
Advances in Connection-Based Automated
Theorem Proving

Jens Otten and Wolfgang Bibel

Abstract Automatic reasoning tools play an important role when developing
provably correct software. Both main approaches, program verification and program
synthesis employ automated reasoning tools, more specifically, automated theorem
provers. Besides classical logic, non-classical logics are particularly relevant in this
field. This chapter presents calculi to automate theorem proving in classical and
some important non-classical logics, namely first-order intuitionistic and first-order
modal logics. These calculi are based on the connection method, which permits a
goal-oriented and, hence, a more efficient proof search. The connection calculi for
these non-classical logics extend the calculus for classical logic in an elegant and
uniform way by adding so-called prefixes to atomic formulae. The leanCoP theorem
prover is a very compact PROLOG implementation of the connection calculus for
classical logics. We present details of the implementation and describe some basic
techniques to improve its efficiency. leanCoP is adapted to non-classical logics by
integrating a prefix unification algorithm, which depends on the specific logic. This
results in leading theorem provers for the aforementioned non-classical logics.

1 Introduction

Information Technology (IT) has been penetrating literally all areas of our society.
The essential building blocks of IT are algorithms coded in hardware or software.
The tools for hardware design as well as for software production have become
impressively powerful indeed. Their outcomes are engineering constructs of an

J. Otten
University of Oslo, Oslo, Norway
e-mail: jeotten@ifi.uio.no

J. Otten
University of Potsdam, Potsdam, Germany

W. Bibel (B)
Darmstadt University of Technology, Darmstadt, Germany
e-mail: bibel@gmx.net

© Springer International Publishing AG 2017
M.G. Hinchey et al. (eds.), Provably Correct Systems, NASA Monographs
in Systems and Software Engineering, DOI 10.1007/978-3-319-48628-4_9

211

212 J. Otten and W. Bibel

unprecedented complexity. The correctness of these systems to a certain degree is
guaranteed by ingenious and automated test methods.

Whilewe all use systems of this kind on a daily basis, we tend to ignore their actual
degree of complexity, for which reason we want to remind ourselves at this point
that, for instance, actual operating systems or computing platforms today comprise
hundreds of millions of lines of code (loc). The applications running on top of these
platforms add to this order of magnitude in (extensional) complexity even further.
How far can we trust systems this large and complex?

Unfortunately, experience shows in fact that any of these systems is full of (seman-
tic and syntactic) bugs.Occasionally, these bugs have consequenceswhich are embar-
rassing at the very least, occasionally extremely costly and sometimes even the cause
for injury or death to people. Reference [1] lists fivemost embarrassing software bugs
including the well-known Pentium FDIV bug and the disintegration of the $655-
million Mars Climate Orbiter (in 1998). Further disasters caused by bugs were the
crash of Ariane 5 (1996) and of an Airbus A400M Atlas cargo plane on a test flight
with four people killed (2015, see [2]). Apparently, there is no guarantee for prevent-
ing a future disaster due to a bug killing many more people and causing further huge
damages.

There is a secondmajor aspect to this downside of current IT.Despite an enormous
methodological improvement of the processes producing hardware and software,
software projects that are large, complicated, poorly specified, or involve unfamiliar
aspects, are still vulnerable to large, unanticipated problems, often leading to spec-
tacular and costly failures (e.g. [3]). Generally, the software projects failure rate is
much too high still and extensive delays are commonplace, with huge and costly
consequences for the industry.

Has theory a remedy in store for these two deplorable aspects of IT? In principle,
it has. In fact there are two major perspective routes for ending up with more reliable
systems to begin with, known as verification and synthesis. The idea behind verifi-
cation is to let a verifier check the correctness of a system against its specification.
While this is possible in theory, it has remained an illusion to expect larger software
projects to produce as a by-product a complete system specification, needed by the
verifier. Just imagine the challenge to fully specify an operating systemwith hundreds
of millions of loc in order to understand why, in practice and for large systems, this
will remain an illusion. Smaller systems, however, have been fully and successfully
verified already [26, 30, 36, 43].

Program synthesis follows the more direct route towards producing correct soft-
ware. It starts from the project requirements presented in some informal way which
are assumed to be transformed somehow, possibly aided with system support, into
a precise specification in some formal language. The resulting formal code then in
turn is automatically synthesized into an efficiently executable code which is correct
under the proviso that the specification as well as the synthesizer both are correct.
The problemwith this approach in general— and apart from the difficulties involved
in the transformation just described— is the extreme intellectual challenge involved
in automating (and verifying) the synthesis step. To a limited extent though, synthesis
has already been quite successful. Namely, the techniques used in hardware produc-

Advances in Connection-Based Automated Theorem Proving 213

tion are to a significant extent exactly of this nature. Similarly, popular techniques
in software production such as model-driven engineering (or model-driven software
development), the use of domain specific languages or modelling languages (such as
UML), and so forth do already feature automatic synthesis aspects to some limited
extent. Also, logical programming languages such as PROLOG have substantially
narrowed the gap between a formal system specification and its executable code writ-
ten in such a language, laying part of the synthesis burden on the program interpreter
or compiler. However, while all these approaches may be seen as major steps towards
more reliable systems, the route towards the ultimate synthesis vision has remained
a truly challenging one.

To sum up so far, given the utmost importance of IT and at the same time the
severe problems with IT systems, we are still faced with the challenge to find a way
out of this urging dilemma since neither the practical solutions found so far nor the
two theoretically possible routes have brought a satisfactory solution as yet. Hence
the old vision of building Provably Correct Systems (ProCoS) has by far not lost its
attractions and has remained extremely relevant.

A crucial component in both verification and synthesis is a theorem prover for
some logic [12, 20, 24, 58]. This is why Automated Deduction (AD) or Automated
Theorem Proving (ATP) lies at the heart of the ProCoS vision. The field of ATP has
in fact made remarkable progresses in the last decades and the resulting systems
are in use in numerous applications, including verification and synthesis. Yet, the
problem underlying ATP seems so hard that we will have to go still a long way to
reach the next higher level of performance (see Sect. 6 in this chapter as well as [16]).
This is true even for a popular logic such as classical first-order logic (fol), let alone
more involved logics. In the context of programming, logics other than fol are deemed
necessary though. In fact, in the formal specification of an IT system, which typically
is dynamic by nature, fol seems to be rather inconvenient for this purpose since it
allows to represent transitions in time in an indirectway only.Non-classical or higher-
order logics along with corresponding theorem provers are deemed more convenient
for this purpose. Unfortunately, ATP in non-classical logics has not received the same
level of attention as the one in classical fol. In part, the contributions reported in the
present chapter are an attempt to make up for this neglect.

Concretely, we present a number of theorem provers for various logics some of
which are outperforming any of its competitors internationally. They all belong to the
family of provers uniformly designed on the basis of the leanCoP (lean Connection
Prover) technology, originally developed for classical fol and following a separate
and unique line of research in ATP (see Sect. 5). In fact, since theorem provers are
themselves software systemswhich should be correct aswell according to ourProCoS
vision, these provers are based on amathematically precise formalism serving as their
specification. From this formal specification it is only a rather small step to the actual
codewritten in PROLOG. The correctness proof for this step is rather straightforward
in each case [51]. In otherwords, our provers themselves are provably correct systems
as desired.

True, our provers are small systems indeed (comprising a few dozens of loc only),
hence the term “lean”. They are so by intention. Competitive provers with similar

214 J. Otten and W. Bibel

performance in comparison sometimes feature hundreds of thousands loc, serving
exactly the same purpose. In other words, the comparable intensional complexity of
an algorithmcan be represented in a vast variety of different extensional complexities.
The lean extensional complexity version is accessible to formal correctness proofs
while the huge one is not. This is one of the reasons whywe opt for the lean approach.
It is thereby understood that an optimization of the PROLOG code into some low-
level code could of course be followed once the PROLOG code has settled to a
stable one, whereby the optimizer should consist of verified code as well, of course.
These explanations of our approach demonstrate that, apart from presenting tools in
this chapter relevant for the ProCoS vision, these themselves at the same time may
be seen as a model for how to follow this kind of an approach towards a provably
correct software of high intensive complexity, possibly extended to high extensive
complexity thereafter.

The chapter is organized as follows. Section2 introduces basic concepts and the
matrix characterization of logical validity. Section3 presents the clausal and the
non-clausal connection calculus for classical logic and some basic optimization tech-
niques. In Sect. 4 connection calculi for first-order intuitionistic and first-order modal
logics are introduced. Section5 describes compact PROLOG implementations that
are based on the presented connection calculi. In Sect. 6 we give a brief history of
the line of research in ATP to which this chapter contributes. In addition we outline
there some of the steps which are expected to be taken along this line in the future.
Section7 concludes with a summary and a brief outlook on further research.

2 Preliminaries

This section provides a brief overview of classical and non-classical logics, and
presents the matrix characterization of logical validity, which is the basis for the
connection calculi presented in Sects. 3 and 4.

2.1 Classical Logic

The reader is assumed to be familiar with the language of classical first-order logic,
see, e.g., [8, 54, 62]. In this chapter the letters P is used to denote predicate symbols,
f to denote function symbols and x, X to denote variables. Terms are denoted by t
and are built from functions, constants and variables.

An atomic formula, denoted by A, is built from predicate symbols and terms. The
connectives ¬, ∧, ∨, ⇒ denote negation, conjunction, disjunction and implication,
respectively. A (first-order) formula, denoted by F,G,H, consists of atomic formu-
lae, the connectives and the existential and universal quantifiers, denoted by ∀ and
∃, respectively. A literal L has the form A or ¬A. The complement L of a literal L
is A if L is of the form ¬A, and ¬L otherwise. A formula in clausal form has the

Advances in Connection-Based Automated Theorem Proving 215

form ∃x1 . . . ∃xn(C1 ∨ . . . ∨ Cn), where each Ci is a clause. For classical logic, every
formula F can be translated into an equivalent formula F ′ in clausal form.

