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Abstract. Image segmentation is a crucial task in the image process-
ing field. This paper presents a new region-based active contour which
handles global information as well as local one, both based on the pix-
els intensities. The trade-off between these information is achieved by a
spatially varying function computed for each contour node location. The
application preliminary results of this method on computed tomography
and X-ray images show outstanding and efficient object extraction.
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1 Introduction

Image segmentation is a fundamental problem in the fields of computer vision,
image processing and pattern recognition. It is the crucial task aiming at sepa-
rating the domain of interest from the background to change the representation
of the image into something that is more meaningful and easier to analyze by the
next higher analysis stages. Hence, its outcomes have indisputably a direct effect
on the analysis issue. For delicate applications such as processing radiographic
images in both fields of industry and medicine, an accurate segmentation is more
than ever required, since a bad interpretation or a false diagnosis lead, sometimes,
to irreparable harm to the human patient and the industrial plant in question
[1]. In the applications which involve X-ray images, the distinction of the region
of interest structure is complicated by inherent noise, artifacts and intensity
inhomogeneity. Image segmentations in such cases is not easy for numerous rea-
sons: Firstly, partitioning the image into non overlapping regions and extracting
regions of interest require a tradeoff between the computational efficiency of the
involved algorithm, its degree of automation and the accuracy of its outcomes.
Secondly, image noise, intensity inhomogeneity linked to the image acquisition,
and poor contrast are very difficult to reckon with in segmentation algorithms
without the user interacting [2]. Due to the causes previously evoked, designing a
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robust and efficient segmentation method is still a difficult problem in practical
applications. To overcome these difficulties, segmentation with deformable mod-
els or active contours seems to be quite suitable to extract complex structures
with complex texture, inhomogeneity and complex shapes. The most important
reason for this is the fact that the active contours can incorporate global and
local view of image segmentation by assessing continuity and curvature combined
with the local edge strength and/or the region information [3]. Furthermore, by
considering the boundary as a whole, a structure is imposed to the solution. As
a result, the overall structure shape to be extracted is recovered by means of
one smooth curve located as close as possible to the real boundary. Moreover,
such boundary description can be readily used by subsequent applications [3].
Since they were proposed, active contours have gained researchers interest and
have been widely applied in the computer vision field with promising results.
The central idea of active contour models is to evolve a curve under some con-
straints from a given image to detect the desired objects. Based on the nature
of constraints and image features, the existing active contour models can be
roughly categorized into two classes: edge-driven and region-driven. Edge-driven
are called so because the information used to drive the curves to the edges is
strictly along the boundaries. Edge-driven models show satisfactory results when
segmenting images with distinct edges. Nevertheless, these models are sensitive
to noise and initial conditions and sometimes are with severe boundary leakage
problems. With the region-driven ones [4], the inner and the outer region defined
by the model are considered, making this model class well-adapted to situations
for which it is difficult to extract boundaries from the target and is less sensitive
to noise and to the initial position of the curve.

The present paper deals with object extraction from images by means of
a region-based active contour that uses global and local statistical pressures
forces controlled by an adaptive weighting function. The remainder of the paper
is organized as follows: In Sect. 2, we introduce the mathematical foundation of
active contours. In Sect. 3, we present our method for object extraction. Section 4
is dedicated to experimental results. We draw the main conclusions in Sect. 5.

2 Background

2.1 Active Contours

The active contour models for image segmentation, known as snakes, are char-
acterized by a curve c(s) = [x(s), y(s)]′, s = [0 1] which evolves towards certain
image features under forces to minimize the energy [5]

E(c) =
∫ 1

0

(Eint(c(s)) + Eext(c(s)))ds (1)

where s is the curvilinear abscissa, Eint the internal energy of the contour which
maintains a certain degree of smoothness and controls the snake nodes spacing
along the contour and Eext the image energy responsible for driving the contour
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toward edges and computed from the image data. The minimization of Eq. (1)
leads to an iterative solution that governs the model evolution as given in [5].

{
xt = (A + γId)−1(γxt−1 + ∇Eext

x (xt−1, yt−1))
yt = (A + γId)−1(γyt−1 + ∇Eext

y (xt−1, yt−1))
(2)

If the model is made of N nodes, then, A is a N ∗ N matrix, Id an identity
matrix sized as A, γ an evolution coefficient, xt and yt are the model nodes
coordinates at the iteration t. ∇Eext

x (xt, yt) and ∇Eext
y (xt, yt) are the external

forces of the input image at the model nodes locations in the x and y direction
respectively.

