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Part I
Background



Chapter 1
Editors’ Introduction

Juan Aparicio, C. A. Knox Lovell and Jesus T. Pastor

Abstract We begin by providing some historical background behind this book.
We continue by discussing the significance of the three operative words in the title
of the book—advances, efficiency and productivity. We then briefly summarize the
chapters in the book, which divide into advances in the analytical foundations of
efficiency and productivity, and advances in empirical applications of efficiency and
productivity.

Keywords Efficiency � Productivity

1.1 Background

The Santander Chair of Efficiency and Productivity was created at the Miguel
Hernandez University (UMH) of Elche, Spain, at the end of year 2014. Its aim is to
promote specific research activities among the international academic community.
This Research Chair was ascribed to The UMH Institute Center of Operations
Research (CIO). The funding of the Chair by Grupo Santander constitutes one more
example of the generosity and the vision of this organization, which supports a
network of over 1400 Ibero-American universities, covering 23 countries and over
19 million students and academicians. As Director of the Chair was appointed Prof.
Knox Lovell, Honorary Professor of Economics at the University of Queensland,
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Australia. Further, the Advisory Board is integrated by four other members, two of
them on behalf of Grupo Santander, Mr. José Marìa García de los Ríos and Mr.
Joaquín Manuel Molina, and the other two on behalf of the UMH, Ph.D. Juan
Aparicio, appointed as Co-Director, and Ph.D. Lidia Ortiz, the Secretary of the
Chair. During 2015 and 2016 the Chair has organized eight Efficiency/Productivity
Seminars for starting new programs with researchers interested in a variety of topics
such as Education, Municipalities, Financial Risks, Regional Cohesion,
Meta-heuristics, Renewable Energy Production, Food Industry and Endogeneity.
During 2015 an International Workshop on Efficiency and Productivity was orga-
nized. The Workshop contributions of fifteen relevant researchers/research groups
made it possible to conceive this book, entitled “Advances in Efficiency and
Productivity”, with the inestimable support of Professor Joe Zhu, the Associate
Series Editor for the Springer International Series in Operations Research and
Management Sciences.

1.2 Advances in Efficiency and Productivity

The title of this book is generic, but the two substantive economic components,
efficiency and productivity, are of great importance to any business or economy,
and the first word in the title is the theme of the book and of the 2015 International
Workshop on Efficiency and Productivity that spawned it. The presentations at the
workshop, and the chapters in this book, truly do advance our understanding of
efficiency and productivity.

The theoretical definition of efficiency involves a comparison of observed inputs
(or resources) and outputs (or products) with what is optimal. Thus technical effi-
ciency is the ratio of observed to minimum input use, given the level of outputs
produced, or as the ratio of observed to maximum output production, given the
level of input use, or some combination of the two. Each type of technical efficiency
is conditional on the technology in place, and each is independent of prices. In
contrast, economic efficiency is price-dependent, and typically is defined as the ratio
of observed to minimum cost, given outputs produced and input prices paid, or as
the ratio of observed to maximum revenue, given inputs used and output prices
received. There are variants of these definitions based on different measures of
value, such as the ratio of observed to maximum profit, but all take the form of a
comparison of observed values with optimal values, conditional on the technology
in place. The principal challenge in efficiency measurement is the definition of
minimum, maximum or optimum, each of which is a representation of the unob-
served production technology, which must therefore be estimated. The analytical
techniques developed in this book provide alternative ways of defining optimum,
typically as a (technical) production frontier or as an (economic) cost, revenue or
profit frontier, and alternative ways of measuring efficiency relative to an appro-
priate frontier.

4 J. Aparicio et al.



The theoretical definition of productivity coincides with the commonsense
notion of the ratio of output to input. This definition is straightforward on the rare
occasion in which a producer uses a single input to produce a single output. The
definition is more complicated otherwise, when multiple outputs in the numerator
must be aggregated using weights that reflect their relative importance, and multiple
inputs in the denominator must be aggregated in a similar fashion, so that pro-
ductivity is again the ratio of two scalars, aggregate output and aggregate input. The
time path of aggregate output is an output quantity index, and the time path of
aggregate input is an input quantity index. Productivity growth is then defined as
the rate of growth of the ratio of an output quantity index to an input quantity index
or, alternatively, as the rate of growth of an output quantity index less the rate of
growth of an input quantity index. Market prices are natural choices for weights in
the two indexes, provided they exist and they are not distorted by market power or
other phenomena. The principal challenge in productivity measurement occurs
when prices do not exist or are unreliable indicators of the relative importance of
corresponding quantities. In this case productivity and its rate of growth must be
estimated, rather than calculated from observed quantities and prices. The analytical
techniques developed in this book provide alternative methods for estimating
productivity, and productivity change through time or productivity variation across
producers.

The concepts of efficiency and productivity are significant beyond academe, and
characterize two important dimensions of the performance of businesses and
economies, as evidenced by the following examples.

• The financial performance of businesses depends on the efficiency with which
they conduct their operations. Arthur D. Little, a consultancy, has ranked 51
European banks by their cost-income ratio, a traditional measure of operating
efficiency in banking, over 2004–2006. It found the ten most efficient banks to
have a cost-revenue ratio of 45%, and the ten least efficient banks to have a
cost-revenue ratio of 72%. It seems worthwhile to search for the sources of the
variation in operating efficiency, if only in an effort to shore up the financial
performance of the laggard banks, some of which are very large.

• The relative prosperity of economies depends in large part on their productivity
growth. According to the OECD, labor productivity (real GDP per hour worked)
has grown faster in Germany than in France and Italy over the period 2007–
2012. Not coincidentally, according to the World Bank, GDP per capita also has
grown faster in Germany than in France and Italy every year for the past decade.
Many of the sources of the productivity gaps are well known, but a decade of
experience suggests that they are difficult to rectify.

To be useful, efficiency and productivity must be not just well defined, but
capable of measurement using quantitative techniques. Many popular concepts,
such as cost-income ratios, labor productivity and GDP per capita, can be calculated
directly from company reports and country national accounts. When the data
constraint eliminates direct calculation, empirical efficiency and/or productivity
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analysis is required. Such analyses typically are based on either a mathematical
programming technique known as data envelopment analysis (DEA) or an econo-
metric technique known as stochastic frontier analysis (SFA). Both types of esti-
mation construct best practice frontiers, technical or economic, that bound the data
from above or below, and these frontiers provide empirical approximations to the
theoretical optima referred to above. Both types of estimation, but especially DEA,
are analyzed and employed in this book.

1.3 The Contents of the Book

The contributions serendipitously allocate themselves almost evenly between
purely analytical chapters that advance our knowledge of the theory and modeling
of production and productivity, and chapters that provide detailed empirical
applications of analytical concepts that expand our understanding of the roles of
efficiency and productivity in influencing the performance of various sectors of the
economy.

1.3.1 Analytical Foundations

The eight explorations into the analytical foundations of efficiency and productivity
analysis range broadly across modeling issues, from technological possibilities to
modeling the structure of production technology to measuring productivity change
to purely computational issues. Four contributions are independent of the way
production technology is modeled, and four contributions are expressed within a
DEA framework. Three contributions provide brief empirical applications designed
to illustrate the theoretical advances.

1.3.1.1 Modeling Advances

In Chap. 2 Pastor, Aparicio, Alcaraz, Vidal and Pastor introduce a novel concept,
the “reverse directional distance function,” that allows to express any single-valued
DEA inefficiency measure as a true directional distance function. As an obvious
consequence, any property of a directional distance function is satisfied by the
single-valued DEA inefficiency measure. For instance, the typical two-step proce-
dure that transforms a DEA measure into a comprehensive DEA measure, i.e., a
measure that projects any inefficient point to the strongly efficient subset of the
frontier, can be applied to any directional distance function. In fact, concatenating
the standard directional vector g = (−gx, gy) of a given directional distance function
with an additive function that guarantees that optimal projections for all inefficient
units belong to the strongly efficient subset, gives rise to a comprehensive reverse
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directional distance function that solves the initial problem. The introduced
approach has been designed for any DEA measure. In case we are facing a
multiple-valued DEA measure, we need to select first one of the associated
single-valued measures and proceed with it. A specific criterion can be considered
for making the last mentioned choice, as explained in the chapter. The authors then
show how to use a reverse directional distance function to estimate cost, revenue or
profit inefficiency and decompose it into its technical and allocative inefficiency
components. Again, the decomposition is valid for any DEA inefficiency measure
that has been expressed previously as a reverse directional distance function. The
principles are general, but their analysis is conducted within a DEA framework.

In Chap. 3 Asmild and Hougaard develop a new method for estimating tech-
nological production possibilities, which are typically estimated with frontier
techniques, either DEA or SFA. The authors construct a hyper-volume index that
compares two feasible production possibility sets, say those of public and private
service providers, in a way that overcomes some shortcomings of previous efforts to
construct an encompassing pooled frontier from two or more group frontiers. The
hyper-volume index compares dominance volumes for two feasible production
possibility sets. The authors acknowledge computational and unequal sample size
issues. They apply the index to an acquiring company and an apparently better
performing company it acquires, in an effort to determine whether the apparent
superior performance of the acquired company had superior technology or superior
management. Based on the hyper-volume indices for the two companies, the
authors conclude that the acquiring company did not acquire a better technology,
but did acquire a better managed (i.e., more efficient) company.

In Chap. 4, Aparicio, Borras, Pastor and Zofio, inspired by Debreu’s ‘dead loss’
function, introduce a new distance function they call a loss distance function which,
besides providing a traditional way of characterizing the structure of production
technology, has the property of generalizing dual results of all the already known
distance functions. The authors state monotonicity, curvature and other properties
of loss distance functions, and compare them with other distance function repre-
sentations of production technology. The authors show that, under appropriate
normalization conditions, loss distance functions fully characterize the considered
technology. They also demonstrate a duality between loss distance functions and
Hotelling’s profit function, and they show that this duality relationship encompasses
all previously known duality results. Finally, under differentiability they derive
Hotelling’s lemma and show that the optimal value of the Lagrange multiplier
associated with a well-behaved normalization condition is the loss distance function
at the corresponding point.

In Chap. 5 Grifell-Tatjé and Lovell analyze productivity and price recovery
indices, the first of which is based on distance functions and the second on value,
revenue or cost, frontiers. They generalize previous results by deriving, and pro-
viding economic interpretations for, exact relationships between (i) empirical Fisher
quantity, productivity, price and price recovery indices and (ii) theoretical
Malmquist quantity and productivity indices and Konüs price and price recovery
indices. It is well known that empirical indices approximate their theoretical
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counterparts, some more closely than others, but the nature of the approximations
has been left unclear. The authors construct quantity mix and price mix functions
that make previously known approximate relationships exact. These mix functions
involve the allocative efficiency of pairs of quantity vectors and price vectors. Their
introduction enables our best theoretical quantity and productivity indices
(Malmquist) and empirical price and price recovery indices (Fisher), and our best
empirical quantity and productivity indices (Fisher) and theoretical price and price
recovery indices (Konüs), to satisfy the product test with the relevant value change.

1.3.1.2 Extensions of DEA

In Chap. 6 Førsund relates technical efficiency measures to productivity measures,
using well-behaved aggregator functions for outputs and inputs, and relates both to
neoclassical production frontiers satisfying Frisch’s Regular Ultra Passum law. He
then extends the well-behaved but unknown aggregator functions to a Malmquist
productivity index, which can be estimated and decomposed using DEA. The
author notes, significantly, that the Malmquist productivity index is defined on a
benchmark technology satisfying global constant returns to scale, which differs
from the best practice technology having the structure of a neoclassical production
frontier allowing for a pattern of increasing, constant and decreasing returns to scale
as size increases. The difference between the two reflects a size effect intended to
capture the productivity impact of producing at a point on the best practice tech-
nology other than that which maximizes productivity, and for which the scale
elasticity is unity.

Chapters 7 and 8 examine weight restrictions in DEA in different contexts.
Weight restrictions are imposed when the endogenously determined DEA multi-
pliers (or weights) are deemed unsatisfactory, for whatever reason.

In Chap. 7 Ramón, Ruiz and Sirvent explore the implications for benchmarking
and target setting of imposing weight restrictions on DEA models. At issue is
whether such models generate infeasible targets and unattainable benchmarks, and
the answer depends on whether the weight restrictions reflect management pref-
erences representing value judgements independent of technology, which allows
infeasibility, or engineering features of the technology not otherwise incorporated
in the DEA framework, which guarantee feasibility. The authors develop primal
(envelopment) and dual (multiplier) DEA models with AR-1 type weight restric-
tions augmented with additional restrictions to generate closest strongly efficient
feasible targets, regardless of the source of the weight restrictions. The additional
restrictions are key. The authors illustrate their framework by setting targets in a
previously analyzed sample of hospitals.

In Chap. 8 Agrell and Bogetoft examine weight restrictions in a regulatory
setting. DEA generates an endogenous weight vector for each production unit, and
these vectors can vary among units to an undesirable extent. Weight restrictions
limit the variation. The authors modify the standard DEA envelopment program to
derive, and provide a regulatory interpretation of, a single endogenous vector of
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industry-wide weights common to all firms that maximizes the total payment the
industry can claim from the regulator. As the solution to a modified DEA problem,
this common weight vector remains endogenous. The authors also show that the
modified dual multiplier program seeks the maximum payment to the industry, and
that the multipliers are the common endogenous weights. The authors provide an
illustration based on a sample of district heating plants in Denmark.

In Chap. 9 Aparicio, Gonzalez, Lopez-Espin and Pastor contrast the usual DEA
practice of estimating technical efficiency radially relative to (possibly distant)
weakly efficient targets located on the best practice frontier with an alternative
practice based on the Principle of Least Action, which seeks the closest strongly
efficient targets. While the latter practice is sensible from both theoretical and
business perspectives, it is computationally more demanding because it is not based
on solving a linear program. The authors recognize such problems as combinatorial
NP-hard problems, which they solve using genetic algorithms and heuristics, and
they provide several numerical illustrations.

1.3.2 Empirical Applications

The seven applications of production theory range broadly across sectors of the
economy. Five contributions are based on individual production units and two are
based on aggregates of production units. Four contributions use variants of DEA,
and three use variants of SFA.

1.3.2.1 Individual Production Units

In Chap. 10 Bos, van Lamoen and Sanders study what they call innovative firms,
firms that use innovation inputs to produce innovation outputs. They use stochastic
frontier analysis to estimate a knowledge production frontier, which they use in turn
to account for and explain observed heterogeneity of productivity (they call it
“innovativity”) in an unbalanced firm-level panel data set in the Netherlands. They
then decompose variation in innovativity into variation in knowledge production
technology and variation in the efficiency with which firms use innovation inputs to
produce innovation outputs, which in turn depends on several contextual variables.
The authors creatively specify a knowledge output and the knowledge inputs used
to produce it, and the contextual variables as well, and they use SFA to estimate the
knowledge production frontier. Among their findings, variation in the efficiency
with which innovation inputs are used to create innovation output explains most of
the observed heterogeneity.

In Chap. 11 Calleja-Blanco and Grifell-Tatjé study the impact of potential
coopetition, defined as cooperation among competitors, on the financial perfor-
mance of European automobile plants. They use return on assets as a measure of
financial performance, and they invoke the duPont triangle to decompose the
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impact of potential coopetition on ROA into its impact on the profit margin and its
impact on asset turnover. Their data set is a large unbalanced panel of production
plants in 18 of the EU-28 countries observed over 12 years. They use DEA to
implement the decomposition. They find large potential ROA gains from coope-
tition, and these gains occur through both legs of the duPont triangle. They also find
the share occurring through the profit margin leg to be attributable primarily to
productivity gains. In light of the potential productivity gains and ROA gains
available through coopetition, the authors conclude by pondering the legal status of
coopetition.

In Chap. 12 Orea and Wall use SFA to estimate the eco-efficiency of a sample of
dairy farms in the Spanish region of Asturias. They adopt the standard definition of
eco-efficiency as the ratio of economic value added to environmental pressure, and
they model this ratio with a DEA-generated index of the ability to maximize profit
subject to endogenously determined non-negative weights on a vector of environ-
mental pressures. However they depart from this approach by specifying and
estimating a single-stage heteroskedastic SFA model that estimates the weights, and
in which the non-negative inefficiency error component is a function of contextual
variables, a vector of farmer attitudes and characteristics. They find substantial
variation in eco-efficiency across farms, and non-negligible impacts of farmer
attitudes and characteristics on eco-efficiency.

In Chap. 13 Kingyens, Paradi and Tam develop a non-oriented slacks-based
DEA bankruptcy prediction model based on information available from annual
reports, including financial statements and their accompanying notes, particularly
the management discussion and analysis, and the auditor’s report. They apply this
model to a large panel of US retail apparel firms in a competitive industry char-
acterized by low profit margins and frequent turnover of firms. The authors estimate
three DEA models, using a layering technique to peel off the most efficient firms,
eventually leaving a subset of firms having a high risk of bankruptcy. The authors
calculate type I and type II errors for predictions one, two and three years in
advance, and they find that their model that incorporates management
decision-making information from annual reports out-predicts a popular bankruptcy
prediction model.

In Chap. 14 Almanidis and Sickles combine a stochastic cost frontier analysis
model with a mixture hazard model to explore the determinants of survival and
failure for a panel of US commercial banks during the 2007–2011 financial crisis.
Some of these banks failed, but most survived. The combined model estimates the
probability and time to failure conditional on a bank’s performance. The authors
also calculate predictive accuracy based on type I errors, type II errors and overall
classification errors, both in-sample and out-of-sample, to assess their potential to
serve as early-warning models. Among their findings, estimated cost efficiency is
marginally higher for non-failed banks than for failed banks; type I, type II and
overall classification errors are impressively small, even for out-of-sample classi-
fications; and capital adequacy and non-performing loans performed important
signaling roles, although Federal Reserve System membership sent a negative
signal, suggesting a moral hazard problem.
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http://dx.doi.org/10.1007/978-3-319-48461-7_12
http://dx.doi.org/10.1007/978-3-319-48461-7_13
http://dx.doi.org/10.1007/978-3-319-48461-7_14


1.3.2.2 Aggregates of Production Units

In Chap. 15 Arocena, Gómez-Plana and Peña explore the evolution of energy
intensity, the ratio of energy consumption to output, in nine Spanish manufacturing
industries between 1999 and 2007. Change in energy intensity is initially decom-
posed into an intensity effect accounting for change in energy intensity within
industries, and a structural effect accounting for change in industry shares in
aggregate output. The intensity effect is decomposed, using frontier techniques, into
five sources, including the traditional efficiency and technical change effects and a
regional effect. The authors find that improvements in technology, adjustments to
the input mix away from energy consumption, and improvements in energy effi-
ciency are the primary sources of reduced energy intensity in Spanish manufac-
turing, and that trends in the regional distribution of production have tended to
increase energy intensity.

In Chap. 16 Fried and Tauer examine the productivity of US farmers as they age,
the policy issue being couched as the hypothesis that older farmers are less pro-
ductive than younger farmers. They test the hypothesis using DEA to construct a
Malmquist productivity index, with a very interesting twist. Productivity indices
typically are estimated using panel data consisting of a number of production units
observed over multiple time periods. The authors use a single cross-section con-
sisting of state-level data observed over multiple age cohorts. The mathematics is
unchanged, but the economic interpretation shifts from productivity change through
time to productivity variation across age cohorts. The main finding is that, after the
35–44 age cohort, productivity tends to increase with age, contrary to the worry
expressed in the title of the chapter. In addition to experience, the authors point to
changes in farming technology that have made farming a less physical occupation
than it once was as drivers of their finding.
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Part II
Analytical Foundations



Chapter 2
The Reverse Directional Distance Function

Jesus T. Pastor, Juan Aparicio, Javier Alcaraz,
Fernando Vidal and Diego Pastor

Abstract The aim of any Data Envelopment Analysis (DEA) inefficiency model is
to calculate the efficient projection of each unit belonging to a certain finite sample.
The reverse directional distance function (RDDF) is a new tool developed in this
chapter that allows us to express any known DEA inefficiency model as a direc-
tional distance function (DDF). Hence, given a certain DEA inefficiency model, its
RDDF is a specific DDF that truly reproduces the functioning of the considered
DEA model. Automatically, all the interesting properties that apply to any DDF are
directly transferable to the considered DEA model through its RDDF. Hence, the
RDDF enlarges the set of properties exhibited by any DEA model. For instance,
given any DEA inefficiency model, its economic inefficiency—in any of its three
possible versions—, can be easily defined and decomposed as the sum of technical
inefficiency and allocative inefficiency thanks to the RDDF. We further propose to
transform any non-strong DDF into a strong DDF, i.e., into a DDF that projects all
the units onto the strongly efficient frontier. This constitutes another indication of
the transference capacity of the RDDF, because its strong version constitutes in
itself a strong version of the original DEA model considered. We further propose to
search for alternative projections so as to minimize profit inefficiency, and add an
appendix showing how to search for multiple optimal solutions in additive-type
models.
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2.1 Introduction

This “Introduction” comprises a description of the subsequent sections as well as a
revision of the previous related literature. In Sect. 2.2, we start showing how to
transform any DEA inefficiency model into an equivalent DDF, called RDDF. As
mentioned before, the advantages of the RDDF is that it has, as a DDF, interesting
properties, which are inherited by the DEA model where it comes from.

Any time we consider a strong DEA model, i.e., a model whose projections
belong to the strongly efficient frontier, the corresponding RDDF is also a strong
DDF. Otherwise, we propose in Sect. 2.3 a method for transforming a weak DDF,
that is, a DDF whose set of projections does not belong to the strong frontier, into a
strong DDF. Our method identifies the set of strongly efficient projections that
defines the new strong DDF. In particular, if we want to transform a weak DEA
inefficiency measure into a strong one, we always have the option of working with
its associated RDDF. Consequently, this methodology solves the general problem
of transforming any weak DEA inefficiency measure into a strong DEA inefficiency
measure. We are only aware of a previous paper that transforms two specific weak
DEA efficiency measures into strong DEA efficiency measures (see Asmild and
Pastor 2010). In order to derive a comprehensive inefficiency measure associated to
the generated strong DDF, all we have to do is to consider, at each unit being rated,
a strong directional vector that is comparable with the original directional vector
associated to the weak DDF. We close Sect. 2.3 by making a simple proposal that
basically pursues the notion that the two directional vectors at each point have the
same Euclidian length.

Section 2.4 extends the findings of Sect. 2.3 to any DEA inefficiency model, M,
through the corresponding RDDF. If it happens that its RDDF is a weak DDF, the
tools developed in Sect. 2.3 are directly applied in order to generate a strong
RDDF. This strong RDDF is associated to M and offers a comprehensive ineffi-
ciency measure for it. Consequently, we have solved the problem of associating to
any DEA non-comprehensive inefficiency model a DDF comprehensive ineffi-
ciency model. Moreover, we apply this result to generate, for the first time, com-
prehensive radial inefficiency models.

Overall inefficiency measurement and decomposition are important for firms
facing a world of changing prices since the resultant loss has implications on
managers’ decision making. In standard microeconomic theory, the economic
behavior of a DMU (Decision Making Unit) is usually characterized by cost
minimization, revenue maximization, or profit maximization. In particular, if profit
maximization is assumed, the DMU faces exogenously determined market output
and input prices, and we may assume that the objective of each DMU is to choose
the output combination that yields the maximum profit efficiency. In this sense,
profit efficiency indicates how close the actual profit of the evaluated DMU
approaches the maximum feasible profit. Additionally, in the Farrell (1957) tradi-
tion, overall efficiency has usually been decomposed into the product of two
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components, technical efficiency and allocative efficiency, as a way to understand
what needs to be done to enhance the performance of the assessed unit.

Chronologically, the empirical estimation of technologies from a dataset began
in the area of economics with the application of regression analysis and Ordinary
Least Squares (OLS) to estimate a parametrically specified ‘average’ production
function (see, e.g., Cobb and Douglas 1928). Later, Farrell (1957) was the first in
showing, for a single output and multiple inputs, how to estimate an isoquant
enveloping all the observations. Farrell also showed how to decompose cost effi-
ciency into technical and allocative efficiencies. In his paper one can find the first
practical implementation of the Debreu coefficient of resource utilization (Debreu
1951) and the Shephard input distance function (Shephard 1953). Farrell’s paper
inspired other authors to continue this line of research by either a non-parametric
piece-wise linear technology or a parametric function. The first possibility was
taken up by Charnes et al. (1978) and Banker et al. (1984) resulting in the devel-
opment of DEA radial models, closely related to the Shephard distance functions;
while the latter approach was taken up at the same time by Aigner et al. (1977),
Battesse and Corra (1977) and Meeusen and van den Broeck (1977), subsequently
resulting in the development of the stochastic frontier models.

As previously mentioned, the decomposition proposed by Farrell was inspired
on the work of Shephard, in the sense that the technical efficiency component is
really the inverse of the Shephard input distance function. Indeed, Shephard (1953)
also defined an output-oriented distance function and established several dual
relationships. Much later, Färe and Primont (1995) developed a dual, but not nat-
ural, correspondence between Shephard’s distance functions and the profit function.
In recent years there has been extensive interest in the duality theory and distance
functions as can be easily checked. If one defines an optimization problem with
respect to quantities, then a dual problem can be defined with respect to (shadow)
prices that has the same value. This approach is of great interest for microeco-
nomics both for understanding the mathematics and for clarifying the economics.
Chronologically speaking, Luenberger (1992a, b) and later Chambers et al. (1996,
1998) and Briec and Lesourd (1999), have produced a series of papers in this field.
Specifically, Luenberger (1992a, b) introduced the concept of benefit function1 as a
representation of the amount that an individual is willing to trade, in terms of a
specific reference commodity bundle. Luenberger also defined a so-called shortage
function, which basically measures the distance in the direction of a vector from a
production plan (DMU) to the boundary of the production possibility set. In other
words, the shortage function measures the amount by which a specific unit is short
of reaching the frontier of the production possibility set. Some years later,
Chambers et al. (1996, 1998) redefined the benefit function and the shortage
function as inefficiency measures, introducing to this end new distance functions,
the so called DDFs. They showed how the DDFs encompass, among others, the
Shephard input and output distance functions. And they also derived a dual

1Briec and Garderes (2004) have tried to generalize the Luenberger benefit function.
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correspondence between the directional distance functions and the profit function
that, in their opinion, generalized all previous dual relationships. A few years later,
Briec and Lesourd (1999) introduced the so-called Hölder metric distance functions
intending to relate the concept of efficiency and the notion of distance in topology.
Along these lines, they proved that the profit function can be derived from the
Hölder metric distance functions and that these distance functions can be recovered
from the profit function.

In contrast to the parametric literature on efficiency, where the measurement of
technical efficiency in the context of multiple-outputs is based on a few measures in
practice, basically the Shephard input and output distance functions and the
directional distance functions, the first years of life of DEA saw the introduction of
a bunch of different technical efficiency/inefficiency measures, such as the Russell
input and output measures of technical efficiency and their graph extension, the
Russell Graph Measure of technical efficiency (see Färe et al. 1985), as well as the
additive model (Charnes et al. 1985), followed, several years later by the
Range-Adjusted Measure (Cooper et al. 1999), the Enhanced Russell Graph
Measure (Pastor et al. 1999) re-baptized as the Slacks-Based Measure (Tone 2001),
or the Bounded Adjusted Measure (Cooper et al. 2011a), to name but a few. This
short list shows that there is a wide array of tools available for estimating technical
inefficiency in the non-parametric world.

On the other hand, most of the classical results and applications in microeco-
nomics related to the measurement and decomposition of overall inefficiency, in
terms of technical and allocative inefficiency, are based on the notion of distance
function2 and duality theory. A distance function behaves, in fact, as a technical
inefficiency measure when an observation belonging to the corresponding tech-
nology is evaluated, with a meaning of ‘distance’ from the assessed interior point to
the boundary of the production possibility set. Also, the distance functions have
dual relationships with well-known support functions in microeconomics, as the
profit function or the cost and revenue functions, depending on the suppositions that
we are willing to assume with respect to the firms´ behavior. In a non-parametric
framework, the use of typical parametric tools, such as the Shephard distance
functions or the directional distance function, is possible, because their duality
relationships with classical support functions were proved for production possibility
sets fulfilling general axioms (e.g. convexity) and, in particular, they can be applied
to non-parametric polyhedral technologies. Nonetheless, the majority of attempts
for estimating overall efficiency have overlooked the concept of distance function, a
fact that contrasts significantly with the traditional view of economics of produc-
tion, where both this concept and duality are the cornerstones of the applied theory.
In this respect, some researchers have tried to use additive-type models in DEA for
measuring not only technical inefficiency but also profit inefficiency without
resorting directly to the notion of distance function (Cooper et al. 2011b and

2We would like to remark that moving from the Shephard distance functions to the directional
distance functions entails moving from the inverse of efficiency measures to inefficiency measures.
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Aparicio et al. 2013). A similar treatment has been applied to Russell
oriented-measures (Aparicio et al. 2015), without being able to derive duality
results for the corresponding non-oriented measure known as the Enhanced Russell
Graph measure (Pastor et al. 1999). However, DEA is a field where there are other
alternative efficiency measures and where it seems possible to introduce new ones.
Therefore, defining an appropriate methodology to measure and decompose overall
inefficiency with whatever DEA measure is something necessary. We accomplish
this task in Sects. 2.5–2.7, resorting to the definition of a new concept, the RDDF.

We close this chapter by searching, in Sect. 2.8 and within a DEA framework,
for an alternative projection for each unit that minimizes profit inefficiency. The
new alternative projection has to dominate the point being rated, which guarantees
that technical inefficiency can also be evaluated. Finally, we present our conclu-
sions in Sect. 2.9, and add an Appendix for searching for alternative optimal
solutions, taking any additive type model as reference.

2.2 Associating a RDDF Inefficiency Measure to Any
Known DEA Inefficiency Measure

First of all, let us introduce the definition of the traditional DDF within a DEA
framework. That means that the production possibility set is generated based on a
finite sample of units to be rated, and that the inefficiency associated to each unit is
obtained by solving a linear program. From now on, we will further assume variable
returns to scale (VRS), which guarantees that the three economic functions we are
going to consider later on are well-defined.

Let us consider a sample of n units to be rated. Unit j 2 1; 2; . . .; nf g uses a
specific amount of m inputs, xj ¼ x1j; . . .; xmj

� � 2 Rm
þ , to produce a certain amount

of s outputs yj ¼ y1j; . . .; ysj
� � 2 Rs

þ . As usual, let us denote the unit to be rated as
x0; y0ð Þ.3 The production possibility set generated by the finite sample of units is

T ¼ x; yð Þ 2 Rmþ s
þ :

Xn
j¼1

kjxij � xi; 8i;
Xn
j¼1

kjyrj � yr; 8r; kj � 0; 8j;
Xn
j¼1

kj ¼ 1

( )
;

while the efficient frontier of T is defined as4

3The condition that inputs and outputs need to be non-negative can be relaxed provided the
considered DDF is translation invariant (see Aparicio et al. 2016).
4The efficient frontier, @ Tð Þ, or simply the frontier of T, comprises the weak-efficient frontier.
@W Tð Þ, and the strong-efficient frontier, or subset of all the Pareto efficient points. See Färe et al.
(1985) for the definition of @W Tð Þ.
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@ Tð Þ :¼ x; yð Þ 2 T : x̂� x; ŷ� y and x; yð Þ 6¼ x̂; ŷð Þ ) x̂; ŷð Þ 62 Tf g:

Each DDF (Chambers et al. 1996, 1998) is identified by specifying a directional
vector g ¼ ð�gx; gyÞ 6¼ 0mþ s; gx 2 Rm

þ ; gy 2 Rs
þ . In order to measure the ineffi-

ciency associated to a specific unit of the sample, the DDF projects the unit onto the
weakly efficient frontier of the technology along the positive semi-ray defined by
vector g. Additionally, g may be constant, i.e. g is the same vector for all units, or
may be variable, i.e. it is a specific vector for each unit. In the latter case and for unit
x0; y0ð Þ, we write g0 instead of g. By definition, the projection of unit x0; y0ð Þ onto
the efficient frontier is the intersection of the semi-ray x0; y0ð Þþ b0ð�g0x; g0yÞ;

n
b0 � 0g with the efficient frontier. The specific value of scalar b0 that identifies the
point of intersection is the inefficiency value measured by the DDF associated to
point x0; y0ð Þ, obtained as the optimal solution, b�0, of the next linear program,
which corresponds to a generic DDF working under VRS.5

~D X0; y0; g0x; g0y
� � ¼ Max b0

s:t
Xn
j¼1

kj0Xij �Xi0 � b0gi0x; i ¼ 1; . . .;m

Xn
j¼1

kj0yrj � yr0 þ b0gr0y; r ¼ 1; . . .; s

Xn
j¼1

kj0 ¼ 1;

kj0 � 0; j ¼ 1; . . .; n

ð2:1Þ

It is well known that b�0 ¼ 0 identifies the unit being rated as efficient6, while
b�0 [ 0 identifies the unit being rated as inefficient.

5The linear program we are working with corresponds to the “envelopment form” associated to a
DDF. Its linear dual is known as the “multiplier form” of the DDF. The “envelopment form” deals
with units and evaluates their efficient projections, working in the m + s dimensional space where
each coordinate corresponds to an input or to an output, while the “multiplier form” identifies the
supporting hyperplane of each efficient projection and works also in an m + s dimensional space
where each coordinate corresponds to the shadow price of an input or of an output. In this chapter
we will only consider “envelopment forms”.
6An efficient unit is a unit that belongs to the efficient frontier. Any efficient unit may be strongly
efficient or, alternatively, weakly efficient. The subset of the efficient frontier of strongly efficient
points is called the strongly efficient frontier. The directional vector may also be specified as
ðg ¼ gx; gyÞ. What matters is that gx appears preceded by a minus sign in (2.1)
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Let us now assume that we have obtained the projection7 of any point of our
sample by means of a specific DEA inefficiency model, identified as M. As
explained in Footnote 7, if M is single-valued, the projection of any point is unique.
Although the method we are going to propose is valid for any DEA model, the most
usual case is that inefficiency model M is a linear programming model or a pro-
gramming model that can be linearized through an appropriate change of variables8

(see, e.g., Pastor et al. 1999).
If x0; y0ð Þ denotes the point being rated, let us denote as xM0 ; y

M
0

� �
its efficient

projection. Moreover, let us denote as PM the set of efficient projections obtained
throughM and associated to the sample of points being rated.9 Let us further denote
as sM0 :¼ TIM x0; y0ð Þ the technical inefficiency evaluated by means of model M. It is
well known that sM0 � 0. Moreover, if x0; y0ð Þ belongs to the efficient frontier, then
sM0 ¼ 0.

Definition 1 Associated to DEA model M and to the evaluated set of efficient pro-
jections,PM , we define the reverse directional distance function model,RDDFM;PM

,

by specifying the directional vector gM;PM

0 at point x0; y0ð Þ as follows10:

gM;PM

0 :¼
1
sM0

x0 � xM0 ; y
M
0 � y0

� �� 0mþ s; if x0 � xM0 ; y
M
0 � y0

� � 6¼ 0 and sM0 [ 0

1m; 1sð Þ; if sM0 ¼ 0

( )
:

ð2:2Þ
As usual, the technical inefficiency associated to the directional distance function

RDDFM;PM
is denoted as ~D x0; y0; g

M;PM

0x ; gM;PM

0y

� �
. The definition of gM;PM

0 dis-

tinguishes between two kinds of points, just as model M does: the points that get an

7Usually DEA researchers and practitioners are satisfied computing a unique projection for each
point, although in many DEA models multiple projections can be identified. Here we accom-
modate our findings to this tradition and work initially with a single projection for each point.
Nevertheless, in Sect. 2.4, Example 4.2, we consider an input-oriented additive model with
multiple projections. DEA models with a unique projection for each point can be baptized as
“single-value DEA models”, as opposed to “multiple-value DEA models”.
8If M is not a DEA inefficiency model but a DEA efficiency model, we can always conveniently
modify its objective function so as to get an inefficiency model (see, e.g., Aparicio et al. 2015). The
novel loss distance function (Pastor et al. 2012) embraces all well-known DEA models as they are
or with minor changes in its objective function, and constitutes the widest known family of DEA
inefficiency models. Since the loss distance function considers the multiplier form of each DEA
model we will not go into further details.
9Observe that we obtain a single projection for each point through the corresponding linear
program. This fact does not exclude the possible existence of alternative optimal projections,
whose study is introduced only for additive type models in Appendix 1.
10The name “reverse” directional distance function (RDDF) is a consequence of how we define the
associated DDF. Usually, for defining a DDF, we need to know, at each point, the corresponding
directional vector and, based on it, we determine its efficient projection. In our new proposed
approach, we do it the other way round, i.e., we know beforehand the projection of each point
being rated and, based on it, we derive the corresponding directional vector at that point.
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inefficiency score sM0 [ 0 and the rest of the points, for which sM0 ¼ 0. In any case,
the second subset of points that satisfy sM0 ¼ 0 corresponds to all the points whose
projection through model M belongs to the frontier. It is clear that for any point of
this second subset, the proposed fix directional vector 1m; 1sð Þ of RDDFM;PM

will
assign an inefficiency equal to 0, just as model M does.

As a direct consequence of the last definition the next statements holds.

Proposition 1

(a) RDDFM;PM
has exactly the same projections as M.11 As a consequence,

RDDFM;PM
inherits the same frontier and the same returns to scale charac-

teristics as M.
(b) The technical inefficiency associated to any unit x0; y0ð Þ through RDDFM;PM

is exactly the same as the technical inefficiency evaluated through M, sM0 .

Proof

(a) Trivial.
(b) We have two cases. First, if sM0 ¼ 0 then x0; y0ð Þ belongs to the efficient frontier

and, by (2.2), gM;PM

0 ¼ 1m; 1sð Þ[ 0mþ s. Therefore, ~D x0; y0; g
M;PM

0x ;
�

gM;PM

0y Þ ¼ 0. Second, if sM0 [ 0, by Lemma 2.2(c) in Chambers et al. (1998) we

have that ~D x0; y0; g
M;PM

0x ; gM;PM

0y

� �
¼ sM0 ~D x0; y0; x0 � xM0

� �
; yM0 � y0
� �� �

¼ sM0 , as a consequence of being ~D x0; y0; x0 � xM0
� �

; yM0 � y0
� �� � ¼ 1. ∎

As a direct consequence of Proposition 1(a), we get the next Corollary.

Corollary 1.1 If model M projects all units onto the strong (weak) efficient frontier,

so does RDDFM;PM
.

Corollary 1.1 shows an easy way to generate DDFs with all their projections onto
the strongly efficient frontier,12 something that seldom occurs in the framework of
the usual directional distance functions.

The next result is straightforward and adds consistency to our proposal.

11We would like to remind the reader that the definition of the RDDF is based on the evaluation of
a single projection for each of the points being rated. In case one or more points have multiple
possible projections, the change of the projection of any of the considered points gives rise to a
different associated RDDF. This is the reason for writing RDDFM;PM

, making explicit through the
super-indexes that RDDF depends not only on model M but on the set of computed projections
PM .
12This happens exactly when M delivers a strong inefficiency measure, a measure whose pro-
jections belong to the strongly efficient frontier. A well-known example is the weighted additive
model (Lovell and Pastor 1995) that will be considered in the examples of the next three sections.
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Corollary 1.2 If model M corresponds to a DDF, then M and RDDFM collapse
together, with the possible exception of the directional vectors associated to points
being rated where sM0 ¼ 0.

Proof According to expression (2.2) it is obvious that at any point being rated
where sM0 [ 0, both M and RDDFM are exactly the same DDF. Moreover, it is also
obvious that at any point being rated where sM0 ¼ 0, the DDF directional vector
associated to that point may be different from 1m; 1sð Þ, which is the fixed directional
vector that expression (2.2) assigns to that point in the definition of RDDFM . ■

The next section takes advantage of the above introduced RDDFM;PM
allowing

us to transform any “weak DDF”, i.e., any DDF whose set of efficient projections
does not belong to the strongly efficient frontier, into a closely related “strong
DDF”, that is, a DDF whose set of efficient projections belongs to the strongly
efficient frontier. In many real life applications, non-dominated peers are preferred
over dominated ones, which is precisely the difference between strongly efficient
projections and non-strongly efficient ones. This is the main reason for introducing
Sect. 2.3.13 This was also the objective of Fukuyama and Weber (2009), where a
modified directional distance function was defined. As Pastor and Aparicio (2010)
pointed out, this modified DDF really coincides with a specific weighted additive
measure.

2.3 Generating a Strong DDF Based on a Weak DDF

We know in advance that all the projections associated to any DDF definitely
belong to the efficient frontier and, sometimes, they all belong to the strongly
efficient frontier. Let us start showing this last unusual case by means of an
example.

Example 3.1 Analyzing a Strong DDF

Let us consider, in the one input—one output space, the next set of units to be rated
U1(2,4), U2(4,8), U3(6,2), U4(3,4) and U5(10,8). The corresponding directional
vectors are: (4,1) for U1, (8,2) for U2, (4,2) for U3, (4,1) for U4 and (1,0) for U5.
As usual, we assume a VRS technology. After performing the first stage we get the
corresponding set of projections (see Table 2.1). The results of Table 2.1 suggest
that U1 and U2 are strongly efficient units.14 U3 is an inefficient unit that belongs to

13Although we focus here on DDF inefficiency measures, it is easy to associate a strong DDF to
any DEA inefficiency measure by resorting, as we do here, to the RDDF, as explained in more
detail in Sect. 2.4.
14This fact can be corroborated by means of a two-dimensional graphical display.
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the interior of the production possibility set and whose projection (2,4) is the
strongly efficient point U1.

U4 is also an interior point whose DDF projection is a strongly efficient point
that is a linear convex combination of the two strongly efficient units:

U4þ 2
9

�4;1ð Þ ¼ 3� 8
9
; 4þ 2

9

� �
¼ 19

9
;
38
9

� �
¼ 17

18
U1þ 1

18
U2:

Finally, U5 is itself a weakly efficient point dominated by its projection U2:

U5þ 6 �1;0ð Þ ¼ 10;8ð Þ � ð6;0Þ ¼ 4;8ð Þ ¼ U2:

In this simple example, we have been able to identify each of the two strongly
efficient units, U1 or U2. In this particular case a convex combination of U1 and U2
is also a strongly efficient point, as for example the projection of U4, which means
that all the located projections belong to the strongly efficient frontier.

Let us now consider the most frequent case, i.e., a weakDDF, where at least one of
the projections of the sample of points being rated does not belong to the strongly
efficient frontier. Let us first introduce a procedure for classifying the projection of
any of the weak DDF inefficient points as strongly efficient or as not strongly effi-
cient. In the second case, the procedure we are going to introduce is able to identify a
new strongly efficient point that dominates the initial weakly efficient projection.

2.3.1 Converting a Weak DDF into a Strong DDF

Some years ago Asmild and Pastor (2010) designed a two stage procedure for
getting strongly efficient projections in two particular cases: the multi-directional
analysis measure (MEA) of Bogetoft and Hougaard (1999), and the range direc-
tional measure (RDM) of Silva-Portela et al. (2004). Although both are efficiency
measures, the same reasoning can be applied to inefficiency measures, such as
DDFs. We are going to replicate the procedure here for analyzing any DDF

Table 2.1 Results associated with Example 3.1

Unit:
x0; y0ð Þ

Directional
vector

Inefficiency
b�0

Projection: xp10 ; yp10
� �

Input
slack:
s��

Output
slack:
sþ�

U1(2,4) (4,1) 0 (2,4) = U1 0 0

U2(4,8) (8,2) 0 (4,8) = U2 0 0

U3(6,2) (4,2) 1 (2,4) = U3 + 1(−4,2) = U1 0 0

U4(3,4) (4,1) 2/9 (19/9,38/9) = U4 + 2/9
(−4,1) = 17/18U1 + 1/18U2

0 0

U5(10,8) (1,0) 6 (4,8) = U5 + 6(−1,0) = U2 0 0
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(Chambers et al. 1998). Basically the first stage will get the projections of the
considered DDF model, and the second stage will project the obtained projection
onto the strongly efficient frontier, with the help of the additive model (Banker et al.
1984), formulated as follows:

Add x0; y0ð Þ ¼ Maxs�;sþ ;k

Xm
i¼1

s�i0 þ
Xs

r¼1

sþr0

s:t:
Xn
j¼1

kjxij ¼ xi0 � s�i0; i ¼ 1; . . .;m

Xn
j¼1

kjyrj ¼ yr0 þ sþr0 ; r ¼ 1; . . .; s

Xn
j¼1

kj ¼ 1;

kj � 0; j ¼ 1; . . .; n

s�i0 � 0; i ¼ 1; . . .;m; sþr0 � 0; r ¼ 1; . . .; s

ð2:3Þ

Additive model (2.3) has the next advantage over other used DEA models, such
as radial models or DDF models: it always achieves a strongly efficient projection
for any point being rated. Since the additive model identifies an L1-path towards the
frontier connecting the point being rated and its projection, and the length of this
path is obtained as the sum of all the optimal slack values that appear in the
objective function, named as Add x0; y0ð Þ in model (2.3), it is straightforward to
enunciate the next statement: “ x0; y0ð Þ, the point being rated, is a strongly efficient
point if, and only if, Add x0; y0ð Þ ¼ 0”.15

Now, let us go back to DDF model (2.1). We can reformulate it very easily by
taking the following action: add a single slack variable to each inequality trans-
forming it into an equality as follows.

15The subset of strongly efficient point of the sample being rated are denoted as E. There are many
other strongly efficient points of the production possibility set that do not belong to E. Under VRS,
only convex linear combinations of points of E are potential candidates. Again, in order to check if
one of these points is strongly efficient or not, the easiest way is to resort to the additive model [3]
and analyze the mentioned convex linear combination of points of E. Only if the optimal objective
value is 0, or, equivalently, all the optimal slack values are 0, the point being rated is strongly
efficient.
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~D x0; y0; g0x; g0y
� � ¼ Max b0

s:t
Xn
j¼1

kjxij þ s�i0 ¼ xi0 � b0gi0x; i ¼ 1; . . .;m

Xn
j¼1

kjyrj � sþr0 ¼ yr0 þ b0gr0y; r ¼ 1; . . .; s

Xn
j¼1

kj ¼ 1;

kj � 0; j 2 E

ð2:4Þ

We are searching for strongly efficient projections. Therefore, we assume that
the projection identified through (2.4) is no longer x01 � b�0g01x; . . .; x0m � b�0g0mx;

�
y01 þ b�0g01y; . . .; y0s þ b�0g0syÞ as in model (2.1), but

Pn
j¼1 k

�
j0 xj; yj
� �

, a point that
satisfies

Xn
j¼1

k�j xj; yj
� �þ s��

0 ;�sþ�
0

� � ¼ x0; y0ð Þþ b�0ð�g0x; g0yÞ: ð2:5Þ

This constitutes the basic difference between model (2.4) and (2.1). As a direct
consequence of (2.5), it is clear that

Pn
j¼1 k

�
j0 xj; yj
� �

dominates, or is equal, to
x0; y0ð Þþ b�0ð�g0x; g0yÞ, and, consequently, is closer to the strongly efficient fron-
tier. Our proposed second stage, based, as said before, on the additive model,
checks if the first stage projection

Pn
j¼1 k

�
j0 xj; yj
� �

is itself a strongly efficient point
or, alternatively, finds a strongly efficient point for replacing it.

As explained before, we are going to design a two stage process, which com-
bines a given DDF, which offers us a first stage projection for each point of the
sample, with a second stage additive model, that projects each first stage projection
onto the strongly efficient frontier, ending up with a second stage strongly efficient
projection. Relating each inefficient point with its final second stage projection
gives rise to a comprehensive DDF inefficiency measure that combines all the
detected inefficiencies into a single number.

Second Stage Analysis: Identifying the Strongly Efficient Projections

In order to classify the first stage projection xp10 ; yp10
� �

of x0; y0ð Þ obtained through

model (2.4), and as a direct consequence of (2.5) we can write the next equivalent
expression:
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Xn
j¼1

k�j xj; yj
� � ¼ x0; y0ð Þþ b�0ð�g0x; g0yÞþ �s��

0 ; sþ�
0

� �
: ð2:6Þ

Take additive model (2.3) and evaluate point
Pn

j¼1 k
�
j xj; yj
� �

. The result can be
written as

Xn
j¼1

k�j xj; yj
� � ¼ Xn

j¼1

k̂j xj; yj
� �þ ŝ�0 ;�ŝþ0

� �
; ð2:7Þ

where ŝ�0 ; ŝ
þ
0

� �
is the optimal solution of (2.3) linked to k̂. We know thatPn

j¼1 k̂j xj; yj
� �

is a strongly efficient point identified through our additive second

stage projection and named alternatively as xp20 ; yp20
� �

. Combining (2.6) with (2.7)

we can relate our initial inefficient point x0; y0ð Þ with our second stage projection,
obtaining the next relationship:16

xp20 ; yp20
� �

¼
Xn
j¼1

k̂j xj; yj
� � ¼ Xn

j¼1

k�j xj; yj
� �� ŝ�0 ;�ŝþ0

� �

¼ x0; y0ð Þþ b�0ð�g0x; g0yÞþ �s�0 ; s
þ
0

� �� ŝ�0 ;�ŝþ0
� �

¼ x0; y0ð Þþ b�0ð�g0x; g0yÞþ � s�0 þ ŝ�0
� �

; sþ0 þ ŝþ0
� �

:

ð2:8Þ

In summary, the calculated second stage strongly efficient projection is reached
after performing a directional vector movement, b�0ð�g0x; g0yÞ, followed by a

non-directional L1-movement,17 � s�0 þ ŝ�0
� �

; sþ0 þ ŝþ0
� �

. The compound move-
ment towards the strongly efficient frontier is given by b�0ð�g0x; g0yÞþ
� s�0 þ ŝ�0
� �

; sþ0 þ ŝþ0
� �

, where the minus and plus signs indicates that in order to
reach the strongly efficient frontier we need to reduce inputs and to increase outputs.
Let us show an example before assigning a sensible inefficient value to each new
strongly efficient projection.

Example 3.2 Part 1. Getting Strong Projections for a Weak DDF
Let us consider in the two-input one-output space the next five units: U1(4,2,4),

U2(4,4,7), U3 (4,6,9), U4(4,3,2), U5(10,3,1) and U6(8,5,20/3). Let us assume that
the considered DDF has a unique constant directional vector g ¼ ð2;0;0Þ. The first

16Even if s�0 ; s
þ
0

� � ¼ 0mþ s , it is not assured that our first stage projection,
Pn

j¼1 k
�
j xj; yj
� �

, is
itself a strongly efficient point. What is additionally needed is that the second-stage slacks,
ŝ�0 ; ŝ

þ
0

� �
, are equal to zero. Hence, the second stage is always needed.

17This is the typical movement associated with the additive model; the L1-distance is also known
as the Manhattan metric. Moreover, although the considered second stage could have alternative
optimal solutions, only one of them is being considering here. Hence we can simplify the notation
for describing the associated RDDF.
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stage projections are reported in Table 2.2. (All our linear programs have been
solved resorting to Excel-Solver.) Our DDF model projects the first four units onto
themselves, which means that, in each case, the directional inefficiency is b� ¼ 0
and the three optimal slack values detected by model (2.4) are equal to 0. The
projection of U5 is point U4, getting an optimal directional inefficiency equal to 3
(b�U5 ¼ 3), and optimal slack values equal to (0,0,1). Finally, the optimal value of
DDF model (2.4) for U6 equals b�U6 ¼ 2 while the three optimal slack values are
0; 1615 ; 0
� �

and its projection is point 14
15U2þ 1

15U4. Hence the first stage projection
of U5 is point U4 (4,3,2), and that corresponding to U6 is point (4,59/15,20/3). We
further need to determine how the additive model (2.3) rates the six first stage
projections (see Table 2.3).

The result is that U1, U2 and U3 are rated as strongly efficient points, while the
second stage projection of U4 is point 0.5(U1 + U2) = (4,3,11/2), with second
stage optimal slacks equal to (0,0,7/2). Hence the final projection of U5 is also point

Table 2.2 Results associated with Example 3.2, Part 1

Unit:
x0; y0ð Þ

Dir.
vector

Inefficiency
b�0

Projection:

xp10 ; yp10
� � Input 1

slack:
ŝ��
1

Input 2
slack:
ŝ��
2

Output
slack:
ŝþ�

U1(4,2,4) (2,0,0) 0 U1 0 0 0

U2(4,4,7) (2,0,0) 0 U2 0 0 0

U3(4,6,9) (2,0,0) 0 U3 0 0 0

U4(4,3,2) (2,0,0) 0 U4 0 0 0

U5(10,3,1) (2,0,0) 3 U4 0 0 1

U6(8,5,20/3) (2,0,0) 2 14
15

U2þ 1
15

U4 ¼
4; 5915 ;

20
3

� �
0 16

15
0

Table 2.3 Results associated with Example 3.2, Part 2

Unit: xp10 ; yp10
� �

Inefficiency
s��
1 þ s��

2 þ sþ�
Projection:

xp20 ; yp20
� � Input1

slack:
ŝ��
1

Input2
slack:
ŝ��
2

Output
slack:
ŝþ�

U1(4,2,4) 0 U1 0 0 0

U2(4,4,7) 0 U2 0 0 0

U3(4,6,9) 0 U3 0 0 0

U4(4,3,2) 0 0.5(U1 + U2) =

4;3;
11
2

� � 0 0 3.5

U4(4,3,2) 3 0.5(U1 + U2) 0 0 3.5

14
15

U2þ 1
15

U4 ¼
4; 5915 ;

20
3

� �
2 1

30
U1þ 29

30
U2 ¼

4; 5915 ;
69
10

� �
0 0 7

30
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0.5(U1 + U2), with total inefficiencies equal to 3(2,0,0) +(0,0,7/2) = (6,0,7/2).
Finally, the first stage projection of U6 has 1/30(U1 + 29U2) = (4,59/15,69/10) as
second stage projection, with second stage optimal slacks equal to (0,0,7/30). Hence
the total slacks associated to U6 are 2(2,0,0) +(0,16/15,0) +(0,0,7/30) =
(4,32/30,7/15). These results are reported in Table 2.3. In this last case, the pres-
ence of second stage slacks indicates that the first stage projection of U6 is not a
strongly efficient point.

2.3.2 Measuring the Comprehensive Inefficiencies
of the Derived Strong DDF

So far we have devised a procedure that generates, after a second stage analysis, a
strong DDF, whose final outcomes are strongly efficient projections for each unit
being rated. This constitutes a simple way of transforming a weak DDF, that is, an
inefficiency measure that accounts only for directional inefficiencies, into a strong
DDF, that is, a comprehensive inefficiency measure, that accounts for all types of
inefficiencies, both directional and non-directional. In order to complete our pro-
posal, we need to measure the global inefficiency associated to each point. Since, at
each point, the inefficiency associated to the strongly efficient projection we are
seeking should be comparable to and greater than the inefficiency associated to the
initial weakly efficient projection, b�0, we propose to normalize the “strong”

directional vector, x0 � xp20 ; yp20 � y0
� �

, obtained through the two stage procedure,

with respect to the directional vector considered at the first stage, x0 � xp10 ;
�

yp10 � y0Þ. The length of the strong directional vector x0 � xp20 ; yp20 � y0
� �

is always

greater or equal than the length of the initial directional vector x0 � xp10 ; yp10 � y0
� �

,

because it holds that x0 � xp20 ; yp20 � y0
� �

¼ x0 � xp10 ; yp10 � y0
� �

þ xp10 � xp20 ;
�

yp20 � yp10 Þ with xp20 � xp10 and yp20 � yp10 . If g0k k2 denotes the Euclidean norm of
Stage I directional vector g0 and, as said before, we want to normalize the strong

directional vector x0 � xp20 ; yp20 � y0
� �

so as to get the same “length”, all we have to

do is to divide it by its actual length x0 � xp20 ; yp20 � y0
� ���� ���

2
and to multiply it by

g0k k2. As a consequence, the associated strong inefficiency value b�p20 satisfies

b�p20 :¼
x0 � xp20 ; yp20 � y0

� ���� ���
2

g0k k2
; ð2:9Þ
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which, as explained above, is at least as big as b�0 ¼
x0 � xp10 ; yp10 � y0

� ���� ���
2

g0k k2
.18

Example 3.2 Part 2. Estimating the Inefficiencies of the Derived Strong DDF.

Let us consider again the data and the results of Example 3.2. In short, at the first
stage, the considered DDF rated the first four units as directional efficient. At the
second stage, only the first three units remained truly efficient—U1(4,2,4), U2(4,4,7),
U3 (4,6,9)—, while the fourth one, U4(4,3,2), the fifth one U5(10,3,1) and the sixth
one U6(8,5,20/3) were rated as inefficient and achieved second stage projections
different from the first stage.Moreover, the strongly efficient projection of U4 andU5,
after performing the second stage, was point (4,3,11/2). Finally, the second stage
strongly efficient projection of U6 was point (4, 59/15, 69/10). Hence, the three
directional vectors that connect U4, U5 and U6 with their final projections that were
calculated at the bottom of Example 3.2, were 0;0; 72

� �
, �6;0; 72
� �

, and �4;� 16
15 ;

7
30

� �
.

It is easy to verify that their corresponding Euclidean norms are 3.5, 6.946 and 4.146,
respectively. In order to standardize the three new evaluated directional vectors with
respect to the unique directional vector of Stage I, vector (2,0,0), we need to shorten
them to reduce their length to 2, which means dividing each of them by its length and,
at the same time, multiplying each of them by 2. Since the original connecting vector
detects always an inefficiency equal to 1, the new shortened reverse directional vector
will exhibit an inefficiency value of 3:5

2 ¼ 1:75 for U4, 6:946
2 ¼ 3:473 for U5, and

4:146
2 ¼ 2:073, for U6. These new comprehensive inefficiencies are higher than the

directional inefficiency reported in Table 2.2 (0, 3, and 2, respectively), and corre-
spond to the inefficiency value expression contained in (2.9). Hence, the new strong
DDF detects an inefficiency higher than the weak DDF for the three considered
inefficiency units, which is reasonable because the newDDF accounts for all types of
inefficiencies, the directional inefficiency as detected by the weak DDF and the
inefficiencies detected by the slacks, which are basically non-directional and are quite
often greater than 0. The interesting point is that all these inefficiencies can be
combined and measured through a new strong DDF that, obviously, avoids slacks,
and offers a single number that measures all types of inefficiencies.

2.4 Deriving DEA Comprehensive Inefficiency Measures.
the Case of the Comprehensive Radial Models

Thanks to the exercise performed in Sect. 2.3 it is easy to build a comprehensive
inefficiency measure based on any weak DEA inefficiency model. In fact, any
model M gives rise to the corresponding RDDFM;PM

. Considering this RDDF as the

18Observe that each component of the vector in the numerator equals the corresponding compo-
nent of the vector in the denominator times b�0.
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DDF of the first stage and applying to it the findings of Sect. 2.3, namely the two
stage procedure, we end up creating a new strong RDDF, which is exactly the
solution we are looking for. Based on the results of Sect. 2.3 it is straightforward to
formulate the directional vector that relates model M with its strong RDDF, a new
expression that substitutes the expression given by (2.2). Let us name the new
directional vector as ĝM0 . Now the distinction is not based on the original directional
inefficiency values sM0 � 0, but on the comprehensive inefficiency values obtained
after performing the second stage, denoted as TM

0 . It is obvious that T
M
0 � sM0 . Let us

observe that only the strongly efficient points will get TM
0 ¼ 0, which means that

any non-strongly efficient point will get TM
0 [ 0. Hence, new expression (2.2) will

be based on E, the subset of strongly efficient points, and not on sM0 . The new
expression that gives the directional vector associated to each point x0; y0ð Þ being
rated and that relates model M with the corresponding derived strong RDDF is:

ĝM0 :¼
1
TM
0

x0 � xp20 ; yp20 � y0
� �

� 0mþ s; if x0; y0ð Þ 62 E

1m; 1sð Þ; if x0; y0ð Þ 2 E

( )
ð2:10Þ

Let us observe that the strong RDDF represents the comprehensive inefficiency
model associated to model M. Hence, our procedure is a general procedure for
generating comprehensive inefficiency models based on any DEA inefficiency
model.19

In particular, we are ready to define comprehensive Radial Models. These par-
ticular models are even easier to deal with, because we know how to formulate
them as DDFs and, therefore, Sect. 2.3 gives us the solution directly. The constant
returns to scale (CRS) Radial Models were the first defined DEA models and, in
honor of their authors, they are known as the CCR models (Charnes et al. 1978).
Later on, the VRS Radial Models were introduced (Banker et al. 1984) and, for the
same mentioned reason, they are also known by the acronym BCC. We will focus
our attention on the latter ones. There are two BCC models: the BCC input-oriented
and the BCC output-oriented models. The first one is formulated as follows.20

19We would like to point out that a referee has pointed out that our procedure opens a new research
avenue for ranking units resorting to appropriate DDFs, by selecting appropriate directional
vectors.
20As already mentioned in Footnote 5, we will only consider “the envelopment form” of any BCC
model and will not even mention its linear dual program known as “the multiplier form”, which, in
this case, can also be expressed as a linear fractional program called “the ratio form”.
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BCCIO
EFF x0; y0ð Þ ¼ Min h0

s:t:X
j2E

kjxij � h0xi0; i ¼ 1; . . .;m

X
j2E

kjyrj � yr0; r ¼ 1; . . .; s

X
j2E

kj ¼ 1;

kj � 0; j ¼ 1; . . .; n

ð2:11Þ

This model is a DEA efficiency model, and h�0 is known as the input efficiency
score of unit x0; y0ð Þ. Being aware that h�0 is a quantity in between 0 and 1, making
the change of variable h0 ¼ 1� b0 we just move from an efficiency model to an
inefficiency model. Since minimizing h0 is equivalent to maximizing
�h0 ¼ b0 � 1, the last model can be reformulated as the next DDF model,21 pro-
vided we add slack variables in the same way as we did in (2.4) for model (2.1).

BCCIO
INEFF x0; y0; x0; 0sð Þ ¼ Max b0

s:t:
X
j2E

kjxij þ s�i0 ¼ xi0 � b0xi0; i ¼ 1; . . .;m

X
j2E

kjyrj � sþr0 ¼ yr0; r ¼ 1; . . .; s

X
j2E

kj ¼ 1;

kj � 0; j ¼ 1; . . .; n

s�i0; s
þ
r0 � 0; i ¼ 1; . . .;m;

r ¼ 1; . . .; s

ð2:12Þ

It is obvious that b�0 ¼ 1� h�0 � 0 because 0� h�0 � 1. Moreover, b�0 � 1. Since
the directional vector x0; 0sð Þ is unable to change outputs, it is input-oriented.
Moreover, since the change in inputs is guided by x0 we pursue a proportional—or
radial—reduction in inputs. It is well established that this model does not neces-
sarily project all the inefficient points onto the strongly efficient frontier, or, in other
words, depending on the sample of units being rated, BCCIO

INEFF can be a weak
DDF. Applying to it the two stage procedure developed in Sect. 2.3 it is easy to end

21Strictly speaking, model BCCIO
INEFF x0; y0; x0; 0sð Þ has as objective function b0 � 1 instead of b0,

but its expression as a DDF requires the proposed related objective function.
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up with a comprehensive strong DDF, as well as with the corresponding derived
strong inefficiency scores. Although the initial weak inefficiency scores are always
less than or equal to 1, the final strong inefficiency scores may be greater than 1.

Example 4.1 Deriving a Comprehensive BCC Input-Oriented Model

Let us consider in the two-input one-output space the next five units: U1(4,2,40),
U2(4,4,90), U3(4,6,120), U4(40,30,4) and U5(4,4,80). Applying model (2.12) we
ensure that the BCC input-oriented inefficiency model rates the first three units as
efficient, assigning each of them an optimal inefficiency of b� ¼ 0 and all optimal
slack values at level 0. Furthermore, model (2.12) assigns to U4 an optimal inef-
ficiency value b�U4 ¼ 0:9, and optimal slack values equal to (0,1,36). Consequently,
the first stage projection of U4 is point (40,30,4) − 0.9(40,30,0) + (0,
−1,36) = (4,2,40), which is exactly U1. Finally, U5 is projected onto 0.5
(U1 + U3) = U5, which means that b� ¼ 0 and all the optimal slacks are at level 0.
We need to perform Stage 2 since we are not sure which of the projections are
strongly efficient. First we check, by means of the additive model, if U1, U2, and
U3 are strongly efficient units. The answer is yes, and, as a consequence, the first
stage projections of U1, U2, U3, and U4 are also its second stage projections.
Hence, U4 will maintain its directional inefficiency value as well as its slack
non-directional inefficiency value. Both types of inefficiencies will be jointly
considered when evaluating the corresponding strong reverse directional vector.
Finally, U5 gets a new second stage projection, precisely U2, with the only
non-zero slack on the output side and equal to 10. Again, the strong reverse
directional vector associated to the second stage projections are, according to
(2.10), vector (1,1;1) for U1, U2 and U3, with associated inefficiency equal to 0.
The reverse directional vector for U4 is obtained as U1 − U4 = (4,2,40) − (40,30,4)
= (−36, −28, 36), while the associated to U5 is U2 − U5 = (4,4,90) − (4,4,80) =
(0,0,10). In the last two cases the associated comprehensive inefficiency is obtained
as explained before. The Euclidian length of (−36, −28, 36) is 58.103 and the
corresponding to (0,0,10) is 10. Since, associated to the first stage projection the
used directional vectors were (40,30,0) for U4 and (4,4,0) for U5, their lengths were
50 and 5.657. Therefore, the comprehensive inefficiency of the strong RDDF are
58:103
50 ¼ 1:162[ 1 for U4 and 10

5:697 ¼ 1:755[ 1 for U5.
This example shows that non-radial inefficiencies may be relevant enough so as

to get an inefficiency score bigger than 1, and that the original input orientation has
been lost because the final strong directional vector at U4 has all positive com-
ponents, which means that it modifies all inputs and outputs in order to reach the
desired strong projection. Curiously enough, for U5, its final strong directional
vector is output oriented.

Even in the simplest one input-one output space the second stage may be nec-
essary, as shown in the next example.
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Example 4.2 The BCC Input-Oriented Model with just Two Dimensions.

In the one input—one output space let us consider the next sample of 6 units: (2,2),
(4,2), (2,10), (4,14), (5,14) and (12,12). If we draw a picture, see Fig. 2.1, and apply
the BCC input-oriented inefficiency model, as given by (2.12), we get the results
listed in Table 2.4.

Let us observe that the first stage does classify each unit as input-radial efficient
or inefficient—see last column of Table 2.4—but is unable to tell us if the radial
efficient units belong to the strongly efficient frontier or not. Moreover, it is also
unable to tell us if the input-radial inefficient units belong to the interior of the
production possibility set or to the weak part of the efficient frontier. For getting this
information we need to perform our second stage analysis, whose results are listed
in Table 2.5.

Fig. 2.1 Figure associated
with Example 4.2

Table 2.4 Results associated with Example 4.2, First Stage

Unit b�0
P
j2E

k�j xj; yj
� �

Input
slack

Output
slack

Unit being rated is
input-radial

U1(2,2) 0 U1 0 0 Efficient

U2(4,2) 1 U1 0 0 Inefficient

U3(2,10) 0 U3 0 0 Efficient

U4(4,14) 0 U4 0 0 Efficient

U5(8,14) 2 U4 0 0 Inefficient

U6(12,12) 4.5 0.5(U3 + U4) = (3,12) 0 0 Inefficient
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Our second stage analysis shows, in this case, that the first stage projections of
units U1 and U2 onto U1 are not strongly efficient, simply because U1 is not a
strongly efficient point but a weak one.22 The presence of a non-zero output slack
associated to U1 reveals its nature (see second row of Table 2.5). Moreover, we are
now able to classify each point and locate it on the strong frontier, on the weak part
of the frontier or on the interior of the production possibility set (see last column of
Table 2.5), without the help of any graphical display, which, by the way, are
unavailable for any input-output space with dimensions greater than 3.

The BCC output-oriented model admits a similar treatment. Its original formu-
lation follows.