2.2 Non-Classical Logics

Intuitionistic logic [23] and modal logics [9] are popular non-classical logics. Intu-
itionistic and classical logic share the same syntax, i.e. formulae in both logics use
the same connectives and quantifiers, but their semantics is different. For example,
the formula

man(Socrates) ∨ ¬man(Socrates) (1)

is valid in classical logic, but not in intuitionistic logic. This property holds for all
formulae of the form P ∨ ¬P for any proposition P. In classical logic this formula is
valid as P or ¬P is true whether P is true or not true. The semantics of intuitionistic
logic requires a proof for P or for ¬P. As this property neither holds for P nor for
¬P, the formula is not valid in intuitionistic logic. For this reason intuitionistic logic
is also called constructive logic. Every formula that is valid in intuitionistic logic is
also valid in classical logic, but not vice versa.

Modal logics extend the language of classical logic by the modal operators �
and ♦ representing necessarily and possibly, respectively. For example, the proposi-
tion “if Plato is necessarily a man, then Plato is possibly a man” can be represented
by the modal formula

�man(Plato) ⇒ ♦man(Plato) . (2)

The Kripke semantics of the (standard) modal logics is defined by a set of worlds
and a binary accessibility relation between these worlds. In each single world the
classical semantics applies to the classical connectives, whereas the modal operators
� and ♦ are interpreted with respect to accessible worlds. There is a broad range
of different modal logics and the properties of the accessibility relation specify the
particular modal logic. Thus, the validity of a formula depends on the chosen modal
logic. For example, the modal formula 2 is valid in all (standard) modal logics.

2.3 Matrix Characterisation

The general questioning inATP is to provide an answer to the question as towhether a
given formulaF ′ is a logical consequence of a given set of formulae {F1,F2, . . . ,Fn}.
According to the deduction theorem, this problem can be reduced to the problem of
determining whether the formula F1 ∧ F2 ∧ . . . ∧ Fn ⇒ F ′ is valid.

The matrix characterization of logical validity considers the formula to be in a
certain form, often clausal form. More formally, a matrix of a formula consists of its

216 J. Otten and W. Bibel

clauses {C1, . . . ,Cn}, inwhich each clause is a set of literals {L1, . . . ,Lm}. The notion
of multiplicity is used to encode the number of clause copies used in a connection
proof. It is a function μ :M → IN that assigns each clause in M a natural number
specifying how many copies of this clause are considered in a proof. In the copy
of a clause C all variables in C are replaced by new variables. Mμ is the matrix
that includes these clause copies. Clause copies correspond to applications of the
contraction rule in the sequent calculus [29]. In the graphical representation of a
matrix, its clauses are arranged horizontally, while the literals of each clause are
arranged vertically. The polarity 0 or 1 is used to represent negation in a matrix, i.e.
literals of the form A and ¬A are represented by A0 and A1, respectively,

Then, a connection is a set {A0,A1} of literals with the same predicate symbol
but different polarities. A term substitution σ assigns terms to variables that occur in
the literals of a given formula. A connection {L1,L2} with σ(L1)= σ(L2) is called
σ -complementary. It corresponds to a closed branch in the tableau calculus [31] or
an axiom in the sequent calculus [29].

For example, the formula

(man(Plato) ∧ ∀X(man(X) ⇒ mortal(X))) ⇒ mortal(Plato) (3)

has the equivalent clausal form

∃X(¬man(Plato) ∨ (man(X) ∧ ¬mortal(X)) ∨ mortal(Plato)) (4)

and its matrix is

M ′ = {{man(Plato)1}, {man(X)0,mortal(X)1}, {mortal(Plato)0}} (5)

which has the graphical representation

[[
man(Plato)1

] [
man(X)0

mortal(X)1

] [
mortal(Plato)0

]]
.

A path through a matrix M = {C1, . . .,Cn} is a set of literals that contains one
literal from each clause Ci ∈M, i.e. a set ∪n

i=1{L′
i} with L′

i ∈Ci. Then, the matrix
characterization [15] states that a formula F is (classically) valid iff (if and only if)
there exists (1) a multiplicityμ, (2) a term substitution σ , and (3) a set of connections
S, such that every path through its matrix Mμ (attached with the multiplicity μ)
contains a σ -complementary connection {L1,L2} ∈ S.

For example, in order to make {man(X)0,man(Plato)1} a σ -complementary con-
nection, the variableX needs to be substituted byPlato, i.e. σ(X)=Plato. Then every
path through the matrix 5 (with multiplicityμ(Ci)= 1) contains a σ -complementary
connection and, hence, formula 3 is (classically) valid.

All these notions can be generalized to thenon-clausal formcasewhere the clauses
of matrices are not just sets of literals, but may rather contain general matrices as

Advances in Connection-Based Automated Theorem Proving 217

elements as well (see Sect. 3.3). For the following characterization we assume that
the term matrix characterization refers to this general case.

Any proof method that is based on the matrix characterization and operates in a
connection-oriented way is called a connection method. The specific calculus of a
connection method is called a connection calculus. In other words, the connection
method denotes a general approach comprising many different connection calculi.
This general terminology is similar to resolution. We talk of a resolution method,
or simply of resolution, whenever the proof rule of resolution is involved somehow.
Also in this case resolution denotes a general approach comprising many different
specific resolution calculi (like, for instance, linear resolution).

3 Connection Calculi for Classical Logic

Connection calculi are a well-known basis to automate formal reasoning in classical
first-order logic. Among these are the calculi introduced in [13–15], the connection
tableau calculus [38], and the model elimination calculus [40]. Proof search in the
connection calculus is guided by connections {A0,A1}, hence, it ismore goal-oriented
compared to the proof search in sequent or tableau calculi.

First, this section introduces a formal clausal connection calculus for classical
logic. Afterwards the technique of restricted backtracking is introduced that reduces
the search space in connection calculi significantly. Finally, a generalization of the
connection calculus to non-causal formulae is presented.

3.1 The Basic Calculus

The connection calculus for classical logic to be introducednow is based on thematrix
characterization of logical validity presented in Sect. 2.3. It uses a connection-driven
search strategy in order to calculate an appropriate set of connections S. In each
step of a derivation in the connection calculus a connection is identified and only
paths that do not contain this connection are investigated afterwards. If every path
contains a (σ -complementary) connection, the proof search succeeds and the given
formula is valid. A connection proof can be illustrated within the graphical matrix
representation. For example, the proof of matrix 5 consists of two inferences, which
identify two connections:

[[
man(Plato)1

] [
man(X)0

mortal(X)1

] [
mortal(Plato)0

]]
.

218 J. Otten and W. Bibel

Fig. 1 The clausal connection calculus for classical logic

In contrast to sequent calculi, connection calculi permit a more goal-oriented
proof search. This leads to a significantly smaller search space and, thus, to a more
efficient proof search.

A formal description of the calculus was given by Otten and Bibel [51]. The
axiom and the rules of this formal clausal connection calculus are given in Fig. 1.
The words of the calculus are tuples of the form “C,M,Path”, whereM is a matrix,
C and Path are sets of literals or ε; C is the subgoal clause, Path is the active path,
and σ is a rigid term substitution. A clausal connection proof of a matrix M is a
clausal connection proof of ε,M, ε.

For example,

{},M ′, {mortal(Plato)0,man(X ′)0} A {},M ′, {mortal(Plato)0} A

{man(X ′)0}, {{man(Plato)1}, . . .}, {mortal(Plato)0} E {},M ′, {} A

{mortal(Plato)0}, {{man(Plato)1}, {man(X)0,mortal(X)1}, {mortal(Plato)0}}, {} E

ε, {{man(Plato)1}, {man(X)0,mortal(X)1}, {mortal(Plato)0}}, ε S

is a proof of matrix 5, termed M ′, in the clausal connection calculus with the term
substitution σ(X ′)=Plato, in which a copy of the second clause was made. In
order to prove that Plato as well as Socrates are mortal, another copy of the sec-
ond clause {man(X)0, mortal(X)1} would be needed, using the new variable X ′′ and
σ(X ′′)= Socrates.

The presented clausal connection calculus is correct and complete, i.e. a formula
is valid in classical logic iff there is a clausal connection proof of its matrixM [15].
The proof is based on the matrix characterization for classical logic.

Proof search in the clausal connection calculus is carried out by applying the
rules of the calculus in an analytic way, i.e. from bottom to top, starting with
ε,M, ε, in which M is the matrix of the given formula. At first a start clause is
selected. Afterwards, connections are successively identified by applying reduction
and extension rules in order to make sure that all paths through the matrix contain a
σ -complementary connection. This process is guided by the active path, a subset of

Advances in Connection-Based Automated Theorem Proving 219

a path throughM. During the proof search, backtracking might be required, i.e. alter-
native rules or rule instances have to be considered if the chosen rule or rule instance
does not lead to a proof. This might happen when choosing the clause C1 in the start
and extension rules or the literal L2 in the reduction and extension rules. The term
substitution σ is calculated step by step by one of the well-known term unification
algorithms (see, e.g. [57]) whenever a reduction or extension rule is applied.

3.2 Restricted Backtracking

In contrast to saturation-based calculi, such as resolution [57] or instance-basedmeth-
ods [37], standard connection calculi are not proof confluent, i.e. a significant amount
of backtracking is necessary during the proof search. Backtracking is required if there
is more than one rule instance applicable (see Sect. 3.1). Confluent connection calculi
that have been developed so far [10, 15] have not shown an improved performance,
as these calculi lose the strict goal-oriented proof search.

The idea of restricted backtracking is to cut off any alternative connections once
a literal from the subgoal clause has been solved [46]. A literal L is called solved if
it is the literal L1 of a reduction or extension rule application (see Fig. 1) and in the
case of the extension rule, there is also a proof for the left premise. A solved literal
in the connection calculus corresponds to a closed branch in the tableau calculus.

For example, starting the proof search with the first clause of the following matrix

[[
man(X)0

mortal(X)1

][
man(X)1

martian(X)1

][
man(Socrates)1

][
man(Plato)1

][
mortal(Plato)0

]]
,

?

the first possible connection to the literalman(X)1 in the second clause does not solve
the literal man(X)0, as the literal martian(X)1 cannot be solved. But man(X)0 can be
solved by the second alternative connection to man(Socrates)1 in the third clause,
i.e.

[[
man(X)0

mortal(X)1

][
man(X)1

martian(X)1

][
man(Socrates)1

][
man(Plato)1

][
mortal(Plato)0

]]
.

