
Decreasing Time Consumption of Microscopy
Image Segmentation Through Parallel

Processing on the GPU

Joris Roels1,2(B), Jonas De Vylder1, Yvan Saeys2, Bart Goossens1,
and Wilfried Philips1

1 Department of Telecommunications and Information Processing, Ghent University,
Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium

Joris.Roels@telin.ugent.be
2 Inflammation Research Center, Flanders Institute for Biotechnology,

Technologiepark 927, Zwijnaarde, 9052 Ghent, Belgium

Abstract. The computational performance of graphical processing
units (GPUs) has improved significantly. Achieving speedup factors of
more than 50x compared to single-threaded CPU execution are not
uncommon due to parallel processing. This makes their use for high
throughput microscopy image analysis very appealing. Unfortunately,
GPU programming is not straightforward and requires a lot of program-
ming skills and effort. Additionally, the attainable speedup factor is hard
to predict, since it depends on the type of algorithm, input data and the
way in which the algorithm is implemented. In this paper, we identify
the characteristic algorithm and data-dependent properties that signif-
icantly relate to the achievable GPU speedup. We find that the overall
GPU speedup depends on three major factors: (1) the coarse-grained
parallelism of the algorithm, (2) the size of the data and (3) the com-
putation/memory transfer ratio. This is illustrated on two types of well-
known segmentation methods that are extensively used in microscopy
image analysis: SLIC superpixels and high-level geometric active con-
tours. In particular, we find that our used geometric active contour seg-
mentation algorithm is very suitable for parallel processing, resulting
in acceleration factors of 50x for 0.1 megapixel images and 100x for 10
megapixel images.

Keywords: Microscopy · Image segmentation · GPGPU computing

1 Introduction

High throughput and resolution microscopy imaging has gained a lot of interest
due to advanced acquisition development. Consequently, image analysis algo-
rithms should be able to keep up with the increasing data stream. In practice,
this seems to be a stumbling block, especially in the case of microscopy image seg-
mentation: higher complexity algorithms typically yield more accurate results,
c© Springer International Publishing AG 2016
J. Blanc-Talon et al. (Eds.): ACIVS 2016, LNCS 10016, pp. 147–159, 2016.
DOI: 10.1007/978-3-319-48680-2 14

148 J. Roels et al.

but because of the increasing amount of data, they become less usable. A sec-
ond issue results from the increasing interest in more complex (ultra)structural
content. This requires more advanced segmentation algorithms that incorporate
prior knowledge such as shape and texture characteristics, typically resulting into
higher computational complexity. In some cases, inaccurate automated segmen-
tation algorithms or challenging data sets force researchers to perform segmen-
tation completely manual. For example, in [8], a team of 224 people annotated
950 thin neuron structures in a 1 million µm3 electron microscopy (EM) dataset
at nanometer resolution, leading to more than 20000 annotator hours.

On the one hand, it is possible to use computationally cheap segmentation
algorithms, typically requiring a substantial amount of manual post-processing.
On the other hand, higher quality algorithms exist that typically require more
computational resources. The latter is a common reason why some segmentation
algorithms are not used in practice, even if they guarantee high-quality results.
A popular approach to mitigate this, is the use of hardware accelerators such
as graphical processing units (GPUs). These devices allow us to exploit massive
parallelism resulting in significant speedup factors of more than 50x and even
real-time performance in microscopy applications [5,17].

However, GPU acceleration is not straightforward: it requires extreme care
and programming expertise and the achievable speedup depends on the granular-
ity and memory requirements of the algorithm, input data dimensions, hardware
characteristics, etc. In this paper, we discuss how microscopy image segmentation
algorithms can be accelerated through GPU processing and how the algorithm
properties and input data influence the achievable speedup. We point out that
the algorithm needs to exhibit coarse-grained parallelism, the processed data
size needs to be sufficiently large to benefit from GPU parallelization and the
computation/transfer ratio needs to sufficiently large so that the computational
cost outweigh the memory transfer cost. In Sect. 2 we will discuss the conceptual
idea of GPU processing compared to traditional CPU processing. Two different
segmentation algorithms are described in Sect. 3: basic superpixel segmentation
and high-level active contours. Next, we identify the key properties of the algo-
rithm and input data in order to attain a higher speedup in Sect. 4. The paper
is concluded in Sect. 5.

