
The Semantics of Hybrid Process Models

Tijs Slaats1(B), Dennis M.M. Schunselaar2, Fabrizio M. Maggi3,
and Hajo A. Reijers2,4

1 University of Copenhagen, Copenhagen, Denmark
slaats@di.ku.dk

2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
{d.m.m.schunselaar,h.a.reijers}@vu.nl

3 University of Tartu, Tartu, Estonia
f.m.maggi@ut.ee

4 Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract. In the area of business process modelling, declarative nota-
tions have been proposed as alternatives to notations that follow the
dominant, imperative paradigm. Yet, the choice between an imperative
or declarative style of modelling is not always easy to make. Instead,
a mixture of these styles is sometimes preferable. This observation has
underpinned recent calls for so-called hybrid process modelling notations.
In this paper, we present a formal semantics for these. In our proposal, a
hybrid process model is hierarchical, where each of its sub-processes may
be specified in either an imperative or declarative fashion. The seman-
tics we provide will allow modelling communities to build on the bene-
fits of existing imperative and declarative modelling notations, instead
of spending their energy on inventing new ones.

Keywords: Hybrid process model · Semantics · Petri net · Declare

1 Introduction

Process modelling languages are used to visually capture how business processes
are carried out. The mainstream notations in use are imperative in nature, in the
sense that their corresponding models describe in full detail the exact behaviour
that business processes may exhibit. Recently, as an alternative stream, propos-
als have been made for process modelling languages that follow a declarative
style. Declarative models leave implicit in what exact sequence process activi-
ties must be carried out. Rather, the emphasis is on the constraints that ought
to be respected during the execution of a process. In a declarative model, any
behaviour that does not comply with such constraints is forbidden, but anything

This work is supported in part by the Hybrid Business Process Management Tech-
nologies project (funded by the Danish Council for Independent Research) and the
Computational Artifacts project (VELUX 33295, 2014–2017). The first author would
like to acknowledge Søren Debois and Morten Marquard for their valuable feedback.

c© Springer International Publishing AG 2016
C. Debruyne et al. (Eds.): OTM 2016 Conferences, LNCS 10033, pp. 531–551, 2016.
DOI: 10.1007/978-3-319-48472-3 32



532 T. Slaats et al.

that is not explicitly ruled out is permissible. Examples of declarative modelling
techniques are Declare [18,27], DCR graphs [11], and SCIFF [15].

What motivates our work is the surmise that many real-life processes [7] can
be characterized as combinations of structured and unstructured parts. There-
fore, for such processes, hybrid models would actually result in their most com-
pact and simple description. For the parts of a process that are highly flexible, a
declarative modelling approach leads to a simple description of such “pockets of
flexibility” [22]. Instead of describing all feasible behaviour, the focus is on for-
bidding what is not allowed. By contrast, for parts of the process that are highly
structured, an imperative description is preferable: for these parts, it is simpler
to describe the limited behaviour that is allowed than the more numerous situ-
ations that are to be excluded. In previous work [21], we presented evidence for
the prevalence of business processes that contain both structured and unstruc-
tured parts, an insight that followed from a workshop with BPM professionals.
The involved professionals indicated that a hybrid process modelling technique
would indeed be more attractive than a purely declarative or imperative one.

Previously, a proposal for a hybrid process platform was proposed in [1]. It
differs from our approach in that it proposes an entirely new notation, i.e.,
the task model. Instead, we show how existing notations, which may have
gained considerable popularity in modelling communities, can be integrated
into a hybrid modelling notation. This was attempted to some extent with
the modelling approach known as Flexibility-as-a-Service (FAAS) [26], where
loosely-structured processes could be modelled in Declare and highly-structured
processes in YAWL; these could reference each other as sub-processes. While the
authors describe how this idea can be realised as a Service-Oriented Architecture,
they left open the exact formal semantics of such a hybrid model.

In the current paper, we are inspired by the same considerations as in [1]
while extending the contributions of [26] as follows: (1) we widen the scope of
a hybrid modelling notation through a notation-independent treatment of the
topic, (2) we consider in detail the challenges that arise when the goal is to
arrive at a sensible hybrid model from imperative and declarative parts, and (3)
we provide a formal semantics for hybrid models based on these considerations.
In our treatment of the topic, we will employ Petri nets and Declare as canonical
representatives of respectively the imperative and declarative paradigms. Even
though we exclusively use these specific notations, we expect that it will become
clear to the reader that our approach can entwine most other notations.

Against this background, the paper is structured as follows. In Sect. 2, we
discuss related work. Then, in Sect. 3, we motivate our work using a case study
performed on the funding application process of a Danish foundation, for which
we constructed a hybrid process model. Section 4 describes the challenges that
motivate our chosen formalisation. In Sect. 5, we formally define hybrid models
and their semantics. We conclude this paper with a reflection on the presented
work and future steps in Sect. 6.



The Semantics of Hybrid Process Models 533

2 Related Work

Two different styles of approaches can be distinguished with respect to the
development of a conceptual modelling language. The first of these is the most
straightforward one, namely to design a language from scratch. We will refer to
languages that are designed in this way as autonomous languages. The second
is to combine languages from existing ones, which is the style we will adhere to
in this paper. We will refer to these as hybrid languages. Both of these streams
will be discussed next, where we will pay specific attention to the perspective of
process modelling in contrast to other areas of conceptual modelling.

2.1 Autonomous Languages

We already referred to imperative process modelling languages, where BPMN
is a good example of a widely adopted language that was newly created. More
specifically, its first version was proposed by the BPMI consortium in 2004. On
the declarative side of the process modelling spectrum, there is Declare [18,27],
which has been developed as part of a PhD project at the TU Eindhoven. With
this language, a process is specified via a set of constraints between activities,
which must be satisfied by every execution of the process. Declare constraints are
captured based on templates. Templates are patterns that define parametrised
classes of properties, while constraints are their concrete instantiations. Con-
straints have a graphical representation. The semantics of templates can be for-
malised using different logics [16], for example LTL for finite traces. The reader
can refer to [27] for a full description of the language. Other process modelling
approaches that embrace “pockets of flexibility” or unstructured process parts
have been proposed as well. We mentioned [1], which proposes an entirely dif-
ferent type of modelling notation. In [22], flexibility pockets can be defined at
build-time in a way that is highly similar to a declarative modelling style; at
runtime one has to pick a specific procedural instantiation of the workflow that
fits the definition. The major drawback of introducing an autonomous language
is that it has to acquire a user base from scratch. In practice, it may be difficult
to convince active users of a language to leave it behind and adopt an entirely
new one, which motivates our choice for a hybrid language. The emphasis is then
on motivating modellers to expand rather than to abolish their knowledge of a
particular approach.

