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Abstract. Here we investigate quantitative measures of Forster reso-
nance energy transfer (FRET) efficiency that can be used to quantify
protein-protein interactions using fluorescence microscopy images of liv-
ing cells. We adopt a joint intensity space approach and develop a para-
metric shot noise model to estimate the uncertainty of FRET efficiency
on a per pixel basis. We evaluate our metrics rigorously by simulating
photon emission events corresponding to typical conditions and demon-
strate advantages of our metrics over the conventional ratiometric one.
In particular, our measure is linear, normalised and has greater tolerance
to low SNR characteristic of FRET fluorescence microscopy images.

1 Introduction

The understanding of cellular processes is at the frontier of bio-medical
research [11]. The conventional optical microscope has been the key observa-
tional instrument for microbiology for centuries, however its resolution is dif-
fraction limited to around 200nm, whereas many cellular processes occur at
molecular scales of just a few nm. This limitation has recently motivated several
decades of research on imaging methods able to detect objects smaller than the
optical diffraction limit. One of the most successful approaches is fluorescence
microscopy which makes use of fluorophores (fluorescent proteins) that were
originally discovered in the jellyfish Aequorea victoria by Shimomura et al. [15].
Fluorophores can be excited with a narrow band of photons and emit photons
of similar wavelengths. They can be bound to biologically active molecules and
used to probe the dynamics of many molecular processes in living organisms.
Many fluorescence microscopy methods have emerged to determine fluorophore
motion, see the recent review [8]. A widely used one is known as Forster reso-
nance energy transfer (FRET) [5]. FRET has several advantages compared with
other methods: (a) it can detect fluorophore separation distances of just a few
nm, ideal for studying sub-cellular molecular processes; (b) it can be targeted to
specific protein-protein interactions; (c) it can be applied in-vivo. FRET imaging
is based on a pair of fluorophores that interact by electric dipole-dipole coupling.
The efficiency of this dipole interaction, denoted E(r) where r is the separation

distance, was found by Férster [5] to be E(r) = 1+1T6 where 7 is known as the
8

0]
Forster distance. Because of the rapid decrease in efficiency with r dipoles only
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interact significantly when r ~ r(, which typically corresponds to » < 10 nm. The
fluorophore pair is chosen so that the two fluorophores are excited by, and emit,
photons of slightly different frequencies so that filters can be applied to sepa-
rate the two signals. When energy is transferred during this interaction one fluo-
rophore (donor) loses energy while the other (acceptor) gains energy. This results
in a corresponding decrease in donor, and increase in acceptor emission. Recently
there have been several advances in fluorescence microscopy hardware which has
led to its increasing use by bio-medical researchers. Despite these advances many
researchers assess images qualitatively. Quantitative image processing methods
are potentially of enormous benefit. However, conventional methods often do
not perform well. For instance, a recent evaluation study of methods to detect
isolated fluorophores [16] found that the performance of state-of-the-art object
detection methods was significantly compromised due to the low SNR. This is
because the relatively small number of fluorescent molecules result in a much
smaller number of photons detected for fluorescence images when compared to
typical optical images. Typically, as few as ten fluorescent photons are detected
per pixel. As a consequence, fluorescent microscopy images are characterized by
Poisson, rather than Gaussian, distributed noise (shot noise) and have low SNR.
Furthermore, many biological researchers are interested in dynamical processes
and use time-lapse microscopy which decreases exposure time and leads to very
low SNR, typically in the range 2 to 3.

There are three main imaging methods for measuring E: intensity based
FRET, Fluorescence lifetime and anisotropy imaging, see [9,19]. Fluorescence
lifetime methods rely on fluorescence-decay histograms to accurately fit decay
curves. This requires a relatively greater number of photons and so reduces
spatio-temporal resolution. Anisotropy methods rely on polarization which
reduces the number of photons collected. The advantages and disadvantages
of these imaging methods for the living cell is discussed in [13]. In summary,
intensity based FRET is used in most laboratories [19]. The standard method
of measuring FRET for intensity based images is to calculate the ratio of the
acceptor:donor intensity, see [9]. However, this has the disadvantage of not being
linear in E. Linearity can be achieved by using the donor only FRET signal as
proposed by Birtwistle et al. [2]. Image noise impacts the measurement of E,
however, there is very little existing work in this area. Recently we introduced a
measure of E for FRET imaging in general [7] that is linear and has the advan-
tage of using both donor and acceptor FRET signals. Here we extend this work
and specifically focus on measuring E using intra-molecular FRET biosensors
with a fixed one-one stoichiometry. We establish a quantitative imaging model
and derive the (1 — E)~! dependence of the standard ratio measure based on
Gordon et al. [6]. We investigate the accuracy of a Poisson noise model and use
this to derive a new fractional uncertainty FRET measure. We test the mea-
sures by simulation of photon emission with shot noise and demonstrate that
our measures are unbiased. Finally we apply our measures to real-world clin-
ical atherosclerosis data and demonstrate structure consistent with biological
expectation.
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2 Quantitative FRET Imaging Model