2 CPU-GPU Parallel Processing

Traditionally, algorithm implementations are serially executed on the central
processing unit (CPU). Using the GPU it is possible to exploit massive paral-
lelism in algorithms resulting in significant speedups. However, there are several
caveats linked to GPU processing:

– GPU programming in low-level programming approaches like CUDA/OpenCL
requires specific knowledge on the GPU hardware architecture. One has to be
aware of memory allocation, memory transfer between the CPU and GPU,
memory type (local, global, shared, texture), thread synchronization, choosing
GPU block sizes, etc. To alleviate these problems, recently several high-level

Decreasing Time Consumption of Microscopy Image Segmentation 149

libraries have been developed (e.g. Thrust, HSA-Bolt, Vector, etc.) to be used
from, e.g. C/C++. Alternatively, the GPU can be accessed from high-level
languages like Python/Matlab. However, the program then needs to be specif-
ically designed to run on (or take advantage of) a GPU, by using existing
library functions that have been accelerated on the GPU. In many of these
approaches, the programmer is still required to revert to low-level GPU pro-
gramming for functionality that does not exist within these libraries.

– The GPU contains a large number of processing cores (called streaming proces-
sors) that are designed and optimized for parallel numerical computations. To
take advantage of the processing abilities and memory architecture of the
GPU, a relatively large number of cores (typically more than 256) needs to
perform the same operation in parallel.

– The type of algorithm influences the achievable speedup using the GPU as well.
Algorithms with the property that a large number of numerical operations can
be performed independently, with limited dynamic control flow and limited
recursion are more likely to have higher speedup factors. Memory accesses
either need to be optimized for locality (shared/texture memory) or coalescing
(global memory).

– Additionally, the type of data to process influences the achievable speedup
using the GPU. Copying data from CPU to GPU memory and back requires
time and introduces an overhead. For small data dimensions, the GPU will
be scarcely occupied and acceleration due to parallel processing may not be
as high as was hoped for. In these cases, parallel processing using the CPU
might be more efficient (assuming the CPU is multi-core).

Recent programming languages such as Halide [15], Rust [9] and Quasar [6]
(which we have used for our experiments) address the first issue by allowing
the algorithm to be specified on a high level, automatic memory transfer, load
balancing, scheduling, etc. The remaining points are more related to the algorith-
mic and data-depending influence on the attainable speedup. This is addressed
in more detail in the following sections.

3 Microscopy Image Segmentation

One of the most fundamental and challenging image processing problems in
microscopic imaging is segmentation. Typically, one defines this as isolating
objects of interest in a given input image. In the next sections, we will describe
two popular microscopy image segmentation approaches that are distinctive in
terms of computational complexity and coarse-grained parallelism. We note that
it is not within the scope of this manuscript to provide a detailed discussion of
the techniques, for this we refer to the respective references.

3.1 Notations

We will describe a gray scale image as a function f : Ω �→ R, such that f(x)
corresponds with the pixel intensity of the image at spatial position x ∈ Ω. A

150 J. Roels et al.

multichannel image is represented by a vector function f : Ω �→ R
C that consists

of C gray scale images, one for each channel, e.g. f(x) = [fR(x), fG(x), fB(x)]
for an RGB image.

A segmentation result involving K classes is defined by a classification func-
tion u : Ω �→ L (where L = {0, 1, . . . ,K − 1} denotes the set of K class labels)
such that u(x) = i if the pixel located at position x ∈ Ω belongs to segment
class i. In the case of binary segmentation, this means that u(x) will be a binary
function evaluating to 1 if the pixel positioned at x belongs to the foreground
segment and 0 otherwise. For the matter of readability, in the following, we will
discard the spatial information unless this could lead to confusing expressions.

3.2 Superpixel Segmentation

Superpixel segmentation methods are essentially segmentation algorithms
applied in over-segmentation mode. The obtained segments (or superpixels)
should be connected regions of pixels with similar (intensity and/or texture)
characteristics. Typically, they are used as a pre-processing step for complex
image processing algorithms that are impractical on large data sets. As a result,
superpixel techniques should require minimal computation time in order to avoid
overhead. Superpixels have been applied intensively in electron microscopy appli-
cations because of its typical large-scale data sets [11,13,18].

