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Abstract. With the emergence of the Internet of Things and smart
devices, smart homes are becoming more and more popular. The main
goal of this study is to implement an event driven system in a smart
home and to extract meaningful information from the raw data collected
by the deployed sensors using Complex Event Processing (CEP). These
high-level events can then be used by multiple smart home applications
in particular situation identification. However, in real life scenarios, low-
level events are generally uncertain. In fact, an event may be outdated,
inaccurate, imprecise or in contradiction with another one. This can lead
to misinterpretation from CEP and the associated applications. To over-
come these weaknesses, in this paper, we propose a Fuzzy Semantic Com-
plex Event Processing (FSCEP) model which can represent and reason
with events by including domain knowledge and integrating fuzzy logic. It
handles multiple dimensions of uncertainty, namely freshness, accuracy,
precision and contradiction. FSCEP has been implemented and com-
pared with a well known CEP. The results show how some ambiguities
are solved.

Keywords: Situation identification · CEP · Fuzzy logic · Context
ontology

1 Introduction

Smart homes are currently becoming increasingly popular in society. Indeed,
many companies are now proposing sensors and actuators to help people in
their everyday life. Those devices can work not only individually, but can also be
used globally for multiple applications including situation identification. Sensors
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generate events as they observe the environment. For example, a motion sensor
sends a signal when a movement is detected or a thermometer can send an event
when the temperature varies too much. All of these events carry data that can
be analyzed to generate further information.

To do this analysis, we can rely on the Complex Event Processing (CEP)
methods. A CEP allows us to define continuous queries and to analyze events
from multiple sources in order to generate a high level event (complex event).
Thanks to this method, it is possible to analyze the meaning of different events
and have a better understanding of the context. Such data are then used by
various applications. For example, user’s location can be inferred thanks to a
CEP and then used for situation identification.

In everyday life environment, in particular smart homes, uncertainty is a
serious issue. In fact, we should expect that sensors will provide non-perfect
data. For instance, a thermometer may not be accurate or a motion sensor may
be intempestively triggered. In such cases, uncertainty can lead to the production
of complex events that are themselves uncertain. Subsequently, this may cause
problems or miscomputations for the application relying on CEP outputs. For
instance, if the CEP returns that the user is in room A while he is in room B, a
wrong situation may be recognized.

There is multiple definitions of uncertainty in the literature. In this work, we
will stick to the Ye et al. definition [15]. We consider uncertainty that can be
decomposed into multiple facets or dimensions, among which we can mention:
(1) Freshness: If a data is too old, it may be outdated; (2) Precision: Imprecise
data is correct, yet inexact. For instance, localizing a user by coordinates is
more precise than localization per rooms; (3) Accuracy: An inaccurate data is
completely or partially wrong; (4) Contradiction: A contradiction occurs when
two pieces of data provide a contradictory information. For example, one sensor
locates a user in room A while another asserts he is in room B.

Uncertainty is not commonly addressed in existing CEP studies. The few
works tackling this challenge often just deal with a subset of the dimensions.
In this work, we consider the four aforementioned uncertainty dimensions as
requirements to achieve. The main goal of this paper is to propose a new CEP
called FSCEP (Fuzzy Semantic Complex Event Processing) that carries out
each of these requirements. It relies on a semantic background knowledge and
manages fuzzy events. Our contributions can be summarized with respect to the
four defined requirements as follows:

1. Freshness Requirement (FR): This requirement is satisfied by construction.
Indeed, CEP is able to take into account only the events triggered during a
query defined time window, ensuring the freshness of the events.

2. Precision Requirement (PR): Thanks to event semantization and event fuzzi-
fication processes, events are enriched with semantic data provided by an
ontology and a fuzzy value, respectively. This enrichment allows us to refine
data precision.
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3. Accuracy Requirement (AR): By assigning to each sensor a trust value pro-
vided by an expert in the knowledge background, the events are therefore
weighted with a confidence degree. Events provided by a sensor having a
trust value under a defined threshold are considered as wrong.

4. Contradiction Requirement (CR): The fuzzification process of complex events
allows us to provide data with multiple valid interpretations, which can be
contradictory at first.

Our approach is implemented and tested using a simulation framework. The
rest of the paper is divided as follows. In Sect. 2, we present some definitions
and explanations of the problem. In Sect. 3, we synthesize the different recent
studies. To illustrate our requirements, we set up a scenario in Sect. 4. In Sect. 5,
we describe our contribution and its multiple layers. In Sect. 6, we present the
FSCEP prototype implementation and its evaluation. Section 7 synthesize the
requirements dressed. The conclusion section briefly summarizes and describes
the next steps of our work.

2 Preliminaries

Before addressing the contribution itself, this section introduces definitions and
explanations for a better understanding of the rest of the paper.

