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Abstract The ratio definition of efficiency has the form of a productivity measure.
But the weights are endogenous variables and they do not function well as weights
in a productivity index proper. It is shown that extended Farrell measures of effi-
ciency can all be given an interpretation as productivity measures as observed
productivity relative to productivity at the various projection points on the frontier.
The Malmquist productivity index is the efficiency score for a unit in a period
relative to the efficiency score in a previous period, thus based on a maximal
common expansion factor for outputs or common contraction factor for inputs not
involving any individual weighting of outputs or inputs, as is the case if a Törnqvist
or ideal Fisher index is used. The multiplicative decomposition of the Malmquist
productivity index into an efficiency part and a frontier shift part should not be
taken to imply causality. The role of cone benchmark envelopments both for cal-
culating Malmquist indices of productivity change and for decomposing the indices
into an efficiency change term and a frontier shift term is underlined, and connected
to the index property of proportionality and circularity, adding the use of a fixed
benchmark envelopment. The extended decomposition of the efficiency component
by making use of scale efficiency is criticised.
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6.1 Introduction

Measuring productive efficiency has been developing the last decades to become an
important research strand within the fields of economics, management science and
operations research. Two seminal contributions are Farrell (1957) and Charnes et al.
(1978). Although the latter paper adopts the efficiency definition of the former the
approaches for calculation the measure differ in the two papers. Farrell started out
defining a frontier production function as the relevant comparison for measuring
productive efficiency for observations of production units and introduced radial
measures for the case of constant returns to scale. Charnes et al. (1978), formulating
the optimisation problem for estimating the efficiency measure, set up a ratio of
weighted outputs on weighted inputs. This approach brought the concept of pro-
ductivity into the efficiency story. However, although the ratio formally looks like a
productivity measure it is not set up to represent a productivity index proper, but to
estimate efficiency, i.e. to compare the “productivity” of an observation with the
productivity of a benchmark on the best practice frontier using weights that are
endogenous. Using these weights, the weighted sum of inputs or outputs will be
restricted to 1 (depending on estimating an output- or input-oriented efficiency
score), and one or more weight may be zero contrary to what one would want
constructing a productivity index proper.

A purpose of the chapter is to elaborate upon the productivity interpretation for
the generalised Farrell efficiency measures covering the case of variable returns to
scale. We then have technical efficiency measures, scale efficiency measures and a
technical measure of productivity, the last two types of measures building upon the
old concept of technically optimal scale in production theory. We will also have a
closer look at the Malmquist productivity index because it is defined as the ratio of
Farrell technical efficiency measures for a unit for two different time periods.
A contribution of the chapter is to introduce some relevant concepts to an audience
oriented toward DEA.

The chapter is organised as follows. The Charnes et al. (1978) ratio measure and
five Farrell efficiency measures are defined in Sect. 6.21 and the productivity
interpretations of the latter measures discussed for the case of a single output and
input, and then generalised to multiple outputs and inputs. The importance of (local)
constant returns to scale for productivity measurement is brought out using the
elasticity of scale. In Sect. 6.3 the Malmquist index proposed in Caves et al. (1982)
is introduced and some basic properties of the index and their consequences for
choice of efficiency measures are discussed. The decomposition of productivity
change into efficiency change and frontier shift introduced in Nishimizu and Page
(1982) is discussed and compared with the decomposition done in Färe et al. (1992,
1994a, c). Section 6.4 offers some conclusions.

1Section 6.2 is based on Førsund (2015), Sect. 4.
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6.2 Productivity Interpretations of the Farrell Efficiency
Measures

6.2.1 The Ratio Definition of the Efficiency Measure

Charnes et al. (1978) relate the ratio idea for defining an efficiency measure to how
efficiency is defined in engineering as “the ratio of the actual amount of heat
liberated in a given device to the maximum amount that could be liberated by the
fuel” (Charnes et al. 1978, p. 430). The optimisation problem set up for deriving the
efficiency measure in the case of constant returns to scale (CRS) for a dataset, from
a specific time period, is:

Max hj0 ¼
Ps

r¼1 urj0yrj0Pm
i¼1 vij0xij0

subject to
Ps

r¼1 urj0yrjPm
i¼1 vij0xij

� 1 ; j ¼ 1. . .; j0; . . .n; urj0 ; vij0 � 0 8r; i ð6:1Þ

Here hj0 is the efficiency measure for unit j0, yj0 and xj0 are the output and input
vectors, respectively, with s outputs and m inputs, number of units is n, and urj0, vij0
are the weights for unit j0 associated with outputs and inputs, respectively. These
weights are endogenous variables and will be determined in the optimal solution.
The constraints on the ratios in the optimisation problem (6.1) require the “pro-
ductivity” of all units to be equal to or less than 1 using the weights for unit j0, i.e.
the productivity of fully efficient units is normalised to 1. Moreover, the weighted
sum of inputs (input orientation) or outputs (output orientation) for the unit j0 under
investigation is normalised to 1 when the fractional programming problem (6.1) is
converted to a linear programming problem as shown by Charnes et al. (1978), thus
providing a link to the Farrell approach.2

6.2.2 The Farrell Suite of Efficiency Measures

Farrell (1957) defined two technical measures of efficiency, the input-oriented
measure based on scaling inputs of inefficient units down with a common scalar,
projecting the point radially to the frontier keeping observed output constant, and
the output-oriented measure scaling outputs of inefficient units up with a common
scalar, projecting the point radially to the frontier keeping observed inputs constant.
The measures were defined for a frontier function exhibiting constant returns to

2Farrell and Fieldhouse (1962) were the first to solve the problem of calculating their efficiency
measure by using linear programming.
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scale.3 However, he also discussed variable returns to scale and studied this further
in Farrell and Fieldhouse (1962), without explicitly introducing measures reflecting
scale properties. This was done in Førsund and Hjalmarsson (1974, 1979), devel-
oping a family of five efficiency measures. The latter paper illustrated the measures
using a smooth variable returns to scale frontier production function exhibiting an
S-shaped graph as typical for neoclassical production functions obeying the Regular
Ultra Passum Law4 of Frisch (1965).5 However, the efficiency measures are valid
for other types of frontier functions as long as a basic requirement of the variation of
the elasticity of scale is fulfilled. In this paper the focus will be on a non-parametric
piecewise linear frontier function; the generic DEA model exhibiting variable
returns to scale (VRS) having a convex production possibility set, and exhibiting
the other properties introduced in Banker et al. (1984).6

The family of the five Farrell efficiency measures is illustrated in Fig. 6.1 in the
case of the frontier within a non-parametric framework being a piecewise linear
convex function (Førsund 1992). The point of departure is the observation P0 = (y0,
x0) that is inefficient with respect to the VRS frontier. The reference point on the
frontier for the input-oriented measure E1 with respect to the VRS frontier is
P1
VRS = (y0, x1

VRS), and the reference point on the frontier for the output-oriented
measure E2 with respect to the VRS frontier is P2

