
Jin Akiyama · Hiro Ito
Toshinori Sakai · Yushi Uno (Eds.)

 123

LN
CS

 9
94

3

18th Japan Conference, JCDCGG 2015
Kyoto, Japan, September 14–16, 2015
Revised Selected Papers

Discrete and Computational
Geometry and Graphs

Lecture Notes in Computer Science 9943

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Jin Akiyama • Hiro Ito
Toshinori Sakai • Yushi Uno (Eds.)

Discrete and Computational
Geometry and Graphs
18th Japan Conference, JCDCGG 2015
Kyoto, Japan, September 14–16, 2015
Revised Selected Papers

123

Editors
Jin Akiyama
Tokyo University of Science
Tokyo
Japan

Hiro Ito
The University of Electro-Communications
Tokyo
Japan

Toshinori Sakai
Tokai University
Tokyo
Japan

Yushi Uno
Osaka Prefecture University
Sakai
Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-48531-7 ISBN 978-3-319-48532-4 (eBook)
DOI 10.1007/978-3-319-48532-4

Library of Congress Control Number: 2016956484

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

The original version of the cover and the front matter pages III–V were revised: The sequence
of the editor names was incorrect. Yushi Uno was not listed as volume editor. The erratum to the
cover and the front matter pages III–V is available at DOI: 10.1007/978-3-319-48532-4_26

Preface

This volume of proceedings contains the peer-reviewed papers presented during the
18th Japan Conference on Discrete and Computational Geometry and Graphs
(JCDCG2 2015). JCDCG2 2015 was held at Kyoto University, Kyoto, Japan, during
September 14–16, 2015.

This volume is dedicated to Prof. Naoki Katoh (Fig. 1) for his retirement from
Kyoto University and for his new journey to Kwansei Gakuin University. Professor
Katoh obtained his Bachelor, Master, and Doctor of Engineering degrees from Kyoto
University, in 1973, 1975, and 1981, respectively. He was first employed by Kobe
University of Commerce as a lecturer in 1981, and then became Associate Professor
and (Full) Professor before he went back to his alma mater in 1997. At Kyoto
University, he entered and worked as a professor at the Department of Architecture and
Architectural Engineering, Faculty of Engineering. After 18 years of dedication, he
retired from Kyoto University and moved to the Department of Informatics, Faculty of
Science and Technology at Kwansei Gakuin University where he is now a professor.
Professor Katoh has written 137 refereed academic papers in highly competitive
journals, such as J. ACM, SIAM J. Comput., SIAM J. Discrete Math., Discrete &
Comput. Geometry, and Combinatorica. Moreover, he has 94 peer-reviewed papers in
various international conference proceedings, which includes STOC, FOCS, SODA,
and SoCG. His diverse research output includes operations research, combinatorial
optimization, discrete algorithms, computational geometry, etc. His contributions to the
aforementioned areas are undoubtedly outstanding and relevant. Thus, it is with great
pleasure that we celebrate his move by dedicating these proceedings to him.

Fig. 1. Professor Naoki Katoh

The previous JCDCG2 conferences were held in Tokyo as JCDCG (Japan Conference
on Discrete and Computational Geometry) in 1997, 1998, 1999, 2000, 2002, 2004,
2006, and 2011 and as JCDCG2 (Japan Conference on Discrete and Computational

Geometry and Graphs) in 2013 and 2014; in Kyoto as KyotoCGGT (Kyoto Interna-
tional Conference on Computational Geometry and Graph Theory) in 2007; and in
Kanazawa as JCCGG (Japan Conference on Computational Geometry and Graphs) in
2009. Other conferences in this series were also held in the Philippines (2001),
Indonesia (2003), China (2005, 2010), and Thailand (2012). The proceedings of these
conferences were published by Springer as a part of the LNCS series in volumes 1763,
2098, 2866, 3330, 3742, 4381, 4535, 7033, 8296, and 8845. The proceedings of the
fifth and 12th conferences (2001 and 2009) were published by Springer as special
issues of the journal Graphs and Combinatorics, Vol. 18, No. 4, 2002 and Vol. 27,
No. 3, 2011.

JCDCG2 2015 received 64 proposals for oral presentations, 60 of which were
accepted, and only 25 of these papers are published in these proceedings after careful
scrutiny and strict review procedures.

The organizers of JCDCG2 2015 express deep appreciation to the invited speakers,
John Iacono, Toshihide Ibaraki, János Pach, David Rappaport, and Takeshi Tokuyama,
for their invaluable contributed talks. It is also appropriate to record the organizers’
gratitude to the conference secretariat, to all the speakers, and to each participant. This
conference was a success because of all of you.

July 2016 Jin Akiyama
Hiro Ito

Toshinori Sakai
Yushi Uno

VI Preface

Organization

Conference Chair

Naoki Katoh Kwansei Gakuin University, Japan

Program Committee

David Avis Kyoto University, Japan, and McGill University,
Canada

Erik D. Demaine MIT, USA
Rudolf Fleischer Fudan University, China, and GUtech, Oman
Takashi Horiyama Saitama University, Japan
Hiro Ito University of Electro-Communications, Japan (Chair)
David Kirkpatrick University of British Columbia, Canada
Matias Korman National Institute of Informatics, Japan
Marc van Kreveld Utrecht University, The Netherland
Stefan Langerman Université Libre de Bruxelles, Belgium
Yasuko Matsui Tokai University, Japan
Chie Nara Meiji University, Japan
Yoshio Okamoto University of Electro-Communications, Japan
Toshinori Sakai Tokai University, Japan
Yushi Uno Osaka Prefecture University, Japan
Jorge Urrutia Universidad Nacional Autónoma de México, Mexico

Organizing Committee

Shuichi Miyazaki Kyoto University, Japan
Yota Otachi JAIST, Japan
Toshinori Sakai Tokai University, Japan
Kenjiro Takazawa Kyoto University, Japan
Atsushi Takizawa Osaka City University, Japan
Shin-ichi Tanigawa Kyoto University, Japan
Yushi Uno Osaka Prefecture University, Japan (Chair)
Liang Zhao Kyoto University, Japan

Steering Committee

Jin Akiyama Tokyo University of Science, Japan (Chair)
Erik D. Demaine MIT, USA
Hiro Ito University of Electro-Communications, Japan
Mikio Kano Ibaraki University, Japan

Naoki Katoh Kwansei Gakuin University, Japan
Stefan Langerman Université Libre de Bruxelles, Belgium
Toshinori Sakai Tokai University, Japan
Jorge Urrutia Universidad Nacional Autónoma de México, Mexico

VIII Organization

Contents

A Note on the Number of General 4-holes in (Perturbed) Grids 1
O. Aichholzer, T. Hackl, P. Valtr, and B. Vogtenhuber

Reversible Nets of Polyhedra . 13
Jin Akiyama, Stefan Langerman, and Kiyoko Matsunaga

Geometric p-Center Problems with Centers Constrained to Two Lines 24
Binay Bhattacharya, Ante Ćustić, Sandip Das, Yuya Higashikawa,
Tsunehiko Kameda, and Naoki Katoh

Dissection with the Fewest Pieces is Hard, Even to Approximate 37
Jeffrey Bosboom, Erik D. Demaine, Martin L. Demaine, Jayson Lynch,
Pasin Manurangsi, Mikhail Rudoy, and Anak Yodpinyanee

Mario Kart Is Hard . 49
Jeffrey Bosboom, Erik D. Demaine, Adam Hesterberg, Jayson Lynch,
and Erik Waingarten

Single-Player and Two-Player Buttons & Scissors Games
(Extended Abstract) . 60

Kyle Burke, Erik D. Demaine, Harrison Gregg,
Robert A. Hearn, Adam Hesterberg, Michael Hoffmann,
Hiro Ito, Irina Kostitsyna, Jody Leonard, Maarten Löffler,
Aaron Santiago, Christiane Schmidt, Ryuhei Uehara, Yushi Uno,
and Aaron Williams

Fitting Spherical Laguerre Voronoi Diagrams to Real-World Tessellations
Using Planar Photographic Images . 73

Supanut Chaidee and Kokichi Sugihara

Continuous Flattening of Orthogonal Polyhedra . 85
Erik D. Demaine, Martin L. Demaine, Jin-ichi Itoh, and Chie Nara

Bust-a-Move/Puzzle Bobble Is NP-complete . 94
Erik D. Demaine and Stefan Langerman

Minimum Rectilinear Polygons for Given Angle Sequences 105
William S. Evans, Krzysztof Fleszar, Philipp Kindermann,
Noushin Saeedi, Chan-Su Shin, and Alexander Wolff

Continuous Folding of Regular Dodecahedra . 120
Takashi Horiyama, Jin-ichi Itoh, Naoki Katoh, Yuki Kobayashi,
and Chie Nara

Escher-like Tilings with Weights. 132
Shinji Imahori, Shizuka Kawade, and Yoko Yamakata

http://dx.doi.org/10.1007/978-3-319-48532-4_1
http://dx.doi.org/10.1007/978-3-319-48532-4_2
http://dx.doi.org/10.1007/978-3-319-48532-4_3
http://dx.doi.org/10.1007/978-3-319-48532-4_4
http://dx.doi.org/10.1007/978-3-319-48532-4_5
http://dx.doi.org/10.1007/978-3-319-48532-4_6
http://dx.doi.org/10.1007/978-3-319-48532-4_6
http://dx.doi.org/10.1007/978-3-319-48532-4_7
http://dx.doi.org/10.1007/978-3-319-48532-4_7
http://dx.doi.org/10.1007/978-3-319-48532-4_8
http://dx.doi.org/10.1007/978-3-319-48532-4_9
http://dx.doi.org/10.1007/978-3-319-48532-4_10
http://dx.doi.org/10.1007/978-3-319-48532-4_11

Number of Ties and Undefeated Signs in a Generalized Janken 143
Hiro Ito and Yoshinao Shiono

c-Labeling of a Cycle with One Chord . 155
Supaporn Saduakdee and Varanoot Khemmani

Box Pleating is Hard . 167
Hugo A. Akitaya, Kenneth C. Cheung, Erik D. Demaine,
Takashi Horiyama, Thomas C. Hull, Jason S. Ku, Tomohiro Tachi,
and Ryuhei Uehara

Symmetric Assembly Puzzles are Hard, Beyond a Few Pieces 180
Erik D. Demaine, Matias Korman, Jason S. Ku, Joseph S.B. Mitchell,
Yota Otachi, André van Renssen, Marcel Roeloffzen, Ryuhei Uehara,
and Yushi Uno

Simultaneous Approximation of Polynomials . 193
Andrei Kupavskii and János Pach

Distance Geometry on the Sphere . 204
Leo Liberti, Grzegorz Swirszcz, and Carlile Lavor

The Sigma Chromatic Number of the Circulant Graphs Cnð1; 2Þ, Cnð1; 3Þ,
and C2nð1; nÞ . 216

Paul Adrian D. Luzon, Mari-Jo P. Ruiz, and Mark Anthony C. Tolentino

A Polynomial-Space Exact Algorithm for TSP in Degree-6 Graphs 228
Norhazwani Md Yunos, Aleksandar Shurbevski, and Hiroshi Nagamochi

Topological Graph Layouts into a Triangular Prism. 241
Miki Miyauchi

On the Competition Numbers of Diamond-Free Graphs 247
Yoshio Sano

On Evasion Games on Graphs . 253
Satoshi Tayu and Shuichi Ueno

Sudoku Colorings of a 16-Cell Pre-fractal . 265
Hideki Tsuiki and Yasuyuki Tsukamoto

The Mathematics of Ferran Hurtado: A Brief Survey 277
Jorge Urrutia

Erratum to: Discrete and Computational Geometry and Graphs E1
Jin Akiyama, Hiro Ito, Toshinori Sakai, and Yushi Uno

Author Index . 293

X Contents

http://dx.doi.org/10.1007/978-3-319-48532-4_12
http://dx.doi.org/10.1007/978-3-319-48532-4_13
http://dx.doi.org/10.1007/978-3-319-48532-4_14
http://dx.doi.org/10.1007/978-3-319-48532-4_15
http://dx.doi.org/10.1007/978-3-319-48532-4_16
http://dx.doi.org/10.1007/978-3-319-48532-4_17
http://dx.doi.org/10.1007/978-3-319-48532-4_18
http://dx.doi.org/10.1007/978-3-319-48532-4_19
http://dx.doi.org/10.1007/978-3-319-48532-4_19
http://dx.doi.org/10.1007/978-3-319-48532-4_19
http://dx.doi.org/10.1007/978-3-319-48532-4_19
http://dx.doi.org/10.1007/978-3-319-48532-4_20
http://dx.doi.org/10.1007/978-3-319-48532-4_21
http://dx.doi.org/10.1007/978-3-319-48532-4_22
http://dx.doi.org/10.1007/978-3-319-48532-4_23
http://dx.doi.org/10.1007/978-3-319-48532-4_24
http://dx.doi.org/10.1007/978-3-319-48532-4_25

A Note on the Number of General 4-holes
in (Perturbed) Grids

O. Aichholzer1, T. Hackl1, P. Valtr2, and B. Vogtenhuber1(B)

1 Institute for Software Technology, Graz University of Technology, Graz, Austria
bvogt@ist.tugraz.at

2 Department of Applied Mathematics and Institute for Computer Science (ITI),

Charles University, Prague, Czech Republic

Abstract. Considering a variation of the classical Erdős-Szekeres type
problems, we count the number of general 4-holes (not necessarily convex,
empty 4-gons) in squared Horton sets of size

√
n×√

n. Improving on pre-
vious upper and lower bounds we show that this number is Θ(n2 logn),
which constitutes the currently best upper bound on minimizing the
number of general 4-holes for any set of n points in the plane.

To obtain the improved bounds, we prove a result of independent
interest. We show that

∑n
d=1

ϕ(d)

d2 = Θ(log n), where ϕ(d) is Euler’s phi-
function, the number of positive integers less than d which are relatively
prime to d. This arithmetic function is also called Euler’s totient function
and plays a role in number theory and cryptography.

1 Introduction

Let S be a set of n points in the plane. A k-gon in S is a simple polygon spanned
by k points of S, and a k-hole in S is a k-gon which does not contain any points
of S in its interior.

In a classical 1935 paper by Erdős and Szekeres [9] it was shown that for
any k there is a smallest integer g(k) such that any set of g(k) points in general
position (no three points on a common line) contains at least one convex k-
gon, and the question of determining the value of g(k) was raised. Since then,
a lot of effort has been put into settling this question and a number of its
variations. One family of these questions deals with (convex and non-convex)
k-holes instead of k-gons. For a more detailed introduction into this area as well
as a comprehensive overview of the latest results on k-gons and k-holes we refer
to the recent publication [3].

In 1983, Horton used a specially constructed family of point sets to show
that there exist arbitrarily large sets containing no convex 7-hole [12], by this
solving a question of Erdős [8]. Valtr [13] generalized Horton’s construction to

This work is partially supported by FWF projects I648-N18 and P23629-N18, by
the OEAD project CZ 18/2015, and by the project CE-ITI no. P202/12/G061 of
the Czech Science Foundation GAČR, and by the project no. 7AMB15A T023 of
the Ministry of Education of the Czech Republic.

c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 1–12, 2016.
DOI: 10.1007/978-3-319-48532-4 1

2 O. Aichholzer et al.

a family of sets that he called Horton sets. This family has since then become
well-known under this name and plays a special role for deriving good bounds
when minimizing the number of k-holes for small k.

In this work we concentrate on the number of general (i.e., convex and non-
convex) 4-holes in perturbed grids of size

√
n × √

n, especially in the so-called
squared Horton sets. Those were first considered by Valtr in [13] (as the set A in
Sect. 4); some interesting properties of them can also be found in [7]. Roughly
speaking, a squared Horton set is a grid which is perturbed such that every set
of originally collinear points forms a Horton set. See Sect. 1.1 for a definition of
Horton sets and squared Horton sets.

It was shown in [1] that there cannot be less than 5
2n2 −O(n) general 4-

holes in any set of n points in general position. For random point sets, Fabila-
Monroy et al. [10] proved that the expected number of general 4-holes in sets of n
points distributed uniformly and independently in the unit square is 12n2 log n+
o(n2 log n). In [3] (Sect. 5) an upper bound of O(n

5
2 log n) general 4-holes in any

squared Horton set of n points was given. In the same paper it was also stated
that every ε-perturbation pε(G) of an integer grid G of size

√
n × √

n contains
Ω(n2 log n/ log log n) general 4-holes (proof in [2]). Especially, squared Horton
sets are ε-perturbations of integer grids.

In this work we close the gap between the latter two bounds by showing that
any ε-perturbation of an integer grid of size

√
n×√

n contains Ω(n2 log n) general
4-holes (Sect. 2, Corollary 1) and that any

√
n×√

n squared Horton set contains
Θ(n2 log n) general 4-holes (Sect. 3, Theorem 2). To obtain the improved lower
bound we show in Theorem 1 that

∑n
d=1

ϕ(d)
d2 = Θ(log n), where ϕ(d) is Euler’s

phi-function (also called Euler’s totient function), the number of positive integers
less than d that are relatively prime to d. As Euler’s phi-function plays a central
role in number theory and is also used in cryptography, this result might be of
independent interest.

1.1 Definitions and Notation

Consider an integer grid G of size
√

n×√
n. As distance measure we use the L∞-

norm, i.e., the distance of two points p, q ∈ G is the maximum of the differences of
their x- and y-coordinates. The length of a segment e spanned by two points of G
is defined by the (L∞-)distance of its endpoints. A lattice line is a line containing
at least two (and hence infinitely many) grid points in the whole plane.

We denote an edge spanned by two points of G which does not have any
points of G in its relative interior as prime segment. Likewise, we denote a k-gon
in G where all edges are prime segments of G as prime k-gon. We remark that a
prime k-gon might have collinear edges (but cannot have overlapping ones). For
example, consider two parallel lattice lines which do not have any points of G
between them. Then three consecutive points of G on one line together with one
point of G on the second line form a prime 4-hole in G. Omitting the middle one
of the tree collinear points as vertex, the same region could also be interpreted
as non-prime triangle in G.

An ε-perturbation pε(G) of G is a perturbation of G where every point of G
is replaced by a point at distance at most ε. Observe that if ε is small enough,

A Note on the Number of General 4-holes in (Perturbed) Grids 3

then for every triple of points non-collinear in G, their orientation in pε(G) is
the same as in G.

Horton Sets. Two disjoint planar point sets are mutually avoiding if the convex
hull of each of them is intersected by no line passing trough two points of the
other set. A finite planar point set is a Horton set if it is Horton according to
repeated applications of the following two rules:

1. Every set of at most two points with distinct x-coordinates is Horton.
2. If h1, h2, . . . , ht are points with distinct and increasing x-coordinates and the

sets h1, h3, h5, . . . and h2, h4, h6, . . . are Horton and mutually avoiding then
the set h1, h2, h3, . . . , ht is Horton.

Note that if h1, h2, h3, . . . , ht is a Horton set, then any subset of the form
hi, hi+1, . . . , hj , i < j is a Horton set as well.

Squared Horton Sets. A squared Horton set S of size
√

n × √
n is a specific

ε-perturbation of the integer grid G of size
√

n × √
n such that triples of non-

collinear points in G keep their orientations in S and such that points along each
non-vertical line in G are perturbed to points forming a Horton set in S (and
points along each vertical line are perturbed to points forming a rotated copy of
a Horton set in S). For more details see [7,13].

2 A New Lower Bound for the Number of General
4-holes in any Slightly Perturbed Grid

In [3] a lower bound of Ω(n2 log n/ log log n) for the number of general 4-holes
in any ε-perturbed integer grid of size

√
n × √

n was stated. The proof of this
statement, which only appeared in the arXiv version [2] of that work, first intro-
duces a relation (below restated in Lemma 1) between the number of prime
4-holes in an integer grid and Euler’s phi-function and then presents an esti-
mate

∑n
d=1

ϕ(d)
d2 = Ω(log n/ log log n). In Theorem 1 we tighten this estimate to

∑n
d=1

ϕ(d)
d2 = Θ(log n) and thereby improve the lower bound on the number of

prime 4-holes in an integer grid (Corollary 2).

Lemma 1 ([2], proof of Theorem 13). The integer grid of size
√

n × √
n

contains

Ω

⎛

⎝n2 ·
�√

n/3�−1∑

d=1

ϕ(d)
d2

⎞

⎠

prime 4-holes.

It is well known that for any s > 2, it holds that
∑∞

d=1
ϕ(d)
ds =∑∞

d=1
1

ds−1 /
∑∞

d=1
1
ds , which is finite; see for example [11] (p. 255). Although

∑∞
d=1

ϕ(d)
ds = ∞ for s = 2, we show in the following theorem that asymptotically

it still holds that
∑n

d=1
ϕ(d)
d2 = Θ(

∑n
d=1

1
n/

∑n
d=1

1
n2) = Θ(log n).

4 O. Aichholzer et al.

Theorem 1.
n∑

d=1

ϕ(d)
d2 = Θ(log n).

Proof. For the upper bound, note that ϕ(d) ≤ d. Thus we have

n∑

d=1

ϕ(d)
d2

≤
n∑

d=1

d

d2
=

n∑

d=1

1
d

= O(log n).

For the lower bound, it is known that

N∑

d=1

ϕ(d) =
3
π2

· N2 + O(N log N);

see for example [11] (p. 268). Using this approximation with N = 2i+1 and
N = 2i and subtracting the latter from the former, we obtain

2i+1
∑

d=2i+1

ϕ(d) =
3
π2

(
22i+2 − 22i

)
+ O

(
2i+1 log 2i+1

)− O
(
2i log 2i

)

=
3
π2

(
4 · 22i − 22i

)
+ O

(
2i+1 · (i + 1)

)− O
(
2i · i

)

≥ 3
π2

(
3 · 22i

)− O
(
2i · i

)
=

9
π2

· 22i − O
(
2i · i

)
.

Next, consider
∑2i+1

d=2i+1
ϕ(d)
d2 . Increasing the d2 in the denominator by its

maximum value we can apply the above bound for
∑2i+1

d=2i+1 ϕ(d), which gives

2i+1
∑

d=2i+1

ϕ(d)

d2
≥

2i+1
∑

d=2i+1

ϕ(d)

22i+2
≥ 1

22i+2
· 9

π2
· 22i − O

(
1

22i+2
· 2i · i

)

=
9

4π2
− O

(
i

2i

)

.

Finally, splitting the sum
∑n

d=1
ϕ(d)
d2 accordingly and bounding each part

from below we obtain the desired result:

n∑

d=1

ϕ(d)
d2

≥
�log n�−1∑

i=0

2i+1
∑

d=2i+1

ϕ(d)
d2

≥
�log n�−1∑

i=0

(
9

4π2
− O

(
i

2i

))

=
9

4π2
· (�log n� − 1) − O

⎛

⎝
�log n�−1∑

i=0

i

2i

⎞

⎠

=
9

4π2
· (�log n� − 1) − O (1) = Ω(log n) 	

Combining Theorem 1 with Lemma 1, we obtain an improved lower bound
for the number of prime 4-holes in the grid.

A Note on the Number of General 4-holes in (Perturbed) Grids 5

Corollary 1. The integer grid G of size
√

n × √
n contains Ω(n2 log n) prime

4-holes.

Note that a non-prime k-hole in an integer grid G, i.e., a k-hole having points
of G on its boundary that are not vertices of the k-hole, might be non-empty
and therefore not a k-hole in a perturbed grid G′. This can happen even if the
perturbation is arbitrarily small. To the contrary, for any ε-perturbation pε(G)
of G (see [3]), every prime k-hole in G corresponds to a k-hole in the perturbed
grid pε(G). Thus, we obtain the following more general statement.

Corollary 2. For any n there is an ε > 0 such that any ε-perturbation pε(G)
of an integer grid G of size

√
n × √

n contains Ω(n2 log n) 4-holes.

3 An Upper Bound on the Number of General 4-holes in
the Squared Horton Set

Let S be a squared Horton set S of size
√

n × √
n. In the following we are fre-

quently switching between considering the squared Horton set S and the regular
integer grid G of the same size. We identify the points of S with their corre-
sponding non-perturbed versions in G.

Note that each 3-hole in S is either degenerate in G, i.e., corresponds to three
collinear points of G, or its three vertices form an interior-empty triangle in G,
i.e., a triangle with no points of G in its interior. For each 4-hole in S we fix
a diagonal that triangulates the 4-hole into two 3-holes lying on different sides
of the diagonal. Note that for convex 4-holes we have two possibilities which
diagonal to choose, whilst for non-convex 4-holes we use the unique diagonal
going through the interior of the 4-hole. Further, each of the two 3-holes of a
4-hole is either degenerate or interior-empty in G. We distinguish two types of
4-holes in S:

– 4-holes having a prime segment as diagonal in G, and
– 4-holes having a non-prime segment as diagonal in G.

In Sects. 3.1 and 3.2, we show that for both types of 4-holes, an upper bound
of O(n2 log n) holds. Together with the results from the previous section this
implies the following theorem.

Theorem 2. The number of general 4-holes in any squared Horton set of size√
n × √

n is Θ(n2 log n).

Further, from the arguments in the proof of the upper bound (Sects. 3.1
and 3.2), we obtain the following proposition as a side result.

Proposition 1. In any squared Horton set of size
√

n × √
n, the maximum

number of empty triangles incident to a fixed edge is Θ(
√

n).

6 O. Aichholzer et al.

Bárány conjectured that every point set contains a segment that spans a
super-constant number of 3-holes (see [5]). Recently, Bárány et al. [6] showed
that for random point sets, the expected maximum number of triangles incident
to some edge is Ω(n/ log n). Hence, Proposition 1 on the one hand confirms
Bárány’s conjecture for Horton sets, and on the other hand shows that for that
conjecture, Horton sets are quite different from random point sets.

Combining Theorem 2 and Proposition 1 with the argumentation in the proof
of Theorem 6 of [3] gives

Corollary 3. For every constant k ≥ 4, the number of k-holes in any squared
Horton set of size

√
n × √

n is at most O(n
k
2 (log n)).

3.1 4-holes Having a Prime Segment as Diagonal in G

If 0 < a < d are two integers then the segment I = (0, 0)(d, a) is a prime
segment (i.e., contains no other lattice points) if and only if a and d are coprime.
Moreover, for any k, 0 < k < d, the vertical lattice line x = k contains a lattice
point below I at vertical distance (ka mod d)/d from I. Thus, if I is a prime
segment then the unique closest lattice point below I has vertical distance 1/d
to I and its x-coordinate is the unique integer k, 0 < k < d, with the property
ka ≡ 1 mod d.

It follows that for a fixed d > 1, if we consider all prime segments I = {I =
(0, 0)(d, a), 0 < a < d}, the x-coordinates of the closest lattice points below
segments of I are exactly those integers k, 0 < k < d, which are coprime with
d. Further, each such k appears in this role exactly once - namely for the unique
segment I = (0, 0)(d, a) for which ka ≡ 1 mod d holds1.

Let G be an integer grid of size
√

n × √
n that contains (0, 0). For a fixed

d and a fixed coprime a, 0 < a < d, consider the closest grid point c below
I = (0, 0)(d, a) and its x-coordinate 0 < k < d, cf. Fig. 1. Further, consider the
supporting line �0 of I and the lattice line � parallel to �0 that passes through
c. Let L1 be the set of lattice lines passing through (0, 0) and a grid point on
� with x-coordinate at least k, as well as the according parallel lattice lines
passing through (d, a). Analogously, let L2 be the set of lattice lines passing
through (d, a) and a grid point on � with x-coordinate at most k, as well as
the according parallel lattice lines passing through (0, 0). Note that the stripe
formed by two parallel lines in L1 or L2 does not contain any points of G in its
interior. Further, any grid point r below �0 that forms a non-degenerate interior-
empty triangle Δ with I in G must be on a line �′ ∈ L1 ∪ L2: In order for Δ to
not contain any point of � in its interior, r must be either on � or pass through
one stripe formed by two parallel lines in L1 or L2. No such stripe contains any
points of G in its interior, and all points on the boundary of a stripe (as well as
all points on �) are on a line in L1 ∪ L2.

Now consider a line �1 ∈ L1 passing through (0, 0) and a grid point on �

with x-coordinate x� > 0. Then x� = id + k for some integer 0 ≤ i <
√

n−k
d ,

1 If 0 < p < q are two coprime integers then there is a unique r, 0 < r < q, such that
pr ≡ 1 mod q.

A Note on the Number of General 4-holes in (Perturbed) Grids 7

Fig. 1. Illustration for the definition of �0, �, and sets L1 and L2, for
√

n = 15, a = 1,
d = 3, and k = 1. Stripes formed by parallel lines of L1 and L2 are drawn shaded. For
better visibility, not all lines of L1 and L2 are drawn.

and �1 contains at most
⌈ √

n
id+k

⌉
grid points. See again Fig. 1, where d = 3 and

k = 1. Of course, this bound also holds for the lattice line parallel to �1 and going
through (d, a). Similarly, let �2 ∈ L2 be a line that passes through (d, a) and a
grid point on � with x-coordinate x� < d. Then x� = d − (id − k) = k − (i − 1)d
for some integer 1 ≤ i <

√
n+k
d and �2 contains at most

⌈ √
n

id−k

⌉
grid points and

the same bound holds for the lattice line parallel to �2 and through (0, 0). Thus,
the number of non-degenerate interior-empty triangles in G having I as one side
is at most

2 ·

⌊√
n−k
d

⌋
−1

∑

i=0

⌈ √
n

id + k

⌉

︸ ︷︷ ︸
r on a line of L1

+ 2 ·

⌊√
n+k
d

⌋
−1

∑

i=1

⌈ √
n

id − k

⌉

︸ ︷︷ ︸
r on a line of L2

.

If instead of the regular grid G we consider the squared Horton set S of same
size, then for any point r ∈ S that forms an empty triangle with I in S, the
according triangle in G is either interior-empty or degenerate. In the latter case,
r needs to be one of the at most

√
n

d grid points on the lattice line �0 in G. In the

8 O. Aichholzer et al.

former case, r has to be on a lattice line �′ ∈ L1 ∪ L2 in G. Further, as any
set of collinear grid points in G form a Horton set in S, at most a logarithmic
number of these points on �′ in G can form an empty triangle with I in S. More
precisely, if ps, . . . , p2, p1, w, q1, q2, . . . , qt are the points of G ∩ �′ appearing in
this order along �′, where w = (0, 0) or w = (d, a), then only the points pi and
qi with i ∈ {1, 2, 4, 8, . . . } can form an empty triangle with I in S. This follows
from properties of Horton sets (see Lemma 5 (ii) in [7]). Thus, for a fixed d and
a fixed coprime a, 0 < a < d, the number of empty triangles in S having (the
perturbed version of) I = (0, 0)(d, a) as one side is at most

2 ·

⌊√
n−k
d

⌋
∑

i=0

(

log
⌈ √

n

id + k

⌉

+ Θ(1)
)

︸ ︷︷ ︸
r on a line of L1

+ 2 ·

⌊√
n+k
d

⌋
∑

i=1

(

log
⌈ √

n

id − k

⌉

+ Θ(1)
)

︸ ︷︷ ︸
r on a line of L2

+
⌈√

n

d

⌉

︸ ︷︷ ︸
r on �0

≤ 2 ·

⌊√
n−k
d

⌋
∑

i=0

log
√

n

id + k
+ Θ

(√
n

d

)

︸ ︷︷ ︸
r on a line of L1

+ 2 ·

⌊√
n+k
d

⌋
∑

i=1

log
√

n

id − k
+ Θ

(√
n

d

)

︸ ︷︷ ︸
r on a line of L2

+Θ

(√
n

d

)

≤ 2 ·

⌊√
n−k
d

⌋
∑

i=0

log
√

n

id + k
︸ ︷︷ ︸

first sum

+ 2 ·

⌊√
n+k
d

⌋
∑

i=1

log
√

n

id − k
︸ ︷︷ ︸

second sum

+Θ

(√
n

d

)

= 2 · log
√

n

k
+ 2 ·

⌊√
n−k
d

⌋
∑

i=1

log
√

n

id + k
︸ ︷︷ ︸

first sum

+ 2 · log
√

n

d − k
+ 2 ·

⌊√
n+k
d

⌋
∑

i=2

log
√

n

id − k
︸ ︷︷ ︸

second sum

+Θ

(√
n

d

)

< 2 ·

⌊√
n−k
d

⌋
∑

i=1

log
√

n

id
+ 2 ·

⌊√
n+k−d

d

⌋
∑

i=1

log
√

n

id
+ 2 ·

(

log
√

n

k
+ log

√
n

d − k

)

+ Θ

(√
n

d

)

< 2 ·

⌊√
n
d

⌋
∑

i=1

log
√

n

id
+ 2 ·

⌊√
n
d

⌋
∑

i=1

log
√

n

id
+ 2 ·

(

log
√

n

k
+ log

√
n

d − k

)

+ Θ

(√
n

d

)

= 4 ·

⌊√
n
d

⌋
∑

i=1

log
√

n

id
+ 2 ·

(

log
√

n

k
+ log

√
n

d − k

)

+ Θ

(√
n

d

)

.

Reformulating the sum of logarithms as logarithm of a product and using that
by Stirling’s formula log(xx/�x�!) = Θ(x), we can continue this calculation with

= 4 · log

⎛

⎜
⎝

⌊√
n
d

⌋
∏

i=1

√
n

id

⎞

⎟
⎠ + 2 ·

(

log
√

n

k
+ log

√
n

d − k

)

+ Θ

(√
n

d

)

A Note on the Number of General 4-holes in (Perturbed) Grids 9

≤ 4 · log

⎛

⎜
⎜
⎝

(√
n

d

)√
n
d

⌊√
n

d

⌋
!

⎞

⎟
⎟
⎠ + 2 ·

(

log
√

n

k
+ log

√
n

d − k

)

+ Θ

(√
n

d

)

= 2 ·
(

log
√

n

k
+ log

√
n

d − k

)

+ Θ

(√
n

d

)

.

Hence, for the number of empty 4-gons in S having I as a diagonal, we obtain
an upper bound of

(

2 ·
(

log
√

n

k
+ log

√
n

d − k

)

+ O

(√
n

d

))2

.

Next, we let a go through all values 0 < a < d where a is coprime with d.
Then k also goes through 0 < k < d where k is coprime with d (just in a different
order). Further, we skip the restriction of 0 < a < d and instead consider the set
of all prime segments I with fixed length |d| > 1 that have a common endpoint
(this gives a multiplicative factor of 8). By this, we obtain the following upper
bound for the number of 4-holes in S whose diagonal is a prime segment incident
to a fixed point and of fixed length |d| > 1:

8 ·
∑

k∈{0,...,d}

(

2 ·
(

log
√

n

k
+ log

√
n

d − k

)

+ O

(√
n

d

))2

< 8 ·
∑

k∈{0,...,d}

(

4 · max
{

log
√

n

k
, log

√
n

d − k

}

+ O

(√
n

d

))2

≤ 8 · 2 ·
∑

k∈{0...� d
2 �}

(

4 · log
√

n

k
+ O

(√
n

d

))2

,

where we always sum only over values of k such that k, d are coprime. This is
bounded from above by the same sum where we sum over all k ∈ {

0 . . .
⌊

d
2

⌋}
.

Using (s + t)2 ≤ 2s2 + 2t2, we get the upper bound

� d
2 �∑

k=1

(

4 · log
√

n

k
+ O

(√
n

d

))2

= O

⎛

⎜
⎝

� d
2 �∑

k=1

(

log2
(√

n

k

)

+
(√

n

d

)2
)
⎞

⎟
⎠

= O

⎛

⎜
⎝

� d
2 �∑

k=1

log2
(√

n

k

)
⎞

⎟
⎠+ O

⎛

⎜
⎝

� d
2 �∑

k=1

(√
n

d

)2

⎞

⎟
⎠.

The second sum is obviously O(n/d). The first sum can be bounded from above by

� d
2 �∑

k=1

log2
(√

n

k

)

<

� d
2 �∑

k=1

√
n

k
<

√
n∑

k=1

√
n

k
= O(

√
n log n),

implying a total upper bound of O(
√

n log n + n/d) for d > 1.

10 O. Aichholzer et al.

For the case where 0 ≤ a ≤ d = 1, the two closest grid points below I =
(0, 0)(1, a) in G are (0,−1) and (1, a − 1). Let again � be the supporting lattice
line of these points. With k := 1 and L1 and L2 being defined according to the
case where d > 1, we obtain an upper bound

2 ·
√

n−2∑

i=0

√
n

i + 1
︸ ︷︷ ︸

r on a line of L1

+ 2 · √
n + 2 ·

√
n∑

i=2

√
n

i − 1
︸ ︷︷ ︸

r on a line of L2

for the number of non-degenerate interior-empty triangles in G having I as one
side (the extra term for L2 comes from the vertical lattice lines through the
endpoints of I). With similar arguments as above, we obtain O(

√
n log n + n) =

O(n) as an upper bound for the number of 4-holes in S whose diagonals are
prime segments incident to a fixed point and of fixed length |d| = 1.
Finally, summing up over all possible distances |d| and multiplying by the O(n)
possible starting points, we get the desired upper bound for the number of 4-holes
in S having a prime segment as diagonal in G:

O(n) ·
√

n−1∑

d=1

O
(√

n log n + n/d
)

= O
(
n2 log n

)
.

3.2 4-holes Having a Non-prime Segment as Diagonal in G

Consider a non-convex 4-hole Q in S having a non-prime segment as diagonal
I. Then at least one of the two triangles Q consists of has to be degenerate, i.e.,
the according third point r is on the same lattice line �0 as I in G. The second
triangle Δ can either be degenerate as well or it can be non-degenerate.

Case 1. The second triangle Δ is degenerate as well, i.e., Q is completely con-
tained in one lattice line.

Consider a line �0 of slope a/d with 0 ≤ a ≤ d, d ≥ 1, a coprime with d.
As the closest points below �0 have vertical distance 1/d from �0, there are at
most 2

√
n · d = O(

√
n · d) lines parallel to �0 spanned by points of G. Further,

summing up over all values of a, we obtain ϕ(d) different directions and thus
O(ϕ(d) · √

n · d) lattice lines where two adjacent grid points have distance d.
Any such line contains O(

√
n/d) points of G corresponding to a Horton set

in S (see [13]). Thus, it contains O((
√

n/d)2) empty triangles and convex 4-
holes [4,14] and O((

√
n/d)3) non-convex 4-holes [1]. in S. Summing up over all

distances 1 ≤ d ≤ √
n, and adding also the 4-holes for the

√
n vertical lattice

lines we obtain

√
n · O

(√
n
3
)

+

√
n∑

d=1

4 · O
(
ϕ(d) · √

n · d
) · O

((√
n

d

)3
)

= O

⎛

⎝n2 + n2 ·
√

n∑

d=1

ϕ(d)
d2

⎞

⎠ = O
(
n2 log n

)

A Note on the Number of General 4-holes in (Perturbed) Grids 11

as an upper bound for the total number of 4-holes consisting of 2 degenerate
3-holes in S.

Case 2. The second triangle Δ is non-degenerate, i.e., the third point r′ of Δ
does not lie on the supporting line of I.

Assume that r lies above I in S and thus r′ lies below I in S (recall that I
is an inner diagonal of Q in S). I contains at least one grid point in its relative
interior and has at least two closest points below it. Consider the lattice line
� parallel to I through these closest points, and let �′ be the line parallel to �
and through the closest points below �. Then r′ has to lie on � or �′ for Δ to be
interior-empty: If the third point r′ of the second triangle lies below �′, consider
the triangle Δ formed by I and r′ and the segment s = � ∩ Δ. As the Euclidean
length of s is at least two thirds of the Euclidean length of I, s and thus Δ would
contain at least one point of G in its interior. Similarly, if r′ is below I, then r
needs to be on one of the two closest lines above I and parallel to I.

Now let �0 be of slope a/d with 0 ≤ a ≤ d, d ≥ 1. Then there are O(
√

n/d)
points on �0 and its four closest parallel lattice lines. Thus, there are O

(
(
√

n/d)2
)

empty triangles on �0 in S, and O(
√

n/d) possible candidates for r′. Again,
adding the same counting for the

√
n vertical lattice lines we obtain the same

upper bound:

√
n · O

(√
n
2
)

· O
(√

n
)

+

√
n∑

d=1

4 · O
(
ϕ(d)

√
n · d

) · O

((√
n

d

)2
)

· O

(√
n

d

)

= O

⎛

⎝n2 + n2 ·
√

n∑

d=1

ϕ(d)
d2

⎞

⎠ = O
(
n2 log n

)
.

Hence, the number of 4-holes in S having a non-prime segment as diagonal
in G, as well as the total number of 4-holes in S is O

(
n2 log n

)
, which completes

the proof of the upper bound in Theorem 2.

References

1. Aichholzer, O., Fabila-Monroy, R., González-Aguilar, H., Hackl, T., Heredia, M.A.,
Huemer, C., Urrutia, J., Valtr, P., Vogtenhuber, B.: 4-holes in point sets. CGTA
47(6), 644–650 (2014)

2. Aichholzer, O., Fabila-Monroy, R., González-Aguilar, H., Hackl, T., Heredia, M.A.,
Huemer, C., Urrutia, J., Valtr, P., Vogtenhuber, B.: On k-gons and k-holes in point
sets (2014). arXiv:1409.0081

3. Aichholzer, O., Fabila-Monroy, R., González-Aguilar, H., Hackl, T., Heredia, M.A.,
Huemer, C., Urrutia, J., Valtr, P., Vogtenhuber, B.: On k-gons and k-holes in point
sets. CGTA 48(7), 528–537 (2015)

4. Bárány, I., Füredi, Z.: Empty simplices in Euclidean space. Can. Math. Bull. 30,
436–445 (1987)

5. Bárány, I., Károlyi, G.: Problems and results around the Erdös-Szekeres con-
vex polygon theorem. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG
2000. LNCS, vol. 2098, pp. 91–105. Springer, Heidelberg (2001). doi:10.1007/
3-540-47738-1 7

http://arxiv.org/abs/1409.0081
http://www.arxiv.org/abs/1409.0081
http://dx.doi.org/10.1007/3-540-47738-1_7
http://dx.doi.org/10.1007/3-540-47738-1_7

12 O. Aichholzer et al.

6. Bárány, I., Marckert, J.-F., Reitzner, M.: Many empty triangles have a common
edge. Discrete Comput. Geom. 50(1), 244–252 (2013)

7. Bárány, I., Valtr, P.: Planar point sets with a small number of empty convex
polygons. Studia Sci. Math. Hungar. 41(2), 243–266 (2004)

8. Erdős, P.: Some more problems on elementary geometry. Aust. Math. Soc. Gaz. 5,
52–54 (1978)

9. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2,
463–470 (1935)

10. Fabila-Monroy, R., Huemer, C., Mitsche, D.: Empty non-convex and convex four-
gons in random point sets. Studia Sci. Math. Hungar. 52(1), 52–64 (2015)

11. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn.
Oxford University Press, London (1979)

12. Horton, J.: Sets with no empty convex 7-gons. Can. Math. Bull. 26(4), 482–484
(1983)

13. Valtr, P.: Convex independent sets and 7-holes in restricted planar point sets. Disc.
Comp. Geom. 7, 135–152 (1992)

14. Valtr, P.: On the minimum number of empty polygons in planar point sets. Stud.
Sci. Math. Hung. 30, 155–163 (1995)

Reversible Nets of Polyhedra

Jin Akiyama1, Stefan Langerman2(B), and Kiyoko Matsunaga1

1 Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
ja@jin-akiyama.com, matsunaga@mathlab-jp.com
2 Université Libre de Bruxelles, Brussels, Belgium

stefan.langerman@ulb.ac.be

Abstract. An example of reversible (or hinge inside-out transformable)
figures is the Dudeney’s Haberdasher’s puzzle in which an equilateral
triangle is dissected into four pieces, then hinged like a chain, and then
is transformed into a square by rotating the hinged pieces. Furthermore,
the entire boundary of each figure goes into the inside of the other figure
and becomes the dissection lines of the other figure. Many intriguing
results on reversibilities of figures have been found in prior research, but
most of them are results on polygons. This paper generalizes those results
to a wider range of general connected figures. It is shown that two nets
obtained by cutting the surface of an arbitrary convex polyhedron along
non-intersecting dissection trees are reversible. Moreover, a condition for
two nets of an isotetrahedron to be both reversible and tessellative is
given.

1 Introduction

A pair of hinged figures P and Q (see Fig. 1) is said to be reversible (or hinge
inside-out transformable) if P and Q satisfy the following conditions:

1. There exists a dissection of P into a finite number of pieces, P1, P2, P3, . . . , Pn.
A set of dissection lines or curves forms a tree. Such a tree is called a dissection
tree.

2. Pieces P1, P2, P3, . . . , Pn can be joined by n−1 hinges located on the perimeter
of P like a chain.

3. If one of the end-pieces of the chain is fixed and rotated, then the remaining
pieces form Q when rotated clockwise and P when rotated counterclockwise.

4. The entire boundary of P goes into the inside of Q and the entire boundary
of Q is composed exactly of the edges of the dissection tree of P .

The theory of hinged dissections and reversibilities of figures has a long his-
tory and the book by Frederickson [11] contains many interesting results. On the
other hand, Abbott et al. [1] proved that every pair of polygons P and Q with
the same area is hinge transformable if we don’t require the reversible condition.
When imposing the reversible condition, hinge transformable figures have some
remarkable properties which were studied in [3–6,9,12].

S. Langerman—Directeur de Recherches du F.R.S.-FNRS.

c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 13–23, 2016.
DOI: 10.1007/978-3-319-48532-4 2

14 J. Akiyama et al.

P : an equilateral triangle Q: a square

Fig. 1. Reversible transformation between P and Q.

T T ′

Fig. 2. T and one of its conjugate regions.

Let T be a closed plane region whose perimeter consists of n curved (or
straight line) segments e1, e2, . . . , en and let these lines be labeled in clockwise
order. Let T ′ be a closed region surrounded by the same segments e1, e2, . . . , en
but in counterclockwise order. We then say that T ′ is a conjugate region of T
(Fig. 2).

Let P be a plane figure. A region T with n vertices v1, . . . , vn and with n
perimeter parts e1, . . . , en is called an inscribed region of P if all vertices vi
(i = 1, . . . , n) are located on the perimeter of P and T ⊆ P .

Reversible Nets of Polyhedra 15

(a)

Cut T off from P
T : the gray part.

(b)

A (T, T ′)-chain of P

(c)

T ′: a conjugate trunk of P

Fig. 3. A trunk T of P , a (T, T ′)-chain of P and a conjugate trunk T ′ of P .

A trunk of P is a special kind of inscribed region T of P . First, cut out an
inscribed region T from P (Fig. 3(a)). Let ei (i = 1, . . . , n) be the perimeter part
of T joining two vertices vi−1 and vi of T , where v0 = vn. Denote by Pi the piece
located outside of T that contains the perimeter part ei. Some Pi may be empty
(or just a part ei). Then, hinge each pair of pieces Pi and Pi+1 at their common
vertex vi (1 ≤ i ≤ n − 1); this results in a chain of pieces Pi (i = 1, 2, . . . , n)
of P (Fig. 3(b)). The chain and T are called (T, T ′)-chain of P , and trunk of P ,
respectively, if an appropriate rotation of the chain forms T ′ which is one of the
conjugate regions of T with all pieces Pi packed inside T ′ without overlaps or
gaps. The chain T ′ is called a conjugate trunk of P (Fig. 3(c)).

Suppose that a figure P has a trunk T and a conjugate trunk T ′; and a
figure Q has a trunk T ′ and a conjugate trunk T . We then have two chains, a
(T, T ′)-chain of P and a (T ′, T)-chain of Q (Fig. 4).

Combine a (T, T ′)-chain of P with a (T ′, T)-chain of Q such that each segment
of the perimeter, ei, has a piece P ′

i of P on one side (right side) and a piece Qi

of Q on the other side (left side). The chain obtained in this manner is called a
double chain of (P,Q) (Fig. 5).

We say that a piece of a double chain is empty if that piece consists of only
a perimeter part ei. If a double chain has an empty piece, then we distinguish
one side of that edge from the other side so that it satisfies the conditions for
reversibility. If one of the end-pieces (Say P1 and Q1 in Fig. 5) of the double
chain of (P,Q) is fixed and the remaining pieces are rotated clockwise or coun-
terclockwise, then figure P and figure Q are obtained respectively (Fig. 5). The
following result is obtained from [3].

Theorem 1 (Reversible Transformations Between Figures). Let P be
a figure with trunk T and conjugate trunk T ′, and let Q have trunk T ′ and
conjugate trunk T . Then P is reversible to Q.

16 J. Akiyama et al.

A (T, T ′)-chain of P

T ′:

A (T ′, T)-chain of Q

T :

Fig. 4. A (T, T ′)-chain of P and a (T ′, T)-chain of Q.

P : Q:

Fig. 5. A double chain of (P,Q).

Reversible Nets of Polyhedra 17

Remarks

1. In Theorem 1, figure P which is the union of T and n pieces P ′
i of the conjugate

trunk T ′ reversibly transforms into figure Q which is the union of T ′ and n
pieces of T .

2. Harberdasher’s puzzle by H. Dudeney is also one such reversible pair. In this
puzzle, the figures P and Q are an equilateral triangle and a square, respec-
tively. The trunk T and conjugate trunk T ′ are the identical parallelogram T
(the gray part in Fig. 1).

2 Reversible Nets of Polyhedra

A dissection tree D of a polyhedron P is a tree drawn on the surface of P that
spans all vertices of P . Cutting the surface of P along D results in a net of P .
Notice that nets of some polyhedron P may have self-overlapping parts (Fig. 6).
We allow such cases when discussing reversible transformation of nets.

Theorem 2. Let P be a polyhedron with n vertices v1, . . . , vn and let Di (i =
1, 2) be dissection trees on the surface of P . Denote by Ni (i = 1, 2) the nets of
P obtained by cutting P along Di (i = 1, 2), respectively. If D1 and D2 don’t
properly cross, then the pair of nets N1 and N2 is reversible, and has a double
chain composed of n pieces.

Proof. Suppose that dissection trees D1 (the red tree) and D2 (the green tree)
on the surface of P do not properly cross (Fig. 7(a)). Then there exists a closed
Jordan curve on the surface of P , which separates the surface of P into two
pieces, one containing D1, the other containing D2. Let C be an arbitrary such
curve (Fig. 7(b)). We call C a separating cycle. The net N1, obtained by cut-
ting P along D1, contains an inscribed closed region T whose boundary is C
(Fig. 8(a)). On the other hand, a net N2 which is obtained by cutting P along
D2 contains an inscribed conjugate region T ′ whose boundary is the opposite
side of C (Fig. 8(c)). Hence, a net N1 has a trunk T and a conjugate trunk T ′,
and a net N2 has a trunk T ′ and a conjugate trunk T . By Theorem 1 this pair
of N1 and N2 is reversible (Fig. 8(b)). ��

front view back view

Fig. 6. A net of a cube with self-overlapping part (the overlap is the black part).

18 J. Akiyama et al.

(a) (b)

Fig. 7. A polyhedron P with dissection trees D1 (red tree) and D2 (green tree), a
separating cycle C (black cycle). (Color figure online)

(a) (b) (c)

Fig. 8. Nets N1 and N2 obtained by cutting the surface of P along D1 and D2, respec-
tively.

Theorem 3. For any net N1 of a polyhedron P with n vertices, there exist
infinitely many nets N2 of P such that N1 is reversible to N2.

Proof. Any net N of P has a one-to-one correspondence with a dissection tree
D on the surface of P . Let the dissection tree of Ni be Di (i = 1, 2), respectively
(Fig. 9(a)). The perimeter of Ni can be decomposed into several parts in which
each is congruent to an edge of Di. Moreover, a vertex with degree k on Di

appears k times on the perimeter of Ni. These duplicated vertices of vi are
labeled as v′

i, v
′′
i ,

Choose an arbitrary vertex vk among vk, v
′
k, v

′′
k , . . . on N1 as a representative

and denote it by v∗
k, where k = 1, 2, . . . , n. Since N1 is connected, it is possible

to draw infinitely many arbitrary spanning trees D2, each of which connects v∗
k

Reversible Nets of Polyhedra 19

(a)

D1: N1:

+ ⇒

(b)

(c)

Fig. 9. A swirl net of a regular tetrahedron.

(k = 1, 2, . . . , n) inside N1 (Fig. 9(b)). Then, any such D2 doesn’t intersect D1.
(Fig. 9(c)). As in Theorem 2, dissect N1 along D2 into n pieces P1, . . . , Pn, and
then connect them in sequence using n−1 hinges on the perimeter of N1 to form
a chain. Fix one of the end-pieces of the chain and rotate the remaining pieces
then forming net N2 which is obtained by cutting P along D2 (Fig. 9 (d)). ��

Corollary 1 (Envelope magic [7]). Let E be an arbitrary doubly covered poly-
gon (dihedron) and let D1 and D2, be dissection trees of E. If dissection tree D1

doesn’t properly cross dissection tree D2, then a pair of nets N1 and N2 obtained
by cutting the surface of E along D1 and D2 is reversible (Fig. 10).

The previous two theorems show that it is always possible to dissect any
polyhedron P into two nets that are reversible, however, as mentioned in the
beginning of this section, those nets may sometimes self-overlap when embedded
in the plane. One may then ask whether a convex polyhedron P always has a
pair of reversible non self-overlapping nets. The following theorem answers in
the positive.

Theorem 4. For any convex polyhedron P , there exists an infinity of pairs of
non self-overlapping nets of P that are reversible.

Proof. Choose an arbitrary point s on the surface of P , but not on a vertex.
The cut locus of s is the set of all points t on the surface of P such that the

20 J. Akiyama et al.

Fig. 10. A lobster transforms into a fish; The separating cycle C is the hem of a
pentagonal dihedron.

shortest path from s to t is not unique. It is well known that the cut locus of s
is a tree that spans all vertices of P . Cutting P along the cut locus produces the
source unfolding, which does not overlap [10]. Let D1 be the cut locus from s,
and N1 the corresponding non self-overlapping net. The net N1 is a star-shaped
polygon, and the shortest path from s to any point t in P unfolds to a straight
line segment contained in N1. The dissection tree D2 is constructed by cutting P
along the shortest path from s to every vertex of P . The net N2 thus produced
is a star unfolding and also does not overlap [8]. Note also that the shortest path
from s to any vertex of P , when cutting the source tree D1, unfolds to a straight
line segment from s to the corresponding vertex on N1. Therefore D1 and D2 do
not properly intersect (In fact D1 and D2 may coincide but not properly cross.
In order to avoid this, it suffices to choose s not on the cut locus of any vertex
of P .) By Theorem 2, N1 and N2 are reversible. ��

3 Reversibility and Tessellability for Nets
of an Isotetrahedron

A tetrahedron T is called an isotetrahedron if all faces of T are congruent.
Note that there are infinitely many non-similar isotetrahedra. Every net of an

Reversible Nets of Polyhedra 21

T :

N1: sea horse N2: weasel

←− −→

⇐⇒ ⇐⇒

Fig. 11. sea horse ⇔ weasel

Fig. 12. Tiling by sea horse and weasel

22 J. Akiyama et al.

isotetrahedron tiles the plane [2]. Moreover, all nets of isotetrahedron can be
topologically classified into five types [3]. By Theorems 2 and 3, the following
theorem is obtained:

Theorem 5. Let D1 be an arbitrary dissection tree of an isotetrahedron T . Then
there exists a dissection tree D2 of T which doesn’t intersect D1. The pair of
nets N1 and N2 obtained by cutting along D1 and D2 is reversible, and each Ni

(i = 1, 2) tiles the plane.

Proof. By Theorem 3, there exists a D2 for any D1. Let four vertices of T be vk
(k = 1, 2, 3, 4). Draw both D1 and D2 on two T s. Cut T along D1, and the net
N1 inscribing D2 is obtained. On the other hand, cut T along D2, and the net
N2 inscribing D1 is obtained (Fig. 11). As in Theorem 2, dissect N1 along D2 (or
dissect N2 along D1) into four pieces P1, P2, P3 and P4, and join then in sequence
by three hinges on the perimeter of N1 like a chain. Fix one of the end pieces of the
chain and rotate the remaining pieces, then they form the netN2 which is obtained
by cutting T along D2. Since each of N1 and N2 is a net of an isotetrahedron, then
both N1 and N2 are tessellative figures (Figs. 12 and 13). ��

⇐⇒ ⇐⇒

Fig. 13. donkey ⇔ fox

Reversible Nets of Polyhedra 23

References

1. Abbott, T., Abel, Z., Charlton, D., Demaine, E.D., Demaine, M.L., Kominers, S.:
Hinged dissections exist. Discrete Comput. Geom. 47(1), 150–186 (2010)

2. Akiyama, J.: Tile-maker and semi-tile-maker. Am. Math. Mon. 114, 602–609
(2007)

3. Akiyama, J., Matsunaga, K.: Treks into Intuitive Geometry. Springer, New York
(2015)

4. Akiyama, J., Nakamura, G.: Congruent Dudeney dissections of triangles and convex
quadrangles - all hinge points interior to the sides of the polygons. In: Pach, J.,
Aronov, B., Basu, S., Sharir, M. (eds.) Discrete and Computational Geometry, The
Goodman-Pollack Festschrift. Algorithms and Combinatorics, vol. 25, pp. 43–63.
Springer, New York (2003)

5. Akiyama, J., Rappaport, D., Seong, H.: A decision algorithm for reversible pairs
of polygons. Discrete Appl. Math. 178, 19–26 (2014)

6. Akiyama, J., Seong, H.: A criterion for a pair of convex polygons to be reversible.
Graphs Comb. 31(2), 347–360 (2015)

7. Akiyama, J., Tsukamoto, T.: Envelope magic (to appear)
8. Aronov, B., O’Rourke, J.: Nonoverlap of the star unfolding. Discrete Comput.

Geom. 8(3), 219–250 (1992)
9. Demaine, E.D., Demaine, M.L., Eppstein, D., Frederickson, G.N., Friedman, E.:

Hinged dissection of polynominoes and polyforms. Comput. Geom. Theory Appl.
31(3), 237–262 (2005)

10. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge University Press, Cambridge (2007)

11. Frederickson, G.N.: Hinged Dissections: Swinging and Twisting. Cambridge Uni-
versity Press, Cambridge (2002)

12. Itoh, J., Nara, C.: Transformability and reversibility of unfoldings of doubly-
covered polyhedra. In: Akiyama, J., Ito, H., Sakai, T. (eds.) JCDCGG 2013. LNCS,
vol. 8845, pp. 77–86. Springer, Heidelberg (2014)

Geometric p-Center Problems with Centers
Constrained to Two Lines

Binay Bhattacharya1, Ante Ćustić2, Sandip Das3, Yuya Higashikawa4,
Tsunehiko Kameda1(B), and Naoki Katoh5

1 School of Computing Science, Simon Fraser University, Burnaby, Canada
tiko@sfu.ca

2 Department of Mathematics, Simon Fraser University, Burnaby, Canada
3 Advanced Computing and Microelectronics Unit,

Indian Statistical Institute, Kolkata, India
4 Department of Information and System Engineering,

Chuo University, Tokyo, Japan
5 School of Science and Technology, Kwansei University,

Sanda, Hyogo, Japan

Abstract. We first consider the weighted p-center problem, in which the
centers are constrained to lie on two axis-parallel lines. Given a set of n
points in the plane, which are sorted according to their x-coordinates,
we show how to test in O(n log n) time if p piercing points placed on two
lines, parallel to the x-axis, can pierce all the disks of different radii cen-
tered at the n given points. This leads to an O(n log2 n) time algorithm
for the weighted p-center problem. We then consider the unweighted case,
where the centers are constrained to be on two perpendicular lines. Our
algorithm runs in O(n log2 n) time in this case as well.

1 Introduction

The p-center problem is one of the most intensively studied problems in com-
putational geometry. The geometric p-center problem is defined as follows [17].
Given are a set P = {p1, p2, . . . , pn} of n points in the plane, where point pi

(i = 1, 2, . . . , n) has weight wi, and a positive integer p. The objective is to find
a set of p centers such that the maximum over all points in P of the weighted dis-
tance from a point to its nearest center is minimized. It was shown by Megiddo
[16] that this problem is NP-hard in its general form. To find more tractable
cases solvable in polynomial time, researchers have considered many variations
of this problem in terms of the metric used, the number of centers, the weights
(uniform vs. non-uniform), and constraints on the allowed positions (discrete
points, lines, polygon, etc.) of the centers [10,14,15].

When the centers are constrained to a single line, Karmakar et al. showed
that the unweighted p-center problem, where the vertices have the same weight,
can be solved in O(n log n) time [11], and Wang and Zhang showed that the
weighted p-center problem, can also be solved in O(n log n) time [18]. It was
recently shown by Chen and Wang [4] that the weighted version of this problem
c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 24–36, 2016.
DOI: 10.1007/978-3-319-48532-4 3

Geometric p-Center Problems with Centers Constrained to Two Lines 25

has a lower bound of Ω(n log n) on its time complexity. The O(n log n) time
algorithms mentioned above are based on Megiddo’s parametric search [13] with
Cole’s speed-up [5]. Since they use the AKS network [1], the coefficient hidden in
the big-O notation is huge. If a more practical sorting network, such as bitonic
sorting network [12], is used the time requirement increases to O(n log2 n). The
1-dimensional p-center problem is discussed by Bhattacharya et al. [3], Chen and
Wang [4], and Fournier and Vigneron [6]. If the l1 or l∞ distance metric is used
instead of l2, in other words, if the enclosing shape is an axis-parallel square,
then we can apply a method due to Frederickson and Johnson [7,8] to solve this
problem in O(n) time [6], provided the points are presorted.

In this paper we consider the p-center problem constrained to two parallel or
perpendicular lines. We first show that for a given weighted distance ρ, we can
test in O(n log n) time whether there exist p centers on two parallel lines such
that each point is within weighted distance ρ from a center. This implies that
p-center problem can be solved in O(n log2 n) time, using Megiddo’s parametric
search [13] with Cole’s speed-up [5]. In the unweighted case and under the l1 or
l∞ distance metric, it is known that this problem can be solved in O(n log n)
time without using a huge sorting network [2].

In the line-constrained problem, it is a standard practice to use the intersec-
tion of an object o(pi) around each point pi and a line. This object o(pi) is a
square under the l∞ distance metric and a disk under the l2 metric, which is the
case in our model. When disks are used instead of squares, some results from [2]
carry over, but a few complications arise. First, the end points of the intersec-
tions do not have the same order as the points’ x-coordinates. Second, if a disk
intersects both of the two lines, the intersection points do not have the same
x-coordinate in general. These complications make the problem more challeng-
ing. If the centers are constrained to a single line (e.g., the x-axis), ρ-feasibility
can be tested in linear time [11], provided that the given points are presorted by
their x-coordinates. We will often make use of this linear time 1-line algorithm
in this paper.

The rest of the paper is organized as follows. Section 2 discusses the case where
the centers are constrained to two parallel lines, and presents an O(n log2 n) time
algorithm. In Sect. 3 we discuss the unweighted case, where the centers are con-
strained to two perpendicular lines. We then show that the problem can be solved
in O(n log2 n) time. Finally, Sect. 4 concludes the paper with a summary and open
problems.

2 Centers Constrained to Two Parallel Lines

2.1 Preliminaries

Let P = {p1, p2, . . . , pn} be a set of points in the plane, where point pi has a
positive weight wi. We denote the x-coordinate (resp. y-coordinate) of point pi

by pi.x (resp. pi.y), and assume that pi.x ≤ pi+1.x holds for i = 1, 2, . . . , n − 1,
i.e., the points are sorted according to their x-coordinates. If the x-coordinates
of two points are the same, they can be ordered arbitrarily. Let Di(ρ) denote

26 B. Bhattacharya et al.

the disk with radius ρ/wi centered at point pi. Let L1 and L2 be the two given
axis-parallel horizontal lines (L1 above L2). A problem instance is said to be
ρ-feasible if p centers can be placed on the two lines in such a way that there is
a center within distance ρ/wi from every point pi. Otherwise, it is ρ-infeasible.
For i = 1, 2, . . . , n let J i

1(ρ) = Di(ρ)∩L1 (resp. J i
2(ρ) = Di(ρ)∩L2). We assume

that at least one of J i
1(ρ) and J i

2(ρ) is non-empty, since otherwise the problem
instance is not ρ-feasible. If J i

1(ρ) �= ∅ and J i
2(ρ) �= ∅, then they are called buddy

intervals or just buddies, and the corresponding point pi is called a buddy point.
So, given a set P of weighted points and a radius ρ, we are interested in finding
a minimum cardinality set S of points on L1 and L2 such that S ∩ J i

1(ρ) �= ∅ or
S ∩ J i

2(ρ) �= ∅, for every i = 1, 2, . . . , n. We call such S, a set of piercing points.
From now on, up to Lemma 2, we assume that radius ρ is fixed.

Given i, 1 ≤ i ≤ n, we call a set Si of piercing points for all the disks around
points Pi = {p1, p2, . . . , pi} a partial solution on Pi. If Pi = P , a partial solution
is a complete solution. Given a partial solution Si with |Si| = z piercing points,
let I1 be an interval on L1 that represents the section along which the rightmost
point of Si ∩ L1 can be moved so that all the disks for the points in Pi are
still pierced. Analogously, let I2 represents such an interval on L2. Then the
triple c = (I1, I2; z) is said to be a configuration for Pi, where the non-negative
integer z is called the count of the configuration [2]. Furthermore, associated
with configuration c is a piercing sequence ℘(c) of max{z−2, 0} fixed piercing
points on L1 and L2, i.e., Si without the rightmost points on L1 and L2. In other
words, configuration (I1, I2; z) represents a class of partial solutions that consist
of z piercing points that are identical, except for the rightmost points on L1 and
L2, which can be anywhere on I1 and I2, respectively.

For the purpose of our algorithm, we would like to be able to dismiss partial
solutions/configurations that cannot be the unique ones that lead to the complete
solutions of minimum cardinality. To that end, we introduce the concept of
domination. Given a partial solution S, a complete extension of S is a superset
of S which is a complete solution. Let c′ = (I ′

1, I
′
2; z

′) and c′′ = (I ′′
1 , I ′′

2 ; z′′) be
two different configurations for Pi. We say that c′ dominates c′′ if, regardless of
what the remaining points in P are, there cannot exist a complete extension of
some partial solution represented by c′′ which has a strictly smaller cardinality
than all the complete extensions of all partial solutions represented by c′.

2.2 Algorithm

We scan the points in P = {p1, p2, . . . , pn} from left to right, in such a way that
in step i we generate all non-dominated configurations for Pi. We maintain the
set F of such configurations, called the frontier configurations. After we scan all
the n points, we know that the given instance is ρ-feasible if and only if there is
a configuration in F with the count at most p. Given an interval I on either L1

or L2, let l(I) (resp. r(I)) denote the left (resp. right) end point of I.

Geometric p-Center Problems with Centers Constrained to Two Lines 27

Algorithm 1

1. Initialize F =
{
([−�,−�], [−�,−�]; 0)

}
, where � is a very large number.

2. For i = 1, 2, . . . , n, execute Step 3.
3. Set F ′ = ∅. For each configuration c = (I1, I2; z) ∈ F , do Steps (a)–(c) that

apply, and put the generated configurations in F ′.
(a) [J i

1(ρ) = ∅ ∧ J i
2(ρ) = ∅] The problem instance is not ρ-feasible (no point

can pierce Di(ρ)). Stop
(b) [J i

1(ρ) �= ∅] If I1 ∩ J i
1(ρ) �= ∅ then convert c into (I1 ∩ J i

1(ρ), I2; z) else
convert it into (J i

1(ρ), I2; z + 1) and add r(I1) into ℘(c).
(c) [J i

2(ρ) �= ∅] If I2 ∩ J i
2(ρ) �= ∅ then convert c into (I1, I2 ∩ J i

2(ρ); z) else
convert it into (I1, J i

2(ρ); z + 1) and add r(I2) into ℘(c).
Remove the dominated configurations from F ′, and replace F by F ′.

4. The problem instance is ρ-feasible if and only if there is a configuration in F
whose count is no more than p. �	

Theorem 1. Algorithm1 is correct.

Proof (Sketch). In Step 3 of the algorithm, for all i we aim to calculate a set
F of partial solutions on points Pi, such that, no mater what the rest of P is,
there is one partial solution in F that can be extended to a complete solution
with the minimum cardinality. If that is the case, the algorithm is correct.

Recall that we group partial solutions into configurations and treat them
as a unit. One such configuration c = (I1, I2; z) represents all partial solutions
consisting of the points in ℘(c) and one piercing point each on I1 and I2. Consider
configuration c = (I1, I2; z), and a new point pi with the corresponding interval
J i
1(ρ). If J i

1(ρ) is already pierced by a point from ℘(c), then we have l(J i
1(ρ)) ≤

l(I1) by the definition of ℘(c). In this case, from the fact that pi.x ≥ pj .x for
i > j, we also have r(I1) ≤ r(J i

1(ρ)). It thus follows that I1 ⊆ J i
1(ρ), which

implies that J i
1(ρ) is also pierced by every point in I1. Therefore, if I1 ⊆ J i

1(ρ)
then we can ignore pi, and otherwise, we compute I1 ∩ J i

1(ρ). In other words,
we know whether J i

1(ρ) can be pierced by some partial solution corresponding
to c without observing ℘(c). Therefore, we do not lose any crucial information
by restricting to configurations, i.e., only the number of piercing points (count)
and positions of the rightmost piercing points on L1 and L2 play a role in the
quality of a partial solution with respect to the remaining points in P .

In Step 3(b) of the algorithm, if I1 ∩ J i
1(ρ) �= ∅, only (I1 ∩ J i

1(ρ), I2; z), and
not (J i

1(ρ) \ I1, I2; z + 1), is generated. That is because the latter is dominated
by the former. When creating (J i

1(ρ), I2; z + 1), in addition we need to add an
arbitrary point from I1 to ℘(c). Step 3(c) works analogously.

From the definition of domination, it follows that removing dominated con-
figurations at the end of Step 3 will not affect the correctness. �	

By implementing Algorithm 1 directly, inefficiencies would be caused if
searching F and removing dominated configurations in in Step 3 are blindly
executed. In the following subsection we describe how Algorithm1 can be imple-
mented efficiently.

28 B. Bhattacharya et al.

2.3 Implementation

Let us first discuss how to implement one round of Step 3 of Algorithm1 effi-
ciently. For this purpose we identify the interval I1 (resp. I2) of configuration
(I1, I2; z) with its right endpoint r(I1) (resp. r(I2)). We can do so since I1
intersects J i

1(ρ) if and only if l(J i
1(ρ)) ≤ r(I1), in which case r(I1 ∩ J i

1(ρ)) =
min{r(I1), r(J i

1(ρ))}. This follows from l(I1) < r(J i
1(ρ)), which is a consequence

of pi.x ≥ pj .x for i > j and the fact that l(I1) is the left endpoint of some inter-
val that has been processed so far. So in the rest of this section, a configuration
will be represented by (x1, x2; z), where x1 = r(I1) and x2 = r(I2).

To represent configuration c = (x1, x2; z) visually, we draw a line between
x1 and x2 and label it by its count z. We say that configurations (x′

1, x
′
2; z

′)
and (x′′

1 , x′′
2 ; z′′) cross each other if either x′

1 < x′′
1 and x′

2 > x′′
2 or x′

1 > x′′
1 and

x′
2 < x′′

2 hold. Configurations (x′
1, x

′
2; z

′) and (x′′
1 , x′′

2 ; z′′) are said to be disjoint
if either x′

1 < x′′
1 and x′

2 < x′′
2 or x′

1 > x′′
1 and x′

2 > x′′
2 hold. See Fig. 1.

Lemma 1. Let F be a set of configurations that represent partial solutions for
point set Pi such that no configuration dominates another in F . Then

(a) The counts of the configurations in F differ by at most one.
(b) Every pair of configurations in F cross each other if they have the same

count.
(c) Every pair of configurations (x′

1, x
′
2; z), (x′′

1 , x′′
2 ; z − 1) ∈ F are disjoint, and

x′
1 > x′′

1 and x′
2 > x′′

2 hold. (See Fig. 2.)

Proof. (a) Let c′ = (x′
1, x

′
2; z

′) and c′′ = (x′′
1 , x′′

2 ; z′′) be two configurations for the
points in Pi, such that z′ ≥ z′′+2. Let S be a minimum cardinality set of piercing
points that extends ℘(c′) to a complete solution. Then S ∪ {(x′′

1 , L1), (x′′
2 , L2)}

extends ℘(c′′) to a complete solution also, where L1 (resp. L2) indicates the line

L1

L2

z′
z′′

(a)

L1

L2

z′ z′′

(b)

Fig. 1. Representations of configurations: (a) The two configurations cross each other
(b) They are disjoint.

L1

L2

z
z − 1

Fig. 2. Set of configurations without any dominating configuration

Geometric p-Center Problems with Centers Constrained to Two Lines 29

the piercing point is on. Since the cardinality of the latter complete solution does
not exceed the cardinality of the former one, we have that c′′ dominates c′.

(b) It suffices to prove that if c′ = (x′
1, x

′
2; z) and c′′ = (x′′

1 , x′′
2 ; z) do not

dominate each other, then they must cross each other. To prove the contraposi-
tive, assume that they do not cross each other. Then without loss of generality
we can assume that x′

1 ≤ x′′
1 and x′

2 ≤ x′′
2 . But then from arguments in the proof

of Theorem 1, it easily follows that c′ cannot lead to a complete solution of a
smaller cardinality, i.e., c′′ dominates c′.

(c) Assume to the contrary that there are two disjoint configurations c′ =
(x′

1, x
′
2; z) and c′′ = (x′′

1 , x′′
2 ; z − 1) in F such that, without loss of generality,

x′
2 ≤ x′′

2 holds. Then again, if S is a minimum cardinality extension of ℘(c′) to
a complete solution, then S ∪ {(x′′

1 , L1)} is an extension of ℘(c′′) to a complete
solution, hence c′′ dominates c′, a contradiction to the fact that no configuration
in F dominates another. �	

Lemma 1 gives us a description of frontier configurations F . Now we describe
how Step 3 of Algorithm1 can be implemented efficiently, i.e., how F can be
updated when intervals J i

1(ρ) and/or J i
2(ρ) corresponding to a new point pi are

introduced.
For simplicity, let us use symbols lik = l(J i

k(ρ)) and ri
k = r(J i

k(ρ)) for k = 1, 2.
First, let the new point pi be a non-buddy point such that J i

1(ρ) �= ∅ and J i
2(ρ) =

∅. In order to check which configurations from F will be preserved, modified, or
discarded, after J i

1(ρ) = [li1, r
i
1] is introduced, we partition F into three groups.

Let Fl = {(x1, x2; z) ∈ F | x1 < li1}, Fm = {(x1, x2; z) ∈ F | li1 ≤ x1 ≤ ri
1}

and Fr = {(x1, x2; z) ∈ F | ri
1 < x1}. Step 3(b) of Algorithm1 replaces each

configuration (x1, x2; z) ∈ Fl with (ri
1, x2; z+1). Let c̄ = (x̄1, x̄2, z) be an element

of Fl with the smallest first component. By a similar argument to that in the
proof of Lemma 1, one can easily see that (ri

1, x̄2; z + 1), created from c̄, will
dominate all other configurations created from Fl. Analogously, configuration
(ri

1, x̂2; z), created in Step 3(b) from a configuration (x̂1, x̂2; z) from Fr with the
smallest first component, will dominate all other configurations created from
the elements of Fr. Lastly, Step 3(b) leaves all elements of Fm unchanged. To
summarize, in the case of non-buddy point pi with J i

1(ρ) �= ∅, we can update
frontier configurations in F by scanning it from left to right with respect to the
first component, and removing all components until we hit the interval J i

1(ρ).
Furthermore, in place of the removed configurations, two new configurations
are considered to join F . This is illustrated in Fig. 3(a), where the solid lines
represent the frontier configurations that are in F before pi is processed. The
configurations that survive are indicated by thick lines. Two dashed lines are
new configurations considered, where the right one dominates in this example,
and hence is admitted to F . We present the above implementation more formally
as a procedure.

Procedure 1. NonBuddy(J i
1(ρ))

1. Scan the configurations in F from left to right and right to left on L1, until li1
and ri

1 are reached, respectively. Delete all scanned configurations (x1, x2; z)
(except those with the first component (i.e., x1) equal to li1 or ri

1).

30 B. Bhattacharya et al.

J i
1(ρ)

L1

L2

z−1 zz z

(a)

J i
1(ρ)

J i
2(ρ)

L1

L2

z−1
z

(b)

Fig. 3. Updating the frontier configurations: (a) for a non-buddy interval on L1; (b)
for buddy intervals.

2. Let (x̄1, x̄2; z̄) and (x̂1, x̂2; ẑ) be the deleted configurations with smallest first
components in the left to right and right to left scanning process, respectively.
(Note that they do not exist if Fl = ∅ and Fr = ∅.)

3. If there is no configuration in F with the first component ri
1, then insert in

F the dominating configuration in the pair {(ri
1, x̄2; z̄ + 1), (ri

1, x̂2; ẑ)}. �	
The case where the new point pi is a non-buddy point such that J i

1(ρ) = ∅
and J i

2(ρ) �= ∅ can be implemented by a similar procedure.
We are thus left with the case where pi is a buddy point, i.e., J i

1(ρ) �= ∅
and J i

2(ρ) �= ∅. This case can be handled by applying the approach from Proce-
dure NonBuddy on both L1 and L2 “simultaneously.” We scan F in two different
directions, from left to right and right to left on L1 until we reach li1 and ri

1,
respectively, and then from left to right and right to left on L2 until we reach
li2 and ri

2, respectively. We now delete all the configurations that were scanned
twice. Furthermore, for L1 and L2 each we consider at most two new configu-
rations as in Step 3 of Procedure 1. Among these at most four configurations,
we add to F those which are not dominated. See Fig. 3(b), where non-bold lines
must be deleted, and dashed lines are considered to be added to F . Thus, each
point pi causes is at most two net increase in the number of configurations.

Lemma 2. Algorithm1, if implemented with the procedures defined above, can
test ρ-feasibility in O(n log n) time.

Proof. Our procedures create at most two new configurations for each new point
pi introduced, hence the total number of configurations created is O(n).

We can keep two lists of pointers to configurations of F , one which is sorted
with respect to the first component, and second one with respect to the sec-
ond component. We implement these lists using a data structure that allows
search, insert and delete in O(log n) time, for example using a 2-3 tree. Then it
is easy to see that the scanning part of NonBuddy procedures (Step 1) can be
done in O(m log |F |) time, where m is the number of removed (scanned) con-
figurations. Steps 2 and 3 can be done O(log |F |) time. Now let us consider the
more complicated non-buddy case. As can be seen in Fig. 3(b), there could be
multiple subsequences of configurations that need to be removed, some of which
are surrounded by configurations that need to be preserved. To reach areas that

Geometric p-Center Problems with Centers Constrained to Two Lines 31

need to be removed we need O(log |F |) time, and to delete configurations we
need O(m log |F |) time, where m is the number of configurations that need to
be removed. Hence, in both buddy and non-buddy cases, the processing of point
pi can be done in O(mi log n) time, where mi is the number of configurations
deleted in the processing of pi. Once deleted, a configuration will not be consid-
ered again, hence

∑n
i=1 mi = O(n). Therefore the complexity of Algorithm 1 is

O(n log n). �	

2.4 Finding Optimal ρ∗ for p-Center

We adopt Megiddo’s parametric search to find the optimal weighted radius ρ∗.
Here we give an intuitive idea, referring the reader to [13] for details. Suppose we
start with a radius ρ such that a problem instance is not ρ-feasible, and q (> p)
piercing points are required to pierce all the intervals on L1 and L2. If we increase
ρ, we will reach a point where q −1 piercing points are sufficient to pierce all the
intervals on L1 and L2. At this new value of ρ, at least one more pair of intervals
must intersect. This indicates that whether intervals intersect or not plays an
important role in decreasing/increasing the number of piercing points. Whether
a pair of intervals intersects or not on a line (L1 or L2) clearly depends on the
order of their end points on the line. If we can somehow determine their order
for ρ∗, then we can find a p-center. Megiddo [13] proposed an ingenious may of
implementing prune and search, using a sorting network to find the sorted order
of the endpoints under ρ∗ without knowing ρ∗.

Using the AKS sorting network [1], he showed that O(log2 n) invocations of
an ρ-feasibility test can determine the optimal radius ρ∗. Later Cole [5] showed
that this number can be reduced to O(log n) invocations. Since each invocation
takes O(n log n) time by Lemma 2, we have proved

Theorem 2. When the centers are constrained to two parallel lines, we can
solve the p-center problem in O(n log2 n) time. �	

3 Centers Placed on Both x- and y-axes

In this section we discuss only the unweighted case, where each point has unit
weight. We assume that line L1 (resp. L2) is the x- (resp. y)-axis, denoted by X
(resp. Y). For a given radius ρ, the points in P must lie within the horizontal
and/or vertical bands of width 2ρ defined by four lines, x = ±ρ and y = ±ρ.
We first sort the points according to the x- and y-coordinates, separately. Let
us call A(ρ) the clover shaped area which is the union of the four disks of radius
ρ whose centers are on the two axes at distance ρ from the origin. See Fig. 4(a).
Clearly, any point outside A(ρ) can be covered by a circle centered on either the
x-axis or y-axis, not both. To cover all those points with the minimum number of
enclosing circles, we can use the 1-dimensional algorithm four times “outside-in”
on the x- and y-axes. Note that these circles may also cover some points in A(ρ).
Thus we need to consider only the remaining set P (ρ) of uncovered points that
lie within A(ρ).

32 B. Bhattacharya et al.

ρ

−ρ

−ρ

ρ
x

y

(a)

m(vr)=ri

xin =xout

Tρ(vr)

li ri

v

vr

λ(vr)

(b)

Fig. 4. (a) Area A(ρ); (b) Updown search of tree Tρ.

It is clear that all the points in P (ρ) can be covered by four centers, as can
be seen from Fig. 4(a). We thus want to test if they can be covered by less than
four circles of radius ρ. By a greedy method, we can easily test if all the points in
P (ρ) can be covered by one, two or three circles on the same axis in O(n) time.
Therefore, without loss of generality, we assume that one center, named Cy,
whose center, cy, is on the y-axis, and the others (no more than two) are placed
on the x-axis. We start with cy = (0, ρ), and push cy downwards. The points in
P (ρ) that lie outside (resp. inside) Cy are said to be active (resp. inactive).

3.1 ρ-Feasibility Test

In this subsection we assume that radius ρ is given. For each point pi ∈ P , let
Di(ρ) be the disk of radius ρ centered at pi, and define the interval J i

x(ρ) =
[li, ri] = Di(ρ) ∩ X.1 We call J i

x(ρ) active (resp. inactive) if pi is active (resp.
inactive). We can sort the 2n endpoints, {li, ri | pi ∈ P}, in O(n log n) time.

Let |P (ρ)| = m (≤ n). We now construct, in O(m) time, a balanced tree
named Tρ, whose leaves consist of the sorted elements {li | pi ∈ P (ρ)} arranged
from left to right. For interval J i

x(ρ) = [li, ri], we interpret ri as the value of
li. For any node u of Tρ, let m(u) denote the minimum value among the leaves
of subtree Tρ(u) rooted at u. Tree Tρ implements a heap as well based on the
values of its leaves, and we can compute m(u) for all nodes u in linear time.

For example, in Fig. 4(b), given a point xin on the x-axis, suppose we are
interested in the rightmost point xout such that the values (defined above) of
the leaves that lie between xin and xout are at or to the right of xout. By this
definition of xout, we have rj ≥ xout for each leaf lj ∈ [xin, xout], and there
exists a leaf li ∈ [xin, xout] such that ri = xout. It is clear that xout pierces all
the intervals whose left endpoint lies in [xin, xout], and it is the rightmost such
piercing point.

1 This interval can be empty. We refer to this interval as a disk interval to distinguish
it from another kind of interval on the x-axis.

Geometric p-Center Problems with Centers Constrained to Two Lines 33

Let us design a procedure that finds xout for a given xin, assuming that we
already have search tree Tρ. For a node u of Tρ, let λ(u) denote the rightmost leaf
that belongs to subtree Tρ(u). We assume that λ(u) is also stored at u. Starting
from the leaf nearest to xin on its right, we trace the path towards the root
of Tρ. Let v be a node on this path and let vr be its right child. See Fig. 4(b).
We maintain a position variable x, initialized appropriately, and update it by
x = min{x,m(vr)}. If x > λ(vr), it implies that xout > λ(vr), so we move to
the parent of v and perform a similar test for its right child. Eventually, we may
have x ≤ λ(vr) for some vr. If x = λ(vr), then xout = x, and we are done. If
x < λ(vr), on the other hand, then we need to check the left subtree of vr, and
then the right subtree of vr. See the dotted path in Fig. 4(b). A filled circle in
Fig. 4(b) indicates the node u at which the test x > λ(u) succeeded. We call this
search process updown search, which consists of the Up phase followed by the
Down phase. The following procedure describes updown search more formally.

Procedure 2. UpDown(xin, Tρ, cy)

1. Find the first leaf li of Tρ that lies to the right of xin. Set v = li and x = ri.
2. [Up phase] While v is the right child of p(v) (the parent of v) do v = p(v).

Let vr be right child of v.
(a) Update x = min{x,m(vr)}.
(b) If x > λ(vr) then set v = p(v), and repeat Step 2. Else let v = vr.

3. [Down phase] Let vl be the left child of vertex of v.
(a) Update x = min{x,m(vl)}.
(b) If x ≤ λ(vl) then set v = vl else set v = vr.
(c) If v is a leaf lj, set xout = min{x, rj} and stop. Else repeat Step 3. �	
Once the first piercing point is identified, and if it doesn’t pierce all the active

intervals on the x-axis, then we invoke UpDown(xin, Tρ, cy) again with xin set to
xout returned from the first invocation, to find the second piercing point, and
so forth. For a given position of cy, the following algorithm finds the minimum
number of piercing points for the active intervals on the x-axis, where z is the
number of centers needed, including cy. We assume P (ρ) �= ∅, so that at least
one center is needed to cover the points in P (ρ).

