
Chapter 12
Measuring Eco-efficiency Using
the Stochastic Frontier Analysis Approach

Luis Orea and Alan Wall

Abstract The concept of eco-efficiency has been receiving increasing attention in
recent years in the literature on the environmental impact of economic activity.
Eco-efficiency compares economic results derived from the production of goods and
services with aggregate measures of the environmental impacts (or ‘pressures’)
generated by the production process. The literature to date has exclusively used the
Data Envelopment Analysis (DEA) approach to construct this index of environmental
pressures, and determinants of eco-efficiency have typically been incorporated by
carrying out bootstrapped truncated regressions in a second stage. We advocate the
use of a Stochastic Frontier Analysis (SFA) approach to measuring eco-efficiency. In
addition to dealing with measurement errors in the data, the stochastic frontier model
we propose allows determinants of eco-efficiency to be incorporated in a one stage.
Another advantage of our model is that it permits an analysis of the potential sub-
stitutability between environmental pressures.We provide an empirical application of
our model to data on a sample of Spanish dairy farms which was used in a previous
study of the determinants eco-efficiency that employed DEA-based truncated
regression techniques and that serves as a useful benchmark for comparison.
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12.1 Introduction

Concerns about the sustainability of economic activity has led to an increasing
interest in the concept of eco-efficiency and the literature on this topic has been
growing in recent years (Oude Lansink and Wall 2014). The term eco-efficiency
was originally coined by the World Business Council for Sustainable Development
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in their 1993 report (Schmidheiney 1993) and is based on the concept of creating
more goods and services using fewer resources. In turn, the OECD defines
eco-efficiency as “the efficiency with which ecological resources are used to meet
human needs” (OECD 1998). Clearly, the concept of eco-efficiency takes into
account both the environmental and economic objectives of firms.

When evaluating firm performance in the presence of adverse environmental
impacts, production frontier models are a popular tool (Tyteca 1996; Lauwers 2009;
Picazo-Tadeo et al. 2011; Pérez-Urdiales et al. 2015). The measurement of
eco-efficiency in a frontier context, which Lauwers (2009) refers to as the ‘frontier
operationalisation’ of eco-efficiency, involves comparing economic results derived
from the production of goods and services with aggregate measures of the envi-
ronmental impacts or ‘pressures’ generated by the production process. To date, only
the non-parametric Data Envelopment Analysis (DEA) method has been used in the
literature. While DEA has many advantages, it has the drawback that it can be
extremely sensitive to outliers and measurement errors in the data.

In the present work we propose a Stochastic Frontier Analysis (SFA) approach
to measuring eco-efficiency, which has the advantage that it well-suited to dealing
with measurement errors in the data. Using a stochastic frontier model to measure
eco-efficiency involves the estimation of only a few parameters, so the model can be
implemented even when the number of observations is relatively small. Moreover,
the SFA approach permits an analysis of the potential substitutability between
environmental pressures and can incorporate determinants of eco-efficiency in a
one-stage procedure.

We illustrate our simple proposal with an empirical application using a sample of
50 dairy farmers from the Spanish region of Asturias. This data set includes
information from a questionnaire specifically carried out to permit the accurate
measurement of eco-efficiency and provides information on farmers’ socioeco-
nomic characteristics and attitudes towards the environment, and has been used by
Pérez-Urdiales et al. (2015) to measure eco-efficiency and identify its determinants
using the DEA-based bootstrapped truncated regression techniques of Simar and
Wilson (2007). The results from that paper therefore provide a useful point of
comparison for the results from our proposed stochastic frontier model.

The paper proceeds as follows. In Sect. 12.2 we discuss the concept of
eco-efficiency and the DEA approach often used to estimate eco-efficiency scores.
Section 12.3 introduces our stochastic frontier model, which can be viewed as a
counterpart of the DEA eco-efficiency model. Section 12.4 describes the data we
use. The results are presented and discussed in Sect. 12.5, and Sect. 12.6 concludes.

12.2 Background

To measure eco-efficiency using frontiers, Kuosmanen and Kortelainen (2005)
defined eco-efficiency as a ratio between economic value added and environmental
damage and proposed a pressure-generating or pollution-generating technology set
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T ¼ fðp; pÞ 2 R 1þKð Þj p can be generated by pg. This technology set describes all
the feasible combinations of economic value added, p, and environmental pres-
sures, p. Environmental damage, DðpÞ, is measured by aggregating the
K environmental pressures p1; . . .; pKð Þ associated with the production activity.

Figure 12.1 provides an illustration for the simple case of two environmental
pressures, p1 and p2. The set of eco-efficient combinations is represented by the
eco-efficient frontier, which represents the minimum combinations of the two envi-
ronmental pressures which can be used to produce an economic value added of p0.
Combinations of pressures below the frontier are unfeasible whereas combinations
above it are eco-inefficient. For example, the combination of pressures represented by
point A is clearly eco-inefficient as the environmental pressures could be reduced
equiproportionally to point E on the frontier without reducing value added.

