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Abstract. The search behavior of firefly algorithm (FA) is determined by the
attractions among fireflies. In the standard FA and its most modifications, worse
fireflies can move toward other better ones, while better fireflies seldom move to
other positions. To enhance the search of better fireflies, this paper presents a
hybrid firefly algorithm (HFA), Which employs a local search operator inspired
by differential evolution (DE). Moreover, the control parameters are dynami-
cally adjusted during the search process. Experiments are conducted on thirteen
continuous optimization problems. Computational results show that HFA
achieves better solutions than the standard FA and three other improved FA
variants.
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1 Introduction

Firefly algorithm (FA) is a recently developed swarm intelligence algorithm [1]. It
mimics the social behavior of fireflies based on the flashing and attraction of fireflies.
In FA, each firefly represents a candidate solution, and its brightness is associated with
the objective function for a given problem. The attraction between among fireflies is
based on the differences of brightness. It means that a less brighter firefly can move to a
brighter one by the attraction. During the search process, fireflies move to new posi-
tions through the attraction, and find new candidate solutions.

Since the introduction of FA, it has attraction much attention. Many researchers
have proposed different FA variants and used FA to solve various real-world opti-
mization problems [2–5]. In [6], Fister et al. proposed a memetic FA (MFA) to solve
combinatorial optimization problems, in which the parameter a is dynamically
decreased. This is helpful to increase the convergence. It has been pointed out that if a
is reduced too fast, the premature convergence may occur. The attractiveness b is
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limited between 0.2 and 1.0. Moreover, the parameter a is multiplied by the length of
the search range for the given problem. Simulation results show that MFA achieves
much better solutions than the standard FA on some classical benchmark functions. On
the basis of MFA, Wang et al. [7] proposed a new FA variant called RaFA, which
employs two strategies: random attraction and Cauchy mutation. The first one aims to
reduce the number of attractions and computational time complexity. The second one
focuses on enhancing the global search ability. Though the random attraction can
accelerate the convergence, it runs a risk of falling into local minima. The Cauchy
mutation conducted on the global best firefly may help trapped fireflies escape from the
local optima. Computational results show that RaFA outperforms the standard FA and
MFA in terms of the solution accuracy and convergence speed. Based on MFA and
random attraction, Wang et al. [8] introduced a neighborhood search strategy, which
consists of one local and two global neighborhood search operators. Experimental
results show that NSRaFA performs better than MFA and RaFA. Like other stochastic
search algorithms, the performance of FA is also sensitive to its control parameters. To
select the best settings of the control parameters, some researchers have proposed
different strategies. In [9], twelve chaotic maps were used to update the light absorption
coefficient c and the attractiveness coefficient b. Results show that the proposed chaotic
FA (CFA) can find better solutions than the standard FA on two benchmark functions.
Yu et al. [10] designed a variable step size FA (VSSF), in which the parameter a is not
fixed, but changed with increasing of iterations. Simulation results show that VSSFA
performs better than the standard FA on sixteen benchmark functions. However, most
of these functions are low-dimensional. In our further experiments, VSSFA is not
suitable for solving high-dimensional functions, such as D � 30, where D is the
dimensional size. In [11], Wang et al. investigated the relations between the control
parameters (a and b) and the convergence characteristics. The literature concluded that
the parameter a should tend to zero when FA is convergent. The b maybe changed to
suit for the search.

In FA, the movement of fireflies is determined by the attractions, which are asso-
ciated with the brightness of fireflies. Darker fireflies can move to brighter ones because
of the attraction. It means that a darker (worse) firefly will have more chances of
moving to other new positions then a brighter (better) one. This may not be suitable for
the search. If both the darker (worse) and brighter (better) fireflies have the same
chance of moving to new positions. The brighter firefly may find more accurate
solutions than the darker one. Under this case, we propose a hybrid FA called HFA,
which employs a local search operator inspired differential evolution (DE). It is hopeful
that the DE based local search can help the brighter fireflies find better candidate
solutions. Moreover, the HFA uses the same parameter control strategies with MFA.
To verify the performance of HFA, there are thirteen benchmark functions used in the
experiments. Computational results show that HFA can find more accurate solutions
than the standard FA, MFA, VSSFA, and CFA on the majority of test functions.

