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Abstract The interplay between discrete and continuous dynamical models is
discussed, and a systematic approach to developing and combining these models
together is outlined. The combination is done with linking predicates that define
refinement relations between the models. As a case study, we build an abstract, discr
spatial model and a concrete, continuous dynamic model for traffic manoeuvrers of
multiple vehicles on highways. In the discrete model we show the safety (collision
freedom) of distance keeping and lane-change manoeuvrers using events and actions
to specify state transitions. By linking the discrete and continuous model via suitable
predicates that express the discrete events and actions as distances and set-points in
the continuous model, the safety carries over to the concrete model.

1 Introduction

Hybrid systemswere introduced in order tomodel dynamical systemswith a complex
interaction between discrete actions and continuous evolutions in their trajectories
[15]. Semantic models in the form of Hybrid Automata with the underlying transition
systems [2, 29] were soon developed, and simulation tools like Stateflow [30] and
Ptolemy II [24] appeared as well. Due to the success of model checking for timed
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Fig. 1 Modelling approach. The discrete model is a collection of discrete automata with transitions
governed by symbolic guards, sg, and with symbolic actions, sa. The underlying symbolic state
space is hybrid with time evolutions. However, it is asserted that time steps do not change the value
of guards and actions. The continuous model is a conventional control model which accepts set
points, z. Linking is given via suitable functions K and L

automata [3], much effort has been directed towards analysis tools which use over-
and under-approximations of hybrid automata [12, 14, 51], because it was clear from
the outset that decidability was impossible even for very simple models.

There has been much progress both in analysis tools and in the amount of case
studies, but it is still hard to find general composition principles. Often a system is
decomposed into simpler subsystems that are loosely coupled [4, 20, 42] and thus
can be analyzed individually. This loose coupling among concurrently operating
subsystems was illustrated in [7], and it was analysed at a semantic level for hetero-
geneous subsystems in [38]. One observation though is that verification is usually
done on subsystem models abstracted from detailed continuous models. It is this
decomposition that is in the focus of this work. In a search for a more general and
perhaps even teachable ap1proach to performing this abstraction, we have tried to
extract the principles from our continued efforts in modelling and verifying vehicle
manoeuvrers in traffic, because it is a setting with a complex state space, a demand
for decentralized control, and hybrid behaviours.

Here, we have reached the conclusion that a key point in the abstraction is to keep
the discrete part, often a supervisory layer, on symbolic and finite level without any
direct reference to time, because it allows for exhaustive verification using conven-
tional techniques. However, this will in itself leave the continuous dynamics as an
unexplored postulate. Thus, there is a need for linking the symbolic quantities of the
discrete model to the concrete continuous model by a proper refinement relation. Via
linking, behavioural properties of the abstract model are preserved for the concrete
model. An inspiration is here the data refinement relations explored in program ver-
ification [8]. However, in the reactive setting, linking predicates as in the approach
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of UTP (Unifying Theories of Programming) [23] are more suitable. In summary,
the approach presented has the following steps, illustrated in Fig. 1.
For the symbolic, discrete model:

1. build a qualitative model of the context with symbolic representation of states of
objects.,

2. formulate rules for interaction as finite state machines operating on the symbolic
state (If the state machines use communication protocols, timeout transitions may
be used to compensate for lost messages),

3. specify safety and liveness properties of the symbolic state,
4. verify the properties.

These steps are illustrated on the case of vehicle manoeuvrers in Sects. 2 and 3.
When this part has gone through a number of iterations and the result is satisfac-

tory, consider the concrete model:

5. identify a concrete dynamical model for the objects including available or at least
plausible sensors and actuators,

6. link the models by relating the symbolic state variables to concrete observables
that are computed by a controller for the dynamical system using available sensors
and concrete models of the individual objects, also link symbolic actions to set
points for the control,

7. design and validate the controllers and observers.

These steps are illustrated on the case in Sects. 4–6.
Note that often the two models may develop concurrently. When this happens, it

is important to keep the linkage stable when doing separate iterations.
A pragmatic consideration when designing the linking in the concrete case has

been to design a system where a smart car can navigate among ordinary dumb cars.
There is no need to require all cars to be smart and able to communicate with other
cars. This has implications for the sensors and actuators, see Fig. 3 in Sect. 5, as well
as impact on the symbolic guards and actions.

In Sect. 7, we comment on generally related work, while the conclusion in Sect. 8
considers limitations of the approach and potential for tool support.

2 Symbolic Model

In this section, we summarize and adapt the model of [22]. In this model, a multi-
lane highway has an infinite extension with positions represented by real numbers
in R and with lanes represented by a finite set of natural numbers, L = {0, . . . , N }.
We assume that all traffic proceeds in one direction, with increasing position values,
in pictures shown from left to right. The highway is populated by cars with unique
identities denoted by capital letters I = {A, B, . . .}.

At each moment in time, we represent the traffic on the highway by a traffic
snapshot. It records for each car the current position pos (at the rear end of the car)
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and speed spd, and on which lanes the car reserves or claims space. The idea is that
a reserved space is owned by a unique car. Thus for safety, we have to show that
reserved spaces of different cars are mutually exclusive. In contrast, a claimed space
is used in preparation of a lane change and may still overlap with claimed or reserved
spaces of other cars. However, then the lane change must not take place. The length
of reserved and claimed spaces is given by the safety distance, which is the length
of the car plus a safe estimate of the (speed-dependent) braking distance that the car
will need to come to a complete standstill.

Definition 1 A traffic snapshot T comprises the functions pos, spd, res, clm

• pos : I → R such that pos(C) is the position of car C along the lanes,
• spd : I → R such that spd(C) is the current speed of the car C ,
• res : I → P(L) such that res(C) is the set of lanes C reserves,
• clm : I → P(L) such that clm(C) is the set of lanes C claims.

We denote the set of all traffic snapshots by T.

Note that in T , it is not specified which space is occupied on the reserved and
claimed lanes. This information is given by an uninterpreted function se for safety
envelope. For a given traffic snapshot T , we introduce for each car C its safety
envelope seT (C) as the interval seT (C) = [pos(C), pos(C) + d(C)] starting at
the current position pos(C) of the car and of some uninterpreted length d(C) > 0,
which is intended to be the safety distance of car C dependent on its current speed
spd(C). The exact value of d(C) is not known in the symbolic model, but will be
determined in the concrete dynamic model.