Complex Event Processing (CEP) is a method for managing event streams
of data from multiple sources. It aims to analyze and correlate low level events
in order to generate high level events. For example, if there is an event from a
motion sensor in room A followed by one event from a motion sensor in a room
B, the CEP can generate an event ‘user moves from room A to room B ’. In CEP,
these computations are defined by a designer through queries. Queries allow to
filter events by defining a time sliding window and applying constraints. Events
are representative of an environment context, in our case the smart home.

Definition 1. Context: The context is the set of all data describing an envi-
ronment (or a smart home in our case) provided by sensors. For example, this
includes temperature or user’s location.

Definition 2. Event: An event is a punctual change of a context data occurring
at a precise moment.

CEP considers two types of events: simple and complex. Simple events may
be seen as raw events whereas complex events are the result of the analysis of
the input events.

Definition 3. Simple event: A simple event is provided by a source external
from the CEP. It can be seen as a raw event provided by a sensor. The carried
data are usually basic. For example, a simple event can be a motion sensor signal.
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Definition 4. Complex event: A complex event results from the abstraction of
other several events. In CEP, complex events are often the output of the queries.
The carried data is usually higher level than simple events. For instance, a com-
plex event can be the position of a user determined through a query and multiple
motion sensors events.

Usually, CEP assumes an event cloud as input.

Definition 5. Event cloud: An event cloud is a partially ordered set of events
where dependencies between events are set by criteria other than time. An event
cloud is distinguished from an event stream, which is an ordered sequence of
events.

Definition 6. Event stream: An event stream is an ordered time sequence of
events.

CEP is widely used by the industry in various domains including decision
making, finance or IT security. Among existing CEP systems, we can cite Stream-
base [11], Coral8 [9] or ESPER [7].

Even though it is commonly used, CEP has its limits. Indeed, CEP only
analyzes temporal and causal relations between events. However, in some appli-
cations, using a more complete background knowledge is essential. For instance,
in our case, the information about the sensors and the environment can be used
to query and generate high level events. To fulfill this need, Semantic Context
Event Processing (SCEP) was proposed, for example in ETALIS [1] and SCEPter
[17]. The idea is to combine the features of CEP with the reasoning possibilities
of ontologies. By this way, it is possible to find implicit relations between events.
Furthermore, SCEP are able to provide semantic events. These events are richer,
interoperable and easy to integrate in a knowledge base.

Definition 7. Semantic event: A semantic event is an event described and pro-
vided as a small RDF1 (Resource Description Framework) graph.

In the following section, we synthetize the different recent studies.

3 Related Work

Nowadays, CEP is a quite popular topic. The literature around CEP is rich
and there are numerous works for various applications. However, the main pre-
occupation around CEP is the performance. The large majority of CEP works
address this issue [3,12,14,16] as underlined by Cugola et al. [4]. There are a few
works addressing the problem of uncertainty of data and rules but they mostly
focus on the accuracy of data rather than the imprecision. Nevertheless, in real
life environment, uncertainty is a serious issue and ignoring its existence is naive.
Furthermore, to the best of our knowledge, the integration of fuzzy logic within
CEP to handle precision and contradiction of context data has not yet been
1 https://www.w3.org/RDF/.

https://www.w3.org/RDF/
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studied. As motivated earlier, relying on fuzzy data implies multiple advantages
and has particularly been used for activity recognition applications [10]. Even
if there are no works directly comparable to ours, we review some recent works
addressing different dimension of uncertainty. Some works added ‘uncertainty
management’ into CEP.

Wasserkrug et al. [13] proposed a framework for knowledge representation in
CEP supporting uncertainty. They address two types of uncertainty: the impre-
cision of events and the ‘uncertain relations between events’. To do so, based on
probability theory, the authors defined a ‘probability space’ and relied on dynam-
ically generated Bayesian Networks to compute the relevant probabilities. This
is one of the first works addressing uncertainty in CEP. However, compared to
our requirement, they only tackle the imprecision. We did not identify uncertain
relations as a requirement for smart home applications.

Artikis et al. [2] aims to identify uncertainty dimensions that may appear
in CEP and discussed of possible solutions to extend traditional events. They
identify the following types of uncertainty:

– Incomplete event streams: some events are not triggered while they should,
for instance due to the occlusion of a camera.

– Insufficient event dictionary: some type of events may not be taken into
account.

– Erroneous event recognition: matches our definition of imprecision.
– Inconsistent event annotation: annotation on training data for machine learn-

ing are inconsistent.
– Imprecise event patterns: imprecision of the query.