VRS = (y2
VRS, x0). A second

envelopment is indicated by the ray from the origin being tangent to the point PTops.
(I will return to the interpretation of this point below.) This frontier exhibits con-
stant returns to scale (CRS). The reference points on the frontier are P1

CRS = (y0,
x1
CRS) and P2

CRS = (y2
CRS, x0). The dotted factor ray from the origin to the obser-

vation gives the productivity of the observation, and the dotted factor ray from the
origin to a reference point on the VRS frontier gives the productivity of this
reference point. As is easily seen from Fig. 6.1 the productivity at the CRS
envelopment is the maximal productivity obtained on the VRS frontier. Comparing
the observation with the reference point PTops = (yT, xT) therefore gives the relative
productivity of an observation to the maximal productivity on the VRS frontier.
Continuing Farrell’s numbering of measures a measure E3 is introduced covering
this measurement and is therefore termed the measure of technical productivity.7

3Farrell (1957) points out that the two measures in the case of constant returns to sale are equal.
4The Regular Ultra Passum Law requires that the scale elasticity decreases monotonically from
values greater than one, through the value one to lower values when moving along a rising curve in
the input space.
5This may be the reason for this way of presenting the family of efficiency measures being rather
unknown in the DEA literature.
6In the VRS DEA specification the scale elasticity has a monotonically decreasing value in the
range of increasing returns to scale, but has a more peculiar development in the range of decreasing
returns to scale as shown in Førsund et al. (2009). However, there may be a unique face where the
scale elasticity is equal to 1 along a rising curve‚ or else define a vertex point as having constant
returns to scale when the left-hand elasticity at the point is less than one and the right-hand
elasticity is greater than one.
7In Førsund and Hjalmarsson (1979), introducing this measure, it was called the gross scale
efficiency.
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The two remaining efficiency measures E4 and E5 introduced in Førsund and
Hjalmarsson (1979) are the scale efficiency measures8 comparing the productivity
of the reference points P1

VRS and P2
VRS, respectively, with the point PTops of maximal

productivity on the frontier.

6.2.3 Productivity Interpretations in the Case of a Single
Output and Input

All Farrell measures of efficiency can be given an interpretation of relative pro-
ductivity; the productivity of the observation relative to specific points on the VRS
frontier marked in Fig. 6.1. Before showing the relative productivity interpretation
in the case of a single output and a single input (Berg et al. 1992) in a general setting,
let us state the definitions of the Farrell input-and output-oriented technical efficiency
measures, starting with the general definition of the production possibility set T ¼
fðy; xÞ : y� 0 can be produced by x� 0g (y and x are vectors). By assumption let the
set T exhibit variable returns to scale (VRS) of its frontier (the efficient boundary of
T). The input-and output-oriented efficiency measures can be defined as9

E1ðy; xÞ ¼ minlfl : ðlx; yÞ 2 Tg
E2ðy; xÞ ¼ minkfk : ðx; y=kÞ 2 Tg: ð6:2Þ

The relative productivity interpretation can be shown in the case of a single
output and input in the following way, starting with the input-oriented efficiency
measure using the points P0 and P1

VRS in Fig. 6.1:

y0=x0

y0=xVRS1
¼ y0=x0

y0=E1x0
¼ E1 ð6:3Þ

The same productivity interpretation holds for the output-oriented efficiency
measure using points P0 and P2

VRS in Fig. 6.1:

y0=x0

yVRS2 =x0
¼ y0=x0

ðy0=E2Þ=x0 ¼ E2 ð6:4Þ

In the input-oriented case we adjust the observed input quantity so that the
projection of the observation is on the frontier, and in the output-oriented case we

8In Førsund and Hjalmarsson (1979) these measures were called measures of pure scale efficiency.
9The Farrell efficiency measure functions correspond to the concept of distance functions intro-
duced in Shephard (1970). Shephard’s input distance function is the inverse of Farrell’s
input-oriented efficiency measure, and Shephard’s output distance function is identical to Farrell’s
output-oriented efficiency measure.
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adjust the observed output, using the symbols for adjusted input and output
introduced above.

For the three remaining measures we will make a crucial use of the CRS
envelopment in order to calculate the measures. The notation E1

CRS and E2
CRS,

making explicit reference to the CRS envelopment as the frontier, together with
PTops = (yT, xT), will be used. The measure of technical productivity is

y0=x0

yT=xT
¼ y0=x0

y0=ECRS
1 x0

¼ ECRS
1 ¼ E3

y0=x0

yT=xT
¼ y0=x0

ðy0=ECRS
2 Þ=x0 ¼ ECRS

2 ¼ E3 ) E3 ¼ ECRS
1 ¼ ECRS

2

ð6:5Þ

The first expression in each of the two lines of the equations is the definition of
the measure of technical productivity using the productivity at the point PTops as a
reference. The second expressions, input-orientation or output-orientation, respec-
tively, show the most convenient way of calculating the productivity measure. The
outputs and inputs differ between the observation P0 and the PTops points. But using
the CRS envelopment the maximal productivity for the VRS technology is the same
along the entire ray from the origin going through the point PTops. The productivity
measure E3 is equal to both the input-oriented measure and the output-oriented
measure using the CRS envelopment as the frontier. It is easy to see geometrically
that in the case of using the CRS envelopment the two orientated efficiency mea-
sures must be identical, as pointed out by Farrell (1957).

Fig. 6.1 The Farrell efficiency measures applied to a piecewise linear VRS frontier
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Measures for scale efficiency are also defined using a relative productivity
comparison. The input-oriented scale efficiency E4 (keeping output fixed) and the
output-oriented scale efficiency E5 (keeping input fixed) are:

y0=xVRS1

yT=xT
¼ y0=E1x0

y0=ECRS
1 x0

¼ ECRS
1

E1
¼ E3

E1
¼ E4

yVRS1 =x0

yT=xT
¼ ðy0=E2Þ=x0

y0=ECRS
2 x0

¼ ECRS
2

E2
¼ E3

E2
¼ E5

ð6:6Þ

The relative productivity comparison for input-oriented scale efficiency in
Fig. 6.1 is between the observed output on the efficiency-corrected input on the
VRS frontier and the maximal productivity at the PTops-point (yT, xT). For
output-oriented scale efficiency we have an analogous construction. The calcula-
tions of the scale efficiency measures can either be based on the ratios between the
efficiency scores for input-oriented efficiency relative to the VRS frontier and the
CRS envelopment, or expressed as deflating the technical productivity measure
with the relevant efficiency measures relative to the VRS frontier. Notice that there
is only a single technical efficiency measure for a CRS technology; we have
E1 = E2 = E3 and E4 = E5 = 1.

