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Abstract. We present the development of a software system for Newton-type 
methods via the identification and application of software design patterns. We 
measured the quality of our developed system and found that it is flexible, easy 
to use and extend due to the application of design patterns. Our newly 
developed system is flexible enough to be used by the numerical analyst 
interested in the creation of new Newton-type methods, or the engineer that 
applies different Newton--type strategies in his software solutions.  
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1   Introduction 

Newton-type methods are a family of numerical methods widely used to solve 
nonlinear systems of equations, unconstrained optimisation and data fitting problems. 
The popularity of these methods has led to the development of software packages 
implementing variations of them, e.g., HOMPACK [1], TENSOLVE [2] and NITSOL 
[3] are software packages to solve optimisation and nonlinear problems, all of them 
implemented in Fortran using the procedural programming paradigm. This approach 
generates complex and hard to reuse interfaces, inappropriate data structures and code 
that does not captures the implemented algorithms [4]. Software packages such as 
COOL [5], PETSC [6] and OPT++ [4] are object-oriented implementations of 
Newton-type methods. When the object-oriented approach is applied focusing on the 
details rather than on the bigger picture the produced software is commonly highly 
coupled, hard to modify and difficult to understand. 

Software design patterns are expert solutions to software design problems. The 
development of scientific software lead by the application of design patterns is not 
common due to the difficulty on the identification and mapping of problem-specific 
concepts into software patterns. The relations established by the objects identified at 
the design stage establish the structure and quality of the final software design. 
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Software patterns guide us through the design stage, they expose relations between 
the entities that describe a problem in a particular context [7]. 

Currently, few works have introduced design patterns in the field of scientific 
software. Some have identified and proposed new patterns for the development of 
scientific software, [8]-[10]. Others have successfully applied design patterns for the 
development of scientific software, [11]-[13]. 

In this work we take the ideas and principles described by design patterns and 
apply them for the development of scientific software, we design a novel pattern 
object-oriented software system design for Newton-type methods. The key 
requirement is the flexibility of this design to permit the inclusion of new Newton-
type methods. We use Martin’s metric [14] to evaluate the abstractness (or generality) 
and the instability (or ability to reuse its existing parts) of the software system. 

The remaining of this document is organised as follows: in section 2 we present  
the mathematical background regarding Newton-type methods and the variants 
considered in this work; in section 3 we present the development of the software 
system and the application of design patterns to solve software design problems; in 
section 4 we validate the newly developed software system; and in section 5 we 
present our main conclusions. 

2   Mathematical Background 

Newton's method may be considered as the standard technique used by the scientific, 
engineering and software development community to solve problems presenting 
nonlinear behaviour. We focus on three classes of nonlinear problems: 

Nonlinear equations problems involve to find *x  such that the vector-valued 
function F  of n  variables satisfies .0)( *xF  
Unconstrained optimisation problems comprise to find *x  such that the real-
valued function f  of n  variables satisfies )()( * xfxf  for all x close to .*x  

Nonlinear least-square problems require to find *x  such that 
2

1 ))((m
i xir  is 

minimised, ir  denotes the i-th component function of 

.,)),(),...,(),(()( 21 nmRxxrxrxrxG n
m  

In Algorithm 1 we present the generic form of Newton's method given in [15]. 
Algorithm 1.  Newton's method generic steps. 
Require. Initial guess .0x  

1: Initialise iteration counter .0k  
2: while stopping condition is not satisfied do 
3:    Compute Newton direction .s  
4:    Calculate the step length .  
5:    Get a new approximation .1 sxx kk  

6:    Increase the iteration counter .1kk  
7: end while 
8: Return kx as the approximated solution of .x  
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The selection of particular strategies, such as line search or trust regions methods, 
to compute the Newton direction (step 3) and the step length (step 4) gives rise to 
specific variations of Newton-type methods; each solving an specific nonlinear 
problem. 

In what follows we use jiji xfxJF ,)/()( to represent the Jacobian matrix of the 
function )(xF . The gradient of a function )(xf  is denoted by 

Tnxfxfxf )/,...,/()( 1 , and the Hessian of )(xf  is the matrix 

jiji xxxfxHf ,2 )/)(()( . 

3   Newton-type Methods Software Design 

We start by decomposing the problem into sub-systems by applying the commonality 
and variability analysis (CVA) of Coplien [16] to identify key concepts and study 
their variations in different scenarios of the problem domain. Then we apply the 
Analysis Matrix of Shalloway [7] to determine relationships between the previously 
identified concepts. We study these relations to gain an indication of potential design 
problems and identify design patterns that may be applied to solve them. The relations 
found at this stage dictate the structure of the software system design. 

3.1   Base System Design 

The base system design is generated from the sub-systems decomposition of the 
generic form of Newton's method, see Algorithm 1. The studied variations of 
Newton-type methods have steps 3, 4 and 5 in common, what varies is their particular 
implementation. By applying a CVA we identify key concepts and their variations in 
different scenarios, see Table 1. 

Table 1.  CVA for Newton methods. 

Scenarios Concept: Newton direction s  Concept: Step length  
Line search 

methods N/A Compute a step length to 
guarantee convergence. 