2.2 Hybrid Languages

The combination of conceptual modelling languages to arrive at a hybrid lan-
guage is mostly pursued when the individual languages cover a different perspec-
tive on the object that is to be modelled. The idea is that such languages com-
plement each other. A good illustration is the integration of the BPMN process
modelling language and the SRML rule modelling language to respectively cap-
ture the process and regulatory perspectives on an organisational procedure [32].
A comparable approach, in the sense that it combines existing languages with



534 T. Slaats et al.

different focal points, is described in [13]. Here, the modelling of processes is
linked to the modelling of business goals.

To combine languages that take the same perspective on an object is rel-
atively rare, although it is pursued in those cases where individual languages
offer distinct advantages. The first case of combining two existing process mod-
elling languages that we are aware of is the Action Port Model, which combines
the input/output characteristics of the PPM language with the language-action
style of ActionWorkflow and WooRKS [2]. More recently, the combined use of
YAWL [28] and Declare was proposed for capturing highly and loosely struc-
tured processes respectively [18]. This approach is similar to ours in that it
describes a hierarchical ordering of sub-processes where each sub-process can be
described in one notation or the other. However, the paper only gives an archi-
tectural overview of their proposed solution and does neither provide a formal
semantics or a thorough consideration of the challenges that arise from com-
bining the different paradigms. Two other approaches that combine procedural
and declarative elements worth noting are Flexibility-as-a-Service (FAAS) [26]
and the GSM model [25]. The former expands on the possibilities of combining
Declare and YAWL, but also does not provide a formal semantics. The GSM
model is a modelling language that is actively being developed, but it has as
disadvantages that different groups have developed different variants and that it
is to a certain extent proprietary (IBM). With our work, we aim to propose in
a consistent and transparent manner a hybrid process modelling language that
combines imperative and declarative paradigms.

Recent research has again put into evidence synergies between imperative and
declarative approaches [19,21]. Accordingly, hybrid process modelling notations
have been proposed. In particular, [3] provides a conservative extension of BPMN
for declarative process modelling, namely BPMN-D, and shows that Declare
models can be transformed into readable BPMN-D models. [30] proposes to
extend Coloured Petri nets with the possibility of linking transitions to Declare
constraints directly. The notion of transition enablement is extended to handle
declarative links between transitions. A recent implementation of this technique
is made available in CPN Tools 4.0 [29]. [4,24] extend the work in [30] by defining
a semantics based on mapping Declare constraints to R/I-nets and by proposing
modelling guidelines for the mixed paradigm.

These approaches differ from our work in that a fully mixed approach is
taken, whereas our approach is hierarchical. We have been motivated to clearly
separate declarative and imperative model parts, because we expect that mix-
ing two notations within the same sub-process would strongly and negatively
influence the perceptual discriminability of the various model elements, cf. [17].
Consider, for example, that many Declare constraints take on arrow-like shapes,
similar to how the transition relation is visualized in a Petri net. In work on
sense-making of declarative models, one of the major issues identified occurs,
indeed, when a user is confronted with a combination of constraint arrows [9].
We also feel that process decomposition is a natural way to separate complex-
ity, allows for the re-use of model fragments, and supports both bottom-up and



The Semantics of Hybrid Process Models 535

top-down modelling. Furthermore, existing approaches are only applicable to
specific notations, whereas we aim at providing a general semantics for hybrid
models using any notation. Note that a hierarchical approach similar to ours
has been used in [12] for the automated discovery of hybrid models. This work,
however, does not formally define hybrid models and their semantics.

3 Use Case for Hybrid Process Models

As a practical use case, we consider the application process of the Dreyer Founda-
tion, which provides funding for promoting the development of the lawyers’ and
architects’ professions1. In 2014, the largely paper driven processes at the Dreyer
Foundation were digitalised in cooperation with the Danish software developer
Exformatics and researchers from the IT University of Copenhagen [5]. At the
core of the electronic case management (ECM) system provided by Exformat-
ics is a declarative workflow engine [14,23] based on the Dynamic Condition
Response (DCR) Graphs [6,10] notation.

An elemental part of the Dreyers ECM solution is a declarative DCR Graph
model of the main application process, which describes what happens from the
submission of an application up to the completion of a funded project. As is
shown in Fig. 1 the declarative model is fairly complex and therefore one needs
to consider if using a declarative notation is truly the most concise way of rep-
resenting the process. This question was investigated in [7] by using the real-life
logs of the process to determine if a simpler flow-based model could be discov-
ered algorithmically. The investigation showed that while parts of the process
were quite structured, there were also flexible parts which lead to a high degree
of variation in traces and none of the more widely accepted mining algorithms
could find a sufficiently simple, precise and fit flow-based model to compete with
the declarative original. The authors noted that a hybrid model could potentially
make for a good alternative, but left this for future work.

In this paper, we addressed this open question and constructed a hybrid
model of the Dreyer application process by hand. As input we used (1) the
declarative model, (2) the logs of actual behaviour being exhibited, (3) a meet-
ing with the main case worker at Dreyer Foundation and (4) several discussions
with the responsible process modeller at Exformatics. When modelling parts of
the process using a procedural notation, we followed the procedural paradigm:
we gave priority to the logs as a source of possible behaviour exhibited in practice
and limited the procedural model to showing these paths as opposed to showing
all possible paths allowed by the DCR Graph. In particular, the DCR Graph
often allows for repetition of activities, but unless this repetition was observed
in the logs we did not model it in the procedural model. When encountering
a high degree of variability in the log, we modelled these parts using a declar-
ative notation and gave greater weight to the original requirement constraints
as defined by the DCR Graph. As a result, perhaps not surprisingly, the hybrid

1 http://dreyersfond.dk/en/.