Even if they deal with multiple uncertainty dimensions, these are different from
the ones we identified for smart home applications. In fact, we consider all pos-
sible types of event to be known and provided to the FSCEP, excluding the
second and fourth types. Furthermore, since we aim to operate in smart homes,
we suppose that user queries are simple and do not imply complex event pattern
recognition, putting away the last dimension. In their work, they proposed multi-
ple short solutions to apply in various aspects of CEP, in particular probabilistic
approaches. However, none of them use fuzzy logic.

More recently, Cugola et al. [4] proposed a model for dealing with uncertainty
in CEP: CEP2U (Complex Event Processing under Uncertainty). They consider
two types of uncertainty. Firstly, they model the accuracy on events themselves,
in other words, the accuracy of the information. It’s important to underline that
they refer to ‘precision’, however, their definition differ from ours and is actually
matching our definition of accuracy. For a better understanding, we will stick to
our definition. For events, there are two types of uncertainty: one for the ‘content’
and one for the ‘occurrence’. Secondly, they consider the accuracy of the rules:
that is to say “the possibility that rules do not completely reflect the behavior
of the monitored environment”. To model the uncertainty, CEP2U uses theory
of probability for events and Bayesian Networks (BN) for rules. Each event is
associated with a probability distribution function. On the other hand, rules
are linked to a BN. CEP2U relies on a fully probabilistic approach and does
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not handle the fuzziness of data. Compared to our approach, it actually solves a
different aspect of uncertainty. In fact, a probabilistic method allows us to handle
the accuracy of sensors while fuzzy logic tackles imprecision [15]. In our case, we
aim to support multiple interpretations of one data. Thus, FSCEP and CEP2U
are complementary. A further work could be to combine both approaches.

Lee et al. [8] aims to tackle the problem of dynamic changes in the domain
environment or expert mistakes. This can be seen as a problem of freshness,
but applied on the rules. To overcome this, they have proposed a tool known
as Sequence Clustering-based Automated Rule Generation (SCARG) that gen-
erates rules by analyzing decision-making history. SCARG relies on four steps.
First, it collects event sequence samples from an expert. Then, it computes a
cluster model thanks to sequence clustering. Once the clusters are set, each
cluster is graphically modeled through Markov Probability Transition Model
(MPTM). Finally, using node centrality measure, those models are pruned. By
doing so, SCARG is able to support dynamic changes. Although they are not
handling data uncertainty from sensors, their approach can be applied in smart
homes which are also subjected to evolution. Again, compared to our approach,
Lee et al. solves another problem of uncertainty and the two approach can be
seen as complementary.

Uncertainty is addressed in different ways in CEP studies. However, dealing
with imprecise and contradictory data using a CEP enhanced with fuzzy logic
is novel. Furthermore, this novelty is emphasized by the usage of semantic data.

In order to illustrate how we tackle the four requirements pointed out in
Sect. 1, we present the following scenario which sketches the main ideas.

4 Scenario

Monika lives in a smart home equipped with multiple sensors and actuators to
monitor and control several parameters. The environment relies on cameras,
pressure sensors, motion sensors and beacons (locating her phone in a room). In
particular, the living room and the office, each one possesses beacons, pressure
sensors, one motion sensor and one camera. Monika is working in her office and
is detected by the camera. However, she left her phone in the living room: the
phone is detected by the beacon, sending a signal. The window in the living room
is open and the wind is moving the curtain.

Several events are received from sensors:

– In the living room: one from the phone and three from the motion sensor. The
camera doesn’t send any event.

– In the Office: one from the pressure sensor (related to the chair), one from the
motion sensor and one from the camera.

In this case, two interpretations of Monika’s location are possible from the trig-
gered events: she can be either in the living room or in the office.
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With a classic non-fuzzy CEP, only one interpretation would remain in the
output complex event. Selecting which one is to be kept can be hazardous and
may lead to a wrong interpretation of the user’s activity.

By using fuzzy semantic events, no interpretations are removed. In this case,
it will be believed that Monika is in the living room AND in the office, with a
trust value for each. The FSCEP returns a complex event carrying the location
with the two possible interpretations.

Furthermore, as sensors may not be accurate, we propose to add a trust
index for sensors in the background ontology. Indeed, a motion sensor may send
a signal while there was no movement, for instance due to an untimely light
change. This index is defined by an expert and determines how much a sensor is
trustful. It is then used by the FSCEP to determine trust values of fuzzy events.
For example, the camera is the most reliable than other sensors. The definition
of trust values is outside of the scope of this paper.

5 FSCEP Model for Situation Identification Approach

In this section, we describe the three layers of FSCEP model (as depicted in
Fig. 1) and we focus on the perception layer.

– Sensing is devoted to data gathering from sensors deployed in the environ-
ment.

– Perception is the interpretation of the sensing phase returned data, provid-
ing a further abstraction operation aiming at transforming raw sensor data in
more significant pieces of information.

