
Process Synthesis with Sequential
and Parallel Constraints

Richard Mrasek, Jutta Mülle(B), and Klemens Böhm

Institute for Program Structures and Data Organization,
Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

{richard.mrasek,jutta.muelle,klemens.boehm}@kit.edu

Abstract. Synthesis is the generation of a process model that fulfills
a set of declarative constraints, a. k. a. properties. In this article, we
study synthesis in the presence of both so-called sequential and parallel
constraints. Sequential constraints state that certain tasks must occur
in a specific ordering. Parallel constraints specify the maximal degree of
parallelization at a certain position in a process model. Combining both
sequential and parallel constraints in one approach is difficult, because
their interference is complex and hard to foresee. Besides this, with large
specifications, solutions which do not scale are not viable either. Our
synthesis approach consists of two steps. First, we generate a model
fulfilling only the sequential constraints. We then apply a novel algorithm
that deparallelizes the process to fulfill the parallel constraints as well
as any additional optimization criteria. We evaluate our approach using
the real-world use case of commissioning in vehicle manufacturing. In
particular, we compare our synthesized models to ones domain experts
have generated by hand. It turns out that our synthesized models are
significantly better than these reference points.

1 Introduction

Synthesis is the generation of a process model that fulfills a set of declarative
constraints, a. k. a. properties. Synthesis has several important application sce-
narios, described in various publications:

– to generate a process skeleton as a basis for process models or as a communi-
cation point between business and compliance experts [1],

– to build web service composition models [2],
– to automatically generate production processes [3],
– to assure that the process model complies with life cycles of its artifacts [4].

Synthesis is different from verification, but is related [5,6]. Verification is checking
whether a given process model has certain properties. Synthesis in turn generates
a process model from properties. Both require a formal model of the properties
as a starting point. Synthesis from compliance rules is also known as Compliance
by Design [4], in contrast to Compliance by Validation [7].

c© Springer International Publishing AG 2016
C. Debruyne et al. (Eds.): OTM 2016 Conferences, LNCS 10033, pp. 43–60, 2016.
DOI: 10.1007/978-3-319-48472-3 3

44 R. Mrasek et al.

As [1–4] show for synthesis and [8–10] for verification, different types of con-
straints for process models exist. In this article, we study synthesis in the pres-
ence of both so-called sequential and parallel constraints. Sequential constraints
state that certain tasks in a process model must occur in a specific ordering. For
instance, Task A requires another Task B as its precondition. Parallel constraints
specify the maximal degree of parallelization of tasks at a certain position of a
process model. They allow modeling any resource limitations. For instance, a
Resource R has a capacity of 2, i. e., only two tasks can access it at a time. To
avoid blocking, one wants to limit the degree of parallelization of the tasks using
the resource to 2. Another requirement is that any synthesis approach must be
scalable and cope with specifications and process models of realistic size.

The related work on process synthesis does not support these requirements
in combination. [1] and [3] only support sequential constraints. [2] and [4] can
handle parallel constraints in principle, but only with an exponential bloating of
their finite state automata. [2,9] and [4] explore the full state space of possible
solutions and thus can not cope with large models either.

Challenges. Synthesis from both sequential and parallel constraints is difficult,
because their interference is complex and hard to foresee. Besides this, with large
specifications, solutions which do not scale are not viable either. For instance, the
scenario we use in our evaluation, a real one, contains 496 tasks, and there are
several hundred sequential and parallel constraints. There often is a huge number
of models that fulfill the specification. To illustrate, the sequential arrangement
of n nodes, in the absence of any constraint, gives way to n! different process
models. Next, orthogonally to the dependencies that a process model must fulfill,
several optimization criteria can exist. The total processing time of the process
model is just one of them.

Contributions. In this paper we propose an approach for the synthesis of process
models from both sequential and parallel constraints. To this end, we first collect
and classify the requirements that the process model should fulfill, see Sect. 2.
Our collection contains new and interesting requirements not featured by other
synthesis approaches. This includes new criteria for correctness (parallel con-
straint, total processing time) and secondary optimization constraints. For the
synthesis we propose a two-step approach. First, we generate a model fulfilling
the sequential constraints, see Sect. 3. In Sect. 4, we then apply a novel algo-
rithm that deparallelizes the process to fulfill the parallel constraints as well as
the optimization criteria. We evaluate our approach using the real-world use case
of commissioning in the vehicle industry, see Sect. 5. In particular, we compare
our synthesized models to ones domain experts have generated by hand. Our
synthesized models are significantly better than these reference points. Then, we
discuss related work of our approach in Sect. 6. Finally, we conclude that our
approach can indeed deal with large specifications occurring in real scenarios.

Process Synthesis with Sequential and Parallel Constraints 45

2 Process-Model Requirements

In this section we discuss the requirements that a synthesized process model
should meet. First, the process model must be correct. Correctness means ful-
filling all given properties. Second, the process model should be of high quality,
i. e., good with respect to the optimization criteria given, e. g., total runtime –
Subsect. 2.1 describes different correctness criteria, using our use case as an illus-
tration. Subsection 2.2 introduces optimization criteria, allowing to differentiate
between models that are correct.

