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Abstract. Manifold learning is developed to find the observed data’s
low dimension embeddings in high dimensional data space. As a type
of effective nonlinear dimension reduction method, it has been widely
applied to data mining, pattern recognition and machine learning. How-
ever, most existing manifold learning algorithms work in a “batch”
mode and cannot effectively process data collected sequentially (or data
streams). In order to explore the intrinsic low dimensional manifold struc-
tures in data streams on-line or incrementally, in this paper we propose a
new manifold Learning algorithm based on Incremental Tangent Space
Alignment, LITSA for short. By constructing data points’ local tan-
gent spaces to preserve local coordinates incrementally, we can accu-
rately obtain the low dimensional global coordinates. Experiments on
both synthetic and real datasets show that the proposed algorithm can
achieve a more accurate low-dimensional representation of the data than
state-of-the-art incremental algorithms.

Keywords: Nonlinear dimension reduction · Manifold learning · Incre-
mental tangent space

1 Introduction

Dimension reduction is a prerequisite for many tasks in data mining, pattern
recognition and machine learning. Accordingly, developing effective methods for
dimension reduction has been a hot research topic in recent years.

Specifically, manifold learning, a type of effective nonlinear dimension reduc-
tion method, aims to discover the low dimensional smooth manifold structure of
observed high-dimensional data. In the past decade, a number of manifold learn-
ing algorithms are developed, including Isometric feature mapping (Isomap) [1],
Laplacian eigenmaps algorithm [2], locally linear embedding (LLE) [3], Local
Tangent Space Alignment (LTSA) [4] and so on. All these algorithms operated
in a “batch” mode, i.e., the whole set of data must be collected before running
the algorithm, which makes it ineffective to deal with data collected sequen-
tially (or data streams). In reality, however, many applications need to handle
realtime data streams where data are collected in turn. Therefore, incremental
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manifold learning methods being able to continuously and efficiently update the
manifold constructed on new-coming data and existing data without repeatedly
computing the whole data set are required. Meanwhile, the incremental learning
algorithms can be used to visualize the data manifold’s changing process, which
provides a great help to understand the feature of data structure.

In this paper we propose a new incremental manifold learning algorithm
called LITSA, which finds the local principal components of the sample points
by incremental PCA. LITSA is not subject to the size of sample points’ covari-
ance matrix, thus solving the large-scale matrix eigen decomposition problem
in LTSA. In this method, in order to obtain its coordinates in a low dimension
space, we construct the tangent space of each data sample in high dimension
space incrementally. To avoid reconstructing the eigenspace repeatedly, we con-
struct the local tangent space matrix incrementally in the light of the sample
points’ covariance matrix. Thus, the proposed algorithm can update the manifold
structure directly via computing the eigenvectors of local tangent space matrix
constructed on the basis of existing samples and newly-arrived data samples.
The experimental results on both synthetic and real-world datasets show that
the proposed algorithm can achieve a more accurate low-dimensional represen-
tation of the original data efficiently.

2 Related Work

The idea of existing incremental manifold learning algorithms can be roughly
summed up into two categories.

The first one is based on the hypothesis that existing results are entirely
correct, so the the new samples can be efficiently dealt with. These algorithms
can efficiently deal with the new data. However, existing data often can not
accurately reflect the intrinsic manifold structure. Especially in the case of non-
uniform sampling, these algorithms may not provide low dimensional embedding
of high-dimensional data correctly.

Algorithms in the second class will update the training data set’s embed-
ding coordinates when embedding the other samples. So they can better reflect
the dataset’s characteristics. By contrast, these methods can give more reliable
results.

Existing typical incremental manifold learning algorithms include the incre-
mental Isomap algorithm (IIsomap) [5], the incremental version of Laplacian
eigenmaps (ILE) [6], the incremental LLE algorithm (ILLE) [7], and the incre-
mental LTSA algorithm (ILTSA) [8]. Another incremental manifold learning
algorithm via LTSA by Liu et al. [9] proposed a modified LTSA algorithm and
an incremental eigen-decomposition problem with increasing matrix size.

