Towards Interface-Driven Design of Evolving
Component-Based Architectures

Xin Chen and Zhiming Liu

Abstract The sustainable development of most economies and the quality of life
of their citizens largely depend on the development and application of evolutionary
digital ecosystems. The characteristic features of these systems are reflected in the
so called Internet of Things (IoT), Smart Cities and Cyber-Physical Systems (CPS).
Compared to the challenges in ICT applications that the ProCoS project used to
face 25 years ago, we today deal with systems with the complexity of ever evolv-
ing architectures of networked digital components, physical components, together
with sensors and devices controlled and coordinated by software. The architectural
components, also called subsystems, are designed with different technologies, run
on different platforms and interact through different communication technologies.
However, the ProCoS project goal remains valid and the critical requirements of
applications of these systems should not be compromised, and thus critical compo-
nents need to be “provably correct”. This chapter is in a form of a summary and
position paper to discuss how software design for complex evolving systems can be
supported by an extension of interface-driven rCOS method that we have recently
been developing. We show the need for an interface theory to underpin development
of techniques and tools. We demonstrate the need of multi-modelling notations for
the description of multi-viewpoints of designs to help mastering system complexity,
and their theoretical foundation in the nature of Unifying Theories of Programming
proposed by Sir Professor Tony Hoare and Professor He Jifeng, as part of the outcome
of the ProCoS project.

Zhiming Liuv—The work is funded by the project SWU 116007, and China NSF Grant
61672435.

X. Chen
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
e-mail: chenxin@nju.edu.cn

Z. Liu (X)

Centre for Software Research and Innovation, Southwest University, 2 Tiansheng Rd, Beibeli,
Chongqing 400715, China

e-mail: zhimingliu88 @swu.edu.cn

© Springer International Publishing AG 2017 121
M.G. Hinchey et al. (eds.), Provably Correct Systems, NASA Monographs
in Systems and Software Engineering, DOI 10.1007/978-3-319-48628-4_6

122 X. Chen and Z. Liu

1 Introduction

In the post-industry era, the challenges of the global concern of sustainable develop-
ment depend on innovation application digital ecosystems. Such a system exists in
the form of a distributed network of smart devices, program controlled physical sys-
tems (such as machines in future manufacturing factories and devices in hospitals),
digital computing systems and services on the Web (or clouds). The digital compo-
nents and physical objects with embedded electronics, software and sensors, which
interact and collaborate through different communication networks and protocols.
Such a system is open and evolving from both of

1. the key feature of the system that allows to plug-and-play new system components
and services, and allows legacy components to be adapted, upgraded or replaced,
and

2. the key feature of the business, social and knowledge communities it supports
that are ever changing and growing.

The generally known Internet of Things (IoT) [26], Smart Cities [35] and Cyber-
Physical Systems [20] are different forms of digital ecosystems. They are becoming
major networks of infrastructures for development of applications in all economic
and social areas such as healthcare, environment management, transport, enterprises,
manufacturing, agriculture, governance, culture, societies and home automation.
These applications share a common model of architectures and involve different
communication technologies and protocols among the architectural components. The
research and applications thus require collaborations among experts with expertise
in a variety of disciplines and various skills in software systems development.

The openness of the architecture, heterogeneity of components and the scale (or
complexity) of both functionality and interactions impose challenges beyond the
capacity of the state of the art of software engineering. One of the most fundamental
problems is that either the traditional top—down or the bottom—up development strat-
egy, or any combination of both kinds, cannot be readily used to the development
and maintenance of digital ecosystems. Therefore, there exist no methods and tools
to support systematic development of digital ecosystems and their front-end appli-
cations. Ad-hoc development using tailored existing methods and tools is far from
meeting the following essential requirements:

e safe and secure integration of new digital and cyber-physical components;

e maintenance and healthy evolution of legacy components and services;

e consistent adaptation of existing Internet and cloud services and applications to
new and special-purpose services/devices;

e development of new applications and services from existing services/devices;

e data collection from different sources with different components, interoperably
communicating among different components for processing, analytics and support
of decision making.

To advance beyond the state of the art of software engineering, we need a model that
captures the ever-evolving nature of the system architectures, allowing dynamically

Towards Interface-Driven Design of Evolving Component-Based Architectures 123

integration and replacement of different devices, services and components. We need
to develop software engineering techniques and their tool support for

1. incrementally building the model of the evolving architecture,

2. interface-based development of new components and front end applications, and
their integration into an existing architecture,

3. interface-based adaption and reuse of legacy components in an existing architec-
ture, and

4. validation and verification of components and systems by using integrated tools
of simulation, testing and formal verification of trustworthiness (safety, security,
privacy and dependability).

The architectural model should also support the design of fault-tolerance [10, 27,
36] with techniques of runtime monitoring and recovery [17]. Simulation with large
amount of data is also needed in building models, where the data are either known
or collected in the model building process, say through sensors.

In what follows, we discuss, in Sect. 2, the characteristic of complexity of digital
ecosystems to clarify the challenges stated above and to give a background motivation
to the interface-driven approach to health system evolution. In Sect. 3, we introduce
the basics of the rCOS formal model-driven method of component and object system.
We give an example in Sect. 4 to show how rCOS supports incremental and interface-
driven design. In Sect.5, we propose an extension of rCOS to modelling cyber-
physical component systems.

2 Complex Evolving Systems

Software engineering was born with the aim to deal with the inherent complexity
of software development, and its vision was that complexity should be mastered
through the use of models, techniques and tools developed based on the types of
theoretical foundations and practical disciplines that have been established in the
traditional branches of engineering [28, 33]. The directions and contents of software
engineering and their advances are defined and driven by the following fundamental
attributes of software complexity [1-3]:

the complexity of the domain application,

the difficulty of managing the development process,

the flexibility possible to offer through software, and

the problem of characterising the behaviour of software systems.

el S

The first attribute is the source of the challenges in software requirements gathering,
specification, analysis and validation, that are the main topics of software require-
ments engineering. The second attribute, driving the development of software project
management, concerns the difficulty to define and manage a development process
to deal with complex and changing requirements of software projects that involve a

124 X. Chen and Z. Liu

large team of software engineers and domain experts. The process has to identify the
software technologies and tools that support collaboration of the team in working on
shared software artifacts. The third attribute concerns the difficulties in the design of
software architecture, and the design and reuse of software components, algorithms
and platforms. The final attribute of software complexity pinpoints the challenges in
modelling, analysis, validation and verification of the behaviour of the software.

2.1 Chronic Complexity of Digital Ecosystems

The fundamental attributes of software complexity are all reflected in software of
digital ecosystems, but their extensions are becoming increasingly wider, due to the
increasing power of these systems, here we quote

“The major cause of the software crisis is that the machines have become several orders
of magnitude more powerful. To put it quite bluntly: as long as there were no machines,
programming was no problem at all; when we had a few weak computers, programming
became a mild problem, and now we have gigantic computers, programming has become an
equally gigantic problem.”