– Application is the execution of a set of actions according to the perception
results. Pervasive applications must constantly be adapted to a highly dynamic
context changes and are designed to support users in their daily lives. Sensing
and perception phases constitute primordial phases and their outputs serve as
inputs to application layer, since they provide context information at a high
level of abstraction.

These three processes are detailed in the following sections.

5.1 Sensing Phase

The sensing phase is achieved through sensors deployed in the environment.
Sensors are devices aiming to analyze the environment in order to provide data
about it. Each sensor is responsible for gathering various context data, such as
user’s location or temperature. Cameras, thermometers or motion sensors are
typical examples. There are multiple types of sensors. Some are pretty basic and
return raw data while others are smarter and are able to compute and provide
processed data.

We distinguish two types of sensors:
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Fig. 1. Fuzzy Semantic CEP approach for environmental perception

– Active sensor (push mode): an active sensor sends (pushes) the information
to the system. This is typically the case for event oriented sensors, such as
motion detector.

– Passive sensor (pull mode): a passive sensor is asked to provide a data. In
other words, the data is pulled. This is typically the case for sensors that
continuously analyze the context, such as thermometers.

In our scenario, we used active sensors, namely motion sensors, pressure
sensors, beacons and cameras. Each sensor event (a sensor raw data) indicates
a change in the state that should be identified and is modeled by a timestamp
(represented in milliseconds) used to establish temporal relations in order to
correlate information from different sensors. On top of the timestamp, an event
carries the following properties: an idSensor which is the sensor’s identifier; a
typeOfSensor describing the sensor’s type (e.g. motion, camera, or phone); a
status denoting the sensor’s status (ON/OFF ) and a value which represents the
asked value (this property concerns passive sensors). An example of a listening
of sensor events is shown in Fig. 2. An event is triggered when the status or the
value is changed.

Fig. 2. An example of time-stamped sensor events
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5.2 Perception Phase

This phase constitutes the core of our approach. It consists of a multi-agent
system where agents are responsible for gathering context data called sensing
agents.

Each sensing agent takes as input simple events and provides, as output,
fuzzy semantic complex events. Multiple sensing agents are deployed to observe
different context data. Each sensing agent is related to one or more sensors that
observe the same context data.

For example, considering a given context data such as a user’s location, a
sensing agent can be related to three sensors to observe the user’s location (as
described in the scenario above) namely motion sensor, phone’s beacon and
camera (cf. Fig. 3).

Fig. 3. Example illustrated for user’s location perception

A sensing agent integrates a CEP engine that identifies, processes, and
responds to discrete events from multiple sensors. In order to deal with a contin-
uous sensor sequence, CEP usually uses the two most common types of sliding
window implementations, time sliding windows and sensor event sliding windows.

A Time sliding window aims to partition a sensor sequence into a fixed
time interval, whereas a sensor event sliding window aims to partition a sensor
sequence into windows having the same number of sensor events. In this paper,
we choose the time sliding window technique since the sensor readings that we
use are characterized by discrete sensor events.

The perception phase is divided into two steps: event semantization and
semantic event fuzzification. Details are provided in the following.

Event Semantization. Event semantization aims to improve CEP’s output
by incorporating ontologies into the process of complex event detection. In fact,
SCEP engines enriches CEP queries with semantic data from ontologies. This
step describes how event attributes are matched to semantic entities and linked
to an external ontology in order to enrich the information of the events. As a
result of event sematization step, incoming simple events (sensor raw events) are
transformed into semantic events that point towards an existing ontology.

We propose the following definitions in order to formalize our approach.
Please note that these are the formal definitions specific to FSCEP.
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Definition 8 (A simple event). A simple event is a vector of sensor raw
data defined as e = {t, id, type, st, v} where t is the timestamp, id is the sensor’s
identifier, type is the sensor’s type (e.g. motion, camera, or phone), st is the
sensor’s status (ON/OFF) and v is the asked value (e.g. a return value from a
thermometer).

Definition 9 (A semantic event). A semantic event se is modeled as a finite
set of triples (s, p, o) of a graph RDF where subject, predicate, object respectively
s, p, o ∈ U where U is an infinite set of URI’s2.

Sensor data, extracted from simple events, are linked to additional seman-
tic data such as the sensor’s location (MotionSensor:Motion1, IsLocatedIn,
Location:office1) and the sensor’s trust level (MotionSensor:Motion1, hasTrust,
“0.4”) shown in Fig. 5.

Definition 10 (Event semantization process). The event semantization
process consists on transforming a simple event ei to a semantic event sei that
point into an existing ontology.