Eco-inefficiency can be measured using the radial distance from a point A to the
efficient frontier. The eco-efficiency score is given by the ratio OE/OA which takes
the value 1 for eco-efficient combinations of pressures and economic value added
and values less than 1 for inefficient combinations such as A. This is the approach
we will consider, although it should be pointed out that alternative measures of
eco-efficiency could be devised if we depart from radial (equiproportional) reduc-
tions in pressures. For example, instead of measuring the extent to which pressures
can be reduced while maintaining value added, we could measure the extent to
which the firm, given its present combination of pressures, could increase its value
added. Thus, if the firm was using the combination of pressure represented by A
efficiently, it would be operating on a new eco-efficient frontier passing through that
point, and could achieve a higher value added corresponding to this new frontier.
Other alternatives exist where the possibility of simultaneously reducing pressures
and increasing economic value added can be explored. Picazo-Tadeo et al. (2012),
for example, propose using a directional distance function approach which allows
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for this possibility, as well as that of reducing subsets of pressures in order to reach
the eco-efficient frontier.

These different ways of approaching the eco-efficient frontier will all lead to
valid measures of eco-inefficient behaviour but we will follow the existing literature
by focusing on the capacity of firms to reduce environmental pressures equipro-
portionally while maintaining value added. It should be underlined that our
eco-efficiency scores are defined directly in terms of environmental pressures and
not in terms of reductions of input quatities which can be transformed into an
associated reduction in in overall environmental damage. This latter approach was
followed by Coelli et al. (2007) and permitted them to disaggregate environmental
inefficiency into technical and allocative components using “iso-pressure” lines.

Individual eco-efficiency scores for producer i can be found using the following
expression:

EEFi ¼ Economic value added
Environmental pressure

¼ pi
DiðpÞ ð12:1Þ

where DiðpÞ is a function that aggregates the environmental pressures into a single
environmental pressure indicator. This can be done by taking a linear weighted
average of the individual environmental pressures:

DiðpÞ ¼ w1p1i þw2p2i þ � � � þwKpKi ð12:2Þ

where wk is the weight assigned to environmental pressure pk. Kuosmanen and
Kortelainen (2005) and Picazo-Tadeo et al. (2012), among others, use DEA as a
non-subjective weighting method. The DEA eco-efficiency score of firm i can be
computed from the following programming problem

maxwki EEFi ¼ piPK
k¼1 wkipki

ð12:3Þ

subject to the constraints

pjPK
k¼1 wkipkj

� 1 j ¼ 1; . . .;N

wki � 0 k ¼ 1; . . .;K

This formulation involves a non-linear objective function and non-linear con-
straints, which is computationally difficult. This problem is often linearized by
taking the inverse of the eco-efficiency ratio and solving the associated reciprocal
problem (Kuosmanen and Kortelainen 2005; Picazo-Tadeo et al. 2011).

The two constraints in the problem force weights be non-negative and
eco-efficiency scores take values between zero and one, that is:
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EEFi ¼ piPK
k¼1 wkipki

� 1; 8i ¼ 1; . . .;N ð12:4Þ

The DEA eco-efficiency score which solves this problem for firm i indicates the
maximum potential equiproportional reduction in all environmental pressures that
could be achieved while maintaining economic value constant, i.e., it corresponds
to the ratio OE/OA for a firm operating at point A in Fig. 12.1 and would take the
vaue 1 for an eco-efficient firm.

12.3 The SFA Eco-efficiency Model

In this section we introduce our SFA counterpart of the above DEA eco-efficiency
model. We first introduce a basic (i.e. homoskedastic) specification of the model in
order to focus our attention on the main characteristics of the model and the
differences between the SFA and DEA approaches1. We then present a
heteroskedastic specification of the model that allows us to identify determinants of
firms’ eco-efficiency in a simple one-stage procedure. Finally, we explain how we
obtain the estimates of eco-efficiency for each farm.

12.3.1 Basic Specification

Our SFA approach to modelling eco-efficiency relies on the constraint in Eq. (12.4).
If we assume that the environmental pressure weights, wk, in (12.2) are parameters
to be estimated, we can impose that these be positive by reparameterizing them as
wk ¼ ebk . As each environmental pressure contributes positively to overall envi-
ronmental damage, this restriction, which is stated in (12.3), follows naturally. The
natural logarithm of Eq. (12.4) can be written as:

lnEFFi ¼ ln
piPK

k¼1 e
bk � pki

 !
� 0 ð12:5Þ

The above equation can be rewritten as:

ln pið Þ ¼ ln
XK

k¼1
ebk � pki

� �
� ui ð12:6Þ

where ui ¼ � ln EFFi � 0 can now be viewed as a non-negative random term
capturing firm i’s eco-inefficiency.