— Edsger Dijkstra

The Humble Programmer, Communications of the ACM [9]

Now not only we have gigantic computers, but also networked computers of all scales
of power from micro devices, through systems with multi-cores and multiprocessing
units, to supercomputers. They execute programs anywhere and any time, which share
data and communicate and collaborate with each other. These digital ecosystems are
represented by the popular Internet of Things (IoT), Smart Cities, Data Centres and
Cyber-Physical Systems (CPS). There exist not much agreed or clear characteristic
descriptions of these systems, and a variety of viewpoints and classification exist for
them. In fact, it is reasonable not to distinguish them [11, 18], especially when we
are interested in system modelling, design, verification and validation. They all share
the following attributes of these complex and evolving systems

1. They bring together computation, physical objects and processes, electronics,
and networking communication to seamless integration of and close interaction
between the physical world and computer-based systems.

2. The actions of these systems, as well as the objects, are monitored, coordinated,
controlled and integrated by computing systems and existing network infrastruc-
tures.

3. These system are constantly evolving, such that new digital systems, embedded
devices and physical processes keep being integrated into the system, and legacy
digital systems, devices and physical processes keep being removed, modified
and reconfigured.

We consider systems with the above characteristics which have component-
based or system of systems architectures. Some researchers intend to distinguish

Towards Interface-Driven Design of Evolving Component-Based Architectures 125

component-based systems from systems of systems and say that the latter have emer-
gent behaviour. We interchange these two terms as there is no clear definition on
what emergent behaviour of CPS is. Complex evolving systems exhibit the follow-
ing features that are the causes of major challenges in their modelling, analysis and
design:

1. Different components of these systems can have different data models, such as
patients’ records in healthcare systems. This feature implies the requirements of
interoperable communication and information sharing.

2. Such a system has multi-stakeholders and multi-endusers who have different
viewpoints of the system and whose applications use different computing, data
and network and physical resources and services of the system.

3. The composition and coordination of distributed computations and services also
support collaborative workflows involving multi-users.

4. Diversity of requirements of safety, security, privacy, timing, and fault-tolerance.

2.2 An Application Examples

The example as shown in Fig. 1, is a smart grid, taken from the presentation at an UK
Innovate event [31]. Such a system includes smart metering and advanced meter-
ing infrastructure that provides intriguing opportunities to embrace new sustainable
services for the whole energy value chain [8, 38].

A network of smart meters can also be part of the grid to provide real-time pricing
for all types of users and so encourage individual consumers to reduce their power
consumption at peak times. To this end, consumers can adjust their own individual

SMART GRID Smart appliances.

A vision for the future — a network Can shut off in response to Demand management)
of integrated microgrids that can frequency fuctuations {7 Use can be shifted to off-
monitor and heal isell peak times Lo save maney.

Dvsturbance
n the grid

Ewecute special protection gl

schemes in microseconds. ()| disturbances. and can segnal

for areas to be solated
generated
s
Hsolated micrognd
Wind farm A
Central power

Energy from small generators
By R dat

and solar panels ¢
overall demand on

Fig. 1 Smart grid

126 X. Chen and Z. Liu

load according to the time-differentiated prices. Furthermore, smart meters, software
and communication together also enable consumers to cooperate aiming at achieving
energy-aware consumption patterns, in order to realise for example, the demand-side
management, demand response and Direct Load Control programmes. For illustra-
tion, imagine a smart community that autonomously adapts its energy consumption
by means of enabling a limited number of household smart meters to share real-
time neighbourhood information cooperatively. Users therefore cooperate with each
other and with data collectors, thus facilitating the integration of energy consumption
information into a common view. We will propose to develop a model of an evolv-
ing network of smart meters in Sect.5. As in branches of transitional engineering,
handling the above challenges involves the best practice of the fundamental princi-
ples of separation of concerns, divide and conquer, and use of abstraction through
information hiding (in different design stages).

3 Interfaces and Component-Based Architectures

We now introduce the model of component interfaces that we have developed in the
rCOS methods - Refinement of Component and Object Systems. The work on the
rCOS framework includes formal semantics of an OO specifications, an OO refine-
ment calculus, a unified model of component-based and OO model, that are available
in a number of publications, e.g. [5, 7, 12, 13]. This chapter provides a summary
and linkages among these models and theories without going into formal details. We
have also published work about a UML profile for rCOS and tool support to model
constructions and transformations based on the profile [21, 23, 25]. Therefore, the
UML diagrams used in this chapter all have formal semantics in rCOS.

The rCOS method intends to support model-driven design (MDD) of complex
evolving system. This is characterised by letting system design be carried out in
a process through building system models to gain confidence in requirements and
designs. The process of model construction in MDD emphasises on

e the use of abstraction for information hiding so as to be well-focused and problem
oriented;

e the use of the engineering principles of decomposition and separation of concerns
for divide and conquer and incremental development and evolution; and

e the use of formalisation to make the process repeatable and artefacts (models)
analysable.

3.1 Key Features of rCOS

Main differences of the rCOS method from other model-based formal frameworks,
such as Circus [4, 29], are rather in philosophic principles and intentions, instead of

Towards Interface-Driven Design of Evolving Component-Based Architectures 127

Fig. 2 rCOS modelling A Level of abstraction
approach Interface Contract

C) c

C

I
Design
L T
: Cl1 | c2
C |
Implementation -

Hierarchy of components

; Q? Class model
:h\

<
¥ /Data functionality spec
Interaction model

Reactive behavior model

expressive power. For example, the rCOS method makes components and interfaces
as first class modelling concepts and elements, and explicitly and systematically
supports separation of concerns with its multi-dimensional modelling approach to
component-based architecture modelling, as shown in Fig. 2.

e First, it allows models of a component at different levels of abstraction, from the
top level models of interface contracts of components, through models produced at
different design stages including platform independent models (PIM) and platform
specific models (PSM), to models of deployment and implementations.

e At each level of abstraction, a component has models of different viewpoints,
including the class model (or data model), the specification of static data func-
tionality (i.e. changes of data states), the model of interaction protocol with the
environment (i.e. actors) of the components, and the model of reactive behav-
iour. These models of different viewpoints support the understanding of different
aspects of the components and support different techniques of analysis, design and
verification of different kinds of properties.

e A model of a component is hierarchical and composed from models of ‘smaller’
components that interact and collaborate with each other through their interfaces.
Some components can also control, monitor or coordinate other components.