Algorithm 2. Find-Centers(ρ, Tρ, cy)

1. Set z = 2, and xin to a point that lies to the left of the leftmost leaf of Tρ.
2. Call UpDown(xin, Tρ, cy).
3. If the returned xout lies at or to the right of the rightmost leaf of Tρ, then

stop and return z − 1 if xout = M � max{ri | pi ∈ P (ρ)} + 1, or z otherwise.
4. Increment z by 1. If z = 5 then stop. (Use the four circles in Fig. 4(a).) Else

set xin = xout and go to Step 3. �	
As Cy is pushed downward and cy decreases, the set of active points changes.

When an interval J i
x(ρ) becomes inactive, we change the value of li to M , and

update the m(·) values associated with the nodes on the path π(li) from li
to the root of Tρ, which takes O(log m) time, using standard heap operations.

34 B. Bhattacharya et al.

When J i
x(ρ) becomes active again, we restore the value of li to ri and update

the m(·) values along π(li). For each point pi ∈ P , define the interval J i
y(ρ) =

[di, ui] = Di(ρ) ∩ Y , where di ≤ ui.

Algorithm 3. Feasibility(ρ)

1. Sort the end points of {J i
x(ρ) | pi ∈ P} and {J i

y(ρ) | pi ∈ P} separately.
2. Compute zA, the minimum number of centers needed to cover the points not

in A(ρ), and determine P (ρ). If zA > p, output “ρ-infeasible” and stop.
3. Construct search tree Tρ, assuming that all points are active.
4. Initialize cy at (0, ρ) ∈ Y , determine all the active points, and update Tρ. Call

Find-Centers(ρ, Tρ, cy) and set zA to the returned value z.
5. If pushing cy to the next position in the sorted list of {di, ui | pi ∈ P (ρ)}

makes a point pi with J i
x(ρ) = ∅ active, then go to Step 6. Otherwise, while

cy is not at the bottom of the list, push cy to the next position, and call
Find-Centers(ρ, Tρ, cy). Update zA = min{zA, z}, where z is the returned
value.

6. If zA + zA ≤ p then output “ρ-feasible.” Else output “ρ-infeasible.” �	
In Step 5 Find-Centers(ρ, Tρ, cy) is called for O(m) possible positions for cy,
and finds the minimum number of centers required among them.

Lemma 3. For a given ρ, we can test ρ-feasibility for the points in P (ρ) in
O(m log m) time, where |P (ρ)| = m. �	

Since Steps 1, 4, and 5 of Feasibility(ρ) each take O(n log n) time, Lemma 3
implies the following theorem.

Theorem 3. When the centers are constrained to be on x- and y-axes, we can
test ρ-feasibility in O(n log n) time. �	

3.2 Optimization

We use the same idea as in Sect. 2.4 to find the minimum ρ, named ρ∗. Clearly,
if we sort all the end points of the disk intervals with respect to ρ∗, then the
left endpoints (the leaves of Tρ) are automatically sorted. As in Theorem 2, we
use Megiddo’s method [13] to sort all these end points, using the AKS sorting
network [1] with Cole’s improvement [5]. Thus we need to perform ρ-feasibility
tests only O(log n) times, and Theorem 3 implies

Theorem 4. When the centers are constrained to be on two perpendicular lines,
we can solve the p-center problem in O(n log2 n) time. �	

4 Conclusion

This paper considered two models of constrained p-center problem. In the first
model, the given n points are weighted and the centers are constrained to lie

Geometric p-Center Problems with Centers Constrained to Two Lines 35

on two parallel lines, and in the second model, the points are unweighted and
the centers are constrained to lie on two perpendicular lines. We have presented
O(n log2 n) time algorithms for the above two p-center problems. An open prob-
lem is the weighted case for two perpendicular lines, which appears much more
difficult. The case where the centers are constrained to more than two lines is
also open. It is known that AKS sorting network is too huge to be practical,
but the recent result by Goodrich [9] gives us hope that a practical O(n × log n)
sorting network may be designed in the not-too-distant future.

Acknowledgement. We would like to thank Hirotaka Ono of Kyushu University
and Yota Otachi of JAIST for stimulating discussions on the topic of Sect. 3. This
work was supported in part by Discovery Grant #13883 from the Natural Science
and Engineering Research Council (NSERC) of Canada and in part by MITACS, both
awarded to Bhattacharya.

References

1. Ajtai, M., Komlós, J., Szemerédi, E.: An O(n log n) sorting network. In: Proceed-
ings of 15th ACM Symposium on Theory of Computing (STOC), pp. 1–9 (1983)

2. Bereg, S., Bhattacharya, B., Das, S., Kameda, T., Mahapatra, P.R.S., Song, Z.:
Optimizing squares covering a set of points. Theoret. Comput. Sci. (2015). http://
dx.doi.org/10.1016/j.tcs.2015.11.029

3. Bhattacharya, B., Shi, Q.: Optimal algorithms for the weighted p-center problems
on the real line for small p. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS
2007. LNCS, vol. 4619, pp. 529–540. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-73951-7 46

4. Chen, D.Z., Li, J., Wang, H.: Efficient algorithms for the one-dimensional k-center
problem. Theoret. Comput. Sci. 592, 135–142 (2015)

5. Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. J.
ACM 34, 200–208 (1987)

6. Fournier, H., Vigneron, A.: A deterministic algorithm for fitting a step function to
a weighted point-set. Inf. Process. Lett. 113, 51–54 (2013)

7. Frederickson, G., Johnson, D.: The complexity of selection and ranking in X + Y
and matrices with sorted columns. J. Comput. Syst. Sci. 24, 197–208 (1982)

8. Frederickson, G., Johnson, D.: Finding kth paths and p-centers by generating and
searching good data structures. J. Algorithms 4, 61–80 (1983)

9. Goodrich, M.T.: Zig-zag sort: a simple deterministic data-oblivious sorting algo-
rithm running in O(n log n) time [cs.DS] 11 March 2014. arXiv:1403,2777v1

10. Hurtado, F., Sacristn, V., Toussaint, G.: Constrained facility location, pp. 15–17.
Studies of Location Analysis, Special Issue on Computational Geometry (2000)

11. Karmakar, A., Das, S., Nandy, S.C., Bhattacharya, B.: Some variations on con-
strained minimum enclosing circle problem. J. Comb. Opt. 25(2), 176–190 (2013)

12. Knuth, D.: The Art of Computer Programming: Sorting and Searching, vol. 3, 3rd
edn. Addison-Wesley, Boston (1997)

13. Megiddo, N.: Applying parallel computation algorithms in the design of serial
algorithms. J. ACM 30, 852–865 (1983)

14. Megiddo, N.: Linear-time algorithms for linear-programming in R3 and related
problems. SIAM J. Comput. 12, 759–776 (1983)

http://dx.doi.org/10.1016/j.tcs.2015.11.029
http://dx.doi.org/10.1016/j.tcs.2015.11.029
http://dx.doi.org/10.1007/978-3-540-73951-7_46
http://dx.doi.org/10.1007/978-3-540-73951-7_46
http://arxiv.org/abs/1403,2777v1

36 B. Bhattacharya et al.

15. Megiddo, N.: The weighted euclidian 1-center problem. Math. Oper. Res. 8(4),
498–504 (1983)

16. Megiddo, N., Supowit, K.: On the complexity of some common geometric location
problems. SIAM J. Comput. 14, 182–196 (1984)

17. Preparata, F., Shamos, M.: Computational Geometry: An Introduction. Springer,
Berlin (1990)

18. Wang, H., Zhang, J.: Line-constrained k-median, k-means, and k-center problems
in the plane. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp.
3–14. Springer, Heidelberg (2014). doi:10.1007/978-3-319-13075-0 1

http://dx.doi.org/10.1007/978-3-319-13075-0_1

Dissection with the Fewest Pieces is Hard,
Even to Approximate

Jeffrey Bosboom1(B), Erik D. Demaine1, Martin L. Demaine1, Jayson Lynch1,
Pasin Manurangsi2, Mikhail Rudoy1, and Anak Yodpinyanee1

1 Computer Science and AI Laboratory, Massachusetts Institute of Technology,
32 Vassar St., Cambridge, MA 02139, USA

{jbosboom,edemaine,mdemaine,jaysonl,mrudoy,anak}@mit.edu
2 University of California, Berkeley, CA 94720, USA

pasin@berkeley.edu

Abstract. We prove that it is NP-hard to dissect one simple orthogonal
polygon into another using a given number of pieces, as is approximating
the fewest pieces to within a factor of 1 + 1/1080 − ε.

1 Introduction

We have known for centuries how to dissect any polygon P into any other polygon
Q of equal area, that is, how to cut P into finitely many pieces and re-arrange
the pieces to form Q [2,7,11,13,14]. But we know relatively little about how
many pieces are necessary. For example, it is unknown whether a square can be
dissected into an equilateral triangle using fewer than four pieces [6,8, pp. 8–
10]. Only recently was it established that a pseudopolynomial number of pieces
suffices [1].

In this paper, we prove that it is NP-hard even to approximate the mini-
mum number of pieces required for a dissection, to within some constant ratio.
While perhaps unsurprising, this result is the first analysis of the complexity of
dissection. We prove NP-hardness even when the polygons are restricted to be
simple (hole-free) and orthogonal. The reduction holds for all cuts that leave the
resulting pieces connected, even when rotation and reflection are permitted or
forbidden.

Our proof significantly strengthens the observation (originally made by the
Demaines during JCDCG’98) that the second half of dissection—re-arranging
given pieces into a target shape—is NP-hard: the special case of exact packing
rectangles into rectangles can directly simulate 3-Partition [5]. Effectively, the
challenge in our proof is to construct a polygon for which any k-piece dissection
must cut the polygon at locations we desire, so that we are left with a rectangle
packing problem.

Due to the lack of space, we omit the proofs of some lemmas from this current
version of our paper. For missing proofs, see the full version of this paper [3].

P. Manurangsi—Part of this work was completed while the author was at
Massachusetts Institute of Technology and Dropbox, Inc.
A. Yodpinyanee—Research supported by NSF grant CCF-1420692.

c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 37–48, 2016.
DOI: 10.1007/978-3-319-48532-4 4

38 J. Bosboom et al.

2 The Problems

2.1 Dissection

We begin by formally defining the problems involved in our proofs, starting with
k-PieceDissection, which is the central focus of our paper.

Definition 1. k-PieceDissection is the following decision problem:
Input: two polygons P and Q of equal area, and a positive integer k.
Output: whether P can be cut into k pieces such that these k pieces can be

packed into Q (via translation, optional rotation, and optional reflection).

To prevent ill-behaved cuts, we require every piece to be a Jordan region
(with holes): the set of points interior to a Jordan curve e and exterior to k ≥ 0
Jordan curves h1, h2, . . . , hk, such that e, h1, h2, . . . , hk do not meet. There are
two properties of Jordan regions that we use in our proofs. First, Jordan regions
are Lebesgue measurable; we will refer to the Lebesgue measure of each piece
as its area. Second, a Jordan region is path-connected. For brevity, we refer to
path-connected as connected throughout the paper.

Next we define the optimization version of the problem, Min Piece Dissec-
tion, in which the objective is to minimize the number of pieces.

Definition 2. Min Piece Dissection is the following optimization problem:
Input: two polygons P and Q of equal area.
Output: the smallest positive integer k such that P can be cut into k pieces

such that these k pieces can be packed into Q.

2.2 5-Partition

Our NP-hardness reduction for k-PieceDissection is from 5-Partition, a
close relative of 3-Partition.

Definition 3. 5-Partition is the following decision problem:
Input: a multiset A = {a1, . . . , an} of n = 5m integers.
Output: whether A can be partitioned into A1, . . . , Am such that, for each

i = 1, . . . , m,
∑

a∈Ai
a = p where p =

(∑
a∈A a

)
/m.

Throughout the paper, we assume that the partition sum p is an integer;
otherwise, the instance is obviously a No instance.

Garey and Johnson [9] originally proved NP-completeness of 3-Partition, a
problem similar to 5-Partition except that 5 is replaced by 3. In their book [10],
they show that 4-Partition is NP-hard; this result was, in fact, an interme-
diate step toward showing that 3-Partition is NP-hard. It is easy to reduce
4-Partition to 5-Partition and thus show it also NP-hard.1

Our reduction would work from 3-Partition just as well as 5-Partition. The
advantage of the latter is that we can analyze the following optimization version.
1 Given a 4-Partition instance A = {a1, . . . , an}, we can create a 5-Partition

instance by setting A′ = {na1, . . . , nan, 1, . . . , 1} where the number of 1s is n/4.

Dissection with the Fewest Pieces is Hard, Even to Approximate 39

Definition 4. Max 5-Partition is the following optimization problem:
Input: a multiset A = {a1, . . . , an} of n = 5m integers.
Output: the maximum integer m′ such that there exist disjoint subsets

A1, . . . , Am′ of A such that, for each i = 1, . . . , m′,
∑

a∈Ai
a = p where

p = 5
n

(∑
a∈A a

)
.

2.3 Gap Problems

We show that our reductions have a property stronger than approximation
preservation called gap preservation. Let us define the gap problem for an opti-
mization problem, a notion widely used in hardness of approximation.

Definition 5. For an optimization problem P and parameters β > γ (which
may be functions of n), the GapP [β, γ] problem is to distinguish whether the
optimum of a given instance of P is at least β or at most γ. The input instance
is guaranteed to not have an optimum between β and γ.

If GapP [β, γ] is NP-hard, then it immediately follows that approximating P
to within a factor of β/γ of the optimum is also NP-hard. This result makes gap
problems useful for proving hardness of approximation.

3 Main Results

Now that we have defined the problems, we state our main results.

Theorem 1. k-PieceDissection is NP-hard.

We do not know whether k-PieceDissection is in NP (and thus is NP-
complete). We discuss the difficulty of showing containment in NP in Sect. 7.

We also prove that the optimization version, Min Piece Dissection, is hard
to approximate to within some constant ratio:

Theorem 2. There is a constant εMPD > 0 such that it is NP-hard to approxi-
mate Min Piece Dissection to within a factor of 1 + εMPD of optimal.2

Both results are based on essentially the same reduction, from 5-Partition
for Theorem 1 or from Max 5-Partition for Theorem 2. We present the com-
mon reduction in Sect. 4. We then prove Theorems 1 and 2 in Sects. 5 and 6
respectively.

Restricting the kinds of polygons given as input, the kinds of cuts allowed,
and the ways the pieces can be packed gives rise to many variant problems.
Section 7 explains for which variants our results continue to hold.

2 The best εMPD we can achieve is 1/1080 − ε for any ε ∈ (0, 1/1080).

40 J. Bosboom et al.

4 The Reduction

This section describes a polynomial-time reduction from 5-Partition to
k-PieceDissection and states a lemma crucial to both of our main proofs
later in the paper. The proof of the lemma is deferred to the full version.

Reduction from 5-Partition to k-PieceDissection. Let A = {a1, . . . , an} be
the given 5-Partition instance and let p = 5

nΣa∈Aa denote the target sum. Let
ds = 12(maxa∈A a + p) and dt = (n − 1)ds + Σa∈Aa + 2maxa∈A a. We create
a source polygon P consisting of element rectangles of width ai and height 1
for each ai ∈ A spaced ds apart, connected below by a rectangular bar of width
Σa∈Aa+(n

5 −1)dt and height δ = 1
10Σa∈Aa+2(n

5 −1)dt
. The first element rectangle’s

left edge is flush with the left edge of the bar; the bar extends beyond the last
element rectangle. Our target polygon Q consists of n

5 partition rectangles of
width p and height 1 spaced dt apart, connected by a bar of the same dimensions
as the source polygon’s bar. The first partition rectangle’s left edge and last
partition rectangle’s right edge are flush with the ends of the bar. The illustration
of both polygons are given in Fig. 1. Both polygons’ bars have the same area
and the total area of the element rectangles equals the total area of the partition
rectangles, so the polygons have the same area. Finally, let the number of pieces
k be n.

Reduction from Max 5-Partition to Min Piece Dissection. The optimiza-
tion problem uses the same reduction as the decision problem, except that we
do not specify k for the optimization problem.

The idea behind our reduction is to force any valid dissection to cut each
element rectangle off the bar in its own piece.3 When δ is small enough, the
resulting packing problem is a direct simulation of 5-Partition.

Intuitively, each dissected piece should contain only one element rectangle.
Our reduction sets ds large enough that any piece containing parts of two element

· · ·

a1 a2 an
ds

· · ·

p p p
dt

Fig. 1. The source polygon P (above) and the target polygon Q (below) are shown
(not to scale). Length dt is longer than the distance between the leftmost edge of the
leftmost element rectangle and the rightmost edge of the rightmost element rectangle.

3 Because k = n, a1 will remain attached to the bar, forcing it to be the first element
rectangle placed in the first partition rectangle. Because the order of and within par-
titions does not matter, this constraint does not affect the 5-Partition simulation.

Dissection with the Fewest Pieces is Hard, Even to Approximate 41

ai

4δ

1 − 4δ

Fig. 2. The ith trimmed element rectangle.

rectangles does not fit in a partition rectangle. At the same time, we pick dt large
enough that no piece can be placed in more than one partition rectangle. Thus
one could plausibly prove that each element rectangle must be in its own piece.

Unfortunately, we were unable to prove that each element rectangle must
be in its own piece. For each element rectangle, we define the trimmed element
rectangle corresponding to each element rectangle as the rectangle resulting from
ignoring the lower 4δ of the element rectangle’s height; see Fig. 2. In other words,
for each ai, the corresponding trimmed element rectangle is the rectangle that
shares the upper left corner with the element rectangle and is of width ai and
height 1 − 4δ.

While we could not prove that each element rectangle is in its own piece, we
can prove the corresponding statement about trimmed element rectangles:

Lemma 1. If P can be cut into pieces that can be packed into Q, then each of
these pieces intersect with at most one trimmed element rectangle.

The proofs of both of our main theorems use this lemma. The intuition behind
the proof of this lemma is similar to the intuitive argument for why each element
rectangle should be in its own piece. As the details of the proof are not central
to this paper, we defer the proof of this lemma to the full version [3].

5 Proof of NP-hardness of k-PIECE DISSECTION

Before we prove Theorem 1, we state the result from [10] for 5-Partition:

Theorem 3 ([10]). 5-Partition is NP-hard.4

We now prove Theorem 1.

Proof (of Theorem 1). We prove that the reduction described in the previous
section is indeed a valid reduction from 5-Partition. The reduction clearly runs

4 As stated earlier, the result from [10] is for 4-Partition, but 4-Partition is easily
reduced to 5-Partition; see Sect. 2.

42 J. Bosboom et al.

in polynomial time. We are left to prove that the instance of k-PieceDissection
produced by the reduction is a yes instance if and only if the input 5-Partition
is also a yes instance.

(5-Partition =⇒ k-PieceDissection). Suppose that the 5-Partition
instance is a yes instance. Given a 5-Partition solution, we can cut all but
the first element rectangle off the bar and pack them in the partition rectangles
according to the 5-Partition solution. The piece containing the first element
rectangle must be placed at the very left of the first partition rectangle, but we
can reorder the partitions in the 5-Partition solution so that the first element
is in the first partition. As a result, the k-PieceDissection instance is also a
yes instance.

(k-PieceDissection =⇒ 5-Partition). Suppose that the k-Piece Dissec-
tion instance is a yes instance, i.e., P can be cut into k pieces that can then be
placed into Q. By Lemma 1, no two trimmed element rectangles are in the same
piece. Because there are n = k such rectangles, each piece contains exactly one
whole trimmed element rectangle. Because these pieces can be packed into Q,
we must also be able to pack all the trimmed element rectangles into Q (with
some space in Q left over).

Let Bi be the set of all trimmed element rectangles (in the packing config-
uration) that intersect the ith partition rectangle. From our choice of dt, each
trimmed element rectangle can intersect with at most one partition rectangle.
Moreover, no trimmed element rectangles fit entirely in the bar area, so each
of them must intersect with at least one partition rectangle. This means that
B1, . . . , Bn/5 is a partition of the set of all trimmed element rectangles. Let Ai

be the set of all integers in A corresponding to the trimmed element rectangles
in Bi. Observe that A1, . . . , An/5 is a partition of A.

We claim that A1, . . . , An/5 is indeed a solution for 5-Partition. Assume for
the sake of contradiction that A1, . . . , An/5 is not a solution, that is,

∑
a∈Ai

a �= p
for some i. Because

∑
a∈A a = p(n/5), there exists j such that

∑
a∈Aj

a > p.
Because all a ∈ A are integers and p is an integer,

∑
a∈Aj

a ≥ p + 1.
Consider the jth partition rectangle. Define the extended partition rectangle

as the area that includes a partition rectangle, the bar area directly below it,
and the bar δ/2 to the left and to the right of the partition rectangle. Figure 3
shows an extended partition rectangle enclosed in thick edges. (Ignore the shaded
rectangle for the moment.)

Consider any trimmed element rectangle in the packing configuration that
intersects with this partition rectangle. We claim that each such trimmed element
rectangle must be wholly contained in the extended partition rectangle.

Consider the area of the trimmed element rectangle outside the partition
rectangle and the bar below it. If this is not empty, this must be a right triangle
with hypotenuse on the extension down to the bar of a vertical side of the
partition rectangle (see Fig. 3). The hypotenuse of this triangle is of length at
most δ, so the height of the triangle (perpendicular to the hypotenuse) is at most
δ/2. Thus, the triangle must be in the extended partition rectangle. Thus the

Dissection with the Fewest Pieces is Hard, Even to Approximate 43

p

1

δ

δ

2

δ

2

Fig. 3. The area enclosed by thick edges is the extended partition rectangle correspond-
ing to this partition rectangle. In this configuration, the trimmed element rectangle,
shown as the shaded area, is partially outside of the partition rectangle and the bar
below it. This external area is a right triangle with hypotenuse on the extension of a
vertical edge of the partition rectangle (shown as the dotted line segment), which is of
length δ.

whole trimmed element rectangle must be in the extended partition rectangle,
as claimed.

The area of the extended partition rectangle is p + pδ + δ2 < p + 1/2. How-
ever, the total area of the trimmed element rectangles contained in this area is∑

a∈Aj
a(1 − 4δ) =

∑
a∈Aj

a − 4δ
∑

a∈Aj
a ≥ (p + 1) − 4δ

∑
a∈Aj

a > p + 1/2,
which is a contradiction.

Thus we conclude that A1, . . . , An/5 is a solution to 5-Partition, which
implies that the 5-Partition instance is a yes instance as desired. ��

6 Proof of Inapproximability of MIN PIECE DISSECTION

In this section, we show the inapproximability of Min Piece Dissection via a
reduction from the intermediate problem Max 5-Partition, whose inapprox-
imability result is described in the following lemma.

Lemma 2. There is a constant αM5P > 1 such that GapMax-5-Partition[n(1 −
ε)/5, n(1/αM5P + ε)/5] is NP-hard for any sufficiently small constant ε > 0.5

5 The best αM5P we can achieve here is 216/215.

44 J. Bosboom et al.

Lemma 2 implies that it is hard to approximate Max 5-Partition to within
an αM5P − ε ratio for any sufficiently small ε > 0. The proof of Lemma2 largely
relies on the reduction used to prove NP-hardness of 4-Partition in [10], but
we apply our modified reduction on the inapproximability result of 4-Uniform
4-Dimensional Matching by Hazan, Safra, and Schwartz [12]. We defer the
proof of this lemma to the full version [3]. Here we focus on the gap preservation
of the reduction, which implies Theorem 2.

Lemma 3. There is a constant αMPD > 1 such that the following properties
hold for the reduction described in Sect. 4:

– if the optimum of the Max 5-Partition instance is at least n(1 − ε)/5, then
the optimum of the resulting Min Piece Dissection instance is at most
n(1 + ε/5); and

– if the optimum of the Max 5-Partition instance is at most n(1/αM5P +
ε)/5, then the optimum of the resulting Min Piece Dissection is at least
n(αMPD + ε/5).

Because it is NP-hard to distinguish the two cases of the input Max 5-
Partition instance, it is also NP-hard to approximate Min Piece Dissection
to within an αMPD − ε ratio for any sufficiently small constant ε > 0. Thus,
Lemma 3 immediately implies Theorem 2. It remains to prove Lemma 3:

Proof (of Lemma 3). We will show that both properties are true when we choose
αMPD to be 1 + (1 − 1/αM5P)/5.

(Max 5-Partition =⇒ Min Piece Dissection). Suppose that the input
Max 5-Partition instance has optimum at least n(1 − ε)/5. Let A1, . . . , Am′

be the optimal partition where m′ ≥ n(1 − ε)/5. We cut P into pieces as follows
(see Fig. 4):

1. First, we cut every element rectangle except the first one from the bar.
2. Next, let the indices of the elements in A − (A1 ∪ A2 ∪ · · · ∪ Am′) be i1, . . . , il

where 1 ≤ i1 < i2 < · · · < il ≤ n.
3. For each i = 1, . . . , n/5 − m′, let j be the smallest index such that ai1 + · · · +

aij ≥ ip. Cut the piece corresponding to aij vertically at position ip −(
ai1 + · · · + aij−1

)
from the left. (If the intended cut position is already the

right edge of the piece, then do nothing.)

To pack these pieces into Q, we arrange all pieces whose corresponding ele-
ments are in partitions in the optimal Max 5-Partition solution, then pack the
remaining pieces into the remaining partition rectangles using the additional cuts
made in step 3. We leave the piece containing the first element rectangle (and
the bar) at its position in P , but this does not constrain our solution because
the other pieces and the partitions can be freely reordered.

The number of cuts in step 1 is n−1 and in step 3 is at most n/5−m′ ≤ εn/5.
Thus the total number of cuts is at most n − 1 + εn/5, so the number of pieces
is at most 1 + (n − 1 + εn/5) = n(1 + ε/5) as desired.

Dissection with the Fewest Pieces is Hard, Even to Approximate 45

a1 a2 an

· · ·

ai1 ai2 ai3 ai4 ail

p p

· · ·

Fig. 4. An illustration of how the source polygon P is cut. The cuts from step 1 are
shown as dashed lines on the top figure; every element rectangle except the first one is
cut from the bar. On the bottom, the cuts from step 3 are demonstrated. We can think
of the cutting process as first arranging ai1 , . . . , ail consecutively and then cutting at
p, 2p,

(Min Piece Dissection =⇒ Max 5-Partition). We prove this property in
its contrapositive form. Suppose that the resulting Min Piece Dissection has
an optimum of k < n(αMPD + ε/5). Let us call these k pieces R1, . . . , Rk.

For each i = 1, . . . , k, let R′
i denote the intersection between Ri with the

union of all trimmed element rectangles. By Lemma 1, each trimmed element
rectangle can intersect with only one piece. This means that each R′

i is a part of
a trimmed element rectangle. (Note that R′

i can be empty; in this case, we say
that it belongs to the first trimmed element rectangle.)

Consider R′
1, . . . , R

′
k. Because each of them is a part of a trimmed rectangle

and there are n trimmed rectangles, at most k − n trimmed rectangles contain
more than one of the R′

i. In other words, there are at least n − (k − n) = 2n − k
indices i such that R′

i is a whole trimmed element rectangle. Without loss of
generality, suppose that R′

1, . . . , R
′
2n−k are entire trimmed element rectangles.

We call a partition rectangle a good partition rectangle if it does not intersect
with any of R′

2n−k+1, . . . , R
′
n in the packing configuration. From our choice of

dt, each R′
i which is part of a trimmed element rectangle can intersect with at

most one partition rectangle. As a result, there are at least n/5 − (k − n) good
partition rectangles.

For each good partition rectangle O, let AO be the subset of all elements of A
corresponding to R′

is that intersect O. (Because O is a good partition rectangle,
each R′

i that intersects O is always a whole trimmed element rectangle.)
We claim that the collection of TO’s for all good partition rectangles O is a

solution to the Max 5-Partition instance. We will show that this is indeed a
valid solution. First, observe again that, because each R′

i intersects with at most
one partition rectangle, all AO’s are mutually disjoint. Thus, we now only need
to prove that the sum of elements of AO is exactly the target sum p.

46 J. Bosboom et al.

Suppose for the sake of contradiction that there exists a good partition rec-
tangle O such that

∑
a∈AO

a �= p. Consider the following two cases.

Case 1:
∑

a∈AO
a > p.

As we showed in the proof of Theorem 1, each trimmed element rectangle
corresponding to a ∈ AO must be in the extended partition rectangle. By an
argument similar to the argument used in the proof of Theorem1, the total
area of all these trimmed element rectangles is more than the area of the
extended partition rectangle, which is a contradiction.

Case 2:
∑

a∈AO
a < p.

Because every a ∈ AO and p are integers,
∑

a∈AO
a + 1 ≤ p. From the defini-

tion of AO, no trimmed element rectangles apart from those in AO intersect
O. Hence the total area that trimmed element rectangles contribute to O is
at most (

∑

a∈AO

a

)

(1 − 4δ) <
∑

a∈AO

a ≤ p − 1.

This means that an area of at least 1 unit square in O is not covered by any
of the trimmed element rectangles. However, the area of the source polygon
outside of all the trimmed element rectangles is

δ

(
(n

5
− 1

)
dt +

∑

a∈A

a

)

+ 4δ

(
∑

a∈A

a

)

< 1,

which is a contradiction.

Hence, the solution defined above is a valid solution. Because the number of
good partition rectangles is at least n/5 − (k − n) > n/5 − n(αMPD + ε/5 − 1) =
n(1/αM5P − ε)/5, the solution contains more than n(1/αM5P − ε)/5 subsets,
which completes the proof of the second property. ��

7 Variations and Open Questions

Table 1 lists variations of k-PieceDissection and whether our proofs of NP-
hardness and inapproximability continue to hold. Because it is obvious from the
proofs, we do not give detailed explanations as to why the proofs still work (or
do not work) in these settings. Specifically:

1. Our proofs remain valid when the input polygons are restricted to be simple
(hole-free) and orthogonal with all edges having integer length.6

2. Our results still hold under any cuts that leave each piece connected and
Lebesgue measurable.

3. Our proofs work whether or not rotations and/or reflections are allowed when
packing the pieces into Q.

While we have proved that the k-PieceDissection is NP-hard and that its
optimization counterpart is NP-hard to approximate, we are far from settling
6 Our reduction uses rational lengths, but the polygons can be scaled up to use integer

lengths while still being of polynomial size.

Dissection with the Fewest Pieces is Hard, Even to Approximate 47

Table 1. Variations on the dissection problem.

Variation on Variation description Do our results hold?

Input Polygons Polygons must be orthogonal YES

Polygons must be simple (hole-free) YES

Edges must be of integer length YES

Polygons must be convex NO

Cuts Allowed Cuts must be straight lines YES

Cuts must be orthogonal YES

Pieces must be simple (hole-free) YES

Pieces may be disconnected NO

Packing Rules Rotations are forbidden YES

Reflections are forbidden YES

the complexity of these problems and their variations. We pose a few interesting
remaining open questions:

– Is k-PieceDissection in NP, or even decidable? We do not know the answer
to this question even when only orthogonal cuts are allowed and rotations
and reflections are forbidden. In particular, there exist two-piece orthogonal
(staircase) dissections between pairs of rectangles which seem to require a cut
comprised of arbitrarily many line segments [7, p. 60].
If we require each piece to be a polygon with a polynomial number of
sides, then problem becomes decidable. In fact, we can place this special
case in the complexity class ∃R, that is, deciding true sentences of the form
∃x1 : · · · : ∃xm : ϕ(x1, . . . , xm) where ϕ is a quantifier-free formula consisting
of conjunctions of equalities and inequalities of real polynomials. To prove
membership in ∃R, use x1, . . . , xm to represent the coordinates of the pieces’
vertices in P and Q. Then, use ϕ to verify that the pieces are well-defined
partitions of P and Q and that each piece in P is a transformation of a piece
in Q; these conditions can be written as polynomial (in)equalities of degree at
most two. ∃R is known to be in PSPACE [4].

– Is k-PieceDissection still hard when one or both of the input polygons are
required to be convex?

– Can we prove stronger hardness of approximation, or find an approximation
algorithm, for Min Piece Dissection? The current best known algorithm
for finding a dissection is a worst-case bound of a pseudopolynomial number
of pieces [1].

– Is k-PieceDissection solvable in polynomial time for constant k? Member-
ship in FPT would be ideal, but even XP would be interesting.

Acknowledgment. We thank Greg Frederickson for helpful discussions.

48 J. Bosboom et al.

References

1. Aloupis, G., Demaine, E.D., Demaine, M.L., Dujmović, V., Iacono, J.: Meshes
preserving minimum feature size. In: Márquez, A., Ramos, P., Urrutia, J. (eds.)
EGC 2011. LNCS, vol. 7579, pp. 258–273. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-34191-5 25

2. Bolyai, F.: Tentamen juventutem studiosam in elementa matheseos purae, elemen-
taris ac sublimioris, methodo intuitiva, evidentiaque huic propria, introducendi.
Typis Collegii Refomatorum per Josephum et Simeonem Kali, Maros Vásárhely
(1832–1833)

3. Bosboom, J., Demaine, E.D., Demaine, M.L., Lynch, J., Manurangsi, P., Rudoy,
M., Yodpinyanee, A.: Dissection with the fewest pieces is hard, even to approxi-
mate. CoRR abs/1512.06706 (2015). http://arxiv.org/abs/1512.06706

4. Canny, J.: Some algebraic and geometric computations in PSPACE. In: Proceed-
ings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC
1988, pp. 460–467. ACM, New York (1988). http://doi.acm.org/10.1145/62212.
62257

5. Demaine, E.D., Demaine, M.L.: Jigsaw puzzles, edge matching, and polyomino
packing: connections and complexity. Graphs Comb. 23(Suppl.), 195–208 (2007).
Special issue on Computational Geometry and Graph Theory: The Akiyama-
Chvatal Festschrift. Preliminary version presented at KyotoCGGT 2007

6. Dudeney, H.E.: Puzzles and prizes. Weekly Dispatch (1902), the puzzle appeared
in the April 6 issue of this column. A discussion followed on April 20, and the
solution appeared on May 4

7. Frederickson, G.N.: Dissections: Plane and Fancy. Cambridge University Press,
Cambridge (1997)

8. Frederickson, G.N.: Hinged Dissections: Swinging & Twisting. Cambridge Univer-
sity Press, Cambridge (2002)

9. Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling
under resource constraints. SIAM J. Comput. 4(4), 397–411 (1975)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

11. Gerwien, P.: Zerschneidung jeder beliebigen Anzahl von gleichen geradlinigen
Figuren in dieselben Stücke. Journal für die reine und angewandte Mathematik
(Crelle’s Journal) 10, 228–234 (1833). Taf. III

12. Hazan, E., Safra, S., Schwartz, O.: On the hardness of approximating k-dimensional
matching. Electronic Colloquium on Computational Complexity (ECCC) 10(020)
(2003). http://eccc.hpi-web.de/eccc-reports/2003/TR03-020/index.html

13. Lowry, M.: Solution to question 269, [proposed] by Mr. W. Wallace. In: Leybourn,
T. (ed.) Mathematical Repository Part 1, pp. 44–46. W. Glendinning, London
(1814)

14. Wallace, W. (ed.): Elements of Geometry, 8th edn. Bell & Bradfute, Edinburgh
(1831)

http://dx.doi.org/10.1007/978-3-642-34191-5_25
http://dx.doi.org/10.1007/978-3-642-34191-5_25
http://arxiv.org/abs/1512.06706
http://doi.acm.org/10.1145/62212.62257
http://doi.acm.org/10.1145/62212.62257
http://eccc.hpi-web.de/eccc-reports/2003/TR03-020/index.html

Mario Kart Is Hard

Jeffrey Bosboom1, Erik D. Demaine1, Adam Hesterberg1, Jayson Lynch1(B),
and Erik Waingarten2

1 MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA

{jbosboom,edemaine,achester,jaysonl}@mit.edu
2 Department of Computer Science, Columbia University,

1214 Amsterdam Avenue, New York, NY 10027, USA
eaw@cs.columbia.edu

Abstract. Nintendo’s Mario Kart is perhaps the most popular racing
video game franchise. Players race alone or against opponents to finish in
the fastest time possible. Players can also use items to attack and defend
from other racers. We prove two hardness results for generalized Mario
Kart: deciding whether a driver can finish a course alone in some given
time is NP-hard, and deciding whether a player can beat an opponent
in a race is PSPACE-hard.

1 Introduction

Mario Kart is a popular racing video game series published by Nintendo, starting
with Super Mario Kart on SNES in 1992 and since adapted to eleven platforms,
most recently Mario Kart 8 on Wii U in 2014; see Table 1. The series has sold over
100 million game copies, and contains the best-selling racing game ever, Mario
Kart Wii [Gui14]. The games feature characters from the classic Nintendo series
Super Mario Bros. and Donkey Kong.

In this paper, we analyze the computational complexity of most Mario
Kart games, showing that optimal gameplay is computationally intractable. Our
results follow a series of recent work on the computational complexity of video
games, including the broad work of Forisek [For10] and Viglietta [Vig14] as well
as the specific analyses of classic Nintendo games [ADGV15].

In Mario Kart, each player picks a character and a race track. There are three
modes of play: players race against each other (racing), a player races alone to
finish in the fastest time possible (time trial), and players battle in an arena
(battle). We focus here on the first two modes. Each race track features its own
set of obstacles and geometry.

A particularly distinctive feature of Mario Kart is that players may acquire
items (also known as power-ups). Items temporarily give players special abilities.
Each Mario Kart game has its own set of items, but two items are common to
all Mario Kart games: Koopa shells and bananas. Koopa shells come in multiple

E. Waingarten—Work performed while at MIT.

c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 49–59, 2016.
DOI: 10.1007/978-3-319-48532-4 5

50 J. Bosboom et al.

Table 1. History and total sales [Sal] of Mario Kart. Our results apply to all games
with 3D tracks.

Game title Game system Release date Sales 3D?

1 Super Mario Kart Super NES August 27, 1992 8.76M no

2 Mario Kart 64 Nintendo 64 December 14, 1996 9.87M yes

3 Mario Kart: Super Circuit Game Boy Advance July 21, 2001 5.47M no

4 Mario Kart: Double Dash!! Nintendo GameCube November 7, 2003 6.95M yes

5 Mario Kart DS Nintendo DS November 14, 2005 23.56M yes

6 Mario Kart Wii Wii April 10, 2008 35.53M yes

7 Mario Kart 7 Nintendo 3DS December 1, 2011 12.19M yes

8 Mario Kart 8 Wii U May 29, 2014 5.87M yes

9 Mario Kart: Arcade GP arcade October 2005 ? yes

10 Mario Kart: Arcade GP 2 arcade March 14, 2007 ? yes

11 Mario Kart: Arcade GP DX arcade July 25, 2013 ? yes

Fig. 1. Screenshots of Rainbow Road tracks from Mario Kart 1–8 (Table 1).

colors; our reduction only uses the green shells, which we refer to simply as
shells. Shells are shot at other players and, upon contact, temporarily stun them,
reducing their speed and control. Bananas can be dropped by players along the
track, and any player who runs over a banana becomes temporarily stunned.
Crucially, shells can destroy bananas.

Mario Kart Is Hard 51

In this paper, we consider generalized versions of time trial and racing. We
allow race tracks to be any size and have carefully placed items on the track. We
more precisely define our model of the game in Sect. 2. In Sect. 3, we show that
time trial is NP-hard, that is, it is NP-hard to decide whether a lone player can
finish a race track in time at most t. In Sect. 4, we show PSPACE-hardness of
racing: it is PSPACE-hard to decide whether a player can win the race against
even a single opposing player. Finally, Sect. 5 considers upper bounds.

The items used in our reductions are present in all Mario Kart games. Our
reductions use the “Rainbow Road” style of racetrack. These tracks are present
in every game, but our reductions require them to be three-dimensional, which
they are in Mario Kart 64 and in every game since Mario Kart: Double Dash!!.
The proofs thus apply to nine of the Mario Kart games (Games 2 and 4–11
in Table 1). Super Mario Kart and Mario Kart Super Circuit lack tracks with
multiple altitudes, presumably from the lack of power in the Super NES and
Game Boy Advance systems, and so our proofs do not apply to them.

2 Model

In our mathematical model of Mario Kart, each player’s state consists of a posi-
tion, orientation, and speed. The track is a two-dimensional surface in Euclidean
3-space. The player generally controls their acceleration, with limits on speed
and position imposed by the track. Leaving the bounds of the racetrack does
not result in death, with players being respawned on the track after a significant
speed and time penalty.

Computationally, we assume that we can compute the optimal traversal of a
track described by a constant number of real parameters, and that this optimal
traversal time typically changes continuously with the real parameters. This
allows us to, for example, tweak multiple pieces of the track to have nearly
identical optimal traversal times. In fact, we require that these assumptions hold
only up to an error factor of 1 + O(1/nc), that is, up to O(log n) bits. We leave
to future work the careful analysis of the physics and geometry of actual Mario
Kart implementations, and the evaluation of the validity of our assumptions.1

Players obtain items from item boxes which are at fixed locations on the
track, and regenerate after a fixed amount of time. We use two kinds of items
common to all Mario Kart games to date, each of which can be used only once:

1 We conjecture that implementations model the position and velocity vector of a
player by floating-point numbers, discretize time into fixed-duration intervals, and
model the track by a collection of succinctly describable segments and turns. For a
sufficiently fine discretization of time, this model should approach our continuous
model. To compute the optimal traversal time of a constant-complexity track, we
can finitely sample the position/velocity space and search the resulting state graph.
We conjecture that a polynomial-resolution sampling suffices to approximate the
optimal traversal time to the needed 1 + O(1/nc) accuracy for our reductions.

52 J. Bosboom et al.

1. Bananas. Bananas are slippery. When a player drives over a
banana (or is hit by one), the driver slips and spins temporarily
out of control, resulting in a temporary slowdown. Bananas can
be dropped immediately behind the player, or thrown up and
ahead with a fixed trajectory. Once a banana lands on the track,
there are two ways to remove it: either a player drives over it, or
the banana is hit by a shell (described below).

2. Green Shells. A green shell is one of the many attacks in Mario
Kart. The player can shoot a green shell like a projectile. If a green
shell hits a driver, the driver is temporarily knocked out. A green
shell can also remove a banana if the banana is hit first. (Green
shells should not be confused with red shells, which can lock onto
a target driver.) Green shells follow a particular direction, are
subject to gravity, and bounce off of walls. After some time, green
shells become inactive and disappear.

A driver can possess only one item at a time. For example, if a driver picks
up a green shell, s/he cannot pick up another item until s/he uses the green shell.
However, in most Mario Kart games (with the notable exception of Mario Kart
8), it is possible to “use” a green shell or banana without throwing it: a driver
can hold a green shell or banana behind the car before throwing it, allowing
them to pick up one additional item. The items still must be used in order.

In our reductions, we will assume that some bananas have already been
placed on the track, but this does not occur in any real Mario Kart tracks.
In fact, we assume that the game has already been played for some time, e.g.,
previous laps of the track, and the computational question is whether Player 1
can win within one final lap from the given track configuration. We can easily
add “initialization” paths and banana item boxes to the track, ensuring that
the initial configuration of placed bananas would actually be reachable from an
initially empty track. By making these initialization paths very long, they will
not affect optimal play of the final lap under consideration.

In this way, we can also assume that two players start at very different
positions on the track. The finish line is shared between the two players, but
is fairly wide. Thus we can cross the finish line with two equally elevated and
separated paths for the two players, guaranteeing no interaction near the finish,
to effectively allow distinct goal locations for the two players.

3 Time Trial is NP-Hard

First we study the following solo (“time trial”) variant of Mario Kart:

Theorem 1. It is NP-hard to determine whether a driver can finish a given
course in at most t time, in the absence of opponents.

Mario Kart Is Hard 53

3.1 Proof Structure

The reduction is from 3SAT. Given a Boolean formula φ with variables
x1, x2, . . . , xn, we build a level with the “Rainbow Road” style. The driver first
drives through each variable gadget in sequence. In each variable gadget, the
player can decide whether to set each variable to true or false. After setting all
the variables, the driver must traverse each clause gadget. The driver will be
able to complete the level without delay if and only if the variable assignments
chosen in the gadgets form a satisfying assignment for φ.

Figure 2 gives a schematic overview of the reduction. Each node labeled xi

corresponds to a variable gadget, and each node labeled ci corresponds to a
clause gadget. The solid lines correspond to the path in the level. The dashed
lines indicate that a variable or its negation is contained in a given clause. In
our case, the dashed lines also correspond to clause gadgets being reachable by
green shells when thrown from the variable gadgets. We prevent players from
following the dashed paths.

Fig. 2. General reduction structure. Dashed lines correspond to reachability of green
shells.

3.2 Variable Gadget

For each variable xi, we have one variable gadget as shown in Fig. 3. The variable
gadget first splits the road into two. The driver must choose which of the two
directions to follow, corresponding to the truth setting of xi. We refer to the two
split roads as literal roads xi and xi. Both literal roads have the same optimal
travel time.

Each literal road has a sequence of visits to clause gadgets corresponding to
clauses containing the literal. Literal road xi goes above the clauses containing
the literal xi, and similarly for xi. Each road has a green shell item which can be
fired into the clause gadget. When a literal road is above each clause, the driver
can pick up a green shell and shoot it down to the clause, where it will remove
a banana.

54 J. Bosboom et al.

Fig. 3. A variable gadget where Player
1 assigns xi. Player 1 goes left to set xi

to true, and goes right to set xi to true.

Fig. 4. Clause gadgets split into three
literals. They are considered false if a
banana remains on the path.

3.3 Clause Gadget

The clause gadget, seen in Fig. 4 splits the road into three equal-length paths,
one for each literal, that later merge. Each path has an initially placed and
unavoidable banana. Thus, if any of the bananas has been destroyed by a green
shell, the player can choose that path and traverse the gadget quickly. Otherwise,
the player must hit a banana and incur a speed and time penalty—assuming that
the player is not carrying any green shells.

3.4 Clearing Held Items

To guarantee that the player traverses the sequence of clause gadgets without any
green shells, we add a clearing gadget between the sequence of variable gadgets
and the sequence of clause gadgets. The clearing gadget, shown in Fig. 5, forces
the driver to afterward hold no items (behind the car or otherwise).

There are actually two different gadgets, depending on whether the Mario
Kart game permits carrying a second item behind the car. For games where this
is impossible (currently just Mario Kart 8), the gadget consists of a single green
shell item box followed by an already placed banana. Otherwise, we have two
green shell item boxes followed by two already placed bananas. The distance
between the item boxes and bananas is longer than the lifetime of a shell. Thus,
to avoid slowdown from the bananas, the player must use all storable green shells
(either just picked up or stored from before) and be left holding nothing.

Mario Kart Is Hard 55

Fig. 5. Two types
of Clear Gadgets.

Fig. 6. A Crossover
Gadget. The vertical
path is placed higher
in the level with a wall
along the track.

Fig. 7. Variable gadget being
able to unlock clause. Once
Player 1 assigns xi, it can
shoot shells to unlock clauses
where xi appears.

3.5 Crossover Gadget

Crossover gadgets are relatively simple given the three-dimensional nature of
Rainbow Road levels, so one road can pass over another road; see Fig. 6. To
ensure that the player does not jump from the upper road to the lower road,
and that the player does not throw a shell from the upper road to the lower
road, we surround the sides of the upper road with vertical walls, for sufficient
length before and after the intersection.

3.6 Putting Gadgets Together

Figure 7 shows how a literal road of a variable gadget interacts with each clause
gadget containing the literal. By bringing the variable road somewhat close and
above the clause road, the player can shoot the green shell from the variable and
destroy the banana in the clause, without slowing down. This action “unlocks”
the clause gadget for later traversal, corresponding to satisfying the clause.

However, we cannot place the roads too close to each other, or else the player
could jump from the variable road to the lower clause road. Fortunately, there is
a suitable distance traversable by shells but not by players, because shells move
faster than players. (Alternatively, even if players could move as fast as shells,
this property could be arranged by having the shell bounce off of a floating
vertical wall, which the player could not do.)

Finally we describe how to lay out the gadgets. Because there is a constant
maximum speed that can be attained on a flat track, there a constant size of
gadget with straight tracks as inputs/outputs that guarantees two properties:
(1) the player cannot traverse from a gadget to a gadget not logically connected
to it, and (2) the player normalizes to a standard maximum straight-away speed
before entering the next gadget. We use this constant gadget size as our unit size.
The literals, crossovers, and their connecting lines can be laid out orthogonally
on an O(n+m)×O(n+m) unit square grid in polynomial time [BK94]. We may

56 J. Bosboom et al.

then need to tweak some of the path distances to have the same optimal traversal
times. If we scale up the grid by a factor of c(n+m), then we can “wiggle” each
track segment on the grid to have length between c(n + m) and c2(n + m)2,
which suffices to unify paths of length between 1 and O(n + m) on the original
grid. It is important that we are able to make separate tracks take close to the
same traversal time because the reduction separates the winning kart by the
constant amount of time lost by hitting a banana. Because we choose different
routes for each clause and variable, we need to be able to match track lengths
with an accuracy of 1/(n + m)O(1) with only a (n + m)O(1) blowup in size and
using a polynomial amount of computation time. This is covered by our model
assumptions in Sect. 2. Thus we can lay out the gadgets in a polynomial-time
reduction.

4 Racing is PSPACE-Hard

We now study the following two-player variant of Mario Kart, where players race
against each other:

Theorem 2. It is PSPACE-hard to decide whether Player 1 has a forced win
in a two-player Mario Kart race from given starting positions for the players.

4.1 Proof Structure

The reduction is from Q3SAT: decide a quantified Boolean formula φ = ∃x1 :
∀y1 : ∃x2 : ∀y2 : · · · ∃xn/2 : ∀yn/2 : φ′(x1, . . . , xn/2, y1, . . . , yn/2) where φ′ is in
3CNF, has a satisfying assignment. We construct the track similar to the NP-
hardness proof, but with Player 1 setting the existentially quantified variables
and Player 2 setting the universally quantified variables; refer to Fig. 8. As in
the proof for NP-hardness, Player 1 will shoot shells from an elevated road to
clear bananas from clause gadgets. Player 2, who sets the universal quantified
variables is on a separate elevated road throwing bananas into clause gadgets.
While each player sets a variable, the other player is forced along a higher road
of the same traversal time, within visual range so that both players know the
variable setting; see Fig. 10. This way, we get the alternating behavior and perfect
information while setting variables. The overall path Player 1 takes is slightly
shorter than Player 2. So if Player 1 can get through the clauses without hitting
any bananas, s/he will win. If Player 1 runs over any bananas and slips, Player
2 will win.

Player 2 can “cheat” in a variety of ways, but all of them consume time. For
these cases, Player 1 has an alternative winning path that bypasses all clauses,
but takes longer than if Player 2 plays “straight”. This threat prevents Player 2
from cheating (in optimal play).

Mario Kart Is Hard 57

Fig. 8. General reduction structure for 2 players. Dashed lines correspond to reacha-
bility of green shells and bananas.

4.2 Clause Gadget

As shown in Fig. 11, the clause gadget is a road that splits into one road per lit-
eral, as in the NP-hardness proof. The literals of existentially quantified variables
are initially blocked by a banana, as in the NP-hardness proof, while literals of
universally quantified variables are initially empty.

4.3 Variable Gadget

Player 1’s (existential) variable gadgets are the same as in the NP-hardness
proof (Fig. 3): each gadget forks to make the player choose between setting xi

or xi to true, with each fork passing by all the clauses containing that literal,
so the player can shoot a shell down to remove the banana from that existential
variable’s literal instance.

Player 2’s (universal) variable gadgets have the same structure, but as shown
in Fig. 9, the player instead sets yi or yi to false by shooting bananas (picked up
from item boxes in the variable) down into literal instances in the clause gadgets,
filling what was initially empty.

4.4 Putting Gadgets Together

Existential variable gadgets and clause gadgets interact as in the NP-hardness
proof. Universal variable gadgets interact with clause gadgets at a closer distance,
given the lobbed trajectory of bananas. To prevent Player 2 from jumping down
to the clause gadget in this situation, we can use a vertical wall or rail that is
tall enough to block the player but not tall enough to block a thrown banana.

We use the same crossover gadgets as the NP-hardness proof (Fig. 6), and
the same clearing gadget (Fig. 5) before Player 1 enters the sequence of clause
gadgets. Everywhere else, whenever a player would be helped by an item, that
item is presented by an item box, so it never helps to hold onto an item for later.
(Note that it does not help to block a literal with two bananas instead of just
one. A single banana penalty is enough for Player 2 to win.)

After all variables have been set, Player 1 drives through the clause gadgets
while Player 2 drives along a winding road slightly longer to traverse than the

58 J. Bosboom et al.

Fig. 9. Variable gadget
for Player 2. Player 2
assigns yi and grabs
bananas to throw to the
clause gadgets.

Fig. 10. Observation
of other player. The
variable gadget (grayed
out) appears below in
3-dimensional space.

Fig. 11. Clause gadget split
into literals. A clause splits
into the three literals which
comprise the clause. Note that
since yk is a variable set by
Player 2, there is no banana on
the path until Player 2 throws
a banana down.

road through the clause gadgets. If all clauses are satisfied (have at least one
literal branch without a banana), Player 1 wins; otherwise, Player 1 must drive
through at least one banana and slow down. In this case, Player 2 wins, by setting
the “slightly longer” amount to strictly less than the banana penalty. (For a
more comfortable construction, we can repeat every clause k times, allowing the
difference to be strictly less than k times the banana penalty.)

Player 2 can attempt to “cheat” in a couple of ways: traversing both sides of
a universal variable gadget, or waiting to choose the value of a universal variable
gadget until after Player 1 chooses the next variable (breaking the quantifier
structure). In this case, Player 2 will fall behind relative to the intended traversal.
This would be worthwhile if Player 2 could slow down Player 1 substantially as
a result, but the availability of the slightly longer threat path means that Player
1 can avoid all clauses and thus all slowdowns in this case. Player 1 also cannot
afford to cheat in these ways, because s/he starts with only a small advantage,
and is unable to slow down Player 2.

Gadget layout can be done analogous to Sect. 3.

5 Conclusion

In practice, players in Mario Kart generally make forward progress on the track,
other than short aberrations caused by attacks, and have knowledge (via the
minimap) of the state of all players. These assumptions imply a polynomial
bound on the length of solutions, which in turn implies that our results are

Mario Kart Is Hard 59

tight: time trial is NP-complete and racing is PSPACE-complete. Without the
game-length assumption, however, we only know containment in PSPACE and
EXPTIME, respectively, and it is plausible that we could establish corresponding
hardness. With hidden information (unknown state of the track or items held
by opponents), Mario Kart racing is potentially as hard as 2EXPTIME.

References

[ADGV15] Aloupis, G., Demaine, E.D., Guo, A., Viglietta, G.: Classic Nintendo games
are (computationally) hard. Theoret. Comput. Sci. 586, 135–160 (2015)

[BK94] Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. In:
Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 24–35. Springer, Heidelberg
(1994). doi:10.1007/BFb0049394

[For10] Forǐsek, M.: Computational complexity of two-dimensional platform games.
In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS, vol. 6099, pp. 214–227.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13122-6 22

[Gui14] Guinness World Records: Best-selling racing videogame (2014).
http://www.guinnessworldrecords.com/world-records/best-selling-
racing-video-game/

[Sal] Sales figures based on http://www.polygon.com/2014/5/15/5718168/
mario-kart-series-sales, http://www.nintendo.co.jp/ir/en/sales/software/
3ds.html, and http://www.nintendo.co.jp/ir/en/sales/software/wiiu.html,
November 2015

[Vig14] Viglietta, G.: Gaming is a hard job, but someone has to do it!. Theory
Comput. Syst. 54(4), 595–621 (2014)

http://dx.doi.org/10.1007/BFb0049394
http://dx.doi.org/10.1007/978-3-642-13122-6_22
http://www.guinnessworldrecords.com/world-records/best-selling-racing-video-game/
http://www.guinnessworldrecords.com/world-records/best-selling-racing-video-game/
http://www.polygon.com/2014/5/15/5718168/mario-kart-series-sales
http://www.polygon.com/2014/5/15/5718168/mario-kart-series-sales
http://www.nintendo.co.jp/ir/en/sales/software/3ds.html
http://www.nintendo.co.jp/ir/en/sales/software/3ds.html
http://www.nintendo.co.jp/ir/en/sales/software/wiiu.html

Single-Player and Two-Player Buttons
& Scissors Games

(Extended Abstract)

Kyle Burke1, Erik D. Demaine2, Harrison Gregg3, Robert A. Hearn11,
Adam Hesterberg2, Michael Hoffmann4, Hiro Ito5, Irina Kostitsyna6,

Jody Leonard3, Maarten Löffler7, Aaron Santiago3, Christiane Schmidt8,
Ryuhei Uehara9, Yushi Uno10, and Aaron Williams3(B)

1 Plymouth State University, Plymouth, USA
kgburke@plymouth.edu

2 Massachusetts Institute of Technology, Cambridge, USA
{edemaine,achester}@mit.edu

3 Bard College at Simon’s Rock, Great Barrington, USA
{hgregg11,jleonard11,asantiago11,awilliams}@simons-rock.edu

4 ETH Zürich, Zürich, Switzerland
hoffmann@inf.ethz.ch

5 The University of Electro-Communications, Chofu, Japan
itohiro@uec.ac.jp

6 Université libre de Bruxelles, Brussels, Belgium
irina.kostitsyna@ulb.ac.be

7 Universiteit Utrecht, Utrecht, Netherlands
m.loffler@uu.nl

8 Linköping University, Norrköping, Sweden
christiane.schmidt@liu.se

9 Japan Advanced Institute of Science and Technology, Nomi, Japan
uehara@jaist.ac.jp

10 Osaka Prefecture University, Sakai, Japan
uno@mi.s.osakafu-u.ac.jp
11 Portola Valley, CA, USA

bob@hearn.to

Abstract. We study the computational complexity of the Buttons &
Scissors game and obtain sharp thresholds with respect to several para-
meters. Specifically we show that the game is NP-complete for C = 2 col-
ors but polytime solvable for C = 1. Similarly the game is NP-complete
if every color is used by at most F = 4 buttons but polytime solvable for
F ≤ 3. We also consider restrictions on the board size, cut directions,
and cut sizes. Finally, we introduce several natural two-player versions
of the game and show that they are PSPACE-complete.

I. Kostitsyna—Supported in part by NWO project no. 639.023.208.
C. Schmidt—Supported in part by grant 2014-03476 from Sweden’s innovation
agency VINNOVA.

c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 60–72, 2016.
DOI: 10.1007/978-3-319-48532-4 6

Single-Player and Two-Player Buttons & Scissors Games 61

3 1 4 4

2 1 2 8 6

5 5 8 3

7 6 7 3

8 9 9 9

)c()b()a(

Fig. 1. (a) Level 7 in the Buttons & Scissors app is an m × n = 5 × 5 grid with
C = 5 colors, each used at most F = 7 times; (b) a solution using nine cuts with
sizes in S = {2, 3} and directions d = (no vertical cut is used); (c) a gadget used in
Theorem5.

1 Introduction

Buttons & Scissors is a single-player puzzle by KyWorks. The goal of each level is
to remove every button by a sequence of horizontal, vertical, and diagonal cuts,
as illustrated by Fig. 1. It is NP-complete to decide if a given level is solvable [2].
We study several restricted versions of the game and show that some remain
hard, whereas others can be solved in polynomial time. We also consider natural
extensions to two player games which turn out to be PSPACE-complete.

Section 2 begins with preliminaries, then we discuss one-player puzzles in
Sect. 3 and two-player games in Sect. 4. Open problems appear in Sect. 5. Due
to space restrictions, some proofs are sketched or omitted. A full version of this
article can be found on arXiv.

2 Preliminaries

A Buttons & Scissors board B is an m×n grid, where each grid position is either
empty or occupied by a button with one of C different colors. A cut is given by
two distinct buttons b1, b2 of the same color c that share either the x-coordinate,
the y-coordinate, or are located on the same diagonal (45◦ and −45◦). The size
s of a cut is the number of buttons on the line segment b1b2 and so s ≥ 2. A cut
is feasible for B if b1b2 only contains buttons of a single color.

When a feasible cut is applied to a board B, the resulting board B′

is obtained by substituting the buttons of color c on b1b2 with empty grid
entries. A solution to board B is a sequence of boards and feasible cuts
B1, x1, B2, x2, . . . , Bt, xt, Bt+1, where Bt+1 is empty, and each cut xi is feasi-
ble for Bi and creates Bi+1.

Each instance can be parameterized as follows (see Fig. 1 for an example):

1. The board size m × n.
2. The number of colors C.
3. The maximum frequency F of an individual color.

62 K. Burke et al.

4. The cut directions d can be limited to d ∈ { , , , }.
5. The cut size set S limits feasible cuts to having size s ∈ S.

Each d ∈ { , , , } is a set of cut directions (i.e. for horizontal and vertical).
We limit ourselves to these options because an m×n board can be rotated 90◦ to
an equivalent n×m board, or 45◦ to an equivalent k×k board for k = m+n−1
with blank squares. Similarly, we can shear the grid by padding row i with
i − 1 blanks on the left and m − i blanks on the right which converts d = to
d = . We obtain the family of games below (B&S[n × n,∞,∞, , {2, 3}](B) is
the original):

Decision Problem: B&S[m × n,C, F, d, S](B).
Input: An m×n board B with buttons of C colors, each used at most F times.
Output: True ⇐⇒ B is solvable with cuts of size s ∈ S and directions d.

Now we provide three observations for later use. First note that a single
cut of size s can be accomplished by cuts of size s1, s2, . . . , sk so long as s =
s1 + s2 + · · · + sk and si ≥ 2 for all i. Second note that removing all buttons of
a single color from a solvable instance cannot result in an unsolvable instance.

Remark 1. A board can be solved with cut sizes S = {2, 3, . . .} if and only if
it can be solved with cut sizes S′ = {2, 3}. Also, {3, 4, . . .} and {3, 4, 5} are
equivalent.

Remark 2. If board B′ is obtained from board B by removing every button of
a single color, then B&S[m × n,C, F, d, S](B) =⇒ B&S[m × n,C, F, d, S](B′).

3 Single-Player Puzzle

3.1 Board Size

We solve one row problems below, and give a conjecture for two rows in Sect. 5.

Theorem 1. B&S[1 × n,∞,∞, , {2, 3}](B) is polytime solvable.

Proof. Consider the following context-free grammar,

S → ε | � | SS | xSx | xSxSx

where � is an empty square and x ∈ {1, 2, . . . , C}. By Remark 1, the solvable 1×n
boards are in one-to-one correspondence with the strings in this language. �	

3.2 Number of Colors

Hardness for 2 Colors. We begin with a straightforward reduction from 3SAT.
The result will be strengthened later by Theorem 7 using a more difficult proof.

Theorem 2. B&S[n × n, 2,∞, , {2, 3}](B) is NP-complete.

Proof Sketch: A variable gadget has its own row with exactly three buttons. The
middle button is alone in its column, and must be matched with at least one of
the other two in the variable row. If the left button is not used in this match,
we consider the variable set to true. If the right button is not used, we consider

Single-Player and Two-Player Buttons & Scissors Games 63

(a) (b) (c)

Fig. 2. Split gadget (a) and the two possible ways to clear it (b) and (c).

the variable set to false. A button not used in a variable is an available output,
and can then serve as an available input to be used in other gadgets.

Every clause gadget has its own column, with exactly four buttons. The
topmost button (clause button) is alone in its row; the others are inputs. If at
least one of these is an available input, then we can match the clause button
with all available inputs. We construct one clause gadget per formula clause,
connecting its inputs to the appropriate variable outputs. Then, we can clear all
the clauses just when we have made variable selections that satisfy the formula.

The variables are connected to the clauses via a multi-purpose split gadget
(Fig. 2(a)). Unlike the variable and the clause, this gadget uses buttons of two
colors. The bottom button is an input; the top two are outputs. If the input
button is available, we can match the middle row of the gadget as shown in
Fig. 2(b), leaving the output buttons available. But if the input is not available,
then the only way the middle row can be cleared is to first clear the red buttons
in vertical pairs, as shown in Fig. 2(c); then the output buttons are not available.

We provide a further description of the split gadget and complete the proof
in the full version of this article. �	

Polynomial-Time Algorithm for 1-Color and Any Cut Directions.
Given an instance B with C = 1 color and cut directions d ∈ { , , , }, we
construct a hypergraph G that has one node per button in B. A set of nodes is
connected with a hyperedge if the corresponding buttons lie on the same horizon-
tal, vertical, or diagonal line whose direction is in d, i.e., they can potentially be
removed by the same cut. By Remark 1 it is sufficient to consider a hypergraph
with only 2- and 3-edges. A solution to B corresponds to a perfect matching in
G. For clarity, we shall call a 3-edge in G a triangle, and a 2-edge simply an edge.

Cornuéjols et al. [1] showed how to compute a perfect K2 and K3 matching
in a graph in polynomial time. However, their result is not directly applicable to
our graph G yet, as we need to find a matching that consists only of edges and
proper triangles, and avoids K3’s formed by cycles of three edges.

To apply [1] we construct graph G′ by adding vertices to eliminate all cycles
of three edges as follows (see top of Fig. 3). Start with G′ = G. Consider an
e = (v, w) ∈ G′ in a 3-cycle (a cycle of three edges). There are two cases: e is not
adjacent to any triangle in G′, or e is adjacent to some triangles in G′. In the
first case we add vertices u1 and u2 that split e into three edges (v, u1), (u1, u2),

64 K. Burke et al.

e
v w v wu1 u2

=⇒
e

v w v w
u1 u2=⇒ u3 u4 u5 u6

p1 p2 p3 p1 p2 p3

a

b

c

d

=⇒
a

b c

d

a

b

c =⇒
a

b c

d

Fig. 3. Top-left: splitting 3-cycles when there are no adjacent triangles to edge e;
top-right: splitting 3-cycles when e has adjacent triangles (shaded). Bottom-left: con-
structing Gc from four cuts blocking each other in a cycle; bottom-right: constructing
Gc from the same cuts after reassigning the blocking buttons

and (u2, w). In the second case, when e is adjacent to k triangles, we add 2k
vertices u1, u2 . . . , u2k along e, and replace every
pivw with
pivu2i−1.

Lemma 1. There exists a perfect edge- and triangle-matching in G′ iff there
exists perfect edge- and triangle-matching in G.

Proof. Given a perfect matching M in G, we construct a perfect matching M ′

in G′. Consider e = (v, w) in G. If e is not adjacent to any triangles in G, then

– if e ∈ M then add edges (v, u1) and (u2, w) of G′ to M ′ (both v and w are
covered by e, and all v, w, u1, and u2 are covered by M ′);

– if e �∈ M then add edge (u1, u2) of G′ to M ′ (v and w are not covered by e,
and u1 and u2 are covered by M ′).

In both cases above the extra nodes in G′ are covered by edges in M ′, and if
v and w in G are covered by e in M then v and w are covered by (v, u1) and
(u2, w) in G′. If e is adjacent to some triangles in G,

– if e ∈ M then in G′ add edges (v, u1), (u2k, w), and (u2j , u2j+1) to M ′, for
1 ≤ j < k;

– if
pivw ∈ M for some i then add
pivu2i−1, edges (u2j−1, u2j) for 1 ≤ j < i,
(u2j , u2j+1) for i ≤ j < k, and (u2k, w) of G′ to M ′;

– if neither e nor any triangle adjacent to e is in M then add edges (u2j−1, u2j)
of G′ to M ′, for 1 ≤ j ≤ k.

In all the above cases the extra nodes in G′ are covered by edges in M ′, and if
v and w in G are covered by e or a triangle in M then v and w are also covered
by (v, u1) and (u2, w) or by a corresponding triangle in G′.

Refer to the full version of this article for the details on how to create a
perfect matching in G from one in G′. �	

Single-Player and Two-Player Buttons & Scissors Games 65

Thus, a perfect edge- and triangle-matching in G that does not use a 3-cycle
(if it exists) can be found by first converting G to G′ and applying the result
in [1] to G′. A solution of B consisting of 2- and 3-cuts can be reduced to a
perfect edge- and triangle-matching in G; however, the opposite is not a trivial
task. A perfect matching in G can correspond to a set of cuts CM in B that
are blocking each other (see bottom of Fig. 3). To extract a proper order of the
cuts we build another graph Gc that has a node per cut in CM and a directed
edge between two nodes if the cut corresponding to the second node is blocking
the cut corresponding to the first node. If Gc does not have cycles, then there
is a partial order on the cuts. The cuts that correspond to the nodes with no
outgoing edges can be applied first, and the corresponding nodes can be removed
from Gc. However, if Gc contains cycles, there is no order in which the cuts can
be applied to clear up board B. In this case we will need to modify some of the
cuts in order to remove cycles from Gc. We provide the details in the full version
of this article.

By Lemma 1 and by the construction above we obtain the following theorem.

Theorem 3. B&S[n × n, 1,∞, d, {2, 3}](B) is polytime solvable for all d ∈
{ , , , }.

3.3 Frequency of Colors

Theorem 4. B&S[n × n,∞, 3, , {2, 3}](B) is polytime solvable.

Proof. A single cut in any solution removes a color. By Remark 2, these cuts do
not make a solvable board unsolvable. Thus, a greedy algorithm suffices. �	

Hardness was established for maximum frequency F = 7 in [2]. We strengthen
this to F = 4 via the modified clause gadget in Fig. 1 (c). In this gadget the
leftmost circular button can be removed if and only if at least one of the three
non-circular buttons is removed by a vertical cut. Thus, it can replace the clause
gadget in Sect. 4.1 of [2]. Theorem 5 is proven in the full version of this article.

Theorem 5. B&S[n × n,∞, 4, , {2, 3}](B) is NP-complete.

3.4 Cut Sizes

Section 3.2 provided a polytime algorithm for 1-color. However, if we reduce the
cut size set from {2, 3, 4} to {3, 4} then it is NP-complete. We also strengthen
Theorem 2 by showing that 2-color puzzles are hard with cut size set {2}.

Hardness for Cut Sizes {3,4} and 1-Color

Theorem 6. B&S[n × n, 1,∞, , {3, 4}](B) is NP-complete.

66 K. Burke et al.

(a) (b)

(c)

Fig. 4. (a) The only two cut possibilities in the variable gadget (shown in black and
gray), corresponding to truth assignments of “true” and “false”, respectively. (b) The
bend gadget for the 1-color case. (c) The clause gadget for the 1-color case.

Proof. We show B&S[n × n, 1,∞, , {3, 4}](B) to be NP-hard by a reduction
from PLANAR 3-SAT, which was shown to be NP-complete by Lichtenstein [3].

An instance F of the PLANAR 3-SAT problem is a Boolean formula in
3-CNF consisting of a set C of m clauses over n variables V The variable-clause
incidence graph G = (C ∪ V, E) is planar, and all variables are connected in a
cycle. The PLANAR 3-SAT problem is to decide whether there exists a truth
assignment to the variables such that at least one literal per clause is true.

We turn the planar embedding of G into a Buttons & Scissors board, i.e., we
present variables, clauses and edges by single-color buttons that need to be cut.
We provide detailed descriptions of each gadget in the full version of this article.

The variable gadget, shown in Fig. 4(a), enables us to associate horizontal
and diagonal cut patterns with “true” and “false” values, respectively.

The bend gadget, shown in Fig. 4(b), enables us to bend a wire to match
the bends in G’s embedding while enforcing that the same values are propagated
through the bent wire.

The split gadget, shown in Fig. 5(b), enables us to increase the number of
wires leaving a variable and propagating its truth assignment.

The not gadget, shown in Fig. 5(a), enables us to reverse the truth assign-
ment in a variable wire.

The clause gadget is shown in Fig. 4(c). This gadget simulates a conjunction
of literals.

Thus, the resulting Buttons & Scissors board has a solution if and only if at
least one of the literals per clause is set to true, that is, if and only if the original
PLANAR 3-SAT formula F is satisfiable. It is easy to see that this reduction
is possible in polynomial time. In addition, given a Buttons & Scissors board

Single-Player and Two-Player Buttons & Scissors Games 67

(b)(a)

Fig. 5. (a) The not gadget, negating the input truth assignment, for the 1-color case.
(b) The split gadget for the 1-color case.

and a sequence of cuts, it is easy to check whether those constitute a solution,
i.e., whether all cuts are feasible and result in a board with only empty grid
entries. Hence, B&S[n × n, 1,∞, , {3, 4}](B) is in the class NP. Consequently,
B&S[n × n, 1,∞, , {3, 4}](B) is NP-complete. �	

Hardness for Cut Size {2} and 2-Colors. An intermediate problem is below.

Decision Problem: Graph Decycling on (G,S).
Input: Directed graph G = (V,E) and a set of disjoint pairs of vertices S ⊆
V × V.
Output: True, if we can make G acyclic by removing either s or s′ from G for
every pair (s, s′) ∈ S. Otherwise, False.

Lemma 2. Graph Decycling reduces to Buttons & Scissors with 2 colors.

Proof. Consider an instance (G,S) to graph decycling. First, we observe that
we can assume that every vertex in G has degree 2 or 3, and more specifically,
in-degree 1 or 2, and out-degree 1 or 2. Indeed, we can safely remove any vertices
with in- or out-degree 0 without changing the outcome of the problem. Also, we
can replace a node with out-degree k by a binary tree of nodes with out-degree
2. The same applies to nodes with in-degree k.

Furthermore, we can assume that every vertex that appears in S has degree 2.
Indeed, we can replace any degree 3 vertex by two vertices of degree 2 and 3,
and use the degree 2 vertex in S without changing the outcome. Similarly, we
can assume that no two vertices of degree 3 are adjacent. Finally, we can assume
that G is bipartite, and furthermore, that all vertices that occur in S are in the
same half of V , since we can replace any edge by a path of two edges.

Now, we discuss how to model such a graph in a Buttons & Scissors instance.
Each node will correspond to a pair of buttons, either a red or a green pair accord-
ing to a bipartition of V . These pairs of buttons will be mapped to locations
in the plane on a common (horizontal for red, vertical for green) line, and such
that any two buttons of the same color that are not a pair are not on a common
(horizontal, vertical, or diagonal) line (unless otherwise specified). If two nodes

68 K. Burke et al.

u

v

t

(a)

u

v

s t

(b)

u
v

t

w

(c)

v

u

s

w

x

t

(d)

Fig. 6. Three types of nodes: (a) in-degree 1 (tu) and out-degree 1 (uv); (b) in-degree
2 (su and tu) and out-degree 1 (uv); (c) in-degree 1 (tu) and out-degree 2 (uv and uw).
In (d) the nodes u and v are linked in S and we can choose to remove u or v.

of opposite colors u and v are connected by an edge in G, we say that u blocks
v. In this case, one of the buttons of u will be on the same line as the buttons of
v, and more specifically, it will be between the two buttons of v. That is, v can
only be cut if u is cut first. Buttons of opposite colors that are not connected by
an edge will not be on any common lines either.

As discussed above, we can assume we have only three possible types of
nodes. Figure 6(a) illustrates the simplest case, of a node u with one incoming
edge tu and one outgoing edge uv. Clearly, t blocks u and u blocks v. To model
a node with in-degree 2, we need to put two buttons of different same-colored
nodes on the same line (see Fig. 6(b)). As long as the other endpoints of these
two edges are not on a common line this is no problem: we never want to create
a cut that removes one button of s and one of t, since that would create an
unsolvable instance. Finally, to model a node with out-degree 2, we simply place
a vertical edge on both ends of u (see Fig. 6(c)). Note that is it important here
that we do not connect two nodes with out-degree 2 to the same two nodes with
in-degree 2, since then we would have both pairs of endpoints on a common line;
however, we assumed that nodes of degree 3 are never adjacent so this does not
occur.

It remains to create a mechanism to remove vertices from G as dictated by
S. This is illustrated in Fig. 6(d) with details in the full version of this article. �	

A proof of Lemma 3 is in the full version of this article. Lemmas 2 and 3 give
Theorem 7.

Lemma 3. SAT reduces to Graph Decycling.

Theorem 7. B&S[n × n, 2,∞, , {2}](B) is NP-complete.

4 Two-Player Games

We consider three two-player Buttons & Scissors variants. First we consider
color restricted games where (a) each player can only cut specific colors, and (b)
players are not restricted to specific colors. For (a) player blue may only cut Blue

Single-Player and Two-Player Buttons & Scissors Games 69

buttons, while the red player may only cut Red buttons. For (b) we distinguish
by winning criterion: for (Impartial) the last player who makes a feasible cut
wins; for (Scoring) players keep track of the total number of buttons they’ve
cut. When no cuts can be made, the player with the most buttons cut wins.

In the following sections, we show that all variants are PSPACE-complete.

4.1 Cut-By-Color Games

In this section the first player can only cut blue buttons, the second player can
only cut red buttons, and the last player to make a cut wins.

Theorem 8. The partisan LAST two-player Buttons & Scissors game, where
one player cuts blue buttons, the other red buttons, is PSPACE-complete.

Proof. The proof is by reduction from G%free(CNF) [5]: given a boolean formula
Φ(x1, . . . , xn) in CNF and a partition of the variables into two disjoint subsets
of equal size Vb and Vr, two players take turns in setting values of the variables,
the first (Blue) player sets the values of variables in Vb, and the second (Red)
player sets the values of variables in Vr. Blue wins if, after all variables have
been assigned some values, formula Φ is satisfied, and loses otherwise.

For a given instance of formula Φ we construct a Buttons & Scissors board
B, such that Blue can win the game on B if and only if he can satisfy formula
Φ. We will prove this statement in different formulation: Red wins the game on
B if and only if formula Φ cannot be satisfied. For a complete example see the
full version of this article.

The red variable gadget is shown in Fig. 7(a). Red “sets the value” of the
corresponding variable by choosing the first cut to be a (false) or b (true), and
thus unlocking one of the two cuts, c or d, respectively, for Blue to follow up
(and to propagate the value of the variable).

The blue variable gadget is shown in Fig. 7(b). Blue “sets the value” of
the corresponding variable by choosing the first cut to be a (false) or b (true),

(a) (b) (c) (d) (e)

Fig. 7. (a) The red (dashed) variable gadget, (b) the blue (solid) variable gadget, (c)
the split gadget, (d) the OR gadget, and (e) the AND gadget. Lines (or arcs used for
clarity) indicate which buttons are aligned. (Color figure online)

70 K. Burke et al.

and thus unlocking one of the two cuts, d or e, respectively, for the red player
to follow up. Blue has one extra cut c that is used to pass the turn to Red.
Alternatively, Blue can choose to start with the 3-button cut c and disallow Red
from making any cuts in the gadget. In that case the corresponding variable
cannot be used to satisfy Φ.

Figure 7(d) depicts the OR gadget: if Blue cuts a or b (or both), Red can
leave the gadget with cut h. Cuts a and b unblock cuts c and d, respectively,
which in turn unblock e and f , respectively.

Figure 7(e) depicts the AND gadget for two inputs. The proper way of pass-
ing the gadget: Blue makes both cuts a and b, and Red makes cuts c and d
when they get unblocked, thus enabling Blue to make cut g and exit the gadget.
However, Red could also take an “illegal” cut x, thus, unblocking two extra cuts,
e and f , for the blue player, and, hence, putting Red at a disadvantage. Thus,
if at any point in the game Red chooses (or is forced to) make cut x in any of
the AND gadgets, the game result is predetermined, and Red cannot win on B.

Figure 7(c) shows the split gadget; it enables us to increase the number
of cuts leaving a variable and propagating its truth assignment. Blue’s cut a
unblocks Red’s cut b, which unblocks both c and d. If Blue cuts c and d this
enables Red to cut e and f , respectively. The gadget also exists with Blue and
Red reversed.

A variant of the split gadget evaluates the formula Φ: cuts e and f are deleted.
If the variable values are propagated to this gadget and Red is forced to make
the cut b, Blue then gets extra cuts which Red will not be able to follow up.

The game progresses as follows: Blue selects an assignment to a blue variable.
This unlocks a path of red-blue cuts that goes through some AND and OR
gadgets and leads to the final gadget. As the order of the cuts in such a path is
deterministic, and does not affect the choice of values of other variables, w.l.o.g.,
we assume that Red and Blue make all the cuts in this path (until it gets “stuck”)
before setting the next variable. The path gets stuck when it reaches some AND
gadget for which the other input has not been cleared. The last cut in such a
path was made by Red, thus afterwards it will be Blue’s turn, and he may choose
to make the leftover cut c from the variable gadget to pass the turn to Red.

If the final gadget is not unblocked yet, Red always has a cut to make after
Blue makes a move, as there is the same number of blue and red variables.
However, if Blue can force Red to make moves until the final gadget is reached,
then Blue gets extra cuts; thus, Red will run out of moves and lose the game.
Otherwise, if Blue cannot fulfill some AND or OR gadgets, the Red player will
make the last move and win. Therefore, if Φ cannot be satisfied, Red wins. �	

4.2 Any Color Games

Theorem 9. Impartial two-player Buttons & Scissors is PSPACE-complete.

Theorem 10. Scoring two-player Buttons & Scissors is PSPACE-complete.

Single-Player and Two-Player Buttons & Scissors Games 71

Fig. 8. Reduction gadgets for vertex with (a) one incoming arc and one outgoing arc,
(b) one incoming arc and two outgoing arcs, and (c) two incoming arcs and one outgoing
arcs. (d) The starting gadget for Scoring.

We show that Impartial is PSPACE-complete, then use one more gadget to
show Scoring is PSPACE-complete. We reduce from Geography1, (PSPACE-
complete [4]). We use Lemma 4 to start with low-degree Geography instances.

Lemma 4. Geography is PSPACE-complete even when vertices have max
degree 3 and the max in-degree and out-degree of each vertex is 2.

The full version of this article proves Lemma 4 and Theorem 9 with these gadgets:

– In-degree 1, out-degree 1: The gadget for this is a pair of buttons such
that removing the first pair frees up the second, as in Fig. 8(a).

– In-degree 1, out-degree 2: See Fig. 8(b) and the full version of this article.
– In-degree 2, out-degree 1: See Fig. 8(c) and the full version of this article.
– In-degree 0: The gadgets for this look just like the gadgets for the analogous

in-degree 1 gadgets, but without the button pair for the incoming edge.
– Out-degree 0: Each edge is a button pair that won’t free up other buttons.

To show Scoring is hard, we create a reduction where after each turn,
that player will have cut the most buttons; the last player to move wins. This
alternating-advantage situation is caused by an initial gadget. The optimal play
sequence begins by cutting two buttons, then three, then three, then three a
final time. After these four moves, the first player will have five points and the
second player six. Each subsequent cut removes two buttons so each turn ends
with the current player ahead.

Figure 8(d) shows the starting gadget that sets up this initial back-and-forth.
The color-f buttons will be the last two cut; the right-hand f button must be
blocking the next gadget. Lemma 5 postulates that f will be last.
1 Specifically, Directed Vertex Geography, usually called Geography.

72 K. Burke et al.

Lemma 5. If a player has a winning strategy, then part of that winning strategy
includes cutting all possible buttons of colors a, b, c, d, and e before cutting f .

The full version of this article proves Lemma 5, and also shows how these
lemmas provide Theorem 10.

5 Open Problems

Interesting problems for boards with a constant number of rows are still open.
A conjecture for m = 2 rows appears below.

Conjecture 1. There is a polynomial time algorithm that removes all but s but-
tons from any full 2 × n board with C = 2 colors for some constant s.

References

1. Cornuéjols, G., Hartvigsen, D., Pulleyblank, W.: Packing subgraphs in a graph.
Oper. Res. Lett. 1(4), 139–143 (1982)

2. Gregg, H., Leonard, J., Santiago, A., Williams, A.: Buttons & scissors is NP-
complete. In Proceedings of the 27th Canadian Conference on Computational Geom-
etry (2015)

3. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343
(1982)

4. Lichtenstein, D., Sipser, M.: Go is polynomial-space hard. J. ACM 27(2), 393–401
(1980)

5. Schaefer, T.J.: On the complexity of some two-person perfect-information games. J.
Comput. Syst. Sci. 16(2), 185–225 (1978)

Fitting Spherical Laguerre Voronoi Diagrams
to Real-World Tessellations Using Planar

Photographic Images

Supanut Chaidee(B) and Kokichi Sugihara

Graduate School of Advanced Mathematical Sciences, Meiji University,
4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan

{schaidee,kokichis}@meiji.ac.jp

Abstract. There are many natural phenomena displayed as polygonal
tessellations on curved surfaces, typically found in fruit skin patterns.
The paper proposes a method to fit given tessellations with spherical
Laguerre Voronoi diagrams. The main target of this paper is fruit skin
patterns such as jackfruit and lychee covered by tessellation patterns
in which each cell contains a unique spike dot that can be considered
as a generator. The problem of estimating the weights is reduced to
an optimization problem, and can be solved efficiently. The experiments
were done with ideal data and real fruit skin data, which show the validity
of the method. We also propose related problems for further studies.

Keywords: Spherical Laguerre Voronoi diagram · Voronoi approxima-
tion · Tessellation fitting · Fruit skin patterns

1 Introduction

Many natural phenomena display as polygonal patterns, for example, animal
territories, flower inflorescences, and some fruit skin patterns. From a mathemat-
ical viewpoint, verifying whether a given polygonal pattern can be considered a
Voronoi diagram, the tessellation partitioning a space into cells corresponding
to the set of generators where each point in the space is assigned to the nearest
generator, is useful for constructing mathematical models of polygonal pattern
formation.