BCCOO
EFF x0; y0ð Þ ¼ Max U0

s:t:X
j2E

kjxij � xi0; i ¼ 1; . . .;m

X
j2E

kjyrj �U0yr0; r ¼ 1; . . .; s

X
j2E

kj ¼ 1; kj � 0; j ¼ 1; . . .; n

ð2:13Þ

The last model is a DEA efficiency model, and U�
0 is known as the output

efficiency score of unit x0; y0ð Þ. Being aware that U�
0 is a quantity greater than or

equal to 1, making the change of variable U0 ¼ 1þ b0 we just move from an
efficiency model to an inefficiency model. Since maximizing U0 is equivalent to
maximizing b0 þ 1, the last model can be reformulated as the next DDF model,

Table 2.5 Combined results associated with Example 4.2, Second Stage

Unit b�0
P
j2E

k�j xj; yj
� �

Input
slack

Output
slack

Unit being rated belongs
to the

U1(2,2) 0 U3 0 8 Weak frontier

U2(4,2) 1 U3 0 8 Interior

U3(2,10) 0 U3 0 0 Strong frontier

U4(4,14) 0 U4 0 0 Strong frontier

U5(8,14) 2 U4 0 0 Weak frontier

U6(12,12) 4.5 0.5(U3 + U4) = (3,12) 0 0 Interior

22As early as in 1979, Charnes, Cooper and Rhodes were aware of this problem in relation to the
CCR model (Charnes et al. 1978 and 1979). They published a mathematical solution to it some
years later (Charnes and Cooper, 1984), based on the seminal paper of Charnes (1952). The
functioning of the BCC model is completely similar.
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provided we add slack variables to the restrictions in the same way as we did in
model (2.12).

BCCOO
INEFF x0; y0; 0m; y0ð Þ ¼ Max b0

s:t:
X
j2E

kjxij þ s�i0 ¼ xi0; i ¼ 1; . . .;m

X
j2E

kjyrj � sþr0 ¼ yr0 þ b0yr0; r ¼ 1; . . .; s

X
j2E

kj ¼ 1;

kj � 0; j ¼ 1; . . .; n

s�i0; s
þ
r0 � 0; i ¼ 1; . . .;m; r ¼ 1; . . .; s

ð2:14Þ

It is obvious that b�0 � 0 because U�
0 � 1. Since the directional vector 0m; y0ð Þ is

unable to change inputs, it is output-oriented. Moreover, since the change in outputs
is guided by y0 we pursue a proportional—or radial—augmentation of outputs. It is
well established that this model does not necessarily project all the inefficient points
onto the strongly efficient frontier, or, in other words, depending on the sample of
units being rated, BCCOO

INEFF can be a weak DDF. By applying the two stage
procedure developed in Sect. 2.3 it is easy to end up with a comprehensive strong
DDF, as well as with the corresponding derived strong inefficiency scores. Even in
the simplest one input-one output space, the second stage could be needed, just as
for the input-oriented version.

The next three sections are devoted to the three common economic inefficiency
measures: cost inefficiency, revenue inefficiency and profit inefficiency. The choice
depends on the way firms solve technical inefficiencies, by either reducing inputs,
or expanding outputs, or both. Let us revise each of the three possibilities. In any of
them we need to know the corresponding set of market prices, i.e., qi, the unitary
cost of input i; i ¼ 1; . . .;m, for the first case, pr, the unitary price of output
r; r ¼ 1; . . .; s, for the second case, or both, for the third case. To simplify notation,
we denote the m-vector of input market prices by q, and the s-vector of output
market prices by p.

2.5 Evaluating and Decomposing Cost Inefficiency
Through the Associated RDDF Measure

Since, according to Sect. 2.2, RDDFM;PM
has exactly the same behavior as M, in

terms of detecting exactly the same technical inefficiency while keeping the same
projection for each of the units under scrutiny, we can use the well-known Fenchel–
Mahler inequality, developed for directional distance functions by Chambers et al.
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(1998), and applied it to the RDDF.23 We will assume in this section that M is an
input-oriented model, i.e., for each unit being rated we are interested in reducing
inputs as much as possible while maintaining the output levels. The strategy used
for reducing inputs is determined by model M. As a direct consequence of
Proposition 2.1 we can enunciate the next result.

Corollary 1.3 If M is an input-oriented model, then its reverse-DDF is also an
input-oriented model.

Given an m-vector of unitary input costs, q, as well as a fix level of outputs, y0,
and assuming that T represents the production possibility set, the cost function is
defined as

C y0; qð Þ ¼ inf qx : x; y0ð Þ 2 Tf g: ð2:15Þ

In general, if T satisfies certain mathematical conditions, the infimum is reach-
able and we can switch from infimum to minimum (see Ray 2004). In particular,
this happens for a DEA technology under VRS.

In order to evaluate C y0; qð Þ we assume, as before, that T is generated through a
finite set of points xj; yj

� �
; j ¼ 1; . . .; n; xj � 0; yj � 0

	 

. In this case we need to

solve the next linear program.

C y0; qð Þ ¼ Min
k;x

Xm
i¼1

qixi

s:t:
Xn
j¼1

kjxij � xi; i ¼ 1; . . .;m

Xn
j¼1

kjyrj � yr0; r ¼ 1; . . .; s

Xn
j¼1

kj ¼ 1;

kj � 0; j ¼ 1; . . .; n

xi � 0; i ¼ 1; . . .;m

ð2:16Þ

Before considering the cost inefficiency decomposition through the corre-
sponding Fenchel–Mahler inequality associated to the RDDF associated to model
M, we need to define the cost inefficiency at point x0; y0ð Þ, after introducing the
concept of cost deviation.

The cost deviation at point x0; y0ð Þ is simply the difference between the cost at
that point and the cost function—or minimum cost—at market input-prices q:

23Since model M is given, its associated RDDF can be either a weak DDF or a strong DDF,
depending on the nature of M.
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CD x0; y0ð Þ :¼ qx0 � Cðy0; qÞ ¼
Xm
i¼1

qixi0 � Cðy0; qÞ: ð2:17Þ

For the sake of brevity, we write CD0 for CD x0; y0ð Þ.
Regarding the DDF and its existing dual relationship, we want to point out that it

is possible to relate a term of normalized cost deviation, called cost inefficiency,CI0,
with the technical inefficiency detected by a given input-oriented DDF through the
next inequality:

CI0 :¼ CD0

qg0x
�~D x0; y0; g0x; 0ð Þ: ð2:18Þ

Expression (2.18) is precisely the aforementioned Fenchel-Mahler inequality
valid for any input-oriented DDF that allows cost inefficiency to be decomposed
into the sum of technical inefficiency and an additive residual term identified as
allocative inefficiency.

Next, resorting to the Fenchel-Mahler inequality associated to RDDFM;PM
we

get the next inequality,

CIM;PM

0 :¼ CDM;PM

0

qgM;PM

0x

� sM0 : ð2:19Þ

The left hand-side term or cost inefficiency, CIM;PM

0 , satisfies a desirable index

number property: it is homogeneous of degree 0 in prices, which makes CIM;PM

0
invariant to the currency units of the market input prices. As first pointed out by

Nerlove (1965), CDM;PM

0 , the numerator of CIM;PM

0 , is homogeneous of degree 1 in
prices and, consequently, the cost deviation cannot be considered as an appropriate
economic measure. Going back to the last inequality and defining the allocative
inefficiency as the corresponding additive residual, we get the next equality:

CIM;PM

0 ¼ sM0 þAIM;PM

0 : ð2:20Þ

In words, at point x0; y0ð Þ cost inefficiency is decomposed into the sum of
technical inefficiency and allocative inefficiency.

Example 5.1 The Input-Oriented Additive Model with Single Projections

Let us consider again model (2.3), known as the additive model (Charnes et al.
1985). It is a particular case of the weighted additive model (Lovell and Pastor
1995), where the objective function is simply a non-negative weighted sum of all
the input and output slacks, with at least one positive weight. The additive model is
a weighted additive model with all the weights equal to 1. Its input-oriented version
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is obtained by setting the weights attached to the output slacks equal to 0 in the
objective function. Its formulation is as follows.

AddIO x0; y0ð Þ ¼ Maxs�;k
Xm
i¼1

s�i0

s:t:X
j2E

kjxij ¼ xi0 � s�i0; i ¼ 1; . . .;m

X
j2E

kjyrj ¼ yr0 þ sþr0 ; r ¼ 1; . . .; s

X
j2E

kj ¼ 1;

kj � 0; j ¼ 1; . . .; n

s�i0 � 0; i ¼ 1; . . .;m

ð2:21Þ

Let us consider a sample of three units to be rated, defined as (4,7;1), (5,5;1) and
(13,7;1). They belong to the “two input—one output” space. Since all the units have
the same level of output we may represent them on the 2-dimensional input-plane.
Moreover, focusing on the two inputs it is easy to realize that the first two units are
efficient while the third one is clearly inefficient, because it is dominated by any of
the other two efficient units.

Fig. 2.2 Figure associated
with Example 5.1
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The L1 projection of (13,7) onto (4,7) follows the L1-path that connects both
points, and whose components are (−9,0). Hence, the length of this L1-path is 9
(=9 + 0). Alternatively, the L1 projection of the inefficient unit onto (5,5) is given
through the vector (−8,−2), which corresponds to a L1-path of length 10 (=8 + 2).
The maximum length is 10, which means that program (2.21) identifies (5,5) as the
unique optimal projection24 of unit (13,7), with an associated technical inefficiency,
sM0 equal to 10. Since the projections are unique for all the three units in our

example, we may write gM0x for gM;PM

0x , as well as CIM0 for CIM;PM

0 and AIM0 for

AIM;PM

0 .
Let us further assume that the unitary market input-prices are 1, for the first

input, and 2, for the second. The minimum cost evaluated through program (2.16)
tells us that C y0; q1; q2ð Þð Þ ¼ C 1; 1;2ð Þð Þ ¼ 15, and that it is achieved at
xM1 ; x

M
2

� � ¼ ð5;5Þ: In Fig. 2.2 we have drawn the iso-cost line x1 þ 2x2 ¼ 15, which
indeed passes through point (5,5). Now, since the obtained M-projection of point
x0; y0ð Þ = (13,7;1) is the strongly efficient point (5,5;1) and sM0 = 10, we get
gM0x ¼ 8

10 ;
2
10

� �
. In this example, RDDFM is perfectly defined knowing expression

(2.2), that is, knowing that the directional vector at the only inefficient point
(13,7;1) is gM0 ¼ 8

10 ;
2
10 ; 0

� �
. Evaluating the cost deviation at the unique inefficient

point we obtain

CD x0; y0ð Þ :¼
Xm
i¼1

qixi0 � Cðy0; qÞ ¼ 1; 2ð Þ � 13; 7ð Þ�15 ¼ 13þ 14� 15 ¼ 12:

Consequently, the value of CI0 is CD0
qgM0x

¼ 12
1� 810þ 2� 210

¼ 12�10
12 ¼ 10, which equals

sM0 = 10. Hence, AIM0 ¼ CIM0 � sM0 ¼ 10� 10 ¼ 0.
The projection (5,5) of the inefficient unit (13,7) is, as said before, where the

minimum cost is achieved for the considered market input-prices. Obviously this
cost minimizing point has a cost deviation of 0, and also a cost inefficiency of 0,

since CI 5;5ð Þ ¼ CD 5;5ð Þ
1;2ð Þ� 1;1ð Þ ¼ 0

3 ¼ 0. Moreover, since (5,5) is efficient, its technical

inefficiency is 0. Hence, its allocative inefficiency is also 0.
The previous result shows that point (13,7;1) is projected onto the minimum cost

point (5,5;1), and has also an allocative inefficiency equal to 0. The next question
springs to mind: is there any relationship between the allocative inefficiency of
point x0; y0ð Þ and the cost deviation of its efficient projection? The next proposition
shows that the suggested relationship exists, and proposes an alternative way for
evaluating the cost allocative inefficiency of point x0; y0ð Þ based on its projection.

24Although in this simple example the projection is unique, it is straightforward to devise alter-
native easy examples for the input-oriented additive model where an inefficient unit may have two,
or more, different projections. Our example gives rise to a single-value additive model, as opposed
to a multiple-value additive model.
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Proposition 2 Let xM0 ; y
M
0

� �
denote the projection of x0; y0ð Þ obtained through

model M. Let us assume that yM0 ¼ y0. Then, the cost allocative inefficiency asso-

ciated to point x0; y0ð Þ and obtained through RDDFM;PM
is

AIM;PM

0 ¼ CDM;PM
xM0 ; y

M
0

� �
q � gM;PM

0x

¼
Pm

i¼1 qix
M
0i � CðyM0 ; qÞ

q � gM;PM

0x

: ð2:22Þ

In particular, AIM;PM

0 ¼ 0 if, and only if, CD xM0 ; y
M
0

� �
= 0.

Proof If x0; y0ð Þ = xM0 ; y
M
0

� �
, then sM0 = 0, and (2.22) is a direct consequence of

(2.20). Consequently, let us assume that x0; y0ð Þ is an inefficient point. According to
equalities (2.19) and (2.20), AIM;PM

0 ¼ CIM;PM

0 � sM0 ¼ CD0

qgM;PM

0x

� sM0 ¼ CD0�sM0 qg
M;PM

0x

qgM;PM

0x

.

Hence, taking into account expression (2.22), all we need to prove is that

CD xM0 ; y
M
0

� � ¼ CD0 � sM0 qg
M;PM

0x , or, equivalently, that
Pm

i¼1 qix
M
i0 � CðyM0 ; qÞ ¼

¼ Pm
i¼1 qixi0 � Cðy0; qÞ

	 
� sM0 qg
M;PM

0x . According to expression (2.2) the equality

qxM0 ¼ q x0 � sM0 g
M;PM

0x

� �
holds. Therefore, the previous expression can be reduced to

CðyM0 ; qÞ ¼ Cðy0; qÞ which trivially holds because we are assuming that yM0 ¼ y0. ■
Proposition 2 shows that the factor to be used for normalizing the cost deviation

associated to the efficient projection so as to obtain the allocative inefficiency of the
inefficient point is exactly the normalization factor associated to the inefficient
point. Moreover, it seems an acceptable and intuitive property that, when the
projection is a cost minimizing point, the allocative inefficiency associated to the
point being rated is 0.

Example 5.2 The Input-Oriented Additive Model with Multiple Projections

Let us consider again, in the two input—one output space, a sample of three units to
be rated, defined as (3,7;1), (5,5;1) and (13,7;1). In comparison to Example 5.1 we
have only slightly changed the first unit, from (4,7;1) to (3,7;1). This change does
not affect the efficiency status of the three units, but does affect the L1-distance from
(13,7) to the first efficient unit (3,7), which has increased and takes exactly the same
value, 10, as the distance from (13,7) to the second efficient unit, (5,5). Now the two
efficient units are optimal projections for the unique inefficient unit, or, in other
words, (13,7) has multiple optimal projections. The preferable option can be a
function of a second criterion. For instance, if the market input-prices are again
q = (1,2) we might prefer to select the projection that generates a lower allocative
inefficiency, or, according to Proposition 2, the projection were the lowest cost
deviation is achieved. Since, the new considered efficient point (3,7) has an
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input-cost of 1 � 3þ 2 � 7 ¼ 17, higher than the already evaluated input-cost of point
(5,5), which equals 15 and corresponds to the value of the cost function—see
Example 4.1—, then the cost deviation of the new obtained projection,
CD 3; 7ð Þ ¼ 17� 15 ¼ 2, is greater than the cost deviation of the old one,
CD 5; 5ð Þ ¼ 0. Hence, our final choice is to select point (5,5) as our preferred
projection, according to our aforementioned second criterion, because its allocative
inefficiency is the most convenient one.

In this simple example we have directly considered the two possible alternative
optimal projections as points of our sample. When solving a real life problem, with
many units and a higher number of inputs and outputs, a specific search for
identifying at each inefficient unit of the sample possible alternative optimal pro-
jections needs to be developed. This task is accomplished in Appendix 1.

2.6 Evaluating and Decomposing Revenue Inefficiency

Given an s-vector of unitary output prices, p� 0s, and being T the production
possibility set, the revenue function is defined for a fix level of inputs, x0, as follows.

R x0; pð Þ ¼ sup py: x0; yð Þ 2 Tf g: ð2:23Þ

In the case of T being a DEA technology, the supremum in (2.23) may be
equivalently changed by maximum.

In order to evaluate R x0; pð Þ we assume that the set pr; r ¼ 1; . . .; sf g of
non-negative output prices is known and that, within a DEA framework, T is
generated through a finite set of n points xj; yj

� �
; j ¼ 1; . . .; n; xj � 0; yj � 0

	 

. In

this case we only need to solve the next linear program:

R x0; pð Þ ¼ Max
k;y

Xs

r¼1

pryr

s:t:
Xn
j¼1

kjxij � xi0; i ¼ 1; . . .;m

Xn
j¼1

kjyrj � yr; r ¼ 1; . . .; s

Xn
j¼1

kj ¼ 1;

kj � 0; j ¼ 1; . . .; n

yr � 0; r ¼ 1; . . .; s

ð2:24Þ
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Before considering the revenue inefficiency decomposition associated to
RDDFM;PM

through the corresponding Fenchel–Mahler inequality, we need to
define the revenue deviation at point x0; y0ð Þ.

The revenue deviation at point x0; y0ð Þ is simply the difference between the
revenue function and the revenue at that point, given market output-prices p:

RD x0; y0ð Þ :¼R x0; pð Þ � py0: ð2:25Þ

For the sake of brevity, we write RD0 for RD x0; y0ð Þ.
As for the DDF and thanks to its dual relationships, it is possible to link, at point

x0; y0ð Þ, a normalized term of revenue deviation, called revenue inefficiency, with
the optimal value of any output-oriented directional distance function, as follows:

RI0 :¼ RD0

pg0y
�~D x0; y0; 0; g0y

� �
: ð2:26Þ

Expression (2.26) is the Fenchel-Mahler inequality associated with any DDF
that allows decomposing revenue inefficiency into the sum of technical inefficiency
and allocative inefficiency.

In our particular case, and for the RDDFM;PM
, we get the inequality

RIM;PM

0 :¼ RDM;PM

0

pgM;PM

0y

� sM;PM

0 : ð2:27Þ

The left hand-side term is the normalized revenue deviation, also called revenue
inefficiency, RI0, which, as CI0, satisfies that it is homogeneous of degree 0 in
prices, which makes RI0 invariant to the currency units associated to the market
output prices. Going back to the last inequality and defining the revenue allocative
inefficiency as the corresponding residual, we get the next equality:

RIM;PM

0 ¼ sM;PM

0 þAIM;PM

0 : ð2:28Þ

In words, at point x0; y0ð Þ, and thanks to the associated RDDFM;PM
, normalized

revenue inefficiency is decomposed into the sum of technical inefficiency and
allocative inefficiency.

Example 6.1 The Output-Oriented Additive Model with Single Projections

Let us now consider as model M the output-oriented version of the additive model,
whose objective function only includes output slacks. Its formulation follows.
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AddO x0; y0ð Þ ¼ Maxsþ ;k

Xs

r¼1

sþr0

s:t:
Xn
j¼1

kjxij � xi0; i ¼ 1; . . .;m

Xn
j¼1

kjyrj ¼ yr0 þ sþr0 ; r ¼ 1; . . .; s

Xn
j¼1

kj ¼ 1;

kj � 0; j ¼ 1; . . .; n

sþr0 � 0; r ¼ 1; . . .; s

ð2:29Þ

Let us consider now in the “one input—two output space” the next sample of
units to be rated: 1;3;5ð Þ; 1;5;2ð Þ; 1;2;1ð Þf g. Since all the units have the same level
of input we may represent them on the 2-dimensional output plane. Moreover,
focusing on the two outputs it is easy to realize that the first two units are efficient
while the third one is inefficient because it is dominated by any of the two efficient
units.

Fig. 2.3 Figure associated
with Example 6.1
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The L1 projection of (2,1) onto (3,5) follows the L1-path that connects both
points, and whose components are 1;4ð Þ. Hence, the length of this L1-path is 5 (=1
+4). Alternatively, the L1 projection of the inefficient unit onto (5,2) is given
through the vector (3,1) which corresponds to a L1-path of length 4 (=3+1). The
maximum length is 5, which means that program (2.29) will identify (3,5) as the
unique optimal projection with an associated technical inefficiency, sM0 , as given by
the optimal value of the objective function, equal to 5. Let us assume that the
market output-prices are given as p = (2,1). The maximum revenue—or revenue
function—, as evaluated through program (2.24), tell us that R 1; 2; 1ð Þð Þ ¼ 12, and
that it is achieved at point (5,2), as shown in Fig. 2.3, where we have drawn the
iso-revenue line 2y1 þ y2 ¼ 12. Now, since the obtained M-projection of point
x0; y0ð Þ = (1;2,1) is the efficient point (1;3,5) and sM0 = 5, we get gy0 ¼ 1

5 ;
4
5

� �
.

Evaluating the revenue deviation at the inefficient point we obtain
RD x0; y0ð Þ :¼ Rðx0; pÞ −

Ps
r¼1 pry0r ¼ 12� 2; 1ð Þ � 2; 1ð Þ ¼ 12� 5 ¼ 7.

Consequently, the value of RI0 is RD0
pgM0y

¼ 7
2�15þ 1�45

¼ 7�5
6 ¼ 35

6 , which is greater than

sM0 ¼ 5. Hence, AIM0 ¼ RIM0 � sM0 ¼ 35
6 � 5 ¼ 5

6.
It would be interesting, as we did when evaluating cost allocative inefficiency, to

connect the revenue deviation of the corresponding efficient projection with the
revenue allocative inefficiency of the point being rated. The next proposition gives
us the clue.

Proposition 3 Let xM0 ; y
M
0

� �
denote the projection of x0; y0ð Þ obtained through

model M. Let us assume that xM0 ¼ x0. Then, the revenue allocative inefficiency
associated to point x0; y0ð Þ can be obtained as

AIM;PM

0 ¼ RDM;PM

0 xM0 ; y
M
0

� �
p � gM;PM

0y

¼ RðxM0 ; pÞ �
Ps

r¼1 pry
M
0r

p � gM;PM

0y

: ð2:30Þ

In particular, AIM;PM

0 ¼ 0 if, and only if, RDM;PM

0 xM0 ; y
M
0

� � ¼ 0.

Proof The proof is similar to the proof of Proposition 2 and is left to the reader. ■

2.7 Evaluating and Decomposing Profit Inefficiency

The profit function requires that both market input costs and market output revenues
are specified, by knowing the corresponding market unitary prices. As usual, let us
denote by q� 0m the market input-prices and by p� 0s the market output-prices.
The profit function is defined as follows.

2 The Reverse Directional Distance Function 45



P q; pð Þ ¼ sup py� qx : x; yð Þ 2 Tf g: ð2:31Þ

Under the hypothesis of working with a DEA production possibility set, the
supremum in (2.31) is reachable and we switch from supremum to maximum.

Within a DEA framework, the linear program to be solved in order to calculate
the profit function is the next one.

P q; pð Þ ¼ Max
k;x;y

Xs

r¼1

pryr �
Xm
i¼1

qixi

s:t:
Xn
j¼1

kjxij � xi; i ¼ 1; . . .;m

Xn
j¼1

kjyrj � yr; r ¼ 1; . . .; s

Xn
j¼1

kj ¼ 1;

kj � 0; j ¼ 1; . . .; n

xi � 0; yr � 0 i ¼ 1; . . .;m; r ¼ 1; . . .; s

ð2:32Þ

As usual, (2.32) is a VRS model. In fact, considering a CRS model could be seen
as meaningless from an entrepreneur’s point of view when the aim is to measure
profit inefficiency, because the CRS assumption implies always either unbounded
profit or zero maximal profit. Nevertheless, it would be possible to use another
alternative hypothesis on the production possibility set as NIRS (Non-Increasing
Returns to Scale), where the constraint

Pn
j¼1 kj ¼ 1 in (2.32) would be substituted

by
Pn

j¼1 kj � 1.
Before considering the profit inefficiency decomposition through the corre-

sponding Fenchel–Mahler inequality we need to define the profit deviation at point
x0; y0ð Þ.
The profit deviation at point x0; y0ð Þ is simply the deviation between the profit

function and the profit at that point, given market prices (q, p):

PD x0; y0ð Þ :¼ P q; pð Þ � py0 � qx0ð Þ: ð2:33Þ

For the sake of brevity, we write PD0 for PD x0; y0ð Þ.
Additionally, it is possible to relate a normalized term of profit deviation, called

profit inefficiency, with the inefficiency detected by the directional distance function
as follows:
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PD0

pg0y þ qg0x
�~D x0; y0; g0x; g0y

� �
: ð2:34Þ

Resorting to the Fenchel–Mahler inequality associated to RDDFM we get the
inequality

PIM;PM

0 :¼ PDM;PM

0

pgM;PM

0y þ qgM;PM

0x

� sM0 : ð2:35Þ

The left hand-side term is the profit inefficiency, PI0, which, as CI0 and RI0,
satisfies that it is homogeneous of degree 0 in prices, which makes PI0 invariant to
the currency units for the market output and input prices. Going back to the last
inequality and defining the profit allocative inefficiency as the corresponding
residual, we get the next equality:

PIM;PM

0 ¼ sM0 þAIM;PM

0 : ð2:36Þ

In other words, at point x0; y0ð Þ, profit inefficiency is decomposed into the sum
of technical inefficiency and allocative inefficiency.

Example 7.1 The Additive Model with Single Projections

Let us consider model M as the additive model, formulated before and identified as
model (2.3). Let us further consider in the “one input—one output space” the next
sample of units to be rated: 2; 2ð Þ; 6; 10ð Þ; 8; 6ð Þf g. We represent them directly on a
plane. Moreover, it is easy to realize that the first two units are efficient while the
third one is not, because it is clearly dominated by (6;10).

Fig. 2.4 Figure associated
with Example 7.1
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Graphically, there are several candidates as projection of the inefficient unit (8;6):
the point (6;10) or certain convex linear combinations of the two efficient points that
dominates point (8;6), such as point (4;6), the middle point in between (2;2) and
(6;10). Additive model M selects the one that is as far as possible, using as measure
the L1-distance. The projection is point (6;10) with a L1-path length equal to 6 (=
(8 − 6) + 10 − 6). This length is exactly the technical inefficiency, sM0 , detected by
linear program (2.3). Let us assume that the market prices are given as (q,p) = (2, 4).
The maximum profit as evaluated through program (2.32) tell us that
P 2;4ð Þ ¼ 40� 12 ¼ 28, and that it is achieved at point (6;10), as shown in Fig. 2.4,
where we have drawn the iso-profit line 4y� 2x ¼ 28. Now, since the obtained M-
projection of point x0; y0ð Þ = (8;6) is the efficient point (6;10) and sM0 = 6, we get
g0 ¼ 2

6 ;
4
6

� � ¼ 1
3 ;

2
3

� �
. Evaluating the profit deviation at the inefficient point we obtain

PD x0; y0ð Þ :¼ P 2;4ð Þ � Ps
r¼1 pryr0 �

Pm
i¼1 qixi0

� � ¼ 28� 4 � 6� 2 � 8ð Þ ¼ 28�
8 ¼ 20. Consequently, the value ofPI0 is PD0

qgM0x þ pgM0y
¼ 20

2�13þ 4�23
¼ 20

10
3
¼ 6, which is equal

to sM0 = 6. Hence, AIM0 ¼ PIM0 � sM0 ¼ 6� 6 ¼ 0.
Once again, it would be interesting if we could relate the profit deviation of the

efficient projection with the allocative inefficiency of the point being rated. The next
proposition gives us the answer.

Proposition 4 Let xM0 ; y
M
0

� �
denote the projection of x0; y0ð Þ obtained through

model M. Then, the allocative inefficiency associated to point x0; y0ð Þ can be
obtained as

AIM;PM

0 ¼ PDM;PM

0 xM0 ; y
M
0

� �
q � gM;PM

0x þ p � gM;PM

0y

¼ Pðq; pÞ � Ps
r¼1 pry

M
r0 �

Pm
i¼1 qix

M
i0

� �
q � gM;PM

0x þ p � gM;PM

0y

: ð2:37Þ

In particular, AIM;PM

0 ¼ 0 if, and only if, PDM;PM

0 xM0 ; y
M
0

� � ¼ 0.
The proof is similar to the proof of Proposition 2 and is left again to the reader.

The key of the proof is that profit at the efficient projection is equal to profit at the
inefficient point plus the technical inefficiency times the normalization factor of the
inefficient point.

2.8 Identifying, for Each Inefficient Unit, a Projection
that Minimizes Its RDDF Profit Inefficiency

For a specific inefficient unit, x0; y0ð Þ, the considered DEA single-value model
M generates a specific efficient projection, xM0 ; y

M
0

� �
. Resorting to RDDFM , we have

been able to measure and decompose its economic inefficiency. Let us focus our
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attention on profit inefficiency, knowing that a completely similar treatment can be
developed for cost or revenue inefficiency. The question that we want to tackle is
the following: is it possible to identify a different projection with better—or
lower—profit inefficiency? Let us refer to this new projection as x�0; y

�
0

� �
. Since our

additional aim is to maintain the introduced profit decomposition through the
RDDF, we will not accept the possibility of increasing some inputs and decreasing
some outputs, as Zofío et al. (2013) did.

Being our aim to reduce profit inefficiency as much as possible, we have devised
the following strategy. First of all, let us observe that according to expression (2.35)

profit inefficiency equals PDM
0

pgM0y þ qgM0x
. Hence, it is a ratio whose numerator, the profit

deviation of point x0; y0ð Þ, is fixed, and, consequently, if we want to reduce profit
inefficiency, the only action we can take is to enlarge its denominator. Therefore,
what we would like to do is to search for an efficient projection x�0; y

�
0

� �
that

maximizes this denominator. According to expression (2.2), and for any inefficient
point x0; y0ð Þ, we know that25

q � g�0x þ p � g�0y ¼
1
s�M0

q � x0 � x�0
� �þ p � y�0 � y0

� �� �
: ð2:38Þ

Hence, if we maximize q � x0 � x�0
� �þ p � y�0 � y0

� �
we are maximizing

s�M0 q � g�0x þ p � g�0y
� �

. This is not exactly what we want to do, but it is a useful proxy

that will help us to achieve our goal. In fact, assuming that s�M0 � sM0 ,
26 we obtain the

next chain of inequalities: q � gM0x þ p � gM0y¼ 1
sM0

q � x0 � xM0
� �þ p � yM0 � y0

� �� �
� 1

s�M0
q � x0 � xM0

� �þ p � yM0 � y0
� �� �� 1

s�M0
q � x0 � x�0

� �þ p � y�0 � y0
� �� � ¼ q � g�0x

þ p � g�0y, where the last inequality is true because x�0; y
�
0

� �
is the efficient point that

dominates x0; y0
� �

and, at the same time, maximizes q � x0 � x�0
� �þ p � y�0 � y0

� �
.

Consequently, let us maximize expression q � x0 � x�0
� �þ p � y�0 � y0

� �
, or,

equivalently, p � y�0 � q � x�0
� �� p � y0 � q � x0

� �
. Since the last parenthesis is a fixed

number, we simply need to maximize p � y�0 � q � x�0
� �

, i.e., the profit achieved at the
new efficient projection. Let us consider a linear program whose objective function

25The presence of the asterisk means that we are considering a new projection obtained through a
specific optimization program and not through model M. Nonetheless, model M is used for
determining the technical inefficiency associated to this new projection, which justifies the used
notation.
26The assumption is valid for DEA models that reach their projections by maximizing a certain
“distance”, such as the weighted additive model.
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maximizes profit at the efficient projection and whose restrictions guarantee that the
obtained projection belongs to T. At this point it is worth noticing that a few years
ago, the idea of getting a reference benchmark with the highest possible profit was
already suggested by Zofio et al. (2013, page 263, Footnote 3).

Maxs�;sþ ;k

Xs

r¼1

pr yr0 þ sþr0
� ��Xm

i¼1

qi xi0 � s�i0
� �

s:t:X
j2E

kjxij ¼ xi0 � s�i0; i ¼ 1; . . .;m

X
j2E

kjyrj ¼ yr0 þ sþr0 ; r ¼ 1; . . .; s

X
j2E

kj ¼ 1;

kj � 0; j 2 E

s�i0 � 0; i ¼ 1; . . .;m

sþr0 � 0; r ¼ 1; . . .; s

ð2:39Þ

Program (2.39) identifies x�0; y
�
0

� �
as a strongly efficient point that maximizes

p � y�0 � q � x�0
� �27 and, at the same time, dominates x0; y0ð Þ. The used notation
together with program (2.39) indicate that the last identified efficient point is valid
for any non-oriented M model.28 The differences will appear when we evaluate the
technical inefficiency associated to that strongly efficient point through model
M. For instance, if model M is the additive model, the associated s�M0 is the length
of the L1-path connecting x0; y0ð Þ with x�0; y

�
0

� �
, and it is very likely that s�M0 \sM0 .

Let us illustrate these findings with an easy numerical example.

Example 8.1 Maximizing the RDDF Profit Inefficiency of the Additive Model

Let us consider the next sample of points on the XY
plane: 2;2ð Þ; 3;4ð Þ; 5;7ð Þ; 11;9ð Þ; 8;3ð Þf g: Resorting to the additive model it is easy
to check that all the points are strongly efficient except the last one. In fact, point
(8,3) is dominated by point (3,4) as well as by point (5,7). Let us further assume that
the market prices are q = 1 and p = 11. Figure 2.5 below shows the graphical
representation of the sample of points as well as of the corresponding VRS efficient
frontier. We have also drawn the line associated to maximum profit, 11y� x ¼ 88.

27In DEA literature it is known that maximum profit is achieved in at least a strongly efficient
point.
28The other two possibilities are that model M is input-oriented or output-oriented. In the first case,
program [39] needs to be adjusted just by deleting the output-slacks, and symmetrically for the
output-oriented case.
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For the only inefficient point, x0; y0ð Þ ¼ 8;3ð Þ, we solve linear program (2.39)
and obtain the profit maximizing projection x�0; y

�
0

� � ¼ 8;8ð Þ, that belongs to the
facet defined by efficient points (5,7) and (11,9). The profit at point (8,8) is 80
(=11 � 8 – 1 � 8), the profit at point (8,3) is 25 (=33 − 8), while the optimal profit,
P 1;2ð Þ ¼ 88, is achieved at point (11,9). Let us now consider that model M is the
additive model. Clearly, the technical inefficiency associated to the new obtained
projection equals 5 (length of the L1-path connecting (8,3) with (8,8)). Moreover,
q � g�M0x þ p � g�M0y ¼ 1 � 0þ 11 � 5 ¼ 55. Consequently, according to expression

(2.35), the normalized profit inefficiency at point (8,3) is 88�25
55 ¼ 63

55 ¼ 1 8
55.

In order to evaluate the gain obtained by applying the new proposed strategy, let
us compare the last result with the result derived directly by applying the additive
model and evaluating the associated normalized profit inefficiency through the
RDDFM. Since the additive projection of point (8,3) is point (5,7), the corre-

sponding sM0 equals 7(=(8 − 5) + (7 − 3)) which means that gM0x; g
M
0y

� �
¼

1
sM0

x0 � xM0 ; y
M
0 � y0

� � ¼ 3
7 ;

4
7

� �
, with a normalization factor value equal to

1 � 37 þ 11 � 47 ¼ 47
7 , which gives a normalized profit inefficiency value equal to

63
47
7
¼ 63�7

47 ¼ 441
47 ¼ 9 8

47, clearly much bigger than 1 8
55.

2.9 Conclusions

The introduction, in Sect. 2.2, of the RDDF associated to DEA inefficiency model
M, denoted as RDDFM;PM

, has allowed us, for the first time, to express any DEA
model as a DDF. The key idea is that the RDDF maintains exactly the same

Fig. 2.5 Figure associated
with Example 8.1
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projections as the original DEA model. However, if the original DEA model has
multiple projections for at least one inefficient unit, we are able to define as many
RDDFs as combinations of single projections we can perform. For the case of the
weighted additive model we have included, in Appendix 1, a new method for
identifying different projections at each inefficient point. Which projection to
choose will depend on secondary criteria that will guide our final selection.

Our new introduced tool is also relevant for transforming a weak DDF into a
comprehensive measure or strong DDF. Moreover, any DEA inefficiency measure
can also be transformed into its comprehensive version, by applying the RDDF
technique twice. In particular, we have shown how to transform a radial model into
a comprehensive one that is likely to lose its radial type of projection, as well as its
one-sided orientation.

The first introduced (multiplicative) decomposition of economic efficiency, cost
efficiency in particular, was due to Farrell, designed specifically for radial models.
In the nineties Chambers, Chung and Färe proposed an additive decomposition of
economic inefficiency, cost, revenue or profit, based on the DDF. So far, the
subsequent proposed approaches for estimating and decomposing economic inef-
ficiency have been all additive in nature and have emerged during the last lustrum.
As explained in Sect. 2.1, the models that have captured the attention of the
researchers in DEA were the weighted additive model, the output-oriented weighted
additive model, and the two Russell oriented models. The new RDDF introduced in
this chapter is responsible for defining the cost, revenue or profit inefficiency of any
DEA inefficiency measure as well as their additive decomposition into its technical
and allocative components. Hence the proposed solution constitutes a unified DEA
approach that benefits from the known Fenchel–Mahler inequality established for
DDFs.

Finally, two additional issues have been considered and solved. First, a linear
programming procedure has been devised for identifying a new projection for each
inefficient unit where profit inefficiency is minimized. And secondly, in Appendix
1, we have shown how to generate alternative optimal solutions in connection with
additive type models.

Appendix 1

How to Search for Alternative Optimal Solutions
When Using a Weighted Additive Model

The additive model has been introduced in Sect. 2.3, while the weighted additive
model (Lovell and Pastor, 1995) has been described at the beginning of Example
4.1. Just as a reminder, the weighted additive model has the same set of restrictions
as the additive model but differs in its objective function. In fact, while the objective
function of the additive model is the sum of input-slacks and output-slacks, the
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weighted additive model considers as objective function a weighted sum of
input-slacks and output slacks, where the attached weights are all non-negative and
at least one of them must be positive. Since any particular weight can be 0, the
input-oriented or output-oriented weighted additive models are particular cases of
weighted additive models. Moreover, weighted additive models are VRS models,
because the convexity constraint is one of its restrictions. It is easy to consider CRS
weighted additive models just by deleting from the set of restrictions the mentioned
constraint, or even to consider non-increasing returns to scale (NIRS) or
non-decreasing returns to scale (NDRS) additive models, by changing slightly the
convexity constraint, transforming the equality into an inequality (� 1 for NIRS or
� 1 for NDRS). Here, as in the rest of the chapter, we will deal exclusively with
VRS models, but it is not difficult to derive the corresponding conclusions for
non-VRS weighted additive models.

Assume that, for a given inefficient unit x0; y0ð Þ we have obtained a first optimal

projection identified as xp10 ; yp10
� �

through the weighted additive model. This pro-

jection is always a strongly efficient point. Now we want to search for the existence
of alternative optimal solutions, that is, alternative optimal slack values. Let us
denote as w�

i ; i ¼ 1; . . .;m the weights associated to the input-slacks and as
wþ
r ; r ¼ 1; . . .; s the weights associated to the output slacks in the objective func-

tion. Then, the optimal value of the objective function equalsPm
i¼1 w

�
i xp1i � xi0
� �

+
Ps

r¼1 w
þ
r yp1r � yr0
� � ¼ Pm

i¼1 w
�
i s

��
i0 þ Ps

r¼1 w
þ
r sþ�

r0 ,

which is a fixed number, let us say v�. Knowing v�, we are able to generate as much
as 2mþ 2s optimal solutions through the procedure proposed next.

Procedure Consider the following linear program, which is equivalent to (2.3)
except for the presence of non-negative weights in the objective function.

WAdd x0; y0ð Þ ¼ Maxs�;sþ ;k

Xm
i¼1

w�
i s

�
i0 þ

Xs

r¼1

wþ
r sþr0

s:t:
Xn
j¼1

kjxij ¼ xi0 � s�i0; i ¼ 1; . . .;m

Xn
j¼1

kjyrj ¼ yr0 þ sþr0 ; r ¼ 1; . . .; s

Xn
j¼1

kj ¼ 1;

kj � 0; j ¼ 1; . . .; n;

s�i0 � 0; i ¼ 1; . . .;m; sþr0 � 0; r ¼ 1; . . .; s

ð2:40Þ

As said before, and to simplify the notation, we write v� :¼WAdd x0; y0ð Þ.
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In order to search for alternative optimal solutions, we further solve the next pair
of linear programs for each input slack, s�k0; k 2 1; . . .;mf g and each output slack,
sþl0 ; l 2 1; . . .; sf g:

Maxs�;k s�k0ðor sþl0 Þ
s:t:
Xn
j¼1

kjxij ¼ xi0 � s�i0; i ¼ 1; . . .;m

Xn
j¼1

kjyrj ¼ yr0 þ sþr0 ; r ¼ 1; . . .; s

Xn
j¼1

kj ¼ 1;

Xm
i¼1

w�
i s

�
i0 þ

Xs

r¼1

wþ
r sþr0 ¼ v�

kj � 0; j ¼ 1; . . .; n;

s�i0 � 0; i ¼ 1; . . .;m; sþr0 � 0; r ¼ 1; . . .; s

s�i0 � 0; i ¼ 1; . . .;m; sþr0 � 0; r ¼ 1; . . .; s;

ð2:42Þ

and

Mins�;k s�k0ðor sþl0 Þ
s:t:
Xn
j¼1

kjxij ¼ xi0 � s�i0; i ¼ 1; . . .;m

Xn
j¼1

kjyrj ¼ yr0 þ sþr0 ; r ¼ 1; . . .; s

Xn
j¼1

kj ¼ 1;

Xm
i¼1

w�
i s

�
i0 þ

Xs

r¼1

wþ
r sþr0 ¼ v�

kj � 0; j ¼ 1; . . .; n;

s�i0 � 0; i ¼ 1; . . .;m; sþr0 � 0; r ¼ 1; . . .; s;

ð2:43Þ

which means that we propose to solve 2m + 2s linear programs. Any of these
programs searches for a possibly alternative optimal projection due to the addition
of the last linear restriction

Pm
i¼1 w

�
i s

�
i0 þ

Ps
r¼1 w

þ
r sþr0 ¼ v�.
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Example A.1.2 Searching for Alternative Optimal Solutions

Let us consider in the two input—one output space the next sample of units: U1
(1,6;3), U2(2,6;4), U3(6,2;4), U4(6,1;3) and U5(8,7;2). Let us work with the
additive model, which is a weighted additive model where all weights equal 1. It is
easy to check that the first four units are extreme strongly efficient and that U5 is
inefficient. The projection we get resorting to Excel-Solver is point U3, with an
optimal value equal to 9.

Now we start searching for alternative optimal solutions, with v* = 9, by con-
sidering each of the maximizing models gathered in (2.42). For the objective
function s�15 we get U1 as a new alternative optimal solution, while for the objective
function s�25 we also get U4 as a new solution. Finally, for sþ5 as the objective
function we once more get U3 as solution. Going over to the minimizing models
included in (2.43), and starting again with s�15 as the objective function we get U3 as
the optimal solution. For the objective function s�25 we get U1 as the solution and
last, for the objective function sþ5 we get also U1 as the solution. Hence our
procedure has identified U1, U3 and U4 as alternative optimal solutions, but has not
been able to identify the remaining one, U2. This is a very easy example. In practice
it is difficult that optimal solutions are single points. In general, solving linear
programs as proposed in (2.42) and (2.43) is the sensible way we propose. A final
point is worth mentioning. Under VRS, once we have identified three different
optimal solutions, all the convex combinations of them are also optimal, which
means that we have generated a non-finite number of optimal solutions.

How to Search for Alternative Optimal Solutions When
Using a DEA Model with the Same Restrictions
as the Additive Model

The last proposed method designed for the weighted additive model can be
extended to any other DEA model with the same set of restrictions as the additive
model as long as the last added restriction is linear or can be linearized. This
happens, for instance, with the “slack-based measure” (Tone, 2001), which is
equivalent to the “enhanced Russell graph measure” (Pastor et al. 1999), whose
objective function is not linear but fractional. In this case the added non-linear

restriction is
1�1

m

Pm

i¼1

s�
i
xi0

1þ 1
s

Ps

r¼1

sþr
yr0

¼ v�, that can be linearized just by transposing its left

hand-side denominator. The same happens with the translation invariant measure
proposed by Sharp et al. (2007).
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Chapter 3
On Measuring Technological Possibilities
by Hypervolumes

Mette Asmild and Jens Leth Hougaard

Abstract Measuring technological possibilities is a somewhat neglected topic in
the productivity analysis literature. We discuss existing methods as well as an
obvious alternative measure based on hypervolumes. We illustrate the use of a
volume-based measure on an empirical case of demolition projects from two dif-
ferent companies and suggest ways of overcoming some issues related to the
practical implementation. Finally, we discuss pros and cons of the various
approaches.

Keywords Program efficiency � Group comparisons � Technology index �
Technological possibilities � Hypervolume

3.1 Introduction

In 2008 a major Danish demolition firm acquired another smaller, but presumably
more efficient demolition firm. The question is now whether the former firm
actually acquired a superior technology by this acquisition or whether the smaller
firm was simply more efficient given the same, or possibly even worse, techno-
logical possibilities.

This is but one example of a question often relevant to productivity studies,
where it might be interesting to determine whether one production technology,
represented by a subsample of observed production plans, is superior to another
technology (represented by another subsample of feasible production plans). One
might, for example, question whether the regulatory framework of US banks pro-
vides better production possibilities than that of their European counterparts,
whether the railway reforms in Europe have resulted in improved production
possibilities over time for railway operations or whether one organizational form is
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better than another, for instance, whether cooperatives offer better production
possibilities than investor owned firms.

In the literature on productivity and efficiency analysis surprisingly little atten-
tion has been devoted to the issue of quantifying (differences in) technological
possibilities. In the present paper we discuss and criticize the existing approaches
and introduce an obvious alternative candidate based on hypervolumes.

We address practical challenges such as volume calculation of free disposal as
well as convex hulls of the data points and the associated problem of sample size
bias when comparing the index values for differently sized subsamples. This
enables us to answer our opening question of whether one company provides
superior technological possibilities to another. Our subsequent empirical analysis of
the demolition projects of the two companies reveals that the acquisition did not, in
fact, provide a superior technology but instead the projects in the acquired company
had a higher average efficiency, likely due to better management.

3.2 Motivation and Relation to the Literature

Within the non-parametric efficiency literature (see e.g., Cooper et al. 2007) pro-
duction technologies are represented by estimated frontiers and efficiency of
observed production plans is measured relative to these.

A seminal paper by Charnes et al. (1981), suggests a method to determine
whether one group of observations is superior to another. First, they identify and
then remove what is termed “managerial inefficiency” (i.e., within-group technical
inefficiency) of each observation. Second, the adjusted observations from the dif-
ferent groups are compared to the production frontier estimated from the pooled set
of observations. The distributions of efficiency scores from each group are then
compared in order to evaluate so-called “program efficiency” (or, more generally,
group efficiency). In this specific case it is concluded that the one program
(PFT) “has not demonstrated its superior efficiency” (p. 688 op. cit.) despite
involving additional expenditures and therefore should not be preferred. Having
reached that conclusion, no attempt to define global measures of technological
possibilities was made. Charnes et al. do, however, mention the potential use of
stochastic dominance as a way to order the group efficiency distributions.

Practical use of a pooled frontier is not problem-free though. If the technology is
assumed to be convex as, for example, in Data Envelopment Analysis (DEA), it is
important to notice that the use of a pooled frontier requires that it is meaningful to
assume convexity not only within the groups but also between the groups. Clearly
this may be questionable if, for instance, units operate under two different regu-
latory frameworks, and these may often be the very cases that are interesting to
compare.

Subsequent to Charnes et al. (1981), only few theoretical developments have
considered how to compare the technological possibilities of one group of obser-
vations relative to another. Brocket and Golany (1996) develop non-parametric rank
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statistics for comparing program efficiency distributions. Cummins et al. (1999)
introduce what they call cross-frontier analysis, where one group’s observations are
compared to the other group’s frontier relying on an assumption of constant returns
to scale. Note that comparing observations to a frontier defined from a different set
of observations necessitates the use of so-called super-efficiency scores, cf.
Andersen and Petersen (1993). For further details of these and related approaches to
measuring group performance see e.g. the review in Camanho and Dyson (2006).

The approach we develop in the following does not depend on assumptions of
convexity nor does it rely on the notion of a pooled frontier. However, as we see it,
the main problem of the approaches mentioned above can be illustrated by the
following simple example:

Example 1 Consider the figure below illustrating a case of two groups of obser-
vations (sub-samples) A ¼ fa1; a2g and B ¼ fb1; b2g in the 2-input space (for fixed
level of output).

First we notice that all observations are managerially efficient relative to the
estimated technology for their own group when measured by the radial Farrell
efficiency index (Farrell 1957).1

If we compare the observations to a pooled frontier (of the data set A[B) it can
be noticed that observation b2 is more inefficient than observation a1, whilst b1 and
a2 are both on the pooled frontier, and consequently group A appears to be superior
to group B.

Moreover, the cross-frontier analysis of Cummins et al. (1999) yields the same
conclusion since b1 and a2 have the same super efficiency scores relative to the
other group’s frontier whilst b2 is less efficient relative to A’s frontier than a1 is
relative to B’s frontier.

Now, say that we move one observation, here b2 2 B, to group A. From Fig. 3.1
it is clear that this does not change the estimated technologies for neither group
A nor B since b2 is (weakly) dominated relative to both groups. In other words,
moving observation b2 to group A should not affect the conclusion that the pos-
sibilities in group A are superior to those in group B.

Yet, using the program efficiency approach we now get that group B becomes
superior to group A since B now has all its observations (b1) on the pooled frontier
while A contains both a1 and b2 which are inefficient relative to the pooled frontier,
also if b2 is first made technically efficient relative to A’s frontier.

Similarly, for the cross-frontier analysis we find that B is now superior to A since
B’s mean advantage over A is larger than A’s mean advantage over B as measured
by the traditional radial efficiency and super-efficiency indexes.

We submit that moving one observation (which represents a production possi-
bility) from the inferior group to the superior group should not make the superior
group worse nor make the inferior group better in terms of technological

1The fact that observation b2 is a dominated boundary point is not of importance here—it could
have been strongly efficient as well. The example is chosen such as to make our argument as
simple and clear as possible.
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possibilities. In other words, adding a possibility can never make a group worse
(since either it is dominated by something already observed and adds no new
possibilities, or it is undominated and thereby improves what has been observed so
far) and likewise removing a possibility can never make a group better in terms of
technological possibilities. Δ

Another strand of the literature investigates differences between technologies for
subgroups within a dataset by considering variations of the Malmquist index and in
particular its frontier shift component (see e.g. Färe et al. 1994, 1998). Here the
efficiencies of observed production plans are estimated relative to the frontiers for
the different time periods and the ratio of a point’s distances to the different frontiers
indicates the extent to which the frontier has shifted between the time periods. The
standard Malmquist index approach is typically limited to studying changes over
time within balanced panel data, but the recently developed Global Malmquist
Index, and in particular its global frontier shift component, can be used more
generally to compare frontier differences between any subgroups within a data set,
see Asmild and Tam (2007).

Note, however, that the use of Malmquist indexes requires an assumption of
constant returns to scale of the production technology in order to ensure that the
mixed period (or, more generally, cross-frontier) radial efficiency scores of all
observations are well defined. Alternatively, one might use a Luenberger indicator
based on the traditional directional distance functions, with g = (x, y), which avoids
infeasibilities (see Briec and Kerstens 2009) yet this may yield inconsistent results
according to Aparicio et al. (2013). Either way, frontier difference measures depend
on the choice of efficiency index, and one might argue that comparisons of pro-
duction possibilities should be independent of the measurement of efficiency of
individual production plans.

Fig. 3.1 Subsets A and B in a 2-input space (for the same output level)
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Since we aim to measure the extent (or size) of the production possibilities an
index related to the volume of production possibility sets seems an obvious can-
didate and has, in fact, also been analyzed in the social choice literature related to
the notion of economic freedom (e.g., Kolm 2010; Savaglio and Vannucci 2009).

3.3 The Hypervolume Index

Let x 2 Rs be an s-dimensional vector of inputs, let y 2 Rt be a t-dimensional
vector of outputs and let z ¼ ðx; yÞ 2 Rs � Rt be a feasible production plan, i.e.,
x can produce y. Let Z be a finite set of such feasible production plans z. Moreover,
let

bZ ¼ ðzmin þRsþ t
þ Þ \ ðzmax � Rsþ t

þ Þ

where

zmin ¼ ðmin
Z
fz1g; . . .;min

Z
fzsþ tgÞ and zmax ¼ ðmax

Z
fz1g; . . .;max

Z
fzsþ tgÞ;

be the smallest sþ t-dimensional hypercube containing Z.
For A� Z let DðAÞ ¼ fðx; yÞ 2 Rs � Rtj9ðxa; yaÞ 2 A : xa � x; ya � yg be the set

of points dominated by some point in A, i.e., the dominance set of A.
Likewise, for any subset A� Z and the hypercube bZ , we define the hypercube-

restricted free disposal hull of A as

DðA; bZÞ ¼ DðAÞ \ bZ : ð3:1Þ

Now, for any subset A� Z and the hypercube bZ let ðA; bZÞ denote a problem (of
technological possibilities). In particular we say that a problem is well-behaved if
DðA; bZÞ � Rsþ t. Denote by Z� the set of all possible well-behaved problems.

A technology index on Z�, associates with each well-behaved problem ðA; bZÞ an
index value IðA; bZÞ 2 Rþ .

Let A and B be subsets of a given set Z. If IðA; bZÞ � ð[ ÞI ðB; bZÞ we say that
A offers weakly (strictly) better production possibilities than B (given Z).

Given the hypercube bZ , define a Lebesgue-type volume-based technology index
IV as follows:

IV ðA; bZÞ ¼ VolðDðA; bZÞÞ
VolðbZÞ 2 ½0; 1	; ð3:2Þ

where Volð�Þ is the volume operator. Note that ðA; bZÞ 62 Z� ) IVðA; bZÞ ¼ 0; i.e.,
for problems that are not well-behaved the volume-based index is 0.
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Since for arbitrary subsets A;B � Z,

VolðDðAÞÞ ¼ VolðDðAÞnDðBÞÞþVolðDðAÞ \DðBÞÞ;

we have that,

IV ðA; bZÞ[ IV ðB; bZÞ , Volð½DðAÞnDðBÞ	 \ bZÞ[Volð½DðBÞnDðAÞ	 \ bZ : ð3:3Þ

Thus, if the volume-based index IV is higher for A than for B this is equivalent to
the volume of A’s “advantage” over B being greater than the volume of B’s “ad-
vantage” over A. Note that the global frontier shift measure of Asmild and Tam
(2007) is in fact a discrete (density weighted) approximation of the difference in
these “advantages”.

Finally, we note that the above framework easily extends to situations where
further assumptions on the underlying technologies, for example convexity, are
made. As will become clear below, assuming convexity actually simplifies the
involved volume calculations.

3.4 Practical Aspects

When it comes to practical application of the index IV two main issues arise:
(1) Computation of volumes and; (2) Sample size bias.

3.4.1 Volume Calculation

Free disposal hull computations While the volumes involved in definition (3.2)
are well defined in a mathematical sense, practical calculation of these volumes of
box-restricted free disposal hulls in multidimensional spaces is rather cumbersome.
Yet, by now there exist several algorithms including the one in Knowles and Corne
(2003) with estimated time complexity Oðksþ tþ 1Þ where k ¼ jA\EðAÞj, i.e., the
number of undominated elements in A; and the one in Fleischer (2002), with
polynomial time complexity Oðk3ðsþ tÞ2Þ.
The algorithm in Fleischer (2002) builds on the natural idea of successively lopping
off (parts of) dominance sets and adding these volumes to a partial sum. The
procedure then ends when there is no more volume to lop off. While such an
algorithm is for exact calculation there also exist faster approximation algorithms
based on Monte Carlo sampling, see e.g., Bader and Zitzler (2011).

Convex hull computations In case the volumes are determined by convex
envelopment of the data points (instead of free disposal hulls), the volumes can be
determined using the software QHULL building on the Quickhull algorithm by
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Barber et al. (1996). This does, however, require that all extreme points are pro-
vided, which for a variable returns to scale model as in our empirical illustration
below, means the (efficient) observations as well as the intersections between their
dominance sets and bZ .

3.4.2 Sample Size Bias

While the hypervolume technology index enable a direct comparison of any two
sub-samples, it is worth noting that the index value will be biased in the sense that
sets with larger number of observations are more likely to get a larger index value.
To investigate the extent of this potential problem we first consider a Monte Carlo
simulation study before outlining a practical (resampling based) solution procedure.

Monte Carlo illustration To illustrate the problem of sample size bias we have
performed the following Monte Carlo simulation study: Consider the 1-input,
1-output case where the output is uniformly distributed, U½0; 1	, the true production
technology is given by a Cobb-Douglas function y ¼ x2 and the input inefficiency
follows a half-normal distribution. That is, for each observation, first draw an output
level and find the corresponding true (efficient) input level. Next, we draw an
inefficiency level and add this to the efficient input level.

For the different numbers of observations in the two sub-samples A and B shown
in Table 3.1, we performed the above procedure for each observation. For each
sub-sample we have computed the index value IV defined in (3.2) and comparing
these shows which sub-sample would appear to offer better production possibilities.
Repeating this 10,000 times for each cell in the table we then summarize the
proportion of times that sub-sample A is deemed better than sub-sample B.

Since the observations in the two sub-samples are drawn from the same
underlying technology we would expect that sub-sample A should be preferred 50%

Table 3.1 Monte Carlo simulation (average from 10000 simulations in each cell) of the
percentage of times A is preferred to B for different sample sizes

# of obs. in B

20 30 40 50 60 70 80 90 100

# of obs. in A 20 0.499 0.277 0.150 0.083 0.044 0.022 0.011 0.008 0.005

30 0.496 0.325 0.208 0.132 0.078 0.050 0.031 0.021

40 0.498 0.360 0.250 0.162 0.112 0.077 0.055

50 0.499 0.382 0.282 0.208 0.151 0.109

60 0.505 0.391 0.307 0.230 0.176

70 0.501 0.405 0.332 0.254

80 0.504 0.412 0.343

90 0.509 0.420

100 0.501
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of the time if there was no sample size bias. Indeed, this can be seen from the
diagonal in the table where the sub-samples are of the same size and we see values
very close to 0.5. However, moving away from the diagonal we see that the
probability of sub-sample A being deemed better than B decreases rapidly when
sub-sample A becomes smaller than sub-sample B.

Resampling approach To overcome the problem of sample size bias evident from
the simulation results presented above, we suggest the following simple approach
based on resampling from the larger sample size: Let nA and nB denote the number
of observations in subsamples A and B respectively and assume, without loss of
generality, that nA [ nB. Then we suggest to select nB observations from subsample
A, calculate the corresponding volume-based index and repeat this a large number
of times to arrive at an empirical distribution for the index value for A if this sample
had been of the same size as B, in effect doing a “delete (nA � nB) jackknife”. From
the resulting distribution of the sample-size reduced index for A, we can find the
average (sample-size reduced) index value, and a corresponding confidence interval
determined by the appropriate quantiles in this empirical distribution, which can
then be compared to the index value for subsample B.

Alternatively one could consider bootstrapping, with replacement, nB observa-
tions from both A and B and compare their resulting means/distributions. For details
of jackknifing and bootstrapping see e.g., Efron (1982) and Shao and Tu (1995).

3.5 Empirical Illustration

To illustrate the suggested approach we consider the empirical case of a large
Danish demolition company acquiring a smaller competitor mentioned in the
introduction. In order to determine whether this acquisition provided access to a
superior production technology, we compare the two subsets of projects undertaken
by the two companies. The projects of both companies are described by the same
three inputs (machine costs, labour costs and other costs) and the same single output
(revenue), for which the averages are shown in Table 3.2.

A straightforward way of comparing the two subsets of projects would be to
compare their average efficiencies relative to the pooled frontier, which in a DEA
model with variable returns to scale (the BCC model of Banker et al. 1984) reveals
that the 34 projects from the smaller newly acquired company has an average

Table 3.2 Numbers of projects and mean costs and revenues for the mother company and the
acquired company

# projects Machine costs Labour costs Other costs Revenue

Mother 135 293,973 381,696 1,019,005 1,988,614

Acquired 34 33,067 129,145 466,932 741,470

Total 169 241,483 330,887 907,937 1,737,710
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efficiency score of 71.7% compared to an average of 66.3% for the 135 projects
from the mother company. Thus one might be tempted to conclude that the
acquisition is superior to its mother, but such a comparison does not consider the
technological possibilities represented by the two subgroups of projects. In fact, this
can be analyzed using the program efficiency approach of Charnes et al. (1981)
where we find that the cumulative program efficiency distribution of the mother
company consistently lies below that of the acquired company (cf. Fig. 3.2), i.e.,
the technology of the mother appears to be superior to that of the acquired
company.

It is, however, clear from Table 3.2, that the mother company on average has
larger, and more machine intensive, projects than the acquired company. Therefore
one might question the appropriateness of using a pooled frontier when estimating
the projects’ efficiencies and assessing the technological possibilities.

Looking first at the volume-based index we find that the index value for the 34
projects from the acquired company is 0.167 whereas the index value for the 135
projects from the mother company is 0.667. Due to the differences in sample sizes,
these two values can not be compared directly and we therefore resample by
repeatedly drawing 34 observations from the larger subsample. After 100,000
replications this leads to an average (sample-size reduced) index value of 0.461
with an empirical distribution shown in Fig. 3.3.
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From Fig. 3.3 it is obvious that the average index value for the mother company
is larger than that for the acquisition, even if the former is controlled for the sample
size bias. This is further confirmed by the empirical 95% confidence interval for the
(sample-sized reduced) mean index value of [0.29; 0.60] which does not contain the
index value of 0.167 for subsample B.

This can then be contrasted to the initial result that the acquisition had a higher
average efficiency relative to the pooled frontier. Thus, what was acquired was not a
superior technology but rather a better management of the projects in the new
company, which the mother company would do well in preserving in the merged
company and ideally try to implement on all new projects.

3.6 Discussion

The hypervolume index is in many ways an obvious candidate for measuring the
extent of the technological possibilities and above we have illustrated its usage and
discussed how to overcome practical aspects of its operationalization.

However, the use of this index is not problem free as the volumes and subse-
quent ordering of subsets depend on the chosen hypercube bZ . Here we have chosen
to define bZ as the smallest hypercube containing all observations but any set
covering the observations can in principle be used.

The reason we need the hypercube (or alternative coverings) is first of all so the
volumes are bounded and secondly in order to make the index scale invariant
which clearly is a desirable property. This solution however, implies the depen-
dence on the chosen hypercube. Imagine that an additional observation is added to
the data set. Even if this observation is dominated it may still affect the definition of

Fig. 3.3 Distribution of
sample size reduced
hypervolume index values for
the mother company

68 M. Asmild and J.L. Hougaard



the hypercube bZ and thus the ordering of the subsets. Thus, it violates a property we
could call independence of irrelevant observations.

Other desirable properties could include a weak version of dominance which can
be called monotonicity in possibilities meaning that if A has a higher index value
than B then moving an observation from B to A cannot result in B getting a higher
index value than A. As shown in Example 3.1 in Sect. 3.2 this property is violated
by existing methods, yet it is easily shown that this is satisfied by the hypervolume
index.

It remains an open question whether it is possible to construct a technology
index satisfying even just these desirable properties. So at present the choice of
index should be guided by the importance of the various properties for the specific
application at hand.
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Chapter 4
Loss Distance Functions and Profit
Function: General Duality Results

Juan Aparicio, Fernando Borras, Jesus T. Pastor and Jose L. Zofio

Abstract The concept of loss distance functions is introduced and compared with
other functional representations of the technology including the Hölder metric
distance functions (Briec and Lesourd in J Optim Theory Appl 101(1):15–33,
1999), the directional distance functions due to Chambers et al. (J Econ Theory 70
(2):407–419 1996; J Optim Theory Appl 98(2):351–364 1998), and the Shephard’s
input and output distance functions as particular cases of the directional distance
functions. Specifically, it is shown that, under appropriate normalization conditions
defined over the (intrinsic) input and output prices, the loss distance functions
encompass a wide class of both well-known and much less known distance func-
tions. Additionally, a dual correspondence is developed between the loss distance
functions and the profit function, and it is shown that all previous dual connections
appearing in the literature are special cases of this general correspondence. Finally,
we obtain several interesting results assuming differentiability.
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4.1 Introduction

The usual starting-point of the modern theory of production is the production
possibility set; i.e., all production plans available for the producer. Given a set of
postulates about the features of the production possibility set, several functions of
great interest from an economic perspective can be derived and characterized. In
particular, the analysis related to the theory of the firm leads to a set of well-known
functions. We list the most relevant below:

(a) The production function or, in general, a transformation function;
(b) The profit function;
(c) The cost function;
(d) The revenue function;
(e) The output supply function, for each output, and the input demand function,

for each input.

The theory of the firm through duality takes any of the above functions as a
starting-point and derives the properties of the others as counterparts. In addition,
under suitable conditions, it is possible to recover one function from the other one
and conversely. So, for example, the duality allows us to establish that the pro-
duction function contains enough information about the production process so as to
derive useful economic information about the firm (profit function, supply and
demand functions, etc.). Indeed, duality theory has resulted in two significant
breakthroughs in microeconomics. First, due to its econometric implications,
duality theory enables us to derive systems of demand and supply functions which
are consistent with the behaviour of the producer. Secondly, it allows us to derive
the well-known comparative statics theorems as an alternative to those originally
deduced by Samuelson (1947).

Based on duality theory, we provide new links between the production model
and the optimizing behaviour of the producer. Hotelling (1932) was the first to
introduce the profit function and state his famous lemma in the one output case.
Hotelling’s lemma is the key to obtaining expressions for the input demand and
output supply functions assuming simply first order differentiability. Samuelson
(1953–54) introduced the concept of the variable profit function and studied some
of its properties. Debreu (1959), Gorman (1968) and McFadden (1966, 1978) have
also studied the properties of the profit function. In particular, Gorman and
McFadden showed that if the production possibility set satisfies certain regularity
conditions then the profit function may be used to determine the set of all feasible
plans for the firm. In this respect, suitable functional forms for profit functions have
been discussed, for example, by Diewert (1973). Diewert (1974, 1982) provides
additional references and historical notes.

To represent the production possibility set, it is usual to resort to a simple
equation representing the production function, in the single output case, or the
transformation function, in the general multi-input multi-output case. The existence
of such an equation is not obvious [see Shephard (1970, Chap. 3)]. For this reason,
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among others, it seems useful to search for functions that allow identifying sub-
stitution alternatives between inputs given an output, or between outputs given an
input, in an easy way. These functions are referred as distance functions in the
literature.

One of the most important contributions to the distance function representation
of the technology is the work pioneered by Shephard (1953, 1970). He defined the
well-known input and output distance functions and established several dual rela-
tionships. Later, Färe and Primont (1995) developed a dual correspondence
between Shephard’s distance functions and the profit function. In recent years there
has been growing interest in the duality theory and distance functions. First,
Luenberger (1992a, b) and later Chambers et al. (1996, 1998) and Briec and
Lesourd (1999), have contributed a series of studies along this line. Specifically,
Luenberger introduced the concept of the benefit function as a representation of the
amount that an individual is willing to trade, in terms of a specific reference
commodity bundle, g, for the opportunity to move from a consumption bundle to a
utility threshold. Luenberger also defined a so-called shortage function, which
basically measures the distance in the direction of a vector g of a production plan
from the boundary of the production possibility set. In other words, the shortage
function measures the amount by which a specific plan is short of reaching the
frontier of the technology. In recent times, Chambers et al. (1996, 1998) redefined
the benefit function and the shortage function as efficiency measures, introducing to
this end the so-called directional distance function. They showed that the directional
distance function encompasses, among others, Shephard’s input and output distance
functions. They also derived a dual correspondence between the directional distance
functions and the profit function that generalized all previous dual relationships.
Later, Briec and Lesourd (1999) introduced the so-called Hölder metric distance
functions intending to relate the concept of efficiency and the notion of distance in
topology. Along this line, they proved that the profit function can be derived from
the Hölder metric distance functions and that these distance functions can be
recovered from the profit function. Another related recent paper is by Briec and
Garderes (2004), who tried to generalize the Luenberger’s benefit function. Their
generalized benefit function is intimately related to topological norms, constituting
a shortfall. In fact, they cannot encompass the case of the benefit function when the
reference vector g has some zero components, since then the norm associated with
g does not satisfy a basic property: If we denote by �k kg the norm associated with
vector g, it does not satisfy zk kg¼ 0, if and only if z is the null vector.