6.2.4 The Concepts of Elasticity of Scale and Technically
Optimal Scale

Before generalising the relative productivity interpretation to multiple outputs and
inputs we need to introduce the concept of elasticity of scale. The definition of a
local scale elasticity for a frontier production function is the same whether it is of
the neoclassical differential type Fðy; xÞ ¼ 0 or if the production possibility set has
a faceted envelopment border like in the DEA case. We are looking at the maximal
uniform proportional expansion b of outputs for a given uniform proportional
expansion a of inputs, i.e. looking at Fðby; axÞ ¼ 0. The local scale elasticity is
defined as the derivative of the output expansion factor w.r.t. the input expansion
factor on the average value of the ratio of the output factor on the input factor10:

eðx; yÞ ¼ @bðx; y; aÞ
@a

a
b
¼ @bða; x; yÞ

@a a¼b¼1

�� ð6:7Þ

The scale elasticity is evaluated, without loss of generality, for a ¼ b ¼ 1. In
the DEA case with non-differentiable points (vertex points or points on edges) the
expression above is substituted with the right-hand derivative or the left-hand
derivative, respectively, at such points (Krivonozhko et al. 2004; Førsund and

10See Hanoch (1970), Panzar and Willig (1977), Starrett (1977).
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Hjalmarsson 2004b; Førsund et al. 2007; Podinovski et al. 2009; Podinovski and
Førsund 2010).

Returns to scale is defined by the value of the scale elasticity; increasing returns
to scale is defined as e > 1, constant returns to scale as e = 1 and decreasing returns
to scale as e < 1.

For a production function with variable returns to scale there is a connection
between the input- and output-oriented measures via the scale elasticity. Following
Førsund and Hjalmarsson (1979) in the case of a frontier function for a single
output and multiple inputs we have

E2 ¼ E�e
1 ) E1

[
\

E2 for �e
[
\

1 ð6:8Þ

where the variable �e is the average elasticity of scale along the frontier function
from the evaluation point for the input-saving measure to the output-increasing
measure. In Førsund (1996) this result was generalised for multiple outputs and
inputs in the case of a differentiable transformation relation Fðy; xÞ ¼ 0 as the
frontier function, using the Beam [Ray] variation equations of Frisch (1965). This
result holds for points of evaluation being projection points in the relative interior of
faces. The path between the points will be continuous although not differentiable at
vertex point or points located at edges.

We must distinguish between scale elasticity and scale efficiency (Førsund
1996). Formalising the illustration in Fig. 6.1 the reference for the latter is the
concept of technically optimal scale of a frontier function (Frisch 1965). The set of
points TOPST having maximal productivities for the (efficient) border of the pro-
duction possibility set T ¼ fðy; xÞ : y� 0 can be produced by x� 0g with the fron-
tier exhibiting VRS, can be defined as (Førsund and Hjalmarsson 2004a)11

TOPST ¼ ðy; xÞ : eðy; xÞ ¼ 1; ðy; xÞ2Tf g ð6:9Þ

It must be assumed that such points exist and that for outward movements in the
input space the scale elasticity cannot reach the value of 1 more than once for a
smooth neoclassical frontier. However, it can in the DEA case be equal to 1 for
points on the same face (see footnote 6). The point (yT, xT) used above is now
replaced by vectors yT and xT belonging to the set TOPST. From production theory
we know that in general a point having maximal productivity must have a scale
elasticity of 1. In a long-run competitive equilibrium the production units are
assumed to realise the technically optimal scale with the scale elasticity of 1
implying zero profit.

11The concept of the M-locus in the case of multi-output was introduced in Baumol et al. (1982,
pp. 58–59). In Førsund and Hjalmarsson (2004a) the M locus is defined and estimated within a
DEA model using the TOPS set.
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6.2.5 The Productivity Interpretation of the Efficiency
Measures in the General Case

The interpretation of the five Farrell measures as measures of relative productivity
can straightforwardly be generalised to multiple outputs and inputs. Introducing
general aggregation functions12 Y = gy (y1, y2,…,yM) and X = gx (x1, x2,…, xN)
where Y and X are the scalars of aggregate quantities and y1, y2,… and x1, x2,… etc.,
are elements of the respective vectors y and x for outputs and inputs. The
non-negative aggregation functions are increasing in the arguments and linearly
homogeneous in outputs and inputs, respectively (O’Donnell 2012). We have,
starting with the definition of relative productivity in the input-oriented case for an
observation vector (y0, x0):

gyðy0Þ=gxðx0Þ
gyðyVRS1 Þ=gxðxVRS1 Þ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Relative productivity

¼ gyðy0Þ=gxðx0Þ
gyðy0Þ=gxðE1x0Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Substituting for frontier input

¼ gyðy0Þ=gxðx0Þ
gyðy0Þ=E1gxðx0Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Using homogeneity of index function

¼ E1

ð6:10Þ

In the first expression relative productivity is defined in the input-oriented case
using the observed vectors y0, x0 and the vectors y1

VRS, x1
VRS for the projection onto

the VRS frontier analogous to the point P1
VRS in Fig. 6.1 in the two-dimensional

case. In the second expression the vectors for y1
VRS and x1

VRS are inserted, keeping
the observed output levels y0 and contracting the observed input vector using the
input-oriented efficiency E1 to project the inputs x0 to the VRS frontier. In the third
expression the homogeneity property of the input index function is used.

In the case of output orientation of the efficiency measure E2 we get in the
multiple output—multiple input case following the procedure above13:

gyðy0Þ=gxðx0Þ
gyðyVRS2 Þ=gxðxVRS2 Þ ¼

gyðy0Þ=gxðx0Þ
gyðy0=E2Þ=gxðx0Þ ¼

gyðy0Þ=gxðx0Þ
ðgyðy0Þ=E2Þ=gxðx0Þ ¼ E2 ð6:11Þ

Using the general aggregation functions gy(y), gx(x) the measure E3 of technical
productivity can be derived using input- or output-orientation:

12Following the classical axiomatic (test) approach there are a number of properties (at least 20) an
index should fulfil (Diewert 1992), the ones most often mentioned are monotonicity, homogeneity,
identity, commensurability and proportionality. “Satisfying these standard axioms limits the class
of admissible input (output) quantity aggregator functions to non-negative functions that are
non-decreasing and linearly homogeneous in inputs (outputs)” (O’Donnell 2012, p. 257). There is
no time index on the functions here because our variables are from the same period.
13The productivity interpretation of the oriented efficiency measures E1 and E2 can also be found in
O’Donnell (2012, p. 259) using distance functions.
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gyðy0Þ=gxðx0Þ
gyðyTÞ=gxðxTÞ ¼

gyðy0Þ=gxðx0Þ
gyðy0Þ=gxðECRS

1 x0Þ ¼
gyðy0Þ=gxðx0Þ

gyðy0Þ=ECRS
1 gxðx0Þ ¼ ECRS

1 ¼ E3

gyðy0Þ=gxðx0Þ
gyðyTÞ=gxðxTÞ ¼

gyðy0Þ=gxðx0Þ
gyðy0=ECRS

2 Þ=gxðx0Þ ¼
gyðy0Þ=gxðx0Þ

ðgyðy0Þ=ECRS
2 Þ=gxðx0Þ ¼ ECRS

2 ¼ E3

) ECRS
1 ¼ ECRS

2 ¼ E3 ð6:12Þ

We obtain the same relationship between the technical productivity measure and
the oriented measures with the CRS envelopment as in the simple case illustrated in
Fig. 6.1. Notice that the use of points on the CRS envelopment in (6.12) is just
introduced in order to calculate the measure E3, and is not the basic definition of the
measure; the definition is the first expression on the left-hand side of the two first
lines.