The rest paper is organized as follows. The standard FA is briefly described in
Sect. 2. In Sect. 3, the proposed approach HFA is introduced. Experimental results and
discussions are given in Sect. 4. Finally, the summary and future work are presented in
Sect. 5.
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2 Firefly Algorithm

The idea of FA is inspired by the social behavior of fireflies. On clear summer nights,
there can be seen many fireflies give off flashes of light. There are about 2,000 kinds of
fireflies in the world. Each species of firefly has a special flicker code to attract mates of
the same species. The FA developed by Yang is based on the attraction of fireflies. To
model the FA, Yang proposed three assumptions as follows [12]:

(1) all fireflies are unisex;
(2) the attractiveness of a firefly is proportional to its brightness. For any two

different fireflies, the less brighter one will move towards the brighter one, and their
attractiveness and brightness decrease with increasing of their distance;

(3) the brightness of a firefly is affected or determined by the landscape of the
objective function for a given problem.

In FA, the light intensity I can be approximated as [12]:

IðrÞ ¼ I0e
�cr2 ; ð1Þ

where I0 is the original light intensity, and c is the light absorption coefficient.
As the attractiveness is proportional to the light intensity, the attractiveness b of a

firefly can be defined by [12]:

bðrÞ ¼ b0e
�cr2 ; ð2Þ

where b0 is the attractiveness at r = 0. For two fireflies Xi and Xj, their distance ri,j can
be calculated by [12]:

ri;j ¼ Xi � Xj

�� �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
d¼1

ðxi;d � xj;dÞ2
vuut ; ð3Þ

where D is the problem size.
For two fireflies Xi and Xj, if firefly Xj is brighter than firefly Xi, firefly Xi will be

attracted by the firefly Xj. Due to the attraction, firefly Xi will move towards as firefly Xj

follows [12]:

xi;dðtþ 1Þ ¼ xi;dðtÞþ b0e
�cr2i;j xj;dðtÞ � xi;dðtÞ

� �þ aei;dðtÞ; ð4Þ

where xi,d and xj,d are the dth dimensions of Xi and Xj, respectively, a is a random value
with the range of [0,1], ei,d is a Gaussian random number for the dth dimension, and
t indicates the generation index.
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3 Proposed Approach

As mentioned before, the movement of fireflies is determined by the attractions among
fireflies. In the standard FA, less brighter fireflies will move towards other brighter
ones. For two fireflies Xi and Xj, if firefly Xj is brighter than firefly Xi, Xi will move
towards Xj by the attraction. However, the brighter (better) Xj has not any search
operation (except for random walk). If brighter Xj moves can move to other positions, it
may provide more chances of finding better candidate solutions than moving Xi. Under
this case, we propose a hybrid FA (HFA), which uses the DE scheme to search the
neighborhood of the brighter fireflies in the population.

DE is an effective meta-heuristic for global optimization [13]. In this work, we
embed DE into FA. Assume that Xj is the jth firefly in the population, where j = 1,2…,
N, and N is the population size. First, a mutant firefly Vj is generated based on the
brighter firefly Xj:

vj;dðtÞ ¼ xj1;dðtÞþF � xj2;dðtÞ � xj3;dðtÞ
� �

; ð5Þ

where d = 1,2,…,D, j1, j2, and j3 are mutually different random integers between 1 and
N. The parameter F is called scale factor, which controls the amplification of the
difference vector.

Second, a crossover operator is conducted on Xj and Vj, and a new candidate
solution Uj is generated as follows:

uj;dðtÞ ¼
vj;dðtÞ; if randd �CR _ d ¼ l

xj;dðtÞ; otherwise

(
; ð6Þ

where d = 1,2,…,D, the parameter CR 2 0; 1ð Þ is called crossover rate, randd is a
random value between 0 and 1, and l2{1,2,…,D} is a random index.