The concept of Voronoi diagrams, their generalization, and applications have
been studied widely [6,21]. One of the research directions is focused on the
Voronoi recognition and approximation problems. Suppose that we are given
a polygonal tessellation. We firstly determine whether the given tessellation is
a Voronoi diagram. If it is, we determine the set of Voronoi generators. This
problem (Voronoi recognition) was studied in [1,2,5,11,18,22]. Otherwise, we
approximate the Voronoi generators to find the Voronoi diagram that best fits
the given tessellation [10,12,13,26]. This problem (Voronoi approximation) is
more useful in practice in the real world because real-world tessellations are not
exact Voronoi diagrams.
c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 73–84, 2016.
DOI: 10.1007/978-3-319-48532-4 7

74 S. Chaidee and K. Sugihara

As a generalization of Voronoi diagrams, we can consider weighted Voronoi
diagrams for which each Voronoi generator has a weight. One interesting
weighted Voronoi diagram is a Laguerre Voronoi diagram (alternatively called
a power diagram), because it consists of straight line edges. Laguerre Voronoi
diagrams were introduced in [3,14]. Some geometrical properties related to the
polyhedron were defined in [4]. Most importantly for the present work, spheri-
cal Laguerre Voronoi diagrams, which were analogously defined using geodesic
distance, and algorithms were introduced by Sugihara [24,25].

Unlike the Laguerre Voronoi construction, the Laguerre Voronoi recognition
problem has not been much studied. Recently, Duan et al. [9] gave a frame-
work to determine the Laguerre generators with weights from a planar Laguerre
Voronoi tessellation. Laguerre Voronoi diagrams, including tessellation fitting
using Laguerre Voronoi diagrams, have been applied to real-world problems such
as those of the 3D material structure (e.g., [15–17,19]), tomographic image data
(e.g., [23]), and molecular chemistry (e.g., [20]).

Recently, we [7] defined a class of objects called spike-containing objects
which intuitively originate from fruits covered by spikes. We gave a framework for
finding the spherical Voronoi diagrams which are best fit to the spike-containing
tessellations extracted from the photos showing spikes. The problem is considered
a Voronoi approximation problem. We [7] employed optimization techniques for
adjusting the approximated sphere radius and spike height. The sphere center
position is also adjusted in [8]. We applied this method to both jackfruit and
lychee. Although it works well for jackfruit, it does not work well for lychee,
suggesting that for lychee the weights of the tessellation cells are not equal, and
hence, it may be not appropriate to fit a spherical Voronoi diagram in this case.

Using weighted Voronoi diagrams is one of the possible ways to resolve
the problem. However, most weighted Voronoi diagrams contain complicated
curved Voronoi edges, whereas real-world tessellations consist of almost straight
line edges. Therefore, we focus on Laguerre Voronoi diagrams as fits to spike-
containing tessellations.

In this study, we assume that we have a spike-containing tessellation and
would like to find the spherical Laguerre Voronoi diagram fitting it. Unlike [9], our
method finds the appropriated spherical Laguerre Voronoi diagram by approxi-
mating the weight of each spherical Voronoi generator.

This paper is organized as follows. In Sect. 2, we give the fundamental def-
initions and theorems which are related to our work. The problem is also for-
mulated with some assumptions. In Sect. 3, we give the framework for finding
the approximated spherical Laguerre Voronoi diagram of a given tessellation.
We also introduce the optimization problem which is used for approximating
weights of generators before presenting the fitting algorithm, which we analyze.
In Sect. 4, we show experimental results for artificially generated data and real
data, which confirm the validity of our framework. Finally, we summarize the
results of the study and show related problems for future works.

Fitting Spherical Laguerre Voronoi Diagrams 75

2 Modeling Assumptions

In this section, we first provide the basic definitions and theorems related to
spherical Laguerre Voronoi diagrams. Then we state the assumptions of the
model. We also present a criterion for judging whether there is a difference
between the given tessellations and the considered Voronoi diagrams.

2.1 Fundamental Definitions and Theorems

Briefly, it is well known that we can define Voronoi diagrams by spaces, gen-
erators, and distances. One example is a Voronoi diagram on a sphere S in
R

3. Basically, the ordinary distance on the unit sphere is the geodesic distance
defined by

d̃(p, pi) = arccos(xTxi) ≤ π.

where x, xi are position vectors of two distinct points p, pi ∈ S. Note that the
geodesic distance d̃(p, pi) is the shorter distance between p and pi on the great
circle passing through p and pi.

We can generalize Voronoi diagrams by putting a weight on each generator;
these generalized diagrams are called weighted Voronoi diagrams. In this study,
our focus is on Laguerre Voronoi diagrams. Starting from [3,14,24], we can intu-
itively consider an ordinary Laguerre Voronoi diagram on R

2 to be a set of n
circles G = {c1, ..., cn} in R

2, where ci = (pi, ri) are circles with centers and radii
pi and ri, respectively. For a circle ci and arbitrary point p ∈ R

2, the Laguerre
distance (or power distance) is defined by

dL(p, ci) = d(p, pi)2 − r2i ,

where d(p, pi) denotes the Euclidean distance between p and pi.
The Laguerre Voronoi region associated with ci is defined as

VL(ci) = {p ∈ R
2 : dL(p, ci) ≤ dL(p, cj), j ∈ In \ {i}},

where In = {1, ..., n}. In R
2, the locus of Voronoi bisectors form a straight line.

We can also extend the concept of Laguerre Voronoi diagrams to the sphere.
In [24,25], the Laguerre distance and its related objects were considered on a
unit sphere U . In the present paper, we analogously use those definitions with
a sphere U with radius R, where the sphere center is located at O(0, 0, 0) in the
Cartesian coordinate system.

Definition 1. Let Pi be a point on the sphere U . A spherical circle c̃i on sphere
U is defined by

c̃i = {P ∈ U : d̃(P, Pi) = Ri},

where d̃(P, Pi) is the geodesic distance between P and Pi, and 0 ≤ Ri/R < π/2.

76 S. Chaidee and K. Sugihara

We can define the Laguerre Voronoi diagram on the sphere U of R3 corre-
sponding to the set of spherical circles G = {c̃1, ..., c̃n} by using the Laguerre
proximity

d̃L(P, c̃i) =
cos

(
d̃(P, Pi)/R

)

cos (Ri/R)
,

and the Laguerre bisector of two adjacent circles c̃i, c̃j is defined by

BL(c̃i, c̃j) = {P ∈ U : d̃L(P, c̃i) = d̃L(P, c̃j)}.

In [25], the following theorem characterizes the spherical Laguerre Voronoi
diagram bisectors.

Theorem 1 ([25]). The Laguerre bisector BL(c̃i, c̃j) is a great circle, and it
crosses the geodesic arc connecting the two centers Pi and Pj at a right angle.

Algorithms for constructing a spherical Laguerre Voronoi diagram and a
spherical Laguerre Delaunay diagram were reported in [24,25].

2.2 Problem Formulation and Assumptions

In previous study [7], we defined a spike-containing object as an object consisting
of a convex surface that can be approximated by a sphere that is covered by
spikes of approximately uniform height and has a polygon-like tessellation on its
surface with each cell containing exactly one spike.

We photograph a spike-containing object and assume that the photo is
an orthogonal projection onto the XZ-plane. From this photo of the spike-
containing object, we extract the spike-containing tessellation T , which is the
convex tessellation composed of a planar 3-regular straight graph. Each tes-
sellation cell contains a unique generator called a spike dot, the dot projected
from the tip of the spike. Let B = {s1, ..., sn} be the set of spike dots of the
spike-containing tessellation T .

In [7,8], we proposed methods for finding the ordinary spherical Voronoi
diagram which is the best fit to the spike-containing tessellation T with respect
to the spike dots set B. The sphere radius R and spike height h are determined
by the algorithms.

To judge whether a difference exists between two tessellations on the plane,
we use the discrepancy as defined in [7,8], which is as follows.

Let T be a given tessellation and V be a Voronoi diagram. Denote by AT , AV

the areas of the given tessellation and the Voronoi diagram, respectively. Define
DT = AT − A and DV = AV − A, where A is the sum of areas of intersection
between cells of T and V corresponding to the same spike dot. The discrepancy
ΔT,V , the ratio of the differences between two tessellations to the sum of the
areas of the tessellations, is defined by

ΔT,V =
(

DT + DV

2

)

/

(
AT + AV

2

)

=
DT + DV

AT + AV
.

Fitting Spherical Laguerre Voronoi Diagrams 77

3 Main Framework

In this study, we would like to find the spherical Laguerre Voronoi diagram fitting
the spike-containing tessellation T with spike dots set B. Assume that the radius
R of a sphere U and spike height h are acquired from the frameworks in [7,8].
Our main concern is to approximate the spherical circle radius of each generator
in the set B projected onto the sphere U .

To obtain the fitted spherical Laguerre Voronoi diagram, we consider the
discrepancy by comparing the spike-containing tessellation T with a projected
spherical Laguerre Voronoi diagram, say V . We divide the processes into three
main steps for obtaining V : projecting a tessellation T onto a sphere U , approxi-
mating the spherical circle radii, and constructing the spherical Laguerre Voronoi
diagram and projecting it onto the XZ-plane.

3.1 Projecting a Tessellation T onto a Sphere

Starting from a spike-containing tessellation T with spike dots set B, we orthog-
onally project spike dots onto a sphere with radius R + h, and then radially
project them to the sphere U with radius R.

Rigorously, let si = (xi, zi) be a spike dot in the XZ-plane. The coordinates
of si projected onto a sphere with radius R + h are taken to be si(R + h) =
(xi,

√
(R + h)2 − (x2

i + z2i), zi). Then the central projection of si(R + h) onto
the sphere U is si(R) = (R/(R + h)) si(R + h). The set of spike dots on sphere
U is written as B(R) = {P1, ..., Pn}, where Pi := si(R).

Differently from [7,8], we also project the spike-containing tessellation T onto
sphere U . To do so, we define the tessellation T as T = {T1, ..., Tn} where Ti is a
set of polygonal vertices of the i-th cell corresponding to the spike dot si. Note
that a cell Ti is adjacent to a cell Tj if and only if |Ti ∩ Tj | = 2. This implies
that there exists a tessellation edge eij partitioning the tessellation cell i, j.

For each vertex vk ∈ ∪n
m=1Tm, we project vk ∈ ∪n

m=1Tm onto the sphere;
we will denote this projection by vk(R). For each pair i, j, where i �= j, if
Ti ∩Tj = {vijk1 , vijk2} with vijk1 , vijk2 ∈ ∪n

m=1Tm, then we construct a geodesic
arc joining vijk1(R) and vijk2(R), say Ûeij , which is the bisector of the i-th and
j-th cells. The vertex set of the spherical polygon with respect to spike dot Pi

is denoted by Ti(R), and the vertex set of tessellation T projected onto sphere
U is written as T (R).

3.2 Radii Approximation

In this step, we approximate the weight Ri of each generator Pi for all i ∈ In.
Ri is an unknown variable satisfying 0 ≤ Ri/R < π/2.

From a spike-containing tessellation projected onto a sphere T (R), suppose
that two adjacent cells Ti(R) and Tj(R) share a geodesic arc Ûeij . To satisfy
the requirements of Theorem 1, we draw the geodesic arc from Pi perpendicular
to geodesic arc Ûeij . Let the foot point be Qij , and similarly let the foot point
corresponding to Pj be Qji. We then compute d̃(Pi, Qij) and d̃(Pj , Qji).

78 S. Chaidee and K. Sugihara

Now, we let R = {R1, ..., Rn} be the set of spherical circle radii with respect
to B(R), and spherical circle radii are defined as variables. To obtain an appro-
priate set R, we desire to satisfy the condition d̃L(P, c̃i) = d̃L(P, c̃j) in Theorem 1
for each adjacent pair i, j assumed to be the spherical Laguerre bisector.

Let Aij = cos
(

d̃(Pi,Qij)
R

)
and Aji = cos

(
d̃(Pj ,Qji)

R

)
. We define the residual

r(Ri, Rj) := cos
(

Rj

R

)

Aij − cos
(

Ri

R

)

Aji.

We employ least-squares optimization; specifically, we minimize the sum of
squared residuals among all adjacent pairs i, j as the objective function

f(R1, ..., Rn) :=
∑

i,j

[

cos
(

Rj

R

)

Aij − cos
(

Ri

R

)

Aji

]2

. (1)

From Definition 1, we note that 0 ≤ Ri < (Rπ)/2 for all 1 ≤ i ≤ n. The set R
which minimizes f(Ri, ..., Rn) is defined as Ropt.

3.3 Construction of the Projected Spherical Laguerre Voronoi
Diagram V

After the step of radii approximation, we now have the set of optimal spheri-
cal circle radii Ropt. Using this set along with the spike dot set B(R), we can
construct the spherical circles which belong to the set G̃ = {c̃1, ..., c̃n}. We are
now ready to construct the spherical Laguerre Voronoi diagram or the spherical
Laguerre Delaunay diagram.

We can directly apply Algorithm 1 of [25] to construct the spherical Laguerre
Voronoi diagram.

In the case of the spherical Laguerre Delaunay diagram, we can instead
apply Algorithm 2 of [25] by firstly constructing a set of points when a gen-
erator point Pi = (xi, yi, zi) on the sphere U is inversely mapped to the point
P ∗
i (xi/t, yi/t, zi/t), where t = cos(Ri/R). We then construct the convex hull

from the set G̃∗ = {P ∗
1 , ..., P ∗

n} and project it onto the sphere U radially to
obtain the spherical Laguerre Delaunay diagram.

After we obtain a spherical Laguerre Voronoi diagram, say VL, we project
this spherical Laguerre Voronoi diagram orthogonally onto the XZ-plane. Let
the projected planar tessellation be V . We compute the discrepancy between V
and T .

We can now summarize the algorithm as follow.

Algorithm 1. Fitting to a Spherical Laguerre Voronoi Diagram
Input: Spike-containing tessellation T with the spike dot set B.
Output: The spherical Laguerre Voronoi diagram that fits T , and the discrep-
ancy ΔT,V

Procedure:

Fitting Spherical Laguerre Voronoi Diagrams 79

1. for i = 1 to |B|;
project si to si(R + h);
project si(R + h) to si(R) =: Pi;

end for;
2. for k = 1 to | ∪n

m=1 Tm|;
project vk ∈ ∪n

m=1Tm to vk(R);
end for;

3. for each edge {vijk1 , vijk2} ⊂ ∪n
m=1Tm;

construct the geodesic arc Ûeij ;
construct the geodesic arc from Pi perpendicular to Ûeij at Qij ;
construct the geodesic arc from Pj perpendicular to Ûeij at Qji;
compute d̃(Pi, Qij), d̃(Pj , Qji);

set r(Ri, Rj) := cos
(

Rj

R

)
cos

(
d̃(Pi,Qij)

R

)
− cos

(
Ri

R

)
cos

(
d̃(Pj ,Qji)

R

)
;

define f(R1, ..., Rn) :=
∑

i,j (r(Ri, Rj))
2;

end for;
4. find the set R which minimizes f(R1, ..., Rn) with 0 ≤ Ri < (Rπ)/2;

Ropt ← R;
5. construct VL by Algorithm 1 in [26];
6. project VL to V ;
7. intersect T and V cell by cell;
8. compute DT ,DV , AT , AV ;
9. compute ΔT,V .

end Procedure

We now analyze the complexity of Algorithm 1. Steps 1, 2, 3, and 6 to 8 require
O(n) computation, whereas Step 9 requires O(1) computations. For the compu-
tation in Step 5, Algorithms 1 and 2 in [25] have complexity O(n log n), which
is worst-case optimal. The complexity of Algorithm 1 depends on which solution
method is used for the optimization of Step 4 employed in (1). However, the
complexity does not affect the computation practically due to the smallness of
the number of spike dots n of the tessellation T .

4 Experimental Results

The algorithm was applied both to ideal data, namely, an artificially generated
spike-containing tessellation T , and to real data obtained from photos. We use
Wolfram Wolfram Mathematica R©10.0 for the algorithm implementation, and
we employed the Nelder-Mead method for optimizing the objective function (1)
which is provided by Wolfram Mathematica R©10.0.

4.1 Experiments with Ideal Data

In the case of ideal data, we firstly constructed a spherical Laguerre Voronoi
diagram from the generated data of the fixed values R, h and spike dot set B

80 S. Chaidee and K. Sugihara

with a randomly generated radii set R. We then projected the spherical Laguerre
Voronoi diagram onto the XZ-plane. This tessellation is denoted by T .

In the experiment, we used a tessellation that consists of 34 spike dots, while
17 cells were used for comparing two tessellations. R and h were fixed as R =
3.989, h = 0.0384. For our convenience, the set R was generated from real
numbers randomized in the interval [0, 0.4].

From the data set, the resulting discrepancy was 0.0171, which is small but
not exactly equal to zero, and the set ROpt differed from the original R. This
situation can be understood by the following reason.

Let V be a spherical Laguerre Voronoi diagram. From [25], there exists
a polyhedron P corresponding to the spherical Laguerre Voronoi diagram V .
Using a transformation in the projective space of R3, the polyhedron is trans-
formed in such a way that the central projection of P onto the sphere coin-
cides with V . Although the plane alignment is fixed due to the position of spike
dots, the planes can be shifted due to the adjustment of spherical circle radii.
Thus, the set ROpt is not necessary to converge to the correct answer. In addition,
the case in which discrepancy is not exactly equal to zero can occur because the
constraints of spherical circle radii reduce the freedom of polyhedron adjustment.
In this case, the intepretation of imaginary spherical circle radii is necessary, and
it will be considered in the approaching study.

4.2 Experiments with Real Data

In the case of real data, we performed our experiments by applying our frame-
work to the tessellations in [7]. Note that for R and h of the sphere of each
tessellation, the values estimated in [7] were used.

For each tessellation, we performed experiments for three pairs of R and h
values obtained in [7] using their initial values. Next, we applied our method to
those tessellations. The experimental results for lychee and jackfruit are shown
in Tables 1 and 2, respectively. Specifically, they show the average discrepancies

Table 1. Average discrepancies from fitting tessellations to the ordinary spherical
Voronoi diagrams (OSVD) in [7] and to spherical Laguerre Voronoi diagrams (SLVD)
for Lychee.

Tessellation Fitting with OSVD Fitting with SLVD

Mean S.D. Mean S.D.

1 0.187 0.0 × 10−17 0.0790 7.08 × 10−6

2 0.311 0.0 × 10−17 0.0703 1.73 × 10−7

3 0.146 0.0 × 10−17 0.0586 2.52 × 10−7

4 0.182 7.37 × 10−6 0.110 7.31 × 10−5

5 0.0859 1.70 × 10−17 0.0721 4.58 × 10−7

6 0.200 0.0 × 10−17 0.0660 2.30 × 10−5

7 0.199 0.0 × 10−17 0.101 3.21 × 10−6

Fitting Spherical Laguerre Voronoi Diagrams 81

Table 2. Average discrepancies from fitting tessellations to the ordinary spherical
Voronoi diagrams (OSVD) in [7] and to spherical Laguerre Voronoi diagrams (SLVD)
for jackfruit.

Tessellation Fitting with OSVD Fitting with SLVD

Mean S.D. Mean S.D.

1 0.161 0.0 × 10−17 0.0711 3.21 × 10−7

2 0.100 1.70 × 10−17 0.0539 5.77 × 10−8

3 0.0956 1.70 × 10−17 0.0810 4.51 × 10−7

4 0.0617 0.0 × 10−17 0.0434 0.0 × 10−17

5 0.0969 0.0 × 10−17 0.0547 2.08 × 10−7

Fig. 1. Areas of difference from the tessellation extracted from a lychee photo: (left)
Fitted spherical Voronoi diagram; (right) Fitted spherical Laguerre Voronoi diagram.
The red and blue areas show the region of the difference of two tessellations. (Color
figure online)

Fig. 2. Areas of difference from the tessellation extracted from a jackfruit photo: (left)
Fitted spherical Voronoi diagram; (right) Fitted spherical Laguerre Voronoi diagram.
The red and blue areas show the region of the difference of two tessellations. (Color
figure online)

82 S. Chaidee and K. Sugihara

and their standard deviations for each tessellation. Examples of tessellations
extracted from photos of lychee and jackfruit are shown in Figs. 1 and 2.

From the experimental results, we found that the discrepancy for a lychee tes-
sellation significantly decreased relative to fitting with ordinary spherical Voronoi
diagrams. Thus, it is reasonable to say that it is more appropriate to consider
lychee skin patterns as spherical Laguerre Voronoi diagrams. Similarly, jackfruit
skin patterns, while well fitted to ordinary spherical Voronoi diagrams, are also
better fitted with spherical Laguerre Voronoi diagrams. These results support
our conjecture that we should consider spike-containing fruit skin patterns as
weighted Voronoi diagrams.

5 Concluding Remarks and Future Work

We proposed a framework to fit a spike-containing tessellation extracted from
a spike-containing object to a spherical Laguerre Voronoi diagram. The results
from the experiments with ideal data and real data verify the validity of our
framework.

In the case of the experimental results from real data, The experimental
results show that the discrepancies from fitting the given tessellations using
spherical Laguerre Voronoi diagrams decrease when we compare to fitting using
ordinary spherical Laguerre Voronoi diagram both jackfruit and lychee cases.
This implies that it is more appropriate to fit the spike-containing object tessel-
lations using the spherical Laguerre Voronoi diagram. The results confirm that
the proposed method is worked well for approximating the real world tessella-
tions using the spherical Laguerre Voronoi diagrams.

In the experiments, we optimized the spherical circle radii when the radius
of sphere and spike height were fixed. For finding the better fitted spherical
Laguerre Voronoi diagram, those parameters should be optimized, together with
adjusting the spherical circle radii again. This case can be the other study when
we cope with all parameters.

From a theoretical viewpoint, we made the following observations from the
experimental results. Suppose that we are given a spherical Laguerre Voronoi
diagram. Then there exists a polyhedron whose projection onto the sphere coin-
cides with the spherical Laguerre Voronoi diagram [24,25]. This leads us to the
next research topic to specify the set of all polyhedra which correspond to the
same spherical Laguerre Voronoi diagram. Resolving this will be useful not only
for the spherical Laguerre Voronoi recognition problem but also for the spherical
Laguerre Voronoi approximation problem when the generators are not given in
the tessellation.

Acknowledgments. The first author acknowledges the support of the MIMS Ph.D.
Program of the Meiji Institute for Advanced Study of Mathematical Sciences, Meiji
University, and the DPST of IPST, Ministry of Education, Thailand. This research is
partly supported by Grant-in-Aid for Basic Research No. 24360039 of MEXT.

Fitting Spherical Laguerre Voronoi Diagrams 83

References

1. Aloupis, G., Pérez-Rosés, H., Pineda-Villavicencio, G., Taslakian, P., Trinchet-
Almaguer, D.: Fitting voronoi diagrams to planar tesselations. In: Lecroq, T.,
Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288, pp. 349–361. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-45278-9 30

2. Ash, P.F., Bolker, E.D.: Recognizing dirichlet tessellations. Geom. Ded. 19, 175–
206 (1985)

3. Aurenhammer, F.: Power diagram: properties, algorithms, and applications. SIAM
J. Comput. 16, 78–96 (1987)

4. Aurenhammer, F.: A criterion for the affine equivalence of cell complexes in R
d

and convex polyhedra in R
d+1. Discrete Comput. Geom. 2, 49–64 (1987)

5. Aurenhammer, F.: Recognising polytopical cell complexes and constructing pro-
jection polyhedra. J. Symbolic. Comput. 3, 249–255 (1987)

6. Aurenhammer, F., Klein, R., Lee, D.T.: Voronoi Diagrams and Delaunay Triangu-
lations. World Scientific Publishing Company, Singapore (2013)

7. Chaidee, S., Sugihara, K.: Approximation of fruit skin patterns using spherical
voronoi diagram. Pattern Anal. Appl. (2016). DOI:10.1007/s10044-016-0534-2

8. Chaidee, S., Sugihara, K.: Numerical fitting of planar photographic images with
spherical voronoi diagram. In: 10th Asian Forum on Graphic Science (2015).
DOI:10.13140/RG.2.1.1398.1924

9. Duan, Q., Kroese, D.P., Brereton, T., Spettl, A., Schmidt, V.: Inverting laguerre
tessellations. Comput. J. 57, 1431–1440 (2014)

10. Evans, D.G., Jones, S.M.: Detecting voronoi (area-of-influence) polygons. Math.
Geol. 19, 523–537 (1987)

11. Hartvigsen, D.: Recognizing voronoi diagrams with linear programming. ORSA. J.
Comput. 4, 369–374 (1992)

12. Honda, H.: Description of cellular patterns by dirichlet domains: the two-
dimensional case. J. Theor. Biol. 72, 523–543 (1978)

13. Honda, H.: Geometrical models for cells in tissues. Int. Rev. Cytol. 81, 191–246
(1983)

14. Imai, H., Iri, M., Murota, K.: Voronoi diagram in the laguerre geometry and its
applications. SIAM J. Comput. 14, 93–105 (1985)

15. Lautensack, C.: Random Laguerre Tessellations. Dissertation (2007)
16. Lautensack, C.: Fitting three-dimensional laguerre tessellations to foam structures.

J. Appl. Stat. 35, 985–995 (2008)
17. Liebscher, A.: Laguerre approximztion of random foams. Philos. Mag. 95, 2777–

2792 (2015)
18. Loeb, L.: Space Structures: Their Harmony and Counterpoint. Addison Wesley,

Reading (1976)
19. Lyckegaard, A., Lauridsen, E.M., Ludwig, W., Fonda, R.W., Poulsen, H.F.: On

the use of laguerre tessellations for representations of 3D grain structures. Adv.
Eng. Mater. 13, 165–170 (2011)

20. Mach, P., Koehl, P.: An analytical method for computing atomic contact areas in
biomolecules. J. Comput. Chem. 34, 105–120 (2013)

21. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams, 2nd edn. Wiley, Chichester (2000)

22. Schoenberg, F.P., Ferguson, T., Lu, C.: Inverting dirichlet tessellations. Comput.
J. 46, 76–83 (2003)

http://dx.doi.org/10.1007/978-3-642-45278-9_30
http://dx.doi.org/10.1007/s10044-016-0534-2
http://dx.doi.org/10.13140/RG.2.1.1398.1924

84 S. Chaidee and K. Sugihara

23. Spettl, A., Breregon, T., Duan, Q., Werz, T., Krill Ill, C.E., Kroese, D.P., Schmidt,
V.: Fitting laguerre tessellation approximations to tomographic image data. Philos.
Mag. 96, 166–189 (2016). doi:10.1080/14786435.2015.1125540

24. Sugihara, K.: Three-dimensional convex hull as a fruitful source of diagrams. Theor.
Comput. Sci. 235, 325–337 (2000)

25. Sugihara, K.: Laguerre voronoi diagram on the sphere. J. Geom. Graph. 6, 69–81
(2002)

26. Suzuki, A., Iri, M.: Approximation of a tessellation of the plane by a voronoi
diagram. J. Oper. Res. Soc. Jpn. 29, 69–97 (1986)

http://dx.doi.org/10.1080/14786435.2015.1125540

Continuous Flattening of Orthogonal Polyhedra

Erik D. Demaine1, Martin L. Demaine1, Jin-ichi Itoh2, and Chie Nara3(B)

1 MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St.,
Cambridge, MA 02139, USA

{edemaine,mdemaine}@mit.edu
2 Faculty of Education, Kumamoto University, Kumamoto 860-8555, Japan

j-itoh@kumamoto-u.ac.jp
3 Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University,

Nakano, Tokyo 164-8525, Japan
cnara@jeans.ocn.ne.jp

Abstract. Can we flatten the surface of any 3-dimensional polyhedron
P without cutting or stretching? Such continuous flat folding motions
are known when P is convex, but the question remains open for noncon-
vex polyhedra. In this paper, we give a continuous flat folding motion
when the polyhedron P is an orthogonal polyhedron, i.e., when every
face is orthogonal to a coordinate axis (x, y, or z). More generally, we
demonstrate a continuous flat folding motion for any polyhedron whose
faces are orthogonal to the z axis or the xy plane.

Keywords: Folding · Continuous flattening · Orthogonal polyhedra

1 Introduction

We routinely crush polyhedral boxes to lie flat, but is this possible mathemat-
ically? It is known that every polyhedron has a multilayered flat folded state,
meaning that it can be instantaneously folded to lie in a (multilayer) plane [2,5].
But is there a continuous motion that does not stretch or rip the material?

In 2001, E. Demaine, M. Demaine, and A. Lubiw [1,4,5] asked whether there
is a continuous motion of the surface of a polyhedron down to a multilayered
flat folded state. For example, J.-i. Itoh and C. Nara [6] showed that the box in
Fig. 1(a) continuously folds flat by pushing four side faces in, where the shapes
of those four faces are changed continuously by infinitely many creases showed
by dashed line segments in Fig. 1(b) and the box reaches the multilayered flat
folded state in Fig. 1(c).

An important limitation to continuous flattening is the Bellows Theorem [3]:
the volume of any polyhedron with rigid faces is invariant even if it can flex at

E.D. Demaine and M.L. Demaine—Supported in part by NSF ODISSEI grant EFRI-
1240383 and NSF Expedition grant CCF-1138967.
J. Itoh—Supported by Grant-in-Aid for Scientific Research(B)(15KT0020) and Sci-
entific Research(C)(26400072).
C. Nara—Supported by Grant-in-Aid for Scientific Research(C)(16K05258).

c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 85–93, 2016.
DOI: 10.1007/978-3-319-48532-4 8

86 E.D. Demaine et al.

(a) (b) (c)

Fig. 1. (a) A box. (b) Mountain and valley creases are shown by bold segments and
bold dotted segments respectively for the final flat folded state, together with dashed
segments for moving creases. (c) The final flat folded state.

finitely many additional edges. Flattening a polyhedron necessarily changes the
volume (from nonzero to zero), so some faces cannot be rigid, e.g., by changing
their shapes continuously by infinitely moving/rolling creases.

Continuous flattenings are known for all convex polyhedra. J.-i. Itoh, C. Nara,
and C. Vı̂lcu [7] gave a method using the cut locus and Alexandrov gluing
theorem. The authors et al. [1] showed a surprisingly simple method using the
straight skeleton gluing. But it remains an open problem to find continuous
flattening motions for nonconvex polyhedra.

Our Results. Our main result is the continuous flattening of orthogonal polyhe-
dra (not necessary convex or genus zero); see Fig. 2(a). A polyhedron is called
orthogonal if the dihedral angle of each edge is ±90◦ (see [5]). By an appropriate
choice of x, y, z axes for Euclidean space, we can equivalently define a polyhedron
to be orthogonal if every face is orthogonal to the x, y, or z axis.

Theorem 1. Every orthogonal polyhedron in R
3 can be continuously folded flat

so that all faces orthogonal to the z axis remain rigid and translated along the z
axis throughout the motion.

(a) (b)

Fig. 2. (a) An example P of an orthogonal polyhedron with the figure of the base floor
of P. (b) An example of a “semi-orthogonal” polyhedron.

Continuous Flattening of Orthogonal Polyhedra 87

More generally, call a polyhedron semi-orthogonal if every face is orthog-
onal to the z axis or the xy plane; see Fig. 2(b). Any orthogonal polyhedron
also satisfies this definition because being orthogonal to the x or y axis implies
being orthogonal to the xy plane. We prove more generally that semi-orthogonal
polyhedra have flat folding motions:

Theorem 2. Every semi-orthogonal polyhedron in R
3 can be continuously flat

folded such that all faces orthogonal to the z axis remain rigid and translated
along the z axis throughout the motion.

2 Zig-Zag Belts and the Rhombus Property

Before we prove the two theorems, we need some tools for constructing contin-
uous folding motions. We denote by uv the line segment joining points u and v.

Rhombus Property. A rhombus R = abcd is a convex quadrilateral with sides
of equal length. Rhombi have a very special property useful for flattening a
polyhedron, as proposed in [6] and extended to the kite property in [8]. Denote
the center of R by h and choose any point q on bh. Consider folding �acd into
halves by a valley crease on hd, and folding �abc by a mountain crease on hq
and valley creases on aq, cq and qb; see Fig. 3(a). The resulting figure is flexible;
see Fig. 3(b, c). Furthermore, if we choose the distances of the two pairs {a, c}
and {b, d} in the resulting 3D figure, such that these distances are not greater
than the 2D lengths ac and cd respectively, then there exists a unique point q
on hd and unique folding such that the resulting figure satisfies those distances.
We call this property the rhombus property ; see [6,8] for details.

(a) (b)

c

a

b d

h
q

b

a
c

h q d

(c)

a

c

b d
hq

Fig. 3. The rhombus property: (a) a rhombus with mountain creases (grey bold line
segments) and valley creases (grey bold dotted line segments); (b) the resulting figure;
(c) a view of the resulting figure from a different direction.

88 E.D. Demaine et al.

(a)

(b)

e

f

u

v

e
f

v

u

e

f

u

v
(c)

Fig. 4. (a) A zig-zag belt; (b) the flat folded zig-zag belt; (c) zig-zag belts with small
widths.

Zig-zag Belts. Define a zig-zag belt B to be a finite orthogonal extrusion in z of a
polygonal line lying in a plane parallel to the xy plane; see Fig. 4(a). Equivalently,
we can think of a zig-zag belt as a 3D folded state B of a rectangle T = efvu
along creases E1, E2, . . . , En−1 parallel (and congruent) to the opposite sides
E0 = ef and En = uv. We require all Ei’s to be parallel to the z axis, and none
of the sides to intersect each other, except that we allow E0 and En to overlap,
in which case we call the belt closed. Call ef and uv the end sides of B, and
call the line segments in B corresponding to eu and fv the zig-zag sides of B.
(Either zig-zag side could be the polygonal line that was extruded to form B.)
Define the width of the belt to be the common length of the Ei’s.

We show how to continuously flatten zig-zag belts into a flat folded state
where the zig-zag sides overlap each other; see Fig. 4(b).

Continuous Flattening of Orthogonal Polyhedra 89

Lemma 1. Consider a zig-zag belt B, and if B is closed, assume that the number
of faces is even. Then B can be continuously flattened so that the two zig-zag
sides remain rigid and translate only in z.

Proof. We will show Lemma 1 assuming that B’s width is sufficiently small (less
than a quantity to be defined in terms of the geometry of either zig-zag side).
Then Lemma 1 follows, by slicing B along many uniformly spaced planes parallel
to the xy plane, dividing B into congruent zig-zag belts that are z translations
of each other and having arbitrarily small width; see Fig. 4(c). Continuously
flattening each of these belts in sequence (or in parallel) proves Lemma 1.

Now assume that the belt’s width is sufficiently small. We will show Lemma 1
for n = 2. This lets us analyze the local folding behavior of the two faces incident
to each edge Ei. By synchronizing all of these parallel folding motions to match
on the z offsets of the zig-zag sides, the motions will also be consistent on each
face, and we obtain a continuous folding of the entire band B. By setting the
width sufficiently small (smaller than half the minimum feature size of either
zig-zag side), any self-intersections during the band folding must occur locally
between one or two adjacent faces, and thus is prevented by the n = 2 case.

Now assume that n = 2, with E0 = ef , E1 = ac, and E2 = En = uv; see
Fig. 5(a). Let b and d be points on B so that the quadrilateral abcd is a rhombus
with angle ∠abc = 180◦ − ∠eau; see Fig. 5(b). Fold B by mountain creases on

(a) (b)

(c)

a

c

e

f

u

v

c

a

b

e

f

d

u
v

c

a

b

e

f

v

u

d

h1

2

h

h

h1
2h

Fig. 5. (a) A zig-zag belt B; (b) B with a crease pattern; (c) the flat folded state of B.

90 E.D. Demaine et al.

(a)

(c)

x y

z

O

(d)

(e) (f)

(b)

ca b

d

ca b

1

1 11

d

c

a

b
q

h

b d

c

a

q
t

t

t

t

t

c

a

b

e

f

v

h

h

h

u
1

2

c

a
b

O dh

u
h

h

e

v

1

2f

h

Fig. 6. (a) A zig-zag belt B with crease pattern for the flat folded state. (b) The
remaining part S of B. (c) The flat folded state of S. (d) The crease pattern of the
rhombus abcd for some t, 0 < t < 1. (e) The figure corresponding to the crease pattern
shown in (d). (f) The flat folded state of R.

h1b, ab, and bc, and by valley creases on hd and h2d, where h, h1, and h2 are
midpoints of ac, ef , and uv respectively; see Fig. 5(b). If we fold these creases
by ±180◦, we obtain the target flat folded belt; see Fig. 5(c).

Now we can define the continuous flattening motion that brings B to this
flat folded state. First imagine removing the triangle �abc from B, keeping
the remaining part S connected at the points a and c; see Fig. 6(b). Then S
can be continuously flattened into the corresponding part of the flat folded belt
(see Fig. 6(c)), keeping the two zig-zag sides rigid and translating only in z,
simply by folding along the two creases h1b and hh2. The distance between a
and c decreases to zero, and throughout the motion, the distance between b
and d in 3D is not greater than the intrinsic distance between b and d in the

Continuous Flattening of Orthogonal Polyhedra 91

Fig. 7. Continuous flattening animation of the orthogonal corner from Lemma 1, pro-
duced with Mathematica.

original 2D figure. Finally, apply the rhombus property to fold the rhombus abcd
continuously, synchronizing the motion to match the motion of S.

To be more precise, we give a concrete continuous map for the case when
∠eau = 90◦ and the edge length of ac is 2; see Figs. 6(d, e, f) and 7. Orient so
that, before folding, a = (0, 0, 1), b = (0,−1, 0), c = (0, 0,−1), and d = (−1, 0, 0).
Move a and c to the origin along the z axis with the same speed. The line segment
hd remains in the xy plane and translates in the −y direction, and the point bt
remains in the xy plane and translates in the +x direction. Precisely, for t with
0 ≤ t ≤ 1, we have

at = (0, 0, 1 − t), bt = (
√

2t − t2,−1, 0) = (α,−1, 0),
ct = (0, 0,−1 + t), and dt = (−1,−√

2t − t2, 0) = (−1,−α, 0).

where α =
√

2t − t2. Let pt be the midpoint of bt and dt. Then pt = ((α −
1)/2, (−1 − α)/2, 0). The point qt corresponding to q in Fig. 3(b, c) is the inter-
section of the plane bisecting btdt and the line segment htdt. Because bt and ht

are on the xy plane, for the sake of simplicity, we omit z coordinates. The line
passing through pt and bisecting btdt is

y − (−1 − α)/2 = − α + 1
−1 + α

(x − (α − 1)/2).

The intersection between this line and the line y = −α is the point qt. The x
coordinate of qt, denoted xt, solves to

xt =
α(α − 1)

α + 1
.

As t increases from 0 to 1, α increases from 0 to 1, and hence the absolute value
of xt increases first and then decreases to 0. The maximum absolute value |x|max

is attained at α =
√

2−1, where |x|max = 3−2
√

2. Therefore, the area of moving
creases is 3 − 2

√
2, where the width of the belt is 2.

When ∠eau �= 90◦, by using oblique coordinates, we can calculate similarly,
however it is a little tedious, so we omit the details.

This motion requires the two edges of a zig-zag side of B to be folded in
opposite directions relative to the xy projections of the middle lines. Thus we
require a global alternation of fold directions along the zig-zag. If B is closed, the
number of faces is even by assumption, and hence we can continuously flatten
B as required. ��

92 E.D. Demaine et al.

3 Continuous Flattening of Orthogonal Polyhedra

It is now relatively easy to continuously flatten orthogonal polyhedra:

Proof (of Theorem 1). Let P be an orthogonal polyhedron in R
3. Conceptually

remove all faces orthogonal to the z axis, and divide the resulting set of faces by
planes orthogonal to the z axis that pass through each vertex of P. The result
is a collection of zig-zag belts Bi, for 1 ≤ i ≤ n, where each belt is closed.
Because P is an orthogonal polyhedron, each belt Bi has an even number of
faces. By Lemma 1, each belt Bi can be continuously flattened so that its zig-
zag sides remain rigid and translate only in the z direction. Composing these
motions sequentially or in parallel, and re-attaching the faces orthogonal to the
z axis to the zig-zag sides, we obtain a continuous flattening of P where the faces
orthogonal to the z axis remain rigid and translate only in z. ��

4 Continuous Flattening of Semi-orthogonal Polyhedra

For semi-orthogonal polyhedra, we need to show how to continuously flatten a
closed zig-zag belt with an odd number of faces.

Lemma 2. A zig-zag belt B with two faces and sufficiently small width can be
continuously flattened so that the two zig-zag sides remain rigid and translate
only along z, and moreover, the zig-zag sides are folded to the same direction of
the xy projection of the middle line segments.

Proof. We use the same notations for points e, f, u, v, a, b, c, d, and h as the proof
of Lemma 1, where ∠abc = ∠adc = 180◦ − ∠eau and the quadrilateral abcd is a
rhombus. We move the points b and d toward the convex side of the angle formed
by the zig-zag sides. Fold B with mountain creases on bh and valley creases on
ab, bc, and hd. Then we obtain a flat folded state that satisfies all requirements;
see Fig. 8(a, b).

Consider folding each face of B into halves with valley creases on the middle
line segments. Then these faces will intersect each other. The intersection point
of the two middle line segments is qt; see Fig. 8(c, d). Thus the intersection gets
resolved by the rhombus abcd. In this case, both the distance between a and b,
and the distance between b and d, decrease to zero. ��

Proof (of Theorem 2). If the number of faces of B is odd, fold one corner by
the method proposed in Lemma 2, and fold the other corners by the method
proposed in Lemma 1. Then we obtain a continuous motion that satisfies all
required conditions. ��

Continuous Flattening of Orthogonal Polyhedra 93

(a)

(c)

x y

z

O

(d)

(b)

d

c

a

b
q

h
b

d

c

a

q
t

t

t
t

t

ht

c

a

b
d

h

e

f

u

v

c

a

b d

h

u
v

v

e
f

Fig. 8. (a) A zig-zag belt B with crease pattern for a flat folded state. (b) The resulting
flat folded state of B. (c) The crease pattern of the rhombus abcd for some t, 0 < t < 1.
(d) The resulting 3D figure.

References

1. Abel, Z., Demaine, E.D., Demaine, M.L., Itoh, J.-I., Lubiw, A., Nara, C., O’Rourke,
J.: Continuously flattening polyhedra using straight skeletons. In: Proceedings of the
30th Annual Symposium on Computational Geometry (SoCG), pp. 396–405 (2014)

2. Bern, M., Hayes, B.: Origami embedding of piecewise-linear two-manifolds. Algo-
rithmica 59(1), 3–15 (2011)

3. Connelly, R., Sabitov, I., Walz, A.: The bellows conjecture. Beiträge Algebra Geom.
38, 1–10 (1997)

4. Demaine, E.D., Demaine, M.L., Lubiw, A.: Flattening polyhedra (2001). Unpub-
lished manuscript

5. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge University Press, Cambridge (2007)

6. Itoh, J., Nara, C.: Continuous flattening of platonic polyhedra. In: Akiyama, J., Bo,
J., Kano, M., Tan, X. (eds.) CGGA 2010. LNCS, vol. 7033, pp. 108–121. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-24983-9 11

7. Itoh, J., Nara, C., Vı̂lcu, C.: Continuous flattening of convex polyhedra. In: Márquez,
A., Ramos, P., Urrutia, J. (eds.) EGC 2011. LNCS, vol. 7579, pp. 85–97. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-34191-5 8

8. Nara, C.: Continuous flattening of some pyramids. Elem. Math. 69(2), 45–56 (2014)

http://dx.doi.org/10.1007/978-3-642-24983-9_11
http://dx.doi.org/10.1007/978-3-642-34191-5_8

Bust-a-Move/Puzzle Bobble Is NP-complete

Erik D. Demaine1(B) and Stefan Langerman2

1 MIT Computer Science and Artificial
Intelligence Laboratory,

32 Vassar St., Cambridge, MA 02139, USA
edemaine@mit.edu

2 Départment d’Informatique, Université Libre
de Bruxelles, Brussels, Belgium
stefan.langerman@ulb.ac.be

“A girl runs up with somethin’ to prove.
So don’t just stand there. Bust a move!”

— Young MC [YDD89]

Abstract. We prove that the classic 1994 Taito video game, known as
Puzzle Bobble or Bust-a-Move, is NP-complete. Our proof applies to
the perfect-information version where the bubble sequence is known in
advance, and it uses just three bubble colors.

1 Introduction

Erik grew up playing the action platform video game Bubble Bobble
(), starring cute little brontosauruses Bub and Bob,1 on the
Nintendo Entertainment System. (The game was first released by Taito in 1986,
in arcades [Thea].) Some years later (1994), Bub and Bob retook the video-game
stage with the puzzle game Puzzle Bobble (), known as Bust-a-
Move in the United States [Theb,Wik]. This game essentially got Stefan through
his Ph.D.: whenever he needed a break, he would play as much as he could with
one quarter. To celebrate the game’s 21-year anniversary, we analyze its com-
putational complexity, retroactively justifying the hours we spent playing. The
gadgets and example reduction described here can be played in an accurate clone
of the game we wrote for the web.2

In Puzzle Bobble, the game state is defined by a hexagonal grid, each cell
possibly filled with a bubble of some color. In each turn, the player is given a
bubble of some color, which can be fired in any (upward) direction from the
pointer at the bottom center of the board. The fired bubble travels straight,
reflecting off the left and right walls, until it hits another bubble or the top wall,

S. Langerman—Directeur de recherches du F.R.S.–FNRS.
1 Spoiler: if you finish Bubble Bobble in super mode in co-op, then the true ending
reveals that Bub and Bob are in fact human boys, transformed into brontosauruses
by the evil whale Baron Von Blubba [Hun11].

2 http://erikdemaine.org/bustamove/.

c© The Author(s) 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 94–104, 2016.
DOI: 10.1007/978-3-319-48532-4 9

http://erikdemaine.org/bustamove/

Bust-a-Move/Puzzle Bobble Is NP-complete 95

in which case it terminates at the nearest grid-aligned position. If the bubble is
now in a connected group of at least three bubbles of the same color, then that
group disappears (“pops”), and any bubbles now disconnected from the top wall
also pop.

Here we study the perfect-information (generalized) form of Puzzle Bobble.
We are given an initial board of bubbles and the entire sequence of colored
bubbles that will come. The goal is to clear the board using the given sequence
of bubbles. (The actual game has an infinite, randomly generated sequence of
bubbles, like Tetris [BDH+04].) The game also has a falling ceiling, where all
bubbles descend every fixed number of shots; and if a bubble hits the floor, the
game ends. We assume that the resolution of the input is sufficiently fine to hit
any discrete cell that could be hit by an (infinitely precise) continuous shot. (This
assumption seems to hold in the original game, so it is natural to generalize it.)

Theorem 1. Puzzle Bobble is NP-complete.

Membership in NP is easy: specify where to shoot each of the n given bubbles.
The rest of this paper establishes NP-hardness.

Our reduction applies to all versions of Puzzle Bobble. Viglietta [Vig12]
proved that Puzzle Bobble 3 is NP-complete, by exploiting “rainbow” (wild-
card) bubbles. Our proof shows that this feature is unnecessary.

2 NP-hardness

The reduction is from Set Cover: given a collection S = {S1, S2, . . . , Ss} of sets
where each Si ⊆ U , and given a positive integer k, are there k of the sets
Si1 , Si2 , . . . , Sik whose union covers all elements of U?

Figure 1 shows the overall structure of the reduction. The bulk of the con-
struction is in the central small square, which is aligned on the top side of an
m × m square above the floor. By making the central square small enough, the
angles of direct shots at the square are close to vertical (which we will need to
solve most gadgets), and the rebound angles that hit the square are all approxi-
mately 45◦ (which we will need to solve the crossover gadget below), even after
the ceiling falling caused by the shots in the reduction. The player could do
multiple rebounds (or destroy bubbles to cause the ceiling to lower prematurely)
to make shot angles more horizontal, but this will only make it harder to solve
the gadgets.

2.1 Bubble Sequence

The sequence of bubbles given to the player is as follows. The very first color
appears only k times, where k is the desired set-cover size. Each remaining color
appears sufficiently many times (Θ(s|U |) times, which we will refer to as ∞).
Unneeded bubbles can be discarded by forming isolated groups of size 3, 4, or 5
off to the side.

96 E.D. Demaine and S. Langerman

Fig. 1. Overall structure of the reduction. All other gadgets lie within a small square
at the top of an m × m square, where m is the width of the game. Red horizontal
lines separate the gadgets into layers, with blue fill in between. At the top is a huge
rectangle of yellow bubbles with one red bubble and one blue bubble in the middle
(Color figure online).

Bust-a-Move/Puzzle Bobble Is NP-complete 97

k blue , ∞ yellow , ∞ blue , ∞ red ;
∞ blue , ∞ yellow , ∞ blue , ∞ red ;
∞ blue , ∞ yellow , ∞ blue , ∞ red ;

...
...

...
...

∞ blue , ∞ yellow , ∞ blue , ∞ red ;
∞ red , ∞ red , ∞ red , . . .

The rough idea is the following. Red bubbles separate vertical layers that
unravel sequentially, as enforced by blue buffers. Blue and yellow bubbles form
triggers to communicate signals into the next layers, alternately. Blue triggers
cup yellow triggers in the next level, and vice versa.

2.2 Gadgets

First we have one instance of the choice gadget, shown in Fig. 2, which allows
triggering k sets (whichever the player chooses).

Fig. 2. Choice gadget, shown here with s = 2 sets. (Left) Behavior of a chosen set.
(Right) Behavior of an unchosen set.

Then we use several split gadgets, shown in Fig. 3, to split each trigger for
set Si into |Si| triggers.

98 E.D. Demaine and S. Langerman

Fig. 3. Split gadget. (Left) Behavior of a chosen set. (Right) Behavior of an unchosen
set.

Then we use several crossover gadgets, shown in Fig. 4, to bring together all
the triggers for element x, for every element x. More precisely, Fig. 4 shows how
to copy all other wire values while swapping an adjacent pair. Adjacent swaps
suffice to bubble sort S1, S2, . . . , Ss from being in order by set to being in order
by element. In fact, we can use the parallel sorting algorithm odd–even sort by
executing several swaps in one layer, and use only 2

∑
i |Si| layers.

Next, for each element, we merge all the triggers for that element (coming
from sets that contain the element), using the or gadget in Fig. 5. In this gadget,
any input trigger enables the output trigger. By combining several or gadgets,
we end up with one trigger per element in U , indicating whether that element
was covered by the k chosen sets.

Finally, we combine the element triggers using the and gadget in Fig. 6. In
this gadget, the output triggers only if all inputs trigger. By combining several
and gadgets, we end up with one trigger indicating that all elements are covered,
i.e., we found a set cover of size k.

This trigger is connected to a huge (n1−ε-area) rectangle of yellow bubbles
at the top of the board, with one red bubble in the middle, as shown in Fig. 1.
If the yellow triggers, the player wins the game immediately (as the red falls).

Bust-a-Move/Puzzle Bobble Is NP-complete 99

Fig. 4. Crossover gadget, shown here with left side inactive and right side active. On
the right are other wires whose values are simply copied.

100 E.D. Demaine and S. Langerman

Fig. 5. or gadget. (Left) One input active, triggering output. (Right) No inputs active.

Otherwise, only red bubbles come, so the player eventually dies when the yellow
rectangle reaches the floor. (We include the red and blue bubbles in the middle
of the yellow bubbles because, in the actual game, only present bubbles can be
presented for shooting, so if there were only yellow bubbles left, the player would
get to shoot yellow and win.)

Thus, even approximating the maximum number of poppable bubbles better
than a factor of n1−ε is NP-hard (similar to Tetris [BDH+04]).

2.3 Putting It Together

Figures 7 and 8 show an example of how the gadgets fit together in a real example.
In particular, it illustrates how to stretch gadgets horizontally so that their inputs
and outputs align, and how to stack the layers of gadgets (each gadget is placed
on the row immediately after the previous).

Bust-a-Move/Puzzle Bobble Is NP-complete 101

Fig. 6. and gadget. (Left) Two inputs active, triggering output. (Middle) One input
active. (Right) No inputs active.

The bijection between solutions of the Puzzle Bobble instance and the Set
Cover instance come from which triggers get popped by the first k blue shots
on the Choice gadget. (Fewer than k triggers could be popped, corresponding to
smaller-than-k set covers.) The correctness follows from the claimed properties
of the gadgets, which can be verified from the figures implementing a greedy
algorithm of popping all possible bubbles of each provided color (which can only
help for these instances).

A key lemma for correctness is that, during the ith blue–yellow–blue–red
phase of the bubble sequence, only bubbles in the ith layer of the construction can
be directly popped, with spillover into the next layer only from triggered yellow
bubble wires. The ith red layer prevents any nonred bubbles from physically
reaching the next layer in the ith phase, because the gaps between red bubbles
are designed to be strictly less than one bubble width. (Precisely, the gap width
is

√
3 − 1 ≈ 0.73.) At the end of the phase when firing red bubbles, the blue in

the next layer uses the same < 1 gaps (when the yellow has been triggered) to
prevent any red bubbles from reaching the next layer. So the lemma follows.

102 E.D. Demaine and S. Langerman

Fig. 7. Example of the main construction (the gray box in Fig. 1) with three sets and
four elements. The bubble sequence at the bottom can solve the puzzle for k = 2 and
k = 3, but not for k = 1.

Bust-a-Move/Puzzle Bobble Is NP-complete 103

Fig. 8. Figure 7 using actual Puzzle Bobble sprites, thanks to The Spriters Resource.

3 Open Problems

We have proved NP-hardness for just three colors. What about just two colors?
Or even one color?

Acknowledgments. We thank Giovanni Viglietta for helpful discussions, in particu-
lar for pointing out bugs in earlier versions of this proof.

104 E.D. Demaine and S. Langerman

References

[BDH+04] Breukelaar, R., Demaine, E.D., Hohenberger, S., Jan Hoogeboom, H.,
Kosters, W.A., Liben-Nowell, D.: Tetris is hard, even to approximate. Int.
J. Comput. Geom. Appl. 14(1–2), 41–68 (2004)

[Hun11] Hunt, S.: Bubble memories: 25 years of bubble bobble. Retro Gamer 95,
26–35 (2011)

[Thea] The international arcade museum: bubble bobble. http://www.
arcade-museum.com/game detail.php?game id=7222

[Theb] The international arcade museum: puzzle bobble. http://www.
arcade-museum.com/game detail.php?game id=9169

[Vig12] Viglietta, G.: Gaming is a hard job, but someone has to do it! In: Pro-
ceedings of the 6th International conference on Fun with Algorithms, pp.
357–367 (2012)

[Wik] Wikipedia, the free encyclopedia: puzzle bobble. http://en.wikipedia.org/
wiki/Puzzle Bobble

[YDD89] Young, M.C., Dike, M., Doss, M.: Bust a move. In: Proceedings of Stone
Cold Rhymin’. Delicious Vinyl (1989)

http://www.arcade-museum.com/game_detail.php?game_id=7222
http://www.arcade-museum.com/game_detail.php?game_id=7222
http://www.arcade-museum.com/game_detail.php?game_id=9169
http://www.arcade-museum.com/game_detail.php?game_id=9169
http://en.wikipedia.org/wiki/Puzzle_Bobble
http://en.wikipedia.org/wiki/Puzzle_Bobble

Minimum Rectilinear Polygons
for Given Angle Sequences

William S. Evans1, Krzysztof Fleszar2, Philipp Kindermann2,3,
Noushin Saeedi1, Chan-Su Shin4, and Alexander Wolff2(B)

1 Department of Computer Science, University of British Columbia,
Vancouver, Canada

2 Lehrstuhl für Informatik I, Universität Würzburg, Würzburg, Germany
3 LG Theoretische Informatik, FernUniversität in Hagen, Hagen, Germany

4 Division of Computer and Electronic Systems,
Hankuk University of Foreign Studies, Yongin, South Korea

http://www1.informatik.uni-wuerzburg.de/en/staff/wolff alexander

Abstract. A rectilinear polygon is a polygon whose edges are axis-
aligned. Walking counterclockwise on the boundary of such a polygon
yields a sequence of left turns and right turns. The number of left turns
always equals the number of right turns plus 4. It is known that any
such sequence can be realized by a rectilinear polygon. In this paper, we
consider the problem of finding realizations that minimize the perime-
ter or the area of the polygon or the area of the bounding box of the
polygon. We show that all three problems are NP-hard in general. Then
we consider the special cases of x-monotone and xy-monotone rectilinear
polygons. For these, we can optimize the three objectives efficiently.

1 Introduction

In this paper, we consider the problem of computing, for a given rectilinear angle
sequence, a “small” rectilinear polygon that realizes the sequence. A rectilinear
angle sequence S is a sequence of left (+90◦) turns and right (−90◦) turns, that
is, S = (s1, . . . , sn) ∈ {L, R}n, where n is the length of S. As we consider only
rectilinear angle sequences, we usually drop the term “rectilinear.” A polygon P
realizes an angle sequence S if there is a counterclockwise (ccw) walk along the
boundary of P such that the turns at the vertices of P , encountered during the
walk, form the sequence S. The turn at a vertex v of P is a left or right turn if
the interior angle at v is 90◦ (v is convex) or, respectively, 270◦ (v is reflex).

In order to measure the size of a polygon, we only consider polygons that lie
on the integer grid. Then, the area of a polygon P corresponds to the number of
grid cells that lie in the interior of P . The bounding box of P is the smallest axis-
parallel enclosing rectangle of P . The perimeter of P is the sum of the lengths
of the edges of P . The task is, for a given angle sequence S, to find a polygon
that realizes S and minimizes (i) (the area of) its bounding box, (ii) its area, or
(iii) its perimeter. Figure 1 shows that, in general, the three criteria cannot be
minimized simultaneously.
c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 105–119, 2016.
DOI: 10.1007/978-3-319-48532-4 10

106 W.S. Evans et al.

L

L

L

L L

L

L

L

LLLL

R

R

R R

R

RR R

(a) Area 11, perimeter 20.

L

L

L

L L

L

L

L

LLLL

R

R

R R

R

R

R R

(b) Area 10, perimeter 22.

Fig. 1. Two polygons realizing the same angle sequence. The bounding box of both
polygons has area 20, but (a) has minimum perimeter and (b) has minimum area.

Obviously, the angle sequence of a polygon is unique (up to rotation), but
the number of polygons that realize a given angle sequence is unbounded. The
formula for the angle sum of a polygon implies that, in any angle sequence,
n = 2r + 4, where r is the number of right turns, in other words, the number of
right turns is exactly four less than the number of left turns.

Related Work. Bae et al. [1] considered, for a given angle sequence S, the poly-
gon P (S) that realizes S and minimizes its area. They studied the following
question: Given a number n, find an angle sequence S of length n such that the
area of P (S) is minimized (and let δ(n) be this minimum area), or maximized
(and let Δ(n) be this maximum area). They showed that (i) δ(n) = n/2 − 1 if
n ≡ 4 mod 8, δ(n) = n/2 otherwise, and (ii) Δ(n) = (n − 2)(n + 4)/8 for any
n ≥ 4. The result for Δ(n) tells us that any angle sequence S of length n can be
realized by a polygon with area at most (n − 2)(n + 4)/8.

Several authors have explored the problem of realizing a turn sequence.
Culberson and Rawlins [4] and Hartley [8] described algorithms that, given a
sequence of exterior angles summing to 2π, construct a simple polygon realiz-
ing that angle sequence. Culberson and Rawlins’ algorithm, when constrained
to ±90◦ angles, produces polygons with no colinear edges, implying that any
n-vertex polygon can be drawn with area approximately (n/2 − 1)2. However,
as Bae et al. [1] showed, the bound is not tight.

In his PhD thesis, Sack [10] introduced label sequences (which are equivalent
to turn sequences) and, among others, developed a grammar for label sequences
that can be realized as simple rectilinear polygons.

Vijayan and Wigderson [12] considered the problem of efficiently embedding
rectilinear graphs, of which rectilinear polygons are a special case, using an edge
labeling that is equivalent to a turn sequence in the case of paths and cycles.

In graph drawing, the standard approach to drawing a graph of maximum
degree 4 orthogonally (that is, with rectilinear edges) is the topology–shape–
metrics approach of Tamassia [11]: (1) Compute a planar(ized) embedding; (2)
compute an orthogonal representation, that is, an angle sequence for each edge
and an angle for each vertex; (3) compact the graph, that is, draw it inside a
bounding box of minimum area. Step (3) has been shown to be NP-complete by
Patrignani [9]. Note that an orthogonal representation computed in step (2) is

Minimum Rectilinear Polygons for Given Angle Sequences 107

Table 1. Summary of our results.

Type of sequences Minimum area Min. bounding box Minimum perimeter

General NP-hard NP-hard NP-hard

x-monotone O(n4) O(n3) O(n2)

xy-monotone O(n) O(n) O(n)

essentially an angle sequence for each face of the planarized embedding, so our
problem corresponds to step (3) in the special case that the input graph is a
simple cycle.

Another related work contains the reconstruction of a simple (non-rectilinear)
polygon from partial geometric information. Disser et al. [5] constructed a simple
polygon in O(n3 log n) time from an ordered sequence of angles measured at the
vertices visible from each vertex. The running time was improved to O(n2), which
is the worst-case optimal [3]. Biedl et al. [2] considered polygon reconstruction
from points (instead of angles) captured by laser scanning devices.

Our Contribution. First, we show that finding a minimum polygon that realizes
a given angle sequence is NP-hard for any of the three measures: bounding box
area, polygon area, and polygon perimeter; see Sect. 2. This extends the result
of Patrignani [9] and settles an open question that he posed. We also give effi-
cient algorithms for special types of angle sequences, namely xy- and x-monotone
sequences, which are realized by xy-monotone and x-monotone polygons, respec-
tively. (For example, LLRRLLRLLRLRLLRLRLLR is an x-monotone sequence, see
Fig. 1). Our algorithms minimize area (Sect. 3) and perimeter (Sect. 4). For an
overview of our results, see Table 1.

2 NP-Hardness of the General Case

In this section we show the NP-hardness of our problem for all three objectives:
for minimizing the perimeter of the polygon, the area of the polygon, and the
size of the bounding box. We first consider the following special problem from
whose NP-hardness we then derive the three desired proofs.
FitUpperRight: Given an angle sequence S and positive integers W and H, is
there a polygon realizing S within an axis-parallel rectangle R of width W and
height H such that the first vertex of S lies in the upper right corner of R?

Theorem 1. FitUpperRight is NP-hard.

Proof. Our proof is by reduction from 3-Partition: Given a multiset A of
n = 3m integers with

∑
a∈A a = mB, is there a partition of A into m subsets

A1, . . . , Am such that
∑

a∈Ai
a = B for each i? It is known that 3-Partition

is NP-hard even if B is polynomially bounded in n and, for every a ∈ A, we
have B/4 < a < B/2, which implies that each of the subsets A1, . . . , Am must
contain exactly three elements [7].

108 W.S. Evans et al.

For the idea of our reduction, see Fig. 2. For an instance A = {a1, . . . , a3m}
of 3-Partition, we construct an LR-sequence S that can be drawn inside an
(W × H)-box R if and only if A is a yes-instance. The sequence S consists of a
wall, and for each number ai ∈ A, a snail, which in turn consists of a connector
and a spiral.

The wall is a box (LLLL) whose top right corner corresponds to the start
of S. The connectors are attached to the left side of the wall by introducing two
R-vertices. A connector is a thin x-monotone polygon going to the left that can
change its y-position m − 1 times.

In detail, the LR-sequence S is defined as follows where ρ = Bm3 is the
number of windings of the spirals:

S = LL snail1snail2 . . . snail3m LL,

snaili = R(LRRL)m−1spirali(RLLR)m−1R,

spirali = (LLLL)ρladderi(RRRR)ρ−1RR,

ladderi = (RRLL)(ai−1)·m2
.

1

2

3
4

5

6

7
8
9

wall

connectors
start

spiral

2aim
2

4ρ − 2 units

1

5

3

7

4

9

2

8

6

≤ 16m units ladder

Fig. 2. Spiral i has ρ windings; its height depends
on the number ai from the 3-Partition instance.

We choose W and H such
that the spirals have to be
arranged in m columns of three
spirals each. Note that for any
order of the numbers in A,
we can route the connectors
in a planar way such that the
triplets of spirals that we desire
end up in the same column.
Additionally, in each column
there must be enough space for
the at most 3m connectors that
go from the wall to spirals fur-
ther left; see Fig. 2.

We set W = 4ρm+16m2 = Θ(Bm4) and H = 12ρ+2Bm2 +6m = Θ(Bm3).
If all spirals are tightly wound, their bounding boxes need total area (4ρ − 2) ·
(2Bm3 + 12ρm) = Θ(B2m7). The idea of our proof is to show that if a spiral is
not tightly wound, we need too much space. The space that is not occupied by
spirals is O(Bm5) in any drawing inside R.

It is clear that our construction is polynomial. By construction, there is a
polygon realizing S that fits into R if A is a yes-instance of 3-Partition. It
remains to show that if S fits into R, then A is a yes-instance of 3-Partition.

Fix any feasible drawing of S and a spiral spirali. Since the first vertex
of S has to lie in the upper right corner of R, observe that the 5th L of spirali
has to lie in the interior of the bounding box of the first four Ls of spirali.
Inductively it follows that, for 5 ≤ j ≤ 4ρ, the jth L of spirali lies in the interior
of the bounding box of the last four Ls of spirali. Hence, the drawing of ladderi

lies in the bounding box of the last four Ls of the (LLLL)ρ sequence of spirali.

Minimum Rectilinear Polygons for Given Angle Sequences 109

By repeating a similar argument for the R vertices, we can observe that every
RR edge in spirali is lying opposite to a longer LL-edge such that the bounding
box spanned by both edges is interiorly empty and completely contained in the
polygon. Thus, we can move the RR edge towards the LL edge and assume that
the bounding box has width 1. For the last 4ρ − 1 RR edges in spirali, we call
the bounding box an arm.

Hence, any drawing of a spiral consists of a drawing of the ladder and 4ρ− 1
arms around it. We group the arms into four groups; top, bottom, left, right,
depending to which side of the ladder they are lying. Recall that each arm is
represented by a pair of LL and RR-edges. We order the arms in each group from
the outside to the inside, that is, by the order of their LL edges in S, and define
the level of an arm as its position in this ordering. We say that level i is wound
tightly if the distance of all arms of level i to the arms of level i + 1 is 1.

Observation 2. If the first outer i levels are not wound tightly, then the spiral
occupies Ω(i2) more grid cells than in a tight winding.

Proof. We consider only the length increase of the top arms. Since the spiral is
not wound tightly, the horizontal distance between two consecutive left arms of
the first outer i levels is at least two, one more than in a tightly wound spiral. The
same is true for the right arms. Hence, the length of the level-i top arm increases
at least by 2, that of the level-(i−1) top arm at least by 4, and that of the level-1
top arm at least by 2i; see Fig. 3. Summing up the increases yields Ω(i2). �

Fig. 3. A spiral that is not
wound tightly in the outer i lev-
els occupies Ω(i2) more area.

Now, consider any feasible drawing. Recall
that the space that is not occupied by spirals
is O(Bm5). Hence, it follows by Observation 2
that at most the first λ := O(

√
Bm2.5) levels

of any spiral are not wound tightly. We simplify
the drawing by removing the wall, the connectors
and the first λ levels of every spiral. We obtain a
set of 3m disjoint rectangles, one for each snail.
The rectangle for snail i is the bounding box
of the inner O(Bm3 − λ) = O(Bm3) levels of
the snail’s spiral, namely, those that must be wound tightly. Rectangle i has
width w := 4Bm3 − 2 − 4λ and height hi := 4Bm3 + 2aim

2 − 4λ. Note that
h′ := 4Bm3+Bm2/2−4λ < hi < 4Bm3+Bm2−4λ. If three rectangles share an
x-coordinate, then the remaining height at this coordinate is at most H − 3h′ =
12Bm3 + 2Bm2 + 6m − 3(4Bm3 + 1/2Bm2 − 4λ) = Bm2/2 + 6m − 4λ < h′;
hence, no four rectangles can be drawn at a common x-coordinate. Further, if m
rectangles share a y-coordinate, then the remaining width at this coordinate is
W −mw = 4Bm4 +16m2 −m(4Bm3 −2−4λ) = 16m2 −2m−4mλ < w; hence,
no m + 1 rectangles can be drawn at a common y-coordinate.

These two facts combined imply an assignment of the rectangles to three
rows of m rectangles each. To see this, consider three rectangles lying above
each other. Then, since there is only Bm2/2 + 6m − 4λ < h′ free vertical space,
any rectangle has to be intersected by at least one of the three horizontal lines

110 W.S. Evans et al.

at y-coordinates Bm2/2 + 6m − 4λ + ih′ with i ∈ {0, 1, 2}. No rectangle can
intersect two lines, otherwise at most two rectangles would fit vertically and
the third rectangle could not be squeezed in anywhere else. Analogously, we
can assign the rectangles to one of the m columns by intersecting them with m
vertical lines of distance w.

This assignment of rectangles to lines tells us the solution for the given
instance of 3-Partition: for i = 1, . . . ,m, we put into the set Ai the num-
bers ai,1, ai,2, ai,3 represented by the three rectangles in column i. We claim that
ai,1 + ai,2 + ai,3 ≤ B, which would complete our proof.

In order to see the claim, note that the λ removed levels of each spiral have
to be wound completely around the corresponding rectangle. Thus, they also
intersect the vertical line that goes through the rectangles in column i. Therefore,
the height at this x-coordinate is at least 3·4ρ+2(ai,1+ai,2+ai,3)m2. The height
and, hence, this expression is upperbounded by H(= 12ρ + 2Bm2 + 6m) since
we assumed that the drawing fits into R. This yields ai,1 +ai,2 +ai,3 ≤ B +3/m.
Exploiting that the ai,j ’s are integers shows that our above claim holds. �	

In order to show the NP-hardness of our three objectives, we adjust the above
proof by attaching a very long spiral (with ω(WH), say (WH)2, windings) to the
wall such that it wraps around our construction above. Let T be the resulting LR-
sequence. We will provide an upper bound for the objective value of T that holds
if and only if the corresponding LR-sequence S is a yes-instance of 3-Partition.
For this, we will use that any realization of S that is a no-instance causes the
very long spiral to stretch by at least one unit horizontally or vertically, which
makes the value of the objective increase above the mentioned upper bound.

In more detail, we construct the angle sequence T as follows (see Fig. 4): We
tightly draw a spiral around a rectangle of size (W + 1) × (H + 3) with ω(WH)
windings. By adding the ladder (LLRR)W/2 to the innermost horizontal arm and
the ladder (LLRR)H/2 to the innermost vertical arm of the spiral, we ensure
that in any tight drawing with the two ladders being in the inside, the spi-
ral goes around a rectangle of size exactly W × (H + 2). Further, we add
the ladder (LLRR)(4ω(WH)+W)/2 to the outermost horizontal and the ladder
(LLRR)(4ω(WH)+H)/2 to the outermost vertical arm of the spiral. Finally, we
add S to the spiral by using the appropriate one of the inner-most arms of
the spiral as the wall of S. Note that as long as S fits into a bounding box of
size W × H it does not stretch the spiral around it. Hence, if and only if S is a
yes-instance, we can draw S inside the spiral without stretching the spiral.

S
ω(WH)

W

H

Fig. 4. T containing S inside
a long spiral.

Consider any one of the two objectives: mini-
mizing the inner area and minimizing the perime-
ter. Observe that in any drawing of S that fits
inside the (W × H)-box, the value of the objec-
tive is bounded by 3WH. Let t be the value of the
objective of the spiral and its ladders when drawn
tightly around a rectangle of size W × (H + 2).
Then t′ := t + 3WH is an upper bound of the
value of the objective of T in the case that S is a
yes-instance.

Minimum Rectilinear Polygons for Given Angle Sequences 111

Now assume that S is a no-instance. If the spiral is not winding around S,
that is, if the bounding box of the first three arms of the spiral (starting with the
arms with the attached (LLRR)WH -ladders) does not contain S, then the other
arms of the spiral have to be drawn outside the bounding box of the two arms.
Hence, this increases the total length of the other arms by at least ω(WH), thus
leading to a value of the objective greater than t + ω(WH) > t′. If the spiral is
winding around S, then, given that S is a no-instance, we have to stretch the
spiral as argued above. Stretching the spiral by one unit in any direction, say in
the horizontal direction, causes all ω(WH) many horizontal arms to increase by
at least one unit. Hence, the value of the objective is at least t + ω(WH) > t′.

The case of minimizing the bounding box is simpler: Let W ′ ×H ′ be the size
of the bounding box when the spiral and its ladders are drawn tightly around a
rectangle of size W ×(H+2). We claim that T can be drawn inside an (W ′×H ′)-
bounding box if and only if S is a yes-instance. If S is not drawn inside the spiral,
then the ladders (LLRR)WH lie on the innermost arms of the spiral and the claim
follows immediately. If S is drawn inside the spiral, we recall that S stretches
the spiral (and thus the bounding box of T) if and only if it is a no-instance.
This concludes the proof. �	

3 The Monotone Case: Minimum Area

In this section, we show how to compute, for a monotone angle sequence, a
polygon of minimum area. We start with the simple xy-monotone case and then
consider the more general x-monotone case.

3.1 The xy-monotone Case

An xy-monotone polygon has four extreme edges; its leftmost, rightmost, top-
most, and bottommost edge. Two consecutive edges are connected by a (possible
empty) xy-monotone chain that we will call a stair. Starting at the topmost edge,
we denote the four stairs in counterclockwise order TL, BL, BR, and TR; see
Fig. 5(a). We say that an angle sequence consists of k nonempty stair sequences
if any xy-monotone polygon that realizes it consists of k nonempty stairs; we
also call it a k-stair sequence. The extreme edges correspond to the exactly four
LL-sequences in an xy-monotone angle sequence and are unique up to rotation.
Any xy-monotone angle sequence is of the form [L(LR)∗]4, where the single L
describes the turn before an extreme edge and (LR)∗ describes a stair sequence.
W.l.o.g., we assume that an xy-monotone sequence always begins with LL and
that we always draw the first LL as the topmost edge (the top extreme edge).
Then, we can use TL, BL, BR, TR also for the corresponding stair sequences,
namely the first, second third and forth (LR)∗ subsequence after the first LL in
cyclic order. Let T be the concatenation of TL, the top extreme edge, and TR;
let L, B, and R be defined analogously following Fig. 5(a). For a chain C, let the
R-length r(C) be the number of reflex vertices on C.

112 W.S. Evans et al.

TL
TR

BL BR

L

T

B

R

(a)

TL

TR
BL

BR

(b)

TL
TR

BL

BR

(c)

Fig. 5. Extreme edges are bold. Stair BL is highlighted. (a) Notation: The four stairs
TL, TR, BR, and BL of an xy-monotone polygon. The sequences T , R, B, and L are
unions of neighboring stairs. (b) & (c) Two possible optimum configurations of the
polygon.

Theorem 3. Given an xy-monotone angle sequence S of length n, we can find
a polygon P that realizes S and minimizes its (i) bounding box or (ii) area in
O(n) time, and in constant time we can find the optimum value of the objective
if the R-lengths of the stair sequences are given.

Part (i) of Theorem 3 follows from the following observation: The bounding
box of every polygon that realizes S has width at least max{r(T), r(B)}+1 and
height at least max{r(L), r(R)} + 1. By drawing three stairs with edges of unit
length, we can meet these lower bounds.

For part (ii), we first consider angle sequences with at most two nonempty
stairs. Here, the only non-trivial case is when the angle sequence consists of two
opposite stair sequences, that is, TL and BR, or BL and TR. W.l.o.g., consider
the second case.

Lemma 1. Let S be an xy-monotone angle sequence of length n consisting of
two nonempty opposite stair sequences BL and TR. We can find a minimum-
area polygon that realizes S in O(n) time. If r(BL) and r(TR) are given, we can
compute the area of such a polygon in O(1) time.

The proof of this lemma is given in the full version of the paper [6] and leads
to the following observation.

Observation 4. In any polygon P of minimum area consisting of two nonempty
opposite stairs BL and TR with b := r(BL) ≥ a := r(TR), BL consists of
only unit-length segments and TR only of segments of lengths
b/(a + 1)� and
�b/(a + 1) (in any order).

We now consider the case of four nonempty stairs. (The case of three non-
empty stairs can be solved analogously.) An xy-monotone polygon P with four
nonempty stairs TL, TR, BL, and BR is canonical if (C1) P has two non-
adjacent nonempty stairs, say TL and BR, such that the bounding box BTL of
TL and its adjacent extreme edges and the bounding box BBR of BR and its
adjacent extreme edges intersect in at most one point, and (C2) the bottom-right
corner of BTL as well as the top-left corner of BBR coincides with an endpoint
of TR or BL. The proof of the following lemma is given in the full version of the
paper [6].

Minimum Rectilinear Polygons for Given Angle Sequences 113

Lemma 2. For every 4-stair sequence S with |S| > 36, there exists a polygon
of minimum area realizing S that is canonical.

Consider the line segment of TR and the line segment of BL whose endpoints
lie on BTL in a canonical polygon. These line segments are (a) both horizontal,
(b) both vertical, or (c) perpendicular to each other. Consequently, there is only
a constant number of ways in which the stairs outside the two bounding boxes
are connected to them.

Consider a (canonical) optimum polygon. We cut the polygon along the edge
of BTL that contains an endpoint of both BL and TR. We also cut along the
respective edge of BBR. We get three polygons. The polygons on the outside
realize the 1-stair sequence defined by TL and BR (including their adjacent
extreme edges), respectively, whereas the middle polygon realizes the 2-stair
sequence defined by the concatenation of BL, TR, and the edge segments of BTL

and BBR that connect them.
This observation leads to the following algorithm: For S with |S| ≤ 36, we

find a solution in constant time by exhaustive search. For larger |S|, we guess
the partition of the extreme edges whose bounding boxes do not intersect in the
(canonical) optimum polygon that we want to compute. W.l.o.g., we guessed BTL

and BBR (the other case is symmetric). Then, we guess how TR and BL are
connected to the two bounding boxes (see (a)–(c)). This gives us two 1-stair
instances and a 2-stair instance. We solve the instances independently and then
put the solutions together to form a solution to the whole instance. By Lemma1
and Observation 4, we solve the middle instance such that the left extreme edge
of our solution is of minimum length, and, if possible, also the top extreme edge.
The detailed algorithm to prove Theorem3 the full version of the paper [6].

3.2 The x-monotone Case

For the x-monotone case, we first give an algorithm that minimizes the bounding
box of the polygon, and then an algorithm that minimizes the area.

An x-monotone polygon consists of two vertical extreme edges, i.e., the left-
most and the rightmost edge, and at least two horizontal extreme edges, which
are defined to be the horizontal edges of locally maximum or minimum height.
The vertical extreme edges divide the polygon into an upper and a lower hull,
each of which consists of xy-monotone chains that are connected by the hor-
izontal extreme edges. We call a horizontal extreme edge of type RR an inner
extreme edge, and a horizontal extreme edge of type LL an outer extreme edge;
see Fig. 6(a). Similar to the xy-monotone case, we consider a stair to be an
xy-monotone chain between any two consecutive extreme edges (outer and inner
extreme edges as well as vertical extreme edges) and we denote by stair sequence
the corresponding angle subsequence (LR)∗. W.l.o.g., at least one inner extreme
edge exists, otherwise the polygon is xy-monotone and we refer to Sect. 3.1. Given
an x-monotone sequence, we always draw the first RR-subsequence as the left-
most inner extreme edge of the lower hull. By this, the correspondence between
the angle subsequences and the stairs and extreme edges is unique.

114 W.S. Evans et al.

L L

R R

(a) An x-monotone polygon (b) Conditions (D1)–(D2) are satisfied

(c) Conditions (D1)–(D3) are satisfied. (d) The polygon is canonical

Fig. 6. Illustration of how to make a polygon canonical. The thick horizontal edges are
outer extreme edges, the tiling patterns mark double stairs.

An x-monotone polygon is canonical if (D1) all outer extreme edges are lying
on the border of the bounding box, (D2) each vertical non-extreme edge that
is not incident to an inner extreme edge has length 1, and (D3) each horizontal
edge that is not an outer extreme edge has length 1.

In the full version of the paper [6], we show that it suffices to find a canonical
x-monotone polygon of minimum bounding box; see Fig. 6 for an illustration.

Lemma 3. Any x-monotone polygon can be transformed into a canonical x-
monotone polygon without increasing the area of its bounding box.

We observe that the length of the vertical extreme edges depends on the
height of the bounding box, while the length of all other vertical edges is fixed
by the angle sequence. Thus, a canonical x-monotone polygon is fully described
by the height of its bounding box and the length of its outer extreme edges.
Furthermore, the y-coordinate of each vertex depends solely on the height of the
bounding box.

We use a dynamic program that constructs a canonical polygon of minimum
bounding box in time O(n3). For each possible height h of the bounding box,
the dynamic program populates a table that contains an entry for any pair of an
extreme vertex p (that is, an endpoint of an outer extreme edge) and a horizontal
edge e of the opposite hull. The value of the entry T [p, e] is the minimum width w
such that the part of the polygon left of p can be drawn in a bounding box of
height h and width w in such a way that the edge e is intersecting the interior of
the grid column left of p. The algorithm is given the full version of the paper [6].

Theorem 5. Given an x-monotone angle sequence S of length n, we can find
a polygon P that realizes S and minimizes the area of its bounding box in O(n3)
time.

Minimum Rectilinear Polygons for Given Angle Sequences 115

For the area minimization, we make two key observations. First, since the
polygon is x-monotone, each grid column (properly) intersects either no or
exactly two horizontal edges: one edge from the upper hull and one edge from the
lower hull. Second, a pair of horizontal edges share at most one column; other-
wise, the polygon could be drawn with less area by shortening both edges. With
the same argument as for the bounding box, the height of any minimum-area
polygon is at most n.

We use a dynamic program to solve the problem. To this end, we fill a three-
dimensional table T as follows. Let e be a horizontal edge on the upper hull,
let f be a horizontal edge of the lower hull, and let 1 ≤ h ≤ n. Then, the
entry T [e, f, h] specifies the minimum area required to draw the part of the
polygon to the left of (and including) the unique common column of e and f
under the condition that e and f share a column and have vertical distance h.

Let e1, . . . , ek be the horizontal edges on the upper hull from left to right
and let f1, . . . , fm be the horizontal edges on the lower hull from left to right.
We initialize the table with T [e1, f1, h] = h for each 1 ≤ h ≤ n. To compute any
other entry T [ei, fj , h

′], we need to find the correct entry from the column left of
the column shared by ei and fj . There are three possibilities: this column either
intersects ei−1 and fj−1, it intersects ei and fj−1, or it intersects ei−1 and fj .
For each of these possibilities, we check which height can be realized if ei and fj

have vertical distance h′ and search for the entry of minimum value. We set

T [ei, fj , h
′] = min

h′′ valid
{T [ei−1, fj−1, h

′′], T [ei, fj−1, h
′′], T [ei−1, fj , h

′′]} + h′.

Finally, we can find the optimum solution by finding min1≤h≤n{T [ek, fm, h]}.
Since the table has O(n3) entries each of which we can compute in O(n) time,
the algorithm runs in O(n4) time. This proves the following theorem.

Theorem 6. Given an x-monotone angle sequence S of length n, we can find
a minimum-area polygon that realizes S in O(n4) time.

4 The Monotone Case: Minimum Perimeter

In this section, we show how to compute a polygon of minimum perimeter for
an xy-monotone or x-monotone angle sequence S of length n.

Let P be an x-monotone polygon realizing S. Let eL be the leftmost vertical
edge and let eR be the rightmost vertical edge of P . Recall that P consists of
two x-monotone chains; an upper chain T and a lower chain B connected by eL

and eR. Without loss of generality, we assume that r(T) ≥ r(B).
An x-monotone polygon is perimeter-canonical if (P1) every vertical edge

except eR and eL has unit length, and (P2) every horizontal edge of T has unit
length. We show that it suffices to find a perimeter-canonical polygon in the full
version of the paper [6].

Lemma 4. Any x-monotone polygon can be transformed into a perimeter-
canonical x-monotone polygon without increasing its perimeter.

116 W.S. Evans et al.

Suppose that P is a minimum-perimeter canonical polygon that realizes S
with r(T) ≥ r(B), and peri(P) denotes its perimeter. By condition (P2), every
edge in T is of unit length, so the length of T is 2r(T)+1. This implies the width
of B should be r(T) + 1. By condition (P1), the length of the vertical edges in
B is r(B), so the total length of B is r(T) + r(B) + 1. Thus we can observe the
following property.

Lemma 5. Given an x-monotone angle sequence S, there is a canonical
minimum-perimeter polygon P realizing S with r(T) ≥ r(B) such that peri(P) =
3r(T) + r(B) + 2 + |eL| + |eR|.

The first three terms of peri(P) in Lemma 5 are constant, so we need to min-
imize the sum of the last two terms, |eL| and |eR|, to get a minimum perimeter.
However, once one of them is fixed, the other is automatically determined by
the fact that all vertical edges in B are unit segments. In other words, minimiz-
ing one of them is equivalent to minimizing their sum, consequently minimizing
the perimeter. We call the length of the leftmost extreme edge of a polygon the
height of the polygon.

4.1 The xy-monotone Case

Let P be a minimum-perimeter canonical xy-monotone polygon that realizes
an xy-monotone angle sequence S of length n. When n = 4, i.e., r = 0, a
unit square P achieves the minimum perimeter, so we assume here that r > 0.
Recall that the boundary of P consists of four stairs, TR,TL,BL, and BR. Let
(r1, r2, r3, r4) be a quadruple of the numbers of reflex vertices of TR,TL,BL,
and BR, respectively. Then r = r1 + r2 + r3 + r4, where ri ≥ 0 for each i. We
further assume that (i) r1 is the largest one among the four ri’s, thus r1 > 0,
and (ii) r2 ≥ r4, which directly means r(T) ≥ r(B); if not, we can rotate or
mirror P so that the assumption holds.

To get peri(P), we have to minimize either |eL| or |eR|. This implies that if
we can draw P such that |eL| = 1 or |eR| = 1, then P has minimum perimeter.
We have two cases depending on whether r2 = 0 or not.

