobial therapy (Chung et al. 2013).

Increasing number of microbial genome sequences is available these days due to

the advancement of sequencing technology. However, it is difficult to identify a

potential antimicrobial drug target only on the basis of genome sequences. A major

bottleneck lies in the large number of genes/proteins for which no biological

function is known. Some useful bioinformatic tools like NCBI BLAST may help

to assign functions to the unknown genes by finding sequence homology to the
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known proteins. Development of computational databases and tools for prokaryotic

genome comparison is reviewed elsewhere (Field et al. 2005). Comparative

genomics-based approach is used to identify genes/proteins that codes for microbial

virulence factors or necessary for microbial survival (Tang and Moxon 2001; Chan

et al. 2002; Fritz and Raczniak 2002). This type of comparison is usually made

between pathogenic and nonpathogenic microorganisms. The differential presence

of genes in pathogenic strains may be related to pathogenicity and may be targeted,

provided there are no homologues for them in the mammalian host cells. This

method reduces the chance of undesirable side effects. Study of host–pathogen

interactions have potential to deliver novel strategies in antimicrobial therapies,

since genomics and its related technologies are not only used for target identifica-

tion but also provide new insights into the antimicrobial mechanisms of action

(Brazas and Hancock 2005). For example, cellular responses to antimicrobial

therapy may be analyzed through whole-genome expression profiling (Fischer

2001) by microarray analysis or RNAseq technologies. Many tools are available

for gene expression data analysis, which was earlier reviewed by Mandal

et al. (2009).

The recent development and application of computational tools and techniques

in biology has emerged as a new field called “bioinformatics,” which can be used to

search information contained in genomics for novel drug target identification.

Network-based strategy is one of the frequently used techniques, which include

endogenous metabolic, signaling, and regulatory information to reconstruct a

highly interconnected network module. A gene or protein interaction network

will allow us to map the known drug targets and their interactors, thus helping us

to prioritize the known drug targets based on the associated regulatory information

and also to explore novel drug targets. This approach will narrow down the

selection of candidate drug targets which are not involved in multiple biological

pathways, because inhibition of the target may otherwise result in undesirable

effects due to blocking of the associated cellular activities.

With the development of the microarray technology, network-based strategy is

largely supported by gene expression or protein expression data, which help to

develop gene/protein network-based models for future predictions. In a study by

P. Anitha et al., resistance-related genes were predicted through gene network-

based study (Anitha et al. 2014). Different computational tools are available for the

study of gene or protein networks. STRING is a database of known gene/protein

interaction and is used for the prediction of novel interactions, including direct

(physical) and indirect (functional) associations (Szklarczyk et al. 2015). DAVID,

an integrated biological resource for functional enrichment of large gene/protein

lists, helps in in-depth understanding of the biological systems. It is a precomputed

database displayed in a tabular format containing similar annotation. It sorts the

enriched gene sets into different, partially overlapping groups of all genes (Dennis

et al. 2003; Huang et al. 2007, 2009). MCODEwas the first algorithm used to screen

protein complexes for the identification of highly interacting nodes present in any

network. This was based on vertex weighting, complex prediction, and optimal

post-processing by assigning weight to the vertex in local neighborhood density

from the dense regions according to given parameters. The extracted sub networks
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were then ranked according to the individual size and density (Bader and Hogue

2003). Cytoscape software is used for modeling, analyzing, and visualizing molec-

ular and genetic interaction network. It also provides graphical layouts that support

three different algorithms, namely, hierarchical layout, spring-embedded layout,

and circular layout (Shannon et al. 2003).

2.3 Chemoinformatics-Based Approaches for Target
Identification

Different chemoinformatics approaches for target prediction are currently avail-

able. A ligand-based approach utilizes molecular three-dimensional architecture of

the target, assuming that the chemical compounds will have similar biological

activities if they have similar structures (Bender and Glen 2004). By this strategy,

targets for small molecular compounds may be identified on the basis of similarities

in shapes among known enzyme inhibitors or substrates present in different bio-

logical databases, such as PubChem (Wang et al. 2012), KiDB (Jensen and Roth

2008), and ChEMBl (Gaulton et al. 2012). Chemoinformatics is a rapid technique

and can identify target proteins within a short period of time, but the major

bottleneck is the requirement for prior knowledge on the structures of the protein

and is ligand. A second approach is structure-based docking, in which a selected

panel of target proteins or receptors with known ligand–protein interactions is

docked by a “query” compound (“reverse” or “inverse” docking). The three-

dimensional coordinates of the proteins are extracted from the PDB. To maintain

uniformity of the chosen structures, several selection criteria need to be applied:

(1) there should be no mutations or missing residues in and around the active site,

(2) only a high-resolution structure (~1.5 Å) is acceptable, and (3) a ligand–protein
complex is preferably selected. Finally, target proteins are predicted based on

optimal interactions. However, traditional molecular docking approaches, which

require significantly shorter computational time and often produce more reliable

results, outperform this method (Koutsoukas et al. 2011).

Pharmacophore models, as per the International Union of Pure and Applied

Chemistry, can be defined as “an ensemble of steric and electronic features that is

necessary to ensure the optimal supramolecular interactions with a specific biolog-

ical target and to trigger (or block) its biological response.” In this method, query

molecules were searched against a predefined pharmacophore model to find out the

best-fitted one. PharmMapper (Liu et al. 2010) is a free web server that uses

pharmacophore-based approaches to identify potential target proteins of a query

molecule, such as any therapeutic agent or natural compounds for which binding

targets are still unidentified. PharmMapper uses its own in-house collection of

pharmacophore database created by the “target” molecules extracted from

DrugBank (Law et al. 2014), BindingDB (Gilson et al. 2015), and PDTD (Gao

et al. 2008) called PharmTargetDB. This database hosts more than 7000
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pharmacophore models including 1627 drug targets. PharmMapper accepts query

molecules in MDL SDF or Tripos Mol2 format and searches PharmTargetDB to

predict probable drug targets.

Support vector machines are supervised learning methods containing learning

algorithms for pattern recognition and data analysis. For the prediction of novel

drug targets, this method uses the physicochemical properties of the amino acids of

the primary protein sequences of known antibacterial targets (Han et al. 2007; Li

and Lai 2007).

The UniDrug-Target server predicts drug targets in pathogenic bacteria for

which FASTA sequences and sequence annotation are available. The server finds

unique proteins of pathogenic bacteria by comparing the proteomes of pathogenic

and nonpathogenic bacteria and the mammalian proteomes. A ranking system for

the potential drug targets is developed based on the order of their functional

importance for cell survival (Chanumolu et al. 2012).

In molecular docking, interactions between a query compound and target pro-

teins are scored based on which, the likely identity of the query compound is

determined. Popular examples of this method include INVDOCK (Chanumolu

et al. 2012) and TarFisDock (Li et al. 2006). INVDOCK is a computer-based

automated target prediction software for predicting nucleic acid or protein targets

of any chemical compounds or therapeutic molecule. It accepts 3D structure of the

query molecule and predicts its suitable target among 9000 protein and nucleic acid

entries enlisted in their backend database. Potential applications of INVDOCK

include early prediction of unwanted side effects (Ji et al. 2006) or toxic effects

of any molecule under study and molecular target identification, such as biological

target identification of genistein (Chen et al. 2006) and natural products (Chen et al.

2003). TarFisDock (target fishing docking) is a reverse docking server (Li et al.

2006), and it docked the query molecules such as drugs and drug candidates and

natural products to the proteins listed in PDTD (potential drug target database) to

predict their therapeutic target. PDTD contains 841 known drug targets with 3D

structures available from PDB (Gao et al. 2008).

3 Computational Drug Designing Methods

In today’s antimicrobial research and development, genomic, proteomic, and func-

tional databases and related bioinformatic tools have become indispensible. Vari-

ous computational approaches have been developed by merging independent

subjects like mathematics, computer science, statistics, information technology,

and molecular biology. Computer-aided drug design (CADD) method is elaborately

discussed by Gregory Sliwoski et al. (2014), and the overall process is described in

Fig. 1.
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3.1 Structure-Based Methods (Docking, Homology
Modeling)

Structure-based drug designing methods include protein structure modeling, molec-

ular docking, and molecular dynamics simulation (MDS). After the identification of

potential target protein for antibacterial drug development, the next step is to study

the molecular architecture and structure–function relationship of the target. The

X-ray crystallographic or NMR-based three-dimensional (3D) structures available

in the PDB database (http://www.rcsb.org) are an authentic source for the above.

