
Teaching Computer Programing as Knowledge
Transfer: Some Impacts on Software Engineering

Productivity

Orlando López-Cruz1, Alejandro León Mora1, Mauricio Sandoval-Parra1, Diana
Lizeth Espejo-Gavilán1,

1 Universidad El Bosque, Av. 9 132-A-01 Bloque M. Piso 3, Bogotá D.C. 110121, Colombia

{orlandolopez, alejandroleon, mauriciosandoval, despejo}@unbosque.edu.co

Abstract. Programming skills of software engineers that affect software
development productivity are central to any of the computing disciplines. While
literature focuses on how to teach novice programmers, the aim of this research
is to show how to strengthen programming skills of programmers by effectively
transferring knowledge to those who had bad experiences when learning
computer programming or have not developed enough programming skills to
get a productivity standard. Since software engineering is a knowledge-
intensive application discipline, a knowledge transfer process is conducted to
improve the productivity of computer programmers involved in software
engineering projects. An ad-hoc methodology allowed to follow-up changes
that revealed that improvements in the capability to absorb new external
knowledge increases overall productivity of individuals in software
development teams. This finding may be useful for software companies looking
for increasing their productivity.

Keywords: Knowledge Transfer, Knowledge Management, Teaching
Computer Programming, Software Engineering.

1 Introduction

Computing disciplines have been identified as Computer Engineering, Information
Technology, Information Systems, Software Engineering and Computer Science [1]
but neither students nor businesses differentiate them [2]. Even worse, in some
countries, academic programs do not hold any of those names but ‘systems
engineering’ which, according to INCOSE denotes “an engineering discipline whose
responsibility is creating and executing an interdisciplinary process to ensure that the
customer and stakeholder's needs are satisfied in a high quality, trustworthy, cost
efficient and schedule compliant manner throughout a system's entire life cycle” [3],
this is to say that “systems engineering” refers to a broader body of knowledge than
just software engineering, computer programming, or any of the computing

 © Springer International Publishing AG 2017
J. Mejia et al. (eds.), Trends and Applications in Software Engineering, Advances
in Intelligent Systems and Computing 537, DOI 10.1007/978-3-319-48523-2_

1

14

45

disciplines. However, any of these disciplines require to develop computer
programming skills, especially when people is going to be involved in software
development projects.

Many studies spend efforts to make distinctions between these disciplines, but this
research focuses on something that they share in common. They share the need to
produce computer programs (i.e. software) whether as an art [4-6] or science [7] or,
more plausible, as engineering [8]. The issue tackled in this study is not how to make
the software seem to do what is supposed to do, but how software can be produced
minimizing programmers time. This research draws the attention to the fact that
behind computer program development there are computer programmers. People that
is responsible to produce software from the requirements phase to the operations and
maintenance phase. People in need of training on software development
methodologies. People in need of interacting with others in respectful ways in a team
work.

Many other studies have been conducted in order to overcome difficulties involved
in teaching programming in an introductory course [9, 10] but, to the best of our
knowledge, no studies report on results enforcing computer programming abilities in
programmers (coming from any computing discipline) involved in a project. A
question arose at this point: What is the impact of computer programming knowledge
transfer on software productivity? This led to involve senior students of a “systems
engineering” program in a real software development project, working at a client
place next to experienced developers. Individuals were immersed in a stress-
controlled but real software development and implementation environment.

The aim of this paper is to show results of a research focused in increasing
productivity of programmers by improving their programming skills from a
knowledge-based centered process. In addition, this is new because studies are
centered to engage freshmen students in programming disciplines but not to retain
workforce and improve their skills.

This paper is structured as follows. First, the phases defined to guide the research,
then a succinct section of the relationship between the concepts of knowledge
management and software is introduced. Then, the sections of results analysis and
conclusions are developed.