http://dreyersfond.dk/en/


536 T. Slaats et al.

Application

Afvist

Abort
application

Caseworker

New

Caseworker

Receive

Board review

Board meeting

Payout

Caseworker

End report

Completed

Approved

Account
number
changed

DBTrigger

Approve
changed
account
number

Accountant

Change
phase to
review

Automatic

Change
phase to

Board
meeting

Automatic

Change
phase to
Complete

Automatic

Change
Phase to

End Report

Automatic

Change
Phase to
Payout

Automatic

Change
phase to
Approved

Automatic

Payment
completed

DBTrigger

Inform
Applicant

Caseworker

Change
phase to

Abort

Automatic

Approve -
send to
board

Caseworker

Reject

Caseworker

Fill out
Application

Applicant

Lawyer
Review

Lawyer

Architect
Review

Architect

Review

Reviewer 3

Review

Reviewer 4

Register
Decision

Caseworker

Ready

Inform
applicant

Caseworker

First
payment

Automatic

Undo
payment

Caseworker

Receive
end report

Caseworker

Inform
applicant

Caseworker

Applicant
send

documentation
for payment

Caseworker

Reject
application

Caseworker

Approve
application

Caseworker

◇ ▼

◇▼

%▼

%▼

%▼

%▼

%

▼

%

▼

%

▼

%

▼

%▼

%▼

%▼

%▼

%▼

+

▼

+

▼

+
▼

+▼
+▼

+
▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼▼

▼

UddelingPulje=2

▼
UddelingPulje=1

▼

UddelingPulje=2
▼

3d ▼
UddelingPulje=1

▼

UddelingPulje=2

▼

▼

▼

▼

Fig. 1. DCR graph of the Dreyers application process.

model exhibits the most flexibility in declarative sub-processes, but these are
also the parts of the process where most variability was observed in the logs.

The resulting model is shown in Fig. 2. The main process is described impera-
tively as a Petri net; it starts by an applicant filling out an application, followed
by a screening of the application by the main case worker. The case worker
decides if the application follows the formal requirements and has the oppor-
tunity to approve or reject it. A rejection is not immediately final: until the
applicant is informed of the rejection it is possible to re-decide and accept the
application anyway, modelled through the silent transition looping back to the
previous place. If, after a rejection, the applicant is informed of the decision, the
process ends by changing the status of the case to Abort. If the application is
approved for further review, the status of the case is changed to Review and a
Review sub-process is started. The sub-process is highly flexible and therefore
modelled declaratively, which we will discuss later. After the review process is
completed, a decision is registered: either the application is accepted or rejected.
Similar to the screening, a rejection is not immediately final; until the applicant
has been informed, it is possible to repeat the review process and arrive at a



The Semantics of Hybrid Process Models 537

fill out
application

reject
application

hold board
meeting

1..∗

accept
application

make
payment

receive
end report

register
decision

screening
reject

inform
applicant

change status
to abort

screening
aprove

change status
to review

review
process

change status
to preparation

inform applicant
of approval

request additional
documentation

receive additional
documentation

change status
to payout

redo
payment

account number
changed

approve new
account number

payment
confirmed

change status
to end report

change status
to completed

review 1
(lawyer)

review 2
(architect)

review 3

review 4

inform applicant
of screening apporval

Fig. 2. Hybrid application model for the Dreyers foundation.

new decision. After a rejection, the process follows the same steps as a screening
rejection: the applicant is informed and the status changed to abort. If the board
accepts the application, the status of the process is changed to Preparation. The
case worker will now inform the applicant of the approval and has the option to,
in parallel, request additional documentation from the applicant. For example,
if the application involved the purchase of some particularly expensive items, a
quote from a potential seller may be required. Once the applicant is informed
and all the documentation is in order, the status of the process is changed to
Payout. The following part of the process is fairly flexible, but was not mod-
elled declaratively because it has essentially two separate entry points: first of
all, after changing the status to payout, it becomes possible to make a payment.
Once the payment is confirmed by the financial system, the process moves on and
changes the status to End Report. The case worker can also redo the payment,
for example if no confirmation is received in due time, this activity removes the
current payment and allows a new payment to be made. Secondly, there is the
possibility for the case worker to change the account number to which the grant
will be transferred. This activity becomes available right after the submission of
the application and thereby creates a second entry point for the payment part.
Once the account number is changed, no payments should be made or redone
before the new number has been approved. This is done by inhibiting the Make
payment and Redo payment activities after the account number has changed.



538 T. Slaats et al.

Note that changing the status to End Report also removes the ability of chang-
ing and approving the account number. Finally, once an end report is received,
the status of the process is changed to Completed.

Prior to presenting the Declarative review process, we summarise the seman-
tics of the Declare constraints used within this example and the remainder of the
paper in Table 1. In the review process (Fig. 2), all activities can happen multi-
ple times and a number of them are unconstrained: at any point it is possible
to inform the applicant that their application was approved for review, hold a
board meeting, and to register a decision. Note that in practice informing the
applicant appears to occur at most once for each application, but since it is not
constrained to a limited number of executions in the DCR Graph and we employ
the declarative paradigm in the creation of the Declare model, we do not add
unnecessary constraints. Registering the decision should occur at least once, as
modelled by the existence constraint. There are four reviewers, two of which are
experts in either the legal or architecture field. Depending on the type of appli-
cation one of the experts should be the first to submit a review. As we wish to
avoid including data in the current model, we abstract this requirement to that
at least one of the expert reviews should happen before either of the non-expert
reviews can happen. The existence constraint on register decision is the only
liveness constraint (placing requirements on future behaviour) in the model and
therefore the Declare model is satisfied and the sub-process can end whenever
register decision has been done at least once. One may note that this means that
doing actual reviews is not required by the model and one can simply register a
decision and then accept the application. Closer inspection will show that this
is the case for the DCR Graph as well. The reason being that in some cases the
reviewers simply want to convey their decisions orally and not be constrained to
using the underlying IT system. Therefore, the caseworker is able of registering
a decision even if no reviews have been submitted.

Table 1. Overview of the Declare constraints used in this paper.

Graphic Name Semantics

A
init

Init A should be the first action.

A
1..n

Existence + Absence Between 1 and n times A needs to be executed.

A B Response A needs to be eventually followed by B .

A B Precedence B needs to be preceded by A.

BA Chain response A needs to be directly followed by B .

A B Not chain succession A cannot be directly followed by B .