In this study we introduce a new family of distance functions, termed loss
distance functions in the spirit of Debreu (1951), and show that they encompass the
Hölder metric distance functions, the directional distance functions, and therefore
Shephard’s input and output distance functions—as they represent particular cases
of the directional distance functions, see Chambers et al. (1998). Moreover, our
approach allows us to define and to study new distance functions, by simply
modifying arbitrarily a set of normalization conditions. Along this line, we will
establish a general dual correspondence between the new distance functions and the
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profit function, and we will show that all previous dual relations proposed in the
literature are special cases of this general result.

Most of the ideas about the loss distance functions have been influenced by the
seminal 1951 article of Gerard Debreu. Debreu (1951) introduced a well-known
radial efficiency measure, which he named the “coefficient of resource utilization”.
He derived this scalar from the much less well-known dead loss function that
characterizes the monetary value of the inefficiencies, and which is to be minimized.
The minimization problem originally proposed by Debreu was Min

z;pz
pz z0 � zð Þf g,

where z0 is a vector representing the actual allocation of resources, z is a vector
belonging to the set of optimal allocations and pz is a vector of the corresponding
set of intrinsic or shadow price vectors for z. Debreu named the optimal value of
this problem “the magnitude of the loss”, and he pointed out that “pz is affected by
an arbitrary positive scalar”. The influence of this multiplicative scalar means that
the magnitude of the loss can be driven to zero by appropriately scaling all com-
ponents of pz. In order to eliminate the arbitrary multiplicative factor affecting all
the prices, Debreu proposed to divide the objective function by a price index,
reformulating the original problem as

Min
z;pz

pzðz0 � zÞ=pzzf g; or; equivalently; as Max
z;pz

pzz=pzz0f g:

Additionally, Debreu proved that an optimal solution to the above maximization
problem is z� ¼ q � z0, where the scalar q(0\q� 1) is the coefficient of resource
utilization mentioned above.

Debreu studied an economic system consisting of two activities, production and
consumption, and allowing for three sources of economic loss: underemployment
of resources, inefficiency in production and imperfection of the economic organi-
zation. We simplify matters by studying the production activity of an economic
system having one source of loss, which Debreu calls “the technical inefficiency of
production units.” In a production context we can use the minimization of the loss
function introduced by Debreu to evaluate the technical efficiency of any producer,
assuming that the optimal producers have shadow prices affected by a positive
scalar unless a normalization scheme is introduced. Note, however, that dividing the
objective function above by a price index, as Debreu did, is not the only way to
eliminate the arbitrary multiplicative factor problem. Thus, throughout the paper we
will use a set of normalization restrictions on the shadow prices, which will include
a wide variety of normalization conditions.

Other more recent references on overall efficiency and duality in a Data
Envelopment Analysis context are Cooper et al. (2011), Aparicio and Pastor (2011),
Aparicio et al. (2013), Färe et al. (2015), and Aparicio et al. (2015).

The remaining of this paper unfolds as follows. In Sect. 4.2 we lay down the
basic assumptions and define the new concept of the loss distance function. In
Sect. 4.3, we discuss certain open questions about the normalization set. In
Sect. 4.4, we study the basic properties of the loss distance function and establish
two main theorems related to duality. Moreover, we show that the Hölder metric
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distance functions, the directional distance functions and Shephard’s input and
output distance functions are particular cases of the loss distance functions, con-
sidering a specific normalization set in each case. Finally, we assume differentia-
bility and prove several interesting results in Sect. 4.5. Section 4.6 concludes.

4.2 Loss Distance Functions

An economy consists of a number of agents, the role of each of them being to select
a plan of action. In the case of producers, their demand for inputs and supply of
outputs. A producer is characterized by the limitations on his/her selection, and by
the choice criterion (i.e., economic behaviour). The production plan is constrained
to belong to a given production possibility set, which represents essentially his/her
limited technological knowledge.

Let x 2 Rm
þ denote a vector of inputs and y 2 Rs

þ a vector of outputs; the
production possibility set (or technology) T is given by

T ¼ ðx; yÞ 2 Rmþ s
þ : x can produce y

� �
: ð4:2:1Þ

In this paper, we assume that T is a subset of Rmþ s
þ that satisfies the following

postulates (see Färe et al. 1985).

(P1) T 6¼ £;
(P2) T xð Þ :¼ u; yð Þ 2 T : u� xf g is bounded 8 x 2 Rm

þ ;
(P3) x; yð Þ 2 T ; x;�yð Þ� x0;�y0ð Þ ) x0; y0ð Þ 2 T , i.e., inputs and outputs are

freely disposable;
(P4) T is a closed set;
(P5) T is a convex set.

The producer choose the production plan in T, for a given set of prices, that
maximizes profit, i.e., the sum of all properly discounted anticipated future receipts
minus the sum of all properly discounted anticipated future outlays (see Debreu
1959). Hence, we think of the firm as a competitive profit maximizer. In other
words, he/she takes prices as fixed and chooses a feasible production plan ðx; yÞ 2 T
which maximizes his/her profit. The resulting (optimum) profit is a function of the
vectors of input and output prices, c and p, denoted here by Pðc; pÞ, and formally
defined as follows:

Definition 1 Given a vector of input and output prices ðc; pÞ 2 Rmþ s
þ , and a pro-

duction possibility set T, then the producer’s profit function P is defined as

Pðc; pÞ ¼ sup
x;y

py� cx : ðx; yÞ 2 Tf g: ð4:2:2Þ

As it is assumed that each producer considers prices as given, we are thinking of
firms whose input demands and output supplies are relatively small with respect to
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the aggregate demands and supplies and, therefore, do not have market power. In
other words, we will work on a perfectly competitive market.

A concept of great interest in microeconomics is that of measuring efficiency.
Firms are often interested in knowing whether one can produce more with less. To
this respect, measuring technical efficiency is necessary to compare the actual
performance of the firm with respect to a certain reference subset of the technology.
The concept of the weakly efficient subset of T works as such reference set.

Definition 2 The set @W Tð Þ ¼ x; yð Þ 2 T : u;�vð Þ\ x;�yð Þ ) u; vð Þ 62 Tf g is
called weakly efficient.

Additionally, there exists a subset of @W Tð Þ which is of interest for economists.

Definition 3 The (strongly) efficient subset of T is defined as

@S Tð Þ ¼ x; yð Þ 2 T : u;�vð Þ� x;�yð Þ; u; vð Þ 6¼ x; yð Þ ) u; vð Þ 62 Tf g: ð4:2:3Þ

The efficient subset of T is related to the notion of Pareto-efficiency (see
Koopmans 1951). Indeed, the efficient subset is made up of all feasible production
plans which are not dominated.

To formalize our presentation we assume that the set @S Tð Þ is bounded, repre-
senting a suitable technological constraint.1 It allow us to replace “sup” in (4.2.2) by
“max” as we show next. Nevertheless, we first need to prove several lemmas.

Lemma 1 T xð Þ is a compact set 8 x 2 Rm
þ .

Proof T xð Þ, as defined in P2, can be equivalently rewritten as T \ u; yð Þ 2f
Rmþ s : u� xg. Then, since both sets are closed (see P4), we have that the inter-
section is closed as well. Finally, thanks to P2, T xð Þ is a compact set. ■

Lemma 2 For any x; yð Þ 2 T there exists ~x;~yð Þ 2 @S Tð Þ such that
~x;�~yð Þ� x;�yð Þ.
Proof Let us define the following optimization program:

Max
u;v

x� uð Þ1m þ v� yð Þ1s : u; vð Þ 2 T xð Þ; u� x; v� yf g: ð4:2:4Þ

The above maximization program is well defined because the objective function
is continuous (linear) and the feasible set is compact, since it is the intersection of
the compact set T xð Þ (Lemma 1) and the closed set u; vð Þ 2 Rmþ s : u� x; v� yf g.
Therefore, the maximum in (4.2.4) is achieved at some point ~x;~yð Þ 2 T xð Þ � T
which also satisfies ~x;�~yð Þ� x;�yð Þ. Let us suppose that there exists �u;�vð Þ 2 T
such that �u;��vð Þ� ~x;�~yð Þ and �u;�vð Þ 6¼ ~x;~yð Þ. It is apparent that �u;��vð Þ� x;�yð Þ

1Shephard (1970, p. 223), in his classic book “Theory of Cost and Production Functions”, used a
similar argument to prove that the infimum in the cost function is always achieved on the pro-
duction possibility set. In other words, “inf” can be changed to “min” in the definition of the cost
function.
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and �u;�vð Þ 2 T xð Þ since �u� x (see P2). Hence, �u;�vð Þ is a feasible point of (4.2.4).
Regarding the objective value,

x� �uð Þ1m þ �v� yð Þ1s [ x� ~xð Þ1m þ ~y� yð Þ1s
since at least one of the following inequalities hold strictly: ��u� � ~x; �v�~y. This
leads to a contradiction with the fact that ~x;~yð Þ is an optimal solution to (4.2.4).
Consequently, ~x;~yð Þ 2 @SðTÞ, which is the point we are seeking for and, therefore,
the proof is concluded. ■

Lemma 3 T ¼ cl @S Tð Þð ÞþD½ � \Rmþ s
þ , where D ¼ u; vð Þ 2 Rm

þ 	 �Rs
þ

� �� �
.

Proof First of all, we prove that T ¼ @S Tð ÞþD½ � \Rmþ s
þ . Given any x; yð Þ 2 T we

know that 9 ~x;~yð Þ 2 @S Tð Þ such that ~x;�~yð Þ� x;�yð Þ by Lemma 2. Then, defining
u ¼ x� ~x� 0m and v ¼ y� ~y� 0s, we have that x; yð Þ ¼ ~x;~yð Þþ u; vð Þ with
~x;~yð Þ 2 @S Tð Þ and u; vð Þ 2 D. Therefore, T � @S Tð ÞþD. In particular, T �
@S Tð ÞþD½ � \Rmþ s

þ since T � Rmþ s
þ . To prove that @S Tð ÞþD½ � \Rmþ s

þ � T , if we
have ~x;~yð Þ 2 @S Tð Þ � T and u; vð Þ 2 D, it is evident that if x; yð Þ ¼ ~x;~yð Þþ u; vð Þ
belongs to Rmþ s

þ then x; yð Þ 2 T , thanks to the free disposability assumption P3. As
a consequence, @S Tð ÞþD½ � \Rmþ s

þ � T and, therefore, T ¼ @S Tð ÞþD½ � \Rmþ s
þ .

Finally, we will prove that T ¼ cl @S Tð Þð ÞþD½ � \Rmþ s
þ . If x; yð Þ 2

cl @S Tð Þð ÞþD½ � \Rmþ s
þ then x; yð Þ ¼ ~x;~yð Þþ u; vð Þ with ~x;~yð Þ 2 cl @S Tð Þð Þ,

u; vð Þ 2 D and x; yð Þ 2 Rmþ s
þ . Nevertheless, ~x;~yð Þ 2 T since cl @S Tð Þð Þ � T thanks

to P4. Therefore, x; yð Þ 2 T by P3. Consequently, cl @S Tð Þð ÞþD½ � \Rmþ s
þ � T .

Lastly, note that @S Tð ÞþD½ � \Rmþ s
þ � cl @S Tð Þð ÞþD½ � \Rmþ s

þ and, for this rea-
son, T � cl @S Tð Þð ÞþD½ � \Rmþ s

þ since T ¼ @S Tð ÞþD½ � \Rmþ s
þ . This leads to

T ¼ cl @S Tð Þð ÞþD½ � \Rmþ s
þ . ■

The supremum in (4.2.2) is achievable, thanks to the assumption that the efficient
set of T is bounded. It is formally established as follows.

Proposition 1 Let T be a technology which satisfies P1–P5 and let also assume
that the set @S Tð Þ is bounded. Then,

Pðc; p) ¼ max
x;y

py� cx : ðx; yÞ 2 Tf g; 8 ðc; pÞ 2 Rmþ s
þ : ð4:2:5Þ

Proof

Pðc; pÞ ¼ sup
x;y

py� cx : ðx; yÞ 2 Tf g ¼ sup
ðx;yÞ2Rmþ s

þ

py� cx : ðx; yÞ 2 Tf g

¼ sup
ðx;yÞ2Rmþ s

þ

py� cx : ðx; yÞ 2 cl @SðTÞ� �þD
� �\Rmþ s

þ
� �

¼ sup
ðx;yÞ2Rmþ s

þ

py� cx : ðx; yÞ 2 cl @SðTÞ� �� �
:
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Now, since @S Tð Þ is bounded we have that cl @S Tð Þð Þ is bounded as well.
Additionally, cl @S Tð Þð Þ, which is a subset of T thanks to P4, is a compact set.
Therefore, the feasible set of the last optimization program is compact. Applying
Wierstrass’s theorem, the supremum in sup

x;yð Þ2Rmþ s
þ

py� cx : x; yð Þ 2 cl @S Tð Þð Þ� �

and, consequently, in (4.2.2) are achieved on T. ■
Additionally, it is well-known that if Pðc; pÞ is achieved at some point of the set

T, then there exists ðx; yÞ 2 @WðTÞ such that py� cx ¼ Pðc; pÞ (see, for example,
Varian 1992). In other words, the maximum is really achieved on the weakly
efficient subset of T.

On the other hand, postulates P1–P5 are standard and allow to establish a duality
between the technology and the profit function (see Färe and Primont 1995; p. 128).

T ¼ ðx; yÞ 2 Rmþ s
þ : py� cx�Pðc; pÞ; 8 ðc; pÞ 2 Rmþ s

þ
� �

: ð4:2:6Þ

From a mathematical point of view, the above duality relation is really a par-
ticularization of a theorem due to Minkowski (1911): every closed convex set can
be characterized as the intersection of its supporting halfspaces. In fact, the profit
function is known in the mathematical literature as the support function associated
with the convex set T (see Rockafellar 1972; p. 112). From an economic point of
view, this mathematical theorem helps to establish the duality correspondences
between several distance functions and the profit function, among other virtues.

Now, we are ready to introduce the concept of the loss distance function, which
is measured with respect to a given normalization set denoted by NS.

Definition 4 Let T be a production possibility set satisfying P1–P5. Let ðx; yÞ 2
Rmþ s

þ be an input-output vector and let NS � Rmþ s
þ . The function L : Rmþ s

þ 	
2R

mþ s
þ ! �1; þ1½ � defined by

Lðx; y;NSÞ ¼ inf
�x;�y;�c;�p

�c; �pð Þ x� �x;�y� yð Þ : �x;�yð Þ 2 @WðTÞ; �c; �pð Þ 2 Q �x;�yð Þ \NS
� �

;

ð4:2:7Þ

where Q �x;�yð Þ ¼ ðc; pÞ 2 Rmþ s
þ : ðc; pÞ are shadow prices of �x;�yð Þ� �

, is the loss dis-
tance function.2

Alternatively, the loss distance function can be written as

L x; y;NSð Þ ¼ inf
�x;�y;�c;�p

�c; �pð Þ x� �x;�y� yð Þ : �c; �pð Þ 2 NS; �x;�yð Þ 2 R �c;�pð Þ
� � ð4:2:8Þ

where R �c;�pð Þ ¼ ðx; yÞ 2 T : �py� �cx ¼ P �c; �pð Þf g. This second way of describing the
loss distance function will allow us to simplify certain proofs below.

2Note the similarities between this definition and the minimization of Debreu’s dead loss function.
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Depending on the structure of NS and the evaluated production plan ðx; yÞ,
L x; y ;NSð Þ takes different values. In particular, if NS ¼ £ or if, in general, the
optimization programs in (4.2.7) and (4.2.8) are infeasible, then we set
L x; y ;NSð Þ ¼ þ1. Note also that the loss distance function presents the same
arbitrary multiplicative scalar problem by Debreu (1951). The mission of the set NS
considered in (4.2.7) and (4.2.8) is to avoid this problem. We devote the next
section to study which regularity properties this type of sets must satisfy.
Nevertheless, we remark that NS will be usually defined by means of a finite set of
(non-necessarily linear) inequalities or equalities.

Basically, L x; y;NSð Þ is the distance from ðx; yÞ to the weakly efficient frontier of
the technology T, but calculated in terms of the normalization set defined over the
shadow price vectors. To obtain a distance with economic meaning we evaluate, as
Debreu did, the value of the vector x� �x;�y� yð Þ by the shadow prices �c; �pð Þ
associated with �x;�yð Þ 2 @W Tð Þ. Therefore, in economic terms, the loss distance
function is the monetary value sacrificed by the firm due to technical inefficiency or,
equivalently, it can be seen as a firm’s opportunity cost.

4.3 The Normalization Set

Normalizing a vector is a convenient mathematical procedure that normally
involves establishing that all feasible vectors have a (certain) norm equal to one. In
our stated production framework, the normalization concept should be understood
in a weaker way and not necessarily related to a mathematical norm. In general, the
set NS should satisfy two basic properties. Firstly, it should provide a representative
shadow price vector for the different weakly efficient points, with this vector sat-
isfying the conditions stated below. As an essential feature of the price vectors is
that their scale is arbitrary, this property ensures that there exist at least a vector of
shadow price values satisfying them along a price ray (see Fig. 4.1). One way to
establish a suitable scale for prices is to set a norm equal to one, or multiplying all
prices by the appropriate scale factor. However, there exist other alternative ways as
we will show later. Secondly, it should avoid the arbitrary multiplicative scalar
problem. While the satisfaction of the first property is more an interpretative
question than a mathematical issue, for the fulfilment of the second property it is
enough to impose the following condition on the normalization set.

(C1) NS is closed and 0m; 0sð Þ 62 NS.
C1 is a general way to avoid the arbitrary multiplicative scalar problem in (4.2.7)

and (4.2.8). Since the null vector does not belong to the closed set NS, the distance
from 0m; 0sð Þ to NS is strictly positive and we cannot achieve the null vector scaling
any c; pð Þ 2 NS.

In general, the shadow price vectors are defined over Rmþ s
þ , which is a cone.

Hence, if we wish that NS contains at least a “representative” of each ray that
belongs to Rmþ s

þ we need to impose an additional regularity condition.
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(C2) 8 c; pð Þ 2 Rmþ s
þ , c; pð Þ 6¼ 0m; 0sð Þ, 9k[ 0 such that k � c; pð Þ 2 NS.

In other words, NS satisfying C2 does not rule out any supporting hyperplane of
the (closed convex) technology T since each ray is related to this structure.
Additionally, we wish to point out that C2 will be very useful for proving several
interesting results in the next section. Note also that the constant k above does not
have to be unique for a given vector of inputs and outputs prices.

Next we introduce several sufficient requirements for NS to prove that such set
satisfies C1 and C2. Note that they are sufficient but not necessary conditions.

Proposition 2 Let NS be a subset of Rmþ s
þ . If NS is (1) convex, (2) closed, (3)

0m; 0sð Þ 62 NS, and (4) 9c0i [ 0 such that 0i�1; c0i; 0mþ s�i
� � 2 NS, 8i ¼ 1; . . .;m,

and 9p0r [ 0 such that 0mþ r�1; p0r; 0mþ s�r
� � 2 NS, 8r ¼ 1; . . .; s, then NS satisfies

C1 and C2.

Proof The set NS trivially satisfies C1. For C2, it is apparent that
Pm

i¼1 ki 0i�1; c0i;
�

0mþ s�iÞþ
Ps

r¼1 lr 0mþ r�1; p0r; 0mþ s�r
� �

, with ki � 0, i ¼ 1; . . .;m, and lr � 0,
r ¼ 1; . . .; s, generates all Rmþ s

þ . Then, given c; pð Þ 2 Rmþ s
þ , c; pð Þ 6¼ 0m; 0sð Þ,

9k0i � 0, i ¼ 1; . . .;m, and 9l0r � 0, r ¼ 1; . . .; s, (not all of them zero), such that

ðc; pÞ ¼
Xm
i¼1

k0i 0i�1; c
0
i; 0mþ s�i

� �þ Xs

r¼1

l0r 0mþ r�1; p
0
r; 0mþ s�r

� �
:

Now, taking k :¼ Pm
i¼1 k

0
i þ

Ps
r¼1 l

0
r

� ��1
we get

Fig. 4.1 A set satisfying C1
and C2, but does not satisfy
the hypothesis of Proposition
2
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k � ðc; pÞ ¼
Xm
i¼1

ai 0i�1; c
0
i; 0mþ s�i

� �þ Xs

r¼1

cr 0mþ r�1; p
0
r; 0mþ s�r

� �

with ai ¼ k � k0i � 0, i ¼ 1; . . .;m, cr ¼ k � l0r � 0, r ¼ 1; . . .; s and
Pm

i¼1 ai þPs
r¼1 cr ¼ 1. Now, by convexity, we have that k � ðc; pÞ 2 NS. ■

Hence, we have identified a type of sets that satisfy the required conditions.

Example 1 We show several sets complying with the properties in Proposition 2
and, therefore, satisfying C1 and C2:

(a) [A hyperplane] c; pð Þ 2 Rmþ s
þ : axcþ ayp ¼ b

� �
with a ¼ ax; ay

� � 2 Rmþ s
þ þ

and b[ 0;
(b) [A polyhedral set] c; pð Þ 2 Rmþ s

þ : A � c; pð Þ� b
� �

, with A ¼ AcjAp
� �

,

Ac ¼ a1x j. . .janx
� �

, a j
x 2 Rm

þ þ , 8j ¼ 1; . . .n, Ap ¼ a1y j. . .jany
h i

, a j
y 2 Rs

þ þ ,

8j ¼ 1; . . .n, and b ¼ b1; . . .; bnð Þ, bj [ 0, 8j ¼ 1; . . .n;
(c) [An upper contour set] ðc; pÞ 2 Rmþ s

þ : f ðc; pÞ� b
� �

with b[ 0 and f :
Rmþ s

þ ! R a continuous, quasi-concave function defined such that
f 0m; 0sð Þ ¼ 0, f 0i�1; c0i; 0mþ s�i

� �� b for some c0i [ 0, i ¼ 1; . . .;m,
f 0mþ r�1; p0r; 0mþ s�r
� �� b for some p0r [ 0, r ¼ 1; . . .; s.

Nevertheless, there are sets that do not satisfy the properties of Proposition 2 but
satisfies C1 and C2; for example, NS ¼ ðc; pÞ 2 Rmþ s

þ :
Pm

i¼1 c
3
i þ

Ps
r¼1 p

3
r ¼ 1

� �
.

Figure 4.1 illustrates it in the one input-one output case.

4.4 Main Results

4.4.1 Characterization of the Technology

We characterize the technology T by means of the loss distance function. We just
need to prove two lemmas that require different assumptions.

Lemma 4 Let T be a subset of Rmþ s
þ that satisfies P1–P5. Let ðx; yÞ 2 Rmþ s

þ and let
NS be a nonempty subset of Rmþ s

þ that satisfies C1. Then, if ðx; yÞ 2 T we have that
L x; y ;NSð Þ� 0.

Proof If ðx; yÞ 2 T then �py� �cx�P �c; �pð Þ 8 �c; �pð Þ 2 Rmþ s
þ by (4.2.6). Equivalently,

�p�y� �c�xð Þ � �py� �cxð Þ� 0 8 �c; �pð Þ 2 Rmþ s
þ and 8 �x;�yð Þ 2 R �c;�pð Þ. Therefore,

�c; �pð Þ x� �x;�y� yð Þ� 0 8 �c; �pð Þ 2 Rmþ s
þ and 8 �x;�yð Þ 2 R �c;�pð Þ. In particular, it is true

8 �c; �pð Þ 2 NS � Rmþ s
þ and 8 �x;�yð Þ 2 R �c;�pð Þ. Consequently, the infimum that defines

the loss distance function according to (4.2.8) has to be nonnegative. ■
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Lemma 5 Let T be a subset of Rmþ s
þ that satisfies P1–P5. Let ðx; yÞ 2 Rmþ s

þ and let
NS be a nonempty subset of Rmþ s

þ that satisfies C1 and C2. Then, if ðx; yÞ 62 T we
have that L x; y ;NSð Þ\0.

Proof Suppose that ðx; yÞ 62 T . Then, 9 c0; p0ð Þ 2 Rmþ s
þ n 0m; 0sð Þf g such that

p0y� c0x[P c0; p0ð Þ, by (4.2.6). On the other hand, we know that
9 x0; y0ð Þ 2 R c0;p0ð Þ. Now, by C2, 9k[ 0 such that k � c0; p0ð Þ 2 NS. It is apparent that
k � c0; p0ð Þ 2 Q x0;y0ð Þ, as defined in (4.2.7). Therefore, k � c0; p0ð Þ x� x0; y0 � yð Þ ¼
k � p0y0 � c0x0 � p0y� c0xð Þ½ � ¼ k � P c0; p0ð Þ � p0y� c0xð Þ½ �\0 and, finally,
L x; y;NSð Þ\0 according to (4.2.7). ■

Finally, it follows immediately from the above lemmas that it is possible to
characterize the production possibility set through the sign of the loss distance
function.

Proposition 3 Let T be a subset of Rmþ s
þ that satisfies P1–P5. Let ðx; yÞ 2 Rmþ s

þ
and let NS be a nonempty subset of Rmþ s

þ that satisfies C1 and C2. Then, ðx; yÞ 2 T
if and only if Lðx; y;NSÞ� 0.

4.4.2 Properties of the Loss Distance Functions

Now, let us study the properties of the new distance functions introduced in
Sect. 4.2.

Proposition 4 Let T be a subset of Rmþ s
þ that satisfies P1–P5. Let ðx; yÞ; x0; y0ð Þ 2

Rmþ s
þ such that �1\Lðx; y;NSÞ\þ1 and �1\L x0; y0 ;NSð Þ\þ1 and let

NS be a nonempty subset of Rmþ s
þ that satisfies C1. Then, the function L x; y;NSð Þ as

defined in (4.2.7) satisfies the following properties.

(a) x0 � x; y0 � y ) L x0; y0;NSð Þ� L x; y;NSð Þ;
(b) L x; y;NSð Þ is concave in ðx; yÞ;
(c) L x; y;NSð Þ is continuous with respect to ðx; yÞ on each open convex subset of

Rmþ s
þ in which it is finite;

(d) Let ðx; yÞ be a point where L x; y;NSð Þ is finite. For each ~x;~yð Þ, there exists the
one-sided directional derivative of L x; y;NSð Þ at ðx; yÞ with respect to the
vector ~x;~yð Þ.

Proof

(a) Since x0 � x ) x0 � �x� x� �x and y0 � y ) �y� y0 ��y� y, we have that

�c; �pð Þ x0 � �x;�y� y0ð Þ � �c; �pð Þ x� �x;�y� yð Þ; 8 �x;�yð Þ 2 @W Tð Þ;8 �c; �pð Þ
2 Q �x;�yð Þ \NS:
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Therefore, L x0; y0;NSð Þ� L x; y;NSð Þ.
(b) Given ðx; yÞ; x0; y0ð Þ 2 Rmþ s

þ and a 2 0; 1½ � we have that
�c; �pð Þ axþ 1� að Þx0 � �x;�y� ay� 1� að Þy0ð Þ ¼ a �c; �pð Þ x� �x;�y� yð Þð Þ
þ 1� að Þ �c; �pð Þ x0 � �x;�y� y0ð Þð Þ; 8 �x;�yð Þ 2 @W Tð Þ; 8 �c; �pð Þ 2 Q �x;�yð Þ \NS:

Then, since �c; �pð Þ x� �x;�y� yð Þ� L x; y;NSð Þ and �c; �pð Þ x0 � �x;�y� y0ð Þ �
L x0; y0;NSð Þ, 8 �x;�yð Þ 2 @W Tð Þ; 8 �c; �pð Þ 2 Q �x;�yð Þ \NS, we obtain that

L axþð1� aÞx0; ayþð1� aÞy0;NSð Þ ¼ inf
�x;�y;�c;�p

�c; �pð Þ axþð1� aÞx0 � �x;�yðf
�ay� ð1� aÞy0Þ : �x;�yð Þ 2 @W Tð Þ; �c; �pð Þ 2 Q �x;�yð Þ \NS

�
� aL x; y;NSð Þþ ð1� aÞL x0; y0;NSð Þ:

In other words, L x; y;NSð Þ is concave in ðx; yÞ.
(c) The continuity property stated in the proposition is true for any concave

function (see Mangasarian 1994; p. 62).
(d) This property is consequence of the concavity of,L x; y;NSð Þ see Rockafellar

(1972; p. 214) for a proof. ■

As a result, the loss distance function satisfies the weak monotonicity condition
on Rmþ s

þ and, additionally, it is concave, continuous and one-sided directionally
differentiable.

4.4.3 A First Result on Duality

Convexity (P5) is an essential postulate in our work. A convex set has a nonzero
normal at each of its boundary points (see Rockafellar 1972; p. 100). Therefore, this
property guarantees the existence of intrinsic prices for each boundary point. In fact,
it is a standard result that each weakly efficient point of a convex production
possibility set has at least a normal with nonnegative coefficients. Additionally, this
normal is related to a supporting hyperplane to T and a linear function which
achieves its maximum on T. It can be translated in our context as for each �x;�yð Þ 2
@W Tð Þ there exists �c; �pð Þ 2 Rmþ s

þ such that �p�y� �c�x ¼ P �c; �pð Þ.
Returning now to our initial loss function Definition (4), and since the nonlinear

objective function of the corresponding optimization program is equivalent to

�c; �pð Þ x� �x;�y� yð Þ ¼ �p�y� �c�xð Þ � �py� �cxð Þ ¼ P �c; �pð Þ � �py� �cxð Þ

for any �c; �pð Þ 2 NS and any �x;�yð Þ 2 R �c;�pð Þ, we get the following duality result
between the loss distance functions and the profit function.
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Theorem 1 Let T be a subset of Rmþ s
þ that satisfies P1–P5 and let NS be a

nonempty subset of Rmþ s
þ . Then,

L x; y;NSð Þ ¼ inf
c;pð Þ2Rmþ s

þ
P c; pð Þ � py� cxð Þ : c; pð Þ 2 NSf g: ð4:4:1Þ

As a direct consequence of Theorem 1, we can recover the loss distance func-
tions from the information of the profit function and the set of prices NS. Note also
that the above result holds independently of whether the set NS satisfies C1 and C2,
or not.

We can refine the above result in the case in which the production possibility set
is a polytope. Throughout the paper we have supposed that the efficient subset of
T is bounded. However, if T is a polytope, we do not need to keep boundedness as
we show next.

Proposition 5 Let T be a polytope of Rmþ s
þ that satisfies P1–P5, and let NS be a

nonempty subset of Rmþ s
þ . Then,

L x; y;NSð Þ ¼ inf
ðc;pÞ2Rmþ s

þ
Pðc; pÞ � py� cxð Þ : ðc; pÞ 2 NSf g: ð4:4:2Þ

Proof If 8ðc; pÞ 2 NS Pðc; pÞ ¼ þ1, then the optimization program in (4.2.8) is
infeasible and, as a result, L x; y;NSð Þ ¼ þ1 by definition. Moreover,
Pðc; pÞ � py� cxð Þ ¼ þ1, 8ðc; pÞ 2 NS. Therefore, the infimum of Pðc; pÞ �
ðpy� cxÞ calculated on ðc; pÞ 2 NS is equal to þ1. And the proposition holds
trivially in this case.

On the other hand, if 9 ĉ; p̂ð Þ 2 NS such that P ĉ; p̂ð Þ\þ1, and given that if a
linear function is bounded from above on a polytope, it achieves its supremum on
the polytope (see Mangasarian 1994; p. 130), we have that there exists x̂; ŷð Þ 2
R ĉ;p̂ð Þ such that P ĉ; p̂ð Þ ¼ p̂ŷ� ĉx̂. Then, it is apparent that L x; y;NSð Þ\þ1 and

inf
ðc;pÞ2Rmþ s

þ
Pðc; pÞ � ðpy� cxÞ : ðc; pÞ 2 NSf g\þ1. Now, let NS1 be a set

defined as NS1 :¼ ðc; pÞ 2 NS : Pðc; pÞ ¼ þ1f g. Obviously, NS1 � NS and
NS1 6¼ NS. Then, we have that the optimization program in (4.2.8) is equivalent to
inf

�x;�y;�c;�p
�c; �pð Þ x� �x;�y� yð Þ : �c; �pð Þ 2 NSnNS1; �x;�yð Þ 2 R �c;�pð Þ

� �
and the optimization

program in (4.2.8) is equivalent to inf
ðc;pÞ2Rmþ s

þ
Pðc; pÞ � ðpy� cxÞ : ðc; pÞ 2 NSnNS1f g.

Finally, note that �c; �pð Þ x� �x;�y� yð Þ ¼ P �c; �pð Þ � �py� �cxð Þ, 8 �c; �pð Þ 2 NSnNS1,
8 �x;�yð Þ 2 R �c;�pð Þ. Therefore, the last two optimization programs are equivalent. ■

Using the method of activity analysis [see Koopmans (1951) and Farrell (1957)
or, more recently, Charnes et al. (1978)], a technology can be constructed from
n observations of inputs and outputs, interpreting each of them as a feasible pro-
duction plan. This type of technology defines a feasible region with the shape of a
polytope. Following Proposition 5, in these cases the loss distance functions can be
recovered from the profit function under a bounded or an unbounded efficient
subset.
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In order to illustrate the implications of Theorem 1, we can study the following
examples where the normalization set will lead to some well-known distance
functions.

Example 2 If NS ¼ ðc; pÞ 2 Rmþ s
þ : cgx þ pgy ¼ 1

� �
, with g ¼ gx; gy

� �
being a

nonzero vector of Rmþ s
þ , given any ðx; yÞ 2 Rmþ s

þ we have, by (4.2.8), that

L x; y;NSð Þ ¼ inf
c;pð Þ2Rmþ s

þ
Pðc; pÞ � ðpy� cxÞ : cgx þ pgy ¼ 1

� �

¼ inf
c;pð Þ2Rmþ s

þ

Pðc; pÞ � py� cxð Þ
cgx þ pgy

� 	
¼ ~DT x; y; gx; gy

� �
:

Therefore, the loss distance function nests the directional distance function (see
Chambers et al. 1998; p. 358) when using a particular normalization set. Also, if we
additionally take gy ¼ 0s then we obtain the directional input distance functions
defined by Chambers et al. (1996), analogue to Luenberger’s benefit functions in
the production context (see Luenberger 1992a). ■

Therefore, Shephard’s input and output distance functions can be also included
as a type of loss distance functions, since they are particular cases of the directional
distance functions [see Chambers et al. (1998, p. 355)].

Example 3 If NS ¼ ðc; pÞ 2 Rmþ s
þ : ðc; pÞk kq � 1

n o
,3 we have, by (4.2.8), that

L x; y;NSð Þ ¼ inf
ðc;pÞ2Rmþ s

þ
Pðc; pÞ � py� cxð Þ : ðc; pÞk kq � 1

n o
¼ Dt

Tðx; yÞ;

where 1
q þ 1

t ¼ 1, t ¼ þ1 if q ¼ 1 and t ¼ 1 if q ¼ þ1.

Consequently, the loss distance functions nest Hölder’s metric distance functions
(see Briec and Lesourd 1999; p. 24), by using a specific normalization condition. ∎

We have just shown, by means of Examples 2 and 3, that the loss distance
function is an approach that includes a wide class of existing distance functions.

On the other hand, in order to measure efficiency, it is useful to characterize the
weakly efficient points. In particular, it would be even more useful if the set of
weakly efficient points could be described as the set of zeros of a function. For this,
let us observe that the loss distance functions are equal to zero if and only if the
evaluated point lies on the weakly efficient frontier of the production possibility set.

Lemma 6 Let T be a subset of Rmþ s
þ that satisfies P1–P5. Let ðx; yÞ 2 Rmþ s

þ and let
NS be a nonempty subset of Rmþ s

þ that satisfies C1 and C2. Then, L x; y;NSð Þ ¼ 0 if
and only if ðx; yÞ 2 @WðTÞ.

3The Hölder norms ‘q are defined as ðc; pÞk kq¼Pm
i¼1 cij jq þ Ps

r¼1 prj jq� �1=q
; if q 2 1; þ1½ Þ

max c1j j; . . .; cmj j; p1j j; . . .; psj jf g; if q ¼ þ1

�
.
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Proof Obviously, the stated result holds for ðx; yÞ 62 T by Proposition 3.
Additionally, if ðx; yÞ 2 @WðTÞ there exists ðc; pÞ 2 Q x;yð Þn 0m; 0sð Þf g. Hence, by
C2, 9k[ 0 such that k � ðc; pÞ 2 Q x;yð Þ \NS. Then, �c; �pð Þ x� �x;�y� yð Þ ¼ 0 with
�c; �pð Þ ¼ k � c; pð Þ and �x;�yð Þ ¼ ðx; yÞ. Finally, by Lemma 4, L x; y;NSð Þ ¼ 0.
Thus, suppose that ðx; yÞ 2 Tn@W ðTÞ. Then, we study two complementary cases:

(i) If ðx; yÞ 2 intðTÞ there exists Bððx; yÞ; qÞ, an Euclidean ball of radius q cen-
tered at ðx; yÞ in Rmþ s, with q[ 0, such that Bððx; yÞ; qÞ � T . For any ðc; pÞ 2
NS we have that the Euclidean distance from the point ðx; yÞ to the supporting

hyperplane p~y� c~x ¼ Pðc; pÞ is equal to Pðc;pÞ� py�cxð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1
c2i þ

Ps

r¼1
p2r

p � q. Hence, for

any ðc; pÞ 2 NS we have that Pðc; pÞ � ðpy� cxÞ� q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1 c
2
i þ

Ps
r¼1 p

2
r

p
.

Then, if we calculate the infimum of Pðc; pÞ � ðpy� cxÞ on ðc; pÞ 2 NS, we
obtain, thanks to Theorem 1 and the above expression, that

Lðx; y;NSÞ� qmin
c;p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

c2i þ
Xs

r¼1

p2r

s
: ðc; pÞ 2 NS

( )
:

The minimization operation above is well defined because the problem cal-
culates the Euclidean distance from 0m; 0sð Þ to the closed nonempty set NS.

Now, due to C1, we have that min
c;p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1 c

2
i þ

Ps
r¼1 p

2
r

p
: ðc; pÞ 2 NS

n o
[ 0

and, consequently, L x; y;NSð Þ[ 0.
(ii) We now suppose that ðx; yÞ 2 Tn@WðTÞ but ðx; yÞ 62 intðTÞ. For this reason,

ðx; yÞ has to belong to the boundary of T. However, all points in the boundary
of T not generated by the nonnegativity are weakly efficient points thanks to
P3 and P4 [see Bonnisseau and Cornet (1988, p. 120) and remember that
T � Rmþ s

þ ]. Then, necessarily ðx; yÞ has to belong to the part of the boundary
generated by the nonnegativity constraints. If some input of ðx; yÞ were zero,
necessarily ðx; yÞ 2 @W ðTÞ, but it would lead to a contradiction. Therefore,
xi [ 0; i ¼ 1; . . .;m, and inevitably 9r0 ¼ 1; . . .; s such that yr0 ¼ 0.

On the other hand, since ðx; yÞ 62 @WðTÞ there exists ðu; vÞ 2 T such that
ðu;�vÞ\ðx;�yÞ, by Definition 2. Thus, vr [ 0; 8r ¼ 1; . . .; s. Now, we can define
the point x̂; ŷð Þ ¼ 1

2 ðx; yÞþ 1
2 ðu; vÞ, which belongs to T thanks to P5. Then, we can

conclude that x̂; ŷð Þ 2 intðTÞ since ŷr [ 0, r ¼ 1; . . .; s, and at the same time
ðu;�vÞ\ x̂;�ŷð Þ. As a result, we can recall the same arguments in (i) to reach
L x̂; ŷ;NSð Þ[ 0. Finally, by Proposition 4(a), we obtain that L x; y;NSð Þ�
L x̂; ŷ;NSð Þ[ 0 since x̂;�ŷð Þ� ðx;�yÞ. ■

Rather than express a production possibility set by means of T, some authors
prefer to use the concept of a transformation function in order to describe the set of
weakly efficient points. This set can be found described symmetrically (Hicks 1946)
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or asymmetrically (Samuelson 1966) in the literature through a transformation
function.4 In our case Lemma 6 constitutes a symmetrical way to describe it as the
set of points ðx; yÞ which satisfy the equation L x; y ;NSð Þ ¼ 0. Therefore, the loss
distance function can be seen as a transformation function.

4.4.4 A Second Duality Result

Shephard (1970) showed that the input distance function is dual to the cost function
and the output distance function is dual to the revenue function. Later, Färe and
Primont (1995) proved that the profit function and Shephard’s distance functions
were dual, under several regularity conditions. Chambers, Chung and Färe (1998)
established that the profit function can be recovered from the directional distance
function, generalizing the dual correspondence between the profit function and
Shephard’s distance functions. And, finally, Briec and Lesourd (1999) showed that
the Hölder metric distance functions are dual to the profit function. In this section,
we show that the loss distance functions are (general) precursors of the profit
function and indeed both functions are dual. In addition, we prove a general dual
correspondence that includes all previous connections appearing in the literature as
particular cases.

First of all, we prove a lemma that we will use later in the proof of the main
result.

Lemma 7 Let T be a subset of Rmþ s
þ that satisfies P1–P5. Let us assume that

L x; y;NSð Þ\þ1, 8ðx; yÞ 2 Rmþ s
þ . Let NS be a nonempty subset of Rmþ s

þ that
satisfies C1. Additionally, let ðc; pÞ 2 NS. Then,

Pðc; pÞ ¼ sup
ðx;yÞ2Rmþ s

þ

py� cxþ Lðx; y;NSÞf g: ð4:4:3Þ

Proof By Theorem 1, Pðc; pÞ � ðpy� cxÞ� Lðx; y;NSÞ for any ðx; yÞ 2 Rmþ s
þ .

Hence, we have that Pðc; pÞ� py� cxþ Lðx; y;NSÞ for any ðx; yÞ 2 Rmþ s
þ .

Therefore,

Pðc; pÞ� sup
ðx;yÞ2Rmþ s

þ

py� cxþ Lðx; y;NSÞf g:

Next we prove the converse. For any e[ 0 9ðx; yÞ 2 T such that py�
cx�Pðc; pÞ � e (remember that Pðc; pÞ\þ1). Now, by Lemma 4, we have that
Lðx; y;NSÞ� 0 and, therefore, py� cxþ Lðx; y;NSÞ� py� cx�Pðc; pÞ � e.

4The set of weakly efficient points may be described symmetrically as the set of x; yð Þ satisfying
the equation F x; yð Þ ¼ 0, where F is the transformation function. Alternatively, one output can
be singled out, for example y1, and the weakly efficient set may be described asymmetrically by
y1 ¼ F0 x; y�1ð Þ where F0 is the transformation function.
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Then, sup
ðx;yÞ2T

py� cxþ Lðx; y;NSÞf g�Pðc; pÞ since e is arbitrarily small.

Finally,

sup
ðx;yÞ2Rmþ s

þ

py� cxþ Lðx; y;NSÞf g�Pðc; pÞ

since T � Rmþ s
þ . ■

The following theorem shows a more general dual relation between the profit
function and the loss distance functions, since the vector of prices does not have to
belong directly to the normalization set. It is just necessary that there exists at least
“a representative” of the associated ray which belongs to the normalization set.

Theorem 2 Let T be a subset of Rmþ s
þ that satisfies P1–P5. Let us assume that

Lðx; y;NSÞ\þ1, 8ðx; yÞ 2 Rmþ s
þ . Let NS be a nonempty subset of Rmþ s

þ that
satisfies C1. Additionally, let ðc; pÞ 2 Rmþ s

þ such that 9kðc; pÞ[ 0 with
kðc; pÞ � ðc; pÞ 2 NS. Then,

Pðc; pÞ ¼ sup
ðx;yÞ2Rmþ s

þ

py� cxþ Lðx; y;NSÞ � kðc; pÞ�1
n o

: ð4:4:4Þ

Proof For the sake of simplicity we define k :¼ kðc; pÞ. By hypothesis,
k � ðc; pÞ 2 NS. Therefore, by Lemma 7, we have that Pðkc; kpÞ ¼

sup
ðx;yÞ2Rmþ s

þ

ðkpÞy� ðkcÞxþ Lðx; y;NSÞf g: Now, Pðkc; kpÞ ¼ k �Pðc; pÞ since the

profit function is homogeneous of degree +1. Consequently,

Pðc; pÞ ¼ k�1 �Pðkc; kpÞ ¼ k�1 sup
ðx;yÞ2Rmþ s

þ

ðkpÞy� ðkcÞxþ Lðx; y;NSÞf g

¼ sup
ðx;yÞ2Rmþ s

þ

py� cxþ Lðx; y;NSÞ � k�1� �
:

■
As a by-product of Theorem 2, we can state that wide classes of distance

functions, derived from the loss distance functions considering different normal-
ization sets, are dual of the profit function. The above theorem shows a general
correspondence between distance functions and the profit function.

In addition, note that the duality result given by the theorem above introduces a
bit of degeneracy in our problem, since the constant k does not have to be unique
for a given vector of inputs and outputs prices. Obviously, the existence of
degeneracy will depend on the structure of the normalization set.

As a direct consequence of Theorem 2, we obtain the next corollary.
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Corollary 1 Let T be a subset of Rmþ s
þ that satisfies P1–P5. Let us assume that

Lðx; y;NSÞ\þ1, 8ðx; yÞ 2 Rmþ s
þ . Let NS be a nonempty subset of Rmþ s

þ that
satisfies C1 and C2. Additionally, let ðc; pÞ 2 Rmþ s

þ n 0m; 0sð Þf g. Then,

P c; pð Þ ¼ sup
x;yð Þ2Rmþ s

þ

py� cxþ L x; y;NSð Þ � k c; pð Þ�1
n o

ð4:4:5Þ

where kðc; pÞ[ 0 is such that kðc; pÞ � ðc; pÞ 2 NS.
Again, assuming that the technology defines a feasible region with the shape of a

polytope, it is unnecessary that the efficient subset is bounded to prove Theorem 2.
We state the corresponding result through the following proposition.

Proposition 6 Let T be a polytope of Rmþ s
þ that satisfies P1–P5. Let us assume that

L x; y;NSð Þ\þ1, 8ðx; yÞ 2 Rmþ s
þ . Let NS be a nonempty subset of Rmþ s

þ that
satisfies C1. Additionally, let ðc; pÞ 2 Rmþ s

þ such that 9k c; pð Þ[ 0 with
kðc; pÞ � ðc; pÞ 2 NS. Then,

Pðc; pÞ ¼ sup
ðx;yÞ2Rmþ s

þ

py� cxþ Lðx; y;NSÞ � kðc; pÞ�1
n o

:

Proof Again, we define k :¼ kðc; pÞ. If Pðc; pÞ\þ1 then it is enough to follow
the proofs of Lemma 7 and Theorem 2, since if a linear function is bounded from
above on a polytope then it achieves its supremum on the polytope. Thus, we will
assume that Pðc; pÞ ¼ þ1. Then, there exists a sequence xn; ynð Þ 2 T such that
lim
n!1 pyn � cxn ¼ þ1. This implies that lim

n!1 pyn � cxn þ L xn; yn ;NSð Þ � k�1½ � ¼
þ1 since L xn; yn;NSð Þ� 0, by Lemma 4, and k[ 0. Therefore,
sup

ðx;yÞ2Rmþ s
þ

py� cxþ Lðx; y;NSÞ � k�1
� � ¼ þ1, concluding the proof. ■

In order to illustrate the consequences of Theorem 2, we consider the following
examples where we show that our result encompasses the dual correspondences
stated previously by other authors.

Example 4 If we take NS ¼ ðc; pÞ 2 Rmþ s
þ : cgx þ pgy ¼ 1

� �
, with g ¼ gx; gy

� �
being a nonzero vector of Rmþ s

þ , and given any c0; p0ð Þ 2 Rmþ s
þ þ , we have that

k � c0; p0ð Þ 2 NS with k ¼ c0gx þ p0gy
� ��1

. Hence, by Theorem 2 and Example 2, we
obtain

P c0; p0ð Þ ¼ sup
ðx;yÞ2Rmþ s

þ

p0y� c0xþ Lðx; y;NSÞ � c0gx þ p0gy
� �� �

¼ sup
ðx;yÞ2Rmþ s

þ

p0y� c0xþ~DT x; y; gx; gy
� � � c0gx þ p0gy

� �� �
:
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Chambers et al. (1998, p. 357) proved the above duality correspondence between
the directional distance functions and the profit function for strictly positive prices.
This result is a special case of (4.4.4) as we have just shown. ■

Additionally, Chambers et al. (1998) showed that their duality result generalized
the relation between the profit function and Shephard’s input and output distance
functions. Consequently, the loss distance function generalizes this same duality
result as well, as illustrated in Example 4.

Example 5 If we take NS ¼ ðc; pÞ 2 Rmþ s
þ : ðc; pÞk kq � 1

n o
, with q 2 1; þ1½ Þ,

given any c0; p0ð Þ 2 Rmþ s
þ n 0m; 0sð Þf g, we have that k � c0; p0ð Þ 2 NS with

k ¼ c0; p0ð Þk kq
� ��1

. As a consequence, by Theorem 2 and Example 3, we now

obtain

P c0; p0ð Þ ¼ sup
ðx;yÞ2Rmþ s

þ

p0y� c0xþ Lðx; y;NSÞ � c0; p0ð Þk kq
n o

¼ sup
ðx;yÞ2Rmþ s

þ

p0y� c0xþDt
Tðx; yÞ � c0; p0ð Þk kq

n o
:

∎
The duality result in Example 5 is similar, but not identical, to the one obtained

by Briec and Lesourd (1999) for the Hölder metric distance functions. In the case of
Briec and Lesourd’s result, to recover the profit function they need to use the
Hölder metric distance function and evaluate all ðx; yÞ in T instead of all ðx; yÞ in
Rmþ s

þ . Their duality result is as follows

P c0; p0ð Þ ¼ sup
x;y

p0y� c0x� Dt
Tðx; yÞ : ðx; yÞ 2 T

� �
: ð4:4:6Þ

Our Theorem 2 is more in accordance with the spirit of a standard duality result:
to obtain the distance function we just use the information of the profit function, and
to recover the profit function we just use the information of the distance function.
Nevertheless, we are also able to generalize (4.4.6) by resorting to the loss distance
functions thanks to Lemma 6.

Proposition 7 Let T be a subset of Rmþ s
þ that satisfies P1–P5. Let us assume that

�1\Lðx; y;NSÞ\þ1, 8ðx; yÞ 2 Rmþ s
þ . Let NS be a nonempty subset of Rmþ s

þ
that satisfies C1 and C2. Additionally, let ðc; pÞ 2 Rmþ s

þ . Then,

Pðc; pÞ ¼ sup
x;y

py� cx� Lðx; y;NSÞ : ðx; yÞ 2 Tf g: ð4:4:7Þ

Proof Let x�; y�ð Þ 2 Tn@W ðTÞ. Then, 9 ~x;~yð Þ 2 @SðTÞ � @W ðTÞ such that
~x;�~yð Þ� x�;�y�ð Þ with ~x;~yð Þ 6¼ x�; y�ð Þ, by Lemma 2. Now, by Proposition 4(a),
we have that
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py� � cx� � L x�; y�;NSð Þ� p~y� c~x� L ~x;~y;NSð Þ:

Then,

sup
x;y

fpy� cx� Lðx; y;NSÞ : ðx; yÞ 2 Tg

¼ sup
x;y

py� cx� Lðx; y;NSÞ : ðx; yÞ 2 @WðTÞ� �
:

Finally, since the profit function is achieved by some weakly efficient vector, we
have that

Pðc; pÞ ¼ sup
x;y

py� cx : ðx; yÞ 2 @W ðTÞ� �
¼ sup

x;y
py� cx� L x; y ;NSð Þ : ðx; yÞ 2 @WðTÞ� �

;

by Lemma 6. ■
Briec and Lesourd (1999) state that “Thus, the above result [(4.4.6)] can be

considered as a generalization of that of Chambers, Chung and Färe”. This is
because the normalization set corresponding to the directional distance functions is
a similar case of the normalization set associated to the Hölder distance functions
with t ¼ þ1.5 However, the directional distance functions normalization set is
related to a weighted Hölder norm6 with weights g ¼ gx; gy

� � 2 Rmþ s
þ n 0m; 0sð Þf g.

Briec and Lesourd did not prove a duality result assuming such a type of weighted
norms. Moreover, Chambers, Chung and Färe allow zeros in their directional vector
g, and in this case the directional distance functions normalization set is not related
to the notion of norm in topology.7 Therefore, strictly speaking, we think that our
chapter constitutes really the first formal generalization of the directional distance
functions.

Next we propose a last example, far away from the directional distance functions
and from the Hölder metric distance functions, as a way of showing the wide
framework of the new distance functions.

Example 6 Let xx;xy
� � 2 Rmþ s

þ þ . Then, if NS ¼ ðc; pÞ 2 Rmþ s
þ : ðc; pÞ��

xx;xy
� �g, NS satisfies trivially C1 and given any c0; p0ð Þ 2 Rmþ s

þ þ , we have that
k � c0; p0ð Þ belongs to NS with

5In that case, NS ¼ c; pð Þ 2 Rmþ s
þ : c; pð Þk k1 � 1

� �
where c; pð Þk k1¼ c1m þ p1s.

6In particular, a weighted norm ‘1.
7If the vector g has some zero-components then its norm associated does not satisfy the basic
property zk k ¼ 0 , z ¼ 0mþ s.
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k ¼
1; if c0 �xx; p0 �xy

min x�1
x1 c

0
1; . . .;x

�1
xm c

0
m;x

�1
y1 p

0
1; . . .;x

�1
ys p

0
s

n o� ��1
; otherwise

(
:

Hence, by Theorem 2,

P c0; p0ð Þ ¼
sup

ðx;yÞ2Rmþ s
þ

p0y� c0xþ Lðx; y;NSÞf g; if c0i �xx; p0r �xy

sup
ðx;yÞ2Rmþ s

þ

p0y� c0xþ Lðx; y;NSÞ � xf g; otherwise

8><
>:

where x :¼ min x�1
x1 c

0
1; . . .;x

�1
xm c

0
m;x

�1
y1 p

0
1; . . .;x

�1
ys p

0
s

n o
. ■

Finally, we would like to summarize the existing dual relation between the profit
function and the loss distance functions, which establishes a general duality result.

Lðx; y;NSÞ ¼ inf
ðc;pÞ2Rmþ s

þ
Pðc; pÞ � ðpy� cxÞ : ðc; pÞ 2 NSf g;

Pðc; pÞ ¼ sup
ðx;yÞ2Rmþ s

þ

py� cxþ Lðx; y;NSÞ � kðc; pÞ�1
n o

:
ð4:4:8Þ

The first expression says that the loss distance function can be derived from the
profit function by minimizing the difference between the profit function and the
profit at point ðx; yÞ over all feasible prices satisfying the normalization conditions
of NS. The second relation establishes that if we start with a loss distance function,
we can recover the profit function using an optimization program and a strictly
positive constant k, directly related to the price vector ðc; pÞ and NS.

4.5 Assuming Differentiability

For the proofs in Sect. 4.4 we did not need to assume differentiability of the loss
distance functions. However, assuming differentiability of both the loss distance
functions and the profit function allows us to achieve several interesting additional
results.

First, we consider the optimization program presented in the first part of (4.4.8),
i.e.,

Lðx; y;NSÞ ¼ � sup
ðc;pÞ2Rmþ s

þ

�Pðc; pÞþ ðpy� cxÞ : ðc; pÞ 2 NSf g: ð4:5:1Þ

To obtain the first order conditions of the above optimization program we need
to assume some specific structure on the normalization set NS. In fact, in order to
work with a standard optimization program we need to assume that NS is defined by
means of a set of constraints. Under the hypothesis of Proposition 2, the
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normalization set is a closed convex set and, as a consequence, it can be charac-
terized as the intersection of its supporting hyperplanes. In other words, we could
work with a finite or infinite number of linear constraints and derive a standard
finite or semi-infinite optimization program, respectively.

In general, we can assume that the normalization set is defined by a set of linear
or nonlinear constraints and develop the analysis that we show next. Nevertheless,
for the sake of simplicity, we will restrict our attention to a particular type of a
single normalization condition:

NS ¼ ðc; pÞ 2 Rmþ s
þ : hðc; pÞ� 1

� �
; ð4:5:2Þ

where h is a continuous concave function, homogeneous of degree +1 and such that
h 0m; 0sð Þ\1. This type of normalization condition includes several interesting
examples as we show later.

Here, it should be remarked that NS is a closed set since h is a continuous
function. Therefore, the normalization set as defined in (4.5.2) satisfies C1 and
avoids the arbitrary multiplicative scalar problem pointed out by Debreu (1951).

Next we want to show that, if it is desired to solve the optimization program that
appears in (4.5.1) with NS as in (4.5.2), the optimal value of the Lagrangian
multiplier associated with the constraint hðc; pÞ� 1 is equal to the loss distance
function value, i.e., L x; y;NSð Þ.
Proposition 8 Let Pðc; pÞ be a differentiable function. Also, let h : Rmþ s

þ ! R be a
continuous, concave, homogeneous of degree +1 and differentiable function such
that h 0m; 0sð Þ\1. Additionally, let h� be the optimal value of the Lagrangian
multiplier associated with the constraint hðc; pÞ� 1 in the optimization program
(4.5.1) where NS is as in (4.5.2). If the supremum in (4.5.1) is achieved at some
point in Rmþ s

þ þ (interior solutions) and any constraint qualification holds,8 then
h� ¼ Lðx; y;NSÞ.
Proof Under the hypothesis, we want really to solve the following optimization
program.

max
ðc;pÞ2Rmþ s

þ þ
�Pðc; pÞþ ðpy� cxÞ : hðc; pÞ � 1� 0f g: ð4:5:3Þ

We consider the Lagrangian for the above problem.

K c; p; hð Þ ¼ �P c; pð Þþ py� cxð Þþ h � h c; pð Þ � 1ð Þ; ð4:5:4Þ

where c 2 Rm; p 2 Rs and h 2 R.
Note that the objective function in (4.5.3) is concave since the profit function is

convex in positive prices (see Färe and Primont 1995; p. 125) and py� cx is a

8For example, we could assume that Slater’s constraint qualification holds, i.e., there exists at least
a point ~c; ~pð Þ 2 Rmþ s

þ þ such that h ~c; ~pð Þ[ 1 (see Mangasarian 1994; p. 78).
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linear function. Additionally, let us remember that h is a concave function and, as a
consequence, hðc; pÞ � 1 is a concave function as well.

Then, assuming any constraint qualification, c�; p�ð Þ is an optimal solution of
(4.5.3) if and only if there exist h� such that the following Kuhn-Tucker conditions
hold.

ðaiÞ @P c�; p�ð Þ
@ci

¼ �xi þ h�
@h c�; p�ð Þ

@ci
; i ¼ 1; . . .;m;

ðbrÞ @P c�; p�ð Þ
@pr

¼ yr þ h�
@h c�; p�ð Þ

@pr
; r ¼ 1; . . .; s;

ðcÞ h� � 0;

ðdÞ h� � h c�; p�ð Þ � 1ð Þ ¼ 0;

ðeÞ c�; p�ð Þ 2 Rmþ s
þ þ ; h c�; p�ð Þ� 1:

ð4:5:5Þ

Now, we multiple each condition ðaiÞ by c�i and each condition ðbrÞ by p�r . Then,
we sum all these conditions and obtain, thanks to the homogeneity of degree +1 of
the functions Pðc; pÞ and hðc; pÞ, P c�; p�ð Þ ¼ p�y� c�xþ h� � h c�; p�ð Þ. Now, by
ðdÞ, P c�; p�ð Þ ¼ p�y� c�xþ h�. Then, following (4.5.1), we have that
Lðx; y;NSÞ ¼ h�. ■

The set NS as defined in (4.5.2) encompasses several interesting cases. For
example, let hðc; pÞ ¼ a � Qm

i¼1 c
ai
i

� � Qs
r¼1 p

br
r

� �
be a Cobb-Douglas function withPm

i¼1 ai þ
Ps

r¼1 br ¼ 1. Then, the function h is continuous, concave, homoge-
neous of degree +1 [see Madden (1986, p. 167)] and, obviously, hð0; 0Þ ¼ 0\1.
Therefore, the set NS includes the Cobb-Douglas function as a particular case. The
same can be said with respect the C.E.S. (Constant Elasticity of Substitution)

function. If h c; pð Þ ¼ a � Pm
i¼1 aic

�r
i þ Ps

r¼1 brp
�r
r

� ��1=r then h is a continuous,
concave, homogeneous of degree +1 (see Madden 1986; pp. 171–172) and
hð0; 0Þ ¼ 0\1. Moreover, note that we can develop a result similar to Proposition
8 using hðc; pÞ ¼ 1 instead of h c; pð Þ� 1 in the definition of NS. So Proposition 9
includes the case of the directional distance functions normalization condition since
it is related to a linear function, which is continuous, concave, homogeneous of
degree +1 and differentiable.

4.6 Conclusions

In this paper, we recover the seminal idea of Debreu (1951) of evaluating the “dead
loss” in the context of the production theory for measuring inefficiency. Following
this idea, we have defined the family of loss distance functions and shown that it is
a model that encompasses a wide class of existing distance functions.9 As a

9The same idea was already used by Pastor et al. (2012) in a quite different context, i.e., for
modelling the DEA efficiency models in a unified way.
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consequence, the Hölder metric distance functions, the directional distance func-
tions and Shephard’s distance functions can be seen as a type of firms’ opportunity
costs, using for the evaluation different normalization conditions defined on the
intrinsic prices. Additionally, we proved several interesting properties of the loss
distance function. As a main result, we derived a general duality relation between
the profit function and the loss distance functions that generalize the ones by
Chambers et al. (1996, 1998) and Briec and Lesourd (1999). From a practical
perspective, the conditions associated to the normalization set can be considered as
a benchmark (or check list) when defining new efficiency measures. These condi-
tions entail a rationale when assessing the suitability of these new measures in terms
of duality, as it ensures that a consistent decomposition of economic efficiency
considering technical and allocative criteria is theoretically grounded. Finally,
assuming differentiability, we were able to derive the well-known Hotelling’s
Lemma, and we proved that the optimal value of the Lagrangian multiplier asso-
ciated with a continuous, concave, and homogeneous of degree +1 normalization
condition, is equal to the loss distance function value.
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Chapter 5
Exact Relationships Between Fisher
Indexes and Theoretical Indexes

Emili Grifell-Tatjé and C. A. Knox Lovell

Abstract We develop exact relationships between empirical Fisher indexes and
their theoretical Malmquist and Konüs counterparts. We begin by using implicit
Malmquist price and price recovery indexes to establish exact relationships between
empirical Fisher quantity and productivity indexes and theoretical Malmquist
quantity and productivity indexes. We then show that Malmquist quantity and
productivity indexes and Fisher price and price recovery indexes “almost” satisfy
the product test with the relevant value change, and we derive a quantity mix
function that ensures satisfaction of the product test. We next use implicit Konüs
quantity and productivity indexes to establish exact relationships between empirical
Fisher price and price recovery indexes and theoretical Konüs price and price
recovery indexes. We then show that Konüs price and price recovery indexes and
Fisher quantity and productivity indexes “almost” satisfy the product test with the
relevant value change, we derive a price mix function that ensures satisfaction of
the product test, and we show that this price mix function differs fundamentally
from the quantity mix function relating Malmquist and Fisher indexes.
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5.1 Introduction

Empirical Fisher quantity and productivity indexes differ from theoretical
Malmquist quantity and productivity indexes. This matters because Fisher quantity
and productivity indexes can be calculated from empirical quantity and price data,
and Malmquist quantity and productivity indexes have nice properties. It is
important to emphasize at the outset that the Malmquist productivity index we
analyze is the ratio of a Malmquist output quantity index to a Malmquist input
quantity index. It was suggested by Diewert (1992), who attributed it to Hicks and
to Moorsteen, and endorsed by Bjurek (1996), who called it the Malmquist total
factor productivity index, and evaluated by O’Donnell (2012), who characterized it
as being multiplicatively complete, and therefore decomposable into the product of
drivers of productivity change, provided that the output quantity index and the input
quantity index are non-negative, non-decreasing scalar-valued functions homoge-
neous of degree +1. This Malmquist productivity index differs from the more
popular index bearing the same name introduced by Caves et al. (1982), which
cannot be expressed as the ratio of an output quantity index to an input quantity
index, and so is not multiplicatively complete.

Our first objective is to relate empirical Fisher quantity and productivity indexes
to theoretical Malmquist quantity and productivity indexes, and to derive eco-
nomically meaningful functions that characterize the disparities between the two.
These functions also characterize the extent to which, and the economic explanation
for why, Malmquist quantity and productivity indexes and Fisher price and price
recovery1 indexes fail to satisfy the product test2 with the relevant value change.
The key ingredients in this analysis are implicit Malmquist price and price recovery
indexes.3

Similarly, empirical Fisher price and price recovery indexes differ from theo-
retical Konus price and price recovery indexes. This also matters, because Fisher
price and price recovery indexes also can be calculated from empirical price and
quantity data, and Konüs price and price recovery indexes also have nice properties.
O’Donnell’s multiplicatively complete characterization of the Malmquist produc-
tivity index also applies to the Konüs price recovery index, enabling one to

1A price recovery index is analogous to a productivity index, but is defined in price space rather
than quantity space as the ratio of an output price (instead of quantity) index to an input price
(instead of quantity) index. It reflects the ability of producers to “recover” financially from input
price increases by raising output prices, or to “recover” financially from output price declines by
reducing input prices. A popular macroeconomic example is the terms of trade index, the ratio of a
country’s export price index to its import price index, which, together with its rate of productivity
growth, influences a country’s economic welfare.
2The product test is a test of whether the product of a quantity index and a price index equals the
relevant value change. The test is demanding, and not all quantity and price index pairs satisfy it,
e.g., a Törnqvist quantity index and a Törnqvist price index.
3An implicit price (quantity) index is the ratio of value change to the corresponding quantity
(price) index, and trivially satisfies the product test with the corresponding quantity (price) index.
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exhaustively decompose it into the product of drivers of price recovery change,
although it remains to be seen whether the decomposition makes economic sense.
Nonetheless our second objective is to relate empirical Fisher price and price
recovery indexes to theoretical Konüs price and price recovery indexes, and to
derive (fundamentally different) economically meaningful functions that charac-
terize the disparities between the two. These functions also characterize the extent
to which, and the economic explanation for why, Konüs price and price recovery
indexes and Fisher quantity and productivity indexes fail to satisfy the product test
with the relevant value change. The key ingredients in this analysis are implicit
Konüs quantity and productivity indexes.

The literature relating empirical and theoretical index numbers has taken two
approaches. One approach seeks restrictions on the structure of production tech-
nology, in conjunction with an assumption of optimizing behavior, that equate an
empirical index with a corresponding theoretical index. Diewert (1992) follows this
approach to provide “a strong economic justification” for the use of Fisher quantity
and productivity indexes. A second approach imposes relatively weak regularity
conditions on production technology, sufficient for duality to hold, augmented with
a less restrictive form of optimizing behavior, to establish approximate relationships
between empirical and theoretical indexes. Balk (1998) makes extensive use of this
approach.

Our analysis fits into neither category. It begins with implicit theoretical price
and quantity indexes. We use these implicit indexes not as ends themselves, but as
means to more important ends, the derivation of functions that link empirical Fisher
indexes with theoretical Malmquist and Konüs indexes, and that ensure satisfaction
of the analogous product tests. We provide economic intuition behind the content of
these functions, which characterize variation in the mix of choice variables, either
quantities or prices. Our analysis extends results in Grifell-Tatjé and Lovell (2015).