Intramolecular FRET biosensors are designed to target particular proteins
within a molecular pathway to measure the level of activation of that path-
way. The biosensor is typically genetically encoded and is expressed by every
targeted cell. Figurel shows a schematic illustration of the architecture of an
intramolecular FRET biosensor designed to measure EGF signalling. There are
several similar architectures, see [1] for further details. The key component is a
pair of fluorophores which fluoresce at slightly different wavelengths and inter-
act through electric dipole coupling (FRET). These fluorophores are attached to
specific proteins in the pathway and the conformational change causes a change
in the separation distance r that can be detected by FRET. In the example of
Fig. 1, the donor and acceptor are attached to SH3 (sensor) and SH2 (ligand)
protein sub-domains respectively. When a epidermal growth factor (EGF) sig-
nalling molecule binds to its receptor (EGFR) it induces the phosphorylation of
CrKkII on tyrosine 221, which produces a residue that binds to SH2 [14]. As a con-
sequence the protein complex changes from an open to a closed conformational
state. The donor and acceptor fluorophores are continuously excited by photons
at rates v and +y, (not shown) and emit photons at rates 4 and -y,. In the open
state, shown left, r is much greater than the Forster distance rg, a few nm, and
their electric dipoles do not interact. In the closed state, shown right, r =~ rq
and so their dipoles interact and energy is transferred from donor to acceptor.
This results in a decrease in the donor, and a increase in the acceptor photon
emission rates 4 and 7,. So, in summary, the donor and acceptor fluorophores
emit photons at rates vq0, Yoo when r > rq and at rates v41, Vo1 when r < rq.
The photons emitted by the donor and acceptor fluorophores are filtered into
two channels and converted by the microscope into two electrical signals. These
signals are amplified independently and sampled to produce two digital images,
one for the set of donor I; fluorophores and one for the set of acceptor I,. The
pixel intensity, for a fluorophore image, I, is linearly related to the number of
photons detected for that pixel, v such that: I = a~y. Here o denotes the gain
factor which depends on how the photon signal is filtered, amplified and sam-
pled to a pixel intensity. Accordingly, when the fluorophore separation distance
r is such that r > rg, the fluorophores do not interact and since their relative
concentration is fixed the donor and acceptor image intensities I; and I, are
linearly related, as follows:

To = golao (1)

where the zero subscript denotes negligible dipole interaction (no FRET). The
constant of proportionality gg is related to the efficiency of the fluorophores and
the gains ag and a,. When r decreases so that r < rg energy is transferred from
the donor to acceptor fluorophore. Hence I; decreases while I, increases, so the
change in intensities Al;(r) and AI,(r) can be written as:

ALy(r) = Ly — Lot (r) > 0
AL 1) ST 2

v
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Fig. 1. Schematic illustration of imaging method with a intramolecular FRET biosen-
sor. Two fluorophores, donor (CFP) and acceptor (YFP), are attached to the SH2
and SH3 protein domains. When epidermal growth factor (EGF) binds to the receptor
(EGFR) it stimulates Tyrosine (Tyr) phosphorylation (p-Tyr) which binds to the SH2
protein domain. This causes a conformational change in the protein complex which
reduces the donor-acceptor separation distance that is detected by FRET.

Here the subscript one denotes dipole interaction and zero denotes no interaction.
In [6] the changes in intensity associated with the dipole interaction are related
linearly to E(r) and the free donor intensity 4o as follows:

AL(r) = i E(r) Lo [~ AL, ~ % (3)

AId(’I’) = E(T)Ido } N AIa

Here the constant of proportionality denoted by g1, G in [6], depends on the ratio
of the quantum yields, %, of the donor and acceptor fluorophores
and the filter efficiencies [6]. So the fluorophore image intensities I, I, are related
by two linear Egs. (2) and (3). In summary, Gordon et al. [6] provide a imaging
model where changes fluorophore image intensities are linearly related to F, but
the model ignores: (a) image noise; (b) diffraction effects; (c) inhomogeneous

FRET states within a single pixel.
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3 Measuring FRET Efficiency

First we analyse the standard ratio metric % Its dependence on the efficiency

E(r) can be derived from Egs. (1), (2), (3) as follows:

Ioi  Iao+91lpoE

In (11— E)lyp
_got+giE
- (1-E)
_got+q
= o

(1-B)

Equation (4) indicates that it is linear in (1 — E)™". Figure 2 shows a plot of the
relationship. Since the photons emitted by biosensors within a pixel add linearly
we require a measure that preserves this property. We argue that a non-linear
measure cannot achieve this and so is unsuitable as a quantitative measure of
FRET efficiency. Therefore we require to determine a more suitable one.