Trust region 
methods 

The Newton direction is obtained by solving the 
linear or quadratic model within a trust ratio. 

Constrain the step length 
by the trust radio. 

Damped 
methods 

Solve the system 
kkk FxJF  and find the 

Newton direction,  where kkk xxx 1 . 
Use line search methods 
to obtain the step length. 

Quasi-
Newton 
methods 

Obtain the Newton direction by solving the system 

kk FxA , where A  is a matrix representing the 

Jacobian or the Hessian matrix of kF . 

Obtain the step length 
using search or trust 

region methods. 

Inexact  
methods 

The Newton direction is obtained by solving the 
system 

kkk FxJF using an iterative method. 
Use a line search method 
to obtain the step length. 

Based on Algorithm 1 we identified two additional concepts from those presented 
in Table 1: the stopping condition and the evaluation function, see Figure 1. 
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Figure. 1. Relations between the identified concepts or Newton components and the generic 
steps of Newton's method. 

Each identified Newton component represents a sub-system. We observe that the 
Newton-type methods studied in this work share the same generic structure; an 
specific Newton-type versions can be created by varying the Newton components in 
the generic steps of Newton's method. From this statement we recognise the template 
method pattern [17] to represent the generic structure of Newton's method, and the 
facade design pattern [17] to define a simple and general interface for each of the 
steps or Newton components of the generic Newton algorithm steps. 

Now suppose that we have two different implementations for the same Newton 
component, one used for development and another used for high-performance 
applications. In order to provide a black-box design where we hide the technical 
details of the implementation to the users we apply the bridge design pattern which 
decouples the abstraction from the implementation and allows them to vary 
independently, [14]. The base software system design for Newton-type methods is 
presented in Figure 2. 

3.2 Newton’s Method Sub-systems Software Design 

Nonlinear methods. We observe that the three nonlinear problems presented in 
section 2 are particular or general cases of each other; e.g., a nonlinear least-square 
problem is a particular case of an unconstrained optimisation problem. Consider a 
function 0)(xF  and define 2||||2/1 Ff , finding an x  such that 0)( *xF  is 
equivalent to find an *x  such that 0)( *xf . We represent this relation as a 
transition between different nonlinear problems; in this case from a nonlinear least-
square problem to an unconstrained optimisation problem, see Figure 3. 
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Figure. 2. Base system design for Newton-type methods showing the application of the 
template, facade and bridge design patterns.1 

 
Figure. 3. Transitions between a nonlinear least-square problem and an unconstrained 
optimisation problem. The nonlinear functions and its derivatives are handled accordingly to 
the nonlinear problem to solve. 

We recognise that three studied nonlinear problems are mathematically equivalent, 
thus they can be reduced to the solution of an unconstrained optimisation problem. 
However, following this approach requires the user to perform this transformation. 
Our goal is to develop a software system that provides the user with the tools to treat 
and solve his nonlinear problem using different strategies (without him having to 
implement these strategies), thus he can select the one that satisfies its application 
requirements. 

In order to identify key concepts and relations between the three studied nonlinear 
problems we performed a CVA, see Table 2. We observe that for a particular scenario 
we compute either the Jacobian, the gradient or the Hessian of the nonlinear function. 
We recognise and apply the state design pattern [17] to implement transitions 
between strategies to handle the nonlinear function and its derivatives. Additionally, 
the user may provide the analytical form of the derivative or we could approximate it 
via finite differences or quasi-Newton method updates, we added these strategies to 
the software system design defined by the state pattern, see Figure 4. 

                                                           
1 We use the prefix CA and CC to indicate abstract and concrete classes, respectively. 
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Table 2.  CVA for nonlinear problems. 

Scenarios 

Concept: 
Nonlinear 
equations 
problem 

Concept: 
Unconstrained 
optimisation 

problem 

Concept: Nonlinear least-square problem 

Function nn RRF :  RRf n:  2||||
2
1,,: FfmnRRF mn  

First 
derivative )(xJF  )(xf  FxJFxf T)()(  

Second 
derivative N/A )(xHf  

m

i ii
T xHffxJFxJFxHf

1
)()()()(  

 

 
Figure. 4. Software system design implementing the state pattern to allow transitions between 
the studied nonlinear problems. 

The software system design developed in this section correspond to the Newton 
component: evaluation function, presented in Figure 1. 

Line Search Methods. Line search methods are strategies to find the step length 
 to move along a direction ks . The common schemes are based on bisection and 

interpolation. In order to determine whether the selected step length is appropriate, 
Wolfe, curvature and Goldstein test are applied [18], [19]. In Table 3 we present the 
concepts and its variations for the line search method scenario. 

The step length test condition is applied as part of the computation of the step 
length, however, the test condition can vary independently of the step length 
approximation method. The strategy design pattern [17] allows us to define a family 
of algorithms, encapsulate them and make them interchangeable. We use a double-
strategy, one strategy to encapsulate the step length approximation methods, and 
another strategy to encapsulate the decreasing condition methods, see Figure 5. 
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Table 3.  CVA for line search methods. 