2.1 View

For our safety proof, we restricst ourselves to finite parts of a traffic snapshot T
called views; the intuition being that safety depends on local information only.

Definition 2 A view V = (L,X, E) consists of an interval of lanes visible in the
view, L = [l, n] ⊆ L, and the extension visible in the view, X = [r, t] ⊆ R, and
E ∈ I, the identifier of the car under consideration.

A subview of V is obtained by restricting the lanes and extension we observe. For
this we use sub- and superscript notation: V L′ = (L′,X, E) and VX′ = (L,X′, E),
where L′ and X′ are subintervals of L and X, respectively.

For a car E and a traffic snapshot T = (pos, spd, res, clm) its standard view is

Vs(E,T ) = (L, [pos(E) − ho, pos(E) + ho], E) ,

where the horizon ho is chosen such that a car driving at maximum speed can, with
lowest deceleration, come to a standstill within the horizon.
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2.2 Spatial Logic

To specify properties of traffic snapshots within a given view in an intuitive and yet
precise way, we use a two-dimensional spatial interval logic, MLSL (Multi-Lane
Spatial Logic) [22]. In this logic, the horizontal dimension is continuous, represent-
ing positions on a highway, and the vertical dimension is discrete, representing the
number of a lane on a highway. In the syntax, variables ranging over car identifiers
are denoted by small letters c, d, u and v. To refer to the car owning the current
view, we use a special variable ego. By Var we denote the set of all these variables.
Additionally, the letter γ ranges over car identifiers or elements in Var.

Definition 3 (Syntax) The syntax of the multi-lane spatial logic MLSL is given by
the following formulae:

φ ::=true | u = v | free | re(γ ) | cl(γ ) |
φ1 ∧ φ2 | ¬φ1 | ∃v : φ1 | φ1 � φ2 | φ2

φ1

We denote the set of all MLSL formulae by �.

Formulae ofMLSL express the spatial status of neighbouring lanes on amulti-lane
highway. For a lane, the spatial status describes whether parts of it are reserved or
claimed by a car or completely free. To this end, MLSL has atoms re(γ ), cl(γ ), and
free, and two chop operators: the horizontal chop φ1 � φ2 expresses that an interval
can be divided into two horizontally adjacent parts such that φ1 holds in the left part

and φ2 in the right part, and the vertical chop
φ2

φ1
expresses that an interval can be

divided into two vertically adjacent parts where φ1 holds on the lower part and φ2 on
the upper part. We use juxtaposition for the vertical chop to have a correspondence
to the visual layout in traffic snapshots.

The logic is given a semantics that defines the when traffic snapshots satisfy a
given formula.

Definition 4 (Semantics)The satisfaction |= of formulae is defined inductively with
respect to a model M = (T , V, ν) comprising a traffic snapshot T , a view V =
(L,X, E) with L = [l, n] and X = [r, t], and a valuation ν : I ∪ Var → I consistent
with V , i.e., with ν(ego) = E and ν(C) = C for C ∈ I:

M |= true for all M

M |= u = v ⇔ ν(u) = ν(v)

M |= free ⇔ |L| = 1 and |X| > 0 and

∀C ∈ I : L ⊆ res(C) ∪ clm(C) ⇒ seT (C) ∩ (r, t) = ∅
M |= re(γ ) ⇔ |L| = 1 and |X| > 0 and

L ⊆ res(ν(γ )) and X ⊆ seT (ν(γ ))
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M |= cl(γ ) ⇔ |L| = 1 and |X| > 0 and L ⊆ clm(ν(γ )) and X ⊆ seT (ν(γ ))

M |= φ1 ∧ φ2 ⇔ M |= φ1 and M |= φ2

M |= ¬φ ⇔ not M |= φ

M |= ∃v : φ ⇔ ∃ α ∈ I : (T , V, ν⊕{v �→ α}) |= φ

M |= φ1 � φ2 ⇔ ∃ s : r ≤ s ≤ t and

(T , V[r,s], ν) |= φ1 and (T , V[s,t], ν) |= φ2

M |= φ2

φ1
⇔ ∃m : l − 1 ≤ m ≤ n + 1 and

(T , V [l,m], ν) |= φ1 and (T , V [m+1,n], ν) |= φ2

We write T |= φ if (T , V, ν) |= φ for all views V and consistent valuations ν.

For the semantics of the vertical chop, we set the interval [l,m] = ∅ if l > m.
A view V with an empty set of lanes satisfies only true or an equivalent formula.
Both chop modalities are associative. Other logical operators like ∨,→,↔ and ∀
are treated as abbreviations. Also, we use the notation 〈φ〉 for the two-dimensional
modality somewhere φ, defined in terms of both chop operators:

〈φ〉 ≡ true �

⎛
⎝
true
φ

true

⎞
⎠ � true.

For example, Safe ≡ ∀c, d : c �= d → ¬〈re(c) ∧ re(d)〉 expresses the safety prop-
erty that any two different cars have disjoint reserved spaces.

2.3 Transition System

Atraffic snapshot is an instant picture of the highway traffic.The following transitions
describe how it may change. Time may pass or a car may perform several actions
when attempting and performing a lane change. We use the overriding notation ⊕
for function updates [46].

T
t−→T ′ ⇔ T ′ = (pos′, spd′, res, clm)

∧∀C ∈ I : pos′(C) > pos(C) (1)

T
c(C,n)−−−→T ′ ⇔ T ′ = (pos, spd, res, clm′)

∧ |clm(C)| = 0 ∧ |res(C)| = 1

∧ {n + 1, n − 1} ∩ res(C) �= ∅
∧ clm′ = clm ⊕ {C �→ {n}} (2)
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T
wd c(C)−−−−→T ′ ⇔ T ′ = (pos, spd, res, clm′)

∧ clm′ = clm ⊕ {C �→ ∅} (3)

T
r(C)−−→T ′ ⇔ T ′ = (, pos, spd, res′, clm′)

∧ clm′ = clm ⊕ {C �→ ∅}
∧ res′ = res ⊕

{C �→ res(C) ∪ clm(C)} (4)

T
wd r(C,n)−−−−−→T ′ ⇔ T ′ = (pos, spd, res′, clm)

∧ res′ = res ⊕ {C �→ {n}}
∧ n ∈ res(C) ∧ |res(C)| = 2. (5)

In (1), time passes, which results in the cars moving along the highway to the
right. However, note that reservations, res, and claims, clm, cannot change during
time passing transitions. The new position and speed of each car is determined by
the dynamics of them, which is described at the concrete level. A car may claim a
neighbouring lane n (2) if and only if it does not already claim a lane or is in the
progress of changing the lane and therefore reserves two lanes. Furthermore, a car
may withdraw a claim (3) or reserve a previously claimed lane (4) or withdraw the
reservation of all but one of the lanes it is moving on (5).