In case of backtracking, the third alternative connection to the literal man(Plato)1

in the fourth clause would be considered. Restricted backtracking cuts off this third
and all following alternative connections for the literal man(X)0.

The potential of this approach to significantly reduce the search space becomes
clear, if connection proofs for first-order formulae are analysed in a statistical
way [46]. To this end the 1256 connection proofs for formulae in version 3.7.0
of the TPTP problem library [66] that are found by the automated theorem prover

220 J. Otten and W. Bibel

leanCoP are considered. It can be observed that the first connection (or rule applica-
tion) that solves a literal is often the same one used in the final proof. This applies to
89% of all solved literals used within the found connection proofs. In this case, back-
tracking that occurs afterwards can be cut off without effecting a successful proof
search, hence, it is called non-essential backtracking. Backtracking with alternative
connections that occur before the literal is solved is still necessary and, hence, called
essential backtracking. In the above matrix the alternative connection to the third
clause is considered essential backtracking as the connection to the second clause
does not solve the literal man(X)0. However, the alternative connection to the fourth
clause is non-essential backtracking.

Even though most literals within the connection proofs can be solved by per-
forming only essential backtracking, a significant amount of non-essential back-
tracking occurs during the actual proof search. Restricted backtracking cuts off this
non-essential backtracking [46]. As this reduces the search space significantly, the
approach turns out to be very successful in practice. For example, for the formula
AGT016+2of theTPTPproblem library [66],which containsmore than1000 clauses,
the standard proof search requires 84 s using 312,831 inference steps. With restricted
backtracking the proof search requires only 0.3 s, using 427 inference steps. Proofs
are not only found faster, but many new proofs are obtained. A similar technique
can also be used to restrict backtracking when selecting the start clause C1 within
the application of the start rule. Restricted backtracking preserves correctness of the
connection calculus, as the search space is only pruned. However, completeness is
lost, as can be seen by the example matrix shown above. Namely, non-essential back-
trackingwould solveman(X)0 with a connection to the fourth clause and the resulting
substitution of X by Plato would allow to solve the second literal (by connecting it
to the fifth clause) as well.

3.3 Non-clausal Calculus

Clausal connection calculi, such as the ones presented in Sect. 3.1, require the input
formula in disjunctive normal (or clausal) form. Formulae that are not in clausal
form have to be translated into this form. The standard transformation translates a
first-order formula F into clausal form by applying the distributivity laws. In the
worst case, the size of the resulting formula grows exponentially with respect to the
size of the original formula F. This increases the search space significantly. Even
a definitional translation [52] that introduces definitions for subformulae introduces
a significant overhead for the proof search [46]. Furthermore, both clausal form
translations modify the structure of the original formula F.

A non-clausal connection calculus [47] that works directly on the structure
of the original formula does not have these disadvantages. Existing non-clausal
approaches [7, 15, 32] work only on ground formulae. For first-order formulae,
copies of subformulae are added iteratively, which introduces a huge redundancy
into the proof search. For a more efficient proof search, clauses have to be added

Advances in Connection-Based Automated Theorem Proving 221

Table 1 The definition of the non-clausal matrix

Type Fpol M(Fpol)

atomic A0 {{A0}}
A1 {{A1}}

α (¬G)0 M(G1)

(¬G)1 M(G0)

(G ∧ H)1 {{M(G1)}, {M(H1)}}
(G ∨ H)0 {{M(G0)}, {M(H0)}}
(G ⇒ H)0 {{M(G1)}, {M(H0)}}

β (G ∧ H)0 {{M(G0),M(H0)}}
(G ∨ H)1 {{M(G1),M(H1)}}
(G ⇒ H)1 {{M(G0),M(H1)}}

γ (∀xG)1 M(G[x\x∗]1)
(∃xG)0 M(G[x\x∗]0)

δ (∀xG)0 M(G[x\t∗]0)
(∃xG)1 M(G[x\t∗]1)

dynamically during the proof search, similar to the approach used for copying clauses
in clausal connection calculi. To this end, the clausal connection calculus is gener-
alized and its rules are carefully extended.

The non-clausal matrix M(Fpol) of a formula F with polarity pol is a set of
clauses, in which a clause is a set of literals and (sub-)matrices, and is defined
inductively according to Table1 [47]. In this table G[x\t] denotes the formula G
in which all free occurrences of x are replaced by t. x∗ is a new variable, t∗ is the
Skolem term f ∗(x1, . . . , xn) in which f ∗ is a new function symbol and x1, . . . , xn
are the free variables in ∀xG or ∃xG. The non-clausal matrix of a formula F is the
matrixM(F0). In the graphical representation its clauses are arranged horizontally,
literals and (sub-)matrices of its clauses are arranged vertically.

For example, the formula

((man(Plato) ∧ ∀X(man(X) ⇒ mortal(X))) ⇒ mortal(Plato))

∧ (man(Socrates) ∨ ¬man(Socrates)) (6)

has the (simplified) non-clausal matrix

{{{{man(Plato)1}, {man(X)0,mortal(X)1}, {mortal(Plato)0}},
{{man(Socrates)0}, {man(Socrates)1}}}} . (7)

The definition of paths through a non-clausal matrix can be generalized in a
straightforward way. All other concepts used for clausal matrices, e.g. the definitions
of connections and term substitutions, remain unchanged.

222 J. Otten and W. Bibel

For example, the non-clausal connection proof of matrix 7 using the substitution
σ(X)=Plato is illustrated in its graphical (non-clausal) matrix

⎡
⎢⎣

⎡
⎢⎣

[[
man(Plato)1

] [
man(X)0

mortal(X)1

] [
mortal(Plato)0

]]

[[
man(Socrates)0

] [
man(Socrates)1

]]

⎤
⎥⎦

⎤
⎥⎦ .

The formal non-clausal connection calculus [47] has the same axiom, start rule,
and reduction rule as the clausal connection calculus. The extension rule is restricted
to so-called extension clauses and a decomposition rule that splits subgoal clauses
into their subclauses is added. A clause C in a matrixM is an extension clause of M
with respect to a set of literals Path iff

a. C contains a literal of Path, or
b. C is α-related to all literals of Path occurring inM and if C has a parent clause,

it contains a literal of Path.

A clause C is α-related to a literal L iff it occurs besides L in the graphical matrix
representation. For example, in the given matrix, man(Plato)1 is only α-related to
man(X)0,mortal(X)1, andmortal(Plato)0. The parent clause of a clauseC in a matrix
M is a clause C′ = {M1, . . . ,Mn} inM such that C ∈ Mi for some 1≤ i≤ n. See [47]
for the full description of the formal non-clausal connection calculus.

The non-clausal connection calculus for classical logic is correct and complete.
The correctness proof is based on the non-clausal matrix characterization, complete-
ness is proved by an embedding into the clausal connection calculus.

The proof search in the non-clausal connection calculus is carried out in the same
way as in the clausal connection calculus. On formulae in clausal form, the non-
clausal connection calculus behaves just like the clausal connection calculus. If the
matrices that are used in the non-clausal connection calculus are slightlymodified, the
start and the reduction rule are subsumedby the decomposition and the extension rule,
respectively [47]. Optimization techniques, such as positive start clauses, regularity,
and restricted backtracking, can be used in the non-clausal connection calculus as
well. Furthermore, the non-clausal calculus can be extended to non-classical logics
in the same way as the clausal connection calculus (see Sect. 4).

4 Connection Calculi for Non-classical Logics

By using the notion of prefixes the connection calculus for classical logics can be
extended to intuitionistic logic and several modal logics.

Advances in Connection-Based Automated Theorem Proving 223

4.1 Intuitionistic Logic

Every formula F that is valid in intuitionistic logic is also valid in classical logic.
The opposite direction does not hold. Hence, the three rules

Γ,G

Γ
 ¬G,Δ

¬-right ,
Γ,G
 H

Γ
 G ⇒ H,Δ
⇒-right ,

Γ
 G[x\a]
Γ
 ∀x G,Δ

∀-right

of the sequent calculus for intuitionistic logic [29] differ from the ones for classical
logic. In all three rules the set of formulae Δ does not occur in the sequent of the
premises anymore. During the proof search these rules are applied from bottom to
top and the formulae inΔ are removed from the sequent. As these formulae might be
necessary to complete the proof, the application of these rules need to be controlled.
To this end, a prefix is assigned to every subformula G of a given formula F. A
prefix is a string, i.e. a sequence of characters over an alphabet Φ ∪ Ψ , in which Φ

is a set of prefix variables and Ψ is a set of prefix constants. Prefix constants and
variables represent applications of the rules ¬-right, ⇒-right, ∀-right, and ¬-left,
⇒-left, ∀-left, respectively [69, 70]. Then, the prefix p of a subformula G, denoted
G : p, specifies the sequence of these rules that have to be applied (analytically) to
obtainG in the sequent. In order to preserve two atomic formulae that form an axiom
in the intuitionistic sequent calculus, their prefixes need to unify. This is done by an
intuitionistic substitution σJ that maps elements of Φ to strings over Φ ∪ Ψ .

In the matrix characterization for intuitionistic logic it is additionally required
that the prefixes of the literals in every connection unify under σJ [70]. For a com-
bined substitution σ := (σQ, σJ), a connection {L1 : p1,L2 : p2} is σ -complementary
iff σQ(L1)= σQ(L2) and σJ(p1)= σJ(p2). An additional interaction condition on σ

ensures that σQ and σJ are mutually consistent [70].
For intuitionistic logic there exists no equivalent clausal form for a given formula

F and the original matrix characterization for intuitionistic logic does not use a
clausal form. In order to adapt the existing clausal connection calculus for classical
logic, Wallen’s original matrix characterization has to be modified. To this end,
the skolemization technique, originally used to eliminate eigenvariables in classical
logic, is extended and also used for prefix constants in intuitionistic logic [44]. This
allows the specification of a clausal matrix characterization, in which clause copies
can simply be made by renaming all term and prefix variables [44]. Furthermore,
there is no need for an explicit irreflexivity test of the reduction ordering. Instead, this
test is realized by the occurs check during the term and prefix unification. For classical
logic this close relationship between the reduction ordering and skolemization was
first pointed out by Bibel [15]. For the extended skolemization, the same Skolem
function symbol is used for instances of the same subformula, a technique that is
similar to the liberalized δ+-rule in classical tableau calculi [31].

