
Using Design Patterns to Solve Newton-type Methods

Ricardo Serrato Barrera1, Gustavo Rodríguez Gómez2, Saúl Eduardo Pomares
Hernández2, Julio César Pérez Sansalvador3, and Leticia Flores Pulido4,

1 Estratei Sistemas de Información, S.A. de C.V., Virrey de Mendoza 605-B, Col. Las

fuentes, 59699, Zamora, Michoacán, México

2 Instituto Nacional de Astrofísica, Óptica y Electrónica, Coordinación de Ciencias
Computacionales, Luis Enrique Erro 1, 72840, Tonantzintla, Puebla, México

3 Instituto Nacional de Astrofísica, Óptica y Electrónica, Laboratorio de Visión por
Computadora, Luis Enrique Erro 1, 72840, Tonantzintla, Puebla, México

4 Universidad Autónoma de Tlaxcala, Facultad de Ciencias Básicas, Ingeniería y
Tecnología, Calzada Apizaquito, Colonia Apizaquito, 90300, Apizaco, Tlaxcala, México

{rsbserrato, grodrig, spomares, tachidok}@ccc.inaoep.mx, leticia.florespo@udlap.mx

Abstract. We present the development of a software system for Newton-type
methods via the identification and application of software design patterns. We
measured the quality of our developed system and found that it is flexible, easy
to use and extend due to the application of design patterns. Our newly
developed system is flexible enough to be used by the numerical analyst
interested in the creation of new Newton-type methods, or the engineer that
applies different Newton--type strategies in his software solutions.

Keywords: Newton-type methods, design patterns, object-oriented, software
design, scientific software.

1 Introduction

Newton-type methods are a family of numerical methods widely used to solve
nonlinear systems of equations, unconstrained optimisation and data fitting problems.
The popularity of these methods has led to the development of software packages
implementing variations of them, e.g., HOMPACK [1], TENSOLVE [2] and NITSOL
[3] are software packages to solve optimisation and nonlinear problems, all of them
implemented in Fortran using the procedural programming paradigm. This approach
generates complex and hard to reuse interfaces, inappropriate data structures and code
that does not captures the implemented algorithms [4]. Software packages such as
COOL [5], PETSC [6] and OPT++ [4] are object-oriented implementations of
Newton-type methods. When the object-oriented approach is applied focusing on the
details rather than on the bigger picture the produced software is commonly highly
coupled, hard to modify and difficult to understand.

Software design patterns are expert solutions to software design problems. The
development of scientific software lead by the application of design patterns is not
common due to the difficulty on the identification and mapping of problem-specific
concepts into software patterns. The relations established by the objects identified at
the design stage establish the structure and quality of the final software design.

© Springer International Publishing AG 2017
J. Mejia et al. (eds.), Trends and Applications in Software Engineering, Advances
in Intelligent Systems and Computing 537, DOI 10.1007/978-3-319-48523-2_

101

10

Software patterns guide us through the design stage, they expose relations between
the entities that describe a problem in a particular context [7].

Currently, few works have introduced design patterns in the field of scientific
software. Some have identified and proposed new patterns for the development of
scientific software, [8]-[10]. Others have successfully applied design patterns for the
development of scientific software, [11]-[13].

In this work we take the ideas and principles described by design patterns and
apply them for the development of scientific software, we design a novel pattern
object-oriented software system design for Newton-type methods. The key
requirement is the flexibility of this design to permit the inclusion of new Newton-
type methods. We use Martin’s metric [14] to evaluate the abstractness (or generality)
and the instability (or ability to reuse its existing parts) of the software system.

The remaining of this document is organised as follows: in section 2 we present
the mathematical background regarding Newton-type methods and the variants
considered in this work; in section 3 we present the development of the software
system and the application of design patterns to solve software design problems; in
section 4 we validate the newly developed software system; and in section 5 we
present our main conclusions.