The hybrid model was well received by the process modeller at Exformatics,
who agreed that it provided an accurate and concise representation of the actual
process in use at Dreyers. Discussing the model even led to the discovery of a
small error in the original, where the secretary was not able of changing her



The Semantics of Hybrid Process Models 539

decision after she had chosen to screening reject an application. The hybrid
model helped in the discovery of this mistake because the relevant part of the
process could be intuitively represented as a flow, whereas the declarative model
required a number of constraints whose interaction was not directly obvious to
the modeller.

The model already provided value to the process modeller, but to avoid
ambiguity in discussions one needs to make precise exactly what behaviour it
represents by providing a formal semantics. Doing so will also facilitate the
creation of modelling, simulation, execution and analysis tools based on the
approach. As a formal semantics for such a hierarchical hybrid approach has been
lacking in the literature to date, we set out to define it ourselves. While doing
so for the current example is fairly straightforward, providing a semantics for
hybrid models in general posed several challenges that needed to be considered
in detail. We discuss these challenges in the following section.

4 Formalisation Challenges

While formalising the semantics of hybrid models, we encountered various chal-
lenges. Within this section, we discuss these challenges in detail and show how
they motivate our chosen formalisation.

4.1 Identifying the Challenges

The challenges presented in this section originate from in-depth discussions
between the authors on the exact semantics of hybrid models. Next to this,
these challenges have been found by considering the relevant aspects of a declar-
ative/imperative process modelling language, i.e., the enablement/execution of
an action. As such, these challenges follow naturally from going from a flat model
with atomic actions to a hierarchical model where actions are no longer atomic in
conjunction with termination not explicitly being encoded (in case of Declare).
The following challenges were raised:

(Q1) How can we combine the open and closed world assumptions made by
different formalisms?

(Q2) When does a transition representing a declarative sub-process become
enabled and/or has fired?

(Q3) When is a constraint on a sub-process activated and/or fulfilled?

For all challenges to be partly met, we have introduced a notion of a con-
text. This context ensures that there is a unique mapping between actions and
sub-processes. Furthermore, by allowing the context to encompass more actions
than the ones modelled in a sub-processes, we close the gap between the open
and closed world assumptions. The challenges raised related to enablement/fired
and activated/fulfilled of a sub-process were addressed by a thorough analysis of
the possible combinations of a declarative and imperative process models, e.g.,



540 T. Slaats et al.

an imperative process model within a declarative process model or a declara-
tive process model within a declarative process model. This gave raise to two
solutions: (1) the termination of a declarative sub-process requires the execution
of an action, and (2) an interpretation of the negation of a sub-process in a
declarative constraint. One might wonder whether moving from atomic instan-
taneous actions to sub-processes in a declarative language might give additional
challenges with respect to the concurrent execution of actions. By treating con-
currency for declarative languages the same as for imperative languages, we did
not encounter any additional challenges.

In the remainder of this section, we elaborate further over the challenges.

4.2 Closing the Open/Closed World Gap by Means of a Context

The first challenge we encountered was the open world assumption of Declare.
In other words, everything is allowed unless stated otherwise. This means that
actions not explicitly modelled in the Declare model can indeed occur.

Take the example hybrid model in Fig. 3. Within this hybrid model, first
the constraint specified by sub-process X is active. When X has been exe-
cuted, the constraint specified by sub-process Y is active. Due to the open
world assumption of Declare, just performing C would be valid within sub-
process X . It is, however, not a valid execution of sub-process Y . One can
either have a permissive approach or a non-permissive approach to resolve this
ambiguity. Within a permissive approach, one would argue that C was executed
within X . In the non-permissive approach, one would argue that C was exe-
cuted within Y . Since in the permissive approach, any sequence of actions is
allowed except for those sequences which adhere to the following general pat-
tern: 〈. . . ,A, (¬B)∗,C , (¬B ∧ ¬D)∗〉, one would probably be inclined, in this
example, to follow the non-permissive approach.

X Y

A B C D

Fig. 3. Hybrid model where one can argue whether just performing C is a valid
execution.

If we would take the hybrid model in Fig. 2, then every instance of the process
starts with a fill out application action and ends with either a change status to
abort or a change status to completed action. In the review process action, the
execution has to adhere to the Declare model. Within this Declare model, it
is possible to execute the change status to abort or change status to completed
actions (open world assumption). Although this does not result in the kind of
ambiguity mentioned earlier, one can argue that the modeller did not intend to



The Semantics of Hybrid Process Models 541

change the status within the review sub-process. After all, she already modelled
it in the Petri net.

Given the above discussion, one may prefer to limit the execution to only
those actions modelled within the sub-process. This has as main disadvantage
that the execution semantics of a Declare model changes. Take for instance the
hybrid model in Fig. 4. We have the parallel execution of two Declare models. In
the top Declare model, the execution always starts with A, A cannot be directly
followed by B , and there needs to be between 1 and n Bs. If one would only allow
for the execution of the modelled actions, then after A, one can only execute A,
and a B can never be executed in the top model. As a result, the top Declare
model cannot terminate since it requires that B is executed at least once. If the
top Declare model would not be part of a hybrid model, then, thanks to the open
world view, there could be an action F after which B could be executed. After
this B , the Declare model could terminate. This results in different execution
semantics for the same Declare model.

A B C D

X

Y

init 1..n

Fig. 4. If we would limit the set of permissible actions to those explicitly modelled,
then sub-process X would not be able to terminate.

To resolve the aforementioned issue, we propose the use of a unique con-
text for each sub-process. The context specifies which actions can be executed,
including those that are not explicitly modelled. To resolve, amongst others, the
ambiguity shown in Fig. 3, we require that all contexts of a hybrid model are
pair-wise disjoint. Contexts are allowed to contain an infinite number of possible
actions (thereby supporting an open world assumption).

The existence of a context fits naturally within the way process models are
created. When the same process is modelled in the same way, but executed
within a different location/organisation/etc. then the ideas behind the process
and process model do not change. Only the location/organisation/etc. and envi-
ronment do; hence, the actions one expects to happen also change.

Returning to the hybrid model in Fig. 4 this means that the execution
sequence 〈A,C ,B ,D〉 is not allowed. The actions C and B are only attributed
to a single sub-process and as a result, the top Declare model executes 〈A,B〉
and the bottom model executes 〈C ,D〉, which are both not allowed.



542 T. Slaats et al.

XA B

C D

Fig. 5. X should always perform an action.