Third, a selection operator is employed to select the better one between Xj and Uj as
the new Xj entering the next generation. Without loss of generality, this paper only
considers minimization problems. The selection process can be presented as follows:

Xjðtþ 1Þ ¼ UjðtÞ; if f UjðtÞ
� �� f XjðtÞ

� �
XjðtÞ; otherwise

�
; ð7Þ

In HFA, the parameters a and b use the same strategies as MFA, and they are
updated by [6]:

aðtþ 1Þ ¼ 1
9000

� �1
t

aðtÞ: ð8Þ

b ¼ bmin þ b0 � bminð Þe�cr2i;j : ð9Þ

where bmin is the lower bound of the attractiveness b.
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The main steps of the proposed HFA are presented in Algorithm 1, where N is the
population size, and FEs is the number of fitness evaluations, and Max_FEs is the
maximum number of fitness evaluations.

4 Experiments

4.1 Test Problems

To test the performance of HFA, thirteen benchmark functions are used in the
experiments [14, 15]. All functions are minimization problems, and their dimensions
are set to 30. The detailed descriptions of these functions are described as follows.

f1 xð Þ ¼
XD

i¼1
x2i

where xi 2 [−100, 100], and the global optimum is 0.
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f2 xð Þ ¼
XD

i¼1
xij j þ

YD

i¼1
xi

where xi 2 [−10, 10], and the global optimum is 0.

f3 xð Þ ¼
XD

i¼1

Xi

j¼1
xj

	 
2
where xi 2 [−100, 100], and the global optimum is 0.

f4 xð Þ ¼ max
i

xij j; 1� i�Dð Þ

where xi 2 [−100, 100], and the global optimum is 0.

f5 xð Þ ¼
XD�1

i¼1
100 x2i � xiþ 1
� �2 þ xi � 1ð Þ2

h i
where xi 2 [−30, 30], and the global optimum is 0.

f6 xð Þ ¼
XD

i¼1
xi þ 0:5b cð Þ2

where xi 2 [−100, 100], and the global optimum is 0.
(7) Quartic with noise

f7 xð Þ ¼
XD

i¼1
ix4i þ rand 0; 1½ Þ

where xi 2 [−1.28, 1.28], and the global optimum is 0.

f8 xð Þ ¼
XD

i¼1
� xi sin

ffiffiffiffiffiffi
xij j

p	 

where xi 2 [−500, 500], and the global optimum is −12569.5.

f9 xð Þ ¼
XD

i�1
x2i � 10 cos 2pxið Þþ 10
� �

where xi 2 [−5.12, 5.12], and the global optimum is 0.

f10 xð Þ ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

XD

i¼1
x2i

r !
� exp

1
D

XD

i¼1
cos 2pxið Þ

� �
þ 20þ e

where xi 2 [−32, 32], and the global optimum is 0.

f11ðxÞ ¼ 1
4000

XD

i¼1
x2i �

YD

i¼1
cos

xiffiffi
i

p
� �

þ 1

where xi 2 [−600, 600], and the global optimum is 0.
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f12ðxÞ ¼ 0:1fsin2ð3px1Þþ
XD�1

i¼1
ðxi � 1Þ2½1þ sin2ð3pxiþ 1Þ�

þ ðxD � 1Þ2½1þ sin2ð2pxDÞ�gþ
XD

i¼1
uðxi; 10; 100; 4Þ

where xi 2 [−50, 50], and the global optimum is 0.

f13ðxÞ ¼ p
D
f10 sin2ð3py1Þþ

XD�1

i¼1
ðyi � 1Þ2½1þ sin2ð3pyiþ 1Þ�

þ ðyD � 1Þ2½1þ sin2ð2pxDÞ�gþ
XD

i¼1
uðxi; 5; 100; 4Þ

where xi 2 [−50, 50], and the global optimum is 0.