2 Mathematical Background

Newton's method may be considered as the standard technique used by the scientific,
engineering and software development community to solve problems presenting
nonlinear behaviour. We focus on three classes of nonlinear problems:

Nonlinear equations problems involve to find *x such that the vector-valued
function F of n variables satisfies .0)(*xF
Unconstrained optimisation problems comprise to find *x such that the real-
valued function f of n variables satisfies)()(* xfxf for all x close to .*x

Nonlinear least-square problems require to find *x such that
2

1))((m
i xir is

minimised, ir denotes the i-th component function of

.,)),(),...,(),(()(21 nmRxxrxrxrxG n
m

In Algorithm 1 we present the generic form of Newton's method given in [15].
Algorithm 1. Newton's method generic steps.
Require. Initial guess .0x

1: Initialise iteration counter .0k
2: while stopping condition is not satisfied do
3: Compute Newton direction .s
4: Calculate the step length .
5: Get a new approximation .1 sxx kk

6: Increase the iteration counter .1kk
7: end while
8: Return kx as the approximated solution of .x

102 R.S. Barrera et al.

The selection of particular strategies, such as line search or trust regions methods,
to compute the Newton direction (step 3) and the step length (step 4) gives rise to
specific variations of Newton-type methods; each solving an specific nonlinear
problem.

In what follows we use jiji xfxJF ,)/()(to represent the Jacobian matrix of the
function)(xF . The gradient of a function)(xf is denoted by

Tnxfxfxf)/,...,/()(1 , and the Hessian of)(xf is the matrix

jiji xxxfxHf ,2)/)(()(.

3 Newton-type Methods Software Design

We start by decomposing the problem into sub-systems by applying the commonality
and variability analysis (CVA) of Coplien [16] to identify key concepts and study
their variations in different scenarios of the problem domain. Then we apply the
Analysis Matrix of Shalloway [7] to determine relationships between the previously
identified concepts. We study these relations to gain an indication of potential design
problems and identify design patterns that may be applied to solve them. The relations
found at this stage dictate the structure of the software system design.

3.1 Base System Design

The base system design is generated from the sub-systems decomposition of the
generic form of Newton's method, see Algorithm 1. The studied variations of
Newton-type methods have steps 3, 4 and 5 in common, what varies is their particular
implementation. By applying a CVA we identify key concepts and their variations in
different scenarios, see Table 1.

Table 1. CVA for Newton methods.

Scenarios Concept: Newton direction s Concept: Step length
Line search

methods N/A Compute a step length to
guarantee convergence.

Trust region
methods

The Newton direction is obtained by solving the
linear or quadratic model within a trust ratio.

Constrain the step length
by the trust radio.

Damped
methods

Solve the system
kkk FxJF and find the

Newton direction, where kkk xxx 1 .
Use line search methods
to obtain the step length.

Quasi-
Newton
methods

Obtain the Newton direction by solving the system

kk FxA , where A is a matrix representing the

Jacobian or the Hessian matrix of kF .

Obtain the step length
using search or trust

region methods.

Inexact
methods

The Newton direction is obtained by solving the
system

kkk FxJF using an iterative method.
Use a line search method
to obtain the step length.

Based on Algorithm 1 we identified two additional concepts from those presented
in Table 1: the stopping condition and the evaluation function, see Figure 1.

Using Design Patterns to Solve Newton-type Methods 103

Figure. 1. Relations between the identified concepts or Newton components and the generic
steps of Newton's method.

Each identified Newton component represents a sub-system. We observe that the
Newton-type methods studied in this work share the same generic structure; an
specific Newton-type versions can be created by varying the Newton components in
the generic steps of Newton's method. From this statement we recognise the template
method pattern [17] to represent the generic structure of Newton's method, and the
facade design pattern [17] to define a simple and general interface for each of the
steps or Newton components of the generic Newton algorithm steps.

Now suppose that we have two different implementations for the same Newton
component, one used for development and another used for high-performance
applications. In order to provide a black-box design where we hide the technical
details of the implementation to the users we apply the bridge design pattern which
decouples the abstraction from the implementation and allows them to vary
independently, [14]. The base software system design for Newton-type methods is
presented in Figure 2.