The core idea of the IIsomap algorithm is to efficiently update the geo-
desic distances and re-estimate the eigenvectors, using the previous computation
results. There exists the problem of disconnected neighborhood graphs when the
data are undersampled or unevenly distributed, new points may change the
current neighborhoods and local distribution of the manifold, the continuity of
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the neighborhood matrix is not guaranteed. The addition of a new sample can
delete critical edges in the graph and subsequently change the geodesic dis-
tances dramatically. In this case, short-circuit or cavitation phenomenon will
happen. The algorithm of ILE is traditionally performed in a batch mode. It
introduces a locally linear reconstruction mechanism to add new adjacent infor-
mation and revise the existing samples’ low-dimensional embedding results. The
sub-manifold method involved needs to solve a (k + 1) × (k + 1) eigenvector
problem and the overall time complexity of solving the eigenvector problem is
O((k + 1)3). ILLE algorithm evaluated the mapping results of the new samples
and re-calculated the projections of original samples. This algorithm assumed
that the eigenvalues of the cost matrix remained the same when a new data
point arrived and the incremental learning problem of LLE was tackled by
solving a d × d minimization problem, where d was the dimensionality of the
low-dimensional embedding space. In ILTSA the previous work of incremen-
tal algorithms mostly adopted iterative methods of whole process which need
abundant repetitive computation, because one does not know what part of a
iterative optimization problem has to be recomputed. The problem in method
[9] is similar to ILTSA that the alignment matrix has to be reconstructed to
include the new point, which is not very practical for large datasets. The other
limitation of existing incremental methods is that there is no guarantee on the
approximation error, so these approaches suffer from unpredicted approxima-
tion error [10]. Similar problems also exist in other incremental methods such as
ILLE algorithm, the error in process of dimension reduction will become larger,
because the eigenvalues of new cost matrix Mnew in this algorithm have not been
updated. As the number of new samples increases, the difference value between
the first d smallest eigenvalues of the original cost matrix M will become larger,
hence a larger error [11].

Given a set of N data points {xi|i = 1, 2, · · · , N}, Local Tangent Space
Alignment (LTSA) assumes that the data points are sampled from a high dimen-
sional manifold, i.e. located in a m-dimensional manifold R

m. It maps xi to the
d-dimensional representation τi and reserves the local geometry information of
xi as much as possible, where d < m. Local geometry information of xi is defined
as the manifold constructed by its k nearest neighbor points to generate tangent
space of xi. All the data points in tangent spaces are then aligned to give their
global coordinates in the low dimension manifold. Though LTSA can effectively
evaluate a dataset’s global mapping coordinates that reflects the data set’s low-
dimensional manifolds structure, it has two shortcomings: On the one hand, the
size of the covariance matrix used for eigen decomposition in LTSA is equal
to the number of samples, so it is inefficient to handle large datasets; On the
other hand, it cannot deal with new sample point effectively for the high time
complexity, so it is difficult for incremental learning.

Min et al. [12] proved that the local tangent space of a sample can be repre-
sented by the eigenvectors of the covariance matrix constructed by the samples
in its neighborhood. The matrix’s eigenvectors can be computed by local princi-
pal component analysis method. Therefore the problem of computing the sample
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points’ projection coordinates in the low dimensional space can be transformed
into solving the local principal component analysis problem.

Recently, a number of semi-supervised feature extraction algorithms [13–16]
have come out, which combine semi-supervised techniques with local discrim-
inant analysis approaches. While they have lost considerations of incremental
learning on dynamic manifold, which has become a hot topic in big data stream
nowadays.

The algorithm proposed in this paper can overcome these shortcomings. It
finds the local principal components of the sample points by incremental PCA
[17,18], which is not subject to the size of sample points’ covariance matrix,
thus solving the large-scale matrix eigen decomposition problem in LTSA. In
addition, by taking the adaptive factor into account, our algorithm is able to
deal with new arrived sample points effectively.