4.2 Comparisons of HFA with Other FA Variants

In this section, we compare the proposed HFA with the standard FA, VSSFA [10],
MFA [6], and CFA [9] on the test suite. For the sake of fair comparisons, the same
parameter settings are listed as follows. The population size N and Max_FEs are set to
20 and 5.0E + 05, respectively. For MFA and HFA, the initial a, bmin, b0, and c are set
to 0.2, 0.2, 1.0, and 1.0, respectively. For other parameters in HFA, F = 0.5 and
CR = 0.9 are used. In the standard FA, a, b0, and c are set to 0.2, 1.0 and 1/C

2, where C
is the length of the search range for a given problem. For VSSFA and CFA, we use the
same parameter settings as suggested in the their literature [9, 10]. For each test
function, each algorithm is run 30 trials and the mean best fitness values are recorded.

Table 1 presents the mean best fitness values achieved by the standard FA, VSSFA,
MFA, CFA, and HFA. The best results among five FA variants are shown in bold.

Table 1. Comparison results of HFA with FA, VSSFA, MFA, and CFA.

Functions FA VSSFA MFA CFA HFA
Mean Mean Mean Mean Mean

f1 5.14E − 02 5.84E + 04 1.56E − 05 3.27E − 06 1.85E − 08
f2 1.07E + 00 1.13E + 02 1.85E − 03 8.06E − 04 8.96E − 05
f3 1.26E − 01 1.16E + 05 5.89E − 05 1.24E − 05 2.80E − 07
f4 9.98E − 02 8.18E + 01 1.73E − 03 8.98E−04 2.78E − 04
f5 3.41E + 01 2.16E + 08 2.29E + 01 2.06E + 01 1.06E − 03
f6 5.24E + 03 5.48E + 04 0.00E + 00 0.00E + 00 0.00E + 00
f7 7.55E − 02 4.43E + 01 1.30E − 01 9.03E − 02 1.36E − 03
f8 9.16E + 03 1.07E + 04 4.94E + 03 4.36E + 03 3.85E + 03
f9 4.95E + 01 3.12E + 02 6.47E + 01 5.27E + 01 4.67E + 01
f10 1.21E + 01 2.03E + 01 4.23E − 04 4.02E − 04 5.79E − 05
f11 2.13E − 02 5.47E + 02 9.86E − 03 7.91E − 06 8.53E − 08
f12 6.24E + 00 3.99E + 08 5.04E − 08 8.28E − 09 9.47E − 11
f13 5.11E + 01 8.12E + 08 6.06E − 07 1.69E − 07 7.62E − 10
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f1

f2

f3

f4

Fig. 1. The convergences curves of FA, VSSFA, MFA, CFA, and HFA.
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From the results, HFA achieves better solutions than the standard FA and VSSFA on
all test functions. MFA, CFA, and HFA can converge to the global optimum on f6. For
the rest of twelve functions, HFA outperforms MFA and CFA. Figure 1 shows the
convergence curves of the five FA variants on four selected functions. As seen, HFA
converges faster than the other four algorithms.

Table 2 presents the results achieved by the Friedman test. It can be seen that HFA
achieves the best mean rank (the smallest value). CFA obtains the second best rank,
while VSSFA takes the worst rank. Results show that HFA is the best algorithm among
the five FA variants.

5 Conclusions

In the standard FA, the movement of fireflies is determined by the attractions, which are
associated with the brightness of fireflies. Less brighter fireflies can move towards
brighter ones because of the attraction. It means that a less brighter firefly will have
more chances of moving to other new positions then a brighter one. This may not be
suitable for the search. In this paper, we present a hybrid FA (HFA) variant, in which
the DE scheme is utilized to enhance the search of brighter fireflies. In addition, HFA
uses the parameter control method as suggested in MFA. Experiments are conducted on
thirteen benchmark functions. Computational results show that HFA achieves more
accurate solutions than the standard FA, VSSFA, MFA, and CFA.
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Table 2. Results achieved by the friedman test.

Algorithms Mean Rank

HFA 1.08
CFA 2.15
MFA 3.08
FA 3.69
VSSFA 5.00
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