3.2 Newton’s Method Sub-systems Software Design

Nonlinear methods. We observe that the three nonlinear problems presented in
section 2 are particular or general cases of each other; e.g., a nonlinear least-square
problem is a particular case of an unconstrained optimisation problem. Consider a
function 0)(xF and define 2||||2/1 Ff , finding an x such that 0)(*xF is
equivalent to find an *x such that 0)(*xf . We represent this relation as a
transition between different nonlinear problems; in this case from a nonlinear least-
square problem to an unconstrained optimisation problem, see Figure 3.

104 R.S. Barrera et al.

Figure. 2. Base system design for Newton-type methods showing the application of the
template, facade and bridge design patterns.1

Figure. 3. Transitions between a nonlinear least-square problem and an unconstrained
optimisation problem. The nonlinear functions and its derivatives are handled accordingly to
the nonlinear problem to solve.

We recognise that three studied nonlinear problems are mathematically equivalent,
thus they can be reduced to the solution of an unconstrained optimisation problem.
However, following this approach requires the user to perform this transformation.
Our goal is to develop a software system that provides the user with the tools to treat
and solve his nonlinear problem using different strategies (without him having to
implement these strategies), thus he can select the one that satisfies its application
requirements.

In order to identify key concepts and relations between the three studied nonlinear
problems we performed a CVA, see Table 2. We observe that for a particular scenario
we compute either the Jacobian, the gradient or the Hessian of the nonlinear function.
We recognise and apply the state design pattern [17] to implement transitions
between strategies to handle the nonlinear function and its derivatives. Additionally,
the user may provide the analytical form of the derivative or we could approximate it
via finite differences or quasi-Newton method updates, we added these strategies to
the software system design defined by the state pattern, see Figure 4.

1 We use the prefix CA and CC to indicate abstract and concrete classes, respectively.

105Using Design Patterns to Solve Newton-type Methods

Table 2. CVA for nonlinear problems.

Scenarios

Concept:
Nonlinear
equations
problem

Concept:
Unconstrained
optimisation

problem

Concept: Nonlinear least-square problem

Function nn RRF : RRf n: 2||||
2
1,,: FfmnRRF mn

First
derivative)(xJF)(xf FxJFxf T)()(

Second
derivative N/A)(xHf

m

i ii
T xHffxJFxJFxHf

1
)()()()(

Figure. 4. Software system design implementing the state pattern to allow transitions between
the studied nonlinear problems.

The software system design developed in this section correspond to the Newton
component: evaluation function, presented in Figure 1.

Line Search Methods. Line search methods are strategies to find the step length
 to move along a direction ks . The common schemes are based on bisection and

interpolation. In order to determine whether the selected step length is appropriate,
Wolfe, curvature and Goldstein test are applied [18], [19]. In Table 3 we present the
concepts and its variations for the line search method scenario.

The step length test condition is applied as part of the computation of the step
length, however, the test condition can vary independently of the step length
approximation method. The strategy design pattern [17] allows us to define a family
of algorithms, encapsulate them and make them interchangeable. We use a double-
strategy, one strategy to encapsulate the step length approximation methods, and
another strategy to encapsulate the decreasing condition methods, see Figure 5.

106 R.S. Barrera et al.

Table 3. CVA for line search methods.

Scenario Concept: Step length
approximation

Concept: Step length decreasing
condition

Line search methods
Bisection Wolfe

Quadratic interpolation Goldstein
Cubic interpolation Curvature condition

Figure. 5. A double-strategy pattern for the implementation of the selection of the step length.

The resulting software system design from this section corresponds to the Newton
component: step length, presented in Figure 1.

Trust region Methods. Trust region methods are based on constructing a model to
approximate a function)(xf in a region around kx . These methods can be reduced
to solve a constrained minimisation problem

sxHfssxfxfsm k
TT

kk
Rs n

)(
2
1)()()(min

(1)

such that |||| s , where 0 is the trust region radius. In Table 4 we present the
identified concepts and its variations associated with the trust region scenario.

Table 4. CVA for trust region methods.

