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Abstract. Many clinical data suffer from data imbalance in which we have
large number of instances of one class and small number of instances of the
other. This problem affects most machine learning algorithms especially deci-
sion trees. In this study, we investigated different undersampling and over-
sampling algorithms applied to multiple imbalanced clinical datasets. We
evaluated the performance of decision tree classifiers built for each combination
of dataset and sampling method. We reported our experiment results and found
that the considered oversampling methods generally outperform undersampling
ones using AUC performance measure.

Keywords: Clinical data mining � Imbalanced data � Undersampling �
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1 Introduction

There has been an increase of the use of data mining techniques in the different areas of
medicine (bioinformatics, medical imaging, clinical informatics, and public health
informatics) in the last decade. This is due to the impact data mining had on other
domains, such as banking, marketing, and e-commerce, which gave high hopes for
similar achievements in medicine, by extracting untapped knowledge contained in
available medical data as well.

The aim of clinical data mining is to search for useful patterns and information
within patients’ data, and develop prediction models that can support clinical decision
making [1, 2]. Data mining can be used to build predictive models in prognosis,
diagnosis and treatment planning. Even when the data is collected for purposes other
than directly diagnosing a disease or predicting treatment outcome, useful medical
information can still be retrieved. Nakamura et al. [3] used data mining to predict the
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development of pressure ulcer in hospitals from patients’ data that were originally
collected for the purpose of calculating nursing costs. Decision making in the medical
field is rather more sensitive than many other fields because of its direct relation to life
and death consequences, and the well-being of patients. Therefore, a decision should be
made with strong belief that is supported by thorough evaluation and clear explanation.
This makes clinical data mining distinctive than other data mining uses in various
ways. For example, it is widely common in clinical data mining to use white-box
classifiers such as rule-based learners or decision trees because the resulting model is
represented in a readable format. This enables the physicians to interpret the model
output based on their medical knowledge, and increases their confidence when making
their final decisions. While models built using black-box methods such as Artificial
Neural Networks or Support Vector Machines and provide better results in terms of
prediction accuracy, will be welcomed in many other fields, our experience showed that
physicians often hesitate to accept these results due to the lack of model understand-
ability, how the involved factors are related, and how to link that to their medical
experience and knowledge. Although researchers have investigated the use of many
different machine learning algorithms on clinical data, and reported interesting findings
[1, 2], we believe that in practice, the ability for model introspection will actually limit
us to only few of the many algorithms that are used in other fields and applications,
even if this comes at the expense of prediction accuracy.

Another point to consider is that in many data mining applications, it is desirable to
have a prediction model with high accuracy. In clinical data mining, however, it is
important to distinguish between false positive errors and false negative ones. A false
negative error has bigger impact than a false positive one because it can lead an
unhealthy patient to miss a proper treatment, which might be fatal. On the other hand, a
false positive error can be detected and corrected at a later stage by further investi-
gations and tests.

Clinical datasets are usually highly heterogeneous where the data are usually col-
lected from various sources such as images, laboratory tests, patient interviews, and
physicians’ observations and interpretations which leads to a poor mathematical
characterization. In addition, many clinical datasets are noisy, incomplete, and suffer
from the problem of data imbalance, in which the data has large number of patients
(cases/instances) of one class (type/category), and a small number of patients of the
other class.

In this study we consider using C4.5 decision tree, widely used in clinical data
mining, with different sampling methods in order to identify best solutions for tackling
the imbalanced data problem commonly faced in medical data mining.

The rest of this paper is organized as follows. In the next section, we explain
decision tree classification models. We then discuss data imbalance problem and
provide a description of common methods to overcome it in Sect. 3. Section 4 presents
the clinical datasets considered in this study. Section 5 discusses the methodology we
follow to conduct our experiments. Analyzing the results and reporting our findings is
in Sect. 6. Finally, Sect. 7 concludes the paper and gives directions for future works.
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2 Decision Trees

A decision tree model [4] is a data structure that is capable of representing knowledge
in a humanly understandable way. It consists of a set of internal nodes, each repre-
senting test conditions on the values of one data attribute. The tree emerges from one
common root node and ends with many leaf nodes, where each leaf represents a final
classification decision.