4g,+3g
28+ &
4g0/3+8,/3
8
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Fig. 2. Non-linear relationship between the intensity ratio % and E.

We can gain insight into the problem by placing the imaging model equations
in the joint donor and acceptor intensity space I x I, as shown in Fig.3. We
can see that the two linear equations are represented by the blue line, I, = go/l4,
and the red line, corresponding to the intensity transition due to FRET. The
position on the blue line I, = gol; depends on the concentration of fluorophores.
The greater the concentration, the more photons are emitted so the larger are
both I; and I,. The length of the red line depends on the amount of energy
transferred or efficiency of FRET. We therefore propose that the length of the
red line is a 'natural’ measure of the amount of FRET. This length is just the
Euclidean norm of intensity change Al; and Al,. Since both Al; and Al, are
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linear in E by Eq. (3) then so is the Euclidean norm dy, which we refer to as
JIN (Joint Intensity Norm), we can write:

] 2 2
df =\ Al;” + Al (5)

1+ g12E(r)Iq0

It is straightforward to determine the normalised measure dgy,. Simply by divid-

ing the maximal value of dy, dy(E = 1) = /14 ¢12Igq0. This is the length of
the g line from the intercept Wlth the y axis, I; = 0, corresponding to £ = 1,

to (Iao, Iq0). This gives dy, = m
1

(Id71 Ia1)

Al df ‘—Ia=gold

a

Al (luo» 1a0)

>,

Fig. 3. Donor and acceptor intensities with and without FRET. When there is no dipole
interaction (no FRET) I, and I are linearly dependent on the intra-pixel biosensor
concentration, shown by the blue line. When dipoles interact FRET occurs and there
is a transition from a point on this blue line (140, I40) in the direction g1 to the point
(Iq1, Ia1), shown by the red line. The length of the red line dy is a linear measure of
the FRET efficiency. (Color figure online)

4 Uncertainty of FRET Efficiency Measure

We aim to determine a quantitative noise model and use it to predict the uncer-
tainty of our measure of FRET efficiency. First we recognize that fluorescence
photons are emitted randomly as probabilistic quantum events. These events
constitute a counting experiment and so conform to Poisson statistics. Because
of the small photon count, photomultipliers are often the preferred detectors.
A photomultiplier is a multi-stage amplifier. The first stage, photocathode, con-
verts photons into electrons by the photoelectric effect. The second and sub-
sequent stages, dynodes, amplify the electrons by secondary emission. Both of
these stages involve quantum mechanical processes which have Poisson statistics.
A photomultiplier can be considered as a cascade of Poisson processes which is
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itself a Poisson process [4]. If solid state devices are used then they are likely to
contribute to signal independent Gaussian distributed noise. Hence, in general,
the observed signal I has two components, a signal dependent Poisson noise com-
ponent Q and signal independent Gaussian noise component W, s.t. I = aQ+W
where « is the gain, see [10]. @ and W can be modelled as random variables.
@ has a single parameter, emission rate, A discrete Poisson probability density
function given by: P(y = z|A) = 67; I’\I, where x € Ny. Note that for a Poisson
random variable y, the mean j equals the variance o2(y) and the uncertainty
of y equals its standard deviation so dy = o(y) = /7, see [17] Chap.11. W

1 _ (p—a)?