When the target protein structure is not available, computational methods are

employed to generate the structure. One widely used method for this purpose is

homology modeling or comparative modeling. By this approach, an unknown

protein structure is built based on its sequence similarity with a known structure

called the template. MODELLER (Webb and Sali 2014) is an extensively used

software for protein homology modeling. There are different homology modeling

servers that are also available which are briefly described in Table 1.

· Ligand structure information
 (inhibitor/substrate)

· Target structure information

· Molecular docking

· De novo design

· Molecular dynamics simulation

· Pharmacophore modeling

Lignad optimization

Structure based drug designLigand based drug design 

Computer Aided Drug Designing (CADD) 

Identification of drug target

Probable drug nolecule

· Quantitative structure–activity
relationship

· Pharmacophore modeling

· Molecular docking/virtual
screening

Fig. 1 The overall process of computer-aided drug designing
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The knowledge of the 3D protein structures is indispensible for in silico inhibitor
designing. By this method, inhibitors are searched out by screening small molecule

databases like PubChem, ZINC, etc. (Table 2) using different docking and virtual

screening software. AutoDock (Morris et al. 2009) is one of the most widely used

freely available docking tools, and a second version of AutoDock is AutoDock Vina

(Trott and Olson 2010), which is mostly used for virtual screening purpose. GOLD

(Verdonk et al. 2003) and Glide (Friesner et al. 2004) are other frequently used

software, and the predictive power of Glide is highly appreciated in the scientific

community. Fragment-based designing of inhibitors is an approach where small

molecular scaffolds are docked into protein active site and then potential hits are

joined each other to build up a novel molecule. LUDI (Bohm 1992a, b), LigBuilder

(Yuan et al. 2011), AutoGrow (Durrant et al. 2009, 2013), and eHiTS (Zsoldos et al.

2007) are tools for fragment-based ligand generation. This method often produces

inhibitors with higher binding efficiency.

After getting the potential hits, binding efficiency is validated and measured in
silico by MDS method. Both commercial software and freeware are widely avail-

able for MDS. CHARMM (Brooks et al. 2009) is a freeware to simulate inhibitor

interactions within the protein active site. Another free package, GROMACS (Hess

et al. 2008), is used in MD studies to generate “trajectories” which explains the

behavior of the system under specific condition. Discovery Studio is an attractive

package for QSAR studies, sequence analysis, protein structure modeling, and

Table 1 Frequently used homology modeling servers

Homology

modeling

servers Description URL Reference

Phyre2 Web server for analyzing protein structure,

function, and mutation. It uses advanced

remote homology detection method for

protein structure prediction

http://www.sbg.bio.

ic.ac.uk/phyre2/

Kelley

et al.

(2015)

ModWeb Web-accessible interface of MODELLER

program for automated protein structure

prediction

https://modbase.

compbio.ucsf.edu/

modweb/

Pieper

et al.

(2014)

LOMETS It is a local meta-threading server. It pre-

dicts 3D structure of protein based on nine

locally installed threading programs

http://zhanglab.

ccmb.med.umich.

edu/LOMETS/

Wu and

Zhang

(2007)

CPHmodels Protein homology modeling server based on

profile–profile alignment of secondary

structure

http://www.cbs.dtu.

dk/services/

CPHmodels/

Nielsen

et al.

(2010)

SWISS-

MODEL

Automated protein structure homology

modeling server

http://swissmodel.

expasy.org/

Guex

et al.

(2009)

I-TASSER Protein structure and function prediction

server. 3D structure of proteins are built

based on multiple-threading alignments by

LOMETS and iterative TASSER

simulations

http://zhanglab.

ccmb.med.umich.

edu/I-TASSER/

Zhang

(2008)
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Table 2 Different databases of small molecules for virtual screening

Databases Summary URL

PubChem Database of chemical molecules containing

three types of information, namely, substance,

compound, and BioAssays

https://pubchem.ncbi.nlm.

nih.gov/

ZINC This database contains 21 million compounds

and their physicochemical properties

http://zinc.docking.org/

ChEMBL This database provides comprehensive infor-

mation about 1 million bioactive (small drug-

like molecules) compounds with 8200 drug

targets

https://www.ebi.ac.uk/

chembldb/

ChemDB A repository of five million chemicals which

physicochemical properties

http://cdb.ics.uci.edu/

ChemSpider Contains more than 28 million unique chemical

entities collected from more than 400 diverse

data sources

http://www.chemspider.

com/

BindingDB Database of small molecules which contains

910,836 binding data, for 6263 protein targets

and 378,980 small molecules

http://www.bindingdb.org/

bind/index.jsp

PDB-Bind It is a collection of 5671 protein–ligand com-

plexes with their respective binding affinities

and known three-dimensional structures

http://sw16.im.med.umich.

edu/databases/pdbbind/

index.jsp

PDBeChem It provides comprehensive information of

ligands, small molecules, and monomers. Pres-

ently it consists of 15,502 ligands

http://www.ebi.ac.uk/pdbe-

srv/pdbechem/

HMDB A database containing detailed information

about small molecule metabolites found in the

human body

http://www.hmdb.ca/

DrugBank The database contains 8312 drug entries

including 2036 FDA-approved small molecule

drugs, 233 FDA-approved biotech (protein/pep-

tide) drugs, 93 nutraceuticals, and over 6000

experimental drugs

http://www.drugbank.ca/

HIT HIT is a comprehensive database for protein

targets for FDA-approved drugs as well as the

promising precursors. It currently contains about

1301 known protein targets (221 proteins are

described as direct targets)

http://lifecenter.sgst.cn/hit/

SuperNatural A database of natural products containing

50,000 natural compounds.

http://bioinfapplied.charite.

de/supernatural_new/index.

php

NPACT It contains experimentally validated 1574 natu-

ral compound derived from plants exhibiting

anti-cancerous activity

http://crdd.osdd.net/raghava/

npact/

PharmGKB Database containing clinical information of drug

molecules

https://www.pharmgkb.org/

SuperDrug This database contains approximately 2500 3D

structures of active ingredients of essential

marketed drugs

http://bioinf.charite.de/

superdrug/
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computational simulation, although not freely accessible (http://accelrys.com/prod

ucts/discovery-studio/).

3.2 Ligand-Based QSAR Methods

Quantitative structure–activity relationship (QSAR) modeling is a

chemoinformatics approach widely used for antimicrobial drug discovery. QSAR

model quantitatively measures changes in the biological activities of a set of

compounds with corresponding changes in their molecular structures. This method

has been successfully applied for the analysis of antimicrobial peptide (AMP) data;

the generated model was very useful for quantification of linear sequence patterns

(Hilpert et al. 2006), amphipathicity (Frecer et al. 2004), and contact energy

between neighboring amino acids (Jensen and Roth 2008). QSAR-based

approaches significantly shorten the window for lead compound identification and

cut the expenditure and time that would otherwise be spent for the synthesis of a

large number of compounds and their evaluation by in vitro and in vivo experi-

ments. QSARmay integrate very diverse chemical and biological data with the help

of powerful statistical techniques like artificial neural networks (ANNs) (Speck-

Planche and Cordeiro 2015). This is particularly useful, because no linear relation-

ship often exists between the chemical structure and biological activities and/or

toxicities of a compound (Prado-Prado et al. 2010; Tenorio-Borroto et al. 2012).

The above technique was very successful for the discovery of antistreptococcal

drugs (Speck-Planche et al. 2013). MATLAB software packages like Tsar or Neural

Network Toolbox (http://www.mathworks.com/products/neuralnet/) are used for

ANN analysis. Free software packages are also available for ANN analysis like

Stuttgart Neural Network Simulator (http://www.ra.cs.uni-tuebingen.de/SNNS/).

4 Opinion

The conventional approaches yield significantly lesser number of new antibacterial

drugs and fail to combat the menace of the rapid spread of drug-resistant pathogens.