Being able to understand how the built model is classifying the data and to interpret
that into useful domain knowledge are the main reasons why decision trees are
preferable over other methods like SVM or neural networks in clinical data mining [5].
A new data instance can be classified by starting from the root of the decision tree, and
moving down its branches according to its attributes test results until a leaf node is
reached. The class of the leaf node represent the predicted class of the instance.
Attributes selected as a node test are usually determined using some splitting criteria.
However, popular splitting criteria such as information gain ratio [4, 6] and Gini
measure are skew sensitive.

3 Data Imbalance

Data imbalance is a problem that is very common in clinical data mining. A data set is
considered imbalanced if the number of instances of one class is considerably smaller
than the number of instances in the others. In clinical data the majority class is usually
the negative class and the minority class is the positive class which is the class of our
main interest. Multi-class problems might also suffer from data imbalance; however, it
can be easily converted into many one-versus-others problem. Many learning algo-
rithms tend to get overwhelmed by the large number of the majority class and ignore
the minority class thus provide a high total accuracy, however, it also provides a high
error rate on the minority class which is usually our concern. Assuming a 90 %
imbalance ratio, a classifier that classify all instance as negative will achieve a 90 %
accuracy while misclassifying all positive instances of the important class. Obviously
this is not the desired result and some alternation is required to overcome this problem.

Japkowicz and Stephen [7], showed that different learning algorithms have different
level of sensitivity to the data imbalance problem. They showed also that decision trees
is the most sensitive classifier compared to Multilayer Perceptron and Support Vector
Machines. In clinical data mining, decision trees are preferable because they provide an
explanation of the classification decision.

3.1 Undersampling

Undersampling achieves data balance by removing instances from the majority class.
Random undersampling method is the simplest form of undersampling in which the
size of the majority class is reduced by removing instances randomly as its name
indicates. Random undersampling is simple and easy to implement however, a main
disadvantage of data undersampling methods is that there is a possibility that we lose
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information contained in important majority class instances removed due to the
undersampling process. A good informed-undersampling method reduces this
possibility.

Informed undersampling reduces the size of the majority class in a controlled
fashion in order to keep important instances from the majority class. Example of
informed sampling are EasyEnsemble and BalanceCascade reported in [8]. Both
methods use ensemble learning in order to explore the majority class space and select
useful instances, however, ensemble learners models are usually difficult to explain and
fall in the black-box learners zone.

J. Zhang and I. Mani [9] proposed four sampling methods called NearMiss-1,
NearMiss-2, NearMiss-3, and Most-Distance that uses K-nearest neighbor in order to
sample reduce the size of the majority class. The K-nearest neighbor of an instance is
defined as the K elements whose distance between itself and the instance is the
smallest. Here we provide a description of the four algorithms:

• NearMiss-1 selects from the majority class the instances whose average distances to
the three closest minority instances are the smallest. Thus the instances selected by
NearMiss-1 are close to some of the minority class instances.

• NearMiss-2 selects from the majority class the instances with the smallest average
distance to the three farthest minority class. In other words, NearMiss-2 selects the
majority instances close to all of the minority instances.

• NearMiss-3 surrounds each instance form the minority class with k instances from
the majority class. It selects a predetermined number of the closest majority
instances for each minority instance.

• Most Distance selects the instances from the majority class that have the largest
average distance to the three closest instances from the minority class.

3.2 Oversampling

As its name indicates, oversampling works by sampling more data from the minority
class. Random oversampling randomly selects a set of minority class Sr, duplicates its
members, and appends them to the original minority class set. This will lead to an
increase in the size of the minority class by the size of Sr and a reduction in the original
data imbalance distribution the process is repeated until the desired data balance
reached. The problem with oversampling is that it may make the classifier susceptible
to data overfitting because repeating the same instance causes the classifier to become
more specific in covering these instances.