4.3 Termination of a Declare Model Requires the Execution of an
Action

In Fig. 5, we have part of a hybrid model where every A is directly followed by
X , which is, in turn, eventually followed by B . However, within X , one does not
need to execute an action. This means that A can or cannot be directly followed
by X dependent on whether an action is executed within X . This allows for the
sequence of actions: 〈A,B〉 whilst if X was not a sub-process but instead an
action, then this sequence would not be allowed. We argue that the fact that
A needs to be directly succeeded by X implies that some action needs to be
performed within X directly after A. Note that a similar notion of sub-processes
in Declare is proposed in [31]. However, the paper assumes that one can observe
an explicit start and completion of the sub process and the exact semantics are
left unclear (e.g., it is not made explicit if sub-processes are executed atomically
and if they can exhibit empty behaviour).

4.4 Fulfilment of a Declare Constraint When a Sub-process is
Negated

Figure 6 shows a Declare model with two sub-processes modelled as Petri nets.
On the right is the automaton encoding the execution semantics of the Declare
model. The automaton contains a transition ¬X . What does this mean when
X is a Petri net, or a sub-process in general? In other words, when is the con-
straint activated/fulfilled? We see two possible interpretations: (1) ¬X is the
complement of the language of X or (2) ¬X is the absence of X . Note that if X
was a single action instead of a sub-process, then these two views would largely
coincide.

Following the first interpretation of ¬X , i.e., it is the complement of the
language of X , then the next question becomes whether 〈B ,B ,A,B〉 would be a
valid execution of the hybrid model? One can argue this sequence is not allowed
within X (it only allows for 〈A,B〉). As a result, it is a valid execution. At the
same time, one can argue that 〈B ,B〉 belongs to ¬X and the last two actions
(〈A,B〉) belong to X . As a result, 〈B ,B ,A,B〉 would not be a valid execution.

In the second interpretation (absence of X ), we only allow for sequences of
actions in the Declare model which are allowed by the sub-processes. Taking our
earlier sequence (〈B ,B ,A,B〉), this would not be allowed since X does not allow
for this sequence.



The Semantics of Hybrid Process Models 543

We argue that a modeller wants to specify that one can execute 〈A,B〉, and
〈C ,D〉, and if one would execute 〈A,B〉, then it needs to be eventually followed
by 〈C ,D〉. As a result, we interpret the negation of a sub-process as its absence.

X Y

A B C D

X

¬X ¬Y

Y

Fig. 6. Within the automaton describing the execution semantics of the Declare model,
what does ¬X mean when X is a Petri net?

Having the solutions to the challenges for combing different formalisms in
a hybrid process model, we can now present the semantics of hybrid process
models.

5 Hybrid Models and Their Semantics

In this section, we formally define hybrid models and their semantics. We first
formally introduce hybrid models and the consistency thereof. Thereafter, for
ease of formalisation, we first define the semantics of hybrid models without
concurrency. Finally, we generalise the semantics of hybrid models to support
models with concurrency.

The Dreyer process does not contain a parallel sub-process and is there-
fore ill-suited for exemplifying the semantics of models with concurrency. As an
alternative, we employ a basic order-fulfilment process for examples within this
section, which is shown in Fig. 7.

questionnaire (X)receive
order (a)

produce
goods (b)

quality
check (c)

ship
goods (d)

receive
payment (h)

quality
check (e)

send
questionnaire (f)

receive filled-in
questionnaire (g)

1..3 0..1

Fig. 7. Hybrid model of a basic order-fulfilment process.



544 T. Slaats et al.

5.1 Hybrid Models

We distinguish between the universe of actions A and the universe of labels L.
Actions represent the executable elements of a model, e.g., activities, events and
transitions. These do not necessarily need to be visual elements: a Declare model
may allow for unconstrained activities that are not drawn explicitly. Labels rep-
resent the names of these actions and thereby the observed behaviour of the
model. This distinction is important because many notations, such as BPMN,
labelled Petri nets, and DCR graphs, allow the same label to occur on different
elements of the model. Therefore, independence is most generally defined on the
actions of the model instead of the labels. Finally, we define H as the universe
of all hybrid models.

Example 1 (Actions and Labels). Consider the hybrid model of Fig. 7. The top-
level labelled Petri net, contains the following actions: {a, b, c, d , e, h,X } and the
labels: {receive order, produce goods, quality check, ship goods, receive payment,
questionnaire}. Both action c and e map to the label quality check, but e is
independent from X , while c is not.

A hybrid model consists of a model in some notation, with actions in the
model mapping to either an observable label or another hybrid model (which
can be defined in another notation) and a context stating which actions and
labels are defined by the model, formally:

Definition 1 (Hybrid Model). A Hybrid Model is a tuple H = (M ,C , l , s)
comprising a model M , a context C = (A,L), where A ⊆ A is the set of allowed
actions in M and L ⊆ L is the set of observable labels in M , a partial labelling
function l : A �→ L mapping actions to labels and a partial sub-process function
s : A �→ H mapping actions to sub-processes.

As discussed in the previous section, we make a number of assumptions on
hybrid models. According to those, we define a consistent hybrid model as:

Definition 2 (Consistent Hybrid Model). A Hybrid Model H = (M , (A,
L), l , s) is consistent if and only if:

1. dom(l) ∩ dom(s) = ∅ and dom(l) ∪ dom(s) = A
2. ∀X ,Y ∈ A+

H : X =id Y ⇒ X ∩ Y = ∅ where A+
H = {A}⋃

(H ′∈img(s)(A
+
H ′)

3. ∀X ,Y ∈ L+
H : X =id Y ⇒ X ∩ Y = ∅ where L+

H = {L}⋃
(H ′∈img(s)(L

+
H ′)

4. ∀H ′ ∈ img(s) : H’ is a consistent hybrid model.

Item 1 ensures that an action is always assigned either a label or a sub-model, but
never both. Item 2 ensures that all sets of actions of a hybrid model are pairwise
disjoint. Item 3 similarly ensures that all sets of labels of a hybrid model are
pairwise disjoint. Items 2 and 3 follow from our requirements on the context.
Finally item 4 ensures that any sub-model is also consistent.



The Semantics of Hybrid Process Models 545

5.2 Semantics of Hybrid Models

When defining the semantics of hybrid models, we distinguish between the action
language LA, which represents the possible orderings of the actions of the model
and the observable language LL which represents the observable behaviour of the
model. The action language allows for a more refined definition of independence.