2.1 Correctness

As mentioned earlier, the form of the constraints in our context can vary. [1]
and [2] use different property patterns that can be expressed as temporal logic
formulae. [4] uses a state space model of data artifacts, and [3] uses a dependency
graph to express sequential constraints.

We want to synthesize process models in the form of process trees. The ratio-
nale is that the block structure ensures important syntactic properties, e. g.,
soundness, and the transformation to any process language is easily doable.
Additionally, the block structure allows the inclusion of both sequential and
parallel constraints. Related work [11] has mainly focused on the use of sequen-
tial constraints, subsequently abbreviated with S, see also [8–10]. But parallel
constraints P are equally important. This is because every resource has a lim-
ited capacity, and effective resource usage is key to business-process efficiency.
Finally, constraints on process execution as a whole, like bounds on the total
processing time, are worthwhile as well. We have learned from domain experts
in industry that these constraints influence the design of process models very
much.

Sequential Constraints S. Sequential constraints limit the sequential arrange-
ment of tasks that are possible. This includes that a Task A needs another Task B
as pre- or post-condition. We consider two patterns of sequential constraints,
namely response and precedence. They represent the fundamentally different
types of sequential constraints between tasks, in particular also in our applica-
tion domain, the commissioning of vehicles. ‘A response-to B’ means that after
the execution of A, B needs to be executed before the process completes. B
does not need to be the next task. ‘B precedence A’ means that, B needs to be
executed before Task A. In both patterns, A is the antecedent, i. e., the task B
is referring to, because it triggers the pattern, and B is the consequence.

Example 1. Our evaluation scenario is the commissioning of vehicles. Com-
missioning is the final step in the production of a vehicle and consists of testing
whether the components function properly and of configuring the electronic com-
ponents. To this end, a Task A communicates with a specific component built
in the vehicle. Before this communication is possible, another Task B needs to
establish the connection to the component. The constraint A precedence B states
this.

46 R. Mrasek et al.

Parallel Constraints P. Parallel constraints limit the parallelization of tasks.
This is often necessary because tasks use resources with a limited capacity. In
order to avoid blocking of the process execution, the degree of parallelization in
the process model should not exceed the capacity of the resource.

Example 2. With vehicle commissioning, one class of tasks is to configure the
software installed on the electronic control units (ecus). This causes a huge
volume of data transfer over a bus protocol with a low data rate. These configu-
ration tasks are the most time consuming ones of a commissioning process. The
concrete number of parallel connections available for data transfer is four.

Bounds on Total Processing Time. Additional constraints are possible that
relate to the execution as a whole. One such constraint limits the total processing
time, i. e., assures that all process instances will complete within this time span.

Example 3. In our scenario, the vehicle production uses an assembly line sys-
tem. Each production step is planned to use a fixed number of cycles. After the
cycle, the vehicle goes to the next production station. This allows a continuous
flow of production and a high productivity. If the completion of the process model
needs more time than scheduled, this will negatively influence the flow of produc-
tion and cause high costs. To this end, the processing time of a process model
must not exceed the time limit of the station.

2.2 Optimization

Even when all correctness criteria are met, many process models are still possible.
To this end, it is necessary to select a good model out of the correct ones. The
possible criteria are manifold and depend on the scenario. A common criterion
is to minimize the average processing time of the process instances.

Example 4. In our evaluation scenario, two criteria are relevant. Some tasks
are executed manually by a worker, and some are executed automatically, i.e.,
by the control units in the vehicle. The first criterion is to reduce the waiting
time of the workers, i. e, the worker should not need to wait until an automated
task completes. Following the lean production paradigm, reduction of the human
waiting time is more important than the reduction of the processing time [12,
p. 54] (as long as the total time limit is met).

3 Generating a Process Model from Sequential
Constraints

The first step of our approach is to find a process model that fulfills the sequential
constraints, e. g., the response and precedence pattern. The input parameter of
the algorithm is a list of necessary tasks T and the sequential constraints S.
The algorithm consists of the following steps. Subsections 3.1–3.3 describe these
steps.

Process Synthesis with Sequential and Parallel Constraints 47

1. Generate a complete dependency graph
2. Decompose the graph into its modules
3. Transform the decomposition into a process model.

3.1 Generating Complete Dependency Graph

In this paper we use the declare notation [13] for the graphical representation of
sequential constraints, i. e., nodes represent tasks, edges sequential constraints,
and a black dot marks the antecedent of the constraint, see Fig. 1.

Fig. 1. The graphical representation of the response- and the precedence-pattern

Definition 1. [Dependency Graph DP] A dependency graph is a directed
acyclic graph DP (V,E), as follows: The nodes V represent the tasks in the
process model. An edge (v1, v2) ∈ E represents a sequential constraint between
Tasks v1 and v2.