There is a strong urgency to adopt novel strategies in the field to avoid global

catastrophe. Drug designing by anti-virulence strategy is a viable alternative, since

it would not interfere with bacterial growth and survival, and thus minimize the

chance of drug resistance. Computational methods are extremely useful for the

initial phase of new drug development that involves target identification and lead

optimization by shortening the time and reducing the cost. A healthy collaboration

between bioinformaticians and experimental microbiologists is absolutely critical

to achieve the above goal.
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5 Concluding Remarks

Increasing prevalence of drug-resistant pathogenic bacteria in the food industry and

in clinical settings has become a major threat worldwide, and there is an urgent need

for novel therapeutic agents to combat them. The conventional drug design pipeline

requires a huge investment and at least 12–15 years and despite that often fails to

bring a product to the market. Thus the current scenario of antibiotic research and

development is not very encouraging. The development and introduction of com-

putational approaches toward target identification and drug designing has brought a

dramatic change in the field and infused new hope. Integration of knowledge from

diverse disciplines, such as statistics, mathematics, computer science, molecular

biology, etc., made it possible to develop new computational tools and techniques

for more accurate data analysis and predictions. Computer-based genomics and

chemoinformatics approaches were able to significantly reduce the time and cost

involved in this process. The whole-genome sequencing approach is particularly

useful to understand the bacterial resistance mechanisms against antibiotics. Anti-

microbial peptide-based therapy is a promising new approach toward combating

drug resistance. Known structural and functional data of AMPs can be used for

building computational models to predict novel candidate peptides as antimicrobial

agents. A new trend has emerged that combines two complementary approaches,

the experimental and computational biology, which has great potential in the future

discovery of antimicrobial drugs.
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Synthetic Solutions to Drug Resistance

Gunjan Arora, Richa Misra, and Andaleeb Sajid

Abstract Synthetic biology has the potential to revolutionize human health standards.

Advances in molecular and cellular biology, computational science, and systems

biology have contributed to this new field that is trying to apply engineering principles

to answer biological questions. These applications of synthetic biology may bring hope

to our battle against the ever-emerging drug-resistant forms of disease. Advances in

medical science helped us to achieve early victory against various common diseases in

the last century. However, newer forms of drug-resistant diseases have emerged and are

threatening the human race immensely. To fight this challenge, several strategies have

been adopted to various degrees of success. For some diseases such as cancer,

tuberculosis, HIV/AIDS, malaria, and diabetes, the threat is still imminent. This chapter

discusses the early efforts of synthetic biologists toward better management, wherein

we summarize some of the very recent work in the field. We hope the arsenal of

synthetic solutions will provide superior solutions toward early diagnosis and treatment

of drug-resistant disease forms.

1 Introduction

One of the main features of any living cell is adaptability to survive. Every living

organism on the earth adapts strategies to grow and dominate the environmental

challenges. Therefore, it is no surprise that the acquired drug resistance is possibly a
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universal truth for all cells. From early days, humans are using various compounds

to combat diseases. The first evidence dates back to 3300 BC where humans carried

an antibacterial fungus (McFarlane 1991). There is additional evidence that humans

use various drugs to enhance their own strength. Therefore, drugs have provided the

economic, social, and physical strength to human society (Guerra-Doce 2015). It is

because of advances in medical science that there is radical shift in life expectancy.

In 1900, average human life expectancy was only 31 years, which is now 67.2 years

worldwide (http://www.who.int/kms/initiatives/indiana.pdf). So, to last these tri-

umphs and to provide our future generation a longer quality life, we need drugs. The

problem is the usage of every drug or medicine has a life, after which acquired

resistance makes the drug less useful. Therefore, we need new therapeutic solutions

against diseases and syndromes. Lots of efforts are already being made in this

direction, and although a lot has been covered on this topic, this chapter, in

particular, is dedicated on new emerging themes in drug discovery by the study

of synthetic biology.

2 Synthetic Biology for Novel Molecules

Is synthetic biology really just a beta version of bioengineering/genetic engineer-

ing? Is it fair to say that synthetic biology is launched on advances in genetic

engineering, computational biology, and systems biology? It is probably not an

exaggeration if we say that being an application-oriented theme, synthetic biology

has the potential to change the course of human history. In the late seventeenth

century, industrial revolution changed the course of world history. It created

sustained growth of economy by which humans achieved better developmental

index that measures life expectancy, economic growth, and knowledge. In the next

two centuries, humans dominated land, water, and space. In the current era, we can

not only appreciate biological complexity on molecular level but also tinker with it

to create more complex systems. This knowledge gifted a toolbox to our generation

that every human being in the history aspired for. We can decide the course of our

history by designing a life that nurtures our environment and us both.

In the last 70 years, antibiotics or related antimicrobials have been used exten-

sively for human and animal welfare, and we have exhausted antibacterial chemical

scaffolds (Wright 2012). This is one of the reasons for over-relying on certain drugs

and faster rates of emergence of drug resistance. In the present scenario with

rampant drug resistance, synthetic biologists are trying to solve molecular mecha-

nisms of drug action, drug delivery, diagnostics, and novel therapeutic discoveries

(Trosset and Carbonell 2015). Synthetic biology can help us not only engineer the

known biological modules but also design nonnatural products made by alien

enzymes. Engineered cells expressing artificial enzymes and expressing synthetic

pathways will synthesize new complex molecules that will provide new therapeu-

tics, e.g., peptide antibiotics.
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The following sections will shed light on how synthetic biology approaches will

be useful in tackling drug resistance.

2.1 Engineered Therapeutics

One of the earliest applications in this regard is rewiring the cellular pathways and

modeling signaling response. For instance, immune cell signaling is a stochastic

and efficient means to rewire signaling pathways, and activating these cells is the

key to immunotherapy (Lim 2010; Chakravarti and Wong 2015). T-cell immuno-

therapies have been shown to hold great potential toward drug-resistant forms of

cancer (Chakravarti and Wong 2015). However, heterogeneity in cytolytic lym-

phocyte activation and cytotoxicity does hinder in effectiveness of this response. To

address this situation, specific receptors known as chimeric antigen receptors were

expressed on T-cell surface (Kalos et al. 2011). These receptors allow T cells to

identify and destroy tumor cell. These engineered T cells are infused in the body by

the adoptive transfer method, which can now specifically lyse tumor cells (Kalos

et al. 2011). However, these activated T cells can have serious side effects too, and

there are associated complications that limit their use (Stauss and Morris 2013). An

engineered T cell with a regulatable switch could potentially limit the T-cell

activation and thus the related side effects and can help in more effective response.

Using synthetic biology approach in a recent study, T cells were engineered to

express CAR (cancer antigen receptors), but they do not show cytotoxic response

unless they are switched on (Wu et al. 2015). The switch further allows controlling

the response strength and time. The early progress in T-cell engineering and their

importance in immunotherapies indicate the potential of these cells as arguably best

mammalian model to apply synthetic biology tools. Further research is needed to

apply Boolean logic gates on the immune cells by which we can have multiple

input/output controls, each regulated independently. This is how T-cell develop-

mental plasticity controls its regulatory response and our strength to fight infec-

tions. This real-time control will allow us to realize potential of “a living drug.”

2.2 Bacteriophages

Bacteriophages (or phages) are the viruses that infect and thrive within bacteria as

host (Seed 2015). They are very specific in selecting their host. Like other viruses,

they utilize the bacterial cell machinery, multiply, and then lyse the bacteria to

dissipate. Phages are possibly one of the most omnipresent group (Clokie et al.

2011). Bacteriophages were discovered by a British scientist, Frederick William

Twort, in 1915. In his landmark paper in Lancet, he described these “ultramicro-

scopic viruses” that can infect bacteria (Twort 1915). This study was soon followed

with similar report by French-Canadian scientist, Félix d’Herelle, who is
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considered a co-discoverer of bacteriophages and also the pioneer of phage therapy

(Chanishvili 2012). In that era, serum therapy was the only effective treatment

known to scientists since antibiotics were still not discovered. Phages, being very

specific, were very attractive arsenal against bacterial pathogens (Chanishvili 2012;

Salmond and Fineran 2015). However, after the discovery of more effective

antibiotic therapy that was effective against broad spectrum of bacterial infections,

the phage therapy lost its value (Wei 2015). Also, compared to phages, the

antibiotics could be produced easily, and it was easier to scale up their production.

The phage therapy was used intermittently in some countries in the last century;

however, there is increased interest in phage therapy with the emergence of

multidrug-resistant bacteria (Salmond and Fineran 2015; Wei 2015).

However, the conventional phage therapy has certain specific limitations such

as:

• Many antibiotics are wide spectrum while phages are specific.

• Phage therapy requires skilled workforce and more organized supply chain that

can coordinate and respond according to diagnostics.

• Phage preparations are not yet “one-size-fits-all” approach and need constant

attention. There is not enough data known about the possibility of bacteria

developing resistance to phages.

• For drug regulatory authorities, there is further need to find gold standard that

can be used as reference.

• Generation of antibodies against phages in humans.