The significant advantage is that it allows the model of a component or a system at
a level of abstraction is synthesised from the models of the data model, functional-
ity and architecture, while these individual models can be refined in separation to
preserve their consistency. More distinguished features of rCOS include

128 X. Chen and Z. Liu

e direct object-oriented abstraction, instead of coding classes, objects and polymor-
phism in process-oriented models with unstructured states [6, 13];

e fully supported by a sound and complete object-oriented refinement calculus [37];

e direct formulation of OO design patterns as refinement rules [32, 37];

e provision of model transformations from component-based models of architecture
of requirements to OO models of design architecture [6], and from OO models of
design architectures to component-based models of design architectures [21];

e the provision of a well defined UML profile so that models can be constructed
using the subset of UML defined by the profile and automatically translated to
into rCOS models [24, 25].

The feature in the last bullet point allows us to use UML to represent models in the
rest of the chapter.

3.2 Components and Their Interfaces

Components are service providers - including computing devices realising func-
tions, processes that coordinate and control components through interactions and
connectors. We intend to have different types of interfaces for different interaction
mechanisms and protocols. Here, we only use a running example to show the rCOS
modelling notation and method.

To ease the understanding and practice, we divide the definition of component into
its syntactic description and semantic specification that we call the contract of the
component. A (syntactic) component is represented by tuple C = (X, IF, A), where

e X is a finite set (possibly empty) of state variables.

e [F is the (provided) interface defining a finite set of operation signatures of the
form m(x; y) with a finite number of input parameters and a finite number of return
parameters. Each operation represents service provided to users.

e A is afinite set (possibly empty) of internal actions, each of which is represented
as a parameterless method «. An internal action is automatous and does not have
parameters.

For example, a memory can be modelled as component that provide a write operation
and read operation to its user, e.g. a processor.

Component M
Zd,
provided interface M/ F {
W(Z v); RG Z v)
}

A faulty memory can be modelled as a component below, that provide write and
read operations to the user (e.g. a processor) but its content can be corrupted by an
internal ‘fault action’.

Towards Interface-Driven Design of Evolving Component-Based Architectures 129

component M
Zd;
provided interface M F {
W(Z v); R(; Z v);
}
actions{//fault modelling corruption
fault

}

The syntactic interface defines the static type of the component, but it does not
specify the behaviour of the interface. The behaviour of an interface is specified by
a contract. For incremental understanding, we first define a service contract of an
interface, which specifies the state change of an execution of interface operation,
provided, required or internal operations.

A service contract C of a syntactic component C specifies

e an initial condition defining the allowed possible initial states of the variables X
by a state predicate C.init on X, called the initial condition;

e a state transition relation C.nex that specifies each operation m(x;y) in the pro-
vided interface IF by a pair P I R of a precondition P and a postondition R,
where

— P is apredicate over X UX,
— R is a predicate over X UXU X’ Uy, and X’ and y’ are the sets of the primed
version of the variables in X and 5.

The meaning of P I~ R is that from a state s of X with the input parameters ¥
satisfying precondition P, the execution of m() will change the state s of X into a
state s’ (in which the value of x is represented by x’) with the return values y such
that ((s,¥), (s, 5")) holds for R.

e the state transition relation C.iNexr that specifies each internal operation « in A
by pair P - R of a precondition P and a postondition R, where

— P is apredicate over X UX,
— R s a predicate over X U X'.

In general, it is proven in UTP [16] that all programming statements in tradi-
tional structured programming languages can be defined by designs. In particular, an
assignment x := e is defined as design {x} : frue - x’ = e, meaning that the state is
changed from a state s to a new state s” in which only the value of x is changed to the
evaluation of e in s, keeping other variables unchanged. The following specification
combines the syntax and the service contract of a memory component offering the
environment a write operation and a read operation.

Component M
Zd,
provided interface M F {
W(Z v){d :=v}; R(; Z v){v :=d}
}

The design calculus in UTP [16] is extended to object-oriented designs in [13, 37].

130 X. Chen and Z. Liu

A service contract only specifies the functionalities of the component in terms of
a contract between the assumption on the current state and input parameters and the
guarantee on the change of the state and return values. However, a component is in
general reactive, thus also controls its interaction protocol with the environment and
the dependency (or causality) relation between its operations. The flow of control
and interaction are specified by the guards of the operations:

e the guard of an operation m() in the interface IF or the international action set A
is a predicate on X such that m() can be executed in a state only when its guard
holds in the state and the action is disabled in the state otherwise.!

Thus, a (guarded) contract C of a component actually defines a labeled state transition
system, but the states combine both control and data together, and the labels are the
interface operations and internal operations. C specifies each operation m() by a triple
of a guard ¢, a precondition P and a post condition R, denoted by g&(P - R), called a
guarded design. A transition from a state s to a state s’ by an operation m(), provided,
required or internal, is possible only if its guard, denoted by C.guard(m), holds in s.
And when it is possible

e if the precondition P of m() holds in s, then R holds for the pair (s, s") of states
together with relation between the input and return parameters if m() is a provided
or required interface operation; and

e if the precondition P of m() does not hold in s, s’ can be any state.

When we separate the control states from the data states in the state transition system
of ¢, we obtain an automaton with the control states and the interface signatures as
the alphabet. This allows us to use the language defined by the automaton, a regular
expression when the automaton is of finite states, to express the interaction protocols.

We propose a textual specification of components in a format similar to Java, that
allows us to declare multiple interfaces. In the corresponding abstract definition of
components, the provided interface IF is the union of the declared interfaces. We take
a few simple examples to illustrate the concepts of components. For example, the
following reactive component specifies a memory that controls the order in which
the write and read operations are invoked.

Component B
Z d, Bool w=1;
provided Interface B/ F {
W(Z v){w&{d, w} : trued =v Aw =—-w};
RG Zr){~w&{v,w}: truev =d A w' = —-w}
}
}

This memory also behaves like a one-place buffer.

'In general, the guard can contain input parameters, and even the primed version y’ of return
parameters y in y, especially when advanced security assurance is required. We do not consider
this general case as we have no semantics yet to handle them.

Towards Interface-Driven Design of Evolving Component-Based Architectures 131

3.3 Composition and Orchestration

We can easily see that the one-place buffer B can be built by coordinating the uncon-
trolled memory M

Component B requires M
Bool w = 1;
provided Interface B/ F {
W(Z v){w&(M.W(z); w := 0)};
RGZr){~w&(M.R(;r); w:=1)}
}
}

We use regular expression to specify the protocol of control, obtaining the following
equivalent specification

Component B requires M
provided Interface B F {
W(Z v){M.W(2)};
RGZr){M.RG 1)}
protocol {(WR)* + (WR*)W}
}
}

Thus, a coordination mainly changes the interaction protocol of a component, such
as M, without changing the data functionality of the component. Later in Sect. 3.4,
we will see a visual model the protocol can be represented as state machine diagram
in the rCOS UML profile [23].