A popular superpixel segmentation technique is the Simple Linear Iterative
Clustering (SLIC) algorithm [1]. SLIC superpixels are generated by applying
the K-nearest neighboring algorithm on a multidimensional space incorporating
intensity and spatial information (where K is the desired number of superpixels).
Originally, it was described for color images. The multidimensional space would
then correspond to the span of the CIELAB color space (because of its perceptual
meaningfulness) and the 2D spatial domain (i.e. a 5-dimensional space). How-
ever, for general multichannel images, any kind of intensity space can be used.
The distance d between two points of the joint (C+2)-dimensional space [f(x),x]
and [f(x′),x′], corresponding to spatial positions x and x′, is then defined as a
linear combination of the Euclidean color distance and spatial distance:

d = ‖f(x) − f(x′)‖2 +
m

S
‖x − x′‖2 , (1)

where ‖ · ‖2 denotes the Euclidean norm, m is a compactness parameter that
allows a trade-off between the intensity and normalized spatial distance and S =⌊√

N/K
⌋

is the approximate superpixel size (where N is the number of pixels
in the image). Note that we have discarded vector dependencies for notational
simplicity. To enforce connectivity, all disjoint clusters are reassigned to their
largest neighboring cluster at then end of the algorithm. The pseudocode of this
technique is shown in Algorithm 1 and Fig. 1 shows the result of SLIC superpixels
computed on an electron micrograph.

As superpixels are typically generated on large-scale data sets and their com-
puting time should be minimized to avoid overhead, GPU acceleration would be
helpful.

Decreasing Time Consumption of Microscopy Image Segmentation 151

Algorithm 1. SLIC superpixels
1: Input: an image f(x), compactness parameter m, preferred superpixel size S, num-

ber of iterations niter
2: Output: a labeled image u(x) where pixels with the same label belong to the same

superpixel
3: Lines starting with ‘#’ indicate comments
4:
5: # Initialize seeds
6: ck = [f(xrk),xrk] (cluster centers and corresponding intensities across a regular

grid rk)
7: pixelDistances(x) = +∞
8: Xk = ∅
9: for i = 0 . . . niter − 1 do

10: # Reassign pixels
11: for all ck do
12: for all x in a 2S × 2S region around ck do
13: dist = d([f(x),x], ck)
14: if dist < pixelDistances(x) then
15: pixelDistances(x) = dist
16: u(x) = k
17: end if
18: end for
19: end for
20: # Recompute cluster centers
21: for all ck do
22: Xk = {x ∈ Ω|u(x) = k}
23: ck = 1

|Xk|
∑

x∈Xk

[f(x),x] (|X| represents the cardinality of a set X)

24: end for
25: end for
26: # Enforce connectivity
27: for all disjoint clusters Yl of connected pixels with the same label l do
28: Xk = largest neighbouring cluster of Yl

29: u(x) = k for all x ∈ Yl

30: end for

3.3 Active Contour Segmentation

Model-based approaches such as active contours isolate objects of interest by
using stronger prior knowledge, i.e. by modeling motion, appearance, shape char-
acteristics, etc. A specific energy function is minimized by moving and deforming
an initial contour. This energy function should be minimal when the contour is
delineating the object of interest. Active contours have been applied extensively
in a broad range of microscopy applications such as phase contrast [10], confo-
cal [14] and EM [12] due to the possibility of designing very application-specific
energy functions.