3 Abstract Controllers

In this section we present abstract car controllers for keeping distance and changing
lanes. By abstract, we mean that properties, invariants and guards of transitions are
given by MLSL formulas. The controllers should guarantee that at any moment the
spaces reserved by different cars are disjoint. This is expressed concisely by

Safe ≡ ∀c, d : c �= d ⇒ ¬〈re(c) ∧ re(d)〉 ,

stating that in any lane any two different cars have disjoint reserved spaces. The
quantification over lanes arises implicitly by the negation of the somewhere modality
in Safe. A traffic snapshot T is safe if T |= Safe holds.
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3.1 Keeping Distance

Adistance controller DC of a car E should guarantee the safety as long as E is driving
along the highway without making any new claim or reservation. This is expressed

by time transitions among traffic snapshots: T
t−→T ′. From the perspective of the

car E , safety means that the following collision check remains false:

cc ≡ ∃c : c �= ego ∧ 〈re(ego) ∧ re(c)〉 .

Thus we require:
(DC) The distance controller DC of a car E keeps the property ¬cc invariant

under time transitions, i.e., for every transition T
t−→T ′ whenever T |= ¬cc, also

T ′ |= ¬cc.

3.2 Changing Lanes

We specify an abstract controller by a timed automaton [3] with clocks ranging over
R≥0 and data variables ranging over L and I. Strictly speaking, the single clock x ,
which is used in the automaton, is unnecessary for proving safety; it is added to
ensure liveness. MLSL formulae appear in transition guards and state invariants.
This can be seen in the lane-change controller in Fig. 2, where the MLSL formulae
φ1 and φ2 are kept symbolic. The abstract lane-change controller LCP of [22] is an
instantiation of this controller, except that it has the invariant ¬cc in the initial state
q0. Here this property is ensured invariantly by the distance controller DC.

LCP assumes that every car, E , knows the full extension of claims and reservations
of all carswithin its view. It thus hasperfect knowledgeof its neighbouring cars (hence
the letter P in the name of the controller); E perceives another car C as soon as C’s
safety envelope enters the view of E . In the following and in Sect. 5, we identify the
car variables ego and c with their values, the cars E and C , respectively.

At the initial state q0 of LCP, the car has reserved exactly one lane, which is saved
in the variable n. An auxiliary variable l stores the lane the ego car wants to move to.
Suppose ego intends to change to a neighboring lane, then it adheres to the following
protocol. First, it claims a space on the target lane adjacent to and of the same
extension as the reservation on its current lane, moving to state q1. Subsequently,
it checks for a potential collision (pc), i.e., whether its claim intersects with the
reservation or claim of any other car. This is expressed by the MLSL formula

pc ≡ ∃c : c �= ego ∧ 〈cl(ego) ∧ (re(c) ∨ cl(c))〉 .

If pc occurs, ego withdraws its claim and returns to state q0, giving up the wish
to change lanes for the moment. Otherwise, ego turns its claim into reservations
and thus reserves two lanes. This is in state q3, During this double reservation ego
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Fig. 2 The lane-change controller LCP with φ1 ≡ pc and φ2 ≡ ¬pc

changes lane within tlc time units, an upper time bound for the lane change. Then
egowithdraws its reservation on the original lane and continues to drive on the target
lane, being again in state q0. In this protocol, only turning the claim into a reservation
(in the transition from state q2 to state q3) may violate the safety property. Thus in
LCP of Fig. 2, we instantiate φ1 ≡ pc and φ2 ≡ ¬pc.

In order to ensure liveness in the states q0 and q1, they are to be left within t0 time
units. Liveness in state q0 could be ensured by adding an invariant asserting that the
state should be left when a claim is made. The lane change timeout tlc should strictly
speaking be replaced by a symbolic guard that would be asserted by the concrete
model when a lane change was completed. This symbolic guard would then be linked
to either a sensor value or most likely to a timer in the concrete model.

3.3 Safety

We stipulate now that every car is equipped with the controllers DC and LCP (or that
its driver manually follows its protocol). Under these assumptions, we can show:

Theorem 1 (Safety of DC and LCP) LetT0 be an initial safe traffic snapshot. Then
every traffic snapshot T that is reachable from T0 by transitions allowed by the
controllers DC and LCP is safe.

Proof As in [22], we fix an arbitrary car E and shows that ¬cc holds for every
traffic snapshot T reachable from T0. The argument is by induction on the number
of transitions needed to reach T from T0, and the crucial case in the induction
step is that of the reservation transition. In contrast to [22], the initial state q0 of
LCP in Fig. 2 does not have ¬cc as a built-in invariant. However, since the distance
controller DC is running in parallel to LCP, the safety property ¬cc is an invariant
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for this state. Moreover, it is also invariant under any transition that is not creating
any new reservation. Regarding LCP, we thus have that ¬cc holds in the start state
q2 of the reservation transition from state q2 to state q3 in LCP. As in [22], it can be
shown that performing the reservation transition in state q2 satisfying both ¬cc and
¬pc leads to q3 satisfying ¬cc. �

4 Concrete Model

The aim of this section is to present a physical model of a vehicle, which describes
the position pos(C) and the speed spd(C) of a vehicle C . It will lay the basis for
the controller design in Sect. 6.

4.1 Longitudinal Motion

A vehicle C is characterised by its velocity given in [m/s] at the current time t
given in [s], vC : R+ → R+. Both the time and the velocity are considered non-
negative reals. The acceleration and braking of the vehicle C is realised by a torque
T ≡ TC : R+ → R given in [Nm]. The torque is applied to the wheels from the
transmission and braking system, and it belongs at any given time to an interval
[T , T ] ≡ [TC , TC ], where TC < 0 is the maximal torque of the brakes, and TC > 0
is the torque at full throttle.

To model aerodynamic drag force, we introduce a drag coefficient CW. The drag
force is proportional to the square of the velocity

CW(t)v2C(t).