1A version of this basic homoskedastic model has been presented in Orea and Wall (2015).

12 Measuring Eco-efficiency Using the Stochastic Frontier Analysis … 279



Equation (12.6) is a non-linear regression model with a nonpositive disturbance
that can be estimated using several techniques, including goal programming, cor-
rected ordiinary least squares (COLS) and modified ordinary least squares (MOLS)
—see Kumbhakar and Lovell (2000, Sect. 3.2.1). If we were using a multiplicative
aggregation of environmental pressures, we would get a linear (i.e. Cobb-Douglas)
regression model where positive parameter values would need to be imposed. Both
models are rougly equivalent but the Cobb-Douglas specification would depart
from the tradition in the eco-efficiency literature of using linear combinations of
environmental pressures.

Regardless of the technique, however, note that in (12.6) we are measuring
firms’ eco-efficiency relative to a deterministic environmental pressure frontier.
This implies that all variation in value added not associated with variation in
individual environmental pressures is entirely attributed to eco-inefficiency. In other
words, this specification does not make allowance for the effect of random shocks,
which might also contribute (positively or negatively) to variations in value added.

As is customary in the SFA literature in production economics, in order to deal
with this issue we extend the model in (12.6) by adding a symmetric random noise
term, vi, and a non-zero intercept h:

ln pið Þ ¼ hþ ln
XK

k¼1
ebk � pki

� �
þ vi � ui ð12:7Þ

This model is more complex than a deterministic eco-efficiency frontier model
but it is also more realistic as deviations from the frontier due not only to
eco-inefficiency but also to uncontrollable or unobservable factors (i.e. random
noise) are incorporated. We have also added a non-zero intercept in order to obtain
unbiased parameter estimates in case the unobservable factors or measurement
errors have a level effect on firms’ profit.

The error term in (12.7) thereby comprises two independent parts. The first part,
vi, is a two-sided random noise term, often assumed to be normally distributed with
zero mean and constant standard deviation, i.e. rv ¼ ec. The second part, ui, is a
one-sided error term capturing underlying eco-inefficiency that can vary across
firms. Following Aigner et al. (1977) it is often assumed to follow a half-normal
distribution, which is the truncation (at zero) of a normally-distributed random
variable with mean zero. Moreover, these authors also assumed that the variance of
the pre-truncated normal variable (hereafter ru) is homoskedastic and common to
all farms, i.e. ru ¼ ed. The identification of both random terms in this model (ALS
henceforth) relies on the asymmetric and one-sided nature of the distribution of ui
(see Li 1996) If the inefficiency term could take both positive and negative values, it
would not be distinguishable from the noise term, vi.

It should be pointed out that under these distributional assumptions the density
function of the composed error term ei ¼ vi � ui in (12.7) is the same as the
well-known density function of a standard normal-half normal frontier model.
Following Kumbhakar and Lovell (2000, p. 77), the log likelihood function for a
sample of N producers can then be written as:
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ln Lðh; b; c; dÞ ¼ N
2
ln r2v þ r2u
� �þ XN

i¼1

ln U � ei h; bð Þ � ru=rv
r2v þ r2u
� �1=2

" #

� 1
2 r2v þ r2u
� �XN

i¼1

eiðh; bÞ ð12:8Þ

where b ¼ ðb1; . . .; bKÞ, and

ei h; bð Þ ¼ ln pið Þ � h� ln
XK
k¼1

ebk � pki
 !

ð12:9Þ

The likelihood function (12.8) can be maximized with respect to ðh; b; c; dÞ to
obtain consistent estimates of all parameters of our eco-efficiency model. The only
difference between our SFA eco-efficiency model and a traditional SFA production
model is the computation of the error term ei h; bð Þ. In a traditional SFA production
model, this is a simple linear function of the parameters to be estimated and hence
the model can be estimated using standard econometric software, such as Limdep or
Stata. In contrast, ei h; bð Þ in Eq. (12.9) is a non-linear function of the b parameters.
Although the non-linear nature of Eq. (12.9) prevents using the standard commands
in Limdep or Stata to estimate our SFA eco-efficiency model, it is relatively
straightforward to write the codes to maximize (12.8) and obtain our parameter
estimates.