With given components, we can construct new components with connectors and
through orchestration of the provided operations in the given components. For exam-
ple, taking B, = B[W;/W, R;/ W] is obtained by the connector that renames the write
W () and read R() operations of B to W;() and read R; (), respectively, fori = 1, 2, we
can have

component M, requires By, B; {
Zy;
provided interface M, F {
} move(){B1.R1(; y); B2.Wi(»)};

This component provides the newly added move() and the operations that B; and
B, provide minus those that are called in the body of move(). And the protocol is
defined by the guard conditions of B; and B,. In general, we can extend a given set
of components to form new components by defining additional provided operations
using structured programming constructs. we can also use the internalising connector
to make a provided operation, such as move(), internal. for example Buff2 = M>\move()
behaves as

132 X. Chen and Z. Liu

component Buff2 requires B;, B>
Zy;
actions A {
move(){B1.R1(; y); B2.W1(»)}:
}

Component Buff2 behaves like M,, except for move() will be executed internally and
autonomously when it is enabled, without the need to be called from the environment.
Thus, it behaves like a two-place buffer.

Now we give an specification of the faulty memory, in which an interaction pro-
tocol is specified using an regular expression that can be coded as guards of the
interface operations.

component fM
Z d;
provided interface MIF {
W(Z v) {d :=v}; R(; Zv) {v:=d};
protocol {(WR)* + (W R)*W// protocol of C}
}

actions{//fault modelling corruption
fault {true| —d' <> d}
}

We use the renaming operators on the (provided) interface of f M and obtain three
faulty memory components fM; = fM[fM; W/W, fM;.R/R],fori = 1, 2, 3. We now
specify the following component.

component V requires fM,, fM,, M5 {
provided interface VIF{
W(Z v) {fM1.W (v); fM2.W (v); fM3.W (v)};
R(; Z v) {v :=vote(fMI.R(v), fM2.R(v), fM3.R(v))};
protocol {(WR)* + (WR)*W}
}

We can prove the proposition that the composition of V is refinement of the perfect
component B = C||M if it is assumed at any time at most one of the f M; is in faulty
state [27, 36]. The component-based architecture is shown in Fig. 3.

3.4 Separation of Concerns

‘When the data model for the variables, interface interaction protocols and the dynamic
behaviour of component become complex, models of different viewpoints for differ-
ent design concerns are needed. To this end, we have a UML profile for rCOS [24].
This allows that for object-oriented design of component-based modelling and design
of finite state components, we use

e UML class models for the representation of the data models at different levels of
abstraction, specially conceptual class model for requirements and design class
models for object-oriented design of components;

Towards Interface-Driven Design of Evolving Component-Based Architectures 133

<<component>> a
FTM
w
O___' < <component> > a]

R v

fm3.W fm3R MW fM2.R

O Q. O
< <component> > _';']_l & i <<component>> a

M2

M3 (J\I\ P\
<<component>> a
fml

Fig. 3 Component-based architecture of a fault-tolerant memory

e (extended) UML sequence diagrams for modelling interactions among compo-
nents and between components and actors (component sequence diagrams), and
for interaction among objects of a design of a component (object sequence dia-
grams); and

e (extended) UML state machine diagrams for modelling the dynamic behaviour of
a component.

The extended sequence diagrams, together with the textual specification of pre- and
post-conditions of the methods, generate the rCOS functionality definitions of the
participating components, such as V, and the state diagrams of the components define
the protocols that are corresponding to the guards of the methods in the components.
Thus, the contracts of the interfaces can be divided into the contracts of static
functionality and the contracts of dynamic behaviour. The former are given by
the unguarded design of interface operations that are specified only by their pre-
and post-conditions, and the latter by the state machine diagram of the components.
With a UML profile defined for rCOS, these models of different views points can be
automatically integrated into rCOS textual specification [23, 25].

The sequence diagrams and state machine diagrams of different viewpoints of f
the fault-tolerant memory are shown in Fig. 4, and we will discuss more examples in
the next section.

134 X. Chen and Z. Liu

2 1]

.
o

= - S

be e

| [
[
P |
6RO l
[
T wi)
'm © “ ‘ @ -
k- &

Fig. 4 UML models of interactions and dynamic behaviour

E

4 Incremental Design of an Enterprise Application

Incremental/evolutionary modelling and design has been practised in empirical and
ad hoc software development. This section, however, demonstrates how rCOS sup-
ports an incremental/evolutionary modelling and design of the case study of a com-
puterised trading system of an enterprise of supermarkets. It was used as the Common
Component Modelling Example (CoCoME) [6, 14]. It is an extension of the Point of
Sale (POST) example used in Larman’s textbook [19]. The case study was described
in terms of the use cases related to process sales, manage inventory, prepare for prod-
uct orders, process deliveries of ordered products, and exchange products among
different stores, etc.

The evolutionary nature of the system is determined by the development of the
enterprise. The business may just start from a single store and the store requires a
computerised system to improve the automation of the use case process sales to speed
up customer checkout and record the sales. Also, at the early stage of the business,
only one checkout “cash desk™ is enough, or the system development can start with
considering only one checkout cash desk.

4.1 Requirements Modelling

The requirements gathering and analysis starts from describing use cases, and any
described use case explicitly or implicitly implies restrictions on the functionality

Towards Interface-Driven Design of Evolving Component-Based Architectures 135

either due to the stage of the business development or consideration for a simplifi-
cation to start with. For example, we start with the use case process sale with cash
payment briefly described below.

Overview: A customer arrives at the Cash Desk with the product items to purchase
with cash payment. The sale and the payment are recorded in the system. Involved
Actors includes Customer and Cashier.

Process: The normal courses of interactions between the actors and the system are
described as follows.

1. When a Customer comes to the Cash Desk with her items, the Cashier
initiates a new sale. The system creates a new sale.

2. The Cashier enters each item, either by scanning in the bar code or by some
other means; if there is more than one of the same item, the Cashier can enter
the quantity. The system records each item and its quantity and calculates
the subtotal.

3. When there are no more items, the Cashier indicates to the system the end
of entry. The total of the sale is calculated. The Cashier tells the Customer
the total and asks her to pay.

4. The Customer gives the Casher cash and the Cashier enters the amount
received. The system records the cash payment amount and calculates the
change. Then the completed sale is logged.

Alternative courses of events: There are exceptional or alternative courses of
interactions, e.g., if the entered bar code is not known in the system, the Customer
does not have enough money for a cash payment. A system needs to provide
means of handling these exceptional cases, such as cancel the sale.

At the requirements stage, we model a use case as a component by a conceptual class
model, a component sequence diagram, state machine diagram, and the contract
of static functionality of the interface operations. For the use case process sale with
cash payment, we have the class model in Fig.5, sequence diagram in Fig. 6a, and
state machine diagram in Fig. 6b.