Another method of increasing the size of the minority class is synthetic sampling in
which artificial data is synthesized from the original minority class. A powerful method
that has shown good results in many applications is the synthetic minority oversam-
pling technique (SMOTE) [10]. SMOTE uses feature space similarities between
minority class instances in order to generate the synthesized artificial data. For each
instance in the minority class in order to create a synthesized instance SMOTE ran-
domly selects one of its K-nearest neighbor for some specified K, calculate the feature
vector difference between the two instances then multiplies it by a random number in
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the range [0, 1] and add the resulted vector to the original minority instance to generate
the new artificial instance.

3.3 Model Evaluation

It is important to validate the model performance. Usually, accuracy is the evaluation
metrics used to evaluate classification models. However, accuracy assumes similar cost
for false positive and false negative errors. In clinical data mining, the cost of false
positive is more expensive than the cost of false negative errors, and an evaluation
method that reflects this fact is required.

Evaluation metrics are usually derived from the confusion matrix shown in Table 1.
From the confusion matrix, accuracy can be calculated as the ratio of correctly

classified instances: Accuracy = (TP + TN) / (Pc + Nc), and the classification error
equals 1- Accuracy, i.e. Error = (FP + FN) / (Pc + Nc).

Sensitivity and specificity can provide better metrics in the case of imbalanced
datasets. Sensitivity, defined as TP / (TP + FN) = TP / Pc, measures the proportion of
positive instances that are correctly classified.

On the other hand, specificity, defined as TN / (TN + FP) = TN / Nc, measures the
proportion of negative instances that are correctly classified.

A good classifier should have high values for both sensitivity and specificity. In the
case of imbalanced data, a classifier that classifies all instances as negative will have
high accuracy, and high specificity, but zero sensitivity.

The Area Under Curve (AUC) [11] is widely used for measuring the performance
in case of imbalanced data. AUC returns the area under Receiver Operating Charac-
teristics Curve (ROC) that provides a visual representation of the performance in
regards to the true positive rate (i.e. sensitivity) and false positive rate (i.e.
1-specificity). The visual presentation is useful for showing the tradeoffs between true
positive and false positive error rates, however, it is difficult to use for calculation.
The AUC provides a quantitative metric for ROC.

4 Experimental Datasets

Earlier experimental studies on learning from imbalanced data have been conducted.
Reference [12] discussed the use of several sampling techniques versus different
machine learners and performance metrics, and reported partial results of applying
combinations of these choices on 35 datasets coming from a variety of application
domains. In another study [13], the researchers investigated the class-imbalance

Table 1. Confusion matrix

Positive Prediction: Pp Negative Prediction: Np

Positive Class: Pc TP: True Positive FN: False Negative
Negative Class: Nc FP: False Positive TN: True Negative

156 A. Kasem et al.



problem in medical datasets by considering different under-sampling and
over-sampling techniques applied on one cardiovascular dataset. In this paper, we will
investigate the effect of a group of undersampling and oversampling techniques applied
on multiple clinical datasets, and under constraints suitable for data mining in the
medical domain, where white-box learners and suitable metrics are of concern.

In our empirical study, we have considered 7 nonproprietary clinical datasets
publically available in the following sources:

• UCI: the data repository of the Center for Machine Learning and Intelligent Systems
in the University of California, Irvine, famously known as UCI Machine Learning
Repository. (archive.ics.uci.edu/ml.)

• OML: an open collaborative machine learning platform (www.openml.org).

Table 2. Description of used clinical datasets

Data
set
ID

Description Source URLa

BRC Breast Cancer dataset, from Institute of
Oncology University Medical Center
Ljubljana, Yugoslavia [14]. It was donated in
1988, and it is used to predict recurrent
cancer events of patients.