The graph needs to be acyclic. Otherwise, it would not be possible to find a
correct process model. The dependency graph should not be confused with the
control flow graph modeled by an imperative process model, e.g., bpmn. The
dependency graph constrains the process execution but does not explicitly state
how to execute the model.

Algorithm 1, which we have published in a technical report earlier [14], shows
our approach to generate the dependency graph. We assume, that their exist no
contradictionary constraints. S may refer to tasks that are not in T , so we extend
T with these tasks in a first step. For instance, think of a process model including
Task X. X requires another Task Y as its precondition, thus we must include
it in the process model as well. Given T and S, we check if a task t ∈ T is the
antecedent of a sequential constraint with a task t2 not in T as the consequence.
If so, we add t2 to T . Our algorithm repeats these steps until no further change
is possible (Line 1–3). For each task we generate a node in the dependency graph
(Line 4-6). If a sequential constraint between two tasks t1, t2 ∈ T exists, we add
an edge (t1, t2) to the dependency graph (Line 7–11). At last, we generate the
transitive hull of the dependency graph (Line 12).

Example 5. Figure 2 illustrates different states of the algorithm. The tasks in
T in the respective state are highlighted in red. The algorithm starts with the
initial set of tasks T = {B,E} and the sequential constraints S containing six
constraints according to the edges; see Fig. 2(a). Next, we extend T to all tasks
that are the consequence to an antecedent task in T . For instance, C is con-
sequence in the constraint ‘E precedence C’. See Fig. 2(b). We repeat this step
until no change happens, see Fig. 2(c). F is not in T because F is antecedent in
the pattern. Next, we generate the dependency graph using T and S. Figure 2(d)
shows the resulting graph. Lastly, we build the transitive hull of the dependency
graph, shown in Fig. 2(e).

48 R. Mrasek et al.

Algorithm 1. GenerateDPGraph (task set T , Sequential Constraints S) : DP
1: while ∃t1 ∈ T , t2 �∈ T with (t1, t2) ∨ (t2, t1) ∈ S and t1 is the antecedent part do
2: T ← T ∪ {t2}
3: end while
4: for all t ∈ T do
5: Add a state t to the dependency graph DP
6: end for
7: for all (t1, t2) ∈ S do
8: if t1, t2 ∈ T then
9: Add an edge (t1, t2) to the dependency graph DP

10: end if
11: end for
12: DP ← Build the transitive hull of DP
13: return The dependency graph DP

Fig. 2. Generation of a complete dependency graph

3.2 Modular Decomposition

In general the dependency graph is complex, containing hundreds of nodes and
edges. To this end, we decompose the graph into manageable modules to facilitate
the synthesis.

Definition 2. [Set of Outgoing Vertices N+(v) and Incoming Vertices N−(v)]
The set of outgoing vertices N+(v) of a vertex v in a directed graph G(V,E)
is N+(v) = {v′|(v, v′) ∈ E}. N−(v) = {v′|(v′, v) ∈ E} is the set of incoming
vertices.

Definition 3. [Module] A module W for a directed graph G(V,E) is a subset
of the vertices W ⊆ V where all vertices v ∈ W have the same incoming N−(v)
and outgoing vertices N+(v) not in W .

Definition 4. [Strong Module] A module W is a strong module if, for each
module W ′ ⊆ V , one of the following holds: W \W ′ = ∅, W ⊆ W ′, or W ′ ⊆ W .

Example 6. The first four images in Fig. 3 show all modules for a simple depen-
dency graph. The set of all modules is M = {{A,B}, {A,C}, {A,B,C}, {A},
{B}, {C}}. {A,B} and {A,C} are not strong modules. This is because {A,B} \
{A,C} = {A} �= ∅ and {A,B} � {A,C} and {A,C} � {A,B}. {B,C} is not a
module because N−(B) \ {B,C} = {A} �= ∅ = N−(C) \ {B,C}.

Process Synthesis with Sequential and Parallel Constraints 49

Fig. 3. A dependency graph with some modules

The strong modules do not intersect with each other, i. e., each module is
either part of another module, or no shared vertex exists. This allows decom-
posing the graph into a hierarchy of strong modules called the modular decom-
position tree. The generation of the modular decomposition tree can be done in
linear time [15].

Definition 5. [Module Classification] A strong module W is either prime, i. e.,
no real subset W ′ ⊆ W with |W | > 1 is a module, or complete, i. e., all subsets
are modules.

[15] shows that each strong module is either prime or complete. In this paper
we assume that the decomposition results in a complete module. In general,
prime modules are parts of a process model that is not fully specified. [3] proposes
an approach to solve such under-specified parts and to transform them into
complete modules.