The model in (12.7) can also be estimated using a two-step procedure that
combines ML and method of moments (MM) estimators. In the first stage, the
intercept h and the environmental pressure parameters b of Eq. (12.7) can be
estimated using a non-linear least squares estimator. In the second step, the
aforementioned distributional assumptions regarding the error terms are made to
obtain consistent estimates of the parameters describing the variance of vi and ui
(i.e., c and d) conditional on the estimated parameters from the first step. This
two-step approach is advocated for various models in Kumbhakar and Lovell
(2000). The main advantage of this two-step procedure is that no distributional
assumptions are used in the first step. Standard distributional assumptions on vi and
ui are used only in the second step. In addition, in the first step the error components
are allowed to be freely correlated.

An important issue that should be taken into account when using a two-step
procedure is that the expectation of the original error term in (12.7) is not zero
because ui is a non-negative random term. This implies that the estimated value of
the error term ei in Eq. (12.7) should be decomposed as follows:

ei ¼ vi � ui þEðuiÞ ð12:10Þ

If ui follows a half-normal distribution, then EðuiÞ ¼
ffiffiffiffiffiffiffiffi
2=p

p � ru. Thus, the
stochastic frontier model in the second stage is:
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ei ¼ vi � ui �
ffiffiffiffiffiffiffiffi
2=p

p
� ed ð12:11Þ

Note that there are no new parameters to be estimated. The parameters c and d
are estimated by maximizing the likelihood function associated to this (adjusted)
error term. As Kumbhakar et al. (2013) have recently pointed out, the stochastic
frontier model based on (12.11) can accommodate heteroskedastic inefficiency and
noise terms simply by making the variances of ru and rv functions of some
exogenous variables (see, for instance, Wang 2002; Álvarez et al. 2006). This issue
is addressed later on.

Before proceeding, it should be pointed out that an alternative two-step approach
based only on MM estimatorscan also be used. This empirical strategy relies on the
second and third moments of the error term ei in Eq. (12.7). This approach takes
advantage of the fact that the second moment provides information about both rv
and ru whereas the third moment only provides information about the asymmetric
(one-sided) random inefficiency term. Olson et al. (1980) showed using simulation
exercises that the choice of estimator (ML vs.MM) depends on the relative value of
the variances of both random terms and the sample size. When the sample size is
large and the variance of the one-sided error component is small compared to the
variance of the noise term, ML outperforms MM. The MM approach has, in
addition, some practical problems. It is well known in the stochastic frontier lit-
erature, for example, that neglecting heteroskedasticity in either or both of the two
random terms causes estimates to be biased. Kumbhakar and Lovell (2000) pointed
out that only the ML approach can be used to address this problem. Another
practical problem arises in homoskedastic specifications of the model when the
implied ru becomes sufficiently large to cause rv\0, which violates the assump-
tions of econometric theory.

Compared to the DEA eco-efficiency model, our SFA approach will attenuate
the effect of outliers and measurement errors in the data on the eco-efficiency
scores. Moreover, it is often stressed that the main advantage of DEA over the SFA
approach is that it does not require an explicit specification of a functional form for
the underlying technology. However, the ‘technology’ here is a simple index that
aggregates all environmental pressures into a unique value. Thus, we would expect
that the parametric nature of our SFA approach is not as potentially problematic in
an eco-efficiency analysis as it may be in a more general production frontier setting
where theses techniques are used to uncover the underlying (and possibly quite
complex) relationship between multiple inputs and outputs. Another often-cited
advantage of the DEA approach is that it can be used when the number of obser-
vations is relatively small. We reiterate, however, that the ‘technology’ of our SFA
model is extremely simple, with few parameters to be estimated, so that the model
can be implemented even when the number of observations is not large.

Finally, note that the estimated b parameters have an interesting interpretation in
the parametric model. In the expression for eco-efficiency in (12.1), we note that
eco-efficiency is constant and equal to 1 along the eco-efficiency frontier.
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Differentiating (12.1) in this case with respect to an individual pressure pk for firm
i we obtain:

@DiðpÞ
@pk

¼ @pi
@pk

ð12:12Þ

For any two pressures pj and pk, therefore, we have:

@DiðpÞ
@pj

@DiðpÞ
@pk

¼
@pi
@pj
@pi
@pk

ð12:13Þ

From the expression for eco-efficiency in the reparameterized model in (12.5) it

is clear that @DiðpÞ
@pk

¼ ebk , so that in this particular case (12.13) becomes:

ebj

ebk
¼ @pi=@pj

@pi=@pk
ð12:14Þ

Once the b parameters have been estimated, ebk therefore represents the marginal
contribution of pressure pk to firm i’s value added, i.e., it is the monetary loss in
value added if pressure pk were reduced by one unit.

As expression (12.14) represents the marginal rate of technical substitution of
environmental pressures, it provides valuable information on the possibilities for
substitution between pressures. If this marginal rate of substitution took a value of
2, say, we could reduce pressure pj by two units and increase pk by one unit without
changing economic value added. This also sheds light on the consequences for
firms of legislation requiring reductions in individual pressures. Continuing with the
previous example, it would be relatively less onerous for the firm to reduce pressure
pk rather than pj as the fall in value added associated with a reduction in pk would
be only half that which would occur from a reduction in pj.

