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Abstract. Replicating loops represent a class of benchmarks, which is
commonly studied in relation with cellular automata. Most of the known
loops, for which replication rules exist in two-dimensional cellular space,
create the copies of themselves using a certain construction algorithm
that is common for all the emerging replicas. In such cases, the replication
starts from a single instance of the loop (represented as the initial state
of the cellular automaton) and is controlled by the transition function of
the automaton according to which the copies of the loop are developed.
Despite the fact that universal replicators in cellular automata are pos-
sible (for example, von Neumann’s Universal Constructor), the process
of replication of the loops is usually specific to the shape of the loop and
the replication rules given by the transition function. This work presents
a method for the automatic evolutionary design of cellular automata,
which allows us to design transition functions for various structures that
are able to replicate according to a given specification. It will be shown
that new replicating loops can be discovered that exhibit some uncon-
ventional features in comparison with the known solutions. In particular,
several scenarios will be presented which can, in addition to the repli-
cation from the initial loop, autonomously develop the given loop from
a seed, with the ability of the loop to subsequently produce its replicas
according to the given specification. Moreover, a parallel replicator will
be shown that is able to develop the replicas to several directions using
different replication algorithms.

Keywords: Genetic algorithm · Cellular automaton · Transition
function · Conditional rule · Replicating loop

1 Introduction

Since the introduction of cellular automata (CA) in [20], researchers have dealt,
among others, how to effectively design a cellular automaton (and its transition
function in particular) to solve various problems. For example, cellular automata
have been studied for their ability to perform computations, e.g. using principles
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from the famous Conway’s Game of Life [1] or by simulating elementary logic
functions in non-uniform cellular matrix [15].

One of the topics widely studied in the area of artificial life is the problem of
(self-)replicating loops. Since the introduction of probably the most known loop
by Langton [8], which is able to replicate in 151 steps in a CA working with 8
states, some other researchers have dealt with this topic trying to simplify the
replication process or enhance the abilities of the loop during replication. For
example, Byl introduced a smaller loop that is able to replicate in 25 steps using
a CA that works with 6 cell states [4]. Later, several unsheathed loops were pro-
posed by Reggia et al. from which the simplest loop consists of 6 cells only and
is able to replicate using 8-state CA in 14 steps [12]. On the other hand, Tem-
pesti studied a possibility to introduce construction capabilities into the loops
and proposed a 10-state CA that allows to generate patters inside the replicat-
ing structures [19]. Perrier et al. created a “self-reproducing universal computer”
using 64-state CA by “attaching” executable programs (Turing Machines) on the
loops [11]. Although the aforementioned solutions were achieved using analytic
methods, the process of determining suitable transition rules for a given problem
represents a difficult task and requires an experienced designer (the process of
“programming” the CA is not intuitive). As the number of cell states increases,
the process of the CA design becomes challenging due to a significant increase
of the solution space. Moreover, for some problems no analytic approach has yet
been known to the design of the transition rules. In such cases various uncon-
ventional techniques have been applied including Genetic Algorithm (GA) [7],
possibly in combination with other heuristics.

For example, Mitchell et al. investigated a problem of performing computa-
tions in cellular automata using GA [9]. Their work contains a comparison with
the original results obtained by Packard in [10] which can be considered as a
milestone in applying evolutionary algorithms (EA) to the design and optimisa-
tion of cellular automata. In particular, the authors in [9] claim: “Our experi-
ment produced quite different results, and we suggest that the interpretation of
the original results is not correct.” It may indicate that the research of cellular
automata (and their typical features like emergent behaviour or cooperative cell
signalling by means of local rules) using various computing techniques can pro-
vide valuable information for advanced studies and applications in this area. Note
that Mitchell et al. considered binary (i.e. 2-state) 1D cellular automata only
which represent a fundamental concept for advanced models. Sipper proposed a
technique called Cellular Programming (a spatially distributed and locally inter-
acting GA) that allows for the automatic design of non-uniform CA that are well
suited to various problems [16]. Sapin et al. introduced a GA-based approach to
the design of gliders and glider guns in 2D cellular automata [13,14]. It was shown
that a spontaneous emergence of glider guns in CA can occur with a significant
number of new gun-based and glider structures discovered by EA. The aim of
the glider research was to construct a system for collision-based computation-
ally universal cellular automata that are able to simulate Turing machines [14].
In recent years, several solutions emerged that aim to optimize the CA design
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by introducing various evolution-based and soft-computing techniques in com-
bination with suitable representations of the transition functions. For example,
Elmenreich et al. proposed an original technique for the calculation of the tran-
sition function using neural networks (NN) [5]. The goal was to train the NN
by means of Evolutionary Programming [6] in order to develop self-organising
structures in the CA. A novel technique for encoding the transition functions
of CA, called Conditionally Matching Rules, was introduced in [3], and some
applications in binary CA with advantages over the conventional (table-based)
encoding were presented in [2].