3.3 Transform into Process Tree

We classify complete modules into three types:

Definition 6. The following three types of a complete module W exist:

– Trivial: |W | = 1
– Parallel: ∀v1, v2 ∈ W, v1 �= v2 : (v1, v2) �∈ E
– Serial: ∀v1, v2 ∈ W : (v1, v2) ∈ E ∨ (v2, v1) ∈ E

Lemma 1. A complete module W is exactly of one of the types trivial, parallel,
or serial.

Proof. It is obvious that a module W cannot be of more than one of these types.
So it remains to show that a complete module is always either trivial, parallel
or serial. For |W | = 1 the module is trivial. For |W | = 2, either an edge exists
between the two vertices, i. e., the module is serial, or not, i. e., the module is
parallel.

We now show the general case by contradiction. To this end, next to |W | > 2,
we assume that W is neither parallel nor serial. This means that ∃v1, v2 ∈

50 R. Mrasek et al.

W : (v1, v2) ∈ E and ∃v3, v4 ∈ W : (v3, v4) �∈ E ∧ (v4, v3) �∈ E. We partition
the module into W ′ = {v1, v3) and W ′′ = {v2, v4}. W is a complete module,
implying that W ′ and W ′′ are modules. Since v1 and v3 are in a module, they
have the same outgoing edges outside of W ′. Analogously, v2 and v4 are in a
module, and they share the same incoming edges to nodes outside of W ′′. An edge
(v1, v2) ∈ E exists, therefore an edge (v3, v4) ∈ E exists. This is a contradiction
to the assumption that the module is not serial.
�

Each type corresponds to a control-flow element in the process tree: the trivial
modules to tasks, serial ones to sequential flows, parallel ones to and-Gateways.

Example 7. Figure 4 illustrates the algorithm for the sequential arrangement.
The algorithm starts with the initial list T = {B} of necessary tasks in the
process model and the sequential constraints S. Next we extend T to all tasks
that are consequences of an antecedent task in T . This results in the new list
T = {A,B,C,D}, see Fig. 4(a). E is not in T because E always is an antecedent
in the pattern. Next, we generate the dependency graph using T /S and compute
the transitive closure. Figure 4(b) shows the result. We then compute the modules
of the graph, see Fig. 4(c). Lastly, we transform the modular decomposition tree
into a process tree, see Fig. 4(d).

Fig. 4. Extend the list of required tasks (a), Construct a dependency graph (b), Per-
form Modular Decomposition (c), Transform to process tree (d).

The transformation from the process tree to a modeling language is straight-
forward using a template for each control-flow element supported. Figure 5 illus-
trates this for bpmn, Petri Nets and ws-bpel.

4 Applying Parallel Constraints with Optimization

In addition to sequential tasks, parallel constraints exist. To cope with these
constraints, we apply a post-processing scheme to the process just generated. At
first sight, instead of our algorithm in Sect. 3, it would also be possible to com-
bine this post-processing scheme with other synthesis approaches for sequential
constraints, e. g., [1,2,4]. However, a comparison of ours (see [14]) has shown

Process Synthesis with Sequential and Parallel Constraints 51

Fig. 5. Transformation of a process tree to petri net, bpmn or ws-bpel.

that these competitors do not scale well with the size of the use case. Hence, we
do not study the combination with these synthesis approaches in what follows.
Our post-processing scheme schedules the tasks with fewer parallel paths, so
that the parallel constraints are met. Because reducing the degree of parallelism
affects the optimization criterion, e. g., processing time, we need to observe it
as well. The core idea behind our approach is to iteratively merge two parallel
lanes into one, until the constraints are fulfilled. In each iteration we look at each
candidate pair of parallel lanes and rate it according to the effects it would have.
For instance, we could look at the reduction of resource consumption versus the
increase in processing time. We then apply the candidate with the highest rating.
We repeat this until all constraints are fulfilled. In the worst case, this means
arranging all tasks in a sequence. We do not automatically select the candidate
with the best rate. This is because this greedy approach might not lead to a
globally optimal result. See Example 8. Instead we choose the candidate accord-
ing to a probability function and repeat this selection several times, with the
chance to achieve a globally optimal result.

Fig. 6. A greedy approach might not lead to a globally optimal result.

Example 8. Figure 6(a) shows a process model with four tasks {A,B,C,D}.
Task A and B take 1s to complete, tasks C and D take 2s. We want to reduce
the model to use a maximum of two parallel lanes. A greedy approach would
combine A and B in the first step; see Fig. 6(b). This would lead to a suboptimal
solution in the next iteration, see Fig. 6(c), because combining C and D leads to
an execution time of 4s, but combining C with A and D with B would lead to
3s for all paths.