has a normal probability density function given by: P(z|u,0?) = vorr i

where p is the mean and o2 the variance. The shot noise component @ can be
reduced by increasing the photon count while the noise component W can be
reduced by using low noise components or by cooling. We investigated the noise
characteristics of our microscope images experimentally. We used time lapse
images and manually defined two rectangular ROIs for each of the donor and
acceptor image sequences. One ROI for background samples, uniform minimal
intensity, the other in the foreground samples, uniform maximal intensity, likely
to correspond to FRET events. We selected a series of frames for which the
signal was uniform so that we had over 10° intensity samples. Then we compen-
sated for amplifier gain and fitted a Poisson distribution to the rescaled signal
using poissfit (matlab, Mathworks, MA, USA). The results are shown in Fig. 4.
These clearly show that the distributions for both ROIs, for both (a) donor and
(b) acceptor, can be accurately modelled as Poisson distributions. This result
suggests that noise (uncertainty) is predominantly shot noise and the signal inde-
pendent Gaussian component is a lot smaller. Hence for our time lapse sequence
we use a pure shot noise model and neglect the signal independent W term. We
make use of this result and use a shot noise model to estimate the uncertainty of
dy in Fig. 3. dy is a distance between two joint intensity samples (149, I,0) and
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Fig. 4. Poisson fit to rescaled pixel intensities of background (blue circles) and fore-
ground (green circles). (a) donor image, (b) acceptor image. The best fits are shown as
solid red curves. The means of the distributions is given in the legends. (Color figure
online)
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(Iq1,I41) in the direction g;. The samples (Ig9, I40) lie on the gg line which can
be determined precisely since we have many samples of this, so we may ignore its
uncertainty and we need only consider the point (141, [1). In the joint intensity
space noise can be represented as an uncertainty ellipse where the axes corre-
spond to the uncertainty of the donor and acceptor intensity which we denote
as 0q and o,. We need a scalar value of uncertainty which we refer to as oy, this
can be obtained by projecting this uncertainty ellipse onto the red line. By geo-

. 1+4g2 . .
metrical argument oy = 757;2. Now we need obtain estimates for o4 and o.
a9
2152

Since photon emission is a Poisson process, its uncertainty o is the square root
of the mean photon count rate. Furthermore, since pixel intensity is the mean
count rate multiplied by the gain «, the fractional uncertainty of intensity equals
that of the photon count, [17] page 54. Hence we may estimate the uncertainty
of intensity o; in terms of the mean intensity and gain as follows: o5 = Val.
We therefore can predict the uncertainty of dy. To determine a fractional uncer-
tainty dy, we divide this uncertainty by the best estimate of d; which gives:

5 Evaluation

We have developed df, a measure of £, and dy, an estimate of the fractional
uncertainty of ds. In this section we evaluate the accuracy of these measures and
compare them with the standard one. Ideally we would have ground truth FRET
images with known separation distances and uncertainties. However, it is very
difficult and costly to produce such data. So instead, our evaluation strategy
is based on simulation of the photon emission events corresponding to realistic
FRET experiments which gives quantitative results, and qualitative evaluation
of results for clinical images. We argue that this is a robust evaluation strategy.

Implementation

There are four important parameters needed to determine dy, dy, and dy,,
namely: gg, g1, @4, Qq. If we assume shot noise then gy, oy and «, can be
estimated from the mean and variance of intensity sample in a ROI. The ¢;
parameter is probably the most difficult one to estimate. Because it is needed to
compare results across different platforms there are a number of existing imaging
methods. For example, Zal and Gascoigne [18] estimate g; using donor recovery
after acceptor photobleaching. Our implementation provides a pixelwise measure
of d; etc. Given an input intensity sample (I, I,) it first determines whether
the sample lies in a valid half space, compared to I, = gglg. Then it finds the
point of intersection (Iqo,lq0) with the line I, = gols and determines d; by
calculating the Euclidean norm. The intercept (0,1,) of the g1 line is used to
determine dy,,. The uncertainty of the sample (41, q1) is estimated using the
gain and intensity value and the projected uncertainty o is calculated from the
equation derived in the previous section which gives dy,.
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Accuracy

We estimated the accuracy of the proposed measures dy, ds, and dy,, as a func-
tion of the FRET efficiency E(r) and SNR and included the standard I“ ratio
measure for comparison. To assess the measures quantitatively we developed a
strategy of modeling the photon count v as a Poisson distributed random vari-
able using the imnoise function of Matlab. We used four independent random
variables to generate: 740, Va0, Va1 and vg1. We used realistic values for these
and ag, o and g; based on the experimental results. We assumed linear signal
amplification and the free donor Eq. (1) to calculate I and I,o. The intensities
Is1 and I,; are functions of the FRET efficiency E. We calculate these using
the FRET efficiency Egs. (2) and (3). We varied E over the range 0 to 0.8in
0.01 steps. For each value of E, we generated 100 instances of the photon count
random variables Y40, Va0, Va1 and 7,1 and used these to generate the intensities
Lio, 1o, a1, 141 and the FRET measures dy, dy, and ratio for each instance.
Figure 5 shows the average values, of 100 instances, of dy, dy, and % The the-
oretical model is also shown to assess bias. Figure5 (a) and (b) indicate that
dy is a linear measure of E(r) while % is not. The accuracy of the model was
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Fig. 5. (a)-(c) %, dfn, dy, FRET efficiency measures as a function of E. (a) The stan-
dard % ratio measure predicted (red) and mean value for random variable (black).
(b) dfn normalised FRET measure theoretical (red) and mean value for random vari-
able (black). (¢) dy, fractional uncertainty estimate theory (red) and median value for
random variable (black), values clipped at 100 %. (d)-(f) %, dfn, dy, measures respec-
tively as a function of SNR with £ = 0.5 with the true values in red. (Color figure
online)
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assessed by taking the theoretical model as ground truth xy.,. and calculating
o(T—Ttrue)
[Ztruel