The following description gives a formal definition of a prefixed clausal matrix for
intuitionistic logic and the extended skolemization. The prefixed matrix M(Fpol:p)
of a prefixed formula Fpol:p is a set of prefixed clauses, in which pol is a polarity and
p is a prefix, and is defined inductively according to Table2 [44]. In this table it is

224 J. Otten and W. Bibel

Table 2 The definition of the prefixed matrix for intuitionistic logic

Type Fpol : p M(Fpol : p)
atomic A0 : p {{A0 : pa∗}}

A1 : p {{A1 : pV ∗}}
α (¬G)0 : p M(G1 : pa∗)

(¬G)1 : p M(G0 : pV ∗)
(G∧H)1 : p M(G1 : p) ∪ M(H1 : p)
(G∨H)0 : p M(G0 : p) ∪ M(H0 : p)
(G⇒H)0 :p M(G1:pa∗) ∪ M(H0:pa∗)

β (G∧H)0 : p M(G0 : p) ∪β M(H0 : p)
(G∨H)1 : p M(G1 : p) ∪β M(H1 : p)
(G⇒H)1 :p M(G0:pV ∗) ∪β M(H1:pV ∗)

γ (∀xG)1 : p M(G[x\x∗]1 : pV ∗)
(∃xG)0 : p M(G[x\x∗]0 : p)

δ (∀xG)0 : p M(G[x\t∗]0 : pa∗)
(∃xG)1 : p M(G[x\t∗]1 : p)

MG ∪β MH := {CG ∪CH | CG ∈MG, CH ∈MH}. x∗ is a new term variable, t∗ is the
Skolem term f ∗(x1, . . . , xn) in which f ∗ is a new function symbol and x1, . . . , xn
are all free term and prefix variables in (∀xG)0 : p or (∃xG)1 : p. V ∗ is a new prefix
variable, a∗ is a prefix constant of the form f ∗(x1, . . . , xn) in which f ∗ is a new func-
tion symbol and x1, . . . , xn are all free term and prefix variables in A0 : p, (¬G)0 : p,
(G⇒H)0 : p, or (∀xG)0 : p. The intuitionistic matrix M(F) of a formula F is the
prefixed matrixM(F0 : ε), in which ε is the empty string.

For example, the intuitionistic matrix of the formula

(man(Plato) ∧ ∀X(man(X) ⇒ mortal(X))) ⇒ mortal(Plato) (8)

is

{{man(Plato)1 : a1V1}, {man(X)0 : a1V2 a2(X), mortal(X)1: a1V2V3},
{mortal(Plato)0 : a1a3}} , (9)

in which a1, a2(X), a3 are prefix constants, and V1, V2, V3 are prefix variables. Then,

[[
man(Plato)1 : a1V1

] [
man(X)0 : a1V2 a2(X)

mortal(X)1: a1V2V3

] [
mortal(Plato)0 : a1a3

]]

is a graphical intuitionistic connection proof of matrix 9 with σQ(X) = Plato,
σJ(V1) = a2(Plato), σJ(V2) = ε, and σJ(V3) = a3, where ε is the empty string.

The intuitionistic matrix of the formula

Advances in Connection-Based Automated Theorem Proving 225

Fig. 2 The clausal connection calculus for intuitionistic logic

man(Socrates)∨¬man(Socrates) (10)

is
{{man(Socrates)0 : a1}, {man(Socrates)1 : a2}} . (11)

There is no substitution σJ with σJ(a1)= σJ(a2) and no connection proof of this
matrix. Hence, formula 10 is not valid in intuitionistic logic.

The formal clausal connection calculus for intuitionistic logic [44] is shown in
Fig. 2. It is an extension of the clausal connection calculus for classical logic, in
which a prefix is added to each literal and an additional intuitionistic substitution is
used to identify σ -complementary connections. An intuitionistic connection proof of
the matrixM is a proof of ε,M, ε. The clausal connection calculus for intuitionistic
logic is correct and complete, i.e. a formula F is valid in intuitionistic logic iff there
is an intuitionistic connection proof of its intuitionistic matrixM(F).

The intuitionistic substitution σJ is calculated by a prefix unification algo-
rithm [44]. For a given set of prefix equations {p1 = q1, . . . , pn = qn}, an appropriate
substitution σJ is a unifier such that σJ(pi)= σJ(qi) for all 1≤ i≤ n. General algo-
rithms for string unification exist, but the following unification algorithm is more
efficient, as it takes the prefix property of all prefixes p1, p2, . . . into account: for two
prefixes pi = u1Xw1 and pj = u2Xw2 withX ∈Φ ∪ Ψ the property u1 = u2 holds. This
reflects the fact that prefixes correspond to sequences of connectives and quantifiers
within the same formula.

The prefix unification for the prefixes equation {p= q} is carried out by applying
the rewriting rules in Fig. 3. It isV, V̄ , V ′ ∈ Φ withV �= V̄ ,V ′ is a newprefixvariable,
a, b∈ Ψ , X ∈ Φ ∪ Ψ , and u,w, z ∈ (Φ ∪ Ψ)∗. For rule 10 the restriction (∗) u= ε or
w �= ε or X ∈ Ψ applies. σJ(V)= u is written {V \u}.

The unification starts with the tuple ({p= ε|q}, {}). The application of a rewriting
rule E → E′, τ replaces the tuple (E, σJ) by the tuple (E′, τ (σJ)). E and E′ are
prefix equations, σJ and τ are (intuitionistic) substitutions. The unification terminates
when the tuple ({}, σJ) is derived. In this case, σJ represents a most general unifier.
Rules can be applied non-deterministically and lead to aminimal set of most general

226 J. Otten and W. Bibel

Fig. 3 The prefix unification algorithm for intuitionistic logic

unifiers. In theworst-case, the number of unifiers grows exponentially with the length
of the prefixes p and q. To solve a set of prefix equations Ē = {p1 = p1, . . . , qn = tq},
the equations in Ē are solved one after the other and each calculated unifier is applied
to the remaining prefix equations in Ē.

For example, for the prefix equation {a1V2V3 = a1a3}, there are the two possible

derivations {a1V2V3 = ε|a1a3}, {} 3.−→ {V2V3 = ε|a3}, {} 6.−→ {V3 = ε|a3}, {V2\ε}
10.−→ {V3 = a3|ε}, {V2\ε} 5.−→ {ε = ε|ε}, {V2\ε, V3\a3} and {a1V2V3 =ε|a1a3}, {}
3.−→ {V2V3 = ε|a3},{} 10.−→ {V2V3 = a3|ε},{} 5.−→ {V3 = ε|ε},{V2\a3} 5.−→ {ε = ε|ε},

{V2\a3, V3\ε}, yielding the most general unifiers {V2\ε, V3\a3} and {V2\a3, V3\ε}.

4.2 Modal Logics

For modal logic the classical sequent calculus is extended by rules for the modal
operators � and ♦. For example, the additional modal rules of the modal sequent
calculus [70] for the modal logic T are

Γ,F
 Δ

Γ,�F
 Δ
�-left ,

Γ
 F,Δ

Γ
 ♦F, Δ
♦-right ,

Γ(�)
 F, Δ(♦)

Γ
 �F, Δ
�-right ,

Γ(�),F
 Δ(♦)

Γ,♦F
 Δ
♦-left

with Γ(�) := {G | �G ∈ Γ } and Δ(♦) := {G |♦G ∈ Δ}. When the rules �-right or
♦-left are applied from bottom to top during the proof search, all formulae that are
not of the form �G or ♦G, respectively, are deleted from the sets Γ(�) and Δ(♦)

in the premise. As these formulae might be necessary to complete the proof, the
application of the modal rules need to be controlled. Again, a prefix is assigned to
every subformula G of a given formula F. This prefix is a string over an alphabet
ν ∪ Π , in which ν is a set of prefix variables and Π is a set of prefix constants.
Prefix variables and constants represent applications of the rules �-left or ♦-right,
and �-right or ♦-left, respectively [69, 70].

Proof-theoretically, a prefix of a subformula G captures the modal context of G
and specifies the sequence of modal rules that have to be applied analytically in
order to obtain G in the sequent. Semantically, a prefix denotes a specific world in
a model [27, 70]. Prefixes of literals that form an axiom in the sequent calculus
need to denote the same world, hence, they need to unify under a modal substitution
σM that maps elements of ν to strings over ν ∪ Π . A connection {L1 : p1,L2 : p2} is

Advances in Connection-Based Automated Theorem Proving 227

Table 3 The definition of the prefixed matrix for modal logics

Type Fpol : p M(Fpol : p)
atomic A0 : p {{A0 : p}}

A1 : p {{A1 : p}}
α (¬G)0 : p M(G1 : p)

(¬G)1 : p M(G0 : p)
(G∧H)1 : p M(G1 : p) ∪ M(H1 : p)
(G∨H)0 : p M(G0 : p) ∪ M(H0 : p)
(G⇒H)0: p M(G1 : p) ∪ M(H0 : p)

ν (�G)1 : p M(G1 : pV ∗)
(♦G)0 : p M(G0 : pV ∗)

β (G∧H)0 : p M(G0 : p) ∪β M(H0 : p)
(G∨H)1 : p M(G1 : p) ∪β M(H1 : p)
(G⇒H)1: p M(G0:p) ∪β M(H1 : p)

γ (∀xG)1 : p M(G[x\x∗]1 : p)
(∃xG)0 : p M(G[x\x∗]0 : p)

δ (∀xG)0 : p M(G[x\t∗]0 : p)
(∃xG)1 : p M(G[x\t∗]1 : p)

π (�G)0 : p M(G0 : pa∗)
(♦G)1 : p M(G1 : pa∗)

σ -complementary for a combined substitutionσ := (σQ, σM) iffσQ(L1)= σQ(L2) and
σM(p1)= σM(p2). An additional domain condition specifies if constant, cumulative,
or varying domains are considered [70].