As indicated in the above equation, CW varies in time. Specifically, CW is charac-
terised as follows. Suppose a vehicle D drives in front of the vehicle under consid-
eration C . The drag coefficient is an empirical quantity approximated by

CW(δ, vD) = CC

(
1 − exp

(
− aδ

CDvD

))2

,

where CC , CD are the aerodynamic coefficients of the vehicles C and D, and a is a
constant [47]. In short, the aerodynamic coefficient of a vehicle is determined by its
geometry: shape and size. The drag coefficient is positive, Image(CW) ⊆ [0,CC ]. It
converges to CC for small distances δ and large velocities vD .

As a consequence, the dynamics of the vehicle C is given by

(Mr2 + J )v̇C(t) = −CW(δ(t), vD(t))r2vC(t)2 + rT (t),
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Fig. 3 Car with observers and actuators

where M is the mass of the vehicle C [kg], J is the combined moments of inertia of
the wheels [kgm2], and r is the radius of the wheels [m].

Let X be the state space of the vehicle C (with the vehicle D driving in in front).
It is the linear space of vectors comprising of the velocity vC of the vehicle C , and
the distance δ from C to D, i.e., X = R

2. We assume that both the velocity and
the distance are available as indicated in Fig. 3, where sensor v̂ measures vC and d̂1
measures δ. If the vehicle D is out of range the distance sensor delivers the value ∞.

A feedback controller is a function T : X → [T , T ] that takes the current state to
the torque. Negative values are realised by the braking system; whereas, the positive
values are realised by the transmission (the throttle). As a consequence, T (t) =
T (vC(t), δ(t)).

To simplify the notation, we introduce

x(t) = (x1(t), x2(t)) ≡ (δ(t), vC(t)) ∈ R
2

z(t) ≡ vD(t) ∈ R

b ≡ r

Mr2 + J
∈ R

a(x1, z) ≡ rbCW(x1, z) ∈ C∞(R2,R+)

u(t) ≡ bT ∈ R

(−u, u) ≡ (−bT , bT ) ∈ R
2
+

x0 ≡ (d0, v0C ) ∈ R
2. (6)

As a result, the equations of motion are given by the following Cauchy problem with
x(0) = x0:
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ẋ1(t) = z(t) − x2(t)

ẋ2(t) = −a(x1(t), z(t)) x2(t)
2 + u(t), (7)

where u(t) ∈ [u, u]. The subscripts of x refer to the components of the vector x .

Remark 1 The Eq. (7) can be used to compute the safety or braking distance ds(v0c)
as a function of the initial velocity v0c of the vehicle C . To this end, let z(t) = 0, i.e.,
the vehicle in front instantaneously stops

ẋ1(t) = −x2(t) and ẋ2(t) ≤ u

for x0 = (0, v0C ). To compute thebrakingdistance,weapply theGronwall lemma [48],
which we state now for completeness. Suppose that k is a non-negative and bounded
function on an interval [t0, t1] and l a non-decreasing function on the same interval.

If

v(t) ≤ l(t) +
∫ t

t0

k(s)v(s)ds

for t ∈ [t0, t1], then
v(t) ≤ exp

(∫ t

t0

k(s)ds

)
l(t).

Consequently, by the Gronwall lemma, the time to stop is t ≤ t̂ ≡ − v0C
u (notice that

u < 0). Hence, the braking distance is at most ds(v0C) = − (v0C )2

2u .

4.2 Lateral Motion

So far, we have not discussed lateral motion. For the details of modelling, we refer
to [37]. In short, the kinematic model of the vehicle C is given by the global position

Ẋ = vC cos(ψ + β) (8a)

Ẏ = vC sin(ψ + β), (8b)

where vC is the velocity of the vehicle C , β is the slip angle of the vehicle defined
below, and ψ is the yaw angle, that defines the orientation angle of the vehicle w.r.t.
the x-axis

ψ̇ = vC
l
cos(β) tan(θ). (9)

In (9), l is the vehicle base, the distance between the rear and the front wheels, and
θ is the angle between the front wheel and the longitudinal axis of the vehicle, with
θ ∈ [θ, θ ] for θ < 0 and θ > 0; θ as the control input.
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The slip angle of the vehicle is given by the relation

β ≡ β(θ) = tan−1

(
lr tan(θ)

l

)
,

where lr is the distance between the centre of gravity and the rear wheel.

5 Linking

To link the abstract and the concrete model, we must map the symbolic observables
and events to observer functions in the controllers. In this work, we assume that each
car is equipped with the observers, realised by suitable sensors, and actuators listed
in Fig. 3.

The abstract controller LPC takes a view of the traffic snapshot, represented by
MLSL formulae built with the atoms free, re(c),cl(c). By Theorem 1, this suffices for
the safety check at the abstract level. However, the check assumes that the reserved
or claimed spaces are large enough. Whether this assumption is true, depends on the
concrete controller based on the car dynamics.

5.1 Distance Controller

We first turn to the distance controller DC in each car as formalized by assumption
DC. Every car E keeps the property¬cc invariant under time transitions, expressing
that “no collision” occurs:

¬cc ≡ ¬∃c : c �= ego ∧ 〈re(ego) ∧ re(c)〉 .

Since the overlap re(ego) ∧ re(c) is symmetric, the distance controller in ego must
check forward or backward for any other car c. However, considering all cars together,
it suffices that each car ego checks only that there is “no collision forward”. Let c
ahead ego abbreviate the following MLSL formula expressing that car c is immedi-
ately ahead of ego:

c ahead ego ≡
⎛
⎝

¬re(ego)
∧

¬re(c)

⎞
⎠ �

⎛
⎝

re(ego) � ¬re(ego)
∧

¬re(c) � re(c) � ¬re(c)

⎞
⎠ .
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Then we replace the invariant ¬cc by the following formula:

¬ccf ≡ ¬∃c : c �= ego ∧ 〈re(ego) ∧ re(c)〉 ∧ 〈c ahead ego〉 .

We recall the resulting “forward looking” distance controller DCf . Note that log-
ically ¬ccf in DCf is weaker than ¬cc in DC, admitting more traffic snapshots.
However, when all cars check ¬ccf instead of ¬cc, safety remains guaranteed. This
is formalized as follows. Consider the abstract setting A, where all cars are equipped
with DC, and the abstract forward setting A f , where all cars are equipped with DCf .