2.2.1 Use of D29 Mycobacteriophages Against Tuberculosis

Tuberculosis is one of the most deadly diseases in the world, and the major hurdle in

treatment is emergence of drug-resistant Mycobacterium tuberculosis strains

(Arora et al. 2010; Sajid et al. 2015; Singhal et al. 2015; Marais 2016; Yates

et al. 2016). Multidrug-resistant TB (MDR-TB) is described as infection from

M. tuberculosis strains that are resistant to isoniazid and rifampicin (the two most

important first-line drugs) (Altimari et al. 2015). Extensively drug-resistant TB

(XDR-TB) is infection fromM. tuberculosis strain that is resistant to first-line drugs
in addition to at least one fluoroquinolone and one injectable drug (Wilson and

Tsukayama 2016). Due to poor medical facilities and lengthy diagnostic tests

regime, the rate of death among patients with XDR-TB is very high (Velasquez

et al. 2014). Despite the success in eradicating polio and treating leprosy and

controlling AIDS, most developing countries still face continuing threats from

infectious diseases like tuberculosis and malaria. The situation could be evaluated

from the recent WHO tuberculosis report which mentions that at least 300,000

Indians die each year from tuberculosis (WHO global tuberculosis report 2015).

Mycobacteriophages are the viruses that specifically infect mycobacteria

(Hatfull 2014a, b). They were discovered in mid-1900s, and currently their number

has crossed 600 (Pope and Hatfull 2015). Among others, D29 is one of the most
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studied mycobacteriophages. D29 is a lytic phage, which can thrive in

M. tuberculosis and M. ulcerans, the slow-growing pathogens (Rybniker et al.

2006; Samaddar et al. 2015). D29 infects mycobacteria and replicates within it,

followed by lysis of cell wall and release of amplified generation of phages. Thus,

when TB samples are inoculated with D29, an increase in the number of phages

indicates the presence of viable mycobacteria (Rybniker et al. 2006).

Since phages utilize host cell machinery for their division, they respond differ-

ently in the presence of drugs. For example, phages cannot replicate in the presence

of rifampicin, which disrupts host transcription machinery (Pai et al. 2005). On the

other hand, phages infecting drug-resistant strains can undergo replication normally

even in the presence of drugs (Pai et al. 2005; Schofield et al. 2012; Smartt et al.

2012; https://www.google.com/patents/US8501400). Other first-line drugs such as

isoniazid and ethambutol provided in the DOTS program do not inhibit phage

replication. Thus, these parameters may be used to assess the susceptibility of

mycobacteria to these drugs by incubating the bacteria with critical concentrations

of the drug that kills the bacteria. This way when the phages will be added to the

system, they will not be able to replicate in those bacteria that were killed by the

drug. As phages are known to be quickly removed from the body, they can be of

great clinical value. Additionally, to neutralize the bacteriophage inside the body,

antibodies or simple elements such as ferrous (iron II) compounds can be admin-

istered which will inactivate mycobacteriophages such as D29 (Toussaint and

Muschel 1959; Park et al. 2003). With these advances, phages can prove to be

useful for the development of detection methods for mycobacterial presence. For

example, mycobacteriophages are administered to the patients to allow infection

along with ferrous ammonium sulfate (Park et al. 2003). Following treatment with

FAS, only the phages within the host mycobacteria that have resulted from suc-

cessful infection and replication will remain (McNerney et al. 1998; Park et al.

2003).

With the introduction of new drugs, the ratio of drug-resistant to drug-sensitive

patients is speedily going upward. Rifampicin, which is a first-line agent in the

treatment of tuberculosis and whose resistance is responsible for majority of deaths

in combination with isoniazid resistance, the problem is engraved with the lengthy

diagnostic time to detect rifampicin resistance (Drobniewski et al. 2015; Rifat et al.

2015). The use of D29 mycobacteriophages that can kill the nonresistant cells and

also can be used for detection of resistance is novel solution to detect and/or treat

rifampicin resistance. Therefore, the challenge is to design synthetic bacteriophages

for therapeutic use and diagnostics that can be easily monitored and neutralized/

controlled by genetic switches and are less antigenic.

2.2.2 Synthetic Bacteriophages

Engineered bacteriophages that are more potent, safer, and have higher efficacy can

be lucrative solutions to tackle antibiotic-resistant bacteria (Jassim and Limoges

2014). Since the inception of synthetic biology, the idea is to develop therapeutic
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candidates that are safer, more sensitive, and specific. Lu et al. have reported

synthetic phages toward gene networks that are not currently targeted by antibiotics

(Lu and Collins 2009). Successful pathogens are probably nature’s best-designed
machines that try to circumvent the antibiotic pressure by phenotypic and genotypic

countermeasures. These measures are the key to their survival and evolution of drug

resistance. The engineered phages target the bacteria by not letting them to adapt

for survival measures thus making them more susceptible to antibiotics. Clinical

efficacy analyses reveal that the antibiotic-enhancing phages make bacterial killing

more potent compared to the antibiotic administered alone (Lu and Collins 2009).

The first successful example of synthetic phages revalidates hopes from elegant

engineered biological machines of future (Smith et al. 2003).

3 Synthetic Biosensors to Tackle Drug Resistance

Recent surge in drug resistance can be attributed to multiple reasons including the

most prominent theme of direct correlation between diagnostic methods and ther-

apeutic management. To a great extent, therapeutic misuse, in particular, of anti-

biotics is responsible for evolution of drug resistance (Laxminarayan et al. 2013). In

resource-poor settings, physicians often rely on symptoms and conventional

wisdom and not on accurate identification tools. To safeguard patients’ life, often
physicians take a decision to include certain antimicrobials/antibiotics in their

prescription (Leekha et al. 2011). This abundant use of antibiotics has led to

acquired drug resistance in pathogens much faster than otherwise. Additionally, it

is even more difficult to accurately identify drug-resistant forms that lead to further

administration of multiple antibiotics. Accurate diagnostic tools that can identify

the disease in resource-poor settings will be the key to help the physicians’
conundrum (Hedt et al. 2011). Thus, accurate, inexpensive, and diagnostic methods

that can easily identify the drug-resistant forms should be a part of long-term

solution for most drug resistance-prone diseases. Unless we provide therapeutic

treatment based on sound scientific methods and not just a guess on symptoms, the

cells will keep acquiring resistance to newer drugs leaving us with little maneu-

vering (Hedt et al. 2011).

Synthetic biology is trying to work on this aspect in many novel ways. The three

major components of any diagnostic method are sensory input signal, processing

component, and output method. The synthetic tools could help us identify novel

components in all three aspects. For example, for the detection of Lyme disease-

causing bacteria Borrelia burgdorferi, Burbelo et al. (2010) used a synthetic protein
consisting of a repeated antigenic peptide sequence (Burbelo et al. 2010). The use

of synthetic protein leads to a highly sensitive sero-analysis test. Similarly, Pardee

et al. devised a new diagnostic method for the deadly pathogen Ebola virus by

combining cell-free extracts with synthetic gene circuit on paper (Pardee et al.

2014). This study used RNA sensors created on toehold module that can also be

used to identify drug-resistant forms in the future for other diseases. Toehold
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switches are de novo created riboregulators that act as transcriptional activators in

reaction to related arbitrary RNA sequences (Green et al. 2014). In another study,

Weber et al. identified drug-resistant forms of M. tuberculosis by using an

engineered gene circuit (Weber et al. 2008). Such synthetic gene circuits will

allow discovery of new antibiotic compounds against drug-resistant forms.

4 Novel Therapeutics

Immune system is our primary defense mechanism; it not only restrains us from

unknown infectious microbes but also from the “self” sick cells. However, some-

times the immune system can’t distinguish between self and nonself, and this

misjudgment leads to tissue destruction and other related autoimmune diseases

(Her and Kavanaugh 2016). Many autoimmune disorders are related to

pro-inflammatory cytokine release like psoriasis, a chronic inflammatory skin

disease (Burfield and Burden 2013). As with most autoimmune disorders, there is

no cure for psoriasis, and use of anti-inflammatory medications can only provide

temporary relief from symptoms (Gupta et al. 2015). However, after some time, the

patient develops treatment-resistant psoriasis (Burfield and Burden 2013; Busard

et al. 2014). This is a typical case where not only we need effective drugs but also

have to tackle drug resistance. To solve this problem, synthetic biologists are

offering a novel solution (Schukur et al. 2015). Psoriasis pathology is related to

increase in inflammatory cytokines TNF-α and IL-22 (Lowes et al. 2014). By

employing mammalian engineered circuits that can detect increases in these inflam-

matory cytokines, disease manifestations can be ceased. The gene circuit further

responds by producing anti-inflammatory cytokines IL-4 and IL-10 (Schukur et al.

2015). This results in modulation of immune regulation and suppression of inflam-

matory cytokines that result in induction of psoriasis-related skin flares. This AND

gate logic circuit will be the key in the future to the personalized and cell-based

therapies to treat complex disorders.