The skolemization technique is extended to modal logic by introducing a Skolem
term also for the prefix constants [48]. This integrates the irreflexivity test into the
term and prefix unification. The prefixed matrix M(Fpol:p) of a prefixed formula
Fpol:p is a set of prefixed clauses, in which pol is a polarity and p is a prefix, and is
defined inductively according to the Table3 [48]. The definitions of ∪β , x∗, and t∗
are identical to the ones used for intuitionistic logic. V ∗ is a new prefix variable, a∗
is a prefix constant of the form f ∗(x1, . . . , xn), in which f ∗ is a new function symbol
and x1, . . . , xn are all free term and prefix variables in (�G)0 : p or (♦G)1 : p. The
modal matrix M(F) of a modal formula F is the prefixed matrixM(F0 : ε), in which
ε is the empty string.

For example, the modal matrix of the formula

�man(Plato) ⇒ ♦man(Plato) (12)

is
{{man(Plato)1 : V1}, {man(Plato)0 : V2}} (13)

228 J. Otten and W. Bibel

Fig. 4 The prefix unification algorithm for the modal logic T

in which V1 and V2 are prefix variables. Then,

[[
man(Plato)1 : V1

] [
man(Plato)0 : V2

]]

is a graphical modal connection proof of matrix 13 with σM(V1)= V2.
The core of the formal clausal connection calculus for modal logic [21, 48] is

identical to the one for intuitionistic logic given in Fig. 2. The only difference to
the intuitionistic calculus is the definition of the prefixes and the prefix unification
algorithm. The clausal connection calculus for modal logic is correct and complete.

A prefix unification algorithm [48] is used to calculate the modal substitution
σM . Depending on the modal logic, the accessibility condition has to be respected
when calculating this substitution: for all V ∈ ν: |σM(V)| = 1 for the modal logic D,
|σM(V)| ≤ 1 for the modal logic T; there is no restriction for the modal logics S4
and S5. The prefix unification for D is a simple pattern matching, for S4 the prefix
unification for intuitionistic logic can be used, for S5 only the last character of each
prefix (or ε if the prefix is empty) has to be unified. The prefix unification for T is
specified by the rewriting rules given in Fig. 4 (with V̄ �=X), which are applied in
the same way as the ones for intuitionistic logic (see Sect. 4.1).

5 Implementing Connection Calculi

Several automated theorem provers for classical logic that are based on clausal con-
nection calculi have been implemented so far, such as KoMeT [18], METEOR [5],
PTTP [64], and SETHEO [39]. Because of their complexity, it would be a difficult
— if not impossible — task to adapt these implementations to the non-classical
connection calculi described in Sect. 4.

At first, this section presents a very compact PROLOG implementation of the
clausal connection calculus for classical logic. Afterwards, this implementation is
extended to intuitionistic and modal logics.

Advances in Connection-Based Automated Theorem Proving 229

5.1 Classical Logic

leanCoP is an automated theorem prover for classical first-order logic [45, 46, 51].
It is a very compact PROLOG implementation of the clausal connection calculus
described in Sect. 3.1. leanCoP 1.0 [51] essentially implements the basic clausal
connection calculus shown in Fig. 1. The source code of the core prover is given in
Fig. 5 (sound unification has to be used). PROLOG lists are used to represent sets and
PROLOG terms are used to represent atomic formulae. PROLOG variables represent
term variables, and “-” is used to mark literals that have polarity 1. For example, the
matrix

{{man(Plato)1}, {man(X)0,mortal(X)1}, {mortal(Plato)0}}

is represented by the PROLOG list

[[-man(plato)],[man(X),-mortal(X)],[mortal(plato)]] .

The prover is invoked by calling the predicate prove(M,I), in which M is a
matrix andI is a positive number. The predicate succeeds only if there is a connection
proof for the matrix M, in which the size of the active path is smaller than I. The
proof search starts by applying the start rule implemented in the first two lines. As a
first optimization technique, the clause C1 in the start rule of Fig. 1 can be restricted
to positive clauses, i.e. clauses that contain only literals with polarity 0 [51]. For
the above example this would be the clause {mortal(Plato)0}. Afterwards, reduction
and extension rules are repeatedly applied. These rules are implemented in the last
four lines by the PROLOG predicate prove(C,M,P,I), in which C is the subgoal
clause, M is the matrix, P is the active path, and I is the path limit. The path limit is
used to perform iterative deepening on the size of the active path, which is necessary
for completeness.When the extension rule is applied, the proof search continues with
the left premise before the right premise is considered. The axiom is implemented
in the third line. The term substitution σ is stored implicitly by PROLOG.

leanCoP 1.0 already shows an impressive performance and proves some formulae
not proven by more complex automated theorem provers [51]. As clause copies are
restricted to ground clauses, leanCoP is also a decision procedure for determining
the validity of propositional formulae.

leanCoP 2.0 integrates additional optimization techniques into the basic connec-
tion calculus [45, 46]. The source code of the core prover is shown in Fig. 6. Lean
PROLOG technology is a technique that stores the clauses of the matrix in PRO-
LOG’s database. It integrates the main advantage of the ”PROLOG technology”
approach [64] into leanCoP by using PROLOG’s fast indexing mechanism to quickly
find connections. A controlled iterative deepening stops the proof search if the cur-
rent path limit for the size of the active path is not exceeded (line 4). This yields a
decision procedure for ground formulae and also allows for refuting some (not valid)
first-order formulae. The regularity condition [38] restricts the proof search such that

230 J. Otten and W. Bibel

Fig. 5 The source code of the leanCoP 1.0 core prover for classical logic

Fig. 6 The source code of the leanCoP 2.0 core prover for classical logic

no literal occurs more than once in the active path (lines 6–7). The lemmata tech-
nique [38] reuses the subproof of a literal in order to solve the same literal on other
branches (line 7). Restricted backtracking [46] cuts off alternative connections once
the application of the reduction or extension rule has successfully solved a literal
(line 11; see also Sect. 3.2). Backtracking over alternative start clauses can be cut
off as well. A definitional clausal form translation is used in a preprocessing step to
translate arbitrary first-order formulae into an equivalent clausal form by introduc-
ing definitions for certain subformulae [46]. Furthermore, leanCoP 2.0 uses a fixed
strategy scheduling, i.e. the PROLOG core prover is consecutively invoked by a shell
script with different strategies [45, 46]. See [46] for a more detailed explanation of
the source code.

The core prover in Fig. 6 is invoked with prove(1,S), where S is a strategy
(see [45] for details) and the start limit for the size of the active path is 1. The predicate
succeeds if there is a connection proof for the clauses stored in PROLOG’s database.
The full source code of the prover and the definitional clausal form translation are
available on the leanCoP website at http://www.leancop.de.

The additional techniques improve the performance of leanCoP significantly, in
particular for formulae containing many axioms [46]. Of the (non-clausal) formulae
in the TPTP v3.7.0 problem library, leanCoP 2.0 proves (within 600s) about 50%
more formulae than leanCoP 1.0, about as many formulae as Prover9 [41], and about

Advances in Connection-Based Automated Theorem Proving 231

30% less formulae thanE [61]. The newdefinitional clausal form translation performs
significantly better than those of E, SPASS, and TPTP [46].

nanoCoP [50] implements the non-clausal calculus described in Sect. 3.3. It proves
more problems from the TPTP library than the core prover of leanCoP for both, the
standard and the definitional translation into clausal form. Furthermore, the returned
non-clausal proofs are on average about 30% shorter than the clausal proofs of
leanCoP.

5.2 Intuitionistic Logic

ileanCoP is a prover for first-order intuitionistic logic [44, 45]. It is a compact
PROLOG implementation of the clausal connection calculus for intuitionistic logic
described in Sect. 4.1. ileanCoP extends the classical connection prover leanCoP by

a. prefixes that are added to the literals in the matrix in a preprocessing step,
b. a set of prefix equations that are collected during the proof search,
c. a set of term variables together with their prefixes in order to check the interaction

condition, and
d. an additional prefix unification algorithm that unifies the prefixes of the literals

in each connection.

The source code of the ileanCoP 1.2 core prover is shown in Fig. 7. The underlined
codewas added to the classical prover leanCoP2.0; noothermodificationsweremade.
Prefixes are represented by PROLOG lists, e.g. the prefix a1V2V3 is represented by
the list [a1,V2,V3]. For example, the intuitionistic matrix

{{man(Plato)1 : a1V1}, {man(X)0 : a1V2 a2(X),

mortal(X)1: a1V2V3}, {mortal(Plato)0 : a1a3}}

is represented by the PROLOG list

[[-man(plato):[a1,V1]], [man(X):[a1,V2,a2(X)],

-mortal(X):[a1,V2,V3]], [mortal(plato):[a1,a3]] .

In a preprocessing step the clauses of the intuitionistic matrix are written into
PROLOG’s database. Then, the prover is invoked with prove(1,S), where S is a
strategy (see [45] for details) and the start limit for the size of the active path is 1.
The predicate succeeds if there is an intuitionistic connection proof for the clauses
stored in PROLOG’s database.

First, ileanCoP performs a classical proof search, which uses only a weak prefix
unification (line 11 and line 12). After a classical proof is found, the prefixes of
the literals in each connection are unified and the interaction condition is checked.
To this end, the two predicates prefix_unify and check_addco are invoked
(line 4). They implement the rewriting rules shown in Fig. 3 and require another 26

232 J. Otten and W. Bibel

Fig. 7 The source code of the ileanCoP 1.2 andMleanCoP 1.2 core provers for intuitionistic and
modal logics

lines of PROLOG code. If the prefix unification or the interaction condition fails, the
search for alternative connections continues via backtracking. The substitutions σQ

and σJ are stored implicitly by PROLOG. The full source code is available on the
ileanCoP website at http://www.leancop.de/ileancop.