52 R. Mrasek et al.

Algorithm 2. ParallelConstraints (ProcessTree original, Parallel Constraints
P, Additional Constraints C): ProcessTree best
1: for it = 0 until it = ITERATIONS do
2: ProcessTree tmp ← original.copy
3: while ∃p ∈ P that is not fulfilled do
4: Compute all candidates C of parallel lanes
5: chosen ← HeuristicSelection(C) // See Algorithm 3
6: ProcessTree tmp ← combine the two lanes of chosen in tmp
7: end while
8: if ∃c ∈ C that is not fulfilled then
9: continue

10: end if
11: if tmp has shorter processing time than best then
12: best ← tmp
13: end if
14: end for
15: return best

Algorithm 2 is our post-processing scheme for purely sequential process mod-
els that helps in fulfilling parallel constraints. Each iteration collects candidates
C (Line 4). A candidate c ∈ C is a pair of two parallel lanes on any hierarchy
level of the process model. In each iteration, our algorithm chooses a candidate
for a merging using a heuristic. Algorithm 3 will be the algorithm to select a
candidate using the gain function and the probability function p(c). Algorithm 2
receives the candidate c and combines its lanes c (Line 6). We iterate until the
resource constraint is fulfilled (Lines 3–7). If the process tree found violates a
constraint on the execution as a whole we omit the candidate (Line 8–10). For
instance, in our evaluation scenario the complete processing time of the process
execution must not exceed a limit L. Line 11 checks if the solution found (tmp)
has a shorter overall processing time than the best one so far. We repeat Algo-
rithm 2 until the maximal number of iterations is reached (Lines 1–14). Other
abort criteria, e.g., maximum computation time, are conceivable as well. We
finally return the best solution found for the resource constraint (Line 15).

Next, we explain which candidate we choose in each iteration, i. e., Algo-
rithm 3. A candidate c is good if its deparallelization helps fulfilling all con-
straints without lowering the quality of the process model significantly, e.g.,
total processing time. To this end, we define the gain of a candidate. A gain
function g is a function with the following characteristics:

– ∀c ∈ C : g(c) ≥ 0
– If a Candidate c1 is a better candidate for deparallelization compared to a

Candidate c2 then g(c1) > g(c2).

The concrete function quantifying the gain depends on the scenario. In our
scenario for instance, we consider parallel constraints as well as the total runtime
of the process instances and the waiting time of a human worker. Example 9
motivates and introduces the gain function we use there.

Process Synthesis with Sequential and Parallel Constraints 53

Example 9. To quantify the gain, the reduced degree of parallelism of the
resource Δres(c) when we combine the two lanes in c is important. Addition-
ally, we calculate how the deparallelization of c would extend the processing time
Δrun(c) and the human worker time Δhum(c). If the combination of the two lanes
brings the process model under the limit for the resource, we set Δres(c) to the
limit of the resource. The rationale behind this design choice is that a reduction
under the limit does not yield any performance gain. For instance, if we assume
that the process model before the reduction uses 5 resources, and the limit of
the resources is 4, then Δres(c) is at most 1. Next, we calculate the gain of the
candidate as

g(c) =
Δres(c) + λ

σ · Δhum(c) + Δrun(c) + λ

σ with σ > 1 is a constant that ensures that the human processing time is
deemed more important than the total processing time. λ is a constant with λ > 0
to trade off quality vs. performance. A larger λ leads to a broader search with a
potentially better result but a longer runtime. To illustrate, a large λ dominates
the term and renders the selection less dependent on the other addends. This
in turn would cause the algorithm to converge slower, but tends to prevent the
algorithm from getting trapped in a local minimum. See Sect. 5.2 for experiments
on the influence of λ.

Our goal is to select candidates with a high gain to reduce the resource
consumption efficiently. Our algorithm combines the two parallel lanes of the
candidate into one. The algorithm then repeats the selection and combination
steps, until all constraints are fulfilled. Observe that the selection of a candi-
date influences the gain values of subsequent candidates. The selection of the
best candidate in one iteration could lead to an end result that is not optimal,
cf. Example 8. Hence, we add some randomness to the selection of the candidates
and repeat it several times. A completely random selection could lead to a long
runtime of our algorithm. We resolve this by weighting the probability of the
candidates p(c) with their gain. To make the selection simple, we require that∑

c∈C p(c) = 1, i. e., p(c) is a probability mass function. Thus, for all candidates,
p(c) ∈ [0, 1]. The probability should be higher for candidates with a high gain.
We choose the function p(c) as follows:

p(c) =
g(c) − min + ε

∑
c′∈C g(c′) − |C|(min − ε)

We see that p(c) ∈ [0, 1] for all candidates. Obviously, min is the lowest value
for g(c). ε is a small constant to avoid a division by zero.

Lemma 2

p(c) =
g(c) − min + ε

∑
c′∈C g(c′) − |C|(min − ε)

is a probability mass function.

54 R. Mrasek et al.

Proof. To show the lemma, we need to prove that
∑

c∈C p(c) = 1.

∑

c∈C
p(c) =

∑

c∈C

g(c) − min + ε
∑

c′∈C g(c′) − |C|(min − ε)
=

∑
c∈C g(c) − min + ε

∑
c′∈C g(c′) − |C|(min − ε)

=
∑

c∈C g(c) + |C|(−min + ε)
∑

c′∈C g(c′) − |C|(min − ε)
=

∑
c∈C g(c) − |C|(min − ε)

∑
c′∈C g(c′) − |C|(min − ε)

= 1

�

Example 10 lists the function p for a simple example.