5 Synthetically Engineered Protein Machinery: An

Alternate to Conventional Drug Therapy

Cellular phenotypes are an outcome of protein assemblies working together. For

every cellular function, be it replication, transcription, translation, signaling, sens-

ing, transport, metabolism, stress management, division, or even cell senescence,

many proteins come together and work in concert to produce the desired effect.

Manipulation of these machineries can significantly alter the cell behavior that can

be utilized for the benefit of science and technology as in whole.
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Synthetic biology approaches have provided efficient means for such manipu-

lations, for example, incorporation of nonnatural amino acids and chemicals to

produce synthetic proteins that do not occur in nature and have better potential to

carry out their functions (Lang and Chin 2014; Schutz and Mootz 2014; Lang et al.

2015). Another utilization of synthetic proteins is in production of chemicals and

drugs. Many chemicals that are synthesized in chemistry take a lot of space,

instrumentation, and time of scientists to achieve the desired purity and quality.

Synthetic protein assemblies take advantage of enzymatic properties to synthesize

the chemical of interest in a self-maintained system that does not require constant

monitoring (Keasling 2010; Moura et al. 2016) (Fig. 1). One of the famous

examples of protein engineering is manufacturing of synthetic glycoproteins. Gly-

coproteins have a carbohydrate moiety attached to the polypeptide chain,

co-translationally or posttranslationally. Most of these proteins are surface

Fig. 1 Conceptual representation of engineered proteins: Synthetic or engineered proteins are

generated by chemical modifications of amino acid derivatives. These proteins are used to produce

substantial quantities of desired products such as metabolites and drugs, within a cell system
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associated or secreted from the cell (Funakoshi and Suzuki 2009). Glycosylation

affects protein functions directly as well as their distribution and metabolism;

hence, glycosylation defects are associated with variety of disorders including

cancer (Varki et al. 2009; Christiansen et al. 2014), neurological disorders (Freeze

et al. 2015), diabetic neuropathy (Sugimoto et al. 2008), autoimmune diseases like

rheumatoid arthritis (Delves 1998; Goulabchand et al. 2014), etc. Rectification of

glycoprotein disorders is extremely difficult, if achievable at all. But recent pro-

gress in synthetic protein biology has made this arduous task not only possible but

also motivating (Chen 2015).

Besides being useful in medical treatments, synthetic protein assemblies are an

important tool for biotechnologists and industrialists. There is strong potential for

their use in generating tools for DNA/RNA polymer modifications and technolo-

gies, unnatural protein and peptide synthesis, and synthesis of engineered bacteria

for protein of molecules of pharmaceutical interests (Glasscock et al. 2016).

5.1 Nonconventional Drug Therapy

The next step is to design an artificial cellular system that can perform according to

the desired function and produce the compounds of interest (Lucks et al. 2008).

These so-called designer cells have been synthesized, for example, for the produc-

tion of lipid biofuels (d’Espaux et al. 2015), small molecule drugs (Moura et al.

2016), or even treatment of diseases like cancer and psoriasis (Schukur et al. 2015,

2016; http://www.bbc.com/news/health-34731498). The designer cells have prom-

inent expression of artificially designed protein assemblies that can alter the overall

behavior of cells. Alternatively, engineered protein antibodies have been utilized as

an efficient means for drug delivery. The advantages of synthetic proteins are as

follows: they can be used as delivery vehicles without being recognized by immune

cells (have self-recognizable epitopes), are stable in the gastrointestinal tract and

are resistant to proteolytic enzymes. Such engineered proteins can also be utilized

in treatment of diseases that target only the defective or infected cells. In a similar

approach for protein engineering, prominent use of cyclotides has been discussed.

Cyclotides are cysteine-rich macrocyclic peptides that form multiple disulfide

bonds, thus providing extra strength to the peptides (Craik et al. 2006). These

cyclotides, which originate from plants, have been used to manipulate the protein

structures in order to make them resistant to unnatural conditions such as high

pressure, temperature, enzymatic digestion, or other stresses (Colgrave and Craik

2004). Additionally, these cysteine-rich cyclotides also provide an interesting

scaffold for peptide-based drug designing, having better stability and pharmacoki-

netic properties (Poth et al. 2013; Ackerman et al. 2014; Henriques et al. 2015).

Thus, these approaches promise to provide a hope for disease treatment strategies

without development of resistance.
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6 Conclusion

A major reason why cancer kills approximately 8.2 million people, AIDS 1.2

million, tuberculosis 1.5 million, and malaria 483,000 people every year, world-

wide, is that emerging drug resistance is making most of the diseases untreatable.

This is despite the fact that potent therapeutics were developed against all of these

and many other disease forms. To stop the spread of drug-resistant disease forms,

there is an urgent need to employ interdisciplinary approaches. Synthetic biologists

who are advocating such synthetic solutions for societal benefits face a lot of early

challenges. Initial apprehension toward synthetic biology is fading way, and soon

the early synthetic therapeutic solutions will reach the clinics to benefit human life.

It will take some time before synthetic solutions against drug-resistant forms will

become a reality for patients. Further, for research purposes, it will be interesting to

find the response of drug-resistant disease agents against these novel solutions.

Combination of traditional knowledge, modern medicine, and synthetic solutions

will help in finding better solutions against cancer, infectious disease, and other

deadly disorders.
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Future of Drug Discovery

Ahmed Kamal, Shalini Nekkanti, Nagula Shankaraiah, and Manda Sathish

Abstract Over the past few decades, tremendous effort has been put into devel-

oping agents to address the multidrug resistance (MDR) mechanisms. Lately,

pharmaceutical industry is under pressure owing to the reduced output of new

drugs, rising research and development costs, current economic recession, and

stricter regulatory guidelines. This chapter highlights the future of drug discovery

particularly with reference to overcoming drug resistance and other related chal-

lenges by improving the efficiency of this process.

1 Introduction

The decade of 1990s has yielded several blockbuster drugs which resulted in the

advancement in healthcare, quality of life, and life expectancy (Munos 2009).

Lately, the pharmaceutical industry is undergoing unprecedented transformation,

mostly due to the reduced output of new drugs, rising research and development

costs, current economic recession, drug pricing pressures, and stricter regulatory

guidelines. This puts burden on all pharmaceutical companies for innovation to

increase their output of new drugs, improve efficiency, and boost R&D productivity

in a cost-effective manner. Another critical problem faced by the pharmaceutical
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industry is the emergence of multidrug resistance (MDR) in tumor cells and

microorganisms. It involves the simultaneous development of resistance to the

drug originally used and also to other related chemicals, resulting in lower intra-

cellular concentrations. New molecules that can inhibit MDR are expected from

diverse sources, and the future will witness the increased screening of molecules

from a vast range of settings for this purpose.

2 The Emerging Horizons of Drug Discovery

Contrast in the trends of investment and productivity has made the major pharma

sectors to reconsider their objectives and their interactions with one another

(Cressey 2011; Maxmen 2011). A changing paradigm for the drug discovery is

emerging which involves a highly efficient strategy compared to the traditional

model (Khanna 2012; Kamal et al. 2014).

2.1 Partnering Initiatives/Collaborations

Traditionally, the academia, small biotech, and large pharma companies worked

independent of each other. However, the continual financial strain in the academic

and biotech sectors as well as low output from large pharma industries has led to

their collaboration to overcome innovation hurdles and promote success in drug

development. In such collaborations, the academia and small biotech companies

generate hits, whereas pharma industries develop these hits into drug candidates

(Mullard 2012). For example, the Manchester Collaborative Centre for Inflamma-

tion Research (MCCIR) was formed by GlaxoSmithKline (GSK), AstraZeneca, and

the University of Manchester with the aim to develop new drugs for inflammatory

diseases. Further, the pharma industry is venturing into open innovation or

“crowdsourcing” model which aims to utilize the joint expertise of a “crowd” of

external scientists. Lilly has initiated some open innovation projects, such as the

web-based solution providers InnoCentive and YourEncore. It is predicted that

variants of these partnering models will be adopted in pharma industry in the near

future.

2.2 New Molecular Entities (NMEs) and Novel Biological
Entities (NBEs)

A ratio of 30:70 for the first-time to follow-on approaches is considered to be the

best in the drug discovery field. Moreover, when compared to blockbuster drugs,
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the addition of smaller market size prospects can decrease risk and develop

sustainability. The life cycle management prospects consisting of drug combina-

tions, stereoisomers, polymorphs, and drug delivery systems are becoming impor-

tant strategies to maximize profit.