2.2 External Forces

In addition to the standard external force proposed in [5], a variety of external
forces have been proposed to improve the performance of snakes. The external
forces can be generally classified as dynamic forces and static forces [6]. The
dynamic forces are those that depend on the snake and, as a result, change as
the snake deforms. In turn, the static forces are those that are calculated from
the image only, and remain unchanged as the snake deforms [6]. The pressure
force given in Eq. (3) also called the balloon force [7] which is a useful dynamic
force, is the inflation/deflation force that pushes the curve outward or inward.
By introducing a pressure weight k for individual nodes as in [2,4,8–10], the
model, regarding to the initialization issue, is strengthened since it can inflate
and deflate independently and at the same time. The pressure force may be
released to various forms. Indeed, diverse region information can be used to
modulate the pressure weight and sign, so that the contour part shrinks when
placed outside the object of interest and expands when placed inside.

FB(c(s∗)) = k.n(c(s∗)) (3)

n(c(s∗)) is the normal unit vector to the curve at c(s∗) and k the pressure
weight. An example of this individual pressure weight is proposed in [11], where
k was introduced as

k = p(zs∗/O) − p(zs∗/B) (4)

where zs∗ is the gray value of the pixel falling on the snake node c(s∗),
whereas p(zs∗/O) and p(zs∗/B) are, respectively, the conditional probability
density functions of the object (O) and the background (B). The model does
not make assumptions on the probability density function (pdf ) of the object
features. The problem is reduced, then, to an accurate estimation of the pdf
of both object and background pixels gray-values, particularly in the case of
non-simple gray-levels distributions [11].
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3 The Proposed Model

Region-driven active contours can get more robust and global segmentation
results when using global information, but mostly the object is distinguished
by local variations. Thus, a compromise between global and local features is
needed [12]. Furthermore, in image segmentation, both of object boundaries and
fine structures can be detected accurately by incorporating the local neighbor
region information. Meanwhile, to lessen the impact of noise and the possibility
of getting stuck in local minima, the global region information plays an impor-
tant role and particularly decreases the sensitivity to the contour initialization
[10]. In this work, the averaged shifted histogram (ASH ) method is used to
model the gray levels pdf inside and outside the model curve and is exploited
as global region information. Moreover, the local information is also taken into
consideration to refine detection accuracy, however in a novel way. In fact, we
combine, here, the advantages of global and local information where the contour
evolution is held by these two kinds of information. On one hand, the global
intensity allows the model expansion while incorporating global image informa-
tion which improves the model robustness against noise and initial position. On
the other hand, the local intensity information which is dominant near bound-
aries because of its sensitivity to the region transition, is integrated to operate
near the object boundaries and then attract the model to them.

3.1 Progressing the Model Curve

To exploit the Bayesian weight of Eq. (4), one should have a good estimation of
the pdf of the image data model. The simplest way to estimate the pdf of the
pixels gray levels, is to compute the intensity histogram of the image, which is the
tonal distribution in a digital image. Indeed, it shows the appearance frequency
of gray levels and when normalized, it can roughly assess the density function
of the gray-values. In fact, the histogram is a classical nonparametric density
estimator probably dating back to the seventeenth century [13]. Nowadays, his-
togram remains an important statistical tool for summarizing data. Computing
an image histogram is a trivial operation, but results for noisy images could be
unusable for density estimation without some processing. Smooth versions of
histogram have been proposed in the literature. Among them, we can cite the
averaged shifted histogram ASH, which has been employed in the scope of pdf
estimation to drive the active contour to the boundaries in [14]. Indeed, ASH
has desirable properties and numerous advantages as we will see later.