Whilst the most of the aforementioned studies considered binary CA (i.e.
those working with two cell states only), which may be suitable for straightfor-
ward hardware implementations (e.g. Sipper’s Firefly machine [17]), multi-state
CA can provide a more efficient way for the representation and processing of
information in CA thanks to the ability of individual cells to work with more
than two states. This feature is important for studying complex systems that
are in most cases described by integer (or real-valued) variables. In addition, the
introduction of more than two states per cell in the CA may allow to reduce the
resources needed to solve a given problem (e.g. the size of the cellular array or
dimension of the automaton). For example, Yunès studied computational uni-
versality in multi-state one-dimensional cellular automata [21]. A technique for
the construction of computing systems in 2D CA was demonstrated by Stefano
and Navarra in [18] using rules of a simple game called Scintillae working with
6 cell states. Their approach allows to design components (building blocks) for
the construction of bigger systems, e.g. on the basis of gate-level circuits.

The goal of this study is to demonstrate the evolutionary design of 2D cel-
lular automata, using the concept of conditionally matching rules to encode the
transition functions, which are able to replicate the given structures with respect
to a given arrangement in the cellular array. In particular, uniform, multi-state
cellular automata will be treated, the cells of which work with 8 and 10 states.
The GA will be applied in order to design suitable transition rules that perform
replication of the given structure according to the designer’s specification. It will
be shown that novel replication scenarios can be found in CA that can copy the
given loop not only from its initial instance but also, from a seed the loop can
autonomously grow. Moreover, a parallel replication scheme will be presented,
the objective of which is to speed-up the replication process by allowing the
structures to replicate to more directions in the 2D CA. The results will demon-
strate the ability of the GA to discover different replication scenarios for the
replicas developing in parallel in the cellular automaton, which will be encoded
in a single evolved transition function.

2 Cellular Automata

The original concept of cellular automaton, introduced in [20], which will be
considered in this study, assumes a 2D matrix of cells, each of which at a given
moment acquires a state from a finite set of states. The development of the CA



24 M. Bidlo

is performed synchronously in discrete iterations (time steps) by updating the
cell states according to local transition functions of the cells. Uniform cellular
automata will be investigated in which the local transition function is identical
for all cells and hence it can be considered as a transition function of the CA. The
next state of each cell depends on the combination of states in its neighbourhood.
In this work, von Neumann neighbourhood will be assumed that includes a given
(Central) cell to be updated and its immediate neighbours in the North, South,
East and West direction (i.e. it is a case of a 5-cell neighbourhood).

Since the CA behaviour can practically be evaluated in the cellular array
of a finite size, boundary conditions need to be specified in order to correctly
determine cell states at the edge of the array. Cyclic boundary conditions will
be implemented which means that cells at an edge of the CA are “connected”
to the appropriate cells on the opposite edge (i.e. these cells are considered as
neighbours) in each dimension. In case of the 2D CA the shape of such cellular
array can be viewed as a toroid.

The transition function is usually defined as a mapping that for all possible
combinations of states in the cellular neighbourhood determines a new state. This
mapping can be represented as a set of rules of the form Nt Wt Ct Et St → Ct+1

where Nt,Wt, Ct, Et and St denote cell states in the defined neighbourhood at
a time t and Ct+1 is the new state of the cell to be updated. It means that for
every possible combination of states Nt Wt Ct Et St a new state Ct+1 needs to be
specified. However, if the number of cell states increases, the number of possible
transition rules grows significantly which is inconvenient for efficient CA design.
Of course, not all transition rules need to be specified explicitly but the problem
is how to choose the rules which modify the central cell in the neighbourhood.
Therefore, an advanced representation of the transition rules was proposed and
denominated as Conditionally Matching Rules [3]. Conditionally matching rules
allows us to reduce the size of representation of the transition functions especially
with respect to the evolutionary design of cellular automata.