The last decade has seen huge R&D investments by large pharma companies in

the field of biologics. The drug approval rates of biologics are also higher compared

to small molecules due to higher target specificity and efficacy in unmet medical

needs. The proprietary protection is ending for the biologics in the market, and they

shall experience severe competition from biosimilars. Unlike the highly competi-

tive generic market for small molecules, the competition is lower for biologics as

they are considered as specialty products and NBEs can claim a price of almost

60–80% of the existing product.

2.3 Generics and Supergenerics

Currently, the market quota for generics is estimated to rise from 10% of the global

pharmaceutical sales due to the projected patent expiry of proprietary R&D prod-

ucts. Numerous generic companies are entering into partnerships with R&D labs to

create “supergenerics” as alternates to marketed generics. They can be fixed dose

combinations, dosage variations, polymorphs, stereoisomers, new formulations,

and delivery systems and offer improved efficacy, reduced side effects, and chal-

lenge to life cycle management approaches of proprietary products. In 2010,

Sandoz has launched enoxaparin, a generic version of Sanofi’s Lovenox, which

surfaced as the first “generic blockbuster” with $531 million sales in the first half of

2011 (Thayer 2011).

2.4 Drug Repositioning

During the past decade, the drug repositioning methods for finding innovative uses

of current or discontinued drugs have garnered popularity as they offer diminished

development time, cost, and safety profile uncertainty. Researchers look for poten-

tial targets for repurposing of existing combinatorial libraries originally intended

for different targets (Reymond et al. 2010). Consequently, there is increased interest

to systematically search targets for potent herbal remedies employed in traditional

Chinese medicine (TCM) using computational approaches (Chen 2011). The

research area of “foodinformatics” involves searching for prospective applications

of food chemicals via computational methods (Medina-Franco et al. 2012). “Nutri-

tional epigenomics” has emerged as a consequence of amplified interest in studying

the role of diet in controlling epigenetic events (Szic et al. 2010). Flavoring

substances in the “generally recognized as safe” (GRAS) list of food materials

are beginning to appear as a source of drug candidates (Burdock et al. 2006).
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2.5 Mechanistic Systems Modeling

The two mechanistic systems modeling methods employed in a number of thera-

peutic areas include phenotype-driven models of disease and genome-scale meta-

bolic models (GEMs). The phenotype-driven models are developed to ascertain

the dependence of clinical outputs on disease mechanisms, to replicate the

effects of current therapies and drug candidates, and to facilitate in silico target

screening. One of the most successful investigations that could be carried out with

phenotype-driven models was that of rheumatoid arthritis (Rullmann et al. 2005).

Alternatively, GEMs represent the most comprehensive database accessible in a

computable configuration for immediate study, especially in cancer (Duarte et al.

2007). System models need to be practical across the research pipeline to help

overcome the productivity challenges faced by the pharmaceutical industry.

2.6 Molecular Networks

Integration of specific network models may significantly enhance the outcome

of the drug development process by identifying numerous novel drug targets

(Csermely et al. 2013). Network robustness has been identified as the main culprit

in the development of drug resistance, where unconventional cellular pathways are

triggered, to counter the effects of drug action (Kitano 2007). Co-targeting of

another critical level of drug-affected networks is an effective means to overcome

resistance (Zimmermann et al. 2007). Comparison of molecular network pathways

of resistant pathogens with those of normal pathogens aids in the identification of

important drug-resistant targets and co-targets (Kim et al. 2010).

2.7 Chemogenomics

The mounting proof for polypharmacology (i.e., therapeutic effects are due to the

interaction of drugs with multiple targets) is enabling the shift toward multitarget

approaches (Jacoby 2011). Ideally, polypharmacology can be completely under-

stood if there was readily accessible data interlinking the whole ligand and target

spaces. Thus, chemogenomics strives to determine a number of probable ligands

for most of the probable targets. Polypharmacological activity of bioactive com-

pounds can be predicted through either the ligand- or the structure-based methods

(Koutsoukas et al. 2011). Moreover, computational advances are being exploited to

study the SAR of chemogenomic data sets (Lounkine et al. 2012) and investigate

prospective targets for probes employed in chemical biology (Gregori-Puigjané

et al. 2012).
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2.8 Phenotypic Screening

In the phenotypic screening approach or “forward pharmacology,” a characteristic

related to the disease is exploited to develop a cell-based assay (Vogt and Lazo

2005). Compounds are then screened in the assay to identify active lead compounds

even without the knowledge of the molecular mechanism and protein target. This

approach can have a practical role in drug discovery for numerous rare diseases in

which a drug target has not been validated and can also be useful in the discovery of

novel drug targets (Swinney and Anthony 2011). The development of robotic

screening techniques and highly sensitive detection systems allows phenotypic

assays to be miniaturized and facilitates rapid screening of large compound

libraries.

2.9 Peptide Therapeutics

At present, there are approximately 500 and 140 peptide drugs in preclinical

development and clinical trials, respectively, with more than 60 US Food and

Drug Administration (FDA)-approved ones on the market (Kaspar and Reichert

2013). Multifunctional peptides represent more than one therapeutic effect

(polypharmacology), which enables the possibility of more personalized treatment

of diverse patient groups. Recently, the GLP-1 (glucagon-like peptide-1) agonist,

Tanzeum™ (albiglutide), was launched in the multifunctional peptide field with

great commercial success. “Cell-penetrating peptides,” such as “penetratin,” enable

peptides previously limited to extracellular targets to reach intracellular targets.

Finally, the conjugation of small molecules, oligoribonucleotides, and antibodies to

peptides facilitates the development of peptide therapeutics with enhanced safety

and efficacy. This principle has been applied for the conjugation of a radioactive

ligand to neurotensin 1 (NT1) receptor peptide agonist for the treatment of pancre-

atic cancer (Okarvi 2008).

3 Novel Approaches to Battle Multidrug Resistance (MDR)

in Cancer

The side effects associated with traditional MDR inhibitors have resulted in the

development of numerous alternatives. Modern advances in antisense oligonucle-

otide technologies have led to a more specific manner to handle MDR through

downregulation of ABC transporter proteins. MDR mechanisms are an essential

part of normal physiology of living cells; hence, scientists prefer circumventing

rather than inhibiting them. It is anticipated that the elucidation of resistance
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mechanisms arising in the “targetable” tumors will aid in the development of

rational therapeutic combinations.

3.1 Targeting Glc-Cer Synthase (GCS)

Ceramide is a secondary messenger in apoptotic signaling pathways, where a

reduction in its synthesis enhances cellular resistance to apoptosis (Liu et al.

2000). It was demonstrated that elevated Glc-Cer synthase (GCS) activity results

in glucosylceramide (GC), which accumulates in multidrug-resistant tumors that

are less receptive to chemotherapy. Stimulation of ceramide glycosylation leads to

drug resistance, whereas its blockade enhances the sensitivity of cancer cells to

cytotoxics (Lucci et al. 1999). In cancer cell models, drug combinations that

stimulate ceramide production and block glycosylation were found to augment

the efficacy of chemotherapy (Lavie et al. 1997). In adriamycin-resistant breast

cancer cells, downregulation of ceramide glycosylation reinstated cell sensitivity to

adriamycin (Liscovitch and Lavie 2002). Thus, GCS leads to drug resistance by

diminishing drug-induced formation of apoptotic ceramide and implies a new drug

target in cancer MDR (Senchenkov et al. 2001).

3.2 Multidrug-Resistant Bone Marrow Stem Cells

Cancer stem cells are innately resistant to cancer drugs owing to their dormancy,

ability to repair DNA, and expression of ABC transporters. The use of anticancer

drugs is highly influenced by a dose-limiting toxicity factor, i.e., avoiding suppres-

sion of bone marrow stem cells. Recently, multiple drug-resistant stem cells from

bone marrow have been developed (that carry vectors with the MDR1 cDNA),

which permitted treatment at otherwise lethal doses (Gottesman et al. 2002).

Studies have shown that stem cells overexpress ATP-binding cassette subfamily

G member 2 (ABCG2), rather than the most clinically targeted ATP-binding

cassette subfamily B member 1 (ABCB1) (Hirschmann-Jax et al. 2004). During

chemotherapy, administration of ABCG2 inhibitors might aid in eliminating tumor

stem cells. Dual ABCG2 and ABCB1 inhibitors, elacridar and tariquidar (1 and 2,

respectively, Fig. 1), are approved for clinical trials, and more ABCG2 inhibitors

are under development (Sparreboom et al. 1999). Antibodies against ABCG2 might

be valuable in killing cancer stem cells by delivering toxins. The antibodies may

also be used diagnostically in detecting tumors, visualizing metastasis, and moni-

toring therapeutic response.
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3.3 Antibody-Drug Conjugates (ADCs)

Antibody-drug conjugates (ADCs) exploit the specificity of monoclonal antibodies

(mAbs) to deliver drugs to antigen-expressing cancer cells in a selective manner.