A popular class of active contours, so-called geometric active contours, that
benefits from a convex optimization problem represents the contour implicitly

152 J. Roels et al.

Fig. 1. SLIC superpixels computed on an electron microscopy image.

using a characteristic function u : Ω �→ [0, 1]. This evaluates to 0 if the pixel
does not belong to the segment, 1 elsewhere. We will focus on the segmentation
method proposed in [4] where the contour is assumed to be smooth and forced
to an intensity-based data-fit:

r(x) = (μ1 − f(x))2 − (μ2 − f(x))2 (2)

where μ1 (respectively, μ2) is the expected intensity inside (respectively, outside)
of the contour. A gradient-based smoothness constraint suggests the following
energy function that should be minimized:

E[u] = |∇u| + β〈u, r〉 + b(u), (3)

where ∇ is the gradient operator, |(w1, w2)| =
√∑

x w1(x)2 + w2(x)2 for images
wi, β a weighting parameter used to tune the influence of the data-fit term in
relation to the total variation regularization and

〈
w,w′〉 =

∑
x w(x)w′(x) for an

image w. The function b is a convex potential function in order to constrain the
minimal solution of Eq. 3 to the interval [0, 1]. In our experiments, we used:

b(x) = min (max (x, 0) , 1) . (4)

The energy function in Eq. 3 can be efficiently minimized by introducing an
additional variable v and computing the following iteration scheme [3]:

u(k+1) = v(k) − 1
λ

∇ · p (5)

v(k+1) = min
(

max
(

u(k+1) − β

λ
r, 0

)
, 1

)
, (6)

where ∇· denotes the divergence operator, p(x) can be efficiently calculated using
the following fixed point algorithm [2]:

p(0) = (0, 0) (7)

p(l+1) =
p(l) + δt ∇(∇ · p(l) − λv(k))
1 + δt

∣∣∇(∇ · p(l) − λv(k))
∣∣ , (8)

Decreasing Time Consumption of Microscopy Image Segmentation 153

Algorithm 2. Geometric active contours
1: Input: a grayscale image f(x), expected foreground and background intensities μ1

and μ2, regularization parameters λ and β
2: Output: a binary image u(x) representing the segmentation
3: Lines starting with ‘#’ indicate comments
4:
5: # Initialization
6: u(x) = 0, v(x) = 0
7: r(x) = (μ1 − f(x))2 − (μ2 − f(x))2

8: repeat
9: # Estimate p

10: p(x) = 0
11: repeat
12: divp(x) = ∇ · p(x)
13: graddivp(x) = ∇(divp(x) − λv(x))

14: p(x) =
p(x) + δt graddivp(x)

1 + δt |graddivp(x)|
15: until convergence criterium for p(x) is satisfied
16: # Update u
17: u(x) = v(x) − 1

λ
divp(x)

18: # Update v
19: v(x) = b

(
u(x) − β

λ
r(x)
)

20: until convergence criterium for u(x) is satisfied
21: # Binarization
22: u(x) = u(x) > 0.5

where δt is the step size. The pseudocode of this technique is shown in
Algorithm 2 and Fig. 2 shows the result of geometric active contours applied
on a fluorescence microscopy image.

Active contours are a more complex segmentation method and, due to
the iterative implementation, significantly more computationally intensive.

Fig. 2. Active contour segmentation result on the blue channel of a fluorescence micro-
graph. (Color figure online)

154 J. Roels et al.

However, because of the high amount of pixel-wise image operations, parallel
computing seems computationally interesting.

4 Accelerating Programs Using the GPU

Accelerating SLIC superpixel segmentation and active contour algorithms using
the GPU has been studied in literature [7,16]. We stress that, in this paper, it is
our goal to identify the general algorithmic and data-dependent properties that
give rise to a higher potential speedup, such that GPU porting can be performed
whenever it is likely to escribe. Firstly, it is worth noticing we can distinguish
between two types of programs that have different acceleration properties as
more computing resources are provided to the system: strongly and weakly scaled
programs.

4.1 Strong and Weak Scaling

Intuitively, more computing resources result in faster computation, for programs
assuming the workload remains constant (the program will not benefit in per-
formance by increasing the workload). This type of programs is typically called
strongly scaled, e.g. matrix operations such as addition, multiplication, etc. More
specifically, the theoretically achievable speedup s by providing n times more
computing resources to a subprogram that is responsible for a fraction q of the
total (original) execution time is then given by Amdahl’s law:

s =
1

1 − q + q
n

. (9)

As n → +∞, the achievable speedup will be maximized to 1
1−q . However, even

in this case, a subprogram that requires a relatively small fraction of computing
time (q → 0) will still result in an insignificant global speedup. Clearly, in order
to guarantee a high potential speedup, it is important to initially detect the
subprograms that are responsible for the largest fraction q of computing time
and focus on these parts of the program for parallelization.