2 Methodological Issues

In order to conduct a research regarding the real world either to explain it or
transform it, qualitative and quantitative approaches are sides of the same coin: both,
a qualitative approach to meanings and a quantitative approach to facts are needed
[11]. In fact, The distinction between qualitative and quantitative research
methodologies is ideological [12]. This is to say that complex phenomena, such as
software development, should be studied both in its quantitative dimensions, and its
qualitative dimensions as well. Even more, that an emphasis on quantitative or
qualitative issues is not a priority. A different enriched methodological approach must
be addressed when dealing with complex environments [13, 14] or phenomena such
as the one being reported in this paper.

146 O. López-Cruz et al.

2.1 The Phases of the Research

The methodology is structured in four phases. (i) Preparation and selection phase
consists of two parallel steps: first, determination of the environment to conduct the
experiment. The right environment is a real software development project that may
provide space to conduct tutoring activities. And, second, recruiting of senior students
of an undergraduate program of a computing discipline from those with the lowest
grades in computer programming courses. An assessment of students´ abilities is
conducted to state a baseline of knowledge. Candidates are interviewed to validate
their negative attitude towards computer programming. From this interviews arise
assessment categories (Table 1). These categories are more specific than those
presented in other studies [15].

(ii) During immersion phase, selected individuals are exposed to a real project that
is being conducted. They are informed about the problem to be solved by the product
resulting from software development. Tutoring meetings are scheduled in order to
improve their programming abilities.

Table 1. Categories to assess knowledge internalization of each subject of study.

Id Category What to assess
C1 Interest to learn

computer programming.
Basic interest to learn to program computers by
himself or by means of the support of a tutor.

C2 Computer programming
language knowledge.

The level of understanding and usage of the Java®
programming language.

C3 Teamwork Previous experience working with unknown people
in team activities.

C4 Project control Compliance with assignments, advances on
assignments, deadlines, and deliverables (as well in
programming code as in documentation).

C5 Computer technology Specific knowledge of computer technology to use
during project development both in software
development and communications and collaborative
software supporting development activities.

C6 Methodology Knowledge and usage of the methodology used in
the software development project.

C7 Frameworks learning Understanding of PrimeFaces and Spring
frameworks. Usage of this frameworks in the
project.

C8 Database modeling and
database management
from code.

Learning to manage the database from Java code.

C9 Object Oriented
Programming

Knowledge of the object-oriented programming
paradigm in practice.

C10 Usability basic practices Analysis, learning and usage of basic usability
practices to produce a functional and easy to use
software application.

(iii) The third phase is a hands-on learning process and follow-up. Each individual

is instructed to complete a field diary. By means of field diaries, monitoring and
guidance are provided. Advances are followed-up.

Teaching Computer Programing as Knowledge Transfer … 147

(iv) The fourth Phase consists of the final assessment procedure to compare actual
abilities and knowledge that each individual actually exhibits with respect to the
knowledge baseline that was recorded in phase one.

These phases conform a scene to induce improvement in knowledge for each
individual involved in this study, as well as a general stage for an ongoing assessment
process.

2.2 Issues in Conducting the Phases of This Research

When in phase one, besides looking for an actual software development project, an
environment allowing effective tutoring to individuals is required. In addition, this
should not disturb actual software development and avoid client concern or
annoyance. This was not easy to set. However, the research was conducted in a real
scenario where the client was asking to develop a software piece to capture data on
medical variables from biomedical devices, including manual data gathered when
using devices such as tensiometers and stethoscopes at a pediatric intensive care unit.
The assessment categories introduced in Table 1 were refined by reviewing personal
logs of selected students.

In order to recruit volunteers, students from a senior cohort were selected
according to their low performance (low grades) in computer programming courses.
In addition, those that were selected were asked to express their opinion in relation to
programming in practice. Those who expressed dissatisfaction toward computer
programming, low level of knowledge of programming languages and programming
paradigms were preferred. Interest to learn and their abilities to work as team
members were determined by means of questionnaires. This allowed to identify the
initial programming abilities of the individuals and to set a baseline. Finally, some of
them were selected. Follow-up was done by inspection of development of user stories
and field diaries, and recording and tackling difficulties arising in the ongoing project

This paper reports results from two of the volunteer students that were involved in
the experimental process. They never worked before as a part of a software
development team. They received user stories that were refined by group meetings
including members of the development team and final users from the client
organization, by using activity (hands-on experience) records and personal logs (one
for each individual). This last element was crucial to assess changes occurred in
individuals, especially when comparing to the baseline assessment.