EventSemantization({e1, e2, . . . , en}) −→ {se1, se2, . . . , sen}
where 0 < i <= n and n is the number of incoming simple events per time sliding
window.

In this paper, we used a context ontology for human activity representation3

[10] and adapted it to our needs by adding:

Fig. 4. Excerpt of Sensor subclasses in the
ontology (partial).

– Several subclasses of the con-
cept Sensor such as MotionSensor
(Fig. 4).

– A data property hasTrust asso-
ciated to Sensor subclasses that
expresses the trust degree of a sen-
sor type given by a user. Therefore,
a semantic event contains necessar-
ily a trust value related to the corre-
sponding sensor. Trust’s values are
static in the ontology and are sup-
posed to be provided by an expert.

Example 1 Semantic events are dynam-
ically generated from the raw events.
Considering the scenario described in
Sect. 4 and the context ontology shown
in Fig. 4, a semantic enrichment is ful-
filled by adding RDF triples giving higher information concerning the sensors’
2 https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.
3 http://users.abo.fi/ndiaz/public/FuzzyHumanBehaviourOntology/
FuzzyHumanBehaviourV11.owl.

https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://users.abo.fi/ndiaz/public/FuzzyHumanBehaviourOntology/FuzzyHumanBehaviourV11.owl
http://users.abo.fi/ndiaz/public/FuzzyHumanBehaviourOntology/FuzzyHumanBehaviourV11.owl
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location and the sensors’ trust. For example, events received from the phone
are semantized as follows: (phone:MonikaNokia, islocatedIn, Livingroom) and
(phone:MonikaNokia, hasTrust, 0.4). A new RDF graph is then constructed as
it is shown in Fig. 5.

Fig. 5. Event semantization through
RDF graph’s scenario

Fig. 6. Membership functions for fuzzy
data type

Semantic Event Fuzzification. Fuzzy logic is widely used to deal with uncer-
tain knowledge, especially imprecise knowledge. In pervasive computing, fuzzy
logic is used to map sensor raw data to fuzzy attributes in order to manage
sensor unreliability and sensor data imprecision.

Therefore, this step aims to compute one fuzzy event from multiple semantic
events observing the same context data. The output data then carries fuzzy
values for this context data.

To apply fuzzification on semantic events, we use the Fuzzy OWL2 formalism.
In this formalism, fuzziness is modeled through annotations. With such knowl-
edge, it is possible to use dedicated tools to handle imprecise and contradictory
data.

In [10], the authors consider data types, concepts, properties, and relations as
fuzzy. For fuzzy data types, they defined membership functions: (a) Trapezoidal
function; (b) triangular function; (c) left-shoulder function; (d) right-shoulder
function; and (e) linear function (Cf. Fig. 6).

Definition 11 (A fuzzy semantic complex event FSCE). For an observed
context data cd, a fuzzy semantic complex event FSCEcd is an extended graph
RDF of se with additionnal semantic data which is the fuzzy value. We denote
FSCEcd ⊆ se.

A FSCEcd is an event having multiple interpretations with a fuzzy value for
one observed context data. Especially, a FSCE presents one or more detected
values for an observed context data with trust weights.

Observed context data can be pressure, user’s presence, temperature, etc.
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Definition 12 (Fuzzification process). The fuzzification process can be seen
as a function that takes as input a list of semantic events and generates a
FSCEcd for an observed context data.

Fuzzification({se1, se2, . . . , sen}cd) → FSCEcd

To generate a FSCEcd, we use a dedicated membership function MF . This
function uses as inputs detected values for the observed context data and the set
of semantic events matching this value. As a result, it provides a trust weight for
each value detected meaning that the context data has been observed for different
values with a certain weight. The fuzzification process calls the membership
function for all detected values (see Algorithm 1).

Let MFcd be the membership function:

MFcd(SE, val) ⇒ WTval

where SE is a set of semantic events, val is a common detected value for these
events and WTval is the weighted trust determined for val.

MFcd is the weighted sum of the trust weight of those semantic events cor-
responding to the value val for an observed data context.

In fact, this function uses the trust index of sensors carried in the ontology.
The membership function MFcd is denoted below:

MFcd(SE, val) = [
∑n

i=1(αi)]/[
∑N

j=1(αj)]

where N is the total number of events in the environment; n is the total number
of events for value val and α is the trust value of a sensor belonging to SE.

The FSCEcd computed by the fuzzification function can be defined as fol-
lows:

FSCEcd = ∪MFcd(SEval, val)∀val ∈ V AL

where V AL is the set of all possible different values in the smart home.

Example 2 Fuzzification function

Considering the example scenario, if we assume that we have several triggered
semantic events:

– In the living room: one semantic event from the phone’s sensor (trust
degree:0.4), three semantic events from the motion sensor (trust degree:0.2).