12.3.2 Heteroskedastic Specification

Aside from measuring firms’ eco-efficiency, we also would like to analyse the
determinants of eco-efficiency. The concern about the inclusion of contextual
variables or z-variables has led to the development of several models using para-
metric, non-parametric or semi-parametric techniques. For a more detailed review
of this topic in SFA and DEA, see Johnson and Kuosmanen (2011, 2012). The
inclusion of contextual variables in DEA has been carried out in one, two or even
more stages. Ruggiero (1996) and other authors have highlighted that the one-stage
model introduced in the seminal paper of Banker and Morey (1986) might lead to
bias. To solve this problem, other models using several stages have been developed
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in the literature. Ray (1988) was the first to propose a second stage where standard
DEA efficiency scores were regressed on a set of contextual variables. This practice
was widespread until Simar and Wilson (2007) demonstrated that this procedure is
not consistent because the first-stage DEA efficiency estimates are serially corre-
lated. These authors proposed a bootstrap procedure to solve this problem in two
stages which has become one of the most-widely used method in DEA to identify
inefficiency determinants.

As the inefficiency term in the ALS model has constant variance, our SFA model
in (12.7) does not allow the study of the determinants of firms’ performance. It
might also yield biased estimates of both frontier coefficients and farm-specific
eco-inefficiency scores (see Caudill and Ford 1993). To deal with these issues, we
could estimate a heteroskedastic frontier model that incorporates z-variables into
the model as eco-efficiency determinants. The specification of ui that we consider in
this paper is the so-called RSCFG model (see Alvarez et al. 2006), where the
z-variables are treated as determinants of the variance of the pre-truncated normal
variable. In other words, in our frontier model we assume that

rui ¼ h zið Þ � ru ð12:15Þ

where

hðziÞ ¼ ea
0zi ð12:16Þ

is a deterministic function of eco-inefficiency covariates, a ¼ ða1; . . .; aJÞ, is a
vector of parameters to be estimated, and zi ¼ ðzi1; . . .; ziJÞ is a set of J potential
determinants of firms’ eco-inefficiency. This specification of rui nests the ho-
moskedastic model as (12.15) colapses into ed if we assume that hðziÞ ¼ 1 or a = 0.

The so-called ‘scaling property’ (Alvarez et al. 2006) is satisfied in this
heteroskedastic version of our SFA model in the sense that the inefficiency term in
(12.7) can be written as ui ¼ hðziÞ � u�i , where u�i ! N þ ð0; edÞ is a one-sided
random variable that does not depend on any eco-efficiency determinant. The
defining feature of models with the scaling property is that firms differ in their mean
efficiencies but not in the shape of the distribution of inefficiency. In this model u�i
can be viewed as a measure of “basic” or “raw” inefficiency that does not depend on
any observable determinant of firms’ inefficiency.

The log likelihood function of this model is the same as Eq. (12.8), but now rui
is heteroskedastic and varies across farms. The resulting likelihood function should
then be maximized with respect to h; b; c; d and a to obtain consistent estimates of
all parameters of the model. As both frontier parameters and the coefficients of the
eco-inefficiency determinants are simultaneously estimated in one stage, the
inclusion of contextual variables in our SFA model is much simpler than in DEA.
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12.3.3 Eco-efficiency Scores

We next discuss how we can obtain the estimates of eco-efficiency for each firm
once either the homoskedastic or heteroskedastic model has been estimated. In both
specifications of the model, the composed error term is simply ei ¼ vi � ui. Hence,
we can follow Jondrow et al. (1982) and use the conditional distribution of ui given
the composed error term ei to estimate the asymmetric random term ui. Both the
mean and the mode of the conditional distribution can be used as a point estimate of
ui. However, the conditional expectation E uijeið Þ is by far the most commonly
employed in the stochastic frontier analysis literature (see Kumbhakar and Lovell
2000).

Given our distributional assumptions, the analytical form for E uijeið Þ can be
written as follows:

E uijeið Þ ¼ �li þ �ri
/ ��li=�rið Þ

1� U ��li=�rið Þ
	 


ð12:17Þ

where

r2i ¼ r2v þ hðziÞ2r2u
�li ¼

eihðziÞ2r2u
r2i

�ri ¼ hðziÞrurv
ri

To compute the conditional expectation (12.17) using the heteroskedastic model,
we should replace the deterministic function hðziÞ with our estimate of (12.16),
while for the homoskedastic model we should assume that hðziÞ ¼ 1.