3 Conditionally Matching Rules

The concept of conditionally matching rules (CMR) showed as a very promising
technique in comparison with the conventional (table-based) approach consider-
ing various experiments with binary cellular automata (e.g. pattern development
task [3] or binary multiplication in 2D CA [2]). In this work, evolutionary design
of the CMR-based representation will be investigated in order to design cellular
automata with up to 10 cell states that support replication of a given structure.

A conditionally matching rule represents a generalised rule of a transition
function for determining a new cell state. Whilst the common approach specifies
a new state for every given combination of states in the cellular neighbourhood,
the CMR-based approach allows to encode a wider range of combinations into a
single rule. A CMR is composed of two parts: a condition part and a new state.
The number of items (size) of the condition part corresponds to the number of
cells in the cellular neighbourhood. Let us define a condition item as an ordered
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pair consisting of a condition function and a state value. The condition function
is typically expressed as a function whose result can be interpreted as either true
or false. The condition function evaluates the state value in the condition item
with respect to the state of the appropriate cell in the cellular neighbourhood.
In particular, each item of the condition part is associated with a cell in the
neighbourhood with respect to which the condition is evaluated. If the result of
such evaluation is true, then the condition item is said to match with the state
of the appropriate cell in the neighbourhood. In order to determine a new cell
state according to a given CMR, all its condition items must match (in such case
the CMR is said to match).

The following condition functions will be considered: == 0, �= 0,≤,≥. Note
that this condition set represents a result of our long-term experimentation and
experience with the CMR approach and will be used for all the experiments
in this study. The condition == 0, respective �= 0, evaluates whether the cor-
responding cell state is equal to 0 (i.e. a “dead” state), respective whether it
is different from state 0. Note that the state value of the condition item for
== 0 and �= 0 is considered implicitly within the condition itself. The conditions
≤ and ≥ represent relational operators “less or equal” and “greater or equal”
respectively for which the state value of the condition item must be explicitly
specified.

Figure 1 shows an example of conditionally matching rules defined for a 2D
CA with the 5-cell neighbourhood together with the illustration of cells the con-
dition items are related to. CMR (A) is a matching CMR since all the conditions
of its condition part are evaluated as true with respect to the sample neighbour-
hood shown in the left part of Fig. 1. On the other hand, CMR (B) does not
match because the second condition item ! = 2 evaluates as false with respect to
the west cell that possesses state 2. Similarly, the third condition == 0 of CMR
(B) is not true as the central cell is in state 2.

A CMR-based transition function can be specified as a finite (ordered)
sequence of conditionally matching rules. The following algorithm will be applied
to determine a new state of a cell. The CMRs are evaluated sequentially one by
one. The first matching CMR in the sequence is used to determine the new
state. If no of the CMRs matches, then the cell keeps its current state. These
conventions for evaluating and applying the CMRs ensure that the process of cal-
culating the new state is deterministic (it is assumed that the condition functions
are deterministic too). Therefore, it is possible to convert the CMR-based tran-
sition function to a corresponding table-based representation which preserves
the fundamental concept of cellular automata. Moreover, every condition set
that includes relation == allows to formulate transition rules for specific com-
binations of states if needed (by specifying == for all condition items of the
CMR).

In order to obtain the conventional (table-based) representation of the tran-
sition rules from an evolved CMR-based solution, the following algorithm is
applied using the same CA that was considered during evolution. Let Ct and
Ct+1 denote states of a cell in two successive steps of the CA at time t and t+1
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Fig. 1. Example of a conditionally matching rule specified for 5-cell neighbourhood.
The value of the new state is written in bold. (A) example of a matching CMR,
(B) example of a CMR that does not match – the second and third condition is eval-
uated as false.

Fig. 2. Structure of a chromosome for genetic algorithm encoding a CMR-based tran-
sition function. cx denote a condition for the cell at position x in the neighbourhood,
sx represents the state value to be investigated using the appropriate condition with
respect to the state of cell at position x, ns specifies the next state for a given CMR.
All the conditions and state values are represented by integer numbers.

respectively. A transition rule of the form Nt Wt Ct Et St → Ct+1 is generated
for the combination of states in the cellular neighbourhood if Ct �= Ct+1. This
process is performed after each step and for each cell until the CA reaches a
stable or periodic state. The set of rules obtained from this process represents
the corresponding conventional prescription of the transition function. Note that
only the rules that modify the cell state are generated, all the other rules are
implicitly considered to preserve the current state.