The process was divided into “learning stages” and “stages for practice”. During
learning stages, individuals were asked to read chapters of different books on object
oriented programming, or contents of web pages, in order to complement or refresh
programming concepts. Meetings were held to provide support regarding some topics
required to proceed to develop. Stages of practice were guided by IEEE 1074 tailoring
the software development life cycle [16]. At the first (practice) stage, individuals
showed low performance. This situation led to a delay in user stories deployment. The
researchers were not disappointed with this gross result, as this was supposed to
happen. Patience was definitely worthwhile. After individuals involved progressively
with the project and feeling confident with themselves, a work team was consolidated.

However, in spite of the fact that individuals devoted about 25 hours per week to
produce code and documentation deliverables of the project, for practice and learning
stages, it took longer to accomplish. However, results encouraged individuals to

148 O. López-Cruz et al.

improve compliance with deadlines to the point they accomplished to deploy user
stories as soon as the client were requiring them. This enthusiastically encouraged
individuals to look for the development of deliverables in order to get user
satisfaction.

A category, “interest to learn” (Table 1) was central to the development of the
classification from individual logs reviews, deliverables from user stories summing up
thirty-one modules [17]. The overall involvement of the subjects in the project was
divided into four stages, identified as stages 1 to 4, each one of a three months period.
Each stage was followed immediately by another.

During the first stage, subjects were trained and self-trained on the computer
technologies required to be engaged in the project. This allows individuals to adapt
daily to the work of software development.

3 Knowledge Transfer and Software

Recent attention has been paid to knowledge transfer in software engineering [15]
either understanding knowledge as a main asset in software organizations [18 p.26, 19
p. 105] or because it is a knowledge intensive discipline [18, 20] as well as a
computer programming skill [9] demanding activity. Even so, the software industry
has been recognized as an “engineering” endeavor but of a different kind [8]. The
reason is that software is manufactured once (then deployed many times) and it is
essentially an abstract product, or at least with no physical component. Software as a
product is more like a book of poems than a bridge. Both are produced once, but the
physical dimension of a bridge is necessary for its usage while the physical part of a
book (paper, ink and so on) may be abstracted, for instance, by publishing it as an
electronic book. In addition, this implies that statistical quality control may not be
applied to the software production process [21]. The essence of the book is the
knowledge that has been codified: the poem. Even better, the codification of
knowledge is what makes the essence of the book. The same applies to software, even
when it is maintained [22]. Nonetheless, up to this point, there is nothing completely
new.

What is new is to focus this research on the ‘workforce’ to produce software.
Software development is a creative process that is conducted by human beings at their
intellectual level. In this context, software engineers (or computer scientists, or
“systems engineers”) and poets or writers are alike. Their challenge is to conduct
intellectual processes to produce a result that is a unique instance of a class of abstract
objects.

4 Results Analysis

In order to respond the question asked in the introduction, assessment records were
plotted on a graph (Fig. 1). Both subjects (subject 1 and subject 2) were exposed to the
same project in four stages (listed from 1 to 4 horizontally in Fig. 1 for subject 1, and
in Fig.2 for subject 2).

Teaching Computer Programing as Knowledge Transfer … 149

Since the research is focused in what is changed in a specific environment (i.e. the
interest is focused more on the ongoing process than on final stand-alone results), the
changes between stages were observed. Therefore, for each stage 1 to 4, the same
categories C1 to C10 are assessed. Each category was graded from 1 to 10 (arrayed
vertically). Grades from 1 to 3 were considered Low, 4 to 7 Medium, and 8 to 10 High.