The operations that actor Cashier calls in Fig.6a form the provided interface of
component ProcessSale, and the state machine diagram in Fig. 6b defines its contracts
of dynamic behaviour. Their consistency can be checked by FDR [34] after being
translated into processes of CSP [15, 34]. The contract of static functionality of
ProcessSale 1s specified by the pre- and post-conditions of the interface operations.

The precondition of startSale() requires the existence of the Store, the CashDesk,
the Catalog and the Product Specifications. The postcondition of startSale() is to create a
new sale. Thus, the state variables of ProcessSale include Store store, CashDesk cashdesk,
Catalog cat, and Sale sale. The contract of startSale() can be specified as

{store # nil A cashdesk # nil A cat # nil} startSale() {sale’ = new Sale)

Similarly, we can specify the contracts of the other operations. For example,

136 X. Chen and Z. Liu

AStore # nil
Acashdesk # nil
Acat # nil
Asale.isComplete

AcashPay =new CashPayment
makeCashPayment(a) § AcashPay'.amount = a
As-Pay-by(sale, cash Pay')

The semantics of OO contracts of operations are derived from OO designs in [13].

4.2 0O Design of Components

In practical but informal OO development, the design stage is to decompose the
functionality and responsibility of each interface operation (informally) described
by it pre- and post-conditions and assign the sub-responsibilities to “appropriate”
objects of the component. The decomposition and assignment of the responsibilities
are carried out using GRASP design patterns [19]. These patterns are proven to be
rCOS refinement rules [13, 37]. Therefore, the following design steps can actually
be formally justified in rCOS.

For a requirements model of a component, such as that of ProcessSale given in
the previous subsection, we design each interface operation according to its contract.
This is done by using the formalised GRASP design patterns and refactoring rules that
are formally proven in the OO refinement calculus [37]. In particular, by Controller
pattern, we can decide to implement the provided interface of ProcessSale by class

Is-Described-by
-— -decription
* -upc: UPC
1 -price:real

ey

Is-Contained-in
* Logs-completed i Is-Managed-by

-date:Date
T . .
-time:Ti
s-Recofded-by Uses
1 0.1
Is-Baid-by Is-Initiated-by *
0.1
e :
1

-amount
-change

Fig. 5 Conceptual class diagram of ProcessSale

Towards Interface-Driven Design of Evolving Component-Based Architectures 137

[9]
(a) ' (
|

b)

tedale

1:startSale() |

endEntry ()

2:enterltem(upe, gty) o

completeSale

makeCashPayment ()

3:endEntry ()

4:makeCashPayment (amount)

Fig. 6 Sequence diagram and state machine diagram of ProcessSale

CashDesk, and the design of each operation is represented by an object sequence
diagram. For example, the design of makeCash Payment() is given in Fig.7.

With the model transformation tool of rCOS [22], we can check that the objects :
CashDesk, sale: Sale and :CashPayment form a component HandleSale with the inter-
face object: CashDesk; and the objects :Store and the container object ((Set))Sale form
another component StoreManagement with the interface object : Store. The tool then
automatically transforms the OO design in Fig.7 to a component-based design in
Fig. 8b.

The design proceeds with OO design of the other provided interface operations of
ProcessSale, followed by decomposition into provided interface operations, startSale(),
enterltem(upc, qty), and endEntry() of HandleSale, and required interface operations of
HandleSale for checking the validity of upc, and extracting the product specification
from the Catalog object continued in the Store object. Therefore, the upc checking
operation check(upc) and specification extracting operation find(upc; spec) are pro-
vided interface ManageStore. We then obtain a component-based decomposition of

| | I
! ! ! !
1imakeCashifngment (a:Quantiy) | 1 1 I
1. ImakeCashPayment (o) | | I
1 1. 1:croate(a) I
1 '
I
I
|
|
|
|
|
I

- S

1. 2:log(salo)
: 1 1.2 1:ndd (sale)
|
|
|

Fig. 7 OO design of makeCash Payment ()

138 X. Chen and Z. Liu

component ProcessSale shown in Fig.8a. The rCOS transformation tool [22] also
automatically generates the static component diagrams shown in Fig.9 correspond-
ing to the transformation from the OO design in Fig. 7 to the component-based design
in Fig.8.

4.3 Incremental Development and System Evolution

Component ProcessSale designed in the previous subsection assumes some restrictions
on the functionality. For example, among other restrictions, it deals cash payment only
and has no inventory update when the completed sale is logged. In general, in each
cycle of Rational Unified Development Process, components and their individual
operations are designed for restricted functionalities. Further development is to relax
the assumptions to extend their functionalities, and to design new components. The
rCOS method also put such incremental and evolutionary design into its formal
refinement calculus so as to ensure rigorous correctness. We informally show such
incremental design by singling out the process of handling cash payment as a use
case by itself, denoted by HandleCashPayment.

We take the operations represented by messages 1-3 in Fig. 6a to form a compo-
nent, denoted by HandleSale. Component HandleCashPayment itself can be designed as
a component with the provided interface operation makeCashPayment(). Its OO design
is the same as that in Fig. 7, and the component-based decomposition is the same as
that in Fig. 8b, but with a new component name HandleCashPayment. In a new devel-
opment cycle, we can follow the same way in which component HandleCashPayment
is modelled to design a model of component HandleCreditPayment. It provides an
operation makeCreditPayment(). Before a CreditPayment is created, HandleCreditPayment

(a) (b)

Zienterltom(upe, aty)
2 1 zehwck fupe)

1:makoCashPayment ()

1zstartSalo() 1
|
|
2 2: find{upe; spoch |
|

1
1
] I. 1:1og(sale) 1
|
|
1 I
1 |
' !

Hovmninlry)

4 makeCashiayment (a: Quant i ty)
4. 1:logisale)

Fig. 8 Component sequence diagram of component ProcessSale

Fig. 9 A component ik <<component>> & || pifstore <<component>> 3 |

diagram o— landleSale — MangeStore

Towards Interface-Driven Design of Evolving Component-Based Architectures 139

calls the service from actor Bank for the authorisation of the credit payment. There-
fore, HandleCashPayment requires to call an operation of the Bank, that we denote
by authoriseCredit(cardlnfo, amount). After authorisation, the CreditPayment is created,
and the completed sale is logged to Store. In the same way, we design a component
HandleCheckPayment.

Assume that a system that only supports process sale with cash payment is already
developed. In its system evolution, a new component HandleCreditPayment can be
specified through investigation of the original architecture that consists HandleSale
and ManageStore. This new component can then be designed and integrated into the
legacy architecture to support processing credit payment.