Proposition 1 (Safety of DCf ) Every time transition among traffic snapshots per-
mitted in Af is also permitted in A.

In the concrete controller, we have the observable d that implements the abstract
safety distance function d(ego) for car ego at its current speed. Also, there is the
concrete observable d̂1 measuring the distance to the next car c ahead. The formula
¬ccf is satisfied if the inequality d < d̂1 holds. Thus the linking predicate relating
the abstract and concrete levels is here

¬ccf ⇐ d < d̂1.

Note that the implication indicates that d < d̂1 admits no more traffic snapshots than
¬ccf does.

5.2 Lane-Change Controller

To link the abstract lane change controller LCP to the observers at the concrete level,
theMLSL formulae appearing as guards in LCP are replaced by suitable comparisons
of observer values read at the concrete level.

Since the distance controller DC is running in parallel to LCP, the safety property
¬cc holds as long as the reservation transition from state q2 to state q3 in LCP is
not performed (cf. Fig. 2 and the proof of Theorem 1). Note that we can weaken the
guard of any transition in LCP, except for this reservation transition, and the altered
lane change controller will stay safe. For example, we may even weaken the guard
φ1 to true. Then a claim can always be withdrawn, but this does not violate safety.

Regarding the reservation transition from state q2 to state q3, the controller will
stay safe as long as we strenghten its guard φ2, which in LCP is given by the formula

¬pc ≡ ¬∃c : c �= ego ∧ 〈cl(ego) ∧ (re(c) ∨ cl(c))〉

expressing that no potential collison occurs. To link¬pcwith the concrete controller,
we distinguish the cases of reservation and claim of c.
Case 1: φre ≡ ¬∃c : c �= ego ∧ 〈cl(ego) ∧ re(c)〉 . This formula states that no
(other) car c on ego’s target lane has a reservation that overlaps with ego’s claim.
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The car c may be (i) ahead of ego (or aligned with ego) or (ii) behind ego. In subcase
(i), the concrete controller looks forward using the observables d giving the safety
distance needed for car ego at its current speed and d̂t (with t either 2 or 3) measuring
the distance to the next car c in front of ego on the target lane of its lane change
maneuver. The concrete controller checks the inequality ds < d̂t . In subcase (ii), the
concrete controller looks backward using the observables d̂b (with b either 4 or 5)
measuring the distance to the next car behind ego on the target lane and ds,max , the
maximal braking distance of any car, i.e., an overapproximation of the actual braking
distance of that car. The concrete controller checks the inequality ds,max < d̂b. Thus,
the linking predicate relating the abstract and concrete levels is in this case

φre ⇐ d < d̂t ∧ ds,max < d̂b.

Due to the over-approximation in ds,max the check at the concrete level may be
stronger than necessary, permitting fewer lane changes than ¬pc, but it preserves
safety.
Case 2 : φcl ≡ ¬∃c : c �= ego ∧ 〈cl(ego) ∧ cl(c)〉 .

The formula states that no other car c on ego’s target lane has a claim that overlaps
with ego’s claim. Such a car c may only be in a lane next to ego’s target lane. In this
case, the concrete controller checks with its sensor bt (with t either 1 or 2) on the
side of the target lane for a turn signal of some car c on the lane next to the target
lane. The formula φcl is satisfied if ¬bt holds. Thus, the linking predicate relating
the abstract and concrete levels is in this case

φcl ⇐ ¬bt .

Summarising, at the concrete level, we instantiate

φ2 ≡ (d < d̂t ∧ ds,max < d̂b) ∧ ¬bt ,

which by the linking predicates for φre and φcl implies ¬pc at the abstract level.
For the guards of the two withdrawal transitions from state q1 to state q3 and from

state q2 to state q0 in Fig. 2, we put φ1 ≡ ¬φ2 for the above instantiation of φ2. Thus
compared with the abstract controller LCP, the guard φ1 is weakened, permitting
more withdrawals, but as argued before, this preserves safety.

Altogether, instantiating in the controller in Fig. 2 the formula φ2 by the distance
inequalities and blinker sensor values as stated above and φ1 by its negation, we
obtain a concrete lane-change controller that we call LCPc. Consider the abstract
setting ALC, where all cars are equipped with LCP, and the concrete setting CLC,
where all cars are equipped with LCPc.

Proposition 2 (Safety of LCPc) Every reservation transition among traffic snap-
shots permitted in CLC is also permitted in ALC.

Combining Propositions 1 and 2, we obtain:
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Theorem 2 (Safety of DCc and LCPc) Let T0 be an initial safe traffic snapshot.
Then every traffic snapshot T that is reachable from T0 by transitions allowed by
the controllers DCc and LCPc is safe.

6 Concrete Controllers

Themain focus in this sectionwill be on the longitudinalmotion control.Nonetheless,
for completeness we will provide a control for changing the lane.

6.1 Longitudinal Control

We will address the assumptions for the distance controller used in Sect. 5.1 linking
the safety to the safety envelope through the variable d. To this end, we propose a
sliding mode controller for a vehicle C that maintains the velocity of the vehicle at
the reference vref until the distance d betweenC and the vehicle D in front is reached.
Subsequently, the distance d is kept. If D is out of range of the distance sensor, the
controller keeps the velocity at vref . In the following, we assume that at full throttle,
the control u is strong enough to overcome the drag. To this end, we notice that
a(x1, z) ∈ [0, rbCC ] for any (x1, z) ∈ R2+, where the constant b is defined in (6). Let
the speed limit be denoted by v̄. Consequently, we assume that the maximal control
u > rbCC v̄2. By a safe control, we understand a control that keeps the motion of a
vehicle safe.

Definition 5 (Safe Control) A safe controller for the control system (7) and a func-
tion z : R+ → [0, v̄] is a function u : R3 �→ R such that the solutions of the dynami-
cal system (7)with u(t) = u(x(t), z(t)) satisfy the following condition: If x1(0) ≥ d,
then x1(t) > 0 for all t ∈ R+.

In plain words, Definition 5 says that an on-board controller is safe if: whenever
the distance from the controlled vehicle to a vehicle in front is initially greater than
d then a collision between these two vehicles will never happen.