– In the office: one semantic event from the pressure sensor (trust degree:0.6),
one semantic event from the motion sensor and one semantic event from the
camera (trust degree:0.8).

Then, we apply the fuzzification process and generate a FSCE for each
observed context data namely user’s presence, user’s pressure and user’s move-
ment as below:

FSCEpresence = {[livingroom; 0.33], [office; 0.67]}
FSCEpressure = {[livingroom; 0], [office; 1]}

FSCEmovement = {[livingroom; 0.75], [office; 0.25]}
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The trust weights WT(livingroom)) and WT(office) are computed by applying
the MF function. For the user’s presence example:

WTlivingroom = MFcd(SE, livingroom) = 0.4/(0.4 + 0.8) = 0.33
WToffice = MFcd(SE, office) = 0.8/(0.4 + 0.8) = 0.67

Fig. 7. Fuzzification of location’s context data in
RDF graph

In this example, we conclude
that the user is performing an
activity in the living room with
0.33 of trust AND in the office
with 0.67 of trust.

In this work, we have used
MF as the weighted sum func-
tion but we can apply other
different functions proposed in
literature to compute trust
weights.

The fuzzification of the
observed context data value
through the membership func-
tion is shown in Fig. 7.

5.3 Application Phase

Sensing and perception phases constitute primordial phases to interpret low level
abstraction of sensor raw data into high level abstraction of context information.
Pervasive computing applications aims to deal with context information to pro-
vide users with appropriate behavior in their environment.

Among these applications, we can cite situation identification. Situation iden-
tification aims to understand what is happening in the environment. For exam-
ple, if the user is sleeping while a gas leak occurs, it can be detected as a ‘dan-
ger’ situation. Situation identification can be seen as a generalization of activity
recognition: it analyzes the whole environment and not only one user. Detect-
ing situations is a challenge. However, it is even more complicated when tak-
ing uncertainty into consideration. Providing enriched data, in particular about
uncertainty, to such application is a convenient asset. In fact, by having such
information, applications can take them in consideration. In our case, we add
fuzziness to semantic events, making them directly usable by Rodŕıguez’s activ-
ity recognition approach [10]. Rodŕıguez et al. actually relies on fuzzy data and
fuzzy operators to identify user activities. One of our future objectives is actually
to enhance this approach for situations recognition, but this is not in the scope
of this paper. Of course, there are other works compatible with our FSCEP, for
example D’Aniello’s situation awareness framework [5].



478 A. Jarraya et al.

We focused our analysis on situation related work, but other applications
are possible in smart homes. Security and alarming are of course interesting
applications. The fuzzy logic could prevent false alerts. Personal robotics can
also be an application. For instance, a robot may adjust its tasks plan according
to trust weights on fuzzy data.

More generally, by relying on a FSCEP, pervasive applications can deal with
real fuzzy semantic context information that resolve the main requirement han-
dling different dimensions of uncertainty, namely freshness, precision, accuracy
and contradiction.

5.4 The FSCEP Algorithm

In this section, we present the FSCEP algorithm that implements the proposed
approach.

The FSCEP algorithm (Algorithm1) is applied to all sensing agents of the
perception phase. It takes as an input parameters an event cloud SEQ for an
observed data context according to a time sliding window, a query q to filter
simple events to batched events and a background knowledge fuzzy ontology O
to enrich batched events with semantic knowledge.

The FSCEP algorithm aims to provide, as an output, a fuzzy semantic com-
plex event FSCE. The FSCEP algorithm proceeds in three main steps:

– First step (line 6): each sensing agent integrates a CEP engine which receives
events triggered from the environment and applies the query q defined by the
expert in order to generate a list of filtered and batched events LBE .

– Second step (lines 7–10): we enrich batched events with semantic context data
namely trust degree of sensors and values of context data such as location’s
value (bedroom, office, etc.) and transform them into an RDF graph. Lse con-
tains the set of semantic events.

– Third step (lines 11–13): for each value of observed context data, we mea-
sure the fuzzy value by applying our membership function and annotate the
graph with this fuzzy value to obtain as result a fuzzy semantic complex event
FSCE.

The computational complexity of the FSCEP algorithm is O(n) where n is
the number of incoming simple events for an observed data context.