The action language of a hybrid model will depend on the chosen notations
and a formal definition of their semantics. For this paper, we shortly show how
one can deduce an action language from Petri nets and Declare. The represen-
tation in which both Petri nets as well as Declare models can be expressed are
transition systems. Therefore, we provide a mapping from Petri nets and Declare
to transition systems.

Action language of Petri nets. For Petri nets, transitions are our actions. Given
an initial and final marking, we can construct the transition system belonging
to the Petri net. Using the transition systems, it is trivial to deduce the action
language for the Petri net, i.e., all sequences of actions from the initial state of
the transition system to a final state of the transition system. We consider the
action language of a Petri net without actions originating from silent transitions.
Note that it might be that the Petri net contains a deadlock (or cannot terminate
in general). This is not an issue for the execution semantics, i.e., the transition
system will have a deadlock, but merely a modelling issue.

X

A \ {X} = {Y,E, F,G}
Y

X

¬X ¬Y

Y

context: A = {X,Y,E, F,G}

A \ {Y } = {X,E, F,G}

Fig. 8. Transformation from Fig. 6 given a context consisting of the actions:
X ,Y ,E ,F ,G to a transition system from which we can deduce the action language.

Action language of Declare. For a Declare model, we have to pay special atten-
tion to the negation, e.g., ¬X in Fig. 6. Similar to a Petri net, we transform the
Declare model to a transition system. Using our context, we substitute every
negation ¬X by A \ {X }, i.e., we take the complement of ¬X using the allowed
actions from the context. After having substituted all negations by their com-
plements, we can, analogous to the Petri net case, deduce the action language.
Note that, except for actions mapping to sub-processes, each action in Declare
always maps to a unique label. If we take our Declare model from Fig. 6 and
assume that the context specifies the following actions: {X ,Y ,E ,F ,G}, then
we substitute ¬X and ¬Y as depicted in Fig. 8.



546 T. Slaats et al.

Example 2 (Action Languages for Petri Nets and Declare). The action language
of the top-level Petri net in Fig. 7, from here on referred to as LA(Fig. 7Top)

, is
{abcXdeh, abcdXeh,abcdeXh}. The action language of the Declare sub-process in
Fig. 7, from here on referred to as LA(Fig. 7X), is {f ,ff ,fff , fg ,ffg ,fffg}.

Semantics of Hybrid Models Without Concurrency. We first consider
a special case of hybrid models without parallel constructs. This means that
the execution of sub-processes is essentially atomic and will never happen con-
currently with other parts of the process. This eases the first definition of the
semantics, as concurrency can be disregarded and the action language of a hybrid
model becomes the action language of its underlying model where each sub-
process is recursively substituted by the action language of that sub-processes.
Note that, as discussed in Sect. 4.3, we always require sub-processes to do at
least one action and therefore remove the empty word ε from their language.

Definition 3 (Action Language of a Hybrid Model w/o Concurrency).
Let H = (M , (A,L), l , s) be a consistent Hybrid Model and let LA(M ) be the
action language of M , then the action language of H is defined as: LA(H ) =⋃

w∈LA(M ) Subst(w), where

1. Subst(ab) = Subst(a)Subst(b)
2. Subst(a) = LA(s(a)) \ {ε} if a ∈ dom(s)
3. Subst(a) = a if a ∈ dom(l)

Example 3 (Action Language of a Hybrid Model w/o Concurrency). Based
on Definition 3 and the action languages defined in Example 2, we
can deduce that the action language of the hybrid model in Fig. 7
is: LA(Fig. 7) = {abcf deh, abcff deh, abcfff deh, abcfgdeh, abcffgdeh, abcfffgdeh,
abcdf eh, abcdff eh, abcdfff eh, abcdfgeh, abcdffgeh, abcdfffgeh, abcdef h, abcdeff h,
abcdefff h, abcdefgh, abcdeffgh, abcdefffgh}. As one can see the sub-process X
is treated as atomic here and its actions do not interleave individually with the
actions d and e.

The observable language for an action language is defined by substitution
of actions by their respective labels. We employ a recursive labelling function
which combines the labelling functions of all underlying models.

Definition 4 (Observable Language of a Hybrid Model). Let H =
(M , (A,L), l , s) be a consistent Hybrid Model, then the observable language LL

of H is defined as: LL(H ) =
⋃

w∈LA(H ) LblSubst(w), where

1. LblSubst(ab) = LblSubst(a)LblSubst(b)
2. LblSubst(a) = l+H (a) where l+H = l

⋃
H ′∈img(s)(l

+
H ′)

The observable language of Fig. 7 can be obtained by mapping each action
to its label.



The Semantics of Hybrid Process Models 547

5.3 Semantics of Hybrid Models with Concurrency

Within Petri nets, having two sub-processes concurrent means that both can
execute simultaneously. To extend our semantics to handle concurrency, we first
recall the notion of trace languages.

Definition 5 (Trace Languages). Given an alphabet Σ, the trace equivalence
class [w ]I ⊆ Σ∗ for a word w ∈ Σ∗ and an independence relation I ⊆ Σ × Σ,
for which (a, b) ∈ I ⇔ (b, a) ∈ I is a set of words such that:

1. w ∈ [w ]I
2. (a, b) ∈ I ∧ xaby ∈ [w ]I ⇒ xbay ∈ [w ]I

We say that a language L is a trace language consistent with independence rela-
tion I if: L =

⋃
w∈L[w ]I . For convenience, we write IM for the independence

relation of a model M and say that for a (possibly non-consistent) language L
and an independence relation I , [L]I is the minimal language consistent with I
such that [L]I ⊇ L.

We now define how to construct the concurrent action language for a hybrid
model as a trace language. We reuse the substitution function Subst from
Definition 3, but we add an independence relation based on the independence
relation of the base models. For any action independent from a sub-process, we
add the cross-product of that action with the actions of the sub-process to the
independence relation of the parent process.