4 Evolutionary System Setup

A genetic algorithm is utilized for the evolution of CMR-based transition func-
tions in order to achieve the given behaviour in cellular automata. Each chro-
mosome of the GA represents a candidate transition function encoded as a finite
sequence of CMRs. The chromosome is implemented as a vector of integers in
which the condition items and next states of the CMRs are encoded. Note that
the population consists of chromosomes of a uniform length (given by the num-
ber of CMRs) which is specified as a parameter for a specific experiment. The
structure of a chromosome is depicted in Fig. 2.
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The population of the GA consists of 8 chromosomes that are initialised ran-
domly at the beginning of the evolutionary process. In each generation, four
individuals are selected randomly from the current population, the best one of
which is considered as a parent. In order to generate an offspring, the parent
undergoes a process of mutation as follows. A random integer M in range from
0 to 2 is generated. Then M random positions in the parent chromosome are
selected. The offspring is created by replacing the original integers at these posi-
tions by new valid randomly generated values. If M equals 0, then no mutation
is performed and the offspring is identical to the parent. The process of selection
and mutation is repeated until the entire new population is created. Crossover
is not applied because no benefit of this operator was observed during the initial
experiments. Note that the same GA has successfully been applied since the
introduction of CMRs in various case studies [2,3]. Although no optimal (evolu-
tionary) approach has yet been known for uniform CA, our experiments indicate
that small-population EA (i.e. less than 10 individuals) with a simple mutation
operator may represent a suitable class of algorithms to obtain working solutions
with a reasonable success rate and computational effort. However, the detailed
analysis and wider comparison of different techniques is not a subject of this
study.

For each experiment, the GA is executed for 3 million generations. If no
correct solution is found within this limit, the evolution is terminated. The eval-
uation of the chromosomes (i.e. the fitness function) and details regarding various
experimental settings are described in the next section.

5 Experimental Results

This section summarises statistics of the evolutionary experiments performed
and presents some results together with a more detailed analysis. Two sets of
experiments are considered, the goal of each is to design CA that is able to
replicate the given loop. The first set works with a big loop (the denomination is
chosen for the purposes of this work with respect to the loop in the second set of
experiments), the objective is to design transition rules that are able to develop
a single replica of the loop in a given arrangement against the initial loop. In the
second set, a simpler, small loop is treated, the goal is to find replication rules
for the development of two independent replicas in parallel on the left and right
side of the initial loop. Note that the loops consist of cells in 7 different states
(including state 0). In both sets of experiments, the CA working with 8 and 10
cell states are investigated. Moreover, different numbers of CMRs (varying from
20 to 50) encoded in the GA chromosomes are considered. For each setup, 100
independent evolutionary runs are executed. The experiments were executed
using the Anselm cluster1, the time of a single run (3 million generations) is
approximately 12 h.

1 https://docs.it4i.cz/anselm-cluster-documentation/hardware-overview.

https://docs.it4i.cz/anselm-cluster-documentation/hardware-overview
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5.1 Replication Evolution of the Big Loop

A big loop is considered for the replication in the first set of experiments, the
structure of which is shown in Fig. 3a. The genetic algorithm is applied to design
the transition rules for the CA, which perform the replication of the loop in
a maximum of 30 steps. The required CA state, that contains the replica, is
depicted in Fig. 3b. The following algorithm is applied to the evaluation of the
candidate solutions during evolution and the calculation of the fitness function.
A partial fitness function is evaluated after each CA step as the number of
cells in correct states with respect to Fig. 3b. The final fitness value of a given
candidate solution is defined as the maximum of the partial fitness values. It
this case the replication can be considered as a pattern transformation problem
from a single (initial) loop onto two loops in a given arrangement. However,
the loop is expected to replicate again and again during the subsequent CA
development, which will be validated for the results obtained from the evolution.
Moreover, an assumption is considered that each newly created loop is shifted by
two cells down with respect to its predecessor (as shown in Fig. 3b). Therefore,
the solutions obtained are further investigated using a visual software simulator
developed by the author of this work in order to check that. The goal of this
approach is to determine whether the GA is able to discover various new general
replication scenarios. Note that, for the purposes of this study, the term “general”
means the ability of a solution to repeatedly produce more replicas of the given
loop, not an ability to replicate arbitrary loops.

Table 1 summarises the results of experiments with the big loop and provides
an overview of some basic parameters of the CA that can be observed during its
development using the evolved transition functions. As evident, the maximum
success rate achieved during the experiments is only 12 % which is not very high.
Note, however, that the replication of the proposed loop represents a problem
for which no working solution was found during our previous experiments using
the table-based transition functions.