Proposition 3 (Existence of a safe controller) Consider the control system (7) and
a function z : R+ → [0, v̄]. Let 0 ≤ vref < v̄, d ≡ d(v̄), and α ≡ rbCC v̄2. Suppose
that u < 0. Let k > 0, and define two affine maps

L1(x) ≡ x2 − vref , L2(x, z) ≡ z − x2 + k(x1 − d), (10)

and a polyhedral set

P(z) ≡ {x ∈ R
2| L1(x) ≤ 0 and − L2(x, z) ≤ 0}. (11)
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Then the control

u(x, z) =
{
u f or x ∈ R

2\P(z)
u f or x ∈ P(z)

(12)

is safe. Furthermore, the following two properties for the vehicle controlled by the
u in (12) hold:

1. If x2(0) > vref then x2(t) < x2(0) for all t ∈ R+ and there is τ ∈ R
+ such that

x2(t) ≤ vref for t > τ .
2. Let β ≡ inf{ż(t)| t ∈ R+} and γ ≡ sup{ż(t)| t ∈ R+}. Suppose that u < β and

u > α + γ , and assume
0 < k < min{β − u, u − α − γ }/v̄. Then
a. Let 0 ≤ x1(0) < d, and suppose that the controller (12) is such that u(t) = u

holds on an interval [0, τ ]. Then x1(t) > x1(0) for all t ∈ [0, τ ].
b. limt→∞ x1(t) = d.

Proof If x1(0) ∈ R
2\P(z), then the following holds. There is a family of open

intervals {(τα, τ α)| α ∈ �} such that x(τ α) ∈ P(z) and if t ∈ (τα, τ α) then x(t) ∈
R

2\P(z), hence u(t) = u, and from (7), x1(t) > 0. If t ∈ R\⋃
α∈�(τα, τ α) then

x(t) ∈ P(z(t)), and thus x1(t) ≥ d. The last statement follows from the following.
If x(t) ∈ P(z(t)), then

k(x1(t) − d) ≥ x2(t) − z(t). (13)

And, we consider two cases: x2(t) ≥ z(t) and z2(t) < z(t). If x2(2) ≥ z(t), then
from (13), x1(t) ≥ d. If z2(t) < z(t), then from (7), x1(t) ≥ x1(0) ≥ d. Hence, the
control (12) is safe.

We prove Property 1 and Property 2 of the proposition. To this end, we observe
that for x ∈ R

2\P(z),

L̇1(x, z) = −a(x1, z)x
2
2 + u ≤ u < 0 (14)

L̇2(x, z, ż) = ż + a(x1, z)x
2
2 + k(z − x2) − u

≥ β − kv̄ − u > 0. (15)

whereas, for x ∈ P(z),

L̇1(x, z) = −a(x1, z)x
2
2 + u ≥ −α + u > 0 (16)

L̇2(x, z, ż) = ż + a(x1, z)x
2
2 + k(z − x2) − u

≤ γ + α + kv̄ − u < 0. (17)

By (14), Property 1 holds.
We will show Property 2.a. To this end, we notice that u(t) = u whenever

x(t) ∈ Pz(t). We consider two cases z(t) > x2(t) and z(t) ≤ x2(t). If z(t) > x2(t)
then ẋ1(t) = z(t) − x2(t) > 0 and Property 2.a follows. Suppose that z(t) ≤ x2(t).
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Then 0 < k(x1(t) − d) ≥ z(t) − x2 + k(x1(t) − d) = L2(x(t), z(t)) ≥ 0, which is
a contradiction.

To show Property 2.b, we observe that by Inequalities (14)–(17), any flow line of
(7) intersects the boundary of P at a point say x̃ (transversally), i.e., there is t1 ≥ 0
such that x(t1) = x̃ . If L1(x̃) = 0, then the solution (in a Filippov sense) x(·) is such
that L1(x(t)) = 0 for all t ∈ [t1, t2],where t2 is the timeatwhich L2(x(t2), z(t2)) = 0.
Subsequently, the Fillipov solution x(·) is such that L2(x(t), z(t)) = 0 for all t ≥ t2.
As a consequence, z(t) − x2(t) + k(x1(t) − d) = 0, which is equivalent to

d

dt
(x1(t) − d) = −k(x1(t) − d).

Hence, limt→∞ x1(t) = d. �

The above proposition shows that there is a control that keeps the distance from
the vehicle C to the vehicle in front safe while the velocity of C does not exceed
the reference. Also whenever the vehicle C accelerates, u(t) = u, and initially the
distance x1(0) is less than d then the distance increases, i.e., the traffic situation is no
less safe than it was at the beginning. If the distance between C and D was greater
than d then there is no future time that they will hit each other.

To avoid discontinuous control and hence abrupt switches between acceleration u
and deceleration u, the control (12) can be replaced by a continuous approximation.
To this end, we will need an ε-neighbourhood ∂Pε(z) of the boundary ∂P(z) of
the polyhedral set P(z). Subsequently, in P\∂Pε(z), we will use u equal to u, in
R

2\(P(z) ∪ ∂Pε(z)), we will use u equal to u and in ∂Pε(z)), we will use the control
that is a linear combination of u and u weighted by the distance to ∂P(z). These
constructions will be detailed below. For this purpose, recall the definitions of L1,
L2 in (10), and P in (11), and consider

L1 ≡ L−1
1 (0) = {x ∈ R

2| L1(x) = 0} and L2,z ≡ {x ∈ R
2| L2(x, z) = 0},

H1 ≡ {x ∈ R
2| L1(x) ≤ 0} and H2,z ≡ {x ∈ R

2| − L2(x, z) ≤ 0}.

For an ε > 0, we define a map h : [−ε, ε] → [0, 1] by y �→ 1
2

(
1
ε
y + 1

)
. Let Lε

1
be the (closed) ε-neighborhood of L1 (with respect to the Hausdorff metric), Lε

2,z
be the ε-neighborhood of L2,z , Hε

1 be the ε-neighborhood of H1, and H
ε
2,z be the

ε-neighborhood of H2,z . Furthermore, we define the ε-neighbourhood Pε(z) of P
by

Pε(z) ≡ H
ε
1 ∩ H

ε
2,z .

Let xi (x) ≡ x − πLi (x) for i ∈ {1, 2}, where πL1 and πL2 are the projections on
L1 and L2,z , respectively. For l ≡ l(x) = argmax{|xi (x)|| i ∈ {1, 2}} let

y(x) = |xl | sign(〈nl, xl〉),
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where 〈·, ·〉 is the scalar product onR2, n1 and n2 are the normal vectors to L1(·) and
L2,z(·) pointing into P ,

n1 = (0,−1), n2 = (k,−1).