Definition 6 (Concurrent Action Language of a Hybrid Model). The
concurrent action language LCA(H ) for an independence relation IH of a con-
sistent Hybrid Model H = (M , (A,L), l , s) and an independence relation IM for
the model M is defined as: LCA(H ) = [

⋃
w∈LA(M ) Subst(w)]IH , where Subst is

defined as in Definition 3 and

1. (a, b) ∈ IM ⇒ (a, b) ∈ IH
2. For s+H = s

⋃
H ′∈img(s)(s

+
H ′):

(a) (a, b) ∈ IM ∧ s+H (a) = (M ′, (A′,L′), l ′, s ′) ⇒ A′ × {b} ∈ IH
(b) (a, b) ∈ IM ∧ s+H (b) = (M ′, (A′,L′), l ′, s ′) ⇒ {a} × A′ ∈ IH
(c) (a, b) ∈ IM ∧ s+H (a) = (M ′, (A′,L′), l ′, s ′) ∧ s+H (b) = (M ′′, (A′′,L′′),

l ′′, s ′′) ⇒ A′ × A′′ ∈ IH
3. H ′ ∈ img(s) ∧ (a, b) ∈ IH ′ ⇒ (a, b) ∈ IH

Example 4 (Concurrent Action Language of a Hybrid Model). The inde-
pendence relation of the top-level Petri net in Fig. 7 is: IFig. 7Top

=
{(d ,X ), (X , d), (e,X ), (X , e)}, the independence relation of the Declare model is
empty. Following Definition 6, the independence relation of the hybrid model is:
IFig. 7 = {(d , f ), (f , d), (d , g), (g , d), (e, f ), (f , e), (e, g), (g , e)}. This means that
the concurrent action language of the model is: LCA(Fig. 7) = [LA(Fig. 7)]IFig. 7

for the independence relation IFig. 7. Here LCA(Fig. 7) is the language of Exam-
ple 4, but made consistent with the independence relation IFig. 7: it includes all
possible interleavings of the actions d and e with the actions f and g . Note that



548 T. Slaats et al.

LCA(Fig. 7) by itself provides an interleaving semantics for the hybrid model.
When combined with the independence relation IFig. 7, which makes clear which
actions can happen independently, it provides a true concurrent semantics.

Applying Definition 4 to the concurrent action language of a hybrid model
will yield the observable language respecting all valid interleavings.

6 Conclusion

In this paper, we provided a generic semantics for a hybrid process modelling
notation, supported by a use case based on a real-life process in use at a Danish
foundation. We discussed various issues that stem from mixing the different
paradigms and argued for ways to resolve them in a satisfactory manner.

Our proposal paves the way for the integration of notations that individually
are suitable to either model structured or unstructured process parts. While it is
to some extent left open how to define the action languages for other formalisms,
e.g., BPMN, DCR graphs, as well as the canonical format of APROMORE, we
believe that the provided semantics will be helpful for this purpose.

Future Work. The current paper serves as a stepping stone to a broad range
of future work. We intend to investigate each of these opportunities, in part
supported by a 3-year project grant from the Danish Council for Independent
Research.

Our contribution allows for an empirical evaluation of the expected advan-
tages of hybrid process modelling notations. Building on our proposal, it is possi-
ble to design experiments that provide declarative, imperative, and hybrid mod-
els of the same process, which can be compared with respect to the relative ease
of understanding these. There is a rich stream of experimental research that can
inspire such experiments [19,20]. In a similar vein, it is interesting to determine
how easy it is for modellers to apply hybrid notations. Finally, through experi-
ments and discussions with practitioners, we can determine for which domains
such models are particularly useful.

Providing a formal semantics for hybrid process notations will also support
the development of prototype modelling and simulation tools for the paradigm.
These tools, in turn, can be used to run experiments and make the approach
accessible to a wider audience.

We see opportunities to alleviate some of the assumptions we have posed
on the hybrid notation we proposed. For instance, it is possible to weaken the
requirement that no actions at all are shared between contexts. In some cases, for
instance, when two contexts can be shown never to run in parallel, there will be
no ambiguity. It is also possible to allow for more detailed interactions between
sub-processes and their parent by synchronizing on shared actions. While such a
framework will be more permissive, it will also allow for more complex models,
increasing the need for analysis and verification techniques tailored to hybrid
models.



The Semantics of Hybrid Process Models 549

To us, hybrid process models seem well applicable beyond the as-is modelling
phase of the BPM lifecycle [8], as has been argued in [1]. Clearly, for the run-time
phase, this paper provides an important ingredient, i.e., an execution semantics.
It is this semantics that could be taken as a basis for a BPM system to support
the execution of a business process that is modelled in a hybrid fashion. For
the process discovery phase, we have already presented a mining technique in
an earlier paper [12]. It is our plan to extend that work to align it with the
newly proposed execution semantics, as well as to study the application of hybrid
process models in other phases of the BPM lifecyle.

Finally, for the hybrid paradigm to become useful for practitioners, suitable
modelling methodologies will need to be developed. A primary open question is
how to identify the right sub-processes and determine the best notation for each.
When historical data is available, automated mining approaches can assist in this
effort, but for to-be processes, where this is not the case, modelling guidelines
are required.

References

1. Barukh, M.C., Benatallah, B.: ProcessBase: a hybrid process management plat-
form. In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS,
vol. 8831, pp. 16–31. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45391-9 2

2. Carlsen, S.: Action port model: A mixed paradigm conceptual workflow modeling
language. In: IFCIS, pp. 300–309 (1998)

3. Giacomo, G., Dumas, M., Maggi, F.M., Montali, M.: Declarative process mod-
eling in BPMN. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE
2015. LNCS, vol. 9097, pp. 84–100. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-19069-3 6

4. Smedt, J., Weerdt, J., Vanthienen, J.: Multi-paradigm process mining: retrieving
better models by combining rules and sequences. In: Meersman, R., Panetto, H.,
Dillon, T., Missikoff, M., Liu, L., Pastor, O., Cuzzocrea, A., Sellis, T. (eds.) OTM
2014. LNCS, vol. 8841, pp. 446–453. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45563-0 26

5. Debois, S., Hildebrandt, T.T., Marquard, M., Slaats, T.: A case for declara-
tive process modelling: Agile development of a grant application system. In:
EDOCW/AdaptiveCM 2014, pp. 126–133 (2014)

6. Debois, S., Hildebrandt, T., Slaats, T.: Hierarchical declarative modelling with
refinement and sub-processes. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM
2014. LNCS, vol. 8659, pp. 18–33. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-10172-9 2

7. Debois, S., Slaats, T.: The analysis of a real life declarative process. CIDM 2015,
1374–1382 (2015)

8. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of business
process management. Springer, Heidelberg (2013)