Recent advances in ADC research led to the faster FDA approval of Adcetris®
(brentuximab vedotin, 3, Fig. 2) that can treat Hodgkin’s lymphoma as well as

anaplastic large-cell lymphomas (Younes et al. 2010; Senter and Sievers 2012).

Fig. 1 Dual ABCG1 and ABCB2 inhibitors

Fig. 2 Representative antibody-drug conjugate (ADC) structures
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In 2013, Kadcyla® (adotrastuzumab emtansine, T-DM1, 4, Fig. 2), which links

trastuzumab and maytansine (a potent antimicrotubule agent), was approved to

treat Her2-positive breast cancer (Verma et al. 2012). Labetuzumab-SN-38, which

combines cathepsin B-cleavable linker and SN-38 (the active metabolite of

irinotecan), has proceeded to phase II trials for colorectal cancer (Segal et al. 2013).

3.4 Inhibition of Glutathione (GSH) Synthesis

The precise mechanism of MRP1 in MDR has not been proved yet, though

glutathione (GSH) is expected to be involved. N-acetylcysteine (NAC) and

DL-buthionine (S, R)-sulfoximine (BSO) are a pro-glutathione drug and an inhib-

itor of GSH synthesis, respectively. They display mutually reverse response in

MRP1-mediated drug resistance, and BSO appears to be a potential chemothera-

peutic agent in cancer cells that overexpress MRP1 (Akan et al. 2004, 2005).

3.5 Reactive Oxygen Species vs. Antioxidants

Many cancer drugs stimulate oxidative stress by production of reactive oxygen

species (ROS) which might contribute to their cytotoxicity via apoptosis. So,

antioxidants would inhibit the generation of ROS and should not be administered

in patients undergoing chemotherapy. Chemopreventive agents that can inhibit

ROS formation as well as induce apoptosis are garnering attention. Interestingly,

novel catechins from grape procyanidins, for example, 4b-(S-cysteinyl)epicatechin

3-O-gallate, have the ability to scavenge free radicals, which can cause S-phase cell

cycle inhibition, and trigger nuclear condensation and fragmentation in melanoma

cells (Lozano et al. 2005).

3.6 Plant Flavonoids

Large amount of data exists on the cytotoxic activity of plant flavonoids involving

inhibition of cell growth and activity of kinase, induction of apoptosis, and inhibi-

tion of the secretion of matrix metalloproteinases, angiogenesis, and tumor invasive

nature (Kanadaswami et al. 2005). Furthermore, their anticancer activities depend

upon the hydroxylation of the flavones B ring, such as luteolin and quercetin.

Further elucidation of the mechanisms underlying their activity and in vivo studies

are essential to develop anticancer therapeutics based on flavonoids. Antioxidants

can exhibit diverse effects on the efficacy of anticancer drugs depending upon

their additional pharmacological properties that even dominate their antioxidant

effects.
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3.7 Alternative Kinase Inhibitors

Knowledge of the drug resistance mutational mechanisms has aided in the discov-

ery and study of alternative kinase inhibitors. For instance, dasatinib was deter-

mined to be effective against imatinib-resistant mutations and linked to a

considerably higher rate of cytogenetic and molecular responses when compared

with imatinib (Bradeen et al. 2006; Kantarjian et al. 2010). An alternative strategy

involves targeting the (onco) protein through the next-generation selective inhibi-

tors such as nilotinib. Nilotinib not only shows activity against many imatinib

resistance mutations but also is associated with a significantly higher rate of

major molecular response (Saglio et al. 2010). Structural insights into gatekeeper

residue (e.g., T315I) mutation have helped in the development of ABL kinase

inhibitors AP24534 and HG-7-85-01, which are currently undergoing clinical

development and do not lead to resistance (O’Hare et al. 2009; Weisberg et al.

2010). The design of potent kinase inhibitors that can bind to the bioactive confor-

mation of the gatekeeper mutation should be considered during the drug discovery

process.

3.8 Epigenetic Modifications

Epigenetic modifications that cause resistance mainly include DNA methylation

and histone modification, which lead to tumor progenitor cell formation. Epigenetic

switches are considered as ideal targets to overcome drug resistance, as they can

simultaneously improve differentiation, suppress growth, and regulate the stage-

specific development of metastatic cancer. They also make resistant cancer cells

susceptible to other drugs; for example, lung cancer patients pretreated with the

epigenetic drugs DAC and HDACi had lower incidences of relapse to conventional

chemotherapy (Juergens et al. 2011; Sarkar et al. 2013a, b; Byler et al. 2014; Byler

and Sarkar 2014). On the whole, these results indicate that epigenetic drugs in

combination with conventional therapies may be valuable in the treatment of drug-

resistant cancer.

3.9 Selective CDK4 and CDK6 Inhibitors

Cyclin-dependent kinases (CDKs) are strictly controlled enzymes that regulate all

cell cycle transitions (Lim and Kaldis 2013). Recently, it has become apparent that

deregulation of CDK4 and CDK6 are the major oncogenic triggers in many cancers

(Scaltriti et al. 2011). Pyrido[2,3-d]pyrimidin-7-ones possessing a 2-aminopyridine

side chain at the C2 position were identified to exhibit higher selectivity for CDK4

and CDK6 compared to other CDKs (VanderWel et al. 2005). Pfizer has developed
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one of such compound, PD-0332991 (palbociclib, 5, Fig. 3) that exhibited strong

G1 arrest in preliminary studies (Fry et al. 2004; Toogood et al. 2005). Eli Lilly and

Novartis have developed the drugs LY-2835219 (abemaciclib, 6) and LEE011 (7),

respectively, which were presumed to bind to the ATP-binding pocket of CDK4 and

CDK6 (Gelbert et al. 2014; Vora et al. 2014).

3.10 Targeting the Mitochondria

Many anticancer drugs affect pathways which occur earlier than mitochondria,

which subsequently merge onto the intrinsic senescence pathway. The disruption

in these upstream pathways leads to drug resistance, which can be overcome by

directly targeting the mitochondria (Fulda et al. 2010). The cancer cells have

elevated levels of lactate due to high metabolic activity and the activation of the

membrane Na+/H+-antiporter (NHE). The activation of NHE results in acidic

extracellular pH, which alters the cellular uptake of many chemotherapeutic

drugs (Raghunand et al. 1999a, b). Hence, proton pump inhibitors (PPIs) have

been shown to sensitize multidrug-resistant cells to cancer drugs (Uwagawa et al.

2010). Owing to the high energy demand of cancer cells, drugs that cause depletion

of ATP may sensitize resistant cells. It was demonstrated that 2-deoxyglucose

(2DG), metformin, and lonidamine (LND) in combination therapy with conven-

tional chemotherapeutic drugs caused depletion of cellular ATP and sensitized

resistant cancer cells (Floridi et al. 1981; Ben Sahra et al. 2010).

4 Antibiotic Resistance Breakers (ARBs)

Resistance to the existing antibiotics is fast escalating; therefore, strategies of

breaking this resistance should be established as soon as possible. One such strategy

is to coadminister suitable nonantibiotic drugs along with the antibiotic, to restore

adequate therapeutic activity, for example, the successful coadministration of

Fig. 3 Selective CDK4 and CDK6 inhibitors
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clavulanic acid (a β-lactamase inhibitor) with β-lactam antibiotics (Prabhudesai

et al. 2011). ARBs can directly inhibit bacteria, reduce the minimum inhibitory

concentration of the antibiotic, and/or modulate host defense by altering inflamma-

tion and autophagy (elimination of unwanted constituents from cells) (Brown

2015). The first priority is the development of ARBs against the four Gram-

negative organisms, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter
baumannii, and Klebsiella pneumoniae, followed by ARBs against Gram-positive

bacteria, in particular the highly lethal methicillin-resistant Staphylococcus aureus
(MRSA) and Clostridium difficile. Consequently, these antibiotics need ARBs:

cephalosporins and carbapenems, polymyxins, fluoroquinolones, tetracyclines and

aminoglycosides, and macrolides. The drugs with the strongest evidence in break-

ing resistance are grouped into three classes: ARBs for Gram-positive bacteria,

ARBs for Gram-negative bacteria, and ARBs for both classes.