The case of multi-output and -input is done in the same way for the scale
efficiency measures as for the other measures utilising the homogeneity properties
of the aggregation functions:

gyðy0Þ=gxðxVRS1 Þ
gyðyTÞ=gxðxTÞ ¼ gyðy0Þ=gxðE1x0Þ

gyðy0Þ=ECRS
1 gxðx0Þ ¼

gyðy0Þ=E1gxðx0Þ
gyðy0Þ=ECRS

1 gxðx0Þ

¼ ECRS
1

E1
¼ E3

E1
¼ E4

gyðyVRS2 Þ=gxðx0Þ
gyðyTÞ=gxðxTÞ ¼ gyðy0=E2Þ=gxðx0Þ

ðgyðy0Þ=ECRS
2 Þ=gxðx0Þ ¼

ðgyðy0Þ=E2Þ=gxðx0Þ
ðgyðy0Þ=ECRS

2 Þ=gxðx0Þ

¼ ECRS
2

E2
¼ E3

E2
¼ E5 ð6:13Þ

Again, we obtain the same relationship between the technical productivity
measure and the oriented measures defining scale efficiency as in the simple case
illustrated in Fig. 6.1. The calculations of the scale efficiency measures can either
be based on the ratios between the efficiency scores for input-oriented efficiency
relative to the VRS frontier and the CRS envelopment or expressed as deflating the
technical productivity measure with the relevant efficiency measures relative to the
VRS frontier.

6.3 The Malmquist Productivity Index

The point of departure is that we have observations of a set of the same units over
time. The general construction of a total factor productivity index is to have an
index for the volume of outputs over a volume index of inputs. A classical problem
is to construct appropriate indices aggregating outputs and inputs, respectively.
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The special feature of the Malmquist productivity index is that, without having any
price data, volume indices can be established based on using efficiency scores for
observations relative to estimated frontier production functions representing best
practice. Caves et al. (1982) introduced the bilateral Malmquist productivity index
developed for discrete time based on the ratio of distance functions (or Farrell
efficiency functions that is the term used in this chapter) measured for two obser-
vations of the same unit at different time periods utilising efficiency scores only.
Färe et al. (1994a, c) showed how to estimate the index in the case of specifying the
possibility set as a convex polyhedral set and estimating the border of the set and
efficiency scores using linear programming. The popularity soon followed. Caves
et al. (1982) have 938 citations and Färe et al. (1994c) 929 in the Web of Social
Science (per April 4, 2016).

However, the Malmquist productivity index was oriented, building on either an
output-oriented efficiency score or an input-oriented one. A Malmquist index more
of the traditional non-oriented type based on an index of output change over an
index of input changes for two periods was introduced by Bjurek (1996), inspired
by Diewert (1992) mentioning some ideas of Moorsteen and Hicks, hence the name
Moorsteen-Hicks index adopted later, although Bjurek used the more functional
name of a Malmquist total factor productivity index.14

However, a purpose with the present study is to look deeper into the decom-
positions of the original Caves et al. (1982) Malmquist productivity index, com-
pletely dominating in number of applications.15

6.3.1 The Interpretation of the Malmquist Productivity
Change Index

The Caves et al. Malmquist oriented indices are utilising Farrell technical efficiency
scores. The index for a unit i observed for two different time periods u and v,
relative to the same border of the production possibility set indexed by b, repre-
senting one of the years, is:

Mb
ijðu; vÞ ¼

Eb
j ðxiv; yivÞ

Eb
j ðxiu; yiuÞ

; j ¼ 1; 2; i ¼ 1; . . .;N; u; v ¼ 1; . . .; T; u\v; b ¼ u; v ð6:14aÞ

The benchmark technology indexed by b is in many applications either the
technology for period u or v, and changing over time according to the technology

14A thorough evaluation of the advantages of this type of a Malmquist productivity index is found
in Lovell (2003), and it is also mentioned as the most satisfactory Malmquist type of productivity
index in O’Donnell (2012), being what he called multiplicatively complete.
15Lovell (2003) decomposes also the Malmquist total factor productivity index multiplicatively
into five terms. However, we will not investigate this issue here.
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chosen as the base for the two periods involved. It is also usual to take a geometric
mean of the results using technologies for both year u and v, following the seminal
paper Färe et al. (1994a) on how to estimate the Malmquist productivity index.16

The reason usually given in the literature is simply that either the technology from
u or from v may be used as benchmark, and it is arbitrary which one to use, so the
most reasonable is to take the geometric mean. As stated in Balk (1998, p. 59):
“Since we have no preferences for either the geometric average of these index
numbers will be used”. Fare et al. (1994c, p.70) stated the reason as “In order to
avod choosing an arbitrary benchmark”. When a geometric mean is taken tech-
nologies for the two periods are involved, and when time moves forward this
implies that the technology for a specific period is involved in two productivity
change calculations (except for the first and last year).17

However, the time periods may be seen to impose a natural choice of the first
period as a base in accordance with a “Laspeyres” view of using period u technology
to gauge the productivity change from u to v. If the efficiency score for period v is
greater (smaller) than the efficiency score for period u using period u technology, then
there has been a productivity improvement (deterioration) from period u to period v.

It is well known in the literature how to set up LP problems to estimate the
distance (or efficiency) functions involved in (6.14a) so we do not find it necessary
to do this here (see e.g. Fried et al. 2008).

The efficiency functions in (6.14a) show the maximal proportional expansion
(outputs) or contraction (inputs), and the measures are called technical efficiency
measures because prices are not involved. The Malmquist productivity index is then
a technical productivity index. There is no aggregation of outputs and inputs
involved. Productivity change is measured as the relative change in the common
expansion (contraction) factor between two periods.18

The productivity results may be different from the results one would get using
prices for aggregating outputs and inputs. Weighting with revenue and cost shares
as in the Törnqvist index means that the (real) price structure will have an influence.
In general it seems more functional to choose weights according to importance
placed on variables. The weights appearing in (1) are technically the dual variables,
i.e. the shadow prices on output and input constraints (solving the “envelopment
problem” in a DEA linear programming model) and give the marginal impact on the
efficiency scores of changes in the exogenous observations, and are thus not related
to the relative importance in an economic sense. Moreover, these shadow prices
changes from one solution to the next in a more or less unpredictable manner. Using

16However, no reason is given for this procedure other than claiming that this was done in Caves
et al. (1982). But there the geometric mean appears when establishing the connection between the
Malmquist index and an Törnquist index assuming the unit to be on the frontier, while the
fundamental assumption in Färe et al. (1994a) is that units may be inefficient.
17This may explain the empirical result in Bjurek et al. (1998) that productivity developments
more or less follow each other for different formulations of the Malmquist index.
18The weighted ratio appearing in (1) should not be interpreted as productivity; the weights are just
a by-product of the solutions of the optimisation problems in (6.2).