9. Haisjackl, C., Barba, I., Zugal, S., Soffer, P., Hadar, I., Reichert, M., Pinggera,
J., Weber, B.: Understanding declare models: strategies, pitfalls, empirical results.
Softw. Syst. Model. 15, 1–28 (2014)

10. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as distrib-
uted dynamic condition response graphs. In: PLACES, pp. 59–73 (2010)

http://dx.doi.org/10.1007/978-3-662-45391-9_2
http://dx.doi.org/10.1007/978-3-319-19069-3_6
http://dx.doi.org/10.1007/978-3-319-19069-3_6
http://dx.doi.org/10.1007/978-3-662-45563-0_26
http://dx.doi.org/10.1007/978-3-662-45563-0_26
http://dx.doi.org/10.1007/978-3-319-10172-9_2
http://dx.doi.org/10.1007/978-3-319-10172-9_2


550 T. Slaats et al.

11. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Nested dynamic condition response
graphs. In: Arbab, F., Sirjani, M. (eds.) FSEN 2011. LNCS, vol. 7141, pp. 343–350.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-29320-7 23

12. Maggi, F.M., Slaats, T., Reijers, H.A.: The automated discovery of hybrid
processes. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659,
pp. 392–399. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10172-9 27

13. Markovic, I., Kowalkiewicz, M.: Linking business goals to process models in seman-
tic business process modeling. In: EDOC, pp. 332–338 (2008)

14. Marquard, M., Shahzad, M., Slaats, T.: Web-based modelling and collaborative
simulation of declarative processes. In: Motahari-Nezhad, H.R., Recker, J., Wei-
dlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 209–225. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-23063-4 15

15. Montali, M.: Specification and Verification of Declarative Open Interaction Models
- A Logic-Based Approach. LNBIP, vol. 56. Springer, Heidelberg (2010). http://
link.springer.com/book/10.1007%2F978-3-642-14538-4

16. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:
Declarative specification and verification of service choreographies. TWEB 4(1), 3
(2010)

17. Moody, D.L.: The physics of notations: toward a scientific basis for constructing
visual notations in software engineering. IEEE TSE 35(6), 756–779 (2009)

18. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: Full support for
loosely-structured processes. EDOC 2007, 287–300 (2007)

19. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imper-
ative versus declarative process modeling languages: an empirical investigation.
In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp.
383–394. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28108-2 37

20. Reijers, H.A., Mendling, J., Dijkman, R.M.: Human and automatic modulariza-
tions of process models to enhance their comprehension. Inf. Syst. 36(5), 881–897
(2011)

21. Reijers, H.A., Slaats, T., Stahl, C.: Declarative modeling-an academic dream or
the future for bpm? BPM 2013, 307–322 (2013)

22. Sadiq, S.W., Orlowska, M.E., Sadiq, W.: Specification and validation of process
constraints for flexible workflows. Inf. Syst. 30(5), 349–378 (2005)

23. Slaats, T., Mukkamala, R.R., Hildebrandt, T., Marquard, M.: Exformatics declar-
ative case management workflows as DCR graphs. In: Daniel, F., Wang, J., Weber,
B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 339–354. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40176-3 28

24. De Smedt, J., De Weerdt, J., Vanthienen, J., Poels, G.: Mixed-paradigm process
modeling with intertwined state spaces. Bus. IS Eng. 58(1), 19–29 (2016)

25. Vacuĺın, R., Hull, R., Heath, T., Cochran, C., Nigam, A., Sukaviriya, P.: Declarative
business artifact centric modeling of decision and knowledge intensive business
processes. In: EDOC, pp. 151–160. IEEE (2011)

26. van der Aalst, W.M.P., Adams, M., ter Hofstede, A.H.M., Pesic, M., Schonenberg,
H.: Flexibility as a service. In: Chen, L., Liu, C., Liu, Q., Deng, K. (eds.) DAS-
FAA 2009 Workshops. LNCS, vol. 5667, pp. 319–333. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-04205-8 27

27. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balanc-
ing between flexibility and support. Comp. Sc. R&D 23, 99–113 (2009)

28. van der Aalst, W.M.P., ter Hofstede, A.H.M.: Yawl: yet another workflow language.
Inf. Syst. 30(4), 245–275 (2005)

http://dx.doi.org/10.1007/978-3-642-29320-7_23
http://dx.doi.org/10.1007/978-3-319-10172-9_27
http://dx.doi.org/10.1007/978-3-319-23063-4_15
http://springerlink.bibliotecabuap.elogim.com/book/10.1007%2F978-3-642-14538-4
http://springerlink.bibliotecabuap.elogim.com/book/10.1007%2F978-3-642-14538-4
http://dx.doi.org/10.1007/978-3-642-28108-2_37
http://dx.doi.org/10.1007/978-3-642-40176-3_28
http://dx.doi.org/10.1007/978-3-642-04205-8_27


The Semantics of Hybrid Process Models 551

29. Westergaard, M., Slaats, T.: Cpn tools 4: A process modeling tool combining
declarative and imperative paradigms. In: BPM (Demos) (2013)

30. Westergaard, M., Slaats, T.: Mixing paradigms for more comprehensible models.
In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 283–290.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40176-3 24

31. Zugal, S., Soffer, P., Pinggera, J., Weber, B.: Expressiveness and understandability
considerations of hierarchy in declarative business process models. BPMDS 2012,
167–181 (2012)

32. Muehlen, M.Z., Indulska, M.: Indulska.: Modeling languages for business processes
and business rules: A representational analysis. Inf. Syst. 35(4), 379–390 (2010)

http://dx.doi.org/10.1007/978-3-642-40176-3_24

	The Semantics of Hybrid Process Models
	1 Introduction
	2 Related Work
	2.1 Autonomous Languages
	2.2 Hybrid Languages

	3 Use Case for Hybrid Process Models
	4 Formalisation Challenges
	4.1 Identifying the Challenges
	4.2 Closing the Open/Closed World Gap by Means of a Context
	4.3 Termination of a Declare Model Requires the Execution of an Action
	4.4 Fulfilment of a Declare Constraint When a Sub-process is Negated

	5 Hybrid Models and Their Semantics
	5.1 Hybrid Models
	5.2 Semantics of Hybrid Models
	5.3 Semantics of Hybrid Models with Concurrency

	6 Conclusion
	References