Our analysis proceeds as follows. In Sect. 5.2 we provide some background to
motivate our analysis relating empirical and theoretical index numbers. In Sect. 5.3
we use implicit Malmquist price and price recovery indexes to relate empirical
Fisher quantity and productivity indexes to theoretical Malmquist quantity and
productivity indexes. We also show that Malmquist quantity and productivity
indexes and Fisher price and price recovery indexes “almost” satisfy the product
test with the relevant value change, and we derive and provide economic inter-
pretations of quantity mix functions that ensure satisfaction of the product test. In
Sect. 5.4 we use implicit Konüs quantity and productivity indexes to relate
empirical Fisher price and price recovery indexes to theoretical Konüs price and
price recovery indexes. We also show that Konüs price and price recovery indexes
and Fisher quantity and productivity indexes “almost” satisfy the product test with
the relevant value change, we derive price mix functions that ensure satisfaction of
the product test, and we show that these price mix functions differ fundamentally
from the analogous quantity mix functions relating Malmquist and Fisher quantity
and productivity indexes. Section 5.5 concludes.
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5.2 Background

Let yt 2 RM
þ and xt 2 RN

þ be output and input quantity vectors with corresponding
price vectors pt 2 RM

þ þ and wt 2 RN
þ þ , and let revenue Rt = ptTyt, cost

Ct = wtTxt, and profitability (or cost recovery) Πt = Rt/Ct, all for two time periods, a
base period t = 0 and a comparison period t = 1. The technology is given by
Tt = {(y, x): x can produce y in period t}, its convex output sets are given by
Pt(x) = {y: (y, x) 2 Tt} with frontiers IPt(x) = {y: y 2 Pt(x), λy 62 Pt(x), λ > 1}, and
its convex input sets are given by Lt(y) = {x: (x, y) 2 Tt} with frontiers ILt(y) = {x:
x 2 Lt(y), λx 62 Lt(y), λ < 1}. Output distance functions are defined on the output
sets by Dt

oðx; yÞ = min{ϕ > 0: y/ϕ 2 Pt(x)} ≤ 1 8 y 2 Pt(x), and input distance
functions are defined on the input sets by Dt

iðy; xÞ = max{θ > 0: x/θ 2 Lt(y)} ≥ 1 8
x 2 Lt(y). Finally revenue frontiers are defined on the output sets by rt(x,
p) = maxy{p

Ty: y 2 Pt(x)} ≥ Rt, and cost frontiers are defined on the input sets by
ct(y, w) = minx{w

Tx: x 2 Lt(y)} ≤ Ct.
We know from Balk (1998) that our best empirical and theoretical quantity and

productivity indexes are related by

YF ffi YM x1; x0; y1; y0
� �

XF ffi XM y1; y0; x1; x0
� �

YF

XF
ffi YM x1; x0; y1; y0ð Þ

XM y1; y0; x1; x0ð Þ ;
ð5:1Þ

where YF, XF and YF/XF are Fisher output quantity, input quantity and productivity
indexes, and YM(x

1, x0, y1, y0), XM(y
1, y0, x1, x0) and YM(x

1, x0, y1, y0)/XM(y
1, y0,

x1, x0) are Malmquist output quantity, input quantity and productivity indexes in
geometric mean form.4

It follows that5

4The Fisher quantity indexes are defined as YF ¼ p0Ty1

p0Ty0

� �
� p1Ty1

p1Ty0

� �h i1=2
= YL � YPð Þ1=2 and

XF ¼ w0Tx1

w0Tx0

� �
� w1Tx1

w1Tx0

� �h i1=2
= XL � XPð Þ1=2, subscripts L and P signifying Laspeyres and

Paasche. The Malmquist quantity indexes are defined as

YM ¼ D0
o x0 ;y1ð Þ

D0
o x0 ;y0ð Þ

� �
� D1

o x1 ;y1ð Þ
D1

o x1 ;y0ð Þ
� �� 	1=2

= Y0
M � Y1

M

� �1=2
and

XM ¼ D0
i y0 ;x1ð Þ

D0
i y0 ;x0ð Þ

� �
� D1

i y1 ;x1ð Þ
D1

i y1 ;x0ð Þ
� �� 	1=2

¼ X0
M � X1

M

� �1=2
, the superscripts 0 and 1 signifying

base period and comparison period, corresponding to the period weights in Laspeyres and
Paasche indexes.

5The Fisher price indexes are defined as PF ¼ y0Tp1

y0Tp0

� �
� y1Tp1

y1Tp0

� �h i1=2
¼ PL � PPð Þ1=2 and

WF ¼ x0Tw1

x0Tw0

� �
� x1Tw1

x1Tw0

� �h i1=2
= WL �WPð Þ1=2.
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PF � YM x1; x0; y1; y0
� � ffi PF � YF ¼ R1

R0

WF � XM y1; y0; x1; x0
� � ffi WF � XF ¼ C1

C0

PF
WF

� YMðx1; x0; y1; y0Þ
XMðy1; y0; x1; x0Þ ffi

PF
WF

� YF

XF
¼ P1

P0 :

ð5:2Þ

Results (5.1) and (5.2) are based on Mahler inequalities, which use distance
functions to bound the allocative efficiencies of quantity vectors {rt(x,
p) ≥ pT½y=Dt

oðx; yÞ� 8p, y, x and ct(y, w) ≤ wT½x=Dt
iðy; xÞ� 8w, x, y}, with an

assumption of within-period allocative efficiency {ptT½yt=Dt
oðyt; xtÞ� = rt(xt, pt) and

wtT½xt=Dt
iðxt; ytÞ� = ct(yt,wt), t = 0,1}.

We also know that our best empirical and theoretical price and price recovery
indexes are related by

PF ffi PKðx1; x0; p1; p0Þ
WF ffi WKðy1; y0;w1;w0Þ
PF
WF

ffi PKðx1; x0; p1; p0Þ
WKðy1; y0;w1;w0Þ ;

ð5:3Þ

where PF, WF and PF/WF are Fisher output price, input price and price recovery
indexes, and PK(x

1, x0, p1, p0), WK(y
1, y0, w1, w0) and PK(x

1, x0, p1, p0)/WK(y
1, y0,

w1, w0) are Konüs output price, input price and price recovery indexes.6

It follows that

YF � PKðx1; x0; p1; p0Þ ffi YF � PF ¼ R1

R0

XF �WKðy1; y0;w1;w0Þ ffi XF �WF ¼ C1

C0

YF

XF
� PKðx1; x0; p1; p0Þ
WKðy1; y0;w1;w0Þ ffi

YF

XF
� PF
WF

¼ P1

P0 :

ð5:4Þ

Results (5.3) and (5.4) are not based on Mahler inequalities. These results are
based on inequalities having similar form as the Mahler inequalities [rt(x, p) ≥ yTp
8 y, x, p and ct(y, w) ≤ xTw 8 x, y, w] beneath (5.2), but they use revenue and cost
frontiers to bound revenue and cost efficiencies rather than output and input

6The Konüs price indexes are defined as PK ¼ r0ðx0 ;p1Þ
r0ðx0 ;p0Þ �

r1ðx1 ;p1Þ
r1ðx1 ;p0Þ

j k1=2
= P0K � P1K
� �1=2

and

WK ¼ c0ðy0 ;w1Þ
c0ðy0 ;w0Þ �

c1ðy1 ;w1Þ
c1ðy1 ;w0Þ

j k1=2
= W0

K �W1
K

� �1=2
.
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allocative efficiencies, and the efficiencies being bounded are those of output and
input price vectors rather than output and input quantity vectors.

The results in (5.2) and (5.4) show that combining empirical indexes with the-
oretical indexes leads to approximate satisfaction of the product test with the rel-
evant value change. It is also possible to show that combining theoretical indexes
with theoretical indexes leads to approximate satisfaction of the product test with
the relevant value change. Combining the left sides of (5.1) and (5.3) leads to
satisfaction of the relevant product tests. Hence combining the right sides leads to
approximate satisfaction of the relevant product tests and we have

YMðx1; x0; y1; y0Þ � PKðx1; x0; p1; p0Þ ffi R1

R0

XMðy1; y0; x1; x0Þ �WKðy1; y0;w1;w0Þ ffi C1

C0

YMðx1; x0; y1; y0Þ
XMðy1; y0; x1; x0Þ �

PKðx1; x0; p1; p0Þ
WKðy1; y0;w1;w0Þ ffi

P1

P0 ;

ð5:5Þ

which shows that our best theoretical quantity and productivity indexes and our best
price and price recovery indexes almost satisfy the product test with the relevant
value change.

In Sects. 5.3 and 5.4 we derive exact relationships between empirical and the-
oretical index numbers, and we provide economic interpretations of the mix
functions that convert the approximations to equalities. We also show that the
economic content of the quantity mix functions that convert the approximations in
(5.1) and (5.2) to equalities coincide, and they differ fundamentally from the eco-
nomic content of the price mix functions that convert the approximations in (5.3)
and (5.4) to equalities, which also coincide. The product of the quantity mix
functions and the price mix functions converts the approximations in (5.5) to
equalities.

The starting points in our analyses are implicit Malmquist output and input price
indexes in Sect. 5.3, and implicit Konüs output and input quantity indexes in
Sect. 5.4. Neither pair of implicit indexes satisfies the fundamental homogeneity
property in prices or quantities, respectively (Diewert 1981; 174, 176). However we
do not treat these implicit indexes as price or quantity indexes; we use them for
other purposes, to convert the economic approximations in (5.1) and (5.3) to exact
relationships, which in turn eliminates the product test gaps in (5.2), (5.4) and (5.5),
and to provide economic interpretations of the gaps they eliminate.
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5.3 Implicit Malmquist Price and Price Recovery Indexes

In this section we exploit implicit Malmquist output price, input price and price
recovery indexes. These implicit indexes enable us to derive exact relationships
between Fisher and Malmquist output quantity, input quantity and productivity
indexes, and exact decompositions of revenue change, cost change and profitability
change.

5.3.1 The Output Side

A base period implicit Malmquist output price index is defined as

PI0Mðx0; p1; p0; y1; y0Þ ¼
R1=R0

Y0
Mðx0; y1; y0Þ

¼ p1Ty1=D0
oðx0; y1Þ

p0Ty0=D0
oðx0; y0Þ

;

ð5:6Þ

in which Y0
Mðx0; y1; y0Þ ¼ D0

oðx0; y1Þ=D0
oðx0; y0Þ is a base period Malmquist output

quantity index. Multiplying and dividing by p0Ty1=D0
oðx0; y1Þ yields

PI0Mðx0; p1; p0; y1; y0Þ ¼ PP � p0T½y1=D0
oðx0; y1Þ�

p0T½y0=D0
oðx0; y0Þ�

¼ PP � YL

Y0
Mðx0; y1; y0Þ

¼ PP � YM0
Mðx0; p0; y1; y0Þ;

ð5:7Þ

in which PP = y1Tp1/y1Tp0 is a Paasche output price index, YL = p0Ty1/p0Ty0 is a
Laspeyres output quantity index, and YM0

Mðx0; p0; y1; y0Þ = p0T ½y1=D0
oðx0; y1Þ�/

p0T ½y0=D0
oðx0; y0Þ� is a base period Malmquist output quantity mix function, so

named because it is based on output distance functions that scale output vectors y1

and y0 to the base period frontier IP0(x0), thereby eliminating any magnitude, or
technical efficiency, difference between them, leaving only difference in their mix,
or allocative efficiency. This function is the ratio of the revenue generated by
y1=D0

oðx0; y1Þ to that generated by y0=D0
oðx0; y0Þ when both are valued at base

period output prices on base period technology. The third equality in (5.7) provides
an exact decomposition of a base period implicit Malmquist output price index. The
second equality demonstrates that the base period Malmquist output quantity mix
function is the ratio of a Laspeyres output quantity index to a base period
Malmquist output quantity index. In the presence of base period prices we expect
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technically efficient base period quantities y0=D0
oðx0; y0Þ to be at least as alloca-

tively efficient, and therefore to generate at least as much revenue, as technically
efficient comparison period quantities y1=D0

oðx0; y1Þ, and so we expect
YM0

Mðx0; p0; y1; y0Þ� 1, and thus YL �Y0
Mðx0; y1; y0Þ.

Revenue change is expressed as

R1

R0 � Y0
Mðx0; y1; y0Þ � PI0Mðx0; p1; p0; y1; y0Þ

¼ ½Y0
Mðx0; y1; y0Þ � PP� � YM0

Mðx0; p0; y1; y0Þ;
ð5:8Þ

which uses (5.7) to provide an exact decomposition of revenue change, showing
that the product of a base period Malmquist output quantity index, a Paasche output
price index, and a base period Malmquist output quantity mix function satisfies the
product test with revenue change.

The base period output quantity mix function has a value of unity if M = 1, or if
M > 1 and y1 = λy0, λ > 0. If YM0

M(x
0, p0, y1, y0) = 1, PI0M(x

0, p1, p0, y1, y0) = PP
and YL = Y0

M(x
0, y1, y0) in (5.7) and R1/R0 = Y0

M(x
0, y1, y0) × PP in (5.8), so that,

under either of the stipulated conditions, a base period implicit Malmquist output
price index is equal to a Paasche output price index, a base period Malmquist output
quantity index is equal to a Laspeyres output quantity index, and the product of a
base period Malmquist output quantity index and a Paasche output price index
satisfies the product test with revenue change.

If neither of these conditions holds, we expect YM0
M(x

0, p0, y1, y0) < 1. Base
period output allocative efficiency of y0/D0

o(x
0, y0) relative to p0 is sufficient for

YM0
M(x

0, p0, y1, y0) < 1, and thus for PI0M(x
0, p1, p0, y1, y0) < PP, YL < Y0

M(x
0, y1,

y0), and R1/R0 ≤ Y0
M(x

0, y1, y0) × PP. A less restrictive sufficient condition for all
three inequalities requires only that y0/D0

o(x
0, y0) be more allocatively efficient than

y1 =D0
oðx0; y1Þ relative to (x0, p0) on the frontier of base period technology IP0(x0).

This assumption is weaker than one of base period output allocative efficiency
(e.g., Balk 1998) or of base period revenue maximization (e.g., Diewert 1981).

A comparison period implicit Malmquist output price index is defined as

PI1Mðx1; p1; p0; y1; y0Þ �
R1=R0

Y1
Mðx1; y1; y0Þ

¼ p1T½y1=D1
oðx1; y1Þ�

p0T½y0=D1
oðx1; y0Þ�

;

ð5:9Þ

in which Y1
Mðx1; y1; y0Þ = D1

oðx1; y1Þ=D1
oðx1; y0Þ is a comparison period Malmquist

output quantity index. Multiplying and dividing by p1Ty0=D1
oðx1; y0Þ yields

104 E. Grifell-Tatjé and C.A. Knox Lovell



PI1Mðx1; p1; p0; y1; y0Þ ¼ PL � p1T½y1=D1
oðx1; y1Þ�

p1T½y0=D1
oðx1; y0Þ�

¼ PL � YP

Y1
Mðx1; y1; y0Þ

;

¼ PL � YM1
Mðx1; p1; y1; y0Þ;

ð5:10Þ

in which PL = y0Tp1/y0Tp0 is a Laspeyres output price index, YP = p1Ty1/p1Ty0 is a
Paasche output quantity index, and YM1

Mðx1; p1; y1; y0Þ = p1T ½y1=D1
oðx1; y1Þ�/p1T

½y0=D1
oðx1; y0Þ� is a comparison period Malmquist output quantity mix function that

is the ratio of the revenue generated by y1=D1
oðx1; y1Þ to that generated by

y0=D1
oðx1; y0Þ when both are valued at comparison period output prices. The third

equality in (5.10) provides an exact decomposition of a comparison period implicit
Malmquist output price index. The second equality shows that the comparison
period Malmquist output quantity mix function is the ratio of a Paasche output
quantity index to a comparison period Malmquist output quantity index. In the
presence of comparison period prices we expect technically efficient comparison
period quantities y1=D1

oðx1; y1Þ to be at least as allocatively efficient, and thus to
generate at least as much revenue, as technically efficient base period quantities
y0=D1

oðx1; y0Þ, and so we expect YM1
Mðx1; p1; y1; y0Þ� 1, and thus

YP �Y1
Mðx1; y1; y0Þ.

Revenue change is expressed as

R1

R0 � Y1
Mðx1; y1; y0Þ � PI1Mðx1; p1; p0; y1; y0Þ

¼ ½Y1
Mðx1; y1; y0Þ � PL� � YM1

Mðx1; p1; y1; y0Þ;
ð5:11Þ

which provides a second exact decomposition of revenue change, in which the
product of a comparison period Malmquist output quantity index, a Laspeyres
output price index, and a comparison period Malmquist output quantity mix
function also satisfies the product test with revenue change.

The comparison period output quantity mix function has a value of unity if
M = 1, or if M > 1 and y1 = λy0, λ > 0. Under either of these conditions a com-
parison period implicit Malmquist output price index is equal to a Laspeyres output
price index in (5.10), a comparison period Malmquist output quantity index is equal
to a Paasche output quantity index in (5.10), and the product of a comparison period
Malmquist output quantity index and a Laspeyres output price index satisfies the
product test with revenue change in (5.11).

If neither of these conditions holds, comparison period output allocative effi-
ciency of y1=D1

oðx1; y1Þ relative to p1 is sufficient for YM1
Mðx1; p1; y1; y0Þ[ 1, and

thus for PI1Mðx1; p1; p0; y1; y0Þ > PL, YP > Y1
Mðx1; y1; y0Þ, and R1/R0 > Y1

M

ðx1; y1; y0Þ × PL. A less restrictive sufficient condition for all three inequalities
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requires only that y1=D1
oðx1; y1Þ be more allocatively efficient than y0=D1

oðx1; y0Þ
relative to (x1, p1) on the frontier of comparison period technology IP1(x1).

Figure 5.1 illustrates the base period and comparison period output quantity mix
functions for M = 2. Convexity of the output sets, in conjunction with the condition
that y0=D0

oðx0; y0Þ be more allocatively efficient than y1=D0
oðx0; y1Þ relative to p0 on

IP0(x0) and that y1=D1
oðx1; y1Þ be more allocatively efficient than y0=D1

oðx1; y0Þ
relative to p1 on IP1(x1), guarantees that YM0

M[x
0, p0, y1/D0

oðx0; y1Þ, y0/D0
oðx0; y0Þ]

≤ 1 and that YM1
M[x

1, p1, y1/D1
oðx1; y1Þ, y0/D1

oðx1; y0Þ] ≥ 1, and leads to the
expectation that their geometric mean is approximately unity.

An implicit Malmquist output price index is the geometric mean of (5.7) and
(5.10), and so

PIMðx1; x0; p1; p0; y1; y0Þ ¼ PF � YMMðx1; x0; p1; p0; y1; y0Þ
¼ PF � YF

YMðx1; x0; y1; y0Þ ;
ð5:12Þ

in which PF = [PP × PL]
1/2 is a Fisher output price index,

YMMðx1; x0; p1; p0; y1; y0Þ = [YM0
Mðx0; p0; y1; y0Þ × YM1

Mðx1; p1; y1; y0Þ]1/2 is a
Malmquist output quantity mix function, YF = [YL × YP]

1/2 is a Fisher output

quantity index, and YM(x
1,x0,y1,y0) = Y0

M x0; y1; y0ð Þ � Y1
Mðx1; y1; y0Þ


 �1=2
is a

Malmquist output quantity index.

Fig. 5.1 Output quantity mix functions
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It follows from the first and second equalities in (5.12) that

YF ¼ YMðx1; x0; y1; y0Þ � YMMðx1; x0; p1; p0; y1; y0Þ; ð5:13Þ

which provides an exact relationship between the empirical Fisher output quantity
index and the theoretical Malmquist output quantity index.

Revenue change is the geometric mean of (5.8) and (5.11), and so

R1

R0 ¼ ½YMðx1; x0; y1; y0Þ � PF� � YMMðx1; x0; p1; p0; y1; y0Þ; ð5:14Þ

which provides an exact decomposition of revenue change.
Summarizing the output side, using (5.7) and (5.10), the Malmquist output

quantity mix function is given by

YMMðx1; x0; p1; p0; y1; y0Þ ¼
p0T½ y1

D0
o x0;y1ð Þ�

p0T½ y0

D0
o x0;y0ð Þ�

�
p1T½ y1

D1
o x1;y1ð Þ�

p1T½ y0

D1
o x1;y0ð Þ�

8><
>:

9>=
>;

1=2

; ð5:15Þ

and has a value of unity if M = 1 or if y1 = λy0, λ > 0. Otherwise we expect it to be
approximately unity, which leads to the economically meaningful expectations that
YF ≅ YM(x

1, x0, y1, y0) in (5.13) and R1/R0 ≅ YM(x
1, x0, y1, y0) × PF in (5.14).7

5.3.2 The Input Side

We exploit the implicit Malmquist input price index in a similar manner, using the
same strategies and the same quantity mix logic. The base period implicit
Malmquist input price index is WI0Mðy0;w1;w0; x1; x0Þ � ðC1=C0Þ=X0

Mðy0; x1; x0Þ
and the comparison period implicit Malmquist input price index is
WI1Mðy1;w1;w0; x1; x0Þ � ðC1=C0Þ=X1

Mðy1; x1; x0Þ. We omit all intermediate steps
and arrive at the geometric mean of the two, the implicit Malmquist input price
index

7The fact that YMMðx1; x0; p1; p0; y1; y0Þ = YM0
M x0; p0; y1; y0ð Þ � YM1

M x1; p1; y1; y0ð Þ
 �1=2
=

� 1ð Þ � ð� 1Þ½ �1=2 leads to the expectation that YMMðx1; x0; p1; p0; y1; y0Þ ffi 1, but it does not
guarantee that the approximation be numerically close. Balk (1998; 37) provides the mathe-
matical reasoning; the economic reasoning requires that the allocative efficiency ratios be
roughly reciprocal in base and comparison periods. However if allocative efficiency improves or
declines sufficiently from base to comparison periods, the approximation may not be numeri-
cally close. This qualification to the economic argument for closeness of a geometric mean
approximation also applies to (5.19) on the input side, and to (5.28) and (5.35) in Sect. 5.4.
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WIMðy1; y0;w1;w0; x1; x0Þ ¼ WF � w0T½x1=D0
i ðy0; x1Þ�

w0T½x0=D0
i ðy0; x0Þ�

� w1T½x1=D1
i ðy1; x1Þ�

w1T½x0=D1
i ðy1; x0Þ�

� 1=2

¼ WF � XF

XMðy1; y0; x1; x0Þ
¼ WF � XMMðy1; y0;w1;w0; x1; x0Þ;

ð5:16Þ

in which the Fisher input price index WF = [WP × WL]
1/2, the Fisher input quantity

index XF = [XL × XP]
1/2, and the Malmquist input quantity index

XMðy1; y0; x1; x0Þ = [X0
Mðy0; x1; x0Þ × X1

Mðy1; x1; x0Þ]1/2. The Malmquist input
quantity mix function XMMðy1; y0;w1;w0; x1; x0Þ is the geometric mean of a base
period Malmquist input quantity mix function that is the ratio of the cost incurred at
x1=D0

i ðy0; x1Þ to that at x0=D0
i ðy0; x0Þ when both are valued at base period input

prices on the frontier of base period technology IL0(y0), and a comparison period
Malmquist input quantity mix function that is the ratio of the cost incurred at
x1=D1

i ðy1; x1Þ to that at x0=D1
i ðy1; x0Þ when both are valued at comparison period

input prices on the frontier of comparison period technology IL1(y1). The third
equality in (5.16) provides an exact decomposition of the implicit Malmquist input
price index. The second equality shows that the Malmquist input quantity mix
function is the ratio of a Fisher input quantity index to a Malmquist input quantity
index, from which it follows that

XF ¼ XMðy1; y0; x1; x0Þ � XMMðy1; y0;w1;w0; x1; x0Þ; ð5:17Þ

which provides an exact relationship between an empirical Fisher input quantity
index and a theoretical Malmquist input quantity index.

Since cost change can be expressed as C1/C0 = XF × WF, it follows from (5.17)
that

C1

C0 ¼ ½XMðy1; y0; x1; x0Þ �WF� � XMMðy1; y0;w1;w0; x1; x0Þ; ð5:18Þ

which provides an exact decomposition of cost change.
The input quantity mix function has a value of unity if N = 1, or if x1 = μx0,

μ > 0. Under either of these conditions WIMðy1; y0;w1;w0; x1; x0Þ ¼ WF in (5.16),
XF ¼ XMðy1; y0; x1; x0Þ in (5.17), and C1=C0 ¼ XMðy1; y0; x1; x0Þ �WF in (5.18).
If neither of these conditions holds, we expect XMMðy1; y0;w1;w0; x1; x0Þ ffi 1,
even in the absence of within-period input allocative efficiency, which generates
WIMðy1; y0;w1;w0; x1; x0Þ ffi WF in (5.16), XF ffi XMðy1; y0; x1; x0Þ in (5.17), and
C1=C0 ffi XMðy1; y0; x1; x0Þ �WF in (5.18).
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Figure 5.2 illustrates the base period and comparison period input quantity mix
functions with N = 2. Convexity of the input sets, in conjunction with the condition
that x0/D0

i ðy0; x0Þ be more allocatively efficient than x1=D0
i ðy0; x1Þ relative to w0 on

IL0(y0) and that x1=D1
i ðy1; x1Þ be more allocatively efficient than x0=D1

i ðy1; x0Þ
relative to w1 on IL1(y1), guarantees that XM0

M[y
0, w1, w0, x1/D0

i ðy0; x1Þ,
x0/D0

i ðy0; x0Þ] ≥ 1 and that XM1
M[y

1, w1, w0, x1/D1
i ðy1; x1Þ, x0/D1

i ðy1; x0Þ] ≤ 1, and
leads to the expectation that their geometric mean is approximately unity.

Summarizing the input side, from (5.16) the Malmquist input quantity mix
function is given by

XMMðy1; y0;w1;w0; x1; x0Þ ¼ w0T½x1=D0
i ðy0; x1Þ�

w0T½x0=D0
i ðy0; x0Þ�

� w1T½x1=D1
i ðy1; x1Þ�

w1T½x0=D1
i ðy1; x0Þ�

� �1=2

;

ð5:19Þ

and has a value of unity if N = 1 or if x1 = μx0, μ > 0. Otherwise we expect it to be
approximately unity, which leads to the economically meaningful expectations that
XF ≅ XM(y

1, y0, x1, x0) in (5.17) and C1=C0 ffi XMðy1; y0; x1; x0Þ �WF in (5.18).

Fig. 5.2 Input quantity mix functions
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5.3.3 Combining the Output Side and the Input Side

We ignore base period and comparison period indexes and proceed directly to an
implicit Malmquist price recovery index. The ratio of (5.12) and (5.16) is

PIMðx1; x0; p1; p0; y1; y0Þ
WIMðy1; y0;w1;w0; x1; x0Þ ¼

PF
WF

�MMðy1; y0; x1; x0; p1; p0;w1;w0Þ; ð5:20Þ

in which MMðy1; y0; x1; x0; p1; p0;w1;w0Þ = YMMðx1; x0; p1; p0; y1; y0Þ/XMMðy1;
y0;w1;w0; x1; x0Þ is a Malmquist quantity mix function that provides an economic
characterization of the gap, if any, between PF/WF and PIMðx1; x0; p1; p0; y1; y0Þ/
WIMðy1; y0;w1;w0; x1; x0Þ. From (5.12) to (5.14) we expect YMMðx1; x0; p1; p0;
y1; y0Þ ffi 1, and from (5.16) to (5.18) we expect XMMðy1; y0;w1;w0; x1; x0Þ ffi 1.
Consequently we expect MMðy1; y0; x1; x0; p1; p0;w1;w0Þ ffi 1, in which case a
Fisher price recovery index is approximately equal to an implicit Malmquist price
recovery index.

A geometric mean expression for productivity change is given by the ratio of
(5.13) and (5.17), and is

YF

XF
¼ YMðx1; x0; y1; y0Þ

XMðy1; y0; x1; x0Þ �MMðy1; y0; x1; x0; p1; p0;w1;w0Þ; ð5:21Þ

which provides an exact relationship between a Fisher productivity index and a
Malmquist productivity index, with the Malmquist quantity mix function providing
an economic interpretation of the (presumably small) gap between the two.

A geometric mean expression for profitability change is given by the ratio of
(5.14) and (5.18), and is

P1

P0 ¼
YMðx1; x0; y1; y0Þ
XMðy1; y0; x1; x0Þ �

PF
WF

� 
�MMðy1; y0; x1; x0; p1; p0;w1;w0Þ; ð5:22Þ

which provides an exact decomposition of profitability change. If the Malmquist
quantity mix function is approximately unity a Malmquist productivity index and a
Fisher price recovery index approximately satisfy the product test with profitability
change.8

In this section we have used implicit Malmquist price and price recovery indexes
to relate empirical Fisher quantity and productivity indexes to theoretical
Malmquist quantity and productivity indexes. The important findings are contained
in (5.12), (5.16) and (5.20); (5.13), (5.17) and (5.21); and (5.14), (5.18) and (5.22).

8All approximation results in this section also can occur if the technologies allow infinite output
substitution possibilities between output rays defined by y1 and y0 along IP0(x0) and IP1(x1) in
Fig. 1, and infinite input substitution possibilities between input rays defined by x1 and x0 along
IL0(y0) and IL1(y1) in Fig. 2. DEA generates such technologies.
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The first set of results relates implicit theoretical price and price recovery indexes to
their explicit empirical counterparts, and establishes the foundations for the second
and third sets of results. Equations (5.13), (5.17) and (5.21) clarify the sense in
which Fisher quantity and productivity indexes and Malmquist quantity and pro-
ductivity indexes are approximately equal. Equations (5.14), (5.18) and (5.22)
clarify the sense in which Malmquist quantity and productivity indexes approxi-
mately satisfy the relevant product test with Fisher price and price recovery indexes.
Both sets of results depends fundamentally on Malmquist output and input quantity
mix functions, which have clear economic interpretations. It is worth emphasizing
that the quantity mix functions compare the allocative efficiencies of pairs of
technically efficient quantity vectors, which are the choice variables in the
exercises.9

Equations (5.14), (5.18) and (5.22) warrant special emphasis from an empirical
perspective, because of their decomposability properties. YMðx1; x0; y1; y0Þ,
XMðy1; y0; x1; x0Þ and YMðx1; x0; y1; y0Þ/XMðy1; y0; x1; x0Þ decompose into the
product of economic drivers of productivity change: technical change, technical
efficiency change, mix efficiency change and size efficiency change. In contrast, PF,
WF and PF/WF decompose into contributions of individual output and input price
changes (Balk (2004)). These two features enable a decomposition of value (rev-
enue, cost and profitability) change into the economic drivers of quantity change
and the individual price drivers of price change.

5.4 Implicit Konüs Quantity and Productivity Indexes

In this section we exploit implicit Konüs output quantity, input quantity and pro-
ductivity indexes. These implicit indexes lead us to exact relationships between
Fisher and Konüs output price, input price and price recovery indexes, and to exact
decompositions of revenue change, cost change and profitability change. Both sets
of results differ from analogous results in Sect. 5.3.

5.4.1 The Output Side

We begin with a base period implicit Konüs output quantity index, which is defined
as

9The quantity mix functions in Sect. 5.3 are ratio analogues to the product mix and resource mix
effects in Grifell-Tatjé and Lovell (1999; 1182, 1184).
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YI0Kðx0; p1; p0; y1; y0Þ �
R1=R0

P0Kðx0; p1; p0Þ

¼ y1T½p1=r0ðx0; p1Þ�
y0T½p0=r0ðx0; p0Þ� ;

ð5:23Þ

in which P0K(x
0, p1, p0) = r0(x0, p1)/r0(x0, p0) is a base period Konüs output price

index. Multiplying and dividing by y0Tp1/r0(x0, p1) yields

YI0Kðx0; p1; p0; y1; y0Þ ¼ YP � y0T½p1=r0ðx0; p1Þ�
y0T½p0=r0ðx0; p0Þ�

¼ YP � PL
P0Kðx0; p1; p0Þ

¼ YP � PM0
Kðx0; y0; p1; p0Þ;

ð5:24Þ

in which YP = p1Ty1/p1Ty0 is a Paasche output quantity index, PL = y0Tp1/y0Tp0 is
a Laspeyres output price index, and PM0

K(x
0, y0, p1, p0) = y0T[p1/r0(x0, p1)]/y0T[p0/

r0(x0, p0)] is a base period Konüs output price mix function, so named because it is
a function of revenue functions that coincide apart from their output price vectors.
This function is the ratio of the revenue generated at y0 by normalized comparison
period output prices p1/r0(x0, p1) to that generated at y0 by normalized base period
output prices p0/r0(x0, p0). The two normalized price vectors differ only in their
output price mix.10

The third equality in (5.24) provides an exact decomposition of a base period
implicit Konüs output quantity index. The second equality demonstrates that the
base period Konüs output price mix function is the ratio of a Laspeyres output price
index to a base period Konüs output price index. This mix function is bounded
above by unity if p0/r0(x0, p0) is revenue efficient at y0 2 IP0(x0), or if p0/r0(x0, p0)
is more revenue efficient than p1/r0(x0, p1) at y0 2 IP0(x0). In either case
PL � P0Kðx0; p1; p0Þ and YI0Kðx0; p1; p0; y1; y0Þ ≤ YP. YI0Kðx0; p1; p0; y1; y0Þ = YP if
either M = 1 or p1 = λp0, λ > 0. These bounds do not require base period revenue
maximizing behavior, or even base period allocative efficiency.

Revenue change is expressed as

10An alternative interpretation of the base period Konüs output price mix function is that it is the
ratio of two revenue efficiencies, both with base period technology and quantity vectors but with
different output price vectors, since it can be expressed

PM0
Kðx0; y0; p1; p0Þ ¼ p1T½y0=r0ðx0; p1Þ�=p0T½y0=r0ðx0; p0Þ�:

.
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R1

R0 ¼ P0Kðx0; p1; p0Þ � YI0Kðx0; p1; p0; y1; y0Þ
¼ ½P0Kðx0; p1; p0Þ � YP� � PM0

Kðx0; y0; p1; p0Þ;
ð5:25Þ

which states that the product of a base period Konüs output price index, a Paasche
output quantity index and a base period Konüs output price mix function satisfies
the product test with R1/R0. As above we expect R1/R0 ≤ P0Kðx0; p1; p0Þ � YP.
However if either M = 1 or p1 = λp0, λ > 0, (5.24) and (5.25) collapse to
YI0Kðx0; p1; p0; y1; y0Þ ¼ YP and R1=R0 ¼ P0Kðx0; p1; p0Þ � YP in which case a base
period implicit Konüs output quantity index is equal to a Paasche output quantity
index, and consequently a Konüs output price index and a Paasche output quantity
index satisfy the product test with R1/R0.

We now sketch the results of a comparison period implicit Konüs output
quantity index. Following the same procedures as above, after multiplying and
dividing by y1Tp0/r1(x1, p0) we have

YI1Kðx1; p1; p0; y1; y0Þ ¼
R1=R0

P1Kðx1; p1; p0Þ

¼ YL � y1T½p1=r1ðx1; p1Þ�
y1T½p0=r1ðx1; p0Þ�

¼ YL � PP
P1Kðx1; p1; p0Þ

¼ YL � PM1
Kðx1; y1; p1; p0Þ;

ð5:26Þ

in which YL = p0Ty1/p0Ty0 is a Laspeyres output quantity index, PP = y1Tp1/y1Tp0

is a Paasche output price index, and P1Kðx1; p1; p0Þ = r1(x1, p1)/r1(x1, p0) is a
comparison period Konüs output price index. The comparison period Konüs output
price mix function PM1

Kðx1; y1; p1; p0Þ is the ratio of the revenue efficiency of two
normalized output price vectors, given comparison period technology and quantity
vectors. If, as expected, p1/r1(x1, p1) is more revenue efficient than p0/r1(x1, p0) at y1

2 IP1(x1), then PM1
Kðx1; y1; p1; p0Þ� 1, YI1Kðx1; y1; y0Þ�YL and

PP � P1Kðx1; p1; p0Þ.
Revenue change is expressed as

R1

R0 ¼ P1Kðx1; p1; p0Þ � YI1Kðx1; p1; p0; y1; y0Þ
¼ ½P1Kðx1; p1; p0Þ � YL� � PM1

Kðx1; y1; p1; p0Þ;
ð5:27Þ

which states that the product of a comparison period Konüs output price index, a
Laspeyres output quantity index and a comparison period Konüs output price mix
function satisfies the product test with R1/R0. Under the conditions specified above,
we expect R1/R0 ≥ P1K(x

1, p1, p0) × YL.
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Figure 5.3 illustrates the base period and comparison period output price mix
functions for M = 2. Convexity of the output sets, together with the conditions
that p0/r0(x0, p0) be more revenue efficient than p1/r0(x0, p1) at y0 2 IP0(x0) and that
p1/r1 (x1, p1) be more revenue efficient than p0/r1(x1, p0) at y1 2 IP1(x1) guarantees
that PM0

K[x
0, y0, p1/r0(x0, p1), p0/r0(x0, p0)] ≤ 1 and PM1

K[x
1, y1, p1/r1(x1, p1), p0/r1

(x1, p0)] ≥ 1.

The geometric mean of (5.24) and (5.26) is an implicit Konüs output quantity
index

YIKðx1; x0; p1; p0; y1; y0Þ ¼ YF � PM0
K x0; y0; p1; p0
� �� PM1

K x1; y1; p1; p0
� �
 �1=2

¼ YF � PF
PKðx1; x0; p1; p0Þ

¼ YF � PMK x1; x0; y1; y0; p1; p0
� �

;

ð5:28Þ

which states that an implicit Konüs output quantity index is the product of a Fisher
output quantity index and a Konüs output price mix function. Because one com-
ponent of the output price mix function is bounded above by unity and the other is
bounded below by unity we expect YIKðx1; x0; p1; p0; y1; y0Þ 	 YF.

It follows from the second and third equalities in (5.28) that

Fig. 5.3 Output price mix functions
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PF ¼ PKðx1; x0; p1; p0Þ � PMKðx1; x0; y1; y0; p1; p0Þ; ð5:29Þ

which enables us to calculate, and provide an economic interpretation of, the gap
between the theoretical and empirical output price indexes.

The geometric mean of (5.25) and (5.27) yields the expression for revenue
change

R1

R0 ¼ ½PKðx1; x0; p1; p0Þ � YF� � PMKðx1; x0; y1; y0; p1; p0Þ; ð5:30Þ

which provides an exact decomposition of revenue change, in which the product of
a Konüs output price index, a Fisher output quantity index, and a Konüs output
price mix function satisfies the product test with revenue change, the approximation
becoming an equality if either M = 1 or p1 = λp0, λ > 0.

Summarizing the output side, the Konüs output price mix function

PMKðx1; x0; y1; y0; p1; p0Þ ¼
y0T½ p1

r0 x0;p1ð Þ�

y0T½ p0

r0 x0;p0ð Þ�
�
y1T½ p1

r1 x1;p1ð Þ�

y1T½ p0

r1 x1;p0ð Þ�

8><
>:

9>=
>;

1=2

ð5:31Þ

has an approximate unitary value, which generates the expectation that PF ≅ PK

(x1, x0, p1, p0) in (5.29) and R1

R0 ffi PKðx1; x0; p1; p0Þ � YF in (5.30).

5.4.2 The Input Side

We now consider the implicit Konüs input quantity index. The base period implicit
Konüs input quantity index is XI0Kðy0;w1;w0; x1; x0Þ = (C1/C0)/W0

Kðy0;w1;w0Þ
and the comparison period implicit Konüs input quantity index is XI1Kðy1;w1;w0;

x1; x0Þ = (C1/C0)/W1
Kðy1;w1;w0Þ. The geometric mean of the two, the implicit

Konüs input quantity index, is

XIKðy1; y0;w1;w0; x1; x0Þ ¼ XF � WM0
K y0; x0;w1;w0
� ��WM1

K y1; x1;w1;w0
� �
 �1=2

¼ XF � WF

WKðy1; y0;w1;w0Þ
¼ XF �WMK y1; y0; x1; x0;w1;w0� �

;

ð5:32Þ

in which the Konüs input price mix function WMK y1; y0; x1; x0;w1;w0ð Þ measures
the gap between XIKðy1; y0;w1;w0; x1; x0Þ and XF, and is defined analogously to
the output price mix function in (5.28).
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From the second and third equalities in (5.32)

WF ¼ WKðy1; y0;w1;w0Þ �WMK y1; y0; x1; x0;w1;w0� �
; ð5:33Þ

which provides an exact relationship between empirical Fisher and theoretical
Konüs input price indexes.

Cost change is

C1

C0 ¼ ½WKðy1; y0;w1;w0Þ � XF� �WMK y1; y0; x1; x0;w1;w0� �
: ð5:34Þ

The base period and comparison period input price mix functions are illustrated
in Fig. 5.4 for N = 2. Convexity of the input sets, together with the conditions that
w0/c0(y0, w0) be more cost efficient than w1/c0(y0, w1) at x0 2 IL0(y0) and that
w1/c1(y1, w1) be more cost efficient than w0/c1(y1, w0) at x1 2 IL1(y1) guarantees
that WM0

K[y
0, x0, w1/c0(y0, w1), w0/c0(y0, w0)] ≥ 1 and WM1

K[y
1, x1, w1/c1(y1, w1),

w0/c1(y1, w0)] ≤ 1.

Summarizing the input side, the Konüs input price mix function

WMK y1; y0; x1; x0;w1;w0� � ¼
x0T½ w1

c0 y0;w1ð Þ�
x0T½ w0

c0 y0;w0ð Þ�
�
x1T½ w1

c1 y1;w1ð Þ�
x1T½ w0

c1 y1;w0ð Þ�

8<
:

9=
;

1=2

ð5:35Þ

Fig. 5.4 Input price mix functions
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has an approximate unitary value, which generates the expectation that WF ≅

WK(y
1, y0, w1, w0) in (5.33) and C1

C0 ffi WKðy1; y0;w1;w0Þ � XF in (5.34).

5.4.3 Combining the Output Side and the Input Side

We now construct an implicit Konüs productivity index. We ignore base period and
comparison indexes and proceed directly to an implicit Konüs productivity index.
The ratio of (5.28) and (5.32) is

YIKðx1; x0; p1; p0; y1; y0Þ
XIKðy1; y0;w1;w0; x1; x0Þ ¼

YF

XF
�MKðy1; y0; x1; x0; p1; p0;w1;w0Þ; ð5:36Þ

in which the Konüs price mix function MKðy1; y0; x1; x0; p1; p0;w1;w0Þ =
PMK x1; x0; y1; y0; p1; p0ð Þ/WMK y1; y0; x1; x0;w1;w0ð Þ measures, and provides an
economic interpretation of, the gap between YIKðx1; x0; p1; p0; y1; y0Þ/XIKðy1; y0;
w1;w0; x1; x0Þ and YF/XF. Because we expect PMK x1; x0; y1; y0; p1; p0ð Þ 	 1 and
we expect WMK y1; y0; x1; x0;w1;w0ð Þ 	 1 we also expect MKðy1; y0; x1; x0;
p1; p0;w1;w0Þ 	 1, in which case the implicit Konüs productivity index is
approximately equal to a Fisher productivity index.

The ratio of (5.29) and (5.33)

PF
WF

¼ PKðx1; x0; p1; p0Þ
WKðy1; y0;w1;w0Þ �MKðy1; y0; x1; x0; p1; p0;w1;w0Þ; ð5:37Þ

provides an exact relationship between an empirical Fisher price recovery index and
a theoretical Konüs price recovery index.

The ratio of (5.30) and (5.34) provides an implicit Konüs measure of profitability
change

P1

P0 ¼
R1=R0

C1=C0

¼ PKðx1; x0; p1; p0Þ
WKðy1; y0;w1;w0Þ �

YF

XF

� 
�MKðy1; y0; x1; x0; p1; p0;w1;w0Þ;

ð5:38Þ

and if MKðy1; y0; x1; x0; p1; p0;w1;w0Þ 	 1 a Konüs price recovery index and a
Fisher productivity index approximately satisfy the product test with profitability
change.11

11All approximation results in this section also can occur if y0 and y1 in Fig. 3 and x0 and x1 in
Fig. 4 are vertices of piecewise linear technologies that allow p1Ty0 = p0Ty0, p0Ty1 = p1Ty1 and
w1Tx0 = w0Tx0, w0Tx1 = w1Tx1, as might occur with DEA.
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In this section we have used implicit Konüs quantity and productivity indexes to
relate empirical Fisher price and price recovery indexes to theoretical Konüs price
and price recovery indexes. The important findings are contained in (5.28), (5.32)
and (5.36); (5.29), (5.33) and (5.37); and (5.30), (5.34) and (5.38). The first three
relate implicit theoretical quantity and productivity indexes to their explicit
empirical counterparts, and establish the foundations for the second and third sets of
results. Equations (5.29), (5.33) and (5.37) clarify the sense in which Konüs price
and price recovery indexes approximate Fisher price and price recovery indexes.
Equations (5.30), (5.34) and (5.38) clarify the sense in which Konüs price and price
recovery indexes approximately satisfy the relevant product test with Fisher
quantity and productivity indexes. In both the second and third sets of results clarity
is provided by the relevant Konüs price mix function.

In Sect. 5.3 the product test expressions (5.14), (5.18) and (5.22) have useful
empirical applications, since Malmquist quantity and productivity indexes
decompose by economic driver and Fisher price and price recovery indexes
decompose by individual prices. Here the product test expressions (5.30), (5.34)
and (5.38) are of potential, but as yet unrealized, empirical value. The Fisher
quantity and productivity indexes have been decomposed by economic driver of
productivity change, although agreement on a preferred decomposition remains
elusive.12 The Konüs price and price recovery indexes have yet to be decomposed
by economic drivers of price change (rather than, as commonly practiced, by
individual prices), although as we noted in Sect. 5.1 Konüs indexes are multi-
plicatively complete, and research on this issue is underway.

We emphasize that the Konüs price mix functions differ significantly from the
Malmquist quantity mix functions, although they serve the same purposes, to
convert approximations to exact relationships and to close product test gaps. The
Malmquist quantity mix functions are ratios of values generated by two normalized
quantity vectors weighted by a common price vector, with choice variables being
quantities. The Konüs price mix functions are ratios of values generated by a single
quantity vector weighted by two normalized price vectors, with choice variables
being prices.

5.5 Summary and Conclusions

We have exploited implicit Malmquist price and price recovery indexes to derive
exact relationships between empirical Fisher and theoretical Malmquist quantity
and productivity indexes, and to derive economically meaningful functions
describing the ability of Malmquist quantity and productivity indexes to satisfy

12Compare, for example, the decompositions proposed by Ray and Mukherjee (1996) and by
Kuosmanen and Sipiläinen (2009), and the critiques of both approaches by Diewert (2014) and
Grifell-Tatjé and Lovell (2015; 125–35).
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product tests with Fisher price and price recovery indexes. The key to these exact
relationships is the concept of Malmquist output and input quantity mix functions,
in which quantities are allowed to vary between base and comparison periods but
prices are fixed at either base period values or comparison period values. The
important empirical implication of our analysis is that, as the variation in the
quantity mix between base and comparison periods narrows (expands), the gap
between Fisher and Malmquist quantity and productivity indexes also narrows
(expands).

We also have exploited implicit Konüs quantity and productivity indexes to
derive exact relationships between empirical Fisher and theoretical Konüs price and
price recovery indexes, and to derive fundamentally different, but nonetheless
economically meaningful functions describing the ability of Konüs price and price
recovery indexes to satisfy product tests with Fisher quantity and productivity
indexes. The key to these exact relationships is the concept of Konüs output and
input price mix functions, in which prices are allowed to vary between base and
comparison periods but quantities are fixed at either base period values or com-
parison period values. In this case, as the variation in the price mix between base
and comparison periods narrows (expands), the gap between Fisher and Konüs
price and price recovery indexes also narrows (expands).

The exact relationships have clear economic interpretations, as allocative effi-
ciency effects, although these effects differ between Sects. 5.3 and 5.4. These
allocative efficiency effects are easy to calculate, using data required to calculate
Fisher indexes and estimate Malmquist and Konüs indexes, as Brea, Grifell-Tatjé
and Lovell (2011) have demonstrated for Fisher/Malmquist pairings.13
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Chapter 6
Productivity Interpretations of the Farrell
Efficiency Measures and the Malmquist
Index and Its Decomposition

Finn R. Førsund

Abstract The ratio definition of efficiency has the form of a productivity measure.
But the weights are endogenous variables and they do not function well as weights
in a productivity index proper. It is shown that extended Farrell measures of effi-
ciency can all be given an interpretation as productivity measures as observed
productivity relative to productivity at the various projection points on the frontier.
The Malmquist productivity index is the efficiency score for a unit in a period
relative to the efficiency score in a previous period, thus based on a maximal
common expansion factor for outputs or common contraction factor for inputs not
involving any individual weighting of outputs or inputs, as is the case if a Törnqvist
or ideal Fisher index is used. The multiplicative decomposition of the Malmquist
productivity index into an efficiency part and a frontier shift part should not be
taken to imply causality. The role of cone benchmark envelopments both for cal-
culating Malmquist indices of productivity change and for decomposing the indices
into an efficiency change term and a frontier shift term is underlined, and connected
to the index property of proportionality and circularity, adding the use of a fixed
benchmark envelopment. The extended decomposition of the efficiency component
by making use of scale efficiency is criticised.
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6.1 Introduction

Measuring productive efficiency has been developing the last decades to become an
important research strand within the fields of economics, management science and
operations research. Two seminal contributions are Farrell (1957) and Charnes et al.
(1978). Although the latter paper adopts the efficiency definition of the former the
approaches for calculation the measure differ in the two papers. Farrell started out
defining a frontier production function as the relevant comparison for measuring
productive efficiency for observations of production units and introduced radial
measures for the case of constant returns to scale. Charnes et al. (1978), formulating
the optimisation problem for estimating the efficiency measure, set up a ratio of
weighted outputs on weighted inputs. This approach brought the concept of pro-
ductivity into the efficiency story. However, although the ratio formally looks like a
productivity measure it is not set up to represent a productivity index proper, but to
estimate efficiency, i.e. to compare the “productivity” of an observation with the
productivity of a benchmark on the best practice frontier using weights that are
endogenous. Using these weights, the weighted sum of inputs or outputs will be
restricted to 1 (depending on estimating an output- or input-oriented efficiency
score), and one or more weight may be zero contrary to what one would want
constructing a productivity index proper.

A purpose of the chapter is to elaborate upon the productivity interpretation for
the generalised Farrell efficiency measures covering the case of variable returns to
scale. We then have technical efficiency measures, scale efficiency measures and a
technical measure of productivity, the last two types of measures building upon the
old concept of technically optimal scale in production theory. We will also have a
closer look at the Malmquist productivity index because it is defined as the ratio of
Farrell technical efficiency measures for a unit for two different time periods.
A contribution of the chapter is to introduce some relevant concepts to an audience
oriented toward DEA.

The chapter is organised as follows. The Charnes et al. (1978) ratio measure and
five Farrell efficiency measures are defined in Sect. 6.21 and the productivity
interpretations of the latter measures discussed for the case of a single output and
input, and then generalised to multiple outputs and inputs. The importance of (local)
constant returns to scale for productivity measurement is brought out using the
elasticity of scale. In Sect. 6.3 the Malmquist index proposed in Caves et al. (1982)
is introduced and some basic properties of the index and their consequences for
choice of efficiency measures are discussed. The decomposition of productivity
change into efficiency change and frontier shift introduced in Nishimizu and Page
(1982) is discussed and compared with the decomposition done in Färe et al. (1992,
1994a, c). Section 6.4 offers some conclusions.

1Section 6.2 is based on Førsund (2015), Sect. 4.
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6.2 Productivity Interpretations of the Farrell Efficiency
Measures

6.2.1 The Ratio Definition of the Efficiency Measure

Charnes et al. (1978) relate the ratio idea for defining an efficiency measure to how
efficiency is defined in engineering as “the ratio of the actual amount of heat
liberated in a given device to the maximum amount that could be liberated by the
fuel” (Charnes et al. 1978, p. 430). The optimisation problem set up for deriving the
efficiency measure in the case of constant returns to scale (CRS) for a dataset, from
a specific time period, is:

Max hj0 ¼
Ps

r¼1 urj0yrj0Pm
i¼1 vij0xij0

subject to
Ps

r¼1 urj0yrjPm
i¼1 vij0xij

� 1 ; j ¼ 1. . .; j0; . . .n; urj0 ; vij0 � 0 8r; i ð6:1Þ

Here hj0 is the efficiency measure for unit j0, yj0 and xj0 are the output and input
vectors, respectively, with s outputs and m inputs, number of units is n, and urj0, vij0
are the weights for unit j0 associated with outputs and inputs, respectively. These
weights are endogenous variables and will be determined in the optimal solution.
The constraints on the ratios in the optimisation problem (6.1) require the “pro-
ductivity” of all units to be equal to or less than 1 using the weights for unit j0, i.e.
the productivity of fully efficient units is normalised to 1. Moreover, the weighted
sum of inputs (input orientation) or outputs (output orientation) for the unit j0 under
investigation is normalised to 1 when the fractional programming problem (6.1) is
converted to a linear programming problem as shown by Charnes et al. (1978), thus
providing a link to the Farrell approach.2

6.2.2 The Farrell Suite of Efficiency Measures

Farrell (1957) defined two technical measures of efficiency, the input-oriented
measure based on scaling inputs of inefficient units down with a common scalar,
projecting the point radially to the frontier keeping observed output constant, and
the output-oriented measure scaling outputs of inefficient units up with a common
scalar, projecting the point radially to the frontier keeping observed inputs constant.
The measures were defined for a frontier function exhibiting constant returns to

2Farrell and Fieldhouse (1962) were the first to solve the problem of calculating their efficiency
measure by using linear programming.
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scale.3 However, he also discussed variable returns to scale and studied this further
in Farrell and Fieldhouse (1962), without explicitly introducing measures reflecting
scale properties. This was done in Førsund and Hjalmarsson (1974, 1979), devel-
oping a family of five efficiency measures. The latter paper illustrated the measures
using a smooth variable returns to scale frontier production function exhibiting an
S-shaped graph as typical for neoclassical production functions obeying the Regular
Ultra Passum Law4 of Frisch (1965).5 However, the efficiency measures are valid
for other types of frontier functions as long as a basic requirement of the variation of
the elasticity of scale is fulfilled. In this paper the focus will be on a non-parametric
piecewise linear frontier function; the generic DEA model exhibiting variable
returns to scale (VRS) having a convex production possibility set, and exhibiting
the other properties introduced in Banker et al. (1984).6

The family of the five Farrell efficiency measures is illustrated in Fig. 6.1 in the
case of the frontier within a non-parametric framework being a piecewise linear
convex function (Førsund 1992). The point of departure is the observation P0 = (y0,
x0) that is inefficient with respect to the VRS frontier. The reference point on the
frontier for the input-oriented measure E1 with respect to the VRS frontier is
P1
VRS = (y0, x1

VRS), and the reference point on the frontier for the output-oriented
measure E2 with respect to the VRS frontier is P2

VRS = (y2
VRS, x0). A second

envelopment is indicated by the ray from the origin being tangent to the point PTops.
(I will return to the interpretation of this point below.) This frontier exhibits con-
stant returns to scale (CRS). The reference points on the frontier are P1

CRS = (y0,
x1
CRS) and P2

CRS = (y2
CRS, x0). The dotted factor ray from the origin to the obser-

vation gives the productivity of the observation, and the dotted factor ray from the
origin to a reference point on the VRS frontier gives the productivity of this
reference point. As is easily seen from Fig. 6.1 the productivity at the CRS
envelopment is the maximal productivity obtained on the VRS frontier. Comparing
the observation with the reference point PTops = (yT, xT) therefore gives the relative
productivity of an observation to the maximal productivity on the VRS frontier.
Continuing Farrell’s numbering of measures a measure E3 is introduced covering
this measurement and is therefore termed the measure of technical productivity.7

3Farrell (1957) points out that the two measures in the case of constant returns to sale are equal.
4The Regular Ultra Passum Law requires that the scale elasticity decreases monotonically from
values greater than one, through the value one to lower values when moving along a rising curve in
the input space.
5This may be the reason for this way of presenting the family of efficiency measures being rather
unknown in the DEA literature.
6In the VRS DEA specification the scale elasticity has a monotonically decreasing value in the
range of increasing returns to scale, but has a more peculiar development in the range of decreasing
returns to scale as shown in Førsund et al. (2009). However, there may be a unique face where the
scale elasticity is equal to 1 along a rising curve‚ or else define a vertex point as having constant
returns to scale when the left-hand elasticity at the point is less than one and the right-hand
elasticity is greater than one.
7In Førsund and Hjalmarsson (1979), introducing this measure, it was called the gross scale
efficiency.
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The two remaining efficiency measures E4 and E5 introduced in Førsund and
Hjalmarsson (1979) are the scale efficiency measures8 comparing the productivity
of the reference points P1

VRS and P2
VRS, respectively, with the point PTops of maximal

productivity on the frontier.

6.2.3 Productivity Interpretations in the Case of a Single
Output and Input

All Farrell measures of efficiency can be given an interpretation of relative pro-
ductivity; the productivity of the observation relative to specific points on the VRS
frontier marked in Fig. 6.1. Before showing the relative productivity interpretation
in the case of a single output and a single input (Berg et al. 1992) in a general setting,
let us state the definitions of the Farrell input-and output-oriented technical efficiency
measures, starting with the general definition of the production possibility set T ¼
fðy; xÞ : y� 0 can be produced by x� 0g (y and x are vectors). By assumption let the
set T exhibit variable returns to scale (VRS) of its frontier (the efficient boundary of
T). The input-and output-oriented efficiency measures can be defined as9

E1ðy; xÞ ¼ minlfl : ðlx; yÞ 2 Tg
E2ðy; xÞ ¼ minkfk : ðx; y=kÞ 2 Tg: ð6:2Þ

The relative productivity interpretation can be shown in the case of a single
output and input in the following way, starting with the input-oriented efficiency
measure using the points P0 and P1

VRS in Fig. 6.1:

y0=x0

y0=xVRS1
¼ y0=x0

y0=E1x0
¼ E1 ð6:3Þ

The same productivity interpretation holds for the output-oriented efficiency
measure using points P0 and P2

VRS in Fig. 6.1:

y0=x0

yVRS2 =x0
¼ y0=x0

ðy0=E2Þ=x0 ¼ E2 ð6:4Þ

In the input-oriented case we adjust the observed input quantity so that the
projection of the observation is on the frontier, and in the output-oriented case we

8In Førsund and Hjalmarsson (1979) these measures were called measures of pure scale efficiency.
9The Farrell efficiency measure functions correspond to the concept of distance functions intro-
duced in Shephard (1970). Shephard’s input distance function is the inverse of Farrell’s
input-oriented efficiency measure, and Shephard’s output distance function is identical to Farrell’s
output-oriented efficiency measure.
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adjust the observed output, using the symbols for adjusted input and output
introduced above.

For the three remaining measures we will make a crucial use of the CRS
envelopment in order to calculate the measures. The notation E1

CRS and E2
CRS,

making explicit reference to the CRS envelopment as the frontier, together with
PTops = (yT, xT), will be used. The measure of technical productivity is

y0=x0

yT=xT
¼ y0=x0

y0=ECRS
1 x0

¼ ECRS
1 ¼ E3

y0=x0

yT=xT
¼ y0=x0

ðy0=ECRS
2 Þ=x0 ¼ ECRS

2 ¼ E3 ) E3 ¼ ECRS
1 ¼ ECRS

2

ð6:5Þ

The first expression in each of the two lines of the equations is the definition of
the measure of technical productivity using the productivity at the point PTops as a
reference. The second expressions, input-orientation or output-orientation, respec-
tively, show the most convenient way of calculating the productivity measure. The
outputs and inputs differ between the observation P0 and the PTops points. But using
the CRS envelopment the maximal productivity for the VRS technology is the same
along the entire ray from the origin going through the point PTops. The productivity
measure E3 is equal to both the input-oriented measure and the output-oriented
measure using the CRS envelopment as the frontier. It is easy to see geometrically
that in the case of using the CRS envelopment the two orientated efficiency mea-
sures must be identical, as pointed out by Farrell (1957).

Fig. 6.1 The Farrell efficiency measures applied to a piecewise linear VRS frontier
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Measures for scale efficiency are also defined using a relative productivity
comparison. The input-oriented scale efficiency E4 (keeping output fixed) and the
output-oriented scale efficiency E5 (keeping input fixed) are:

y0=xVRS1

yT=xT
¼ y0=E1x0

y0=ECRS
1 x0

¼ ECRS
1

E1
¼ E3

E1
¼ E4

yVRS1 =x0

yT=xT
¼ ðy0=E2Þ=x0

y0=ECRS
2 x0

¼ ECRS
2

E2
¼ E3

E2
¼ E5

ð6:6Þ

The relative productivity comparison for input-oriented scale efficiency in
Fig. 6.1 is between the observed output on the efficiency-corrected input on the
VRS frontier and the maximal productivity at the PTops-point (yT, xT). For
output-oriented scale efficiency we have an analogous construction. The calcula-
tions of the scale efficiency measures can either be based on the ratios between the
efficiency scores for input-oriented efficiency relative to the VRS frontier and the
CRS envelopment, or expressed as deflating the technical productivity measure
with the relevant efficiency measures relative to the VRS frontier. Notice that there
is only a single technical efficiency measure for a CRS technology; we have
E1 = E2 = E3 and E4 = E5 = 1.

6.2.4 The Concepts of Elasticity of Scale and Technically
Optimal Scale

Before generalising the relative productivity interpretation to multiple outputs and
inputs we need to introduce the concept of elasticity of scale. The definition of a
local scale elasticity for a frontier production function is the same whether it is of
the neoclassical differential type Fðy; xÞ ¼ 0 or if the production possibility set has
a faceted envelopment border like in the DEA case. We are looking at the maximal
uniform proportional expansion b of outputs for a given uniform proportional
expansion a of inputs, i.e. looking at Fðby; axÞ ¼ 0. The local scale elasticity is
defined as the derivative of the output expansion factor w.r.t. the input expansion
factor on the average value of the ratio of the output factor on the input factor10:

eðx; yÞ ¼ @bðx; y; aÞ
@a

a
b
¼ @bða; x; yÞ

@a a¼b¼1

�� ð6:7Þ

The scale elasticity is evaluated, without loss of generality, for a ¼ b ¼ 1. In
the DEA case with non-differentiable points (vertex points or points on edges) the
expression above is substituted with the right-hand derivative or the left-hand
derivative, respectively, at such points (Krivonozhko et al. 2004; Førsund and

10See Hanoch (1970), Panzar and Willig (1977), Starrett (1977).
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Hjalmarsson 2004b; Førsund et al. 2007; Podinovski et al. 2009; Podinovski and
Førsund 2010).

Returns to scale is defined by the value of the scale elasticity; increasing returns
to scale is defined as e > 1, constant returns to scale as e = 1 and decreasing returns
to scale as e < 1.

For a production function with variable returns to scale there is a connection
between the input- and output-oriented measures via the scale elasticity. Following
Førsund and Hjalmarsson (1979) in the case of a frontier function for a single
output and multiple inputs we have

E2 ¼ E�e
1 ) E1

[
\

E2 for �e
[
\

1 ð6:8Þ

where the variable �e is the average elasticity of scale along the frontier function
from the evaluation point for the input-saving measure to the output-increasing
measure. In Førsund (1996) this result was generalised for multiple outputs and
inputs in the case of a differentiable transformation relation Fðy; xÞ ¼ 0 as the
frontier function, using the Beam [Ray] variation equations of Frisch (1965). This
result holds for points of evaluation being projection points in the relative interior of
faces. The path between the points will be continuous although not differentiable at
vertex point or points located at edges.

We must distinguish between scale elasticity and scale efficiency (Førsund
1996). Formalising the illustration in Fig. 6.1 the reference for the latter is the
concept of technically optimal scale of a frontier function (Frisch 1965). The set of
points TOPST having maximal productivities for the (efficient) border of the pro-
duction possibility set T ¼ fðy; xÞ : y� 0 can be produced by x� 0g with the fron-
tier exhibiting VRS, can be defined as (Førsund and Hjalmarsson 2004a)11

TOPST ¼ ðy; xÞ : eðy; xÞ ¼ 1; ðy; xÞ2Tf g ð6:9Þ

It must be assumed that such points exist and that for outward movements in the
input space the scale elasticity cannot reach the value of 1 more than once for a
smooth neoclassical frontier. However, it can in the DEA case be equal to 1 for
points on the same face (see footnote 6). The point (yT, xT) used above is now
replaced by vectors yT and xT belonging to the set TOPST. From production theory
we know that in general a point having maximal productivity must have a scale
elasticity of 1. In a long-run competitive equilibrium the production units are
assumed to realise the technically optimal scale with the scale elasticity of 1
implying zero profit.

11The concept of the M-locus in the case of multi-output was introduced in Baumol et al. (1982,
pp. 58–59). In Førsund and Hjalmarsson (2004a) the M locus is defined and estimated within a
DEA model using the TOPS set.
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6.2.5 The Productivity Interpretation of the Efficiency
Measures in the General Case

The interpretation of the five Farrell measures as measures of relative productivity
can straightforwardly be generalised to multiple outputs and inputs. Introducing
general aggregation functions12 Y = gy (y1, y2,…,yM) and X = gx (x1, x2,…, xN)
where Y and X are the scalars of aggregate quantities and y1, y2,… and x1, x2,… etc.,
are elements of the respective vectors y and x for outputs and inputs. The
non-negative aggregation functions are increasing in the arguments and linearly
homogeneous in outputs and inputs, respectively (O’Donnell 2012). We have,
starting with the definition of relative productivity in the input-oriented case for an
observation vector (y0, x0):

gyðy0Þ=gxðx0Þ
gyðyVRS1 Þ=gxðxVRS1 Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Relative productivity

¼ gyðy0Þ=gxðx0Þ
gyðy0Þ=gxðE1x0Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Substituting for frontier input

¼ gyðy0Þ=gxðx0Þ
gyðy0Þ=E1gxðx0Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Using homogeneity of index function

¼ E1

ð6:10Þ

In the first expression relative productivity is defined in the input-oriented case
using the observed vectors y0, x0 and the vectors y1

VRS, x1
VRS for the projection onto

the VRS frontier analogous to the point P1
VRS in Fig. 6.1 in the two-dimensional

case. In the second expression the vectors for y1
VRS and x1

VRS are inserted, keeping
the observed output levels y0 and contracting the observed input vector using the
input-oriented efficiency E1 to project the inputs x0 to the VRS frontier. In the third
expression the homogeneity property of the input index function is used.

In the case of output orientation of the efficiency measure E2 we get in the
multiple output—multiple input case following the procedure above13:

gyðy0Þ=gxðx0Þ
gyðyVRS2 Þ=gxðxVRS2 Þ ¼

gyðy0Þ=gxðx0Þ
gyðy0=E2Þ=gxðx0Þ ¼

gyðy0Þ=gxðx0Þ
ðgyðy0Þ=E2Þ=gxðx0Þ ¼ E2 ð6:11Þ

Using the general aggregation functions gy(y), gx(x) the measure E3 of technical
productivity can be derived using input- or output-orientation:

12Following the classical axiomatic (test) approach there are a number of properties (at least 20) an
index should fulfil (Diewert 1992), the ones most often mentioned are monotonicity, homogeneity,
identity, commensurability and proportionality. “Satisfying these standard axioms limits the class
of admissible input (output) quantity aggregator functions to non-negative functions that are
non-decreasing and linearly homogeneous in inputs (outputs)” (O’Donnell 2012, p. 257). There is
no time index on the functions here because our variables are from the same period.
13The productivity interpretation of the oriented efficiency measures E1 and E2 can also be found in
O’Donnell (2012, p. 259) using distance functions.
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gyðy0Þ=gxðx0Þ
gyðyTÞ=gxðxTÞ ¼

gyðy0Þ=gxðx0Þ
gyðy0Þ=gxðECRS

1 x0Þ ¼
gyðy0Þ=gxðx0Þ

gyðy0Þ=ECRS
1 gxðx0Þ ¼ ECRS

1 ¼ E3

gyðy0Þ=gxðx0Þ
gyðyTÞ=gxðxTÞ ¼

gyðy0Þ=gxðx0Þ
gyðy0=ECRS

2 Þ=gxðx0Þ ¼
gyðy0Þ=gxðx0Þ

ðgyðy0Þ=ECRS
2 Þ=gxðx0Þ ¼ ECRS

2 ¼ E3

) ECRS
1 ¼ ECRS

2 ¼ E3 ð6:12Þ

We obtain the same relationship between the technical productivity measure and
the oriented measures with the CRS envelopment as in the simple case illustrated in
Fig. 6.1. Notice that the use of points on the CRS envelopment in (6.12) is just
introduced in order to calculate the measure E3, and is not the basic definition of the
measure; the definition is the first expression on the left-hand side of the two first
lines.