132 F.R. Førsund



the ratio form as in (6.1) as a productivity index for the development between two
time periods means that the weights are different for the solution of the efficiency
scores for each period (Førsund 1998).

Another source of difference is that one or more of the weights of outputs and
inputs in Eq. (6.1) may be zero, thus excluding variables from explicit influence on
the efficiency scores in (6.14a) in order to maximise (minimise) the scaling factors
in Eq. (6.2).19 This may bias the Malmquist index in both directions compared with
a standard Törnqvist index where all variables have strictly positive weights.

Another feature of the Malmquist productivity index that may give different
results than other indices is that the efficiency functions in (6.14a) are based on
frontier functions. In the case of capital vintage effects a dynamic investment
process takes place in order to improve the technology level of a firm, so a frontier
based on the best vintage technology may give a too optimistic view of the potential
for efficiency improvements in the short run (Førsund 2010). The estimation of the
frontier using DEA will also be distorted if observations picked to represent best
practice by the method may in fact not be best practice, but picked due to biased
technical change‚ as shown in Belu (2015)‚ assuming a single vintage for each unit.

Thus, there is a question about the usefulness of the information a Malmquist
productivity index gives compared with indices using available price information.
Public sector production activities not selling outputs in markets seem to be the
most relevant type of activities for application of the Malmquist productivity index.

In Sect. 6.2 the general aggregator functions gy(.) and gx(.) for outputs and inputs
was introduced. These functions may now be period-specific. However, because we
do not know these or do not have data to estimate them, the Malmquist index will
be estimated using non-parametric DEA models giving us the efficiency measures
in the numerator and denominator in (6.14a) (Färe et al. 2008).

When applying the Malmquist productivity index attention should be paid to
desirable properties. In the literature this is more often than not glossed over. I will
therefore explain in more detail the choice of the specification. Productivity as
measured by the Malmquist index (6.14a) may be influenced by changes in the
scale of the operation, but two units having the same ratio of outputs to inputs
should be viewed as equally productive, regardless of the scale of production
(Grifell-Tatjé and Lovell 1995). Doubling all inputs and outputs, keeping input and
output mixes constant, should not change productivity. Therefore the benchmark
envelopment of data, if we want to measure total factor productivity (TFP), is one
that is homogenous of degree 1 in the input and output vectors, and thus the
linear-homogenous set that fits closest to the data. The homogenous envelopment is
based on the concept of technically optimal scale termed TOPS in Sect. 6.2. As
pointed out in that section the productivity is maximal at optimal scale where
returns to scale is one, thus the CRS contemporary benchmark envelopments

19To the best of my knowledge the pattern of occurrence of zero weights in Malmquist produc-
tivity index estimations has never been reported in the literature.
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(assuming that the contemporaneous frontiers are VRS) are natural references for
productivity changes over time.

In Fig. 6.2 observations of the same unit for the two periods u and v are indi-
cated by Pu and Pv. The two corresponding VRS frontiers are drawn showing an
outward shift indicating technological progress. The TOPS point for period v is
labelled Pv

Tops. Just as the productivity should be unchanged if the input and output
vectors are proportionally scaled, a measure of productivity should double if out-
puts are doubled and inputs are kept constant, and increase by half if inputs double,
but outputs are constant. The desirable homogeneity properties of a TFP index is
therefore to be homogenous of degree 1 in outputs in the second period v and of
degree (−1) in inputs of the second period, and homogenous of degree (−1) in
outputs of the first period u and homogenous of degree 1 in inputs of the first
period. Using CRS to envelope the data is thus one way of obtaining all the required
homogeneity properties of a Malmquist productivity change index. Notice that in
the illustration in Fig. 6.2 the relative technology gap between the CRS benchmark
technologies (blue lines) for observations in period v and u are identical, thus
making the use of geometric mean of the Malmquist index in (6.14a) superfluous.20

The frontier technology level “jumps” from period to period from the start of one
period to the start of the consecutive one. Outputs are produced and inputs con-
sumed during the periods. This set-up is of course somewhat artificial compared
with the fact that real changes take place in continuous time. The dynamic problems
of adapting new technology and phasing it in are neglected. This theme is discussed
in e.g. the literature on the Porter hypothesis and environmental regulation (Porter
and van der Linde (1995); Brännlund and Lundgren 2009).21

Another property of a productivity index held to be important (Samuelson and
Swamy 1974) is the circularity of the index (Berg et al. 1992; Balk and Althin
1996) (see Gini (1931) for an interesting exposition). The implied transitivity of the
index means that the productivity change between two non-adjacent periods can be
found by multiplying all the pairwise productivity changes of adjacent periods
between the two periods in question, thus making identification of periods with
weak or strong productivity growth possible. We will transitivise the Malmquist
index by using a single reference frontier enveloping the pooled data, as illustrated
by the upper (red) ray CRS(s) in Fig. 6.2. In Tulkens and van den Eeckaut (1995)
this type of frontier was termed the intertemporal frontier.22 Notice that taking the

20Most illustrations of the Malmquist indices in studies using geometric means are in fact using
CRS frontiers and single output and input. Considering multiple outputs and inputs distances
between contemporaneous frontiers will be independent of where the measure is taken if inverse
homotheticity is assumed in addition to CRS, i.e. if Hicks neutral technical change is assumed.
21In panel data models efficiency change has been specified (Cornwell et al. 1990) as having
unit-specific efficiencies that varies over time, but this is a “mechanical” procedure without an
economic explanation of efficiency change.
22In Pastor and Lovell (2005), missing out on this reference, it was called the global frontier.
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geometric mean of the Malmquist index (6.14a) for u and v used as benchmark
envelopments is not compatible with circularity.

Using the same CRS reference envelopment for all units means that we have
made sure that efficiency for all units and time periods refer to the same envel-
opment. The observations are either below the benchmark or on it in the case of the
units from the pooled dataset spanning the envelopment. The pooled benchmark is
identical to the sequential frontier of Tulkens and van den Eeckaut (1995) for the
last period using sequentially accumulated data of all periods following the argu-
ment in Atkinson and Stiglitz (1969) that technology should not be forgotten.

Specifying CRS only is not sufficient to ensure that a specific data point
occurring at different time periods get the same efficiency evaluation, because both
input- and output isoquants may differ in shape over time if the technology is
allowed to change over time as in Färe et al. (2008). The implication of having a
time series of data is seldom discussed. Most illustrations and discussions seem to
be focussed on two periods only. Hoverer, changing technologies successively as in
(6.14a) implies that observations are measured against different frontiers over time.
The question is the relevance for estimating productivity change of the information
given by comparing relative numbers measured against different benchmarks.