With the architecture models in Figs. 8 and 9, we can extend the provided interface
of ManageStore with more product management operations, such as those for changing
the price of a product, increasing and deducting the inventory of a product (after more
items are ordered and sold). We can then upgrade component HandleProcessSale so that
after the complete sale is logged to the Store, the product items of the sale are removed
from stock using the inventory deduction operation, say delnventory(upc, gty). This can
be realised by aspect oriented design and the interface operation makeCashPayment
(and makeCreditPayment()) first executes its original body and then calls the method
decInventory(cpu, qty) of ManageStore repeatedly for each item in the sale. This is an
“after” advice in aspect oriented design. An aspect oriented architecture modification
like this is modelled as a connector component that changes the original component
by modifying the execution of the interface operation according to the advices in the
aspect.

Further system evolution can go from one checkout cash desk to a number of
them in a store, from an one-store business to an enterprise of a store chain. Also,
further extension to the system can be developed to support online shopping. The
model of component-based architecture and interfaces contracts are also imported
for analysis of safety, security and performance vulnerabilities and deficiencies so
that architecture modifications and changes of interaction protocols can be designed
to improve the safety, security and performance.

5 Towards Modelling Cyber-Physical Component Systems

The components in the previous section are digital components. We now propose
to extend the models to physical interfaces and cyber-physical components, using
the evolutionary development of a smart meter network demand response (DR) pro-
gramme [30].

140 X. Chen and Z. Liu

(a) Physical interface (b) A Cyber-physical component

Fig. 10 Cyber-physical component

5.1 Physical Interfaces and Cyber-Physical Components

We extend the model of components with variables, called physical variables, whose
behaviour are functions from time to real number, depending on conditions of digital
states. The trajectories of the physical variables are specified by differential equa-
tions. For example, the rate of electricity consumption of an electrical appliance are
different when the appliance is in different states, say when it is “on”, “off”, or in
the “energy-saving” state. We model a physical interface as function f(xy, ..., xu;)
with one or more incoming signals xi, ..., x, that are continuous variables, and one?
outgoing signal y, as shown in Fig. 10a. The incoming signals of an interface are also
called requiring signals. A component also provides (or outputs) signals to the envi-
ronment, such as yi, ..., y, in cyber-physical component shown in Fig. 10b. There,
the function f defined in the component is part of hybrid behaviour of the compo-
nent, and the solid circle represents the provided digital (or cyber) interface. The
definition of operations in the provided cyber operations may rely on operations to
be provided by other operations, called the required cyber interface and represented
by the half circle in the diagram. The composition of components is also extended by
linking provided signals of a component to incoming signals of interfaces of another
component.

5.2 Model the Evolution of a Smart Meter Network

The system in this case study consists of three kinds of components.

e Consumer: is a household equipped with one or more smart meters that is con-
nected to the power line, electrical appliances, and to a communication network.

e Data Collector: is in charge of the data aggregation process. According to the
resource allocation algorithm, this process is modelled as a centralised coordinator,
but a distributed approach can be implemented securely.

e Utility: is a set of energy suppliers shared by customers. We assume utilities to
implement distributed generation

2In general, there can be more than one.

Towards Interface-Driven Design of Evolving Component-Based Architectures 141

rate

switch()

rate

(a) Model of an appliance (b) Model of a meter

Fig. 11 Appliance and meter

We mainly demonstrate the evolutionary nature of the system and show how our
modelling approach scales up. We first consider a single appliance A of a single
household. An appliance, as shown in Fig. 11a, has a digital state Szarus which takes
a value on or off, and it is changed by the digital interface operation switch(). The
appliance has an observable signal rate representing the electricity consumption rate.
It is a function from “Time” to real numbers, that (presumedly) can be obtained from
manufacturer of the appliance. The signal “rate” is useless if the householder only
observes the “rate” and switches on the appliance when needed.

If the householder wants to know better about his daily use of electricity and to
plan his use of the appliance in order to reduce their electricity bill, an electronic
meter M can be introduced as shown in Fig. 11b. Meter M records the accumulated
consumption of energy of an appliance A. Its provided interface M.pIF provides a
digital operation read() and its required interface M.rIF consists of a single signal
rate. The interface behaviour of M (i.e., the return of read()) is a discretised value of
the internal signal val that is a timed function dependent on the required signal rate.
For example, it can be defined as val(r) = [; ratedx. In general, the the trajectories of
the continuous variables of a component C are specified as timed functions of the
form vC = F(BC,vC, rW), where feedbacks loops are possible. If we compose the
appliance A and the meter M, we have the component shown in Fig. 12a.

There are alternative models. For example, a meter can include a sensor that
observes the rate. Then val would be discretised and represented as a step function.
Then read() directly returns the value of the internal discrete variable val. In this
model, the sensor is actually represented as part of the physical interface. Also, a
meter can be modelled as a component with a required signal rate and a provided
digital operation val() to the meter component. The advantage of the component-
based modelling with explicit interface contracts is exactly to allow different models
and support comparative analysis.

At this stage of system evolution, the read() and switch() are still only manually
operated by the householder. A further desire of home automation is to introduce a
control component P, called a control pad. For accuracy and fault-tolerance, we make
the internal signal val of A||M external, and denote this cyber-physical component as

142 X. Chen and Z. Liu

switch()

rate

read ()
(a) Composition A||M of an appli- (b) A cyber-physical model of
ance and a meter the composition MA

Fig. 12 Models of composition of an appliance and a meter

Fig. 13 Automatically
controlled appliance H”

read

MA, as shown in Fig. 12b. We now compose the control pad P and component MA,
and it is shown in Fig. 13. Now the householder can use ser and read() to program
daily use of the appliance, according to a daily budget.

Home automation The evolution continues and a household can have a number of
appliances. Then more meters or a meter with an open number of required input
signals can be used for the design of a control pad. The overall control pad can either
be designed using the existing individual control pads or the individual control pads
are replaced with a centralised control pad. In either case, the design models of the
individual control pads can be reused. The advantage of the proposed framework is
that a household with a number of appliance can be treated in the same ways as if
the household has a single appliance.

A; = Alswitch; /switch, rate; [rate], AZS A ... || Ax
M; = Alread; [read, val; [val], M=M | ...| My
P; = [set;/set, read; |read, val; /val, switch; /switch], P =Py | ... || P,

Towards Interface-Driven Design of Evolving Component-Based Architectures 143

Here, renaming of interface operations and signals are used. We add a global con-
troller P for planning and schedule of a household, and thus obtain an automated
household H = G||P| M| A. This is shown in Fig. 14a. This system is closed inside
the house and thus there are no security threats to it (unless a burglary happens).
However, a further step of evolution can introduce a controller operated through a
mobile phone, as shown in Fig. 14. We denote this automated home by MH. Then, an
open mobile phone communication network is used, and security threats are intro-
duced too. Therefore, interface-driven component-based architectures are essential
to identify system safety vulnerabilities, security threats, and performance deficien-
cies, so as to make architecture modifications to enhance safety, security, availability
and fault-tolerance.

Network evolution The designs of a household can be abstractly described as fol-
lows.