We first consider the case when r2 = 0. By assumption (ii), r4 = 0. We then
have a quadruple (r1, 0, r3, 0). If r1 = r3, then P satisfying Lemma 4 is uniquely
defined as in Fig. 7(a), in which |eL| = |eR| = 2. So peri(P) = 3r(T)+r(B)+6 =
4r1 +6. If r1 > r3, then we can draw P such that |eR| = 1 and |eL| = r1 − r3 +1
as in Fig. 7(b), so peri(P) = 3r1 + r3 + 2 + (r1 − r3 + 1) + 1 = 4r1 + 4. This is a
minimum because |eR| = 1. This can be rephrased as a general form, peri(P) =
3(r1 + r2) + (r3 + r4) + |r3 − (r1 − r2 + r4)| + 4 under the assumption that
r2 = r4 = 0 and r1 > r3.

Now we consider the other case when r2 > 0; see Figs. 7(c) and (d). Let h
and h′ be horizontal lines one unit below the upper end vertices of eL and eR,
respectively. The bottommost edge eB must be on or below h′. Since BL and BR
share the edge eB , if r3 < (r1 − r2 + r4), then eL should be stretched so that BL
can share eB with BR as in Fig. 7(c), so |eL| = (r1−r2+r4)−r3+1 and |eR| = 1.
If r3 > (r1 −r2 +r4) as in Fig. 7(d), then eR should be stretched, so |eL| = 1 and

Minimum Rectilinear Polygons for Given Angle Sequences 117

r1 = 3

r1 = 3

r3 = 3

2

2
r3 = 1

(a) (b)

h′ r1−r2

(c)

r3

1

3

eB r4

r1−r2

(d)

r3 r4

eB

h

Fig. 7. (a)–(b) The case when r2 = 0. (c)–(d) The case when r2 > 0.

|eR| = r3−(r1−r2+r4)+1. Finally, if r3 = (r1−r2+r4), then |eL| = |eR| = 1. We
can express three situations as one equation, |eL|+ |eR| = |r3−(r1−r2+r4)|+2.
Therefore, peri(P) = 3(r1+r2)+(r3+r4)+ |r3−(r1−r2+r4)|+4. The minimum
perimeter for this case is clearly guaranteed since |eL| = 1 or |eR| = 1.

Theorem 7. Given an xy-monotone angle sequence S of length n, we can find
a polygon P that realizes S and minimizes its perimeter in O(n) time. Further-
more, if the lengths of the stair sequences (r1, r2, r3, r4) are given as above, then
peri(P) can be expressed as:

peri(P) =

{
4r1 + 6 if (r1, 0, r1, 0),
3(r1 + r2) + (r3 + r4) + |r3 − (r1 − r2 + r4)| + 4 otherwise.

4.2 The x-monotone Case

A minimum height polygon P that realizes S can be computed in O(n2) time
using dynamic programming.

From right to left, let t1, t2, . . . , tr(T) be the horizontal edges in T and
b1, b2, . . . , br(B) be the horizontal edges in B. Recall that r(T) ≥ r(B). Let
A[i, j] be the minimum height of the subpolygon formed with the first i horizon-
tal edges from T and the first j horizontal edges from B. Note that the leftmost
vertical edge of the subpolygon whose minimum height is stored in A[i, j] joins
the left endpoints of ti and bj . To compute A[i, j], we attach the edges ti and
bj to the upper and lower chains of the subpolygon constructed so far. Since
ti is unit length, ti and bj are attached either to the subpolygon with height
of A[i − 1, j − 1] or to the subpolygon with height of A[i − 1, j]. As in Fig. 8,
there are four cases (a)–(d) for the first attachment and two cases (e)–(f) for the
second attachment, according to the turns formed at the attachments.

Let u and v be the left end vertex of ti−1 and the right end vertex of ti,
respectively. Let u′ and v′ be the right end vertex of bj and the left end vertex
of bj−1, respectively. Notice that both vertical edges (u, v) and (u′, v′) are unit-
length. For example, let us explain how to calculate A[i, j] when uv = LR and
u′v′ = LR, which corresponds to Figs. 8(b) and (f). A[i, j] is the minimum height

118 W.S. Evans et al.

ti

ti−1

A[i − 1, j − 1]

bj bj

A[i − 1, j]

ti ti

ti ti

ti

ti−1 ti−1

ti−1
ti−1

ti−1

bj

bj

bj

bj

bj−1

bj−1

bj−1

bj−1

(a) (b) (c) (d) (e) (f)

A[i, j]
A[i, j]

Fig. 8. Six situations when ti and bj are considered to fill A[i, j].

of two possible attachments (b) and (f). The height for (b) should be at least
2 to realize uv = LR and u′v′ = LR. If A[i − 1, j − 1] > 1, then ti and bj are
attached to the subpolygon as illustrated in Fig. 8(b), thus A[i, j] is the same as
A[i−1, j−1]. Otherwise, if A[i−1, j−1] = 1, then we can move the upper chain of
the subpolygon one unit upward without intersection so that ti and bj are safely
attached to the subpolygon with A[i, j] = 2. Thus A[i, j] = max(A[i−1, j−1], 2).
The height for (f) should be at least 1, so it is expressed as max(A[i−1, j]−1, 1).
Therefore,

A[i, j] = min(max(A[i − 1, j − 1], 2),max(A[i − 1, j] − 1, 1)).

For other turns at uv and u′v′, we can similarly define the equations as follows:

A[i, j] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

undefined if i = 0, j = 0or i < j
1 if i = 1, j = 1
A[i − 1, j] + 1 if uv = RL, j = 1
max(A[i − 1, j] − 1, 1) if uv = LR, j = 1
min(max(A[i − 1, j − 1], 2), A[i − 1, j] + 1) if uv = RL, u′v′ = RL

min(max(A[i − 1, j − 1], 2), max(A[i − 1, j] − 1, 1)) if uv = LR, u′v′ = LR

min(A[i − 1, j − 1] + 2, A[i − 1, j] + 1) if uv = RL, u′v′ = LR

min(max(A[i − 1, j − 1] − 2, 1),
max(A[i − 1, j] − 1, 1)) if uv = LR, u′v′ = RL

Evaluating each entry takes constant time, so the total time to fill A is O(n2).
Using A, a minimum-perimeter polygon can be reconstructed within the same
time bound.

Theorem 8. Given an x-monotone angle sequence S of length n, we can find
a polygon P that realizes S and minimizes its perimeter in O(n2) time.

References

1. Bae, S.W., Okamoto, Y., Shin, C.-S.: Area bounds of rectilinear polygons real-
ized by angle sequences. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC
2012. LNCS, vol. 7676, pp. 629–638. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-35261-4 65

http://dx.doi.org/10.1007/978-3-642-35261-4_65
http://dx.doi.org/10.1007/978-3-642-35261-4_65

Minimum Rectilinear Polygons for Given Angle Sequences 119

2. Biedl, T.C., Durocher, S., Snoeyink, J.: Reconstructing polygons from scanner
data. Theor. Comput. Sci. 412(32), 4161–4172 (2011)

3. Chen, D.Z., Wang, H.: An improved algorithm for reconstructing a simple polygon
from its visibility angles. Comput. Geom. 45(5–6), 254–257 (2012)

4. Culberson, J.C., Rawlins, G.J.E.: Turtlegons: generating simple polygons from
sequences of angles. In: Proceedings of 1st Annual ACM Symposium on Compu-
tational Geometry (SoCG 1985), pp. 305–310 (1985)

5. Disser, Y., Mihalák, M., Widmayer, P.: A polygon is determined by its angles.
Comput. Geom. 44(8), 418–426 (2011)

6. Evans, W.S., Fleszar, K., Kindermann, P., Saeedi, N., Shin, C.S., Wolff, A.: Mini-
mum rectilinear polygons for given angle sequences. Arxiv report (2016). https://
arxiv.org/abs/1606.06940

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman & Co., New York (1979)

8. Hartley, R.I.: Drawing polygons given angle sequences. Inform. Process. Lett.
31(1), 31–33 (1989)

9. Patrignani, M.: On the complexity of orthogonal compaction. Comput. Geom.
19(1), 47–67 (2001)

10. Sack, J.R.: Rectilinear computational geometry. Ph.D. thesis, School of Com-
puter Science, McGill University (1984). http://digitool.library.mcgill.ca/R/?
func=dbin-jump-full&object id=71872&local base=GEN01-MCG02

11. Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput. 16(3), 421–444 (1987)

12. Vijayan, G., Wigderson, A.: Rectilinear graphs and their embeddings. SIAM J.
Comput. 14(2), 355–372 (1985)

https://arxiv.org/abs/1606.06940
https://arxiv.org/abs/1606.06940
http://digitool.library.mcgill.ca/R/?func=dbin-jump-full&object_id=71872&local_base=GEN01-MCG02
http://digitool.library.mcgill.ca/R/?func=dbin-jump-full&object_id=71872&local_base=GEN01-MCG02

Continuous Folding of Regular Dodecahedra

Takashi Horiyama1, Jin-ichi Itoh2, Naoki Katoh3,4, Yuki Kobayashi4,5,
and Chie Nara6(B)

1 Graduate School of Science and Engineering, Saitama University, Saitama, Japan
horiyama@al.ics.saitama-u.ac.jp

2 Faculty of Education, Kumamoto University, Kumamoto 860-8555, Japan
j-itoh@kumamoto-u.ac.jp

3 Department of Inforatics, Faculty of Science and Technology,
Kwansei Gakuin University, Nishinomiya, Japan

naoki.katoh@gmail.com
4 JST, CREST, Tokyo, Japan

5 Graduate School of Engineering, Tokyo Institute of Technology,
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

kobayashi.y.bv@m.titech.ac.jp
6 Meiji Institute for Advanced Study of Mathematical Sciences,

Meiji University, Nakano, Tokyo 164-8525, Japan
cnara@jeans.ocn.ne.jp

Abstract. Itoh and Nara [3] discussed with Kobayashi the continuous
flattening of all Platonic polyhedra; however, a problem was encountered
in the case of the dodecahedron. To complete the study, we explicitly
show, in this paper, a continuous folding of a regular dodecahedron fol-
lowing the ideas in [3].

Keywords: Dodecahedron · Regular polyhedra · Folding · Continuous
flattening

1 Introduction

In this paper we continue the discussion on the continuous flattening of Platonic
polyhedra found in [3] and provide a continuous folding of a regular dodeca-
hedron following the approach presented in [3], and also by using the method
discussed by Itoh and Nara in [5].

We use the terminology polyhedron for a closed polyhedral surface which is
permitted to touch itself but not self-intersect. A flat folding of a polyhedron is a

J.-i. Itoh—Supported by Grant-in-Aid for Scientific Research(B) (15KT0020) and
Scientific Research(C)(26400072).
N. Katoh—Supported by JSPS Grant-in-Aid for Scientific Research(A) (25240004).
Y. Kobayashi—Supported by JSPS Grant-in-Aid for Scientific Research(A)
(25240004).
C. Nara—Supported by Grant-in-Aid for Scientific Research(C) (16K05258).

c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 120–131, 2016.
DOI: 10.1007/978-3-319-48532-4 11

Continuous Folding of Regular Dodecahedra 121

folding by creases into a multilayered planar shape. There are several strategies
employed for the continuous flattening of polyhedra; in [3] rhombi are used, in
[7] kites, in [5] one and two moving edges, in [6] cut loci and Alexandrov’s gluing
theorem, in [1] skeleton methods. Approaches for flattening polyhedra are found
in [2]. It is proved that any convex polyhedron can be continuously flat folded
in [1,6]. However, the moving creases cover the almost all surface during the
continuous motions used in [1,6]. We employ a different method so that the
moving creases cover a small portion of the surface and that two parallel faces
of the regular dodecahedron have no creases, that is, they can be rigid.

We review the definition of continuous flattening.

Definition 1. Let P be a polyhedron in the Euclidean space R
3. We say that a

family of polyhedra {Pt : 0 ≤ t ≤ 1} is a continuous (flat) folding process from
P = P0 to P1 if it satisfies the following conditions:

(1) for each 0 ≤ t ≤ 1, there is an intrinsic isometry from Pt onto P ,
(2) the mapping [0, 1] � t �−→ Pt ∈ {Pt : 0 ≤ t ≤ 1} is continuous,
(3) P0 = P and P1 is a (flat) folded state of P .

2 A Folded Rhombus with Wing-Type

We denote by uv the line segment joining u and v for points u and v in R
3,

and by dist(u, v) (or simply |uv|) the Euclidean distance between u and v. Let
h be the center of a rhombus R = abcd in R

3. Fold R into halves by a valley
crease on bd and fold the resulting figure into halves again to get a four layered
right triangle shape. In this motion dist(a, c) decreases to zero first, and then
dist(b, d) decreases to zero. We can decrease two distances dist(a, c) and dist(b, d)
simultaneously with any desired speed for each. This fact was proved in [3] and
extended in [7]. In the proof a special folding of R plays a key role, in this paper
we refer to such a folding of R as a folded rhombus with wing-type.

Let q be any point on hc. Fold R with a mountain fold on ah, bh, ch, qb, qc, qd
and with a valley fold on hq so that �bhq and �dhq overlap on �abh and �dah
respectively (see Fig. 1 (a), (b)). We call such figure a folded rhombus with wing-
type of a rhombus R = abcd for q. Note that the resulting figure is flexible, that
is, distances dist(a′, c′) and dist(b′, d′) are not fixed, where the notation u′ refers
to the point of the resulting figure corresponding to point u of R. However, if
we fix those distances, then there is a unique point q on hc which satisfies such
distance conditions.

Lemma 1 ([3]). Let R = abcd be a rhombus. For any pair of real numbers
l (0 ≤ l ≤ |bd|) and m (0 ≤ m ≤ |ac|) there is a unique point q on the line
segment hc where h is the center of R, such that a folded rhombus with wing-
type of R satisfies dist(b′, d′) = l and dist(a′, c′) = m.

122 T. Horiyama et al.

(a) (b)

d

b

a c
h q

b’

c’

a’ =a

d’

q’ h’ =h

m

l

Fig. 1. (a) A rhombus R = abcd with mountain crease on long-short dotted line seg-
ments and valley crease on a bold line segment; (b) the folded rhombus with wing-type
such that dist(b′, d′) = l and dist(a′, c′) = m.

3 A Regular Dodecahedron

Let P be a regular dodecahedron in R
3 with the origin O and denote its twelve

regular pentagonal faces by Fi(1 ≤ i ≤ 12), and its twenty vertices by v5i+j (0 ≤
i ≤ 3, 1 ≤ j ≤ 5) so that F1 and F12 are parallel to the xy-plane and the
center of F1 is the origin. We can assume without loss of generality that the
radius of the circumcircle of F1 is one. The vertex set is divided into four subsets
Vi = {v5i+j : 1 ≤ j ≤ 5} for 0 ≤ i ≤ 3 each of which comprises a regular pentagon
parallel to the xy-plane, in particular, V1 and V4 are vertex sets of F1 and F12,
respectively (Fig. 2(a)). We assume that Fi(2 ≤ i ≤ 6) and Fi(7 ≤ i ≤ 11)
have common edges with F1 and F12, respectively such that F1 ∩ F4 = v3v4
and F12 ∩ F9 = v18v19, and that F4 ∩ F9 = v13v9 (see Fig. 2(a)). Note that
{V1, V4} and {V2, V3} are located on cylinders about the z-axis such that their
radii satisfy the golden ratio τ = (

√
5 + 1)/2.

The final flat folded state P1 of P is as follows:

(1) P1 is intrinsically isometric to P ,
(2) F1 and F12 have no creases and F12 is rotated by 2π/5 onto F1,
(3) Fi(2 ≤ i ≤ 6) are folded into halves with valley folds so that vi+4 for

2 ≤ i ≤ 5 is on vi, and v10 is on v1,
(4) F9 is folded with valley folds on line segments {v13g9, v9g9, v19g9} and a

mountain fold on the line segment g9h where g9 is a center of F9 and h is
the midpoint of v13 and v9 (see Figs. 2(b), (d) and 3), and all five faces F6+i

(1 ≤ i ≤ 5) are folded similarly.

Continuous Folding of Regular Dodecahedra 123

(c) (d)

(a) (b)

1

4

5

6

2

3

7

8

15

14

9

10

11

12

17
19

18

20

13

F

F

4

9

F

F12

1

16

F
8

3

1

2
8

4

5
9

10

12 18

11

6

7

13

14

19

16 20

17
15

F

F

4

9

F

F12

1

F
8

43

2 5

20

19

18

16

17

3 4

1

2 8
5

9

10

12

18
11 6

7 13

14

19
16

20

17

15

l

Fig. 2. A regular dodecahedron.

By rotating and pushing down the face F12 toward the face F1, while keeping
the two faces parallel, P can be continuously flattened onto the face F12. We
revise the continuous motion proposed in [3] for such flattening process because
we found that the original motion has self-intersection after reaching some figure
Q whose surface will be called a 2-story modified antiprism. We investigate Q
in the next section, and we propose a new continuous motion from Q to a flat
folded state of P which can avoid any self-intersection, in the Sect. 6.

124 T. Horiyama et al.

(a) (b)

v g g

v

v

v

v

v

v

v
18

4

3

8

9

13

14

19
4 9

v4

v9
v13

v3 g4

v8

v18

v19

v14

Fig. 3. How to fold two adjacent pentagonal faces.

4 A 2-story Modified Antiprism

An n-sided antiprism is a polyhedron composed of two parallel copies of some
particular n-sided polygon, connected by an alternating band of triangles. If the
base faces are regular n-gons and if the side faces are equilateral triangles, the
antiprism is called a uniform antiprism.

For a uniform antiprism, we apply so-called diagonal flippings by deleting
half of the side edges (e.g., edges {v1v10}, {v2v6}, {v3v7}, {v4v8} and {v5v9} in
Fig. 4(a)), and adding edges joining a vertex of the top face to a vertex of the
bottom face (e.g., {v1v7}, {v2v8}, {v3v9}, {v4v10} and {v5v6} in Fig. 4(b)). Then
we get another antiprism whose side faces are isosceles triangles. We call such
polyhedron a modified uniform antiprism or modified n-antiprism.

Note that for n = 5, the height of a uniform pentagonal antiprism is the radius
of circumcircle of the pentagon. For a modified uniform antiprism, the ratio of
edge lengths of isosceles triangles (side faces) is one-one-τ where τ = (

√
5+1)/2

(the golden ratio).

(a) (b)

3

1

2

8

4

5

9

106

7

3

1

2
8

4

5

9

106

7

Fig. 4. (a) A uniform pentagonal antiprism; (b) a modified 5-antiprism.

Continuous Folding of Regular Dodecahedra 125

v

1411

13

17

16

20 19

12

15

19

3

1

2

4

5

9

10,
6,

7,

14

11 13

1716

20 18

12

15

8,

18

3

1

2

8

4

5

9

106

7

(a) (b)

l

Fig. 5. (a) Two congruent copies of a modified pentagonal antiprism; (b) a 2-story
modified 5-antiprism

Take two congruent copies of a modified 5-antiprism and put one on top of
the other without one pentagonal face, and join them by touching pentagonal
edges so that the resulting polyhedron has two parallel pentagonal faces. We call
such polyhedron a 2-story modified 5-antiprism (see Fig. 5).

5 From a Regular Dodecahedron to a 2-story Modified
Pentagonal Antiprism

We show that a 2-story modified 5-antiprism is intrinsically isometric to a subset
of a regular dodecahedron. Let P be the regular dodecahedron defined in Sect. 3.
We call F1 and F12 a bottom face and a top face respectively, and other faces are
called side faces and paired as follows, {F2, F7}, {F3, F8}, {F4, F9}, {F5, F10},
and {F6, F11}. We divide each of those five pairs into triangles. For example,
{F4, F9} is divided by line segments v3v13, v3v9, v19v13 and v19v9 (see Fig. 2(b)).
Other pairs are divided similarly. If the rhombus of two triangles �v3v13v9 and
�v19v13v9 in the pair {F4, F9} can be flat folded so that the boundary edges
v3v13 and v19v13 meet with v3v9 and v19v9 respectively, and if we can do a
similar operation on each of other pairs, the resulting figure is a 2-story modified
pentagonal antiprism Q together with folded rhombi inside.

We show that there is a continuous motion from P to the polyhedron Q,
which is a minor revision of a continuous motion proposed in [3].

126 T. Horiyama et al.

Theorem 1. A regular dodecahedron can be continuously folded to a 2-story
modified pentagonal antiprisms with folded rhombi inside, such that two pentag-
onal faces are rigid and one moves toward the other by rotation and translation
only.

Proof. Let P be a regular dodecahedron and use the same notation as in Sect. 3.
The bottom face F1 is fixed and the top face F12 is continuously rotated and
pushed down toward F1 until the height of F12 is two.

We describe P in R
3 so that the bottom face F1 is on the xy-plane, F1 and F12

are inscribed in the cylinder with radius one, and vertices v5(i−1)+j(1 ≤ j ≤ 5)
are inscribed in the cylinder with radius (1 +

√
5)/2 for i = 1, 2. In particular,

vj = (cos(2(j − 1)π/5), sin(2(j − 1)π/5), 0),

v5+j = (τ cos(2(j − 1)π/5), τ sin(2(j − 1)π/5), 1),

v10+j = (τ cos((2j + 1)π/5), τ sin((2j + 1)π/5, τ),

v15+j = (cos(2(j + 1)π/5), sin(2(j + 1)π/5), τ + 1),

for 1 ≤ j ≤ 5, where τ = (1 +
√

5)/2.
Rotate �v3v4v9 about the line passing through v3v4 so that the vertex v9

moves along the circular arc with the radius r =
√

5/2 from the point v9 toward
the point v5. The dihedral angle of �v3v4v9 and the xy-plane, denoted by θ,
decreases from π − θ0 to θ0 where θ0 = cos−1(1/

√
5). Then, the trace of v9 for

θ, denoted by vθ
9 is

vθ
9 = (r cos θ − cos(π/5),− sin(2π/5), r sin θ) (0 ≤ θ ≤ π − θ0).

The orthogonal projection of the trace of v9 to the xy-plane is a line segment
of the line passing through v5 and orthogonal to v3v4 in the xy-plane, and
it intersects the circumcircle of F1 (Fig. 6) at the points v5 and w, where w
comprises ∠wOv4 = π/5 (see Fig. 6(b)).

Since the angle ∠wOv5 = π/5, the motion is divided into two parts; one is
the motion until the trace of v′

9 reaches w, and the other is from that figure to
the flat folded state P1. When the projection of the trace of v9 reaches w, the
z-coordinate of the trace of v9 reaches one, and P can be folded into a 2-story
modified 5-antiprisms with folded rhombi inside (denoted be P1/2).

We define a continuous motion for other vertices of P to obtain a 2-story
modified 5-antiprisms as its surface. The set V2 = {vi : 6 ≤ i ≤ 10} is rotated
and moves toward the bottom face F1, while it comprises a regular pentagon
with center on z-axis and parallel to F1.

The motion for the vertex set V3 is similar to V2, so that the distance
v5+iv10+i (1 ≤ i ≤ 5) is preserved. The motion for the vertex set V4 is deter-
mined so that the relative motion of V3 to V4 is similar to the relative motion of
V2 to V1.

When the z-coordinate of the trace of v9 is one, all vertices Vi (1 ≤ i ≤ 4)
are on the cylinder with radius one, and vi and vi+4 (6 ≤ i ≤ 10) meet. Denote

Continuous Folding of Regular Dodecahedra 127

(a)

y

x

(b) (c)

9v
t

v

v

v

v

v

4

3

5

1

2

F

w

1

O

v’

l

m

v

v

v

v

v

4

3

9 5

1

2

F

we

1

O

m

x

e

v9

9v’

9v

w

t

9v
t v5v5

Fig. 6. (a) The trace of the vertex v9 on the plane parallel to the xz-plane where
θ0 = cos(−1)(1/

√
5); (b) the orthogonal projection of the trace of v9 to the xy-plane

where w is the first intersecting point with F1; (c) (vt
9)

′ is the projection of vt
9 for

some t.

by P o the subset of P obtained by removing five (folded) rhombi v1v7v17v11,
v2v8v18v12, v3v9v19v13 (shaded in Fig. 2(b)), v4v10v20v14 and v5v6v16v15. Then
the resulting figure of P o, after such motion, is a 2-story of modified 5-antiprism
Qo. We have a continuous folding process {P o

t : 0 ≤ t ≤ 1} from P o to Qo.
We show that the five rhombi of P can be continuously flat folded and inserted

inside Qo so that the motion is compatible with the continuous motion from P o

to Qo. We denote by vt the vertex in P r
t corresponding to a vertex v in P o.

128 T. Horiyama et al.

For each 0 ≤ t ≤ 1/2, since each rhombus (e.g.,vt
3v

t
13v

t
19v

t
9) satisfies the

distance conditions dist{vt
13, vt

9} ≤ dist{v13, v9} and that dist{vt
3, vt

19} is not
greater than the intrinsic distance of v3 and v19, the rhombus can be folded as
shown in Fig. 1(b) by Lemma 1 so that those five rhombi do not intersect each
other. Denote Pt = P o

t ∪Rt where Rt is the set of those folded rhombi compatible
to P o

t . Then {Pt : 0 ≤ t ≤ 1/2} is a continuous folding process from P to P1/2

which is a 2-story modified 5-antiprism with folded rhombi inside. ��

6 Continuous Flattening of a 2-story Modified Pentagonal
Antiprisms

To get a continuous flattening motion for a regular dodecahedron, we show that
a 2-story modified 5-antiprism can be continuously flattened.

Theorem 2. A 2-story modified pentagonal antiprisms can be continuously flat-
tened so that two pentagonal faces are rigid and one moves toward the other by
rotation and translation only.

Proof. Step 1. Q is a 2-story modified uniform pentagonal antiprisms in R
3

whose vertices are on the cylinder {(x, y, z) : x2 + y2 = 1} and z = 0, 1 or 2, and
denoted by

vi = (cos(2(i−1)π/5, sin(2(i−1)π/5, 0), v5+i = (cos(2i−1)π/5, sin((2i−1)π/5, 1)

and v10+i = (cos 2(i − 1)π/5, sin 2(i − 1)π/5, 2) for i = 1, · · · , 5 (see Fig. 7). We
refer to the three regular pentagonal sets of vertices of Q as bottom, middle and
top according to z = 0, 1 and z = 2.

Step 2. By rotating and pushing down the top face toward the bottom face,
Q can be continuously flattened. The motion for the vertices of the middle set
follows the motion defined for vi(6 ≤ i ≤ 10) in the previous section, that is, v7
moves along the circular arc about the line passing through v1v2 toward v3. The
motion of the top face follows that of the motion of the middle set so that the
rotated angle and height of the top face is twice those of the middle set.

Step 3. We define a continuous motion {Qt : 0 ≤ t ≤ 1} of Q. We denote by
ut the trace of u ∈ Q for t.

vt
5+i = (rt cos(2i − 1 + t)π/5, rt sin(2i − 1 + t)π/5, st),

vt
10+i = (cos(2i − 2 + 2t)π/5, sin(2i − 2 + 2t)π/5, 2st)

for i = 1, 2, · · · 5, where

rt = (cos π/10)/ cos(π/10 − π/5 · t),

which is calculated from the fact that the distance of vt
9 from the z-axis equals

|O(vt
9)

′| where (vt
9)

′ is the projection of vt
9 to the xy-plane (see Fig. 6(a), (c)).

Continuous Folding of Regular Dodecahedra 129

(a) (b)

(c) (d) (e)

11

3

1

2

4

5

9

10

6

7

1413

12
15

8

43

2 5

12

11

15

13

14

7 8

96

3

8
h

u

15

9

u’

9

15

8
h

3
3

8
h

q

15

9

q’

q’

u

u’

t

Fig. 7. (a) a 2-story modified 5-antiprism Q; (b) two isosceles triangular faces described
in a common plane where uu′ is orthogonal to v8v9; (c) the faces are described in a
common plane with creases; (d) an example of a folded state; (e) a flat folded state of Q.

for u′
t = vt

9 in Fig. 6(b).
Since |v1vt

6| = |v3v9| = 2 sin π/5, the z-coordinate st of vt
9 is

st =
√

(3 −
√

5)/2 − (rt)2 + 2rt cos(π(1 + t)/5).

Step 4. The ten isosceles faces of Q are divided into five pairs so that each
pair has a common edge parallel to the bottom face and comprises a (folded)
parallelogram. Those five pairs have similar motions with rotations about the
z-axis. We define a motion for a pair {�v8v9v3,�v8v9v15}.

130 T. Horiyama et al.

Denote the middle point of the edge v8v9 by h (see Fig. 7(b), (c)). Apply a
valley fold to the line segment v3h to satisfy dist(vt

8, vt
9) = 2rt sin(π/5) defined

in Step 3 for each 0 ≤ t ≤ 1.
Denote by u the point in the edge v8v15 satisfying ∠v8hv3 = ∠v8hu, and by

u′ the point in the edge v3h satisfying |u′h| = |uh|. So, the quadrilateral v8u
′v9u

is a kite.
For each 0 < t < 1 there is a point q = q(t) ∈ hu such that by applying a

mountain fold on hq and valley folds on v8q, v9q and v15q, and attaching hq on
hu′, and that the touching point, denoted by q′, on hu′ satisfies dist{q′, vt

15} =
|qv15|. (The existence of such q can be proved by calculating the coordinates of
point ht and the distance {(u′)t, vt

15} explicitly.)
Moreover, the pair {�v8v9v3,�v8v9v15} does not touch �v3v8v15 and

�v4v9v11 during such motion for 0 < t < 1.
Therefore, we obtain a continuous flat folding process Qt of Q by applying

the motion defined in Step 3 for vertices of P (see Fig. 7(d), (e)). ��

7 Continuous Flattening of a Regular Dodecahedron

Combining Theorems 1 and 2, we get the following theorem.

Theorem 3. A regular dodecahedron can be continuously flattened so that two
pentagonal faces are rigid and one moves toward the other by rotation and trans-
lation only.

Proof. For a regular dodecahedron P , by Theorems 1 and 2, we can continuously
flatten the subset P o of P , which is obtained by deleting five rhombi from P
(see Fig. 2). Notice that when we continuously fold P o to the 2-story modified
5-antiprism Q, all edges of those rhombi are rigid during the motion. Hence, each
of those five rhombi also can be folded in a plane passing through the center of
the figure (e.g., the rhombus v3v13v19v9 is folded on the plane including �v3v9v19
which corresponds to v3v9v11 in Fig. 7.

Therefore, during the continuous motion from the 2-story modified 5-
antiprism to the flat folded state, those rhombi also can be folded to avoid
any self-intersection. ��

References

1. Abel, Z., Demaine, E., Demaine, M., Itoh, J., Lebiw, A., Nara, C., O’Rourke, J.:
Continuously flattening polyhedra using straight skeletons. In: Proceedings of 30th
Annual Symposium on Computational Geometry (SoCG), pp. 396–405 (2014)

2. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms, Linkages; Origami,
Polyhedra. Cambridge University Press, Cambridge (2007)

3. Itoh, J., Nara, C.: Continuous flattening of platonic polyhedra. In: Akiyama, J., Bo,
J., Kano, M., Tan, X. (eds.) CGGA 2010. LNCS, vol. 7033, pp. 108–121. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-24983-9 11

http://dx.doi.org/10.1007/978-3-642-24983-9_11

Continuous Folding of Regular Dodecahedra 131

4. Itoh, J., Nara, C.: Continuous flattening of a regular tetrahedron with explicit map-
pings. Model. Anal. Inf. Syst. 19(6), 127–136 (2012)

5. Itoh, J., Nara, C.: Continuous flattening of truncated tetrahedral. J. Geom. 107(1),
61–75 (2016)

6. Itoh, J., Nara, C., Vı̂lcu, C.: Continuous flattening of convex polyhedra. In: Márquez,
A., Ramos, P., Urrutia, J. (eds.) EGC 2011. LNCS, vol. 7579, pp. 85–97. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-34191-5 8

7. Nara, C.: Continuous flattening of some pyramids. Elem. Math. 69(2), 45–56 (2014)

http://dx.doi.org/10.1007/978-3-642-34191-5_8

Escher-like Tilings with Weights

Shinji Imahori1(B), Shizuka Kawade2, and Yoko Yamakata3

1 Department of Information and System Engineering,
Faculty of Science and Engineering, Chuo University, Tokyo, Japan

imahori@ise.chuo-u.ac.jp
2 Graduate School of Engineering, Nagoya University, Nagoya, Japan

3 Graduate School of Information Science and Technology,
The University of Tokyo, Tokyo, Japan

Abstract. A tiling of the plane is a set of figures, called tiles, that cover
the plane without gaps or overlaps. On tiling we consider “Escherization
problem”: Given a closed figure in the plane, find a new closed figure that
is similar to the original and can tile the plane. In this study, we give a
new formulation of the problem with the weighted Procrustes distance
and an algorithm to solve the problem optimally. We conduct computa-
tional experiments with animal shape tiles to confirm the effectiveness
of the proposed method.

1 Introduction

A tiling is a set of figures that cover the plane without gaps or overlaps. Tilings
have been used in decoration of walls and floors since ancient times. Tilings have
not only artistic but also mathematical aspects, and hence many scientists stud-
ied placement rules, properties and varieties of tilings [3,5]. Escher [1,2] is one
of the artists who made artistic tilings. He studied tilings from a mathematical
viewpoint and made many artistic tilings with one or more kinds of tiles. In this
paper, we consider the regular tiling with identical tiles. On this kind of tilings,
we can consider the Escherization problem named after Escher. This problem is,
given a line figure S, to find a new line figure T such that:

1. T resembles S as much as possible,
2. copies of T can cover the plane without gaps or overlaps.

Kaplan and Salesin [6] introduced this problem and proposed a method for
it, but the method was inefficient for non-convex input figures. Koizumi and
Sugihara [8] approximated the input figure with an n-cornered polygon and
reformulated the Escherization problem as an optimization problem. In order
to evaluate the similarity of two figures, they use the Procrustes distance. They
solved this optimization problem in a polynomial time of the input size and
showed the effectiveness of their method for not only convex but also non-convex
input figures by numerical experiments.

In this study, we introduce weights on the points (heavy weights for important
points) of the input figure. We give a new formulation of the problem with the
c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 132–142, 2016.
DOI: 10.1007/978-3-319-48532-4 12

Escher-like Tilings with Weights 133

weighted Procrustes distance and propose a polynomial time algorithm to solve
the problem optimally. This new formulation enables us to output a tile along
our preference. We conduct computational experiments with animal shape tiles
to confirm the effectiveness of the proposed method.

2 Escherization Problem

In this section, we briefly explain the formulation of the Escherization problem
given by Koizumi and Sugihara [8] and how to solve it.

2.1 Model of Escherization Problem

The Escherization problem [6] is, given a line figure S, to find a new line figure T
such that:

1. T resembles S as much as possible,
2. copies of T can cover the plane without gaps or overlaps.

The first condition is restated as “minimization of the distance d(S, T) between
input and output figures.” Koizumi and Sugihara [8] used the Procrustes dis-
tance to measure the similarity of two figures. Among shapes that can tile the
plane, Koizumi and Sugihara only considered the isohedral tilings. It is known
that isohedral tilings are easy to be treated mathematically and have enough
flexibility to represent various shapes. The details of the objective function and
the constraint conditions are explained in the next subsections.

2.2 Objective Function

An input line figure S is approximated with a counterclockwise sequence of
n points on the boundary. We put the center of gravity at the origin and choose
the first point. Let W (resp., U) be the 2 × n matrix to express the input figure
(resp., the output figure that can tile the plane). We use the Procrustes distance
d(U,W) for comparing two figures [7,12]; it is defined with matrices U and W
with the center of gravity at the origin such that

d2(U,W) = min
s, θ

∥
∥
∥
∥sR(θ)

U

‖U‖ − W

‖W‖
∥
∥
∥
∥

2

= 1 − ‖UW�‖2 + 2det(UW�)
‖U‖2‖W‖2 , (1)

where ‖X‖ is the Frobenius norm of a matrix X, s is a scalar expressing expan-
sion and contraction, and R(θ) is the matrix of rotation by θ. From the defini-
tion, the Procrustes distance is rotation, expansion, contraction and translation
invariant. The objective of the Escherization problem is to minimize the distance

134 S. Imahori et al.

d(U,W) between two matrices U and W . Minimizing the Procrustes distance
d(U,W) is equivalent to maximizing

‖UW�‖2 + 2det(UW�)
‖U‖2 . (2)

Let matrices U,W and vectors u,w be

U =
(

u�
x

u�
y

)

,W =
(

w�
x

w�
y

)

,u =
(

ux

uy

)

,w =
(

wx

wy

)

,

where ux,uy,wx,wy are n-dimensional column vectors. Then Eq. (2) can be
rewritten as

u�V u

u�u
, (3)

where V is the following 2n × 2n symmetric matrix

V =
(

wxw�
x + wyw�

y wxw�
y − wyw�

x

wyw�
x − wxw�

y wxw�
x + wyw�

y

)

. (4)

2.3 Constraint Conditions

An isohedral tiling is a tiling in which any two tiles can be transformed to each
other by an isometry that leaves the whole tiling unchanged. It is known that the
isohedral tilings are classified into 93 types (named IH01–IH93). Constraint con-
ditions to tile the plane depend on the types of the isohedral tilings. Here we con-
sider the IH07 tiling with a hexagonal tile as an example. The incidence symbols
of the IH07 tiling are shown in Fig. 1, and the constraint conditions are obtained
from these incidence symbols. Let N be n/6 and we put n points as Fig. 2;
i.e., this figure is represented as U = (PN , . . . , P1, P0, P

′
1 . . . , QN , . . . , R′

N−1). In
Fig. 1, three arrows with the same labels meet at P0, Q0, R0, and hence angles
between these arrows (∠P0,∠Q0,∠R0) must be 120◦ for symmetry. With the

a

b

c

d

e

f
a

b

c

d

e

f

a
b

c
d

e

f

a
b

c
d

e

f

Fig. 1. Incidence symbols of IH07. Fig. 2. Relationship between points.

Escher-like Tilings with Weights 135

matrix S of rotation by 120◦, the constraints “edges with the same label must
be the same shape” can be formulated as

⎧
⎪⎨

⎪⎩

S(P ′
i − P0) = Pi − P0 (i = 1, . . . , N)

S(Q′
i − Q0) = Qi − Q0 (i = 1, . . . , N)

S(R′
i − R0) = Ri − R0 (i = 1, . . . , N),

(5)

where P ′
N = QN , Q′

N = RN and R′
N = PN hold. Equations (5) are represented

with linear combination of variables without constant terms. We note that other
constraint conditions (e.g., translation) appeared in other tiling types can be
written in a similar manner. Thus, with a matrix A (whose size is n × 2n for
IH07), we can represent the constraint conditions for the isohedral tilings as

Au = 0. (6)

Furthermore, with a matrix B composed of the orthonormal basis of KerA and
an arbitrary vector ξ, Eq. (6) is rewritten as

u = Bξ. (7)

2.4 Eigenvalue Problem for Escherization Problem

With Eqs. (3) and (7), the Escherization problem can be rewritten as the follow-
ing optimization problem without constraints:

maximize
ξ�B�V Bξ

ξ�ξ
. (8)

This is the Rayleigh quotient, and the optimization problem (8) is equiv-
alent to the problem of calculating the maximum eigenvalue of a symmetric
matrix B�V B. A standard method for this purpose is the power method, but it
takes much time for some distributions of eigenvalues. Koizumi and Sugihara [8]
proposed an explicit method for the problem, but it does not work for tiling
types in which a flexible edge coincides with another edge by a glide reflection.
Thus, we use a projection method to compute the maximal eigenvalue and its
corresponding eigenvector for matrix B�V B. We use a fact that matrix B�V B
is a symmetric semidefinite matrix whose rank is at most 2. By using this prop-
erty, we can compute the maximum eigenvalue and its corresponding eigenvector
in O(n2) time.

We need to give attention to the following two things:

1. the matrix B is determined on the type of tilings,
2. the matrix V is changed by the choice of the first point.

Consequently, we need to solve the following optimization problem

max
i, j

ξ�B�
i VjBiξ

ξ�ξ
, (9)

136 S. Imahori et al.

where Bi (i = 1, . . . , 93) is related to the type of the isohedral tiling IHi and
Vj (j = 1, . . . , n) depends on the first point. We note that isohedral tilings
are categorized into 93 types, but it is enough to consider only 28 types for the
Escherization problem. For example, any shape that can tile the plane with IH10
rule can also tile the plane with IH07 rule, hence we need not to consider IH10.
We note that, when we treat tiling type IH21, we need to consider two cases for
the original input figure and its mirrored figure.

We now evaluate the time complexity of Koizumi and Sugihara’s algorithm.
For computing Bi, it takes O(n3) time. It is noted that a matrix Bi depends
only on the number n of points and the tiling type IHi. Thus it is possible to
compute them in advance for a fixed number n of points. When i and j are fixed,
the maximum eigenvalue and its corresponding eigenvector can be computed in
O(n2) time by the projection method. In total, the algorithm runs in O(n3) time
and outputs the figure that is closest to the input figure with the Procrustes
distance.

3 Escherization Problem with Weights

By solving the problem stated in the previous section, good tiles are often
obtained in a short computation time. However, we still have a question: Whether
the Procrustes distance is a truly appropriate criterion to evaluate Escher-like
tiles or not. See Fig. 3 for an example. We are given an input figure of “Pegasus”
as Fig. 3(a). Figures 3(b) and (c) are shapes that can tile the plane. Which is the
better tile for the input figure?

Figure 3(b) is better than Fig. 3(c) if you evaluate solutions with the Pro-
crustes distance (the Procrustes distances to the input figure are 0.1103 and
0.1815, respectively). Figure 3(b) looks better than Fig. 3(c) if you focus on wings
or legs. If you focus on the head, however, you may choose Fig. 3(c) as the better
output tile for the input figure.

In this section, we introduce weights on the points of the input figure. We
give a new formulation of the problem with the weighted Procrustes distance

(a) (b)
(c)

Fig. 3. (a) Input figure, (b) a tile (distance 0.1103), (c) another tile (distance 0.1815).

Escher-like Tilings with Weights 137

and propose an algorithm to solve the problem optimally. This new formulation
enables us to output a tile along our preference.

3.1 Weighted Procrustes Distance

The weighted Procrustes distance dw(U,W,K) is used for evaluating the simi-
larity of two figures with weights [9,10], which is defined as follows:

d2w(U,W,K) = min
s,θ

∥
∥
∥
∥

(

sR(θ)U − W

‖WK‖
)

K

∥
∥
∥
∥

2

= 1 − ‖UK2W�‖2 + 2det(UK2W�)
‖UK‖2‖WK‖2 ,

(10)

where ki is the positive weight for point i and K is the n × n diagonal matrix
whose diagonal elements are k1, k2, . . . , kn. We assume that the input and output
figures are translated such that the matrices W,U satisfy the following equations

n∑

i=1

wxik
2
i = 0,

n∑

i=1

wyik
2
i = 0, (11)

n∑

i=1

uxik
2
i = 0,

n∑

i=1

uyik
2
i = 0. (12)

3.2 Formulation of Escherization Problem with Weights

We are given a 2×n matrix W that represents the input figure. We are also given
an n × n diagonal matrix K whose diagonal elements k1, k2, . . . , kn denote the
positive weights for vertices i. The objective is to find a 2×n matrix U that rep-
resents the output figure, where the weighted Procrustes distance dw(U,W,K)
is minimized and U can cover the plane without gaps or overlaps. This problem
is summarized as follows:

Input: figure W and positive weights k1, k2, . . . , kn,
Output: figure U,
minimize the weighted Procrustes distance dw(U,W,K),
subject to figure U satisfies the conditions of an isohedral tiling,

where matrices W and U satisfy Eqs. (11) and (12).
Constraint conditions are very similar to the case without weights. The differ-

ence only appears in equations representing translation; that is, we use Eq. (12)
instead of

∑n
i=1 uxi = 0 and

∑n
i=1 uyi = 0.

We then rewrite the objective function. Minimizing the weighted Procrustes
distance can be represented as maximizing

‖UK2W�‖2 + 2det(UK2W�)
‖UK‖2 , (13)

138 S. Imahori et al.

and it is also expressed as
u�G2V G2u

u�G2u
, (14)

where V is the symmetric matrix defined in Eq. (4) and G is the 2n×2n diagonal
matrix whose diagonal elements are k1, k2, . . . , kn, k1, k2, . . . , kn.

3.3 Eigenvalue Problem for Escherization Problem with Weights

We now have the following optimization problem to compute a tile whose
weighted Procrustes distance to the input figure is minimized:

maximize
u�G2V G2u

u�G2u
, (15)

subject to Au = 0.

As explained in Sect. 2, Koizumi and Sugihara [8] rewrote the constraints to
u = Bξ with a matrix B composed of the orthonormal basis of KerA and an
arbitrary vector ξ. We, however, rewrite the constraints to

u = B′ξ (16)

with a matrix B′ composed of the basis of KerA and an arbitrary vector ξ. We
note that the orthonormality is not required for tiling, and we explain how to
choose a matrix B′ later.

The optimization problem (15) can be rewritten as

maximize
ξ�B′�G2V G2B′ξ

ξ�B′�G2B′ξ
(17)

with Eq. (16). If we consider the generalized Rayleigh Quotient and solve a gen-
eralized eigenvalue problem, it is possible to solve this optimization problem.
However we consider another approach to solve the problem; if we choose a
matrix B′ that satisfies B′�G2B′ = I (where I is the identity matrix), then the
problem (15) becomes the following optimization problem without constraints:

maximize
ξ�B′�G2V G2B′ξ

ξ�ξ
. (18)

This is the (normal) Rayleigh quotient, and the optimization problem (18) is
equivalent to the problem of calculating the maximum eigenvalue of the sym-
metric matrix B′�G2V G2B′. Let ξ′ be an eigenvector corresponding to the max-
imum eigenvalue, then the output figure becomes u = B′ξ′.

We now explain how to compute a 2n × m matrix B′ that is composed of
the basis of KerA and satisfies B′�G2B′ = I. Let ai (i = 1, 2, . . . , 2n − m)
be the set of vectors of A and b′

i (i = 1, 2, . . . ,m) be the set of vectors of B′

(where m depends on tiling types and is about n). Each vector b′
i must satisfy

(b′
i,al) = 0 for 1 ≤ l ≤ 2n − m and (Gb′

i, Gb′
l) = δil for 1 ≤ l ≤ m, where δil

Escher-like Tilings with Weights 139

is the Kronecker delta. We first apply the Gram-Schmidt orthonormalization to
vectors a1,a2, . . . ,a2n−m:

a∗
i = ai −

i−1∑

k=1

(ai, âk)âk, (19)

âi =
a∗

i

‖a∗
i ‖

. (20)

We then compute b′
i with the following equations:

b∗
i = ri −

2n−m∑

k=1

(ri, âk)âk, (21)

b∗∗
i = b∗

i −
i−1∑

k=1

(Gb∗
i , Gb′

k)b′
k, (22)

b′
i =

b∗∗
i

‖Gb∗∗
i ‖ . (23)

It is easy to see that the resulting matrix B′ satisfies the above two conditions.
We note that vectors b′

1, b
′
2, . . . , b

′
m are linearly independent under the

assumption that every weight ki must be positive.

3.4 Algorithm for Escherization Problem with Weights

We summarize the proposed algorithm and evaluate the time complexity. For
a given input figure W with n points and weights k1, k2, . . . , kn, we solve the
following optimization problem

max
i,j

ξ�B′�
ij G2VjG

2B′
ijξ

ξ�ξ
, (24)

where i (=1, 2, . . . , 28) denotes the meaningful tiling types IHi and
j (=1, 2, . . . , n) designates the first point. For computing B′

ij , it takes O(n3)
time. It should be noted that a matrix B′

ij depends on the number n of points,
the tiling type IHi and given weights K, and hence we need to compute it for
every input figure. (Given weights K on points will be different for different input
figures.) On the other hand, when we consider the case without weights, we can
use the same matrix Bi for a fixed number n of points and tiling type IHi.

When i and j are fixed, this optimization problem is equivalent to the maxi-
mum eigenvalue problem. By using the projection method in the previous section
(where we use the characteristics of matrix B′�

ij G2VjG
2B′

ij), the problem can be
solved in O(n2) time. In total, our algorithm runs in O(n4) time and outputs the
figure that is closest to the input figure with the weighted Procrustes distance.

140 S. Imahori et al.

4 Computational Experiments

In this section, we show some computational results. The proposed algorithm
was implemented in Java and ran on an ordinary personal computer with Intel
Core i7-4770 (3.40 GHz) and 8 GB RAM. In our implementation, 28 types of
isohedral tilings are considered. For each tiling type IHi, we compute the best
tiling and finally output the best of them.

We are given an input figure with 60 points (n = 60) and their weights. In
Fig. 4 we show results of our method: (a) represents the input figure “Nessie”
with 60 points. In this figure, colored points have heavier weights (ki = 2 for
colored points and ki = 1 for white points). Figure 4(b) is an optimal tile for
Fig. 4(a) if all points have identical weights. In other words, this is the output
tile by Koizumi and Sugihara’s method [8]. Figure 4(c) is an optimal tile when
we evaluate the similarity by the weighted Procrustes distance. Figure 4(d) is
a tiling generated by Fig. 4(c). We also conduct experiments with a “pig” and
results are represented in Fig. 5. These results show that the proposed method
can keep the shapes of a set of heavy weight points. We also report the Pro-
crustes distance and the weighted Procrustes distance between input figures
and output tiles in Table 1. The row of “Procrustes” shows the Procrustes dis-
tance between the input figure and output tiles for “Nessie” and “pig” instances
ignoring the weights on points. The row of “weighted” reports the weighted

(a)
(b)

(c)

(d)

Fig. 4. Escher-like tiling of a Nessie; (a) input figure, (b) optimal solution without
weights, (c) optimal solution with weights, (d) Nessie tiling generated by (c).

Escher-like Tilings with Weights 141

(a) (b) (c)

(d)

Fig. 5. Escher-like tiling of a pig; (a) input figure, (b) optimal solution without weights,
(c) optimal solution with weights, (d) tiling of pigs generated by (c).

Table 1. Distance between input figure and output tile.

Nessie Pig

(b) (c) (b) (c)

Procrustes 0.141 0.160 0.078 0.081

Weighted 0.149 0.122 0.077 0.072

Procrustes distance between them. It takes about 0.8 s to compute a tile min-
imizing the Procrustes distance and about 4.5 s for the weighted Procrustes
distance.

5 Conclusions

For the Escherization problem, we introduced a new formulation with weights.
By putting heavy weights for a part of the input figure, we can keep the shape of
the region as much as possible. We applied the weighted Procrustes distance to
evaluate the similarity of figures, and proposed a method to compute an optimal
tile along the weights efficiently. We conducted computational experiments with
complex input figures and confirmed the effectiveness of the proposed method.

One of our next goal is to compute appropriate weights on points automati-
cally. Some computational geometry concepts including the local feature size [11]
will be useful for this question. Another goal is to improve the quality of out-
put tiles by combining with some other techniques such as a local-search based

142 S. Imahori et al.

method for Escherization [4]. It is also interesting to treat more complex tilings
than the isohedral tilings.

Acknowledgments. This work was partly supported by JSPS Grant-in-Aid for Sci-
entific Research (B) (No. 24360039) and (C) (No. 25330024). The authors would like
to thank the anonymous reviewers for their valuable comments.

References

1. Escher, M.C.: The Graphic Work, Taschen America Llc, Special Edition (2008)
2. Escher, M.C.: The Official Website. http://www.mcescher.com/
3. Grünbaum, B., Shephard, G.C.: Tiling and Patterns. W. H. Freeman, New York

(1987)
4. Imahori, S., Sakai, S.: A local-search based algorithm for the Escherization problem.

In: The IEEE International Conference on Industrial Engineering and Engineering
Management, pp. 151–155 (2012)

5. Kaplan, C.S.: Introductory Tiling Theory for Computer Graphics. Morgan & Clay-
pool Publishers, San Rafael (2009)

6. Kaplan, C.S., Salesin, D.H.: Escherization. In: Proceedings of SIGGRAPH, pp.
499–510 (2000)

7. Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective
spaces. Bull. Lond. Math. Soc. 16, 81–121 (1984)

8. Koizumi, H., Sugihara, K.: Maximum eigenvalue problem for Escherization. Graphs
Comb. 27, 431–439 (2011)

9. Koschat, M.A., Swayne, D.F.: A weighted Procrustes criterion. Psychometrika 56,
229–239 (1991)

10. Mooijaart, A., Commandeur, J.J.F.: A general solution of the weighted orthonor-
mal Procrustes problem. Psychometrika 55, 657–663 (1990)

11. Ruppert, J.: A Delaunay refinement algorithm for quality 2-dimensional mesh gen-
eration. J. Algorithms 18, 548–585 (1995)

12. Werman, M., Weinshall, D.: Similarity and affine invariant distances between 2D
point sets. IEEE Trans. Pattern Anal. Mach. Intell. 17, 810–814 (1995)

http://www.mcescher.com/

Number of Ties and Undefeated Signs
in a Generalized Janken

Hiro Ito1,2(B) and Yoshinao Shiono1

1 The University of Electro-Communications (UEC), Tokyo, Japan
itohiro@uec.ac.jp

2 CREST, JST, Tokyo, Japan

Abstract. Janken, which is a very simple game and is usually used as
a coin-toss in Japan, originated in China, and many variants are seen
throughout the world. A variant of janken can be represented by a tour-
nament (a complete asymmetric digraph), where a vertex corresponds to
a sign and an arc (x, y) indicates that sign x defeats sign y. However, not
all tournaments define useful janken variants, i.e., some janken variants
may include a useless sign, which is strictly inferior to any other sign in
any case. In a previous paper by one of the authors, a variant of janken
(or simply janken) was said to be efficient if it contains no such use-
less signs, and some properties of efficient jankens were presented. The
jankens considered in the above research had no tie between different
signs. However, some actual jankens do include such ties. In the present
paper, we investigate jankens that are allowed to have a tie between
different signs. That is, a janken can be represented as an asymmetric
digraph, where no edge between two vertices x and y indicates a tie
between x and y. We first show the tight upper and lower bounds of the
number of ties in an efficient janken with n-vertices. Moreover, it is shown
that for any integer t between the upper and lower bounds, there is an
efficient janken having just t ties. We next consider undefeated vertices,
which are vertices that are not defeated by any sign. We show that there
is an efficient janken with n vertices such that the number of vertices
that are not undefeated is o(n), i.e., almost all vertices are undefeated.

1 Introduction

1.1 Background

Janken is a simple game to decide a winner by simultaneously holding out one
hand in one of three gestures (signs) to signify rock (closed hand), paper (open
hand), or scissors (closed hand with index and middle fingers extended). As such,
janken is also called rock-paper-scissors. Rock defeats scissors, scissors defeats
paper, and paper defeats rock. These relations can be represented by an asym-
metric complete digraph (a tournament), where an arc (x, y) indicates that x
defeats y. See Fig. 1(a), for example.

c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 143–154, 2016.
DOI: 10.1007/978-3-319-48532-4 13

144 H. Ito and Y. Shiono

rock

(a) (b) (c)

rock pot
god

gun termite

xof nehpaper repapsrossics scissors

Fig. 1. Janken variants represented by digraphs

Janken has many variants throughout the world [4,6]. For example, in a part
of France, a local variant includes pot1 (forming a hole) as an additional sign,
and hence four signs are used. Pot defeats rock and scissors (since they are sunk)
but is defeated by paper (since it covers the mouth of the pot). This variant of
janken can also be represented by a corresponding tournament, which has four
vertices (see Fig. 1(b)), referred to herein as pot-janken. Pot-janken has a curious
feature, namely, throwing pot is always better than throwing rock, since both
defeat scissors and are defeated by paper, but pot defeats rock. Thus, rock is
never used, and so, in a practical sense, pot-janken is essentially identical to the
original version of janken.

A janken variant (or simply a janken) is said to be efficient if it contains
no useless signs, and exhibits the properties of an efficient janken [2]. In the
abovementioned study, however, we considered jankens that have no ties between
different signs. In fact, there are jankens that have such ties, e.g., a janken in
a part of Guangdong, China, uses five signs, god, hen, gun, fox, and termite;
and “god and fox,” “gun and termite,” and “fox and termite” result in ties (see
Fig. 1(c)) [4].

Thus, the previous study cannot be applied to such jankens directly.

1.2 Contribution of the Present Study

In the present paper, we investigate jankens that are allowed to have ties between
different signs, such as “god and fox” in the Guangdong janken. A janken can
be represented by an asymmetric digraph G = (V,A), (x, x) /∈ A for all x ∈ V
and |{(x, y), (y, x)} ∩ A| ≤ 1 for all x, y ∈ V .

Definition 1. A janken is an asymmetric digraph. A janken with n vertices is
called an n-janken. For a janken G = (V,A) and a distinct vertex pair x, y ∈ V ,
if (x, y) ∈ A, then we say that x defeats y. If {(x, y), (y, x)}∩A = ∅, then the pair
{x, y} is called a tie. The set of ties is denoted by TG, i.e., TG = {{x, y} | x, y ∈
V, x �= y, {(x, y), (y, x)} ∩ A = ∅}. Here, TG may be written as T if G is clear.

Definition 2. For a janken G = (V,A), if a pair of vertices x and y satisfies
the following conditions, then x is superior to y, and y is useless:

– (y, x) /∈ A.
– for any vertex z ∈ V ;
1 Sometimes “well” is used in place of pot.

Number of Ties and Undefeated Signs in a Generalized Janken 145

• if (y, z) ∈ A, then (x, z) ∈ A, and
• if (z, y) /∈ A, then (z, x) /∈ A.

If a janken has no useless vertices, then the janken is said to be efficient.

Definition 3. For a janken G = (V,A), let t(G) be the number of ties, i.e.,
t(G) = |TG|. Clearly, t(G) =

(
n
2

) − |A|, where n = |V |. Let tmax(n) (resp.,
tmin(n)) be the maximum (resp., minimum) number of t(G) among efficient n-
jankens G.

We have the following theorem.

Theorem 1. For n ≥ 3, the following equations hold:

tmax(n) =
{

0, if n = 3,(
n
2

) − n + 1, if n ≥ 4.

tmin(n) =
{

1, if n = 4
0, otherwise.

Moreover, for any integer tmin(n) ≤ t ≤ tmax(n), there is an efficient n-janken
G with t(G) = t. �	

Note that there are no efficient 2-jankens, and, for n = 1, only the trivial
1-janken, which consists of one vertex and no arcs, is efficient.

Next, we consider undefeated vertices.

Definition 4. A vertex x ∈ V is said to be undefeated if (y, x) /∈ A for all
y ∈ V . If x is not undefeated, then it is said to be ordinary. For an n-janken G,
let ν0(G) and ν1(G) be the numbers of undefeated vertices and ordinary vertices,
respectively, in G

Note that ν0(G) + ν1(G) = n. We then obtain the following result.

Theorem 2. For any positive integer m, there exists an efficient
(
2m+1

m

)
-janken

G with ν1(G) = 2m + 1. �	
This means that, for any integer n0, there is an integer n ≥ n0 and an efficient

n-janken such that the number of vertices that are not undefeated is o(n), i.e.,
almost all vertices are undefeated.

1.3 Definitions

The following definitions are used in the present paper. For a janken G = (V,A),
let U(G) = (V,E(A)) be the corresponding undirected graph of G such that
E(A) := {(x, y) | (x, y) ∈ A}. A vertex subset W ⊆ V is called a component of
G if it is a connected component of U(G).

For any integer n ≥ 2, an n-cycle is a digraph isomorphic to ({0, 1, . . . , n−1},
{(0, 1), (1, 2), . . . , (n − 2, n − 1), (n − 1, 0)}) and it is represented by Cn. (In
the present paper, we consider only asymmetric digraphs, and thus C2 never

146 H. Ito and Y. Shiono

appears.) For any integer n ≥ 2, an n-path is a digraph isomorphic to
({0, 1, . . . , n − 1}, {(0, 1), (1, 2), . . . , (n − 2, n − 1)}) and is represented by Pn.
A digraph isomorphic to ({0}, ∅) is represented by K1. If a digraph includes no
n-cycles as subgraphs for all n ≥ 2, then it is said to be acyclic, and otherwise is
said to be cyclic. For two digraphs G1 = (V1, A1) and G2 = (V2, A2), a digraph
G1 + G2 is defined as (V1 ∪ V2, A1 ∪ A2). For other basic terms, see [1,3,5].

2 Number of Ties

2.1 Upper and Lower Bounds

In this section, we consider jankens that have the maximum number of ties. Hav-
ing the maximum number of ties is equivalent to having the minimum number
of arcs. Although it may appear that such a janken must be a cycle Cn (see
Fig. 2(a)), this is not correct. An n-janken having the maximum number of ties
is Cn−1+K1 (see Fig. 2(b)). Surprisingly, the janken includes an isolated vertex,
which will never win or lose! However, we can easily confirm that no other vertex
is superior to the isolated vertex, and vice versa. Here, Cn−1 can be separated
into a number of cycles (see Fig. 2(c)).

The values of tmin(n) for all n ≥ 3, except for n = 4 and tmax(3) in Theorem 1,
have already been obtained in [2]. Then, tmin(4) = 1 is obtained from janken
({0, 1, 2, 3}, {(0, 1), (0, 2), (1, 2), (2, 3), (3, 4)}) and is efficient. This janken is the
right-most janken in Fig. 3, which appears in Sect. 2.2.

In order to show tmax(n) for n ≥ 4, we introduce the complementary value
of tmax(n), as follows:

mmin(n) :=
(

n

2

)

− tmax(n).

We first show mmin(n) = n − 1 for n ≥ 4. We previously defined undefeated
vertices, and we next introduce a complementary concept as follows.

Definition 5. A vertex x ∈ V is said to be zero-defeating if (x, y) /∈ A for all
y ∈ V . If a vertex x is both undefeated and zero-defeating, then it is said to be
isolated.

We first describe a simple observation. The proof is directly obtained from
the definition and so is omitted.

(a) (b) (c)

Fig. 2. Efficient 8-jankens with large ties (= small arcs): (a) eight arcs, (b) and (c)
seven arcs (minimum).

Number of Ties and Undefeated Signs in a Generalized Janken 147

Fig. 3. Examples of the continuous existence of the number of ties for n = 4.

Lemma 1. If a janken G = (V,A) includes two distinct vertices x ∈ V that is
undefeated and y ∈ V that is zero-defeating, then x is superior to y, and thus G
is not efficient.

The following corollary also follows directly.

Corollary 1. An efficient janken G = (V,A) includes at most one isolated
vertex.

The following lemma is also easily obtained from Lemma1.

Lemma 2. If a janken G = (V,A) includes an acyclic component consisting of
at least two vertices, then it is not efficient.

Proof. An acyclic component consisting of at least two vertices includes two
distinct vertices x and y such that x has no edge entering it, and y has no edge
leaving it. In other words, x is an undefeated vertex, and y is a zero-defeating
vertex. Then, the result follows from Lemma 1. �	

Next, we prove the first half of Theorem1 using the following lemma:

Lemma 3. All values of tmax(n) and tmin(n) in Theorem1 are correct.

Proof. Assume n ≥ 4. Since it is clear that (Cn−1 + K1) is efficient, mmin(n) ≤
n − 1 is obtained. Thus, we show that mmin(n) ≥ n − 1. Let G be an efficient
n-janken. From Corollary 1, G includes at most one isomorphic vertex. In other
words, any component other than the isomorphic vertex consists of at least two
vertices. From Lemma 2, any such component is cyclic. Any cyclic component
with k vertices has at least k arcs. It follows that G has at least n − 1 arcs, i.e.,
mmin(n) ≥ n − 1. Therefore, tmax(n) =

(
n
2

) − mmin(n) =
(
n
2

) − n + 1 is proven.
For the remaining values, tmin(4) = 1 is shown by the fact that janken

({0, 1, 2, 3}, {(0, 1), (0, 2), (1, 2), (2, 3), (3, 4)}) is efficient. In [2], tmax(3) =
tmin(3) = 0 and tmin(n) = 0 for n ≥ 5 have been shown. Therefore, we have
proven all of these bounds. �	

2.2 Algorithm for Constructing a Series of Jankens Having
a Continuous Number of Ties

The last half of Theorem 1 is proven by the following lemma.

148 H. Ito and Y. Shiono

(a)

(b)

Fig. 4. Examples of the continuous existence of the number of ties for (a) n = 5 and
(b) n = 6.

Lemma 4. For any integers n ≥ 3 and tmin(n) ≤ t ≤ tmax(n), there is an
efficient n-janken G with t(G) = t.

For small n, we can prove this by presenting concrete examples. Figures 3
and 4(a), (b) show the cases of n = 4, 5, and 6, respectively. We can check the
jankens one by one to confirm that all of them are efficient. (Using Lemmas 5
and 7, which are presented later herein, makes this task easier.)

For the general n ≥ 4, we present an algorithm that constructs Gi
n =

(Vn, Ai
n), denoting the efficient n-janken with i ties for every integer 0 ≤ i ≤(

n
2

) − n + 1. For the case of n ≤ 6, examples are shown in Figs. 3 and 4.
Next, we consider the case of n ≥ 7. From the previous discussion, we know

that G
(n2)−n+1
n = Cn−1+K1 and G

(n2)−n
n = Cn. We represent the latter relation as

Vn = {0, 1, . . . , n − 1}.

A
(n2)−n
n = {(0, 1), (1, 2), . . . , (n − 2, n − 1), (n − 1, 0)}.

For i =
(
n
2

) − n − 1,
(
n
2

) − n − 2, . . . , 0, the algorithm generates Gi
n by simply

adding an arc ai to Gi+1
n . For this purpose, the algorithm calls CYCLEADD(n),

which outputs a series of arcs a(n2)−n−1, a(n2)−n−2, . . ., a0 in this order.

Each ai for i =
(
n
2

) − n − 1, . . . ,
(
n
2

) − 3n − 7 is defined as follows (see Fig. 5):

ai =

⎧
⎨

⎩

(n − 3, 0), if i =
(
n
2

) − n − 1,
(n − 1, j) , if i =

(
n
2

) − n − 1 − j for j = 1, . . . , n − 3,
(j, n − 2) , if i =

(
n
2

) − 2n + 1 − j for j = 0, . . . , n − 4.
(1)

When i becomes
(
n
2

) − 3n + 5, i.e., we obtain G
(n2)−3n+5
n , then vertices n − 2

and n−1 are fully connected to the other vertices. On the other hand, G
(n2)−3n+5
n

Number of Ties and Undefeated Signs in a Generalized Janken 149

0 n-3

n-4

n-2n-1

1

2

0 n-3

n-4

n-2n-1

1

2

Gn
-3n+52

n()Gn
-2n2

n()Gn
-2n+12

n()

Gn
-n-12

n() Gn
-n-22

n() Gn
-n-32

n() Gn
-2n+22

n()

0 n-3

n-4

n-2n-1

1

2

0 n-3

n-4

n-2n-1

1

2

0 n-3

n-4

n-2n-1

1

2

0 n-3

n-4

n-2n-1

1

2

0 n-3

n-4

n-2n-1

1

2

Fig. 5. Addition of arcs by CYCLEADD(n): each bold arc is ai.

contains a chord-free cycle Cn−2, i.e., the subdigraph of G
(n2)−3n+5
n induced by

Vn−2 = {0, 1, . . . , n − 3} is Cn−2. (Note that
(
n
2

) − 3n + 5 =
(
n−2
2

) − (n − 2).)
Here, CYCLEADD(n) recursively calls CYCLEADD(n − 2) and adds arcs

to Cn−2 one by one, in the same manner as with Cn if n ≥ 7, or in the manner
shown in Fig. 4 if n = 5 or 6.

Following this algorithm, we finally obtain G0
n, which is a complete asym-

metric digraph. A formal expression of CYCLEADD(n) for n ≥ 4 is shown as
follows.

Procedure CYCLEADD(n)
begin
if n ≤ 6 then

output a(n2)−n−1, . . . , a0 according to Fig. 3 or 4;
else

output a(n2)−n−1, . . . , a(n2)−3n−5 according to (1);
call CYCLEADD(n − 2)

stop
end.

2.3 Correctness of the Algorithm

In this subsection, we prove the correctness of CYCLEADD(n). First, we intro-
duce a condition for determining whether a vertex is useless. The proof is omit-
ted, since it follows from the definitions.

Lemma 5. Let G = (V,A) be an n-janken. Let x, y ∈ V be a pair of vertices.
A necessary and sufficient condition for x to not be superior to y is that at least
one of the following conditions holds (see Fig. 6):

I. (y, x) ∈ A,
II. ∃z ∈ V , (y, z), (z, z) ∈ A,

150 H. Ito and Y. Shiono

I
yx

II
yx

z z z

III
yx

IV
yx

Fig. 6. The four conditions of Lemma 5: The dotted lines indicate “don’t care.”

III. ∃z ∈ V , (y, z) ∈ A and {x, z} ∈ TG,
IV. ∃z ∈ V , (z, x) ∈ A and {y, z} ∈ TG.

Corollary 2. If there is a 3-cycle, no vertex in the cycle is superior to any other
vertex in the cycle.

We introduce an operation for adding two new vertices to a janken, as follows.

Definition 6. For an n-janken G = (V,A), let G+ = (V +, A+) be an (n + 2)-
janken constructed as follows, where u, v /∈ V :

V + = V ∪ {u, v}, A+ = A ∪ {(u,w), (w, v) | ∀w ∈ V } ∪ {(v, u)}.

Lemma 6. If G is efficient, then G+ is also efficient.

Proof. For x, y ∈ V , x is not superior to y in G. From Lemma 5, x and y
satisfy one of conditions I through IV. Since adding a new vertex never causes a
condition not to be satisfied, x is not superior to y in G+. For u, v, and ∀w ∈ V ,
based on Corollary 2, since there is a 3-cycle ({u,w, v}, {(u,w), (w, v), (v, u)}),
no vertex in the cycle is superior to any other vertex in the cycle. �	
Lemma 7. Let G be an efficient n-janken, and let {v, w} ∈ TG be a tie pair. Let
G′ = (V,A′) be the graph made by adding an arc (v, w) to G, i.e., A′ = A∪(v, w).
If there is a pair of vertices x, y ∈ V such that x is superior to y in G′, then at
least one of the following two conditions holds:

i. x = v and (y, w) ∈ A,
ii. y = w and (v, x) ∈ A.

Proof. Although x is not superior to y in G, x is superior to y in G′. From
Lemma 5, it follows that one of conditions I through IV is not satisfied by adding
arc (v, w). This only occurs by adding arc (x, z) to condition III or by adding
arc (z, y) to condition IV. (See Fig. 7.) The former is case i, and the latter is
case ii. �	

We define C ′
n := G

(n2)−n−1
n = (Vn, A

(n2)−n−1
n) and the following arc subsets:

A1 := {(n − 1, i) | i ∈ {1, . . . , n − 3}},
A2 := {(i, n − 2) | i ∈ {0, . . . , n − 4}}.

Number of Ties and Undefeated Signs in a Generalized Janken 151

z z

III
(a) (b)

yx

z

yx
IV

yx

z

yx

Fig. 7. (a) Adding arc (x, z) to III, and (b) adding arc (z, y) to IV.

Lemma 8. For any subset of arcs A ⊆ A1 ∪ A2, GA = (Vn, A
(n2)−n−1
n ∪ A) is

efficient.

Proof. An n-cycle is clearly efficient. Assume that the arcs in A are added one
by one. If GA is not efficient, there is an arc, say a ∈ A ∪ {(0, n − 3)}, such that
the janken changes from efficient to inefficient when a is added. We separately
prove the following three cases:

– If a = (n − 3, 0):
• If Fig. 7(a) (case i of Lemma 7) occurs: x = n − 3, z = 0, and thus y must

be n−1, i.e., the only possibility is that n−3 is superior to n−1. However,
by the existence of vertex n−4, Case IV of Lemma 5 occurs, and thus n−3
is not superior to n − 1.

• If Fig. 7(b) (case ii of Lemma 7) occurs: z = n − 3, y = 0, and thus x must
be n − 2, i.e., the only possibility is that n − 2 is superior to 0. However, by
the existence of vertex 1, Case III of Lemma 5 occurs, and thus n − 2 is not
superior to 0.

– If a = (n − 1, i) ∈ A1:
• If Fig. 7(a) occurs: x = n − 1, z = i, and thus y must be i − 1, i.e., the only

possibility is that n − 1 is superior to i. However, by the existence of vertex
n − 2, Case II or IV of Lemma 5 occurs, and thus n − 1 is not superior to
i − 1.

• If Fig. 7(b) occurs: z = n − 1, y = i, and thus x must be 0, i.e., the only
possibility is that 0 is superior to i. However, by the existence of vertex
n − 3, Case II or III of Lemma 5 occurs, and thus 0 is not superior to i.

– If a = (i, n − 2) ∈ A2:
• If Fig. 7(a) occurs: x = i, z = n − 2, and thus y must be n − 3, i.e., the only

possibility is that i is superior to n − 3. However, by the existence of vertex
0, Case II or III of Lemma 5 occurs, and thus i is not superior to n − 3.

• If Fig. 7(b) occurs: z = i, y = n − 2, and thus x must be i + 1, i.e., the only
possibility is that i + 1 is superior to n − 2. However, by the existence of
vertex n−1, Case II or III of Lemma 5 occurs, and thus i+1 is not superior
to n − 2.

From the above discussions, in no case is one vertex superior to any other
vertex in GA, i.e., GA is efficient. �	

152 H. Ito and Y. Shiono

Lemma 9. Every janken Gi
n (0 ≤ i ≤ (

n
2

) − n + 1) is efficient.

Proof. For
(
n
2

) − 3n + 5 ≤ i ≤ (
n
2

) − n + 1, Lemma 8 follows directly. For the
remaining Gi

n, we must prove that the digraphs constructed by the recursive
calls of CYCLEADD are also effective.

Assume that there exists a non-efficient Gi
n. Let k be the integer satisfying

(
n−2k

2

) − (n − 2k) ≤ i <
(
n−2(k+1)

2

) − (n − 2(k + 1)). In other words, Gi
n is

constructed in calling CYCLEADD(n − 2k). From the above discussions, k ≥ 1.
Let F i

n be the subdigraph of Gi
n induced by {0, 1, . . . , n − 2k}. From Lemma 8,

F i
n is efficient. Gi

n is constructed by applying the operation + (of Definitions 6)
k times to F i

n. Since F i
n is efficient, from Lemma 6, Gi

n is efficient, which is a
contradiction. �	

Next, we finish the proof of Theorem1.

Proof of Theorem 1: This theorem is easily proven by combining Lemmas 3
and 9. �	

3 Number of Undefeated Vertices and Zero-Defeating
Vertices

In this section, we investigate the number of undefeated or zero-defeating vertices
that can be included in an efficient janken. From the symmetry of the undefeated
and zero-defeating vertices, we assume that there is at least one undefeated
vertex, say z, in an efficient n-janken G = (V,A).

If z is an isolated vertex, from Lemma 1, there are no other undefeated or
zero-defeating vertices in G. Thus, we assume that z is not zero-defeating. Again,
from Lemma 1, there are no zero-defeating vertices in G. Therefore, it is sufficient
to consider the case in which G includes no zero-defeating vertices, and we
investigate the number of undefeated vertices that G can include.

We will show that, for any positive integer m, there exists an efficient
(
2m+1

m

)
-

janken G with ν1(G) = 2m+1 (Theorem 2). This means that there is an efficient
n-janken with ν1(G) = o(n).

Proof of Theorem 2: This theorem is proven by constructing such a graph.
Let m ≥ 1 be a positive integer, and let n = 2m + 1. Fn = (Xn, Bn) denotes

an n-janken such that

Xn = {0, 1, . . . , n − 1},

Bn = {(i, i + j) | i ∈ {0, . . . , n − 1}, j ∈ {1, . . . , m}},

where the indices are taken in cyclic order, with 0 following n − 1. For example,
see Fig. 8(a). Let Sn ⊂ 2{0,...,n−1} be the family of subsets S ⊂ {0, . . . , n−1} such
that |S| = m, where S does not contain m consecutive integers. For examples,

Number of Ties and Undefeated Signs in a Generalized Janken 153

(a) (b)
4 3

5

6 1
14

0
0

{1,4}

{0,2}{0,3}

{2,4} {1,3}

2

23

Fig. 8. (a) F7, (b) G5.

S5 = {{0, 2}, {0, 3}, {1, 3}, {1, 4}, {2, 4}},
S7 = {{0, 1, 3}, {0, 1, 4}, {0, 1, 5}, {0, 2, 3}, {0, 2, 4}, {0, 2, 5}, {0, 2, 6}, {0, 3, 4},

{0, 3, 5}, {0, 3, 6}, {0, 4, 5}, {0, 4, 6}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4},

{1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6}, {1, 5, 6}, {2, 3, 5}, {2, 3, 6}, {2, 4, 5},

{2, 4, 6}, {2, 5, 6}, {3, 4, 6}, {3, 5, 6}}.

We construct the janken Gn = (Vn = Xn ∪ Sn, An = Bn ∪ En) such that

En = {(S, i) | S ∈ S, i ∈ S}.

For example, see Fig. 8(b). All vertices in Sn are undefeated.
Next, we confirm that Gn is efficient. For a vertex x ∈ Vn, let N(x) be the

subset of vertices y such that (x, y) ∈ An, i.e., N(x) = {y ∈ Vn | (x, y) ∈ An}.
For any pair of distinct vertices x, y ∈ Vn (x �= y), N(x) − N(y) �= ∅ and
N(y) − N(x) �= ∅. From the definitions, no pair is superior to the others. Thus,
Gn is efficient. |Vn| =

(
2m+1

m

)
, and ν1(Gn) = |Xn| = 2m + 1. �	

4 Summary and Future Work

In the present paper, we extended the results presented in [2] to jankens that
allow ties. We presented two theorems, one regarding the number of ties and
one regarding the number of undefeated vertices. Since undefeated vertices are
invincible in a sense, a janken may never finish if both players use these vertices.
Thus, the existence of undefeated vertices may make a janken meaningless. For
a janken that has no ties, even though “efficient (no useless signs)” would seem
to be a sufficient restriction to make the janken useful, for a janken with ties,
the property may not be enough. We can introduce a stronger restriction, as
follows:

154 H. Ito and Y. Shiono

Restriction: For any mixed strategy of a player (Alice), there is a mixed strat-
egy of the other player (Bob) such that the winning probability of Bob is
greater than zero.

It is easily proven that the above restriction is equivalent to the no-
undefeated-vertex condition. Under this restriction, we do not need to consider
undefeated vertices.

A number of janken-type games or actual competitions that include ties have
applications. Applying and extending the results of the present paper to such
games and competitions is an interesting area for future work.

Acknowledgements. The present study was supported in part by the Algorithms on
Big Data Project (ABD14) of CREST, JST, the ELC project (MEXT KAKENHI Grant
Number 24106003), and JSPS KAKENHI (Grant Numbers 24650006 and 15K11985).

References

1. Chartrand, G., Lesniak, L., Zhang, P.: Graphs & Digraphs, 5th edn. CRC Press,
Boca Raton (2011)

2. Ito, H.: How to generalize janken – rock-paper-scissors-king-flea. In: Akiyama, J.,
Kano, M., Sakai, T. (eds.) TJJCCGG 2012. LNCS, vol. 8296, pp. 85–94. Springer,
Heidelberg (2013)

3. Moon, J.W.: Topics on Tournaments. Holt, Rinehart and Winston, New York (1968)
4. Ohbayashi, T., Kishino, U., Sougawa, T., Yamashita, S. (eds.): Encyclopedia of

Ethnic Play and Games, Taishukan Shoten (1998). (in Japanese)
5. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.): Algorithmic Game

Theory. Cambridge University Press, Cambridge (2007)
6. Rock-paper-scissors. http://en.wikipedia.org/wiki/Rock-paper-scissors

http://en.wikipedia.org/wiki/Rock-paper-scissors

γ-Labeling of a Cycle with One Chord

Supaporn Saduakdee(B) and Varanoot Khemmani

Department of Mathematics, Srinakharinwirot University,
Sukhumvit 23, Bangkok 10110, Thailand

aa o rr@hotmail.com, varanoot@g.swu.ac.th

Abstract. Let G be a graph of order n and size m. A γ-labeling of
G is a one-to-one function f : V (G) → {0, 1, 2, . . . , m} that induces an
edge-labeling f ′ : E(G) → {1, 2, . . . , m} on G defined by

f ′(e) = |f(u) − f(v)|, for each edge e = uv inE(G).

The value of f is defined as

val(f) =
∑

e∈E(G)

f ′(e).

The maximum value of a γ-labeling of G is defined as

valmax(G) = max{val(f) : f is a γ-labeling of G};
while the minimum value of a γ-labeling of G is

valmin(G) = min{val(f) : f is a γ-labeling of G}.

In this paper, we determine the maximum and minimum values of a
γ-labeling of a graph derived from cycle with adding one chord.

Keywords: γ-Labeling · Value of a γ-labeling · Cycle with one chord

1 Introduction

Let G be a graph of order n and size m. A γ-labeling of G is defined in [2]
as a one-to-one function f : V (G) → {0, 1, . . . ,m} that induces an edge-labeling
f ′ : E(G) → {1, . . . , m} on G defined by f ′(e) = |f(u) − f(v)| for each edge
e = uv of G. The value of f is defined by

val(f) =
∑

e∈E(G)

f ′(e).

If the edge-labeling f ′ of a γ-labeling f of a graph is also one-to-one, then f is a
graceful labeling. Among all labelings of graphs, graceful labelings are probably
the best known and most studied. Graceful labelings originated with a paper

V. Khemmani—Research supported by Srinakharinwirot University, Year 2015.

c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 155–166, 2016.
DOI: 10.1007/978-3-319-48532-4 14

156 S. Saduakdee and V. Khemmani

of Rosa [11], who used the term β-valuations. A few years later, Golomb [10]
called these labelings “graceful” and this is the terminology that has been used
since then. Gallian [9] has written an extensive survey on labelings of graphs.
The subject of γ-labelings of graphs was studied in [1–3,5–8].

Obviously, since f is one-to-one, it follows that f ′(e) ≥ 1, for any edge e, and
therefore, val(f) ≥ m. Moreover, G has a γ-labeling if and only if m ≥ n − 1
and every connected graph has a γ-labeling.

The maximum value and the minimum value of a γ-labeling of G are defined
in [2] as

valmax(G) = max{val(f) : f is a γ-labeling of G}
and

valmin(G) = min{val(f) : f is a γ-labeling of G},

respectively. A γ-labeling g of G is a γ-max labeling if val(g) = valmax(G) and
a γ-labeling h is a γ-min labeling if val(h) = valmin(G). In [1–3], the maximum
and minimum values of a γ-labeling of a path Pn of order n, a cycle Cn of order
n, the complete graph Kn, a double star Sp,q and the complete bipartite graph
Kr,s are determined. Next, we recall the extremal values of a γ-labeling of a
cycle of order n.

Theorem 1 [2]. If Cn is a cycle of order n ≥ 3, then

valmin(Cn) = 2(n − 1)

and

valmax(Cn) =

{
(n−1)(n+3)

2 if n is odd
n(n+2)

2 if n is even.

The extremal values of a cycle with a triangle C�
n , i.e., a cycle with a chord

joining two nonadjacent vertices but adjacent to some vertex in the cycle Cn,
are determined in [6], as we state next.

Theorem 2 [6]. If C�
n is a cycle with a triangle of order n ≥ 5, then

valmin(C�
n) = 2n − 1

and

valmax(C�
n) =

⎧
⎨

⎩

32 if n = 6
n2+6n−10

2 if n is even andn ≥ 8
n2+6n−3

2 if n is odd.

In [2] a simple and useful connection between minimum and maximum values
of a connected graph and that of a proper connected subgraph was found.

Proposition 1 [2]. If H is a proper connected subgraph of a connected graph
G, then

valmin(H) < valmin(G) and valmax(H) < valmax(G).

γ-Labeling of a Cycle with One Chord 157

The following result appeared in [7] will be useful to us.

Theorem 3 [7]. If f is a γ-max labeling of a nontrivial graph G of order n
and size m, then {0,m} ⊆ f(V (G)).

For a nonnegative integer δ and a γ-labeling of a connected graph G of order
n and size m, the extension labeling γδ-labeling of G is defined in [6] as a one-to-
one function f : V (G) → {0, 1, . . . ,m+δ−1,m+δ} that induces an edge-labeling
f ′ : E(G) → {1, . . . , m + δ} on G defined by

f ′(uv) = |f(u) − f(v)|, for each edge uv inE(G).

The value of a γδ-labeling f is defined as val(f) =
∑

e∈E(G) f ′(e). The maximum
value and the minimum value of a γδ-labeling of G are defined as

valδmax(G) = max{val(f) : f is a γδ-labeling of G}

and
valδmin(G) = min{val(f) : f is a γδ-labeling of G},

respectively. The other definitions are similar to the γ-labeling case.
The maximum value of a γδ-labeling of a cycle Cn of order n ≥ 4 are shown

in [6] as follows.

Theorem 4 [6]. For every pair δ, n of nonnegative integers with n ≥ 4,

valδmax(Cn) =

{
valmax(Cn) + nδ = n(n+2δ+2)

2 if n is even

valmax(Cn) + (n − 1)δ = (n−1)(n+2δ+3)
2 if n is odd.

Now, we consider a cycle of order n ≥ 4 with one chord, say Cn+e, i.e., a cycle
with a chord e joining two nonadjacent vertices in the cycle Cn. Therfore C�

n is
also a cycle with one chord that joins two nonadjacent vertices with distance 2
in the cycle Cn. In this paper, we naturally generalize a cycle Cn with one chord
e that joins two nonadjacent vertices with distance r in the cycle Cn where
2 ≤ r ≤ ⌊

n
2

⌋
and determine the maximum and minimum values of a γ-labeling

of Cn + e.
The reader is referred to Chartrand and Zhang [4] for basic definitions and

terminology not mentioned here.