Alternatively, increasing the workload may benefit the performance of an
algorithm. This type of programs is also called weakly scaled, e.g. training-
based algorithms. The fixed workload assumption is invalid and the theoretically
achievable speedup s by providing n times more computing resources to a sub-
program that is responsible for a fraction q of the total (original) execution time
is then given by Gustafson’s law:

s = 1 + (n − 1)q. (10)

In this case, the achievable speedup is linearly related to the amount of comput-
ing resources and subprogram execution time fraction.

In general a program neither exhibits strong nor weak scalability, but rather
a combination of both. The key message in the context of GPU processing is

Decreasing Time Consumption of Microscopy Image Segmentation 155

10 2 10 4 10 6

Input size (pixels)

0

0.2

0.4

0.6

0.8

1
W

or
kl

oa
d

fr
ac

tio
n

Initialize seeds
Reassign pixels
Recompute cluster centers
Enforce connectivity

(a) SLIC superpixels

10 2 10 4 10 6

Input size (pixels)

0

0.2

0.4

0.6

0.8

1

W
or

kl
oa

d
fr

ac
tio

n

Initialization
Estimate p
Update u
Update v
Binarization

(b) Geometric active contours

Fig. 3. Execution time percentage of parts of the (a) SLIC superpixel and (b) active
contour algorithm for variable input sizes (note that this axis is logarithmically scaled).
The indicated subprograms are shown in comment in their corresponding pseudocode
(Algorithms 1 and 2, respectively).

to parallelize the subprograms that are responsible for the largest fraction of
computing time.

Algorithms 1 and 2 show the pseudocode of the discussed SLIC superpixel
and geometric active contour algorithm, respectively. We have separated the
algorithms in subprograms, indicated by the commented lines. Figure 3 shows
the workload fraction of each part of the algorithms for variable input sizes. The
most interesting function to parallelize in the SLIC algorithm is the connectivity
enforcement. In this example, we have chosen for 10 iterations in the algorithm
(which typically suffices). Obviously, a higher number of iterations will result
into relatively more computing time reassigning the pixels and recomputing the
cluster centers. The active contours algorithm spends most of the computing
time in the estimation of p (fortunately, we typically have convergence after 1
iteration). As a consequence, this part of the algorithm is essential to parallelize
in order to guarantee a higher speedup.

4.2 Estimating the Achievable Speedup

Figure 4 illustrates the achieved speedup by GPU acceleration of SLIC superpixel
and active contour segmentation applied on a 0.001, 0.1 and 10 megapixel 8-bit
grayscale image using Quasar. An important notice is that Quasar is designed
for program execution on heterogeneous hardware and will decide at runtime
whether to run a function on the host CPU or another specific device (usually
a GPU) according to its own heuristics. The experiments were performed using
an Intel Core i7 4720 2.60 GHz CPU and GeForce GTX 960M GPU.

Once the most time-requiring functions are detected, it is important to ana-
lyze their characteristics and the type of data that they will have to process. We
provide a (non-exhaustive) list of properties that, according to our experiences,
significantly impact the achievable speedup and illustrate them with examples
of subprograms of the accelerated segmentation algorithms (see Fig. 4):

156 J. Roels et al.

(a) SLIC superpixels

(b) Geometric active contours

Fig. 4. Execution timing distribution (in ms) of the (a) SLIC superpixel and (b) geo-
metric active contours algorithm applied on 0.001, 0.1 and 10 megapixel 8-bit images
using multi threaded CPU and GPU processing. For each part of the program, the
achieved speedup is indicated on top of the bars. Note that the execution time axis is
logarithmically scaled.

– Coarse-grained parallelism of the function: Functions that consist of
many computations that are mutually independent are typically called func-
tions with coarse-grained parallelism. This naturally translates to parallel com-
puting and is therefore an indicator for a high or low potential speedup. For
example, all the functions in the active contour algorithm are pixel-wise image
operations resulting in significant speedups.