Scenario Concept: Solve constraint
problem

Concept: Update trust region
radius

Trust region methods

Cauchy point method
Adaptive methods using

threshold [18]
Dogleg methods

Two-dimensional sub-space
minimisation methods

We encapsulate the methods that solve the minimisation problem and provide them

with the same interface to make them interchangeable. We apply the strategy pattern
to handle the methods to update the trust region radius and facilitate the addition of
future methods. We apply the adapter design pattern to reuse the methods to solve
nonlinear unconstrained optimisation problems from the nonlinear methods section;
this pattern adapts the interface of an object such that it can be used in different
contexts, [17], see Figure 6.

107Using Design Patterns to Solve Newton-type Methods

Figure. 6. Trust regions methods implemented via the strategy and the adapter pattern.

The resulting software system design from this section corresponds to the Newton
component: Newton direction, presented in Figure 1.

Instantiating Objects and Interaction with External Packages. We use three
more design patterns: the abstract factory to facilitate the creation and configuration
of objects; the singleton, to supply a unique access point to all the factories; and the
adapter pattern, to support the interaction with external packages for high-
performance computations. The details of the application of these patterns are
presented in [20] (the master's degree thesis of the first author).

4 Evaluation of the Software System Design

The developed software system design is formed by seventeen packages, see
details in [20]. Martin defines in [14] the level of abstractness of a software system as

c

a

N
NA

(2)

where aN is the number of abstract classes in the package and cN is the total
number of classes in the package. The range of A is [0, 1]. 0A indicates a
concrete package and 1A an abstract package. This metric is related to the capacity
of extension of a software system, the more abstract the package the easier to extend.
We also measure the instability of each package which is defined by Martin [14] as

ae

e

CC
CI

()

where eC is the number of classes inside the package that depend on classes outside
the package, and aC is the number of classes outside the package that depend on
classes inside the package. The range of I is [0, 1]. 0I indicates an stable package

108 R.S. Barrera et al.

3

and 1I an unstable package. This metric shows the ability of a package to support
change. Martin combines these two metrics as |1| IAD , where 0D indicates
a package easy to adapt or extend, and 1D a package difficult to adapt or modify,
see Table 5.

Table 5. Martin’s metric applied to the main packages of the architecture.

Package name A I D
 0.29 0.80 0.09

 0.75 0.31 0.06
 0.20 0.70 0.10

 0.29 0.46 0.25

We observe that most of the packages are near the main sequence, in particular, the

package has 06.0D , which indicates that the main package of
the system is easy to extend, reusable and does not overuse abstraction.

5 Conclusions

We have presented the development of a software design for Newton-type methods;
we applied eight design patterns from the book of Gamma et. al. [17]. The template
method pattern defines the generic structure of the three studies Newton-type
methods, the facade pattern supplies a simple interface for the Newton components,
the bridge pattern allow us to implement different versions of a method to target the
interest of different users, the state pattern hides the details of computing the first and
second order derivatives of nonlinear functions, the strategy pattern allows us to
change algorithms to compute the step length and decreasing condition in line search
methods, it also let us add new methods to update the trust region radius, the adapter
pattern provides a medium to communicate with third-party software libraries, it also
allows us to reuse the strategies to compute the Newton direction from trust region
methods, the abstract factory pattern provides an interface to create and configure the
objects of the software system, and finally, the singleton pattern provides a unified
and single interface for the communication with the factories.

A main contribution of this work is the identification and application of the state
pattern for the development of scientific software, to the best of these authors
knowledge the identified instance of this pattern has not been reported in related
works. The instability and abstractness values of this pattern are those of the
NonlinearMethods package, the one implementing the state pattern. The results show
that the system design is stable enough to be extended without loss of flexibility. With
the design of the presented software system we demonstrate that the knowledge of the
scientific expert can be exploited by the software engineer through the application of
design patterns to generate simple, flexible and effective object-oriented software. As
part of our future work is the application of parallel technologies, integration of third-
party state-of-the-art software libraries, use of templates and code optimisation
techniques for the development of high-performance numerical software.