Version 1.0 of ileanCoP is based on leanCoP 1.0 and implements only the basic
calculus [44]. In ileanCoP 1.2 all additional optimization techniques used for classical
logic described in Sect. 5.1 are integrated as well [45]. To this end, some of these
techniques are adapted to the intuitionistic approach using prefixes. This includes
regularity, lemmata, and the definitional clausal form translation. Other techniques,
such as the lean PROLOG technology and restricted backtracking, can be applied
directly without any modifications.

ileanCoP 1.2 proves significantly more formulae of the TPTP problem library and
the ILTP problem library [55] than any other automated theorem prover for first-
order intuitionistic logic [45]. Of the (non-clausal) formulae of the TPTP v3.3.0
problem library it proves (within 600s) between 250 and 700% more formulae than
the intuitionistic provers JProver, ileanTAP, ft, and ileanSeP [45]. It solves about
50% more formulae than ileanCoP 1.0, and proves significantly more formulae than
Imogen [42]. Of the formulae of the TPTP v3.7.0 problem library, ileanCoP 1.2
proves a higher number of problems of certain problem classes than some classical
provers [46], even though these classes contain formulae that are valid in classical
but not in intuitionistic logic.

Advances in Connection-Based Automated Theorem Proving 233

5.3 Modal Logics

MleanCoP is a prover for several first-order modal logics [48, 49]. It is a compact
PROLOG implementation of the clausal connection calculi for modal logics, as
described in Sect. 4.2. The source code of the MleanCoP 1.2 core prover is identical
to the source code of ileanCoP 1.2 shown in Fig. 7. PROLOG lists are used to represent
sets and prefixes. For example, the modal matrix

{{man(Plato)1 : V1}, {man(Plato)0 : V2}}

is represented by the PROLOG list

[[-man(plato):[V1]],[man(plato):[V2]] .

In a preprocessing step, the clauses of the modal matrix are written into PRO-
LOG’s database. First, MleanCoP performs a classical proof search using a weak
prefix unification. After a classical proof is found, the prefixes of the literals in each
connection are unified and the domain condition is checked. This is done by the
two predicates prefix_unify and domain_cond. Depending on the chosen
modal logic, the prefix unification algorithm has to respect different accessibility
conditions. For example, for the modal logic T, the rewriting rules shown in Fig. 3
are used. For the modal logic S4, the code of the prefix unification for intuitionistic
logic can be used. For D and S5, the prefix unification is a simple pattern match-
ing. If the prefix unification or the domain condition fails, the search for alternative
connections continues via backtracking. The substitutions σQ and σM are stored
implicitly by PROLOG. The full source code is available on the MleanCoP website
at http://www.leancop.de/mleancop.

As MleanCoP 1.2 is based on leanCoP 2.0, all additional optimization techniques
used for classical logic described in Sect. 5.1 are integrated into this implementation
as well [48]. This includes the lean PROLOG technology, regularity, lemmata, the
definitional clausal form translation, and restricted backtracking.MleanCoP supports
the constant, cumulative, and varying domain variants of the first-order modal logics
D, T, S4, and S5.

MleanCoP 1.2 proves more formulae from the QMLTP v1.1 problem library [56]
than any other prover for first-ordermodal logic, such as the provers LEO-II, Satallax,
MleanSeP, or MleanTAP [21]. For the modal logic D, MleanCoP 1.2 proves (within
600s) between 35 and 120% more problems than any of the other provers; for the
modal logic T, between 25 and 85%more problems; for the modal logic S4, between
30 and 100% more problems, and for the modal logic S5, between 40 and 110%
more problems. MleanCoP is also able to refute a large number of modal formulae
that are not valid.

Version 1.3 of MleanCoP [49] contains additional enhancements, such as the sup-
port for heterogeneous multimodal logics, the output of a compact modal connec-
tion proof, support for the modal TPTP input syntax [56] and an improved strategy
scheduling.

234 J. Otten and W. Bibel

6 A Brief History and Perspectives

One of the fundamental achievements of logic is the discovery that truth can be
demonstrated in a purely syntactic way. This means that any statement, represented
as a formula F in some language, can be shown to be valid by purely syntactical
means. All known methods for such a demonstration use syntactic rules of roughly
the kind F1 ⇒ F2 and some termination criterion which, applied to a formula in
the chain of demonstration, specifies whether the respective line in this chain can
successfully stop at the point of the formula’s occurrence.

When the idea of testing the validity of formulae in a mechanical way came up in
the beginning of the last century, the most obvious way of choosing appropriate rules
of this kind was to inverse the rules of the formal logical systems then known for
deriving valid formulae. Even if the logic is restricted to fol, its formulae are rather
complex syntactic constructs as are the rules of those systems. Hence this approach
led to a rather complicated solution first realized by Prawitz [53] (for more historical
details concerning the beginnings of ATP see Sect. 2 in [17]).

The problem with this solution was tractability — tractability from the point
of view of human researchers and system developers, that is. Hence some kind
of simplification was called for. It was Herbrand who first succeeded in reducing
the problem of determining the validity of fol formulae to propositional ones [34].
This reduction is known as Herbrand’s Theorem. Since propositional logic is much
easier to handle for human researchers this opened a line of research additionally
characterized as a confluent saturation method based on the resolution rule along
with unification which to some extent hides first-order features.

When the second author, abbreviated as WB in the following, entered the field
of ATP around 1970 as a trained logician, the Prawitz line was out of date and
the Herbrand-resolution line was highly in vogue. This observation took him by
surprise as expressed at the beginning of his first publication in ATP [11]: “In the
field of theorem proving in first-order logic almost all work is based on Herbrand’s
theorem. This is a surprising fact since from a logical point of view the most natural
way … .” Hence, for nearly a decade he tried to further develop the Prawitz line and
at the same time to study the virtues and disadvantages of both lines in a comparative
way, in order to reach a rational decision which line to follow in the future.

In the course of this research and after several publications WB, like Prawitz and
others, realized that a core ofATP lies in the connection structure of the given formula
(or of the set of clauses resulting from it), independent of which line of research
is pursued. With this insight different approaches to ATP could be developed and
analysed from a common viewpoint as demonstrated in the paper [13]. The paper
was completed in 1978, published as “Bericht 79” in January 1979 and as a journal
article in 1981 (submitted 1979). It already contains all the basic notions underlying
the matrix characterization of logical validity, provides the basis for the connection
method (CM) and features a number of different results.

In 1979WB attended CADE-4 where Peter Andrews presented his paper [6] later
published as [7]. This independently taken approach turned out to be very closely

Advances in Connection-Based Automated Theorem Proving 235

related to the one taken in the CMwhile using a different terminology (mating instead
of spanning set of connections, etc.). It cites one of WB’s papers while WB had not
been aware of Andrews’ work before this talk. Therefore, it is not yet cited in the
report version of 1979, but then of course in the journal version [13]. Andrews’ future
work focussed more on higher-order logic while WB’s work in ATP continued the
line taken so far, producing [14] as well as the book [15] among numerous other
publications including ones with several co-authors. It eventually resulted in the
system SETHEO [39]. SETHEO in 1996 won first-place at the first international
competition among theorem provers, the CADEATP System Competition or CASC.

There is a close relative to the Prawitz linewhichwemight call theBeth line, today
known under the term tableaux (see e.g. [28]). The team realizing the implementation
of SETHEO featured two members who by education were committed to thinking
in terms of tableaux rather than of the CM. Hence, SETHEO was influenced by the
CM and some of its features but cannot be called a proper CM-prover. The prover
KoMeT [18] may be regarded a more authentical product in this respect; but its main
developer unfortunately soon left the field thus terminating its development towards
an internationally competitive system. Hence, the leanCoP prover family discussed
in this chapter has become the first long-term project on the very basis of the CM.

Most researchers in ATP are still committed to the resolution approach in ATP. In
fact, the twomost successful systems in terms of the CASC competition are based on
resolution. On first sight, this seems to be a good reason to regard resolution superior
to its competitors. But the argument is not really convincing if a closer look is taken,
as we will try to show now.

The high performance of resolution systems is to a large extent due to the following
two reasons. First of all, resolution was designed intentionally as amachine-oriented
inference rule which could be implemented relatively easily and in a way so that an
extremely massive amount of inferences can be performed in a short time. Due to
the resulting successes of those implementations many systems have been developed
on its basis. So, secondly, sheer numbers of investments have made the systems ever
more powerful. Winning a CASC competition may well be a consequence of these
two peculiarities and does not necessarily say something in sufficient detail about
the ultimate potential of the underlying proof method.

In fact, resolution in principle does suffer from serious inherent drawbacks. It
operates on sets of clauses resulting from the original formula F to be proved. The
formula is built from axioms, theorems, lemmas and the assertions and has exactly
in this respect an information-rich structure, from which human mathematicians
draw heavily as they search for a proof of the assertions. This structure is totally
destroyed in the resolution context. In order to cope with this deficiency to some
extent, strategies like set-of-support have been developed. While they are surely
useful to some extent, they do not bring back in full the rich information contained
in the original structure of F. Hence resolution inferences in present systems to a
large extent are carried out in a rather blind way, a disadvantage compensated by
brute force and sheer power due to the two peculiarities mentioned. But for proving
truly hard theorems brute force does and will not suffice. Even Alan Robinson, the
hero in ATP who has laid the basis for the resolution line, in his more recent work

236 J. Otten and W. Bibel

has convincingly argued into the same direction [59] but so far has largely remained
unnoticed by the huge community of his followers who keep sticking exclusively to
his earlier work.

For all these reasons we continue to be deeply convinced that, in contrast, the
research path pursued on the basis of the matrix characterization and the CM in the
long term will yield much better results. Let us therefore summarize here its ultimate
vision of a future proof method which is based on Theorem 10.4 in [15]. The idea
is to elaborate within F a deductively sufficient skeleton (cf. Definition 10.2 in [15])
which is characterized exclusively by the very syntactic items occurring in F and
some relations defined for them (like the pairing relation defining connections, etc.).
This goal has already been achieved by leanCoP for formulae in skolemized clausal
form, and by nanoCoP for arbitrary formulae in skolemized (non-clausal) form, as
discussed in Sect. 5 of the present chapter. The particular feature of splitting by need
(Sect. 10 in [15]) has been studied extensively in [4, 33], but without focussing on
an effective proof search guided by connections. There is the additional feature of
integrating an alternative for skolemization, discussed in Sect. 8 of [15] (and in fact
already introduced in Sect. 4 of [11]). It would not only preserve a given formula
in its truly original structure but would also make the translation back to a more
readable sequent proof significantly easier. Despite these advantages, this alternative
for skolemization is widely unknown in the community.