5.5 Handling FSCEs in FSCEP

Although in this paper we focus on the process to generate FSCE from simple
sensor events, it’s important to notice that our model shall also be able to have
FSCEs as input. Thus, and similarly to classic CEP, FSCEP agents can be
chained in order to generate more refined FSCEs. Handling a FSCE follows the
same process as a simple event, with some variation. First, the query can use
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Algorithm 1. FSCEP algorithm of real event cloud for an observed context
data

Input:
SEQ = {e1, e2, . . . , en}: an event cloud for observed context data
q: user defined CEP query
O: background knowledge fuzzy ontology
Output:
FSCE: a fuzzy semantic complex event (graph RDF)

1 begin
2 initialise(LBE) // List of batched events
3 initialise(Lse)// List of semantized events
4 initialise(Lv)// List of observed context data’s value
5

// First step: batching and filtring events with CEP
6 LBE = CEPengine(q, SEQ)

// Second step: event semantization
7 for ei ∈ LBE do
8 < vphe , truste >= queryOntology(O, idSensore, typeOfSensore)

graphei
= semantizeEvent(e, vphe , truste)

9 Lse.add(graphei
)

10 Lv = loadV aluesFrom(Lse)

// Third step: fuzzification of semantic events
11 for vi ∈ Lv do
12 fvi = MFvi

(Lse, vi)

13 FSCE.addAnnotation(vi, fvi)

14 return(FSCE)

FSCE elements: the designer can filter FSCEs based on its fuzzy or semantic
properties. The semantization step is skipped as FSCE are already enhanced.
With fuzzy events, the fuzzyfication can rely on their fuzzy properties (on top
of semantic properties) in order to compute the weights. The MF function is
different: in our work, we use a similar weighted mean as proposed in Sect. 5.2
that additionally takes into account the fuzzyness of events.

6 Implementation and Evaluation

We have implemented the described FSCEP and evaluated it through simulation.
Our prototype combined a well known CEP, ESPER [7], and ontologies

through the Jena framework. It is developed in Java and it is agent oriented
(Jade). The knowledge is carried by a fuzzy context ontology based on the
one presented in [10]. This ontology was used for user identification. We have
improved this ontology by adding the needed notions. The fuzzy logic is inte-
grated through annotations and the ontology is compatible with fuzzy reasoner
such as FuzzyDL. Our prototype uses the ontology as a T-box [6] for its process.
The fuzzy result of our FSCEP is saved in the A-box [6]: the fuzzy ontology is
then instantiated and can be used for other needs, such as activity recognition.
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Fig. 8. Freedomotic map with set of
sensors

In order to simulate our environ-
ment, we used Freedomotic4, a develop-
ment framework used for managing smart
spaces. Freedomotic allows us to control
virtual and physical devices. It carries a
basic event processing unit, a knowledge
of the rooms and some plugins. One of
the goal of Freedomotic is to simulate
the environment before setting it up for
real. In fact, sensor values can be eas-
ily simulated. For our experimentation,
we have implemented our scenario and
added the presented sensors as plugins,
namely motion sensors, pressure sensors,
beacons and cameras (cf. Fig. 8). These
newly added devices generate events and are able to communicate with our
FSCEP.

Table 1. Example of fuzzy weight pro-
vided according to the triggered events
[Bec, Mot1, Cam, Mot2] FSCEP CEP

Office LR Office LR

[1, 0, 1, 1] 0,44 0,56 0 1

[1, 0, 1, 0] 0,57 0,43 1 0

[0, 1, 1, 1] 0,28 0,72 0 1

[1, 1, 1, 1] 0,54 0,46 1 0

[0, 1, 1, 0] 0,4 0,6 0 1

[1, 1, 0, 0] 1 0 1 0

To evaluate our model, we set up
a simple activity recognition scenario
close to the one described in Sect. 4.
In this scenario, the user, Monika, is
working in the office and we aim to
identify she is doing so. To do so, we
need to acquire context data about her
position and her current stance. The
office is equipped with a beacon (to
detect phones), a motion sensor and
the chair has a pressure sensor, while
the living room has a camera and a

motion sensor. Sensor event uncertainty has been modeled for each one. In this
experiment, an activity is recognized by applying simple rules in a context ontol-
ogy (A-Box) fed by FSCEP or classical CEP: the objective of the experiment is
to evaluate the gain of using a FSCEP over CEP for a smart home application.
Thus, we measure the activity recognition rates with and without FSCEP.

For each case, 500 runs were executed. One run consists in a salve of events,
the event processing (FSCEP or CEP) and the activity recognition. To model
uncertainty (accuracy), each sensor has a probability of failure. An example of
output of our FSCEP can be found in Table 1. The table shows the computed
fuzzy weights according to devices triggering. The first column displays which
event is triggered from, respectively, office’s beacon and motion sensor, and liv-
ing room’s camera and motion sensor. Taking the first example, the FSCEP
prototype generates a fuzzy value for user’s location. Indeed, the user is located
in office with 0.44 AND in living room with 0.56. According to the classic CEP,
the user is located ONLY in the living room. We can see that FSCEP prevents

4 http://freedomotic.com/.

http://freedomotic.com/
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the disqualification of some events, that may be actually true. These results are
then used for recognizing the current user activity.