Fig. 1. Knowledge transfer assessment for subject A. Horizontally, four stages are depicted
(stages 1 to 4). During stages 1 to 4 each of the ten categories in Table 1 were assessed.

Subject 1 in stage 1 got just one item High (C1), two items Medium (C3 and C9),
and the remaining items were graded Low (Fig. 1). During stage 2 the item C1
continued High, while item C2 passed from Low to Medium. C3 and C9 stayed
Medium with a little local decrease of C9 from 5 to 4. While the items
C4,C5,C6,C7,C8, and C10 remained Low, it was encouraging the local change of its
grading from ‘very low’ values to values higher in the same interval.

Stage 3 for subject 1 was a qualitative jump in knowledge categories assessment
from mainly Lows to mainly Mediums. And stage 4 led to an unexpected mainly
Highs and upper Mediums (Fig.1). Just C3, C5, C7, and C9 of subject 1 remained
Medium. Examining each of the items, C1: Teamwork, C5: Computer Technologies,
C7: Frameworks learning, and C9: Object Oriented Programming were the items in
upper Medium.

For the case of subject 2 (Fig. 2), assessment of the categories C1 to C10 during
stage 1was not qualitatively different from subject 1. This means that grades for
categories being assessed were mainly Low. Just C3, C9, and C10 were in the
Medium Interval. However, C9 and C10 were at the lowest Medium grade.

Fig. 2. Knowledge transfer assessment for subject B. Horizontally, four stages are depicted
(stages 1 to 4). During stages 1 to 4 each of the ten categories in Table 1 were assessed.

150 O. López-Cruz et al.

During stage 2, there was a significant improvement in grades in the overall set of
categories. They were assessed mainly in the Medium interval and just C5, C6, C7, and
C8 were at the Low interval but at the upper grade of the interval.

Stage 3 proved to be an important improvement for subject 2. Must of the
categories were at the upper Medium interval, and C3 and C10 were at the lower High
interval. But stage 4 revealed outstanding results for this subject. Every category was
graded at the High interval. Just four out of ten categories, C4, C5.C7, and C8 were at
the lowest grade of the High interval.

The lowest graded categories at stage 4 for subject 2 were C4: Project control, C5
Computer Technology, C7: Frameworks learning, and C8: Database modeling and
database management from code. When comparing this list with the lowest categories
at stage 4 for subject 1, C5 and C7 are in common.

In addition, it may be observed that the category C3: teamwork was not fully
developed, that may be explained by a low slope during stages 1 and 2, which in turn
could be explained by externalities. From stage 1 to stage 3 the increase was not
significant, but from stage 3 to stage 4 an unexpected and relatively significant
increase was observed in the overall set of categories being assessed.

In order to check the consistency of this assessment, an additional measurement
was considered: the user stories deliverables. These were increasing from stage to stage
also, which means that subjects achieved higher levels of productivity as time goes by.

Subjects selected for this research exhibited poor or limited computer programming
skills. Both subjects reported in this study continued during the first two stages of the
experimental process to display real difficulties on a range of fundamental skills for
integrating to a software development project, not just because of their low
programming skills but because of their low profile in abilities like teamwork and
project control. This is because the simple model of knowledge transfer [23] consisting
of agent A making knowledge available to the environment of Agent B, as it were the
classical data communication model [24], does not reveal the essence of knowledge
transfer. Knowledge transfer is not a matter of data communication as in information
theory. For knowledge to be effectively transferred, the receiver (Agent B) must not be
a passive agent, but must exhibit the dynamic capability to absorb the knowledge [25,
26] available to make it productive.

The results shown in stages 3 and 4 support the statement that absorptive capacity
of individuals or organizations [25, 26] must be developed before knowledge may be
exploited by the receiver. In this context, the capability to increase the number of
deliverables by the subjects of study involved in a software development project.