Averaged Shifted Histogram ASH. The averaged shifted histogram [15] is
a nonparametric probability density estimator derived from a collection of his-
tograms. The ASH enjoys several advantages compared to a single histogram and
a more complex non-parametric histogram-based pdf estimators like kernels esti-
mators. As advantages, we can cite better visual interpretation, better approx-
imation, and nearly the same computational efficiency in regards to the former
[15,16] and computation speed and the same efficiency compared to the latter.
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Indeed, the ASH provides a bridge between the histogram and advanced kernel
methods, which are more computationally intensive. ASH method combines a
set of m histograms generated with a certain shift into the bin borders [16]. It can
be shown that when the number of histograms tends to infinity, the ASH approx-
imates the kernel estimator [15]. In practice, ASH is implemented by generating
an histogram with smaller bin width, and computing the discrete convolution
with a triangular window. If X1, . . . , Xn are samples of random variables with
density f , the pdf estimation, with m histograms, of all samples X being in the
finer interval Bk, using the ASH gives

f̂(X)ASH =
1

n.h

m−1∑
i=1−m

(
1 − |i|

m

)
vk+i ∀x ∈ Bk (5)

where h, n and vk are, respectively, the bin width of the averaged histograms,
the total number of samples and the number of observations falling in the sub-
bin Bk. ASH strongly depends on the band width h. If we suppose that the
underlying density is Gaussian, then, it can be shown that an optimal choice for
h is [13]

hopt = 3.5σ̂.n−1/3 (6)

where σ̂ is a standard deviation estimate.
Therefore, the global force is a pressure one, whose weight is called here

kGlobal and computed using Eq. (4) where the pdf is determined with the ASH
method.

Deviation from the Central Pixel Gray-Level. By adding another pressure
force to make the contour model progress, also, regarding to the local properties
of the image, the contour can detect significant changes in the local neighbor-
hood of the overall model nodes, like region transitions. Let call kLocal this new
pressure force weight which is computed as the central pixel gray level devia-
tion from the pixels gray levels within a circular window centered at the current
model node. As shown in Fig. 1, this window and the model curve, split jointly,
the local neighborhood of the model node into local interior and local exterior.

Fig. 1. Local window
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kLocal is the deviation from the central pixel gray level and is computed as

kLocal =

√√√√Nin∑
i=1

τ(c(s∗)), xin
i )(zs∗ − zxin

i
)2 −

√√√√Nout∑
j=1

τ(c(s∗), xout
j )(zs∗ − zxout

j
)2

(7)
where c(s∗) is the center of the circular neighborhood, zxin

i
the gray level of

the ith pixel xin
i in the interior local neighborhood, zxout

j
the gray level of the jth

pixel xout
j in the exterior local neighborhood. N in (Nout) is the pixels number in

the local interior (local exterior). We call τ a weighting function related to the
distance between the central pixel and the other ones in the circular window, so
that the sum of the weights in the interior/exterior local neighborhood equals
to one ‘1’. τ can be chosen as a gaussian kernel function as done in [3], for
example, to handel inhomogeneities. The values of kLocal are normalized so that
they belong to [−1 1]. When a snake node is in a homogeneous local region,
this weight moves towards zero since the intensities are quite similar and then
global information only controls the model progression for this node. However,
when the node is near a region boundary as in Fig. 1 where the local interior
is homogeneous and the local exterior is not, the first term of Eq. (7) tends to
zero whereas the second term does not. This produces a negative weight and the
model will expand at this node location (positive normal vectors point inward
by convention here). The iterative evolution equation of the model is given by

{
xt = (A + γId)−1(γxt−1 + [ωkLocal + (1 − ω)kGlobal]Nx)
yt = (A + γId)−1(γyt−1 + [ωkLocal + (1 − ω)kGlobal]Ny)

(8)

where Nx and Ny are, respectively, the normal unit vector components in the
x and the y direction and ω the spatially adaptive trade-off function between
the local and global force.

The Spatially Varying Function ω. The global and the local pressures forces,
in this work, are encouraged to be complementary rather than competitive. So,
the ω function is designed to remove the two forces competition. When the model
is far away from object boundaries, the global forces should have the decisive
effect on the contour evolution. Furthermore, near the boundaries, the evolution
should be taken over by the local forces. The choice of ω is done by the following
observation: when a local neighborhood of a node is made up of a homogeneous
part or a part with a slightly variable intensity between the local interior and
the local exterior, then, this neighborhood is very likely within the object or
within the background. Moreover, when the intensity vary too much between
the mentioned local neighborhoods, then the latter is probably in a transition
region. This can be supported by Fig. 2. If μin

loc and μout
loc (σin

loc,σ
out
loc ) are the mean

(the standard deviation) of the local interior and the local exterior, respectively,
then, ω is empirically computed for each node as