The case of multi-output and -input is done in the same way for the scale
efficiency measures as for the other measures utilising the homogeneity properties
of the aggregation functions:

gyðy0Þ=gxðxVRS1 Þ
gyðyTÞ=gxðxTÞ ¼ gyðy0Þ=gxðE1x0Þ

gyðy0Þ=ECRS
1 gxðx0Þ ¼

gyðy0Þ=E1gxðx0Þ
gyðy0Þ=ECRS

1 gxðx0Þ

¼ ECRS
1

E1
¼ E3

E1
¼ E4

gyðyVRS2 Þ=gxðx0Þ
gyðyTÞ=gxðxTÞ ¼ gyðy0=E2Þ=gxðx0Þ

ðgyðy0Þ=ECRS
2 Þ=gxðx0Þ ¼

ðgyðy0Þ=E2Þ=gxðx0Þ
ðgyðy0Þ=ECRS

2 Þ=gxðx0Þ

¼ ECRS
2

E2
¼ E3

E2
¼ E5 ð6:13Þ

Again, we obtain the same relationship between the technical productivity
measure and the oriented measures defining scale efficiency as in the simple case
illustrated in Fig. 6.1. The calculations of the scale efficiency measures can either
be based on the ratios between the efficiency scores for input-oriented efficiency
relative to the VRS frontier and the CRS envelopment or expressed as deflating the
technical productivity measure with the relevant efficiency measures relative to the
VRS frontier.

6.3 The Malmquist Productivity Index

The point of departure is that we have observations of a set of the same units over
time. The general construction of a total factor productivity index is to have an
index for the volume of outputs over a volume index of inputs. A classical problem
is to construct appropriate indices aggregating outputs and inputs, respectively.
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The special feature of the Malmquist productivity index is that, without having any
price data, volume indices can be established based on using efficiency scores for
observations relative to estimated frontier production functions representing best
practice. Caves et al. (1982) introduced the bilateral Malmquist productivity index
developed for discrete time based on the ratio of distance functions (or Farrell
efficiency functions that is the term used in this chapter) measured for two obser-
vations of the same unit at different time periods utilising efficiency scores only.
Färe et al. (1994a, c) showed how to estimate the index in the case of specifying the
possibility set as a convex polyhedral set and estimating the border of the set and
efficiency scores using linear programming. The popularity soon followed. Caves
et al. (1982) have 938 citations and Färe et al. (1994c) 929 in the Web of Social
Science (per April 4, 2016).

However, the Malmquist productivity index was oriented, building on either an
output-oriented efficiency score or an input-oriented one. A Malmquist index more
of the traditional non-oriented type based on an index of output change over an
index of input changes for two periods was introduced by Bjurek (1996), inspired
by Diewert (1992) mentioning some ideas of Moorsteen and Hicks, hence the name
Moorsteen-Hicks index adopted later, although Bjurek used the more functional
name of a Malmquist total factor productivity index.14

However, a purpose with the present study is to look deeper into the decom-
positions of the original Caves et al. (1982) Malmquist productivity index, com-
pletely dominating in number of applications.15

6.3.1 The Interpretation of the Malmquist Productivity
Change Index

The Caves et al. Malmquist oriented indices are utilising Farrell technical efficiency
scores. The index for a unit i observed for two different time periods u and v,
relative to the same border of the production possibility set indexed by b, repre-
senting one of the years, is:

Mb
ijðu; vÞ ¼

Eb
j ðxiv; yivÞ

Eb
j ðxiu; yiuÞ

; j ¼ 1; 2; i ¼ 1; . . .;N; u; v ¼ 1; . . .; T; u\v; b ¼ u; v ð6:14aÞ

The benchmark technology indexed by b is in many applications either the
technology for period u or v, and changing over time according to the technology

14A thorough evaluation of the advantages of this type of a Malmquist productivity index is found
in Lovell (2003), and it is also mentioned as the most satisfactory Malmquist type of productivity
index in O’Donnell (2012), being what he called multiplicatively complete.
15Lovell (2003) decomposes also the Malmquist total factor productivity index multiplicatively
into five terms. However, we will not investigate this issue here.
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chosen as the base for the two periods involved. It is also usual to take a geometric
mean of the results using technologies for both year u and v, following the seminal
paper Färe et al. (1994a) on how to estimate the Malmquist productivity index.16

The reason usually given in the literature is simply that either the technology from
u or from v may be used as benchmark, and it is arbitrary which one to use, so the
most reasonable is to take the geometric mean. As stated in Balk (1998, p. 59):
“Since we have no preferences for either the geometric average of these index
numbers will be used”. Fare et al. (1994c, p.70) stated the reason as “In order to
avod choosing an arbitrary benchmark”. When a geometric mean is taken tech-
nologies for the two periods are involved, and when time moves forward this
implies that the technology for a specific period is involved in two productivity
change calculations (except for the first and last year).17

However, the time periods may be seen to impose a natural choice of the first
period as a base in accordance with a “Laspeyres” view of using period u technology
to gauge the productivity change from u to v. If the efficiency score for period v is
greater (smaller) than the efficiency score for period u using period u technology, then
there has been a productivity improvement (deterioration) from period u to period v.

It is well known in the literature how to set up LP problems to estimate the
distance (or efficiency) functions involved in (6.14a) so we do not find it necessary
to do this here (see e.g. Fried et al. 2008).

The efficiency functions in (6.14a) show the maximal proportional expansion
(outputs) or contraction (inputs), and the measures are called technical efficiency
measures because prices are not involved. The Malmquist productivity index is then
a technical productivity index. There is no aggregation of outputs and inputs
involved. Productivity change is measured as the relative change in the common
expansion (contraction) factor between two periods.18

The productivity results may be different from the results one would get using
prices for aggregating outputs and inputs. Weighting with revenue and cost shares
as in the Törnqvist index means that the (real) price structure will have an influence.
In general it seems more functional to choose weights according to importance
placed on variables. The weights appearing in (1) are technically the dual variables,
i.e. the shadow prices on output and input constraints (solving the “envelopment
problem” in a DEA linear programming model) and give the marginal impact on the
efficiency scores of changes in the exogenous observations, and are thus not related
to the relative importance in an economic sense. Moreover, these shadow prices
changes from one solution to the next in a more or less unpredictable manner. Using

16However, no reason is given for this procedure other than claiming that this was done in Caves
et al. (1982). But there the geometric mean appears when establishing the connection between the
Malmquist index and an Törnquist index assuming the unit to be on the frontier, while the
fundamental assumption in Färe et al. (1994a) is that units may be inefficient.
17This may explain the empirical result in Bjurek et al. (1998) that productivity developments
more or less follow each other for different formulations of the Malmquist index.
18The weighted ratio appearing in (1) should not be interpreted as productivity; the weights are just
a by-product of the solutions of the optimisation problems in (6.2).
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the ratio form as in (6.1) as a productivity index for the development between two
time periods means that the weights are different for the solution of the efficiency
scores for each period (Førsund 1998).

Another source of difference is that one or more of the weights of outputs and
inputs in Eq. (6.1) may be zero, thus excluding variables from explicit influence on
the efficiency scores in (6.14a) in order to maximise (minimise) the scaling factors
in Eq. (6.2).19 This may bias the Malmquist index in both directions compared with
a standard Törnqvist index where all variables have strictly positive weights.

Another feature of the Malmquist productivity index that may give different
results than other indices is that the efficiency functions in (6.14a) are based on
frontier functions. In the case of capital vintage effects a dynamic investment
process takes place in order to improve the technology level of a firm, so a frontier
based on the best vintage technology may give a too optimistic view of the potential
for efficiency improvements in the short run (Førsund 2010). The estimation of the
frontier using DEA will also be distorted if observations picked to represent best
practice by the method may in fact not be best practice, but picked due to biased
technical change‚ as shown in Belu (2015)‚ assuming a single vintage for each unit.

Thus, there is a question about the usefulness of the information a Malmquist
productivity index gives compared with indices using available price information.
Public sector production activities not selling outputs in markets seem to be the
most relevant type of activities for application of the Malmquist productivity index.

In Sect. 6.2 the general aggregator functions gy(.) and gx(.) for outputs and inputs
was introduced. These functions may now be period-specific. However, because we
do not know these or do not have data to estimate them, the Malmquist index will
be estimated using non-parametric DEA models giving us the efficiency measures
in the numerator and denominator in (6.14a) (Färe et al. 2008).

When applying the Malmquist productivity index attention should be paid to
desirable properties. In the literature this is more often than not glossed over. I will
therefore explain in more detail the choice of the specification. Productivity as
measured by the Malmquist index (6.14a) may be influenced by changes in the
scale of the operation, but two units having the same ratio of outputs to inputs
should be viewed as equally productive, regardless of the scale of production
(Grifell-Tatjé and Lovell 1995). Doubling all inputs and outputs, keeping input and
output mixes constant, should not change productivity. Therefore the benchmark
envelopment of data, if we want to measure total factor productivity (TFP), is one
that is homogenous of degree 1 in the input and output vectors, and thus the
linear-homogenous set that fits closest to the data. The homogenous envelopment is
based on the concept of technically optimal scale termed TOPS in Sect. 6.2. As
pointed out in that section the productivity is maximal at optimal scale where
returns to scale is one, thus the CRS contemporary benchmark envelopments

19To the best of my knowledge the pattern of occurrence of zero weights in Malmquist produc-
tivity index estimations has never been reported in the literature.
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(assuming that the contemporaneous frontiers are VRS) are natural references for
productivity changes over time.

In Fig. 6.2 observations of the same unit for the two periods u and v are indi-
cated by Pu and Pv. The two corresponding VRS frontiers are drawn showing an
outward shift indicating technological progress. The TOPS point for period v is
labelled Pv

Tops. Just as the productivity should be unchanged if the input and output
vectors are proportionally scaled, a measure of productivity should double if out-
puts are doubled and inputs are kept constant, and increase by half if inputs double,
but outputs are constant. The desirable homogeneity properties of a TFP index is
therefore to be homogenous of degree 1 in outputs in the second period v and of
degree (−1) in inputs of the second period, and homogenous of degree (−1) in
outputs of the first period u and homogenous of degree 1 in inputs of the first
period. Using CRS to envelope the data is thus one way of obtaining all the required
homogeneity properties of a Malmquist productivity change index. Notice that in
the illustration in Fig. 6.2 the relative technology gap between the CRS benchmark
technologies (blue lines) for observations in period v and u are identical, thus
making the use of geometric mean of the Malmquist index in (6.14a) superfluous.20

The frontier technology level “jumps” from period to period from the start of one
period to the start of the consecutive one. Outputs are produced and inputs con-
sumed during the periods. This set-up is of course somewhat artificial compared
with the fact that real changes take place in continuous time. The dynamic problems
of adapting new technology and phasing it in are neglected. This theme is discussed
in e.g. the literature on the Porter hypothesis and environmental regulation (Porter
and van der Linde (1995); Brännlund and Lundgren 2009).21

Another property of a productivity index held to be important (Samuelson and
Swamy 1974) is the circularity of the index (Berg et al. 1992; Balk and Althin
1996) (see Gini (1931) for an interesting exposition). The implied transitivity of the
index means that the productivity change between two non-adjacent periods can be
found by multiplying all the pairwise productivity changes of adjacent periods
between the two periods in question, thus making identification of periods with
weak or strong productivity growth possible. We will transitivise the Malmquist
index by using a single reference frontier enveloping the pooled data, as illustrated
by the upper (red) ray CRS(s) in Fig. 6.2. In Tulkens and van den Eeckaut (1995)
this type of frontier was termed the intertemporal frontier.22 Notice that taking the

20Most illustrations of the Malmquist indices in studies using geometric means are in fact using
CRS frontiers and single output and input. Considering multiple outputs and inputs distances
between contemporaneous frontiers will be independent of where the measure is taken if inverse
homotheticity is assumed in addition to CRS, i.e. if Hicks neutral technical change is assumed.
21In panel data models efficiency change has been specified (Cornwell et al. 1990) as having
unit-specific efficiencies that varies over time, but this is a “mechanical” procedure without an
economic explanation of efficiency change.
22In Pastor and Lovell (2005), missing out on this reference, it was called the global frontier.
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geometric mean of the Malmquist index (6.14a) for u and v used as benchmark
envelopments is not compatible with circularity.

Using the same CRS reference envelopment for all units means that we have
made sure that efficiency for all units and time periods refer to the same envel-
opment. The observations are either below the benchmark or on it in the case of the
units from the pooled dataset spanning the envelopment. The pooled benchmark is
identical to the sequential frontier of Tulkens and van den Eeckaut (1995) for the
last period using sequentially accumulated data of all periods following the argu-
ment in Atkinson and Stiglitz (1969) that technology should not be forgotten.

Specifying CRS only is not sufficient to ensure that a specific data point
occurring at different time periods get the same efficiency evaluation, because both
input- and output isoquants may differ in shape over time if the technology is
allowed to change over time as in Färe et al. (2008). The implication of having a
time series of data is seldom discussed. Most illustrations and discussions seem to
be focussed on two periods only. Hoverer, changing technologies successively as in
(6.14a) implies that observations are measured against different frontiers over time.
The question is the relevance for estimating productivity change of the information
given by comparing relative numbers measured against different benchmarks.

Using a linear homogeneous envelopment implies that the orientation of the E
function does not matter. The Malmquist index for a unit i, that should be used
according to the properties outlined above is then:

Pv

Pv

Tops

Pu

CRS(v)
VRS(v)

VRS(u)

CRS(u)

CRS(s)

Input x

Output y
yv

s

yu

s

yv

yu

xvxu

yu

u

yv

v

Fig. 6.2 The Malmquist productivity change index. Productivity change for a unit from period
u to period v measured relative to the benchmark CRS(s) envelopment with maximal productivity
of the pooled dataset
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Ms
i ðu; vÞ ¼

Esðxiv; yivÞ
Esðxiu; yiuÞ ¼

Es
3ðxiv; yivÞ

Es
3ðxiu; yiuÞ

; i ¼ 1; . . .; J; u; v ¼ 1; . . .; T; u\v

ð6:14bÞ

where superscript s symbolises that all data are used for estimating the benchmark
reference set. The productivity change is the change in the productivities of the
observations relative to the benchmark maximal productivity, thus the Es measures
could formally be called E3

s measures according to the terms introduced in Sect. 6.2,
as done in the last expression in (6.14b). If all inputs are increased with a factor a
and outputs with factor b from period u to period v (axiu ¼ xiv and byiu ¼ yiv) then
we get from (6.14b): Ms

i ðu; vÞ ¼ Es
3ðaxiu; byiuÞ=Es

3ðxiu; yiuÞ ¼ b=a; i.e. proportion-
ality is obeyed due to the homogeneity properties of the efficiency score functions.

6.3.2 The Decomposition of the Oriented Malmquist
Productivity Index

Nishimizu and Page (1982) were the first to introduce the decomposition of the
productivity index into efficiency change and technical change in continuous time
and then apply the decomposition in discrete time.23 Färe et al. (1990, 1992, 1994a)
adapted the decomposition to using a non-parametric frontier production function
for estimating the efficiency scores. A quest for finding the sources of productivity
change followed. I will return to some of these efforts after reviewing the
decomposition of Nishimizu and Page (1982) that seems to be overlooked. They
were aware of the problems with interpretation in the discrete case:

Clearly, technological progress and technical efficiency change are not neatly separable
either in theory or in practice. In our methodological approach […] we define technological
progress as the movement of the best practice or frontier production over time. We then
refer to all other productivity change as technical efficiency change. The distinction which
we have adopted is therefore somewhat artificial, […]. (Nishimizu and Page (1982),
pp. 932–933)

Their approach is set out in Fig. 6.3 (the original Fig. 1, p. 924). All variables
are measured in logarithms, and the frontier functions are linear C–D functions with
Hicks-neutral technical change from period 1 to period 2. Production is x and input
z. The observation A has a production function with the same parameter as the
frontiers g1 and g2, but with a different constant term. It is then the case that if unit
A in period 1 had had the input of period 2, its production level would be at point
B. From this point the frontier gap bc is added ending in point C′, so BC′ = bc.

23Nishimizu and Page (1982) were the first to refer to a working paper (Caves et al. 1981) that was
published as Caves et al. (1982). However, they did not themselves use the term Malmquist
productivity index.
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Now, the observation in period 2 is found at C greater than C′. Nishimizu and Page
then assume that the full potential frontier shift is realised in period 2, but in
addition there is a positive efficiency change equal to C′C. So, measured in loga-
rithms the productivity change is the sum of the efficiency gap C′C and the frontier
gap BC′ (=bc).

Figure 6.4 provides an explanation of their approach in the usual setting of
quantities of variables in the simple case of single output and input and the frontiers
being CRS. I will now show that the Nishimizu and Page decomposition is the same
as the decomposition introduced in Färe et al. (1990, 1992, 1994a, c). A unit is
observed at b in period 1 and at f in period 2. Using the frontier 1 as the benchmark
technology instead of the pooled data for all years for simplicity of comparison the
Malmquist productivity index (6.14b) for a unit i for change between period 1 and 2
and its decomposition are:

M1
i ð1; 2Þ ¼

E1ðy2i ; x2i Þ
E1ðy1i ; x1i Þ

¼ E2ðy2i ; x2i Þ
E1ðy1i ; x1i Þ

� E
1ðy2i ; x2i Þ

E2ðy2i ; x2i Þ
¼ MCi �MFi;

df =de
ab=ac

¼ df =dg
ab=ac

� df =de
df =dg

; MF ¼ df =de
df =dg

¼ dg
de

ð6:15Þ

The general definition of the Malmquist productivity-change index after the first
equality sign is the ratio of the period efficiency measures against the same frontier
technology, here for period 1. The expression after the second equality sign shows
the multiplicative decomposition into a catching-up24 measure MC and a frontier
shift measure MF. The second line relates the observations b and f in Fig. 6.4 to the
decomposition in the case of a single output and input. To obtain the correct
homogeneity properties we have to use period frontiers that exhibit CRS. We are
after information on sources for changes in the Malmquist productivity index, so
even if the true contemporary frontier is VRS this does not mean that this frontier is
the relevant one to use for the decomposition. I will return to this in the next
subsection.

TheMF-measure represents the relative gap between technologies and is thus the
potential maximal contribution of new technology to productivity change, while the
MC-measure is residually determined and may not represent the real efficiency
contribution to productivity change, but illustrates the catching-up that is also
influenced by the technology shift. It should be observed that the decomposition
terms are multiplied to give the Malmquist index and not added.

Given that the only information we have about productivity change is the
movement of an observation in input—output space, to distinguish between effi-
ciency and technical change is rather difficult. The split into efficiency change and
frontier shift that Nishimizu and Page proposed, is, concerning MF, based on
assuming that the full productivity potential of the frontier shift is actually realised.
If both observations had been on their respective frontiers it is obvious that the

24To the best ofmyknowledge this termwasfirst used in Førsund (1993), and then inFare et al. (1994c).
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Malmquist productivity change will reflect the frontier shift only. If both obser-
vations are inefficient with respect to their period frontiers then the efficiency
contribution is measured by changing (expanding in Fig. 6.4) the input Oa in period

Fig. 6.3 The Nishimizu and Page (1982) decomposition. Source The Economic Journal

Fig. 6.4 The decomposition of the Malmquist index
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1 to that of Od in period 2, but using the actual production function in use in period
1 to predict the hypothetical output level at f′. However, I do not operate with any
production function for an inefficient observation as Nishimizu and Page did (a
CRS C–D function with the same form as the frontier functions), but I will
equivalently assume that the efficiency level stays constant getting the inputs of
period 2 in period 1. The unit then moves from point b to point b′. The problem is
now to predict where observation b′ in period 2 will be if the whole potential shift is
realised as productivity change. Nishimizu and Page operated with logarithms of
the variables and could more conveniently illustrate this, as shown in Fig. 6.3
above. In our Fig. 6.4 this means that the predicted output at point f′ must obey df′/
db′ = dg/de, the latter being the relative frontier gap Then the same measure for
efficiency “contribution” is actually obtained as in Nishimizu and Page, equal to the
ratio of the two period efficiency measures. This decomposition is the same as the
decomposition introduced in Färe et al. (1990, 1992, 1994a, c). This can be
demonstrated in Fig. 6.4 by identifying the efficiency gap as df/df′ and the frontier
gap df′/db′ building on Fig. 1 in Nishimizu and Page (Fig. 6.3 here), and using df′/
db′ = dg/de and db′/de = ab/ac:

df
df 0

� df
0

db0
¼ df =dg

db0=de
� dg
de

¼ df =dg
ab=ac

� dg
de

¼ df =de
ab=ac

¼ M ð6:16Þ

However, note that the decomposition does not mean that there is a causation;
we cannot distinguish between productivity change due to increase in efficiency and
due to shift in technology using the general components in (6.15), as may seem to
be believed in some of the empirical literature. The actual productivity change that
we estimate using the Malmquist productivity index is from the observation in one
period to an observation in another period (from b to f in Fig. 6.4). The causation is
another question related to the dynamics of technical change and how this potential
is utilised. As expressed in Nishimizu and Page (1982) after identifying techno-
logical progress as the change in the best practice production frontier:

We then refer to all other productivity change – for example learning by doing, diffusion of
new knowledge, improved managerial practice as well as short run adjustment to shocks
external to the enterprise – as technical efficiency change. Nishimizu and Page (1982,
p. 921)

Nishimizu and Page consider that dynamic factors influence efficiency change,
but do not consider the same for realising the new technology.

We cannot decompose efficiency effects and frontier shift effects without making
assumptions, according to Nishimizu and Page. Catching up seems to be the best
descriptive term for the efficiency component. The decomposition can then be
described as the relative potential contribution from technical change multiplied by
an efficiency correction factor.
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6.3.3 Circularity and Decomposition

Maintaining circularity for both components MC and MF in the decomposition
implies that the technology shift term MF will be more complicated. Efficiency
measures calculated relative to the benchmark frontier must be involved in the
frontier shift measure. A decomposition of the index in Eq. (6.14b) that functions
is:

Ms
i ðu; vÞ ¼

Evðxiv; yivÞ
Euðxiu; yiuÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

MC

� E
sðxiv; yivÞ=Evðxiv; yivÞ

Esðxiu; yiuÞ=Euðxiu; yiuÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
MF

; i ¼ 1; . . .;N; u; v ¼ 1; . . .; T ; u\v ð6:17Þ

The MF measure of technology shift is calculated as a ‘double’ relative measure
where both period efficiency measures are relative to the benchmark efficiency
measures (Berg et al. 1992). It is easy to see that the decomposition reduces to the
Malmquist index (6.14b) by cancelling terms. Notice that to do the decomposition
we need benchmark envelopments for each period to be compared in addition to the
fixed benchmark envelopment as seen in Fig. 6.2.

It can be illustrated in the case of one output and one input that the frontier shift
component still measure the gap between the two benchmark technologies 1 and 2
in Figs. 6.2 and 6.4. Introducing the intertemporal benchmark s in Fig. 6.4 we can
express the Malmquist index and its components in Fig. 6.5. The observations in
period 1 and 2 are marked with blue circles at b and h. The relative frontier gap
between frontier 1 and 2 measured using the observation for period 2 is fk/fg. We
shall see if the decomposition in (6.17) gives the same measure using the notation in
Fig. 6.5:

M ¼ fh=fm
ab=ae

¼ fh=fk
ab=ac|fflffl{zfflffl}
MC

� ðfh=fmÞ=ðfh=fkÞðab=aeÞ=ðab=acÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
MF

ð6:18Þ
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Fig. 6.5 The decomposition
of the Malmquist index
imposing circularity
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The MF component can be developed as follows:

MF ¼ ðfh=fmÞ=ðfh=fkÞ
ðab=aeÞ=ðab=acÞ ¼

fk=fm
ac=ae

ð6:19Þ

The last expression is the gap between frontier 2 and benchmark s in the
numerator and the gap between frontier 1 and the benchmark in the denominator,
both expressed as the inverse of the definition of the gap as expressed in the last
equation in (6.15). But using the property of like triangles we have ac=ae ¼ fg=fm:
The last expression in (6.19) can then be written:

fk=fm
ac=ae

¼ fk=fm
fg=fm

¼ fk
fg

ð6:20Þ

This is the relative gap between frontier 2 and 1 using the input for period 2 as
the base for calculating the gap.

However, note that in the general multi-output—multi-input case we cannot
invoke the property of like triangles; the relative gaps depend on the input and
output mixes.

6.3.4 Comments on Decompositions

In Färe et al. (1994b, c) the decomposition into catching up and frontier shift in Färe
et al. 1990, 1992, 1994a)25 was extended to a further decomposition of the effi-
ciency change term into a scale efficiency term and a technical efficiency term,
assuming the two contemporaneous frontiers to be VRS. This approach was criti-
cised in Ray and Desli (1997) and a reply given in Färe et al. (1997). In his
extensive review of decompositions of the Malmquist index Lovell (2003, p. 442)
states: “I conclude that the Färe et al. (1994c) decomposition of the Malmquist
productivity index is inadequate”.

However, there are problems with the extended decompositions that are not
observed by any of the papers above. The first comment is that decompositions are
meant to identify sources of impacts on the total factor productivity index of
observed movements of a unit in input-output space. It is then not necessarily the

25The history of the DEA-based Malmquist productivity index is presented in Färe et al. (1998),
Grosskopf (2003) and Färe et al. (2008). The first working paper that established an estimation
procedure based on DEA was published in 1989, was presented at a conference in Austin in the
same year, and appeared as Färe et al. (1994a); a book chapter in a volume containing many of the
conference presentations. The first journal publication appeared as Färe et al. (1990) with an
application to electricity distribution. (However, this paper is not referred to in the 2003 and 2008
reviews and neither in Färe et al. (1992), although the methodological approach in the latter is the
same).
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case that one should use the actual contemporaneous technologies as a point of
departure. A point that is under-communicated is the role of the benchmark
envelopment. If we want the productivity change index to have the fundamental
property of proportionality, then this envelopment have to exhibit constant returns
to scale (CRS) even though the true contemporaneous technology is variable returns
to scale. It follows most naturally that the decompositions should then also be based
on envelopments exhibiting CRS. Thus, I support the choice in Färe et al. (1994c)
of a cone benchmark envelopment. Ray and Desli (1997) do not seem to understand
this choice, and in Balk (2001, p. 172) it is stated “it is not at all clear why technical
change should be measured with respect to the cone technology” in spite of
introducing proportionality in his Eq. (2).

Figure 6.2 illustrates the situation; the true contemporaneous technologies may
be the variable returns to scale (VRS) functions for the two years, while the
benchmark envelopment is represented by the cone CRS(s) based on the pooled
data. Now, the catching-up term is the relative distance to the cone envelopments of
the data from the two periods, while the frontier shift component is the “double
relativity” format of (6.17) also involving distances from the observations to the
benchmark envelopment of the pooled data.

There are many followers of the extended multiplicative decomposition in Färe
et al. (1994b, c) of decomposing the catching-up term into what is called “pure”
technical efficiency and scale efficiency. Pure efficiency is defined as the efficiency
of the observation relative to the VRS frontier termed E2 in Sect. 6.2. Using the
terms there we have E3 ¼ E2 � E5.

26 The complete decomposition of the change in
the catching-up term, assuming a VRS technology for periods u and v and sim-
plifying the notation, dropping writing the variables and unit index, is then

Ev
3v
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2v
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2u
� E

v
5v

Eu
5u

ð6:21Þ

However, it is difficult to see that this decomposition is helpful in interpreting the
catch-up term. It is difficult to consider this term as a “driving factor”. The E2 terms
are just there to satisfy the identity. The period VRS frontiers do not contribute to
the understanding of the productivity changes based on CRS benchmark envel-
opments constructed by the analyst focusing on the development of the maximal
productivity over time. The catch-up term is based on the change in the optimal
scale (TOPS). Scale inefficiency has no role in our measure of productivity change.
As remarked by Kuosmanen and Sipiläinen (2009, p. 140) “the distinction between
the technical change and scale efficiency components is generally ambiguous and
debatable.” In Balk (2001) change in input mix is also identified as a separate
factor, cf. O'Donnell (2012) also including change in output mix. However, these
factors are not considered here.

26As a control, inserting the definition of E5 we have for each period technology
E3 ¼ E2 � E3=E2 ¼ E3.

142 F.R. Førsund



From a computational point of view the Malmquist index (6.14b) connects data
points with a benchmark envelopment that serves our purpose of measuring pro-
ductivity change. Pooling the data secures the highest possible degrees of freedom.
Decomposition requires the estimation of two additional contemporaneous bench-
mark envelopments, and reduces the degrees of freedom in the estimation of these
in addition to not giving us that much information of real sources behind produc-
tivity change.

We may face trouble also with basing the decomposition terms on cone
envelopments if estimations of period functions are not properly restricted. An
example is given in Fig. 6.6. The VRS envelopments are changed from those in
Fig. 6.2 and are crossing each other,27 and in such a way that the productivity of the
optimal scale in period u is greater than in the later period v. We see clearly that the
productivity growth measured by the Malmquist index (6.14b) shows growth, but
that the frontier shift between periods u, v will show technical regress (MF < 1).
However, the catching-up component then has to be greater than 1, and so much
greater that growth is shown by the product of the terms. Looking at the VRS
frontiers where the observations are located conveys that there has been a positive
shift in the frontier from period u to period v, but this is the opposite of what the
change in the period CRS benchmark tells us. One way to avoid this situation is to
use sequential period envelopments. Then the CRS envelopment for period u may

xv
xu

Benchmark(s)

yu

yv
u

yv

yv
v

yu
u

yv
u

Pv

Pu

CRS(u)

VRS(v)

VRS(u)

CRS(v)

Input x

Output y

Fig. 6.6 Contemporaneous cones and VRS technologies

27Crossing of technologies and crossing of isoquants as illustrated in Førsund (1993) will be
difficult to interpret using geometric means of an index of the type in (6.14a).
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be the same as for period v in Fig. 6.6 and productivity growth will be measured as
due to efficiency improvement only.

6.4 Conclusions

Efficiency and productivity are two different concepts, but related through the
fundamental definition of efficiency as being the relative relationship between the
observed productivity of a unit and the maximal achievable productivity for the
type of activity in question. Charnes et al. (1978) set up a different route to calculate
the same efficiency measures introduced by Farrell (1957) by setting up a ratio form
of productivity measures for estimating the efficiency scores, where the weights in
the linear aggregation of outputs and inputs are estimated when maximising
weighted outputs on weighted inputs subject to no productivity ratio using these
weights for all units being greater than one (as a normalisation). However, this way
of defining efficiency measures using expressions formally equal to productivity, is
not as satisfactory for economists as the Farrell approach, introducing explicitly a
frontier production function as a reference for efficiency measure definitions and
calculations.

The original Farrell measures developed for constant returns to scale (CRS) has
been extended to five efficiency measures for a frontier production function
exhibiting variable returns to scale (VRS); input- and output technical efficiency,
input- and output scale efficiency, and the technical productivity measure. The
relationship between the two measures of technical efficiency involves the average
scale elasticity value between the two frontier projection points along the frontier
surface. The technical productivity measure and the two scale efficiency measures
are developed based on the Frisch (1965) concept of technically optimal scale,
predating the use of the concept most productive scale size in the DEA literature
with almost 20 years.

It does not seem to be commonly recognised in the DEA literature that in the
general case of multiple outputs and inputs the Farrell efficiency measures can all be
given productivity interpretations in a more satisfactory way than the ratio form of
Charnes et al. (1978). Using quite general theoretical aggregation functions for
outputs and inputs with standard properties, it has been shown that all five Farrell
efficiency measures can be given a productivity interpretation employing a proper
definition of productivity. Each of the two technical efficiency measures and the
technical productivity measure can be interpreted as the ratio of the productivity of
an inefficient observation and the productivity of its projection point on the frontier,
using the general aggregation equations. Of course, we have not estimated any
productivity index as such, this remains unknown, but that was not the motivation
of the exercise in the first place.

The Malmquist productivity index for bilateral comparisons, applied to discrete
volume data and no prices, utilises Farrell efficiency measures directly. In order to
have the required index property of proportionality it is sufficient to have as a

144 F.R. Førsund



benchmark an envelopment that exhibits global constant returns to scale, although
the underlying contemporaneous production frontiers may have variable returns to
scale. One way of obtaining the proportionality properties is basing the benchmark
envelopment on the technically optimal scale of the underlying frontiers. If circu-
larity is wanted then this may be done by using cone envelopment for a single year,
or pooling all data and using an intertemporal benchmark as is followed in this
paper.

Fundamental drivers of productivity change are improvement in efficiency and
technical change. The question is how to identify these drivers for a given dataset of
outputs and inputs for units. The seminal contribution in Nishimizu and Page
(1982) showed one way decomposing a productivity index into a component
expressing efficiency change and a component showing the frontier shift impact on
productivity that is shown to be the same type of decomposition as the one done for
the Malmquist index of productivity change in Färe et al. (1994a). However, a
warning of not attaching causality to the decomposition is in place. The decom-
position is based on assuming that the full potential of productivity change due to
new technology is actually realised, and then the efficiency component is deter-
mined residually, but neatly expressed as the relative catching-up to the last period
frontier compared with the relative distance to the frontier in the previous period.

If a total factor productivity change index is wanted it is shown that a cone
benchmark envelopment satisfy the proportionality test and furthermore using a
fixed benchmark technology, for instance based on the pooled dataset as done in
this chapter, will satisfy the circularity test. Furthermore, it is argued that cone
benchmark envelopments should also be used for contemporaneous frontiers, thus
criticising efforts to do further decompositions involving scale efficiencies based on
assuming variable returns to scale period frontiers.
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Chapter 7
On the Use of DEA Models with Weight
Restrictions for Benchmarking and Target
Setting

Nuria Ramón, José L. Ruiz and Inmaculada Sirvent

Abstract This chapter discusses the use of DEA models with weight restrictions for
purposes of benchmarking and target setting.Weight restrictions have been used in the
literature to incorporate into the analysis both value judgments (managerial prefer-
ences or prior views about the relative worth of inputs and outputs) and technological
judgments (assumptions on production trade-offs). An important consideration in the
use of restricted models for the benchmarking is that they may provide targets that are
outside the production possibility set (PPS). Such difficulties are overcome if weight
restrictions represent production trade-offs, because in those cases restricted models
lead to a meaningful expansion of the production technology. However, if weight
restrictions are only used as a way of incorporating preferences or value judgments,
then there could be no reason to consider the targets derived from those models as
attainable. Despite the classical restricted DEA formulations may yield targets within
the PPS, it is claimed here that an approach based on a more appropriate selection of
benchmarks would be desirable. We develop some restricted models which provide
the closest targets within the PPS that are Pareto-efficient. Thus, if weight restrictions
represent value judgments, the proposed approach allows us to identify best practices
which show the easiest way for improvement and are desirable (in the light of prior
knowledge and expert opinion) in addition to technically achievable.

Keywords DEA � Assurance region (AR) � Benchmarking � Closest targets

7.1 Introduction

DEA, as introduced in Charnes et al. (1978), is a methodology for the evaluation of
relative efficiency of decision making units (DMUs) involved in production pro-
cesses. The basic DEA models consist of a couple of dual problems, the so-called
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multiplier and envelopment formulations. The multiplier model is the linear pro-
gram equivalent to a fractional problem which provides an assessment of relative
efficiency of the DMUs in terms of the classical efficiency ratios. The envelopment
formulation carries out such assessment as the result of an evaluation of the DMUs
within a technology which is constructed from the observations by assuming some
postulates.

DEA, specifically through the envelopment models, has been widely used as a
tool for the benchmarking with the purpose of improving performance of the
DMUs. Cook et al. (2014) claim that In the circumstance of benchmarking, the
efficient DMUs, as defined by DEA, may not necessarily form a “production
frontier”, but rather lead to a “best-practice frontier”. The points on the best
practice frontier allow us to identify benchmark performances for the inefficient
units, while the targets are actually the coordinates of these benchmarks and rep-
resent levels of operation for the inefficient DMUs that would make them perform
efficiently. As stated in Thanassoulis et al. (2008), in many practical applications
one is more interested in determining targets that render the DMUs efficient than in
determining their level of inefficiency. See Adler et al. (2013), Dai and Kuosmanen
(2014) and Hung et al. (2010) for some recent references on applications of DEA
and benchmarking.

The DEA models allow us to incorporate value judgments into the analysis
through the addition of weight restrictions to the multiplier formulations. Some
approaches to deal with this issue include the AR (Assurance Region) constraints
(Thompson et al. 1986) and the cone-ratio models (Charnes et al. 1990). See Allen
et al. (1997), Thanassoulis et al. (2004) and Cooper et al. (2011b) for some surveys
on DEA models with weight restrictions. See also Lins et al. (2007), Portela et al.
(2012) and Zanella et al. (2013) for applications of the radial CCR DEA model with
weight restrictions. Since the weights attached by the model represent a relative
value system of the inputs and outputs, weight restrictions make it possible to
incorporate into the DEA models managerial preferences or prior views about the
relative worth of inputs and outputs. For example, in the comparison of university
departments in Beasley (1990) weight restrictions were used to incorporate the
general agreement that the weight attached to a postgraduate doing research should
be greater than or equal to the weight attached to a postgraduate on a taught course
and correspondingly for undergraduates. Likewise, in the assessment of effective-
ness of basketball players in Cooper et al. (2009) the weight restrictions used
reflected value judgments from team coaches like “the importance attached to
rebounds for playmakers should not be greater than that attached to field goal”.

However, as Podinovski (2004, 2007a, b, 2015) has shown, DEA models with
weight restrictions can also be seen under the perspective of models that allow us to
incorporate technological judgments into the analysis. Specifically, as this author
states, weight restrictions can be interpreted as production trade-offs. Under that
perspective, restricted DEA models can be used for an evaluation of DMUs that
incorporates information regarding certain simultaneous changes to the inputs and
outputs which are technologically possible in the production process at all units. For
instance, in the example carried out over some (hypothetical) university
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departments in Podinovski (2007a) the following judgment was considered: “one
researcher can be substituted by five teaching staff, without any detriment to the
outputs (including publications)”. This production trade-off was incorporated into
the analysis by imposing the weight attached to research staff to be no greater than 5
times the weight attached to teaching staff in the multiplier model. In the application
to agricultural farms in Turkish regions in Atici and Podinovski (2015), some
judgments like “Any farm in the region can produce at least 0.75 t of barley instead
of 1 t of wheat, without claiming additional resources” are elicited. This is trans-
lated into a weight restriction in which the weight attached to wheat is imposed to
be greater than or equal to 0.75 times the weight attached to barley.

This chapter discusses the use of DEA models with weight restrictions for
purposes of benchmarking and target setting. The developments are made by dis-
tinguishing between whether weight restrictions are used to incorporate techno-
logical judgments or value judgments. The implications of each of these two
approaches in the models used for the benchmarking are analyzed. The basic
restricted DEA models are based on a pre-emptive priority given to either the radial
efficiency score (in the radial case) or the standard slacks (in the non-radial case),
which may lead to targets outside the PPS. This is why we claim that these models
are particularly useful when weight restrictions represent production trade-offs and
restricted models are regarded as a mean to add new facets to the original frontier
and/or extend the existing ones. In that case, targets derived from projections on to
those facets can be considered as long as they reflect acceptable trade-offs between
inputs and outputs. However, if weight restrictions are only a way of incorporating
value judgments or preferences, then there may be no reason to argue that targets
outside the PPS are attainable. It should be noted that the basic restricted DEA
models may yield targets within the PPS, after some adjustments of the former
projection which is determined by the objective function of those models are made.
Nevertheless, it is shown that such approach can be enhanced, in particular through
a more appropriate selection of benchmarks.

We develop here some new restricted DEA models that exploit the duality
relations determined by the weight restrictions and provide targets (1) which are
attainable (within the PPS), (2) which are Pareto-efficient and (3) which result from
a selection of benchmarks that is made following a suitability criterion. Specifically,
the models proposed find the closest targets. Minimizing the gap between actual
and efficient performances seeks to find the most similar benchmarks to the unit that
is being evaluated. This approach is therefore particularly useful when weight
restrictions reflect value judgments and targets within the PPS must be ensured. In
that case, it makes it possible to identify best practices and set targets which show
the way for improvement with less effort and which are not only technically
achievable but also consistent with the prior views of experts.

The chapter is organized as follows: Sect. 7.2 reviews the restricted formulations
corresponding to the basic CCR DEA model. In Sect. 7.3 we briefly describe the
approach for the benchmarking and target setting based on DEA models including
weight restrictions that represent production trade-offs. In Sect. 7.4 we develop
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some new restricted DEA models that ensure targets within the PPS. Section 7.5
illustrates the proposed approach with an empirical example. Last section
concludes.

7.2 The Basic Restricted DEA Models

Throughout the paper, we suppose that we have n DMUs which use m inputs to
produce s outputs. These are denoted by ðXj;YjÞ; j ¼ 1; . . .; n: It is assumed that
Xj ¼ ðx1j; . . .; xmjÞ0 � 0; Xj 6¼ 0; j ¼ 1; . . .; n; and Yj ¼ ðy1j; . . .; ysjÞ0 � 0; Yj 6¼
0; j ¼ 1; . . .; n: We also assume a DEA constant returns to scale (CRS) technology
for the efficiency analysis and the benchmarking. Thus, the production possibility
set (PPS), T ¼ X,Yð Þ=Xcan produceYf g, can therefore be characterized as follows

T ¼ X,Yð Þ=X� Pn
j¼1 kjXj;Y� Pn

j¼1 kjYj; kj � 0
n o

. The developments in the

proposed approach can be straightforwardly extended to the variable returns to
scale (VRS) case (Banker et al. 1984).

The CCR model (Charnes et al. 1978) generalized the single-output/input ratio
measure of efficiency for a single DMU0 in terms of a fractional linear program-
ming formulation transforming the multiple output/input characterization of each
DMU to that of a single virtual output and virtual input. That formulation is the
following

Max u0Y0

v0X0
s.t: :

u0Yj

v0Xj
� 1 j ¼ 1; . . .; n

v� 0m; u� 0s

ð7:1Þ

The optimal value of (7.1) provides a measure of relative efficiency of DMU0 as
the ratio of a weighted sum of outputs to a weighted sum of inputs where the
weights are selected trying to show DMU0 in its best possible light subject to the
constraint that no DMU can have a relative efficiency score greater than unity. By
using the results in Charnes and Cooper (1962), model can be transformed into the
following linear problem1

1We note that in (7.2) and (7.3) it suffices to consider the set E of extreme efficient DMUs. See
Charnes et al. (1986) for the classification of DMUs into the sets E, E’, F, NE, NE’ and NF. This
paper includes a procedure that allows to differentiating between the DMUs in E and E’.
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Max u0Y0

s.t: :
v0X0 ¼ 1

�v0Xj þ u0Yj � 0 j 2 E
v� 0m; u� 0s

ð7:2Þ

whose dual problem is

Min h0
s.t: : P

j2E
kjXj � h0X0P

j2E
kjYj �Y0

kj � 0 j 2 E

ð7:3Þ

Models (7.2) and (7.3) are a couple of dual problems which are known as the
multiplier and envelopment formulations, respectively, of the CCR model.
Actually, they correspond to the version input-oriented of that model, which is the
one we use here for the developments (an output-oriented model could have been
similarly used).

As said in the introduction, there exist different approaches for the addition of
weight restrictions to the dual multiplier formulation of the used DEA models.
Here, we deal with AR-I type restrictions (Thompson et al. 1986) like the ones
below

LI
ii0 �

vi0
vi

�UI
ii0 ; i,i0¼ 1;. . .;m, i \i0

LO
rr0 �

ur0
ur

�UO
rr0 ; r,r0¼ 1;. . .; s, r \r0

ð7:4Þ

LI
ii0 ;U

I
ii0 ;L

O
rr0 ;U

O
rr0 being some weight bounds.

The CCR DEA model is probably the one mostly used in practice when weight
restrictions are considered. The dual multiplier formulation of the CCR-AR model
can be formulated as follows

Max u0Y0

s.t: :
v0X0 ¼ 1

�v0Xj þ u0Yj � 0 j 2 E
P0v� 02p
Q0u� 02q

v� 0m; u� 0s

ð7:5Þ
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where

P0¼

LI
12 �1 0 � � � 0 0

�UI
12 1 0 � � � 0 0
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13 0 �1 � � � 0 0
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..
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.
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1m 0 0 � � � 0 1
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.
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2m 0 � � � 0 �1
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. ..
. ..

. � � � ..
. ..

.

0 0 0 � � � LI
m�1;m �1

0 0 0 � � � �UI
m�1;m 1

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

2pxm

ð7:6Þ

p being the number of pairs of inputs, that is, p ¼ mðm�1Þ
2 ; and

Q0¼

LO
12 �1 0 � � � 0 0

�UO
12 1 0 � � � 0 0

LO
13 0 �1 � � � 0 0

�UO
13 0 1 � � � 0 0

..

. ..
. ..

. � � � ..
. ..

.

LO
1s 0 0 � � � 0 �1

�UO
1s 0 0 � � � 0 1

0 LO
23 �1 � � � 0 0

0 �UO
23 1 � � � 0 0

..

. ..
. ..

. � � � ..
. ..

.

0 LO
2s 0 � � � 0 �1

0 �UO
2s 0 � � � 0 1

..

. ..
. ..

. � � � ..
. ..

.

0 0 0 � � � LO
s�1;s �1

0 0 0 � � � �UO
s�1;s 1

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

2qxs

ð7:7Þ

where q ¼ sðs�1Þ
2 . In case there is no restrictions involving vi and vi’ the corre-

sponding rows in P′ should be removed; we proceed similarly with the restrictions
on the output weights.
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The dual problem to the AR model (7.5) is the following envelopment
formulation

Min h0
s.t: : P

j2E
kjXj � Pp� h0X0P

j2E
kjYj þQs�Y0

kj � 0; p� 02p; s� 02q

ð7:8Þ

where p ¼ p�12; p
þ
12 ; . . .; p

�
m�1;m; p

þ
m�1;m

� �0
and s ¼ s�12; s

þ
12 ; . . .; s

�
s�1;s; s

þ
s�1;s

� �0
.

Note that for each pair of restrictions on the input weights in (7.4) we have a couple
of non-negative variables p�ii0 and p

þ
ii0 ; i, i′ = 1, …, m, i < i′, by duality. The same

happens with the restrictions on the output weights and their dual variables
s�rr0 and s

þ
rr0 ; r, r′ = 1, …, s, r < r′.

7.3 Weight Restrictions and Technological Judgments

Podinovski (2004, 2007a, b, 2015) has developed an approach in which weight
restrictions in DEA models are interpreted as production trade-offs. Under that
perspective, we can incorporate into the analysis technological judgments regarding
simultaneous changes to the inputs and outputs that are technologically possible in
the production process. The incorporation of weight restrictions which represent
production trade-offs leads to models that carry out the benchmarking of the DMUs
within an extended PPS, whose frontier results from the addition of new facets to
the original efficient frontier and/or the extension of some of the existing ones. This
is illustrated in the following numerical example.

7.3.1 Numerical Example

Consider the situation in which we have the following DMUs which use 2 inputs to
produce 1 constant output (Table 7.1).

Table 7.1 Data of numerical
example

DMU A DMU B DMU C DMU D DMU E

x1 4 5 10 14 9

x2 6 4 2 1.5 5

y 10 10 10 10 10
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For the evaluation of these DMUs we are willing to make the following
assumptions on admissible trade-offs between the two inputs:

Assumption 1 All the DMUs can maintain their production of outputs if x1 is
reduced by 5 units provided that x2 is increased by at least 3 units (in certain
proportion).

Assumption 2 All the DMUs can maintain their production of outputs if x2 is
reduced by 1 unit provided that x1 is increased by at least 4 units (in certain
proportion).

The incorporation of such information regarding admissible trade-offs between
the inputs leads to the following expansion of the original PPS

kA
4

6

� �
þ kB

5

4

� �
þ kC

10

2

� �
þ kD

14

1:5

� �
� p�12

5=3

�1

� �
� pþ

12

�4

1

� �
� X1

X2

� �

10kA þ 10kB þ 10kC þ 10kD � Y

kA; kB; kC; kD; p
�
12; p

þ
12 � 0

provided that X1; X2; Y� 0 (see Podinovski 2015).
In Fig. 7.1 we can see, at level Y = 10, the efficient frontier of the original PPS

(the solid line connecting points A, B, C and D) and the two new facets that are
added (the dashed lines) as the result of considering the information on trade-offs.
These two facets and the segment BC, which is actually the AR frontier of the
original PPS, form the frontier of the expanded PPS. Note that DMUs A and D,
which are technically efficient, become inefficient.
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X
2

X1

2 4 6 8 10 12 14

2
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θ*
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Fig. 7.1 Extended PPS and radial targets (DMU A)
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The evaluation of efficiency of any of the DMUs, for example DMU A, can be
made by solving the following envelopment model

Min hA

s.t: : kA
4
6

� �
þ kB

5
4

� �
þ kC

10
2

� �
þ kD

14
1:5

� �
� p�12

5=3
�1

� �
� pþ

12
�4
1

� �
� hAX1

hAX2

� �

10kA þ 10kB þ 10kC þ 10kD �Y
kA; kB; kC; kD;p�12;p

þ
12 � 0

ð7:9Þ

Solving (7.9) leads to the projection point with inputs h�A
4
6

� �
, where h�A ¼ 5

6,

and output Y = 10. At level Y = 10, that projection corresponds to the point A′ in
Fig. 7.1, and represents a benchmark for DMU A on one of the new facets added to
the efficient frontier of the original PPS. Its coordinates provide attainable targets
(radial targets) for that DMU because the extended PPS can be considered as a valid
one as the result of the assumption on the trade-offs.

Note that, by duality, the optimal value of the model above can be obtained by
solving the following multiplier model

Max 10u
s.t: : 4v1 þ 6v2 ¼ 1

�4v1 � 6v2 þ 10u� 0
�5v1 � 4v2 þ 10u� 0
�10v1 � 2v2 þ 10u� 0
�14v1 � 1:5v2 þ 10u� 0

5
3 � v2

v1
� 4

v1; v2; u� 0

ð7:10Þ

which includes the information associated with trade-offs by means of the weight

restrictions v1 v2ð Þ 5=3
�1

� �
� 0 and v1 v2ð Þ �4

1

� �
� 0. Thus, we can see that,

when we want to incorporate information regarding production trade-offs, the
efficiency of the DMUs can be equivalently evaluated by using weight restrictions
in the multiplier formulation of the DEA models.

In general, when weight restrictions are interpreted as production trade-offs,
models (7.5) and (7.8) provide measures of efficiency of the DMUs that take into
consideration the corresponding technological judgments. Model (7.8), in particu-
lar, provides targets (radial targets), perhaps outside the original PPS, in terms of its
optimal solutions as
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X̂0 ¼ h�0X0 ð�
X
j2E

k�j Xj � Pp�Þ

Ŷ0 ¼ Y0 ð�
X
j2E

k�j Yj þQs�Þ
ð7:11Þ

It is worth mentioning that the targets (7.11) will not be efficient in the sense of
Pareto if slacks are present when model (7.8) is solved. The literature offers several
ways to deal with this issue. These are described in the next subsection.

7.3.2 Pareto-Efficient Targets

Performing a second stage which maximizes the slacks starting from the radial
projection is one of the ways commonly used to find Pareto-efficient targets.
However, as Podinovski (2007b) shows, a standard second stage applied to models
with weight restrictions that represent production trade-offs may result in bench-
marks with meaningless negative values of some inputs. This is why this author has
proposed a corrected procedure of the conventional second stage which ensures
non-negativity of the variables (see that paper for details). In any case, note that the
targets that are found in a second stage would not necessarily preserve the mix of
inputs.

As an alternative approach for finding Pareto-efficient targets, the use from the
beginning of a non-radial model could be considered. Thanassoulis et al. (2008)
state that non-radial DEA models are the appropriate instrument for the setting of
targets and the benchmarking. In particular, these models ensure that the identified
targets lie on the Pareto-efficient subset of the frontier. The following additive-type
model is an envelopment formulation that includes the terms Pp and Qs (sometimes
called residues in the literature) which, by duality, are associated with the weight
restrictions (7.4)

Max Z0 ¼ 10ms
� þ 10ss

þ

s.t: : P
j2E

kjXj � Pp ¼ X0 � s� ð12:1Þ
P
j2E

kjYj þQs ¼ Y0 þ sþ ð12:2Þ
kj � 0; s� � 0m; sþ � 0s; p� 02p; s� 02q

ð7:12Þ

A VRS formulation of (7.12) can be found in Charnes et al. (1994) (Chap. 3,
p. 56), which is actually the restricted version of the additive model (Charnes et al.
1985). For ease of exposition, non-radial models in this chapter are formulated in
terms of the L1-norm, albeit the developments can be straightforwardly adapted to
deal with the weighted additive models (Lovell and Pastor 1995). These include the
invariant additive model (Charnes et al. 1987), the RAM model (Cooper et al. 1999)
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and the BAM models (Cooper et al. 2011a). In fact, as Thrall (2000) points out, the
weights attached to the slacks in the objective function of the additive models can
represent an additional way of incorporating value judgments.

Like (7.8) and (7.12) may yield targets (perhaps outside the original PPS) in
terms of its optimal solutions as follows

X̂0 ¼ X0 � s�� ð¼ P
j2E

k�j Xj � Pp�Þ
Ŷ0 ¼ Y0 þ sþ� ð¼ P

j2E
k�j Yj þQs�Þ ð7:13Þ

which are obviously Pareto-efficient.
It should be noted that, as it happens with the conventional second stage used

with the radial models, we may have some negative values for the targets of the
inputs in (7.13). In any event, one of the main drawbacks of these approaches is that
the slacks, both in the second stage procedures and in (7.12), are maximized (which
guarantees that the efficient frontier is reached), while they should be minimized in
order to find the most similar benchmark to the DMU0 under evaluation. As already
said, this would show DMU0 the way for improvement with less effort.

7.4 Weight Restrictions and Value Judgments

In this section, we develop some new restricted DEA models that allow us to find
targets which lie within the original PPS. These models will be particularly useful
for the benchmarking of DMUs when weight restrictions are utilized to incorporate
preferences or value judgments into the analysis. In those cases, the targets pro-
vided by the basic restricted DEA models, both radial (7.11) and non-radial (7.13),
may be deemed unacceptable, because it cannot be ensured that they are determined
by projection points which belong to the original PPS, in which case there would be
no reason to argue that they are attainable.

It should be noted that the standard restricted DEA models may also yield targets
lying within the PPS by using their optimal solutions. In the radial case, these
targets can be obtained by using the optimal solutions of (7.8) as follows

X̂0 ¼ h�0X0 þ Pp� ð � P
j2E

k�j XjÞ
Ŷ0 ¼ Y0 � Qs� ð� P

j2E
k�j YjÞ ð7:14Þ

or, alternatively, by using the following formulae that are proposed in Cooper et al.
(2007) X̂0 ¼ h�0X0 � s�� þ Pp� ð¼ P

j2E k
�
j XjÞ and Ŷ0 ¼ Y0 þ sþ� � Qs�

ð¼ P
j2E k

�
j YjÞ, which take into account the slacks at optimum, thus providing

targets Pareto-efficient.
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Turning to the numerical example above, Fig. 7.2 depicts the benchmarking of
DMU A according to (7.14). It can be seen that, after the adjustments determined by
the residues Pp� and Qs� are made, we eventually have a referent (DMU B) for that

unit on the frontier of the original PPS. Specifically, the radial projection A0 ¼

5
6

4
6

� �
is adjusted taking into account that p��

12 ¼ 1, so that

5
6

4
6

� �
þ 1� 5=3

�1

� �
¼ 5

4

� �
, which is the input vector of DMU B, can be set as

targets for DMU A on the AR efficient frontier of the original PPS.

Note, however, that this target setting involves changes in the input mix of
DMU A. In fact, Thanassoulis et al. (2008) claim that targets from restricted models
lying on the original PPS frontier will generally be non-radial targets. Therefore, it
makes little sense to use model (7.8) for the benchmarking, which is a model that
gives pre-emptive priority to the radial contraction of the inputs of DMU0, if one is
eventually interested in targets within the PPS, because that model does not ensure
the preservation of the mix. In addition, it could be argued that the targets (7.14) are
to some extent arbitrarily derived. Since the residues Pp and Qs, which represent
the adjustments that should be made to reach the PPS, are not considered in the
objective, then the ultimate benchmark would be actually found without following
any criterion of optimality that relates the unit being evaluated and its targets.

Similar difficulties are found when the non-radial model (7.12) is used. Targets
within the PPS can be obtained by using its optimal solutions as follows
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Fig. 7.2 Targets within the PPS (radial models)
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X̂0 ¼ X0 � s�� þ Pp�ð¼ P
j2E

k�j XjÞ
Ŷ0 ¼ Y0 þ sþ� � Qs�ð¼ P

j2E
k�j YjÞ

ð7:15Þ

However, model (7.12) is based on a pre-emptive priority given to the standard
slacks and ignores the residues in the objective (as in the radial case). Thus, the
adjustments needed to reach the original PPS are not considered in the optimization
that is made, and so, it can be argued again that the resulting targets are to some
extent arbitrarily set. In addition, the slacks in (7.12) are maximized, when they
should be minimized in order to find the closest targets.

Bearing in mind the above, we develop an approach for the benchmarking and
the setting of targets with restricted DEA models taking into account the following
considerations:

• It is an approach to be used when targets within the PPS must be ensured. That
could be the case if, for example, weight restrictions were regarded as a way of
incorporating preferences or value judgments and there are no reasons to con-
sider targets outside the PPS.

• It is an approach based on non-radial models. As said before, additive-type
models ensure Pareto-efficient targets. In addition, as Thanassoulis et al. (2008)
claim, non-radial targets (within the original PPS frontier) may be preferable
under restricted models if one is not certain about the trade-offs implicit in the
new facets added to the PPS (as the result of the addition of weight restrictions).

• The identification of benchmarks and the setting of targets with this approach
are based on a criterion of optimality. Specifically, we look for the closest
targets. In general, minimizing the gap between actual and efficient perfor-
mances allows us to identify the most similar efficient benchmark to the unit
under assessment and, consequently, ensures the achievement of improvement
with less effort. Thus, if weight restrictions are used to reflect value judgments,
the model we propose identifies best practices which are in line with the prior
knowledge and expert opinion and show the unit being evaluated the easiest
way for improvement.

The weight restrictions (7.4) give rise by duality to the following constraints in
the primal envelopment formulation of the additive-type DEA models:P

j2E kjXj ¼ X0 þ Pp� s� and
P

j2E kjYj ¼ Y0 � Qsþ sþ , for some
kj � 0; s� � 0m; sþ � 0s; p� 02p; s� 02q. These constraints can be seen as deter-
mining, through the standard slacks and the residues, the movements within the
PPS that DMU0 may follow in its search for a benchmark. The points
X0 þ Pp;Y0 � Qsð Þ result from substitutions between the inputs of DMU0 (Pp)
and/or substitutions between its outputs (Qs), and X0 þ Pp� s�;Y0 � Qsþ sþ

� �
are therefore points within the PPS that dominate them. Note that in the evaluation
of a given DMU0 with unrestricted models only the points of the PPS that dominate
this unit are considered as potential benchmarks. In absence of any other
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information, these are the only ones that can be deemed to perform better.
Non-dominating points would perform better than DMU0 for some weights but not
for others. However, if some information on the worth of inputs and outputs is
available, other production plans (in addition to the points that dominate DMU0)
can be considered for the benchmarking. Specifically, the points
X0 þ Pp� s�;Y0 � Qsþ sþ
� �

within the PPS may include other plans (aside from
the dominating points) that can be used as benchmarks for that unit because they
represent better performances according to allowable weights. This is shown
graphically with the data of the numerical example.

7.4.1 Numerical Example (Cont.)

Consider again the data of the numerical example, where the DMUs are evaluated
taking into account the weight restrictions 5=3� v2=v1 � 4. Now, we suppose that
these weight restrictions are used as way to incorporate information regarding the
relative importance to be attached to the inputs in the evaluation of the DMUs.
Therefore, there is no reason to consider targets outside the PPS.

As an effect of considering the residues associated by duality with the weight
restrictions, the selection of potential benchmarks for a given DMU will include
points of the PPS which result from both (1) increasing x1 by 5 units, provided that
x2 is reduced by at least 3 units (in certain proportion) and (2) increasing x2 by 1
unit, provided that x1 is reduced by at least 4 units (in certain proportion), aside
from dominating points.
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Fig. 7.3 Selection of benchmarks within the PPS (DMU E)
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Figure 7.3 depicts the selection of benchmarks for DMU E with this approach.
The shadow area of that figure corresponds to the points

Eþ p�12
5=3
�1

� �
þ pþ

12
�4
1

� �
� s�1

s�2

� �
; p�12; p

þ
12 ; s

�
1 ; s

�
2 ; kj � 0 (at level Y = 10).

Thus, the points of the PPS in that area are, in principle, potential benchmarks for
DMU E, because they represent production plans that outperform the one of that
unit. Note that the value of the virtual input v1x1 þ v2x2 in those points, for weights
v1; v2; uð Þ satisfying the weight restrictions, is always no lower than that in E. This
is shown in Fig. 7.4, where we have represented the family of lines v1x1 þ v2x2 ¼ c
which result from varying those input weights, c being the corresponding virtual
input in DMU E. Eventually, the selection of benchmarks should be made ensuring
that the referents chosen among those potential benchmarks are, at least,
AR-efficient.

If we proceed in a similar manner as with DMU E, we can see that the residues
and the standard slacks determine no other potential benchmarks for DMUs B and
C aside from themselves (see in Fig. 7.5 that the shadow areas do not include points
of the PPS; except, obviously, the input vectors of those two units). This is why
they are AR-efficient.

The case of DMU A is particularly interesting because it is a unit technically
efficient which becomes inefficient as the result of the weight restrictions. The
selection of benchmarks for that unit is depicted in Fig. 7.6. We can see that there
are other production plans within the PPS that outperform DMU A, in particular
those in the segment determined by DMUs B and C, which are AR-efficient.
Therefore, they could be considered as its referents, albeit an additional selection
criterion should be used in order to make the choice of the ultimate benchmark
among them.
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Fig. 7.4 Virtual input isolines for weights satisfying the weight restrictions (DMU E)
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A similar situation is found in the evaluation of DMU D (see Fig. 7.7). However,
it should be pointed out that in that case some of the points of the AR efficient
frontier are not so far considered as potential benchmarks for DMU D. Specifically,
the constraints in the envelopment models associated with the weight restrictions
determine that, among the points on the AR efficient frontier, only the points in
segment D0C are considered for the benchmarking of DMU D. In particular,
DMU B cannot be a referent for DMU D, because we cannot state that DMU B
outperforms DMU D, as this depends on the weights that are used. For example, if
the weights chosen are (6, 10, 7), then it can be said that DMU B performs better
than DMU D (the virtual input of DMU B would be 70 versus 99 in the case of
DMU D); however, if the weights are (5, 20, 9) then it is the other way around (the
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Fig. 7.5 Selection of benchmarks within the PPS (DMUs B and C)
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virtual input of DMU B would be 105 versus 100 in the case of DMU D). Note that
both weight vectors satisfy the weight restrictions.

7.4.2 A Model to Find the Closest Targets

The analysis of the numerical example made above has shown that the envelopment
models which result by duality from the multiplier formulations including weight
restrictions allow us to identify potential benchmarks for the DMU0 in the sense
that they represent better performances. However, the selection of the ultimate
benchmark should be made ensuring that it corresponds to a production plan which
is consistent with the prior knowledge and the views of experts, which is efficient in
the sense of Pareto and, if possible, which is chosen following some suitability
criterion.

Concerning the suitability criterion, the approach we propose here is intended to
find a benchmark which represents the most similar performance to that of DMU0.
To achieve that, we should minimize the total deviations between actual
inputs/outputs, X0;Y0ð Þ; and targets, X0 þ Pp� s�;Y0 � Qsþ sþ

� �
, making sure

that the latter point (the projection point) belongs to the AR Pareto-efficient frontier
of the PPS.

The model which provides the targets that are wanted is the following problem
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Min z0 ¼ s� � Ppk k1 þ sþ � Qsk k1
s.t: : P

j2E
kjXj ¼ X0 � ðs� � PpÞ ð16:1Þ

P
j2E

kjYj ¼ Y0 þðsþ � QsÞ ð16:2Þ
�v0Xj þ u0Yj þ dj ¼ 0 j 2 E ð16:3Þ

P0v� 02p ð16:4Þ
Q0u� 02q ð16:5Þ
v� 1m ð16:6Þ
u� 1s ð16:7Þ

dj �Mbj j 2 E ð16:8Þ
kj �Mð1� bjÞ j 2 E ð16:9Þ

kj; dj � 0; bj 2 0; 1f g j 2 E
s� � 0m; sþ � 0s; p� 02p; s� 02q

ð7:16Þ

where

1. s� � Ppk k1¼ s�1 �Pm
i0¼2 LI

1i0p
�
1i0 � UI

1i0p
þ
1i0

� ��� ��þPm�1
i¼2 s�i �Pi�1

k¼1 �p�ki þ pþ
ki

� ��Pm
i0¼iþ 1 LI

ii0p
�
ii0 � UI

ii0p
þ
ii0

� ���� ���þ
s�m �Pm�1

k¼1 �p�km þ pþ
km

� ��� ��. That is, the L1-norm of the deviation vector
between actual inputs and input targets.

2. sþ � Qsk k1¼ sþ1 �Ps
r0¼2 LO

1r0s
�
1r0 � UO

1r0s
þ
1r0

� ��� ��þPs�1
r¼2 sþr �Pr�1

k¼1 �s�kr þ sþkr
� ��Ps

r0¼rþ 1 LO
rr0s

�
rr0 � UO

rr0s
þ
rr0

� ��� ��þ
sþs �Ps�1

k¼1 �s�ks þ sþks
� ��� ��, the L1-norm of the deviation vector between actual

outputs and output targets. And
3. M is a big positive quantity.

Model (7.16) is in line with others that have already been proposed to minimize
the distance to the efficient frontier of the PPS (see, for example, Aparicio et al.
(2007) and Ruiz et al. (2015)2). It is important to highlight that, in minimizing
instead of maximizing the deviations, we have to make sure that the projection
points obtained lie on the Pareto-efficient frontier of the PPS, specifically the AR
frontier. Note that maximizing the standard slacks in (7.12) ensures that the AR
Pareto-efficient frontier of the PPS is reached. However, to make sure of that, when
deviations are minimized, model (7.16) follows a primal-dual approach in the sense
that it includes the constraints of both the envelopment and the multiplier formu-
lations of the AR model considered [(7.16)–(16.2) and (16.3)–(16.7), respectively].
The key is in the restrictions (16.8) and (16.9), which link those two groups of
constraints [(16.8) and (16.9) actually result from a characterization of the DEA
Pareto efficient frontier; see Ruiz et al. 2015]. According to these restrictions, if

2Other papers dealing with closest targets in DEA include Portela et al. (2003), Tone (2010),
Fukuyama et al. (2014), Aparicio and Pastor (2014) and Ruiz and Sirvent (2016).
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kj [ 0; then (16.9) implies that dj ¼ 0 by virtue of (16.8). Thus, if DMUj partic-
ipates actively as a referent in the evaluation of DMU0, then it necessarily belongs
to �v0X þ u0Y ¼ 0: That is, the benchmarks that model (7.16) finds for DMU0 are
combinations of DMUj’s in E that are all on a same facet of the Pareto AR efficient
frontier, because those DMUj’s belong all to a supporting hyperplane of T whose
coefficients are non-zero and satisfy the AR restrictions.

Eventually, targets on the AR Pareto-efficient frontier of the PPS can be derived
by using the optimal solutions of (7.16) as follows

X̂0 ¼ X0 � s�� þ Pp�ð¼ P
j2E

k�j XjÞ
Ŷ0 ¼ Y0 þ sþ� � Qs�ð¼ P

j2E
k�j YjÞ

ð7:17Þ

That is, these targets formulae are the same as those in (7.15), but use the optimal
solutions of a different model which imposes a suitable criterion for the selection of
benchmarks.