5 Conclusion

This paper has introduced a hands-on experiment to teach computer programming
while “learners” are involved in a “true” software development project. It is worth
noting that while the current interest of many researchers is focused in novice
programmers, this experiment was conducted over individuals of a computing
discipline expressing negative experiences towards computer programming with low-

Teaching Computer Programing as Knowledge Transfer … 151

level computer programming skills. This is to say, that the focus is to find practical
ways to improve skills –capabilities of agents- to “produce” software deliverables of
the project, not just coding programs and ensuring their correctness [7]. Or to phrase it
another way, this research is focused to improve individual skills from those who has
previous knowledge of computer programming and, however, despite of it, they have
not reached some productivity standards.

The experiment conducted was not a set of training sessions or the development of
an educational course syllabus. The experiment was a knowledge transfer process.
What was ensured was the process of developing the capabilities of the receiving
individuals to make computer programming knowledge productive in a real
environment. The results observed on the individuals under study allow infer that
productivity was significantly increased in a relatively short period of time, as a result
of a controlled process of knowledge transfer.

From the experiment that was conducted, it was found that the ten categories
(Table 1) that defined the set of assessment parameters showed that in subjects under
study reveal a knowledge absorption process and knowledge seizing by exploiting
developed (and developing at the individual level) programming skills in a real
software engineering project environment. Individuals were involved on a part-time
basis in this study. It could be thought that on a full-time basis an improvement in
software productivity may be achieved in a shorter time.

A generalization of this finding is still an issue because knowledge is not a matter
of data accumulation, but a cognitive process. Knowledge transfer could not be
measured directly, so proxy variables such as those of the categories in Table 1 were
measured to obtain an indirect estimate of the knowledge effectively transferred. This
opens an opportunity to conduct research in working teams of real software
engineering projects about productivity increase by improving absorptive capacities
regarding specific categories in a similar way as the categories (Table 1) involved in
this study.

Acknowledgments. Authors express their gratitude to Hospital Santa Clara, Bogotá
D.C. for authorizing access to their software project at the Pediatric Intensive Care
Unit. Especial thanks to Dr. Armando León Villanueva, Pediatric Lung Care and
Pediatric Pulmonologist of the Pediatric Intensive Care Unit, and Dr. Maria Claudia
Guzmán Diaz Pediatrician of Universidad El Bosque and ‘Hospital Cardiovascular
del Niño’ San Mateo, Cundinamarca. Authors would further like to thank three
anonymous reviewers for their useful comments and feedback which have helped to
write the final version of this paper.

References

1. ACM-IEEE, Computer Science Curricula 2013: Curriculum Guidelines for
Undergraduate Degree Programs in Computer Science - December 20, 2013. ISBN:
978-1-4503-2309-3. 2013, United States of America: The Joint Task Force on
Computing Curricula Association for Computing Machinery (ACM) IEEE Computer
Society.

152 O. López-Cruz et al.

2. Courte, J. and C. Bishop-Clark, Do students differentiate between computing
disciplines? ACM SIGCSE Bulletin. 41(1): p. 29-33. (2009)

3. INCOSE. What is Systems Engineering. The International Council on Systems
Engineering. http://www.incose.org/AboutSE/WhatIsSE.

4. Knuth, D.E., The art of computer programming: Sorting and searching. Vol. 3,
Reading, Massachussets: Addison-Wesley. 426-458. (1999)

5. Knuth, D.E., The art of computer programming Fundamental Algorithms. Vol. 1,
Reading, Massachussets: Addison-Wesley. World students series. (1973)

6. Knuth, D.E., The art of computer programming: Seminumerical algorithms. Vol. 2,
Reading Massachussets: Addison-Wesley (1973).