Using a linear homogeneous envelopment implies that the orientation of the E
function does not matter. The Malmquist index for a unit i, that should be used
according to the properties outlined above is then:

Pv

Pv

Tops

Pu

CRS(v)
VRS(v)

VRS(u)

CRS(u)

CRS(s)

Input x

Output y
yv

s

yu

s

yv

yu

xvxu

yu

u

yv

v

Fig. 6.2 The Malmquist productivity change index. Productivity change for a unit from period
u to period v measured relative to the benchmark CRS(s) envelopment with maximal productivity
of the pooled dataset
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Ms
i ðu; vÞ ¼

Esðxiv; yivÞ
Esðxiu; yiuÞ ¼

Es
3ðxiv; yivÞ

Es
3ðxiu; yiuÞ

; i ¼ 1; . . .; J; u; v ¼ 1; . . .; T; u\v

ð6:14bÞ

where superscript s symbolises that all data are used for estimating the benchmark
reference set. The productivity change is the change in the productivities of the
observations relative to the benchmark maximal productivity, thus the Es measures
could formally be called E3

s measures according to the terms introduced in Sect. 6.2,
as done in the last expression in (6.14b). If all inputs are increased with a factor a
and outputs with factor b from period u to period v (axiu ¼ xiv and byiu ¼ yiv) then
we get from (6.14b): Ms

i ðu; vÞ ¼ Es
3ðaxiu; byiuÞ=Es

3ðxiu; yiuÞ ¼ b=a; i.e. proportion-
ality is obeyed due to the homogeneity properties of the efficiency score functions.

6.3.2 The Decomposition of the Oriented Malmquist
Productivity Index

Nishimizu and Page (1982) were the first to introduce the decomposition of the
productivity index into efficiency change and technical change in continuous time
and then apply the decomposition in discrete time.23 Färe et al. (1990, 1992, 1994a)
adapted the decomposition to using a non-parametric frontier production function
for estimating the efficiency scores. A quest for finding the sources of productivity
change followed. I will return to some of these efforts after reviewing the
decomposition of Nishimizu and Page (1982) that seems to be overlooked. They
were aware of the problems with interpretation in the discrete case:

Clearly, technological progress and technical efficiency change are not neatly separable
either in theory or in practice. In our methodological approach […] we define technological
progress as the movement of the best practice or frontier production over time. We then
refer to all other productivity change as technical efficiency change. The distinction which
we have adopted is therefore somewhat artificial, […]. (Nishimizu and Page (1982),
pp. 932–933)

Their approach is set out in Fig. 6.3 (the original Fig. 1, p. 924). All variables
are measured in logarithms, and the frontier functions are linear C–D functions with
Hicks-neutral technical change from period 1 to period 2. Production is x and input
z. The observation A has a production function with the same parameter as the
frontiers g1 and g2, but with a different constant term. It is then the case that if unit
A in period 1 had had the input of period 2, its production level would be at point
B. From this point the frontier gap bc is added ending in point C′, so BC′ = bc.

23Nishimizu and Page (1982) were the first to refer to a working paper (Caves et al. 1981) that was
published as Caves et al. (1982). However, they did not themselves use the term Malmquist
productivity index.
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Now, the observation in period 2 is found at C greater than C′. Nishimizu and Page
then assume that the full potential frontier shift is realised in period 2, but in
addition there is a positive efficiency change equal to C′C. So, measured in loga-
rithms the productivity change is the sum of the efficiency gap C′C and the frontier
gap BC′ (=bc).

Figure 6.4 provides an explanation of their approach in the usual setting of
quantities of variables in the simple case of single output and input and the frontiers
being CRS. I will now show that the Nishimizu and Page decomposition is the same
as the decomposition introduced in Färe et al. (1990, 1992, 1994a, c). A unit is
observed at b in period 1 and at f in period 2. Using the frontier 1 as the benchmark
technology instead of the pooled data for all years for simplicity of comparison the
Malmquist productivity index (6.14b) for a unit i for change between period 1 and 2
and its decomposition are:

M1
i ð1; 2Þ ¼

E1ðy2i ; x2i Þ
E1ðy1i ; x1i Þ

¼ E2ðy2i ; x2i Þ
E1ðy1i ; x1i Þ

� E
1ðy2i ; x2i Þ

E2ðy2i ; x2i Þ
¼ MCi �MFi;

df =de
ab=ac

¼ df =dg
ab=ac

� df =de
df =dg

; MF ¼ df =de
df =dg

¼ dg
de

ð6:15Þ

The general definition of the Malmquist productivity-change index after the first
equality sign is the ratio of the period efficiency measures against the same frontier
technology, here for period 1. The expression after the second equality sign shows
the multiplicative decomposition into a catching-up24 measure MC and a frontier
shift measure MF. The second line relates the observations b and f in Fig. 6.4 to the
decomposition in the case of a single output and input. To obtain the correct
homogeneity properties we have to use period frontiers that exhibit CRS. We are
after information on sources for changes in the Malmquist productivity index, so
even if the true contemporary frontier is VRS this does not mean that this frontier is
the relevant one to use for the decomposition. I will return to this in the next
subsection.

TheMF-measure represents the relative gap between technologies and is thus the
potential maximal contribution of new technology to productivity change, while the
MC-measure is residually determined and may not represent the real efficiency
contribution to productivity change, but illustrates the catching-up that is also
influenced by the technology shift. It should be observed that the decomposition
terms are multiplied to give the Malmquist index and not added.

Given that the only information we have about productivity change is the
movement of an observation in input—output space, to distinguish between effi-
ciency and technical change is rather difficult. The split into efficiency change and
frontier shift that Nishimizu and Page proposed, is, concerning MF, based on
assuming that the full productivity potential of the frontier shift is actually realised.
If both observations had been on their respective frontiers it is obvious that the

24To the best ofmyknowledge this termwasfirst used in Førsund (1993), and then inFare et al. (1994c).
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Malmquist productivity change will reflect the frontier shift only. If both obser-
vations are inefficient with respect to their period frontiers then the efficiency
contribution is measured by changing (expanding in Fig. 6.4) the input Oa in period

Fig. 6.3 The Nishimizu and Page (1982) decomposition. Source The Economic Journal