– Size of the data to process: This is a consequence of concealing memory
latency while accessing it. Larger amounts of data typically allow more oper-
ations to be performed in parallel, resulting in higher speedups, compared to
small amounts of data. For example, we establish higher speedups in the initial-
ization of the seeds and the cluster center recomputing of the SLIC algorithm.
However, since the amount of superpixels is usually much smaller compared to

Decreasing Time Consumption of Microscopy Image Segmentation 157

the number of pixels, and the pixel reassigning and cluster center recomputa-
tion iterate over the cluster centers, their corresponding speedup is relatively
smaller. The active contours computation requires sufficiently enough input
data in order to efficiently execute a number of iterations and conceal mem-
ory latency. This can be seen by the attained speedups as the input data size
increases.

– Computational complexity: The operational complexity should justify the
cost of transferring data to and from the device, i.e. maximize the compu-
tation/memory transfer ratio. Note that in many cases, data remains on the
GPU memory: in this case global memory reads/writes should be used in order
to compute the computation/transfer ratio. As an example, assume two N ×N
matrices have to be added using the GPU: this requires N2 operations and 3N2

data reads/writes to global memory, resulting in a computation/transfer ratio
of 1

3 . Alternatively, the case of matrix multiplication would require N3 opera-
tions and 3N2 elements to be transferred, resulting in a computation/transfer
ratio of N

3 . In this case, the algorithm would benefit from larger matrix sizes.
Similarly, we denote in the parts of the active contour algorithm where u
and v are being updated, that the update for v is computationally (slightly)
more intense than the update on u. Hence, the corresponding speedups are
increasing faster as the input data size increases.

In practice, the achievable speedup is determined by a combination of the
previous and other functional and data-dependent properties. Even under per-
fect function and data circumstances, the achievable speedup may still rely on
implementation-dependent factors such as memory transfer, data type and align-
ment, thread divergence, etc. Nevertheless, the coarse-grained parallelism, data
size and computation/memory transfer ratio give a good indication whether an
algorithm is suitable to GPU acceleration.

5 Conclusion

Image segmentation remains one of the most challenging problems in microscopy
analysis. Typically, the user is obligated to find an optimal balance between algo-
rithm complexity on the one hand, which is heavily correlated with computa-
tional complexity, and manual post-processing on the other hand. High compu-
tational costs are a common reason for the impracticality of many high-quality
segmentation algorithms and can be mitigated through recent developments in
GPU accelerated computing. However, accelerating algorithms using the GPU
is a costly operation because of the required programming expertise. Addition-
ally, predicting the attainable speedup is difficult in practice because of the large
amount of influencing factors. In this paper, we identify which algorithm and
data characteristics significantly relate to the achievable GPU speedup. In par-
ticular, we have found that (1) the algorithm needs to exhibit coarse-grained
parallelism, (2) the data size needs to be sufficiently large to benefit from GPU
parallelization and (3) the computation/memory transfer ratio needs to suffi-
ciently large so that the computational cost outweigh the memory transfer cost.

158 J. Roels et al.

This is illustrated on two types of well-known segmentation methods that are
extensively used in microscopy image analysis: superpixels and active contours.

References

1. Achanta, R., Shaji, A., Smith, K., Lucchi, A.: SLIC superpixels compared to state-
of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11),
2274–2281 (2012)

2. Aujol, J.F., Chambolle, A.: Dual norms and image decomposition models. Int. J.
Comput. Vision 63(1), 85–104 (2005)

3. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global
minimization of the active contour/snake model. J. Math. Imaging Vision 28(2),
151–167 (2007)

4. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of
image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648
(2006)

5. Crookes, D., Miller, P., Gribben, H., Gillan, C., McCaughey, D.: GPU Implemen-
tation of MAP-MRF for microscopy imagery segmentation. In: Proceedings - 2009
IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI
2009, pp. 526–529 (2009)

6. Goossens, B., De Vylder, J., Philips, W.: Quasar: a new heterogeneous program-
ming framework for image and video processing algorithms on CPU and GPU.
In: Proceedings of the IEEE International Conference on Image Processing, pp.
2183–2185 (2014)