Breast + Cancer

BCW Breast Cancer Wisconsin dataset, donated
from University of Wisconsin Hospitals in
1992 [15]. It is used to diagnose benign and
malignant breast cancers.

Breast + Cancer + Wisconsin + %
28Original%29

DIB Pima Indians Diabetes Database, donated in
1990, for predicting whether patients show
signs of diabetes according to World Health
Organization criteria.

Pima + Indians + Diabetes

SAH South Africa Heart Disease dataset, taken
from a larger dataset described by
Rousseauw et al. in 1983.

www.openml.org/d/1498

SPF Heart dataset of cardiac Single Proton
Emission Computed Tomography (SPECT)
images, donated in 2001, where features are
extracted from the images and used to predict
cardilogists’ diagnoses of normal and
abnormal patients.

SPECTF + Heart

SPT Same classification task as SPF, with binary
extracted features to form the dataset.

SPECT + Heart

TYR Thyroid Disease dataset, donated by the
Garavan Institute in1987, to diagnose
patients with thyroid disease.

Thyroid + Disease

aUse archive.ics.uci.edu/ml/datasets/ before the value for UCI based datasets.

Empirical Study of Sampling Methods for Classification 157

http://archive.ics.uci.edu/ml
http://www.openml.org
http://www.openml.org/d/1498
http://archive.ics.uci.edu/ml/datasets/


We have considered only datasets with binary classification problem. Table 2 lists
these datasets with a brief description of each one, and an identifier to refer to later in
our analysis.

The imbalance ratio, defined here as the percentage of minority class instances to
majority class instances, varies from 9 % (highly imbalanced) to almost 54 % (only
slightly imbalanced). The datasets have also diversity in the number of attributes, their
types (continuous and categorical), and the number of instances.

Few datasets contain missing values in one or more of their attributes. In our study,
we did not apply any method to fill in these values, and decided to work on complete
data by removing the instances with missing values since they were only few. The TYR
dataset was the only one having some attributes completely empty or redundant (these
attributes were removed), and had rather big number of instances with missing values
in some other attributes. The instances in the latter case have been removed, which we
consider relatively acceptable given the total number of instances in this dataset.
Table 3 summarizes these details.

5 Experiment Design

We have used RapidMiner (6.5) [16] to conduct our experiments. We have also used
SMOTE implementation in Weka (3.16.13) software [17] to perform oversampling.

We have systematically applied each of the sampling methods, including “No
Sampling”, on each of the seven datasets. After performing data pre-processing,
10-folds cross-validation (stratified) was used in order to evaluate each method. In each
fold, data balancing methods were applied to the training subset, while the test subset
was left imbalanced. Figure 1 shows a snapshot of the cross-validation design in
RapidMiner which limits the sampling application to the training set. AUC, sensitivity,
and specificity were recorded for each sampling method.

Table 3. Datasets pre-processing and summaries

Data
set

# of a

instances
# of b

attributes
Attribute types Instances

removed
# of
positive

# of
negative

Imbalance
ratio

BRC 277 10 all nominal 9 81 196 0.41
BCW 683 10 all numeric 16 239 444 0.54
DIB 768 9 all numeric 0 268 500 0.54
SAH 462 10 8 numeric, 1

nominal
0 160 302 0.53

SPF 267 45 all numeric 0 55 212 0.26
SPT 267 23 all nominal 0 55 212 0.26
TYR 2,643 23 6 numeric, 16

nominal
1,129 212 2,431 0.09

aFinal number of instances after removing instances with missing values.
bNumber of attributes, including the class attribute, after pre-processing.
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The four sampling methods, NearMiss1, NearMiss2, NearMiss3, and Most Dis-
tance depend on calculating the distance between instances. In case of numeric attri-
butes, Euclidean distance is used. However, when we have mixed types of attributes
(numerical and categorical), Mixed-Euclidean distance is used, where for nominal
attributes a distance of one is counted if corresponding values are not the same. Those
algorithms are not part of RapidMiner components, and have been implemented by the
authors.