Fig. 3. The structure of the big loop in the cellular automaton that was evaluated
during evolution: (a) the initial CA state containing the loop to be replicated, (b) the
target state specifying the replica arrangement.
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Table 1. Results of the evolutionary experiments considering the design of transition
functions for the replication of the loop from Fig. 3a. Success rate – the number of
successful experiments out of 100 independent experiments performed that has met
the fitness specification in a limit of 3 million generations, Replicates repeatedly –
the number of results from the successful experiments that are able to produce more
replicas during the subsequent CA development, Min. steps – the minimal number of
steps of the CA needed to create the replica (i.e. the lowest value of this parameter
from the group of “Replicates repeatedly” solutions, Min. rules – the minimal number
of table-based transition rules obtained (i.e. the lowest value of this parameter from
the group of “Replicates repeatedly” solutions.

Num. of CMRs CA with 8 cell states CA with 10 cell states

Success rate Replicates Min. Min. Success Replicates Min. Min.

[%] repeatedly steps rules rate repeatedly steps rules

20 0 - - - 1 0 - -

30 10 6 19 84 12 9 21 146

40 9 4 20 139 12 6 16 186

50 10 6 18 130 12 6 21 177

In addition to the results obtained for the CA working with 8 cell states, some
successful solutions have even been obtained for 10 cell states which indicates
that the CMRs are an efficient encoding of the transition rules that allows for
the design of more complex multi-state CA. The solutions obtained in this work
demonstrate a wide range of various replication schemes that can be performed
using CA. For example, a solution was found that is able to replicate the loop
in 16 steps (the best result achieved for this loop) whilst some CA require 30
steps (the maximal allowed number of steps) in order to finish the replication.
Similarly, the number of transition rules generated from the CMRs varies from
84 to more than 1500 rules. These results indicate that cellular automata can
in some cases exhibit behaviour that has not yet been discovered which may be
beneficial not only for the area of CA but also, for the study of complex systems
in general.

Figure 4 shows a CA development performed by one of the successful transi-
tion functions obtained for the replication of the given loop. It is one of the best
solutions discovered in this work with respect to the number of steps needed to
create a copy of the loop. The transition function was found with 30 CMRs in
the GA chromosomes and the corresponding conventional representation con-
tains 238 transition rules. If the development of the initial loop is considered
(see the upper parts of each step in Fig. 4), the CA needs 21 steps to create
a complete replica. As shown by the last step, more replicas can be created
in the same way according to the original specification if the CA development
continues. However, a more detailed investigation of this result showed that the
complete initial loop is not strictly needed in order to successfully perform the
replication. For example, the loop is able to emerge even from a single seed – the
lower parts of each step presented in Fig. 4 shows a development of the loop from
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Fig. 4. Develpment of a CA performing replication of the loop from Fig. 3a. The
sequence of steps reads from left to right and top to bottom. The upper part of each
step of the CA illustrates the replication of the initial loop. The bottom part demon-
strates a seed represented by a cell in state 5. Note that after the loop is finished, its
replication continues in the same way as from the initial instance (shown by the last
CA state).

a single initial cell (a seed) in state 5. As marked by the up-most black arrow a
complete loop is developed from the seed after 18 steps which is by 3 steps faster
compared to the development from the initial loop. This behaviour is caused by
a need of the initial loop to generate a cell in state 5 (i.e. the same state as the
seed) from which the replica can be developed (it takes 3 steps – see the top-
right CA state in Fig. 4). The process of finishing the replica is identical with
the development from the seed. Note that the ability of the transition function
to develop and replicate the loop from a seed was not explicitly required in the
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>=3;>=3;!=0;>=0;!=0|6   >=5;>=1;>=1;==0;==0|0   0 1 3 0 0  1    1 1 4 7 1  1    1 4 1 0 0  6    2 6 0 3 3  4    6 0 5 1 0  7    7 7 3 0 0  7
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                     (a)                                                                    (b)

t t t t t t+1   t t t t t t+1   t t t t t t+1   t t t t t t+1   t t t t t t+1   t t t t t t+1

Fig. 5. Transition function for the CA in Figs. 6 and 7: (a) the evolved representation
with 50 CMRs, (b) the corresponding conventional representation consisting of 130
rules. This result represents one of the best solutions discovered for the replication of
the big loop.

fitness evaluation. Hence it can be considered as an additional, unconventional
feature of this solution.