4.1 ARBs for Gram-Negative Bacteria

Ciclopirox (8, Fig. 4) is effective against a broad range of MDR Gram-negative and

Gram-positive species (Dittmar et al. 1981). Its activity against Gram-negative

bacteria may be attributed to the inhibition of the surface coat lipopolysaccharide

(LPS) synthesis. Ciclopirox also chelates intracellular iron (inhibition of metal-

dependent enzymes) and downregulates nucleotide-binding proteins and mamma-

lian target of rapamycin (mTOR) signaling (Niewerth et al. 2003; Dihazi et al.

2013; Zhou et al. 2014). Inhibition of LPS has the advantage of making Gram-

negative species susceptible to antibiotics that are usually effective only for Gram-

positive species.

Loperamide (9, Fig. 4), a μ-opioid receptor agonist, has no innate antibacterial

activity but exhibits synergism with a wide range of antibiotics such as tetracy-

clines, cephalosporins, novobiocin, and polymyxin B (Ejim et al. 2011). Upon

intravenous administration, it does not show opiate-like effects, as it cannot cross

the blood-brain barrier due to efflux by P-glycoprotein. Other effects may include

the modification of the small-molecule permeability of Gram-negative bacteria,

causing dysregulation of the influx and efflux mechanisms and thus resulting in the

accumulation of otherwise effluxed antibiotics (Tascini et al. 2013).

Fig. 4 ARBs for Gram-negative (8, 9) and Gram-positive bacteria (10)
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4.2 ARBs for Gram-Positive Bacteria

The alkaloid berberine (10, Fig. 4) is highly effective against streptococcal, staph-

ylococcal, and enterococcal species, including MDR strains of Mycobacterium
tuberculosis and S. aureus. It is also effective against E. coli, Giardia lamblia,
Vibrio cholerae, and Klebsiella spp. This activity may be attributed to the inhibition

of the sortase enzyme in Gram-positive bacteria (Kim et al. 2004) and cell division

protein FtsZ in the Gram-negative E. coli (Domadia et al. 2008). Studies have

suggested that berberine elevates the host defense response by suppression of

pro-inflammatory responses, and bacteria are weak at developing resistance to

berberine (Jeong et al. 2009).

4.3 ARBs for Both Bacterial Classes

Curcumin (11, Fig. 5), a constituent of turmeric, has direct antibiotic activity

against many Gram-negative and Gram-positive species (Moghadamtousi et al.

2014). It also exhibits synergism with antibiotics of broad range against MRSA

(Mun et al. 2013). The potential mechanisms of action include inhibition of sortase,

autophagy by inhibition of the AKT-mTOR pathway, and modulation of host gut

cytokine response (Park et al. 2005; Aoki et al. 2007).

Epigallocatechin-3-gallate (EGCG, 12, Fig. 5) is a polyphenol found in green tea

and exhibits synergism with antibiotics against both Gram-positive and Gram-

negative bacteria (Steinmann et al. 2013). The mechanisms through which EGCG

Fig. 5 ARBs for both Gram-negative and Gram-positive bacteria
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exerts its activity are very diverse owing to the presence of phenolic groups in its

chemical structure capable of interacting with multiple proteins. EGCG inhibits

DNA gyrase and dihydrofolate reductase in the synthesis of bacterial type II fatty

acids (Zhang and Rock 2004). It protects penicillins from bacterial inactivation by

inhibiting penicillinase activity (Zhao et al. 2002).

(+)-Naloxone and (+)-naltrexone (13 and 14, Fig. 5) could be co-administered

with antibiotics for treating intestinal infections caused by E. coli or Shigella spp.

Their ability to inhibit the release of pro-inflammatory cytokines has been exploited

in the treatment of LPS-driven systemic endotoxic shock (Hutchinson et al. 2010).

No effective ARBs were identified for the fluoroquinolones and the

aminoglycosides. Future research toward ARBs for these two useful classes

would be greatly valuable.

5 Future Trends in Anti-HIV Drug Discovery

In spite of the availability of nearly 30 licensed anti-HIV drugs, the rapid emer-

gence of MDR mutations requires the development of new, safe, and effective

antiviral agents. The triumph of combinatorial antiretroviral therapy (cART) in the

treatment of HIV infection has been short-lived due to the quick emergence of HIV

strains that are multidrug resistant, poor bioavailability to host, and cumulative

toxicities. Hence, there is a necessity for alternative strategies for discovery of

antiretroviral drugs and additional therapeutic agents with novel action modes or

targets. In recent years, several innovative strategies have been employed to

discover anti-HIV agents with novel scaffolds and better aqueous solubility and

resistance profiles, including fragment-based screening, privileged fragment-based

reconstruction, dynamic ligation screening (DLS)-based drug discovery, rapid

diversity-oriented synthesis combined with in situ screening, and hierarchical

multiple-filter database searching. These strategies boost lead identification and

optimization with huge potential for yielding new antiviral drugs.

5.1 Substrate Envelope Hypothesis to Reduce Drug
Resistance

In the drug design for targeting rapidly evolving proteins like HIV-1 protease

(HIV-1 PR), the principal concern revolves around drug resistance. The analysis

of the crystal structure of HIV-1 PR in complex with its substrates suggested that

the specificity for substrates depends on matching a defined shape within the

binding pocket termed as the “substrate envelope.” Hence, inhibitors that remain

within the substrate envelope and are less likely to induce resistant mutants need to

be identified (Logsdon et al. 2004; Prabu-Jeyabalan et al. 2006; Altman et al. 2008).
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In recent years, a combination of computational structure-based design with

substrate envelope strategies has been utilized to develop subnanomolar HIV-1 PR

inhibitors (15 and 16, Fig. 6) toward patient-derived MDR viruses (Nalam and

Schiffer 2008). Interestingly, resistance to nucleoside RT inhibitor (NRTI) drugs

zidovudine and lamivudine has been attributed to their protrusion beyond the

substrate envelope, creating an opportunity for HIV-1 reverse transcriptase

(HIV-1 RT) to develop resistance (Shen et al. 2013). In fact, the substrate envelope

hypothesis has already been applied in the discovery of tenofovir which might elude

drug resistance through residing within the substrate envelope, but might still be

vulnerable to resistance involving loss of key interactions (Tuske et al. 2004).

Application of this hypothesis may revolutionize the efforts toward future drug

design (Xue et al. 2014).

5.2 Clinically Validated and Promising Antiretroviral
Targets

New antiretroviral drugs need to target emerging sites on clinically validated

targets, alternative mechanisms, or newly emerging targets in order to circumvent

MDR. There is still tremendous scope for targeting the clinically validated HIV

targets (RT, IN, PR, and CCR5) through diverse mechanisms of action, such as

RNase H inhibitors (Cao et al. 2014), nucleotide-competing RT inhibitors (NcRTIs)

(Maga et al. 2010), allosteric IN inhibitors, and PR dimerization inhibitors (Kang

et al. 2014). Further, other targets have been deemed as potentially druggable

alternatives as they are essential for the key steps of viral replication such as

protein-protein and protein-nucleic acid interactions (Mori et al. 2011), DNA

G-quadruplex formation (Amrane et al. 2014), protein conformational transitions

(Herschhorn et al. 2014), and HIV assembly (Nguyen et al. 2011). These targets

include the dimerization initiation site (DIS) of the HIV-1 genomic RNA (Ennifar

et al. 2013), HIV-1 matrix protein (Zentner et al. 2013), HIV-1 capsid (Dewan et al.

2012), nuclear import of pre-integration complex (Zhan et al. 2010), retroviral

Fig. 6 Discovery of HIV-1 PR inhibitors based on the substrate envelope hypothesis
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nucleocapsid zinc fingers (Vercruysse et al. 2012), and many host antiviral restric-

tion factors (Sloan and Wainberg 2013).

One of the several strategies that are being evaluated to eliminate latent viral

reservoirs is “kick (shock)-and-kill” strategy which employs compounds that stim-

ulate viral replication, allowing them to be eliminated by the current cART

(Marsden and Zack 2013; Mbonye and Karn 2014). Histone deacetylase (HDAC)

inhibitors such as vorinostat/SAHA and entinostat (17 and 18, respectively)

(Fig. 7), can reactivate latent HIV in some patients, providing support for the

feasibility of shock-and-kill strategy (Huber et al. 2011).

6 Perspectives

In spite of advances in drug discovery and the development of a few good MDR

modulators, we are far behind in clinical application of these agents. It is clear that a

combination of multiple targeted therapies will be indispensable to effectively

prevent and/or treat drug-resistant cancers and microbes. Such efforts will require

collaboration between academia and industry to bring together the appropriate

resources and innovation. Finally, the knowledge of drug resistance thus gained

and holds great promise to improve the lives of scores of patients with debilitating

diseases.
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