Fig. 7. A process tree with its candidates for the reduction and their respective Gain
g(c) and Probability p(c)

Example 10. Figure 7 shows a process tree. The numbers under the tasks are
their respective runtimes. The table on the right hand side shows the gain g(c)
for λ = 0.1. The sum of all gains is

∑
c′∈C g(c′) = 3.33, the minimum is 0.03

and |C| = 10. We have set ε to 0.01 to get the probabilities p(c) in the table on
the right hand side.

5 Evaluation

Subsection 5.1 elaborates on our evaluation scenario, the commissioning of vehi-
cles. Subsection 5.2 describes experiments regarding the performance of our algo-
rithm and the role of its parameters. Subsection 5.3 describes results with our
use case.

Process Synthesis with Sequential and Parallel Constraints 55

Algorithm 3. HeuristicSelection (Candidates C): candidate best
1: for all c ∈ C do
2: Calculate g(c)
3: end for
4: min ← min (g(c) | c ∈ C)
5: for all c ∈ C do
6:

p(c) =
g(c) − min + ε

∑
c′∈C g(c′) − |C|(min − ε)

7: end for
8: rand ← Random Number between 0 and 1
9: last ← 0

10: for all c ∈ C do
11: if rand > last ∨ rand ≤ last + p(c) then
12: best ← c
13: break
14: else
15: last ← last + p(c)
16: end if
17: end for
18: return best

5.1 Scenario Commissioning of Vehicles

Commissioning consists of two phases: first, testing if all parts of the vehicle
function properly; second, installment of software on the control units (ecus)
built into the vehicle. To this end, each vehicle is moved to several testing sta-
tions. At each station, a factory worker connects the vehicle to a diagnostic
system, i. e., a workflow system for commissioning [16], using a mobile testing
station (mps, an acronym for the German word Mobile Prüfstation). The mps
invokes several operations on the vehicle and presents tasks to the worker via
a hand-held terminal. ecus are components built into the vehicle which control
certain features of the car. E. g., the ecu mot controls the engine electronics.
Commissioning processes are inherently complex. Typically, there are hundreds
of tasks for each vehicle. For instance our evaluation use case consists of 496
tasks. The tasks are arranged in up to 14 parallel lanes, the maximal capacity
of the bus network. Each testing station and respective process model uses a
preplanned number of production cycles, i.e., sets itself a time limit. The execu-
tion of the model needs to be complete within this time or will cause a major
disturbance of the production flow.

The current situation is that a dedicated department plans and implements
those commissioning process models by hand, using specific authoring tools.
There are several factors rendering process-model design complex and expensive.
These include the increase of the number of assisting and media components in
the vehicle to be tested, or shorter production cycles for the commissioning.
This combination leads to a constant increase in the number and complexity of
process models for the commissioning of a vehicle project. At the same time,

56 R. Mrasek et al.

for each process model several hundreds of constraints exist. For instance, the
majority of operations require other operations as pre- or postcondition, and
the resources used by operations have limited capacity. Observe that loops are
unnatural in commissioning processes, since a feature is tested only once. If a
problem occurs and is fixed, a new commissioning process is started later on.
The rationale is that vehicle production uses a cycle system, i. e., each production
step has a fixed time limit for its completion. Iterations with an unclear number
of repetitions in a process model make predictions of its runtime overly difficult.

0 1,000 2,000 3,000 4,000 5,000
200

500

800

Iteration

Pr
o
ce
ss

M
od

el
Pr
oc
es
si
ng

T
im

e
in

s

λ = 10−2

λ = 10−1

λ = 100

λ = 101

λ = 102

λ = 103

Fig. 8. Processing time as a function of the number of iterations and of λ

5.2 Performance Evaluation

In a first step, we have tested the runtime and performance of our algorithms
by means of simulations. To this end, we have synthesized process models using
our approach. The specification for the synthesis, e. g., tasks and structure, were
similar to what we have found in industrial processes. More specifically, the
number of tasks has been 447 and the average outdegree of each node has been
13.66. For our evaluation, we have specified 48 patterns of constraints that have
resulted in 465 sequential constraints. As parallel constraints we define that
each component should only be accessed once and that the maximal degree of
parallelization should not exceed 5. In total, this results in 78 parallel constraints.

Figure 8 shows the processing time as a function of the number of iterations
of our algorithm and of the value of λ. It turns out that the processing time
decreases with the number of iterations and does depend on λ. For λ < 1, the
quality of the solutions decreases significantly, while for λ > 102 the quality
increases only moderately. Figure 9 shows the calculation time, i. e., the time
that our algorithm needs to compute the result. It is clearly linear with the

Process Synthesis with Sequential and Parallel Constraints 57

0 1,000 2,000 3,000 4,000 5,000
0

25

50

75

100

125

150

Iteration

A
lg
or
ith

m
C
om

pl
et
io
n
T
im

e
in

s

λ = 10−2

λ = 10−1

λ = 100

λ = 101

λ = 102

λ = 103

Fig. 9. Calculation time as a function of the number of iterations and of λ

number of iterations. A larger value for λ decreases the computation time, but
only slightly. Given these results we have chosen λ = 102 for our real-world
evaluation scenario.