Component H {
attributes: fD, vD: Real;//fixed and variable
//energy demands of the community
signal: val: Real;
provided interface:
Rf(;x:Real), Rv(;y:Real);
Wf (x:Real), Wv(y:Real);
setUp() /** set up budget and policy /** by householder;
val/ ** provided signal

Functionality:
RE(;x){x:=£fD}; Rv(; y){y:=vD};
WE (x) {fD:=x}; Wv(y){vD:=y}

We define a network of households H = H; | ... || H; for a community of resi-
dence. Assume the component Urility provides a operations requestF(x:Real; u: Real)
and requestV(y:Real; v: Real) for supply of fixed energy and variable energy, respec-
tively. When it is called, the method returns the amount of committed supply for
the day through the return parameter. Consider a Coordnator component which peri-
odically calls the interface operations Rf;() and Rv;() and makes a request to Urility
through request(). After it receives notification from Utility about the committed sup-
ply, it “negotiates” with the households (through communication interfaces that we
omit in this chapter) and reallocates budgets to the households through Wf;() and
Wu; (). This gives a network system H || Coordinator|| Utility, as shown in Fig. 15.

Except for the “negotiation” of the Coordinator with individual households, the
composition H of the households behaves exactly the same as one household. Sim-
ilarly, we can imagine that a network of utilities works in collaboration to provide a
power supply. Once they reach an agreement among themselves on how they share
the supply to the request from the collector, they interface with the collector in the

144 X. Chen and Z. Liu

read () ’ , set ()

H

(a) Automated household

A

® H

WEE REE

AL

(b) A mobile controlled home

Fig. 14 Home automation

Towards Interface-Driven Design of Evolving Component-Based Architectures 145

Fig. 15 A smart grid

Coordinator

same manner as a single utility. Furthermore, the centralised collector can be trans-
formed into a distributed implementation so that the “negotiation” can be performed
among households themselves.

6 Conclusions

This chapter has argued the importance of component-based (or system of systems)
architectures and contracts of interfaces for healthy evolution of digital ecosystems.
We proposed an extension to the rCOS model of digital components and interfaces
to cyber-physical components. This makes the notion of interfaces very general.
For example, a piece of wall or a window can be modelled interfaces between the
temperatures outside and inside a room. Even the “air” between two sections of a
room can modelled as an interface that transforms the temperature of one section
to that of another. However, this general notion of interfaces poses a number of
challenges, for example

1. How to develop a model of contracts of such interfaces, as it is often the case that
there is no known physical laws or functions for defining these interfaces?

2. How to define the formal semantics and the refinement relation between cyber-
physical interface contracts?

These are the first significant questions to ask when developing a semantic theory
for these CPS components and their compositions. Further challenges include

1. how to develop design techniques and tools,

146 X. Chen and Z. Liu

2. how to combine David Parnas’s Four-Variable Model, Michael Jackson’s Prob-
lem Frames Model, and the Rational Unified Process (RUP) of the use case
driven approach systematically into the continuous evolutionary integration sys-
tem development process?

We believe that our model-driven approach is again promising, and techniques and
tools of simulation with rich data and machine learning would become increasingly
important in building the correct models.

Acknowledgements We acknowledge the contribution to the development of the rCOS method
from Zhenbang Chen, Ruzheng Dong, He Jifeng, Wei Ke, Dan Li, Xiaoshan Li, Jing Liu, Charles
Morisset, Anders Ravn, Volker Stolz, Shuling Wang, Jing Yang, Liang Zhao, and Naijun Zhan.
We also thank Jonathan Bowen, Xiaohong Chen, Sabita Maharjan, Esther Palomar and Yan Zhang
for the collaboration on Component-Based Modelling for Sustainable and Scalable Smart Meter
Networks [30].

References

1. Booch, G.: Object-Oriented Analysis and Design with Applications. Addison-Wesley, Boston
(1994)

2. Brooks, F.P.: No silver bullet: essence and accidents of software engineering. IEEE Comput.
20(4), 10-19 (1987)

3. Brooks, F.P.: The mythical man-month: after 20 years. IEEE Softw. 12(5), 57-60 (1995)

4. Cavalcanti, A., Sampaio, A., Woodcock, J.: A refinement strategy for circus. Form. Asp. Com-
put. 15(2-3), 146-181 (2003). http://dx.doi.org/10.1007/s00165-003-0006-5

5. Chen, X., He, J., Liu, Z., Zhan, N.: A model of component-based programming. In: Arbab, F.,
Sirjani, M. (eds.) International Symposium on Fundamentals of Software Engineering. Lecture
Notes in Computer Science, vol. 4767, pp. 191-206. Springer, Berlin (2007)

6. Chen, Z., Hannousse, A.H., Hung, D.V., Knoll, L., Li, X., Liu, Y., Liu, Z., Nan, Q., Okika,
J.C.,Ravn, A.P, Stolz, V., Yang, L., Zhan, N.: Modelling with relational calculus of object and
component systems—rCOS. In: Rausch, A., Reussner, R., Mirandola, R., Plasil, F. (eds.) The
Common Component Modeling Example. Lecture Notes in Computer Science, chap. 3, vol.
5153, pp. 116-145. Springer, Berlin (2008)

7. Chen, Z., Liu, Z., Ravn, A.P., Stolz, V., Zhan, N.: Refinement and verification in component-
based model driven design. Sci. Comput. Program. 74(4), 168—196 (2009). Feb

8. Darby, S.: Smart metering: what potential for householder engagement? Build. Res. Inf. 38(5),
442-457 (2010)

9. Dijkstra, E.-W.: The humble programmer. Commun. ACM 15(10), 859-866 (1972). An ACM
Turing Award lecture

10. Fischer, C.: Fault-tolerant programming by transformations. Ph.D. thesis, University of War-
wick (1991)

11. Gunes, V., Peter, S., Givargis, T., Vahid, F.: A survey on concepts, applications, and challenges
in cyber-physical systems. Trans. Internet Inf. Syst. 8(12), 4242-4268 (2014)

12. He,J.,Li, X., Liu, Z.: A theory of reactive components. Electr. Notes Theor. Comput. Sci. 160,
173-195 (2006)

13. He, J., Liu, Z., Li, X.: rCOS: a refinement calculus of object systems. Theor. Comput. Sci.
365(1-2), 109-142 (2006)

14. Herold, S., Klus, H., Welsch, Y., Deiters, C., Rausch, A., Reussner, R., Krogmann, K., Kozi-
olek, H., Mirandola, R., Hummel, B., Meisinger, M., Pfaller, C.: The common component
modeling example. In: Rausch, A., Reussner, R., Mirandola, R., P14sil, F. (eds.) The Common

http://dx.doi.org/10.1007/s00165-003-0006-5

Towards Interface-Driven Design of Evolving Component-Based Architectures 147

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Component Modeling Example. Lecture Notes in Computer Science, chap. 1, vol. 5153, pp.
16-53. Springer, Berlin (2008)

Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle River
(1985)

Hoare, A., He, J.: Unifying Theories of Programming. Prentice Hall, New York (1988)

Kim, M., Viswanathan, M., Lee, 1., Ben-Abdellah, H., Kannan, S., Sokolsky, O.: Formally
specified monitoring of temporal properties. In: Proceedings of the European Conference on
Real-Time Systems (1999)

Koubaa, A., Andersson, B.: A vision of cyber-physical internet. In: Proceedings of the Work-
shop of Real-Time Networks (RTN 2009), Satellite Workshop of ECRTS 2009 (2009)

. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and the Unified Process, 2nd edn. Prentice-Hall, Upper Saddle River (2001)

Lee, E.: Cyber physical systems: design challenges. Technical Report No. UCB/EECS-2008-8,
University of California, Berkeley (2008)

Li, D., Li, X., Liu, Z., Stolz, V.: Interactive transformations from object-oriented models to
component-based models. In: Arbab, F., Olveczky, P.C. (eds.) Formal Aspects of Component
Software - 8th International Symposium, FACS 2011, Oslo, Norway, September 14-16, 2011,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 7253, pp. 97-114. Springer
(2011). http://dx.doi.org/10.1007/978-3-642-35743-5_17

Li, D, Li, X., Liu, Z., Stolz, V.: Interactive transformations from object-oriented models to
component-based models. In: Formal Aspects of Component Software - 8th International Sym-
posium, FACS 2011, Oslo, Norway, September 14—16, 2011, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 7253, pp. 97—114. Springer (2011)

Li, D., Li, X., Liu, Z., Stolz, V.: Support formal component-based development with UML
profile. In: 22nd Australian Conference on Software Engineering (ASWEC 2013), 4-7 June
2013, Melbourne, Victoria, Australia. pp. 191-200 (2013)

Li, D., Li, X., Liu, Z., Stolz, V.: Support formal component-based development with UML
profile. In: 22nd Australian Conference on Software Engineering (ASWEC 2013), 4-7 June
2013, Melbourne, Victoria, Australia. pp. 191-200. IEEE Computer Society (2013). http://dx.
doi.org/10.1109/ASWEC.2013.31

Li, D., Li, X., Liu, Z., Stolz, V.: Automated transformations from UML behavior models to
contracts. SCI. CHINA Inf. Sci. 57(12), 1-17 (2014). http://dx.doi.org/10.1007/s11432-014-
5159-8

Li, X., Lu, R,, Liang, X., Shen, X., Chen, J., Lin, X.: Smart community: an internet of things
application. Commun. Mag. 49(11), 68-75 (2011)

Liu, Z., Joseph, M.: Specification and verification of fault-tolerance, timing, and scheduling.
ACM Trans. Program. Lang. Syst. 21(1), 46-89 (1999)

Naur, P., Randell, B. (eds.): Software Engineering: Report of a Conference Sponsored by the
NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968, Brussels, Scientific Affairs
Division, NATO (1969)

Oliveira, M., Cavalcanti, A., Woodcock, J.: Formal development of industrial-scale systems in
Circus. ISSE 1(2), 125-146 (2005). http://dx.doi.org/10.1007/s11334-005-0014-0

Palomar, E., Liu, Z., Bowen, J.P., Zhang, Y., Maharjan, S.: Component-based modelling for
sustainable and scalable smart meter networks. In: Proceeding of IEEE International Sympo-
sium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2014, Sydney,
Australia, June 19, 2014. pp. 1-6 (2014)

Pronios, N.B.: Software verification & validation for complex systems, presentation at Tech-
nical Feasibility Studies Competition Information Event, Innovate UK

Quan, L., Qiu, Z., Liu, Z.: Formal use of design patterns and refactoring. In: Margaria, T., Stef-
fen, B. (eds.) Leveraging Applications of Formal Methods, Verification and Validation, Third
International Symposium, ISoLA 2008, Porto Sani, Greece, October 1315, 2008. Proceed-
ings. Communications in Computer and Information Science, vol. 17, pp. 323-338. Springer
(2008). http://dx.doi.org/10.1007/978-3-540-88479-8_23

http://dx.doi.org/10.1007/978-3-642-35743-5_7
http://dx.doi.org/10.1109/ASWEC.2013.31
http://dx.doi.org/10.1109/ASWEC.2013.31
http://dx.doi.org/10.1007/s11432-014-5159-8
http://dx.doi.org/10.1007/s11432-014-5159-8
http://dx.doi.org/10.1007/s11334-005-0014-0
http://dx.doi.org/10.1007/978-3-540-88479-8_23

148 X. Chen and Z. Liu

33. Randell, B., Buxton, J. (eds.): Software Engineering: Report of a Conference Sponsored by the
NATO Science Committee, Rome, Italy, 27-31 Oct. 1969, Brussels, Scientific Affairs Division,
NATO (1969)

34. Roscoe, A.W.: Theory and Practice of Concurrency. Prentice-Hall, Upper Saddle River (1997)

35. Shapiro, M.: Smart cities: quality of life, productivity, and the growth effects of human capital.
Rev. Econ. Stat. 88, 324-335 (2006). May

36. Zhang, M., Liu, Z., Morisset, C., Ravn, A.P.: Design and verification of fault-tolerant compo-
nents. In: Butler, M., Jones, C., Romanovsky, A., Troubitsyna, E. (eds.) Methods, Models and
Tools for Fault Tolerance. Lecture Notes in Computer Science, vol. 5454, pp. 57-84. Springer,
Berlin (2009)

37. Zhao,L.,Liu, X., Liu, Z., Qiu, Z.: Graph transformations for object-oriented refinement. Formal
Aspects Comput. 21(1-2), 103-131 (2009). Feb

38. Zhu, J., Pecen, R.: A novel automatic utility data collection system using ieece 802.15.4-
compliant wireless mesh networks. In: Proceedings of IAJCIJME International Conference

(2008)

	Towards Interface-Driven Design of Evolving Component-Based Architectures
	1 Introduction
	2 Complex Evolving Systems
	2.1 Chronic Complexity of Digital Ecosystems
	2.2 An Application Examples

	3 Interfaces and Component-Based Architectures
	3.1 Key Features of rCOS
	3.2 Components and Their Interfaces
	3.3 Composition and Orchestration
	3.4 Separation of Concerns

	4 Incremental Design of an Enterprise Application
	4.1 Requirements Modelling
	4.2 OO Design of Components
	4.3 Incremental Development and System Evolution

	5 Towards Modelling Cyber-Physical Component Systems
	5.1 Physical Interfaces and Cyber-Physical Components
	5.2 Model the Evolution of a Smart Meter Network

	6 Conclusions
	References