For all sampling methods, we chose the parameters that rebalance the datasets to an
almost equal ratio for both classes. As for the k parameter (number of nearest neigh-
bors) for SMOTE and NearMiss3 algorithms, a fixed value of 5 has been chosen.

6 Results and Analysis

The results of our experiments are shown in Tables 4, 5, 6 and 7. For each dataset, the
area under curve AUC, sensitivity, and specificity of each of the methods used rounded
to two decimal places are reported.

For the Breast Cancer (BRC) dataset, Table 4. (left) shows that Most Distance
method scored the highest AUC, with corresponding 0.54 sensitivity and 0.81 speci-
ficity. It shows a good improvement in sensitivity over the results obtained on the
original data (indicated by No Sampling method) with a relatively low reduction in
specificity. Table 4. (right) shows the results for the BCW dataset, and the results for
the remaining datasets are summarized in Tables 5, 6 and 7.

In Table 8, we have summerized the ranking counts for each method. For example,
Random Undersampling method was ranked first in only one dataset, and similarly for
second, third, and fourth ranks. It also ranked fifth in three datasets.

Fig. 1. Cross-validation process to evaluate SMOTE oversampling using RapidMiner.
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We can see from the table that oversampling methods have ranked first and second
more often than the undersampling ones, with random oversampling ranked first more
than SMOTE method. Among the undersampling methods NearMiss1 and NearMiss2
methods have often scored low ranks compared to other methods.

Table 4. Performance ranks and results on BRC (left) and BCW (right) datasets.

# Method AUC Sens. Spec.

1 Most Distance 0.69±0.11 0.54±0.16 0.81±0.06

2 NearMiss1 0.68±0.09 0.53±0.15 0.74±0.10

3 No Sampling 0.65±0.11 0.32±0.19 0.92±0.05

4 Rand. Under. 0.65±0.09 0.40±0.20 0.74±0.18

5 NearMiss3 0.64±0.11 0.30±0.15 0.91±0.06

6 Rand. Over. 0.63±0.08 0.42±0.11 0.83±0.16

7 SMOTE 0.63±0.10 0.40±0.18 0.84±0.07

8 NearMiss2 0.62±0.09 0.69±0.11 0.46±0.11

# Method AUC Sens. Spec.

1 Rand. Over. 0.96±0.02 0.97±0.04 0.96±0.03

2 SMOTE 0.96±0.02 0.96±0.03 0.95±0.03

3 No Sampling 0.96±0.03 0.95±0.06 0.97±0.02

4 NearMiss2 0.96±0.03 0.95±0.06 0.96±0.02

5 Rand. Under. 0.96±0.02 0.97±0.04 0.94±0.02

6 NearMiss1 0.95±0.03 0.96±0.06 0.94±0.02

7 Most Distance 0.94±0.03 0.97±0.03 0.91±0.04

8 NearMiss3 0.91±0.05 0.96±0.04 0.86±0.08

Table 5. Performance ranks and results on DIB (left) and SAH (right) datasets.

# Method AUC Sens. Spec.

1 Rand. Over. 0.71±0.07 0.49±0.28 0.80±0.21

2 SMOTE 0.71±0.07 0.71±0.25 0.61±0.23

3 Most Distance 0.66±0.05 0.90±0.06 0.43±0.06

4 No Sampling 0.66±0.07 0.28±0.08 0.95±0.05

5 Rand. Under. 0.66±0.08 0.42±0.26 0.83±0.19

6 NearMiss1 0.62±0.05 0.38±0.07 0.90±0.04

7 NearMiss3 0.60±0.05 0.24±0.08 0.96±0.02

8 NearMiss2 0.50±0.00 0.53±0.07 0.50±0.09

# Method AUC Sens. Spec.

1 Most Distance 0.60±0.08 0.76±0.13 0.42±0.11

2 Rand. Under. 0.59±0.08 0.44±0.38 0.68±0.33

3 SMOTE 0.59±0.05 0.96±0.06 0.22±0.07

4 No Sampling 0.58±0.07 0.06±0.07 0.96±0.06

5 Rand. Over. 0.58±0.05 0.75±0.37 0.40±0.28

6 NearMiss3 0.51±0.03 0.06±0.09 0.95±0.05

7 NearMiss1 0.51±0.02 0.26±0.13 0.80±0.10

8 NearMiss2 0.51±0.02 0.35±0.11 0.59±0.12
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Table 6. Performance ranks and results on SPF (left) and SPT (right) datasets.