5.3 Evaluation with Industrial Commissioning Processes

To study whether our synthesis approach achieves results comparable to man-
ually designed ones we have compared our synthesized process models to real
ones from industry. More specifically, we have synthesized models for exactly the
same vehicle project and tasks. We had manually crafted models for as reference
points.

Our approach focuses on the process models for a new vehicle series. The
process model is large in size, i. e., consist of 496 tasks. 96 human tasks exist.
We have used the algorithms of Sects. 3 and 4 for the synthesis with λ = 102 and
ε = 0.1. To compare the performance of the synthesized process model to the
manually-designed one objectively, we simulate the actual commissioning with
both process models with real-world runtime data of the various tasks. In total
we used 193 instances of the process model. The instances can have one of two
configurations C1 (140 instances) or C2 (53 instances).

Figure 10 shows the runtimes of those instances for the manually designed and
the synthesized process models. For C1, there is an average reduction of 5.92 s
or 5.5 %. For C2 the average reduction is 209.13 s or 50.39 %, compared to the
manually designed process model. The smaller reduction in the C1 configuration
is because there is a critical path consisting mainly of human tasks, i. e., only
minor optimization is possible.

58 R. Mrasek et al.

0

100

200

300

400

500

600

700
Pr
o
ce
ss
in
g
T
im

e
in

Se
co
nd
s

C1 C2

× Original Process Model

	 Synthesized Process Model

Fig. 10. Processing time of the original and the synthesized process model

6 Related Work

A schedule is the planned execution of a set of activities. The rcsp (Resource
Constraint Scheduling Problem) [17] is an optimization problem to find an opti-
mal execution for a given set of activities, i. e., a function s that maps each task
t ∈ T to a starting time. In general, scheduling algorithms can take both prede-
cessor relations between activities and capacity limits of resources into account.
The reasons why an activity A is scheduled before an activity B are manifold,
e. g., to comply with a given constraint, or because of optimization. In con-
sequence, the process models are inherently inflexible and over-specified. It is
therefore not possible to detect parallel lanes in a schedule in contrast to our
approach.

We now discuss concrete approaches that are related, before stating why all
of them do not solve our problem. [18] transforms an unstructured model with-
out cycles into a behaviorally equivalent structured process model.‘structured’
means that for each Split- Gateway there is a corresponding Join-Gateway. [18]
determines relationships between the tasks of a process model and generates
an org using these relationships. Next, [18] decomposes the org into a Modular
Decomposition Tree. In contrast to our approach, [18] generates the org from the
behavior of an existing process model and not from a set of compliance rules.

Process Synthesis with Sequential and Parallel Constraints 59

The behavior is definite, the result therefore is a unique process model. In our
approach in turn, several process models are possible. Awad et al. [1] propose an
approach to synthesize a process model from compliance rules in LTL notation.
They first extract all valid executions paths for the compliance rules and build
a model of the correct traces. Next they synthesize a process model from the
model using an approach similar to process mining [19]. Yu et al. [2] synthesize
ws-bpel process models from propols [20] patterns. propols is a language for
a set of property-specification patterns that abstract from the temporal specifi-
cation, similarly to the patterns of Dwyer et al. [11]. propols pattern can be
expressed as finite state machines. The algorithm of [2] combines the patterns to
one state machine and extracts all accepting paths of the state machine. Next,
an algorithm similar to the α-algorithm [21] for process discovery is used to
extract a process model. Both [1] and [2] require to extract all paths from the
specification. This is hardly possible for parallel constraints. This is because the
number of paths typically grows exponentially with the degree of parallelization.
Additionally, [1] and [2] only consider the case that a unique process model for
the specification exists.

7 Conclusions

We have presented an approach for the synthesis of process models from both
sequential and parallel constraints. To this end, we use a two-step approach.
First, we generate a model fulfilling the sequential constraints and then a novel
algorithm that deparallelizes the process to fulfill the parallel constraints as
well as additional optimization criteria. We have evaluated our approach using
the real-world use case of commissioning in vehicle manufacturing. An impor-
tant takeaway is that our synthesized models are significantly better than these
reference points. We conclude that our approach can indeed deal with large
specifications occurring in real scenarios.