Altogether a comprehensive calculus combining all these results along with a
corresponding implementation is still missing because the way towards it is a truly
hard one. Once it will be available additional strategies for guiding the proof search
through the information given by the structural elements in F (axioms, theorems,
etc.) may be explored for the first time within a competitive system. This will be
possible since the calculus keeps the given formula in its original structure com-
pletely unchanged. This also opens a way to consider the realization and inclusion
of Robinson’s recent ideas referenced just before.

The line of research described here is unique and pursued so far by only a very few
researchers worldwide. The reason for the lack of popularity also lies in the fact that
the technical details are extremely challenging for anyone. There is a relationship
with tableaux in that both lines originate from related formal systems of fol. But in
contrast to tableaux which redundantly expand F to numerous subformulae accord-
ing to the tableau rules, in our approach F is left completely untouched, instead
accumulating information about its structure in the skeleton. Hence the Beth-line
in terms of performance in principle cannot compete with our much more compact
approach. But tableaux are much easier for humans to work with, thus explaining
their continuing popularity.

The skeleton identified after a successful proof search represents a set of possible
derivations in the underlying formal system of fol and in this sense is an extremely
condensed abstraction from such a set of derivations. Any derivation of this set may
easily be rolled out as soon as the skeleton has been found (see Corollary 10.6
in [15]). In this manner proofs become accessible to human understanding after they
have been discovered by machine.

Advances in Connection-Based Automated Theorem Proving 237

At some point in the last century people believed that resolution had an advantage
in terms of complexity in the limit in comparison with our approach. But in the
book [25] it has been shown that this in fact is not the case (see its Theorem 4.4.1),
provided that one avoids repeating one and the same part of a connection proof
redundantly over and over again. This is another feature which has to be cared for in
a future system following our approach. For further aspects concerning such a future
system see also [16, 19].

7 Conclusion

Formal reasoning in classical and non-classical logics is a fundamental technique
when developing provably correct software. Over the last decades, the implementa-
tion of proof calculi has made considerable advances and automated theorem provers
are nowadays used in industrial applications. But whereas the development of effi-
cient ATP systems for classical logic has made significant progress (See e.g. [60]),
the development of ATP systems for many important non-classical logics is still in
its infancy. This is in particular true for first-order intuitionistic logic and first-order
modal logics. Whereas the time complexity of determining whether a given propo-
sitional formula F is valid in classical logic is co-NP-complete [22], it is already
PSPACE-complete [63] for intuitionistic or the (standard) modal logics (except for
the modal logic S5, which is co-NP-complete [70]). Proof search in these non-
classical logics is considerably more difficult than for first-order classical logic and,
hence, only a few implementations of ATP systems for these logics exist to date.

This chapter provides a summary of research work on proof calculi and efficient
implementations for classical and non-classical logics that has been carried out during
the last ten years. All these calculi and implementations are based on the connection
method. In particular, they are based on thematrix characterization of logical validity
and operate in a goal-oriented connection-driven manner. As a result of this research
work, three efficient automated theorem provers for first-order classical, first-order
intuitionistic, and first-order modal logic are now available. All implemented ATP
systems are elegant and very compact implementations based on uniform clausal con-
nection calculi for classical, intuitionistic, and modal logics. Different non-classical
logics are specified by prefixes in the clausal matrix and additional prefix unification
algorithms. The minimal PROLOG source code of the core theorem provers consists
of between only 11 and 16 lines.

leanCoP is one of the strongest theorem provers for first-order classical logic.
It has won several prizes at CASC, the yearly competition for fully automated
ATP systems, such as the “Best Newcomer” award (leanCoP 2.0) [65] and the
SUMO reasoning prize (leanCoP-SInE) [67] and was winner of the first arith-
metic division (leanCoP-�) [68]. It is currently the most efficient theorem prover
based on a connection calculus. leanCoP includes well-known techniques, such as
regularity, lemmata, and some novel optimization techniques, such as lean PRO-
LOG technology, an optimized definitional clausal form translation, and restricted

238 J. Otten and W. Bibel

backtracking. The definitional clausal form translation works significantly better
than other well-known translations [46]. Restricted backtracking reduces the search
space in connection calculi significantly, in particular for formulae containing many
axioms. Indeed, restricted backtracking turned out to be the single most effective
technique for pruning the search space in connection calculi.

The clausal connection calculus for classical logics was adapted to first-order
intuitionistic logic and several first-order modal logics. To this end, an intuitionistic
matrix and a modal matrix were defined, which add prefixes to the clausal matrix.
The skolemization technique is extended to prefixes, hence, clause copies are made
by simply renaming all term and prefix variables. The additionally required prefix
unification algorithm is specified by a small set of rewriting rules and depends on the
particular logic. ileanCoP extends leanCoP to first-order intuitionistic logic by adding
prefixes to literals and integrating an intuitionistic prefix unification algorithm. It is
currently the most efficient automated theorem prover for first-order intuitionistic
logic. MleanCoP extends leanCoP to the first-order modal logics D, T, S4, and S5.
To this end the definition of prefixes and the prefix unification algorithm is modified
and adapted, whereas the core prover already used for ileanCoP remains unchanged.
Experimental results indicate that the performance of MleanCoP is better than that of
any other existing theorem prover for first-order modal logic.

In summary, the use of an additional prefix unification during the proof search for
non-classical logics resembles the use of term unification in first-order logic:

first-order logic = propositional logic + term unification ,

intuitionistic/modal logic = classical logic + prefix unification .

By capturing the intuitionistic and modal contents of formulae in prefixes, most opti-
mization techniques, such as the definitional clausal form translation and restricted
backtracking, can be used for intuitionistic and modal logic as well.

The non-clausal connection calculus is a generalization of the clausal connec-
tion calculus. To this end, a formal definition of non-clausal matrices is given, the
extension rule is slightly modified and a decomposition rule is added. In contrast
to existing approaches, clause copies are added carefully and dynamically during
the proof search. The non-clausal connection calculus combines the advantages of
more natural (non-clausal) sequent or tableau calculi with the goal-oriented property
of connection calculi. The non-clausal connection calculus is implemented in the
compact PROLOG theorem prover nanoCoP. nanoCoP not only returns more natural
non-clausal proofs, but the proofs are also significantly shorter.

To sum up, the presented research work has provided sufficient evidence to sup-
port the assertion that connection calculi are a solid basis for efficiently automating
formal reasoning in classical and non-classical logics. They have been implemented
carefully in a very compact and elegant way. Whereas the resulting performance is
similar or even superior to that of existing — significantly more complex — ATP
systems, the correctness of the concise code of the core provers can be checked
much more easily. Hence, such implementations can not only serve as tools for

Advances in Connection-Based Automated Theorem Proving 239

constructing provably correct software, but they themselves follow an approach
that ensures that they are provably correct software. An observation that was made
25 years ago by Hoare [35]:

I conclude that there are twoways of constructing a software design: Oneway is tomake it so
simple that there are obviously no deficiencies and the other way is to make it so complicated
that there are no obvious deficiencies. The first method is far more difficult.

Acknowledgements We would like to thank several anonymous referees for their constructive
comments which were helpful to improve the text. Our thanks are also due to the editors Jonathan
Bowen,Michael Hinchey and Ernst-Ruediger Olderog for the organization of the ProCoSWorkshop
in 2015, for compiling this volume and for inviting us to both projects.

References

1. http://www.scientificamerican.com/article/pogue-5-most-embarrassing-software-bugs-in-
history/. Accessed 15 June 2016

2. https://en.wikipedia.org/wiki/2015_Seville_Airbus_A400M_Atlas_crash. Accessed 15 June
2016

3. https://en.wikipedia.org/wiki/List_of_failed_and_overbudget_custom_software_projects.
Accessed 15 June 2016

4. Antonsen, R., Waaler, A.: Liberalized variable splitting. J. Autom. Reason. 38, 3–30 (2007)
5. Astrachan, O., Loveland, D.: METEORs: high performance theorem provers using model

elimination. In: Bledsoe,W., Boyer, S. (eds.) AutomatedReasoning: Essays inHonor ofWoody
Bledsoe, pp. 31–60. Kluwer, Amsterdam (1991)

6. Andrews, P.B.: Generalmatings. In: Joyner,W.H. (ed.) FourthWorkshop onAutomatedDeduc-
tion, pp. 19–25 (1979)

7. Andrews, P.B.: Theorem proving via general matings. J. ACM 28, 193–214 (1981)
8. Barwise, J.: An introduction to first-order logic. In: Barwise, J. (ed.) Handbook ofMathematical

Logic, pp. 5–46. North-Holland, Amsterdam (1977)
9. Blackburn, P., van Bentham, J., Wolter, F.: Handbook of Modal Logic. Elsevier, Amsterdam

(2006)
10. Baumgartner, P., Eisinger, N., Furbach, U.: A confluent connection calculus. In: Hölldobler,

S. (ed.) Intellectics and Computational Logic. Applied Logic Series 19, pp. 3–26. Kluwer,
Dordrecht (2000)

11. Bibel, W.: An approach to a systematic theorem proving procedure in first-order logic. Com-
puting 12, 43–55 (1974)

12. Bibel, W.: Syntax-directed, semantics-supported program synthesis. Artificial Intelligence 14,
243–261 (1980)

13. Bibel, W.: On matrices with connections. J. ACM 28, 633–645 (1981)
14. Bibel, W.: Matings in matrices. Commun. ACM 26, 844–852 (1983)
15. Bibel, W.: Automated Theorem Proving, 2nd edn. Vieweg, Braunschweig (1987)
16. Bibel, W.: Research perspectives for logic and deduction. In: Stock, O., Schaerf, M. (eds.)