2 The Minimum Value of Cycle with One Chord

In this section we establish valmin(Cn + e) for a cycle with one chord Cn + e.

Theorem 5. For every integer n ≥ 4,

valmin(Cn + e) = 2n − 1.

158 S. Saduakdee and V. Khemmani

Proof. By Theorem1 and Proposition 1, we have

valmin(Cn + e) ≥ 2(n − 1) + 1 = 2n − 1.

Hence it remains to show that valmin(Cn + e) ≤ 2n − 1.
Suppose that Cn + e is a cycle Cn : v1, v2, . . . , vr−1, vr, vr+1, . . . , vn, v1 with

a chord e = v1vr where 3 ≤ r ≤ n − 1. Consider now the γ-labeling f of Cn + e
defined by

f(vi) =

⎧
⎨

⎩

r − 1 if i = 1
i − 2 if 2 ≤ i ≤ r
n + r − i if r + 1 ≤ i ≤ n.

Then

val(f) =
∑r

i=3 (f(vi) − f(vi−1)) +
∑n−1

i=r+1 (f(vi) − f(vi+1)) + (f(v1) − f(v2))
+ (f(vn) − f(v1)) + (f(vr+1) − f(vr)) + (f(v1) − f(vr))

= 2n − 1.

Therefore, valmin(Cn + e) ≤ 2n − 1. ��

3 The Maximum Value of Odd Cycle with One Chord

In order to discuss valmax(Cn + e), we first consider the maximum value of an
odd cycle with one chord.

Theorem 6. For every odd integer n ≥ 5,

valmax(Cn + e) =
n2 + 6n − 3

2
.

Proof. Let Cn + e be an odd cycle with one chord of order n = 2k + 1 with
k ≥ 2, which is obtained from a cycle C2k+1 : x1, y1, x2, y2, . . . , xr, yr, . . . , xk, yk,
xk+1, x1 and a chord e. Since for each r with 2 ≤ r ≤ k, an odd cycle with one
chord Cn + x1yr is isomorphic to Cn + x1xk−r+2, without loss of generality, we
may assume that e = x1yr. Define a γ-labeling f of Cn + e by

f(xi) = i − 1 if 1 ≤ i ≤ k + 1

f(yi) =

⎧
⎨

⎩

n + 1 − i if 1 ≤ i ≤ r − 1
n + 1 if i = r
k − r + 2 + i if r + 1 ≤ i ≤ k.

Then

val(f) = 3(f(yr) − f(x1)) + 2
(∑r−1

i=1 f(yi) +
∑k

i=r+1 f(yi) − ∑k
i=2 f(xi)

)

= n2+6n−3
2 .

Thus valmax(Cn + e) ≥ n2+6n−3
2 .

γ-Labeling of a Cycle with One Chord 159

It remains therefore to show that valmax(Cn + e) ≤ n2+6n−3
2 . Let g be a

γ-max labeling of Cn + e. Then

valmax(Cn + e) = val(g)
=

∑
e∈E(Cn)

g′(e) + g′(x1yr)

≤ val1max(Cn) + (n + 1)

= (n−1)(n+2·1+3)
2 + (n + 1) (by Theorem4)

= n2+6n−3
2 .

Therefore, valmax(Cn + e) ≤ n2+6n−3
2 . ��

4 The Maximum Value of Even Cycle with One Chord

In Sect. 3, we considered the maximum value of an odd cycle with one chord.
We now study maximum value of an even cycle with one chord, valmax(Cn + e)
for even integer n ≥ 4. First, we determine the maximum value of Cn + e where
e is a chord joining two vertices with odd distance in the even cycle Cn.

Theorem 7. For every even integer n ≥ 6,

valmax(Cn + e) =
n2 + 6n + 2

2
where e is a chord joining two vertices with odd distance in the even cycle Cn.

Proof. Let Cn + e be an even cycle with one chord of order n = 2k with k ≥ 3,
which is obtained from a cycle C2k : x1, y1, x2, y2, . . . , xr, yr, . . . , xk, yk, x1 and a
chord e = x1yr, where 2 ≤ r ≤ k − 1. Define a γ-labeling f of Cn + e by

f(xi) = i − 1 if 1 ≤ i ≤ k

f(yi) =

⎧
⎨

⎩

n + 1 − i if 1 ≤ i ≤ r − 1
n + 1 if i = r
k − r + 1 + i if r + 1 ≤ i ≤ k.

Then

val(f) = 3(f(yr) − f(x1)) + 2
(∑r−1

i=1 f(yi) +
∑k

i=r+1 f(yi) − ∑k
i=2 f(xi)

)

= n2+6n+2
2 .

Thus valmax(Cn + e) ≥ n2+6n+2
2 .

In order to show that valmax(Cn + e) ≤ n2+6n+2
2 , let g be a γ-max labeling

of Cn + e. Then

valmax(Cn + e) = val(g)
=

∑
e∈E(Cn)

g′(e) + g′(x1yr)

≤ val1max(Cn) + (n + 1)

= n(n+2·1+2)
2 + (n + 1) (by Theorem4)

= n2+6n+2
2 .

Therefore, valmax(Cn + e) ≤ n2+6n+2
2 . ��

160 S. Saduakdee and V. Khemmani

In the remaining part of this section, we present the maximum value of an
even cycle with one chord, Cn+e where e is a chord joining two vertices with even
distance in the even cycle Cn. In order to do this, for k ≥ 2, we let n = 2k and
e = x1xr be a chord in the even cycle Cn : x1, y1, x2, y2, . . . , xr, yr, . . . , xk, yk, x1,
where 2 ≤ r ≤ k.

Proposition 2
valmax(C4 + e) = 17
valmax(C6 + e) = 32

where e is a chord joining two vertices with even distance in the cycles C4 and
C6, respectively.

Proof. First, let C4 + e = C4 + x1x2. The γ-labeling f of C4 + e is defined by

f(x1) = 0, f(x2) = 1, f(y1) = 5 and f(y2) = 4.

Then valmax(C4 + e) ≥ val(f) = 17.
On the other hand, let g be a γ-max labeling of C4 + e. By Theorem3, we

may assume that g(V (C4 + e)) = {0, 5, a, b} where a, b ∈ {1, 2, 3, 4}. Notice that
deg(x1) = deg(x2) = 3 and deg(y1) = deg(y2) = 2. We consider four cases,
according to the vertices of C4 + e labeled 0 and 5.

Case 1. {0, 5} = {g(x1), g(x2)}. Then val(g) = 15.
Case 2. {0, 5} = {g(y1), g(y2)}. Then val(g) = 10 + |a − b| ≤ 13.
Case 3. 0 ∈ {g(x1), g(x2)} and 5 ∈ {g(y1), g(y2)}. Then

val(g) = 10 +max{a, b} + |a − b| ≤ 17.

Case 4. 0 ∈ {g(y1), g(y2)} and 5 ∈ {g(x1), g(x2)}. Then

val(g) = 15 − min{a, b} + |a − b| ≤ 17.

Since val(g) ≤ 17, it follows that valmax(C4 + e) = val(g) ≤ 17.
Next, we compute valmax(C6+e). SinceC6+e = C6+x1x2 orC6+x1x3, it then

follows that C6 + e = C�
6 , and by Theorem2, valmax(C6 + e) = val(C�

6) = 32. ��
Next, we establish a lower bound for the maximum values of Cn + e of even

order n ≥ 8, where e is a chord joining two vertices with even distance in the
even cycle Cn.

Lemma 1. For every even integer n ≥ 8,

valmax(Cn + e) ≥ n2 + 6n − 10
2

where e is a chord joining two vertices with even distance in the even cycle Cn.

γ-Labeling of a Cycle with One Chord 161

Proof. Let f be a γ-labeling of Cn + e defined by

f(xi) =

⎧
⎨

⎩

i − 1 if 1 ≤ i ≤ r − 1
n + 1 if i = r
i − 2 if r + 1 ≤ i ≤ k

f(yi) =
{

n + 1 − i if 1 ≤ i ≤ r − 2
k − r + 2 + i if r − 1 ≤ i ≤ k.

Then

val(f) = 3 (f(xr) − f(x1)) + 2

(
r−2∑

i=1

f(yi) +
k∑

i=r+1

f(yi) −
r−1∑

i=2

f(xi) −
k∑

i=r+1

f(xi)

)

= n2+6n−10
2

.

Therefore valmax(Cn + e) ≥ val(f) = n2+6n−10
2 . ��

In order to present an upper bound for valmax(Cn + e), where e = x1xr

is a chord in the even cycle Cn : x1, y1, x2, y2, . . . , xr, yr, . . . , xk, yk, x1 of order
n = 2k with k ≥ 4 and 2 ≤ r ≤ k, we need some additional notation and
new definitions. Let f be a γ-max labeling of Cn + e. For each integer i, with
1 ≤ i ≤ k, we define the 3-term sequences

Si(f) = (f(xi), f(yi), f(xi+1)) and Ti(f) = (f(yi), f(xi+1), f(yi+1)),

where the addition is taken modulo k, and let

ST (f) = {S1(f), S2(f), . . . , Sk(f), T1(f), T2(f), . . . , Tk(f)}

be a set of 3-term sequences Si(f) and Ti(f), for all i with 1 ≤ i ≤ k. Further-
more, let Cn(f) be an oriented cycle obtained from (Cn + e)−x1xr by assigning
to the edge uv the orientation (u, v) if f(u) < f(v).

Theorem 8
valmax(C8 + e) = 51

where e is a chord joining two vertices with even distance in the cycle C8.

Proof. Let e = x1xr be a chord in the cycle C8 : x1, y1, x2, y2, x3, y3, x4, y4, x1,
where r = 2, 3, 4. If r = 2 or 4, then it follows by Theorem2, valmax(C8 + e) =
val(C�

8) = 51. Assume that r = 3. By Lemma1, we have valmax(C8 + e) ≥
82+6·8−10

2 = 51.
On the other hand, let f be a γ-max labeling of C8 + e. We consider the two

cases according to the set ST (f).

Case 1. No element of ST(f) is monotone. Then, for each i with 1 ≤ i ≤ 4, the
vertices xi and yi of the oriented cycle C8(f) have

either id(xi) = 0, id(yi) = 2 or id(xi) = 2, id(yi) = 0.

162 S. Saduakdee and V. Khemmani

First, assume that f(x1) > f(xr). We consider two subcases, according to
whether id(xi) = 0, id(yi) = 2 or id(xi) = 2, id(yi) = 0 in the oriented cycle
C8(f) for each i with 1 ≤ i ≤ 4.

Case 1.1. For each i with 1 ≤ i ≤ 4, id(xi) = 0, id(yi) = 2 of the oriented cycle
C8(f). So, f(xi) < f(yi) and f(xi+1) < f(yi) where addition is taken modulo 4.
Then

valmax(C8 + e) = val(f) = 2
4∑

i=1

f(yi) − (f(x1) + 2f(x2) + 3f(x3) + 2f(x4)).

Since the vertices x3, x2(or x4), x1 can be assigned 0, 1(or 2), 3, respectively and
the vertices in {y1, y2, y3, y4} can be assigned each of the labels 9, 8, 7, 6, it follows
that

2
4∑

i=1

f(yi) ≤ 60 and f(x1) + 2f(x2) + 3f(x3) + 2f(x4) ≥ 9.

Then valmax(C8 + e) = val(f) ≤ 60 − 9 = 51.

Case 1.2. For each i with 1 ≤ i ≤ 4, id(xi) = 2, id(yi) = 0 of the oriented cycle
C8(f). So, f(xi) > f(yi) and f(xi+1) > f(yi) where addition is taken modulo 4.
Then

valmax(C8 + e) = val(f) = (3f(x1) + 2f(x2) + f(x3) + 2f(x4)) − 2
4∑

i=1

f(yi).

Since the vertices x1, x2(or x4), x3 can be assigned 9, 8(or 7), 6, respectively and
the vertices in {y1, y2, y3, y4} can be assigned each of the labels 0, 1, 2, 3, it follows
that

3f(x1) + 2f(x2) + f(x3) + 2f(x4) ≤ 63 and 2
4∑

i=1

f(yi) ≥ 12.

Then valmax(C8 + e) = val(f) ≤ 63 − 12 = 51.

Next, if f(x1) < f(xr), with similar argument we can show that valmax(C8+
e) ≤ 51.

Case 2. Some element of ST (f) is monotone. Then the oriented cycle C8(f)
contains a directed path a, b, c of order 3. If we delete the chord e = x1xr and
vertex b from C8 + e and join the vertices a and c, the resulting graph G is
isomorphic to C7 and the restriction g of f to V ((C8 + e) − x1xr)−{b} has the
same value on G as f on (C8 + e) − x1xr, that is

val(g) = val(f) − f ′(x1xr) ≥ valmax(C8 + e) − 9.

Then valmax(C8 + e) ≤ val(g) + 9. Moreover, since g is a γ2-labeling of a graph
G that is isomorphic to C7, it follows that val(g) ≤ val2max(C7). Therefore, by
Theorem4, valmax(C8 + e) ≤ 51. ��

γ-Labeling of a Cycle with One Chord 163

As a consequence of Proposition 2 and Theorem8, we have the following
result.

Corollary 1. For n = 4, 6 and 8,

valmax(Cn + e) =
n2 + 5n − 2

2

where e is a chord joining two vertices with even distance in the even cycle Cn.

Lemma 2. For every even integer n, with n ≥ 8, let f be a γ-max labeling of
Cn + e where e is a chord joining two vertices with even distance in even cycle
Cn. If some element of ST (f) is monotone, then there are exactly two monotone
elements of ST (f).

Proof. Suppose that some element of ST (f) is monotone. Then the oriented
cycle Cn(f) contains a directed path of order 3. Since the size of the oriented
cycle Cn(f) is even, it follows that there are � directed paths of order 3 in Cn(f),
for some even integer l with 2 ≤ l ≤ n. Next, we show that there are no more
than two directed paths of order 3 in oriented cycle Cn(f).

Assume, to the contrary, that there are at least 4 directed paths of order 3
in the oriented graph Cn(f). For each i with 1 ≤ i ≤ 4, let Pi be a directed path
of order 3 having internal vertex ui in the oriented graph Cn(f). Then the cycle
(Cn + e) − x1xr is not only isomorphic to Cn but it is also a subdivision of the
cycle Cn−4.

We can construct a graph G which is isomorphic to Cn−4 obtained from Cn+e
by deleting the chord e = x1xr and the internal vertices u1, u2, u3, u4 and then
adding one or more edges to G. Then the restriction of f to V ((Cn + e) − x1xr)−
{u1, u2, u3, u4}, g, has the same value on G as f does on (Cn + e)−x1xr, that is

val(g) = val(f) − f ′(x1xr) ≥ valmax(Cn + e) − (n + 1).

Then valmax(Cn + e) ≤ val(g) + (n + 1). Moreover, since g is a γ5-labeling of
a graph G which is isomorphic to Cn−4, it follows that val(g) ≤ val5max(Cn−4).
Therefore,

valmax(Cn + e) ≤ val(g) + (n + 1)

≤ val5max(Cn−4) + (n + 1)

= (n−4)((n−4)+2·5+2)
2 + (n + 1) (by Theorem4)

< n2+6n−10
2

a contradiction with Lemma1. Thus, for n ≥ 8, the oriented cycle Cn(f) contains
exactly two directed paths of order 3 and there are also exactly two monotone
elements in ST (f). ��

By Theorem8 and Lemma2, we are able to characterize any γ-max labeling
f of C8 + e, in terms of set ST (f) and the oriented cycle C8(f).

164 S. Saduakdee and V. Khemmani

Proposition 3. Let f be a γ-max labeling of C8 + e where e is a chord joining
two vertices with even distance in cycle C8. Then either no element of ST (f) is
monotone or there are exactly two monotone elements of ST (f).

Proposition 4. For every even integer n with n ≥ 10, let f be a γ-max labeling
of Cn + e where e is a chord joining two vertices with even distance in the even
cycle Cn. Then ST (f) contains exactly two monotone elements.

Proof. Assume, to the contrary, that the property does not verify. Then, by
Lemma2, ST (f) contains no monotone element. Hence, for the vertices xi and yi

of the oriented cycle Cn(f), either id(xi) = 0, id(yi) = 2 or id(xi) = 2, id(yi) =
0 for each i with 1 ≤ i ≤ k. We consider the two cases separately.

Case 1. For each i with 1 ≤ i ≤ k, id(xi) = 0, id(yi) = 2 of the oriented cycle
Cn(f). Thus f(xi) < f(yi) and f(xi+1) < f(yi) where addition is taken modulo
k. Then

valmax(Cn + e) = val(f) = 2
k∑

i=1

f(yi) − 2
k∑

i=1

f(xi) + |f(x1) − f(xr)|.

If f(x1) > f(xr), then

valmax(Cn + e) = val(f) = 2
k∑

i=1

f(yi) −

⎛

⎜
⎜
⎝3f(xr) + 2

∑

2≤i≤k
i�=r

f(xi) + f(x1)

⎞

⎟
⎟
⎠ .

The vertices in {y1, y2, . . . , yk} and {x1, x2, . . . , xk} can be assigned labels
in the consecutive integers sets {k + 2, k + 3, . . . , n + 1} and {0, 1, . . . , k − 1},
respectively. Moreover, xr and x1 can be assigned 0 and k − 1, respectively.
Hence,

valmax(Cn + e) = val(f) ≤ 2
∑n+1

i=k+2 i −
(
0 + 2

∑k−2
i=1 i + (k − 1)

)

= n2 + 3n − 2k2 − k − 1
= n2+5n−2

2 .

On the another hand, if f(x1) < f(xr), with similar argument we can show
that valmax(Cn+e) ≤ n2+5n−2

2 . However, by Lemma1, we have valmax(Cn+e) ≥
n2+6n−10

2 , which is a contradiction.

Case 2. For each i with 1 ≤ i ≤ k, id(xi) = 2, id(yi) = 0 of the oriented cycle
Cn(f). Thus f(xi) > f(yi) and f(xi+1) > f(yi) where addition is taken modulo
k. Then

valmax(Cn + e) = val(f) = 2
k∑

i=1

f(xi) − 2
k∑

i=1

f(yi) + |f(x1) − f(xr)|.

γ-Labeling of a Cycle with One Chord 165

First, if f(x1) > f(xr). Then

valmax(Cn + e) = val(f) =

⎛

⎜
⎜
⎝3f(x1) + 2

∑

2≤i≤k
i�=r

f(xi) + f(xr)

⎞

⎟
⎟
⎠ − 2

k∑

i=1

f(yi).

The vertices in {x1, x2, . . . , xk} and {y1, y2, . . . , yk} can be assigned labels
in the consecutive integers sets {k + 2, k + 3, . . . , n + 1} and {0, 1, . . . , k − 1},
respectively. Moreover, x1 and xr can be assigned n+ 1 and k + 2, respectively.
Therefore,

valmax(Cn + e) = val(f) ≤ (
3(n + 1) + 2

∑n
i=k+3 i + (k + 2)

) − 2
∑k−1

i=0 i
= n2 + 4n − 2k2 − 3k − 1
= n2+5n−2

2 .

Next, if f(x1) < f(xr), with similar argument we can show that valmax(Cn+e) ≤
n2+5n−2

2 . However, by Lemma1, we have valmax(Cn + e) ≥ n2+6n−10
2 , which is

a contradiction. ��
We are now prepared to establish a general formula for valmax(Cn +e), when

n ≥ 10.

Theorem 9. For every even integer n ≥ 10,

valmax(Cn + e) =
n2 + 6n − 10

2

where e is a chord joining two vertices with even distance in the even cycle Cn.

Proof. By Lemma1, we have valmax(Cn + e) ≥ n2+6n−10
2 . Next, we show that

valmax(Cn + e) ≤ n2+6n−10
2 . Let f be a γ-labeling of Cn + e. By Proposition 4,

the oriented cycle Cn(f) contains a directed path a, b, c of order 3. If we delete
the chord e = x1xr and the vertex b from Cn + e and then join the vertices a
and c, the resulting graph G is isomorphic to Cn−1 and the restriction g of f to
V ((Cn + e) − x1xr − b), verifies

val(g) = val(f) − f ′(x1xr) ≥ valmax(Cn + e) − (n + 1).

Therefore,
valmax(Cn + e) ≤ val(g) + (n + 1).

Moreover, since g is a γ2-labeling of graph G that is isomorphic to Cn−1, it
follows that val(g) ≤ val2max(Cn−1). Therefore,

valmax(Cn + e) ≤ val2max(Cn−1) + (n + 1)

= ((n−1)−1))((n−1)+2·2+3)
2 + (n + 1)

= n2+6n−10
2 . ��

As a consequence of Corollary 1 and Theorem9, we have the following result.

166 S. Saduakdee and V. Khemmani

Corollary 2. For every even integer n ≥ 4,

valmax(Cn + e) =

{
n2+5n−2

2 if n = 4, 6, 8
n2+6n−10

2 if n ≥ 10

where e is a chord joining two vertices with even distance in the even cycle Cn.

5 Final Remarks

In [2,8] the γ-spectra of doublestars, paths, cycles, and complete graphs are
determined. Later, in [6], the extremal values of a γ-labeling of a cycle with a
triangle are established. It would be interesting to determine the γ-spectrum of
a cycle with one chord and find whether it is continuous or not. Observe that
the value of any γ-labeling of a cycle in [8] is always even.

References

1. Bullington, G.D., Eroh, L.L., Winters, S.J.: γ-labelings of complete bipartite
graphs. Discuss. Math. Graph Theor. 30, 45–54 (2010)

2. Chartrand, G., Erwin, D., VanderJagt, D.W., Zhang, P.: γ-labelings of graphs.
Bull. Inst. Combin. Appl. 44, 51–68 (2005)

3. Chartrand, G., Erwin, D., VanderJagt, D.W., Zhang, P.: On γ-labelings of trees.
Discuss. Math. Graph Theor. 25(3), 363–383 (2005)

4. Chartrand, G., Zhang, P.: Introduction to Graph Theory. The Walter Rudin Stu-
dent Series in Advanced Mathematics. McGraw-Hill Higher Education, Boston
(2005)

5. Crosse, L., Okamoto, F., Saenpholphat, V., Zhang, P.: On γ-labelings of oriented
graphs. Math. Bohem. 132, 185–203 (2007)

6. Fonseca, C.M., Saenpholphat, V., Zhang, P.: Extremal values for a γ-labeling of a
cycle with a triangle. Utilitas Math. 92, 167–185 (2013)

7. Fonseca, C.M., Khemmani, V., Zhang, P.: On γ-labelings of graphs. Utilitas Math.
98, 33–42 (2015)

8. Fonseca, C.M., Saenpholphat, V., Zhang, P.: The γ-spectrum of a graph. Ars Com-
bin. 101, 109–127 (2011)

9. Gallian, J.A.: A dynamic survey of graph labeling. Electron. J. Combin. 16(6),
1–219 (2009)

10. Golomb, S.W.: How to number a graph. In: Graph Theory and Computing, pp.
349–355. Academic Press, New York (1972)

11. Rosa, A.: On certain valuations of the vertices of a graph. In: Theory of
Graphs (International Symposium, Rome, 1966), pp. 349–355, Gordon and Breach,
New York (1966)

Box Pleating is Hard

Hugo A. Akitaya1(B), Kenneth C. Cheung2, Erik D. Demaine3,
Takashi Horiyama4, Thomas C. Hull5, Jason S. Ku3, Tomohiro Tachi6,

and Ryuhei Uehara7

1 Tufts University, Medford, USA
hugo.alves akitaya@tufts.edu

2 NASA, Washington, D.C., USA
kenneth.c.cheung@nasa.gov

3 MIT, Cambridge, USA
{edemaine,jasonku}@mit.edu

4 Saitama University, Saitama, Japan
horiyama@al.ics.saitama-u.ac.jp

5 Western New England University, Springfield, USA
thull@wne.edu

6 The University of Tokyo, Tokyo, Japan
tachi@idea.c.u-tokyo.ac.jp

7 JAIST, Nomi, Japan
uehara@jaist.ac.jp

Abstract. Flat foldability of general crease patterns was first claimed
to be hard for over twenty years. In this paper we prove that deciding
flat foldability remains NP-complete even for box pleating, where creases
form a subset of a square grid with diagonals. In addition, we provide
new terminology to implicitly represent the global layer order of a flat
folding, and present a new planar reduction framework for grid-aligned
gadgets.

1 Introduction

In their seminal 1996 paper, Bern and Hayes initiated investigation into the
computational complexity of origami [BH96]. They claimed that it is NP-hard
to determine whether a given general crease pattern can be folded flat, both when
the creases have or have not been assigned crease directions (mountain fold or
valley fold). Since that time, there has been considerable work in analyzing the
computational complexity of other origami related problems. For example, Arkin
et al. [ABD+04] proved that deciding foldability is hard even for simple folds,
while Demaine et al. [DFL10] proved that optimal circle packing for origami
design is also hard.

While the gadgets in the hardness proof presented in [BH96] for unassigned
crease patterns are relatively straightforward, their gadgets for assigned crease
patterns are considerably more convoluted, and quite difficult to check. In fact,
we have found an error in even their unassigned crossover gadget where signals
are not guaranteed to transmit correctly for wires that do not cross orthogonally,
c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 167–179, 2016.
DOI: 10.1007/978-3-319-48532-4 15

168 H.A. Akitaya et al.

which is required in their construction. Part of the reason no one found this error
until now is that there was no formal framework in which to prove statements
about flat-folded states. We attempt to provide such a framework.

At the end of their paper, Bern and Hayes pose some interesting open ques-
tions to further their work. While most of them have been investigated since, two
in particular (problems 2 and 3) have remained untouched until now. First, is
there a simpler way to achieve a proof for assigned crease patterns (i.e. “without
tabs”)? Second, their reductions construct creases at a variety of unconstrained
angles. Is deciding flat foldability easy under more restrictive inputs? For exam-
ple, box pleating involves folding creases only along on a subset of a square grid
and the diagonals of the squares, a special case of particular interest in trans-
formational robotics and self-assembly, with a universality result constructing
arbitrary polycubes using box pleating [BDDO10].

In this paper we address both these questions. We prove that deciding flat
foldability of box-pleated crease patterns is NP-hard in both the unassigned and
assigned cases, using relatively simple gadgets containing no more than 25 layers
at any point.

2 Definitions

In general, we are guided by the terminology laid out in [DO07,Rob77]. An
isometric flat folding of a paper P is a function f : P → R

2 such that if γ is
a piecewise-geodesic curve on P parameterized with respect to arc-length, then
f(γ) is also a piecewise-geodesic curve parameterized with respect to arc-length.
It is not hard to show that under these conditions f must be continuous and
non-expansive. Let Xf be the boundary of a paper P together with the set of
points not differentiable under f . Then one can prove that Xf is a straight-line
graph embedded in the paper [Rob77], with vertex set Vf and edge set Cf , the
creases of our folding f . A vertex or crease in Vf or Cf is external if it contains
a boundary point of P , and internal otherwise. Subtracting Xf from P results
in a disconnected set of open polygons Ff we call faces. For any face F ∈ Ff ,
f(F) is either an isotopic transformation in R

2, or the transformation involves a
reflection and is anisotopic. Define uf : P \ Xf → {−1, 1} such that uf (p) = −1
if the face containing p is reflected under f and uf (p) = 1 otherwise. We call
uf (p) the orientation of the face containing p. Every point in P is in exactly
one of Vf , Cf , or Ff . We call this partition of P the isometrically flat foldable
crease pattern Σf = (Vf , Cf , Ff) induced by f . We call a folding box pleating if
every vertex lies on two dimensional integer lattice, and the creases are aligned
at multiples of 45◦ to each other.

We say two disjoint simply connected subsets of P are adjacent to each
other if their closures intersect; we call such an intersection the adjacency of the
adjacent subsets. We say a simply connected subset of P is uncreased under f if
f is injective when restricted to the subset. We say two simply connected subsets
of P overlap under f if the interiors of their images under f intersect. We say two
simply connected subsets of P strictly overlap under f if their images under f

Box Pleating is Hard 169

Consistency Face-Crease Noncrossing Crease-Crease Noncrossing

f(p1)

f(O2)

f(O1)

f(p2)

f(O2)

f(O1)

f(O3) f(O1) f(O3)

f(O2)

f(O4)

Fig. 1. Topologically different local interactions within an isometric flat folding. For-
bidden configurations are shown for Face-Crease and Crease-Crease Non-Crossing.

exactly coincide. It is known that the set of creases adjacent to an internal vertex
of a crease pattern obey the so called Kawasaki-Justin Theorem: the alternating
sum of angles between consecutive creases when cyclically ordered around the
vertex equals zero [DO07]. This condition turns out to be necessary sufficient:
given a paper P exhaustively partitioned into a set of isolated points V , open
line segments C, and open disks F such that every point in V is adjacent to more
than two segments in C, then (V,C, F) is an isometrically flat foldable crease
pattern induced by a unique isometric flat folding if and only if (V,C, F) obeys
the Kawasaki-Justin Theorem.

Let a function λf : P ×P → {−1, 1} be a global layer ordering of an isometric
flat folding f if it obeys the following six properties.

Existence: λf satisfies existence if λf (p, q) is defined for every distinct pair of
points p and q that strictly overlap under f and at least one of p or q is not in
Xf ; otherwise λf (p, q) is undefined. Informally, order is only defined between a
point on a face and another point overlapping it in the folding.

Antisymmetry: λf is antisymmetric if λf (p, q) = −λf (q, p), where λf is
defined. Informally, if p is above q, then q is below p.

Transitivity: λf is transitive if λf (p, q) = λf (q, r) implies λf (p, r) = λf (p, q),
where λf is defined. Informally, if q is above p and r is above q, then r is above p.

Consistency (Tortilla-Tortilla Property): For any two uncreased simply
connected subsets O1 and O2 of P that strictly overlap under f , λf is consistent
if λf (p1, p2) has the same value for all (p1, p2) ∈ O1 × O2, where λf is defined.
See Fig. 1. Informally, if two regions completely overlap in the folding, one must
be entirely above the other.

Face-Crease Non-crossing (Taco-Tortilla Property): For any three
uncreased simply connected subsets O1, O2, and O3 of P such that O1 and
O3 are adjacent and strictly overlap, and O2 overlaps the adjacency between O1

and O3 under f , λf is face-crease non-crossing if λf (p1, p2) = −λf (p2, p3) for
any points (p1, p2, p3) ∈ O1×O2×O3, where λf is defined. See Fig. 1. Informally,
if a region overlaps a nonadjacent internal crease, the region cannot be between
the regions adjacent to the crease.

Crease-Crease Non-crossing (Taco-Taco Property): For any two adjacent
pairs of uncreased simply connected subsets (O1, O2) and (O3, O4) of P such that

170 H.A. Akitaya et al.

All same
Adjacent

Half-half
Nested

Odd one out
Intersecting

Fig. 2. Local interaction between overlapping regions around two distinct creases.

every pair of subsets strictly overlap and the adjacency of O1 and O2 strictly
overlaps the adjacency of O3 and O4 under f , λf is crease-crease non-crossing if
either {λf (p1, p3), λf (p1, p4), λf (p2, p3), λf (p2, p4)} are all the same or half are
+1 and half are −1, for any points (p1, p2, p3, p4) ∈ O1 ×O2 ×O3 ×O4, where λf

is defined. See Fig. 2. Informally, if two creases overlap in the folding, either the
regions incident to one crease lie entirely above the regions incident to the other
(all same), or the regions incident to one crease nest inside the regions incident
to the other (half-half).

If there exists a global layer ordering for a given isometrically flat foldable
crease pattern, we say the crease pattern is globally flat foldable. Consider an
isometrically flat foldable crease pattern Σf containing two adjacent uncreased
simply connected subsets O1 and O2 of P that strictly overlap under f , and let
p and q be points in O1 and O2 respectively that overlap under f . O1 and O2

are subsets of disjoint adjacent faces of the crease pattern mutually bounding
a crease. If λf is a global flat folding of Σf , then it induces a mountain/valley
assignment αλf

(c) = u(p)λf (p, q) for each crease point c in the adjacency of O1

and O2. This assignment is unique by consistency. We call a crease point c a
valley fold (V) if αλf

(c) = 1 and a mountain fold (M) if αλf
(c) = −1. In the

figures, mountain folds are drawn in red while valley folds are drawn in blue. By
convention, if λf (p, q) = −1 we say that p is above q, and if λf (p, q) = 1 we say
that p is below q.

Given an isometrically flat foldable crease pattern Σf , the Unassigned-
flat-foldability problem asks whether there exists a global layer ordering for
f . Alternatively, given an isometrically flat foldable crease pattern Σf and an
assignment α : Cf → {M,V } mapping creases to either mountain or valley, the
Assigned-flat-foldability problem asks whether there exists a global layer
ordering for f whose induced mountain valley assignment is consistent with α.

We now prove the following implied properties of globally flat foldable crease
patterns relating the layer order between points contained in multiple overlap-
ping faces. Informally, Pleat-Consistency says if a face is adjacent and over-
lapping two larger faces, then the creases between them must have different
M/V assignment, forming a pleat. Path-Consistency says that a face overlap-
ping creases connecting an adjacent sequence of faces is either above or below
all of them.

Lemma 1 (Pleat-Consistency). If Σf is a globally flat foldable crease pattern
containing disjoint uncreased simply connected subsets O1, O2, and O3 of P with

Box Pleating is Hard 171

O2 adjacent to both O1 and O3 such that O2 strictly overlaps subsets O′
1 ⊂ O1

and O′
3 ⊂ O3, and the interiors of O1 and O3 overlap the adjacencies of O2, O3

and O1, O2 respectively, then λf (p1, p2) = λf (p2, p3) for any pairwise overlapping
points (p1, p2, p3) ∈ O1 × O2 × O3.

Proof. Taco-Tortilla applied to O3 which overlaps the adjacency of strictly over-
lapping sets O2 and O′

1 implies λf (p2, p3) = −λf (p3, p1). Similarly, Taco-Tortilla
applied to O1 which overlaps the adjacency of strictly overlapping sets O′

3 and
O2 implies λf (p3, p1) = −λf (p1, p2), so λf (p1, p2) = λf (p2, p3). ��
Lemma 2 (Path-Consistency). If Σf is a globally flat foldable crease pattern
containing uncreased simply connected subset T of P and a disjoint sequence of
adjacent uncreased simply connected subsets O1, . . . , On of P such that Oi strictly
overlaps some subset Ti of T and the interior of O overlaps the adjacency of
each pair Oi and Oi+1 for i = {1, . . . , n − 1}, then λf (tj , pj) = λf (tk, pk) for
any two pairs of overlapping points (tj , pj) ∈ Tj × Oj and (tk, pk) ∈ Tk × Ok for
j, k ∈ {1, . . . , n}.
Proof. If some Oi and Oi+1 overlap, Taco-Tortilla and Consistency ensure that
λf (ti, pi) = λf (ti+1, pi+1) for (ti, pi) ∈ Ti × Oi and (ti+1, pi+1) ∈ Ti+1 × Oi+1.
Alternatively, Oi and Oi+1 do not overlap and the closure of Oi ∪ Oi+1 is an
uncreased region for which λf (ti, pi) = λf (ti+1, pi+1) by consistency. Applying
sequentially to each pair of faces proves the claim. ��

The proofs in Sects. 5 and 6 contain many examples of the application of
these properties. When proving the existence of a global layer ordering λf , it
is often impractical to define λf between every pair of points. Frequently λf

is uniquely induced by a M/V assignment, consistency, and transitivity. When
it is not, we will provide λf between additional point pairs so that it will be.
We present crease patterns with this implicit layer ordering information and
encourage readers to fold them to reconstruct the unique layer orderings they
induce.

3 Bern and Hayes and k-Layer-Flat-Foldability

Two crossover gadgets are presented in the reduction to Unassigned-Flat-
Foldability provided in [BH96]. For each, they claim that the M/V assignment
of the crease pair intersecting one edge of the gadget deterministically implies
the M/V assignment of the crease pair on the opposite side. This claim is true
for their perpendicular crossover gadget, but is unfortunately not true for the
other for wires meeting at 45◦. The gadget as described requires an exterior
45◦ angle between incoming wires that is the smallest angle at a four-crease
vertex, forbidding the wires to be independently assigned by Pleat-Consistency.
For completeness, we have also checked the family of possible gadgets of this
form, with a rotated internal parallelogram, and no choice of rotation allows
the gadget to function correctly as a crossover for the range of widths of wires

172 H.A. Akitaya et al.

that appear in the construction. Our proof to follow only uses the perpendicular
crossover, avoiding this complication.

Also in [BH96], they define k-Layer-Flat-Foldability to be the same
as Unassigned-Flat-Foldability or Assigned-Flat-Foldability but with
the additional constraint that f maps at most k distinct points to the same point.
They claim that their reduction implies hardness of Unassigned-k-Layer-
Flat-Foldability for k = 7. But in fact their perpendicular crossover gad-
get requires nine points to be mapped to the same point. Our reduction uses
the same gadget as a crossover, so we reconfirm that Unassigned-k-Layer-
Flat-Foldability is NP-complete for k ≥ 9, even for box pleated crease pat-
terns. Also, because of the complexity of their assigned crease pattern reduction,
they were unable to bound the number of layers in their reduction. We explic-
itly provide gadgets for the assigned case to prove Assigned-k-Layer-Flat-
Foldability is NP-complete for k ≥ 25, even for box pleated crease patterns.

4 SCN-Satisfiability

Our reductions will be from the following NP-complete problem [Sch78].

Problem 1 (Not-All-Equal 3-SAT). Given a collection of clauses each con-
taining three variables, Not-All-Equal 3-SAT (NAE3-SAT)1 asks if variables
can be assigned True or False so that no clause contains variables of only one
assignment.

We can construct a planar directed graph G embedded in R
2 from an instance

N of NAE3-SAT. For each clause, construct a Complex Clause Gadget as the
one shown in Fig. 3. The motivation behind the Complex Clause Gadget is to

Variable

Split 1 Split 2

ClauseCross

u

v

w

x

y

z

u

v

w

x

y

z

Fig. 3. SCN Gadgets. [Left] A Complex Clause Gadget constructed from the Not-All-
Equal clause on variables v, w, and y of a NAE3-SAT instance on six variables. [Right]
The five elemental SCN Gadgets.

1 This problem is sometimes called ‘positive’ as variables cannot appear negated within
clauses, however we follow the naming convention from [Sch78].

Box Pleating is Hard 173

encode the bipartite graph implicit in N in a planar grid embedding that can
be modularly connected. Each directed edge of the Complex Clause Gadget
is associated with a different variable, and we associate a different color with
each variable. Some variables do not participate in the clause and simply form a
straight chain of directed segments from left to right. However, the three variables
participating in the clause are rerouted to intersect at the black dot. We construct
a Complex Clause Gadget for each clause in the instance of NAE3-SAT and chain
them together side by side, so the arrows exiting the right side of one enter the
left side of another. Graph G has vertices that are adjacent to edges associated
with exactly one, two, or three variables. We call these vertices split, cross, and
clause vertices respectively. In the figures, they are labeled with white circles,
crossed circles, and black circles respectively. We call such a directed graph G a
Split-Cross-Not-All-Equal (SCN) graph.

Problem 2 (SCN-Satisfiability). Given a SCN graph, SCN-Satisfiability
asks if variables can be assigned True or False so that no clause vertex is adjacent
to edges associated with variables of only one assignment.

The authors introduce SCN-Satisfiability as a useful intermediate problem
because it is equivalent to NAE3-SAT but its embedding is planar, lies on
a grid, and is constructed only by a small number of local elements. SCN-
Satisfiability is equivalent to NAE3-SAT because the bipartite graph con-
necting SCN variables to clause vertices is exactly the bipartite graph represent-
ing N by construction. However, G has useful structure for many problems. It
is planar, the embedding contains edges with only four slopes, and the edges are
directed meaning that a variable can be represented locally with respect to that
direction. Further G is constructed from only a small number of local elements:
a variable gadget, two split gadgets, a cross gadget, and a clause (simple) gadget
as shown in Fig. 3. We call these the five elemental SCN Gadgets. If we can sim-
ulate each of these gadgets in another context, proving that edges of the same
color in each gadget must all have the same value, and edges adjacent to a clause
vertex do not all have equal value, we can prove other problems NP-hard. This
will be our strategy in the following sections.

Theorem 1. If a problem X can simulate the elemental SCN gadgets such that
edges of the same color in each gadget have the same value and edges adjacent
to a clause vertex do not all have equal value and if the correspondent gadgets
in X can be connected consistently, then X is NP-Hard.

5 Unassigned Crease Patterns

In this section we present gadgets simulating the elemental SCN gadgets with
unassigned crease patterns. They are shown in Fig. 4.

We define a variable gadget to be a pair of parallel creases placed close
together having an direction as shown in Fig. 4. By pleat-consistency and tran-
sitivity, λf (a, b) = λf (b, c) = λf (a, c) so, local to the gadget, it has exactly two

174 H.A. Akitaya et al.

Fig. 4. Elemental SCN Gadgets simulated with unassigned crease patterns.

globally flat foldable states. We say the variable is True if the face to the right of
the variable direction is above the face to left (λf (a, c) = 1), and False otherwise.

Lemma 3. The unassigned crossover gadget is a globally flat foldable crease
pattern if and only if opposite variables are equal.

Proof. Refer to Fig. 4. Assume global flat foldability. Let A,B,C,D,E, F be the
maximal subsets of the faces respectively containing points a, b, c, d, e, f such
that every pair strictly overlap. First assume that λf (a, b) = λf (c, d). By Taco-
Taco with respect to adjacencies A,C and B,D, λf (a, d) = λf (c, b). By Taco-
Taco with respect to adjacencies A,B and C,D, λf (a, c) = −λf (b, d). By Pleat-
Consistency on A, C, E, λf (a, c) = λf (c, e). By Pleat-Consistency on B, D,
F , λf (b, d) = λf (d, f). So λf (c, e) = −λf (d, f). By Taco-Taco with respect to
adjacencies C,D and E,F , λf (c, f) = −λf (d, e). By Taco-Taco with respect
to adjacencies C,E and D,F , λf (c, d) = λf (e, f). Thus because λf (a, b) =
λf (e, f), the variable on the left has the same value as the one on the right.
Alternatively if λf (a, b) = −λf (c, d), the same series of arguments yields that
λf (c, d) = −λf (e, f), so λf (a, b) = λf (e, f). Thus if global flat foldability holds,
opposite variables are equal. Now assume that opposite variables are equal. The
M/V assignment in Fig. 4 completely induces λf , along with consistency and
transitivity. The path shown is a linear order on the faces satisfying global layer

Box Pleating is Hard 175

ordering. Further, every other assignment of variables can be represented by a
reflection of this crease pattern. ��
Lemma 4. The unassigned split gadget is a globally flat foldable crease pattern
if and only if its three variables are equal.

Proof. Refer to Fig. 4. Assume global flat foldability. Let A and B be the faces
containing points a and b respectively. The region highlighted in the figure and
A must satisfy Path-Consistency, so λf (a, b) = λf (a, c). Since the crease pattern
is symmetric, λf (b, a) = λf (b, c). Then, by antisymmetry, λf (a, b) = λf (c, b),
and therefore all variables are equal. Now assume all variables are equal. The
path shown in Fig. 4 is a linear order on the faces satisfying global layer ordering.
Further, every other assignment of variables can be represented by a reflection
of this crease pattern. ��
Lemma 5. The clause gadget is a globally flat foldable crease pattern if and
only if its three variables are not all equal.

Proof. Refer to Fig. 4. Assume for contradiction the clause gadget is global flat
foldable and all variables are equal. By consistency λf (a, b) = λf (b, c) = λf (c, a).
By transitivity, λf (a, b) = λf (a, c). By antisymmetry, λf (a, b) = −λf (c, a), a
contradiction. Thus the variables are not all equal. Now assume all variables are
not all equal. The paths shown in Fig. 4 are linear orders on the faces satisfy-
ing global layer ordering. Further, every other assignment of variables can be
represented by the negation of one of these (M/V) assignments. ��
Theorem 2. Unassigned-Flat-Foldability is NP-complete, even for box
pleated crease patterns.

Proof. Given λf as our certificate, we can check in polynomial time whether it
satisfies all conditions for global flat foldability, therefore Unassigned-Flat-
Foldability is in NP. By Lemmas 3, 4 and 5, Unassigned-Flat-Foldability
can simulate the SCN-Satisfiability gadgets. It remains to check if the gad-
gets can be consistently connected. Let the width of a variable be the distance
between its parallel creases. The crossover gadget connects variables of the same
width while the clause and split gadgets both connect variables whose ratios
differ by a factor of

√
2. Setting the width of one variable in any gadget induces

the width of the other variables in the gadget. Fixing the width of one variable
in the Complex Clause Gadget (Fig. 3), a consistent unique width for all other
variables is induced, resulting in the same width for each variable intersecting
a left or right edge. Therefore, by Theorem1, Unassigned-Flat-Foldability
is NP-Hard. ��

6 Assigned Crease Patterns

In this section we present gadgets simulating the elemental SCN gadgets with
assigned crease patterns. They are shown in Fig. 5.

176 H.A. Akitaya et al.

Fig. 5. Elemental SCN Gadgets simulated with assigned crease patterns.

We define a variable gadget as a set of parallel creases placed close together
having a direction and a crease assignment as shown in Fig. 5. By Taco-Tortilla,
λf (a, c) = λf (b, c) = λf (a, d) = λf (b, d), so, local to the gadget, it has exactly
two globally flat foldable states. We say the variable is True if the faces to the
right of the variable direction are above the faces to left (λf (a, c) = 1), and False
otherwise.

Lemma 6. The assigned crossover gadget is a globally flat foldable crease pat-
tern if and only if opposite variables are equal.

Proof. Refer to Fig. 5. Assume global flat foldability. Let A,B,C,D be the
maximal subsets of the faces respectively containing points a, b, c, d such that
every pair strictly overlap. By transitivity on subset of λf induced by the
M/V assignment shown, λf (a, d) = λf (b, c) = −1. By Taco-Taco with respect
to adjacencies A,C and B,D, λf (a, b) = −λf (c, d). Repeating this argument
for adjacent rows of faces all the way down implies λf (a, b) = −λf (c, d) =
λf (e, f) = −λf (g, h) = λf (i, j). Thus, the variable on the top edge of
the gadget has the same value as the one on the bottom. First assume
λf (g, a) = λf (a, b). Then previous implications imply λf (g, a) = −λf (g, h).
By transitivity and antisymmetry, λf (g, a) = λf (h, b). Thus, the variable on the
left side of the gadget has the same value as the one on the right. Alternatively,
assume −λf (g, a) = λf (a, b) so λf (c, i) = λf (d, c). Then previous implications

Box Pleating is Hard 177

Fig. 6. A folded example of our assigned reduction with two clauses on four variables.

imply λf (c, i) = λf (i, j). By transitivity and antisymmetry, λf (c, i) = λf (d, j).
Thus, the variable on the left side of the gadget has the same value as the one on
the right. So, if globally flat foldable, opposite variables are equal. Now assume
that opposite variables are equal. One can fix a unique λf by choosing a subset
of λf in addition to the subset induced by the M/V assignment and consistency.
The path shown in Fig. 5 is a linear order on the faces satisfying global layer
ordering. Further, every other assignment of variables can be represented by a
reflection of this crease pattern. ��
Lemma 7. The assigned split gadget is a globally flat foldable crease pattern if
and only if its three variables are equal (Fig. 6).

Proof. Refer to Fig. 5. Assume global flat foldability. Let A and B be the faces
containing points a and b respectively. The region highlighted in the figure and
A must satisfy Path-Consistency, so λf (a, b) = λf (a, c). Since the crease pattern
is symmetric, λf (b, a) = λf (b, c). Then, by antisymmetry, λf (a, b) = λf (c, b),
and therefore all variables are equal. Now assume all variables are equal. The
path shown in Fig. 5 is a linear order on the faces satisfying global layer ordering.
Further, any other assignment of variables can be attained by a reflection. ��
Lemma 8. The assigned clause gadget is a globally flat foldable crease pattern
if and only if its three variables are not all equal.

Proof. Refer to Fig. 5. Assume for contradiction the clause gadget is global flat
foldable and all variables are equal. By consistency λf (a, b) = λf (b, c) = λf (c, a).
By transitivity, λf (a, b) = λf (a, c). By antisymmetry, λf (a, b) = −λf (c, a), a
contradiction. Thus the variables are not all equal. Now assume all variables are
not all equal. The paths shown in Fig. 5 are linear orders on the faces satisfying
global layer ordering. Further, any other assignment of variables can be attained
by reversing the arrows in the figure. ��
Theorem 3. Assigned-Flat-Foldability is NP-complete, even for box
pleated crease patterns.

178 H.A. Akitaya et al.

Table 1. Overview of our results and open problems. ‘Hard’ and ‘Poly’ designate
problems that are NP-complete or solvable in polynomial time respectively.

General Box pleating Orthogonal Map

Unassigned Hard [BH96] Hard (Ours) Poly [ABD+04] Always true

Assigned Hard [BH96] Hard (Ours) Open Open

Proof. Given λf as our certificate, we can check in polynomial time whether
it satisfies all conditions for global flat foldability and if it is consistent with
the crease assignment, therefore Assigned-Flat-Foldability is in NP. By
Lemmas 6, 7 and 8, Assigned-Flat-Foldability can simulate the SCN-
Satisfiability gadgets. It remains to check if the gadgets can be consistently
connected. Let the width of a variable be the distance between its two parallel
mountain creases. By the same argument as in the proof of Theorem 2, widths
of variables can be assigned consistently. Therefore, by Theorem1, Assigned-
Flat-Foldability is NP-Hard. ��

7 Conclusion

Table 1 overviews our results and open problems. We proved Unassigned-Flat-
Foldability and Assigned-Flat-Foldability are NP-complete, even for box
pleated crease patterns containing no more than 9 and 25 layers respectively. Are
these problems still hard for even more restricted inputs? The computational
complexity of Assigned-Flat-Foldability is still open when the crease pat-
tern is a m × n square grid called a map [ABD+04]. Orthogonal folding, with
crease patterns restricted to orthogonally aligned creases, is also open.

Acknowledgements. This work was begun at the 2015 Bellairs Workshop on Com-
putational Geometry, co-organized by Erik Demaine and Godfried Toussaint. We thank
the other participants of the workshop for stimulating discussions, and to Barry Hayes
for helpful comments leading to some simplifications. The research of H. Akitaya was
supported by NSF grant CCF-1422311 and Science without Borders. The research
of T. Hull and T. Tachi were respectively supported by NSF grant EFRI-ODISSEI-
1240441 and the JST Presto Program.

References

[ABD+04] Arkin, E.M., Bender, M.A., Demaine, E.D., Demaine, M.L., Mitchell,
J.S.B., Sethia, S., Skiena, S.S.: When can you fold a map? Comput. Geom.
Theory Appl. 29(1), 23–46 (2004)

[BDDO10] Benbernou, N.M., Demaine, E.D., Demaine, M.L., Ovadya, A.: Universal
hinge patterns to fold orthogonal shapes. In: Origami5, pp. 405–420. A.K
Peters, Singapore, July 2010

Box Pleating is Hard 179

[BH96] Bern, M., Hayes, B.: The complexity of flat origami. In: Proceedings
of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms
SODA 1996, pp. 175–183. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA (1996)

[DFL10] Demaine, E.D., Fekete, S.P., Lang, R.J.: Circle packing for origami design
is hard. In: Origami5, pp. 609–626. A.K Peters, Singapore (2010)

[DO07] Demaine, E.D., O’Rourke, J., Algorithms, G.F.: Linkages, Origami, Poly-
hedra. Cambridge University Press, Cambridge (2007)

[Rob77] Robertson, S.A.: Isometric folding of Riemannian manifolds. Proc. Roy.
Soc. Edinburgh 79(3–4), 275–284 (1977)

[Sch78] Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of
the Tenth Annual ACM Symposium on Theory of Computing, pp. 216–226.
ACM (1978)

Symmetric Assembly Puzzles are Hard,
Beyond a Few Pieces

Erik D. Demaine1, Matias Korman2, Jason S. Ku1(B), Joseph S.B. Mitchell3,
Yota Otachi4, André van Renssen5,6, Marcel Roeloffzen5,6, Ryuhei Uehara4,

and Yushi Uno7

1 MIT, Cambridge, USA
{edemaine,jasonku}@mit.edu

2 Tohoku University, Sendai, Japan
mati@dais.is.tohoku.ac.jp

3 Stony Brook University, Stony Brook, USA
joseph.mitchell@stonybrook.edu

4 JAIST, Nomi, Japan
{otachi,uehara}@jaist.ac.jp

5 National Institute of Informatics, Tokyo, Japan
{andre,marcel}@nii.ac.jp

6 JST, ERATO, Kawarabayashi Large Graph Project, Tokyo, Japan
7 Osaka Prefecture University, Sakai, Japan

uno@mi.s.osakafu-u.ac.jp

Abstract. We study the complexity of symmetric assembly puzzles:
given a collection of simple polygons, can we translate, rotate, and pos-
sibly flip them so that their interior-disjoint union is line symmetric?
On the negative side, we show that the problem is strongly NP-complete
even if the pieces are all polyominos. On the positive side, we show that
the problem can be solved in polynomial time if the number of pieces is
a fixed constant.

1 Introduction

The goal of a 2D assembly puzzle is to arrange a given set of pieces so that they
do not overlap and form a target silhouette. The most famous example is the
Tangram puzzle, shown in Fig. 1. Its earliest printed reference is from 1813 in
China, but by whom or exactly when it was invented remains a mystery [5].
There are over 2,000 Tangram assembly puzzles [5], and many more similar 2D
assembly puzzles [3]. A recent trend in the puzzle world is a relatively new type
of 2D assembly puzzle which we call symmetric assembly puzzles. In these puzzles
the target shape is not specified. Instead, the objective is to arrange the pieces
so that they form a symmetric silhouette without overlap.

The first symmetric assembly puzzle, “Symmetrix”, was designed in 2003
by Japanese puzzle designer Tadao Kitazawa and was distributed by Naoyuki
Iwase as his exchange puzzle at the 2004 International Puzzle Party (IPP) in
Tokyo [4]. In this paper, we aim for arrangements that are line symmetric (reflec-
tion through a line), but other symmetries such as rotational symmetry could
c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 180–192, 2016.
DOI: 10.1007/978-3-319-48532-4 16

Symmetric Assembly Puzzles are Hard, Beyond a Few Pieces 181

(1)

(2)
(3)

Q: Can you make a line symmetric
 shape from these two pieces?
 (Two solutions)

Fig. 1. [Left] The seven Tangram pieces (1) can be assembled into non-simple sil-
houettes (2) and (3). [Right] A symmetric assembly puzzle invented by Hiroshi
Yamamoto [7]: given the two black pieces (right) from the classic T puzzle (left), make
two different line symmetric shape. (Used with permission.)

also be considered. The lack of a specified target shape makes these puzzles quite
difficult to solve.

We study the computational complexity of symmetric assembly puzzles in
their general form. We define a symmetric assembly puzzle or SAP to be a set
of k simple polygons P = {P1, P2, . . . , Pk}, with n = |P1| + · · · + |Pk| the total
number of vertices in all pieces. By simple polygon we mean a closed subset of
R

2 homeomorphic to a disk bounded by a closed path of straight line segments
where nonadjacent edges and vertices do not intersect. A symmetric assembly
f : P → R

2 of a SAP P is a planar isometric embedding of the pieces so that their
mapped interiors are disjoint and their mapped union forms a simple polygon
that is line symmetric. We allow pieces to flip over (reflect), but other variants of
the puzzle may disallow this. Given that humans have difficulty SAPs with even
few low-complexity pieces, we consider two different generalizations: bounded
piece complexity (|Pi| = O(1)) and bounded piece number (k = O(1)). In the
former case, we prove strong NP-completeness, while in the latter case, we solve
the problem in polynomial time (the exponent is linear in k).

2 Many Pieces

First we show that it is hard to solve symmetric assembly puzzles with a large
number of pieces, even if each piece has bounded complexity (|Pi| = O(1)).

Theorem 1. Symmetric assembly puzzles are strongly NP-complete even if each
piece is a polyomino with at most six vertices and area upper bounded by a
polynomial function of the number of pieces.

If a SAP has a solution, the location and orientation of each piece within
a symmetric assembly is a solution certificate of polynomial size checkable in
polynomial time, so symmetric assembly puzzles are in NP. We reduce from
the Rectangle Packing Puzzle problem, known to be strongly NP-hard [2].
Specifically, it is (strongly) NP-complete to decide whether k given rectangular
pieces—sized 1×x1, 1×x2, . . . , 1×xk, where the xi’s are positive integers bounded
above by a polynomial in k—can be exactly packed into a specified rectangular
box with given width w and height h and area x1 + x2 + · · · + xk = wh.

182 E.D. Demaine et al.

H = 3w

W = 4w

w

h (≤ w)

F ∩ F

α

F F

αL

αR

βL

βR

Fig. 2. [Left] The frame piece F . [Middle] If � and �B form an angle of π/4, then F ∩F �

is contained in a rectangle in an H ×H and thus O∗ cannot be line symmetric. [Right]
The angles αL, βL, αR, and βR.

Let I = (x1, . . . , xk, w, h) be a rectangle packing puzzle. Without loss of
generality, we assume that w ≥ h. Now let I ′ = (P1, . . . , Pk, F) be the SAP
where Pi is the 1 × xi rectangle for each i ∈ {1, . . . , k}, and F is the polyomino
in Fig. 2. We call F the frame piece of I ′. We show that I has a rectangle packing
if and only if I ′ has a symmetric assembly.

Clearly, if I has a rectangle packing, then the pieces P1, . . . , Pk can be packed
into the w×h hole in the frame piece creating a line symmetric W ×H rectangle,
solving the SAP. Now we show the reverse implication. Assume that I ′ has a
symmetric assembly, and let O∗ be a line symmetric polygon formed by the
pieces {P1, . . . , Pk, F}. We claim that O∗ must be a W × H rectangle, which
will imply that I is a yes-instance of RPP. Fix a placement of the pieces of I ′

that forms O∗, and let � be one of its lines of symmetry. Assume, without loss
of generality, that � is a vertical line. Let F � be the reflection of F about �.

Observation 1. area(F ∩ F �) ≥ WH − 2wh ≥ 10w2

Proof. Since O∗ contains F � and F , it holds that area(F � \ F) ≤ area(O∗ \ F) =
wh. Since F ∪ F � is mirror-symmetric, area(F � \ F) = area(F \ F �). Hence, it
follows that area(F ∩ F �) = area(F) − area(F \ F �) ≥ WH − 2wh ≥ 10w2. �	

Observation 1 implies that � passes through an interior point of F . Let �B be
the line containing the segment of F with length 4w. Let c be the center of the
frame piece’s bounding box.

Lemma 1. �B is either parallel or orthogonal to �.

Proof. Suppose for contradiction that �B is neither parallel nor orthogonal to
�. Let α be the smaller angle made by �B and �. We partition the edges of F
crossed by � into two at their intersection points. Let FL and FR be the sets of
segments on the left and right portions of F , respectively. Consider the set of
counter-clockwise angles between � and the lines containing segments of FL. The
assumptions that �B and � are neither parallel nor orthogonal, and that F is a
polyomino together imply that the set contains exactly two angles αL and βL,
where αL ≤ βL and αL + π/2 = βL. Similarly, let αR and βR be the clockwise
angles between � and the lines containing segments of FR, where αR ≤ βR and

Symmetric Assembly Puzzles are Hard, Beyond a Few Pieces 183

αR + π/2 = βR. Since αL + βR = π, it holds that αL + αR = π/2. Note that
α ∈ {αL, αR}.

Two distinct pieces of I ′ are connected if the fixed placement of the two pieces
to form O∗ have a non-degenerate line segment on their edges in common. Let
P be the subset of {P1, . . . , Pn, F} such that each Pi ∈ P can be reached from
F by repeatedly following connected pieces in O∗.

As before, consider the angles formed by � and the lines containing segments
in the left and right parts of P. Since all pieces are polyominoes, these lines
cannot make angles other than αL, βL, αR, and βR with �. Further note that
the subset O′ of O∗ covered by P must be mirror-symmetric with respect to �, or
else O∗ would not be. This implies that αL = αR. Since αL +αR = π/2, the only
solution in which � is not parallel or orthogonal to �B is when αL = αR = π/4
and α = π/4. However, if α = π/4, then F ∩F � is a subset of an H ×H rectangle
(see Fig. 2), whose area is at most H2 = 9w2, contradicting Observation 1. �	

F ∩ F F ∩ F

cc w
h

w

h

Fig. 3. [Left] When � passes to the left of c, the portion of F to the left of � is too
small. If it passes to the right, the right portion would be too small. [Right] If � passes
through c, and is either orthogonal or parallel to �B , the symmetric assembly puzzle
can only be completed into a rectangle.

So � is either parallel or orthogonal to �B . Further, it passes through c (see
Fig. 3). In either case, F ∪F � is a W ×H rectangle, and thus O∗ = F ∪F �. This
implies that O∗ \ F is a w × h rectangle that must contain the remaining pieces
of I ′. In particular, we have that this placement packing of P1, . . . , Pn gives a
solution to the instance I of RPP, completing the proof of Theorem1.

3 Constant Pieces

Next we analyze symmetric assembly puzzles with a constant number of pieces
but many vertices, and show they can be solved in polynomial time.

Theorem 2. Given a symmetric assembly puzzle with a constant number of
pieces k containing at most n vertices in total, deciding whether it has a sym-
metric assembly can be decided in polynomial time with respect to n.

To prove this theorem, we present a brute force algorithm for solving a SAP
that runs in polynomial time for constant k. We say two pieces in a symmet-
ric assembly are connected to each other if their intersection in the symmetric
assembly contains a non-degenerate line segment, and let the connection between

184 E.D. Demaine et al.

two connected pieces be their intersection not including isolated points. We will
call two pieces fully connected if their connection is exactly an edge of one of the
pieces, and partially connected otherwise. Call a piece a leaf if it connects to at
most one piece, and a branch otherwise. Given a leaf, let its parent be the piece
connected to it (if it exists), and let its siblings be all other pieces connected to
its parent. An illustration demonstrating these terms can be found in Fig. 4.

We will use a few utility functions in our algorithm. Deciding whether a
single simple polygon has a line of symmetry can be done in linear time [6]. We
will use isSym(P) to denote this algorithm, returning TRUE if polygo n P has
a line of symmetry and FALSE otherwise. In addition, we can test congruence
of polygons in linear time using cong(P,Q), returning TRUE if P and Q are
congruent polygons, and FALSE otherwise.

In addition, we will need to construct simple polygons from provided simple
polygons by laying them next to each other along an edge. Let EP denote the set
of directed edges (pi, pj) from a vertex pi to an adjacent vertex pj of some simple
polygon P . Given an edge e ∈ EP , we denote its length by λ(e). Let eP = (p1, p2)
be a directed edge of a polygon P , let eQ = (q1, q2) be a directed edge of a
polygon Q, and let d be a nonnegative length strictly less than λ(eP) + λ(eP).
Translate Q so that q1 is incident to the point on the ray from p1 containing eP

a distance d from p1; then rotate Q so eQ is collinear and in the same direction
as eP ; and finally possibly reflect Q about eQ if necessary so that the respective
interiors of P and Q incident to eP and eQ lie in different half planes. Call these
transformations the mapping g : P ∪ Q → R

2. Then we define join eP , eQ, d to
be either, g(P) ∪ g(Q) if it is a simple polygon and the interior of g(P) ∩ g(Q)
is empty (forms a simple polygon without overlapping pieces), or otherwise the
empty set. See Fig. 4.

P
a

b
c

d

join(eP , eQ, d)

eP

eQ

d
P

Q

p1

p2

q1

q2

Fig. 4. [Left] Visualization of a join operation. [Right] Example symmetric assembly
P showing its connection graph. Pieces a and d are fully connected to piece b, with c
partially so. Pieces b, c, and d are branches. Piece a is a leaf, with b its parent and c
and d the siblings of a.

If a SAP has a symmetric assembly, let its connection graph be a graph on the
pieces with an edge connecting two pieces if they are connected in the symmetric
assembly. Because a symmetric assembly is a simple polygon by definition, its
connection graph is connected and has a spanning tree; we can then construct the
assembly using a concatenation of join procedures in breadth-first-search order
from an arbitrary root. Because parameter d is not discrete, the total solution
space of simple polygons that are constructible from the pieces of a SAP may

Symmetric Assembly Puzzles are Hard, Beyond a Few Pieces 185

Case 2:Case 1: Case 3:

Fig. 5. Examples of symmetric assemblies belonging to each case. Case 1 highlights
vertices of connected pieces that intersect. Case 2 highlights join operations using
lengths of piece edges. Case 3 is constructed from one symmetric piece and a pair of
congruent pieces.

be uncountable. However, we can exploit the structure of symmetric assemblies
to search only a finite set of configurations.

In order to enumerate possible configurations, we would like to distinguish
between three cases of puzzle (see Fig. 5), specifically:

Case 1: the puzzle has a symmetric assembly in which two connected pieces
share a vertex on their connection;

Case 2: the puzzle has a symmetric assembly not satisfying Case 1 in which
the distance between vertices from the connecting edges between two
connected pieces has the same length as an edge from a third piece (we
say the connection between two pieces constructs the length of another
edge); or

Case 3: the puzzle has a symmetric assembly not satisfying Case 1 or Case 2
where a nonempty set of pieces are symmetric about the line of sym-
metry of the symmetric assembly, and any remaining pieces are pairs of
congruent pieces.

Lemma 2. If a SAP has a symmetric assembly, it can be described by one to
the above three cases.

Proof. Suppose for contradiction we have a symmetric assembly f : P → R
2 of

a SAP P that does not satisfy any of the above cases let s : f(P) → f(P) be
an automorphism reflecting f(P) across a line of symmetry L, and let μ = s ◦ f ,
mapping a point p ∈ P to the reflection of f(p) across L.

Consider the connection graph of f(P). Because the symmetric assembly
forms a simple polygon and no two connected pieces share a vertex, by exclusion
from Case 1 the connection graph is a tree which we call a connection tree, or
else the symmetric assembly would not be homeomorphic to a disk. Further, all
connections are single non-degenerate line segments.

Let P be a leaf in the symmetric assembly, whose siblings include at most
one branch. We claim that either P is a line symmetric polygon, or μ(P) is itself
a piece of the SAP congruent to P contradicting exclusion from Case 3. First,
if P has no parent and is the only piece in the symmetric assembly, P must be
a line symmetric polygon. Otherwise, let Q be the parent of P with edge eP

from EP touching edge eQ from EQ. Let eQP denote the subset of eQ that maps
to the intersection f(eP) ∩ f(eQ). Segment f(eQP) cannot lie along L or else

186 E.D. Demaine et al.

(b)(a) (c)

Q

P

P

Q

f(P) μ(P)

Q∗
eP

ePQeQ

Fig. 6. Possible topological configurations of μ(P).

one of f(eP) or f(eQ) would share a vertex with another piece, contradicting
exclusion from Case 1. Alternatively suppose f(eQP) and μ(eQP) are the same
line segment. As a leaf, P connects to the rest of the symmetric assembly only
through f(eQP), so for the assembly to be symmetric, f(P) must be the same
as μ(P), and piece P is a line symmetric polygon.

Lastly, suppose f(eQP) and μ(eQP) are not the same line segment; we claim
μ(P) is itself a piece of the SAP congruent to P . Suppose for contradiction it
were not. Then μ(P) either (a) contains a piece as a strict subset, (b) does not
fully contain a piece but intersects interiors of multiple pieces, or (c) is a strict
subset of a single piece (see Fig. 6).

First suppose (a), so μ(P) contains some piece S as a strict subset. Root
the connection tree at a piece R with the shortest graph distance to S in the
connection tree for which f(R) ∩ μ(P) �= ∅ and f(R) \ μ(P) �= ∅ which exists
because μ(ePQ) must intersect some piece. Then a leaf P ′ with a longest root
to leaf path that contains S is also fully contained in μ(P). Let Q′ be its parent
with edge e′

P from P ′ touching edge e′
Q from Q′. Because R is the piece crossing

the boundary of μ(P) closest to S in the connection tree and P ′ has the longest
root to leaf path, e′

Q connects to at most one branch piece that intersects μ(P).
Segment f(e′

P) cannot contain an edge of the symmetric assembly or else it
would construct a length equal to an edge of P , contradicting exclusion from
Case 2. So every leaf fully contained in μ(P) connected to e′

Q is fully connected
to Q′. Each endpoint of the subset of e′

Q in μ(P) has shortest Euclidean distance
to the connection of one leaf intersecting μ(P) connected to e′

Q. But at least one
of these leaves is fully contained in μ(P) which that would construct a length
equal to an edge of P , contradicting exclusion from Case 2. So μ(P) does not
fully contain a leaf, contradicting case (a).

Now suppose (b), and suppose two connected pieces intersect μ(P). The edges
connecting these two pieces must overlap in μ(P) to construct a length equal to
an edge of P , contradicting exclusion from Case 2. So μ(P) does not intersect
the interior of multiple branch pieces.

Finally suppose (c), and let μ(P) be the strict subset of some piece Q∗.
Segment f(eP) cannot contain an edge of the symmetric assembly or else it would
create a length equal to an edge of Q∗, contradicting exclusion from Case 2. So P
is fully connected. A useful corollary of the preceding three arguments is that the
reflection of any partially connected leaf of a symmetric assembly that conforms
to neither Case 1 nor Case 2, must itself be a piece congruent to the leaf. We
will refer to this property later as partial leaf congruence.

Symmetric Assembly Puzzles are Hard, Beyond a Few Pieces 187

Here we note that none of the arguments so far have required P to be a
leaf having at most one branch sibling; we will use that fact in the argument
to follow. Let � be the line collinear with segment f(eQP), and let e� be the
subset of Q that maps to the largest connected subset of � ∩ f(Q) containing
f(eQP). Consider the two disconnected sections of the boundary of Q between
an endpoint of ePQ and an endpoint of e�, which must each be more than an
isolated point or exclusion from Case 1 would be violated. Piece P has at most
one branch sibling, so at most one of these sections can be connected to a branch.
Let q be an endpoint of e� in a section not connected to a branch.

f(P) μ(P)

P

Q

e

ePQ q
Q∗

μ(q)

× ×<π

μ(P)

Q∗

f(P)

P

Q

e

ePQ q
q

× μ(q)>π

Fig. 7. Considering if μ(P) is a strict subset of Q∗ and the boundary between ePQ and
q is a [Left] straight line or [Right] not a straight line.

Consider the boundary of Q between eQP and q. Suppose this boundary were
a line segment subset of eQ, implying the internal angle of Q at q is less than
π; see Fig. 7. Then μ(q) is in f(Q∗) or else Q∗ would connect to another piece
somewhere on the segment between eQP and q and construct an edge of the same
length as a leaf connected to eQ, contradicting exclusion from Case 2. If μ(q)
is in f(Q∗) and Q does not connect with any other piece at q, then μ(q) must
be a vertex of f(Q∗). Alternatively, q partially connects to a leaf through eQ.
By partial leaf congruence, the reflection of this leaf must itself be a congruent
piece, so μ(q) is a vertex of f(Q∗). In either case, the edge of Q∗ adjacent to
μ(q) contained in μ(eQ) will have the same length as the subset of eQ between
q and a vertex of a leaf, contradicting exclusion from Case 2.

Thus, the boundary of Q between eQP and q is not a line segment, so f(Q)
must cross �, and the endpoint q′ of eQ in this section is a vertex of Q with
internal angle greater than π; see Fig. 7. By the same argument as in the pre-
ceding paragraph, μ(q′) must be in f(Q∗), and if it were a vertex, we would
have the same contradiction as before. However this time μ(q′) need not be a
vertex of f(Q∗) because f(Q∗) may extend past μ(q′), with Q∗ connecting to
another piece on the other side of e�. However, the connection between these
pieces will construct an edge that is the same length as an edge in either Q or
a leaf connected to Q, and we have arrived at our final contradiction. So if P is
not line symmetric, μ(P) is itself a piece of the SAP congruent to P .

Thus, our SAP has a leaf that is either a line symmetric piece, symmetric
about the line of symmetry, and/or exists in a pair of two leaf pieces that are
congruent and symmetric about the line of symmetry. If we remove such an
identified leaf piece or pair from the SAP, what remains is a SAP with fewer
pieces also admitting a symmetric assembly. Further, removing pieces cannot
make the new SAP belong to one of the cases that the original SAP did not

188 E.D. Demaine et al.

before. Repeatedly removing pieces using this process identifies every piece as
either symmetric, or uniquely paired with a piece congruent to it, contradicting
exclusion from Case 3. �	

Since every symmetric assembly can be classified as one of these cases, we
can check for each case to decide if the SAP has a symmetric assembly. Given a
SAP that does not satisfy Case 1 or Case 2, by Lemma 2 it must satisfy Case 3
if it has a symmetric assembly. Satisfying Case 3 is not sufficient to ensure a
symmetric assembly. For example, two congruent regular polygons with many
sides and a single regular star with many spikes cannot by themselves form a
symmetric assembly though they satisfy Case 3 because no pair of edges can be
joined without making the pieces overlap. Thus given a SAP in Case 3, we must
search the configuration space of possible connected arrangements of the pieces
for an arrangement that forms a simple polygon.

Recall that the connection graph for a symmetric assembly not in Case 1
must be a tree. For a SAP with k pieces, Cayley’s formula says the number of
distinct connection trees is kk−2 [1]. However, even if two pieces are connected,
they could be connected through O(n2) different pairs of edges, so the number
of different edge distinguishing connection trees, connection trees distinguishing
between which pairs of edges are connected, can be no more than n2kkk = O(n2k)
(k is constant). As an instance of Case 3, P consists of one or more symmetric
pieces, with the rest being congruent pairs. Let DP and D′

P be maximal disjoint
subsets of P such that there exists a matching η : D′

P → DP between pieces
in DP and D′

P such that matched pairs are congruent. Let SP be the set of
symmetric pieces in P not in DP or D′

P . Let ST denote some subset of the
symmetric pieces contained in DP , and define a trunk to be a subset of symmetric
pieces RT = SP ∪ ST ∪ η(ST) that can be connected into a simple polygon
without overlap while aligning each of their lines of symmetry to a common
line L (see Fig. 8). Define a half tree T to be an edge distinguishing connection
tree on RT ∪ DP such that every piece in DP connected to a piece R in RT

connects through an edge of R intersecting the same half-plane bounded by L.
We call this half-plane the connecting half-plane, with the other half-plane the
free half-plane. The reason we define half trees is if we can find a point in their
configuration space for which pieces do not intersect and for which pieces in DP
not in the trunk do not intersect the free half-plane, we can place the remaining
congruent pieces in DP \ ST at the mirror image of their respective matched
pairs to complete a symmetric assembly.

Let TP be the set of possible half trees. Let LT be the set of undirected
edges {P,Q} where piece P is connected to piece Q in tree T ∈ TP , and let
m = |LT | < k. For a fixed edge distinguishing connection tree, the orientation of
each piece is fixed as pieces may only translate along their specified connection.
We want to define a set of intervals IT {P,Q} where we could join eP to eQ

while together forming a simple polygon, without overlap between P and Q.
For each {P,Q} ∈ LT with eP and eQ the respective connecting edges of P
and Q with λ(eP) ≥ λ(eQ), let IT {P,Q} be defined as follows. If P and Q are
both in RT , let IT {P,Q} be the empty set if join(eP , eQ, dPQ) is the empty

Symmetric Assembly Puzzles are Hard, Beyond a Few Pieces 189

set and {dPQ} otherwise, where we use dPQ to denote |λ(eP) − λ(eQ)|/2, the
distance d would need to be in order to align the midpoints of eP and eQ.
Alternatively if P or Q are not in RT , let IT {P,Q} be the closure of the set
of distances d for which join(eP , eQ, d) is nonempty. The number of distinct
intervals in IT {P,Q} is at most linear in the number of vertices, O(n). Any
fixed arrangement of the pieces consistent with edge distinguishing connection
tree T joins each pair of pieces by fixing one point in every IT {P,Q}, so the set
of configurations is a subset of Rm. Ignoring overlap between pieces that are not
connected, the configuration space CT of possible arrangements is equal to the
cartesian product of IT {P,Q} for every {P,Q} ∈ LT . Thus CT is a set of O(nm)
disjoint m-dimensional hyperrectangles in R

m.

A

L
B

C
G

H

D

E

F

B,E}

{E,F }

{E,F }

I {B, E}

R
m

T

T

C

IT

IT

I {T

Fig. 8. An example showing a SAP P satisfying Case 3, with SP = {A, B}, DP =
{C, E, F}, D′

P = {D, G, H}, ST = {C}, η(ST) = {D}, and trunk RT = {A, B, C, D}.
IT for two connected pieces in the trunk is just a single point as shown by the midpoint
of their connection. Pieces not in the trunk have a degree of freedom sliding along their
connection. IT {E, F} is a single interval where F can attach to E, while IT {B, E} is
a four intervals. The right diagram shows CT the cartesian product of each IT .

We now describe the subset of R
m where intersection occurs between two

pieces that are not connected in T . If two pieces in a configuration overlap, by
continuity there exist two edges eP and eQ from two distinct pieces P and Q
that also intersect. The positions of eP and eQ are translations parameterized by
a point in CT and the region in which the two edges intersect is a convex region
XT {eP , eQ} ⊂ R

m bounded by four hyperplanes forming the m-dimensional
parallelogram representing the intersection of the two edges. For each O(n2)
pair of edges from distinct pieces that are not connected, we can subtract each
XT {eP , eQ} from CT to form C′

T . If C′
T contains any point in its interior, then

there exists a symmetric assembly since it will be a point in the configuration
space avoiding overlap between pieces. However, the boundary of C′

T may contain
configurations that are weakly simple as the boundaries of each IT not between
two pieces in RT and the boundaries of each XT all correspond to configuration
containing non-simple touching between pieces. Thus we require C′

T to have a
point on its interior unless all pieces exist in RT , where C′

T may be a single point
corresponding to a symmetric assembly.

Consider the function hasAssemblyCase3 described in Algorithm 1.

Lemma 3. Given symmetric assembly puzzle P that satisfies Case 3, function
hasAssemblyCase3P returns TRUE if and only if P has a symmetric assembly,
and terminates in O(n5k) time.

190 E.D. Demaine et al.

1 Function hasAssemblyCase3(P)

2 input : Symmetric assembly puzzle P that satisfies Case 3.
3 output : TRUE if P has a symmetric assembly, FALSE otherwise.
4 for T ∈ TP do
5 C′

T ← CT

6 for {P, Q} ∈ LT do
7 C′

T ← C′
T \ XT {eP , eQ}

8 if int(C′
T) �= ∅ then

9 return TRUE
10 else if C′

T �= ∅ and DP = ∅ then
11 return TRUE

12 return FALSE

Algorithm 1. Pseudocode for function hasAssemblyCase3(P)

Proof. If P has a symmetric assembly satisfying Case 3 with nonempty DP ,
C′

T will have a point on its interior for some tree T as argued above; or if DP
is empty, C′

T will be nonempty. There are O(n2k) elements of TP . There are
m = O(k) interval sets IT {P,Q} each having computational complexity O(n),
so we can construct CT naively in O(nk) time. The union XT of the O(n2)
regions XT {eP , eQ}, which are m-dimensional convex regions, has computational
complexity at most O(n2m), so the final computational complexity of C′

T =
CT \ XT is at most O(n3m) and can be computed in as much time. Thus, the
running time of hasAssemblyCase3 is bounded by O(n5k). �	

1 Function hasAssembly(P)

2 input : Symmetric assembly puzzle P.
3 output : TRUE if P satisfies Case 1 or Case 2 or Case 3, FALSE otherwise.
4 for eP ∈ EP , eQ ∈ EQ, {P, Q} ⊂ P do
5 S ← join(eP , eQ, 0)
6 P ′ ← (P \ {P, Q}) ∪ {S}
7 if S �= ∅ and hasAssembly(P ′) then
8 return TRUE // Case 1

9 for eR ∈ ER, R ∈ P do
10 if λ(eR) < λ(eP) then
11 S ← join(eP , eQ, λ(eR))
12 P ′ ← (P \ {P, Q}) ∪ {S}
13 if S �= ∅ and hasAssembly(P ′) then
14 return TRUE // Case 2

15 return hasAssemblyCase3(P) // Case 3

Algorithm 2. Pseudocode for function hasAssembly(P)

Our brute force algorithm hasAssembly P is described in Algorithm 2.

Symmetric Assembly Puzzles are Hard, Beyond a Few Pieces 191

Lemma 4. Function hasAssembly(P) returns TRUE if and only if P has a sym-
metric assembly that satisfies either Case 1, Case 2, or Case 3, and terminates
in O(n5k) time.

Proof. We prove by induction. For the base case, P consists of only a single
piece satisfying Case 3, which will drop directly to the last line of the algo-
rithm checking Case 3 which, by Lemma 3 will evaluate correctly. Now suppose
hasAssembly returns a correct evaluation for SAPs containing k−1 pieces. Then
we show hasAssembly returns a correct evaluation for SAPs containing k pieces.

The outer for loop of hasAssembly cycles through every pair of directed
edges eP = (p1, p2) and eQ = (q1, q2) taken from different pieces P and Q. For
each pair, hasAssembly first checks to see if there exists a symmetric assembly
for which eP is connected to eQ with p1 coincident to q1, which would satisfy
Case 1. If one exists, then joining P and Q into one piece as described would
produce a SAP P ′ with one fewer piece that also has a symmetric assembly.
Then evaluating hasAssembly on the smaller instance will return correctly by
induction. Since the outer for loop checks every possible pair of edges that could
be joined in a symmetric assembly satisfying Case 1, hasAssembly will return
TRUE if P satisfies Case 1.

Next hasAssembly checks to see if there exists a symmetric assembly for
which eP is connected to eQ with p1 and q1 separated by a distance equal to the
length of some other edge eR in P, which would satisfy Case 2. In the same way
as with Case 1, both for loops check every possible pair of edges and that could
be joined at every possible length that could produce a symmetric assembly
satisfying Case 2, so hasAssembly will return TRUE if P satisfies Case 2.

Otherwise, no symmetric assembly exists satisfying Case 1 or Case 2.
By Lemma 3, hasAssemblyCase3 correctly evaluates if P is in Case 3, so
hasAssembly returns a correct evaluation for SAPs containing k pieces. Let
T (k) be the running time of hasAssembly on an instance with k pieces. Then
the recurrence relation for hasAssembly is T (k) = O(n3)T (k − 1) + O(n5k),
where O(n5k) is the running time given by Lemma3. Running time for Case 3
dominates the recurrence relation so hasAssembly terminates in O(n5k). �	

Now we can determining whether a symmetric assembly puzzle with a con-
stant number of pieces has a symmetric assembly in polynomial time.

Proof (of Theorem 2). By Lemma 2, if the SAP has a symmetric assembly, it
satisfies either Case 1, Case 2, or Case 3, and by Lemma 4 hasAssembly(P) can
correctly determine if it has a symmetric assembly satisfying one of the cases in
polynomial time, proving the claim. �	

Open questions include whether SAPs: are hard for simpler shapes (we con-
jecture SAPs containing only right triangles are still hard), are hard for non-
simple target shapes with constant pieces, or are fixed-parameter tractable with
respect to the number of pieces (we conjecture W[1]-hardness).

192 E.D. Demaine et al.

Acknowledgements. Many of the authors were introduced to symmetric assembly
puzzles during the 30th Winter Workshop on Computational Geometry at the Bellairs
Research Institute of McGill University, March 2015. Korman is supported in part by
the ELC project (MEXT KAKENHI No. 24106008). Mitchell is supported in part by
the National Science Foundation (CCF-1526406). Uno is supported in part by the ELC
project (MEXT KAKENHI No. 15H00853).

References

1. Cayley, A.: A theorem on trees. Q. J. Math 23, 376–378 (1889)
2. Demaine, E.D., Demaine, M.L.: Jigsaw puzzles, edge matching, and polyomino pack-

ing: connections and complexity. Graphs Comb. 23(Suppl.), 195–208 (2007)
3. Fox-Epstein, E., Uehara, R.: The convex configurations of “Sei Shonagon Chie no

Ita” and other dissection puzzles. In: 26th Canadian Conference on Computational
Geometry (CCCG), pp. 386–389 (2014)

4. Iwase, N.: Symmetrix. In: 24th International Puzzle Party (IPP 24), p. 54. IPP24
Committee (2005, unpublished)

5. Slocum, J.: The Tangram Book: The Story of the Chinese Puzzle with over Puzzle
to Solve. Sterling Publishing, New York (2000)

6. Wolter, J.D., Woo, T.C., Volz, R.A.: Optimal algorithms for symmetry detection in
two and three dimensions. Vis. Comput. 1(1), 37–48 (1985)

7. Yamamoto, H.: Personal communication (2014)

Simultaneous Approximation of Polynomials

Andrei Kupavskii1 and János Pach2(B)

1 EPFL, Lausanne and MIPT, Moscow, Russia
kupavskii@ya.ru

2 EPFL, Lausanne and Rényi Institute, Budapest, Hungary
pach@cims.nyu.edu

Abstract. Let Pd denote the family of all polynomials of degree at
most d in one variable x, with real coefficients. A sequence of positive
numbers x1 ≤ x2 ≤ . . . is called Pd-controlling if there exist y1, y2, . . . ∈ R

such that for every polynomial p ∈ Pd there exists an index i with
|p(xi)−yi| ≤ 1. We settle a problem of Makai and Pach (1983) by showing
that x1 ≤ x2 ≤ . . . is Pd-controlling if and only if

∑∞
i=1

1

xd
i

is divergent.

The proof is based on a statement about covering the Euclidean space
with translates of slabs, which is related to Tarski’s plank problem.

1 Introduction

Let F be a class of real functions R → R. We say that a sequence of positive
numbers x1, x2, x3, . . . is F-controlling if there exist reals y1, y2, . . . with the
property that for every f ∈ F , one can find an i with

|f(xi) − yi| ≤ 1.