7.4.3 Numerical Example (Cont.)

The use of model (7.16) with the DMUs of the numerical example leads to the
following results. In the evaluation of DMU A, the feasible solutions are associated
with all the points on the AR efficient frontier with Y ≥ 10 (at level Y = 10 this
corresponds to the segment BC). At optimum, p��

12 ¼ 0:6; pþ�
12 ¼ 0; s��

1 ¼ 0; s��
2 ¼

1:4 and sþ�
1 ¼ 0. Thus, DMU B is selected as its referent, which is the closest point

on the AR frontier. In the case of DMU D, model (7.16) only considers as potential
benchmarks the points on the AR efficient frontier in segment D0C (see again
Fig. 7.7). At optimum, p��

12 ¼ 0; pþ�
12 ¼ 0:5; s��

1 ¼ 2; s��
2 ¼ 0 and sþ�

1 ¼ 0, so
DMU C is selected as its benchmark.

Remark 1 [The linearization of the objective of model (7.16)]
Model (7.16) is a non-linear problem as the result of using in its objective function
the absolute values of the deviations between actual inputs/outputs and targets.
However, this problem can be reformulated without the absolute values, as it is
explained next. We introduce the new decision variables cþ

i ; c�i � 0; i ¼ 1; . . .;m;

dþ
r ; d�r � 0; r ¼ 1; . . .; s; and add the restrictions s�1 �Pm

i0¼2 LI
1i0p

�
1i0 � UI

1i0p
þ
1i0

� � ¼
cþ
1 � c�1 ; s

�
i �Pi�1

k¼1 �p�ki þ pþ
ki

� �� Pm
i0¼iþ 1 LI

ii0p
�
ii0 � UI

ii0p
þ
ii0

� � ¼ cþ
i � c�i ; i ¼

2; . . .;m� 1; s�m �Pm�1
k¼1 �p�km þ pþ

km

� � ¼ cþ
m � c�m and sþ1 �Ps

r0¼2 LO
1r0s

�
1r0�

�
UO

1r0s
þ
1r0 Þ ¼ dþ

1 � d�1 ; s
þ
r �Pr�1

k¼1 �s�kr þ sþkr
� �� Ps

r0¼rþ 1 LO
rr0s

�
rr0 � UO

rr0s
þ
rr0

� � ¼ dþ
r �

d�r ; r ¼ 2; . . .; s� 1; sþs �Ps�1
k¼1 �s�ks þ sþks

� � ¼ dþ
s � d�s . Then, minimizing the

non-linear objective in (7.16) is equivalent to minimizing the linear objective
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function
Pm

i¼1 cþ
i þ c�i

� �þ Ps
r¼1 dþ

r þ d�r
� �

subject to the resulting set of con-
straints. Thus, (7.16) becomes a mixed-integer linear programming model.

Remark 2 Solving (7.16) in practice
The formulation of model (7.16) seeks that the DMUj’s in E that participate

actively as a referent in the evaluation of DMU0 necessarily belong to the same
facet of the efficient frontier. This is actually achieved by means of the constraints
(16.8) and (16.9), which include the classical big M and binary variables. Solving
(7.16) in practice may involve setting a value for M, say 106, and this might become
an issue because some projection points (closer to DMU0) could remain uncon-
sidered (unless a lower bound for M were found). Nevertheless, (7.16) can be
solved by reformulating these constraints using Special Ordered Sets (SOS) (Beale
and Tomlin 1970). SOS Type 1 is a set of variables where at most one variable may
be nonzero. Therefore, if we remove (16.8) and (16.9) from the formulation and
define instead a SOS Type 1, Sj, for each pair of variables kj; dj

	 

; j 2 E, then it is

ensured that kj and dj cannot be simultaneously positive for DMUj’s, j 2 E. CPLEX
Optimizer (and also LINGO) can solve LP problems with SOS by using branching
strategies that take advantage of this type of variables.

Remark 3 Ruiz et al. (2015) also propose a non-radial model with weight restric-
tions which seeks to find the closest targets. In that paper, the constraints (16.1) and
(16.2) are replaced by

P
j2E kjXj ¼ X0 � s� and

P
j2E kjYj ¼ Y0 þ sþ , where s�

and sþ contain variables unrestricted in sign. That is, the total input and output
deviations are considered as simply free variables. Thus, Ruiz et al. (2015) does not
follow exactly a primal-dual approach because these constraints of the envelopment
formulation are not the ones that would correspond by duality to those in the
multiplier formulation which include the weight restrictions. As a result, the model
proposed by those authors makes the search for the targets of DMU0 in the whole
AR Pareto-efficient frontier, without considering the requirement on the allowable
substitutions (reallocations), Pp and Qs, which result from the weight restrictions.
This can be observed in Fig. 7.7. As said before, at level Y = 10, model (7.16) only
considers as potential benchmarks for DMU D the points on the AR efficient
frontier in segment D0C. However, the approach in Ruiz et al. (2015) would con-
sider the segment BC (the whole AR frontier), for the benchmarking of that unit.

7.4.4 A Unit-Invariant Model

In practice, we might have to consider the units of measurement because both the
objective function of (7.16) is an aggregation of deviations in inputs and outputs
and the weight restrictions in that model are formulated in terms of absolute
weights. The following problem is an invariant version of model (7.16)
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Min z0 ¼ ~s� � ~P~p
�� ��xI

1 þ ~sþ � ~Q~s
�� ��xO

1
s.t: : P

j2E
~kjXj ¼ X0 � ð~s� � ~P~pÞ ð18:1Þ

P
j2E

~kjYj ¼ Y0 þð~sþ � ~Q~sÞ ð18:2Þ
�~v0Xj þ ~u0Yj þ ~dj ¼ 0 j 2 E ð18:3Þ

~P0~v� 02p ð18:4Þ
~Q0~u� 02q ð18:5Þ
�X~v� 1m ð18:6Þ
�Y~u� 1s ð18:7Þ
~dj �M ~bj j 2 E ð18:8Þ

~kj �M ð1� ~bjÞ j 2 E ð18:9Þ
~kj; ~dj � 0; ~bj 2 0; 1f g j 2 E

~s� � 0m;~sþ � 0s; ~p� 02p;~s� 02q

ð7:18Þ

where

1. ~s� � ~P~p
�� ��xI

1 ¼ �X�1 ~s� � ~P~p
� ��� ��

1,
�X being the diagonal matrix having as

entries the averages of the inputs, i.e., �X ¼ diagð�x1; . . .; �xmÞ. That is, we use
now a weighted L1-norm of the deviations between actual inputs and targets, the
weights being the inverse of the input averages. Such specification of the
weighted L1-norm has already been used to weight the standard slacks in
additive-type models (see Thrall 1996).
Likewise, ~sþ � ~Q~s

�� ��xO

1 ¼ �Y�1 ~sþ � ~Q~s
� ��� ��

1, where
�Y ¼ diagð�y1; . . .; �ysÞ.

2. ~P ¼ �XP and ~Q ¼ �YQ, which means that the weight restrictions (7.4) are now
formulated as

LI
ii0 � vi0 �xi0

vi �xi
�UI

ii0 ; i,i
0¼ 1;. . .;m, i \i0

LO
rr0 � ur0 �yr0

ur �yr
�UO

rr0 ; r,r0¼ 1;. . .; s, r \r0
ð7:19Þ

That is, we consider weight restrictions on virtual input and outputs, specifically
on an average DMU (see Wong and Beasley 1990).

It should be noted that if we make the following change of variables in (7.18):
s� ¼ �X�1~s�, sþ ¼ �Y�1~sþ , v ¼ �X~v, u ¼ �Y~u, p ¼ ~p, s ¼ ~s, kj ¼ ~kj; j 2 E, dj ¼
~dj; j 2 E and bj ¼ ~bj; j 2 E, then we will have the following problem
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Min z0 ¼ s� � Ppk k1 þ sþ � Qsk k1
s.t: : P

j2E
kj �X�1Xj
� � ¼ �X�1X0

� �� ðs� � PpÞ ð20:1Þ
P
j2E

kj �Y�1Yj
� � ¼ �Y�1Y0

� �þðsþ � QsÞ ð20:2Þ
�v0 �X�1Xj

� �þ u0 �Y�1Yj
� �þ dj ¼ 0 j 2 E ð20:3Þ

P0v� 02p ð20:4Þ
Q0u� 02q ð20:5Þ
v� 1m ð20:6Þ
u� 1s ð20:7Þ

dj �Mbj j 2 E ð20:8Þ
kj �M ð1� bjÞ j 2 E ð20:9Þ

kj; dj � 0; bj 2 0; 1f g j 2 E
s� � 0m; sþ � 0s; p� 02p; s� 02q

ð7:20Þ

Therefore, we can see that (7.18) is equivalent to (7.16) when this latter model is
used with the inputs and outputs normalized by their corresponding averages.

7.5 Empirical Illustration

To illustrate the proposed approach, we revisit the example in Ruiz et al. (2015) ,
which evaluates educational performance of Spanish universities. The study con-
sidered 42 public universities (Table 7.2 records the names of such universities),
which were evaluated by using the following variables:

Outputs

• GRAD = Graduation rate (y1): Percentage of students that complete the pro-
gramme of studies within the planned time, or in one more year, in relation to
their entry cohort.

• RET = Retention rate (y2): It is computed as 100 minus the drop out rate, in
order to be treated as an output, i.e., a “the more the better” variable. The drop
out rate is the ratio between the number of students of the entry cohort of
2006–07 enrolled for the first time in a subject which do not enrol in their
corresponding subjects either in 2007–08 or 2008–09 and the total of students of
the entry cohort of 2006–07 (in percent).

• PROG = Progress rate (y3): Ratio between the number of passed credits3 cor-
responding to all the students enrolled in 2008–09 and the total enrolled credits
in that academic year (in percent).

3Credit is the unit of measurement of the academic load of the subject of a programme.

170 N. Ramón et al.



Inputs
The variables below, which are used as resources, are adjusted according to the
number of students in order to take into account the effect of the size of the
university. To be precise, the inputs are defined as the ratios between staff (aca-
demic and non-academic), expenditure and teaching spaces to the number of stu-
dents enrolled in 2008–09, measured in terms of equivalent full-time student units
(FTStud):

• AStaff (x1): The ratio between FTAStaff and FTStud, where FTAStaff is the
academic staff with full-time equivalence. For example, if AStaff = 0.10 for a

Table 7.2 Universities

COD. University COD. University

UA U. de ALICANTE ULPGC U. de LAS PALMAS DE GRAN
CANARIA

UAB U. AUTÓNOMA DE
BARCELONA

UMA U. de MÁLAGA

UAH U. de ALCALÁ DE
HENARES

UMH U. MIGUEL HERNÁNDEZ DE
ELCHE

UAL U. de ALMERÍA UMU U. de MURCIA

UAM U. AUTÓNOMA DE
MADRID

UOV U. de OVIEDO

UBA U. de BARCELONA UPC U. POLITÉCNICA DE
CATALUÑA

UBU U. de BURGOS UPCT U. POLITÉCNICA DE
CARTAGENA

UCA U. de CÁDIZ UPF U. POMPEU FABRA

UCAR U. CARLOS III DE
MADRID

UPM U. POLITÉCNICA DE MADRID

UCLM U. de CASTILLA-LA
MANCHA

UPN U. PÚBLICA DE NAVARRA

UCN U. de CANTABRIA UPO U. PABLO DE OLAVIDE

UDG U. de GIRONA UPV U. del PAÍS VASCO

UDL U. de LLEIDA UPVA U. POLITÉCNICA DE VALENCIA

UEX U. de EXTREMADURA URI U. de LA RIOJA

UGR U. de GRANADA URV U. ROVIRA I VIRGILI

UHU U. de HUELVA USAL U. de SALAMANCA

UIB U. de las ISLAS BALEARES USC U. de SANTIAGO DE
COMPOSTELA

UJA U. de JAÉN USE U. de SEVILLA

UJCS U. JAUME I DE
CASTELLÓN

UVEG U. de VALENCIA (ESTUDI
GENERAL)

ULC U. de LA CORUÑA UVI U. de VIGO

ULE U. de LEÓN UZA U. de ZARAGOZA
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given university, this can be interpreted by saying that there are 10 teachers for
each 100 students.

• NAStaff (x2): The ratio between the total number of administrative and technical
support personnel and FTStud.

• EXPEND (x3): The ratio between expenditure (in euros) and FTStud.
Expenditure exactly accounts for staff expenditure, expenditure on goods and
services, financial expenditure and current transfers. EXPEND therefore
expresses the current expenditure of a given university per student, and reflects
the budgetary effort made by the universities in the delivery of their teaching
practices. This indicator is traditionally used for comparing institutions, in
particular in studies dealing with teaching quality.

• SPAC (x4): The ratio between the total space in m2 (corresponding to class-
rooms, labs and other teaching spaces) and FTStud.

The analysis carried out in Ruiz et al. (2015) incorporated the preferences of
experts regarding the relative importance of the variables listed above through the
addition of the following AR-I restrictions to the model

2:01� vAStaff
vNAStaff

� 10:96 0:17� uRET
uPROG

� 4:48
0:5� vAStaff

vEXPEND
� 8:47 0:09� uRET

uGRAD
� 12:48

1:76� vAStaff
vSPAC

� 11:15 0:44� uPROG
uGRAD

� 6:30
0:16� vNAStaff

vEXPEND
� 3:70

0:27� vNAStaff
vSPAC

� 4:51
0:81� vEXPEND

vSPAC
� 6

ð7:21Þ

where the weight bounds were obtained from the opinions of experts by using
Analytic Hierarchy Process (AHP) (Saaty 1980).

Twelve universities were rated as efficient: UA, UAM, UCAR, UCLM, UGR,
UJA, UMA, UPF, URV, USE, UVEG and UVI. It should be noted that UAB, UAL,
UBA, UEX, UHU, UPO, UPV and USAL were technically efficient universities
that become inefficient as the result of incorporating the expert preferences. Now,
we use the proposed approach for benchmarking and setting targets. Specifically,
we use model (7.16), including the weight restrictions (7.21), with the data nor-
malized by the averages of the corresponding inputs and outputs and assuming
VRS, which means that we must add the convexity constraint

P
j2E kj ¼ 1 to the

formulation and replace the constraints (16.3) with �v0Xj þ u0Yj þ u0 þ dj ¼ 0; j 2
E; where u0 is a free variable.

For each of the inefficient universities, Table 7.3 reports the values k�j (the
intensities) corresponding to the efficient universities that have participated in its
evaluation. k�j ¼ 0 means that the university “j” has not been a referent in the
assessment of the university in the corresponding row, while this role gets more
relevant as the value of k�j increases. The last row of this table summarizes the
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number of times each efficient university has acted as referent in the assessments of
the others. This provides us with an insight into their role as benchmarks.

UPF and UJA and, to a lesser extent, UVEG and UGR are the universities that
have played a more relevant role as benchmarks in the assessment of the inefficient
universities. We can see that they have acted as referents in the assessments of 23,
18, 13 and 10 respectively, of the 30 inefficient universities. By contrast, USE
played no role as a benchmark, UMA and UVI were referents for only one uni-
versity and UA and UCLM only for two. UPF is a university with a high level of
availability of resources which has also achieved the highest levels in the rates
(especially in PROG and GRAD). The results in Table 7.3 show that it has been an
important benchmark for the universities with more resources. UJA, UVEG and

Table 7.4 Actual data and targets

Ineff. univ. Inputs Outputs

AStaff NAStaff EXPEND SPAC GRAD RET PROG

UA Data 0.0906 0.0631 6965.57 2.0826 28.05 87.11 59.53

UAB Data 0.1127 0.1070 11,774.05 2.2500 38.58 71.59 73.17

Targets 0.1046 0.0541 8926.83 2.7956 38.58 75.96 77.56

UAH Data 0.1099 0.0653 10,104.20 5.1917 38.98 75.19 63.71

Targets 0.0991 0.0653 10,104.20 5.1917 50.96 83.93 75.33

UAL Data 0.0924 0.0578 8105.93 3.3098 32.57 87.98 62.67

Targets 0.0838 0.0409 6708.42 4.9723 38.00 86.83 63.13

UAM Data 0.1021 0.0471 8926.92 3.6299 43.74 81.00 70.31

UBA Data 0.1095 0.0667 10,203.00 2.6477 34.70 83.70 69.91

Targets 0.0912 0.0667 8648.12 3.2034 38.14 83.06 69.91

UBU Data 0.1110 0.0599 7781.98 7.2993 31.19 79.31 61.81

Targets 0.0840 0.0533 7781.98 7.2960 45.38 82.90 66.58

UCA Data 0.0973 0.0513 7798.51 3.8731 31.05 82.00 66.64

Targets 0.0912 0.0513 7798.51 3.8731 38.03 82.67 68.70

UCAR Data 0.1037 0.0412 8095.70 2.0956 31.98 73.26 75.65

UCLM Data 0.0906 0.0544 8135.32 6.0784 45.42 92.81 68.66

UCN Data 0.1228 0.0740 10,463.68 5.6765 36.65 82.47 65.29

Targets 0.0987 0.0740 10,463.68 5.6765 53.73 84.71 77.34

UDG Data 0.1374 0.0858 11,068.05 4.1409 46.38 74.18 71.96

Targets 0.0994 0.0815 10,134.45 4.1409 49.07 83.98 76.75

UDL Data 0.1387 0.0889 12,664.43 5.0656 37.00 80.00 72.23

Targets 0.1060 0.0889 11,275.33 5.0656 57.75 84.38 81.97

UEX Data 0.0936 0.0480 6189.66 6.7653 39.00 81.00 65.17

Targets 0.0839 0.0440 7009.00 5.7613 40.16 86.74 64.04

UGR Data 0.0819 0.0542 7214.39 2.3656 27.77 83.00 62.59

UHU Data 0.0999 0.0570 8296.78 2.6845 37.47 81.00 63.54
(continued)
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Table 7.4 (continued)

Ineff. univ. Inputs Outputs

AStaff NAStaff EXPEND SPAC GRAD RET PROG

0.0926 0.0570 8380.68 3.1272 37.37 82.28 68.28

UIB Data 0.0985 0.0582 7295.94 2.6797 28.00 84.00 61.42

Targets 0.0855 0.0577 7102.60 2.2800 28.00 84.74 61.32

UJA Data 0.0828 0.0388 6498.81 4.8588 36.87 86.25 62.30

UJCS Data 0.1035 0.0627 8984.53 2.7051 32.17 86.61 59.51

Targets 0.0909 0.0627 8473.41 3.1631 37.45 83.05 68.61

ULC Data 0.0844 0.0481 6572.31 5.9949 31.68 86.21 57.54

Targets 0.0819 0.0423 6806.08 5.9949 39.55 84.78 63.06

ULE Data 0.0912 0.0583 8115.25 5.5092 38.05 81.78 65.74

Targets 0.0895 0.0568 8115.25 5.5092 44.78 84.94 68.83

ULPGC Data 0.0889 0.0500 7705.89 3.6760 31.95 80.64 56.00

Targets 0.0829 0.0435 7009.50 3.6760 31.95 83.61 57.61

UMA Data 0.0789 0.0533 7178.51 2.8268 20.32 80.43 57.26

UMH Data 0.0864 0.0416 7558.63 5.1354 36.00 79.00 64.19

Targets 0.0843 0.0417 7119.03 5.1354 39.21 86.05 64.19

UMU Data 0.0864 0.0540 6854.68 3.0940 26.09 84.43 59.54

Targets 0.0865 0.0536 6854.68 3.0434 30.90 86.13 60.96

UOV Data 0.1016 0.0533 8214.85 8.2193 32.10 78.40 58.73

Targets 0.0840 0.0533 7781.70 7.2962 45.38 82.90 66.58

UPC Data 0.1393 0.0907 14,071.92 6.3661 16.24 73.67 69.60

Targets 0.1055 0.0907 11,179.50 5.2118 57.98 84.30 81.93

UPCT Data 0.1237 0.0965 9893.47 6.5155 19.70 80.97 51.83

Targets 0.0973 0.0765 9893.47 6.0007 53.21 83.77 76.12

UPF Data 0.1078 0.0946 11,536.09 4.9930 59.30 84.45 83.54

UPM Data 0.1099 0.0813 9606.85 4.8802 8.54 86.00 59.40

Targets 0.0981 0.0734 9606.85 4.8802 50.41 85.07 75.34

UPN Data 0.1262 0.0804 10,397.93 10.7657 46.04 82.94 72.59

Targets 0.0996 0.0804 10,242.98 5.7863 54.51 83.92 77.70

UPO Data 0.0994 0.0489 7693.97 2.9098 17.28 82.15 70.62

Targets 0.0935 0.0489 7800.33 2.9098 33.71 79.50 69.81

UPV Data 0.1155 0.0430 10,062.10 6.8204 43.32 82.16 57.34

Targets 0.0831 0.0471 7618.02 6.8204 43.32 83.88 65.46

UPVA Data 0.1101 0.0609 9609.94 4.5986 27.08 84.26 60.97

Targets 0.1000 0.0609 9609.95 4.5986 48.49 83.16 73.68

URI Data 0.1139 0.0718 10,203.87 4.5211 43.00 71.36 63.14

Targets 0.1036 0.0718 10,203.87 4.5211 51.75 83.25 76.89

URV Data 0.0913 0.0548 9915.63 6.3372 49.68 85.19 72.72

USAL Data 0.1122 0.0678 9039.19 4.3517 47.64 74.05 68.02

Targets 0.0986 0.0678 9434.49 4.3517 47.64 83.84 73.85
(continued)
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UGR have lower rates than UPF, but have used much less resources, so they have
been important referents for many of the remaining inefficient universities.

For each university, Table 7.4 records its actual data together with the efficient
targets for each of the inputs and outputs (for efficient universities only actual data
are reported). For some universities, we can see that the targets are very close to
their actual data: see the cases of UCA, UHU, UIB, ULE, UMH and UMU. This
means that the educational performance of these universities is close to target
efficiency. By contrast, the large differences between data and targets for UPC,
UPCT and UPM show that these are the most inefficient universities.

Looking at Table 7.4, a general conclusion that can be drawn is that the uni-
versities have an important source of inefficiency in AStaff: all of them should, to
some extent, reduce the number of teachers per student in order to achieve target
efficiency (except the efficient universities). In UBU, UDG, UDL, UPC, UPCT,
UPN, UPV and UZA this input should be reduced by more than 20%. As for the
outputs, many of the inefficient universities perform weakly regarding the rate
GRAD. In universities like UBU, UCN, UDL, UOV, UPO, UPVA, USC and UZA
there is room for improvement of more than 40% for this variable. In the case of the
polytechnic universities the situation is still more worrying: engineering students in
Spain frequently need some more years than those planned to complete their
degree, so the rates GRAD (and also PROG) are very low in the universities that are
purely polytechnic. In Table 7.4 we can see that the rates GRAD of UPM, UPC and
UPCT are, respectively, 8.54% (the minimum across all universities), 16.24 and
19.70% (these figures are much lower than those of other polytechnics outside of
Spain). However, their corresponding targets are quite a lot larger, being 50.41,
57.98 and 53.21% respectively. Obviously, the targets that model (16) provides for
them are probably unrealistic, perhaps unachievable in the short term if we take into
account their starting point. In any case, these results show some aspects of their
performance that might need substantial improvements.

Finally, it is worth highlighting that, although there are many similarities
between the results provided by (7.16) and those obtained in Ruiz et al. (2015),
there are also some differences. For example, UGR seems to play a lesser role as
benchmark in the analysis carried out with (7.16), while UAM participates now

Table 7.4 (continued)

Ineff. univ. Inputs Outputs

AStaff NAStaff EXPEND SPAC GRAD RET PROG

USC Data 0.0922 0.0594 9011.39 9.4024 31.45 74.00 64.42

Targets 0.0875 0.0594 8340.17 6.9536 47.45 83.13 69.10

USE Data 0.0843 0.0493 7041.43 2.4780 22.56 80.47 60.46

UVEG Data 0.0806 0.0474 7246.77 7.6244 43.40 82.68 64.16

UVI Data 0.0835 0.0439 7169.41 3.3624 31.65 83.07 55.99

UZA Data 0.1401 0.0873 10,415.46 5.2239 35.45 83.37 68.46

Targets 0.1016 0.0822 10,415.45 5.2239 54.61 84.54 78.69
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more actively in the benchmarking of other universities. This is a consequence of
considering in (7.16) the duality relations determined by the weight restrictions. As
a result, the targets set by (7.16) are in some cases more demanding (see, in
particular, the case of UAL), though the targets provided by both approaches
coincide in 16 out of the 30 inefficient universities.

7.6 Conclusions

In management, organizations use benchmarking for the evaluation of their pro-
cesses in comparison to best practices of others within a peer group of firms in an
industry or sector. In the best practice benchmarking process the identification of
the best firms enables the setting of targets, which allows these organizations to
learn from others and develop plans for improving some aspects of their own
performance.

DEA has proven to be a useful tool for the benchmarking. This chapter has dealt
specifically with the DEA models with weight restrictions. We claim that the
standard restricted DEA models are particularly useful for the benchmarking when
weight restrictions are used to incorporate technological judgments into the anal-
ysis, in particular information regarding production trade-offs. In those cases,
restricted models can be seen as a mean to extend the production possibility set so
that targets outside the original one can be considered. Nevertheless, the use of
radial models, which do not ensure efficient targets (in the Pareto sense), and the
fact that the slacks are maximized (instead of minimized) in the second stage
processes that have been proposed, can be seen as a weakness of that approach. As
a future research, the formulation of new models that address those issues could be
investigated.

In case restricted models are regarded only as a way of incorporating value
judgments or preferences, then there may be no reason to argue that targets outside
the PPS can be attained. There is therefore a need of models that ensure targets
within the PPS appropriately, and this chapter has made a contribution to meeting
such need. The models developed find the closest efficient (in the Pareto sense)
targets which lie within the PPS. Thus, if weight restrictions reflect preferences or
value judgments, the approach proposed allows us to identify best practices that are
not only technically achievable (with less effort) but also desirable in the light of
prior knowledge and expert opinion.
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Chapter 8
Endogenous Common Weights
as a Collusive Instrument
in Frontier-Based Regulation

Per J. Agrell and Peter Bogetoft

Abstract Non-parametric efficiency analysis, such as Data Envelopment Analysis
(DEA) relies so far on endogenous local or exogenous general weights, based on
revealed preferences or market prices. However, as DEA is gaining popularity in
regulation and normative budgeting, the strategic interest of the evaluated industry
calls for attention. We offer endogenous general prices based on a reformulation of
DEA where the units collectively propose the set of weights that maximize their
efficiency. Thus, the sector-wide efficiency is then a result of compromising the
scores of more specialized smaller units, which also gives a more stable set of
weights. The potential application could be to precipitate collective bargaining on
cost efficiency under regulation with asymmetric information on relative prices and
costs. The models are applied to paneldata from 285 Danish district heating plants,
where the open evaluation of multiple non-priced outputs is relevant. The results
show that sector wide weighting schemes favor input/output combinations that are
less variable than would individual units.
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8.1 Introduction

Weighting of resources consumed and outputs rendered is inherent in any perfor-
mance evaluation technique that results in a set of measures that is of lower
dimensionality than the original production space. The methodology for deter-
mining the relative prices is one of the pivotal challenges in performance evalua-
tion. Whereas market prices may be observed or elicited in certain circumstances,
they may not necessarily reflect the social welfare effects due to externalities and
horizon problems. Technical valuations or specifications may postulate prices for a
given technology, but this may be doubtful in regulatory contexts. Non-parametric
frontier approaches such as the Data Envelopment Analysis (DEA) by Charnes
et al. (1978, 1979) address this issue by allocating sets of individual endogenous
weights that put the individual unit in the best possible light. In this manner DEA
provides the evaluator with a conservative performance estimate that is valid for a
range of preference functions. Under a convex frontier specification, the analysis
explicitly provides the evaluator with dual information that later may be used to
refine the preference model of the evaluator by inserting additional constraints. In
an open retrospective evaluation, where the modelling rests entirely at the discretion
of the analyst or collectively of the units, such an approach may support organi-
zational learning and development. Unrestricted weights are relevant in the deter-
mination of technical efficiency, i.e. the general ability to produce many outputs
using few inputs.

Recently, however, DEA has gained a widespread use also in more normative
contexts, such as industry and sector evaluations aiming at informing forward-
looking decisions in regulation (cf. Agrell et al. 2005), budgeting or incentive
management (cf. Agrell et al. 2002). For surveys of applications in the domains of
utilities’ regulation, see Jamasb and Pollitt (2000), for a full survey cf. Seiford and
Thrall (1990). This change of perspective implies higher demands to analyze the
strategic behavior of the units, as well as the methodological consistency of the
evaluation. A performance measure, albeit conservative, that counter-intuitively
discourages relevant economic actions will inevitably lead to dysfunctional
behavior. On the other hand, an overly cautious approach using individual dual
prices comes at a social cost in terms of the discriminatory capacity of the method.

The use of individual weights is also troublesome from an allocative point of
view. If, for example, two units—to put their performance in its best possible
light—stipulate the value of labor to capital as being (1:10) and (10:1) respectively,
there is clearly a social loss from the allocation of capital and labor. In the DEA
literature, allocative efficiency is studied with given market prices. In such cases,
allocative efficiency can be evaluated along with technical efficiency to give, for
example, the cost efficiency of units. The latter is then an example of common
exogenous weights. In the absence of unanimous market information that can
provide these weights, the DEA approach has usually been to restrain the analysis

182 P.J. Agrell and P. Bogetoft



to individual endogenous weights, alternatively supplemented with partial price
information.

The aim of this paper is the develop a set of common endogenous weights that
puts the evaluated industry in the best possible light. By using only ex post pro-
duction data, we may derive collective evaluations that are applied across the
sample. This will enable us to make cost effectiveness analysis even in cases where
relevant market prices do not exist and no other preference information is available.
In a normative context, this corresponds to a conservative, yet intra-industry con-
sistent estimate of performance that preempts collective and individual complaints
on its validity. Whenever our endogenous common weights are not assessed, the
evaluator runs the risk that the evaluated units collectively assert these relative
prices and then internally redistributes the allocated incentives among the units.
Since the common weights maximize the collective incentive, it also opens for
strategic behavior on behalf of the units.

The contribution of the paper is twofold.
First, it extends the methodological discussion on preference modelling in DEA

with a treatment of a class of endogenous and collective evaluations. A particular
application of our approach is in the evaluation of non-balanced activities, where
individual weights would have been zerovalued. The common weights here express
a comprehensive assessment on these activities, a weighted average of the social
benefits.

Second, it addressed a relevant issue in the normative application of DEA in e.g.
bargaining or regulation. The suggested approach may be directly used in negoti-
ations with associations that represent the collective of evaluated units.

The outline of this paper is as follows. Section 8.2 presents the traditional
approach and derives the individual endogenous weights. Our model is presented in
Sect. 8.3, along with some properties and interpretations. An extensive illustration
using regulatory panel data from the energy sector is given in Sect. 8.4. The paper
is closed with some conclusions in Sect. 8.5.

8.2 Individual Endogenous Weights

In the following we address a traditional setting of evaluated DMUs j ¼ 1; . . .; n;
transforming a vector of inputs x j 2 R

r
þ j ¼ 1; . . .; n to a vector of outputs y j 2 R

s
þ

j ¼ 1; . . .; n: Let X; Yð Þ be the set of observed input-output combinations. The task
is to determine a set of input prices u 2 R

r
þ and output prices v 2 R

s
þ such as to

maximize the productivity measure for the unit under evaluation. To avoid
degenerated cases, assume that x j and y j each contain at least one positive element
for all j ¼ 1; . . .; n:
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Assuming constant returns to scale as in Charnes et al. (1978), we arrive at the
classical “dual” CRS model 8.1:

maxui;vi
viyi

uixi

st viy j

uix j � 1 8j ¼ 1; . . .; n
ui 2 R

r
þ vi 2 R

s
þ

ð8:1Þ

The optimal solution 8.1 gives a set of individual endogenous weights ui ; við Þ;
these are the weights putting DMU i in the best possible light.

In an economic context, the program is equivalent to the maximization of a net
profit viyi � uixi, given a set of normalized input prices uixi ¼ 1ð Þ and subject to the
condition that all observed units run with nonpositive profits viy j � uix j � 0. See
also Pastor et al. (2012) for the development of this equivalence.

maxui;vi viyi

st uixi ¼ 1
viy j � uix j � 0 8j ¼ 1; . . .; n
ui 2 R

r
þ vi 2 R

s
þ

ð8:1�Þ

Technically, therefore, the weights define a hyperplane that dominate all
observed input-output combinations and minimizes the potential improvement in
profit by DMU i by doing as well as the best DMUs. Hence, a unit that exhibits a
net profit lower than 0 is dominated by some more productive units. An equivalent
interpretation of net profit maximization is also found in Pastor et al. (2012).

The dual program 8.1* above is equivalent to the primal program 8.2 below for
the decision variables hi; k

� �
; where hi is the radial distance measure for DMU

i and k the convex weights on X; Yð Þ that dominate xi; yið Þ:

minhi;k hi

st hixi � Pn
j¼1

kjx j

yi � Pn
j¼1

kjy j

k 2 R
n
þ

ð8:2Þ

The primal description of the production possibility set gives a minimal convex
hull that contains all observed units under constant returns to scale. Analogous
formulations may also be made under various scale assumptions and distance
measures, cf. the cone-ratio approach in Charnes et al. (1989).

It is well known from empirical studies that units under evaluation will claim
very diverse prices, since each unit is emphasizing its comparative advantages. This
has two implications.

Firstly, in some cases, it is therefore useful (or economically asked for) to
introduce an exogenous set of price restrictions. The imposition of restrictions on
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the DMU specific prices in DEA models was first proposed by Thompson et al.
(1986) as ‘assurance regions’ (AR) for upper and lower limits on u and v. The AR
models developed rapidly by several authors to reflect partial price information,
preference information or other subjective information about the relative impor-
tance of the inputs and outputs, cf. e.g. Golany (1988), Dyson and Thanassoulis
(1988), Wong and Beasley (1990), Roll et al. (1991), Ali et al. (1991), and Halme et
al. (1999). For a general discussion of the use of weight restrictions in DEA, see
Pedraja-Chaparro et al. (1997). This is easily done by adding constraints on ui and
vi in the formulation 8.1*. Introducing e.g. vih � vik could reflect that output h is at
least as important or valuable as output _k. More generally, it is useful and
straightforward to introduce such information by requiring ui 2 Ui and vi 2 Vi,
where Ui and Vi are convex polyhedral sets in the strictly positive orthants, Ui �
R

r
þþ and Vi � R

s
þþ : The resulting version of 8.1* in this case remains a simple

linear programming problem.
However, this approach of using exogenous information was challenged by

Podinovisky (2004a, b, 2005) arguing that including preference information to
derive weight restrictions may lead to inconsistencies and problems in the inter-
pretation of efficiency.

Secondly, it motivates the search for industry-wide prices, which can be
expected to be less extreme than the individual prices. However, as we shall see in
the numerical illustration, this depends on the underlying technology.

8.3 Common Endogenous Weights

We now revisit the classical CRS model to determine a common set of weights
u; vð Þ for all units, so that the overall efficiency of the set of units is maximized.
Consider the following program P3:

maxu;v
v
Pn

i¼1
yi

u
Pn

i¼1
xi

st vy j

ux j � 1 8j ¼ 1; . . .; n
v
Pn

i¼1
yi

u
Pn

i¼1
xi

� 1

u 2 R
r
þ v 2 R

s
þ

ð8:3Þ

where the objective function expresses the aggregate productivity, the first con-
straint the individual productivity normalization as in CRS and the second con-
straint the collective normalization. The interpretation is straightforward. We seek
the prices that make the joint production plan look as attractive as possible, subject
to the usual normalization constraints that no observed production, joint or indi-
vidual, can have a benefit-cost ratio exceeding 1. The results in model P3 are
mathematically equivalent to the centralized resource allocation case for CRS in
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Lozano and Villa (2004). However, we formulate the models in our notation for
consistency.

Remark 1 The second constraint
v
Pn

i¼1
yi

u
Pn

i¼1
xi
� 1 is redundant.

Proof vy j=ux j � 1 implies vy j � ux j � 0 for all j, which impliesPn
j¼1ðvy j � ux jÞ� 0: ∎

In turn this implies
Pn

j¼1 vy
j=
Pn

j¼1 ux
j � 1:

Remark 2 One of the n first constraints will always be binding.

Proof Assume that u�; v�ð Þ is an optimal solution to the program and that none of
the n first constraints are binding, i.e. v�y j=u�x j\1 for all j: This implies v�y j �
u�x j\0 for all j and we may therefore increase all elements of v� marginally
without violating the constraints. This would increase

Pn
j¼1 v

�y j=
Pn

j¼1 u
�x j and it

thus contradicts the optimality of u�; v�ð Þ. ∎
An alternative interpretation of the objective function is stated without its

(trivial) proof.

Remark 3 The objective function can be rewritten as a weighted average of the

usual benefit cost ratios:
Pn

i¼1
uxiPn

j¼1
ux j

vyi

uxi

� �

The solution to program 8.3 above is not unique. The normalization is (as well as
in the original CRS model) arbitrary and any inflation or deflation of all prices with
the same factor would not affect the solution.

The problem 8.3 can also be reformulated as a game theoretic problem 8.4, where
the industry picks prices to maximize the value added and the regulator selects the
benchmark ratio, as the most promising from the set of individual processes:

maxu;v
v
Pn

i¼1
yi

u
Pn

i¼1
xi
=maxj

vy j

ux j

n o
st u 2 R

r
þ ; v 2 R

s
þ

ð8:4Þ

However, a more conventional primal reformulation of P3 is given below as 8.5,
which is equivalent to the superefficiency (Andersen and Petersen 1993) evaluation
of an aggregate unit

Pn
i¼1 x

i;
Pn

i¼1 y
i

� �
: The equivalence between P3 and P5 is

proved in Proposition 1 below.

minh;k h

st h
Pn
i¼1
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� �

� Pn
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k jx j

Pn
i¼1

yi � Pn
j¼1

k jy j

k 2 R
n
þ

ð8:5Þ
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Here, the interpretation falls out immediately from the formulation as the amount
of the pooled inputs that could have been saved in the production of the pooled
outputs by allocating the production in the best possible way among the available
production processes. Assuming proportional weights, it is also the optimal pro-
duction plan in a centralized planning setting with given subprocesses.

The primal formulation in 8.5 is also related to the measure of overall potential
gains from mergers developed in Bogetoft and Wang (2005) and Bogetoft et al.
(2003), and to the measures of structural efficiency originally suggested by Farrell
(1957) and Försund and Hjalmarsson (1979).

Proposition 1 The dual variables associated with the two sets of constraints in will
be the optimal weights or prices u and v in 8.3.

Proof Usual dualization of 8.5 gives the program

maxu;v v
Pn
i¼1

yi
� �

st u
Pn
i¼1

xi
� �

� 1

vy j � ux j � 0 8j ¼ 1; . . .; n
u 2 R

r
þ ; v 2 R

s
þ

ð8:6Þ

Without loss of generality, we may require that u
Pn

i¼1 x
i

� � ¼ 1 and program P6
is thus equivalent to

maxu;v
v
Pn

i¼1
yi

u
Pn

i¼1
xi

st vy j

ux j � 1 8j ¼ 1; . . .; n

u
Pn
i¼1

xi ¼ 1

u 2 R
r
þ v 2 R

s
þ

Again, this is equivalent to P3 due to redundancy of the second constraint in P3
(Remark 4) and the possibility to scale all prices. ∎

As can be easily seen from the program 8.6, the common weight problem
essentially maximizes the total payment the industry can claim, given the knowl-
edge that the regulator has about the best production practices. Hereby, any Pareto
efficient solution for the industry is supported and could potentially be implemented
using appropriate sidepayments. This suggests that if the industry is bargaining for
incentive payments based on the prices u, v the units should collectively agree on
the common weights. Note also from the game-theoretical formulation above that
the bargaining power of the regulator is given by his information about the effi-
ciency of individual processes. This limits the rents the collective of units can claim
using extreme weights.
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So far we have not made use of, nor assumed the existence of, market prices of
the inputs or outputs. The revenue and cost terms calculated are merely used to
define the reimbursement scheme. An interesting possibility is that the attempt to
optimize incentives under DEA control may be costly when considering the true
market prices. This is the case if the reduced incentive cost forces the DMU away
from the locally allocatively efficient productions.

8.4 Weight Restrictions in Regulation

Although frontier regulation is popular, especially in European network regulation
cf. Agrell and Bogetoft (2016), weight restrictions have to our knowledge been
used very rarely: in Norway for electricity distribution system operators in 2008 (cf.
Bjorndal et al. 2010) and in the international benchmarking for electricity trans-
mission (e3GRID 2012), cf. Agrell and Bogetoft (2014). The exogenous common
weight restrictions in Norway were abandoned in the subsequent model specifi-
cation for the DEA yardstick model due to unintended effects on the frontier
assessments, similar to those reported in the literature above.

The setting for the international electricity transmission in Agrell and Bogetoft
(2014) was different. By default the number of DMUs in the reference set is
extremely limited (n = 22) and a large part of the benchmarking consists in various
standardization and normalization operations on the costs and technical assets
reported in the study. The three output variables in the model are described in
Table 8.1 below for an average cost (total expenditure) model. The variable
NormGrid is basically a weighted sum of the relevant transmission assets that the
operators provide to the system, DenseArea is the total area (in km2) of city

Table 8.1 Average cost model for electricity transmission in Europe, dependent variable log
(TOTEX), OLS and robust OLS, Agrell and Bogetoft (2014)

OLS Robust OLS

log(NormGrid) 0.554***
(0.096)

0.475***
(0.052)

log(DenseArea) 0.117***
(0.011)

0.137***
(0.009)

log(AngleLineSum) 0.217**
(0.083)

0.284***
(0.040)

Constant 9.233***
(0.516)

9.477***
(0.338)

Observations 102

Adjusted R2 0.912

Residual Std. Error 0.351 (df = 98)

F Statistic 349.668*** (df = 3; 98)

Note *p <0.1; **p < 0.05; ***p < 0.01
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population density (EUROSTAT definition) and AngleLineSum is the weighted
linelength of angular towers. The first variable is the principal cost driver, the two
others are proxies for the extra operating and capital costs due to high infrastructure
density and routing complexity. The technology in electricity transmission was
shown to exhibit economies of scale and an non-decreasing returns to scale model
(NDRS) was used in DEA for the study. Given the size of the sample and the
obvious observation that some operator by default has the highest or lowest values
for each variable, an unrestricted frontier would give very low discrimination
among the operators. The endogenous dual weights for the extreme operators are
heavily biased to the specific outputs for which they dominate. From an
engineering-economic viewpoint this is not sensible since e.g. a higher incidence of
angular towers cannot increase the capital and operating costs by any proportion for
the parts of the grid that are not concerned by these complexities. It was therefore
decided to apply weight restrictions in form of cones around the endogenous dual
weights for the two supplementary variables corresponding to a confidence interval
bands at the 99% level. The final results from the study were used in regulation and
their use was endorsed by appeal court rulings in the Netherlands in 2014.

In the actual application, the operators are competing and no data are shared. The
task of defining the limits for trade-offs on the frontier is consequently relegated to
the consultants. However, the ideal information would of course have been that
concerning the exact trade-off ratios for an efficient cost-minimizing firm. In line
with the idea in this paper, suppose that there would be agreement among the
operators that the trade-off ratios are identical, but not their values. Facing this
additional information, the pressure on the regulators would have been high to
accept and implement this information in the benchmarking. The use of a common
endogenous dual weight set would be the solution. What shape does this infor-
mation have in a collusive setting? What type of results can be expected? These
questions will be answered in the next section where we revisit another application.

8.5 Numerical Illustration

To illustrate the proposed model, we use the paneldata in Agrell and Bogetoft
(2004) of district heating plants in Denmark. Define x1 as the operating expenditure
in MDKK, x2 as the primary fuel input in GJ, y1 as the heat energy delivered in GJ,
y2 as the electrical energy delivered in GWh, y3 as the heat capacity utilized
in MW, y4 as the total length of pipelines. The input-oriented model uses the
non-discretionary pipeline length as a proxy for customer density. The dataset
contains 285 DMUs for 1998/99 and 234 DMUs for 1999/00, each representing the
performance of a district heating plant. Real input prices w1; w2 are known for each
DMU. Some descriptive statistics about the data are presented in Tables 8.2
and 8.3.

The following efficiencies under constant returns to scale are assessed for each
yearly dataset: input-oriented technical efficiency TE yearð Þ given by a formulation,
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cost efficiency given local prices CE wyearð Þ; cost efficiency given average input
prices CE wyearð Þ, aggregate cost efficiency ACE wyearð Þ and cost efficiency under the
new approach CEC u�;year; v�;yearð Þ using the formulation. We also introduce the
notation C wð Þ ¼ wx for the total realized cost at valuation w: For clarity, we restate
the programs CE :ð Þ and ACE :ð Þ below.

CEi wi
� � ¼ min wi

Xn
j¼1

k jx jj
Xn
j¼1

k jx j � xi;
Xn
j¼1

k jy j � yi; k 2 R
n
þ

( )

ACEi wi
� � ¼ min

Xn
j¼1

wjx j
� �

k jj
Xn
j¼1

k j w jx j
� ��wixi;

Xn
j¼1

k jy j � yi; k 2 R
n
þ

( )

The aggregate units x98 ¼ P285
j¼1 x

j;98 and x99 ¼ P234
j¼1 x

j;99 and corresponding
output aggregations are included in the calculations, but are inefficient under any
assumptions.

The results of the assessments are presented in Table 8.4. As expected, the
technical efficiency estimates TE :ð Þ are the highest, well above 0.80 for even this
fairly aggregated two-input model. The proposed common weights model in

Table 8.2 Descriptive statistics, district heating plants in Denmark 1998/99, Agrell and Bogetoft
(2004)

Mean Median Min Max Standard.dev.

xopex kDKK 6319 2301 138 226,039 18,580

wfuelxfuel kDKK 17,998 4633 194 854,646 65,698

xfuel GJ 314 84 10 11,919 1037

c kDKK 24,318 7247 625 961,049 78,604

zpipes km 54 25 0 1597 127

yheat GJ 259 64 7 10,308 907

yelec GWh 9 0 0 280 24

ycap MW 78 21 2 2405 241

Table 8.3 Descriptive statistics, district heating plants in Denmark 1999/00, Agrell and Bogetoft
(2004)

Mean Median Min Max Standard.dev.

xopex kDKK 7550 2535 60 268,941 23,724

wfuelxfuel kDKK 21,490 5577 238 932,759 76,421

xfuel GJ 352 86 10 12,018 1145

c kDKK 29,040 8119 693 1,068,944 93,260

zpipes km 63 26 0 1629 147

yheat GJ 296 64 1 10,658 1050

yelec GWh 10 0 0 267 25

ycap MW 87 21 2 2499 273
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Table 8.4 denoted CEC u�; v�ð Þ yields in both cases the degenerated dual prices
u� ¼ 0; 1f g and v� ¼ 1; 0; 0; 0f g, effectively transforming the efficiency problem
into a two-dimensional issue of heat losses. As the heat losses are limited by the
thermophysical configuration of the network, the overall efficiencies are high.
Inputs such as operating expenditure have higher variability towards output, which
favors selected DMUs, but lower the bulk of the scores. Irrespective of whether an
extremely favorable observation is by skill or luck, the regulator-evaluator is using
this variability to gauge all units in DEA. The industry collectively can hedge itself
against this bargaining power by de-emphasizing inputs (e.g. operating expendi-
tures) with higher variability towards outputs in favor of the inputs that are naturally
bounded by proportionality. This explains the seemingly counterintuitive result.
The lowest individual score for 1999, 0.290, is likely due to reporting errors rather
than actual heatlosses. The CE wð Þ model assesses the cost efficiency under the
premises that all units are subject to average fuel prices. As the majority of the units
are single sourced heat plants, this assumes change of technology. The resulting
scores are lower, around 0.74, as the trade-off between operating expenditure and
fuel cost becomes more realistic. The next model CE wð Þ changes the competition
by exposing DMUs to evaluation by local prices, which of course may be lower or
higher than the market average. The efficiency level is roughly as with average
prices, albeit with some extreme dips for certain technologies. Finally, the ACE wð Þ
model assumes that the markets behind the DMUs may purchase power and heat to
average prices from any other units. Here, the integrated efficiency of operating
expenditure, fuel purchases and fuel efficiency is estimated. In this case, the
resulting efficiencies are low, around 0.60, highlighting the large discrepancies in
overall cost efficiency on the district heat market.

An interesting break-down of the results for the five models is made in
Table 8.5. The two first columns give the minimal cost estimates for each model, in
applicable prices. The four columns to the right tabulate the optimal production
profile for each model, and the current production is given in the top row.

Table 8.4 Cost efficiency estimates for various model specifications

n Mean r Min Standard dev.

TE 98ð Þ 285 0.827 24 0.610 0.093

TE 99ð Þ 234 0.814 19 0.330 0.107

CEC98 u98; v98ð Þ=C u98ð Þ 285 0.805 11 0.600 0.088

CEC99 u99; v98ð Þ=C u99ð Þ 234 0.792 11 0.290 0.105

CE98 w98
� �

=C w98
� �

285 0.745 9 0.440 0.122

CE99 w99
� �

=C w99
� �

234 0.737 11 0.310 0.136

CE98 w98ð Þ=C w98ð Þ 285 0.730 9 0.120 0.139

CE99 w99ð Þ=C w99ð Þ 234 0.725 12 0.160 0.160

ACE98 w98ð Þ=C w98ð Þ 285 0.600 7 0.300 0.137

ACE99 w99ð Þ=C w99ð Þ 234 0.614 10 0.260 0.144
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As expected from the model formulation, the proposed model minimizes the overall
inefficiency, as C uð Þ ¼ x2. However, to assess the budget value C wð Þ, the average
prices w are used. Note that this model implies a hefty substitution rate between
opex and fuel, reducing the fuel input to an absolute minimum. The technical
efficiency model TE implies a proportional reduction of both inputs, disregarding
the actual substitution rate. The overall budget under local prices w is lower than for
the common weights model, the results are marginally different than for average
prices w: The case illustrates thus the difference between the objective to maximize
average efficiency (as for TE) and to maximize aggregate efficiency. The 64 DMUs
that have lower score in the new aggregated model than in the technical efficiency
model are primarily units that are comparatively stronger in partial opex-efficiency.
In one outlier case, a small technically efficient unit drops to 0.51 in aggregate
efficiency. The following two models CE wð Þ and CE wð Þ suggest substantial
reductions of opex at comparatively higher levels of fuel than the aggregate model.
The detailed outcome of these models give raise to far more revolutionary changes
of the organization and technology in the market than the aggregate and technical
efficiency models. The overall cost efficiency model ACE wð Þ evaluated at local
budgets, indicates a further 1000 MDKK reduction of controllable costs, which of
course presumes complete flexibility in scale and scope of operations.

It is interesting to note that the costs using local prices may well increase when
using the production plan generated using common weights incentives, xu u�; v�ð Þ :
This reflects the potential conflict of reducing incentive costs and achieving
allocative efficiency.

8.6 Conclusions

In this paper we derive endogenous sector-wide prices for DEA evaluations. This is
useful when there are no exogenous general weights available, nor relevant to use
local endogenous prices. The resulting model can be interpreted as a game theoretic
model, where the industry suggests prices to collectively maximize net revenue or
compensation and a principal selects a benchmarking unit to constrain the set of

Table 8.5 Minimal cost estimates and input requirements

C wð Þ OPEX Fuel

1998 1999 1998 1999 1998 1999

x 6856 6804 1795 1770 89 82

xu u�; v�ð Þ 6047 5637 1846 1489 74 68

xTE wð Þ 5878 5711 1520 1478 76 69

xCE wð Þ 5425 5247 1096 895 76 71

xCE wð Þ 5390 5217 1016 927 77 71

xACE 4228 4276 – – – –
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acceptable prices. This interpretation is specifically valid in the frequent scenarios
evoked in applied work where the regulated or evaluated units are ‘consulted’ in
order to derive or validate the specification of the activity model(s) used in the
assessment. The common weight approach can then be seen as a focal point for the
firms in a cooperative game against the evaluator, providing a basis for the side
payments necessary to implement the solution.

We illustrate the model using paneldata from Danish district heating plants. The
outcome has several intriguing characteristics, among those the risk reducing strategy
of emphasizing input-output dimensions with low variability across the sample. The
empirical study also illustrates the potential direct distortion of total allocative effi-
ciency when reacting strategically to collective incentives. Further work intends to
explore the cooperative game properties of specification of models for performance
assessment. Another avenue for further research is the normative use of common
weights for resource allocation and target setting under strategic uncertainity, such as
in Hatami-Marbini et al. (2015). The group-wise approach in Cook and Zhu (2007)
could be interesting also from a strategic viewpoint if the units may choose their group
assignment. Another promising aspect for regulatory applications with small datasets
is to explore the results in Thanassoulis andAllen (1998)where theweight restrictions
are made equivalent to new artificial observations.1

Acknowledgements The authors would like to thank Peter Fristrup, Yves Pochet and an
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Chapter 9
A Parameterized Scheme of
Metaheuristics to Solve NP-Hard
Problems in Data Envelopment Analysis

Juan Aparicio, Martin Gonzalez, Jose J. Lopez-Espin
and Jesus T. Pastor

Abstract Data Envelopment Analysis (DEA) is a well-known methodology for
estimating technical efficiency from a set of inputs and outputs of Decision Making
Units (DMUs). This paper is devoted to computational aspects of DEA models
when the determination of the least distance to the Pareto-efficient frontier is the
goal. Commonly, these models have been addressed in the literature by applying
unsatisfactory techniques, based essentially on combinatorial NP-hard problems.
Recently, some heuristics have been introduced to solve these situations. This work
improves on previous heuristics for the generation of valid solutions. More valid
solutions are generated and with lower execution time. A parameterized scheme of
metaheuristics is developed to improve the solutions obtained through heuristics.
A hyper-heuristic is used over the parameterized scheme. The hyper-heuristic
searches in a space of metaheuristics and generates metaheuristics that provide
solutions close to the optimum. The method is competitive versus exact methods,
and has a lower execution time.

Keywords Data envelopment analysis � Closest targets � Mathematical pro-
gramming � Metaheuristics � Parameterized scheme

9.1 Introduction

Data Envelopment Analysis (DEA) is a well-known technique to estimate the level
of efficiency of a set of firms or organizations and, in general, a group of Decision
Making Units (DMUs). Efficiency evaluation in production has been an important
issue for managers as well as an area of interest from a practical and method-
ological view in operations research and economics. The focus of such assessment
is to analyze the technical efficiency of a DMU, which uses several inputs to
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produce several outputs, by comparing its performance with respect to the
boundary of an estimated production possibility set, using to that end a sample of
other DMUs operating in a similar technological environment. In production
settings where only one output is produced, the feasible production plans are
summarized in the notion of production function, which represents the maximum
product obtainable from the input combination at the existing state of technical
knowledge.

The estimation of production functions from a data sample began in the area of
economics with the application of regression analysis and Ordinary Least Squares
to estimate a parametrically specified ‘average’ production function (Cobb and
Douglas 1928). Later, Farrell (1957) showed how to estimate an isoquant
enveloping all the observations, overcoming the problem of determining an average
function that, consequently, does not meet the basic requirements of a production
function. Farrell’s paper represented an enormous advance in the measurement of
production efficiency and the starting point for numerous subsequent approaches in
the field of efficiency analysis. Farrell inspired other authors to continue this line of
research estimating production functions that envelop all the observations of the
sample by either a non-parametric piecewise linear technology or a parametric
function. The first possibility was taken up by Charnes et al. (1978), Banker et al.
(1984) and others, resulting in the development of DEA, whereas the latter
approach was taken up by Aigner and Chu (1968), Aigner et al. (1977) and
Meeusen and van den Broeck (1977) and others, subsequently resulting in the
development of deterministic and stochastic frontier models.

In contrast to the deterministic and stochastic frontier models, DEA is a
non-parametric technique, since it is not necessary to postulate a specific func-
tional form for the production function. Additionally, DEA is based on mathe-
matical programming, mainly Linear Programming (LP), generating polyhedral
technologies where the frontier is, therefore, piecewise linear. There are different
DEA efficiency measures, depending on the way that the distance from the
evaluated DMU to the frontier of the technology wants to be implemented. Indeed,
the first years of life of DEA witnessed the introduction of many different technical
efficiency measures, such as the Russell input and output measures of technical
efficiency and their graph extension (see Färe et al. 1985), the additive model
(Charnes et al. 1985), the Range-Adjusted Measure (Cooper et al. 1999) and the
Enhanced Russell Graph (Pastor et al. 1999) or Slacks-Based Measure (Tone
2001), to name but a few. The reason for the introduction of many different
technical efficiency measures is the piecewise linear nature of the boundary of the
production possibility set in DEA. In this setting, Pareto-efficiency (Koopmans
1951) comes into play. In fact, certain DEA measures, as for example the additive
model by Charnes et al. (1985), have been introduced for ensuring that the
evaluated units were compared exclusively with respect to the set of
Pareto-efficient points (the set of non-dominated points of the DEA technology),
also known as the strongly efficient frontier. Moreover, each efficiency measure in
DEA is calculated by solving a model of mathematical programming. DEA models
provide both an efficiency score for each of the assessed DMUs and information
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on the targets that have been used in the efficiency assessment in the case of
dealing with inefficient DMUs. The targets are the coordinates, in the input-output
space, of the efficient projection point on the frontier and thus represent levels of
operation of inputs and outputs that would make the corresponding inefficient
DMU perform efficiently. Consequently, targets are highly relevant from a man-
agerial point of view.

Most traditional DEA efficiency measures yield targets that are located far from
the evaluated unit (see, for example, Aparicio et al. 2007), being too exacting and
not easily achievable by DMUs. This drawback has generated an increasing interest
of researchers to develop DEA measures of technical efficiency that are capable of
yielding more suitable targets. The philosophy behind all these approaches is the
application of the Principle of Least Action (PLA), which always seeks the closest
efficient targets to the assessed DMU (Aparicio et al. 2014a). Let us now briefly
review the main papers on this approach. It seems that all started with Frei and
Harker’s paper (1999), where the main objective was to determine projection points
by minimizing the Euclidean distance to the strongly efficient frontier in DEA.
Later, Cherchye and Van Puyenbroeck (2001) defined the deviation between mixes
in a space-oriented framework as the angle between the input vector of the assessed
DMU and its projection, maximizing the corresponding cosine in order to find the
closest targets. Gonzalez and Alvarez (2001) redefined the classical input-oriented
Russell efficiency measure (Färe et al. 1985) based on the minimization of the sum
of input contractions required to reach the efficient subset of the production frontier.
Silva et al. (2003) introduced the notion of ‘similarity’ as closeness between the
values of inputs and/or outputs of the evaluated DMU and those of the obtained
projection (the targets), and they consequently suggested finding projection points
as similar as possible to the assessed unit. Lozano and Villa (2005) introduced a
method that determines a sequence of targets to be achieved in successive steps,
which converge on the strongly efficient frontier. Aparicio et al. (2007) determined
the closest targets for a set of international airlines by applying a new version of the
Enhanced Russell Graph/Slacks-Based Measure, characterizing the Pareto-efficient
frontier. More recently, Baek and Lee (2009), Amirteimoori and Kordrostami
(2010) and Aparicio and Pastor (2014a) have focused closely on the determination
of a weighted Euclidean distance to the strongly efficient frontier and have showed
the fulfillment of certain properties. This topic alone, the satisfaction of a set of
interesting properties, mainly monotonicity, has motivated the recent publication of
several papers in the context of least distance calculation: Pastor and Aparicio
(2010), Ando et al. (2012), Aparicio and Pastor (2013), (2014a, b), Fukuyama et al.
(2014a, b), (2016).

In general, applying the approach based on the Principle of Least Action is
computationally more difficult than obtaining the furthest efficient targets (the
classical approach), since the latter are usually associated with the resolution of a
standard linear program, something that does not happen with the determination of
the least distance to the production frontier. In particular, minimizing the distance
from an inefficient DMU to the frontier is equivalent to calculating the distance
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from an interior point of the polyhedral technology to the complement of a convex
set, which is not a straightforward problem (see Briec 1997). In fact, some pub-
lished strategies have been based on a multi-stage approach. The first stage consists
in determining all the efficient faces of the DEA frontier, while in a second stage the
selected measure is computed for each face, reporting, finally, the least distance
measure.

As for papers that have studied the computational aspects of DEA models
associated with the PLA, we draw attention to Aparicio et al. (2014b), Jahanshahloo
et al. (2005, 2007, 2012), Benavente et al. (2014), López-Espín et al. (2014) and
Gonzalez et al. (2015). Some of these approaches are based on Mixed Integer
Linear Programming or Bilevel Linear Programming; others are derived from
algorithms that allow the determination of all the facets of a polyhedron whereas,
finally, some others apply genetic algorithms.

The focus of this chapter is to show how it is possible to solve and study the
NP-hard problems associated with the approach based on the determination of
closest targets resorting to genetic algorithms and heuristics. To implement this
objective, we will resort to a particular DEA efficiency measure, known as the
Enhanced Russell Graph Measure or Slacks-Based Measure (Pastor et al. 1999;
and Tone 2001). This strategy will allow us to show specific algorithms and
results related to them. Indeed, this new measure, which applies the PLA, has
already been analyzed in some recent papers. In particular, in Aparicio et al.
(2007), a new version of the Enhanced Russell Graph measure was introduced for
determining closest targets, based on Mixed Integer Linear Programming.
Regarding papers that have applied genetic algorithms to solve this type of
models, the approach defined in Aparicio et al. (2007) has been recently studied
from a metaheuristic perspective (Benavente et al. 2014; López-Espín et al. 2014;
González et al. 2015). In Benavente et al. (2014) and López-Espín et al. (2014)
heuristics were used to generate valid solutions for a subset of restrictions of
Aparicio et al.’s problem, while in González et al. (2015) all constraints are
incorporated, heuristics are improved, and new ones are developed, so initial
populations of solutions satisfying all the constraints are generated. More recently,
González et al. (2016) have taken up where González et al. (2015) left off in the
application of metaheuristics and have improved previous heuristics for the gen-
eration of valid solutions, seeking also a lower execution time. In addition, a
parameterized scheme was introduced working with the initial population of valid
and non-valid solutions to generate more valid solutions and to improve all of
these solutions to obtain the best fit possible. All these findings were also illus-
trated by numerical experiments.

This work tries to find the best possible solution to the proposed problem. To
this end, two heuristic methods have been developed, in an attempt to find the
largest possible number of valid solutions. A solution is considered valid if it
meets all the constraints of the problem. Also, this solution is better when the
best fit is greater. After obtaining a set of solutions, different metaheuristics are
used to improve the first generation of solutions. These metaheuristics include
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functions of improvement solutions, combination functions and mutation func-
tions. The improvement functions try to transform the invalid solutions into valid
ones, and valid solutions into better valid solutions. The crossover function
combines several solutions trying to create a new one, inheriting all the valid
qualities from the above solutions. Finally, a mutation function is used to impede
stagnation in a local optimum, and have more space to explore solutions. These
metaheuristics have certain parameters that specify the operation of each of the
previously described functions. These metaheuristics are included in a
hyper-heuristic, which attempts to find the best metaheuristic, by training various
configurations of these various problems, to find one that achieves the best fit in
all types of problems.

After the introduction, Sect. 9.2 will describe the mathematical problem that has
been proposed. Having established the problem with all its constraints, section three
will address how to find solutions to this problem using heuristic methods. In point
three a parameterized scheme of metaheuristics is used to improve all the solutions
previously created. Finally, several experiments have been performed to illustrate
all the theoretical concepts around the work.

The remainder of the chapter is organized as follows: In Sect. 9.2, we will
introduce the necessary notation and background. In particular, we will specify the
DEA model that we want to solve. In this way, Sect. 9.3 will address how to find
solutions for this problem using heuristic methods. In Sect. 9.4, a parameterized
scheme of metaheuristics will be used to improve all the solutions previously
defined. Section 9.5 is devoted to performing a comparison between a
hyper-heuristic and the results obtained when some pure metaheuristics are applied.
Several experiments will be carried out to illustrate all the theoretical concepts of
the work. In Sect. 9.7, we present the conclusions.

In order to clarify all concepts provided during this introduction, Fig. 9.1 shows
an explanatory diagram where all phases of the work and the techniques used is
offered. As can be seen, a hyper-heuristic is found in the high level, where the
numerical values of the parameters are determined. These parameters will be later
used within a metaheuristic scheme, which consists of: Initialization, improving
elements, crossover and mutation. Depending on the values of these parameters, the
metaheuristic scheme will approximate more or less to the standard schemes, as
genetic algorithms, scatter search or any other. Finally, within the initialization step,
there are two heuristic methods through which it is attempted to generate the largest
number of solutions possible, where, only those that fulfill all constraints, will be
considered as valid. All internal stages of each level will be explained in the
following sections of this work.

We also emphasize that both the hyper-heuristic and metaheuristic are inde-
pendent of the problem, while the heuristic in the initialization is specifically
designed for this particular problem. The idea of using a hyper-heuristic as the top
level is an advantage for testing the maximum number of possible metaheuristic
schemes, in an attempt to find a valid general method for all possible problems.
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9.2 Data Envelopment Analysis and the Problem
to Be Solved

Data Envelopment Analysis involves the use of Mathematical Programming to
construct a non-parametric piecewise surface over the data in the input-output
space. Technical efficiency measures associated with the performance of each DMU
are then calculated relative to this surface, as a distance from it.

Now, we introduce some notation. Let us assume that data on m inputs and
s outputs for n DMUs are observed. For the j-th DMU these are represented by
xij � 0; i ¼ 1; . . .;m and yrj � 0; r ¼ 1; . . .; s.

Basic DEA models are CCR (Charnes et al. 1978) and BCC (Banker et al. 1984).
Both models are based on radial projections to the production frontier. However,
many other approaches give freedom to the projection so the final efficient targets
do not conserve the mix of inputs and outputs. One of these approaches is the
traditional Enhanced Russell Graph measure (Pastor et al. 1999), which can be
calculated for DMU k; k ¼ 1; . . .; n, as follows:

Fig. 9.1 Execution order
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Equation (9.1) can be easily transformed into the following linear programming
model (see Pastor et al. 1999).
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ð9:2Þ

The Enhanced Russell Graph measure, defined as the optimal value of the
Eq. (9.1), satisfies several interesting properties. However, it presents a drawback
that is also common to other traditional measures in DEA. In particular, the tra-
ditional Enhanced Russell Graph measure yields efficient targets that are far from
DMU k. The objective function in Eq. (9.1) is normally minimized. Therefore, in
order to determine the closest efficient targets, it would seem sufficient to change
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“min” for “max” in Eq. (9.1). However, this is not so. In this case, we could show
that the targets generated by the model would not be technically efficient, but
inefficient (see Färe et al. 1985) and, therefore, could not serve as a valid benchmark
for the assessed DMU. In Farë et al. (1985), this problem is solved by resorting to
Mixed Integer Linear Programming. In the case of DMU k, the model to be solved
would be:
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ð9:3Þ

In Eq. (9.3), the uses of a “big M” in (c.7) and (c.8) includes a weakness. These
constraints allow us to link djk to ajk by means of the binary variable bjk. The value
of M can be calculated if and only if all the facets that define the DEA technology
are previously determined. Unfortunately, the identification of all these facets is a
combinatorial NP-hard problem (Frei and Harker 1999; Cherchye and Van
Puyenbroeck 2001; Gonzalez and Alvarez 2001). In this paper, we apply several
heuristics to solve Eq. (9.3) under the command of a parameterized scheme of
metaheuristics. In order to check the viability of our approach, the results are
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compared with those obtained from the determination of all the facets of the DEA
frontier using a set of simulated numerical examples.

9.3 Heuristic Models

A heuristic technique is any approach to problem solving, learning, or discovery
that employs a practical methodology but it not guaranteed to be optimal or perfect,
but sufficient for the immediate goals. When an optimal solution is not known,
heuristic methods can be used to speed up the process of finding a satisfactory
solution. Heuristics can be shortcuts to obtain a satisfactory solution when the
optimal solution is unknown.

The main objective of this work is to get results as close as possible to the
optimum in problems where we only know the size of the problem and the values of
input and output. For this, heuristic methods are used to find, in the first instance,
valid solutions that meet the requirements of the problem. A solution will only be
valid if it satisfies all the constraints included in the problem.