12.4 Data

The data we use come from a survey which formed part of a research project whose
objective was to analyse the environmental performance of dairy farmers in the
Spanish region of Asturias. Agricultural activity has well-documented adverse
effects on the environment, and the increasing concerns among policymakers about
environmental sustainability in the sector are reflected in the recent Common
Agricultural Policy (CAP) reforms in Europe. Dairy farming, through the use of
fertilizers and pesticides in the production of fodder, as well as the emission of
greenhouse gases, has negative consequences for land, water, air, biodiversity and
the landscape, so it is of interest to see whether there is scope for farmers to reduce
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environmental pressures without value added being reduced and identify any farmer
characteristics that may influence their environmental performance.

A questionnaire was specifically designed to obtain information on individual
pollutants, including nutrients balances and greenhouse gas emissions. These
individual pollutants were then aggregated using standard conversion factors into a
series of environmental pressures. Questions were included regarding farmers’
attitudes towards aspects of environmental management as well as a series of
socioeconomic characteristics. The data collected correspond to the year 2010.

A total of 59 farmers responded to the questionnaire and the environmental and
socioeconomic data were combined with economic data for these farmers which is
gathered annually through a Dairy Cattle Management Program run by the regional
government. Given that there were missing values for some of the variables we
wished to consider, the final sample comprised 50 farms.

These data were used by Pérez-Urdiales et al. (2015) to measure the farmers’
eco-efficiency and relate it to attitudinal and socioeconomic factors. These authors
used the two-stage DEA-based bootstrapped truncated regression technique pro-
posed by Simar and Wilson (2007) to estimate eco-efficiency and its determinants,
finding evidence of considerable eco-inefficiency. We will use the same variables as
Pérez-Urdiales et al. (2015) to estimate eco-efficiency and its determinants using the
SFA methods proposed in the previous section, which will permit us to see whether
the SFA model yields similar results. We will use the results from Pérez-Urdiales
et al. (2015) as a reference for comparison but it should be stressed that the dataset
is far from ideal for using a SFA approach. In particular, the number of observations
is relatively small and there are several determinants of eco-efficiency whose
parameters have to be estimated.

The variables are described in detail in Pérez-Urdiales et al. (2015) but we will
briefly discuss them here. For the numerator of the eco-efficiency index, we use the
gross margin for our measure of economic value added (Econvalue). This is the
difference between revenues from milk production (including milk sales and the
value of in-farm milk consumption) and direct (variable) costs. These costs include
expenditure on feed, the production of forage, expenses relate to the herd, and
miscellaneous expenses. Costs related to the production of forage include purchases
of seeds, fertilizers and fuel, machine hire and repairs, and casual labour, while
herd-related costs include veterinary expenses, milking costs, water and electricity.
The environmental pressures comprise nutrients balances and greenhouse gas
emissions. The nutrients balances measure the extent to which a farm is releasing
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nutrients into the environment, defined as the difference between the inflows and
outflows of nutrients. The nutrients balances used are nitrogen (SurplusN), phos-
phorous (SurplusP) and potassium (SurplusK), all measured in total kilograms.
These environmental pressures are constructed using the farm gate balance
approach and are calculated as the difference between the nutrient content of farm
inputs (purchase of forage, concentrates, mineral fertilizers and animals, legume
fixation of nitrogen in the soil and atmospheric deposition) and the nutrient content
of outputs from the farm (milk sales and animal sales). The volume of greenhouse
gas emissions captures the contribution of the farm to global warming and the
dataset contains information on the emissions of carbon dioxide (CO2), methane
(CH4) and nitrous oxide (N2O). Each of these greenhouse gases is converted into
CO2 equivalents, so that the variable used is (thousands of) kilos of carbon dioxide
released into the atmosphere (CO2).

The second set of variables are the potential determinants of eco-efficiency,
which comprises socioeconomic characteristics and attitudes of farmers. The
socioeconomic variables are the age of the farmer (Age); the number of hours of
specific agricultural training that the farmer received during the year of the sample
(Training); and a variable capturing the expected future prospects of the farm and
which is defined as a dummy variable taking the value 1 if the farmer considered
that the farm would continue to be in operation five years later, and 0 otherwise
(Prospects). As explained in Pérez-Urdiales et al. (2015), eco-efficiency would be
expected to be negatively related to age (i.e., older farmers should be less
eco-efficient) and positively related to professional training and the expectation that
the farm continue.