ω = 1 if |μin
loc − μout

loc | > σin
loc + σout

loc , ω = 0 otherwise (9)
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Fig. 2. Local neighborhoods centered at different nodes of the snake model

4 Experiments

In the proposed active contour model, the pdf estimation is of a major impor-
tance. Usually, kernels-based estimators are employed in the scope of deformable
models evolution using a non-parametric pdf estimation. As the global statisti-
cal pressure forces computed by the mean of pdf estimation, have in charge the
model expansion, we begin our experiments by showing an example of an image
histogram and estimated pdfs using the ASH and the kernels-based (Parzen
window) methods. Figure 3 shows an X-ray image of a crater crack, while are
depicted in Fig. 4 its histogram, its ASH and kernels-based pdfs estimations. We
can note that the various histogram modes, for the ASH -based estimation, are
quite visible, whereas they are over smoothed for the kernels-based one. However,
to make the latter better in terms of histogram fitting, the kernel bandwidth h
[17] should be refined accordingly, instead of computing it just by the rule of
thumb [18]. Consequently, a supplementary running-time will be required.

Fig. 3. X-ray image of a crater crack
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Fig. 4. Histogram, ASH and Kernels-based pdf estimations

Fig. 5. ASH (left) and kernels-based (right) active contours results beginning from the
same initialization

We continue these tests by using global pressure forces alone to drive the
active contour model in a synthetic image, illustrated in Fig. 5, to show the
results of the ASH and kernels-based active contours in terms of object segmen-
tation and progression time. Since the segmentation accuracy, in the presented
method, is achieved by the local forces, these preliminary results ascertain the
opportunity to use ASH -based pdf estimation in order to speed up the contour
progression in comparison to kernels-based pdf estimation. Indeed, the running
time takes 3.5 s for the ASH -based active contour instead of 9 s for the kernels-
based one. This shows that the ASH method could be a good alternative for
histogram-based pdf estimation for active contours instead of more sophisticated
and time-consuming methods.

In the next experiments, we show the active contour progression with only
the local forces. Far from the boundaries, the local forces based model does not
progress, since local forces can operate, as explained before, exclusively at the
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Fig. 6. Left: Initialization near the boundaries (solid line) and the local forces-based
model final contour (in dashed line). Right: Initialization far from the boundaries (solid
line) and the local forces-based model final contour (in dashed line).

Fig. 7. From Left to right: Initialization, final contour without local forces, and final
contour of the proposed model.

model nodes neighborhood. Whereas, when placed near the boundaries, these
forces could push the model curve to them as shown by the Fig. 6. For this
example, the neighborhood is chosen to have a radius of 3.

The following tests are carried out on real X-ray-based images. The image
shown in Fig. 7 represents a region of interest (ROI) of X-ray image of a welded
joint subjected to segmentation. In this case, the task is to extract the weld
defect indications from the ROI. In this example, the opportunity of using local
forces is highlighted. Indeed, when the model is faced to blurred edges, local
forces bring more precision to the weld defect extraction as shown by this figure.
Furthermore, leakage problems could happen when edges are weak or in presence
of inhomogeneities when using only global information, as shown in Fig. 8, which
represents a brain computed tomography (CT) image. In this case, the challenge
is to exact, as accurately as possible, the shape of the lesion from healthy tissues,
for surgery purpose, for example, which is successfully done with our model.
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Fig. 8. Contour initialization in the top. Down:(left) Final contour without local forces
with a leakage problem, (right) Final contour of the proposed model.

Fig. 9. Final contours of the proposed model on two radiographic images.
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Fig. 10. Final contour on a computed tomography brain image.

To finish this section, we give some other results of applying the proposed
active contour on weld X-ray and CT images shown in Figs. 9 and 10. It is to
note that the local window radii for X-ray images and for CT images have been
empirically chosen equal to 5 and 20, respectively.

5 Conclusion

In the present paper, we have proposed a method to extract objects from X-ray
images based on local and global information and a spatially varying trade-off
function that removes the competition between them. Results seem to be very
promising since the model avoids leakage problem, when the boundaries are
weak, and performs better segmentation than a model based on global informa-
tion used alone.
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