The solution of each equation is composed of b; a; tþ ; t�; l; v and d. In order to
meet the 14 constraints of Eq. (9.3), a high number of tests and combinations have
been developed, searching for the best combination of values and operators that
generate a greater number of initial valid solutions. Two methods to generate the
initial population of solutions are combined. First, method 1 is used, and if non
valid solutions are obtained, method 2 is used in order to try and find a valid
solution. The second method has a higher computational cost than the first one, and
so it is only used when the first method fails.

Regarding additional notation, r is the subscript for outputs, i for inputs and j for
DMUs. The assessed DMU is specified with k.

The scheme of the two heuristic methods used is explained below:

Method 1

1. The process starts generating bjk8j based on c.9, where k is the DMU analyzed,
and it is comprised between 1 and n. The number of b0jks equals 0 is greater than
or equal to s and lower than or equal to m. The positions of the 0 are randomly
generated. So, the values of ajk and djk8j can be calculated by mean of systems
of equations in the next steps (ajk; djk and bjk are related through c.7 and c.8).

2. tþrk 8r and bk are generated using Algorithm 1 in order to satisfy c.1. tþrk are
generated randomly between 0 and 1. Next, bk is obtained using c.1. If bk is
lower than 0, r is randomly generated between 0 and m and tþrk is decreased
dividing by a parameter p. This parameter p is modified in the experiments to
find the value that generates better solutions (p = 1.05). If bk is greater than 1,
tþrk is increased multiplying by the same parameter. The process continues until
0\bk\1. All of this is shown schematically in Algorithm 1.
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Algorithm 1: Generation of tþrk and bk .

3. For each bjk 6¼ 0, ajk must be zero. The other values for vector ajk are obtained
by solving the system of equations from c.3 (Algorithm 2).

Algorithm 2: Calculate ajk to satisfy c.3.

4. t�ik8i are calculated using c.2 by solving the system of equations.
5. Finally, vik8i; lrk8r; djk8j are calculated using c.4. The number of djk equal to 0

must match with the number of ajk different from 0. Because of that, the
equations where djk ¼ 0 are used to calculate the other characteristics (vik and
lrk). After that, the others djk are calculated. Algorithm 3 is used to obtain all the
variables described here.
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Algorithm 3: Calculate lrk; vik and djk to satisfy c.4.

Method 2

This method is used when the first method fails to find a valid solution. The
heuristic generates new random solutions and tries to make them valid. This method
has a higher computational cost, but is more efficient that method 1.

1. bjk8j are randomly generated based on c.9. In this method, the number of b0jks
equals 0 is greater than or equal to 1 and lower than or equal to m.

2. For all j = 1, …, n such that bjk ¼ 0; ajk is generated randomly in (0,1).
3. For all j = 1, …, n such that bjk ¼ 0; ajk is modified using Algorithms 4 and 5 in

order to satisfy c.1, c.2, c.3, c.11 and c.12. In Algorithm 4 the maximum value
of bkxik in c.2 is equal to xik8i, since bk is between 0 and 1. Then,

Pn
j¼1 ajkxij

must be lower than xik8i in order to satisfy c.11. Therefore, the a with least effect
in c.3, denoted by aj0k must be decreased. To decrease this value, a constant q0
has been used, multiplying this constant by aj0k. In practice, the value of 0.95
has been used to decrease the original value by 5%. Otherwise,

Pn
j¼1 ajkyrj must

be greater than yrk 8r in order to satisfy c.12. In the same way, the a with least
effect in c.2 is increased. To increase this value, a constant q1 has been used,
multiplying this constant by aj0k. This parameter q1 has been established
experimentally at 1.05, increasing the original value by 5%. Algorithm 5 has
been developed considering c.1 and c.3. In it, the a with least effect in c.2 and
c.3, aj0k, is calculated in order to satisfy c.1.
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Algorithm 4: Adjust ajk to satisfy c.2 and c.3.

Algorithm 5: Adjust ajk to satisfy c.1.

4. Iteratively adjust bk to satisfy c.2, c.3, c.11 and c.12 in the following way. If
c.11 is violated, then bk is increased by a factor to satisfy c.2 and c.11.
Otherwise, if c.12 is violated, then bk is decreased by a factor to satisfy c.3 and
c.12. This factor is decreased in each iteration for a finer adjustment. In each
iteration tþrk 8r and t�ik8i are obtained using c.2 and c.3.
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5. Finally, vik8i; lrk8r; djk8j are calculated using c.4. The number of djk equal to 0
is the same as the number of ajk different from 0. Algorithm 3 is used to obtain
all the variables.

9.4 Parameterized Scheme of Metaheuristics

In a previous work, González et al. (2015), the solution to the problem was
addressed with a genetic algorithm. Here, however, the genetic algorithm has been
replaced by a parameterized metaheuristic scheme. This offers the possibility of
analyzing a large number of different metaheuristics with the aim of finding one that
is satisfactory for the problem in question. The parameterized scheme comprises a
skeleton (Algorithm 6) with six basic functions: Initialize, EndCondition, Selection,
Combine, Improve and Include.

To analyze how the parameterized scheme can be applied to our problem, three
basic metaheuristics are considered (Almeida et al. 2013a): Greedy Randomized
Adaptive Search Procedure (GRASP), Scatter Search (SS) and Genetic Algorithms
(GA). They are implemented within the scheme, and the inclusion of parameters
allows us to experiment with the three basic metaheuristics and with different types of
hybridizations. As shown in Algorithm 6, a group of initial solutions are generated,
and while the end condition is not satisfied, they are selected, combined and improved.

Algorithm 6: Parameterized metaheuristic scheme.

The scheme functions in Algorithm 6 are explained below.
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9.4.1 Initializing

A series of initial elements are generated through a set of heuristics, based on the
two methods previously discussed. At the end of this process, all valid and invalid
elements are improved with certain intensification. When all the elements have been
improved, a certain pre-specified number of them will be included in the final
group. The parameters used in this first step are: INEIni, FNEIni, PEIIni, IIEIni.

INEIni: Initial Number of Elements. This parameter specifies the number of ele-
ments that will be created in the first-generation.
FNEIni: Final Number of Elements. This parameter specifies the number of ele-
ments that are used to obtain better solutions with the subsequent functions.
PEIIni: Percentage of Elements to Improve. A percentage of elements are
improved. If the solution is a valid solution, the improvement tries to enhance it. On
the other hand, if the solution is an invalid solution, the improvement tries to make
it valid. This parameter specifies the percentage of elements that are going to be
improved after.
IIEIni: Intensification of the Improvement of Elements. This last parameter spec-
ifies the number of times that an improvement is applied to a solution.

At the end of this step, a set of initial elements are generated and improved.

9.4.2 End Condition

The parameters used in this second step are: MNIEnd, NIREnd.

MNIEnd: Maximum Number of Iterations. This parameter specifies how many
times the “while” loop from the Algorithm 4 is repeated for each DMU.
NIWIEnd: Number of Iterations Without Improving the best solution. After some
iterations while keeping the best element fixed, the crossover and improvement
operations are completed and passed to the following DMU.

Other end conditions are contemplated and are implemented in the program
code. The other criteria make reference to the objective function value. If the fitness
function value is higher than 1 during more than INEIni/10 consecutive times, or if
the fitness function value is higher than 1 more than INEIni/2 twice
non-consecutively the program will end.
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9.4.3 Selecting

Generated elements are classified into two different groups; valid and invalid
solutions. When all the elements are classified into a group, a number of them are
selected for further combination. With these selected solutions, the crossover
function generates new elements than inherit the characteristics of their predeces-
sors. The parameters used in this third step are: NBESel, NWESel.

NBESel: Number of Best Elements Selected. This parameter specifies how many
valid elements are going to be used in the crossover function. The elements of this
group have previously been ordered by the value of the objective function from
highest to lowest. As a rule, the best elements of this group are selected.
NWESel: Number of Worst Elements Selected. This parameter performs the same
operation as above, with the difference that the elements selected come from the
invalid group.

Once we have all the desired items stored in their respective groups, we proceed
to send it to the crossover and mutation functions.

9.4.4 Combining

New elements will be created using the two groups in the selection step. To make
combinations, two elements are chosen randomly from the selected group. Their
characteristics are combined using two different methods: Arithmetic and By Points.

The crossover of elements is based on the natural evolution itself. From two
elements selected from a large group of specimens, we combine their characteristics
to generate a new specimen which shares the characteristics of its predecessors, and
generates new ones from them.

Because each individual has components of five types ðb; tþ ; t�; l and vÞ, each
combination will work with only one of these types. Each crossover uses its own
characteristic to be combined and create new ones.

Arithmetic Crossover A characteristic is randomly selected from the group of five
specified before. The values from this characteristic are combined with a mathe-
matical operation (addition, subtraction or average).

Different operations have been tested depending on the particular characteristic
considered. The new values are included in the new solution, and the other char-
acteristics of the solution are recalculated, in order to make it valid.

For example, if a chromosome has the characteristic tþ1 0; 2; 1; 4½ � and another
tþ2 1; 1; 1; 2½ �, the result will be tþ3 0þ 1; 2þ 1; 1þ 1; 4þ 2½ � ¼ ½1; 3; 2; 6�. That is an
example with an operation of addition. Another example can be an average operation:
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. .

Point Crossover A characteristic is selected randomly like before. All the values
of the new solution are taken from one of the selected solutions, and one of them is
replaced by the corresponding value of the other solution. A binary mask algorithm
could be used to change more than one value in the new solution, but satisfactory
solutions are obtained with this simple approach. The other characteristics of the
solution are recalculated.

This method is really interesting when the characteristic has a large number of
values, because in this case, the mask will have more changes inside. When it is a
short one, the mask only uses a few cutoff points.

Here is an example with the same characteristic as before. A randomly generated
mask is generated to combine the features of both chromosomes.
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The parameters used in this fourth step are: PBBCom, PWWCom and
PBWCom.

PBBCom: Number of combinations between elements with better fitness. This
parameter indicates the number of combinations between valid elements.
PWWCom: Number of combinations between elements with worse fitness. This
parameter indicates the number of combinations between invalid elements.
PBWCom: Number of combinations between valid and invalid elements. This
parameter indicates the number of combinations between valid and invalid
elements.

As mentioned above, five variables are used to make crosses between chro-
mosomes ðb; tþ ; t�; l and vÞ. More than one characteristic can be used for a single
crossover, and different crossovers can use the same characteristic but using dif-
ferent operations. All the possible crossovers implemented are shown below:

1. b: The average of b of the selected items is obtained, and the value is modified
by adding a small randomly generated value.

2. b: The average of b is obtained, and is modified by subtracting a value.
3. lrk: An arithmetic crossover is used on lrk.
4. tþrk : An arithmetic crossover is used on tþrk .
5. vik: A crossover by points is used on vik.
6. tþrk : A crossover by points is used on tþrk .
7. t�ik : A crossover by points is used on t�ik .

9 A Parameterized Scheme of Metaheuristics … 211



8. tþrk and vik: This method is a combination of types 5 and 6.
9. tþrk : An arithmetic crossover with subtraction is used on t�ik , and the initial values

of tþrk are substituted by those of t�ik . It has been observed experimentally that
this crossover process increases the number of valid solutions.

To determine which crossover is better in the creation of optimal solutions, a
high number of iterations have been executed, using a single problem with sizes
m = 3, n = 30, s = 2 as an example. The problem is executed 10 times with 100
iterations. In each execution, an optimal solution is found for every DMU and each
solution has been created using the different kinds of crossovers. Figure 9.2 shows
the percentage of times that each crossover is applied to create an optimal solution.

The variables which are most often involved in the creation of optimal solutions
are tþrk and b. The method that achieves the best results uses tþrk (crossover 4) with
an arithmetic crossover. Consequently, the metaheuristic is improved with a
crossover function in which more probability is assigned to the crossovers with a
high percentage as in Fig. 9.2.

Each solution to a particular problem is improved with a crossover function.
Using the same problem as the previous experiment, the final optimal solutions after
being crossed have been compared to the solutions obtained in the first generation.
The objective is to know if the crossover algorithm works for each solution.

A single problem (m = 3, n = 30, s = 2) has been implemented as an example,
with the parameters shown in Table 9.1 (the rest are 0):

As Table 9.2 shows, all the elements obtained in the first generation are
improved to a greater or lesser extent, by passing through the crossover function.
Also, the crossover function obtains solutions very close to the solutions obtained
by optimization software. When the crossover function ends, all the solution in the
reference set are valid solutions. The optimization software uses the additive
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Fig. 9.2 Comparison of the different types of crossover

Table 9.1 Metaheuristic parameters

INEIni FNEIni MNIEnd NIREnd NBESel NWESel PBBCom PWWCom

100 100 100 50 25 25 100 100
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algorithm to obtain the efficient solutions. Afterwards, the algorithm searches the
combinations between them that generate an efficient frontier. Finally, the distances
between the infeasible solutions and the frontiers are calculated. This is a NP-hard
problem, and this problem needs considerable time to be solved.

9.4.5 Improving the Solution

The improvement is used for all the elements generated in the first generation, and
for all the elements generated by the crossover function. There are two types of
improvements: one for the valid elements, which try to achieve a better solution by
improving fitness, and another one for the invalid elements to try and make them
valid. The parameters used in this fifth step are: PEIImp, IEIImp, PEDImp, IIDImp.

PEIImp: Percentage of Elements to Improve by local search. After completing all
the established crossover, and the solutions have then become diversified through

Table 9.2 Fitness
comparison

First generation After crossover

DMU % valid Fitness % valid Fitness

1 100 0.417 100 0.471

2 100 0.280 100 0.290

3 100 0.476 100 0.481

4 100 0.825 100 0.871

6 3 0.908 100 0.908

7 100 0.644 100 0.675

9 100 0.535 100 0.540

11 100 0.484 100 0.485

12 6 0.588 100 0.620

13 100 0.758 100 0.762

14 100 0.171 100 0.211

16 100 0.618 100 0.655

17 100 0.771 100 0.771

18 11 0.952 100 0.952

20 100 0.182 100 0.230

21 100 0.397 100 0.401

22 100 0.170 100 0.171

24 100 0.430 100 0.512

25 100 0.651 100 0.664

26 100 0.056 100 0.058

27 98 0.015 100 0.015

28 48 0.835 100 0.873

29 16 0.920 100 0.920
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mutations, we proceed to try and improve all the valid solutions through a local
search. The improvement function is the same as previously used for the elements
of the first generation, with the exception that in this case only the valid solutions
are improved.
IEIImp: Intensification on the Elements of the Improvement. This parameter
specifies the number of times that an improvement is applied to an element. This
value is shared by all the improvements in the first generation and the improve-
ments by the crossover function.
PEDImp: Percentage of Elements for Diversification. In order to have various
elements in all the solution spaces, a mutation function has been implemented. This
function modifies all the internal characteristics from one solution. This is necessary
to avoid getting stuck at a local optimum. Furthermore, diversification allows for
different parts of the solution space to be explored.
IIDImp: Intensification of the improvement of elements by diversification. This is
the same as the other improvements. The new elements that come from a mutation
are improved with the same function as before.

9.4.6 Including

In order to have more variety of opportunities to find an optimal solution, all final
solutions of each iteration (in a number equal to FNEIni) are used to create new
chromosomes in the following iterations. In conclusion, all the FNEIni solutions
created at the end of iteration are used as a reference set in the next step.

9.5 Metaheuristic Models

With all these steps, a parameterized scheme of metaheuristic is performed. As we
have explained previously, several basic metaheuristics have been used to make a
comparison between the different fitness obtained with each of them. To get the best
parameter configuration, we perform a hyper-heuristic comparing the results
obtained with it, with those obtained with some pure metaheuristics applied directly
to the optimization problem. The next table shows the values selected for the
parameters for the three basic metaheuristics (Table 9.3).

The most important characteristics of all the basic metaheuristics than we pro-
posed previously are explained below:

Genetic Algorithm: This is a search heuristic that mimics the process of natural
selection. Genetic algorithms belong to the larger class of evolutionary algorithms,
which generate solutions to optimization problems using techniques inspired by
natural evolution, such as inheritance, mutation, selection, and crossover. As we
can see in the parameters table, this metaheuristic does not have improvements, and
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only relies on generating a number of initial elements and makes numerous
crossovers between them, adding a small number of mutations to diversify the
results. In addition, it is important know that this algorithm only uses the valid
solutions to make the crossover.
Greedy Randomized Adaptive Search Procedure: This is a metaheuristic algo-
rithm commonly applied to combinatorial optimization problems. GRASP typically
consists of improvements in solutions through a local search. In the table we can
observe how this metaheuristic generates a lot of elements at the beginning, and
only saves the best of them. Then, the algorithm tries to improve this unique
solution with a hard improvement.
Scatter Search: This algorithm is based on generating initial elements, and only
keeps a few elements in a reference set. Subsequently, it attempts to improve the
valid and invalid solutions. Then it selects a set of these solutions to generate
combinations together. The Scatter Search algorithm is a derivative of the genetic
algorithm, where all elements are used to obtain better solutions with the crossover
method. It also includes a crossover function improvement, to try to improve these
last elements. Therefore, it is a genetic algorithm without diversification, which
uses all sorts of elements to make combinations, and improving all the elements that
are generated.

Apart from these basic metaheuristics, a huge number of combinations/
hybridizations can be considered simply by selecting different values for the
parameters. The best metaheuristic from those obtained with the parameterized
scheme could be obtained by generating all the possible combinations of the
parameters and by applying them to some small training problems. In this way, the
metaheuristic (given by the values of the parameters) which gives the best results for
the training set can be considered a satisfactory metaheuristic for the problem in
question. The number of possible combinations of the parameters in the parame-
terized metaheuristic scheme is huge, and the problem for obtaining the best meta-
heuristic for the training set is an optimization problem. So, it is a suitable problem for
metaheuristics. A hyper-heuristic can be developed as a metaheuristic searching for
satisfactory metaheuristics, and can be developed over the parameterized meta-
heuristic scheme. The hyper-heuristic uses the same parameterized scheme. The
number of initial metaheuristics and combinations/hybridizations between them are

Table 9.3 Values of the parameters for the three basic metaheuristics considered

Schemes IINEIni FNEIni PEIIni IEIIni NBESel NWESel PBBCom

GA 100 100 0 0 100 0 50

GR 200 1 100 50 0 0 0

SS 100 20 100 50 10 10 90

Schemes PWWCom PEIImp IEIImp PEDImp IDEImp MNIEnd NIREnd

GA 0 0 0 10 5 100 25

GR 0 0 0 0 0 100 25

SS 90 100 5 0 0 100 25
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specified and a number of metaheuristics are selected for successive iteration. The
combination uses the same algorithm as the previous crossover and, in this case,
creates a new one by combining the parameters of the selected metaheuristics. The
new metaheuristics are improved by increasing a random parameter. The increase of
the parameter is specified with an intensification parameter.

The space of metaheuristics where the hyper-heuristic searches is shown in
Fig. 9.3.

9.6 Experimental Results

Experiments were conducted to analyze the effectiveness of the heuristics, meta-
heuristics and hyper-heuristics developed. The number of valid solutions obtained
with the two heuristics in Sect. 9.3 is initially compared. Then, the fitness values
obtained with the basic metaheuristics considered are compared with those of
hybrid metaheuristics and hyper-heuristics. Finally, the fitness function and the time
used by a satisfactory metaheuristic are compared with those from an optimization
tool such as CPLEX.

The system used in the experiments is a NUMA node with 4 Intel Nehalem-EX
EC E7530 hexa-cores, with 24 cores, at 1.87 GHz and 32 GB of RAM.
A parameterized shared-memory metaheuristic scheme (Almeida et al. 2013b)
could be used to accelerate the execution time, but the number of experiments is

Fig. 9.3 Space of metaheuristics obtained by a combination of the basic metaheuristics
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high and the shared-memory has been exploited with simultaneous executions of
the sequential scheme.

The generation of valid solutions for our problem is a difficult task. In previous
works the problem associated with obtaining valid solutions for 9 (Benavente et al.
2014) and 13 (González et al. 2015) of the 14 constraints in equation 2 was studied.
The two heuristics presented in Sect. 9.3 are used for the generation of valid
solutions while fulfilling all the constraints.

Fitness and the percentage of valid solutions generated with the two heuristics
are compared in Table 9.4.

When the problem size increases, the number of valid solutions decreases. The
first heuristic generates more valid solutions than the second one, and the combi-
nation of two heuristics increases the number of valid solutions and the fitness
obtained. More valid solutions could be generated with more iteration, but the
execution time would increase. A fixed number of iterations are configured using a
parameterized scheme of metaheuristics in the next step. Figure 9.4 shows the

Table 9.4 Percentage of valid solutions and average of the objective functions for all the DMUs,
obtained with the different heuristics when varying the problem size

No m n s Method 1 Method 2 Method
1 + Method 2

% valid Fitness % valid Fitness % valid Fitness

1 2 50 1 100.000 0.155 11.292 0.143 100.000 0.155
2 3 30 2 81.217 0.498 17.261 0.311 82.391 0.498
3 4 30 2 83.667 0.436 15.167 0.346 88.722 0.474
4 4 30 3 74.000 0.523 10.833 0.246 75.500 0.524
5 5 30 3 24.833 0.134 12.333 0.228 33.500 0.295
6 6 30 4 4.714 0.135 6.000 0.368 9.143 0.369
Bold values make reference to the highest values in each row
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Fig. 9.4 Comparison between the valid solution obtained by using the heuristics
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number of valid solutions generated by each method. Method 1 generates more
solutions than method 2, but this last one provides support for method 1. When they
work together, the number of valid solutions increases. The horizontal axis makes
reference to the problems specified in Table 9.5.

The difference between both methods decreases when the problem size grows.
Method 2 is a good support for method 1 for small-sized problems, but for
larger-sized problems, the second method works better than the first. For that, both
methods are considered and applied to the search of valid solutions. When the
problem size increases, the amount of valid solutions obtained in a first generation
decreases.

Figure 9.5 compares the fitness obtained with the three basic metaheuristics
(GRASP, Genetic Algorithm and Scatter Search) whose parameter values are
shown in Table 9.3. Results are shown for small problems of different sizes, and are
the average of 10 executions. Small problems are solved by the exact method
(CPLEX) obtaining the optimal solution but spending a high computational cost.
Finally, the fitness values obtained with the application of a hyper-heuristic to each
problem are also shown. The hyper-heuristic generates a hybrid metaheuristic by
generating hybrid metaheuristics randomly (a set of parameters for the parameter-
ized scheme) and by combining them with a crossover.

Table 9.5 Metaheuristic values for each problem

m s n Hyper-heuristic GA SS GR CPLEX

2 1 50 0.170 0.169 0.170 0.170 0.170

3 2 30 0.343 0.334 0.338 0.324 0.383

4 2 28 0.529 0.512 0.529 0.523 0.548

4 3 20 0.336 0.302 0.326 0.316 0.391

5 3 20 0.456 0.394 0.380 0.348 0.495

Bold values make reference to the highest values in each row

Fig. 9.5 Space of metaheuristics obtained by a combination of the basic metaheuristics
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The metaheuristics give fitness values close to the optimum with low execution
times. So, they are competitive with exact methods for large problems, where these
are impracticable. The application of the hyper-heuristic generates better fitness
values than the metaheuristics, especially for larger problems. The hyper-heuristic
applied to a problem generates a hybrid metaheuristic (a combination of parameters
of the metaheuristic scheme). Table 9.6 shows the values of the parameters of the
metaheuristic obtained by the hyper-heuristic for each problem. The parameters
obtained with the hyper-heuristic are similar for different problems. A large number
of elements is created, and more than 50% of the elements are improved. The
number of selected elements does not have a great influence. In contrast, the
number of crossovers should be high. The improvement and end parameters vary
widely. Some problems improve many elements; others have more mutations.

The hyper-heuristic could be trained with small problems to generate a general
metaheuristic with satisfactory behavior for those problems and could work satis-
factorily for other problems. The metaheuristics for each problem size can be
combined in different ways. For example, each parameter of the metaheuristic can
take the highest value from each parameter (Table 9.7). Table 9.8 shows that the
fitness of the hyper-heuristic is improved with the general metaheuristic.

The hybrid metaheuristic combines the characteristics of the basic meta-
heuristics implemented in the parameterized scheme. Figure 9.6 shows the
improvement in the solution for a DMU. The figure compares the fitness in each
iteration when a problem is approached with different metaheuristics. The Genetic
Algorithm starts with the lowest fitness because no improvements are applied in

Table 9.6 Metaheuristic parameters obtained by the hyper-heuristic for different problem sizes

Problem size IINEIni FNEIni PEIIni IIEIni NBESel NWESel PBBCom

m = 2, n = 50, s = 1 185 67 75 11 20 67 84

m = 3, n = 30, s = 2 157 54 60 10 26 56 82

m = 4, n = 28, s = 2 170 43 58 8 36 42 73

m = 4, n = 20, s = 3 172 32 59 3 72 5 50

m = 5, n = 20, s = 3 157 27 92 18 27 27 53

Problem size PWWCom PEIImp IIEImp PEDImp IIDImp MNIEnd NIREnd

m = 2, n = 50,
s = 1

81 35 10 52 9 51 20

m = 3, n = 30,
s = 2

75 60 6 38 8 59 36

m = 4, n = 28,
s = 2

63 13 4 59 8 72 46

m = 4, n = 20,
s = 3

55 23 7 41 5 91 12

m = 5, n = 20,
s = 3

30 53 8 13 8 39 43
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the initialization, but the fitness is improved with the crossover. On the other hand,
a Scatter Search algorithm starts with a better fitness but has fewer improvements
in the crossover function. The Greedy Randomized Adaptive Search Procedure
works in a suitable way in the initialization. The metaheuristic generated by the
hyper-heuristic combines the features of all these algorithms and, consequently,
achieves higher fitness.

The parameterized scheme of metaheuristics was used to generate a satisfactory
metaheuristic by training a hyper-heuristic with small problems, and the crossover
of the metaheuristic was optimized. Better fitness values were obtained, but the
optimum solution was not always reached. Even so, metaheuristics are an alter-
native to exact methods for large problems, for which the execution time of
exhaustive methods is unfeasible.

The execution time of an exact method is compared with that of the improved
metaheuristic in Fig. 9.7. For the biggest problems, the metaheuristic is approxi-
mately 500 times faster than the exact method, and the difference increases with the
problem size.

Table 9.7 Parameters of the general metaheuristic obtained with the hyper-heuristic

IINEIni FNEIni PEIIni IIEIni NBESel NWESel PBBCom

185 67 92 18 72 67 84

PWWCom PEIImp IIEImp PEDImp IIDImp MNIEnd NIREnd

81 60 10 59 9 91 46

Table 9.8 Comparison
between the fitness obtained
through the direct application
to different problems of the
hyper-heuristic and with the
general metaheuristic
obtained by the
hyper-heuristic

Schemes Hyper-heuristic General
metaheuristic

m = 2, n = 50,
s = 1

0.142 0.142

m = 3, n = 30,
s = 2

0.343 0.348

m = 4, n = 28,
s = 2

0.780 0.782

m = 4, n = 20,
s = 3

0.336 0.351

m = 5, n = 20,
s = 3

0.456 0.460
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Fig. 9.7 Comparison of the execution time (in seconds and logarithmic scale) between an
exhaustive method and the hybrid metaheuristic developed

Fig. 9.6 Value of the optimal solution in each iteration
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9.7 Conclusions

The determination of both closest efficient targets and least distance has been an
issue of interest in recent DEA literature. This implies the application of a new
paradigm where the slacks of the traditional DEA measures are minimized instead
of maximized in order to achieve the strongly efficient frontier of the polyhedral
production possibility set. Radial measures and Directional Distance Function-type
measures are out of the focus of this new approach, since in both cases the pro-
jection on the (weakly) efficient frontier is determined following a pre-fixed
direction. Nevertheless, the least distance could be applied to the second phase of
radial measures in order to get the Pareto-Koopmans frontier.

The implementation of the new approach is clearly more difficult from a com-
putational perspective than that associated with traditional DEA measures
(weighted additive models, Enhanced Russell Graph measure, …). This fact has
motivated the publication of different approaches trying to implement the problem
in a suitable way. In this respect, other heuristics have been previously introduced
in the literature. However, the new heuristic proposed here provides more valid
solutions satisfying all the constraints in the model and with a lower execution time.
A parameterized scheme has been developed working with this initial population of
valid and invalid solutions to generate more valid solutions and to improve all of
these solutions to obtain the best fitness possible.

Additionally, the hyper-heuristic generated with all of the used basic meta-
heuristics gives solutions close to the optimum and is competitive with an exact
method with a high computational cost, which cannot be used for large problems.
A deeper analysis should be made to tune the hyper-heuristic to obtain better
solutions with lower execution times.

Overall, the new paradigm applied to the so-called Enhanced Russell Graph
measure has been studied. Nevertheless, there are a lot of measures in DEA that can
be used in the maximization of technical efficiency or, equivalently, in the mini-
mization of a certain distance. In this way, programming the approach based on
metaheuristic algorithms to solve all of them could be seen as an appropriate and
interesting future work.
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Chapter 10
Producing Innovations: Determinants
of Innovativity and Efficiency

Jaap W.B. Bos, Ryan C.R. van Lamoen and Mark W.J.L. Sanders

Abstract In this chapter, we investigate the knowledge production function, using
the Community Innovation Survey, an unbalanced firm-level panel data set col-
lected in the Netherlands between 1994 and 2004. This database allows us to span
the entire innovation process from initial resources committed (R&D labor and the
accumulated knowledge stock) to the final resulting sales volume of new products.
We find that inefficiency accounts for between 50 and 92% of the unexplained
between firm and over time variation in innovation output, with changes in effi-
ciency explaining on average 62% of the between-firm variation in innovativeness.
We do not find a significant difference in average inefficiency between those that do
and those that do not cooperate with competitors. However, although government
funding does not affect the marginal productivity of the knowledge stock and
research labor, firms receiving government support are more efficient than those
that do not. Finally, we find that more competitive firms are more innovative in
terms of generating new product sales from innovations.
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10.1 Introduction

The importance of technical change as a driving force of economic growth and
prosperity has been widely recognized in the literature. Aghion and Howitt (1998,
p. 151) state that “The chances of achieving sustainable growth depend critically on
maintaining a steady flow of technological innovations.” Empirically, Research and
Development (R&D) was quickly established as a key input in generating these
technological innovations. A seminal contribution in this literature was made by
Griliches (1980), who finds that the productivity slowdown in US manufacturing
during the period 1965–73 was largely due to the collapse of R&D investment.
These results have inspired more studies confirming that R&D drives innovation at
the firm level (Griliches 1986, 1998; Jaffe 1986 ), the industry level (Griliches and
Lichtenberg 1984; Nadiri 1980 ) and across countries (Griliches and Mairesse 1983,
1991; Mansfield 1988 ).

Looking at the process of knowledge production, Mairesse and Mohnen (2002)
defined innovativeness as the (unexplained) ability to turn innovation inputs into
innovation output (analogous to (total factor) productivity in the production func-
tion). Innovativeness captures factors such as technological, organizational, cultural
and environmental factors as well as waste and inefficiency (Mairesse and Mohnen
2002). Following the traditional growth accounting logic, the changes in innovation
output can then be ascribed to changes in the innovation inputs and a residual that
picks up changes in innovativeness. Efforts to understand this relationship between
R&D efforts and innovative outputs have resulted in estimations of the knowledge
production function (KPF), with increasing econometric rigor and increasing levels
of detail and data quality (Coe and Helpman 1995; Park 1995; Engelbrecht 1997;
Lichtenberg and Van Pottelsberghe de la Potterie 1998; Keller 2002; Guellec and
Van Pottelsberghe de la Potterie 2004; Griffith et al. 2004).

From this literature we know that not every dollar or hour spent on R&D is
equally well spent (Ulku 2004; Acs and Audretsch 1991). For example, the
European ‘innovation paradox’ is based on the observation that, even after cor-
recting for differences in R&D investments, countries in the European Union lag
behind their US competitors in creating economic value from these investments
(Figel 2006). And less spectacular, but possibly more important from an innovation
management perspective, there are large differences in innovation output among
firms in an industry (Thompson 2001; Cohen and Klepper 1996; Cohen and Levin
1989) even after controlling for R&D expenditures. In other words, there seems to
be substantial heterogeneity in innovativeness.

The main contribution of this paper lies in accounting for and explaining this
variation. In the empirical literature on the KPF, researchers to date still assume,
usually implicitly, that all innovation takes place at the frontier and no waste of
R&D inputs occurs. As Thompson (2001) puts it, there is only little evidence on
differences in firm’s ability to innovate because these can only be observed indi-
rectly. We fill that gap by presenting an established method to estimate innovative
ability. We show that innovativeness, like productivity, can conceptually be split
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between (in)efficiency and technology (e.g., Weil 2008) . Moreover, not accounting
for (in)efficiency (changes) and its determinants potentially biases the estimates of
the parameters in the innovation function (Greene 2005).1 Next, we empirically
establish the differences between inefficiency and technology, using Stochastic
Frontier Analysis (SFA), a method that is well-established in productivity analysis
(Aigner et al. 1977; Battese and Corra 1977; Meeusen and van den Broeck 1977).

To the best of our knowledge, we are among the first to apply SFA to the
estimation of the KPF. Wang (2007), Wang and Huang (2007) and Fu and Yang
(2009) estimate the KPF at the country level and find that a substantial share of the
cross country variation in innovativeness can be attributed to inefficiency.
Gantumur and Stephan (2010) is the only (unpublished) paper we have found to
apply this method to micro-data. They estimate a distance function and focus on
entirely different research questions. They focus on the acquisition of external
technology, while our study focuses on cooperation with competitors/other insti-
tutions and government funding. Their results show that the variance in inefficiency
is about twice the variance of the remaining unexplained error in the German
context.2

We estimate a knowledge production frontier using the Community Innovation
Survey, an unbalanced firm-level panel data set collected in the Netherlands
between 1994 and 2004. This database allows us to span the entire innovation
process from initial resources committed (R&D labor and the accumulated
knowledge stock) to the final resulting sales volume of new products.3 Our analysis
allows us to examine to what extent there are inefficiencies in the innovation
processes. We find that indeed inefficiency accounts for between 50 and 92% of the
unexplained between firm and over time variation in innovation output.
Furthermore, changes in efficiency explain on average 62% of the between firm
variation in innovativess as defined by Mairesse and Mohnen (2002). We find that
larger firms are typically less efficient, but produce more innovative output per unit
of input than small firms, suggesting that hierarchy and bureaucracy are bad for

1With the advent of endogenous growth theory (Romer 1990; Aghion and Howitt 1992; Grossman
and Helpman 1991) precisely estimating unbiased parameters of the KPF has gained importance
from a theoretical point of view. The scale effects in the first generation endogenous growth
models (Jones 1995) depend on the value of the parameters in the innovation function. Sanders
(2005) shows that the fate of the market size effect in Acemoglu (1998, 2002a, b) depends
crucially on the degree of diminishing returns to labor in the innovation process and Ha and Howitt
(2007) and Madsen (2008) estimated knowledge production functions to distinguish between
second generation Schumpeterian (Aghion and Howitt 1998; Dinopoulos and Thompson 1998;
Peretto 1998; Young 1998; Howitt 1999) and semi-endogenous growth models (Jones 1995;
Kortum 1997; Segerstrom 1998).
2Several others have employed the closely related Data Envelopment Analysis (DEA) to estimate
the innovation frontier (see Zhang et al. 2003). Coelli et al. (2005) provides a discussion of the
differences between DEA and SFA.
3We excluded process innovations because typically one firm’s process innovation is another
(upstream) firm’s product innovation.
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innovative efficiency but do not overturn the positive effects of scale economies in
R&D.4

Our data also allow us to explore the impact of cooperative innovation activities
and government support on the productivity of innovation inputs and inefficiency in
the innovation process. We do not find a significant difference in average ineffi-
ciency between those that do and those that do not cooperate with competitors.
However, firms receiving government support are more efficient than those that do
not. Whether this is due to a selection effect or because subsidies enable firms to
learn to be more efficient is something we cannot establish with certainty given the
short length of our panel. The innovativity (marginal productivity) of the knowl-
edge stock and research labor does not differ between firms with and without
cooperative innovation activities or between firms with and without government
funding.

Finally, by combining our data with information from the Dutch Production
Statistics we can also relate the estimated (in)efficiencies in the innovation process
to firms’ price-cost margin. Interpreting this margin as a measure of competition,
we find that more competitive firms are more innovative in terms of generating new
product sales from innovations.

The remainder of the paper is structured as follows. Section 10.2 describes the
methodology used and data collected to estimate the innovation function. In
Sect. 10.2, we describe our results. Section 10.4 concludes.

10.2 Methodology and Data

10.2.1 Methodology

We follow endogenous growth theory and assume that firms produce innovations
using an accumulated knowledge stock in combination with a flow of R&D labor
(Jones 1995; Pakes and Schankerman 1984). Keeping the stock of knowledge
constant we can draw the knowledge production function as an innovation frontier,
as in Fig. 10.1.

The innovation output function is concave if we assume diminishing returns to
R&D labor.5 In this figure we have drawn three hypothetical observations in our
data. Firms (a), (b) and (c) are subject to the same innovation frontier, share the
same knowledge stock and still operate at different innovative output levels. Since
firms (a) and (c) operate on the innovation frontier without inefficiencies in their
innovation process, firm (c) has less innovation output than firm (a) simply because

4This result overturns the finding in Gantumur and Stephan (2010), who find that larger firms tend
to be more innovative. They did not, however, control for firm size in the innovation production
frontier estimation.
5We do not impose diminishing returns in the empirical model below. The figure merely serves to
illustrate the methodology.
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it employs less R&D labor. Firm (b) produces less innovations than (a) despite the
fact that they use the same amount of R&D labor. This discrepancy has to be
attributed to the presence of inefficiencies in the innovation process of firm (b). As
we cannot exclude a priori that inefficiency does not exist, we need to estimate the
innovation frontier accounting for inefficiency. Put differently, we require an esti-
mator that accommodates the fact that not all unexplained variance is pure noise,
but some of it may capture the waste in the knowledge production process by firms
such as firm (b).

The estimator that we use is rooted in stochastic frontier analysis, or SFA. First
introduced by Aigner et al. (1977), Battese and Corra (1977) and Meeusen and van
den Broeck (1977), SFA has been developed and applied in productivity analysis at
the micro and macro-level (Kumbhakar and Lovell 2000). The innovation frontier
defines the maximum innovative output achievable, given the current production
technology and available inputs. If all firms produce on the boundary of a common
knowledge production set that consists of an input vector with two arguments, the
accumulated knowledge stock (A) and R&D labor (R), innovative output X of each
firm can be described as:

X�
it ¼ f ðAit;Rit; t; bÞ exp vitf g; ð10:1Þ

where X�
it is the firm’s frontier (optimum) level of innovative output; f and

parameter vector b characterizes the production technology; t is a time trend
variable that captures neutral technical change (Solow 1957); and vit is and i.i.d.
error term distributed as Nð0; r2vÞ, which reflects the stochastic nature of the
frontier.

frontier(a)

(b)(c)

in
no

va
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Fig. 10.1 Innovation frontier
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In the presence of possible inefficiencies, we can express the difference between
the optimum and actual (observable) innovative output by an exponential factor,
exp �uitf g. In that case, we can express the actual innovative output, Xit as
Xit ¼ X�

it exp �uitf g, or equivalently:

Xit ¼ f ðAit;Rit; t; bÞ exp �uitf g exp vitf g; ð10:2Þ

where uit � 0 is assumed to be i.i.d., with a normal distribution truncated at
l; Nðl; r2uÞ
�� �� and independent from the noise term, vit.

6

To also allow for flexibility in the functional form we estimate the frontier as a
translog innovation function:

lnXit ¼ bA lnAit þ bR lnRit þ 1
2
bAA lnA

2
it þ

1
2
bRR lnR

2
it

þ bAR lnAit lnRit þ stDt þ bj þ bi þ vit � uit;
ð10:3Þ

where Dt are time dummies that capture ‘technical change’ in the innovation
process, bj are technology class dummies and bi are firm specific random effects
over time. By including time dummies in the specification, we allow for shifts in the
innovation frontier in a more flexible manner than using a time trend (Baltagi and
Griffin 1988).7 Dummies are also included to control for the industry technology
class to allow for different innovation frontiers in e.g. pharmaceuticals, electronics
and steel. These dummies are based on the OECD industry classification.8

In addition we want to control for firm size and the intensity of product market
competition. The reason to control for size is that large and small firms report
differently on their R&D inputs (Kleinknecht et al. 1991) and this systematic
measurement error might affect our estimations. The control for competition
intensity is necessary because our proxy for innovation output, innovative product
sales, may be systematically higher for firms in less competitive markets by the fact
that market power allows them to charge higher prices for the same innovation
output. We also include dummies for cooperation with competitors and other
institutions, for funding from government agencies. Our full model specification is
then given by:

6When estimating Eq. (10.2), we obtain the composite residual exp titf g ¼ exp �uitf gexp vitf g. Its
components, exp �uitf g and exp vitf g, are identified by the k ¼ ðru=rvÞ for which the likelihood
is maximized (for an overview, see Coelli et al. 2005).
7In contrast to studies that estimate a normal production function, when estimating the KPF there is
no reason to assume a constant time trend. There is no reason to expect that “technological
change” makes knowledge production more or less innovative over time in the same way that new
technologies improve productivity in the production process.
8See Raymond et al. (2009), Appendix A.
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lnXit ¼ bA lnAit þ bR lnRit þ 1
2
bAA lnA

2
it þ

1
2
bRR lnR

2
it

þ bAR lnAit lnRit þ stDt þ bzzit þ bAz lnAitzit

þ bRz lnRitzit þ 1
2
bAAz lnA

2
itzit þ

1
2
bRRz lnR

2
itzit

þ bARz lnAit lnRitzit þ bCCit þ bFSFSit þ bj

þ bi þ vit � uit;

ð10:4Þ

where zit is the vector of dummy variables that indicates whether firms cooperate or
not and whether they receive funding or not, Cit is our measure of competition
intensity and FSit represents firm size.

After obtaining the estimated parameters of the innovation frontier we can
compute the (in)efficiency for each firm. Their efficiency scores are measured as the
ratio of actual over the maximum attainable innovation output that firms would
have on the frontier, where 0� exp �uitf g� 1, and exp �uitf g ¼ 1 implies full
efficiency. In a second equation we related inefficiency uit in the stochastic frontier
model to our dummy variables and controls to see if (in)efficiency responds to these
variables. Technical inefficiency uit in our model is specified as:

uit ¼ czzit þ cCCit þ cFSFSit þwit; ð10:5Þ

where the noise term wit is defined by the truncation of the normal distribution with
zero mean and variance r2w. We use a one-step model, where the specified
stochastic frontier model in Eq. (10.4) and the endogenous inefficiency term in
Eq. (10.5) are estimated in a single step by maximum likelihood.9 The estimated
coefficients, cz; cC and cFS, now relate cooperation, funding, competition and firm
size to the efficiency of the innovative process, i.e. the distance between firms
(a) and (b) in Fig. 10.1 is related to our variables of interest. Cooperation, gov-
ernment funding, competition and firm size are thus allowed to affect both the
position and shape of the frontier and the distance to the frontier.

Mairesse and Mohnen (2002) emphasize the importance of what remains to be
explained in the production of innovations (innovativeness or TFP). Based on the
basic specifications, we also decompose productivity change (innovativeness or
TFP) by identifying (the share of) pure technical change, a scale component
(economies of scale in employing a larger knowledge stock and more labor) and
efficiency change to analyse the importance of inefficiency in the innovation pro-
duction process. Finally, the extended specifications, including interaction terms
between the innovation inputs and dummy variables that represent cooperative
innovation activities and funding from the government, are then presented to

9In two-step estimations, stochastic frontier models are estimated first and the relationship between
inefficiency and covariates in the second step. Wang (2002) show that two-step estimations pro-
duce biased estimates.
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analyze whether cooperation with competitors, other institutions and funding from
the government affect the innovativity and/or efficiency of the knowledge stock or
labor in the innovation production process. However, we first describe our data and
measures before turning to the results.

10.2.2 Data

To estimate our innovation frontiers we use firm-level data on innovation from the
Community Innovation Survey (CIS) in The Netherlands (Brouwer et al. 2008;
Raymond et al. 2009). For thepurpose of this study, the CIS data are merged with
financial information from the Production Survey (PS). The CIS data contain
information on the R&D and other innovation activities of the firm, such as
innovation expenditures, innovation activities conducted with other institutions, the
effects of the innovation output (e.g. quality improvement, product differentiation
etc.) and sources of the knowledge used to produce innovations. The PS data
provide information on output, employment, value added, profit and other financial
information. Both the CIS and PS data are collected by the Centraal Bureau voor
de Statistiek. The sample from the CIS is based on five survey waves, namely CIS 2
(1994–1996), CIS 2.5 (1996–1998), CIS 3 (1998–2000), CIS 3.5 (2000–2002) and
CIS 4 (2002–2004). In The Netherlands, each innovation survey is conducted every
two years. The CIS and PS data are a combination of census data and a stratified
random sample. The census data contain all firms with 50 employees or more and
the stratified sample is based on firms with less than 50 employees. The stratum
variables are the economic activity and the number of employees, where the eco-
nomic activity of a firm is based on the Dutch standard industrial classification
(SBI). Firms that are included in one survey only are excluded from the sample.10

The population of interest are firms with at least 10 employees and positive sales.
In the CIS questionnaire, firms are asked first to provide general information on

their economic activity, sales, number of employees etc. The second part of the
questionnaire contains questions about the innovation activities of firms, such as
their R&D activities, the percentage sales from new product/services, other inno-
vation input expenditures, partnerships in innovation activities etc. Firms are asked
to provide information on the second part of the CIS questionnaire if they affirm one
of the three questions regarding: (1) whether firms developed new or strongly
improved products (2) whether firms used new or strongly improved production
processes (3) whether the firm has ongoing or abandoned innovation activities.
Firms are classified as innovators if they affirm one of these three questions.

10We assume that attrition of the panel data occurs exogenously.
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10.2.3 Innovation Output

We use the sales from new or improved products as our measure of innovation
output, Xit.

11 The main advantage of this innovation output measure is that it
captures innovations directly by measuring the introduction and the success of the
newly developed products or services. Conventional innovation output measures
such as patents or citation-weighted patents cannot capture the output of all inno-
vative activity as many innovations are not patented and patented ideas are not
always commercialised.12 A drawback of the sales from new products as an
innovation output measure is that firms may provide only rough estimates of their
sales due to innovative products. This may induce measurement error in the
regression analysis.13 Another drawback of this measure is that the sales from new
products may be influenced by the life cycle of a product.14 In our analysis, firms
with more than 50% of their sales from new products are therefore excluded from
the sample.15 Firms with only process innovations are also excluded since these
firms have no sales from innovations new to the firm. Hence, our sample consists of
firms with only product innovations or both product and process innovations.

10.2.4 Innovation Inputs

We follow Hall and Jones (1999) and construct a stock of total innovation
expenditures by using a perpetual inventory method to proxy for Ait, the accu-
mulated knowledge stock.16 The stock of accumulated total innovation

11The analysis in this paper is restricted to products new to the firm instead of using an innovation
output measure based on products new to the market. Brouwer et al. (2008) argue that a measure
based on products new to the market may suffer from problems related to the interpretation of firms
regarding their scope of the relevant market. This may lead to overestimation of innovation output
by firms that are more focused on home markets.
12See Kamien and Schwartz (1982) and Geroski (1990) for a discussion on the limitations of
patents as an innovation output measure.
13Measurement error in the dependent variable does not affect the consistency of the parameter
estimates, however, if the component that represents the deviation from the true value of the
dependent variable is not correlated with the (composite) error term or explanatory variables. We
assume that this is the case here.
14New product sales follow a logistic curve as the product diffuses in the market. This implies that
(small) firms that do R&D and introduce a new product may experience the large increases in their
new product sales with quite a lag.
15This cut-off point is also used by Raymond et al. (2009).
16Hall and Jones (1999) use R&D expenditures instead of total innovation expenditures. The
knowledge capital model has a well-known list of drawbacks (see e.g. Grilliches 2000) of which
we are aware. By constructing it from total innovation expenditures some of these drawbacks have
been addressed, but others remain. Not including a proxy for the knowledge stock, however, takes
one far from what mainstream endogenous growth models assume.
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expenditures represents the knowledge capital of a firm. While many papers do not
account for learning effects in patent races or the innovation process, it is assumed
in this study that the knowledge stock or accumulated innovation experience is a
primary input in the innovation process. Doraszelski (2003) shows that firms have
incentives to reduce R&D expenditures if their knowledge stock increases. R&D
efforts in the past affect the probability to win an R&D race positively.

To construct our stock, we use total innovation expenditures because using R&D
expenditures will understate the knowledge base of small firms (and consequently
bias the output elasticity of the other inputs up). In addition to internal and external
R&D expenditures, total innovation expenditures also include the purchase of rights
and licenses to use external technology, and the purchase of advanced machinery
and computer hardware devoted to the implementation of product and process
innovations.17

We define the knowledge stock as:

Ait ¼ ð1� dÞAit�1 þ Iit; ð10:6Þ

where At is the knowledge stock and It represents the total innovation expenditures
during period t. Furthermore, the depreciation rate d is assumed to be 15% and the
pre-sample growth rate of innovation expenditures g is 5%.18 The knowledge stock
at the beginning of the first period is defined by the following equation:

Ai1 ¼ Ii0 þð1� dÞIi�1 þð1� dÞ2Ii�2 þ . . .

¼
X1
s¼0

ð1� dÞsIi�s ¼ Ii0
X1
s¼0

1� d
1þ g

� �s

¼ Ii0
gþ d

:
ð10:7Þ

In addition to the stock of knowledge, we included the amount of researchers in
R&D activities in full-time equivalents as the second flow input, Rit, in the inno-
vation process.

17Total innovation expenditures is only based on these components in our study. The total
innovation expenditures in the pre-CIS4 data also includes additional components. However, these
components are not included as measures in CIS4 and are excluded to ascertain the consistency of
this measure across CIS waves.
18These values for the depreciation rate and growth rate are often used to construct the knowledge
stock (Hall and Mairesse 1995). The results are robust when a 10 and 20% depreciation rate for the
knowledge stock are used.
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10.2.5 Competition, Firm Size, Cooperation and Funding

Firm size ðFSitÞ is measured by the total number of employees in the firm. Two
cooperation dummy variables indicate whether firms cooperate with competitors
(COOPCOMP) and other institutions (COOPOTHER) in their innovation activities.
We also include a dummy variable to examine the effect of R&D funding from the
government (FUNDING), where the value 1 indicates that the firm received funding
from the local government, national government or European Union. The reference
group for this dummy variable consists of firms without R&D funding from the
government. Competition intensity cannot be observed directly, but proxies have
been suggested in the literature. As in Aghion et al. (2005), we use the price cost
margin (viz., the Lerner index, or markup) as our measure of competition. The price
cost margin is calculated by dividing the total sales minus the cost of sales, e.g.
labor expenses and energy costs, by total sales:

Cit ¼ Sit � TVCit

Sit

� �
; ð10:8Þ

where Cit is the competition variable, Sit total sales and TVCit represents the total
variable costs. We use a firm-level measure of competition, since industries are
relatively broadly defined in the data set and the intensity of competition can differ
between firms, even within narrowly defined industries.19 Hence, we assume that all
changes in competition are reflected in the price cost margins of firms. An important
advantage of the price cost margin over conventional measures of competition such
as the Herfindahl-Hirschman Index (HHI) and concentration ratios is that the price
cost margin does not require a precise definition of the relevant geographical or
product boundaries. To eliminate outliers in our measure we eliminated observa-
tions that fall outside the range −1 and 1.

Table 10.1 provides the descriptive statistics of innovation output, innovation
inputs, cooperative innovation activities, funding from the government, the price
cost margin and firm size. The means of the sales from innovations, the knowledge
stock and research labor in fte are €7482; €3466 and 2.442 fte, respectively. Most
of the firms in our data set are not cooperating on innovation activities. Only 11.8%
of the firms cooperate with competitors on innovation activities, 37.8% cooperate
with other institutions, while the remaining 60.6% of the firms are not cooperating
on their innovation activities. More than half of the firms in the sample received
funding from a local/regional authority, the central government or the European
Union, namely 63.8%. On average, firms earn a price cost margin of 24.8% and
have 187 employees on their payroll.

19Our sector classification is based on the 3-digit SBI.
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10.3 The Results

We start our analysis with two basic specifications, that are relatively close to what
has been estimated in the literature so far. Next, we present the results from our
preferred specification, that is the most comprehensive, and captures as many
aspects of the innovation process as is possible, given our data. We end with a brief
robustness analysis, where we examine the importance of lagged effects.

10.3.1 Basic Specifications

Columns (i) and (ii) in Table 10.2 presents the results based on the basic specifi-
cations. The dependent variable is always the share of innovative sales new to the
firm in total firm sales. To examine the presence of inefficiency in the innovation
process, a likelihood-ratio test is performed assuming the null hypothesis of no
technical inefficiency ðH0 : ru ¼ 0Þ. The null hypothesis is rejected at the 1% level
and indicates the presence of inefficiency in the innovation process. In this basic
specification, we find that (in)efficiency accounts for approximately 50% of the
variation in the residual (the ratio of variation in (in)efficiency ru over total vari-
ation ru þ rv).

Column (i) in Table 10.2 shows the results based on a translog innovation
function, where inefficiency is related to cooperation with other competitors,
cooperation with other institutions, funding from the government, competition and
firm size. However, we assume that the innovation frontier is the same for all firms

Table 10.1 Descriptive statistics

Variable Symbol Mean Std. dev. Minimum Maximum

Sales from innovations in
€1000

X 7481.567 14,319.87 1.521 218,986.6

Knowledge stock in €1000 A 3466.236 4885.73 18.61 28,876.23

Research labor in fte R 2.442 3.965 0.029 40

Cooperation with
competitors

COOPCOMP 0.118 0.323 0 1

Cooperation with other
institutions

COOPOTHER 0.378 0.485 0 1

Funding from the
government

FUNDING 0.638 0.481 0 1

Price cost margin C 0.248 0.1119 −0.816 0.704

Number of employees
(own payroll)

FS 187.04 350.678 0 10,857

The descriptive statistics are based on the sample in Column iii in Table 10.2 (1366 observations)
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Table 10.2 The innovation function

Specification (i) (ii) (iii) (iv)

Panel A: Basic parameters

lnAit 0.176
(0.363)

−0.065
(0.267)

0.849*
(0.459)

−0.578
(0.415)

lnRit −0.957***
(0.296)

0.042
(0.221)

−0.595*
(0.359)

0.129
(0.371)

1
2 lnA

2
it −0.004

(0.049)
0.111*
(0.058)

0.042
(0.036)

−0.089
(0.063)

1
2 lnR

2
it −0.174***

(0.048)
−0.010
(0.035)

−0.018
(0.054)

−0.011
(0.068)

lnAit lnRit 0.178***
(0.039)

0.005
(0.049)

0.106**
(0.029)

0.004
(0.047)

Panel B: Cooperation with competitors and the innovativity of A and R

COOPCOMPit −0.020
(0.127)

−7.975**
(3.865)

−1.980
(4.562)

lnAit � COOPCOMPit 2.149**
(1.007)

0.496
(1.227)

lnRit � COOPCOMPit −1.117
(0.796)

0.947
(0.952)

1
2 lnA

2
it � COOPCOMPit −0.283**

(0.130)
−0.070
(0.163)

1
2 lnR

2
it � COOPCOMPit −0.143

(0.125)
0.297**
(0.146)

lnAit lnRit � COOPCOMPit 0.138
(0.102)

−0.153
(0.125)

Panel C: Cooperation with other institutions and the innovativity of A and R

COOPOTHERit 0.154*
(0.086)

3.023
(2.522)

−0.635
(3.057)

lnAit � COOPOTHERit −0.789
(0.685)

0.496
(1.227)

lnRit � COOPOTHERit 0.353
(0.577)

0.947
(0.952)

1
2 lnA

2
it � COOPOTHERit 0.103

(0.092)
−0.070
(0.163)

1
2 lnR

2
it � COOPOTHERit −0.032

(0.084)
0.297**
(0.146)

lnAit lnRit � COOPOTHERit −0.055
(0.076)

−0.145
(0.125)

Panel D: Funding from the government and the innovativity of A and R

FUNDINGit 0.037
(0.037)

4.742**
(1.965)

−0.852*
(0.464)

lnAit � FUNDINGit −1.387**
(0.538)

0.098
(0.066)

lnRit � FUNDINGit 1.023**
(0.444)

0.933**
0.372
(continued)
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and do not allow for innovativity differences between firms with respect to the
knowledge stock and labor. Only the research labor, its squared term and the
interaction term are individually and jointly significant at the 1% level. The
knowledge stock, its squared term and the interaction term are jointly insignificant

Table 10.2 (continued)

Specification (i) (ii) (iii) (iv)
1
2 lnA

2
it � FUNDINGit 0.200***

(0.073)
−0.002
(0.003)

1
2 lnR

2
it � FUNDINGit 0.076

(0.071)
0.173**
(0.081)

lnAit lnRit � FUNDINGit −0.153***
(0.059)

−0.142***
(0.049)

Panel E: Other controls that affect innovation output

Cit −1.361***
(0.342)

−1.332***
(0.340)

−1.512***
(0.416)

FSit 0.005***
(0.001)

0.005***
(0.001)

0.006***
(0.001)

Panel F: Determinants of inefficiency

COOPCOMPit −0.528***
(0.176)

0.155
(0.736)

−0.133
(0.723)

−1.043*
(0.597)

COOPOTHERit −0.184**
(0.091)

−0.238
(0.529)

−0.237
(0.522)

−0.283
(0.375)

FUNDINGit −0.072
(0.082)

−0.727
(0.485)

−0.682
(0.472)

−0.912***
(0.341)

Cit 0.319
(0.420)

−3.405*
(1.969)

−3.289*
(1.876)

−2.344*
(1.251)

FSit −0.003***
(0.0001)

0.006***
(0.001)

0.005***
(0.001)

0.006***
(0.001)

ru=ðru þ rvÞ 0.499 0.918 0.920 0.825

Observations 1366 1366 1366 926

Technology class Yes Yes Yes Yes

Technical change No Yes Yes Yes

The dependent variable is sales from innovations. Standard errors (between parentheses) are robust
against heteroskedasticity. The results in Column iv are based on a lagged effect of cooperation
with competitors, other institutions and funding. Asterisks indicate significance at the following
levels: *0.10, **0.05, and ***0.01
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at the 1% level. The output elasticities with respect to the knowledge stock and
labor are 0.16 and 0.33, respectively.20

The results in Panel F for Column (i) show the determinants of inefficiency.
Cooperation with competitors (COOPCOMP) is significant at the 1% level and
cooperation with other institutions (COOPOTHER) is significant at the 5% level.
Both are negatively related to inefficiency and so cooperation reduces inefficiency,
where cooperation with competitors is found to be more important for inefficiency
compared to cooperation with other institutions. Funding from the government
(FUNDING) and the price cost margins (C) are not significantly related to ineffi-
ciency in the production of innovations. Firm size (FS) is significantly negatively
related to inefficiency at the 1% level. This means that larger firms are producing
innovations more efficient (on average). This finding is consistent with the out-
comes of Gantumur and Stephan (2010). Large firms may be more efficient if they
use more specialised inputs in production. However, this specification assumes that
all firms are subject to the same innovation frontier and does not allow for differ-
ences in the innovativity of the knowledge stock and labor between firms with and
without cooperation on innovation activities or firms with and without government
funding. Furthermore, the specification in Column (i) does not yet include firm size
and competition in the innovation function directly.

Column (ii) therefore presents the results based on including cooperation with
competitors, other institutions, competition and firm size directly in the innovation
function and as explanatory variables for the inefficiency term.21

We observe an increase in the ratio of variance in (in)efficiency over total
variance (to 92%), because introducing more controls in the specification of the
frontier implies that the overall fit is improved with the same variance in (in)effi-
ciency. Although the knowledge capital stock, research labor, quadratic terms and
interaction term are individually insignificant, they are jointly significant at the 1%
level. The output elasticities with respect to knowledge capital and labor are now
0.24 and 0.08, respectively.

In panels C and D, cooperation with competitors and funding from the gov-
ernment are not significantly related to innovation output directly. Cooperation with
other institutions is positively related to the innovation output, but only at the 10%
significance level. In Panel F, the results show that cooperation with competitors

20These output elasticities differ quite markedly from the output elasticities obtained when we
exclude the determinants of inefficiency (not reported here). In that case, the marginal innovativity
of the knowledge stock is much higher, while the marginal innovativity of research labor is lower.
Furthermore, in that case the output elasticity of research labor is lower than the output elasticity of
the knowledge stock. Compared the specification in Column (i), the variance attributed to (in)-
efficiency is then much higher: 99% compared to the current 50%.
21We also estimated this specification with interaction terms between the innovation inputs and
technology classes to examine whether the marginal innovativity of the knowledge stock and
research labor differ between technology classes (industry groups). The interaction terms are not
jointly significant. This suggests that the marginal innovativity of the knowledge stock and
research labor do not differ across technology classes.
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and other institutions are no longer significantly related to inefficiency after the
inclusion of these variables in the innovation function.

The price cost margin, however, is now significant at the 1% level and nega-
tively related to innovation output in panel E. This means that more competition is
positively related to the share of innovative sales. A possible explanation is that
competitive pressure induces firms to introduce more innovations and weeds out
unsuccessful ones faster.22 Another explanation may be that new innovations
cannibalise the sales from existing products and therefore lower the price cost
margins. We only find a negative correlation and cannot infer the direction of
causality in our data. Competition is also significant and negatively related to
inefficiency at the 10% level in panel F. Firms with higher price cost margins thus
seem to have lower inefficiency. This partially offsets the positive direct effect of
competition on innovativeness found above.

Firms size remains significant at the 1% level in panel E but is now positively
related to innovation output. An explanation for this result is that larger firms have
developed larger distribution and marketing networks to sell their new products. In
short, they can benefit from economies of scale in the innovation process. In
contrast to the results in column (i), however, firm size is now also significantly
positively related to inefficiency at the 1% level. Again we see that the benefits of
economies of scale found above are partially offset by higher inefficiency in larger
firms. Larger firms may suffer from coordination problems and therefore experience
on average more inefficient innovation processes. These findings with respect to
firm size are not in line with the findings of Gantumur and Stephan (2010) reported
earlier. A likely explanation for the discrepancy between our findings and theirs is
that firm size was not directly included in the innovation function in the specifi-
cation used by Gantumur and Stephan (2010) as in our column ii.23

10.3.2 Preferred Specification

In column (iii) of Table 10.2 we show the results based on the interaction between
the innovation inputs and the dummy variables that indicate whether firms coop-
erate with competitors or other institutions and whether they receive funding from
the government. As in the specification in column (ii), the variance in inefficiency
explains 92% of the total variance of the composite residual. F-tests are used to

22A positive relationship between price cost margins and the sales from innovations is expected if
less competition allows firms to reap higher rents from their innovations.
23A drawback of the specification in Column iv is that the interaction between the innovativity of
knowledge capital, labor and cooperation with institutions and funding from governments cannot
be examined. These interactions are necessary to examine whether the marginal innovativity of the
knowledge stock and labor differ between these groups. We have done these regressions and find
no clear evidence of strong interaction effects. Therefore these results have been delegated and
discussed in the appendix.
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examine whether the innovativity (marginal productivity) of the knowledge stock
and research labor differs between cooperating firms and firms that do not cooperate
and firms with and without funding. The cooperation with competitors dummy and
interaction terms with the knowledge stock and research labor are not jointly sig-
nificant. Also the dummy variable that indicates cooperation with other institutions
and interaction terms are not jointly significant. However, an F-test based on
funding from the government and interaction terms indicates that there are signif-
icant differences in the innovativity of the knowledge stock and labor between firms
with funding from the government and firms without funding.24 The output elas-
ticities of the knowledge stock for firms without funding and with funding are
significant at the 1% level and 0.21 and 0.27, respectively.25 The output elasticities
of the research labor for firms without funding and with funding are significant at
the 5% level and 0.18 and 0.09, respectively (see footnote 25). While the point
estimate of the output elasticity with respect to the knowledge stock is somewhat
higher for firms with funding from the government compared to firms without
funding, the innovativity of research labor is lower for firms with funding. We also
performed t-tests to examine whether the output elasticities differ significantly
between firms with and without funding. There are no significant differences in
innovativity between firms with and without funding based on the t-tests.26

When we examine the determinants of inefficiency we conclude that only
competition and firm size are on average related to inefficiency. The relationship
between competition and inefficiency in the innovation process is quite weak since
it is only significant at the 10% level. Higher price cost margins (less competition)
are related to lower inefficiency. Consistent with the findings in column iv, firm size
is significantly positively related with inefficiency at the 1% level. Coordination
problems in the production of innovations by large firms may lead to less efficient
innovation production processes. Cooperation with competitors or other institutions
and funding from governments are on average not related to inefficiency.27

24The dummy variable and interaction terms are significant at the 5% level.
25The output elasticities are evaluated at the average natural logarithm of the knowledge stock and
research labor.
26The t-values with respect to the knowledge stock and research labor are 1.07 and 1.47,
respectively.
27However, when we calculate efficiency scores and examine the differences in the distributions
between groups, we find that the distributions of the efficiency scores differ between firms with and
without funding from governments. A Kolmogorov-Smirnov test is used and the distributions
differ significantly from each other at the 1% significance level. Based on a kernel density, we find
that at higher efficiency scores, there are more firms with funding from governments than without
funding. Furthermore, there are more firms without funding at lower levels of efficiency scores.
Hence, firms with funding from the government are more likely to produce innovations efficiently
compared to firms without funding from the government. We do not find differences in the
distributions of efficiency scores between firms with and without cooperative innovation
agreements.
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10.3.3 Robustness Analysis

Column (iv) provides an overview of the estimation results based on a lagged effect
of cooperative innovation agreements and government subsidies.28 The variance of
the inefficiency term accounts for most part of the total variance of the residual,
namely 83%. With respect to cooperation on innovation activities, the F-tests
indicate that the innovativity of the knowledge stock and research labor differs
between firms that cooperate and firms that do not cooperate.29 Furthermore, the
tests show that there are differences between firms with funding from the govern-
ment and firms without funding. However, evaluated at the average natural loga-
rithm of the knowledge stock and research labor, we do not find that the point
estimates of the output elasticities differ significantly between firms with and
without cooperation on innovation and with and without government funding.30

The price cost margin is significant at the 1% level and negatively related to the
sales from innovations. This finding is consistent with the results in the previous
specifications. Firm size is significant at the 1% level and larger firms have more
sales from new innovations.

We also examined the lagged effect of cooperation with competitors, cooperation
with other institutions and funding from the government on inefficiency in the
innovation production process. Cooperation with competitors in the previous period
is negatively related with inefficiency at the 10% level. Thus we find weak evidence
that cooperation with competitors in the past leads to improved efficiency in the
future. There is no significant relationship between cooperation with other insti-
tutions and inefficiency. Funding from the government is significantly related to
inefficiency at the 1% significance level. Firms that received funding from the
government in the previous period are on average more efficient in the current
period. Competition is significant at the 10% level and as in earlier specifications,
less competition is positively related to efficiency. Moreover, larger firms are sig-
nificantly less efficient than smaller firms.

28The lagged effect corresponds to a delayed effect of two years since bi-annual data are used.
29Cooperation with competitors and the interaction terms are significant at the 5% level.
Cooperation with other institutions and the interaction terms are significant at the 1% level.
30This conclusion is based on t-tests to examine whether each output elasticity differs from the output
elasticity offirmswithout cooperation andwithout funding. The absolute t-values range between 0.05
and 1.15. Nevertheless, differences in output elasticities may also arise due to different levels of the
knowledge stock and labor. The change in the knowledge stock differs significantly at the 5% level
between firms that received funding only in the previous period compared to firms that received no
funding. The average change in the knowledge stock is 462,000 € for firmswith funding and 76,000 €
for firms without funding. However, we do not find significant differences in the output elasticities
between these types of firms evaluated at their average knowledge stock.
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10.4 Conclusion

This paper contributes to the innovation literature by examining several sources of
innovativity and efficiency in the innovation process. We use Stochastic Frontier
Analysis and estimate innovation frontiers for Dutch firms over the period 1994–
2004. Dutch Community Innovation Survey data is used to examine whether
cooperation with competitors, cooperation with other institutions, funding from the
government, competition and firm size affect innovativity and efficiency in the
production of innovations. We find that inefficiency is present in the innovation
process of Dutch firms and that percentage changes in efficiency contributes on
average 63% to the drop in innovativity that was observed in our sample. In
addition, in our preferred specification, inefficiency explains 92% of the unex-
plained between firm variation in innovation outputs. Clearly inefficiencies are to be
reckoned with in estimating the knowledge production function to avoid biased
parameter estimates and investigate the sources of inefficiency.