Another result is presented in the form of an evolved transition function
(Fig. 5) and the appropriate CA development (Figs. 6 and 7). This cellular
automaton demonstrates a development process from a seed that at first creates
rather a chaotic structure even larger than the required loop itself. A “mature”
loop is developed from this structure during the subsequent CA development
that is able to replicate itself. Whilst the replication of the initial loop takes
25 steps (marked by the black arrow in Fig. 6), the development of the chaotic
structure needs 36 steps. Starting by step 37 (Fig. 7) the loop is developed from
that structure in the same way as from the initial loop. It was verified that the
loops are able to replicate repeatedly if the CA development continues.

For both the presented solutions the transition function was identified as
redundant (i.e. not all the conventional transition rules generated from the CMR
representation are needed for the replication of the initial loop required by the fit-
ness function). A more detailed analysis showed that this redundancy is caused
by the finite CA size with cyclic boundary conditions and by generating the
transition rules from the CMRs until the CA reaches a stable or periodic state.
Although this approach leads to more complex table-based transition functions,
in this case it showed as very beneficial for achieving some additional features
that were not required during evolution (especially the ability to develop the
loops from a seed). Advanced experiments with the resulting CA showed that if
the transition functions are optimized (i.e. only the rules for the development of
a single replica from the initial loop are considered), the CA in most cases loose
the ability of the development from the seed. It was also determined that the
seed-based development does not work in case of the known replicating loops
(e.g. Langton’s or Byl’s loop). In the future, this ability may be beneficial for
the advanced study of complex systems in which a given (complex) configuration
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Fig. 6. Part 1 of the replication according to the transition function from Fig. 5. The
sequence of steps reads from left to right and top to bottom. The development shows
a replication of the initial loop (the upper part of each step) and a growth of a non-
specific structure from a seed allowing to create the loop autonomously (the lower part
of each step). The seed is represented by a cell in state 7.

needs to be achieved—distributed—from a single cell or a simple initial configu-
ration. In addition to the results presented herein, various other solutions were
found that are able to replicate a given structure. It indicates that the replica-
tion in CA is not limited to known schemes only but can be performed in many
different ways.
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Fig. 7. Part 2 of the replication according to the transition function from Fig. 5. The
sequence of steps reads from left to right and top to bottom. The development shows
an autonomous growth of the loop from a non-specific structure that emerged in the
last step of Fig. 6 (the bottom part of each step). It was verified that the loop is able to
replicate in the same way as the initial loop during the subsequent CA development.

5.2 Parallel Replication of the Small Loop

The second set of experiments presents the evolution of parallel replication tech-
niques of a small loop with its structure shown in Fig. 8a. As with the evolution
of the big loop, the CA behaviour is evaluated for 30 steps using the partial
fitness calculated after each step with respect to the target arrangement of the
replicas shown in Fig. 8b, and the final fitness value is given by the maximum of
the partial fitness values. In this case, however, two replicas are required with
the arrangement on the left and right side of the original loop. The hypothesis
evaluated herein is that if suitable transition functions exist for the development
of the replicas, then at least a subset of the results will produce the replicas
repeatedly in the given directions during the subsequent CA development (i.e.
for the purposes of this study, such the solutions will be considered as general).
Since the loop is not fully symmetric with respect to the cell states on the sides
of the loop, it is expected that different replication algorithms (i.e. sequences of
the CA steps) need to be designed to produce the replicas.

Table 2 summarises the results of experiments with the small loop and pro-
vides an overview of some basic parameters of the CA that can be observed
during its development using the evolved transition functions. Although the
shape of the small loop is simpler than the big loop, the requirement of two
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Fig. 8. The structure of the small loop in the cellular automaton that was evaluated
during evolution: (a) the initial CA state containing the loop to be replicated, (b) the
target state specifying the replicas arrangement, (c) example of a symmetric loop.

Table 2. Results of the evolutionary experiments considering the design of transition
functions for the replication of the loop from Fig. 8a. The success rate, the number of
general solutions, the minimal number of transition rules and the minimal number of
CA steps needed to create the replicas were evaluated.

Num. of CMRs CA with 8 cell states CA with 10 cell states

Success rate Replicates Min. Min. Success Replicates Min. Min.

[%] repeatedly steps rules rate repeatedly steps rules

20 0 - - - 2 0 - -

30 9 5 18 134 9 3 17 120

40 7 6 17 123 9 4 17 134

50 8 4 18 157 12 7 17 219

independent replicas increases the overall complexity of this task, the maximum
success rate achieved does not exceed 12 %. Despite this fact, the evolution pro-
vided some solutions that perfectly fulfil the target specification and, in addition,
also exhibit the capability of the seed-based development which was not explic-
itly required.