Scenario Concept: Step length 
approximation 

Concept: Step length decreasing 
condition 

Line search methods 
Bisection Wolfe 

Quadratic interpolation Goldstein 
Cubic interpolation Curvature condition 

 

 
Figure. 5. A double-strategy pattern for the implementation of the selection of the step length. 

The resulting software system design from this section corresponds to the Newton 
component: step length, presented in Figure 1. 

Trust region Methods. Trust region methods are based on constructing a model to 
approximate a function )(xf  in a region around kx . These methods can be reduced 
to solve a constrained minimisation problem 

sxHfssxfxfsm k
TT

kk
Rs n

)(
2
1)()()(min  

(1) 

such that |||| s , where 0  is the trust region radius. In Table 4 we present the 
identified concepts and its variations associated with the trust region scenario. 

Table 4.  CVA for trust region methods. 

Scenario Concept: Solve constraint 
problem 

Concept: Update trust region 
radius 

Trust region methods 

Cauchy point method 
Adaptive methods using 

threshold [18] 
Dogleg methods 

Two-dimensional sub-space 
minimisation methods 

 
We encapsulate the methods that solve the minimisation problem and provide them 

with the same interface to make them interchangeable. We apply the strategy pattern 
to handle the methods to update the trust region radius and facilitate the addition of 
future methods. We apply the adapter design pattern to reuse the methods to solve 
nonlinear unconstrained optimisation problems from the nonlinear methods section; 
this pattern adapts the interface of an object such that it can be used in different 
contexts, [17], see Figure 6. 
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Figure. 6. Trust regions methods implemented via the strategy and the adapter pattern. 

The resulting software system design from this section corresponds to the Newton 
component: Newton direction, presented in Figure 1. 

Instantiating Objects and Interaction with External Packages. We use three 
more design patterns: the abstract factory to facilitate the creation and configuration 
of objects; the singleton, to supply a unique access point to all the factories; and the 
adapter pattern, to support the interaction with external packages for high-
performance computations. The details of the application of these patterns are 
presented in [20] (the master's degree thesis of the first author). 

4   Evaluation of the Software System Design 

The developed software system design is formed by seventeen packages, see 
details in [20]. Martin defines in [14] the level of abstractness of a software system as 

c

a

N
NA  

(2) 

where aN  is the number of abstract classes in the package and cN  is the total 
number of classes in the package. The range of A  is [0, 1]. 0A  indicates a 
concrete package and 1A  an abstract package. This metric is related to the capacity 
of extension of a software system, the more abstract the package the easier to extend. 
We also measure the instability of each package which is defined by Martin [14] as 

ae

e

CC
CI  

( ) 

where eC  is the number of classes inside the package that depend on classes outside 
the package, and aC  is the number of classes outside the package that depend on 
classes inside the package. The range of I  is [0, 1]. 0I  indicates an stable package 

108 R.S. Barrera et al.

3



and 1I  an unstable package. This metric shows the ability of a package to support 
change. Martin combines these two metrics as |1| IAD , where 0D  indicates 
a package easy to adapt or extend, and 1D  a package difficult to adapt or modify, 
see Table 5. 

Table 5.  Martin’s metric applied to the main packages of the architecture. 

Package name A I D 
 0.29 0.80 0.09 

 0.75 0.31 0.06 
 0.20 0.70 0.10 

 0.29 0.46 0.25 
 
We observe that most of the packages are near the main sequence, in particular, the 

package  has 06.0D , which indicates that the main package of 
the system is easy to extend, reusable and does not overuse abstraction. 

5   Conclusions 

We have presented the development of a software design for Newton-type methods; 
we applied eight design patterns from the book of Gamma et. al. [17]. The template 
method pattern defines the generic structure of the three studies Newton-type 
methods, the facade pattern supplies a simple interface for the Newton components, 
the bridge pattern allow us to implement different versions of a method to target the 
interest of different users, the state pattern hides the details of computing the first and 
second order derivatives of nonlinear functions, the strategy pattern allows us to 
change algorithms to compute the step length and decreasing condition in line search 
methods, it also let us add new methods to update the trust region radius, the adapter 
pattern provides a medium to communicate with third-party software libraries, it also 
allows us to reuse the strategies to compute the Newton direction from trust region 
methods, the abstract factory pattern provides an interface to create and configure the 
objects of the software system, and finally, the singleton pattern provides a unified 
and single interface for the communication with the factories. 

A main contribution of this work is the identification and application of the state 
pattern for the development of scientific software, to the best of these authors 
knowledge the identified instance of this pattern has not been reported in related 
works. The instability and abstractness values of this pattern are those of the 
NonlinearMethods package, the one implementing the state pattern. The results show 
that the system design is stable enough to be extended without loss of flexibility. With 
the design of the presented software system we demonstrate that the knowledge of the 
scientific expert can be exploited by the software engineer through the application of 
design patterns to generate simple, flexible and effective object-oriented software. As 
part of our future work is the application of parallel technologies, integration of third-
party state-of-the-art software libraries, use of templates and code optimisation 
techniques for the development of high-performance numerical software. 
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