In other words, a sequence x1, x2, . . . is F-controlling if we can find y1, y2, . . . ∈
R such that the points p1 = (x1, y1), p2 = (x2, y2), . . . ∈ R

2 simultaneously
approximate all functions in F , in the sense that the graph of every member
f ∈ F gets (vertically) not farther than 1 to at least one point pi. In this paper,
we address the following question raised in [11]. Given a class of functions F ,
how sparse an F-controlling sequence can be? A similar question, motivated by
a problem of Fejes Tóth [5], was studied in [4].

Let Pd denote the class of polynomials R → R of degree at most d. It was
shown by Makai and Pach [11] that if a sequence of positive numbers x1 ≤ x2 ≤
. . . is Pd-controlling, then the infinite series 1

xd
1

+ 1
xd
2

+ . . . is divergent. They
conjectured that this condition is also sufficient for a sequence x1 ≤ x2 ≤ . . . to
be Pd-controlling (see Conjecture 3.2.B in [11]). The aim of this note is to prove
this statement.

Theorem 1. Let d be a positive integer and x1 ≤ x2 ≤ . . . be a monotone
increasing infinite sequence of positive numbers. The sequence x1, x2, . . . is Pd-
controlling if and only if 1

xd
1

+ 1
xd
2

+ 1
xd
3

. . . = ∞.

c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 193–203, 2016.
DOI: 10.1007/978-3-319-48532-4 17

194 A. Kupavskii and J. Pach

We also generalize this result to other finitely generated function classes.
Given d + 1 real functions, f0, f1, . . . , fd : R+ → R+, let L = L(f0, . . . , fd)
denote the set of all functions that can be obtained as linear combinations of
them with real coefficients. That is,

L = {a0f0 + . . . + adfd : a0, . . . , ad ∈ R}.

Here R+ stands for the set of positive reals.

Theorem 2. Let d ≥ 1 be an integer, x0 > 0, ε > 0, and let f0, f1, . . . , fd :
R+ → R+ be real functions that are monotone increasing for x ≥ x0 and
bounded over every bounded subinterval of R+. Assume that the functions
Fj(x) = fj(x)/(fd(x))1−ε (j = 0, . . . , d − 1) are monotone decreasing for x ≥ x0

and tend to 0 as x → ∞.
An increasing sequence of positive numbers x1 ≤ x2 ≤ . . . is L(f0, . . . , fd)-

controlling if and only if
∑∞

i=1
1

fd(xi)
= ∞.

Obviously, the functions fi(x) = xi (i = 0, 1, . . . , d)) meet the above require-
ments, so that Theorem 2 implies Theorem 1.

For the proof of Theorem1, we will rephrase the question as a covering prob-
lem for slabs. A slab (sometimes called plank or strip) is the set of points S
lying between two parallel hyperplanes in R

d. The distance w between these two
hyperplanes is called the width of the slab. We can write S as

S = {x ∈ R
d : b − w

2
≤ 〈v,x〉 ≤ b +

w

2
},

for some unit vector v and real number b. We say that a sequence of slabs
S1, S2, . . . permits a translative covering of a subset R

d if there are suitable
translates S′

i of Si (i = 1, 2, . . .) such that ∪∞
i=1S

′
i = R

d.
As it was shown in [11], Theorem 1 (and, in fact, Theorem 2, too) would easily

follow from

Conjecture 1 ([3,11]). Let d be a positive integer. A sequence of slabs in
R

d with widths w1, w2, . . . permits a translative covering of R
d if and only if∑∞

i=1 wi = ∞.

The fact that this condition is necessary follows, for example, from Tarski’s
result [12] which states that the total width of any system of slabs the union
of which covers a disk of unit diameter is at least 1. Tarski’s “plank problem,”
whether this statement remains true in higher dimensions, remained open for
almost twenty years. In 1950, Bang [1,2] answered this question in the affirma-
tive. For d = 2, Conjecture 1 was proved by Makai and Pach [11] and, according
to [6], independently, by Erdős and Straus (unpublished). (See [7,8] for some
refinements.) For d ≥ 3, the problem is open. Groemer [6] proved that any
sequence of slabs in R

d with widths w1, w2, . . . satisfying

∞∑

i=1

w
d+1
2

i = ∞

Simultaneous Approximation of Polynomials 195

permits a translative covering of Rd. Recently, the authors of the present note [9]
have come close to settling Conjecture 1 by replacing Groemer’s sufficient con-
dition with the weaker assumption

lim sup
n→∞

w1 + w2 + . . . + wn

log(1/wn)
> 0.

In particular, any sequence of slabs of widths 1, 1
2 , 1

3 , . . . permits a translative
covering of space.

To establish Theorem 1, it is enough to verify Conjecture 1 for special
sequences of slabs, whose normal vectors lie on a moment curve. We will do
precisely this in Sect. 2, by exploring the natural ordering of these vectors. In
Sect. 3, we generalize our arguments to establish Theorem 2. The last section
contains a few concluding remarks.

2 Proof of Theorem1

We only have to prove the “if” part of the theorem.
Let x1 ≤ x2 ≤ . . . be a monotone increasing sequence of positive numbers

with
∑

i
1

xd
i

= ∞. We have to find a sequence of reals y1, y2, . . . such that for any

polynomial p(x) =
∑d

j=0 ajx
j with real coefficients aj , there exists a positive

integer i with |p(xi) − yi| ≤ 1. Write p(x) in the form p(x) = 〈x,a〉, where
x = (1, x, . . . , xd), a = (a0, a1, . . . , ad) ∈ R

d+1, and 〈.〉 stands for the scalar
product. Using this notation, we have xi = (1, xi, . . . , x

d
i) and the inequality

|p(xi) − yi| ≤ 1 can be rewritten as

yi − 1 ≤ 〈xi,a〉 ≤ yi + 1.

Fig. 1. Controlling polynomials of degree at most d.

196 A. Kupavskii and J. Pach

For a fixed i, the locus of points a ∈ R
d+1 satisfying this double inequality is a

slab Si ⊂ R
d+1 of width wi = 2

‖xi‖ = 2

(
∑d

j=0 x2j
i)1/2 , with normal vector xi. See

Fig. 1. Since the condition
∑∞

i=1
1

xd
i

= ∞ is equivalent to
∑∞

i=0
2

||xi|| = ∞, the
sequence x1, x2, . . . is Pd-controlling if and only if the sequence of slabs S1, S2, . . .
permits a translative covering of Rd+1.

If xi ≤ 3 for infinitely many (and, hence, for all) positive integers i, then
for the widths of the corresponding slabs Si we have wi > 1

3d . Thus, these slabs
permit a translative covering of Rd+1, because each of them can be translated
to cover any ball of diameter 1

3d .
Therefore, we can assume that xi > 3 for all i ≥ m. In fact, we can assume

without loss of generality that xi > 3 for all i ≥ 1, otherwise we simply discard
the first m−1 members of the sequence, and prove the theorem for the resulting
sequence xm ≤ xm+1 ≤

We are going to exploit the fact that the normal vectors xi = (1, xi, . . . , x
d
i) of

the slabs Si lie on the moment curve (1, x, x2, . . . , xd). First, we need an auxiliary
lemma.

Lemma 1. Let d be a positive integer, let 3 ≤ x1 ≤ x2 ≤ . . . be a finite or
infinite sequence of reals, and let xi = (1, xi, x

2
i , . . . , x

d
i) for every i. Then there

exist d + 1 linearly independent vectors u1, . . . ,ud+1 ∈ R
d+1 such that for every

i (i = 1, 2, . . .) and j (j = 1, 2, . . . , d + 1), we have

(i)
〈xi+1,u1〉
〈xi,u1〉 ≤ 〈xi+1,uj〉

〈xi,uj〉 ,

(ii) 〈xi,uj〉 ≥ 1
3
‖xi‖‖uj‖.

Proof. Take the standard basis e1, . . . , ed+1 in R
d+1, i.e., let ei denote the all-

zero vector with a single 1 at the i-th position. Set uj := ed+1−j + ed+1 for
j = 1, . . . , d and ud+1 := ed+1.

Condition (i) trivially holds for j = 1 and very easy to check for j = d + 1.
For j = 2, . . . , d, it reduces to

xd−1
i+1 + xd

i+1

xd−1
i + xd

i

≤ xd−j
i+1 + xd

i+1

xd−j
i + xd

i

,

which is equivalent to

(xd−1
i+1 + xd

i+1)(x
d−j
i + xd

i) ≤ (xd−j
i+1 + xd

i+1)(x
d−1
i + xd

i).

The last inequality can be rewritten as

xd−j
i+1xd−j

i (xi+1 − xi)(
j−1∑

k=0

xk
i+1x

j−1−k
i +

j−2∑

k=0

xk
i+1x

j−2−k
i − xj−1

i+1xj−1
i) ≤ 0,

or, dividing both sides by xd−j
i+1xd−j

i (xi+1 − xi), as

Simultaneous Approximation of Polynomials 197

j−1∑

k=0

xk
i+1x

j−1−k
i +

j−2∑

k=0

xk
i+1x

j−2−k
i − xj−1

i+1xj−1
i ≤ 0.

Using the fact xi+1 ≥ xi, and bounding from above each sum by its largest
term multiplied by the number of terms, we obtain that the left-hand side of the
last inequality is at most

jxj−1
i+1 + (j − 1)xj−2

i+1 − xj−1
i+1xj−1

i < xj−1
i+1 (2j − 1 − xj−1

i).

As xi ≥ 3, the right-hand side of this inequality is always negative and (i) holds.
It remains to verify condition (ii). Taking into account that xi ≥ 3, we have

〈xi,ud+1〉 = xd
i ≥ 1

2
‖xi‖ =

1
2
‖xi‖‖ud+1‖.

On the other hand, for j = 1, . . . , d, we obtain

〈xi,uj〉 = xd−j
i + xd

i ≥ 1
2
‖xi‖ ≥ 1

3
‖xi‖‖uj‖.

This completes the proof of Lemma 1. �
In order to establish Theorem 1, it is enough to prove that there is a constant

c depending on d such that any system of slabs Si (i = 1, . . . , n) in R
d+1 whose

normal vectors are (1, xi, . . . , x
d
i) for some 3 ≤ x1 ≤ x2 ≤ . . . ≤ xn and whose

total width is at least c, permits a translative covering of a ball of unit diameter.
This is an immediate corollary of Lemma 1 and the following assertion.

Lemma 2. For every positive integer d, for any system of d + 1 linearly inde-
pendent vectors u1, . . . ,ud+1 in R

d+1, and for any γ > 0, there is a constant c
with the following property.

Given any system of slabs Si (i = 1, . . . , n) in R
d+1, whose normal vectors

xi satisfy the conditions

(i)
〈xi+1,u1〉
〈xi,u1〉 ≤ 〈xi+1,uj〉

〈xi,uj〉 ,

(ii) 〈xi,uj〉 ≥ γ‖xi‖‖uj‖
for every i and j, and whose total width

∑n
i=1 wi is at least c, the slabs Si permit

a translative covering of a (d + 1)-dimensional ball of unit diameter.

Proof. Instead of covering a ball of unit diameter, it will be more convenient to
cover the simplex Δ with one vertex in the origin 0 and the others at the points
(vectors) uj (j = 1, . . . , d + 1). By properly scaling these vectors, if necessary,
we can assume that Δ contains a ball of unit diameter.

We place the slabs one by one. See Fig. 2. We place S′
1, a translate of S1,

so that one of its boundary hyperplanes passes through 0 and the other one
cuts a simplex Δ1 out of the cone Γ of all linear combinations of the vectors

198 A. Kupavskii and J. Pach

Fig. 2. We place the slabs one by one.

u1, . . . ,ud+1 with positive coefficients. According to assumption (ii), we have
〈x1,uj〉 > 0 for every j. Therefore, S′

1 does not separate Γ into two cones:
S′
1 ∩ Γ is indeed a simplex Δ1.

Suppose that we have already placed S′
1, . . . , S

′
i, the translates of S1, . . . , Si,

so that their union covers a simplex Δi with one vertex at the origin, and the
others along the d + 1 half-lines that span the cone Γ . We also assume that the
facet of Δi opposite to the origin is a boundary hyperplane of S′

i. Let pi(j) denote
the vertex of Δi that belongs to the open half-line parallel to uj emanating from
0 (j = 1, . . . , d + 1).

Next, we place a translate S′
i+1 of Si+1 so that one of its boundary hyper-

planes, denoted by π, passes through pi(1), and the other one, π′, cuts the half-
line parallel to u1 at a point pi+1(1) with ‖pi+1(1)‖ > ‖pi(1)‖. That is, pi+1(1) is
further away from the origin than pi(1) is. Let pi+1(2), . . . ,pi+1(d+1) denote the
intersection points of π′ with the half-lines parallel to u2, . . . ,ud+1, respectively,
and let Δi+1 be the simplex induced by the vertices 0,pi+1(1), . . . ,pi+1(d + 1).

We have to verify that Δi+1 is entirely covered by the slabs S′
1, . . . , S

′
i+1.

By the induction hypothesis, Δi was covered by the slabs S′
1, . . . , S

′
i. Thus, it

is sufficient to check that the hyperplane π intersects every edge 0pi(j) of Δi,
for j = 1, . . . , d + 1. Let αjuj be the intersection point of π with the half-line
parallel to uj , and let pi(j) = βjuj . We have to prove that αj ≤ βj .

By definition, we have 〈xi+1,pi(1) − αjuj〉 = 0 and 〈xi,pi(1) − βjuj〉 = 0.
From here, we get

Simultaneous Approximation of Polynomials 199

αj

βj
=

〈xi+1,pi(1)〉
〈xi+1,uj〉

/ 〈xi,pi(1)〉
〈xi,uj〉 =

〈xi+1,pi(1)〉
〈xi,pi(1)〉

/ 〈xi+1,uj〉
〈xi,uj〉 =

〈xi+1,u1〉
〈xi,u1〉

/ 〈xi+1,uj〉
〈xi,uj〉 .

In view of assumption (i) of the lemma, the right-hand side of the above chain
of equations is at most 1, as required.

Observe that during the whole procedure the uncovered part of the cone Γ
always remains convex and, hence, connected. In the nth step, ∪n

i=1S
′
i ⊃ Δn. By

the construction, pi(1) lies at least wi farther away from the origin along the
half-line parallel to u1 than pi−1(1) does. Thus, we have

‖pn(1)‖ ≥
n∑

i=1

wi ≥ c.

Using the fact that 〈xn,pn(j) − pn(1)〉 = 0 for every j ≥ 2, and taking into
account assumption (ii), we obtain

‖pn(j)‖ ≥ 〈xn,pn(j)〉
‖xn‖ =

〈xn,pn(1)〉
‖xn‖ ≥ γ‖pn(1)‖ ≥ γc.

Thus, if c is sufficiently large, we have ‖pn(j)‖ ≥ ‖uj‖. This means that Δn

contains the simplex Δ defined in the first paragraph of this proof. Hence, it
also contains a ball of unit diameter, as required. �

3 Proof of Theorem2

In this section, we extend the technique used in the proof of Theorem 1 to
establish Theorem 2.

As in the proof Theorem1, we can write any function l =
∑d

k=0 akfk ∈
L(f0, . . . , fd) as l(x) = 〈x,a〉, where x = (f0(x), f1(x), . . . , fd(x)) and a =
(a0, a1, . . . , ad) ∈ R

d+1. As before, we only have to prove the “if” part of the
theorem, which is equivalent to the fact that the slabs Si ⊂ R

d+1 with normal
vector xi = (f0(xi), . . . , fd(xi)) and width

wi =
2

‖xi‖ =
2

(
∑d

k=0 f2
k (xi))1/2

≥ 2√
dfd(xi)

,

for i = 1, 2, . . ., permit a translative covering of R
d+1. Again, it is enough to

consider the case when limi→∞ xi = ∞, otherwise each slab Si contains a ball
of diameter at least

2√
dfd(limi→∞ xi)

> 0.

We follow the scheme of the proof of Theorem 1. According to Lemma 2, it is
enough to show that there exist d + 1 linearly independent vectors u1, . . . ,ud+1

that satisfy conditions (i) and (ii) with xi = (f0(xi), . . . , fd(xi)) and with a

200 A. Kupavskii and J. Pach

suitable constant γ > 0. We can assume without loss of generality that x1, and
hence all xis, are so large that they satisfy x1 ≥ x0 and the inequalities

fj(x)
fd(x)

≤ fj(x1)
fd(x1)

≤ 1√
d
, (1)

for every x ≥ x1 and j = 0, . . . , d − 1. To see this, observe that fj(x)/fd(x) =
Fj(x)/f ε

d(x) is monotone decreasing in x, because Fj is monotone decreasing,
while fd is monotone increasing.

Let e1, . . . , ed+1 be the standard basis in R
d+1. For 1 ≤ j ≤ d + 1, set

uj :=
d+1∑

k=1

ek − 1
2
ed+2−j .

In other words, all coordinates of uj are 1, with the exception of the (d+2−j)-th
coordinate, which is 1

2 .
By definition, we have 〈xi,uj〉 ≥ 1

2fd(xi) and ‖uj‖ <
√

d + 1. It follows from
(1) that fj(xi)

fd(xi)
≤ 1√

d
for j �= d, so that

‖xi‖ ≤
(

d∑

k=0

f2
k (xi)

)1/2

≤
√

2fd(xi).

Hence, for every i and j,

〈xi,uj〉 ≥ 1
2
fd(xi) ≥ 1

2
√

2
‖xi‖ ≥ 1

2
√

2(d + 1)
‖xi‖‖uj‖.

Therefore, condition (ii) in Lemma2 is satisfied with γ = 1

2
√

2(d+1)
.

It remains to verify condition (i). For the rest of the argument, fix j (1 ≤
j ≤ d + 1). We have to show that for every i (i = 1, 2, . . .), the inequality

〈xi+1,u1〉
〈xi,u1〉 ≤ 〈xi+1,uj〉

〈xi,uj〉
holds. For j = 1, the statement is trivial. Therefore, we may suppose that j > 1.
Next, we want to get rid of fd(x) in the left hand side, keeping both the numera-
tor and denominator positive. The above inequality is equivalent to the following:

〈xi+1,u1〉 − 1
2 〈xi+1,uj〉

〈xi,u1〉 − 1
2 〈xi,uj〉

≤ 〈xi+1,uj〉
〈xi,uj〉 .

Using the notation

φ(x) =
1
2

d−1∑

k=0

fk(x) +
1
4
fd+1−j(x), ψ(x) =

d−1∑

k=0

fk(x) − 1
2
fd+1−j(x),

Simultaneous Approximation of Polynomials 201

the above inequality may be rewritten as

φ(xi+1)
φ(xi)

≤ fd(xi+1) + ψ(xi+1)
fd(xi) + ψ(xi)

. (2)

Before checking that (2) is true, let us summarize the properties of the
functions φ and ψ we need:

1. φ(xi+1)/φ(xi) ≤ f1−ε
d (xi+1)/f1−ε

d (xi) for the constant ε > 0 from Theorem 2,
2. ψ(xi+1) ≤ cf1−ε

d (xi+1) for a constant c > 0, and
3. ψ(xi+1) ≥ ψ(xi).

By the monotonicity of Fk, we have fk(xi+1)/fk(xi) ≤ f1−ε
d (xi+1)/f1−ε

d (xi),
for k = 0, . . . , d − 1. Now property 1 follows from the fact that,
if a0, . . . , ad−1, b0, . . . , bd−1, t are positive numbers satisfying a0/b0 ≤
t, . . . , ad−1/bd−1 ≤ t, then (a0 + . . . + ad−1)/(b0 + . . . + bd−1) ≤ t. Using that
limx→∞ Fk(x) = 0 for k = 0, . . . , d − 1, we get property 2. Property 3 is a direct
consequence of our assumption that each fk (k = 0, 1, . . .) is monotone increasing
for x ≥ x0.

We have to verify (2). In view of property 1, it is sufficient to show

f1−ε
d (xi+1)
f1−ε

d (xi)
≤ fd(xi+1) + ψ(xi+1)

fd(xi) + ψ(xi)
,

which is equivalent to

ψ(xi)f1−ε
d (xi+1) − ψ(xi+1)f1−ε

d (xi) ≤ fd(xi)f1−ε
d (xi+1)

((fd(xi+1)
fd(xi)

)ε

− 1
)

,

or, in a slightly different form,

ψ(xi)f
1−ε
d (xi+1)− ψ(xi+1)f

1−ε
d (xi) ≤ fd(xi)f

1−ε
d (xi+1)

((
1+

f1−ε
d (xi+1) − f1−ε

d (xi)

f1−ε
d (xi)

) ε
1−ε − 1

)
.

Replacing the left-hand side by a larger quantity (taking property 3 into
account) and the right-hand side by a smaller one (applying the inequality (1 +
x)α ≥ 1 + αx, valid for all α, x ≥ 0), we obtain the stronger inequality

ψ(xi+1)(f
1−ε
d (xi+1) − f1−ε

d (xi)) ≤ fd(xi)f
1−ε
d (xi+1)

(ε

1 − ε

f1−ε
d (xi+1) − f1−ε

d (xi)

f1−ε
d (xi)

)
.

(3)

Thus, it is sufficient to prove (3). Rearranging the terms, we obtain

ψ(xi+1) ≤ ε

1 − ε
f ε

d(xi)f1−ε
d (xi+1).

By property 2, we have ψ(xi+1) ≤ cf1−ε
d (xi+1), so that it is enough to check

that

202 A. Kupavskii and J. Pach

cf1−ε
d (xi+1) ≤ ε

1 − ε
f ε

d(xi)f1−ε
d (xi+1),

that is, c ≤ ε
1−εf

ε
d(xi). As fd(x) is an increasing function for x ≥ x0, the last

inequality is satisfied if we choose x1 (and, hence, all other xi) sufficiently large.
This completes the proof of (3) and (2), and so the proof of Theorem 2. �

4 Concluding Remarks

1. As was mentioned in the Introduction, Conjecture 1 is known to be true in
the plane. Moreover, in [11] a stronger statement was proved: there exists a
constant c such that every collection of strips with total width at least c permits
a translative covering of a disk of diameter 1. In view of this, one can make the
following even bolder conjecture.

Conjecture 2. For any positive integer d, there exists a constant c depending
on d such that every collection of slabs in R

d of total width at least c permits a
translative covering of a unit diameter d-dimensional ball.

Suppose Conjecture 1 is true for a positive integer d. Answering a question
in [11], Ruzsa [10] proved that then, for the same value of d, Conjecture 2 also
holds. Thus, the two conjectures are equivalent.

2. Given a class F of functions R → R, we say that a sequence of positive
numbers x1 ≤ x2 ≤ . . . is strongly F-controlling if there exist reals y1, y2, . . .
with the property that, for every ε > 0 and every f ∈ F , one can find an i with

|f(xi) − yi| ≤ ε.

It is easy to see that the condition in Theorem 1 is sufficient to guarantee that the
sequence x1, x2, . . . is strongly Pd-controlling. Theorem 2 can also be strength-
ened analogously.
3. The aim of this paper was to find necessary and sufficient conditions for a
sequence of numbers to be L-controlling, where L = L(f1, . . . , fd) is the class of
functions that can be obtained as linear combinations of f1, . . . , fd. We reduced
this problem to a question about covering R

d with translates of certain slabs.
However, the two problems are not necessarily equivalent. For example, we have
noticed that the slabs obtained at this reduction had some special properties:
apart from their widths, their normal vectors were also prescribed. This enabled
us to cover R

d with their translates, even if we do not know whether such a
covering exists for every system of slabs with the same widths.

Nevertheless, in a more complicated sense, the two problems are equivalent.

Theorem 3. Given a positive integer d, and a sequence of positive num-
bers x1, x2, . . ., define a family F = F(d, x1, x2, . . .) of d-tuples of functions
f1, . . . , fd : R → R as

F = {(f1, . . . , fd) :
d∑

j=1

f2
j (xi) = x2

i for all i}.

Simultaneous Approximation of Polynomials 203

Then a sequence of slabs with widths x1, x2, . . . permits a translative cover-
ing of R

d if and only if x1, x2, . . . is L(f1, . . . , fd)-controlling for every d-tuple
(f1, . . . , fd) ∈ F , where

L(f1, . . . , fd) = {a1f1 + . . . + adfd : a1, . . . , ad ∈ R}.

Acknowledgements. Research of the first author is supported in part by the grant N
15-01-03530 of the Russian Foundation for Basic Research. The research of the second
author is partially supported by Swiss National Science Foundation Grants 200020-
144531 and 200020-162884.

References

1. Bang, T.: On covering by parallel-strips. Mat. Tidsskr. B. 1950, 49–53 (1950)
2. Bang, T.: A solution of the “plank problem,”. Proc. Am. Math. Soc. 2, 990–993

(1951)
3. Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer,

Heidelberg (2005)
4. Erdős, P., Pach, J.: On a problem of L. Fejes Tóth. Discrete Math. 30(2), 103–109

(1980)
5. Fejes Tóth, L.: Remarks on the dual of Tarski’s plank problem. Matematikai Lapok

25, 13–20 (1974). (in Hungarian)
6. Groemer, H.: On coverings of convex sets by translates of slabs. Proc. Am. Math.

Soc. 82(2), 261–266 (1981)
7. Groemer, H.: Covering and packing properties of bounded sequences of convex

sets. Mathematika 29, 18–31 (1982)
8. Groemer, H.: Some remarks on translative coverings of convex domains by strips.

Canad. Math. Bull. 27(2), 233–237 (1984)
9. Kupavskii, A., Pach, J.: Translative covering of the space with slabs, manuscript

10. Ruzsa, I.Z.: Personal communication
11. Makai, E., Pach, J.: Controlling function classes and covering Euclidean space.

Stud. Scient. Math. Hungarica 18, 435–459 (1983)
12. Tarski, A.: Uwagi o stopniu równoważności wieloka̧tów. Parametr 2, 310–314

(1932). (in Polish)

Distance Geometry on the Sphere

Leo Liberti1(B), Grzegorz Swirszcz2, and Carlile Lavor3

1 CNRS LIX, École Polytechnique, 91128 Palaiseau, France
liberti@lix.polytechnique.fr

2 IBM Research, Yorktown Heights, USA
swirszcz@us.ibm.com

3 IMECC, University of Campinas, 13081-970 Campinas-SP, Brazil
clavor@ime.unicamp.br

Abstract. The Distance Geometry Problem asks whether a given
weighted graph has a realization in a target Euclidean space R

K which
ensures that the Euclidean distance between two realized vertices inci-
dent to a same edge is equal to the given edge weight. In this paper we
look at the setting where the target space is the surface of the sphere
S
K−1. We show that the Distance Geometry Problem is almost the same

in this setting, as long as the distances are Euclidean. We then general-
ize a theorem of Gödel about the case where the distances are spherical
geodesics, and discuss a method for realizing cliques geodesically on a
K-dimensional sphere.

1 Introduction

The Distance Geometry Problem (DGP), discussed at length in the surveys
[10,14,16], is as follows. Given a positive integer K and a simple undirected
graph G = (V,E) weighted by an edge weight function d : E → R+, determine
whether there is a realization x : V → R

K such that:

∀{u, v} ∈ E ‖xu − xv‖2 = duv. (1)

The DGP is relevant to many applications: determining the shape of proteins
from nuclear magnetic resonance data, localizing mobile sensors in wireless net-
works, designing efficient time synchronization protocols, controlling fleets of
unmanned underwater vehicles, and more. It is auxiliary to other problems, such
as the control of a multi-joint robotic arm, the rigidity of a bar-and-joint archi-
tecture structure, the completion of a matrix so that it is positive semidefinite,
the visualization of high-dimensional data points [22].

The aim of this paper is to discuss the DGP on the sphere S
K−1. Specifi-

cally, we emphasize two relatively straightforward observations which have a very
high impact in realizing graphs on spheres using both Euclidean and geodesic

L. Liberti—Partly supported by the French national research agency ANR under
the “Bip:Bip” project under contract ANR-10-BINF-0003.
C. Lavor—The support of FAPESP and CNPq is gratefully acknowledged.

c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 204–215, 2016.
DOI: 10.1007/978-3-319-48532-4 18

Distance Geometry on the Sphere 205

distances, and use them to derive a method for realizing cliques geodesically on
a sphere.

The DGP problem was shown to be NP-hard [24] in R
K where K = 1, by

reduction from partition, and even for any fixed K with only a handful of
edge weight values, by reduction from 3-satisfiability. A similar reduction
from partition was also used to show NP-hardness of the subclass consisting
of certain Henneberg type 1 graphs, namely graphs with a vertex order ensuring
that:

– the first K vertices form a clique;
– every vertex v of rank greater than K in the order is adjacent to the vertices

of ranks v − 1, . . . , v − K.

This class, also called KDMDGP, is relevant in the study of protein conforma-
tion [9].

The KDMDGP is usually solved using a worst-case exponential time Branch-
and-Prune (BP) [12] algorithm, which is precise, reliable and efficient notwith-
standing the NP-hardness of the problem. It was shown in [17] that the struc-
ture of the symmetry group of the partial reflections in the realizations of a given
problem instance can be found efficiently. In [11] it was shown that this group
can be used to count the number of incongruent realizations of a given KDMDGP
graph. In [15] the latter result was used to show that the BP is actually Fixed-
Parameter Tractable (FPT) on protein graphs, and that the parameter could be
fixed at a very low value for all tested proteins. This essentially yields a polyno-
mial time behaviour of the BP when used to realize protein graphs in R

3, and
explains the efficiency of the BP on these graphs.

Instances from other applications have different structures which can also be
exploited. Mobile sensor networks usually have at least two or three “anchors”,
i.e. sensors which are actually fixed, and whose position is known; most often,
anchor locations are likely to be evenly distributed among the mobile sensors,
in order to control load peaks. This appears to have a good numerical effect on
Semidefinite Programming (SDP) algorithms when solving an SDP formulation
of the DGP [7].

Flexible graphs can be realized using a plethora of heuristic and approximate
approaches, some of which are based on local Nonlinear Programming (NLP) solu-
tion algorithms [13,20], and some others on different paradigms, see e.g. [1,26].

Given the wealth of knowledge on solving the DGP in a Euclidean space
R

K , it would be desirable to be able to extend some of this knowledge to other
spaces or manifolds. One specific application-related motivation for looking at
the sphere S

K−1 is that it is a natural setting for the problem of completing
partial correlation or covariance matrices, which arises in the financial sector [25].

2 Realizing Cliques in R
K

The fundamental “building block” for realizing graphs in R
K are cliques on

K + 1 vertices. In general, a 1-clique is a vertex, which can be realized in zero

206 L. Liberti et al.

dimensions; a 2-clique is an edge, which can be realized in one dimension; a 3-
clique is a triangle, which can be realized in two dimensions, as long as the edge
weights satisfy the triangular inequality; a 4-clique is a tetrahedron, which can
be realized in three dimensions, as long as the triangular and simplex inequalities
are satisfied; larger cliques can be realized as long as the corresponding Cayley-
Menger determinant [2,18], which is proportional to the square of the signed
volume, is appropriately signed.

2.1 Recursive Realization Process

We can obtain a (K + 1)-clique from a K clique by adding a new vertex v to
V , and edges of the form {u, v} (for u ∈ V) to E. This recursive construction
of cliques can be exploited to define a realization algorithm for (K + 1)-cliques
in R

K : number the vertices so that V = {v1, . . . , vK+1}, assume (inductively)
that the positions for v1, . . . , vK in R

K are known to be x1, . . . , xK , and find the
position y for vK+1 using K-lateration; the induction starts by setting x1 at the
origin.

2.2 K-Lateration

The fundamental building block for the algorithm in Sect. 2.1 is the (well known)
process of K-lateration — a generalization of trilateration — i.e. the process of
computing one of the vertices of a triangle from the two other vertices and the
side lengths. Whereas K-lateration is usually applied to realizations in R

K−1

[3,4], we apply it here to R
K , which requires a further step [8]. We start with

the squared distance system:

∀i ≤ K ‖y − xi‖22 = d2i,K+1, (2)

where xi ∈ R
K and di,K+1 are known. Equation (2) is trivially obtained by

squaring Eq. (1). We re-write Eq. (2) as follows:

‖y‖22 − 2x1 y = d21,K+1 − ‖x1‖22 ([1])
...

‖y‖22 − 2xi y = d2i,K+1 − ‖xi‖22 ([i])
...

‖y‖22 − 2xK y = d2K,K+1 − ‖xK‖22 ([K]),

where we denote the i-th equation of the system by [i]. We can now eliminate the
square terms ‖y‖22 by forming the surrogate system [i]− [j], where j is any given
number in {1, . . . ,K}. If we fix j = K without loss of generality, we obtain:

2(xK − x1) y = d21,K+1 − d2K,K+1 − ‖x1‖22 + ‖xK‖22 ([1] − [K])
...

2(xK − xK−1) y = d2K−1,K+1 − d2K,K+1 − ‖xK−1‖22 + ‖xK‖22 ([K − 1] − [K]),

Distance Geometry on the Sphere 207

which is a linear system which can written as Ay = b for appropriate A, b, where
A is a (K − 1) × K matrix, and b ∈ R

K .
The locus of points for y can be obtained by intersecting the affine space

Ay = b and one of the K spheres described by the equations in Eq. (2). Without
loss of generality, we again take the K-th sphere:

Ay = b
‖y − xK‖2 = d2K,K+1.

}

(3)

2.3 Assumptions on the Rank of A

If A has full rank, then rk(A) = K −1. Since A has K columns, Ay = b describes
a line in R

K . Hence, the intersection Eq. (3) can either be empty (if the line is
disconnected from the sphere), consist of exactly one point (if the line is tangent
to the sphere), or consist of two points otherwise. If the application warrants the
assumption that solutions do exist (as in the case of proteins), then Eq. (3) has
either one or two solutions. If we have no further knowledge of the data at hand,
then we can reasonably assume that Eq. (3) has two solutions almost surely.

If rk(A) = K − 2 or less, then Ay = b describes a plane or hyperplane in
R

K . The intersection of a hyperplane with a sphere could be empty, or consist of
only one point, or consist of uncountably many points. Since we are realizing a
clique, and cliques are not flexible graphs, we can discount the latter possibility.
If it consists of only one point, then the realization can be shown to be rigid,
but infinitesimally flexible (think e.g. of a “flat triangle” realized in the plane
as part of a line, which happens whenever the triangular inequality is satisfied
at equality). Since the set of rank deficient (K − 1) × K matrices has Lebesgue
measure zero in the set of all (K − 1) × K matrices, if we have no further
knowledge of the data at hand, we can again reasonably assume that A has full
rank almost surely [14].

2.4 Finding the Intersection of a Line and a Sphere

We now assume that A has full rank. We use Ay = b as a dictionary: we identify
a (K−1)×(K−1) nonsingular submatrix B of A, and partition the columns of A
as (B|N), where N is a single column. For simplicity of notation we identify the
columns with their indices, and thus correspondingly partition y into (yB , yN),
where yN , called a nonbasic variable, is a single scalar. The linear system Ay = b
can therefore be written as ByB + NyN = b, which allows us to write the basic
variables yB in function of the nonbasic yN :

yB = B−1b − B−1NyN . (4)

Now we use Eq. (4) to replace yB in the sphere equation ‖y − xK‖2 = d2K,K+1

in Eq. (3), and obtain a quadratic equation in the single variable yN . The dis-
criminant of this equation could be either negative, or zero, or positive. The
first case corresponds to Eq. (3) having an empty intersection; the second to

208 L. Liberti et al.

4

4

4

1

3

1

2

3

1

2

3
2

Fig. 1. Two reflected realizations of a 4-clique in R
3 (left), which may coincide for

certain values of the edge weights (right).

a single intersection point (the line is tangent to the sphere) and the third to
two intersection points. In terms of realizing the (K + 1)-st clique vertex, the
realization does not exist in the first case, corresponds to a “flat simplex” in
the second case (i.e. a simplex which is realized in a lower dimensional space,
see Fig. 1, right), or to two possible positions y+, y− for xK+1, leading to two
possible clique realizations x+, x−, which turn out to be reflection of each other
w.r.t. the hyperplane spanned by x1, . . . , xK (see Fig. 1, left).

2.5 An Efficient Algorithm

The algorithm for realizing (K − 1)-cliques in R
K should now be clear: when

x1, . . . , xK are known, we compute y: if it does not exist, the clique cannot be
realized; if there are two distinct points, any of them can be chosen; if they
coincide, the realization occurs in an affine lower dimensional subspace. Now
x1, . . . , xK can be computed recursively, and we set x1 = 0. To make this algo-
rithm deterministic, we can give any rule to choose between the two points for
xK+1 (for example, we can always choose y+

N). This is a polynomial time algo-
rithm in K. Note that, in most applications, K is fixed, so we can treat this as
an O(1) algorithm.

3 The Branch-and-Prune Algorithm

The BP algorithm applies a similar idea to KDMDGP graphs, defined on page
2. The initial K-clique is realized in R

K in O(1) as per Sect. 2.5. Thereafter, the
order ensures that each later vertex v is adjacent to at least its K immediate pre-
decessors. Therefore v can be realized according to Sect. 2.4 in two points x+

v , x−
v

which are reflections of each other w.r.t. xv−1, . . . , xv−K . We check whether the
points x+

v , x−
v are feasible with respect to any further edge distance to vertices

u < v −K, and remove the infeasible ones. We then recurse the process on v +1
on the set of feasible points: we do not recurse at all if neither x+, x− are feasible;
we recurse once if only one point is feasible, and we recurse twice if both are
feasible. The algorithm terminates when v = |V | [9,12].

Distance Geometry on the Sphere 209

In practice, BP is currently the only algorithm which can find all incongruent
solutions to a given KDMDGP graph. Moreover, it is the fastest, and is also
very reliable. It scales up to realize protein backbone graphs tens of thousands
of vertices, which it can realize in a few seconds of a common last generation
laptop [23].

3.1 Complexity

The BP defines a binary search tree. At level v, this tree contains all possible
positions for vertex v. Every path from a leaf to the root defines a possible
realization for the input graph. The complexity of the BP algorithm has the fol-
lowing extrema: if the number of calls which yield two feasible points is bounded
by a polynomial in the instance size, then the search tree has a bounded tree
width, and the BP is a polynomial time algorithm. Otherwise, is it exponential.

Typically, protein graphs have a combinatorial explosion at the beginning of
the sequence, say up to the vertex having rank r. Then the folds of the protein
ensure the that there are sufficiently many edges in the graph to guarantee that
only polynomially many calls determine the feasibility of both points x+

v , x−
v at

level v. This yields a complexity O(2rp(|(G, d)|)), where p is a polynomial in the
size of the input (G, d), which causes BP to be FPT on a class of graphs which
includes all proteins we tested.

3.2 Number of Solutions

Since cliques are rigid graphs and KDMDGP instances consist of sequences of
rigidly connected cliques defined by the vertex order, KDMDGP graphs are rigid.
However, in view of the fact that there may be up to two positions for each vertex
v in any branch of the BP tree, most KDMDGP instances do not have unique
realizations, but rather a finite set X of possible realizations modulo translations
and rotations. We were able to explicitly describe the invariant group of X
[17,21], which is isomorphic to a certain cartesian product of copies of the cyclic
group C2. We then used it to determine |X| efficiently from the edge set E [11]. It
turns out that |X| is always a power of two, as long as the full rank assumptions
given in Sect. 2.3 hold.

4 The DGP on the Sphere

We now turn to the DGP on the sphere S
K−1, meaning that we constrain any

realization x to belong to the surface of the sphere. We first discuss the case
where the edge weights are realized as Euclidean distances in S

K−1 embedded in
R

K , meaning that each edge is realized as a segment which crosses the interior
of the sphere. We then discuss the case where the edge weights are realized as
geodesic distances.

210 L. Liberti et al.

4.1 Euclidean Distances

In this section we tackle the DGP where x is constrained to belong to the surface
of the sphere S

K−1, i.e.:
∀v ∈ V ‖xv‖ = 1. (5)

Since realize edges {u, v} as segments of Euclidean length duv, the system in
Eq. (1) holds. In particular, K-lateration can be simplified using Eq. (5):

∀i ≤ K ‖y − xi‖22 = d2i,K+1

⇒ ‖y‖2 − 2xi y + ‖xi‖2 = d2i,K+1

(by Eq. 5 applied to y, xi) ⇒ 2 − 2xi y = d2i,K+1

⇒ xi y = 1 − 1
2
d2i,K+1,

which is a linear system Ay = b, where A is a square K×K matrix and y = xK+1.
As in Sect. 2.3, we can make assumptions on the rank of A being full, which

brings us immediately to a spherical K-lateration process yielding y = A−1b,
which has a unique solution. Note that the algebraic derivation above holds even
if the original system is infeasible, whereas Ay = b always has a unique solution
as long as A has full rank. This occurs because the derivation above is necessary
but not sufficient, i.e. the linear system Ay = b is implied by Eqs. (1) and (5), but
does not imply them univocally. For sufficiency, y needs to be verified feasible
with respect to Eqs. (1) and (5). If so, then y is a possible valid realization of
the (K + 1)-st vertex of the clique; otherwise, the input graph is a NO instance
of the corresponding DGP.

With the full rank assumption, the difference between K-lateration in R
K

and S
K−1 is exactly the same as that between R

K and R
K−1: in the former case

the linear system is undetermined, and describes a line in R
K , whereas in the

latter it only describes a point in R
K−1. Accordingly, in R

K we need to intersect
the line with a sphere of Eq. (1) in order to obtain at most two points, whereas
in R

K−1 and S
K−1 we do not.

In view of Sect. 3, this difference translates to KDMDGP graphs realized in a
Euclidean space as follows: if vertices are adjacent to K immediate predecessors
but not necessarily K + 1, then we have to realize the graph using the BP algo-
rithm, which has a worst-case exponential behaviour, and finds an exponential
number of incongruent realizations. If vertices can be guaranteed to be adjacent
to at least K +1 immediate predecessors, the BP can be shown to work in poly-
nomial time (in fact, linear in the number of recursion calls, each of which has
polynomial complexity in K).

The procedure on the sphere which is analogous to K-lateration in R
K (yield-

ing exponential behaviour in the BP), is K-lateration in S
K , embedded in R

K+1.
In this setting the system Ay = b derived above is K × (K + 1), and therefore
again describes a line in R

K+1, which must be intersected with one of the spheres
in either Eq. (1) or (5) (the latter giving rise to easier algebraic derivations), in
order to obtain at most two points in R

K+1.

Distance Geometry on the Sphere 211

Fig. 2. A tetrahedron in a sphere (left) and two reflected triangles in a sphere (right).

Example 4.1. Realizing a tetrahedron on S
2 with Euclidean distances by K-

lateration yields a unique point, whereas realizing a triangle on S
2 yields at most

two points (see Fig. 2). Comparing with R
3, it would take the distances to four

known points to determine the solution for the last point uniquely, whereas the
distances to three known points only suffice to determine at most two positions,
each of which is a reflection of the other. �	

Summarizing, in order to realize xK+1 from x1, . . . , xK on S
K−1 or SK using

Euclidean distances, it suffices to remark that the norm constraints ‖xK‖2 = 1
are quadratic constraints which can be used in conjunction with the original
DGP system in Eq. (1).

4.2 Geodesic Distances

Not many people know that Kurt Gödel performed research in Distance Geom-
etry (DG) in his youth. Two of the talks he gave at Karl Menger’s seminar
[19] are about DG, and also appear in [5]. Specifically, we are interested in [6],
titled Über die metrische Einbettbarkeit der Quadrupel des R3 in Kugelflächen,
translated as On the isometric embeddability of quadruples of points of R3 in
the surface of a sphere. Apparently, Gödel had been working to solve a question
posed by Laura Klanfer in a previous colloquium, i.e. whether an affinely inde-
pendent quadruplet of points in R

3 can be realized on the surface of a scaling
of S2 so that the geodesic distances between the realized points have the same
length as the Euclidean distances between the given points. Gödel managed to
reply in the positive by means of a clever fixed point argument in R

3 and S
2.

In the following, we present a (rather trivial) generalization of Gödel’s DG
theorem to an arbitrary dimension K. We first remark that, for any K > 1,
there is a unique shortest curve, called geodesic, between any two points on the
surface of SK . Moreover, by elementary trigonometry the length c of the chord
subtending a geodesic of length α on a sphere of radius 1

ρ (for some ρ > 0) is
given by

212 L. Liberti et al.

cρ(α) =
2
ρ

sin
αρ

2
. (6)

Theorem 4.2. Any weighted (K + 1)-clique G = (V,E, d), where d : E → R+,
which is realizable in R

K but not in R
K−1, can also be realized on rSK−1 (for

some radius r > 0) with geodesic distances.

Proof. Let x = (x1, . . . , xK+1) be an affinely independent realization of G in R
K ,

and let r̄ be the radius of the sphere circumscribing the realization x (there is
a unique sphere in R

K whose surface contains K + 1 given affinely independent
points). Without loss of generality, we translate x so that the circumscribed
sphere r̄ SK−1 is centered at the origin.

The idea is to deform this sphere into a family S(r) = rSK−1 of spheres in
function of r ranging in a certain open interval specified below. This also deforms
the realization x to a continuous map of realizations on S(r). We then find a
value r∗ which makes the lengths of the geodesics on S(r∗) equal to the lengths
of the chords in S(r̄). The nontrivial part of the argument shows that such an r∗

exists. Its existence will be implied by a fixed point argument on an appropriate
function of the inverse ρ of the radius r.

Let τ(ρ) be the realization on S(r) mapped from x as r decreases. More
precisely, we let τ(ρ) be the realization of G with edges weighted by the function
cρ(d), meaning that the weight of the edge {u, v} ∈ E is cρ(duv). We now define
φ : R+ → R+ so that 1

φ(ρ) is the radius of the sphere circumscribed about τ(ρ).
The parameter ρ is a measure of “how close the sphere is to being flat”:

it is easy to see that, as ρ tends to zero, r tends to infinity (yielding a sphere
with zero curvature, where the chord and the geodesic lengths are equal), which
means that cρ(duv) tends to duv for all edges {u, v} ∈ E. This implies that τ(ρ)
tends to the realization x of G in R

K . Since x exists, we can define τ(0) = x and
φ(0) = 1/r̄.

We now claim that φ has a fixed point in the open interval I = (0, π/α),
where α = max

{u,v}∈E
duv (see Lemma 4.3 for the proof). So let ρ∗ be the fixed

point of φ, namely φ(ρ∗) = ρ∗. What this means is that r∗ = 1
ρ∗ is the radius of

the sphere circumscribed about τ(ρ∗). In turn, τ(ρ∗) is a realization of G where
the edges are weighted by the length of the chords subtending geodesics of length
duv (for all {u, v} ∈ E) with respect to a radius r∗. A moment’s reflection on
this long sentence should convince the reader that this is the same as saying that
τ(ρ∗) is a realization of G on the surface of a sphere r∗

S
K−1 where the edges

are realized as geodesics of length duv. �	
Lemma 4.3. The function φ defined in the proof of Theorem 4.2 has a fixed
point in the open interval I = (0, π/α), where α is the maximum edge weight of
the given clique graph G.

Proof. First notice that τ(ρ) is defined in terms of cρ, and cρ is continuous over
α for each ρ > 0 by definition (see Eq. (6)). Note that τ(0) exists since it is

Distance Geometry on the Sphere 213

equal to x by definition. Since τ(ρ) is defined as the realization of G weighted by
cρ(d) over a sphere of radius 1/ρ, τ is a continuous map in some open interval
J = (0, ε) for some ε > 0, since 0 is in the closure of J . Therefore ρ̄ = max{ρ ∈
I | τ(ρ) is defined} exists by continuity of τ . We look at two mutually exclusive
cases: ρ̄ = π/α and ρ̄ < π/α.

(i) If ρ̄ = π/α, then τ(ρ̄) is defined and its longest edge has length cρ̄(α) = 2α
π .

Hence the radius of the sphere circumscribed around τ(ρ̄) is greater than
cρ̄(α)/2, i.e. greater than α/π = 1/ρ̄, which implies φ(ρ̄) < ρ̄. On the other
hand, we have φ(0) = 1/r̄ > 0, so the intermediate value theorem ensures
that ∃ρ∗ ∈ (0, ρ̄) such that φ(ρ∗) = ρ∗.

(ii) Assume now ρ̄ < π/α, and suppose that τ(ρ̄) is an affinely independent
realization in R

K . Then, for each ρ̃ in an arbitrary small neighbourhood
around ρ̄, τ(ρ̃) must exists by continuity; then there must be some ρ̃ > ρ̄
where τ(ρ̃) is defined, which contradicts the maximality of ρ̄. So the realiza-
tion τ(ρ̄) is affinely dependent, which means that its circumscribed sphere
is flat, i.e. that φ(ρ̄) = 0 < ρ̄. Together with φ(0) = 1/r̄ > 0, this shows that
there is ρ∗ < π/α such that φ(ρ∗) = ρ∗, which concludes the lemma. �	

Fig. 3. Gödel’s theorem yields a method for computing geodesic realizations. This
picture shows the fixed point.

214 L. Liberti et al.

4.3 Putting It All Together

The results of Sects. 4.1 and 4.2 yield a method for realizing cliques in S
K−1 with

geodesic distances: first, numerically solve the fixed point equation φ(ρ) = ρ to
obtain a value of ρ∗; then use Eq. (6) to compute new Euclidean distances
corresponding to the the given geodesic distances, and finally realize the clique
on a sphere of radius ρ∗ using the new Euclidean distances. This will yield the
required realization τ(ρ∗) (see Fig. 3).

5 Conclusion

This paper emphasizes two relatively easy observations about extending the
considerable theoretical developments of the DGP to the setting of a spherical
surface. The first observation applies to Euclidean distances, and amounts to
noticing that the unit norm constraint can be exploited together with the DGP
constraints. The second observation concerns geodesic distances, and yields an
extension to S

K−1 of a result of Gödel’s in S
2. The two observation yield a

method for realizing cliques on a sphere with geodesic distances.

References

1. Agrafiotis, D., Bandyopadhyay, D., Young, E.: Stochastic proximity embedding
(SPE): a simple, fast and scalable algorithm for solving the distance geometry
problem. In: Mucherino et al. (eds.) [22]

2. Cayley, A.: A theorem in the geometry of position. Camb. Math. J. II, 267–271
(1841)

3. Dong, Q., Wu, Z.: A geometric build-up algorithm for solving the molecular dis-
tance geometry problem with sparse distance data. J. Global Optim. 26, 321–333
(2003)

4. Eren, T., Goldenberg, D., Whiteley, W., Yang, Y., Morse, A., Anderson, B.,
Belhumeur, P.: Rigidity, computation, and randomization in network localization.
In: IEEE Infocom Proceedings, pp. 2673–2684 (2004)

5. Feferman, S., Dawson, J., Kleene, S., Moore, G., Solovay, R., van Heijenoort, J.
(eds.): Kurt Gödel: Collected Works, vol. I. Oxford University Press, Oxford (1986)

6. Gödel, K.: On the isometric embeddability of quadruples of points of r3 in the
surface of a sphere (1933b). In: Feferman et al. (eds.) [6], pp. 276–279

7. Krislock, N., Wolkowicz, H.: Explicit sensor network localization using semidefinite
representations and facial reductions. SIAM J. Optim. 20, 2679–2708 (2010)

8. Lavor, C., Lee, J., Lee-St. John, A., Liberti, L., Mucherino, A., Sviridenko, M.:
Discretization orders for distance geometry problems. Optim. Lett. 6, 783–796
(2012)

9. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular
distance geometry problem. Comput. Optim. Appl. 52, 115–146 (2012)

10. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: Recent advances on the dis-
cretizable molecular distance geometry problem. Eur. J. Oper. Res. 219, 698–706
(2012)

Distance Geometry on the Sphere 215

11. Liberti, L., Lavor, C., Alencar, J., Abud, G.: Counting the number of solutions of
kDMDGP instances. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2013. LNCS, vol.
8085, pp. 224–230. Springer, Heidelberg (2013)

12. Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molec-
ular distance geometry problem. Int. Trans. Oper. Res. 15, 1–17 (2008)

13. Liberti, L., Lavor, C., Maculan, N., Marinelli, F.: Double variable neighbourhood
search with smoothing for the molecular distance geometry problem. J. Global
Optim. 43, 207–218 (2009)

14. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry
and applications. SIAM Rev. 56(1), 3–69 (2014)

15. Liberti, L., Lavor, C., Mucherino, A.: The discretizable molecular distance geom-
etry problem seems easier on proteins. In: Mucherino et al. [22]

16. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry
methods: from continuous to discrete. Int. Trans. Oper. Res. 18, 33–51 (2010)

17. Liberti, L., Masson, B., Lavor, C., Lee, J., Mucherino, A.: On the number of realiza-
tions of certain Henneberg graphs arising in protein conformation. Discrete Appl.
Math. 165, 213–232 (2014)

18. Menger, K.: New foundation of Euclidean geometry. Am. J. Math. 53(4), 721–745
(1931)

19. Menger, K. (ed.): Ergebnisse eines Mathematischen Kolloquiums. Springer, Wien
(1998)

20. Moré, J., Wu, Z.: Global continuation for distance geometry problems. SIAM J.
Optim. 7(3), 814–846 (1997)

21. Mucherino, A., Lavor, C., Liberti, L.: Exploiting symmetry properties of the dis-
cretizable molecular distance geometry problem. J. Bioinf. Comput. Biol. 10,
1242009(1–15) (2012)

22. Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.): Distance Geometry:
Theory, Methods, and Applications. Springer, New York (2013)

23. Mucherino, A., Lavor, C., Liberti, L., Talbi, E.G.: A parallel version of the Branch
& Prune algorithm for the molecular distance geometry problem. In: ACS/IEEE
International Conference on Computer Systems and Applications (AICCSA10),
pp. 1–6. IEEE, Hammamet (2010)

24. Saxe, J.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Pro-
ceedings of 17th Allerton Conference in Communications, Control and Computing,
pp. 480–489 (1979)

25. van der Schans, M., Boer, A.: A heuristic for completing covariance and correlation
matrices. Technical report 2013–01, ORTEC Finance (2013)

26. Tenenbaum, J., de Silva, V., Langford, J.: A global geometric framework for non-
linear dimensionality reduction. Science 290, 2319–2322 (2000)

The Sigma Chromatic Number of the Circulant
Graphs Cn(1, 2), Cn(1, 3), and C2n(1, n)

Paul Adrian D. Luzon, Mari-Jo P. Ruiz, and Mark Anthony C. Tolentino(B)

Ateneo de Manila University, Katipunan Ave., Loyola Heights,
Quezon City 1108, Philippines

paulluzon48@yahoo.com, {mruiz,mtolentino}@ateneo.edu

Abstract. For a non-trivial connected graph G, let c : V (G) → N be a
vertex coloring of G. For each v ∈ V (G), the color sum of v, denoted by
σ (v) , is defined to be the sum of the colors of the vertices adjacent to
v. If σ (u) �= σ (v) for every two adjacent u, v ∈ V (G), then c is called a
sigma coloring of G. The minimum number of colors required in a sigma
coloring of G is called its sigma chromatic number and is denoted by
σ(G). In this paper, we determine the sigma chromatic numbers of three
families of circulant graphs: Cn(1, 2), Cn(1, 3), and C2n(1, n).

Keywords: Neighbor-distinguishing coloring · Sigma coloring ·
Circulant graphs

1 Introduction

A vertex or edge coloring c of a graph G is said to be neighbor-distinguishing if c
produces a vertex labelling under which every pair of adjacent vertices in G are
assigned distinct labels. While the most studied example of such a coloring is
proper vertex coloring, various neighbor-distinguishing colorings have also been
introduced and discussed in the literature. In particular, examples of neighbor-
distinguishing vertex colorings are presented in [2,5].

In [3], Chartrand et al. introduced and explored the following neighbor-
distingushing vertex coloring that makes use of sums of colors.

Definition 1 (Chartrand et al. [3]). An example is shown in Fig. 1. For a
non-trivial connected graph G, let c : V (G) → N be a vertex coloring of G. For
each v ∈ V (G), the color sum of v, denoted by σ (v) , is defined to be the sum
of the colors of the vertices adjacent to v. If σ (u) �= σ (v) for every two adjacent
u, v ∈ V (G), then c is called a sigma coloring of G. The minimum number of
colors required in a sigma coloring of G is called its sigma chromatic number
and is denoted by σ(G).

Along with important properties of sigma coloring, Chartrand et al. also
determined in [3] the sigma chromatic numbers of paths, cycles, bipartite, and
complete multipartite graphs. In [6], Dehghan et al. proved complexity results for
c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 216–227, 2016.
DOI: 10.1007/978-3-319-48532-4 19

The Sigma Chromatic Number of the Circulant Graphs 217

Fig. 1. A sigma coloring of a graph

the sigma coloring problem; most notably, they showed that it is NP-complete
to decide whether σ(G) = 2 for a given 3-regular graph G.

In this paper, we focus on the sigma chromatic numbers of circulant graphs
defined below.

Definition 2 [1]. Given a subset D of the nonzero elements of the cyclic group
Zn of the integers modulo n, the circulant graph Cn(D) = G(Zn,D) has Zn

as a vertex set, and ij as an edge if and only if i − j ∈ D ∪ (−D).

In particular, we determine the sigma chromatic numbers of three families of
circulant graphs: Cn(1, 2), Cn(1, 3), and C2n(1, n). Note that while most circulant
graphs are 4-regular, C2n(1, n) is 3-regular for any n ≥ 2. Our main results are
as follows.

Theorem 3. Let n ≥ 6 be an integer. Then

σ (Cn(1, 2)) =
{
2, n = 6k, k ∈ N,
3, otherwise.

Remark 4. When n = 3, 4, 5, Cn(1, 2) is isomorphic to the complete graph Kn;
hence, σ (Cn(1, 2)) = n in these cases.

Theorem 5. Let n ≥ 3 be an integer. Then

σ (Cn(1, 3)) = χ(Cn(1, 3)) =

⎧
⎨

⎩

2, n is even,
3, n is odd, n �= 5,
5, n = 5.

Theorem 6. Let n ≥ 3 be a positive integer. Then

σ (C2n(1, n)) = χ (C2n(1, n)) =
{
2, n is odd,
3, n is even.

218 P.A.D. Luzon et al.

Fig. 2. Optimal sigma colorings of C7(1, 2), C7(1, 3), and C8(1, 4).

Examples are shown in Fig. 2. The remaining sections of this paper are devoted
to the proofs of Theorem3 (Sect. 2), Theorem5 (Sect. 3), and Theorem6 (Sect. 4).
Our proofs make use of the following relationship between the sigma chromatic
number and the chromatic number of a graph.

Theorem 7 (Chartrand, Okamoto, Zhang [3]). For every graph G,

σ(G) ≤ χ(G).

The above theorem gives an upper bound on the sigma chromatic number of a
graph provided that its chromatic number is known. However, the determination
of the chromatic number is not easy even when restricted to the class of circulant
graphs ([4]). Results on the chromatic numbers of certain families of circulant
graphs can be found in [1,7]; among those results, the following will be valuable
in our proofs.

Theorem 8 (Heuberger [7]). Let D = {a, b} be a generating subset of
Zn = {0, 1, ..., n−1} not containing 0. If χ(n,D) is the chromatic number of the
circulant graph Cn(D), then

The Sigma Chromatic Number of the Circulant Graphs 219

χ(n,D) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2, a and b are both odd and n is even,
4, b = 2a or a = 2b, and n �≡ 0 (mod 3) or

n = 13 and D is equivalent to {1, 5},
5, n = 5,
3, otherwise.

Finally, we present here the definition of a color block that was also defined in
[3]. Our proofs rely on observing the behavior of these blocks in a sigma coloring.

Definition 9. For a cyclic sequence s : c1, c2, ..., ck, c1 of k colors (not necessar-
ily distinct from each other), we define a block of s as a maximal subsequence of
s of the same color. Moreover, for a positive integer j ≤ k, we define a j-block
of s as a block of s of length j and we write (aa · · · a) (j a′s) to denote a j-block
of color a.

2 The Circulant Graphs Cn(1, 2)

For n ≥ 6, denote set of vertices of Cn(1, 2) by Vn and label them as in Fig. 3.

Fig. 3. Labelling of the vertices of Cn(1, 2)

Let a, b be distinct positive integers and c : Vn → {a, b} be a vertex coloring
of Cn(1, 2); define the cyclic sequence C : c(v1), c(v2), ..., c(vn), c(v1).

Proposition 10. Any block of C must be of length 1 or 2.

Proof. It is easy to check that a block of C must be of length less than 6.
Moreover, Fig. 4 shows that a block of C cannot have length 5 or 4.

Fig. 4. C does not have a block of length 4 or 5.

Without loss of generality, suppose (c(v2) c(v3) c(v4)) = (aaa) is a 3-block
of C. Then c(v1) = c(v5) = b. Moreover, since c is a sigma coloring, c(vn) and
c(v6) must be equal to a. This implies that σ(v2) = σ(v4) (see Fig. 5), which is
a contradiction. Hence, C must not have a 3-block.

Therefore, the blocks in C can only be of length 1 or 2. 	

220 P.A.D. Luzon et al.

Fig. 5. C does not have a block of length 3.

Lemma 11. σ (Cn(1, 2)) = 2 if and only if n = 6k, where k ∈ N.

Proof. Let c and C be as defined above. If B1, B2, B3, and B4 are four consec-
utive blocks of C and �(Bi) denotes the length of each block, then the quadru-
ple (�(B1), �(B2), �(B3), �(B4)) is said to be a block-length sequence of C. By
Proposition 10, C can only have blocks of length 1 or 2; hence, C has only 16
possible block-length sequences.

Consider a 2-block (c(v2)c(v3)) of C. Then c(v1) = c(v4) = b and since c is
a sigma coloring, (c(vn), c(v5)) is equal to (a, b) or (b, a). This implies that any
block-length sequence of C involving a 2-block must be of the form (1, 1, 2, 2) or
(2, 2, 1, 1) (Fig. 6).

Fig. 6. A 2-block of C induces the block-length sequence (1, 1, 2, 2) or (2, 2, 1, 1).

Consequently, the only possible block-length sequences of C are the following:

(1, 1, 1, 1), (1, 1, 1, 2), (2, 1, 1, 1), (1)

(1, 1, 2, 2), (1, 2, 2, 1), (2, 1, 1, 2), (2, 2, 1, 1). (2)

Among these, it is easy to verify that the sequences in (1) cannot occur. There-
fore, C can only have the block-length sequences in (2); and the complete
sequence of block lengths of C is uniquely given (up to rotation) by

1, 1, 2, 2, ..., 1, 1, 2, 2. (3)

It follows that, in this case, the number of vertices in Cn(1, 2) must be divisible
by 6; that is, n = 6k, k ∈ N.

Conversely, if n = 6k, k ∈ N, then any coloring c that induces a sequence of
block lengths equivalent to (3) is a sigma coloring of Cn(1, 2). This concludes
the proof. 	

Lemma 12. The circulant graph Cn(1, 3) has a sigma 3-coloring for all n ≥ 6.

Proof. We divide the proof into three cases.

The Sigma Chromatic Number of the Circulant Graphs 221

Case 1: n ≡ 0 (mod 3)
Define the coloring c of the vertices of Cn(1, 2) by

c(vi) =

⎧
⎨

⎩

1, i ≡ 1 (mod 3),
2, i ≡ 2 (mod 3),
4, i ≡ 0 (mod 3).

(4)

Then the color sums of the vertices are given by

σ(vi) =

⎧
⎨

⎩

12, i ≡ 1 (mod 3),
10, i ≡ 2 (mod 3),
6, i ≡ 0 (mod 3).

(5)

Consequently, σ(vi) = σ(vj) if and only if i ≡ j (mod 3); since vi is not adjacent
to vj in this case, c is a sigma coloring of Cn(1, 2).

Case 2: n ≡ 1 (mod 3)
It is easy to verify that the same coloring c in (4) is also a sigma 3-coloring

of Cn(1, 2) for this case.

Case 3: n ≡ 2 (mod 3)
Define the coloring c of the vertices of Cn(1, 2) as follows: if i = 1, 2, ..., n−4,

c(vi) is given by (4) while for the remaining vertices, we have c(n − 3) = 1,
c(n − 2) = 2, and c(n − 1) = c(n) = 4. Then σ(vi) is also given by (5) if
i = 2, 3, ..., n − 6 while

σ(vi) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

14, i = 1,
5, i = n − 5,
9, i = n − 4 or n,

11, i = n − 3,
10, i = n − 2,
8, i = n − 1.

Consequently, c is a sigma coloring of Cn(1, 2). 	

Lemmas 11 and 12 imply that σ (Cn(1, 2)) = 2 if and only if n ≡ 0 (mod 6);

otherwise, σ (Cn(1, 2)) = 3. This proves Theorem3.

3 The Circulant Graphs Cn(1, 3)

For n ≥ 3, denote the vertex set of Cn(1, 3) by Vn and label its vertices as in
Fig. 7. Let a, b be distinct positive integers and c : Vn → {a, b} be a vertex
coloring of Cn(1, 3); define the cyclic sequence C by

C : c(v1), c(v2), ..., c(vn), c(v1)

and denote the collection of all 2-blocks in C by B2.

222 P.A.D. Luzon et al.

Fig. 7. Labelling of the vertices of Cn(1, 3)

Definition 13. Let B ∈ B2. Then B is said to be of

1. Type 1 if there is a unique 2-block that is adjacent to B,
2. Type 2 if there is a unique 2-block that is one 1-block away from B, and
3. Type 3 if there is a unique 4-block that is adjacent to B.

The following lemma shows that B2 is the disjoint union of the 2-block types.

Lemma 14. Suppose n ≥ 10. Then any 2-block of C belongs to exactly one of
the three 2-block types.

Proof. Without loss of generality, we assume that c(v2) = c(v3) = a and that
B := (c(v2) c(v3)) = (aa) is a 2-block of C. It follows that c(v1) = c(v4) = b.

We consider cases depending on the value of (c (vn−1) , c (vn) , c (v5) , c (v6)).
Note that since c is a sigma-coloring of Cn(1, 3), this quadruple cannot be equal
to any of the following: (a, a, a, a), (a, a, b, b), (b, a, a, b), (b, b, a, a), (a, b, b, a), and
(b, b, b, b).

Type 1: Suppose (c (vn−1) , c (vn) , c (v5) , c (v6)) = (a, b, a, a). Since c is a sigma-
coloring of Cn(1, 3), it follows that c(v7) = a. It is then clear that B is a 2-block
of Type 1 and not of Type 2 nor 3 (Fig. 8).

Fig. 8. The block (c(vn) c(v1)) is the only 2-block adjacent to the 2-block B.

Similarly, it can be shown that B becomes a 2-block of Type 1 if
the quadruple (c (vn−1) , c (vn) , c (v5) , c (v6)) is equal to one the following:
(a, a, b, a), (a, b, a, b), (b, a, b, a), (a, b, b, b), and (b, b, b, a).

Type 2: Suppose (c (vn−1) , c (vn) , c (v5) , c (v6)) = (a, a, a, b). Since c is a sigma-
coloring of Cn(1, 3), it follows that c(v7) = a and c (vn−2) = b. It is then clear
that B is a 2-block of Type 2 and not of Type 1 nor 3 (Fig. 9).

Similarly, it can be shown that B becomes a 2-block of Type 2 if the quadruple
(c (vn−1) , c (vn) , c (v5) , c (v6)) is equal to (b, a, a, a).

The Sigma Chromatic Number of the Circulant Graphs 223

Fig. 9. The block (c (vn−1) c (vn)) is the only 2-block that is a 1-block away from B.

Fig. 10. The block (c (vn−3) c (vn−2) c (vn−1) c (vn)) is the only 4-block that is adja-
cent to the 2-block B.

Type 3: Suppose (c (vn−1) , c (vn) , c (v5) , c (v6)) = (b, b, a, b). Since c is a sigma-
coloring of Cn(1, 3), it follows that c(vn−2) = b and c (vn−3) = a. It is then clear
from Fig. 10 that B is a 2-block of Type 3 and neither of Types 1 nor 2.

Similarly, it can be shown that B becomes a 2-block of Type 3 if the quadruple
(c (vn−1) , c (vn) , c (v5) , c (v6)) is equal to (b, a, b, b).

Therefore, the 2-block B must belong to exactly one of the three 2-block
types. 	

Proof of Theorem 5. For the case n = 5, note that C5(1, 3) ≡ K5 and
σ(C5(1, 3)) = χ(C5(1, 3)) = 5. Now, suppose n ≥ 3 is even. Then by Theorem8,
Cn(1, 3) is bipartite; hence, σ(Cn(1, 3)) = 2.

Now, since the cases n = 3, 5, 7, 9 can easily be checked, we can simply assume
that n ≥ 11 is odd. As before, let c : Vn → {a, b} be a vertex coloring of Cn(1, 3)
and define the cylic sequenceC : c(v1), c(v2), ..., c(vn), c(v1). Let B2 and B4 denote
the collection of all 2-blocks and 4-blocks of C, respectively. First, note that any
block of C must be of length at most seven; moreover, C does not have any 6-block
(Fig. 11). Hence, the only possible block lengths of C are 1, 2, 3, 4, 5, and 7.

Fig. 11. The cyclic sequence C cannot have a 6-block.

Since n ≥ 10, Lemma 14 holds and by definition, it follows that there is an even
number of Type 1 or Type 2 2-blocks in B2.

224 P.A.D. Luzon et al.

Now, we consider 4-blocks of C; without loss of generality, suppose that
(c(v2) c(v3) c(v4) c(v5)) = (aaaa) is a 4-block of C. It follows that c(v1) = c(v6) =
b. Since c is a sigma coloring, it follows that (c(vn−1), c(vn), c(v7), c(v8)) is equal to
(b, a, b, a) (see Fig. 12) or (a, b, a, b). This implies that any 4-block of C is adjacent
to exactly one 2-block; that is, the number of 4-blocks of C is equal to the number
of Type 3 2-blocks of C.

Fig. 12. Any 4-block of C is adjacent to exactly one 2-block.

The above observations imply that |B2∪B4| is even. SinceC must have an even
number of blocks, it must also have an even number of blocks that are of odd length
(i.e. of length 1, 3, 5, 7). But this implies that the number n of vertices in Cn(1, 3)
must be even, which contradicts the assumption that n is odd.

Therefore, when n ≥ 3 (n �= 5) is odd, Cn(1, 3) cannot have a sigma col-
oring using only two colors. Since χ(Cn(1, 3)) = 3 in this case, we must have
σ(Cn(1, 3)) = 3 for n ≥ 3 (n �= 5). 	

4 The Circulant Graphs C2n(1, n)

For n ≥ 3, we draw and label the vertices of C2n(1, n) as in Fig. 13. Let a, b be
distinct positive integers and c : Vn → {a, b} be a vertex coloring of Cn(1, 2);
we define the cyclic sequence C : c(v0), c(v1), ..., c(vn), c(v0). We will need the
following lemmas in the proof of Theorem6.

Lemma 15. If n is even, then C has an even number of 2-blocks.

Fig. 13. Labelling of the vertices of C2n(1, n)

The Sigma Chromatic Number of the Circulant Graphs 225

Proof. Our proof is by contradiction. Suppose C has an odd number of 2-blocks.
Since n is even, C must have a subsequence of the form B1 S B2 where S is
a sequence of an odd number of 2-blocks and B1, B2 are blocks that are not of
length 2. Without loss of generality, we assume that S begins at the vertex vα+1

and ends at vβ−1 for α, β = 0, 1, ..., n; moreover, suppose c(vα+1) = c(vβ−1) = a.
Hence, (c(vα), c(vα+1), ..., c(vβ−1), c(vβ)) = (b, a, a, b, b, a, a, ..., a, a, b).

The proof involves checking the following cases depending on the value of α
and β:

I. α < β
I.A. 0 < α < β < n
I.B. 0 = α < β < n
I.C. 0 < α < β = n
I.D. 0 = α < β = n

II. β < α
II.A. 0 < β < α < n

II.B. 0 = β < α < n

II.C. 0 < β < α = n

II.D. 0 = β < α = n

III. β = α

III.A. 0 < α = β < n − 2
III.B. α = β ∈ {0, n − 2, n − 1, n}

The main idea of the proof relies on the observation that the sequence S
induces an alternating coloring of a sequence of vertices in {w1, w2, ..., wn−1}.
We present here the proof only for Case I.A; the other cases can be proven
similarly.

Assume 0 < α < β < n. For i = α + 1, α + 2, ..., β − 1, we observe that
σ(vi) = a + b + c(wi). Since c is a sigma coloring of C2n(1, n), we must have
c(wi) �= c(wi+1) for i = α + 1, ..., β − 2; that is, the vertices wα+1, ..., wβ−1 are
colored alternately. By symmetry, we can assume that c(wα+1) = a; then we
obtain the partial coloring in Fig. 14.

Fig. 14. A partial coloring of C2n(1, n) when 0 < α < β < n

Since σ(wα+1) = a + b + c(wα) �= 2a + b = σ(vα), we must have c(wα) = b.
Consequently, c(vα−1) = b and σ(vα) = 2b + a since σ(vα) �= σ(vα+1). We now
consider two subcases:

1. Assume α = 1. Then σ(vα) = σ(v1) = 2b + a and σ(wα) = σ(w1) = c(v1) +
c(vn) + c(w2) = b + c(vn) + a. Since σ(v1) �= σ(w1), we must have c(vn) = a
(see Fig. 15). It follows that B1 = (c(v0) c(v1)) = (bb) is also a 2-block, a
contradiction.

226 P.A.D. Luzon et al.

2. Assume α > 1. Then c(wα−1) = a since σ(wα) �= σ(vα). Moreover, c(vα−2) =
a since σ(vα − 1) �= σ(vα). It follows that B1 = (c(vα−1) c(vα)) = (bb) is also
a 2-block, a contradiction (Fig. 16). 	

Fig. 15. When 1 = α < β < n, B1 also becomes a 2-block.

Fig. 16. When 1 < α < β < n, B1 also becomes a 2-block.

Lemma 16. If n is even, then any block of C with length at least three is of odd
length.

Proof. The proof is also by contradiction. Suppose B is a block of C with length
that is even and at least four. Similar to the situation in Lemma15, such a block
induces an alternate coloring of a sequence of vertices in {w1, w2, ..., wn−1}. Then
the rest of the proof can be done in the same way as in Lemma15. 	

Proof of Theorem 6. Let n ≥ 3 be an integer and consider the circulant graph
C2n(1, n). When n is even, it follows from Theorem8 that C2n(1, n) is bipartite;
hence, in this case, σ(C2n(1, n) = 2.

Now, suppose n ≥ 4 is even. We will show that C2n(1, n) has no sigma 2-
coloring via contradiction. Suppose such a sigma 2-coloring c exists; define the

The Sigma Chromatic Number of the Circulant Graphs 227

cyclic sequence C : c(v0), c(v1), ..., c(vn), c(v1). Then Lemma16 implies that C
can only have blocks of length 1, 2, 3, 5, 7, ... while Lemma 15 implies that C has
an even number of 2-blocks. Since C must have an even number of blocks, it must
also have an even number of blocks with odd length. But this implies that the num-
ber of vertices in C must be even, which is a contradiction because C has an odd
number (n + 1) of vertices. Hence, C2n(1, n) cannot have a sigma 2-coloring; and
since χ(C2n(1, n)) = 3, it follows that σ(C2n(1, n)) = 3 as well. 	

5 Future Work

Let n ≥ 6 and k ≥ 2 be integers. Theorems 7 and 8 imply that the circulant graph
Cn(1, k) is sigma 3-colorable except possibly when (a) k = 2 and n �≡ 0 (mod 3),
or (b) when Cn(1, k) = C13(1, 5). These exceptions are, in fact, also sigma
3-colorable; this follows from Theorem3 for (a) and from an easy verification for
(b). Therefore, any circulant graph Cn(1, k), n ≥ 5, k ≥ 2, is sigma 3-colorable.
The authors believe that this property also holds for more general graphs.

Conjecture 17. Let n ≥ 6 and D = {a, b} be a generating subset of {0, 1, ...,
n − 1} not containing 0. Then any connected circulant graph Cn(D) is sigma
3-colorable.

The following is a more general claim; here, we note that the graphs concerned
are 4-colorable (Brook’s theorem).

Conjecture 18. Any connected 4-regular graph of order at least 6 is sigma
3-colorable.

References

1. Barajas, J., Serra, O.: On the chromatic number of circulant graphs. Discrete Math.
309, 5687–5696 (2009)

2. Chartrand, G., Okamoto, F., Rasmussen, C.W., Zhang, P.: The set chromatic num-
ber of a graph. Discuss. Math. 29, 545–561 (2009)

3. Chartrand, G., Okamoto, F., Zhang, P.: The sigma chromatic number of a graph.
Graphs Comb. 26, 755–773 (2010)

4. Codenotti, B., Gerace, I., Vigna, S.: Hardness results and spectral techniques for
combinatorial problems on circulant graphs. Linear Algebra Appl. 285, 123–142
(1998)

5. Czerwiński, S., Grytczuk, J., Zelazny, W.: Lucky labelings of graph. Inf. Proc. Lett.
109, 1078–1081 (2009)

6. Dehghan, A., Sadeghi, M.R., Ahadi, A.: The complexity of the sigma chromatic
number of cubic graphs, March 2014. arXiv:1403.6288v1 [math.CO]

7. Heuberger, C.: On planarity and colorability of circulant graphs. Discrete Math.
268, 153–169 (2003)

http://arxiv.org/abs/1403.6288v1

A Polynomial-Space Exact Algorithm
for TSP in Degree-6 Graphs

Norhazwani Md Yunos1,2(B), Aleksandar Shurbevski1, and Hiroshi Nagamochi1

1 Department of Applied Mathematics and Physics, Kyoto University, Kyoto, Japan
{wanie,shurbevski,nag}@amp.i.kyoto-u.ac.jp

2 Technical University of Malaysia Malacca, Malacca, Malaysia

Abstract. This paper presents the first polynomial-space exact algo-
rithm specialized for the TSP in graphs with degree at most 6. We
develop a set of branching rules to aid the analysis of the branching
algorithm. Using the measure-and-conquer method, we show that when
applied to an n-vertex graph with degree at most 6, the algorithm has
a running time of O∗(3.0335n), which is still advantageous over other
known polynomial-space algorithms for the TSP in general graphs.

Keywords: Traveling salesman problem · Exact exponential
algorithm · Branch-and-Reduce · Measure-and-Conquer

1 Introduction

The Traveling Salesman Problem is one of the most extensively studied problems
in combinatorial optimization. Besides being a well-known NP-hard combinato-
rial optimization problem, it also has a great practical importance. Present-
day computers have only limited memory and algorithms which use exponential
execution space will run out of memory well before they run out of time. For
this reason, we limit this exposition to algorithms which require polynomially
bounded execution space.

Gurevich and Shelah [6] gave the first polynomial-space exact algorithm
for the TSP, whose running time in a general n-vertex graph is bounded by
O∗(4nnlog n), where the O∗ notation suppresses polynomial factors. This time
bound has only recently been improved, but only for graphs of limited degree.
From this viewpoint, let degree-i graph stand for a graph in which vertices have
at most i incident edges. Note, for any graph with maximum degree at most d,
the TSP can be solved in O(n(d − 1)n) time and O(dn) space by generating
paths from a vertex.

A number of studies have been done focusing on the TSP in degree-bounded
graphs. Currently the fastest polynomial-space algorithms for the TSP in degree-
3 and degree-4 graphs were given by Xiao and Nagamochi [12,14], running in
time O∗(1.2312n) and O∗(1.692n), respectively. Other previous studies of the
TSP in degree-3 and degree-4 graphs have been done by Eppstein [3], Iwama
and Nakashima [7], and Liskiewicz and Schuster [8].
c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 228–240, 2016.
DOI: 10.1007/978-3-319-48532-4 20

A Polynomial-Space Exact Algorithm for TSP in Degree-6 Graphs 229

To the best of our knowledge, presently the only investigation on the TSP
in graphs of degree up to 5 has been done by Md Yunos et al. [9], giving an
O∗(2.4723n)-time algorithm. Furthermore, there exist no reports in the literature
of exact algorithms specialized to the TSP in degree-6 graphs. Therefore this
paper presents the first algorithm for the TSP in degree-6 graphs, and shows
that the algorithm runs in O∗(3.0335n) time. Due to space limitation, we omit
the details of technical proofs of the result, which can be found in the technical
reports by Md Yunos et al. [10,11]. Note the time bound claimed in the former
technical report [10] is incorrect, and the present correct bound, O∗(3.0335n) is
given in the latter technical report [11].

The remainder of this paper is organized as follows; Sect. 2 overviews the basic
notation used in this paper. Section 3 describes the details of our polynomial-
space branching algorithm. Section 4 establishes a framework for analyzing the
proposed algorithm, and we proceed with the analysis. Finally, Sect. 5 makes
some concluding remarks.

2 Preliminaries

For a graph G, let V (G) (resp., E(G)) denote the set of vertices (resp., the set
of edges) in G. A vertex u is a neighbor of a vertex v if v and u are adjacent
by an edge uv in E(G). We denote the set of neighbors of a vertex v by N(v),
and denote by d(v) the cardinality |N(v)| of N(v), also called the degree of v.
For a subset of vertices W ⊆ V (G), let N(v;W) = N(v) ∩ W . For a subset of
edges E′ ⊆ E(G), let NE′(v) = N(v) ∩ {u | uv ∈ E′}, and let dE′(v) = |NE′(v)|.
Analogously, let NE′(v;W) = NE′(v) ∩ W , and dE′(v,W) = |NE′(v,W)|. Also,
for a subset E′ of E(G), we denote by G − E′ the graph (V,E \ E′) obtained
from G by removing the edges in E′.

We employ a known generalization of the TSP introduced by Eppstein [3],
named the forced TSP. We define an instance I = (G,F) that consists of an
ordered pair of a simple, edge weighted, undirected graph G, and a subset F of
edges in G, called forced. For brevity, throughout this paper let U denote E(G)\F .
A vertex is called forced if exactly one of its incident edges is forced. Similarly, it is
called unforced if no forced edge is incident to it. Vertices incident with 2 or more
forced edges are special cases and treated separately. A Hamiltonian cycle in G is
called a tour if it passes through all the forced edges in F . Under these conditions,
the forced TSP requests to find a minimum cost of a tour of an instance (G,F).

In this paper, we assume that the maximum degree of a vertex in G is at
most 6. We refer to a forced (resp., unforced) vertex of degree i as type fi (resp.,
ui). Vertices of degree 1 and 2 are treated as special cases, and we examine eight
types of vertices in an instance (G,F), namely u6, f6, u5, f5, u4, f4, u3 and f3-
vertices. For each i ∈ {3, 4, 5, 6}, let Vfi (resp., Vui) denote the set of fi-vertices
(resp., ui-vertices) in (G,F).

230 N. Md Yunos et al.

3 A Polynomial-Space Branching Algorithm

Our algorithm consists of two major steps which are repeated iteratively. In
the first step, the algorithm applies reduction rules until no further reduction is
possible. In the second step, the algorithm applies branching rules in a reduced
instance to search for a solution.

3.1 Reduction Rules

Reduction is a process of transforming an instance to a smaller instance. It takes
polynomial time to construct a solution of an original instance from a solution
of a smaller instance obtained through reduction.

If an instance has no tour, we call it infeasible. Observation 1 below gives two
sufficient conditions for an instance to be infeasible. These two conditions will
be checked when executing the reduction rules.

Observation 1. If one of the following conditions holds, then the instance
(G,F) is infeasible.

(i) d(v) ≤ 1 for some vertex v ∈ V (G).
(ii) dF (v) ≥ 3 for some vertex v ∈ V (G).

In this paper, we apply two reduction rules as stated in Md Yunos et al. [9,
Lemma 2]. The reduction rules as stated in Observation 2 preserve the minimum
cost of a tour in an instance, and they are applied in each of the branching
operations.

Observation 2. Each of the following reductions preserves the feasibility and a
minimum cost tour of an instance (G,F).

(i) If d(v) = 2 for a vertex v, then add to F any unforced edge incident to the
vertex v; and

(ii) If d(v) > 2 and dF (v) = 2 for a vertex v, then remove from G any unforced
edge incident to the vertex v.

Our reduction algorithm is described in Fig. 1. An instance (G,F) is called
reduced if it does not satisfy any of the conditions in Observation 1 and 2.

3.2 Branching Rules

Our branching algorithm is based on a set of branching rules. Without loss
of generality, let v be a vertex of degree 6 and t its neighbor via an unforced
edge. The choice of an edge to branch on plays a key role in the analysis of our
branching algorithm. To this effect, in an instance (G,F), we assign the following
priority in choosing an unforced edge e = vt to branch on. Forced vertices take
precedence over unforced ones, and for the choice of t, vertices of lower degree
take precedence over vertices of higher degree. A pair of neighbors vt with no

A Polynomial-Space Exact Algorithm for TSP in Degree-6 Graphs 231

Input: An instance (G,F).
Output: A reduced instance (G′, F ′) of (G,F); or a message for the infeasibility
of (G,F), which evaluates to ∞.

Initialize (G′, F ′) := (G,F);
while (G′, F ′) is not a reduced instance do

If there is a vertex v in (G′, F ′) such that d(v) ≤ 1 or dF ′(v) ≥ 3 then
Output message “Infeasible”

Elseif there is a vertex v in (G′, F ′) such that 2 = d(v) > dF ′(v) then
Let E† be the set of unforced edges incident to all such vertices;
F ′ := F ′ ∪ E†

Elseif there is a vertex v in (G′, F ′) such that d(v) > dF ′(v) = 2 then
Let E† be the set of unforced edges incident to all such vertices;
G′ := G′ − E†

Endif
End while;
Output (G′, F ′).

Fig. 1. Algorithm Red(G,F).

neighbor in common has highest priority, and the priority decreases as the size of
the common neighborhood increases. If the graph has a degree-6 vertex, then at
least one unforced edge e = vt of highest priority exists, and it is called optimal.
Otherwise, the degrees of all vertices in the given instance are at most 5, and we
can make use of an algorithm specialized to TSP instances of maximum degree
up to 5, e.g., the polynomial-space algorithm of Md Yunos et al. [9]. We refer to
this priority in choosing an edge e = vt to branch on as the branching rules. A
list giving the above priorities is given in Fig. 2, where the condition (c-i) with
minimum index i is optimal, over all unforced edges vt in (G,F).