Reasoning. Action, and Interaction in AI Theories and Systems - Essays dedicated to Luigia
Carlucci Aiello, LNAI 4155, pp. 25–43. Springer, Berlin (2006)

17. Bibel, W.: Early history and perspectives of automated deduction. In: Hertzberg, J., Beetz, M.,
Englert, R. (eds.) KI 2007. LNAI 4667, pp. 2–18. Springer, Berlin (2007)

18. Bibel, W., Brüning, S., Egly, U., Rath, T.: In: Bundy, A. (ed.) CADE-12. LNAI 814,
pp. 783–787. Springer, Heidelberg (1994)

19. Bibel, W., Otten, J.: From schütte’s formal system to modern automated deduction. In: Kahle,
R., Rathjen, M. (eds.), The Legacy of Kurt Schütte. Springer, London, to appear

http://www.scientificamerican.com/article/pogue-5-most-embarrassing-software-bugs-in-history/
http://www.scientificamerican.com/article/pogue-5-most-embarrassing-software-bugs-in-history/
https://en.wikipedia.org/wiki/2015_Seville_Airbus_A400M_Atlas_crash
https://en.wikipedia.org/wiki/List_of_failed_and_overbudget_custom_software_projects

240 J. Otten and W. Bibel

20. Brandt, C., Otten, J., Kreitz, C., Bibel, W.: Specifying and verifying organizational security
properties in first-order logic. In: Siegler, S., Wasser, N. (eds.) Verification, Induction, Termi-
nation Analysis. LNAI 6463, pp. 38–53. Springer, Heidelberg (2010)

21. Benzmüller, C., Otten, J., Raths, T.: Implementing and evaluating provers for first-order modal
logics. In: De Raedt, L., et al. (eds.) 20th European Conference on Artificial Intelligence (ECAI
2012), pp. 163–168. IOS Press, Amsterdam (2012)

22. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the 3rd Annual
ACM Symposium on the Theory of Computing, pp. 151–158. ACM, New York (1971)

23. van Dalen, D.: Intuitionistic logic. In: Goble, L. (ed.) The Blackwell Guide to Philosophical
Logic, pp. 224–257. Blackwell, Oxford (2001)

24. Deville, Y.: Logic Programming, Systematic Program Development. Addison-Wesley, Wok-
ingham (1990)

25. Eder, E.: Relative Complexities of First Order Calculi. Vieweg, Braunschweig (1992)
26. Fisher, K.: HACMS: high assurance cyber military systems. In: Proceedings of the 2012 ACM

Conference on High Integrity Language Technoloby, pp. 51–52. ACM, New York (2012)
27. Fitting, M.: Proof Methods for Modal and Intuitionistic Logic. D. Reidel, Dordrecht (1983)
28. Fitting,M.: First-Order Logic and Automated Theorem Proving, 2nd edn. Springer, Heidelberg

(1996)
29. Gentzen, G.: Untersuchungen über das logische Schließen. Math. Z. 39(176–210), 405–431

(1935)
30. Goel, S., Hunt, W.A., Kaufmann, M.: Engineering a formal, executable x86 ISA simulator

for software verification. In: Bowen, J.P., Hinchey, M., Olderog, E.-R. (eds.) Provably Correct
Systems. Springer, London (2016)

31. Hähnle, R.: Tableaux and related methods. In: Robinson, A., Voronkov, A. (eds.) Handbook of
Automated Reasoning, pp. 100–178. Elsevier, Amsterdam (2001)

32. Hähnle, R., Murray, N.V., Rosenthal, E.: Linearity and regularity with negation normal form.
Theor. Comput. Sci. 328, 325–354 (2004)

33. Hansen, C.: A Variable Splitting Theorem Prover. University of Oslo (2012)
34. Herbrand, J.J.: Recherches sur la théorie de la démonstration. Travaux Soc. Sciences et Lettres

Varsovie, Cl. 3 Mathem. Phys. (1930)
35. Hoare, C.A.R.: The emperor’s old clothes. Commun. ACM 24, 75–83 (1981)
36. Klein, G., Elphinstone, K., Heiser, G., Adronick, J., Cock, D., Derrin, P., Elkaduwe, D., Engel-

hardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: SeL4: formal verifi-
cation of an OS kernel. In: Proceedings of the 22nd ACM SIGOPS, pp. 207–220. ACM, New
York (2009)

37. Lee, S.-J., Plaisted, D.: Eliminating duplicates with the hyper-linking strategy. J. Autom. Rea-
son. 9, 25–42 (1992)

38. Letz, R., Stenz, G.: Model elimination and connection Tableau procedures. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 2015–2114. Elsevier, Amsterdam
(2001)

39. Letz, R., Schumann, J., Bayerl, S., Bibel, W.: SETHEO: a high-performance theorem prover.
J. Autom. Reason. 8, 183–212 (1992)

40. Loveland, D.: Mechanical theorem proving by model elimination. J. ACM 15, 236–251 (1968)
41. McCune, W.: Release of Prover9. Mile High Conference on Quasigroups, Loops and Nonas-

sociative Systems. Technical report, Denver (2005)
42. McLaughlin, S., Pfenning, F.: Efficient intuitionistic theoremprovingwith the polarized inverse

method. In: Schmidt, R.A. (ed.) CADE-22. LNCS 5663, pp. 230–244. Springer, Heidelberg
(2009)

43. Moore, J.S.: Computing verified machine address bounds during symbolic simulation of code.
In:Bowen, J.P.,Hinchey,M.,Olderog, E.-R. (eds.) ProvablyCorrect Systems. Springer, London
(2016)

44. Otten, J.: Clausal connection-based theorem proving in intuitionistic first-order logic. In: Beck-
ert, B. (ed.) TABLEAUX 2005. LNAI 3702, pp. 245–261. Springer, Heidelberg (2005)

Advances in Connection-Based Automated Theorem Proving 241

45. Otten, J.: leanCoP 2.0 and ileanCoP 1.2: high performance lean theorem proving in classical
and intuitionistic logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008.
LNCS 5195, pp. 283–291. Springer, Heidelberg (2008)

46. Otten, J.: Restricting backtracking in connection calculi. AI Commun. 23, 159–182 (2010)
47. Otten, J.: A Non-clausal Connection Calculus. In: Brünnler, K., Metcalfe, G. (eds.)

TABLEAUX 2011. LNAI 6793, pp. 226–241. Springer, Heidelberg (2011)
48. Otten, J.: Implementing connection calculi for first-order modal logics. In: Ternovska,

E., Korovin, K., Schulz, S. (eds.), 9th International Workshop on the Implementation of Logics
(IWIL 2012), EPiC, EasyChair, vol. 22, pp. 18–32 (2012)

49. Otten, J.:MleanCoP: a connection prover for first-order modal logic. In: Demri, S., Kapur, D.,
Weidenbach, C. (eds.) IJCAR 2014. LNAI 8562, pp. 269–276. Springer, Heidelberg (2014)

50. Otten, J.: nanoCoP: a non-clausal connection prover. In: Olivetti, N., Tiwari, A. (eds.) IJCAR
2016, LNAI 9706. Springer, Heidelberg (2016)

51. Otten, J., Bibel, W.: leanCoP: lean connection-based theorem proving. J. Symb. Comput. 36,
139–161 (2003)

52. Plaisted, D., Greenbaum, S.: A structure-preserving clause form translation. J. Symb. Comput.
2, 293–304 (1986)

53. Prawitz, D.: A proof procedure with matrix reduction. In: Laudet, M., et al. (eds.) Symposium
on Automatic Demonstration. Lecture Notes in Mathem, pp. 207–214. Springer, Berlin (1970)

54. Rautenberg, W.: A Concise Introduction to Mathematical Logic. Springer, Heidelberg (2010)
55. Raths, T., Otten, J., Kreitz, C.: The ILTP problem library for intuitionistic logic. J. Autom.

Reason. 38, 261–271 (2007)
56. Raths, T., Otten, J.: The QMLTP problem library for first-order modal logics. In: Gramlich, B.,

et al. (eds.) IJCAR 2012. LNAI 7364, pp. 454–461. Springer, Heidelberg (2012)
57. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12, 23–41

(1965)
58. Ray, S.: Scalable Techniques for Formal Verification. Springer, Heidelberg (2010)
59. Robinson, J.A.: Proof = guarantee + explanation. In: Hölldobler, S. (ed.) Intellectics and

Computational Logic. Applied Logic Series 19, pp. 277–294. Kluwer, Dordrecht (2000)
60. Robinson, J.A., Voronkov, A.: Handbook of Automated Reasoning. Elsevier, Amsterdam

(2001)
61. Schulz, S.: E - a brainiac theorem prover. AI Commun. 15, 111–126 (2002)
62. Smullyan, R.M.: First-Order Logic. Springer, Heidelberg (1968)
63. Statman, R.: Intuitionistic propositional logic is polynomial-space complete. Theoret. Comput.

Sci. 9, 67–72 (1979)
64. Stickel, M.: A Prolog technology theorem prover: implementation by an extended Prolog

compiler. J. Autom. Reason. 4, 353–380 (1988)
65. Sutcliffe, G.: The CADE-21 automated theorem proving system competition. AI Commun. 21,

71–81 (2008)
66. Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF and CNF parts,

v3.5.0. J. Autom. Reason. 43, 337–362 (2009)
67. Sutcliffe, G.: The CADE-22 automated theorem proving system competition - CASC-22. AI

Commun. 23, 47–59 (2010)
68. Sutcliffe, G.: The 5th IJCAR automated theorem proving system competition - CASC-J5. AI

Commun. 24, 75–89 (2011)
69. Waaler,A.: Connections in nonclassical logics. In: Robinson,A.,Voronkov,A. (eds.)Handbook

of Automated Reasoning, pp. 1487–1578. Elsevier, Amsterdam (2001)
70. Wallen, L.A.: Automated Deduction in Nonclassical Logics. MIT Press, Cambridge (1990)

	Advances in Connection-Based Automated Theorem Proving
	1 Introduction
	2 Preliminaries
	2.1 Classical Logic
	2.2 Non-Classical Logics
	2.3 Matrix Characterisation

	3 Connection Calculi for Classical Logic
	3.1 The Basic Calculus
	3.2 Restricted Backtracking
	3.3 Non-clausal Calculus

	4 Connection Calculi for Non-classical Logics
	4.1 Intuitionistic Logic
	4.2 Modal Logics

	5 Implementing Connection Calculi
	5.1 Classical Logic
	5.2 Intuitionistic Logic
	5.3 Modal Logics

	6 A Brief History and Perspectives
	7 Conclusion
	References