Finally, we are able to define the ε-neighbourhood ∂Pε(z) of the boundary of P(z)

∂Pε(z) ≡ Pε(z)\(R2\(Hε
1 ∪ H

ε
2,z)).

We define h̄ : P−ε(z) → [0, 1] by

h̄(x) = h(y(x)).

The function h̄ takes a point x in the ε-neighbourhood of ∂P(z) and delivers a number
between 0 and 1 dependent on the distance to ∂P(z): 0 when the distance is ε and x
is outside P and 1 when the distance is ε and x is inside P . The control is then

u(x, z) =
⎧⎨
⎩

u for x ∈ R
2\Pε(z)

(1 − h̄(x))u + h̄(x)u for x ∈ P−ε(z)
u for x ∈ P(z)\P−ε(z).

The parameter ε is to be chosen as a tradeoff between the accuracy of tracking the
distance d and “evenness” of the control. The bigger ε is, the more even and less
accurate is the control.

6.2 Lane Change

The control for lateral motion is discussed in [37]. For completeness of our study,
we propose a facile feedforward control for changing the lane. To avoid a collision
during themaneuver of changing the lanes, it is assumed that theminimumdistance d
to the front vehicles in the current lane and the neighboring target lane is big enough,
i.e., greater than the sum of the maximal braking distance of the vehicle C and the
distance

∫ tlc
0 vC(t)dt traveled by C during the lane change.

Recall the lateral motion given by the lateral position Y in (8b) and the yaw angle
ψ in (9). We will use the notation

b(θ) ≡ b(θ, vC ) ≡ vC
l
cos(β(θ)) tan(θ).

The next proposition characterises the the lateral motion

Proposition 4 Suppose b(θ) �= 0. Then the solution of (8b) and (9) belongs to the
graph Γ ≡ {(ψ,Y ) ∈] − π, π [×R| Y = F(ψ)} of the function
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F ≡ Fθ,y0,ψ0,vC : ψ �→ ỹ0(y0, ψ0) − vC
b(θ)

cos(ψ + β(θ)),

where ỹ0(y0, ψ0) = y0 + vC
b(θ)

cos(ψ0 + β(θ)), and y0 is the initial lateral position,
and hence ψ0 is the initial yaw angle.

Proof The tangent space T(ψ,Y )Γ to the graph γ at any point (ψ,Y ) ∈ Γ is given by

T(ψ,Y )Γ =
{

α

(
1,

∂F

∂ψ
(ψ,Y )

)
∈ R

2

∣∣∣∣ α ∈ R

}
,

but ∂F
∂ψ

(ψ,Y ) = vC
b(θ)

sin(ψ0 + β(θ)), and hence by (8b) and (9) we have (ψ̇, Ẏ ) ∈
T(ψ,Y )Γ . �

To change the lane, we change the state (Y, ψ) from (y0, 0) to (y1, 0). Without loss
of generality, it is assumed that y0 > y1.

6.2.1 Manoeuvre with Constant Velocity

If we suppose that the velocity vC during the entire manoeuvrer is kept constant,
then suppose that (θ0, θ1) ∈ [θ, 0) × (0, θ ] are such that the equation Fθ0,y0,0,vC (ψ) =
Fθ1,y1,0,vC (ψ), or equivalently

ỹ0(y0, 0) − ỹ0(y1, 0) + vc

(
cos(ψ + β(θ1))

b(θ1)
− cos(ψ + β(θ0))

b(θ0)

)
= 0,

has the solution ψ̂ . The proposed manoeuvre consists of

1. turning the front wheels from 0 to the angle θ0 > 0,
2. waiting until the orientation angle ψ is ψ̂ ,
3. turning the wheels to the angle θ1 < 0,
4. waiting until the orientation angle ψ reaches 0,
5. finally turning the front wheels back to 0.

6.2.2 Manoeuvre with Varying Velocity of the Vehicle

Suppose the vehicle velocity vC is piecewise constant on possibly very short time
intervals. Let θ∗(t) be the solution of the following equation

F∗(θ∗(t)) ≡ Fθ∗(t),Y (t),ψ(t),vC (t)(0) = y1.

Notice that θ∗(t) depends on the current velocity vC(t).
Then the lane-change manoeuvre consists of

1. turning the front wheel from 0 to the angle θ0,
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2. waiting until the yaw angle ψ(t) reaches ψ∗ for some ψ∗ ∈]0, π/2[,
3. keeping the wheels at the angle θ(t) = θ∗(t) until the orientation of the vehicle

reaches 0 yaw angle.
4. turning the front wheels back to 0.

Both proposed controllers are feed-forward, thus a linear control [37] is to be
implemented to remove deviations from the lateral reference y1. The time tlc of the
manoeuvre depends on the vehicle velocity, vC , and it is used in the guard of the
abstract controller LCP depicted in Fig. 2.

7 Related Work

In the following, we consider related work within the categories of verification,
hierarchical design approaches, spatial logics, and traffic maneuvers.

Automatic Verification. Most approaches to the automatic verification of hybrid
systems represent discrete control and continuous dynamics together in one formal
model, e.g., a hybrid automaton [2] or a hybrid program [36]. Whereas the reacha-
bility of locations is decidable for timed automata [3], this is in general not true for
hybrid automata [18]. These limitations are overcome by using suitable abstractions
and symbolic representations.

Model checking of linear hybrid automata by examining the reachable state space
started with the tool HyTech [19]. More advanced techniques are incorporated in
the tools PHAVer [12] and SpaceEx [13]. An alternative to these reachability-based
methods are bounded versions of model checking using SAT-based techniques mod-
ulo the theory of ordinary differential equations [10, 11]. The concept of local theory
extensions has been applied to proving safety properties of hybrid systems in [6].
Interactive theorem proving for hybrid systems in the context of an extended dynamic
logic is pursued in [36]. For Hybrid CSP an experimental tool was developed [49].

Hierarchical Design. To simplify the analysis of hybrid systems, several
approaches to controller design for hybrid systems have pursued a separation of
the dynamics from the control layer.