The collective set of branching rules for conditions c-1 to c-19 are illustrated
in Fig. 3. Details of our branching algorithm are described in Fig. 4.

4 Analysis

4.1 Analysis Framework

To effectively analyze the branching algorithm of Fig. 4, we use the measure-and-
conquer method as introduced by Fomin et al. [4]. Given an instance I = (G,F)
of the forced TSP, we assign a nonnegative weight ω(v) to each vertex v ∈ V (G)
according to its type, and use the sum of weights of all vertices in the graph G
as a measure μ(I) of the instance I = (G,F), that is,

μ(I) =
∑

v∈V (G)

ω(v). (1)

It is important for the analysis to find a measure which satisfies the following
properties

232 N. Md Yunos et al.

(c-1) v ∈ Vf6 and t ∈ NU (v;Vf3) such that NU (v) ∩ NU (t) = ∅;
(c-2) v ∈ Vf6 and t ∈ NU (v;Vf3) such that NU (v) ∩ NU (t) 	= ∅;
(c-3) v ∈ Vf6 and t ∈ NU (v;Vu3);
(c-4) v ∈ Vf6 and t ∈ NU (v;Vf4) such that NU (v) ∩ NU (t) = ∅;
(c-5) v ∈ Vf6 and t ∈ NU (v;Vf4) such that NU (v) ∩ NU (t) 	= ∅;

(I) |NU (v) ∩ NU (t)| = 1; and
(II) |NU (v) ∩ NU (t)| = 2;

(c-6) v ∈ Vf6 and t ∈ NU (v;Vu4);
(c-7) v ∈ Vf6 and t ∈ NU (v;Vf5) such that NU (v) ∩ NU (t) = ∅;
(c-8) v ∈ Vf6 and t ∈ NU (v;Vf5) such that NU (v) ∩ NU (t) 	= ∅;

(I) |NU (v) ∩ NU (t)| = 1;
(II) |NU (v) ∩ NU (t)| = 2; and

(III) |NU (v) ∩ NU (t)| = 3;
(c-9) v ∈ Vf6 and t ∈ NU (v;Vu5);

(c-10) v ∈ Vf6 and t ∈ NU (v;Vf6) such that NU (v) ∩ NU (t) = ∅;
(c-11) v ∈ Vf6 and t ∈ NU (v;Vf6) such that NU (v) ∩ NU (t) 	= ∅;

(I) |NU (v) ∩ NU (t)| = 1;
(II) |NU (v) ∩ NU (t)| = 2;

(III) |NU (v) ∩ NU (t)| = 3; and
(IV) |NU (v) ∩ NU (t)| = 4;

(c-12) v ∈ Vf6 and t ∈ NU (v;Vu6);
(c-13) v ∈ Vu6 and t ∈ NU (v;Vf3);
(c-14) v ∈ Vu6 and t ∈ NU (v;Vu3);
(c-15) v ∈ Vu6 and t ∈ NU (v;Vf4);
(c-16) v ∈ Vu6 and t ∈ NU (v;Vu4);
(c-17) v ∈ Vu6 and t ∈ NU (v;Vf5);
(c-18) v ∈ Vu6 and t ∈ NU (v;Vu5); and
(c-19) v ∈ Vu6 and t ∈ NU (v;Vu6).

Fig. 2. Preference conditions for choosing a branching edge, whose illustrations are
given in Fig. 3.

(i) μ(I) = 0 if and only if I can be solved in polynomial time; and
(ii) If I ′ is a sub-instance of I obtained through a reduction or a branching

operation, then μ(I ′) ≤ μ(I).

We call a measure μ satisfying conditions (i) and (ii) above a proper measure.
We perform the time analysis of the branching algorithm via appropriately

constructed recurrences related to the measure μ = μ(I) of an instance I =
(G,F), for each branching rule of the algorithm. Let T (μ) denote the number
of nodes in the search tree generated by our algorithm when invoked on the
instance I with measure μ. Let I ′ and I ′′ be instances obtained from I by a
branching operation, and let a ≤ μ(I) − μ(I ′) and b ≤ μ(I) − μ(I ′′) be lower
bounds on the amounts of decrease in measure. The values of a and b will be
nonnegative for a proper measure μ. We call (a, b) the branching vector of the
branching operation, and this implies the linear recurrence:

T (μ) ≤ T (μ − a) + T (μ − b). (2)

A Polynomial-Space Exact Algorithm for TSP in Degree-6 Graphs 233

Fig. 3. Illustration of the branching rules in Fig. 2.

234 N. Md Yunos et al.

Recursive Procedure tsp6(G,F).

Input: An instance (G,F) such that the maximum degree of G is at most 6.
Output: The minimum cost of a tour of (G,F); or a message for the infeasibility
of (G,F), which evaluates to ∞.

Run Red(G,F);

If Red(G,F) outputs message “Infeasible” then
Return message “Infeasible”

Else
Let (G′, F ′) := Red(G,F);
If Vu6 ∪ Vf6 	= ∅ then

Choose an optimal unforced edge e;
If both tsp6(G′, F ′ ∪ {e}) and tsp6(G′ − {e}, F ′) return message
“Infeasible” then

Return message “Infeasible”
Else

Return min{tsp6(G′, F ′ ∪ {e}), tsp6(G′ − {e}, F ′)}
Endif

Else /* the maximum degree of any vertex in (G′, F ′) is at most 5 */
Return tsp5(G′, F ′)

Endif
Endif.

Note: The input and output of algorithm tsp5(G,F) are as follows
Input: An instance (G,F) such that the maximum degree of G is at most 5.
Output: The minimum cost of a tour of (G,F); or a message for the infeasibility
of (G,F).

Fig. 4. Algorithm tsp6(G,F).

Then, T (μ) is of the form O (τμ), where τ is the unique positive real root of the
function f(x) = 1 − (

x−a + x−b
)
. The value τ is called the branching factor of

the branching vector (a, b). The running time of our algorithm is determined as
the worst branching factor over all branching vectors generated by the branching
rules. For further details justifying this approach, as well as a solid introduction
to branching algorithms and the measure-and-conquer method in general, the
reader is referred to the book of Fomin and Kratsch [5].

4.2 Weight Constraints

For each i ∈ {3, 4, 5, 6} we denote by wi and w′
i the weight ω(v) of a vertex v of

type ui and fi, respectively. The conditions for a proper measure require that the
measure of an instance obtained through a branching or a reduction operation
will not be greater than that of the original instance. Thus, the vertex weight
for vertices of degree less than 3 is set to be 0, w6 ≤ 1, and all vertex weights
should satisfy the following relations; for each i ∈ {3, 4, 5, 6},

w′
i ≤ wi, (3)

A Polynomial-Space Exact Algorithm for TSP in Degree-6 Graphs 235

and for each i ∈ {4, 5, 6},

wi−1 ≤ wi, (4)
w′

i−1 ≤ w′
i. (5)

As a result of the reduction and branching operations of Figs. 1 and 4, the
degree of some vertices will decrease, while the degree of other vertices will
remain unchanged. A forced edge will never be eliminated, neither by the reduc-
tion nor by branching operations. Conversely, an unforced edge may be removed
or become forced by a reduction or a branching operation. Thus, the measure
of an instance obtained through a reduction or branching operation will not be
greater than that of the original instance. Lemma1 shows that with respect to
the algorithms given in Figs. 1 and 4, setting vertex weights which satisfy the
conditions of Eqs. (3) to (5) is sufficient to obtain a proper measure. We can
prove this lemma similarly as in Md Yunos et al. [9, Lemma 3].

Lemma 1. If the weights of vertices are chosen as in Eqs. (3) to (5), then
the measure μ(I) never increases as a result of the reduction or the branching
operations of Figs. 1 and 4.

To simplify some arguments, we introduce the following notation. For each
i ∈ {3, 4, 5, 6}, let Δi denote wi −w′

i, let Δi,i−1 denote wi −wi−1, and let Δ′
i,i−1

denote w′
i − w′

i−1. As a result of Eqs. (3) to (5), the values of each Δi, Δi,i−1

and Δ′
i,i−1 cannot be less than 0.

In the remainder of the analysis, for an optimal edge e = vt1, we
refer to NU (v) by {t1, t2, . . . , ta}, a = dU (v), and to NU (t1) \ {v} by
{ta+1, ta+2, . . . , ta+b}, b = dU (t1) − 1. We assume without loss of generality
that t1+i = ta+i for i = 1, 2, . . . , c, where c = |NU (v) ∩ NU (t1)| is the number of
common neighbors of v and t1.

If there exists an f3-vertex ta+i in NU (t1) \ {v}, let x ∈ NU (ta+i) \ {v, t1}.
We see that the choice of vertex x is unique, because ta+i is of type f3 and
|NU (ta+i) \ {v, t1}| = 1. This vertex x will play a key role in our analysis, as
shown in Fig. 5.

4.3 Main Result

We choose a vertex weight function ω(v) as follows:

ω(v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w6 = 1 for a u6-vertex v

w′
6 = 0.502801 for an f6-vertex v

w5 = 0.815641 for a u5-vertex v

w′
5 = 0.421871 for an f5-vertex v

w4 = 0.580698 for a u4-vertex v

w′
4 = 0.311647 for an f4-vertex v

w3 = 0.262796 for a u3-vertex v

w′
3 = 0.149646 for an f3-vertex v

0 otherwise.

(6)

236 N. Md Yunos et al.

The vertex weight function ω(v) given in Eq. (6) is obtained as a solution to a
quasiconvex program, according to the method introduced by Eppstein [2]. All
the branching vectors are in fact constraints in the quasiconvex program.

Lemma 2. If the vertex weight function ω(v) is set as in Eq. (6), then each
branching operation in Fig. 4 has a branching factor not greater than 3.033466.

A proof of Lemma 2 can be derived analytically by analyzing the branching
vectors which result by applying the branching and reduction operations. For
the sake of space, in Sect. 4.4 we demonstrate the analysis of a single branching
rule, case c-13. The reader is referred to the technical report by Md Yunos et al.
[10] for a complete case analysis.

From Lemma 2, we get our main result as stated in Theorem 1.

Theorem 1. The TSP in an n-vertex graph G with degree at most 6 can be
solved in O∗(3.0335n) time and polynomial space.

Fig. 5. Illustration of (a) newly forced and (b) deleted edge by a branching operation
and reduction rules for an f3 vertex ta+i.

4.4 Case Analysis of the Branching Operation for Case c-13

In interest of space, we will only illustrate the process of deriving the branching
vectors for only one case, case c-13.

Case c-13. None of the previous branching rules c-1 to c-12 can be applied, and
there exist vertices v ∈ Vu6 and t1 ∈ NU (v;Vf3) (see Fig. 6): We branch on the
edge vt1. Note that NU (t1) \ {v} = {t7}.

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching
operation, and the edge t1t7 will be deleted from G′ by the reduction rules. Hence
the weight of vertex v decreases by Δ6, and the weight of vertex t1 decreases
by w′

3.
In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the

branching operation, and the edge t1t7 will be added to F ′ by the reduction

A Polynomial-Space Exact Algorithm for TSP in Degree-6 Graphs 237

Fig. 6. Illustration of branching rule c-13, where vertex v ∈ Vu6 and t1 ∈ NU (v;Vf3).

rules. Hence the weight of vertex v decreases by Δ6,5, and the weight of vertex t1
decreases by w′

3.
There are two cases for the vertex type of vertex t7; 1) vertex t7 is of type f3,

2) otherwise. We analyze the branches force and delete for these two cases
separately.

First we analyze the case where the vertex t7 is an f3-vertex (see Fig. 5).
Recall that in this case, we denote by x the unique good neighbor of t7 different
from t1. In the branch of force(vt1), the edge xt7 will be added to F ′ by the
reduction rules. Hence the weight of vertex t7 decreases by w′

3. Note that the
vertex x cannot be an f6 vertex, otherwise one of the branching rules c-1 to c-12
would be applicable. If x is an f3-vertex (resp., u3, f4, u4, f5, u5, or a u6-vertex),
then the weight decrease α1 of x will be w′

3 (resp., Δ3, w′
4, Δ4, w′

5, Δ5, and Δ6).
Thus the total weight decrease for this case in the branch of force(vt1) is at
least w6 − w′

6 + w′
3 + w′

3 + α1.
In the branch of delete(vt1), the edge xt7 will be deleted from G′ by the

reduction rules. Hence the weight of vertex t7 decreases by w′
3. If x is an f3-vertex

(resp., u3, f4, u4, f5, u5, or a u6-vertex), then the weight decrease β1 of x will
be w′

3 (resp., w3, Δ′
4,3, Δ4,3, Δ′

5,4, Δ5,4, and Δ6,5). Thus the total weight decrease
for this case in the branch of delete(vt1) is at least w6 − w5 + w′

3 + w′
3 + β1.

As a result, for the ordered pair (α1, β1) taking values in {(w′
3, w

′
3), (Δ3, w3),

(w′
4,Δ

′
4,3), (Δ4,Δ4,3), (w′

5,Δ
′
5,4), (Δ5,Δ5,4), (Δ6,Δ6,5)}, we get the following

seven branching vectors:

(w6 − w′
6 + 2w′

3 + α1, w6 − w5 + 2w′
3 + β1) . (7)

Next we examine the case where the vertex t7 is not an f3-vertex. In the
branch of force(vt1), if t7 is a u3-vertex (resp., f4, u4, f5, u5, or a u6-vertex),
then the weight decrease α2 of t7 will be w3 (resp., Δ′

4,3, Δ4,3, Δ′
5,4, Δ5,4, and

Δ6,5). Thus, the total weight decrease for this case in the branch of force(vt1)
is at least w6 − w′

6 + w′
3 + α2.

In the branch of delete(vt1), if t7 is a u3-vertex (resp., f4, u4, f5, u5, or a u6-
vertex), then the weight decrease β2 of t7 will be Δ3 (resp., w′

4, Δ4, w′
5, Δ5, and

238 N. Md Yunos et al.

Δ6). Thus, the total weight decrease for this case in the branch of delete(vt1)
is at least w6 − w5 + w′

3 + β2.
As a result, for the ordered pair of (α2, β2) taking values in {(w3,Δ3),

(Δ′
4,3, w

′
4), (Δ4,3,Δ4), (Δ′

5,4, w
′
5), (Δ5,4,Δ5), (Δ6,5,Δ6)}, we get the following

six branching vectors:

(w6 − w′
6 + w′

3 + α2, w6 − w5 + w′
3 + β2) . (8)

4.5 Switching to TSP in Degree 5

If none of the 19 cases of Fig. 3 applies, this means that all vertices in the graph
have degree 5 or less. In that case, we can use a fast algorithm for TSP in
degree-5 graphs, called tsp5(G,F) to solve the remaining instances. Xiao and
Nagamochi [13, Lemma 3] have shown how to leverage results obtained by a
measure-and-conquer analysis, and that an algorithm can be used as a sub-
procedure. We can get a non-trivial time bound on this sub-procedure if we
know the respective weight setting mechanism. We calculate the maximum ratio
of the vertex weights for the TSP in degree-5 graphs and the TSP in degree-6
graphs, and this will become a constraint in the quasiconvex program whose
solution gives us the respective vertex weights.

Here we use the O∗(2.4723n)-time algorithm by Md Yunos et al. [9], where
the weights of vertices in degree-5 graphs are set as follows: for an f3-vertex,
ŵ′

3 = 0.183471, for a u3-vertex, ŵ3 = 0.322196, for an f4-vertex, ŵ′
4 = 0.347458,

for a u4-vertex, ŵ4 = 0.700651, for an f5-vertex, ŵ′
5 = 0.491764, and for a u5-

vertex, ŵ5 = 1. Let κ = max
{

0.183471
w′

3
, 0.322196

w3
, 0.347458

w′
4

, 0.700651
w4

, 0.491764
w′

5
, 1

w5

}
.

For this step, the running time bound is

T (μ(I)) ≤ O (2.472232κ) . (9)

4.6 Overall Analysis

As a result, the branching factor of each of the branching vectors does not exceed
3.033466, and the tight constraints are in conditions c-4, c-7, c-15, c-16, c-18 and
the switching constraint of Eq. (9). This completes a proof of Theorem 1.

5 Conclusion

In this paper, we presented an exact algorithm for the TSP in degree-6 graphs.
We use a similar technique as in the algorithm of the TSP in degree-5 graphs by
Md Yunos et al. [9]. The greatest challenge in obtaining a non-trivial time-bound
for the algorithm is to derive a proper case analysis. Namely we have to choose
a good set of branching rules so that the rule giving the largest reduction will
be executed first. But we can only calculate the reduction of each branching rule
after a complete case analysis, and this interdependence makes the problem ever
more difficult with graphs of higher degree, making it a considerable step from

A Polynomial-Space Exact Algorithm for TSP in Degree-6 Graphs 239

the authors’ result on the TSP in degree-5 graphs [9], and even more challenging
to extend this approach to the TSP in degree-7 graphs.

On the other hand, the above results offer a purely theoretically improved
time-bound on the running time. Following recent results by Akiba and Iwata [1]
indicating that algorithms with theoretically improved running time can indeed
be also superior in practice, it would be of much interest to implement the pro-
posed algorithms, and evaluate their empirical performance. This line of research
would also open the question of devising bounding rules which might not have
impact on the theoretical bound on the running time, might contribute mean-
ingfully to the algorithm’s performance in practice.

References

1. Akiba, T., Iwata, Y.: Branch-and-reduce exponential/FPT algorithms in practice:
a case study of vertex cover. In: Proceedings of the 17th Workshop on Algorithm
Engineering and Experiments (ALENEX), pp. 70–81. SIAM (2015)

2. Eppstein, D.: Quasiconvex analysis of backtracking algorithms. In: Proceedings of
the 15th Annual ACM-SIAM Symposium On Discrete Algorithms (SODA 2004),
pp. 781–790. ACM Press (2004)

3. Eppstein, D.: The traveling salesman problem for cubic graphs. J. Graph Algo-
rithms Appl. 11(1), 61–81 (2007)

4. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the
analysis of exact algorithms. J. ACM (JACM), 56(6), Article no. 25 (2009)

5. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Heidelberg
(2010)

6. Gurevich, Y., Shelah, S.: Expected computation time for Hamiltonian path prob-
lem. SIAM J. Comput. 16(3), 486–502 (1987)

7. Iwama, K., Nakashima, T.: An improved exact algorithm for cubic graph TSP. In:
Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 108–117. Springer, Heidelberg
(2007)

8. Liskiewicz, M., Schuster, M.R.: A new upper bound for the traveling salesman
problem in cubic graphs. Arxiv preprint (2012)

9. Md Yunos, N., Shurbevski, A., Nagamochi, H.: A polynomial-space exact algorithm
for TSP in degree-5 graphs. In: The 12th International Symposium on Operations
Research and Its Applications (ISORA 2015), pp. 45–58 (2015)

10. Md Yunos, N., Shurbevski, A., Nagamochi, H.: A polynomial-space exact algorithm
for TSP in degree-6 graphs. Technical report 2015–003, Department of Applied
Mathematics and Physics, Kyoto University (2015). http://www.amp.i.kyoto-u.
ac.jp/tecrep/ps file/2015/2015-003.pdf

11. Md Yunos, N., Shurbevski, A., Nagamochi, H.: Time bound on polynomial-space
exact algorithms for TSP in degree-5 and degree-6 graphs. Technical report, 2015–
004, Department of Applied Mathematics and Physics, Kyoto University (2015).
http://www.amp.i.kyoto-u.ac.jp/tecrep/ps file/2015/2015-004.pdf

12. Xiao, M., Nagamochi, H.: An exact algorithm for TSP in degree-3 graphs via
circuit procedure and amortization on connectivity structure. Algorithmica 74(2),
713–741 (2016)

http://www.amp.i.kyoto-u.ac.jp/tecrep/ps_file/2015/2015-003.pdf
http://www.amp.i.kyoto-u.ac.jp/tecrep/ps_file/2015/2015-003.pdf
http://www.amp.i.kyoto-u.ac.jp/tecrep/ps_file/2015/2015-004.pdf

240 N. Md Yunos et al.

13. Xiao, M., Nagamochi, H.: Exact algorithms for maximum independent set. In:
Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS,
vol. 8283, pp. 328–338. Springer, Heidelberg (2013)

14. Xiao, M., Nagamochi, H.: An improved exact algorithm for TSP in graphs of
maximum degree 4. Theory Comput. Syst. 58(2), 241–272 (2016)

Topological Graph Layouts
into a Triangular Prism

Miki Miyauchi(B)

NTT Communication Science Laboratories, NTT Corporation, Atsugi-shi, Japan
miyauchi.miki@lab.ntt.co.jp

Abstract. Prism layouts are special cases of track layouts of graphs.
A triangular prism layout for graphs is a graph layout into a triangular
prism that carries the vertices along the three crests between two trian-
gles of the prism and the edges in the three rectangular surfaces such that
no two edges cross in the interior of the surfaces. Also, a topological prism
layout for graphs is defined so that edges are allowed to cross the crests.
As for topological prism layouts, it is desirable to have good bounds on
number of edge-crossings over crests for various classes of graphs. This
paper constructs two-color-edge topological triangular prism layouts for
complete bipartite graphs with fewer edge-crossings over the crests than
previous results.

Keywords: Graph layout · Bipartite graph · Graph subdivision · Track
layout · Prism layout

1 Introduction

A graph Gm,n is a bipartite graph having partite sets A with m vertices and B
with n vertices if V (G) = A ∪ B, A ∩ B = ∅ and each edge joins a vertex of
A with a vertex of B. A bipartite graph Gm,n is complete if Gm,n contains all
edges joining vertices in distinct sets. A complete bipartite graph is denoted by
Km,n.

An ordering of a set S is a total order <σ on S. It will be convenient to
interchange “σ” and <σ when there is no ambiguity. A vertex ordering of a
graph G is an ordering σ of the vertex set V (G).

A vertex k-coloring of a graph G is a partition {Vi : 1 ≤ i ≤ k} of V (G) such
that for every edge vw ∈ E(G), if v ∈ Vi and w ∈ Vj then i �= j. Suppose that
each color class Vi is ordered by <i. Then the ordered set (Vi, <i) is called a
track, and {(Vi, <i) : 1 ≤ i ≤ k} is a k-track assignment of G.

The span of an edge vw in a track assignment {(Vi, <i) : 1 ≤ i ≤ k} is | i−j |
where v ∈ Vi and w ∈ Vj . An X-crossing in a track assignment consists of two
edges vw and xy such that v, x ∈ Vi, w, y ∈ Vj , v <i x and y <j w, for distinct
colors i and j. An edge 2-coloring of G is simply a partition {E0, E1} of E(G).
An edge vw ∈ Ei is said to be colored i. A (2, k)-track layout of G consists of
a k-track assignment of G and an edge 2-coloring of G with no monochromatic
c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 241–246, 2016.
DOI: 10.1007/978-3-319-48532-4 21

242 M. Miyauchi

X-crossing. A graph admitting a (2, k)-track layout is called a (2, k)-track graph.
Track layouts were introduced by V. Dujmović, P. Morin, and D. R. Wood [1,2].

If e = uv is an edge of G, then e is said to be subdivided when it is replaced
by the edges uw and wv. We call the new vertex w the division vertex. If every
edge of G is subdivided, the resulting graph is called the subdivision graph of G.
Note that a graph is also considered to be a subdivision of itself.

This paper studies (2,3) track layouts of graph subdivisions. Dujmović and
Wood [3] showed the following theorem:

Theorem 1 (Dujmović and Wood [3]). Every graph G has a (2, 3)-track
subdivision of G with 2�log qn(G)	 + 1 division vertices per edge, where qn(G)
is the queue number of G.

The definition of the queue number is as follows. In a vertex ordering σ of a
graph G, let L(e) and R(e) denote the endpoints of each edge e ∈ E(G) such
that L(e) <σ R(e). Consider two edges e, f ∈ E(G) with no common endpoint
such that L(e) <σ L(f). If L(e) <σ L(f) <σ R(f) <σ R(e) then e and f nest.
A queue is a set of edges E ⊂ E(G) such that no two edges in E nest. For an
integer d > 0, a d-queue layout of G consists of a vertex ordering σ of G and
a partition {Ei : 1 ≤ i ≤ d} of E(G) such that each Ei is a queue in σ. The
queue number qn(G) of a graph G is the minimum d such that there is a d-queue
layout of G. As for queue layout see [5,6] etc. There is a summary of bounds on
the queue numbers for various kinds of graph families in [7].

As for Theorem 1, Dujmović and Wood [3] also showed that the order of
the number of division vertices is optimal. Thus, to find a track layout with
fewer division vertices for various kinds of graph families become an interesting
problem.

This paper deals with the number of division vertices of bipartite graphs. For
the queue number of a complete bipartite graph Km,n, Heath and Rosenberg [6]
showed the following theorem:

Theorem 2 (Heath and Rosenberg [6])

qn(Km,n) = min (�m/2	, �n/2).
Applying Theorem2 to Theorem 1, we have the following corollary:

Corollary 1. Every complete bipartite graph Km,n (m ≥ n) has a (2, 3)-track
subdivision with

2�log�n/2		 + 1 =

{
2�log(n + 1) − log 2	 + 1 (if n is odd)
2�log n − log 2	 + 1 (if n is even)

division vertices per edge.

This paper improves this result and shows the following theorem:

Theorem 3. Every bipartite graph Gm,n has a (2, 3)-track subdivision with
�log n	 − 1 division vertices per edge, where m ≥ n.

Topological Graph Layouts into a Triangular Prism 243

Here, we define a new graph layout named prism layout for graphs. A tri-
angular prism layout for graphs is a graph layout into a triangular prism that
carries the vertices along the three crests between two triangles of the prism and
the edges in the three rectangular surfaces such that no two edges with same
color cross in the interior of the surfaces. Also, a topological prism layout for
graphs is defined so that edges are allowed to cross the crests. As for topological
prism layouts, it is desirable to have good bounds on number of edge-crossings
over crests for various classes of graphs.

Then, a (2, 3)-track layout of graph subdivisions can be regarded as a two-
color-edge topological graph layout into a triangular prism. Therefore this paper
constructs topological triangular prism layouts for complete bipartite graphs
with fewer edge-crossings over the crests than previous results.

The proof of Theorem3 is similar to that of V. Dujmović and D. R. Wood’s
result [3], however, it becomes simpler by capitalizing the character of bipartite
graphs.

2 Proof of Theorem 3

In this section, we will construct a (2, 3)-track layout of a subdivision of Gm,n

with �log n	 − 1 division vertices per edge.
Let S = {0, 1} be the binary alphabet and S∗ the set of all strings over S of

length at most h (h > 0). If s ∈ S∗ has length k (0 ≤ k ≤ h), then write

s = s1s2 . . . sk

where si is the character of s in position i. Order the elements of S by 0 < 1.
Define a breadth-first ordering <∗ on S∗ as follows: For s = s1 . . . si, t = t1 . . . tj ∈
S∗, define s <∗ t when either of the following conditions holds.

1. i < j.
2. i = j, s1 . . . si−1 = t1 . . . ti−1, si < ti.
3. i = j(> 1), s1 . . . si−1 <∗ t1 . . . ti−1.

As an example, the strings of length at most 2 are ordered as follows:

ε <∗ 0 <∗ 1 <∗ 00 <∗ 01 <∗ 10 <∗ 11

where ε denotes the empty string.
Define k = �log n	. A number s (0 ≤ s < n) has a unique representation

as a string in Sk ⊆ S∗ using binary representation, where Sk is the set of all
elements of length k. For a number s, use the representation s1 . . . sk for its binary
representation, where s1 is the highest-order digit. For a string s = s1 . . . sk in
Sk let s(i) be the string consisting of the first i letters of s, that is,

s(i) = s1 . . . si

and s(0) be the empty string ε.

244 M. Miyauchi

Consider a subdivision G∗
m,n of Gm,n made by subdividing each edge

(as, bt) ∈ E(Gm,n)

(as ∈ A, bt ∈ B, 0 ≤ s < m, 0 ≤ t < n)

by adding k − 1 vertices between as and bt. We label these vertices in the order
from as to bt as follows;

as = (as, bt; 0), (as, bt; 1), . . . , (as, bt; k) = bt.

where (as, bt; 0) is identified with as and (as, bt; k) is identified with bt.
Since a (2, 3)-track layout of G∗

m,n corresponds to a (2, 3)-track subdivision
of Gm,n by regarding vertices V (G∗

m,n) − V (Gm,n) as division vertices, we will
construct a (2, 3)-track layout of G∗

m,n. First we define a vertex ordering σ of
V (G∗

m,n) and then add 2 colors 0 and 1 to edges of G∗
m,n so that there is no

monochromatic X-crossing.
For two vertices (as, bt; i), (ap, bq; j) ∈ V (G∗

m,n), we define (as, bt; i) <σ

(ap, bq; j) when one of the following three conditions holds:

1. t(i) <∗ q(j).
2. t(i) = q(j) and s < p.
3. t(i) = q(j) and s = p, t < q.

As for an edge coloring of G∗
m,n, let an edge ((as, bt; i − 1), (as, bt; i)) be

colored ti.

Lemma 1. Let Vi = {(as, bt; i) : as ∈ A, bt ∈ B, 0 ≤ s < m, 0 ≤ t < n} for
0 ≤ i ≤ k. For every bipartite graph Gm,n, the subdivision G∗

m,n of Gm,n has
the (2, k + 1)-track layout defined by the family of the ordered sets {(Vi, σ |Vi

) :
0 ≤ i ≤ k} and the edge 2-coloring we mentioned above. Moreover the maximum
span is one, and the number of division veritices per edge is �log n	 − 1.

Proof. Note that the ordering σ is a total order. Thus the family of the ordered
sets {(Vi, σ) : 0 ≤ i ≤ k} is a k + 1-track assignment of G∗

m,n.
Next, we show that this track layout is legal, i.e., no two edges in this track

assignment {(Vi, σ)} form a monochromatic X-crossing.
Let ((as, bt; i − 1), (as, bt; i)) and ((ap, bq; j − 1), (ap, bq; j)) be two edges in

E(G∗
m,n) (0 < i, j ≤ k) that form an X-crossing. Note that by the definition of

the vertex ordering,

(as, bt; i − 1) <σ (as, bt; i) and (ap, bq; j − 1) <σ (ap, bq; j).

We may assume that the endpoints of the two edges are laid out from left to
right in the order

(as, bt; i − 1) <σ (ap, bq; j − 1) and (ap, bq; j) <σ (as, bt; i). (∗)

Topological Graph Layouts into a Triangular Prism 245

We want to show that the two division edges have different colors, that is,
ti �= qj . From the assumption (∗) and the definition of the vertex-ordering, we
have

t(i − 1) ≤∗ q(j − 1) and q(j) ≤∗ t(i).

These inequalities hold only when i = j. Suppose t(i − 1) <∗ q(i − 1). Then
by the definition of the vertex ordering we have t(i) <∗ q(i) which contradicts
the assumption. Thus we have t(i − 1) = q(i − 1) and q(i) ≤∗ t(i). If qi = ti,
then q(i) = t(i). By the definition 2 or 3 of the vertex ordering σ and

(as, bt; i − 1) <σ (ap, bq; i − 1),

we have either s < p or s = p, t < q, respectively. Thus, we have

(as, bt; i) <σ (ap, bq; i),

which contradicts the assumption (∗). Therefore qi �= ti. Therefore we have
proved that this track layout is legal.

Moreover by the definition of the adjacency relations we can easily find that
the maximum span of the (2, k + 1)-track layout of G∗

m,n is one. Also, each edge
(as, bt) of Gm,n is divided by adding �log n	−1 division points in the subdivision
G∗

m,n. Thus, we have Lemma 1. �
The following “wrapping” algorithm (Lemma2) is implicitly proved by

Felsner et al. [4] and generalized by Dujmović and Wood [3] to span s (s ≥ 1).

Lemma 2 (Dujmović and Wood [3]). If a graph G has a (2, k)-track layout
with maximum span one, then G has a (2, 3)-track layout.

Applying Lemma 1 to Lemma 2, we find that G∗
m,n has a (2, 3)-track layout.

Moreover, applying wrapping algorithm used in the proof of Lemma2 to the
(2, k+1)-track layout which we construct in the proof of Lemma 1, we can prove
Theorem 4.

Proof of Theorem 3. Construct a vertex three-coloring of G∗
m,n by merging

tracks {Vi : i ≡ j(mod3)} for each j, (0 ≤ j < 3). Then we have (2, 3)-track
assignment {(Vi, σ) : i = 0, 1, 2} of G∗

m,n. We show that this (2, 3)-track assign-
ment and the edge-coloring we defined above form a (2, 3)-track layout.

Let ((as, bt; i − 1), (as, bt; i)) and ((ap, bq; j − 1), (ap, bq; j)) be two edges in
E(G∗

m,n) (0 < i, j ≤ k) that form an X-crossing. We may assume that the
endpoints of the two edges are laid out from left to right in the order

(as, bt; i − 1) <σ (ap, bq; j − 1) and (ap, bq; j) <σ (as, bt; i).

From the above assumption and the definition of the vertex ordering, this
inequality holds only when i = j. In this case, these two edges in the (2, 3)-
track layout are laid out in the same way as in the original (2, k)-track layout.
Therefore these two edges do not form a monochromatic X-crossing.

This wrapping algorithm does not change the number of division vertices for
each edge, thus this (2, 3)-track layout also has �log n	 − 1 division vertices per
edge. �

246 M. Miyauchi

3 Conclusion

This paper defines a new graph layout named prism layout for graphs. Also,
we construct a two-color-edge topological triangular prism layout for complete
bipartite graphs with fewer edge-crossings than previous result. We don’t know
whether this result is best possible or not. To find better topological prism
layouts for complete bipartite graphs is still an interesting problem.

References

1. Dujmović, V., Morin, P., Wood, D.R.: Layout of graphs with bounded tree-width.
SIAM J. Comput. 34(3), 553–579 (2005)

2. Dujmović, V., Pór, A., Wood, D.R.: Track layouts of graphs. Discrete Math. Theor.
Comput. Sci. 6(2), 497–522 (2004)

3. Dujmović, V., Wood, D.R.: Stacks, queues and tracks: layouts of graph subdivisions.
Discrete Math. Theor. Comput. Sci. 7, 155–202 (2005)

4. Felsner, S., Liotta, G., Wismath, S.K.: Straight-line drawings on restricted integer
grids in two and three dimensions. J. Graph Algorithms Appl. 7(4), 363–398 (2003)

5. Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and stacks as mech-
anisms for laying out graphs. SIAM J. Discrete Math. 5(3), 398–412 (1992)

6. Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput.
21(5), 927–958 (1992)

7. Wood, D.R.: Queue layouts of graph products and powers. Discrete Math. Theor.
Comput. Sci. 7(1), 255–268 (2005)

On the Competition Numbers
of Diamond-Free Graphs

Yoshio Sano(B)

Division of Information Engineering, Faculty of Engineering,
Information and Systems, University of Tsukuba, Ibaraki 305-8573, Japan

sano@cs.tsukuba.ac.jp

Abstract. In this note, we give a short proof for a theorem on the
competition numbers of diamond-free graphs: If a graph G is diamond-
free, then the competition number of G is bounded above by 2 +
1
2

∑
v∈Vns(G)(θV (NG(v)) − 2), where Vns(G) denotes the set of non-

simplicial vertices in G and θV (NG(v)) denotes the minimum number
of cliques that cover all the neighbors of a vertex v in G.

Keywords: Competition graph · Competition number · Diamond-free
graph · Edge clique cover · Essential vertex

2010 Mathematics Subject Classification: 05C20 · 05C76

1 Introduction

The notion of a competition graph was introduced by Cohen [1] in connection
with a problem in ecology. The competition graph C(D) of a digraph D is the
(simple undirected) graph which has the same vertex set as D and has an edge
between two distinct vertices u and v if and only if there exists a vertex x in D
such that (u, x) and (v, x) are arcs of D. Roberts [7] observed that any graph
G together with sufficiently many isolated vertices is the competition graph of
an acyclic digraph. The competition number k(G) of a graph G is defined to be
the smallest nonnegative integer k such that G together with k isolated vertices
added is the competition graph of an acyclic digraph. It is not easy in general to
compute the exact value of the competition number for an arbitrary graph G.
Indeed, Opsut [5] showed that the computation of the competition number of a
graph is an NP-hard problem. See [8] for the current best lower bound that holds
for the competition numbers of arbitrary graphs, and see [2] for the current best
upper bound that holds for the competition numbers of arbitrary graphs.

We use the following notation and terminology. For a digraph D and a vertex
v of D, let N−

D (v) := {u ∈ V (D) | (u, v) ∈ A(D)}. For a graph G and a vertex
v of G, let NG(v) := {u ∈ V (G) | uv ∈ E(G)}, and let NG[v] := NG(v) ∪ {v}.
We also denote by the same symbol NG(v) (resp. NG[v]) the subgraph of G
induced by NG(v) (resp. NG[v]) if there is no confusion. A clique of a graph G

c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 247–252, 2016.
DOI: 10.1007/978-3-319-48532-4 22

248 Y. Sano

is a complete subgraph of G. A vertex clique cover of a graph G is a family of
cliques of G such that each vertex of G is contained in a clique in the family. The
minimum size of a vertex clique cover of a graph G is called the vertex clique
cover number of G and is denoted by θV (G). A vertex v in a graph G is said to
be isolated if θV (NG(v)) = 0. A vertex v in a graph G is said to be simplicial if
θV (NG(v)) ≤ 1, and v is said to be non-simplicial if θV (NG(v)) ≥ 2.

The line graph of a graph H is the simple graph L(H) defined by V (L(H)) =
E(H) and E(L(H)) = {ee′ | e �= e′, e ∩ e′ �= ∅}. A graph G is called a line graph
if there exists a graph H such that G is isomorphic to the line graph of H. In
1982, Opsut [5] showed the following:

Theorem 1.1 ([5]). For a line graph G, k(G) ≤ 2.

There are several graph classes containing line graphs. In 2012, Park and
Sano [6] showed that the competition numbers of generalized line graphs are
also bounded from the above by two.

Theorem 1.2 ([6]). For a generalized line graph G, k(G) ≤ 2.

A quasi-line graph is a graph G in which θV (NG(v)) ≤ 2 holds for any vertex
v of G. In 2014, McKay et al. [4] showed the following:

Theorem 1.3 ([4]). For a quasi-line graph G, k(G) ≤ 2.

A diamond is the complete tripartite graph K1,1,2. A graph G is said to be
diamond-free if G does not contain a diamond as an induced subgraph. Recently,
Kim et al. [3] gave an upper bound for the competition numbers of diamond-free
graphs.

Theorem 1.4 ([3]). Let G be a diamond-free graph. Then

k(G) ≤ 1 +
1
2
ε(G) +

1
2

∑

v∈Vns(G)

(θV (NG(v)) − 2),

where Vns(G) denotes the set of non-simplicial vertices in G, and ε(G) is defined
by

ε(G) := min{2,min{θV (NG(v)) | v ∈ V (G)}}.
Note that the upper bound given in Theorem1.4 is sharp in the sense that any
nontrivial triangle-free connected graph attains the equality.

In this note, we give a short proof for the above theorem by using induction
on |V (G)| + |E(G)| instead of induction on |V (G)| which is used in [3].

2 Preliminaries

Lemma 2.1. Let G be a diamond-free graph and let K be a maximal clique of G.
Then the graph obtained from G by deleting all the edges of K is diamond-free.

On the Competition Numbers of Diamond-Free Graphs 249

Proof. Since G is diamond-free, K does not share an edge with any other max-
imal clique in G. Therefore, diamonds cannot be made by deleting all the edges
of K from G. Thus the lemma holds. 	

Definition 1. For a graph G and a vertex v∗ of G, let G − [v∗] denote the
graph obtained from G by deleting the vertex v∗ and all the edges whose two
endvertices are in NG[v∗], i.e., V (G − [v∗]) = V (G) − {v∗} and E(G − [v∗]) =
E(G) − {xy ∈ E(G) | x, y ∈ NG[v∗]}.

Lemma 2.2. Let G be a diamond-free graph. Then the graph G − [v∗] is
diamond-free.

Proof. Since G is diamond-free, NG[v∗] consists of maximal cliques K(1), . . . ,K(t)

of G that share the vertex v∗, where t = θV (NG(v∗)). Let G0 := G and let
Gi := Gi−1 − E(K(i)) for i = 1, . . . , t. Note that K(i) is also a maximal clique in
Gi−1. By Lemma 2.1, if Gi−1 is diamond-free, then Gi is diamond-free. Therefore
Gt is diamond-free. Note that G− [v∗] = Gt −{v∗} by the definition of G− [v∗],
and that the vertex v∗ is isolated in Gt. Thus G− [v∗](= Gt −{v∗}) is diamond-
free.

Lemma 2.3. Let G be a diamond-free graph and let v∗ be a vertex of G.

• If k(G − [v∗]) ≥ 1, then k(G) ≤ k(G − [v∗]) + θV (NG(v∗)) − 1.
• If k(G − [v∗]) = 0, then k(G) ≤ θV (NG(v∗)).

Proof. Let G∗ := G − [v∗]. Let D∗ be an acyclic digraph such that C(D∗) =
G∗∪Ik(G∗). Let m := θV (NG(v∗)). Since G is diamond-free, NG(v∗) is the disjoint
union of m cliques C1, . . . , Cm. Note that {C1, . . . , Cm} is the minimum vertex
clique cover of NG(v∗). First, consider the case where k(G∗) ≥ 1. Then we can
take a vertex a ∈ Ik(G∗). Let D be a digraph defined by V (D) = (V (D∗)\{a}) ∪
{v∗} ∪ {a1, . . . , am} and A(D) = (A(D∗) − {(v, a) | v ∈ N−

D∗(a)}) ∪ {(v, v∗) |
v ∈ N−

D∗(a)} ∪ ⋃m
i=1{(v, ai) | v ∈ Ci ∪ {v∗}}. Then D is acyclic and C(D) is G

together with k(G∗) + m − 1 isolated vertices. Thus k(G) ≤ k(G∗) + m − 1.
Second, consider the case where k(G∗) = 0. Let D be a digraph defined by

V (D) = V (D∗) ∪ {v∗} ∪ {z1, . . . , zm} and A(D) = A(D∗) ∪ ⋃m
i=1{(v, zi) | v ∈

Ci ∪ {v∗}}. Then D is acyclic and C(D) is G together with m isolated vertices.
Thus k(G) ≤ m. 	

Definition 2. A vertex v in a graph G is said to be essential if θV (NG(v)) ≥ 3,
and is said to be non-essential if θV (NG(v)) ≤ 2. We denote by V ◦(G) the set
of essential vertices in G, i.e., V ◦(G) := {v ∈ V (G) | θV (NG(v)) ≥ 3}.

For a vertex v in a graph G, let N◦
G(v) be the set of neighbors of v in G that

are essential, i.e., N◦
G(v) := NG(v) ∩ V ◦(G). An essential clique of a graph G is

a maximal clique of G in which all the vertices are essential.

Lemma 2.4. Let G be a diamond-free graph and let v∗ be a vertex of G. Let v
be a neighbor of v∗. Then, v is non-essential in G if and only if v is simplicial
in G − [v∗].

250 Y. Sano

Proof. Since v ∈ NG(v∗) and G is diamond-free, we have θV (NG−[v∗](v)) =
θV (NG(v)) − 1. Then, θV (NG(v)) ≤ 2 if and only if θV (NG−[v∗](v)) ≤ 1. Thus,
v is non-essential in G if and only if v is simplicial in G − [v∗]. 	

Definition 3. For a graph G, let

μ(G) :=
∑

v∈Vns(G)

(θV (NG(v)) − 2) =
∑

v∈V ◦(G)

(θV (NG(v)) − 2),

where Vns(G) denotes the set of non-simplicial vertices in G.

Lemma 2.5. Let G be a diamond-free graph and let v∗ be a vertex of G. Then

μ(G − [v∗]) = μ(G) − |N◦
G(v∗)|.

Proof. For v ∈ NG(v∗), it follows from Lemma 2.4 that v is essential in G if and
only if v is non-simplicial in G−[v∗]. Therefore, Vns(G−[v∗])∩NG(v∗) = N◦

G(v∗).
For v ∈ V (G)\NG[v∗], v ∈ Vns(G−[v∗]) if and only if v ∈ Vns(G) by the definition
of G − [v∗]. Therefore, Vns(G − [v∗])\NG[v∗] = Vns(G)\NG[v∗]. Thus it follows
that Vns(G − [v∗]) is the disjoint union of N◦

G(v∗) and Vns(G)\NG[v∗].
For any vertex v ∈ N◦

G(v∗) ⊆ NG(v∗), we have θV (NG−[v∗](v)) =
θV (NG(v)) − 1 since G is diamond-free. For any vertex v ∈ Vns(G)\NG[v∗],
we have θV (NG−[v∗](v)) = θV (NG(v)). Thus it follows from the definition of μ
that μ(G − [v∗]) = μ(G) − |N◦

G(v∗)|. 	

3 Proof of Theorem1.4

We are now ready to give a proof for Theorem1.4, that is, we show

k(G) ≤
⎧
⎨

⎩

1 + 1
2μ(G) if G has an isolated vertex,

3
2 + 1

2μ(G) if G has a simplicial vertex,
2 + 1

2μ(G) otherwise.

Proof of Theorem 1.4. We show by induction on the number |V (G)|+ |E(G)| of a
graph G. If a graph has one vertex, then the inequality trivially holds. Suppose
that the inequality holds for any graph G such that |V (G)| + |E(G)| ≤ m. Take
a graph G with |V (G)| + |E(G)| = m + 1.
(Case 1) G has an isolated vertex v∗.

Let G∗ := G−v∗. Then G∗ is diamond-free and 1
2μ(G∗) = 1

2μ(G). If k(G∗) =
0, then k(G) = 0 by Lemma 2.3. Therefore, k(G) = 0 ≤ 1

2μ(G)+1. If k(G∗) ≥ 1,
then k(G) ≤ k(G∗) − 1 by Lemma 2.3. By the induction hypothesis, we have
k(G) ≤ k(G∗) − 1 ≤ 1

2μ(G∗) + 2 − 1 = 1
2μ(G) + 1.

(Case 2) G has no isolated vertex but G has a simplicail vertex v∗.
Let G∗ := G − [v∗]. By Lemma 2.2, G∗ is diamond-free. By Lemma 2.5,

1
2μ(G∗) = 1

2μ(G)− 1
2 |N◦

G(v∗)|. If k(G∗) = 0, then k(G) ≤ 1 by Lemma 2.3. There-
fore, k(G) ≤ 1 ≤ 1

2μ(G) + 3
2 . If k(G∗) ≥ 1, then k(G) ≤ k(G∗) by Lemma 2.3.

(Case 2-1) N◦
G(v∗) �= ∅.

On the Competition Numbers of Diamond-Free Graphs 251

By the induction hypothesis and Lemma2.5, k(G) ≤ k(G∗) ≤ 1
2μ(G∗) + 2 =

1
2μ(G) − 1

2 |N◦
G(v∗)| + 2 ≤ 1

2μ(G) + 3
2 .

(Case 2-2) N◦
G(v∗) = ∅.

By Lemma 2.4, any vertex in NG(v∗) is a simplical vertex in G∗. By the
induction hypothesis, we obtain k(G) ≤ k(G∗) ≤ 1

2μ(G∗) + 3
2 = 1

2μ(G) + 3
2 .

(Case 3) G has no simplicial vertex.
In this case, θV (NG(v)) ≥ 2 holds for any vertex v of G. If G has no essential

vertex, then 1
2μ(G) = 0 and G is a quasi-line graph. By Theorem1.3, we have

k(G) ≤ 2. Now we suppose that G has an essential vertex w∗.
(Case 3-1) w∗ is not contained in any essential clique of G.

Since any maximal clique of G containing w∗ contains a vertex v such
that θV (NG(v)) = 2, we can take a vertex v∗ such that v∗ ∈ NG(w∗) and
θV (NG(v∗)) = 2. Let G∗ := G − [v∗]. By Lemma 2.5, 1

2μ(G∗) = 1
2μ(G) −

1
2 |N◦

G(v∗)|. If k(G∗) = 0, then k(G) ≤ 2 by Lemma 2.3. Therefore, k(G) ≤
2 ≤ 1

2μ(G) + 2. If k(G∗) ≥ 1, then k(G) ≤ k(G∗) + 1 by Lemma 2.3. Note that
|N◦

G(v∗)| ≥ 1 since w∗ ∈ N◦
G(v∗).

(Case 3-1-1) |N◦
G(v∗)| ≥ 2.

By the induction hypothesis, k(G) ≤ k(G∗)+1 ≤ 1
2μ(G∗)+2+1 = 1

2μ(G)−
1
2 |N◦

G(v∗)| + 2 + 1 ≤ 1
2μ(G) + 2.

(Case 3-1-2) |N◦
G(v∗)| = 1.

From the facts that any vertex in NG(v∗)\N◦
G(v∗) is a simplicial vertex of

G∗ and that |NG(v∗)| ≥ 2, G∗ has a simplicial vertex. Then by the induction
hypothesis, k(G) ≤ k(G∗)+1 ≤ 1

2μ(G∗)+ 3
2 +1 = 1

2μ(G)− 1
2 |N◦

G(v∗)|+ 3
2 +1 =

1
2μ(G) + 2.
(Case 3-2) There exists an essential clique of G containing w∗.

Let K be an essential clique of G containing w∗. Note that |K| ≥ 2 since w∗

is not isolated. Let G∗ := G − E(K). Then G∗ is diamond-free by Lemma 2.1.
It is easy to see that k(G) ≤ k(G∗) + 1 since we can add one isolated vertex
to cover the edges of K. Note that θV (NG∗(v)) = θV (NG(v)) if v �∈ K and
θV (NG∗(v)) = θV (NG(v))−1 if v ∈ K. In addition, Vns(G) = Vns(G∗). Therefore,
1
2μ(G∗) = 1

2μ(G) − 1
2 |K|. By the induction hypothesis, k(G) ≤ k(G∗) + 1 ≤

1
2μ(G∗) + 2 + 1 = 1

2μ(G) − 1
2 |K| + 2 + 1 ≤ 1

2μ(G) + 2.
Hence the theorem holds. 	

Acknowledgment. The author is grateful to the anonymous reviewers for careful
reading and valuable comments. This work was supported by JSPS KAKENHI Grant
Number 15K20885.

References

1. Cohen, J.E.: Interval Graphs and Food Webs: A Finding and a Problem. RAND
Corporation Document 17696-PR, Santa Monica (1968)

2. Kim, S.-R., Lee, J.Y., Park, B., Sano, Y.: Competitively tight graphs. Ann. Comb.
17, 733–741 (2013)

3. Kim, S.-R., Lee, J.Y., Park, B., Sano, Y.: A generalization of Opsut’s result on the
competition numbers of line graphs. Discret. Appl. Math. 181, 152–159 (2015)

252 Y. Sano

4. McKay, B.D., Schweitzer, P., Schweitzer, P.: Competition numbers, quasi-line
graphs, and holes. SIAM J. Discret. Math. 28, 77–91 (2014)

5. Opsut, R.J.: On the computation of the competition number of a graph. SIAM J.
Algebr. Discret. Methods 3, 420–428 (1982)

6. Park, B., Sano, Y.: The competition number of a generalized line graph is at most
two. Discret. Math. Theor. Comput. Sci. 14(2), 1–10 (2012)

7. Roberts, F.S.: Food webs, competition graphs, and the boxicity of ecological phase
space. In: Alavi, Y., Lick, D.R. (eds.) Theory and Applications of Graphs. Lecture
Notes in Mathematics, vol. 642, pp. 477–490. Springer, Heidelberg (1978)

8. Sano, Y.: A generalization of Opsut’s lower bounds for the competition number of
a graph. Graphs Comb. 29, 1543–1547 (2013)

On Evasion Games on Graphs

Satoshi Tayu(B) and Shuichi Ueno

Department of Information and Communications Engineering,
Tokyo Institute of Technology, Tokyo 152-8550-S3-57, Japan

tayu@eda.ce.titech.ac.jp

Abstract. We consider an evasion game on a connected simple graph.
We first show that the pursuit number of a graph G, the smallest k such
that k pursuers win the game, is bounded above by the pathwidth of
G. We next show that the pursuit number of G is two if and only if
the pathwidth of G is one. We also show that for any integer w ≥ 2,
there exists a tree T such that the pursuit number of T is three and the
pathwidth of T is w.

1 Introduction

In an evasion game on a connected simple graph, we have k pursuers and an
evader. The evader moves invisibly along the edges of the graph. The pursuers
must guess the position of the evader. At each round, k pursuers guess at most
k vertices. The pursuers win if the current vertex of the evader is contained in
the guessed vertices. Otherwise, the evader either stays at its vertex or moves to
one of its neighbors. The pursuit number of a graph G, denoted by ρ(G), is the
minimum number k such that we have a winning strategy on G for k pursuers.
In the active version, the evader is required to move at each round. We denote
by ρ∗(G) the pursuit number of a graph G for the active evasion game. We have
ρ(G) ≥ ρ∗(G) by definition.

We denote the vertex set and the edge set of a graph G by V (G) and E(G),
respectively. Let X = (X1,X2, . . . , Xr) be a sequence of subsets of V (G). The
width of X is max1≤i≤r |Xi| − 1. X is called a path-decomposition of G if the
following conditions are satisfied:

(i)
⋃

1≤i≤r Xi = V (G);
(ii) for any edge (u, v) ∈ E(G), there exists an i such that u, v ∈ Xi;
(iii) for all l, m, and n with 1 ≤ l ≤ m ≤ n ≤ r, Xl ∩ Xn ⊆ Xm.

The pathwidth of G, denoted by pw(G), is the minimum width over all path-
decompositions of G [5].

A connected graph of pathwidth one is called a caterpillar, which is a nontriv-
ial tree that contains no 2-claw as a subtree, where a k-claw is a tree obtained
from a complete bipartite graph K1,3 by replacing each edge with a path of
length k. A 2-directional orthogonal ray tree (2DORT) is a tree that contains no
3-claw as a subtree [7]. It is easy to see that the pathwidth of a 2DORT is at
most 2. A caterpillar is a 2DORT by definition.
c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 253–264, 2016.
DOI: 10.1007/978-3-319-48532-4 23

254 S. Tayu and S. Ueno

It has been known that ρ∗(G) = 1 if and only if G is a 2DORT [2,4]. It was
recently shown that ρ∗(G) ≤ pw(G)+1 for any graph G, and that for any integer
k ≥ 2, there exists a graph G such that pw(G) = k and ρ∗(G) = k + 1 [1]. It
follows that ρ∗(T) = O(log n) for any n-vertex tree T , since pw(T) = O(log n)
for any n-vertex tree T [6]. Very recently, it was shown in [3] that there exists
an n-vertex tree T such that ρ∗(T) = Ω(log n).

We show the following four theorems.

Theorem 1. For any graph G, ρ(G) ≤ pw(G) + 1. In particular, ρ(T) =
O(log n) for any n-vertex tree T .

It should be noted that for any integer k ≥ 0, there exists a graph G such
that pw(G) = k and ρ(G) = k + 1, since ρ(G) ≥ ρ∗(G) for any graph G. Notice
also that there exists an n-vertex tree T such that ρ(T) = Ω(log n), immediate
from a result of [3] mentioned above.

Theorem 2. ρ(G) = 2 if and only if pw(G) = 1.

It should be noted that ρ(G) = 1 if and only if pw(G) = 0 (G has just one
vertex), as mentioned in [4].

Theorem 3. If pw(G) = 2 then ρ(G) = 3.

However, the converse of Theorem 3 does not hold as shown in the following.

Theorem 4. For any integer k ≥ 2, there exists a tree T such that ρ(T) = 3
and pw(T) = k.

2 Preliminaries

For a graph G, a k pursuers’ strategy is a sequence P = (P1, P2, . . . , Pr) of
guessed vertices, where Pi ⊆ V (G) and |Pi| ≤ k for any i ∈ [r], where [n] =
{1, 2, . . . , n} for a positive integer n; the pursuers guess the vertices in Pi at the
i-th round of the game.

An evader’s strategy is a sequence M = (m0,m1, . . . ,mr) of vertices of G
such that mi = mi−1 or mi is adjacent to mi−1 for any i ≥ 1; vertex m0 is an
initial position of the evader, and the evader stays at vertex mi in the i-th round
of the game.

A pursuers’ strategy P = (P1, P2, . . . , Pr) is a winning strategy if for any
evader’s strategy M = (m0,m1, . . . ,mr), there exists an i ≥ 1 such that mi ∈ Pi.
The pursuit number ρ(G) of G is the minimum k such that there exists a winning
strategy for k pursuers on G.

For a pursuer’s strategy P = (P1, P2, . . . , Pr), a vertex v ∈ V (G) is said
to be contaminated at the i-th round if there exists an evader’s strategy M =
(m0,m1, . . . ,mr) such that v = mi and mj �∈ Pj for any j ∈ [i]. Otherwise, v is
said to be clear at the i-th round.

On Evasion Games on Graphs 255

For a vertex u ∈ V (G), let N(u) = {v | v ∈ V (G), (u, v) ∈ E(G)} ∪ {u},
and for a vertex set U ⊆ V (G), define that N(U) =

⋃
u∈U N(u). For a pursuers’

strategy P = (P1, P2, . . . , Pr), let D(P) = (D0,D1, . . . , Dr) be the sequence of
contaminated sets of vertices for P; Di is the set of contaminated vertices at the
i-th round, where D0 = V (G). It should be noted that

Di = N(Di−1) − Pi (1)

for any i ∈ [r], and P is a winning strategy if and only if Di = ∅ for some i ∈ [r].

3 Proof of Theorem1

We can show that a path-decomposition X = (X1,X2, . . . , Xr) of G with width
k is a winning strategy for k + 1 pursuers on G by the same arguments as the
proof of ρ∗(G) ≤ pw(G) + 1 in [1].

It is shown in [6] that pw(T) ≤ log3(2n + 1) for any n-vertex tree T . Thus,
we have ρ(T) = O(log n) for any n-vertex tree T .

4 Proof of Theorems 2 and 3

Lemma 1. If G contains a cycle then ρ(G) ≥ 3.

Proof. It suffices to show that ρ(C) ≥ 3 for any cycle C. Let P = (P1, P2, . . . , Pr)
be a strategy for two pursuers on C, where |Pi| ≤ 2 for any i ∈ [r]. We define
an evader’s strategy M = (m0,m1, . . . ,mr) as follows. Let m0 be any vertex
in V (C). We recursively define mi as a vertex in N(mi−1) − Pi for any i ∈ [r].
Notice that N(mi−1)−Pi �= ∅, since |N(mi−1)| = 3 and |Pi| ≤ 2. Thus, P is not
a winning strategy, since mi �∈ Pi for any i ∈ [r], and we conclude that ρ(C) ≥ 3.

Lemma 2. If G is a 2-claw then ρ(G) ≥ 3.

Proof. Let T2 be a 2-claw shown in Fig. 1. Define that

Fj = {aj , b1, b2, b3, c}, for any j ∈ [3], and
Fj,j′ = {aj , aj′ , bj , bj′ , c}, for any j �= j′ ∈ [3].

Let P = (P1, P2, . . . , Pr) be a strategy for two pursuers on T2, where |Pi| ≤ 2
for any i ∈ [r], and D(P) = (D0,D1, . . . , Dr) be the sequence of contaminated
sets of vertices for P, where D0 = V (T2) = {a1, a2, a3, b1, b2, b3, c}

c

a1 a2
a3

b1 b2
b3

Fig. 1. 2-claw T2.

256 S. Tayu and S. Ueno

Claim 1. For any i ∈ [r], Fj ⊆ N(Di) for some j ∈ [3] or Fj,j′ ⊆ N(Di) for
some distinct j, j′ ∈ [3].

Proof of Claim 1. The proof is by induction on i. We first show that N(D1)
satisfies the claim. Since D0 = V (T2), D1 = N(D0) − P1 = V (T2) − P1 by (1).
Let P1 = {u, v}. If (u, v) �∈ E(T2) then N(u)∩D1 �= ∅ and N(v)∩D1 �= ∅. Thus,
P1 ⊆ N(D1), and we have N(D1) = V (T2), which satisfies the claim. If (u, v) ∈
E(T2) then P1 is {aj , bj} or {bj , c} for some j ∈ [3]. If P1 = {aj , bj} then c ∈ D1,
and so N(D1) = V (T2)−{aj}, which contains Fj′,j′′ for j′ �= j′′ ∈ [3]−{j}, and
we are done. If P1 = {bj , c} then P1 ⊆ N(D1), and we have N(D1) = V (T2),
which satisfies the claim.

Suppose that Claim 1 holds for i−1 ∈ [r−1], that is, Fj ⊆ N(Di−1) for some
j ∈ [3] or Fj,j′ ⊆ N(Di−1) for some distinct j, j′ ∈ [3]. We show that Claim 1
also holds for i. We distinguish two cases.

Case 1 Fj ⊆ N(Di−1) for some j ∈ [3]: If |Fj ∩ Pi| ≤ 1, then Fj ⊆ N(Fj − Pi),
since any vertex of Fj is adjacent with another vertex of Fj . Therefore, Fj ⊆
N(Fj − Pi) ⊆ N(N(Di−1) − Pi) = N(Di) by (1), and we are done. Thus, we
assume in the following that |Fj ∩Pi| = 2. Without loss of generality, we assume
that F1 = {a1, b1, b2, b3, c} ⊆ N(Di−1). We further distinguish three cases.

Case 1-1 a1 ∈ Pi: In this case, Pi is {a1, c}, {a1, b1}, {a1, b2}, or {a1, b3}. If
Pi = {a1, c} then {b1, b2, b3} ⊆ Di by (1). Thus, N(Di) = V (T2), which satisfies
the claim. If Pi = {a1, b1} then {b2, b3, c} ⊆ Di. Thus, F2,3 = {a2, b2, a3, b3, c} ⊆
N(Di), and we are done. If Pi = {a1, b2} then {b1, b3, c} ⊆ Di. Thus, F1,3 =
{a1, b1, b2, a3, b3, c} ⊆ N(Di), and we are done. If Pi = {a1, b3} then {b1, b2, c} ⊆
Di. Thus, F1,2 = {a1, b1, a2, b2, b3, c} ⊆ N(Di), and we are done.

Case 1-2 a1 �∈ Pi and b1 ∈ Pi: In this case, Pi is {b1, b2}, {b1, b3}, or {b1, c}.
If Pi = {b1, b2} then {a1, b3, c} ⊆ Di and {a1, b1, b2, a3, b3, c} ⊆ N(Di) by (1).
Thus, we have F1,3 ⊆ N(Di), and we are done. If Pi = {b1, b3} then {a1, b2, c} ⊆
Di and {a1, b1, a2, b2, b3, c} ⊆ N(Di). Thus, we have F1,2 ⊆ N(Di), and we are
done. If Pi = {b1, c} then {a1, b2, b3} ⊆ Di and N(Di) = V (T2), which satisfies
the claim.

Case 1-3 a1, b1 �∈ Pi: In this case, Pi is {b2, b3}, {b2, c}, or {b3, c}. If Pi = {b2, b3}
then {a1, b1, c} ⊆ Di by (1) and {a1, b1, b2, b3, c} ⊆ N(Di). Thus, F1 ⊆ N(Di),
and we are done. If Pi = {b2, c} then {a1, b1, b3} ⊆ Di and {a1, b1, b2, a3, b3, c} ⊆
N(Di). Thus, F1 ⊆ N(Di), and we are done. If Pi = {b3, c} then {a1, b1, b2} ⊆ Di

and {a1, b1, a2, b2, b3, c} ⊆ N(Di). Thus, F1 ⊆ N(Di), and we are done.

Case 2 Fj,j′ ⊆ N(Di−1) for some distinct j, j′ ∈ [3]: If |Fj,j′ ∩ Pi| ≤ 1, then
Fj,j′ ⊆ N(Fj,j′ −Pi), since any vertex of Fj,j′ is adjacent with another vertex of
Fj,j′ . Therefore, Fj,j′ ⊆ N(Fj,j′ − Pi) ⊆ N(N(Di−1) − Pi) = N(Di) by (1), and
we are done. Thus, we assume in the following that |Fj,j′ ∩Pi| = 2. Without loss
of generality, we assume that F1,2 = {a1, a2, b1, b2, c} ⊆ N(Di−1). We further
distinguish four cases.

Case 2-1 Pi = {a1, a2}: In this case, {b1, b2, c} ⊆ Di by (1) and
{a1, b1, a2, b2, b3, c} ⊆ N(Di). Thus, F1,2 ⊆ N(Di), and we are done.

On Evasion Games on Graphs 257

Case 2-2 a1 ∈ Pi and a2 �∈ Pi: In this case, Pi is {a1, b1}, {a1, b2}, or
{a1, c}. If Pi = {a1, b1} then {a2, b2, c} ⊆ Di and {b1, a2, b2, b3, c} ⊆ N(Di).
Thus, F2 ⊆ N(Di), and we are done. If Pi = {a1, b2} then {b1, a2, c} ⊆ Di

and {a1, b1, a2, b2, b3, c} ⊆ N(Di). Thus, F1,2 ⊆ N(Di), and we are done.
If Pi = {a1, c} then {b1, a2, b2} ⊆ Di and {a1, b1, a2, b2, c} ⊆ N(Di). Thus,
F1,2 ⊆ N(Di), and we are done.

Case 2-3 a1 �∈ Pi and a2 ∈ Pi: The proof is similar to the proof of Case 2-2,
and omitted.

Case 2-4 a1, a2 �∈ Pi, i.e., Pi ⊆ {b1, b2, c}: In this case, Pi is {b1, b2}, {b1, c} or
{b2, c}. If Pi = {b1, b2}, then {a1, a2, c} ⊆ Di by (1) and {a1, b1, a2, b2, b3, c} ⊆
N(Di). Thus, F1,2 ⊆ N(Di), and we are done. If Pi = {b1, c} then {a1, a2, b2} ⊆
Di and {a1, b1, a2, b2, c} ⊆ N(Di). Thus, F1,2 ⊆ N(Di), and we are done. If
Pi = {b2, c} then {a1, b1, a2} ⊆ Di and {a1, b1, a2, b2, c} ⊆ N(Di). Thus, F1,2 ⊆
N(Di), and we are done.

This completes the proof of Claim 1.
�
Claim 2. P is not a winning strategy.

Proof of Claim 2. From Claim 1, N(Di) ≥ 5 for any i ∈ [r]. Therefore, |Di| =
|N(Di−1) − Pi| ≥ 5 − 2, which means that Di �= ∅ for any i ∈ [r]. Thus, we have
the claim.
�
From Claim 2, we conclude that ρ(T2) ≥ 3, and we have Lemma 2.
�

If ρ(G) ≤ 2 then G is a tree by Lemma 1, and G contains no 2-claw by
Lemma 2, that is, G is a caterpillar. Thus, if ρ(G) ≤ 2 then pw(G) ≤ 1. On
the other hand, if pw(G) ≤ 1 then ρ(G) ≤ 2 by Theorem 1. Thus, we have the
following.

Lemma 3. ρ(G) ≤ 2 if and only if pw(G) ≤ 1.

Since ρ(G) = 1 if and only if pw(G) = 0, it follows from Lemma 3 that
ρ(G) = 2 if and only if pw(G) = 1, and we obtain Theorem2.

If pw(G) = 2 then ρ(G) ≥ 3 by Lemma 3, and ρ(G) ≤ 3 by Theorem 1. Thus,
ρ(G) = 3 if pw(G) = 2, and we obtain Theorem3.

5 Proof of Theorem4

We need some preliminaries. For a graph G and U ⊆ V (G), we denote by G−U
the graph obtained from G by deleting all vertices of U and all edges incident
to a vertex of U . The following is shown in [8].

Theorem 5. Let G be a connected graph and k ≥ 1 be an integer. If G has a
vertex v such that G−{v} has at least three connected components with pathwidth
k − 1 or more, then pw(G) ≥ k.

Lemma 4. The pathwidth of a tree T is at most k ≥ 1 if and only if there exists
a path Q in T such that the pathwidth of every connected component of T −V (Q)
is at most k − 1.

258 S. Tayu and S. Ueno

Proof. We first show the necessity. Let T be a tree of pathwidth at most k, and
X = (X1,X2, . . . , Xr) be a path-decomposition of T with width at most k. Let
u ∈ X1 and v ∈ Xr be any vertices, and Q be the path connecting u and v in T .

We show that

V (Q) ∩ Xi �= ∅ (2)

for any i ∈ [r]. Assume to the contrary that there exists Xj (1 < j < r) with
Xj ∩ V (Q) = ∅. Define that U1 = (

⋃
i≤j−1 Xi) ∩ V (Q) and U2 = (

⋃
i≥j+1 Xi) ∩

V (Q). From (iii), we have U1∩U2 ⊆ Xj ∩V (Q) = ∅, that is, U1∩U2 = ∅. Since Q
is a path connecting u and v, Q contains an edge (x, y) with x ∈ U1 and y ∈ U2.
However, we have no Xi such that x, y ∈ Xi, contradicting to (ii).

If we define X ′
i = Xi − V (Q) for any i ∈ [r], X ′ = (X ′

1,X
′
2, . . . , X

′
r) is a

path-decomposition of T − V (Q). Since the width of X ′ is at most k − 1 by
(2), we conclude that every connected component of T − V (Q) has pathwidth
at most k − 1. This completes the proof of the necessity.

We next show the sufficiency. Let Q be a path in T such that every connected
component of T −V (Q) has pathwidth at most k−1. Let V (Q) = {v1, v2, . . . , vp}
and E(Q) = {(vi, vi+1) | i ∈ [p − 1]}. Let C1, C2, . . . Cq be the connected com-
ponents of T − V (Q) such that if Ci contains a vertex adjacent to vj then
Ci+1 contains a vertex adjacent to vj′ for some j′ ≥ j. For any i ∈ [q], let
X i = (Xi

1,X
i
2, . . . , X

i
ri

) be a path-decomposition of Ci of width at most k − 1,
that is, |Xi

j | ≤ k for any j ∈ [ri]. Let J(i) be an integer such that Ci contains a
vertex adjacent to vJ(i) ∈ V (Q). Since T is a tree, J(i) is uniquely determined.

A path-decomposition of T of width at most k is constructed as follows.
For any i ∈ [q] and j ∈ [ri], let Y i

j = Xi
j ∪ {vJ(i)} and Yi = (Y i

1 , Y i
2 , . . . , Y i

ri
).

If J(1) ≥ 2, Z0 is defined as an empty sequence. Otherwise, we define Z0 =
(Z0

1 , Z0
2 , . . . , Z0

J(1)−1), where Z0
j = {vj , vj+1} for any j ∈ [J(1) − 1]. For any

i ∈ [q − 1] and l ∈ [J(i + 1) − J(i)], define that Zi
l = {vJ(i)+l−1, vJ(i)+l} and

Zi = (Zi
1, Z

i
2, . . . , Z

i
J(i+1)−J(i)), where Zi is an empty sequence if J(i+1) = J(i).

If J(q) = p then Zq is defined as an empty sequence. Otherwise, define that Zq
j =

{vJ(q)+j−1, vJ(q)+j} for any j ∈ [p−J(q)] and Zq = (Zq
1 , Zq

2 , . . . , Zq
p−J(q)). Define

that X ′ = (Z0,Y1,Z1,Y2, . . . ,Yq,Zq). We denote X ′ by (X ′
1,X

′
2, . . . , , X

′
r′).

We show that X ′ is a path-decomposition for T of width at most k. We first
show that X ′ satisfies (i). Any vertex of Q is contained in some Zi

j by definition.
Since X i is a path-decomposition of Ci, we have V (Ci) =

⋃
j∈[ri]

Xi
j ⊆ ⋃

j∈[ri]
Y i

j .
Thus, we conclude that V (T) =

⋃
i∈[r′] X

′
i. Thus, X ′ satisfies (i).

We next show that X ′ satisfies (ii). We distinguish 3 cases. 1) (u, v) ∈ E(Ci)
for some i ∈ [q]: Since X i is a path-decomposition of Ci, u, v ∈ Xi

j for some
j ∈ [ri]. Thus, we conclude that u, v ∈ Xi

j ⊂ Y i
j = X ′

l for some l. 2) (u, v) ∈
E(Q): Since u, v ∈ Zi

j for some i, j, we conclude that u, v ∈ X ′
l for some l. 3)

(u, v) ∈ E(T) such that u ∈ V (Ci) for some i ∈ [q] and v = vJ(i) ∈ V (Q): We
have u, v ∈ Y i

j = X ′
l for some l by definition. Thus, X ′ satisfies (ii).

We now show that X ′ satisfies (iii). Let l, m, and n be arbitrary integers
with 1 ≤ l ≤ m ≤ n ≤ r′. If l = n, X ′

m = X ′
l = X ′

n, and we are done. Assume

On Evasion Games on Graphs 259

that l ≤ n − 1. Let y(i) be an integer such that X ′
y(i)+1 = Y i

1 . If y(i) + 1 ≤ l <

n ≤ y(i)+ ri for some i ∈ [p], X ′
l ∩X ′

n = Y i
l−y(i) ∩Y i

n−y(i) = (Xi
l−y(i) ∪{vJ(i)})∩

(Xi
n−y(i) ∪ {vJ(i)}) = (Xi

l−y(i) ∩ Xi
n−y(i)) ∪ {vJ(i)} ⊆ Xi

m−y(i) ∪ {vJ(i)} = X ′
m,

since X i = (Xi
1,X

i
2, . . . , X

i
ri

) is a path-decomposition of Ci. Thus, we have
X ′

l ∩ X ′
n ⊆ X ′

m. Otherwise, X ′
l ∩ X ′

n contains only vertices of Q. Since any
vertex in Q appears only in consecutive subsets in X ′, we have X ′

l ∩ X ′
n ⊆ X ′

m.
Therefore, X ′ satisfies (iii).

Thus, X ′ is a path-decomposition of T . Since |X ′
i| ≤ k + 1 for any i ∈ [r′] by

definition, the width of X ′ is at most k, and we conclude that pw(T) ≤ k. This
completes the proof of the sufficiency.
�

Now, we are ready to prove Theorem 4. We prove the theorem by induction
on k. The following lemma is the basis of the induction. For a graph G and
x, y ∈ V (G), a winning strategy P = (P1, P2, . . . , Pr) on G is called an (x, y)-
winning strategy if the following conditions are satisfied:

– x ∈ Pi if and only if i = 1, and
– y ∈ Pi if and only if i = r.

Lemma 5. For the 2-claw T2 shown in Fig. 1, ρ(T2) = 3 and pw(T2) = 2.
Moreover, there exists an (x, y)-winning strategy for three pursuers on T2 for
some x, y ∈ V (T2).

Proof. By Lemma 3, ρ(T2) ≥ 3. We show that P = ({a1, b1, c}, {a2, b2, c}, {a3,
b3, c}) is an (a1, a3)-winning strategy for three pursuers on T2. Let D(P) = (D0,
D1,D2,D3) be the sequence of contaminated sets of vertices for P, where D0 =
V (T2). By (1), D1 = N(D0)−P1 = {a2, b2, a3, b3}, D2 = N(D1)−P2 = {a3, b3},
and D3 = N(D2) − P3 = ∅. Thus, P is an (a1, a3)-winning strategy for three
pursuers on T2, and we conclude that ρ(T2) = 3.

From Theorem 5 and Lemma 4, we have pw(T2) = 2, since the pathwidth of
every connected components of T2 − {c} is 1. This completes the proof of the
lemma.
�

We need some more preliminaries to show the induction step. Let G be
a graph, P = (P1, P2, . . . , Pr) be a pursuers’ strategy on G, and D(P) =
(D0,D1, . . . , Dr) be a sequence of contaminated sets of vertices for P. From
(1), we have the following.

Lemma 6. For any i ∈ [r − 1], if N(Di) − Di ⊆ Pi+1, then Di+1 = Di − Pi+1.

For any U ⊆ V (G), define that N1(U) = N(U), and N i+1(U) = N(N i(U))
for any i ≥ 1. From (1) we have the following.

Di+k ⊆ Nk(Di) − Pi+k (3)

for any i ∈ [r − 1] and k ∈ [r − i]. For any two vertices u, v ∈ V (G), we denote
by distG(u, v) the distance between vertices u and v in G. From (3), we have the
following.

260 S. Tayu and S. Ueno

Lemma 7. If distG(u, v) ≥ k+1 for any u ∈ U and v ∈ Di, then U ∩Di+k = ∅.

For a sequence X = (X1,X2, . . . , Xr), r is called the length of X and denoted
by |X |. For sequences X i = (Xi

1,X
i
2, . . . , X

i
ri

) for i ∈ [n], (X 1,X 2, . . . ,X n) is a
sequence obtained by concatenating X 1,X 2, . . . ,X n, that is, (X 1,X 2, . . . ,X n) =
(X1

1 ,X1
2 , . . . , X1

r1
,X2

1 ,X2
2 , . . . , X2

r2
, . . . , Xn

1 ,Xn
2 , . . . , Xn

rn
). Notice that

|(X 1,X 2, . . . ,X n)| =
n∑

i=1

|X i| =
n∑

i=1

ri.

Now, we are ready to show the induction step.

Lemma 8. Let Tk−1 (k ≥ 3) be a tree with ρ(Tk−1) = 3 and pw(Tk−1) = k − 1.
Assume that there exists an (x, y)-winning strategy for three pursuers on Tk−1

for some x, y ∈ V (Tk−1). Then, we can construct from three copies of Tk−1 a
tree Tk with ρ(Tk) = 3 and pw(Tk) = k. Moreover, there exists an (x, y)-winning
strategy for three pursuers on Tk for some x, y ∈ V (Tk).

Proof. Let Tk−1 be a tree with ρ(Tk−1) = 3 and pw(Tk−1) = k − 1, and
P = (P1, P2, . . . , Pr) be an (x, y)-winning strategy for three pursuers on Tk−1.
Let T i

k−1 be a copy of Tk−1 for i ∈ [3], and vi ∈ V (T i
k−1) be the ver-

tex corresponding to a vertex v ∈ V (Tk−1). Let Pi = (P i
1, P

i
2, . . . , P

i
r) be an

(xi, yi)-winning strategy corresponding to P for i ∈ [3]. Let Q be a path with
V (Q) = {qi | i ∈ [r]} and E(Q) = {(qi, qi+1) | i ∈ [r − 1]}.

Define that Tk is a tree obtained from T 1
k−1, T 2

k−1, T 3
k−1, and Q by adding

three edges (q1, y1), (qr, y
2), and (qr, x

3) (See Fig. 2).
Since the pathwidth of any connected component of Tk − {qr} is at least

pw(Tk−1), we have pw(Tk) ≥ pw(Tk−1) + 1 = k by Theorem 5. On the other
hand, since T 1

k−1, T 2
k−1, and T 3

k−1 are the connected components of Tk − V (Q),
we have pw(Tk) ≤ pw(Tk−1) + 1 = k by Lemma 4. Thus, we have pw(Tk) = k.

We have ρ(Tk) ≥ 3, since ρ(Tk−1) = 3. We will show an (x1, y3)-winning
strategy for three pursuers on Tk, which means that ρ(Tk) = 3. Let h = r/2�,

T 1
k−1 T 2

k−1 T 3
k−1

x1 x2 x3y1 y2 y3

q1 q2 qr

Q

Fig. 2. Tree Tk.

On Evasion Games on Graphs 261

and R = (R1, R2, . . . , Rh) and S = (S1, S2, . . . , Sr+1) be sequences of subsets of
V (Tk) defined as follows.

Rj =

⎧
⎨

⎩

{y1, q1, q2} if j = 1,
{q2j−2, q2j−1, q2j} if 2 ≤ j ≤ h − 1,
{qr−2, qr−1, qr} if j = h,

(4)

Sj =

⎧
⎨

⎩

{y1, y2, q1} if j = 1,
{y2, qj−1, qj} if 2 ≤ j ≤ r,
{qr−1, qr, x

3} if j = r + 1.
(5)

Define that P ′ = (P1,R,P2,S,P3). Notice that |P ′| = |P1| + |R| + |P2| + |S| +
|P3| = 4r + h + 1. We now show the following.

Claim 3. P ′ is an (x1, y3)-winning strategy for three pursuers on Tk.

Proof of Claim 3. Let r′ = |P ′| = 4r + h + 1 and D(P ′) = (D0,D1, . . . , Dr′)
be the sequence of contaminated sets of vertices for P ′. Since P1 is an (x1, y1)-
winning strategy on T 1

k−1 and T 1
k−1−{y1} is a connected component of Tk−{y1},

we have

Dr = V (Tk) − V (T 1
k−1). (6)

Similarly, by noting |P1| + |R| + |P2| = 2r + h, we also have

D2r+h ∩ V (T 2
k−1) = ∅, (7)

since P2 is an (x2, y2)-winning strategy on T 2
k−1 and T 2

k−1 −{y2} is a connected
component of Tk − {y2}.

(I). Dr+i = V (Tk) − V (T 1
k−1) − {qj | j ∈ [2i]} for any i with 0 ≤ i ≤ h − 1.

Proof of (I). We show (I) by induction on i. From (6), (I) holds for i = 0,
since {qj | j ∈ [2i]} = ∅ if i = 0. Let i ≥ 1 and assume that (I) holds for
i − 1, that is, Dr+i−1 = V (Tk) − V (T 1

k−1) − {q1, q2, . . . , q2i−2}. It follows that
N(Dr+i−1) − Dr+i−1 = {q2i−2}, where we assume that q2i−2 = y1 if i = 1.
Therefore, N(Dr+i−1) − Dr+i−1 ⊆ Ri by (4). Thus from Lemma 6, Dr+i =
Dr+i−1 − Ri = V (Tk) − V (T 1

k−1) − {qj | j ∈ [2i]}, and (I) holds for i.
�
From (I), we have Dr+h−1 = V (Tk)−V (T 1

k−1)−{qi | i ∈ [2h−2]}. Therefore,
N(Dr+h−1) − Dr+h−1 = {q2h−2} ⊆ Rh, and we have

Dr+h = V (Tk) − V (T 1
k−1) − V (Q) (8)

by Lemma 6. From Lemma 7 and (8), D2r+h ∩V (T 1
k−1) = ∅, i.e., D2r+h ⊆

V (Tk) − V (T 1
k−1). Thus from (7), we have

D2r+h ⊆ V (Tk) − (V (T 1
k−1) ∪ V (T 2

k−1)). (9)

262 S. Tayu and S. Ueno

Let P ′ = (P ′
1, P

′
2, . . . , P

′
r′), and M = (m0,m1, . . . ,mr′) be an evader’s strategy

such that mi = x3 for i ≤ r + h, and mi = q2r+h+1−i for r + h + 1 ≤ i ≤ 2r + h.
Then, mi �∈ P ′

i for any i ∈ [2r + h]. Therefore, q1 ∈ D2r+h. Similarly, we can
prove that qi ∈ D2r+h for any i ∈ [2r + h], and thus, V (Q) ⊆ D2r+h. Since
V (T 3

k−1) ⊆ D2r+h, we have

V (Tk) − (V (T 1
k−1) ∪ V (T 2

k−1)) = V (Q) ∪ V (T 3
k−1)

⊆ D2r+h. (10)

Thus, from (9) and (10), we have

D2r+h = V (Tk) − (V (T 1
k−1) ∪ V (T 2

k−1)). (11)

(II). D2r+h+i = V (Tk) − V (T 1
k−1) − V (T 2

k−1) − {qj | j ∈ [i]} for any i ∈ [r].

Proof of (II). From (11), N(D2r+h) ∩ (V (T 1
k−1) ∪ V (T 2

k−1)) = {y1, y2}. Thus
from Lemma 6 and (5), we have

D2r+h+1 = V (Tk) − V (T 1
k−1) − V (T 2

k−1) − {q1}. (12)

We now show that

D2r+h+i = V (Tk) − V (T 1
k−1) − V (T 2

k−1) − {qj | j ∈ [i]} (13)

by induction on i. Clearly, (13) holds for i = 1 by (12). Assume that (13) holds
for i − 1 with i ≥ 2, that is, D2r+h+i−1 = V (Tk) − V (T 1

k−1) − V (T 2
k−1) − {qj |

j ∈ [i−1]}, and we will show that (13) also holds for i. By induction hypothesis,
N(D2r+h+i−1) − D2r+h+i−1 ⊆ {qi−1, y

2}. Thus from Lemma 6 and (5), (13)
holds for i. This completes the proof of (II).
�

From (5) and (II), we have

D3r+h+1 = V (Tk) − V (T 1
k−1) − V (T 2

k−1) − V (Q) − {x3}
= V (T 3

k−1) − {x3}. (14)

Therefore, we have D4r+h+1 = ∅, since P3 is an (x3, y3)-winning strategy on
T 3

k−1 and T 3
k−1 − {x3} is a connected component of Tk − {x3}. Since x1 ∈ P ′

i if
and only if i = 1, and y3 ∈ P ′

i if and only if i = r′, we conclude that P ′ is an
(x1, y3)-winning strategy on Tk, and we have Claim 3.
�

This completes the proof of the lemma.
�
From Lemmas 5 and 8, we have Theorem 4.

6 Active Pursuit Number of Tk

We show the following for tree Tk defined in the previous section.

Theorem 6. For any k ≥ 3, ρ∗(Tk) = 2.

On Evasion Games on Graphs 263

Proof. For a bipartite graph G with a bipartition (B0, B1) and P ⊆ V (G),
define that BG(P) = max{|P ∩ B0|, |P ∩ B1|}. For a pursuers strategy P =
(P1, P2, . . . , Pr) on G, BG(P) = max{BG(Pi) | i ∈ [r]}.

Lemma 9. For a bipartite graph G, if there exists a winning strategy P =
(P1, P2, . . . , Pr) for the general evasion game on G with BG(P) ≤ l, then
ρ∗(G) ≤ l.