Figure 9 shows a CA that performs a successful parallel replication of the
small loop. The CA works with 8 cell states and, in addition to the replication
of the initial loop, is also able to perform the development and replication of
the loop from a seed. This is one of the most efficient and compact solution
obtained in this study regarding the number of CA steps and the number of
transition rules. The corresponding table-based transition function consists of
154 rules as shown in Fig. 10. The CA needs to perform 23 steps in order to
finish the replicas of the initial loop. However, if a cell is initialised as a seed
by one of the states 1, 3, 5, 6, or 7, the small loop autonomously grows into
its full shape and subsequently is able to replicate according to the original
specification. The analysis of the seed-based development showed that the loop
needs 19 steps to fully develop from state 1, 18 steps from states 3, 6 and 7,
and 24 steps from state 5. An interesting behaviour of the CA can be observed
after finishing the seed development when the loop ought to be replicated. In
particular, the loop replicates according to the given specification from states
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Fig. 9. A sequence of CA steps demonstrating the parallel replication of the small loop
according to the evolved transition function from Fig. 10. The states are ordered from
left to right and top to bottom. The bottom part of each state shows the replication
from the initial loop, the top part of each state demostrates the development and
replication of the loop from a seed.

1, 3, 6, and 7. However, the state-5 seed creates an undesirable structure that
prevents the loop replication to the left side, i.e. the loop developed from state
5 can replicate to the right side only (see Fig. 11). This indicates that a wide
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Fig. 10. A transition function designed by evolution for the parallel replication of the
small loop from Fig. 8a.

Fig. 11. A sample of the CA development from the seed according to the transition
function from Fig. 10: (a) the initial seed, (b) the small loop is developed from the seed
after step 24, leaving an undesirable structure on its left side, (c) the loop creates its
first replica after step 47, the undesirable structure prevents from the replication on
the left side, (d) the replication to the right in progress after step 51, the structure on
the left no longer changes.

range of states used as the seed allows emerging the loop using various processes
(i.e. sequences of CA states), which are totally different from the processes of
replication from the complete loop. Although the state-5 seed does not enable
to replicate the loop to both sides, the solution can be considered as robust
because the undesirable structure does not cause the destruction of the loop
that can subsequently replicate to the right side.

As an example of our research regarding the optimisation of replication tech-
niques in cellular automata, a symmetric loop is considered as shown in Fig. 8c.
Although the evaluation method applied to design the CA for this loop is out
of the scope of this study, a result of a successful parallel replication will be
presented, which demonstrates the potential of the GA in combination with
the CMR encoding to discover novel techniques in cellular automata. As in the
previous example, the goal of the experiment was to design transition rules for
the parallel replication of the loop to the given directions. Since the loop is
symmetric with respect to the arrangement of the cell states, it would be pos-
sible to adapt a single replication algorithm to perform the replication process
simultaneously to various directions. Such adaptation is based on “rotating” the
transition rules according to the ordering of cells in the cellular neighbourhoods
with respect to the given directions as known from Byl’s loop [4]. However, if the
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evaluation of the candidate solutions during evolution is performed with respect
to the number and arrangement of the replicas only, then the GA can discover
various independent replication algorithms as shown in Fig. 12. The correspond-
ing transition function contains 137 table-based rules and is shown in Fig. 13.
In this solution, not only the algorithms for the replication to the left and right
side differ significantly, the number of steps needed to create the replica on the
left side is nearly the double of the number of steps required for the replication
to the right side. As evident from Fig. 12, the first replica of the initial loop is
created on the right side after the 15th step, the first replica on the left side
needs 26 steps to be completed. After the 27th step, the second replica on the
right side is completed whilst the second copy on the left side has just started
to develop. Such a process has never been observed before as regards the known
replicating loops and hence it can be considered as an unconventional feature of
the solution obtained in this experiment.

Fig. 12. A sample of the parallel replication of the symmetric loop from Fig. 8c accord-
ing to the transition function shown in Fig. 13. Note that the number of steps needed
to develop a replica on the right side is half the number of steps required to finish a
replica on the left side.
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Fig. 13. The transition function designed by evolution for the parallel replication of
the symmetric loop from Fig. 8c.