109Using Design Patterns to Solve Newton-type Methods

Acknowledgments. We sincerely thank the observations of the two anonymous
reviewers that helped to improve and clarify this work.

References

1. L.T. Watson, S.C. Billups and A.P. Morgan, Algorithm 652: hom-pack: a suite of codes
for globally convergent homotopy algorithm, ACM Trans. Math. Soft., vol. 13, no. 3,
pp. 281-310 (1987).

2. A. Bouaricha and R.B. Shnabel, Algorithm 768: tensolve: a software package for
solving systems of nonlinear equations and nonlinear least-square problems using
tensor methods, ACM Trans. Math. Soft., vol. 23, no. 2, pp. 174-195 (1997).

3. M. Pernice and H. F. Walker, Nitsol: a Newton iterative solver for nonlinear systems,
SIAM J. Sci. Comp., vol. 19, no. 1, p. 302 (1998).

4. J. Meza, R. Oliva, P. Hough and P. Williams, Opt++: an object-oriented toolkit for
nonlinear optimization, ACM Trans. Math. Soft., vol. 33, no. 2, pp. 12-27 (2007).

5. L. Deng, W. Gouveia and J. Scales, The cwp object-oriented optimization library,
Center for Wave Phenomena, Technical report (1994).

6. S. Balay, W. Gropp, L. McInnes and B. Smith, Petsc 2.0 users manual, Argonne
National Laboratory, Technical report (1995).

7. A. Shalloway and J. Trott, Design Patterns Explained: A New Perspective on Object-
Oriented Design (2Nd Edition) (Software Patterns Series). Addison-Wesley (2002).

8. C. Blilie, Patterns in scientific software: an introduction, Compt. Sci. Eng., vol. 4. no. 3,
pp. 48-53, 2002.

9. G. Rodríguez-Gómez, J. Muños-Arteaga and B. Fernández, Scientific software design
through scientific computing patterns, in Fourth IASTED International Conference,
Hawai, USA, 2004.

10. T. Cickovski, T. Matthey and J. Izaguirre, Design patterns for generic object-oriented
scientific software, Department of Computer Science and Engineering, University of
Notre Dame, Technical report, TR05-12 (2005).

11. V. K. Decyk and H. J. Gardner, Object-oriented design patterns in Fortran 90/95,
Comput. Phys. Commun., vol. 178, no. 8, pp. 611-620 (2008).

12. J. Pérez-Sansalvador, G. Rodríguez-Gómez and S. Pomares-Hernández, Pattern object-
oriented architecture for multirate integration methods. In CONIELECOMP, Puebla,
Mexico, 2011, pp., 158-163.

13. D. Rouson, J. Xia and X. Xu, Scientific Software Design, 1st. New York, USA:
Cambridge University Press, 2011.

14. R. Martin, Agile software development: principles, patterns, and practices. NJ, USA:
Prentice Hall (2003).

15. C. Kelley, Iterative methods for optimization, Philadelphia, USA: SIAM (1999).
16. J. Coplien, D. Hoffman and D. Weiss, Commonality and variability in software

engineering, IEEE Software, vol. 15, no. 6, pp. 37-45 (1998).
17. E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design patterns: elements of reusable

object-oriented software. Massachusetts, USA: Addison-Wesley, Massachusetts (1995).
18. J. Dennis and R. Schnabel, Numerical methods for unconstrained optimization and

nonlinear equations, Philadelphia, USA: SIAM (1996).
19. J. Nocedal and S. Wright, Numerical optimization, 2nd. Springer-Verlag (2006).
20. R. S. Barrera, Arquitectura de Software Flexible y Genérica para Métodos del tipo

Newton, Master's thesis, Instituto Nacional de Astrofísica, Óptica y Electrónica,
Mexico (2011).

110 R.S. Barrera et al.

	10
Using Design Patterns to Solve Newton-type Methods
	1 Introduction
	2 Mathematical Background
	3 Newton-type Methods Software Design
	4 Evaluation of the Software System Design
	5 Conclusions
	References