Proof of Lemma 9. Let P = (P1, P2, . . . , Pr) be a winning strategy for the gen-
eral evasion game on G satisfying BG(P) ≤ l. Without loss of generality, we
assume that r is odd, since otherwise, P ′ = (P1, P2, . . . , Pr, ∅) is also a winning
strategy of odd length on G satisfying BG(P ′) ≤ l.

Let (B0, B1) be a bipartition of G. Define that Wi = Pi ∩ Bi mod 2, i.e.,

Wi =
{

Pi ∩ B0 if i is even, and
Pi ∩ B1 if i is odd,

for any i ∈ [r]. Define also that Wi = Wi−r for r + 1 ≤ i ≤ 2r, and
W∗ = (W1,W2, . . . ,W2r). We will show that pursuers’ strategy W∗ is a win-
ning strategy on G for the active evasion game.

Let M∗ = (m0,m1, . . . ,m2r) be any evader’s strategy on G for the active
evasion game. From the definition of the active evasion game, the evader must
move at each round and we have

mi ∈ B0 ⇔ mi−1 ∈ B1 for any i ∈ [2r]. (15)

Since r is odd, we also have

m0 ∈ B0 ⇔ mr ∈ B1. (16)

Define that

ML = (m0,m1, . . . ,mr) and
MR = (mr,mr+1 . . . ,m2r).

It should be noted that ML and MR both can be considered as evader’s strate-
gies of r rounds for the general evasion game on G. Since P is a winning
strategy on G for the general evasion game, there exist integers α and β with
1 ≤ α ≤ r < β ≤ 2r such that

mα ∈ Pα, and (17)
mβ ∈ Pβ−r. (18)

We now show that there exists an integer i ∈ [2r] such that mi ∈ Wi. We
distinguish two cases.

Case 1 m0 ∈ B0: From (15) and m0 ∈ B0, we have

mi ∈ Bi mod 2 (19)

264 S. Tayu and S. Ueno

for any i ∈ [r]. Thus from (17) and (19), we have mα ∈ Pα ∩ Bα mod 2, i.e.,
mα ∈ Wα.

Case 2 m0 ∈ B1: From (15) and (16),

mr+i ∈ Bi mod 2 (20)

for any i ∈ [r]. Let β′ = β − r. From (18) and (20), we have mβ ∈ Pβ′ ∩
Bβ′ mod 2 = Wβ′ .

Thus, W∗ is a winning strategy for the active evasion game on G. Since
BG(P) ≤ l, we have |Wi| ≤ l for any i ∈ [2r]. Thus, ρ∗(G) ≤ l, and we have the
lemma.
�

If P = (P1, P2, . . . , Pr) is the (x, y)-winning strategy for three pursuers on
Tk defined in the previous section then BG(P) ≤ 2, since |Pi| = 3 and every Pi

contains a pair of adjacent vertices for any i ∈ [r]. Thus, we have ρ∗(Tk) ≤ 2 for
any k ≥ 2 by Lemma 9. Since Tk contains a 3-claw if k ≥ 3, we have ρ∗(Tk) ≥ 2 if
k ≥ 3, and we conclude that ρ∗(Tk) = 2 for any k ≥ 3. (Notice that ρ∗(T2) = 1,
since T2 is a 2DORT.) This completes the proof of the theorem.
�

7 Concluding Remarks

Since it is well-known that the longest path in a tree can be found in linear
time, caterpillars and 2DORTs can be recognized in linear time [7]. Therefore,
we can decide in linear time whether ρ∗(G) = 1 and ρ(G) = 2. The complexity
of computing ρ(G) and ρ∗(G) is open.

Acknowledgements. The research was partially supported by JSPS KAKENHI
Grant Number 26330007.

References

1. Abramovskaya, T.V., Fomin, F.V., Golovach, P.A., Pilipczuk, M.: How to hunt an
invisible rabbit on a graph. Eur. J. Comb. 52, 12–26 (2016)

2. Britnell, J.R., Wildon, M.: Finding a princess in a palace: a pursuit evasion problem.
Electron. J. Comb. 20, 25 (2013)

3. Gruslys, V., Mèrouéh, A.: Catching a mouse on a tree. arXiv.org/abs/1502.06591
(2015)

4. Haslegrave, J.: An evasion game on a graph. Discrete Math. 314, 1–5 (2014)
5. Robertson, N., Seymour, P.: Graph minors I. Excluding a forest. J. Comb. Theor.

Series B 35, 39–61 (1983)
6. Scheffler, P.: Optimal embedding of a tree into an interval graph in linear time. Ann.

Discret. Math. 51, 278–291 (1992)
7. Shrestha, A.M.S., Tayu, S., Ueno, S.: On orthogonal ray graphs. Discrete Appl.

Math. 158, 1650–1659 (2010)
8. Takahashi, A., Ueno, S., Kajitani, Y.: Minimal acyclic forbidden minors for the

family of graphs with bounded path-width. Discrete Math. 127, 293–304 (1994)

http://arxiv.org/abs/org/abs/1502.06591

Sudoku Colorings of a 16-Cell Pre-fractal

Hideki Tsuiki(B) and Yasuyuki Tsukamoto

Graduate School of Human and Environmental Studies,
Kyoto University, Kyoto, Japan

{tsuiki,tsukamoto}@i.h.kyoto-u.ac.jp

Abstract. We study coloring problems of the third-level approximation
of a 16-cell fractal. This four-dimensional object is projected to a cube
in eight different ways, after which it forms an 8×8×8 grid of cubes. On
each such grid, we can consider two Sudoku-like colorings. Our question
is whether it is possible to assign colors to the 83 pieces of this pre-
fractal object in such a manner that all of its eight cubic projections form
Sudoku-like colorings. We analyzed this problem and its variants and
constructed solution patterns to the cases they exist. We also enumerated
the number of solutions with computer programs for some of the cases.

1 Introduction

An imaginary cube is a three-dimensional object that has square projections in
three orthogonal directions, just as a cube has [3,4]. Among imaginary cubes,
a hexagonal bipyramid imaginary cube (simply called an H, Fig. 1) is a double
imaginary cube, i.e., it is an imaginary cube of two different cubes. Therefore,
it has square projections in six ways. In addition, from an H, a double imag-
inary cube fractal with the similarity dimension two is generated. When the
first author designed a sculpture based on the second-level approximation of
this fractal, 81 pieces were colored with nine colors so that the colors form a
Sudoku solution pattern in each of the six square projections, which form 9 × 9
grids (Fig. 2) [1]. As the upper-middle picture of Fig. 2 indicates, this coloring
pattern is based on simple rules. In [2], he studied this Sudoku coloring problem
and showed that it has 140 solutions modulo change of colors and 30 solutions
modulo change of colors and congruences of the object. This calculation was first
done with a computer program and then performed manually, i.e., it was shown
mathematically as a proof. Tsuiki and Yokota also studied this Sudoku coloring
problem only for three orthogonal square projections, and they enumerated their
solutions using computer programs [5].

In this paper, we report our study of Sudoku colorings of the third level
approximation of the 16-cell fractal. This four-dimensional object is projected
to a cube in eight different ways, after which it forms an 8 × 8 × 8 grid of cubes.
On each such grid of cubes, we can consider two Sudoku-like coloring problems
indicated in Fig. 3(a,b). Our question is whether it is possible to assign colors
to the 83 pieces of this pre-fractal object in such a manner that all of its eight
cubic projections form Sudoku-like colorings. We analyzed this problem and
c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 265–276, 2016.
DOI: 10.1007/978-3-319-48532-4 24

266 H. Tsuiki and Y. Tsukamoto

Fig. 1. H (Hexagonal bipyramid imaginary cube). This object is projected to a square
in six different ways.

its variants and constructed solution patterns to the cases they exist. We also
enumerated the number of solutions with computer programs for some of the
cases.

In the next section, we explain a 16-cell and its pre-fractals, and explain
Puzzle A and Puzzle B which are the two Sudoku-like coloring problems which
we study in this paper. In Sect. 3, we study properties of cubic projections of
a 16-cell. We study Puzzle A and its variants in Sect. 4, and Puzzle B and its
variants in Sect. 5.

Fig. 2. Fractal Sudoku Sculpture [1,2] (reassembled by Y. Tsukamoto in 2013) (Color
figure online).

Sudoku Colorings of a 16-Cell Pre-fractal 267

2 A 16-Cell and Sudoku-like Coloring Problems

A 16-cell is a four-dimensional regular polytope with eight vertices and sixteen
regular tetrahedron facets. We first review properties of this object and (pre-)
fractals generated by it based on [4]. Then, we explain our Sudoku-like coloring
problems.

A 16-cell is a four-dimensional counterpart of a regular octahedron in
that it is a cross-polytope. That is, V = {(±2, 0, 0, 0), (0,±2, 0, 0), (0, 0,±2, 0),
(0, 0, 0,±2)} is the set of vertices of a 16-cell. A 16-cell is also obtained by
selecting eight non-adjacent vertices of a hypercube. That is, let V1 and V2 be
the subsets of (±1,±1,±1,±1) with even and odd number of +1 coordinates,
respectively. Then, V1 and V2 are sets of vertices of 16-cells. If these two 16-cells
are projected along each of the four axis of coordinates, then we have cubes.
Therefore, a 16-cell is an imaginary 4-cube. Here, an imaginary n-cube is an
n-dimensional object that has (n − 1)-dimensional hypercube projections in n
orthogonal directions just as an n-dimensional hypercube has. One can see that
these cubic projections are projections from four pairs of facets of a 16-cell.
Therefore, by symmetry, it also has cubic projections from the other four pairs
of facets. Thus, a 16-cel has cubic projections in eight directions and the eight
directions are divided into two sets of four mutually orthogonal directions. We
call such an object a double imaginary 4-cube.

More interestingly, not only a 16-cell but also a fractal based on a 16-cell is a
double imaginary 4-cube. Let Fi (1 ≤ i ≤ 8) be the homothetic transformations
with centers at the eight vertices of a 16-cell S and with scales 1/2. Here, a
homothetic transformation is a similitude that performs no rotations. We define
a map G on the space H4 of non-empty compact subsets of R

4 as G(X) =
⋃8

i=1 Fi(X). Since G is a contraction map in H4, the sequence S0 = S, S1 =
G(S0), S2 = G(S1), S3 = G(S2), . . . converges to the unique fixedpoint S∞ of G,
which is called the fractal generated by the iterative function system {Fi | 1 ≤
i ≤ 8}. One can easily see that S∞ has the similarity dimension 3, and it is also
a double imaginary 4-cube. In addition, not only S∞ but also Sn, which is a n-th
level approximation of S∞, is a double imaginary hypercube for every n ≥ 1.
We call such an approximation of a fractal a pre-fractal.

Since each cubic projection image of Sn consists of a set of 8n cubes forming
a 2n × 2n × 2n grid, if there is a coloring notion on a 2n × 2n × 2n grid of cubes,
then we have a corresponding coloring notion on the pre-fractal Sn that all the
eight cubic projections satisfy the coloring. We consider the case n = 3 and
consider two Sudoku-like coloring puzzles on a 8 × 8 × 8-grid of cubes.

Puzzle A0: Assign 64 colors to an 8 × 8 × 8 grid of cubes so that each
8 × 8-plane (3 × 8 exist) and each 4 × 4 × 4-block (8 exist) contains all
64 colors (Fig. 3(a)).

Puzzle B0: Assign 8 colors to an 8 × 8 × 8 grid of cubes so that each
8-sequence (3 × 64 exist) and each 2 × 2 × 2-block (64 exist) contains
all 8 colors (Fig. 3(b)).

268 H. Tsuiki and Y. Tsukamoto

(a) (b)

x

y

z

(c)

Fig. 3. (a) Sets of pieces with different colors in Puzzle A0, (b) that of Puzzle B0, (c)
address of cubes in a lattice (Color figure online).

For each of them, there is a Sudoku-like coloring Puzzle A (resp. Puzzle B)
of S3 to assign 64 (resp. 8) colors to the components of S3 so that each of the
eight cubic projections is a solution of Puzzle A0 (resp. Puzzle B0). We can
also consider four projection variants of these puzzles. That is, fix a set of four
orthogonal cubic projections of a 16-cell and consider the condition that each
of them is a solution of Puzzle A0 (or Puzzle B0). We call them Puzzle AS and
Puzzle BS , respectively.

Remark: In [3,4], it is shown that (1) all the convex double imaginary 3-cubes
are variants of H, (2) a 16-cell is the only convex double imaginary 4-cube, (3)
there is no double imaginary n-cube for n ≥ 5, and (4) H is the only convex
double imaginary 3-cube from which one can generate a double imaginary 3-
cube fractal with the similarity dimension 2. Therefore, a 16-cell fractal is the
only object in three- and higher-dimensional spaces on which one can consider
a coloring problem similar to the one on the H pre-fractal.

3 Projections of a 16-Cell Pre-fractal

We study how different cubic projections of S3 are related.
We first study how vertices of a 16-cell are mapped by cubic projections. Let

v0 = (2, 0, 0, 0), v1 = (0, 2, 0, 0), v2 = (0, 0, 2, 0), v3 = (0, 0, 0, 2) and let S be
the 16-cell with the set of vertices {±v0,±v1,±v2,±v3}. We consider a cube C
with vertices (±1,±1,±1) and assign a number in D = {i | 0 ≤ i ≤ 7} to the
vertices of C so that (x, y, z) is given the number b(z)b(y)b(x) in binary notation
with b(−1) = 0 and b(1) = 1 (c.f. Fig. 3(c)). We sometime use binary notation
for elements of D. We define inv(i) = 7 − i so that i and 7 − i specify space
diagonal vertices.

For each tuple (a0, a1, a2, a3) ∈ {−1, 1}4, there is a regular tetrahedron facet
F of S with the set of vertices {a0v0, a1v1, a2v2, a3v3}. S is projected to a
cube when it is projected from F , that is, projected along the vector a0v0 +
a1v1 + a2v2 + a3v3. We fix a0 = 1 and denote by P(a1,a2,a3) this projection.
By P(a1,a2,a3), the four space diagonals of S are projected to the four space

Sudoku Colorings of a 16-Cell Pre-fractal 269

diagonals of a cube. We transfer cubes obtained by projections to the cube C
through rotations and reflections so that v0 is mapped to vertex 0 and the space
diagonal between ±vi is mapped to the space diagonal between the vertices i
and inv(i). We redefine this map from S to C as the projection P(a1,a2,a3).

By P(a1,a2,a3), the two regular tetrahedron facets with the vertices
(v0, a1v1, a2v2, a3v3) and (−v0,−a1v1,−a2v2,−a3v3) preserve their shapes and
these lists of vertices are mapped to lists of vertices of regular tetrahedrons in
C, that is, vertices (0, 6, 5, 3) and (7, 1, 2, 4) in C. Since v0 and −v0 are mapped
to vertices 0 and 7, respectively, it determines how P(a1,a2,a3) maps vertices of S
to vertices of C. That is, v0 is always mapped to the vertex 0 and vi (i = 1, 2, 3)
is mapped to the vertex 2i−1 if ai = −1 and to inv(2i−1) if ai = 1.

Instead of studying colorings on S3, we consider colorings of the 8×8×8 grid of
cubes obtained by projection P(1,1,1). In order to express the constraints caused
by other projections, it is important to know how the same piece of S3 is mapped
by different projections. For this, we first study action of P(a1,a2,a3) ◦ P−1

(1,1,1)

on vertices of C, which can be expressed as a permutation on D. The above
observation shows that this action is generated by the three transpositions α =
(1, 6), β = (2, 5), and γ = (3, 4). We denote by U the subgroup of the symmetric
group S8 generated by these three transpositions. The order of U is 8 and it is
isomorphic to the group 2 × 2 × 2.

Among the eight projections, the projection lines of P(1,1,1), P(−1,−1,1),
P(1,−1,−1), and P(−1,1,−1) are mutually orthogonal. One can see that P ◦ P−1

(1,1,1)

for P these four projections cause the identity permutation, αβ, βγ, and γα,
respectively. They are even permutations and they form the Klein four-group.
We denote by US this subgroup of U .

Now, we study how each piece of S3 is mapped to a piece of an 8× 8× 8 grid
of cubes. As in Fig. 3(c), we assign numbers in D to a 2 × 2 × 2 grid of cubes.
We give addresses (i, j, k) for i, j, k ∈ D to an 8 × 8 × 8 grid of cubes so that
i specifies the big block, j specifies the small block, and k specifies the address
in the small block. Therefore, a piece of S3 that is mapped to the cube (i, j, k)
by the projection P(1,1,1) is mapped by P(a1,a2,a3) to the cube (δ(i), δ(j), δ(k)).
Here, δ ∈ U is αb1βb2γb3 where bi is 0 or 1 depending on whether ai is 1 or −1.

4 Solutions of Puzzle A

Based on the observation in the previous section, we formalize Puzzle A as a
three-dimensional puzzle on a cube.

Let c : D × D × D → D × D be a coloring of an 8 × 8 × 8 grid of cubes with
D × D. The condition that all of the 4 × 4 × 4-blocks contain all the 64 colors
can be expressed as follows.

For each i ∈ D, the cardinality of {c(i, j, k) | j, k ∈ D} is 64. (1)

270 H. Tsuiki and Y. Tsukamoto

Let F̃0 = {F1,F2,F3} for

F1 = {{0, 1, 2, 3}, {4, 5, 6, 7}} (= {{bzbybx | bz = 0}, {bzbybx | bz = 1}}),
F2 = {{0, 1, 4, 5}, {2, 3, 6, 7}} (= {{bzbybx | by = 0}, {bzbybx | by = 1}}),
F3 = {{0, 2, 4, 6}, {1, 3, 5, 7}} (= {{bzbybx | bx = 0}, {bzbybx | bx = 1}}).

The condition of Puzzle A0 that all of the 8 × 8-planes contain all the 64 colors
can be expressed as the requirement that the following condition holds for every
F ∈ F̃0.

For each (F1, F2, F3) ∈ F × F × F ,

the cardinality of {c(i, j, k) | i ∈ F1, j ∈ F2, k ∈ F3} is 64. (2)

For Puzzle AS , we have the condition that F = δ(F ′) for F ′ ∈ F̃0 and
δ ∈ US also satisfy (2). Here, δ({F1, F2}) = {δ(F1), δ(F2)} and δ({i, j, k, l}) =
{δ(i), δ(j), δ(k), δ(l)}. One can see that α(β(F1)) = F4 for

F4 = {{0, 3, 5, 6}, {1, 2, 4, 7}}. (3)

In addition, the set F̃S = {F1,F2,F3,F4} is closed under the action of US .
Therefore, we can restate this condition to the requirement that (2) is satisfied
for every F ∈ F̃S . Note that, when F = F4, the pieces for the cases F1 =
F2 = F3 = {0, 3, 5, 6} and F1 = F2 = F3 = {1, 2, 4, 7} are third-level cubic
approximations of the Sierpinski Tetrahedron.

For Puzzle A, we have the condition that F = δ(F ′) satisfies (2) for F ′ ∈ F̃0

and δ ∈ U . In this case, F ranges over all the eight divisions of D into two sets
that do not contain i and inv(i) for every i ∈ D. The cardinality of this set is 8
and we denote this set by F̃ . We summarize these results.

Proposition 1. Let c : D × D × D → D × D be a coloring.

(a) c is a solution of Puzzle A0 if and only if (1) is satisfied and (2) is satisfied
for F ∈ F̃0.

(b) c is a solution of Puzzle AS if and only if (1) is satisfied and (2) is satisfied
for F ∈ F̃S.

(c) c is a solution of Puzzle A if and only if (1) is satisfied and (2) is satisfied
for F ∈ F̃ .

Our goal is to see whether there exists a solution to these puzzles and to
present a solution if it exists.

Theorem 2. The following is a solution of Puzzle A (and therefore is a solution
of Puzzle A0 and Puzzle AS).

c(i, j, k) = (j, k) (i = 0, 7)
c(i, j, k) = (inv(j), k) (i = 1, 6)
c(i, j, k) = (j, inv(k)) (i = 2, 5)
c(i, j, k) = (inv(j), inv(k)) (i = 3, 4)

Sudoku Colorings of a 16-Cell Pre-fractal 271

Proof. Condition (1) is obviously satisfied. Let F ∈ F̃ and F1, F2, F3 ∈ F .
We show that the cardinality of {c(i, j, k) | i ∈ F1, j ∈ F2, k ∈ F3} is 64. It
holds because F1 contains one element of each of {0, 7}, {1, 6}, {2, 5}, {3, 4},
and the four sets {(j, k) | j ∈ F2, k ∈ F3}, {(inv(j), k) | j ∈ F2, k ∈ F3},
{(j, inv(k)) | j ∈ F2, k ∈ F3}, {(inv(j), inv(k)) | j ∈ F2, k ∈ F3} are all
disjoint. ��

We formalized the condition of Puzzle A as a conjunctive normal form
Boolean formula and put it into a SAT solver miniSAT version 2.2.0 to obtain
some more solutions. Enumeration of all of the solutions of each puzzle is an
open problem.

5 Solutions of Puzzle B

We study Puzzle B and its variants. Let c : D × D × D → D be a coloring of an
8 × 8 × 8 grid of cubes with D. The condition that each 2 × 2 × 2-block contains
all the 8 colors can be expressed as follows.

For each (i, j) ∈ D × D, the cardinality of {c(i, j, k) | k ∈ D} is 8. (4)

Let L̃0 = {L1,L2,L3} for

L1 = {{0, 1}, {2, 3}, {4, 5}, {6, 7}},
L2 = {{0, 2}, {1, 3}, {4, 6}, {5, 7}},
L3 = {{0, 4}, {1, 5}, {2, 6}, {3, 7}}.

See Fig. 4 for the meaning of L1. The condition of Puzzle B0 that all the 64 × 3
sequences contain all the 8 colors can be expressed by stating that the following
condition holds for every L ∈ L̃0.

For each (L1, L2, L3) ∈ L × L × L,

the cardinality of {c(i, j, k) | i ∈ L1, j ∈ L2, k ∈ L3} is 8. (5)

For Puzzle BS , we have the condition that L = δ(L′) satisfies (5) for L′ ∈
L̃0 and δ ∈ US . Here, δ({L1, L2, L3, L4}) = {δ(L1), δ(L2), δ(L3), δ(L4)} and
δ({i, j}) = {δ(i), δ(j)}. We define L̃S = {L1,L2,L3,L4,L5,L6} for

L4 = {{0, 6}, {2, 4}, {1, 7}, {3, 5}},
L5 = {{0, 5}, {1, 4}, {2, 7}, {3, 6}},
L6 = {{0, 3}, {1, 2}, {4, 7}, {5, 6}}.

See Fig. 4 for the meaning of L4. We have α(β(L1)) = L4, β(γ(L2)) = L5, and
γ(α(L3)) = L6. In addition, L̃S is closed under the action of US . Therefore, the
condition can be restated as the requirement that (5) is satisfied for L ∈ L̃S .

272 H. Tsuiki and Y. Tsukamoto

3 2

1 0

6

45

7

L1

3 2

1 0

6

45

7

L4

3 2

1 0

6

45

7

α(L1)

Fig. 4. L1 ∈ L̃0, L4 ∈ L̃S and α(L1) ∈ L̃ considered as relations between vertices of a
cube.

The condition that (5) is satisfied for L4, L5, and L6 says that on each of the 24
8 × 8-planes, different D-colors are assigned to those cubes with the same color
in Fig. 5.

Fig. 5. Conditions of Puzzle BS expressed as colors. (Color figure online)

For Puzzle B, we have the condition that L = δ(L′) satisfies (2) for L′ ∈ L̃0

and δ ∈ U . In this case, L ranges over all the 12 divisions of D into four pairs
that do not contain i and inv(i) for i ∈ D and that if i and j are paired, then
inv(i) and inv(j) are also paired. We will denote this set by L̃. One can see by
Fig. 4 that most of the sets of eight cubes which ought to have different colors
by condition (5) for L = α(L1) are not on 8 × 8-planes.

We summarize these results.

Proposition 3. Let c : D × D × D → D be a coloring.

(a) c is a solution of Puzzle B0 if and only if (4) is satisfied and (5) is satisfied
for L ∈ L̃0.

(b) c is a solution of Puzzle BS if and only if (4) is satisfied and (5) is satisfied
for L ∈ L̃S.

(c) c is a solution of Puzzle B if and only if (4) is satisfied and (5) is satisfied
for L ∈ L̃.
We obtained the result that Puzzle B has no solution using a computer

program, and this fact was verified using the SAT solver miniSAT version 2.2.0.

Sudoku Colorings of a 16-Cell Pre-fractal 273

6 Constructions of Solutions of Puzzle B0 and Puzzle BS

We consider D as a linear space over the finite field F2 = {0, 1} and use ⊕
for addition in D, which is the bitwise “exclusive or” operation. We construct
solutions of Puzzle B0 and Puzzle BS by considering the address space D×D×D
and the color space D as linear spaces and restricting the coloring function
c : D × D × D → D to linear functions. Thus,

c(i, j, k) = c(i, 0, 0) ⊕ c(0, j, 0) ⊕ c(0, 0, k). (6)

We call a 2 × 2 × 2 grid of cubes a unit cube and give address to the set of unit
cubes with D×D. Through change of colors, we fix the coloring of the unit cube
at (0, 0) as c(0, 0, k) = k. We define ϕ(i) = c(i, 0, 0) and ψ(j) = c(0, j, 0). Thus,
we have

c(i, j, k) = ϕ(i) ⊕ ψ(j) ⊕ k. (7)

Note that the coloring d : D → D of the unit cube at (i, j) is d(k) = a ⊕ k
for a = ϕ(i) ⊕ ψ(j). We list such colorings in Fig. 6. They are rotations and
reflections of the coloring of the unit cube at (0,0). When a = 001, 010, 100, it is
the image of reflection through the yz-, zx-, xy-coordinate plane, respectively;
when a = 110, 101, 011, it is the image of a 180-degree rotation along x-, y-, z-
coordinate axis, respectively, and when a = 111, it is the image of the antipodal
map. Note that these maps form an Abelian group of order 8.

0 1

2 3

7

4

6

5
3

3

1

2 7

2 3

0 1

5

6

4

7
1

1

3

0 5

1 0

3 2

6

5

7

4
2

2

0

3 6

4 5

6 7

3

0

2

1
7

7

5

6 3

7 6

5 4

0

3

1

2
4

4

6

5 0

5 4

7 6

2

1

3

0
6

6

4

7 2

6 7

4 5

1

2

0

3
5

5

7

4 1

3 2

1 0

4

7

5

6
0

0

2

1 4

e (111)

E (000)

y (010)

Z (011)X (110) Y (101)

z (100)x (001)

Fig. 6. Coloring d(k) = a ⊕ k of the unit cube for a ∈ D. The names E, X, Y, Z, e, x,
y, z of the colorings are used in Fig. 7. (Color figure online)

The linear map ϕ is determined by ϕ(001), ϕ(010), ϕ(100), and ψ is deter-
mined by ψ(001), ψ(010), ψ(100). Therefore, the coloring is determined by these
six elements of D. We consider conditions on ϕ and ψ so that (7) forms a solution
of Puzzle B0 and Puzzle BS . Condition (4) is automatically satisfied. As a part

274 H. Tsuiki and Y. Tsukamoto

of condition (5) for L = L1, it says that c(i, j, k) for i, j, k ∈ {000, 001} are all
different and therefore the cardinality of {ϕ(i) ⊕ ψ(j) ⊕ k | i, j, k ∈ {000, 001}}
is 8. That is, {ϕ(001), ψ(001), 001} is linearly independent in the linear space
D over F2. Similarly, condition (5) for L = L2 and L = L3 imply that
{ϕ(010), ψ(010), 010} and {ϕ(100), ψ(100), 100} are linearly independent in D,
respectively. We show in Theorem 4(a) that they form a necessary and sufficient
condition for Puzzle B0.

Theorem 4

(a) Coloring (7) is a solution of Puzzle B0 if and only if each of the sets of
vectors {ϕ(001), ψ(001), 001}, {ϕ(010), ψ(010), 010}, {ϕ(100), ψ(100), 100}
is linearly independent.

(b) Coloring (7) is a solution of Puzzle BS if and only if, in addition to the
three sets of vectors in (a), each of the sets of vectors {ϕ(110), ψ(110), 110},
{ϕ(101), ψ(101), 101}, {ϕ(011), ψ(011), 011} is linearly independent.

Note that {ϕ(a), ψ(a), a} is linearly independent in D if and only if
ϕ(a), ψ(a), a and ϕ(a)ψ(a) are all different.

Proof. Let a ∈ {001, 010, 100, 110, 101, 011}. For any pair of elements (b, c) such
that {a, b, c} is linearly independent, the eight elements {000, a, b, c, a ⊕ b, b ⊕
c, c ⊕ a, a ⊕ b ⊕ c} are all different and the set La = {{000, a}, {b, b ⊕ a}, {c, c ⊕
a}, {b ⊕ c, a ⊕ b ⊕ c}} is uniquely determined by a. Since Li(1 ≤ i ≤ 6) is La

for a = 001, 010, 100, 110, 101, 011, respectively, in order to show (a) and (b), we
prove that {ϕ(a), ψ(a), a} is linearly independent if and only if, the cardinality
of {ϕ(i) ⊕ ψ(j) ⊕ k | i ∈ L1, j ∈ L2, k ∈ L3} is 8 for each (L1, L2, L3) ∈ L3

a.
For the if part, consider the case L1 = L2 = L3 = {000, a}. Since the

cardinarity of {ϕ(i) ⊕ ψ(j) ⊕ k | i, j, k ∈ {000, a}} is eight, {ϕ(a), ψ(a), a} is
linearly independent.

(a) (b)

Fig. 7. (a)Solution of Puzzle B0 in Example 5. (b) Solution of Puzzle BS in Example 6.
Meanings of the names E, X, Y, Z, e, x, y, z are given in Fig. 6. Red names are values of
ϕ at 001, 010, 110 and cyan ones are values of ψ at 001, 010, 110. They determine green
ones as ϕ(a) ⊕ ψ(a) for a ∈ {001, 010, 100} and the rest just as a three-dimensional
group multiplication table. (Color figure online)

Sudoku Colorings of a 16-Cell Pre-fractal 275

For the only-if part, since {ϕ(a), ψ(a), a} is linearly independent, the car-
dinality of X = {ϕ(i) ⊕ ψ(j) ⊕ k | i, j, k ∈ {000, a}} is 8. Let d1, d2, d3 ∈
{000, b, c, b⊕c}. By adding ϕ(d1)⊕ψ(d2)⊕d3 to each element of X, we have the
set Y = {ϕ(d1 ⊕ i) ⊕ ψ(d2 ⊕ j) ⊕ (d3 ⊕ k) | i, j, k ∈ {000, a}} whose cardinality
is also 8. Let L1 = {d1, d1 ⊕ a}, L2 = {d2, d2 ⊕ a}, L3 = {d3, d3 ⊕ a}. One can
see that Y is equal to {ϕ(i) ⊕ ψ(j) ⊕ k | i ∈ L1, j ∈ L2, k ∈ L3}. Since {d, d ⊕ a}
takes all elements of La if d ranges over {000, b, c, b ⊕ c}, we have the result. ��
Example 5. We present a solution of Puzzle B0 (see Fig. 7(a)). ϕ and ψ defined
as ϕ(001) = 011, ψ(001) = 101, ϕ(010) = 110, ψ(010) = 011, ϕ(100) = 101,
ψ(100) = 110 satisfies the condition of Theorem4(a). This solution consists of
only four colorings E, X, Y, Z of the unit cube in Fig. 6, which are the identity
map and 180-degree rotations around the three axes. This is not a solution of
Puzzle BS , because ϕ(110) = 011, ψ(110) = 101, and 110 are linearly dependent.

Example 6. We give a solution of Puzzle BS . See Fig. 7(b). In order to show
its symmetric structure, we present seq(i) = (ϕ(i), ψ(i), ϕ(i)ψ(i)) instead of
(ϕ(i), ψ(i)) for i ∈ {001, 010, 100}.

seq(001) = (100, 011, 111),
seq(010) = (110, 111, 001),
seq(100) = (111, 010, 101).

We can calculate the followings

seq(110) = (001, 101, 100),
seq(101) = (011, 001, 010),
seq(011) = (010, 100, 110),

and see that it satisfies the condition of Theorem4(b). Using a computer program,
we found 480 solutions of Puzzle BS that satisfy the condition of Theorem4(b).

Through computer calculation, we have obtained 1148928 solutions of Puzzle
BS modulo change of colors, and this number is verified by a #SAT solver
sharpSAT version 1.1 [6]. The enumeration of the solutions of Puzzle B0 is an
open problem.

References

1. Tsuiki, H.: Does it look square? Hexagonal bipyramids, triangular antiprismoids,
and their fractals. In: Conferenced Proceedings of Bridges Donostia. Mathematical
Connection in Art, Music, and Science, pp. 277–287. Tarquin publications (2007)

2. Tsuiki, H.: SUDOKU colorings of the hexagonal bipyramid fractal. In: Ito, H.,
Kano, M., Katoh, N., Uno, Y. (eds.) KyotoCGGT 2007. LNCS, vol. 4535, pp.
224–235. Springer, Heidelberg (2008)

276 H. Tsuiki and Y. Tsukamoto

3. Tsuiki, H.: Imaginary cubes and their puzzles. Algorithms 5(2), 273–288 (2012)
4. Tsuiki, H., Tsukamoto, Y.: Imaginary hypercubes. In: Akiyama, J., Ito, H., Sakai,

T. (eds.) JCDCGG 2013. LNCS, vol. 8845, pp. 173–184. Springer, Heidelberg
(2014)

5. Tsuiki, H., Yokota, Y.: Enumerating 3D-Sudoku solutions over cubic prefractal
objects. J. Inf. Process. 20(3), 667–671 (2012)

6. Thurley, M.: sharpSAT – counting models with advanced component caching and
implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp.
424–429. Springer, Heidelberg (2006)

The Mathematics of Ferran
Hurtado: A Brief Survey

Jorge Urrutia(B)

Instituto de Matemáticas, Universidad Nacional Autónoma de México,
D.F. Mexico, Mexico

urrutia@matem.unam.mx

Abstract. In this paper, dedicated to our dear friend Prof. Ferran Hur-
tado, we survey some of the research and open problems arising from his
work in collaboration with his many friends and colleagues.

1 Introduction

In this paper, we survey some of the results obtained by our friend and colleague
Prof. Ferran Hurtado who left us in October 2014. We have selected some of
the topics he studied, and present many of the unsolved problems arising from
his work that remain open. Prof. Hurtado had many collaborators, all of whom
appreciated his personality, friendship, and his mathematics. Let this paper be
a small token of appreciation for all the wisdom and good times he gave all of
us. Due to the large extent of the research carried out by Professor Hurtado, it
is not possible to cover most of his work.

1.1 The Beginning of Ferran’s Mathematics Career

Ferran had a late start in his career as a researcher; he defended his Ph.D.
thesis [51] in 1993, when he was already forty-one years old. The thesis was
awarded the Premio Extraordinario de Doctorado UPC 1995.

The first areas in which Ferran was interested were polygonizations, trian-
gulations, and visibility problems. His first paper, “Poligonizaciones simples,”
appeared in the Actas del III Encuentro de Geometŕıa Computacional held in
Zaragoza, Spain in 1992. In 1993 he published three papers, two in conference
proceedings, “El número de triangulaciones de un poĺıgono” in the Actas del
IV Encuentro de Geometŕıa Computacional [53], and his first paper in CCCG,
“Looking through a window” [52]. In this paper he studied problems on optimiz-
ing the angle of vision of an object, in which the set of positions of the viewer
is restricted, say to a line segment. His first journal publication, “Updating
polygonizations” [3] also appeared in 1993. In that paper, the authors studied
polygonizations that are robust when faced with changes in the positions of

J. Urrutia—Research supported in part by SEP-CONACYT of México, Proyecto
80268.

c© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, pp. 277–292, 2016.
DOI: 10.1007/978-3-319-48532-4 25

278 J. Urrutia

their vertices. They also studied the problem of finding the maximum distance
the vertices of a polygon could be moved away from their position in such a way
that the topology on the boundary of the polygon (or its convexity) remains the
same. Two follow-up papers appeared in 1994 [5], and 1995. In the last paper
they studied the tolerance of arrangements of line segments [6].

His second journal paper, “Ears of triangulations and Catalan numbers” [54]
was published in 1996 with Marc Noy. They proved that the number of triangu-
lations of a convex polygon with k leaves is

n

k
2n−2k

(
n − 4
2k − 4

)

Ck−2

where Cn is the nth Catalan number.
In his third journal paper, “Hiding points in arrangements of segments” [58]

also published in 1996, the following problem was studied: Given a set S of n
disjoint line segments, how many points can be placed on the plane in such a
way that the line segment joining any two of them intersects an element of S?
We say that these points are hidden from each other. They proved that for any
set of n disjoint line segments we can hide at least

√
n points. The proof uses

the well known result by Erdős and Szekeres that any sequence of n different
numbers contains an increasing or a decreasing subsequence with at least

√
n

elements.
These papers established some of the main topics in which Ferran would work

in the years to come; geometric graphs, triangulations, point sets on the plane,
and Erdős–Szekeres type problems on sets of points on the plane.

In what follows we will review papers in which Ferran participated, covering
the following subjects: triangulations of point sets, geometric graphs and prob-
lems on empty polygons in point sets among others. All point sets considered in
this paper will be assumed to be in general position.

2 Triangulations

A triangulation T of a point set P is a set of interior disjoint triangles whose
vertices are elements of P such that their union is the convex hull of P and no
element of T contains an element of P in its interior. An edge e of a triangulation
T is flippable if it belongs to two triangles of T whose union is a convex quadri-
lateral Q; see Fig. 1. Flipping e means deleting e from T and replacing it by the
second diagonal of Q. The vertices of the graph of triangulations of a point set
P is the set of triangulations of P , two of which are adjacent if we can obtain
one from the other by performing an edge flip. One of Ferran’s favourite areas of
work was the study of the set of triangulations of point sets and polygons, and
related problems. He was interested in studying problems such as

– Finding bounds on the number of triangulations of point sets
– Studying the minimum number of flippable edges that a triangulation may

have

The Mathematics of Ferran Hurtado: A Brief Survey 279

e

g

f

h

Fig. 1. Flipping edge e. Edges e, f , and g can be flipped simultaneously.

– For colored point sets, the existence of monochromatic empty triangles
– For the graph of triangulations of point sets, parameters such as its connec-

tivity, chromatic number, the existence of hamiltonian cycles, etc.

A well known result of Ajtai et al. [19] states that the number of plane
geometric graphs that a point set has is bounded by cn for a constant c. The
best upper bound currently known for c is 87.53; see Sharir and Sheffer [66].

Problems on finding bounds on the number of triangulation t(P) of a polygon
were studied in [55]. Sharp bounds on t(P) for simple polygons with k reflex
vertices were obtained in the same paper. Let ti be the number of triangulations
of a convex polygon with i vertices. They proved that

(t�(n+k)/(k+1)�)
s(t�(n+k)/(k+1)�)

k+1−s ≤ t(P) ≤
m∑

i=0

(−1)i‖ γ, u. . ., γ, γ + 1, v. . ., γ + 1
i

‖

where s is the residue of dividing n+k by k+1, γ = �k/(n−k)�, v is the residue

of dividing k by n−k, and u = n−k−v, and ‖α1, . . . , αm

i
‖ is number of different

ways there are of selecting i non-crossing diagonals from a set of reflex diagonals;
see [55] for more details. Using the previous result, it follows that the number

of triangulations of the point set called the double circle [18] is
√

12
2n−Θ(log n)

,
which is o(Cn). The double circle has 2n points, n of which are the vertices of
a convex polygon, and the remaining n are placed close to the midpoints of
the edges of the polygon; see Fig. 2. It is known that the double circle is the
only point configuration that minimises the number of triangulations it has for
n ≤ 11. In the same paper [18], they prove that the number of triangulations that
any set of n points in the plane has is bounded below by Ω(2.33n), n ≥ 1212.
This bound has been improved to Ω(2.4317n) in [67].

In [42] it is proved that the so-called double chain has Θ∗(8n) triangulation.
For some time, it was conjectured that this was the point set configuration that
maximised the number of triangulations it has. This conjecture was false, as
the double zig-zag chain [16] was proved to have Θ∗(

√
72

n
) triangulations. The

best lower bound on the maximum number of triangulations a point set has,
Ω(8.65n), was established in [31].

280 J. Urrutia

Fig. 2. The double circle with 10 vertices.

2.1 Flipping Edges in Triangulations

The study of edge flipping in triangulations was one of Ferran’s favourite sub-
jects of study; see [27]. In [57], it is proved that any triangulation of a point set
with n points has at least �(n − 4)/2	 edges that can be flipped. The bound is
tight. They also show that O(n+k2) edge flips are always sufficient to transform
any triangulation of a polygon Q with k reflex vertices into any other triangu-
lation of Q. In the same paper, they show a polygon with 2n vertices and two
triangulations of the polygon such that to transform one into the other takes
Ω(n2) edge flips; see Fig. 3.

In [37], the problem of allowing simultaneous flips is studied. Two flippable
edges of a triangulation T can be flipped simultaneously if no triangle of T
contains both of them. They prove that any two triangulations of a convex
polygon can be transformed into each other using at most O(log n) parallel flips.
They also prove that any two triangulations of a point set or a polygon with n
vertices can be transformed into each other using at most a linear number of
parallel flips. These bounds are tight. In [68] it was proved that any triangulation
of a point set has at most n−4

5 edges that can be flipped simultaneously; the
bound is tight.

In Ferran et al. [56] the authors introduced a hierarchy on the set of tri-
angulations of a polygon that allowed them to give relatively easy and purely
combinatorial proofs of the fact that the graph of triangulations of a convex
polygon is Hamiltonian, and that its vertex connectivity is n−3. The first result
was proved first in Lucas et al. [62]. The second follows from a result proved
by Lee [61] that the graph of triangulations of a convex n-gon is the skeleton
of a (n − 3)-polytope. On the other hand, in [10], they prove that the graph of
triangulations of polyhedral surfaces is not connected, even for surfaces whose
points are in convex position.

Some open problems on flips presented in [27] are the following:

Problem 1. Can every triangulation of a point set in the plane be transformed
into a Hamiltonian triangulation by a sequence of o(n2) edge flips?

Problem 2. Can every triangulation on n points be transformed into a Hamil-
tonian triangulation by a sequence of o(n) simultaneous edge flips?

Note that in these problems we are working with triangulations of point sets.
For triangulations as graphs (that is maximal planar graphs), it is known that

The Mathematics of Ferran Hurtado: A Brief Survey 281

(b)(a)

T1 T2 T ′
1

(c)

Fig. 3. Two triangulation (a) and (b) with quadratic flip distance.

any triangulation can be transformed into a 4-connected triangulation using a
simultaneous edge flip [26].

Suppose that we have two triangulations T1 and T2 of a polygon P . If we add
a Steiner point u to P that falls in the interior of triangle t1 of T1, and a triangle
t2 in T2, we can obtain two triangulations T ′

1 and T ′
2 of P ∪ {p} by connecting u

to the vertices of t1 and t2 respectively. In Fig. 3(c), we show the triangulation
T ′
1 obtained by adding a Steiner point p to the triangulation T1 in Fig. 3(a). It

is easy to see that if we add the same point to the triangulation in Fig. 3(b),
we can go from triangulation T ′

1 to T ′
2 with 4n − 6 edge flips. This suggests the

following new problem.
Take any two triangulations T1 and T2 of a polygon P . As above, one at a

time, add k Steiner points p1, . . . , pk thus obtaining from T1 and T2 two trian-
gulations T ”

1 and T ”
2 of P ∪ {p1, . . . , pk}.

Problem 3. Given two triangulations T1 and T2 of a polygon P , is it always
possible to add a sub-linear number of Steiner points p1, . . . , pk in the interior
of P such that the flip distance between the resulting triangulations T ”

1 and T ”
2

of P is linear?

The equivalent question is open for point sets.

2.2 Compatible Triangulations

An intriguing open problem in which Ferran worked was posed in [13]. Let P
and P ′ be two point sets with n points in general position, and assume that their
convex hulls have the same number of elements. Two triangulations of P and
P ′ are compatible if there is a mapping of their vertices, edges and faces that
preserves adjacencies and incidences.

Conjecture 1. [13] Any two point sets P and P ′ with n elements such that their
convex hulls have the same number of vertices have compatible triangulations.

I believe that this conjecture is false, but, like many others, have failed to
disprove it. On the positive side it was proved in [13] that if the number of points
in the interior of the convex hulls of P and P ′ is at most three, then Conjecture 1
is true, and that if the number of points in the interior of the convex hulls of
P and P ′ is k, then if k − 3 Steiner points are added to each of P and P ′,
Conjecture 1 holds (Fig. 4).

282 J. Urrutia

Fig. 4. Two compatible triangulations.

3 Erdős–Szekeres Type Problems on Point Sets

Given a set of points P in the plane, a k-hole of P is a subset of points of P
with k elements that are the vertices of a convex polygon containing no element
of P in its interior. The study of the existence of k-holes in point sets was
started by Erdős and Szekeres in [34], where they proved that any point set with
n elements always has a logarithmic size subset whose elements are in convex
position. In [33], Erdős asked for the existence of k-holes. He asked whether any
large enough point set always has a k-hole, for any k. This was disproved by
Horton [50], who constructed point sets containing no 7-holes.

In a seminal paper [30], Ferran and several of his co-authors studied the
existence of monochromatic 3-holes (called monochromatic empty triangles in
the following) in families of colored point sets. They proved that any bicolored
point set always has an empty monochromatic triangle, and indeed a linear
number of them. They also showed that the Horton point sets can be colored
with three colors in such a way that no empty monochromatic triangle exists. A
question arising from the results in [30] is the following:

Problem 4. Is it true that any bicolored point set contains a superlinear number
of empty monochromatic triangles?

This problem was solved in [14] where it is proved that any bichromatic point
set with n elements has at least Ω(n5/4)monochromatic triangles. This bound
was improved to Ω(n4/3) in [65].

Conjecture 2. [14] Any bichromatic point set has a quadratic number of empty
monochromatic triangles.

Another open question posed in [30] is the following:

Conjecture 3. [30] Is it true that any large enough bichromatic point set P
always has an empty monochromatic convex quadrilateral?

In Fig. 5 we show a bichromatic point set with 12 points that has no mono-
chromatic 4-hole.

In [17] it was proved that if we allow a hole to be non-convex and P contains
at least 5044 points, then Conjecture 3 is true. Recently, it was proved that any

The Mathematics of Ferran Hurtado: A Brief Survey 283

Fig. 5. A point set with no monochromatic 4-hole.

large enough bicolored point set has a monochromatic convex quadrilateral with
at most one point in its interior [46].

In [72] Urrutia proved that any sufficiently large 4-colored point set in R
3

has an empty monochromatic tetrahedron. In fact we believe that this is true
for any k-colored point set in R

3 that is large enough. The following conjecture
by Urrutia would imply Conjecture 3:

Conjecture 4. Any large enough point set in general position in R
3 contains a

tetrahedralization with a superlinear number of tetrahedra.

In [17], Aichholzer et al. posed the following problem:

Problem 5. Is it true that any sufficiently large k-colored point set in R3 in
general position contains a convex monochromatic polyhedron that is the union
of two interior disjoint tetrahedra that share a face?

They did not specify any specific values of k, but we believe that this is true
for any k.

3.1 Measures of Convexity of Point Sets

Convexity is an important area of study in mathematics. Strictly speaking, one
might think that convexity has nothing to do with point sets. Nevertheless we
can associate some measure of convexity to a point set as follows.

We say that a point set P is in convex position if the elements of P are the
vertices of a convex polygon. In this sense, we may say that a point set in convex
position is convex. There are several ways to measure how convex a point set is.
In [21] some measures of this property are studied. The convex partition number
K(P) of a point set P is the smallest number of disjoint subsets S1, . . . , Sk of P
such that each Si is in convex position, and for 1 ≤ i < j ≤ k the convex hulls of
Si and Sj are disjoint; see [70,71]. A polygonization of a point set P is a simple
polygon such that its vertices are all of the elements of P . The reflexivity of a
polygon [21] is the number of reflex vertices it has. The reflexivity of a point set
P , denoted as ρ(P), is the smallest reflexivity of all polygonizations of P . For
example if P contains one or two points in the interior of its convex hull, then
its reflexivity is one. The point set shown in Fig. 6 has reflexivity 2.

Theorem 1. [21] The reflexivity of a point set P is at most �ni

2 	, where ni is
the number of points of P that belong to the interior of the convex hull of P .
The bound is tight.

284 J. Urrutia

Fig. 6. A point set whose reflexivity is 2.

It is not hard to see that the upper bound is attained with the double circle.
It follows easily [21] that �n

4 � ≤ ρ(P) ≤ �n
2 �. The upper bound was improved to

5
12n + O(1) in [8].

Let P be a point set. It is easy to see that if we add Steiner points to P
placed in the interior of the convex hull of P , the reflexivity of P may decrease
or increase. Two interesting open problems are the following:

Conjecture 5. [21] ρ(P ′) ≥ ρ(P)/2.

Conjecture 6. [21] ρ(P) = O(K(P)).

3.2 k-convex Polygons and Point Sets

A polygon Q is called k-convex if no line intersects the interior of Q in more
than k open intervals. A point set is k-convex if there is a polygonization of P
which is k-convex; see [11,12].

Recognizing 2-convex polygons can be done in O(n log n) time, and recogniz-
ing k-convex polygons for k ≥ 4 takes O(n2) time [11]. An open problem is that
of deciding the complexity of recognizing 3-convex polygons.

Regarding k-convex point sets, we have the following result:

Theorem 2. [12] Any set P of n points is O(
√

n)-convex. The bound is tight.

In the same paper, it is proved that every set of n points in general position
contains a 2-convex subset of size Ω(log2 n).

It is known that to partition the convex hull of a point set P into convex
polygons with vertices in P sometimes n+

√
2(n − 3) polygons are necessary [44].

Problem 6. [12] Is it always possible to decompose a given planar point set with
a sublinear number of 2-convex polygons?

3.3 Coloring Arrangements of Lines

In [25] the following problem was studied: Given a simple arrangement A of lines
in the plane, what is the minimum number c of colors required so that we can
color all lines in a way that no cell of the arrangement is monochromatic? They
call c the chromatic number of A. They proved that there are arbitrarily large
arrangements with chromatic number two, the chromatic clases are the solid and
dotted lines; see Fig. 7.

The Mathematics of Ferran Hurtado: A Brief Survey 285

Fig. 7. An arrangement with chromatic number 2.

They also proved that there are arrangements of lines for which
Ω(log n/ log log n) ≤ c, and that for any arrangement of lines c ≤ O(

√
n). The

upper bound was improved to Ω(
√

n/ log n) in [9].
The following problem was posed in [25]:

Problem 7. Close the gap between the lower and the upper bound on the chro-
matic number of arrangments of lines.

4 Packing Trees in Complete Geometric Graphs

Let G be a geometric graph. We say that two geometric graphs H1 and H2 can
be packed into G if G contains two edge-disjoint subgraphs isomorphic to H1

and H2. We will assume that G, H1 and H2 have the same number of vertices.
The following result was proved by Hedetniemi et al. [49].

Theorem 3. Let T1 and T2 be non-star trees with n vertices. Then there exists
a packing of T1 and T2 into a complete graph Kn.

In Garćıa et al. [38] the following conjecture was posed:

Conjecture 7. Let T1 and T2 be non-star trees with n vertices. Then there exists
a simple plane graph G such that T1 and T2 can be packed into G.

Fig. 8. Packing two isomorphic trees into the same 6-point set. Note that the union of
both trees is a planar graph (embedded in the sphere).

Garćıa et al. proved their conjecture for the case when T1 and T2 are isomor-
phic, and with the additional constraint that the vertices of T1 and T2 are points
in convex position; see Fig. 8. We can think of their result as drawing T1 and T2

on a coin, with their vertices and some edges of T1 and T2 drawn on the rim of
the coin, and some edges of T1 in the top face of the coin, and some edges of T2

in the bottom face. They also proved:

286 J. Urrutia

Theorem 4. Let T1 be any tree with n vertices which is different from a star
and let T2 be a path of order n. Then there exists a tight planar packing of T1

and T2.

Conjecture 7 has been verified for binary trees [45], when T1 is a non-star
tree and T2 is a caterpillar [64], and when T1 is a non-star and T2 is obtained
from a star by subdividing its edges [32]. It has also been proved for the case
when T1 and T2 are spider trees [36]. Frati [35] proved that Conjecture 7 is true
for trees of diameter at most four, none of which is a star. Görlich [47] proved
that two copies of Cn can be packed on a planar graph, for n = 6 and n ≥ 8.
She also proved that two copies of some unicycles can also be packed on a planar
graph.

In a recent paper, Garćıa et al. [39] studied the following problem: Given
a point set S, two plane geometric graphs with vertex set S are said to be
compatible when their union is a plane geometric graph. They prove:

Theorem 5. [39] Let S be a point set on the plane and T a plane spanning
tree of S. Then there is a spanning tree T ′ of S compatible with T that has at
most n−3

4 edges in common with T . Some point sets S have a plane spanning
tree T such that any spanning geometric tree of S compatible with T has at least
n−2
5 edges in common with T .

Problem 8. Close the gap between the lower and the upper bound of Theorem 5.

More results on biplane geometric graphs can be found in [40,41] where
they show among other results that recognizing 2-plane graphs can be done
in O(n log n) time, that every sufficiently large point set admits a 5-connected
biplane graph, and that there are arbitrarily large point sets that do not admit
any 6-connected biplane graph.

Problem 9. Can we generalise some of the previous results on 2-plane graphs
to 3-plane graphs? In particular, what is the maximum number of edges of a
3-plane graph? What is the complexity of recognizing 3-plane graps?

5 Witnesses in Delaunay and Gabriel Graphs

Given a set of points P in the plane, a set of points W is called a blocking set of
witnesses of the Delaunay triangulation of P if the interior of any circle passing
through two points in P contains an element of W [22]. A similar definition for
blocking sets of witnesses for Gabriel graphs and rectangle graphs are defined
in [23,24]. In the first case, we want to block circles whose diameters are segments
joining pairs of points in P , and in the second, rectangles such that two of their
opposite corners belong to P .

In [22] it was proved that any point set P always has a blocking set of
witnesses of the Delaunay triangulation of P with at most 2n − 2 elements. See
Fig. 9.

This result was improved in [15] to 3n
2 for arbitrary point sets P , and to 5n

4
when the elements of P are in convex position.

The Mathematics of Ferran Hurtado: A Brief Survey 287

Fig. 9. The non-solid points are a blocking set of witnesses of the Delaunay triangula-
tion of the set of black points.

Conjecture 8. [15] n points are necessary and sufficient to block the Delaunay
triangulation of any set of n points in convex position.

In [23] they prove the following result:

Theorem 6. n − 1 witnesses are always sufficient to eliminate all edges of an
n-vertex Gabriel graph, while 3

4n − o(n) are sometimes necessary.

Problem 10. Close the gap between the lower and the upper bounds in
Theorem 6.

If we want to block the rectangles having two opposite vertices in P , the
following essentially tight result is known:

Theorem 7. [24] Asymptotically 2n − Θ(
√

n) points are necessary to block all
rectangles having two opposite corners in P .

6 Alternating Paths

Let P be a bichromatic set of 2n points in the plane whose elements have been
colored n red and n blue. An alternating path of P is a simple polygonal path W
all of whose vertices are in P , with each edge in W having a red and a blue vertex.
Alternating paths were first studied in [20] where a quadratic time algorithm was
given to decide if a spanning alternating path exists when the elements of P are
in convex position. It was proved in [1] that any bichromatic point set has an
alternating path that covers at least half of its vertices; see also [4]. Ferran’s
interest in the problem in this section was evident. This is what he used to call
a poisoned problem.

The problem of determining the length of the longest alternating path that a
bichromatic point set admits is wide open, even for point sets in convex position.
In [60] it was proved that any bichromatic point set in convex position has
an alternating path with at least n + c

√
n/ log n. This was improved to n +

Ω(
√

n) [48]. The best upper bound known today is asymptotically 4
3n, proved

independently and at about the same time in [1,60]. It is conjectured [60] that
this is the real upper bound. We would be happy to prove:

Conjecture 9. Suppose that the elements of P are in convex position. Then there
is a constant c > 1

2 such that P has an alternating path covering cn elements
of P .

288 J. Urrutia

Surprisingly, there are sharp bounds for the length of the longest alternating
path for sets of points with 3n points colored with three colors, n of each color.
The bound is 2n [63].

If we allow at most n − 1 crossings, then we can always find an alternating
cycle covering all of the elements of P ; this was proved by Kano and Kaneko [59].
The bound is best possible. Moreover, if we allow edges to be crossed at most
once, then it is always possible to find alternating paths and cycles covering all
the elements of P [29]. For double chains [57] (e.g. the set of vertices of the
polygon in Fig. 3(a)), Chibuka et al. [28] proved:

Theorem 8. Let (C1, C2) be a double chain with 2n points, n blue and n red,
and let |Ci| ≥ 1

5 (|C1|+ |C2|) for i = 1, 2. Then (C1, C2) has a simple alternating
path. Moreover such a path can be found in linear time.

7 Augmenting the Connectivity of Geometric Graphs

In [2] Abellanas et al. started the study of increasing the connectivity (vertex
and edge) of plane geometric graphs by adding edges to them while maintaining
planarity. In [2] it is proved that every geometric path whose vertices are n points
in general position can be augmented to a 2-edge connected plane geometric
graph by adding n

2 edges, and this bound is the best possible; see Fig. 10. In the
same paper it is also also proved that the vertex connectivity of geometric graphs
with k cut-vertices can be increased to two by adding k edges. This bound is
also best possible.

Fig. 10. The dotted edges increase the edge connectivity of the black geometric path.

Abellanas et al. also proved that every plane geometric tree G with n ≥ 6
vertices can be completed to a 2-edge connected plane geometric graph by adding
at most � 2n

3 � edges. They also conjectured n
2 edges would suffice.

This was proved false by Tóth [69], who constructed examples requiring 17
3 n−

O(1) edges. This was improved by Garćıa and Tejel [43] to 6
11n−O(1); see Fig. 11.

Problem 11. Close the gap between the lower and the upper bound on the num-
ber of edges required to complete any geometric tree to a 2-edge connected
geometric plane graph.

We believe that the correct upper bound for this problem is close to 6
11n −

O(1), as Garćıa and Tejel’s example suggests.

The Mathematics of Ferran Hurtado: A Brief Survey 289

Fig. 11. Garćıa and Tejel’s recursive construction of trees requiring 6
11

n − O(1) addi-
tional edges to make them 2-edge connected.

8 Final Remarks

We would like to mention that the recently published Computational Geometry
Column 61 [7] was dedicated to Prof. Ferran Hurtado. It reviews some results and
open problems that appeared in several papers co-authored by Prof. Hurtado.
Some (but not all) of these problems also appear here.

References

1. Abellanas, M., Garćıa, A., Hurtado, F., Tejel, J.: Caminos alternantes. In: Pro-
ceedings of the X Encuentros de Geometŕıa Computacional: Sevilla, Junio 16–17,
pp. 7–12 (2003)

2. Abellanas, M., Garćıa, A., Hurtado, F., Tejel, J., Urrutia, J.: Augmenting the
connectivity of geometric graphs. Comput. Geom. 40(3), 220–230 (2008)

3. Abellanas, M., Garćıa, J., Hernández, G., Hurtado, F., Serra, O., Urrutia, J.:
Updating polygonizations. Comput. Graph. Forum 12(3), 143–152 (1993)

4. Abellanas, M., Garćıa, J., Hernández, G., Noy, M., Ramos, P.A.: Bipartite embed-
dings of trees in the plane. Discrete Appl. Math. 93(2), 141–148 (1999)

5. Abellanas, M., Hurtado, F., Ramos, P.A.: Tolerance of geometric structures. In:
CCCG, pp. 250–255 (1994)

6. Abellanas, M., Hurtado, F., Ramos, P.A.: Tolerancia de arreglos de segmentos. In:
VI Encuentros de Geometŕıa Computacional: Barcelona, 5-6-7 de julio de, Depar-
tament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya: Actas,
pp. 77–84. Departament de Matemàtica Aplicada II (1995)

7. Abrego, B., Dumitrescu, A., Fernández, S., Tóth, C.D.: Computational geometry
column 61. ACM SIGACT News 46(2), 65–77 (2015)

8. Ackerman, E., Aichholzer, O., Keszegh, B.: Improved upper bounds on the reflex-
ivity of point sets. Comput. Geom. 42(3), 241–249 (2009)

9. Ackerman, E., János, P., Pinchasi, R., Rac̆ić, R., Tóth, G.: A note on coloring line
arrangements. Electron. J. Combin. 21(2), Paper p2.23 (2012)

10. Aichholzer, O., Alboul, L.S., Hurtado, F.: On flips in polyhedral surfaces. Int. J.
Found. Comput. Sci. 13(02), 303–311 (2002)

290 J. Urrutia

11. Aichholzer, O., Aurenhammer, F., Demaine, E.D., Hurtado, F., Ramos, P., Urrutia,
J.: On k-convex polygons. Comput. Geom. 45(3), 73–87 (2012)

12. Aichholzer, O., Aurenhammer, F., Hackl, T., Hurtado, F., Pilz, A., Ramos, P.,
Urrutia, J., Valtr, P., Vogtenhuber, B.: On k-convex point sets. Comput. Geom.
47(8), 809–832 (2014)

13. Aichholzer, O., Aurenhammer, F., Hurtado, F., Krasser, H.: Towards compatible
triangulations. Theor. Comput. Sci. 296(1), 3–13 (2003)

14. Aichholzer, O., Fabila-Monroy, R., Flores-Peñaloza, D., Hackl, T., Huemer, C.,
Urrutia, J.: Empty monochromatic triangles. Comput. Geom. 42(9), 934–938
(2009)

15. Aichholzer, O., Fabila-Monroy, R., Hackl, T., Van Kreveld, M., Pilz, A., Ramos, P.,
Vogtenhuber, B.: Blocking delaunay triangulations. Comput. Geom. 46(2), 154–
159 (2013)

16. Aichholzer, O., Hackl, T., Huemer, C., Hurtado, F., Krasser, H., Vogtenhuber, B.:
On the number of plane geometric graphs. Graphs Comb. 23(1), 67–84 (2007)

17. Aichholzer, O., Hackl, T., Huemer, C., Hurtado, F., Vogtenhuber, B.: Large bichro-
matic point sets admit empty monochromatic 4-gons. SIAM J. Discrete Math.
23(4), 2147–2155 (2010)

18. Aichholzer, O., Hurtado, F., Noy, M.: A lower bound on the number of triangula-
tions of planar point sets. Comput. Geom. 29(2), 135–145 (2004)

19. Ajtai, M., Chvátal, V., Newborn, M.M., Szemerédi, E.: Crossing-free subgraphs.
North-Holland Math. Stud. 60, 9–12 (1982)

20. Akiyama, J., Urrutia, J.: Simple alternating path problem. Discrete Math. 84(1),
101–103 (1990)

21. Arkin, E.M., Mitchell, J.S.B., Fekete, S.P., Hurtado, F., Noy, M., Sacristán, V.,
Sethia, S.: On the reflexivity of point sets. In: Aronov, B., Basu, S., Pach, J., Sharir,
M. (eds.) Discrete and Computational Geometry, pp. 139–156. Springer, New York
(2003)

22. Aronov, B., Dulieu, M., Hurtado, F.: Witness (delaunay) graphs. Comput. Geom.
44(6), 329–344 (2011)

23. Aronov, B., Dulieu, M., Hurtado, F.: Witness gabriel graphs. Comput. Geom.
46(7), 894–908 (2013)

24. Aronov, B., Dulieu, M., Hurtado, F.: Witness rectangle graphs. Graphs Comb.
30(4), 827–846 (2013)

25. Bose, P., Cardinal, J., Collette, S., Hurtado, F., Korman, M., Langerman, S.,
Taslakian, P.: Coloring and guarding arrangements. Discrete Math. Theor. Com-
put. Sci. 15(3), 139–154 (2013)

26. Bose, P., Czyzowicz, J., Gao, Z., Morin, P., Wood, D.R.: Simultaneous diagonal
flips in plane triangulations. J. Graph Theory 54(4), 307–330 (2007)

27. Bose, P., Hurtado, F.: Flips in planar graphs. Comput. Geom. 42(1), 60–80 (2009)
28. Cibulka, J., Kynčl, J., Mészáros, V., Stolař, R., Valtr, P.: Hamiltonian alternating

paths on bicolored double-chains. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008.
LNCS, vol. 5417, pp. 181–192. Springer, Heidelberg (2009)

29. Claverol, M., Garijo, D., Hurtado, F., Cuevas, D.L., Seara, C.: The alternating
path problem revisited. In: Proceedings XIV Spanish Meeting on Computational
Geometry, EGC 2011, Alcalá de Henares, Spain, June 27–30, 2011, pp. 115–118.
Universidad de Sevilla (2013)

30. Devillers, O., Hurtado, F., Károlyi, G., Seara, C.: Chromatic variants of the erdos-
szekeres theorem on points in convex position. Comput. Geom. 26(3), 193–208
(2003)

The Mathematics of Ferran Hurtado: A Brief Survey 291

31. Dumitrescu, A., Schulz, A., Sheffer, A., Tóth, C.D.: Bounds on the maximum
multiplicity of some common geometric graphs. SIAM J. Discrete Math. 27(2),
802–826 (2013)

32. Enomoto, H., Kanda, K., Masui, T., Oda, Y., Ota, K.: Private communication
33. Erdös, P.: On some problems of elementary and combinatorial geometry. Annali

di Matematica pura ed applicata 103(1), 99–108 (1975)
34. Erdös, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2,

463–470 (1935)
35. Frati, F.: Planar packing of diameter-four trees. In: Proceedings of the XXI Cana-

dian Conference on Computational Geometry: Vancouver, BC, August 17–19, 2009,
pp. 95–98 (2009)

36. Frati, F., Geyer, M., Kaufmann, M.: Planar packing of trees and spider trees.
Inform. Process. Lett. 109(6), 301–307 (2009)

37. Galtier, J., Hurtado, F., Noy, M., Pérennes, S., Urrutia, J.: Simultaneous edge
flipping in triangulations. Int. J. Comput. Geom. Appl. 13(02), 113–133 (2003)

38. Garćıa, A., Hernando, C., Hurtado, F., Noy, M., Tejel, J.: Packing trees into planar
graphs. J. Graph Theory 40(3), 172–181 (2002)

39. Garćıa, A., Huemer, C., Hurtado, F., Tejel, J.: Compatible spanning trees. Comput.
Geom. 47(5), 563–584 (2014)

40. Garćıa, A., Hurtado, F., Korman, M., Matos, I., Saumell, M., Silveira, R.I., Tejel,
J., Tóth, C.D.: Geometric biplane graphs i: maximal graphs. Graphs Comb. 31(2),
407–425 (2015)

41. Garćıa, A., Hurtado, F., Korman, M., Matos, I., Saumell, M., Silveira, R.I., Tejel,
J., Tóth, C.D.: Geometric biplane graphs ii: graph augmentation. Graphs Comb.
31(2), 427–452 (2015)

42. Garćıa, A., Noy, M., Tejel, J.: Lower bounds on the number of crossing-free sub-
graphs of kn. Comput. Geom. 16(4), 211–221 (2000)

43. Garćıa, A., Tejel, J.: Private communication
44. Garćıa-Lopez, J., Nicolás, C.M.: A counterexample about convex partitions. In: IV

Jornadas de Matemática Discreta y Algoŕıtmica 2004, Cercedilla, 5–8 Septiembre,
2004, p. 213 (2004)

45. Geyer, M., Hoffmann, M., Kaufmann, M., Kusters, V., Tóth, C.D.: Planar pack-
ing of binary trees. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS
2013. LNCS, vol. 8037, pp. 353–364. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40104-6 31

46. González-Mart́ınez, A.C., Cravioto-Lagos, J., Urrutia, J.: Almost empty mono-
chromatic polygons in planar point sets. In: Actas XVI Spanish Meeting on Com-
putational Geometry, Barcelona, 1–3 de julio, 2015, pp. 81–84 (2015)

47. Görlich, A.: Packing cycles and unicyclic graphs into planar graphs. Demonstr.
Math. XLI I(4), 673–679 (2009)

48. Hajnal, P., Mészáros, V.: Note on noncrossing path in colored convex sets. Discr.
Math. Theor. Comput. Sci. (2015, accepted)

49. Hedetniemi, S.M., Hedetniemi, S.T., Slater, P.J.: A note on packing two trees into
kn. Ars Combin. 11, 149–153 (1981)

50. Horton, J.D.: Sets with no empty convex 7-gons. Can. Math. Bull. 26(4), 482
(1983)

51. Hurtado, F.A.: Problemes geomètrics de visibilitat. Ph.D. thesis, Departamento de
Matemática Aplicada i Telemàtica, UPC (1993)

52. Hurtado, F.: Looking through a window. In: Proceedings of the Fifth Canadian
Conference on Computational Geometry: University of Waterloo, August 5–9,
1993, pp. 234–239 (1993)

http://dx.doi.org/10.1007/978-3-642-40104-6_31
http://dx.doi.org/10.1007/978-3-642-40104-6_31

292 J. Urrutia

53. Hurtado, F., Marc, N., El número de triangulaciones de un poĺıgono. In: Proceed-
ings of the IV Encuentros de Geometŕıa Computacional: Granada, pp. 1–6 (1993)

54. Hurtado, F., Noy, M.: Ears of triangulations and catalan numbers. Discrete Math.
149(1), 319–324 (1996)

55. Hurtado, F., Noy, M.: Triangulations, visibility graph and reflex vertices of a simple
polygon. Comput. Geom. 6(6), 355–369 (1996)

56. Hurtado, F., Noy, M.: Graph of triangulations of a convex polygon and tree of
triangulations. Comput. Geom. 13(3), 179–188 (1999)

57. Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations. Discrete Com-
put. Geom. 22(3), 333–346 (1999)

58. Hurtado, F., Serra, O., Urrutia, J.: Hiding points in arrangements of segments.
Discrete Math. 162(1), 187–197 (1996)

59. Kaneko, A., Kano, M., Yoshimoto, K.: Alternating hamilton cycles with minimum
number of crossings in the plane. Int. J. Comput. Geom. Appl. 10(01), 73–78
(2000)

60. Kynčl, J., Pach, J., Tóth, G.: Long alternating paths in bicolored point sets. Dis-
crete Math. 308(19), 4315–4321 (2008)

61. Lee, C.W.: The associahedron and triangulations of the n-gon. Eur. J. Comb.
10(6), 551–560 (1989)

62. Lucas, J.M., Vanbaronaigien, D.R., Ruskey, F.: On rotations and the generation
of binary trees. J. Algorithms 15(3), 343–366 (1993)

63. Merino, C., Salazar, G., Urrutia, J.: On the length of longest alternating paths for
multicoloured point sets in convex position. Discrete Math. 306(15), 1791–1797
(2006)

64. Oda, Y., Ota, K.: Tight planar packings of two trees. In: Twenty-second European
Workshop on Computational Geometry Delphi, Greece March 27–29, 2006, p. 215
(2006)

65. Pach, J., Tóth, G.: Monochromatic empty triangles in two-colored point sets. Dis-
crete Appl. Math. 161(9), 1259–1261 (2013)

66. Sharir, M., Sheffer, A.: Counting plane graphs: cross-graph charging schemes.
Comb. Probab. Comput. 22(06), 935–954 (2013)

67. Sharir, M., Sheffer, A., Welzl, E.: On degrees in random triangulations of point
sets. J. Comb. Theory Ser. A 118(7), 1979–1999 (2011)

68. Souvaine, D.L., Tóth, C.D., Winslow, A.: Simultaneously flippable edges in trian-
gulations. In: Márquez, A., Ramos, P., Urrutia, J. (eds.) EGC 2011. LNCS, vol.
7579, pp. 138–145. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34191-5 13

69. Tóth, C.D.: Connectivity augmentation in planar straight line graphs. Eur. J.
Comb. 33(3), 408–425 (2012)

70. Urabe, M.: On a partition into convex polygons. Discrete Appl. Math. 64(2), 179–
191 (1996)

71. Urabe, M.: On a partition of point sets into convex polygons. In: Proceedings of the
Ninth Canadian Conference on Computational Geometry, August 11–13, Queen’s
Universiy, Kingston, Ontario, pp. 179–191 (1997)

72. Urrutia, J.: Coloraciones, tetraedralizaciones, y tetraedros vaćıos en coloraciones
de conjuntos de puntos en R

3. In: Proceedings of the X Encuentros de Geometŕıa
Computacional: Sevilla, Junio 16–17, 2003, pp. 95–100 (2003)

http://dx.doi.org/10.1007/978-3-642-34191-5_13

Erratum to: Discrete and Computational
Geometry and Graphs

Jin Akiyama1(&), Hiro Ito2, Toshinori Sakai3, and Yushi Uno4

1 Tokyo University of Science, Tokyo, Japan
ja@jin-akiyama.com

2 The University of Electro-Communications, Tokyo, Japan
3 Tokai University, Tokyo, Japan

4 Osaka Prefecture University, Sakai, Japan

Erratum to:
J. Akiyama et al. (Eds.):
Discrete and Computational Geometry and Graphs, LNCS,
DOI: 10.1007/978-3-319-48532-4

The sequence of the editor names was incorrect. Yushi Uno was not listed as volume
editor. The updated online version of the cover and the front matter pages III–V can be
found at DOI: 10.1007/978-3-319-48532-4

The updated original online version for this book can be found at DOI: 10.1007/978-3-319-48532-4

© Springer International Publishing AG 2016
J. Akiyama et al. (Eds.): JCDCGG 2015, LNCS 9943, p. E1, 2016.
DOI: 10.1007/978-3-319-48532-4_26

http://dx.doi.org/10.1007/978-3-319-48532-4
http://dx.doi.org/10.1007/978-3-319-48532-4
http://dx.doi.org/10.1007/978-3-319-48532-4

Author Index

Aichholzer, O. 1
Akitaya, Hugo A. 167
Akiyama, Jin 13

Bhattacharya, Binay 24
Bosboom, Jeffrey 37, 49
Burke, Kyle 60

Chaidee, Supanut 73
Cheung, Kenneth C. 167
Ćustić, Ante 24

Das, Sandip 24
Demaine, Erik D. 37, 49, 60, 85, 94, 167,

180
Demaine, Martin L. 37, 85

Evans, William S. 105

Fleszar, Krzysztof 105

Gregg, Harrison 60

Hackl, T. 1
Hearn, Robert A. 60
Hesterberg, Adam 49, 60
Higashikawa, Yuya 24
Hoffmann, Michael 60
Horiyama, Takashi 120, 167
Hull, Thomas C. 167

Imahori, Shinji 132
Ito, Hiro 60, 143
Itoh, Jin-ichi 85, 120

Kameda, Tsunehiko 24
Katoh, Naoki 24, 120
Kawade, Shizuka 132
Khemmani, Varanoot 155

Kindermann, Philipp 105
Kobayashi, Yuki 120
Korman, Matias 180
Kostitsyna, Irina 60
Ku, Jason S. 167, 180
Kupavskii, Andrei 193

Langerman, Stefan 13, 94
Lavor, Carlile 204
Leonard, Jody 60
Liberti, Leo 204
Löffler, Maarten 60
Luzon, Paul Adrian D. 216
Lynch, Jayson 37, 49

Manurangsi, Pasin 37
Matsunaga, Kiyoko 13
Md Yunos, Norhazwani 228
Mitchell, Joseph S.B. 180
Miyauchi, Miki 241

Nagamochi, Hiroshi 228
Nara, Chie 85, 120

Otachi, Yota 180

Pach, János 193

Roeloffzen, Marcel 180
Rudoy, Mikhail 37
Ruiz, Mari-Jo P. 216

Saduakdee, Supaporn 155
Saeedi, Noushin 105
Sano, Yoshio 247
Santiago, Aaron 60
Schmidt, Christiane 60
Shin, Chan-Su 105
Shiono, Yoshinao 143
Shurbevski, Aleksandar 228

Sugihara, Kokichi 73
Swirszcz, Grzegorz 204

Tachi, Tomohiro 167
Tayu, Satoshi 253
Tolentino, Mark Anthony C. 216
Tsuiki, Hideki 265
Tsukamoto, Yasuyuki 265

Uehara, Ryuhei 60, 167, 180
Ueno, Shuichi 253
Uno, Yushi 60, 180
Urrutia, Jorge 277

Valtr, P. 1
van Renssen, André 180
Vogtenhuber, B. 1

Waingarten, Erik 49
Williams, Aaron 60
Wolff, Alexander 105

Yamakata, Yoko 132
Yodpinyanee, Anak 37

294 Author Index

	Preface
	Organization
	Contents
	A Note on the Number of General 4-holes in (Perturbed) Grids
	1 Introduction
	1.1 Definitions and Notation

	2 A New Lower Bound for the Number of General 4-holes in any Slightly Perturbed Grid
	3 An Upper Bound on the Number of General 4-holes in the Squared Horton Set
	3.1 4-holes Having a Prime Segment as Diagonal in G
	3.2 4-holes Having a Non-prime Segment as Diagonal in G

	References

	Reversible Nets of Polyhedra
	1 Introduction
	2 Reversible Nets of Polyhedra
	3 Reversibility and Tessellability for Nets of an Isotetrahedron
	References

	Geometric p-Center Problems with Centers Constrained to Two Lines
	1 Introduction
	2 Centers Constrained to Two Parallel Lines
	2.1 Preliminaries
	2.2 Algorithm
	2.3 Implementation
	2.4 Finding Optimal * for p-Center

	3 Centers Placed on Both x- and y-axes
	3.1 -Feasibility Test
	3.2 Optimization

	4 Conclusion
	References

	Dissection with the Fewest Pieces is Hard, Even to Approximate
	1 Introduction
	2 The Problems
	2.1 Dissection
	2.2 5-Partition
	2.3 Gap Problems

	3 Main Results
	4 The Reduction
	5 Proof of NP-hardness of k-PIECE DISSECTION
	6 Proof of Inapproximability of MIN PIECE DISSECTION
	7 Variations and Open Questions
	References

	Mario Kart Is Hard
	1 Introduction
	2 Model
	3 Time Trial is NP-Hard
	3.1 Proof Structure
	3.2 Variable Gadget
	3.3 Clause Gadget
	3.4 Clearing Held Items
	3.5 Crossover Gadget
	3.6 Putting Gadgets Together

	4 Racing is PSPACE-Hard
	4.1 Proof Structure
	4.2 Clause Gadget
	4.3 Variable Gadget
	4.4 Putting Gadgets Together

	5 Conclusion
	References

	Single-Player and Two-Player Buttons & Scissors Games
	1 Introduction
	2 Preliminaries
	3 Single-Player Puzzle
	3.1 Board Size
	3.2 Number of Colors
	3.3 Frequency of Colors
	3.4 Cut Sizes

	4 Two-Player Games
	4.1 Cut-By-Color Games
	4.2 Any Color Games

	5 Open Problems
	References

	Fitting Spherical Laguerre Voronoi Diagrams to Real-World Tessellations Using Planar Photographic Images
	1 Introduction
	2 Modeling Assumptions
	2.1 Fundamental Definitions and Theorems
	2.2 Problem Formulation and Assumptions

	3 Main Framework
	3.1 Projecting a Tessellation T onto a Sphere
	3.2 Radii Approximation
	3.3 Construction of the Projected Spherical Laguerre Voronoi Diagram V

	4 Experimental Results
	4.1 Experiments with Ideal Data
	4.2 Experiments with Real Data

	5 Concluding Remarks and Future Work
	References

	Continuous Flattening of Orthogonal Polyhedra
	1 Introduction
	2 Zig-Zag Belts and the Rhombus Property
	3 Continuous Flattening of Orthogonal Polyhedra
	4 Continuous Flattening of Semi-orthogonal Polyhedra
	References

	Bust-a-Move/Puzzle Bobble Is NP-complete
	1 Introduction
	2 NP-hardness
	2.1 Bubble Sequence
	2.2 Gadgets
	2.3 Putting It Together

	3 Open Problems
	References

	Minimum Rectilinear Polygons for Given Angle Sequences
	1 Introduction
	2 NP-Hardness of the General Case
	3 The Monotone Case: Minimum Area
	3.1 The xy-monotone Case
	3.2 The x-monotone Case

	4 The Monotone Case: Minimum Perimeter
	4.1 The xy-monotone Case
	4.2 The x-monotone Case

	References

	Continuous Folding of Regular Dodecahedra
	1 Introduction
	2 A Folded Rhombus with Wing-Type
	3 A Regular Dodecahedron
	4 A 2-story Modified Antiprism
	5 From a Regular Dodecahedron to a 2-story Modified Pentagonal Antiprism
	6 Continuous Flattening of a 2-story Modified Pentagonal Antiprisms
	7 Continuous Flattening of a Regular Dodecahedron
	References

	Escher-like Tilings with Weights
	1 Introduction
	2 Escherization Problem
	2.1 Model of Escherization Problem
	2.2 Objective Function
	2.3 Constraint Conditions
	2.4 Eigenvalue Problem for Escherization Problem

	3 Escherization Problem with Weights
	3.1 Weighted Procrustes Distance
	3.2 Formulation of Escherization Problem with Weights
	3.3 Eigenvalue Problem for Escherization Problem with Weights
	3.4 Algorithm for Escherization Problem with Weights

	4 Computational Experiments
	5 Conclusions
	References

	Number of Ties and Undefeated Signs in a Generalized Janken
	1 Introduction
	1.1 Background
	1.2 Contribution of the Present Study
	1.3 Definitions

	2 Number of Ties
	2.1 Upper and Lower Bounds
	2.2 Algorithm for Constructing a Series of Jankens Having a Continuous Number of Ties
	2.3 Correctness of the Algorithm

	3 Number of Undefeated Vertices and Zero-Defeating Vertices
	4 Summary and Future Work
	References

	-Labeling of a Cycle with One Chord
	1 Introduction
	2 The Minimum Value of Cycle with One Chord
	3 The Maximum Value of Odd Cycle with One Chord
	4 The Maximum Value of Even Cycle with One Chord
	5 Final Remarks
	References

	Box Pleating is Hard
	1 Introduction
	2 Definitions
	3 Bern and Hayes and k-Layer-Flat-Foldability
	4 SCN-Satisfiability
	5 Unassigned Crease Patterns
	6 Assigned Crease Patterns
	7 Conclusion
	References

	Symmetric Assembly Puzzles are Hard, Beyond a Few Pieces
	1 Introduction
	2 Many Pieces
	3 Constant Pieces
	References

	Simultaneous Approximation of Polynomials
	1 Introduction
	2 Proof of Theorem1
	3 Proof of Theorem2
	4 Concluding Remarks
	References

	Distance Geometry on the Sphere
	1 Introduction
	2 Realizing Cliques in RK
	2.1 Recursive Realization Process
	2.2 K-Lateration
	2.3 Assumptions on the Rank of A
	2.4 Finding the Intersection of a Line and a Sphere
	2.5 An Efficient Algorithm

	3 The Branch-and-Prune Algorithm
	3.1 Complexity
	3.2 Number of Solutions

	4 The DGP on the Sphere
	4.1 Euclidean Distances
	4.2 Geodesic Distances
	4.3 Putting It All Together

	5 Conclusion
	References

	The Sigma Chromatic Number of the Circulant Graphs Cn(1,2), Cn(1,3), and C2n(1,n)
	1 Introduction
	2 The Circulant Graphs Cn(1,2)
	3 The Circulant Graphs Cn(1,3)
	4 The Circulant Graphs C2n(1,n)
	5 Future Work
	References

	A Polynomial-Space Exact Algorithm for TSP in Degree-6 Graphs
	1 Introduction
	2 Preliminaries
	3 A Polynomial-Space Branching Algorithm
	3.1 Reduction Rules
	3.2 Branching Rules

	4 Analysis
	4.1 Analysis Framework
	4.2 Weight Constraints
	4.3 Main Result
	4.4 Case Analysis of the Branching Operation for Case c-13
	4.5 Switching to TSP in Degree 5
	4.6 Overall Analysis

	5 Conclusion
	References

	Topological Graph Layouts into a Triangular Prism
	1 Introduction
	2 Proof of Theorem 3
	3 Conclusion
	References

	On the Competition Numbers of Diamond-Free Graphs
	1 Introduction
	2 Preliminaries
	3 Proof of Theorem1.4
	References

	On Evasion Games on Graphs
	1 Introduction
	2 Preliminaries
	3 Proof of Theorem1
	4 Proof of Theorems2 and 3
	5 Proof of Theorem4
	6 Active Pursuit Number of Tk
	7 Concluding Remarks
	References

	Sudoku Colorings of a 16-Cell Pre-fractal
	1 Introduction
	2 A 16-Cell and Sudoku-like Coloring Problems
	3 Projections of a 16-Cell Pre-fractal
	4 Solutions of Puzzle A
	5 Solutions of Puzzle B
	6 Constructions of Solutions of Puzzle B0 and Puzzle BS
	References

	The Mathematics of Ferran Hurtado: A Brief Survey
	1 Introduction
	1.1 The Beginning of Ferran's Mathematics Career

	2 Triangulations
	2.1 Flipping Edges in Triangulations
	2.2 Compatible Triangulations

	3 Erdős--Szekeres Type Problems on Point Sets
	3.1 Measures of Convexity of Point Sets
	3.2 k-convex Polygons and Point Sets
	3.3 Coloring Arrangements of Lines

	4 Packing Trees in Complete Geometric Graphs
	5 Witnesses in Delaunay and Gabriel Graphs
	6 Alternating Paths
	7 Augmenting the Connectivity of Geometric Graphs
	8 Final Remarks
	References

	Erratum to: Discrete and Computational Geometry and Graphs
	Erratum to: J. Akiyama et al. (Eds.): Discrete and Computational Geometry and Graphs, LNCS, DOI: 10.1007/978-3-319-48532-4

	Author Index