Fig. 9. Experiments results

Obtained results can be found in Fig. 9. It
depicts the success recognition rate with and
without FSCEP.

Although it is a very simple scenario, FSCEP
allows to be more efficient in activity recognition
by providing a frank increase of 10 %. By provid-
ing FSCE and not excluding values believed dis-
trustful, the activity recognition can achieve bet-
ter result by overlapping multiple information, in
this case for instance, location and stance. This
proves the potential of our model for smart home
applications.

In order to provide a strong validation of
FSCEP, we have started integrating it with real devices. Our objectives is to
evaluate FSCEP facing ‘real’ uncertainty encountered by devices available on
the market. We used Estimotes beacons5 (Fig. 10a) and Netatmo Welcome6

(Fig. 10b) to localize a user. Beacons are simple, but quite erroneous, in partic-
ular when the user is in range of multiples beacons. Netatmo Welcome is more
reliable, but can be mislead in some situation (see Fig. 10c). Our FSCEP is able
to handle these issues to provide proper FSCE about location. In future works,
we aim to experiment it over a complete living scenario in a smart apartment
with various devices and multiple situations.

(a) (b) (c)

Fig. 10. Integration with physical devices. (a) Beacons used to locate the phone. (b)
Indoor camera with face recognition. (c) In this configuration (Please note that due to
technical issues, the picture was not taken from the Welcome camera.), the camera is
placed to detect users watching TV, it can however see users in the other room if the
door is opened, leading to miscalculation of location

5 http://estimote.com/.
6 https://www.netatmo.com/en-GB/product/camera.

http://estimote.com/
https://www.netatmo.com/en-GB/product/camera
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7 Synthesis and Discussion

In this section, we discuss the fourth requirements addressed in the Introduction
section. Our FSCEP approach handles different dimensions of uncertainty by
proposing different techniques.

In fact, our contributions resolve the requirements as follow:

1. Freshness Requirement (FR): To keep context data fresh, we used a tech-
nique based on event detection Complex Event Processing. It’s designed to
process low level event notifications to identify higher level complex events
according to a set of user defined queries and in a time sliding window. Tak-
ing an example of our scenario, the user’s location is determined immediately
through the position of motion sensors, phone’s beacon and camera when
they are triggered.

2. Precision Requirement (PR): Event notifications for the observed context
data, are enriched with semantic knowledge according to Event semantization
process. For example, event notifications from motion sensors, phone’s beacon
and camera are enriched with trust degree and location of the corresponding
sensor. Then, they are fuzzifed by applying our membership function to gen-
erate a fuzzy value for the observed context data. According to the example,
each semantic event will have a fuzzy value for the observed user’s location.

3. Accuracy Requirement (AR): We assign a trust degree for each sensor on the
fuzzy context ontology. It defines the confidence level to which a context data
is correct. Taking sensors of our example, motion sensors, phone’s beacon and
camera have respectively trust degrees 0.2, 0.4 and 0.8.
Semantic events contain semantic knowledge context including the trust
degree of the corresponding sensor. Therefore, semantic events with a trust
value under a defined threshold, are considered as wrong.

4. Contradiction Requirement (CR): Thanks to the fuzzification process of
semantic events, the fuzzy value generated by the defined membership func-
tion allows us to provide multiple interpretations for the observed context
data which resolve ambiguities and contradictions. In Example 2 (Sect. 5.2),
the user is located in living room with fuzzy value 0.33 and in office with
fuzzy value 0.67.

8 Conclusion and Future Works

In this work, we have presented an extension of CEP to handle multiple dimen-
sion of uncertainty namely freshness, accuracy, precision and contradiction. We
have proposed a Fuzzy Semantic Complex Event Processing (FSCEP) model
that operates in three steps. First step aims to gather events from devices using
filters and to batch them using a classical CEP. Events are then semantized and
enriched thanks to a background knowledge (ontology). This step (event seman-
tization) includes the addition of a trust value on events. Finally, the events
are analyzed to compute one fuzzy semantic complex event. The output of our
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FSCEP can then be used by other applications, including activity recognition
or situation identification.

This paper has only presented a first step and multiple perspectives of
improvements are considered. Firstly, as performance and scalability are a seri-
ous matter in CEP, we aim to optimize and to measure the performance of our
FSCEP with more complex scenarios. Secondly, an objective is to make our app-
roach compatible with open smart environments where devices can be added or
removed at runtime and the content of the environment is unknown at design
time. Thus, we want to be able to discover new devices and to take them into
account in the FSCEP without having to re-parameterize the system. Finally,
as privacy is an important issue for final users, a possible perspective would be
to add restrictions and permissions to user query in order to control the usage
of our output event.
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