Three attitudinal variables were constructed from responses to a series of
questions on farmers’ beliefs regarding their management of nutrients and green-
house gas emissions as well as their attitudes towards environmental regulation.
Thus, on a five-point Likert scale respondents had to state whether they strongly
disagree (1), disagree (2), neither agree nor disagree (3), agree (4) or strongly agree
(5), with a series of statements regarding their habits and attitudes towards envi-
ronmental management. The variables HabitsCO2 and HabitsNutrients are con-
structed as dummy variables that take the value 1 if respondents stated that they
agreed or strongly agreed that management of grenhouse gases and nutrients was
important, and 0 otherwise. The final variable measuring attitudes towards envi-
ronmental regulation, defined as a dummy variable taking the value 1 if respondants
agreed or strongly agreed that environmenatl regulation should be made more
restrictive and 0 otherwise (Regulation).

Some descriptive statistics of the variables used for measuring eco-efficiency and
the determinants of estimated eco-efficiency are presented in Table 12.1.
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12.5 Results

We focus initially on the results from the stochastic frontier models and then on the
comparison of these with the DEA results.

Table 12.2 presents estimates from different specifications of the homoskedastic
(ALS) and heteroskedastic (RSCFG) stochastic eco-efficiency frontier, with their
corresponding eco-efficiency scores presented in Table 12.3. Columns (A) and
(B) of Table 12.2 report estimates from the ALS model with all environmental
pressures included and it can be seen that all the estimated coefficients on the
pressures were highly significant. The parameter d corresponding to ln ru was also
highly significant, implying that the frontier specification is appropriate.

Table 12.1 Descriptive statistics of variables

Variable Description Mean S. dev.

Econvalue Value added (€) 77,137 40,423

Environmental pressures

SurplusN Nitrogen surplus (kg) 5966 4705

SurplusP Phosphorous surplus (kg) 2770 2168

SurplusK Potassium surplus (kg) 2096 1681

CO2 Greenhouse gases (‘000s kg) 427 142

Eco-efficiency determinants

HabitsCO2 Attitude towards greenhouse gas management 0.09 0.29

HabitsNutrients Attitude towards nutrient management 0.77 0.43

Age Age of head of household 45.98 7.97

Prospects Continuity of farm 0.98 0.14

Regulation Attitude towards regulation 0.58 0.50

Training Hours of specific training in last year 45.14 63.10
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As the pressure function parameters bk enter the eco-efficiency specification
exponentially rather than linearly (12.5), in the bottom part of Table 12.2 the
exponents of the coefficients are presented. The t-statistics here correspond to the
null that ebk is equal to zero for each of the k pressures, and this is rejected in all
cases.

However, focusing on the magnitudes rather than the statistical significance, it
can be seen that the marginal contribution of the phosphorous balance to value
added is almost negligible. Also, the value of ebk for potassium is almost twice as
large as that of nitrogen. Recalling our discussion of the interpretation of these
parameters after Eq. (12.14) above, this implies that potassium contributes twice as
much to value added as nitrogen and would therefore be more costly for the farmer
to reduce. Similarly, if farmers were required to reduce nitrogen, this could in
principle be substituted by potassium: for a given reduction in kilos of nitrogen,
farmers could increase their use of potassium by half this number of kilos and
maintain the same value added. In this particular application, such substitution
could be achieved through changes in the composition of feed, fertilizers, and a
change in the composition of forage crops. Reducing phosphorous, on the other
hand, would be virtually costless.

In light of the negligible contribution of phosphorous to value added, we rees-
timate the ALS model eliminating the phosphorous balance from the pressure
function, and the results are presented in columns (C) and (D). The parameters on
the nutrients are not significantly differently from 0, implying that the ebk are not
significantly different from 1. Note that the frontier specification is still appropriate
and a comparison of the the efficiency scores from the two models in Table 12.3
shows that are practically identical.

We now turn to the heteroskedastic (RSCFG) specification of the stochastic
frontier where we incorporate the determinants of eco-efficiency described in the
previous section. Some of the farms had missing values for one or more of these
determinants, and after eliminating these observations we were left with 40 farms
with complete information. When estimating the model for these 40 observations
with all nutrients balances included, it did not converge. We then eliminated the
phosphorous balance as we had done in columns (C) and (D) for the homoskedastic
(ALS) specification, but the model still did not converge. Following our earlier
strategy of eliminating the nutrient balance with the lowest marginal contribution,
from column (A) we see that the nitrogen balance has a far lower marginal con-
tribution than the potassium balance. We therefore specified the model without the
nitogen balance, keeping only the potassium balance and grenhouse gas emissions
as pressures. With this specification the model converged successfully and the
results are reported in columns (I) and (J). The homoskedastic specification with the
potassium and greenhouse gases as the only pressures for both the complete sample
of 50 observations (ALS-50C) and the reduced sample of 40 observations
(ALS-40C) are reported in Columns (E)-(H), and a comparison of these estimates
reveals that the coefficients on the pressures change very little across the three
models.
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To compare the eco-efficiencies estimated by DEA and SFA, a scatterplot of the
DEA efficiency scores and the efficiency estimates from the SFA model is presented
in Fig. 12.2. These DEA scores are based on a simple DEA calculation as opposed
to the bootstrapped DEA scores reported in Pérez-Urdiales et al. (2015). As can be
seen, the eco-efficiencies are almost identical. Also plotted on Fig. 12.2 is the
regression line from the regression of the SFA estimates on the DEA scores, where
the R2 is 0.9805. The Spearman Rank Correlation Coefficient (Spearman’s rho) was
0.996, showing that the models yielded virtually identical rankings of eco-efficiency
levels. Even when the reduced sample of 40 observations is used, the
eco-efficiencies are again very similar, with almost identical mean values and a
Spearman Rank Correlation Coefficient of 0.959.