7. Gries, D., The science of programming. Springer Science & Business Media. (2012)
8. Bryant, A. It's engineering Jim… but not as we know it: software engineering—

solution to the software crisis, or part of the problem? in Proceedings of the 22nd
international conference on Software engineering. 2000. ACM. (2000)

9. Rubiano, S.M.M., O. López-Cruz, and E.G. Soto. Teaching computer programming:
Practices, difficulties and opportunities. in Frontiers in Education Conference (FIE),
2015. 32614 2015. IEEE. (2015)

10. Plonka, L., et al., Knowledge transfer in pair programming: An in-depth analysis.
International journal of human-computer studies. 73: p. 66-78. (2015)

11. González López, J.L. and P. Ruiz Hernández, Investigación cualitativa versus
cuantitativa:¿ dicotomía metodológica o ideológica? Index de Enfermería. 20(3): p.
189-193.(2011)

12. Monzón Laurencio, L.A., Ni cualitativo ni cuantitativo: un estudio hermenéutico
analógico sobre la metodología de la investigación. (2011)

13. Mejía, A., et al. Ser directo puede traerte problemas, pero ser indirecto también: Las
realimentaciones en dinámica de sistemas cualitativa y cuantitativa. in Artículo
aceptado para el Congreso Latinoamericano de Dinámica de Sistemas. (2007)

14. Aceros, V., et al., ¿Qualitative or quantitative? That's not the question: a method for
developing dynamic hypotheses. , in Proceedings of the 9th Latin American System
Dynamics Conference. Universidade de Brasília: Brasilia. (2011)

15. Camacho, J.J., J.M. Sanches-Torres, and E. Galvis-Lista, Understanding the Process
of Knowledge Transfer in Software Engineering: A Systematic Literature Review, in
The International Journal of Soft Computing and Software Engineering [JSCSE].
Special Issue: The Proceeding of International Conference on Soft Computing and
Software Engineering 2013 [SCSE’13], Doi: 10.7321/jscse.v3.n3.33 e-ISSN: 2251-
7545. 2013: San Francisco State University, CA, U.S.A. p. 219-229. (2013)

16. Fitzgerald, B., N. Russo, and T. O'Kane, An empirical study of system development
method tailoring in practice. ECIS 2000 Proceedings, p. 4 (2000)

17. Cresswell, J.W., Research design Qualitative, quantitative and mixed methos
approaches. Sage Publications. (2009)

18. Rus, I. and M. Lindvall, Knowledge management in software engineering. IEEE
software. 19(3): p. 26. (2002)

19. Mathiassen, L. and P. Pourkomeylian, Managing knowledge in a software
organization. Journal of Knowledge Management. 7(2): p. 63-80. (2003)

20. Ward, J. and A. Aurum, Knowledge management in software engineering-describing
the process, in Australian Software Engineering Conference, 2004. Proceedings.
2004. IEEE. p. 137-146. (2004)

21. Basili, V.R. and G. Caldiera, Improve software quality by reusing knowledge and
experience. MIT Sloan Management Review. 37(1): p. 55. (1995)

22. Batista Dias, M.G., N. Anquetil, and K.M. de Oliveira, Organizing the knowledge
used in software maintenance. J. UCS. 9(7): p. 641-658. (2003)

Teaching Computer Programing as Knowledge Transfer … 153

23. Ajith Kumar, J. and L. Ganesh, Research on knowledge transfer in organizations: a
morphology. Journal of knowledge management. 13(4): p. 161-174. (2009)

24. Shannon, C.E., A mathematical theory of communication. ACM SIGMOBILE
Mobile Computing and Communications Review. 5(1): p. 3-55. (2001)

25. Lopez-Cruz, O. and N. Obregon Neira, Diseño de la capacidad de absorción en las
organizaciones: propuesta de un nuevo constructo y literatura, in Congreso Nacional
e Internacional en Innovación en la Gestión de Organizaciones, Abril, 2016, F.R.
Santoyo, Editor. Universidad Central: Bogotá. p. 222-237.(2016)

26. López-Cruz, O. and N. Obregón Neira, Design of the Organizational Absorptive
Capacity: A New Construct Proposal and Literatures. In publishing, (2016)

154 O. López-Cruz et al.

	14
Teaching Computer Programing as Knowledge Transfer: Some Impacts on Software Engineering Productivity
	1 Introduction
	2 Methodological Issues
	3 Knowledge Transfer and Software
	4 Results Analysis
	5 Conclusion
	References