References

1. Awad, A., Goré, R., Thomson, J., Weidlich, M.: An iterative approach for business
process template synthesis from compliance rules. In: Mouratidis, H., Rolland, C.
(eds.) CAiSE 2011. LNCS, vol. 6741, pp. 406–421. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-21640-4 31

2. Jian, Y., et al.: Synthesizing service composition models on thebasis of temporal
business rules. J. Comput. Sci. Technol. 23(6), 885–894 (2008)

3. Mrasek, R., Mülle, J., Böhm, K.: Automatic generation of optimized process models
from declarative specifications. In: Zdravkovic, J., Kirikova, M., Johannesson, P.
(eds.) CAiSE 2015. LNCS, vol. 9097, pp. 382–397. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-19069-3 24

4. Lohmann, N.: Compliance by design for artifact-centric business processes. In:
Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp.
606–618. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23059-2 11

http://dx.doi.org/10.1007/978-3-642-21640-4_31
http://dx.doi.org/10.1007/978-3-319-19069-3_24
http://dx.doi.org/10.1007/978-3-642-23059-2_11

60 R. Mrasek et al.

5. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics andanalysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

6. Mrasek, R., Mülle, J., Böhm, K.: A new verification technique for large processes
based on identification of relevant tasks. Inf. Syst. 47, 82–97 (2015)

7. Rinderle-Ma, S., Thao, L.L., Dadam, P.: Businessprocess compliance. In: 2008
EMISA Forum, pp. 24–29 (2008)

8. Mrasek, R., Mülle, J., Böhm, K., Becker, M., Allmann, C.: User-friendly property
specification and process verification – a case study with vehicle-commissioning
processes. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659,
pp. 301–316. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10172-9 19

9. Awad, A., Decker, G., Weske, M.: Efficient compliance checking using BPMN-
Q and temporal logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM
2008. LNCS, vol. 5240, pp. 326–341. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85758-7 24

10. Ly, L.T., Knuplesch, D., Rinderle-Ma, S., Göser, K., Pfeifer, H., Reichert, M.,
Dadam, P.: SeaFlows Toolset – compliance verification made easy for process-aware
information systems. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP,
vol. 72, pp. 76–91. Springer, Heidelberg (2011). doi:10.1007/978-3-642-17722-4 6

11. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-stateverification. In: International Conference on Software Engineering, pp.
411–420 (1999)

12. Womack, J.P., Jones, D.T., Roos, D.: Massachusetts Institute of Technology.
Machine that Changed theWorld. Free Press, London (2007)

13. Pešić, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for
loosely-structured processes. In: 11th IEEE Intl. EDOC 2007, pp. 287–287 (2007)

14. Mrasek, R., Mülle, J., Böhm, K.: AutomaticGeneration of Optimized Process Mod-
els from DeclarativeSpecifications. Technical Report 2014-15. Karlsruhe: KITSci-
entific Publishing, Nov. 2014

15. McConnell, R.M., de Montgolfier, F.: Linear-timemodular decomposition of
directed graphs. Discrete Appl. Math. 145(2), 198–209 (2005)

16. Zimmermann, W., Schmidgall, R.: Bussysteme in derFahrzeugtechnik - Protokolle,
Standards und Softwarearchitektur (2011)

17. Blazewicz, J., Lenstra, J.K., RinnooyKan, A.H.G.: Scheduling subject to resource
constraints: classificationand complexity. Discrete Appl. Math. 5(1), 11–24 (1983)

18. Polyvyanyy, A., Garćıa-Bañuelos, L., Dumas, M.: Structuring acyclic process mod-
els. Inf. Syst. 37(6), 518–538 (2012). BPM 2010

19. van der Aalst, W.M.P.: Process Mining: Discovery, Conformanceand Enhancement
of Business Processes, 1st edn. Springer, Heidelberg (2011)

20. Yu, J., Manh, T.P., Han, J., Jin, Y., Han, Y., Wang, J.: Pattern based property
specification and verification for service composition. In: Aberer, K., Peng, Z.,
Rundensteiner, E.A., Zhang, Y., Li, X. (eds.) WISE 2006. LNCS, vol. 4255, pp.
156–168. Springer, Heidelberg (2006). doi:10.1007/11912873 18

21. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: dis-
covering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9),
1128–1142 (2004)

http://dx.doi.org/10.1007/978-3-319-10172-9_19
http://dx.doi.org/10.1007/978-3-540-85758-7_24
http://dx.doi.org/10.1007/978-3-540-85758-7_24
http://dx.doi.org/10.1007/978-3-642-17722-4_6
http://dx.doi.org/10.1007/11912873_18

	Process Synthesis with Sequential and Parallel Constraints
	1 Introduction
	2 Process-Model Requirements
	2.1 Correctness
	2.2 Optimization

	3 Generating a Process Model from Sequential Constraints
	3.1 Generating Complete Dependency Graph
	3.2 Modular Decomposition
	3.3 Transform into Process Tree

	4 Applying Parallel Constraints with Optimization
	5 Evaluation
	5.1 Scenario Commissioning of Vehicles
	5.2 Performance Evaluation
	5.3 Evaluation with Industrial Commissioning Processes

	6 Related Work
	7 Conclusions
	References