# Method AUC Sens. Spec.

1 Rand. Over. 0.75±0.13 0.78±0.22 0.71±0.14

2 SMOTE 0.73±0.14 0.74±0.21 0.72±0.11

3 Rand. Under. 0.71±0.12 0.79±0.23 0.64±0.15

4 Most Distance 0.69±0.09 0.98±0.05 0.44±0.14

5 No Sampling 0.66±0.13 0.19±0.17 0.91±0.07

6 NearMiss2 0.65±0.09 0.73±0.20 0.54±0.17

7 NearMiss1 0.56±0.11 0.49±0.26 0.54±0.10

8 NearMiss3 0.50±0.00 0.22±0.17 0.76±0.11

# Method AUC Sens. Spec.

1 Rand. Under. 0.77±0.11 0.77±0.16 0.76±0.07

2 Rand. Over. 0.77±0.10 0.78±0.15 0.68±0.10

3 No Sampling 0.76±0.11 0.50±0.32 0.85±0.10

4 NearMiss3 0.75±0.08 0.59±0.14 0.82±0.10

5 SMOTE 0.71±0.11 0.68±0.24 0.69±0.12

6 Most Distance 0.70±0.09 0.85±0.14 0.51±0.08

7 NearMiss1 0.54±0.04 0.83±0.33 0.17±0.21

8 NearMiss2 0.52±0.03 0.65±0.43 0.32±0.34

Table 7. Performance ranks and results on TYR dataset.

# Method AUC Sens. Spec.

1 SMOTE 0.97 ± 0.01 0.97 ± 0.03 0.94 ± 0.02
2 Rand. over. 0.96 ± 0.03 0.93 ± 0.05 0.98 ± 0.01
3 NearMiss3 0.95 ± 0.02 0.91 ± 0.06 0.98 ± 0.01
4 No Sampling 0.95 ± 0.04 0.93 ± 0.06 0.98 ± 0.01
5 Rand. Under. 0.94 ± 0.03 0.93 ± 0.05 0.95 ± 0.02
6 NearMiss2 0.93 ± 0.03 0.90 ± 0.07 0.96 ± 0.01
7 NearMiss1 0.93 ± 0.03 0.90 ± 0.07 0.96 ± 0.01
8 Most Distance 0.60 ± 0.02 0.97 ± 0.04 0.22 ± 0.03

Table 8. Methods Rankings

Sampling method Rank count
1 2 3 4 5 6 7 8

Random Undersampling 1 1 1 1 3 0 0 0
NearMiss1 0 1 0 0 0 2 4 0
NearMiss2 0 0 0 1 0 2 0 4
NearMiss3 0 0 1 1 1 1 1 2
Most Distance 2 0 1 1 0 1 1 1
Random Oversampling 3 2 0 0 1 1 0 0
SMOTE 1 3 1 0 1 0 1 0
No Sampling 0 0 3 3 1 0 0 0
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7 Conclusion

In thiswork,we have evaluated the performance of different samplingmethods on clinical
data classification problem using the C4.5 decision tree due to its wide usage in clinical
data mining. The methods of random oversampling and undersampling, SMOTE over-
sampling, NearMiss1, NearMiss2, NearMiss3, and Most Distance undersampling
methods were investigated. The results showed that from the AUC point of view, random
oversampling and SMOTE methods were superior to the undersampling methods.
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