3 Manifold Learning Algorithm Based on Incremental
Tangent Space Alignment

3.1 Update New Covariance Matrix After Inserting New Point

Firstly, we construct new local tangent spaces for existing sample points and
newly arrived one. Given a set of data points X = [x1, · · · , xN ] sampled from
non-linear manifold R

m, they will be mapped from m dimension space to d
dimension space. Suppose Xi = [xi1 , · · · , xik ] as a matrix containing k near-
est neighbours of xi (in Euclidean distance). Traditional PCA searches for vec-
tors c, T and matrix U to project Xi to low dimension manifold R

d. In order
to get the optimal solution, we minimize the reconstruct error: min ||E|| =
min
c,U,T

||X − (ceT + UT )||F , in which c is the mean value of X, indicated as:

Xe/N. Matrix U ∈ R
m×d is a set of orthonormal basis of affine subspace, sin-

gular value decomposition in linear condition can be used to solve this problem.
While in nonlinear conditions, especially in realtime environment, situation is
more complicated. Local linear array must be used in realization to solve incre-
mental non-linear mapping problem.

When a new point arrives, denoted by xnew, we prepare to update the local
information of the new point from eigenvectors of existing points. Suppose the
eigenspace of existing N samples has already been constructed, with k-neighbor
points of each point. The new point’s coordinate Xnew is projected into existing
eigenspace through following form: wi = uT

i (Xnew −XN ), i = 1, 2, · · · , N ,where
ui is the ith eigenvector in eigenspace which consists of N sample points, XN is
mean of the N samples, wi is the ith coefficient of the new point in the eigenspace.

Then we can reconstruct the new point’s coordinate based on these coeffi-
cients: Xnew = wiui+XN . To solve incremental nonlinear mapping problem, the
first step is to estimate mean value and construct the sample points’ covariance
matrix, thereby to determine the sample points’ eigenvectors in eigenspace.

Let MN be the mean value of the existing N samples in m dimension space.
In this paper we propose a novel formulation Mnew in order to describe the
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geometric information of the existing sample points’ covariance matrix after
inserting the new point:

Mnew = αMN + (1 − α)xneweT , (1)

where α is an adaptive factor controlling how exited samples influence the esti-
mation of Mnew’s value, e denotes the identity vector. How to choose α is based
on the incremental environment: if the samples in current environment update
fast, α is set to be small; if slow, α has larger value. We set (1 − α) as the
learning rate which depends on the nature of data sets in realtime practice and
requires a trial − and − error procedure to determine, while it is impractical
for “on-line” applications [19]. This process lies on the measurement of observed
data samples Xnew. From [20] we know the sample mean is an efficient estimate
of mean distribution. The use of samples’ mean value MN also inspires us to
divide the learning rate by 1

N here. So we set (1 − α) = 1
N as sample mean.

Although α = N−1
N added on MN is close to 1 when N is large enough, it is very

important for fast convergence with primary samples. If the estimate does not
converge well at the beginning, it is harder to be pulled back later when N is
large. We can also know that the estimate of Mnew has a fairly low error variance
and high statistical efficiency through experiments in subsequent section.

Traditional PCA (Principle Component Analysis) computes the eigen-
solutions by solving the SVD (Singular Value Decomposition) of the covariance

matrix: C = 1
N

N∑

i=1

(xi − x )T (xi − x). The corresponding expression in matrix

form can be written as: C = (Xi − xi e
T )T (Xi − xi e

T ). Compute C’s eigenvec-
tors corresponding to d first eigenvalues which span a subspace of d dimension.
We only need to save Mnew and existing covariance matrix Cn because existed
samples can be discarded during recursive updating process, thereby the algo-
rithm’s complexity can be greatly decreased. Similarly we can obtain the iterative
estimation of covariance matrix given as below:

Cn = αCn−1 + (1 − α)(Xn − Xn)T (Xn − Xn) (2)

After substituting α with N−1
N and inserting new sample xnew, we get the updat-

ing form Cnew for C as follows, where Xnew is the matrix form of xneweT .