7. He, Z., Kuester, F.: GPU-based active contour segmentation using gradient vector
flow. In: Bebis, G., et al. (eds.) ISVC 2006. LNCS, vol. 4291, pp. 191–201. Springer,
Heidelberg (2006). doi:10.1007/11919476 20

8. Helmstaedter, M., Briggman, K.L., Turaga, S.C., Jain, V., Seung, H.S.,
Denk, W.: Connectomic reconstruction of the inner plexiform layer in the
mouse retina. Nature 500(7461), 168–174 (2013). http://www.ncbi.nlm.nih.gov/
pubmed/23925239

9. Holk, E., Pathirage, M., Chauhan, A., Lumsdaine, A., Matsakis, N.D.: GPU pro-
gramming in rust: implementing high-level abstractions in a systems-level lan-
guage. In: Proceedings - IEEE 27th International Parallel and Distributed Process-
ing Symposium Workshops and PhD Forum, IPDPSW 2013, pp. 315–324 (2013)

10. Huang, Y., Liu, Z.: Segmentation and tracking of lymphocytes based on modi-
fied active contour models in phase contrast microscopy images. Comput. Math.
Methods Med. 2015, 1–9 (2015)

11. Jain, V., Turaga, S.C., Briggman, K.L., Helmstaedter, M.N., Denk, W., Seung,
H.S.: Learning to agglomerate superpixel hierarchies. In: Advances in Neural Infor-
mation Processing Systems, pp. 1–9 (2011)

12. Jorstad, A., Fua, P.: Refining mitochondria segmentation in electron microscopy
imagery with active surfaces. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.)
ECCV 2014. LNCS, vol. 8928, pp. 367–379. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-16220-1 26

13. Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based segmen-
tation of mitochondria in EM image stacks with learned shape features. IEEE
Trans. Med. Imaging 31, 474–486 (2012)

http://dx.doi.org/10.1007/11919476_20
http://www.ncbi.nlm.nih.gov/pubmed/23925239
http://www.ncbi.nlm.nih.gov/pubmed/23925239
http://dx.doi.org/10.1007/978-3-319-16220-1_26
http://dx.doi.org/10.1007/978-3-319-16220-1_26

Decreasing Time Consumption of Microscopy Image Segmentation 159

14. Meziou, L., Histace, A., Precioso, F., Matuszewski, B.J., Murphy, M.F.: Confocal
microscopy segmentation using active contour based on alpha (α)-divergence. In:
Proceedings of the International Conference on Image Processing, pp. 3077–3080
(2011)

15. Ragan-Kelley, J., Adams, A., Paris, S., Durand, F., Barnes, C., Amarasinghe, S.:
Halide: a language and compiler for optimizing parallelism, locality, and recompu-
tation in image processing pipelines. In: Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 519–530
(2013)

16. Ren, C.Y., Reid, I.: gSLIC: a real-time implementation of SLIC superpixel segmen-
tation. University of Oxford, Department of Engineering Science, pp. 1–6 (2011)

17. Stegmaier, J., Amat, F., Lemon, W.C., McDole, K., Wan, Y., Teodoro, G.,
Mikut, R., Keller, P.J.: Real-time three-dimensional cell segmentation in large-
scale microscopy data of developing embryos. Dev. Cell 36(2), 225–240 (2016)

18. Wang, S., Cao, G., Wei, B., Yin, Y., Yang, G., Li, C.: Hierarchical level
features based trainable segmentation for electron microscopy images. Bio-
Med. Eng. OnLine 12, 59 (2013). http://www.biomedical-engineering-online.com/
content/12/1/59

http://www.biomedical-engineering-online.com/content/12/1/59
http://www.biomedical-engineering-online.com/content/12/1/59

	Decreasing Time Consumption of Microscopy Image Segmentation Through Parallel Processing on the GPU
	1 Introduction
	2 CPU-GPU Parallel Processing
	3 Microscopy Image Segmentation
	3.1 Notations
	3.2 Superpixel Segmentation
	3.3 Active Contour Segmentation

	4 Accelerating Programs Using the GPU
	4.1 Strong and Weak Scaling
	4.2 Estimating the Achievable Speedup

	5 Conclusion
	References