An early work with an example of keeping distance between vehicles, is the
paper by Nadjm-Tehrani and Strömberg [34], where they study the mapping from
the continuous state space to the discrete state space. In the approach, the twomodels
are combined to a hybrid model, and the linkage from the modes of the continuous
model to the discrete modes is done by a Characterizer that generates events and a
Selector for set-points. These could be characterized by linking predicates as done
in this chapter, that would allow a clearer separation of the models.

Raisch et al. [31, 32] introduce abstraction and refinement to support a hierarchical
design of hybrid control systems. However, this line of work stays within the same
underlyingmodel. Instead, thework here operateswith separatemodels, because they
can be tailored to the reasoning tools available for respectively automata and logics
and those available for conventional control theory. Here, we are more in accordance



116 E.-R. Olderog et al.

with the work in [38], that deals with semantic alignment of heterogeneous models.
The linking predicates introduced in the current workmaymake the alignment easier,
because it relates only specific quantities and not full models.

Another inspiration for our work has been the approach pursued by Van Schuppen
et al. [17] that works upwards from what we call the concrete model and introduce
synthesis of control laws for piecewise-affine hybrid systems based on simplices,
resulting in a discrete controller with transitions between the simplices. This may
be an approach to finding a symbolic state space, when there is no obvious way to
partition it.

Spatial Logic.Work on spatial logic often focusses on qualitative spatial reasoning
[43] as exemplified in the region connection calculus [39]. We have used the spatial
logic MLSL [21] to reason abstractly on highway traffic. The logic gives a compact
formulation of properties and configurations, and an ability to compose and decom-
pose them as well as a potential for deductions [26]. MLSL is inspired by interval
temporal logic [33], the Duration Calculus [50], and the Shape Calculus [40]. It is
a two-dimensional extension of interval temporal logic, where one dimension has a
continuous space (the position in each lane) and the other has a discrete space (the
number of the lane).

In [41], hybrid automata are considered where invariants and guards are expressed
in a spatio-temporal logic S4u . However, there is no separation of space and dynamics
as in our approach.

Traffic Maneuvers. A very influential effort was the California PATH (Partners
for Advanced Transit and Highways) project on automated highway systems for cars
driving in groups called platoons [44]. The manoeuvres include joining and leaving
the platoon, and lane change. Lygeros et al. [28] sketch a safety proof for car platoons
taking car dynamics into account, but admitting safe collisions, i.e., collisions at a
low speed. Not all scenarios of multi-lane traffic are covered in their proof.

Platzer et al. [5, 27] represent traffic applications in a differential dynamic logic
dL that is supported by the theorem prover KeYmaera [36]. This logic does not
separate space (symbolic model) from dynamics (concrete model), that is at the
heart of our approach. The paper [1] proposes a bottom-up strategy, where a concrete
model is gradually abstracted to Markov chains, for which the set of reachable states
is analysed.

On highways, the analysis of safety is simplified because all cars drive in one
direction.More difficult to analyse are country roadswith opposing traffic. The safety
of overtaking manoeuvres on such roads has been proven in [21]. Even more degrees
of freedom in traffic manoeuvres can be found in urban traffic. The manoeuvres at
crossings has been studied in [45].

Since driving assistants are liable to hit the road very soon, the effort at providing
clear modelling and verification for this application area is very important.

Linking. For linking abstract and concrete data-manipulating systems the con-
cepts of data and operation refinement with corresponding simulation-based proof
techniques are well-known [8, 9]. Note that these techniques start by relating abstract
and concrete data variables, that is not quite suitable in our setting, where we have
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to relate abstract predicates on reservations and claims to concrete sensor values.
The transfer of temporal properties from abstract to concrete transitions systems via
simulations and bisimulations is well-understood in the area of model checking [16].

8 Conclusion

This chapter has presented an approach tohybrid systemsmodellingwhere an abstract
model is built in theories that are decidable modulo symbolic guards and actions
while a concrete model uses conventional continuous time for which controllers are
developed. The key point is that these twoworlds are connected by linking predicates,
so the concrete model is a refinement of the abstract one.

In the following, we discuss pros and cons of the approach for the individual steps
and for the overall work.

Symbolic Model. A symbolic model is well known from a controller side, which
can be built using timed automata. Also the use of symbolic guards and actions is
intuitively easy. Note that time should enter only as timeouts on communications.
These timeouts occur at the interface to the lower level concrete model or in com-
munication protocols for interaction between the state machines.

When this is done, it is feasible to use model checking with a simplified envi-
ronment model that assigns suitable values from finite domains to the predicates,
and accept actions of similar finite types. Thus, an exhaustive automated verification
is possible, although it has not been done in this chapter, because we consider the
decomposition and linking the main points. Also, encoding the spatial model is a
major effort. Steps in this direction have been taken by S. Linker in formalising a
safety proof for a controller specification of [25] using the theorem prover Isabelle.

Defining a suitable state space is intrinsically difficult.We have used a spatial logic
to structure it. The logic gives a compact formulation of properties and configurations,
and an ability to compose and decompose them as well as a potential for deductions.
However, if a developer is not familiar with logic, it may be easier to stay with set
theory, i.e., use the semantics underlying the logic. This would also be the case if a
model checking tool is used, because the logicwould have to be semantically encoded
in most cases. The simple CTL or LTL logics used in model checkers are not nearly
as expressive as spatial logics. Thus, the logic is not essential for the approach or
even the application case, but it is a neat shorthand.

Concrete Model. Identification of the concrete model and controller development
is well known and is highly application dependent. In the current presentation, the
modelling and controller design is very general. For real applications there is much
engineering to do, but this is not relevant for this exposition.

During the development, one must have an eye on the predicates of the symbolic
model, so it is feasible to construct observers that match the guards, and handle set
points presented by the actions.

Linkage. The linking predicates are the formal outcome of elaborate discussions
concerning the interface of the twomodels. They represent the point wheremany real
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application projects fail, because engineering traditions from software development
and control system development meet. The advantage of the approach is that the two
sides have to meet and agree. An issue that is common to top-down approaches is
that the defined interface turns out to be either unimplementable in the concrete or
inadequate for the abstract verification. Here, we see no magic bullet.

Overall Comments.The approach seemswell suited for application areas, where a
collection of semi-autonomous entities have to coordinate to achieve common objec-
tives. In a tightly coupled application, where there is a tight centralized supervisor, it
is most likely easier to stay with a one level concrete model, typically a conventional
hybrid automaton.

Acknowledgements We thank three anonymous reviewers for their helpful comments.
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