Fig. 6.4 The decomposition of the Malmquist index
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1 to that of Od in period 2, but using the actual production function in use in period
1 to predict the hypothetical output level at f′. However, I do not operate with any
production function for an inefficient observation as Nishimizu and Page did (a
CRS C–D function with the same form as the frontier functions), but I will
equivalently assume that the efficiency level stays constant getting the inputs of
period 2 in period 1. The unit then moves from point b to point b′. The problem is
now to predict where observation b′ in period 2 will be if the whole potential shift is
realised as productivity change. Nishimizu and Page operated with logarithms of
the variables and could more conveniently illustrate this, as shown in Fig. 6.3
above. In our Fig. 6.4 this means that the predicted output at point f′ must obey df′/
db′ = dg/de, the latter being the relative frontier gap Then the same measure for
efficiency “contribution” is actually obtained as in Nishimizu and Page, equal to the
ratio of the two period efficiency measures. This decomposition is the same as the
decomposition introduced in Färe et al. (1990, 1992, 1994a, c). This can be
demonstrated in Fig. 6.4 by identifying the efficiency gap as df/df′ and the frontier
gap df′/db′ building on Fig. 1 in Nishimizu and Page (Fig. 6.3 here), and using df′/
db′ = dg/de and db′/de = ab/ac:

df
df 0

� df
0

db0
¼ df =dg

db0=de
� dg
de

¼ df =dg
ab=ac

� dg
de

¼ df =de
ab=ac

¼ M ð6:16Þ

However, note that the decomposition does not mean that there is a causation;
we cannot distinguish between productivity change due to increase in efficiency and
due to shift in technology using the general components in (6.15), as may seem to
be believed in some of the empirical literature. The actual productivity change that
we estimate using the Malmquist productivity index is from the observation in one
period to an observation in another period (from b to f in Fig. 6.4). The causation is
another question related to the dynamics of technical change and how this potential
is utilised. As expressed in Nishimizu and Page (1982) after identifying techno-
logical progress as the change in the best practice production frontier:

We then refer to all other productivity change – for example learning by doing, diffusion of
new knowledge, improved managerial practice as well as short run adjustment to shocks
external to the enterprise – as technical efficiency change. Nishimizu and Page (1982,
p. 921)

Nishimizu and Page consider that dynamic factors influence efficiency change,
but do not consider the same for realising the new technology.

We cannot decompose efficiency effects and frontier shift effects without making
assumptions, according to Nishimizu and Page. Catching up seems to be the best
descriptive term for the efficiency component. The decomposition can then be
described as the relative potential contribution from technical change multiplied by
an efficiency correction factor.
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6.3.3 Circularity and Decomposition

Maintaining circularity for both components MC and MF in the decomposition
implies that the technology shift term MF will be more complicated. Efficiency
measures calculated relative to the benchmark frontier must be involved in the
frontier shift measure. A decomposition of the index in Eq. (6.14b) that functions
is:

Ms
i ðu; vÞ ¼

Evðxiv; yivÞ
Euðxiu; yiuÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

MC

� E
sðxiv; yivÞ=Evðxiv; yivÞ

Esðxiu; yiuÞ=Euðxiu; yiuÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
MF

; i ¼ 1; . . .;N; u; v ¼ 1; . . .; T ; u\v ð6:17Þ

The MF measure of technology shift is calculated as a ‘double’ relative measure
where both period efficiency measures are relative to the benchmark efficiency
measures (Berg et al. 1992). It is easy to see that the decomposition reduces to the
Malmquist index (6.14b) by cancelling terms. Notice that to do the decomposition
we need benchmark envelopments for each period to be compared in addition to the
fixed benchmark envelopment as seen in Fig. 6.2.

It can be illustrated in the case of one output and one input that the frontier shift
component still measure the gap between the two benchmark technologies 1 and 2
in Figs. 6.2 and 6.4. Introducing the intertemporal benchmark s in Fig. 6.4 we can
express the Malmquist index and its components in Fig. 6.5. The observations in
period 1 and 2 are marked with blue circles at b and h. The relative frontier gap
between frontier 1 and 2 measured using the observation for period 2 is fk/fg. We
shall see if the decomposition in (6.17) gives the same measure using the notation in
Fig. 6.5:

M ¼ fh=fm
ab=ae

¼ fh=fk
ab=ac|fflffl{zfflffl}
MC

� ðfh=fmÞ=ðfh=fkÞðab=aeÞ=ðab=acÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
MF

ð6:18Þ
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Fig. 6.5 The decomposition
of the Malmquist index
imposing circularity
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The MF component can be developed as follows:

MF ¼ ðfh=fmÞ=ðfh=fkÞ
ðab=aeÞ=ðab=acÞ ¼

fk=fm
ac=ae

ð6:19Þ

The last expression is the gap between frontier 2 and benchmark s in the
numerator and the gap between frontier 1 and the benchmark in the denominator,
both expressed as the inverse of the definition of the gap as expressed in the last
equation in (6.15). But using the property of like triangles we have ac=ae ¼ fg=fm:
The last expression in (6.19) can then be written:

fk=fm
ac=ae

¼ fk=fm
fg=fm

¼ fk
fg

ð6:20Þ

This is the relative gap between frontier 2 and 1 using the input for period 2 as
the base for calculating the gap.

However, note that in the general multi-output—multi-input case we cannot
invoke the property of like triangles; the relative gaps depend on the input and
output mixes.

6.3.4 Comments on Decompositions

In Färe et al. (1994b, c) the decomposition into catching up and frontier shift in Färe
et al. 1990, 1992, 1994a)25 was extended to a further decomposition of the effi-
ciency change term into a scale efficiency term and a technical efficiency term,
assuming the two contemporaneous frontiers to be VRS. This approach was criti-
cised in Ray and Desli (1997) and a reply given in Färe et al. (1997). In his
extensive review of decompositions of the Malmquist index Lovell (2003, p. 442)
states: “I conclude that the Färe et al. (1994c) decomposition of the Malmquist
productivity index is inadequate”.

However, there are problems with the extended decompositions that are not
observed by any of the papers above. The first comment is that decompositions are
meant to identify sources of impacts on the total factor productivity index of
observed movements of a unit in input-output space. It is then not necessarily the

25The history of the DEA-based Malmquist productivity index is presented in Färe et al. (1998),
Grosskopf (2003) and Färe et al. (2008). The first working paper that established an estimation
procedure based on DEA was published in 1989, was presented at a conference in Austin in the
same year, and appeared as Färe et al. (1994a); a book chapter in a volume containing many of the
conference presentations. The first journal publication appeared as Färe et al. (1990) with an
application to electricity distribution. (However, this paper is not referred to in the 2003 and 2008
reviews and neither in Färe et al. (1992), although the methodological approach in the latter is the
same).
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case that one should use the actual contemporaneous technologies as a point of
departure. A point that is under-communicated is the role of the benchmark
envelopment. If we want the productivity change index to have the fundamental
property of proportionality, then this envelopment have to exhibit constant returns
to scale (CRS) even though the true contemporaneous technology is variable returns
to scale. It follows most naturally that the decompositions should then also be based
on envelopments exhibiting CRS. Thus, I support the choice in Färe et al. (1994c)
of a cone benchmark envelopment. Ray and Desli (1997) do not seem to understand
this choice, and in Balk (2001, p. 172) it is stated “it is not at all clear why technical
change should be measured with respect to the cone technology” in spite of
introducing proportionality in his Eq. (2).

Figure 6.2 illustrates the situation; the true contemporaneous technologies may
be the variable returns to scale (VRS) functions for the two years, while the
benchmark envelopment is represented by the cone CRS(s) based on the pooled
data. Now, the catching-up term is the relative distance to the cone envelopments of
the data from the two periods, while the frontier shift component is the “double
relativity” format of (6.17) also involving distances from the observations to the
benchmark envelopment of the pooled data.