While the raw eco-efficiency scores between DEA and SFA are very similar, the
questions remains as to whether the models yield similar results with regard to the
determinants of eco-efficiency. The estimates of the efficiency determinants from
the SFA model from Table 12.2 are presented in Table 12.4 alongside the
parameter estimates reproduced from Pérez-Urdiales et al. (2015). While all the
determinants in Pérez-Urdiales et al. (2015) were found to be significant at the 95%
level, only two of the determinants—HabitsCO2 and Prospects—are significant at
this level in the heteroskadastic SFA model (though two other variables—Age and
Regulation - were significant at the 90% level). Notably, however, the SFA model
yields exactly the same signs on the eco-efficiency determinants as the bootstrapped
DEA-based truncated regression used by Pérez-Urdiales et al. (2015).

Fig. 12.2 Comparison of Eco-efficiency scores
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12.6 Conclusions

Measurement of eco-efficiency has been carried out exclusively using
non-parametric DEA techniques in the literature to date. In the present work we
have proposed using a (parametric) stochastic frontier analysis (SFA) approach.
While such models are highly non-linear when estimating eco-inefficiency, in an
empirical application we find that such an approach is feasible even when the
sample size is relatively small and determinants of eco-inefficiency - which
increases the number of parameters to be estimated - are incorporated. Using data
from a sample of 50 Spanish dairy farms previously used by Pérez-Urdiales et al.
(2015), we begin by estimating a stochastic frontier model without eco-efficiency
determinants, and find that our model yields virtually identical eco-efficiency scores
to those calculated by DEA. Estimating eco-efficiency without determinants
involves relatively few parameters, so sample size should not be a major obstacle to
using SFA. Our results corroborate this.

We then estimated a heteroskedastic SFA model which incorporated determi-
nants of eco-inefficiency. We use the same determinants used by Pérez-Urdiales
et al. (2015), who carried out their analysis applying bootstrapped truncated
regression techniques. As extra parameters have to be estimated, the small sample
size became more of an issue for the stochastic frontier model. Indeed, in order for
the model to converge we had to use fewer environmental pressures in our appli-
cation than Pérez-Urdiales et al. (2015). Encouragingly, however, we found the
exact same signs on the determinants of eco-efficiency as those found by
Pérez-Urdiales et al. (2015). Thus, even with a small sample size and multiple
determinants of eco-inefficiency, the stochastic frontier model yields similar con-
clusions to those obtained by truncated regression techniques based on DEA esti-
mates of eco-efficiency.

Using stochastic frontier models for eco-efficiency measurement has some
advantages over the bootstrapped truncated regression techniques that have been

Table 12.4 Estimated coefficients and significance of eco-efficiency determinants

SFA DEA

Estimated
parameter

Significant at
95% level?

Estimated
parameter

Significant at
95% level?Variable

HabitsCO2 −1.060 Yes −0.689 Yes

HabitsNutrients −0.210 No −0.231 Yes

Age 0.011 No 0.008 Yes

Prospects −0.641 Yes −2.144 Yes

Regulation 0.270 No 0.230 Yes

Training −0.004 No −0.002 Yes

Intercept −0.317 Yes 0.161 Yes

The SFA results come from Table 12.2. The DEA results are obtained from Pérez-Urdiales et al.
(2015, Table 12.3)
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employed in the litrature to date. In particular, the stochastic frontier model can be
carried out in one stage and the coefficients on the environmental pressures
(‘technology’ parameters) have interesting interpretetations which shed light on the
contribution of these pressures to firm economic value added. The estimated
coefficients also uncover potentially useful information on the substitutability
between environmental pressures. As such, we advocate the use of SFA for mea-
suring eco-efficiency as a complement to or substitute for DEA-based approaches.
When sample size is small and we wish to incorporate determinants of
eco-efficiency, the DEA-based truncated regression techniques may permit more
environmental pressures to be included in the analysis. However, with larger
sample sizes, we would expect this advantage to disappear and the stochastic
frontier models can provide extra valuable information for producers and policy-
makers, particularly with regard to substitutability between pressures.
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