Cnew =
N − 1

N
C +

1
N

(Xnew − Mnew)T (Xnew − Mnew) (3)

According to PCA, the optimal solution of C = (Xi − xi e
T )T (Xi − xi e

T )
is given by SVD of (Xi − xi e

T ). Let λi(i = 1, · · · , d) be the d first eigenvalues

of C, vi as the corresponding eigenvectors, so: C ≈ UNdΛddU
T
Nd =

d∑

i=1

λiviv
T
i ,

where the column vectors UNd are the eigenvectors vi of C, and diagonal matrix
Λdd is comprised of C ′s eigenvalues λi.

Now we can get the incremental Cnew in matrix form and its expression
model:
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Cnew =
N − 1

N
UΛUT +

1
N

(Xnew − Mnew)T (Xnew − Mnew) (4)

To facilitate the calculation, the above formula can be written as:

Cnew =
N − 1

N

d∑

i=1

λiviv
T
i +

1
N

(Xnew − Mnew)T (Xnew − Mnew) (5)

where:

Xnew −Mnew = xneweT − N − 1
N

xi e
T − 1

N
xneweT =

N − 1
N

(xnew − xi)eT (6)

3.2 Construct the Local Tangent Space in Incremental Form

For the updating of all the points’ embedding coordinates in low dimensional
space by an incremental way, we proceed in the following steps.

Firstly, we perform eigen-decomposition for Cnew and obtain its first d eigen-
values λi and eigenvectors vi, i = 1, 2, ..., d. Then we construct d + 1 vec-
tors based on vi and λi: A = [y1, y2, · · · , yd+1] of k × (d + 1) size, where:

yi = vi

√
N−1
N λi, i = 1, · · · , d, yd+1 =

√
1
N (Xnew − Mnew)T . It can satisfy the

condition of Cnew = AAT , which indicates the local tangent space matrix of
neighbour points of the new sample including itself.

Secondly, an inner-product matrix B of k ×k size can be formulated as: B =
AAT , much smaller than Cnew. The advantage of this approach is that we can
construct local tangent space matrix incrementally instead of recomputing the
new covariance matrix Cnew. The matrix B is the orthogonal projector onto the
subspace spanned by the columns of A. So the local coordinates of new point xnew

in the incremental subspace can be obtained by computing the d first singular
vectors of A [21], equivalently the d eigenvectors u1, · · · , ud corresponding to the
d smallest eigenvalues of B. Set the eigenvectors and eigenvalues of B as: {vi

n}
and {λi

n}, we have: Bvin = λi
nvi

n, i = 1, 2, ..., k. Then, ATAvi
n = λi

nvi
n, multiplied

by A on both sides: AATAvi
n = λi

nAvi
n. Let ui

n = Avi
n, then: AATui

n = λi
nui

n,
i.e.: Cnewui

n = λi
nui

n. So we have Cnew’s eigenvectors: ui
n = Avi

n.
With eigenvectors of the covariance matrix in incremental form, new sample

point xnew’s local coordinate can be calculated by formulation Eq. (7):

xnew = wiui + XN =
√

λi
nui

n + XN =
√

λi
nAvi

n + XN (7)

3.3 Compute the Low Dimensional Global Coordinates

Now we consider the incremental updating situation. The local coordinates of
new sample point in Eq. (7) can be represented in following matrix form:

Xnew = WU + XN , (8)
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where the low-rank matrix WU is the d-dimensional optimal approximation
of original coordinates, U is orthonormal and W has k column vectors: U =
[u1, · · · , ud], W = [w1, · · · , wk]. XN is the mean of XN .

Since the structure of global coordinates is linear in low dimensional feature
space, the new sample point’s local coordinate can be approximated by Eq. (8).
Then we can construct global coordinates according to the local coordinates:

Yi =
1
k

Yiee
T + Li(WU + XN ) + Ei, i = 1, ..., N. (9)

Yi denotes the global coordinates in low dimensional space, Li and Ei denote
local affine transformation matrix and reconstruction error respectively after
inserting new data point. So,

Ei = Yi(I − 1
k

eeT ) − Li(WU + XN ) (10)

To minimize the reconstruction error we can describe Eq. (10) as:
min
Yi,Li

Yi(I − 1
keeT ) − Li(WU + XN ), then:

Li = Yi(I − 1
k

eeT )(WU + XN )† (11)

where: (WU + XN )† = ((WU + XN )T (WU + XN ))−1(WU + XN )T is pseudo-
inverse of (WU + XN ). So:

Ei = Yi(I − 1
k

eeT )(I − (WU + X)†(WU + X)) (12)

Suppose Hi = (I − 1
keeT )(I − (WU + X)†(WU + X)), to determine Yi

uniquely YiY
T
i = Id is the constraint condition. Let Y = [Y1, · · · , YN ] and Si be

the 0-1 selection matrix such that Y Si = Yi, we have:

||Ei||2F = ||YiHi||2F = ||Y SH||2F = Tr(HTSTY TY SH) = Tr(HTSTSH) (13)

Then we minimize the reconstruction error: min ||Ei||2F = min Tr
(HTSTSH), Y in Eq. (13) is constituted with d eigenvectors corresponding to
the 2nd to d + 1st smallest eigenvalues of matrix D: D = HTSTSH, where
S = [S1, · · · , SN ] and H = diag(H1, · · · ,HN ).

In order to solve the eigenvalues and eigenvectors of D locally and linearly, we
can construct Ui based on eigenvectors u1, ..., ud of B: Ui = [e/

√
k, u1, · · · , ud],

then, Hi = I − UiU
T
i . After new data points arrive, we update incremental

alignment matrix: D(Ii, Ii) ← D(Ii, Ii)+I −UiU
T
i , then compute the 2nd to the

(d + 1)th smallest eigenvalues and the corresponding eigenvectors [t2, · · · , td+1]
of D, which correspond to the optimal low dimensional global coordinates of
data points.
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4 Implementation of LITSA

Given a dataset with N m-dimensional points X = [x1, · · · , xN ] sampled from
manifold R

m and a new point xn which will be inserted into X. The pro-
posed algorithm projects these points into low dimensional space, provides d-
dimensional (d < m) coordinates y1, ..., yN and the new point’s low dimensional
mapped point yn in an incremental way.

Step 1. Update new covariance matrix.

• Determine k nearest neighbours of each point xi (Euclidean distance) and
compose the matrix Xi, i = 1, ..., N ;

• Construct the covariance matrix Cn in Eq. (2) iteratively, which represents
the incremental tangent space of each data point;

• Construct matrix A and B;
• Compute the eigenvectors u1, ..., ud corresponding to the d smallest eigenval-

ues of B;
• Set Ui = [e/

√
k, u1, · · · , ud].

Step 2. Construct alignment matrix in incremental form.

Set Ii = {i1, · · · , ik} as k nearest neighborhood’s index set of data point xi ,
compute alignment matrix in incremental form:

Initialize D ← 0;
for i = 1 → N do

D(Ii, Ii) ← D(Ii, Ii) + I − UiU
T
i

end for

Step 3. Obtain the low dimensional coordinates.

Make eigen-decomposition of matrix D, compute the 2nd to the (d+1)th smallest
eigenvalues and the corresponding eigenvectors [t2, · · · , td+1] which correspond
to the optimal low dimensional global coordinates y1, ..., yN of each point in
original dataset including the new point’s low dimensional coordinate yn.

5 Experiments

5.1 Experiments on Olivetti-Faces

In this section we will apply LTSA and the proposed algorithm LITSA to process
Olivetti-faces dataset1 which contains 400 face images with 64 × 64 pixels.
Some samples are shown in Fig. 1(a). One image of them is randomly selected
for testing, while the rest ones serve as training samples. Figure 1(b) shows the
dimension reduction results of training samples by LITSA.

1 Available from website: http://www.cs.toronto.edu/∼roweis/data.html.

http://www.cs.toronto.edu/~roweis/data.html
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The horizontal axis represents the face expression changing from unhappy
to happy and the vertical axis denotes the face images from without glasses to
wearing glasses. The testing images shown in Fig. 1(a) are projected to the low-
dimensional space accurately according to their characteristics, because images
with similar expressions and characteristics have clustered together. This experi-
ment intuitively shows the effectiveness of LITSA as manifold learning dimension
reduction algorithm, which accurately detects and preserves the intrinsic struc-
ture of original high dimensional data sets.