There are many followers of the extended multiplicative decomposition in Färe
et al. (1994b, c) of decomposing the catching-up term into what is called “pure”
technical efficiency and scale efficiency. Pure efficiency is defined as the efficiency
of the observation relative to the VRS frontier termed E2 in Sect. 6.2. Using the
terms there we have E3 ¼ E2 � E5.

26 The complete decomposition of the change in
the catching-up term, assuming a VRS technology for periods u and v and sim-
plifying the notation, dropping writing the variables and unit index, is then

Ev
3v
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3u
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2v

Eu
2u
� E

v
5v

Eu
5u

ð6:21Þ

However, it is difficult to see that this decomposition is helpful in interpreting the
catch-up term. It is difficult to consider this term as a “driving factor”. The E2 terms
are just there to satisfy the identity. The period VRS frontiers do not contribute to
the understanding of the productivity changes based on CRS benchmark envel-
opments constructed by the analyst focusing on the development of the maximal
productivity over time. The catch-up term is based on the change in the optimal
scale (TOPS). Scale inefficiency has no role in our measure of productivity change.
As remarked by Kuosmanen and Sipiläinen (2009, p. 140) “the distinction between
the technical change and scale efficiency components is generally ambiguous and
debatable.” In Balk (2001) change in input mix is also identified as a separate
factor, cf. O'Donnell (2012) also including change in output mix. However, these
factors are not considered here.

26As a control, inserting the definition of E5 we have for each period technology
E3 ¼ E2 � E3=E2 ¼ E3.
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From a computational point of view the Malmquist index (6.14b) connects data
points with a benchmark envelopment that serves our purpose of measuring pro-
ductivity change. Pooling the data secures the highest possible degrees of freedom.
Decomposition requires the estimation of two additional contemporaneous bench-
mark envelopments, and reduces the degrees of freedom in the estimation of these
in addition to not giving us that much information of real sources behind produc-
tivity change.

We may face trouble also with basing the decomposition terms on cone
envelopments if estimations of period functions are not properly restricted. An
example is given in Fig. 6.6. The VRS envelopments are changed from those in
Fig. 6.2 and are crossing each other,27 and in such a way that the productivity of the
optimal scale in period u is greater than in the later period v. We see clearly that the
productivity growth measured by the Malmquist index (6.14b) shows growth, but
that the frontier shift between periods u, v will show technical regress (MF < 1).
However, the catching-up component then has to be greater than 1, and so much
greater that growth is shown by the product of the terms. Looking at the VRS
frontiers where the observations are located conveys that there has been a positive
shift in the frontier from period u to period v, but this is the opposite of what the
change in the period CRS benchmark tells us. One way to avoid this situation is to
use sequential period envelopments. Then the CRS envelopment for period u may
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Fig. 6.6 Contemporaneous cones and VRS technologies

27Crossing of technologies and crossing of isoquants as illustrated in Førsund (1993) will be
difficult to interpret using geometric means of an index of the type in (6.14a).
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be the same as for period v in Fig. 6.6 and productivity growth will be measured as
due to efficiency improvement only.

6.4 Conclusions

Efficiency and productivity are two different concepts, but related through the
fundamental definition of efficiency as being the relative relationship between the
observed productivity of a unit and the maximal achievable productivity for the
type of activity in question. Charnes et al. (1978) set up a different route to calculate
the same efficiency measures introduced by Farrell (1957) by setting up a ratio form
of productivity measures for estimating the efficiency scores, where the weights in
the linear aggregation of outputs and inputs are estimated when maximising
weighted outputs on weighted inputs subject to no productivity ratio using these
weights for all units being greater than one (as a normalisation). However, this way
of defining efficiency measures using expressions formally equal to productivity, is
not as satisfactory for economists as the Farrell approach, introducing explicitly a
frontier production function as a reference for efficiency measure definitions and
calculations.

The original Farrell measures developed for constant returns to scale (CRS) has
been extended to five efficiency measures for a frontier production function
exhibiting variable returns to scale (VRS); input- and output technical efficiency,
input- and output scale efficiency, and the technical productivity measure. The
relationship between the two measures of technical efficiency involves the average
scale elasticity value between the two frontier projection points along the frontier
surface. The technical productivity measure and the two scale efficiency measures
are developed based on the Frisch (1965) concept of technically optimal scale,
predating the use of the concept most productive scale size in the DEA literature
with almost 20 years.

It does not seem to be commonly recognised in the DEA literature that in the
general case of multiple outputs and inputs the Farrell efficiency measures can all be
given productivity interpretations in a more satisfactory way than the ratio form of
Charnes et al. (1978). Using quite general theoretical aggregation functions for
outputs and inputs with standard properties, it has been shown that all five Farrell
efficiency measures can be given a productivity interpretation employing a proper
definition of productivity. Each of the two technical efficiency measures and the
technical productivity measure can be interpreted as the ratio of the productivity of
an inefficient observation and the productivity of its projection point on the frontier,
using the general aggregation equations. Of course, we have not estimated any
productivity index as such, this remains unknown, but that was not the motivation
of the exercise in the first place.

The Malmquist productivity index for bilateral comparisons, applied to discrete
volume data and no prices, utilises Farrell efficiency measures directly. In order to
have the required index property of proportionality it is sufficient to have as a
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benchmark an envelopment that exhibits global constant returns to scale, although
the underlying contemporaneous production frontiers may have variable returns to
scale. One way of obtaining the proportionality properties is basing the benchmark
envelopment on the technically optimal scale of the underlying frontiers. If circu-
larity is wanted then this may be done by using cone envelopment for a single year,
or pooling all data and using an intertemporal benchmark as is followed in this
paper.

Fundamental drivers of productivity change are improvement in efficiency and
technical change. The question is how to identify these drivers for a given dataset of
outputs and inputs for units. The seminal contribution in Nishimizu and Page
(1982) showed one way decomposing a productivity index into a component
expressing efficiency change and a component showing the frontier shift impact on
productivity that is shown to be the same type of decomposition as the one done for
the Malmquist index of productivity change in Färe et al. (1994a). However, a
warning of not attaching causality to the decomposition is in place. The decom-
position is based on assuming that the full potential of productivity change due to
new technology is actually realised, and then the efficiency component is deter-
mined residually, but neatly expressed as the relative catching-up to the last period
frontier compared with the relative distance to the frontier in the previous period.

If a total factor productivity change index is wanted it is shown that a cone
benchmark envelopment satisfy the proportionality test and furthermore using a
fixed benchmark technology, for instance based on the pooled dataset as done in
this chapter, will satisfy the circularity test. Furthermore, it is argued that cone
benchmark envelopments should also be used for contemporaneous frontiers, thus
criticising efforts to do further decompositions involving scale efficiencies based on
assuming variable returns to scale period frontiers.
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