comparable to 0.25 for I;; and 0.11 for I,q, i.e. the noise level. The difference
between the dy, and the theoretical model in the region £ < 0.2 is thought to be
because of the non-symmetry of the Poisson distribution. Figure5 (c) shows the
median value of d¢,, as a function of E. We used the median, because the mean
was affected by outliers for low E. Values greater than 100 % have been clipped
to facilitate presentation. Figure5 (d)-(f) are plots of (d) ratio, df,, and (b) dyy
measures as a function of SNR for F = 0.5 solid line (red). The correspond-
ing mean fractional error, over the SNR range, for dy, and the ratio were 0.38
and 0.51 respectively, indicating that dy,, is more robust over typical SNR levels
compared to the ratio measure. Figure5 (f) shows the d,, correlates highly with
decreasing SNR, correlation coefficient r = —0.95.

the fractional error: . The fractional error for dy, was 0.29 which is

Application to clinical images

We used a FRET timelapse sequence from a clinical atherosclerosis study which
applied extracellular-signal-regulated kinase (ERK) FRET biosensors to detect
signalling during thrombus formation. These images had very low SNR, between
2.4 and 3.1. Furthermore the joint intensity distribution in high signal regions
was highly dispersed. We decided to address this using the denoising algorithm
of Luisier [12] because of its capability of reducing mixed noise. Although, for this
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data we could have used a Poisson denoiser such as [3]. Any bias in the denoiser
would lead to systematic error in our measures so we tested it thoroughly on a
high signal region and noted: a large reduction in dispersion; small changes in local
mean (< 2%) and in the shape of the PDF; a doubling of SNR and no obvious arti-
facts. Figure 6 (a) and (b) show a donor (CFP) and acceptor (YFP) image frame
during FRET. Note the lower intensity of the central part of the donor image.
Figure 6 (c) shows the ratio image in intensity-modulated display IMD format. For
IMD the ratio is linearly mapped to colour space and I“Qﬂ is mapped to gray scale.
The colorbar indicates the upper and lower limits and values less than the lower
limit are shown as black. Figure 6 (d) shows dy and (e) shows d,, fractional uncer-
tainty. Signalling is thought to occur uniformly throughout the body of platelets
so FRET efficiency should reflect their shape. During thrombosis platelets change
shape and become blob or roughly hemispherical shaped with extruding filapods.
We can see that the structure in (d) better matches this than in (c), indicating
that d is more sensitive to FRET. Furthermore, the regions of lower uncertainty
Fig. 6 (e) correspond to those more likely to be involved in thrombus formation,
demonstrating the plausibility of our d ¢, uncertainty estimate.

6 Conclusion

We have approached the problem of FRET measurement from the perspective of
the joint intensity space and used the fundamental equations of FRET imaging
to derive a linear measure of FRET dy, in contrast to the standard ratio metric
which has a (1 — E)~! dependence. We have demonstrated experimentally that
the intensity distributions for our fluorescence microscopy images are consistent
with a Poisson distributed shot noise model. We have used this to quantitatively
model the intensity uncertainty with Poisson distributed random variables in
the joint intensity space. We have combined this uncertainty measure with the
FRET measure dy to construct a new measure of the fractional uncertainty of
FRET events df,. We have evaluated our measures by simulating the photon
emission during FRET events as Poisson distributed random variables and real-
world data. Our results have demonstrated: the linearity of our JIN d; measure;
that d; is unbiased under typical noise conditions, and that the error in dy
is comparable to the intrinsic photon noise level. When applied to real-world
data our dy measure appears to produce image structure that is more consistent
with biological expectation. Furthermore, the d¢, measure predicts the lowest
uncertainty in regions thought likely to have signalling events during thrombosis.
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