5.3 Summary and Discussion

Both the proposed loops proved the ability to replicate according to the given
specification. It is worth to note that although the development of the loop from
a seed was not explicitly required, the evaluation of the results obtained for both
the loops showed that this ability is not rare. This means that the seed-based
development may be evolved directly (without any initial loop available) in order
the given loop can emerge autonomously. Some experiments were performed in
order to validate this hypothesis, with the following observations. The GA is able
to discover transition rules for the development of the given loop from the seed.
However, no solution has yet been achieved that would be able to subsequently
replicate the loop. One of the reasons for this issue may be the fact that the exact
place in the cellular space, where the loop is developed from the seed, is hard to
predict (it depends on the state of the seed, shape of the loop and the transition
rules). Therefore, it is not evident how the replicas ought to be specified within
the target CA state for the continuous replication. More research is needed in
order to determine the necessary information provided to the GA, which would
enable to solve this problem.

In order to perform a general evaluation of the results obtained within the
context of computational features of cellular automata and with respect to the
existing replicating loops, the following issues need to be clarified:

1. The objective was not to design self-replication. The loops with the ability
to self-replicate contain the information of how to create a copy encoded in
their “body” as a suitable arrangement of cell states. The transition rules
interpret this information and calculate the appropriate state transitions of
the CA in order to perform the replication process. In this work, however,
the initial loop is considered as an object of a given shape that ought to be
transformed onto a CA state that contains the copy of the loop. The goal was
to find both the transition rules and the sequence of the CA states that lead
to the emergence of the replica.
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2. The resulting CA do not represent universal computing models (it was not
a goal of the experiments). It means that a specific transition function, that
was obtained as a result of a successful evolution, is dedicated to replicate
the given loop only that was a subject of evaluation in the fitness function.
Nevertheless, as the results showed, some transition functions are able to
create the loops from a seed which was not explicitly required within the
fitness evaluation.

Although the shape of the proposed loops was inspired by the existing (self-
replicating) loops and the GA provided some successful results to replicate the
loops with respect to the given specifications, no working solution has yet been
achieved by the GA to replicate the existing loops (e.g. Byl’s loop) with the
exact shape and arrangement of the replicas. This issue can be caused by the
fact that some of the self-replicating loops are dynamical structures even after
the replica is finished (e.g. Byl’s loop exhibits such feature). However, only static
replicas were considered in our experiments. Another aspect may be the size
of the loop. Large loops require a considerable number of steps to finish the
replica (e.g. Langton’s loop needs 151 steps), which makes the evaluation of
such solutions very time-consuming. Finally, the information encoded in the
loop body, that specifies the self-replication features, actually determines the
replication algorithm (i.e. the CA development) which is specific for the given
loop. If no more valid replication algorithms exist in the solution space for a
given loop, then the GA may not be able to find the solution in a reasonable
time.

6 Conclusions

In summary, the results presented in this work shows several facts related to the
problem of replication in cellular automata. First, there are plenty of transition
functions that are able to replicate a given loop. The experiments showed that
it is possible to discover such functions routinely by means of the genetic algo-
rithm even for complex multi-state cellular automata (herein demonstrated for
CA working with 8 and 10 cell states). This was enabled by the utilisation of con-
ditionally matching rules as a technique for the representation of the transition
functions. Second, some unconventional features of the solutions were identified
that cannot be observed in the known replicating loops and have never been
published before. Specifically, in case of some solutions obtained, the CA can
be initialised by a single-cell seed in a non-zero state, which allows developing
the given loop that is subsequently able to replicate. Note that this ability was
identified as an extra feature of the resulting cellular automata, which was not
explicitly required by the specification for the evolutionary algorithm. This shows
that some cellular automata are able, using a minimum information encoded in
the initial state, to autonomously develop a complex emergent behaviour that
is fully determined by the transition function and the state of a single cell only.
Another feature, that was achieved by the evolution, is a parallel replication
of the given loop into more directions, using different algorithms to create the
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replicas. The results showed that this behaviour is needed if the arrangement of
the cell states in the loop is not fully symmetrical. However, an unconventional
parallel replication can be observed even in case of a symmetric loop, where the
difference is both in the way of the replication and the number of steps needed
to create the replicas. Again, the evolution itself discovered such the behaviour
just on the basis of the given target pattern containing the replicas of the initial
loop.

The results obtained bring some open questions, the answers of which could
be beneficial for the research of cellular automata in general. For example, can
the seed-based development create a configuration in the CA that supports self-
replication (or other useful features)? Are there other (simple) structures that
support development of more complex (self-)replicating objects? Can evolution-
ary techniques be applied to the design of computationally universal CA-based
models? Not only these questions represent ideas for our future work.
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