Fig. 1. (a) Some test images, (b) The unfolding results of the Olivetti-faces dataset
by LITSA

Dimension reduction is often used as a preprocess step of classification in
many machine learning. So dimension reduction always plays an important
role in such classification tasks. In this section we display classification effect
after dimensional reduction by several incremental algorithms on Olivetti-faces
dataset, where 40 facial images including 5 images of each individual are ran-
domly selected for testing and the rest ones for training. The experiment is
repeated for 10 times. After reducing the dataset to different dimensions, we
classify them using k-Nearest Neighbors classifier (k-NN, the nearest neighbors
number k is set to be 5). From the classification accuracy rates shown in Fig. 2
we can observe that our algorithm LITSA well detects the intrinsic structure
information of the input manifold and achieves better classification precision
than other incremental algorithms. It indicates that our algorithm has played
a positive role to the subsequent classification learning, has vital significance in
many applications such as pattern recognition, image processing and so on.
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Fig. 2. Accuracy results of kNN classification after dimensional reduction on 10 dimen-
sions

5.2 Local Reconstruction Performance on Rendered Face

In this section we consider the experimental results on Rendered face dataset
[1]. This dataset contains 698 facial sculpture images with 64 × 64 pixels. The
facial images have two groups of pose parameters which are up to down and left
to right.

We compare the reconstruction performance between the proposed algo-
rithm LITSA and other incremental algorithms on Rendered face dataset. To
recover these implicit parameters we use matrix P to represent pose parame-
ters. By making affine transformation on the dimensional reduction projection
results T by these algorithms mentioned above, we can get the affine transfor-
mation expression: Y = ceT +LT . Define the following expression: ||P −Y ||2F =
min
c,L

||P −(ceT +LT )||2F . Then the relevant reconstruction error can be measured

by: error = ||P−Y ||2F
||P ||2F

.
Various reconstruction error computed by IIsomap, ILTSA, ILLE, ILE and

LITSA along with neighborhood size k are shown in Table 1, in which LITSA
keep the minimum reconstruction error. Reconstruction error of IIsomap after
reducing dimensions already exceed the comparison range of other algorithms,
which indicates that our method has leading position and superiority among
these algorithms with reconstruction error in small area.

To sum up, the algorithm LITSA has showed obvious superiority both in
intuitive and mathematical sense, through the experiments of this section on
local reconstruction performance and reconstruction error measure.
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Table 1. Reconstruction error computed by IIsomap, ILTSA, ILLE, ILE and LITSA

k IIsomap ILTSA ILLE ILE LITSA

8 0.79 0.0358 0.0088 0.0091 0.0084

9 0.69 0.0352 0.0233 0.0096 0.0087

10 0.58 0.0387 0.0170 0.0096 0.0090

11 0.49 0.0397 0.0230 0.0098 0.0091

12 0.39 0.0381 0.0264 0.0102 0.0093

13 0.26 0.0373 0.0235 0.0105 0.0096

14 0.22 0.0373 0.0191 0.0107 0.0095

15 0.18 0.0385 0.0178 0.0111 0.0096

16 0.19 0.0393 0.0195 0.0116 0.0102

17 0.20 0.0398 0.0210 0.0120 0.0108

6 Conclusion

This paper proposes a new incremental manifold learning algorithm named
LITSA based on incremental tangent space construction. Compared with LTSA
algorithm and other incremental manifold learning methods, the innovation of
this algorithm can be concluded as three aspects: (1) A novel formulation Mnew

is proposed in order to insert the new point’s geometric information into existing
sample points’ covariance matrix. (2) We construct the incremental expression
of Cnew by inserting (Xnew − Mnew). (3) Inspired by the idea of literature [15],
after constructing smaller size inner product matrix B = AAT , we can immedi-
ately obtain the local coordinates of dataset inserted with new sample point by
computing the eigenvectors and eigenvalues of matrix B. Extensive experiments
have been performed in order to evaluate our algorithm’s performance both on
artificial and actual datasets, demonstrating its ability of dimension reduction
effect and recognition accuracy on large scale datasets.
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