On that last note we also find that cooperation with competitors and funding
from the government are on average significantly negatively related to inefficiency
in the basic specification where the innovation frontier is assumed to be homoge-
nous for all firms. There is no relationship on average between cooperation with
competitors, funding from the government and inefficiency, however, once we
allow these factors to affect innovation output directly. In our preferred specifica-
tion, we also found that competition is significantly positively related to the level of
innovation output. Finally, our results also suggest that while larger firms have
higher levels of innovation output, their innovation processes seem to be subject to
more inefficiencies. Such conclusions could have important managerial and policy
implications. Future research should therefore aim at both theoretically and
empirically examining the channel through which firm size and competition affect
innovativity and inefficiency in the innovation production process.
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Chapter 11
Potential Coopetition and Productivity
Among European Automobile Plants

Jonathan Calleja-Blanco and Emili Grifell-Tatjé

Abstract The chapter proposes a definition of the potential economic incentives
for competitors to cooperate with each other, namely coopetition. A non-parametric
methodological approach based on the rate of return on assets (ROA), a well-known
measure of financial performance, enables comparison between non-coopetition and
coopetition statuses. The potential ROA gains from competition are decomposed by
economic drivers. This methodology was applied to the study at plant level,
focusing on cases of potential competition in the European automotive industry.
The main results are based on an analysis of a generated sample of over forty-five
thousand cases of potential cooperation between plants in the 2000–2012 period.
Out of that sample, roughly twelve thousand cases (about 27%) presented potential
ROA gains from coopetition. Results show that faster asset turnover and better
productivity explain a higher potential ROA from coopetition. Results also reveal
that medium–small and small plants have the strongest economic incentive for
coopetition. The chapter concludes by offering some policy recommendations
concerning the introduction of changes to the legal framework of competition, in
the context of the European Union.

Keywords Productivity � Coopetition � Plant level � Automobile industry � Return
on assets (ROA) � DEA

11.1 Introduction

—The auto industry of the future is collaborative and borderless
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It is no longer enough to play individually in the automobile industry in order to
be competitive. Separate efforts aimed at improving performance are paying off less
and less. As a result, companies are looking for new ways to supply their customers
while staying competitive by responding to new market trends, e.g. customization.
The main producers, while being competitors, have identified the opportunities that
cooperation offers. Firms look for suitable partners, including rivals, in order to
enhance competitiveness. This study is a novel attempt to analyze, from an eco-
nomic perspective, the potential or a priori impact of cooperation among inde-
pendent automobile production plants in Europe from 2000 to 2012. In other words,
we analyze the potential economic prospects as a basis for managerial decisions
regarding cooperation.

The literature has devoted attention to the benefits of potential mergers, which
are more likely to occur at firm level (e.g. Bogetoft and Wang 2005; Bagdadioglu
et al. 2007; Kristensen et al. 2010; Halkos and Tzeremes 2013; Zschille 2015). In
contrast, the economic gains that could be potentially achieved when cooperating
with a competitor have been under-explored. The chapter contributes in this regard
and can be placed within a coopetition framework: cooperation amongst com-
petitors, i.e. the situation in which organizations that would normally compete with
each other engage in a cooperative strategy to develop joint production. Hence,
cooperation and competition, which are frequently studied separately, come toge-
ther as part of the same strategy.

It is important to stress the difference between coopetition and collusion. Both
strategies need cooperation, reducing overall competitiveness. Coopetition has the
potential for collusive behavior and sometimes they are treated equally. However,
the difference lies in the effect on the consumer. While collusion generally occurs in
downstream activities, typically agreeing in prices, coopetition refers to upstream
ones (Walley 2007; Rusko 2011). Under coopetition, firms can still compete in
downstream activities.

From an engineering perspective, there have been some efforts to approach the
idea of coopetition. Based on the virtues of ‘commonizing’ technologies to produce
similar products, some authors have analyzed the implications of such a strategy
(Muffatto 1999; Pasche and Sköld 2012). This step, technically speaking, paves the
way towards cooperation with a counterpart in order to take advantage of
well-known technologies, equipment and machinery. This cooperation based on
common technologies can optimize the cost of coordination between independent
plants. A plant might cooperate with some products and not cooperate with others.
Of course, competition in the market exists regardless of the decision about
coopetition. There is competition in the products that are not the object of coope-
tition and for end products when coopetition occurs in the production of interme-
diate goods. It is also possible regarding products that are the direct result of
coopetition, which may be commercialized under different channels and brands.1

1An illustrative example of cooperation and competition outside the automobile industry is shown
for Sony and Samsung (Gnyawali and Park 2011: 655).
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Platform sharing has been a natural response from automobile manufacturers to
improve performance, making production plants more flexible. General Motors first
did this during the inter-war period (Freyssenet and Lung 2007) and many other
actors have followed the same strategy since. Nowadays, almost all producers are
trying to reduce the number of platforms.2 However, platform-sharing among
independent plants remains less common in Europe.

There are two possible explanations to consider why the degree of coopetition
among European plants is low. The first is purely economic. There must be an
economic incentive in order for plants to be willing to engage in a coopetitive
strategy. The final economic outcome of cooperation lies beyond the scope of the
study (which includes trust, commitment and bargaining agreements), but an
analysis of potentiality is offered, for actors to be able to identify their best options.
In tandem with the economic reason, there are legal limitations that cause plants not
to cooperate more. We discuss these limitations in the conclusion section. This
chapter concludes that there are potential economic incentives for coopetition
between European automobile plants. Hence, the legislation on competitiveness
issued from the European Union (EU) and its member states must partially justify
the poor level of coopetition.

This chapter contributes to this area in several aspects. The potential economic
benefits that separate agents might obtain when they commit to coopetition are
quantified. A new methodology to define the economic incentives for coopetition is
presented in Sect. 11.3. It contributes to the need expressed in the literature with
regard to further exploration of coopetition outcomes (Gnyawali and Park 2011), as
well as partner selection tools (Alves and Meneses 2013). Furthermore, Bouncken
et al. (2015) also consider efficiency as one of the potential dimensions of coope-
tition that urgently needs to be developed. Additionally, Blum (2009) discusses the
need for more research into the quantification of the potential economic gains
associated with coopetition. Section 11.3 can be seen as a response to the need for
more research, from an economic perspective, and exploits the latest findings by
Grifell-Tatjé and Lovell (2015), who have introduced productivity as one of the
drivers of return on assets change. It is shown that this approach naturally ac-
commodates Bogetoft and Wang (2005), who have been mainly used in the liter-
ature to study potential mergers (Kristensen et al. 2010). The methodology
developed in Sect. 11.3 may be of interest to practitioners. Its application enables
the identification of the best potential options for coopetition. Before that,
Sect. 11.2 presents the background of the European automobile industry. An
introduction to the applied part of the chapter is given in Sect. 11.4, where the

2It is important to clarify that a platform is a construction system (a sort of architecture that defines
the main design, engineering, etc. of a vehicle). A producer may have different production plants
and still use a single type of platform to produce several car models (e.g. ‘Ford plans to trim global
vehicle platforms from 15 to 9 by 2016’). Industry experts expect almost half of world production
to be manufactured using 20 core platforms in the coming years.
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dataset is discussed. Section 11.5 presents the main results based on the study of a
generated sample of over forty-five thousand cases of potential cooperation.
Section 11.6 provides a set of conclusions, which have implications for industrial
policy, the main point being the need to revise the European law on competitiveness
in the manufacturing industry. Particular attention might be paid to automobile
industry, for which legal framework is especially rigid.

11.2 Background

11.2.1 Previous Research on Coopetition

Although coopetition has become an accepted term in the management literature as
a suitable firm strategy, the body of empirical articles studying the phenomenon still
lacks a common definition. It sometimes overlaps with the idea of alliance, or the
two notions are taken as part of the same action. A broad concept defines coope-
tition as a business relationship in which firms cooperate between and compete
against each other simultaneously (Bengtsson and Kock 2000). This characteriza-
tion is still broad in its scope and allows for many different configurations. Thus,
empirical studies have made use of many singular boundaries of the concept, while
some revisionist literature has pointed out the need for a more refined terminology
(Bengtsson and Kock 2014; Bouncken et al. 2015). Cooperation among competitors
has been analyzed without framing it under the name of coopetition (Oliver 2004).

A central aspect associated with successful coopetition, of any kind, is the will
among managers for cooperation. The ability of partners to strike a balance between
cooperation and competition determines success and also requires a new orientation
of management (Peng and Bourne 2009). Some studies have gone in this direction
by proposing guidelines for managers to achieve successful coopetition. Based on a
literature review, Chin et al. (2008) rank commitment, relationship development
and communication as the key factors in order for a partnership to work.

Bengtsson and Kock (2000) dissect the definition of coopetition according to the
proximity of the end client. Cooperation is generally far from the end client and
competition occurs at a closer stage to the same, so that each part might be managed
differently. Strategies are, in that order, related to value creation and value cap-
turing, and may be of different relative importance in the agreement (Luo 2007).
Also, a greater number of similarities between products and technologies causes
greater cooperation. Many firms cooperate at the initial stages of the product,
preserving the competitive advantage for the final customization or sale. Wolff
(2009), borrowing the term from a manager in the car industry, defines this situation
as a pre-competitive stage, meaning cooperation in the generation of somewhat
similar outcomes.
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In the context of this pre-competitive state, many studies have focused on the
benefits for innovativeness when engaging in coopetition, i.e. the initial stages of
product development. Empirical results have proved the positive impact of
coopetition on innovation (Li et al. 2011; Bouncken and Fredrich 2012; Ritala and
Sainio 2014), knowledge creation (Zhang et al. 2010) and co-creation or technology
development (Wilhelm and Kohlbacher 2011, in the Toyota network). In general,
this stream has found some type of value creation based on innovation (Ritala and
Hurmelinna-Laukkanen 2009).

While innovation development may imply some sort of mutual investments,
cooperating solely in production would only need a certain type of input comple-
mentarities (Biesebroeck 2007). In other words, what is needed is the correct
reallocation of existing complementary resources. In fact, this is horizontal coop-
eration based on redundant capabilities. These capabilities and competitive market
forces are the main factors dragging firms to cooperate (Madhok 1996). Hence,
coopetition in production must be based on the sharing of resources and technology
up to a pre-competitive state. To our knowledge, the literature has paid little
attention to this kind of coopetition. One exception is Ehrenmann and Reiss (2011),
who advocate manufacturing firms to build up coopetition, in order to achieve their
full performance potential. Here, excess capacity and mass customization are par-
ticularly important for the case of the automobile industry. This kind of coopetition,
which is mainly based on the reallocation of existing complementary resources,
should deliver higher productivity and output quantities. This is the main object of
study in Sect. 11.3 of this chapter.

The next section depicts some examples of coopetition, from a somewhat broad
perspective, that have appeared in the automobile industry, especially in Europe.
These examples are mainly on a firm level given the scarce literature on the plant
level, which is our unit of analysis.

11.2.2 Coopetition in the Automobile Industry

Car platforms have become a common practice in the automotive industry since
General Motors initiated the concept. Automakers use platform sharing to combine
lower-volume customized production with higher-volume standardized production.
Thus, by sharing common technologies among different products, they are able to
develop an additional number of models. It was initially designed for building cars
of the same brand, or for cars belonging to the same matrix. Nowadays, competing
groups are also integrating this tactic to share production with each other. It is an
alternative to the wave of mergers that appeared a few decades ago. What is clear
from the observance of this tendency is that remaining independent in the
modern-day car industry is not only difficult but also inefficient.
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An early case of this type of cooperation was the Portuguese Autoeuropa plant,
settled as a 50/50 joint-venture between Volkswagen and Ford. Set up in 1991, this
was an important player in the European production for both matrixes. For years,
the cooperation paid off for both participants, but this sort of agreement is flexible
enough to allow for exit when the initial interests disappear. Accordingly, Ford left
the venture in 1999, and the German group now fully owns and manages the plant.

More recently, Volkswagen developed a car platform together with Ford’s
European subsidiary, which has mainly been used by the former to produce several
of its cars. Daimler has also used Volkswagen-based technologies to produce some
of its models, which they both commercialize in different markets. Daimler and
Renault, Toyota and General Motors, Peugeot-Citroën and BMW, or General
Motors and Peugeot-Citroën are other examples of established or potential (cur-
rently at the initial agreement stage) collaborations in the industry. Nevertheless, it
is also true that some have ended wrongly, such as General Motors and Fiat not
achieving successful results, or Renault and BMW withdrawing at the initial
agreement stage.

By mid-2015, Toyota and Mazda had announced an agreement to create a
partnership aimed at sharing the production of future car models. In their words, this
partnership would “go beyond the traditional framework of cooperation, aiming
instead to create a whole new set of values for cars through wide-ranging medium
to long term collaboration”. However, the pact still does not affect their individu-
ality, as they keep being competitors in the markets. This shows that the configu-
ration of the automotive industry is causing major change with the aim of more
efficient competition.

Lately, in the new adoption of electric and hybrid car models, new industries
may start to be considered competitors for traditional automakers. For instance,
Tesla Motors, a well-known brand that manufactures electric cars has consolidated
cooperation with Daimler (within the Mercedes-Benz brand) and Toyota. The
expansion of what a competitor means would also reshape the scope of analysis for
a coopetition strategy.

Not to mention that some initial cooperation plans ended in the absorption of one
of the partners by the other, or in partial control. Nissan and Renault cooperated
until the French carmaker bought almost half of Nissan. The Japanese group is still
an autonomous player within the Nissan–Renault Alliance (Segrestin 2005, reviews
this partnership). While still independent, they develop some cross investment in
line with the interests of the other. They declare economies of scale to be the
underlying reason for carrying out such an alliance. Nowadays, this agreement
represents about one tenth of worldwide car sales. In 2010, they also joined forces
with Daimler in order to enhance these sharing practices.

Hence, on the basis of this developing phenomenon, we not only need to
research the outcomes but also the potentials. Managers and policymakers can be
assisted by better analysis of coopetition potentials. This is the purpose of the
following Section, where an economic approach to this subject is developed.
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11.3 Methodology

11.3.1 Potential Coopetition

We introduce some notation and an analytical framework within which to study
potential coopetition among plants in the automobile industry composed by I plants,
indexed q = 1, …, I. The output quantity and price vectors of a plant are given by
y ¼ ðy1; . . .; yMÞ 2 RM

þ and p ¼ ðp1; . . .; pMÞ 2 RM
þ þ , and its input quantity and

price vectors by x ¼ ðx1; . . .; xNÞ 2 RN
þ and w ¼ ðw1; . . .;wNÞ 2 RN

þ þ . Total assets
of a plant are expressed by A 2 Rþ þ , which can differ from the input capital
depending on its accounting definition. The profit is given by π = R − C =
pTy − wTx, where “T” represents the transpose of the vector and, additionally,
wTx = cTy where c ¼ ðc1; . . .; cMÞ 2 RM

þ þ defines the vector of unitary costs. The
return on assets (ROA) of a plant is expressed by the ratio of profit to assets, π/
A. The set of technologically feasible combinations of output vectors and input
vectors is defined by the mathematical programming model known as Data
Envelopment Analysis (DEA) introduced by Banker et al. (1984).

T ¼ ðx; yÞ : y�
XI

q¼1

kqyq; x�
XI

q¼1

kqxq;
XI

q¼1

kq ¼ 1; k[ 0

( )
: ð11:1Þ

The representation of the technology in terms of its output set is P(x) = {y: (y,
x) 2 T}, which is bounded above by the output isoquant. Shephard (1970) intro-
duced the output distance function, which provides a radial measure of the distance
from an output vector to the output isoquant. This is defined as DO(x, y) = min {μ:
y/μ 2 P(x)} ≤ 1. The output distance function is interpreted as a measure of the
technical efficiency of a plant. There is efficiency when DO(x, y) = 1. Otherwise, the
plant is considered technically inefficient and its degree increases with lower values
departing from one.

For simplicity, the exposition that follows is based on the potential coopetition
between plants h and l. The methodology can easily be extended to a situation of
coopetition between multiple plants.

Coopetition, in contrast with a merger, maintains the independence of the two
plants introducing flexibility to the cooperation. A plant can easily switch the
cooperation from one plant to another to seek the highest possible return on its
investment. This is the economic incentive for coopetition, a behavior that is only
possible if the plant maintains control of its own investment as well as the rest of its
inputs. Hence, the aggregate assets and the aggregate inputs associated with
coopetition between plants h and l are simply the sum of their quantities (Ah + Al,
xh + xl). We consider this to be feasible when: (xh + xl, yh + yl) 2 T, being yh + yl
the aggregation of the output quantities of the two plants. The potential joint
product as a result of coopetition is given by yh+l, where yh+l = (yh + yl)/
DO(xh + xl, yh + yl). Therefore, the potential joint product is the maximum possible
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given xh + xl or the efficient one associated with the aggregate input quantities. The
two firms translate the gains of efficiency from coopetition to a higher amount of
output.3 Thus, all possible complementarities from coopetition are captured when
moving from independent to cooperative operations. The potential joint profit is
phþ l ¼ pThþ lyhþ l � whþ lT

h xh � whþ lT
l xl and Rhþ l ¼ pThþ lyhþ l defines the potential

joint revenue, where ph+l is the new vector of prices associated with the potential
joint product (yh+l) and whþ l

k ; k ¼ h; l are the prices associated with each plant’s
quantity of inputs. A variation in the prices of inputs is not expected because the
pressure of the plant on suppliers has not changed. The potential return on assets is
defined as ROAh+l = πh+l/(Ah + Al).

The present study of potential coopetition between European automobile plants
is based on the returns on assets, which is a well-known measure of financial
performance.4 This measure has the virtue of being independent from plant size.
This property, which is not shared by other measures of financial performance, such
as profit, revenue and cost, makes ROA particularly suitable for the study of
potential coopetition between plants, which may be of disparate sizes.5 We define a
situation of potential coopetition as

Definition There is a potential economic incentive for coopetition between plants
h and l, when ROAh+l > ROAk, k = h,l and ROAh+l ≥ 0.

The described situation is only possible when: phþ l [ ph þ pl and phþ l � 0, the
potential nonnegative joint profit is higher than the aggregation of profits from the
individual plants. It is also interesting to note that potential coopetition implies that
each participant receive a positive (but not necessarily equal) share of the gain, i.e.
share of the potential joint revenue ðRhþ lÞ. In fact, if αk, k = h, l defines the
proportion of the potential joint revenue that plant k receives (where

P
k ak ¼ 1),

the potential coopetition involves:
phþ l
ak
Ak

[ pk
Ak
; k ¼ l; h where phþ l

ak ¼ akðpThþ lyhþ lÞ
�whþ lT

k xk; k ¼ l; h. In other words, the possibility of a sole player being able to
appropriate all of the gains from coopetition is dismissed.

3The previous definition of potential joint product from coopetition scales each output with
DO(xh + xl, yh + yl). As we have seen, coopetition may only affect some of the products. In this
case, outputs should not be treated symmetrically and scale only some of them. The ones object of
coopetition.
4See Chap. 8 of Grifell-Tatjé and Lovell (2015) for a comprehensive introduction to this measure
of financial performance.
5Lozano (2013) takes a DEA-cost approach and seeks to minimize the cost of the planned
joint-venture facility.
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11.3.2 Decomposing ROA Change from Potential
Coopetition

It is relevant to study the drivers of this potentially superior return on assets as a
result of coopetition. We take a well-established approach in the business literature
known as the duPont triangle (Johnson 1975), whereby the rate of return on assets
is expressed as the product of two components, the profit margin and the assets
rotation, i.e. ROA = π/R × R/A. The distinction between a situation of potential
coopetition and non-coopetition can be expressed as

ROAhþ l

ROAk
¼ phþ l=Rhþ l

pk=Rk
� Rhþ l=ðAh þAlÞ

Rk=Ak
; k ¼ h; l: ð11:2Þ

The existence of potential coopetition has its origin in a better profit margin
(higher profit by unit of revenue) and/or faster asset turnover. The first term on the
right side of expression (11.2) takes a higher, equal or lower value than one in
which the potential profit margin from coopetition is higher, equal to or lower than
a situation of non-coopetition. There are two possible explanations: (i) divergence
in prices and; (ii) different output–input relationship. Higher revenue per unit of
assets is the effect that explains a faster asset turnover in the second term on the
right side of (11.2). We pay attention to the profit margin component of the duPont
triangle. We have

phþ l=Rhþ l

pk=Rk
¼ phþ l

k =Rhþ l
k

pk=Rk
� phþ l=Rhþ l

phþ l
k =Rhþ l

k

; k ¼ h; l; ð11:3Þ

where Rhþ l
k ¼ pTk yhþ l expresses potential joint revenue and phþ l

k ¼ pTk yhþ l �
wT
k xh � wT

k xl potential joint profit with the prices of plant k = l, h. The two terms on
the right side of expression (11.3) have a clear interpretation (Grifell-Tatjé and
Lovell 2015, pp. 350–351). The first is a productivity effect and measures the
potential contribution to the profit margin of changes in the level of productivity
from a situation of non-coopetition to one of coopetition. The second is a price
recovery effect and quantifies the potential impact of price variation on margin.
Both expressions can take higher, equal or lower values than one showing pro-
ductivity (price recovery) improvement, stagnation or decline. Additionally,
Grifell-Tatjé and Lovell (2015) have shown how the productivity effect component
in (11.3) can be decomposed; which is the approach that we take.

The potential joint profit with the prices of plant k can be re-expressed as
phþ l
k ¼ ðpk � chþ l

k ÞTyhþ l; where chþ lT
k yhþ l ¼ wT

k ðxh þ xlÞ; k ¼ h; l: It allows to
write the potential profit margin from a situation of coopetition as
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phþ l
k

Rhþ l
k

¼ pk � chþ l
k

Rhþ l
k

" #T

yhþ l; k ¼ h; l

¼ qhþ lT
k yhþ l; k ¼ h; l;

ð11:4Þ

and, in a similar way, the profit margin associated with the situation of
non-coopetition can be expressed as pk=Rk ¼ qTk yk where qk ¼
pk1 � ck1; . . .; pkM � ckMð Þ=Rk; k ¼ h; l defines an unitary margin expressed in
prices of k. The productivity component on the right side of expression (11.3) can
be rewritten using the previous results as

phþ l
k =Rhþ l

k

pk=Rk
¼ qhþ lT

k yhþ l

qTk yk
; k ¼ h; l; ð11:5Þ

and the direct application on (11.5) of the definition of potential joint production
from coopetition: yh+l = (yh + yl)/DO(xh + xl, yh + yl) enables us to re-express
(11.5) as

phþ l
k =Rhþ l

k

pk=Rk
¼ qhþ lT

k ðyh þ ylÞ
qTk yk

� 1
DOðxh þ xl; yh þ ylÞ ; k ¼ h; l ð11:6Þ

Figure 11.1 depicts the decomposition of this expression (11.6). It represents
the set of technologically feasible combinations of output and input quantities for
the case of M = N = 1. It also shows the output and input quantities of plants
h and l, which are located on the interior of the DEA technology. Hence,
Fig. 11.1 illustrates a general situation in which an automobile plant can be
inefficient, i.e. it is not on the frontier of the technology. It also depicts the
aggregation of input and output quantities of the two plants: xh + xl, yh + yl, as
well as the potential joint product from coopetition (yh+l), which is located on the
production frontier. The first term on the right side of expression (11.6) quanti-
fies, in terms of potential profit margin change, the movement from (xk, yk) to
(xh + xl, yh + yl) in Fig. 11.1. This can be considered the starting point, and is the
result of a passive coopetition. It can take a value higher, equal or lower than one.
The second term collects, in fact, the potential fruits from coopetition and mea-
sures, also in terms of profit margin change, the movement from (xh + xl, yh + yl)
to (xh + xl, yh+l) in Fig. 11.1.

258 J. Calleja-Blanco and E. Grifell-Tatjé



The decomposition of profit margin change in expression (11.6) can be linked
with the previous work by Bogetoft and Wang (2005), who coined the second term
on the right side of expression (11.6) potential overall gains. They consider it to
comprise a portion of gain that could be achieved individually, before any sort of
interaction between the units. That is to say, plants, prior to coopetition, could
improve their operations in a way that enables them to achieve the best practices in
the technology. They could reach their benchmarks before any sort of achievement
from coopetition, i.e. y�k ¼ yk=DOðxk; ykÞ; k ¼ h; l. In terms of Fig. 11.1, this
involves the movement from ðxk; ykÞ to xk; y�k

� �
; k ¼ h; l. From this point of view,

the term that Bogetoft and Wang (2005) called “potential overall gains” should first
be adjusted in order to correctly evaluate the potential contribution of coopetition.
The main idea is to evaluate only the improvements that cannot be reached indi-
vidually as potential gains from coopetition, which implies the decomposition of
the second term on the right side of expression (11.6) as follows:

phþ l
k =Rhþ l

k

pk=Rk
¼ qhþ lT

k ðyh þ ylÞ
qTk yk

� DO xh þ xl; y�h þ y�l
� �

DOðxh þ xl; yh þ ylÞ � 1
DO xh þ xl; y�h þ y�l

� � ; k ¼ h; l; ð11:7Þ

T

xh+xl)(xh x xl

y

yh

yl

y

y

y

h+l

h*+yl*)(

h+yl)(
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Fig. 11.1 Decomposition of coopetition effects
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where yhþ l ¼ ðy�h þ y�l Þ=DO xh þ xl; y�h þ y�l
� �

and the second term on the right side
of expression (11.7) quantifies the part of potential overall gains that can be reached
individually, i.e. without any kind of coopetition. This is reflected in Fig. 11.1 by
the movement from (yh + yl) to ðy�h þ y�l Þ. At this point, the third term measures the
contribution of all the potential achievements that are merely due to coopetition, as
individual improvements prior to interaction are removed. This situation corre-
sponds with the movement from ðy�h þ y�l Þ to (yh+l) in Fig. 11.1. This expression can
be coined as pure coopetition effect. Note that this third term can take a value
higher, equal to or lower than one. If the third term takes a value lower than one, it
means that ðy�h þ y�l Þ 62 PðxÞ, the same as DO xh þ xl; y�h þ y�l

� �
[ 1. There are no

gains associated with coopetition because plants can potentially reach a better level
of profit margin alone, with self-adjustments. We refer to this movement as the
technical efficiency effect.

As a brief summary, expression (11.7) proposes a decomposition of productivity
difference based on three components, which is completed by the price effect in
expression (11.3) and the asset turnover in expression (11.2). The product of these
five effects gives a complete explanation of potential ROA gains between a situa-
tion of coopetition and non-coopetition.

11.4 The Data Set

It is worth noting that the purpose of this chapter is to study, from an economic
perspective, the potential cooperation among independent automobile production
plants from 2000 to 2012 inclusive. The automobile sector is one of the main
contributors to the economy in the EU, as well as worldwide, and one of the largest
providers of employment. Eurostat and the “Association des Constructeurs
Européens d’Automobiles” (ACEA) reported that 2.2 million people were directly
employed in the EU automobile sector in 2012. This figure rises to more than 3
million people when indirect employment is included. Since important policy
measures were undertaken at the EU-level during the 2000–2012 period, the sample
is limited to plants that are part of the EU-28. For this group of European countries,
the regulatory environment is considered to be more similar and standardized. Not
all countries were permanent EU-28 members since the year 2000. However, all of
them had been official candidates since at least 1997. Croatia6 is the only exception,
whose candidacy was made official in 2004 and which became a member in 2013.

This study works with plant-level data and the sample is drawn from the
European Automobile Manufacturing industry. The main source of information is
the Amadeus database, which collects multidimensional accounting information
from European automobile manufacturing companies. Specifically, the sample was

6Only one plant in the sample is located in Croatia.
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extracted from the NACE7 code 2910 titled “manufacture of motor vehicles” of the
Amadeus database.8 The long period of this study, 2000–2012, was characterized
by major changes in the economic environment, which undoubtedly had some
impact on the industry under analysis. The sample contains both private and public
production plants although the latter are a small minority.

The Amadeus database provides financial information on individual production
plants, our unit of analysis. Plants generate and provide their own accounting
records, i.e. balance shit and income statement. In order to study relevant obser-
vations, plants whose average number of employees during the period was lower
than one hundred were ignored. Furthermore, plants whose data was unreasonable
or inconstant during the period of analysis were also dropped.9 The transition from
local general accepted accounting principles (GAAP) to international financial
reporting standards (IFRS) was a matter of special attention in producing the
dataset. This transition was slightly progressive from 2005 onwards.

The final dataset consists of 160 production plants belonging to 18 European
countries and some of these production plants belong to the most important auto-
mobile production groups. The dataset takes an unbalanced panel-data configura-
tion. There are plants without available information for one or more years. But also,
aside availability and screening mentioned above, a high birth and death rate during
the period helps to explain the unbalanced panel-data configuration. Offshoring
processes carried out in the last decade surely explain a large part of the high birth
and death rates observed.10

The amount of profits in a period of time is given by the accountancy records of
the plant. These also account for the investment in assets. In accounting argot, these
profits are referred to as “earnings before taxes” (EBT). This applied part follows a
value added approach because information about the quantity of the intermediate
materials is not available or insufficient. What is detailed in the accountancy records
is the total cost of the period associated with intermediate materials. Hence, value
added is defined by the total revenues minus the total cost of these intermediate
materials. In this value added approach, two inputs are considered: labor and
capital. This implies that revenues (R) are equal to the value added in the appli-
cation. We describe and name the relevant variables for inputs (labor and capital)
and output (value added) as follows:

7“Statistical Classification of Economic Activities in the European Community”, subject to leg-
islation at the EU level, which imposes the use of the classification uniformly across all Member
States.
8Data download/collection took place twice between 2011 and 2013. Thus, the criteria for unit
selection was their main activity (NACE: 2910) available at the time of download.
9Some plants were removed from the sample because abnormal trends for some relevant variables
were found e.g. number of employees, amount of assets, compensation per employee, price of
capital, among others.
10The traditional definition of offshoring includes both the practice of a unit hiring external
functions from a third party—outsourcing—and the case of moving to a different location, which
explains both the birth and death of plants in the sample.
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(i) Labor quantity (x1). The quantity of labor is defined as the average number
of employees of the plant during the year. This is computed as the average of
the total reported number of employees at the beginning of the accounting
period and at the end.

(ii) Labor price (w1). This is defined by the ratio between the total labor com-
pensation of the plant and labor quantity. Consequently, the product of labor
quantity and its price is equal to the total labor cost for the plant during the
period.

(iii) Capital quantity (x2). The starting point is the value of the net tangible fixed
assets in the plant’s accounting records in the year 2000 ðx20002 Þ. To construct
the capital stock of the following year (2001), the annual assets depreciation
of the year is first subtracted from the capital stock existing at the beginning
of the period. This can be expressed as: x20002 ð1�d2001Þ, where δ2001

expresses the depreciation rate for the period. Second, the investment made
by the company during the year 2001 (I2001) is identified. Third, this
investment is valued at constant 2000 prices by applying the consumer price
index of that plant’s country as a deflator, i.e. I2001=ð1þ d20012000Þ where d20012000
represents the consumer price index of period 2001. Fourth, the stock of
capital of period for 2001 is defined by the sum of this deflated investment
plus the previously calculated adjusted assets of 2000
ðx20002 ð1�d2001Þþ I2001=ð1þ d20012000ÞÞ. The capital stock for the following year
2002 is calculated in exactly the same way and so on for the remaining years.
In summary, the capital stock for the year t + 1 is calculated as xtþ 1

2 ¼
xt2ð1�dtþ 1Þþ Itþ 1=ð1þ dtþ 1

2000Þ; t ¼ 2000; . . .; 2011 where dtþ 1
2000 is the

cumulative deflator from 2000 to year t + 1.
(iv) Capital price (w2). This is calculated as the ratio between total capital costs

of the plant (interest paid plus depreciation) and the capital stock for the
period. Therefore, the product of capital quantity and its price is equal to the
plant’s total capital costs for the period.

(v) Product quantity (y). This is expressed as the plant’s constant value added.
Its value added for the period is deflated by a cumulative manufacturing
producer price index for the domestic market (base 2000) where the plant is
located. This is expressed at constant 2000 prices. The output price (p) is
defined by the ratio between the value added for the period and the product
quantity (y). Thus, the output price is the cumulative manufacturing producer
price index for the domestic market (base 2000) of the country where the
plant is located.

(vi) Total Assets (A). The amount of total assets is taken from the plant’s
accountancy statements.

Table 11.1 shows the mean values per each variable for the 160 plants in the
final dataset. Moreover, it presents two different periods in order to observe changes
or some sort of trend in the sample configuration. The start of the global financial
crisis (2007–2008) is taken to segment the data into two subsamples: 2000–2007
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and 2008–2012. An average plant size of nearly two thousand employees is found.
However, the situation changes notably per period: there is a reduction of almost
three hundred workers, on average, between the first and second periods. More in
depth analysis has shown that the average decline rate per year was over 2.71%,
with a more intense drop in the first half. Both capital quantity and product quantity
present a somewhat similar pattern. The trend of reduction overlaps with what has
been expressed regarding labor quantity, and the decline rates are rather similar for
the period (somewhat stronger for product quantity). Total assets, however, present
slight growth. Aside from this latter point, it can be argued that there was a ten-
dency to downsize in this industry between 2000 and 2012. As for prices, labor
price increased slightly. This may reveal a convergent trend in Europe, as this
increase may be motivated by a faster rise in wages in some peripheral countries.
Capital price increased slowly with an inverted U-shape throughout the whole
period. Profits also decreased, collapsing to half by the second period. It is worth
mentioning that this is mainly due to a global loss in year 2009, when average profit
was negative. From 2010 on, plants seem to make an effort to control and adjust
their costs, despite the ongoing declines in the markets. Regarding product price, as
a deflator is being used, this only shows the accumulated value of the producer price
index as stated above.

Finally, return on assets present an average value of 3.7% in our sample, which
mimics the typically stated for this industry, between 3 and 5%. However, it is also
true that the mean values conceal an inverted U-shape of this magnitude with a clear
drop in the period of crisis and only a shy recovery in recent years. Table 11.1 also
shows median ROA values. Some upcoming tables are shown in median values,
which are presented for better understanding. Median values for ROA are some-
what different from mean results. However, they depict a very similar trend,
especially in the crisis period.

11.5 Results

11.5.1 Two-Plants Interactions

In this section, potential coopetition between European automobile production
plants is evaluated. Our data sample allows for the construction of 45,332 valid
interactions throughout the 13-year period,11 during which 160 plants participated
in at least one interaction. However, the observations for the analysis were selected
in accordance with a set of criteria. The first criterion involved using only those
combinations laying inside the technology in the original projection (yh + yl 2 P
(x)). Second, according to the definition of potential economic incentive for plants

11In the application, as some of the variables were built as mean values between the beginning and
the end of the period, the study eventually worked with 12 periods instead of 13.
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to take part in coopetition, cases were only considered if the coopetition offered an
improvement on ROA for both of the plants involved (ROAh+l > ROAk, k = h, l).
That is, coopetition offered an economic improvement to both actors. Third, and as
made implicit in the meaning of coopetition, observations were eliminated when the
cooperating plants belonged to the same producer or group, as the study only
focused on competing plants.

So, the corpus was narrowed down to 34,080 cases of potential coopetition. All
of these offered potential economic gains from a coopetition strategy. It should be
noted that, out of the total number of potential cases of coopetition, there were
15,195 cooperations (more than 44% out of 34,080) in which at least one of the
plants became viable: it started with a negative ROA and the potential ROAh+l was
potentially positive.

However, yet another criterion needed to be met, which is related to the adjust-
ment that plants could make individually, before any interaction. Following
expression (11.7) in the methodological section, additional cases were removed
when all possible gains could be achieved by individual efforts and the effect of pure
cooperation did not contribute, i.e. y�h þ y�l

� � 62 PðxÞ. This last step led to a final
sample of 12,241 cases12 of potential coopetition (roughly, more than a fourth of the
total initial possible interactions). The analysis that follows is based on these cases.

11.5.2 Exploring Potential Coopetition

In order to gain insight into the configuration of these interactions, the initial
financial performance of the plants was first analyzed. Production plants before
cooperating could perform with a positive or a negative ROA. So, there were three
possibilities of coopetition: cases where both plants had a positive ROA before
cooperating, cases where both plants had a negative one and cases where one of
them had a positive one whereas the other was negative. Table 11.2 shows the
results for these three possibilities. In Table 11.2, the 2000–2012 period has been
divided into two sub-periods: 2000–2007 and 2008–2012, which correspond to
before and during the economic crisis, respectively. The results are also shown for
these two periods of time, including both the percentage and the number of cases.
Percentages are shown per row.

12These 14,933 cases are almost equally distributed between two possible periods of time: before
and during the economic crisis. This is, from 2000 to 2007 there are 7736 possible cases of
coopetition and from 2008 to 2012 there are 7197 (51.8 and 48.2%, respectively).
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As can be observed, there is a tendency of change between the two periods. In
both periods, cooperations between both plants presenting an initially positive ROA
dominate (63% and almost 50%, respectively per period). Potential cases in which
plants could enter with a different status are also relevant: almost one third in the
first period and roughly 42% in the second half.

This change is a consequence of the economic environment in the second half.
Cases of potential coopetition in which both plants start with negative ROA rep-
resent a minor portion, but it is also true that it more than doubles in the second half,
approaching to a tenth of the cases. As previously pointed out, following the
definition in the methodological section, the final outcome of the potential
coopetition must be a non-negative ROA.

Another area of interest focuses on the size of plants involved in coopetition, as
shown in Table 11.3. Percentage values are calculated out of the total 12,241
potential coopetition cases, so that the sum of percentages in the table corre-
sponding to the ten possible combinations of size amounts to 100%. The classifi-
cation of sizes was carried out in accordance with quartile values of the number of

Table 11.2 Distribution of cases according to initial ROA status of plants

Period/status Both positive One positive, one negative Both negative Total

2000/12 57.60%
(7,051)

36.20%
(4,431)

6.20%
(759)

100%
(12,241)

2000/07 63.54%
(4,544)

32.14%
(2,298)

4.32%
(309)

100%
(7,151)

2008/12 49.25%
(2,507)

41.91%
(2,133)

8.84%
(450)

100%
(5,090)

Table 11.3 Distribution of coopetition cases according to size of plants. Number of cases in
brackets

Size Big Medium–big Medium–small Small

Big 0.20%
(24)

4.77%
(584)

4.20%
(514)

14.93%
(1,828)

Medium–big 4.57%
(560)

8.37%
(1,025)

18.50%
(2,264)

Medium–small 7.52%
(921)

24.88%
(3,046)

Small 12.05%
(1,475)

Total 0.20%
(24)

9.35%
(1,144)

20.10%
(2,460)

70.36%
(8,613)
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employees per year.13 Table 11.3 shows that potential coopetition occurs more
between different-sized plants. By adding up the diagonal in the table, where
cooperating plants are categorized with the same size, the number is less than a
quarter of the total number of cases. If the last two columns are observed, it can be
seen how the percentages amount up to more than 90%, showing that a large
proportion of the potential cooperations corresponds to small and medium–small
plants. More interestingly, this fraction is already 70% if only the last column
referring to small plants is considered. In a later table, these results will be con-
sidered in light of the study.

11.5.3 ROA Gains and Drivers

In this section, potential change in ROA is analyzed as well as the main drivers for
this change. Table 11.4 shows both the median value for ROA gains and its
decomposition. It presents median values, instead of mean ones, due to the frequent
generation of extreme results. These are motivated by the fact that some plants have
a very low starting ROA, so that a moderate potential ROA would produce an
extreme ROA change. In this situation the median is more informative. Recall that
Eqs. (11.2), (11.3) and (11.7) do not hold in Tables 11.4 and 11.5 because of this
median approach. Columns three and four in Table 11.4 show a ROA decompo-
sition based on Eq. (11.2), in which a faster asset turnover or/and a better profit
margin explains a higher ROA from coopetition. Computed as (ROAh+l/ROAk) in
Eq. (11.2), the ROA would potentially improve nearly five times and profit margin
and assets turnover seem to contribute in equal rather terms. However, there is some
difference when analyzing per period. A considerable reduction in the potential
ROA gains of one and a half points can be observed. This drop has its origin in a
reduction in the profit margin that is not compensated by the assets turnover for the
2008/12 period. A deeper observation of the results shows a quite constant assets
turnover change over the years, whereas the profit margin change is less stable and
presents lower values in the second half. Again, the results are clueing that the
plant’s results have been affected by the so-called economic crisis in Europe and
profit margins have fallen, even when they are described in potential terms.

Columns five and six in Table 11.4 are based on Eq. (11.3), showing whether
changes in the profit margin originate from changes in prices or productivity. The
result in column five indicates that prices are practically neutral, it thus being the
productivity effect that actually drives the change. Therefore, all the potential profit
margin changes moving from individual to joint production come from productivity

13Number of employees ranges from 100 to 14,890. Quartiles for size distribution, calculated per
year, vary slightly from year to year. Thus, mean intervals for the distribution are (100; 245), (245;
627), (627; 2,844) and over 2,844 for ‘small’, ‘medium-small’, ‘medium-big’ and ‘big’,
respectively.
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gains. Hence, it can be argued that the potential reduction in profit margin change
between periods is caused by lower potential productivity gains.

The productivity effect is further decomposed into three other drivers expressed
in Eq. (11.7). Columns seven to nine in Table 11.4 show these results. The main
finding to be highlighted is that the productivity effect, and therefore the profit
margin change, is highly determined by the so-called technical efficiency effect.
This is, higher profits per unit of revenue are likely to be achievable with individual
efforts, if plants are able to imitate better practices in the industry. This effect was
expected, and remarkable values of technical inefficiency for some of the plants in
the original sample were found. Consequently, such a result is yet not surprising as
some literature has already found the automobile industry to be traditionally shaped
by some ‘mediocre survivors’ (Holweg and Oliver 2016).

Passive coopetition shows a non-trivial contribution to ROA gains. Column nine
depicts the effect on productivity of pure coopetition, in terms of profit margin
changes. It shows a relevant positive impact too, vaguely superior in the second
half. Being less important than the technical efficiency change, the natural question
that arises is whether plants can achieve an impressive improvement in the level of
efficiency (column eight) by themselves without coopetition. If this is not the case,
the technical efficiency change must fairly be considered one of the outcomes of
coopetition. They need a cooperation agreement as an incentive for their own
reorganization although coopetition produces a reduced additional joint product. In
this case, the technical efficiency change might be considered together with the
passive coopetition effect.

The idea signaled in Table 11.3 is further developed in Table 11.5. Following
the same definition of size as before, ROA gains, as well as their drivers, are shown
for different categories of plant size.

Table offers a result that we may analyze in two steps. Initially, we see that the
smaller the plant the lower the potential ROA gains. While bigger plants would
potentially increase their ROA 5.4 times, smaller ones would increase it 4.5 times.
For bigger plants, ROA gains are accelerated by higher profit margin changes
whereas smaller ones achieve potentially faster assets rotation. In all cases, this is
fully driven by productivity gains and, as in the general case, the main source is the
technical efficiency change. As for passive coopetition, it is found it to offer rather
divergent results. Biggest group of plants get the most out of this stage, but smallest

Table 11.4 Decomposition of potential ROA gains. Median values

ROA Gains Profit Margin Change Productivity Effect

Period
ROA 
Gains

=
Assets 

Rotation 
Change

x
Profit Margin 

Change

Price 
Recovery 

Effect
x

Productivity 
Effect

Passive
Coopetition 

Effect
x

Technical 
Efficiency 

Change
x

Pure
Coopetition 

Effect

[1] [2] [3] [4] [5] [6] [7] [8] [9]

2000/12 4.796 2.215 2.340 1.005 2.180 1.062 2.053 1.051

2000/07 5.518 2.257 2.489 1.005 2.320 1.040 2.100 1.047
2008/12 3.968 2.151 2.146 1.005 2.018 1.087 1.999 1.057
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ones find an unfavorable result, as a value lower than one would potentially cause
ROA losses. This is justified by the fact that bigger plants present lower values of
starting ROA than smaller plants. However, if we have a look at pure coopetition
effect, we conversely find that the smaller the plant the higher the effect on ROA
gains. Both results together point out that smaller plants must play an active role in
coopetition to eventually obtain some gains. A passive interaction is detrimental for
them.

Another peculiarity is found concerning periods. All categories worsen from
2008 onwards. However, the smaller the plant is, the higher the reduction in the
potential ROA gains in the second half. For the smaller ones, this due to lower
productivity gains, which makes the profit margin changes lower as well. The pure
coopetition effect remains quite stable between the periods, keeping the same raking
as in the general case.14

11.6 Conclussion

There is little literature covering the concept of coopetition, or cooperation among
competitors, from an economic perspective. This chapter contributes to the field
through the introduction of a non-parametric method to explore the potential eco-
nomic gains from coopetition. Coopetition, rather than merging, offers many

Table 11.5 Decomposition of potential ROA gains, per plant size. Median values

ROA Gains Profit Margin Change Productivity Effect

Period
Plant 
Size

# Obs
ROA 
Gains

=
Assets 

Rotation 
Change

x
Profit 

Margin 
Change

Price 
Recovery 

Effect
x

Productivity 
Effect

Passive
Coopetition 

Effect
x

Technical 
Efficiency 

Change
x

Pure
Coopetition 

Effect

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

2000/12

B 2,974 5.445 2.069 2.611 1.001 2.578 1.430 2.030 1.010
MB 4,993 5.062 2.191 2.334 1.001 2.239 1.040 2.110 1.036
MS 6,427 4.752 2.292 2.200 1.037 2.015 1.030 2.055 1.091
S 10,088 4.534 2.254 2.364 0.997 2.257 0.952 2.032 1.092

2000/07

B 2,163 5.646 2.039 2.644 1.002 2.615 1.360 1.975 1.012
MB 2,886 5.476 2.284 2.417 1.000 2.333 0.995 2.192 1.036
MS 3,721 5.254 2.313 2.262 1.039 2.036 1.076 2.077 1.088
S 5,532 5.601 2.384 2.537 0.992 2.444 0.889 2.120 1.096

2008/12

B 811 4.429 2.179 2.407 0.999 2.163 1.558 2.140 1.005
MB 2,107 4.647 2.045 2.258 1.001 2.111 1.098 2.002 1.037
MS 2,706 3.715 2.261 2.017 1.034 1.809 0.970 2.027 1.094
S 4,556 3.670 2.103 2.125 1.007 1.963 1.028 1.953 1.087

B: big; MB: medium–big; MS: medium–small; S: small

14We have also carried out the same analysis per each of the ten types of interactions according to
plant size (big to big, big to medium-big, etc.). Results emphasize the effect of size, as in
Table 11.5. Passive coopetition only pays off for bigger plants whenever they interact with smaller
partners. And pure coopetition effect is higher the smaller the plants taking part of the agreement,
being small-small the best possible scenario.
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advantages, flexibility being an important one of those. In fact, the plant maintains
not only control of its own investment, but also the rest of productive factors.
Furthermore, while merging would imply a permanent engagement between the
plants, coopetition only happens when incentives pay off. In this context, the parties
can terminate the cooperation if the conditions of the initial agreement are not
upheld.

The chapter proposes a definition of potential economic incentives for coope-
tition between independent plants based on the rate of return on assets, a
well-known measure of financial performance. The methodological approach has its
roots in the previous work by Bogetoft and Wang (2005) and by Grifell-Tatjé and
Lovell (2015) and enables comparison between situations of non-coopetition and
coopetition. The methodology was applied to the study of potential competition
within the European automotive industry. The main results are based on the anal-
ysis of a generated sample of over forty-five thousand cases of potential coopera-
tion. Out of that sample, roughly twelve thousand of the cases (about 27%) showed
potential ROA gains from coopetition.

The main findings reveal that faster asset turnover and better productivity
explain higher potential ROA from coopetition. It makes a clear contribution to
productivity gains, but the most important driver is technical efficiency. In theory,
the plant can reach a higher level of efficiency by itself, without any kind of
cooperation. However, the question is whether it needs a cooperation agreement as
an incentive for its own reorganization. If that is the case, technical efficiency
change should be considered to be an outcome of coopetition.

The results also show that medium–small and small plants have the strongest
economic incentive for coopetition. However these groups of plants must play an
active role in coopetition to get the potential gains. Passive coopetition would only
be fruitful for bigger plants (they present lower ROA values) whereas smaller plants
find it disadvantageous. This result seems natural, but empirical literature sup-
porting this claim has not been found, which may be due to the legal framework in
which coopetition is placed.

Results in the two periods defined as before and after the crisis are also sig-
nificantly different. The period of financial distress, 2008–2012, presents lower
ROA values and lower potential gains. That effect is more pervasive for smaller
actors. It is also true that in the last years of this period appears an overall path to
recovery.

Platform-sharing being a suitable method of coopetition in this industry, it has
often been configured as a joint-venture between competing producers. In most
cases, this arrangement is treated by law as a merger. When coopetition has a
European dimension or is a full-function joint venture,15 the EU regulation on

15Joint-ventures are regulated both by the EC Merger Regulation and Article 101 of The Treaty on
European Union and the Treaty on the Functioning of the European Union. Joint ventures are
virtually treated as merger-like operations. This link provides a summary of the assessment and
treatment of joint-ventures under European Regulation: http://uk.practicallaw.com/1-107-3702#
(last accessed February 2016).
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mergers is applied. In other cases, special standards (Article 101), as well as EU or
national competition authorities, must approve this type of agreements. Regardless,
platform-sharing between plants must overcome many legal restrictions before
finally being approved to operate.

Our results suggest that a specific regulation on coopetition needs to be issued at
the EU level. Coopetition cannot be treated as a merger and it should be promoted
instead of penalized. Policy makers should better understand the virtues of
coopetition, removing the worry of hidden collusion. Actually, the new regulation
should offer clear incentives for coopetition rather than preventing it, especially to
medium and small plants. The potential gains from coopetition found are a good
reason for this regulatory re-design, which can be achieved by issuing a specific
legal framework.

Some limitations of this study make research extensions relevant in the applied
side. For instance, as we discuss with regard to potentiality, many costs associated
to the development of the coopetition strategy might reduce the gains to be cap-
tured. Further applications should consider some type of structure-, distance-,
bargaining- or opportunity-related costs. The conclusions are based on the
assumption that plants share gains, but this may not always be the case. The
distribution may favor stronger plants, so smaller ones may not actually find such a
favorable scenario in reality. Natural, potential extensions for future research on
coopetition could also involve analyses about the effect on the consumers, market
pricing, product range, product quality or overall surplus.
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Chapter 12
Measuring Eco-efficiency Using
the Stochastic Frontier Analysis Approach

Luis Orea and Alan Wall

Abstract The concept of eco-efficiency has been receiving increasing attention in
recent years in the literature on the environmental impact of economic activity.
Eco-efficiency compares economic results derived from the production of goods and
services with aggregate measures of the environmental impacts (or ‘pressures’)
generated by the production process. The literature to date has exclusively used the
Data Envelopment Analysis (DEA) approach to construct this index of environmental
pressures, and determinants of eco-efficiency have typically been incorporated by
carrying out bootstrapped truncated regressions in a second stage. We advocate the
use of a Stochastic Frontier Analysis (SFA) approach to measuring eco-efficiency. In
addition to dealing with measurement errors in the data, the stochastic frontier model
we propose allows determinants of eco-efficiency to be incorporated in a one stage.
Another advantage of our model is that it permits an analysis of the potential sub-
stitutability between environmental pressures.We provide an empirical application of
our model to data on a sample of Spanish dairy farms which was used in a previous
study of the determinants eco-efficiency that employed DEA-based truncated
regression techniques and that serves as a useful benchmark for comparison.

Keywords Eco-efficiency � Stochastic frontier analysis � Dairy farms

JEL codes C18 � D24 � Q12 � Q51

12.1 Introduction

Concerns about the sustainability of economic activity has led to an increasing
interest in the concept of eco-efficiency and the literature on this topic has been
growing in recent years (Oude Lansink and Wall 2014). The term eco-efficiency
was originally coined by the World Business Council for Sustainable Development
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in their 1993 report (Schmidheiney 1993) and is based on the concept of creating
more goods and services using fewer resources. In turn, the OECD defines
eco-efficiency as “the efficiency with which ecological resources are used to meet
human needs” (OECD 1998). Clearly, the concept of eco-efficiency takes into
account both the environmental and economic objectives of firms.

When evaluating firm performance in the presence of adverse environmental
impacts, production frontier models are a popular tool (Tyteca 1996; Lauwers 2009;
Picazo-Tadeo et al. 2011; Pérez-Urdiales et al. 2015). The measurement of
eco-efficiency in a frontier context, which Lauwers (2009) refers to as the ‘frontier
operationalisation’ of eco-efficiency, involves comparing economic results derived
from the production of goods and services with aggregate measures of the envi-
ronmental impacts or ‘pressures’ generated by the production process. To date, only
the non-parametric Data Envelopment Analysis (DEA) method has been used in the
literature. While DEA has many advantages, it has the drawback that it can be
extremely sensitive to outliers and measurement errors in the data.

In the present work we propose a Stochastic Frontier Analysis (SFA) approach
to measuring eco-efficiency, which has the advantage that it well-suited to dealing
with measurement errors in the data. Using a stochastic frontier model to measure
eco-efficiency involves the estimation of only a few parameters, so the model can be
implemented even when the number of observations is relatively small. Moreover,
the SFA approach permits an analysis of the potential substitutability between
environmental pressures and can incorporate determinants of eco-efficiency in a
one-stage procedure.

We illustrate our simple proposal with an empirical application using a sample of
50 dairy farmers from the Spanish region of Asturias. This data set includes
information from a questionnaire specifically carried out to permit the accurate
measurement of eco-efficiency and provides information on farmers’ socioeco-
nomic characteristics and attitudes towards the environment, and has been used by
Pérez-Urdiales et al. (2015) to measure eco-efficiency and identify its determinants
using the DEA-based bootstrapped truncated regression techniques of Simar and
Wilson (2007). The results from that paper therefore provide a useful point of
comparison for the results from our proposed stochastic frontier model.

The paper proceeds as follows. In Sect. 12.2 we discuss the concept of
eco-efficiency and the DEA approach often used to estimate eco-efficiency scores.
Section 12.3 introduces our stochastic frontier model, which can be viewed as a
counterpart of the DEA eco-efficiency model. Section 12.4 describes the data we
use. The results are presented and discussed in Sect. 12.5, and Sect. 12.6 concludes.

12.2 Background

To measure eco-efficiency using frontiers, Kuosmanen and Kortelainen (2005)
defined eco-efficiency as a ratio between economic value added and environmental
damage and proposed a pressure-generating or pollution-generating technology set
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T ¼ fðp; pÞ 2 R 1þKð Þj p can be generated by pg. This technology set describes all
the feasible combinations of economic value added, p, and environmental pres-
sures, p. Environmental damage, DðpÞ, is measured by aggregating the
K environmental pressures p1; . . .; pKð Þ associated with the production activity.

Figure 12.1 provides an illustration for the simple case of two environmental
pressures, p1 and p2. The set of eco-efficient combinations is represented by the
eco-efficient frontier, which represents the minimum combinations of the two envi-
ronmental pressures which can be used to produce an economic value added of p0.
Combinations of pressures below the frontier are unfeasible whereas combinations
above it are eco-inefficient. For example, the combination of pressures represented by
point A is clearly eco-inefficient as the environmental pressures could be reduced
equiproportionally to point E on the frontier without reducing value added.

Eco-inefficiency can be measured using the radial distance from a point A to the
efficient frontier. The eco-efficiency score is given by the ratio OE/OA which takes
the value 1 for eco-efficient combinations of pressures and economic value added
and values less than 1 for inefficient combinations such as A. This is the approach
we will consider, although it should be pointed out that alternative measures of
eco-efficiency could be devised if we depart from radial (equiproportional) reduc-
tions in pressures. For example, instead of measuring the extent to which pressures
can be reduced while maintaining value added, we could measure the extent to
which the firm, given its present combination of pressures, could increase its value
added. Thus, if the firm was using the combination of pressure represented by A
efficiently, it would be operating on a new eco-efficient frontier passing through that
point, and could achieve a higher value added corresponding to this new frontier.
Other alternatives exist where the possibility of simultaneously reducing pressures
and increasing economic value added can be explored. Picazo-Tadeo et al. (2012),
for example, propose using a directional distance function approach which allows

p1

p2

●A 

T 

O

E 
● Eco-efficient fron er

π = π 0

Fig. 12.1 Eco-efficiency
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for this possibility, as well as that of reducing subsets of pressures in order to reach
the eco-efficient frontier.

These different ways of approaching the eco-efficient frontier will all lead to
valid measures of eco-inefficient behaviour but we will follow the existing literature
by focusing on the capacity of firms to reduce environmental pressures equipro-
portionally while maintaining value added. It should be underlined that our
eco-efficiency scores are defined directly in terms of environmental pressures and
not in terms of reductions of input quatities which can be transformed into an
associated reduction in in overall environmental damage. This latter approach was
followed by Coelli et al. (2007) and permitted them to disaggregate environmental
inefficiency into technical and allocative components using “iso-pressure” lines.

Individual eco-efficiency scores for producer i can be found using the following
expression:

EEFi ¼ Economic value added
Environmental pressure

¼ pi
DiðpÞ ð12:1Þ

where DiðpÞ is a function that aggregates the environmental pressures into a single
environmental pressure indicator. This can be done by taking a linear weighted
average of the individual environmental pressures:

DiðpÞ ¼ w1p1i þw2p2i þ � � � þwKpKi ð12:2Þ

where wk is the weight assigned to environmental pressure pk. Kuosmanen and
Kortelainen (2005) and Picazo-Tadeo et al. (2012), among others, use DEA as a
non-subjective weighting method. The DEA eco-efficiency score of firm i can be
computed from the following programming problem

maxwki EEFi ¼ piPK
k¼1 wkipki

ð12:3Þ

subject to the constraints

pjPK
k¼1 wkipkj

� 1 j ¼ 1; . . .;N

wki � 0 k ¼ 1; . . .;K

This formulation involves a non-linear objective function and non-linear con-
straints, which is computationally difficult. This problem is often linearized by
taking the inverse of the eco-efficiency ratio and solving the associated reciprocal
problem (Kuosmanen and Kortelainen 2005; Picazo-Tadeo et al. 2011).

The two constraints in the problem force weights be non-negative and
eco-efficiency scores take values between zero and one, that is:
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EEFi ¼ piPK
k¼1 wkipki

� 1; 8i ¼ 1; . . .;N ð12:4Þ

The DEA eco-efficiency score which solves this problem for firm i indicates the
maximum potential equiproportional reduction in all environmental pressures that
could be achieved while maintaining economic value constant, i.e., it corresponds
to the ratio OE/OA for a firm operating at point A in Fig. 12.1 and would take the
vaue 1 for an eco-efficient firm.

12.3 The SFA Eco-efficiency Model

In this section we introduce our SFA counterpart of the above DEA eco-efficiency
model. We first introduce a basic (i.e. homoskedastic) specification of the model in
order to focus our attention on the main characteristics of the model and the
differences between the SFA and DEA approaches1. We then present a
heteroskedastic specification of the model that allows us to identify determinants of
firms’ eco-efficiency in a simple one-stage procedure. Finally, we explain how we
obtain the estimates of eco-efficiency for each farm.

12.3.1 Basic Specification

Our SFA approach to modelling eco-efficiency relies on the constraint in Eq. (12.4).
If we assume that the environmental pressure weights, wk, in (12.2) are parameters
to be estimated, we can impose that these be positive by reparameterizing them as
wk ¼ ebk . As each environmental pressure contributes positively to overall envi-
ronmental damage, this restriction, which is stated in (12.3), follows naturally. The
natural logarithm of Eq. (12.4) can be written as:

lnEFFi ¼ ln
piPK

k¼1 e
bk � pki

 !
� 0 ð12:5Þ

The above equation can be rewritten as:

ln pið Þ ¼ ln
XK

k¼1
ebk � pki

� �
� ui ð12:6Þ

where ui ¼ � ln EFFi � 0 can now be viewed as a non-negative random term
capturing firm i’s eco-inefficiency.

1A version of this basic homoskedastic model has been presented in Orea and Wall (2015).
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Equation (12.6) is a non-linear regression model with a nonpositive disturbance
that can be estimated using several techniques, including goal programming, cor-
rected ordiinary least squares (COLS) and modified ordinary least squares (MOLS)
—see Kumbhakar and Lovell (2000, Sect. 3.2.1). If we were using a multiplicative
aggregation of environmental pressures, we would get a linear (i.e. Cobb-Douglas)
regression model where positive parameter values would need to be imposed. Both
models are rougly equivalent but the Cobb-Douglas specification would depart
from the tradition in the eco-efficiency literature of using linear combinations of
environmental pressures.

Regardless of the technique, however, note that in (12.6) we are measuring
firms’ eco-efficiency relative to a deterministic environmental pressure frontier.
This implies that all variation in value added not associated with variation in
individual environmental pressures is entirely attributed to eco-inefficiency. In other
words, this specification does not make allowance for the effect of random shocks,
which might also contribute (positively or negatively) to variations in value added.

As is customary in the SFA literature in production economics, in order to deal
with this issue we extend the model in (12.6) by adding a symmetric random noise
term, vi, and a non-zero intercept h:

ln pið Þ ¼ hþ ln
XK

k¼1
ebk � pki

� �
þ vi � ui ð12:7Þ

This model is more complex than a deterministic eco-efficiency frontier model
but it is also more realistic as deviations from the frontier due not only to
eco-inefficiency but also to uncontrollable or unobservable factors (i.e. random
noise) are incorporated. We have also added a non-zero intercept in order to obtain
unbiased parameter estimates in case the unobservable factors or measurement
errors have a level effect on firms’ profit.

The error term in (12.7) thereby comprises two independent parts. The first part,
vi, is a two-sided random noise term, often assumed to be normally distributed with
zero mean and constant standard deviation, i.e. rv ¼ ec. The second part, ui, is a
one-sided error term capturing underlying eco-inefficiency that can vary across
firms. Following Aigner et al. (1977) it is often assumed to follow a half-normal
distribution, which is the truncation (at zero) of a normally-distributed random
variable with mean zero. Moreover, these authors also assumed that the variance of
the pre-truncated normal variable (hereafter ru) is homoskedastic and common to
all farms, i.e. ru ¼ ed. The identification of both random terms in this model (ALS
henceforth) relies on the asymmetric and one-sided nature of the distribution of ui
(see Li 1996) If the inefficiency term could take both positive and negative values, it
would not be distinguishable from the noise term, vi.

It should be pointed out that under these distributional assumptions the density
function of the composed error term ei ¼ vi � ui in (12.7) is the same as the
well-known density function of a standard normal-half normal frontier model.
Following Kumbhakar and Lovell (2000, p. 77), the log likelihood function for a
sample of N producers can then be written as:

280 L. Orea and A. Wall



ln Lðh; b; c; dÞ ¼ N
2
ln r2v þ r2u
� �þ XN

i¼1

ln U � ei h; bð Þ � ru=rv
r2v þ r2u
� �1=2

" #

� 1
2 r2v þ r2u
� �XN

i¼1

eiðh; bÞ ð12:8Þ

where b ¼ ðb1; . . .; bKÞ, and

ei h; bð Þ ¼ ln pið Þ � h� ln
XK
k¼1

ebk � pki
 !

ð12:9Þ

The likelihood function (12.8) can be maximized with respect to ðh; b; c; dÞ to
obtain consistent estimates of all parameters of our eco-efficiency model. The only
difference between our SFA eco-efficiency model and a traditional SFA production
model is the computation of the error term ei h; bð Þ. In a traditional SFA production
model, this is a simple linear function of the parameters to be estimated and hence
the model can be estimated using standard econometric software, such as Limdep or
Stata. In contrast, ei h; bð Þ in Eq. (12.9) is a non-linear function of the b parameters.
Although the non-linear nature of Eq. (12.9) prevents using the standard commands
in Limdep or Stata to estimate our SFA eco-efficiency model, it is relatively
straightforward to write the codes to maximize (12.8) and obtain our parameter
estimates.

The model in (12.7) can also be estimated using a two-step procedure that
combines ML and method of moments (MM) estimators. In the first stage, the
intercept h and the environmental pressure parameters b of Eq. (12.7) can be
estimated using a non-linear least squares estimator. In the second step, the
aforementioned distributional assumptions regarding the error terms are made to
obtain consistent estimates of the parameters describing the variance of vi and ui
(i.e., c and d) conditional on the estimated parameters from the first step. This
two-step approach is advocated for various models in Kumbhakar and Lovell
(2000). The main advantage of this two-step procedure is that no distributional
assumptions are used in the first step. Standard distributional assumptions on vi and
ui are used only in the second step. In addition, in the first step the error components
are allowed to be freely correlated.

An important issue that should be taken into account when using a two-step
procedure is that the expectation of the original error term in (12.7) is not zero
because ui is a non-negative random term. This implies that the estimated value of
the error term ei in Eq. (12.7) should be decomposed as follows:

ei ¼ vi � ui þEðuiÞ ð12:10Þ

If ui follows a half-normal distribution, then EðuiÞ ¼
ffiffiffiffiffiffiffiffi
2=p

p � ru. Thus, the
stochastic frontier model in the second stage is:
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ei ¼ vi � ui �
ffiffiffiffiffiffiffiffi
2=p

p
� ed ð12:11Þ

Note that there are no new parameters to be estimated. The parameters c and d
are estimated by maximizing the likelihood function associated to this (adjusted)
error term. As Kumbhakar et al. (2013) have recently pointed out, the stochastic
frontier model based on (12.11) can accommodate heteroskedastic inefficiency and
noise terms simply by making the variances of ru and rv functions of some
exogenous variables (see, for instance, Wang 2002; Álvarez et al. 2006). This issue
is addressed later on.

Before proceeding, it should be pointed out that an alternative two-step approach
based only on MM estimatorscan also be used. This empirical strategy relies on the
second and third moments of the error term ei in Eq. (12.7). This approach takes
advantage of the fact that the second moment provides information about both rv
and ru whereas the third moment only provides information about the asymmetric
(one-sided) random inefficiency term. Olson et al. (1980) showed using simulation
exercises that the choice of estimator (ML vs.MM) depends on the relative value of
the variances of both random terms and the sample size. When the sample size is
large and the variance of the one-sided error component is small compared to the
variance of the noise term, ML outperforms MM. The MM approach has, in
addition, some practical problems. It is well known in the stochastic frontier lit-
erature, for example, that neglecting heteroskedasticity in either or both of the two
random terms causes estimates to be biased. Kumbhakar and Lovell (2000) pointed
out that only the ML approach can be used to address this problem. Another
practical problem arises in homoskedastic specifications of the model when the
implied ru becomes sufficiently large to cause rv\0, which violates the assump-
tions of econometric theory.

Compared to the DEA eco-efficiency model, our SFA approach will attenuate
the effect of outliers and measurement errors in the data on the eco-efficiency
scores. Moreover, it is often stressed that the main advantage of DEA over the SFA
approach is that it does not require an explicit specification of a functional form for
the underlying technology. However, the ‘technology’ here is a simple index that
aggregates all environmental pressures into a unique value. Thus, we would expect
that the parametric nature of our SFA approach is not as potentially problematic in
an eco-efficiency analysis as it may be in a more general production frontier setting
where theses techniques are used to uncover the underlying (and possibly quite
complex) relationship between multiple inputs and outputs. Another often-cited
advantage of the DEA approach is that it can be used when the number of obser-
vations is relatively small. We reiterate, however, that the ‘technology’ of our SFA
model is extremely simple, with few parameters to be estimated, so that the model
can be implemented even when the number of observations is not large.

Finally, note that the estimated b parameters have an interesting interpretation in
the parametric model. In the expression for eco-efficiency in (12.1), we note that
eco-efficiency is constant and equal to 1 along the eco-efficiency frontier.
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Differentiating (12.1) in this case with respect to an individual pressure pk for firm
i we obtain:

@DiðpÞ
@pk

¼ @pi
@pk

ð12:12Þ

For any two pressures pj and pk, therefore, we have:

@DiðpÞ
@pj

@DiðpÞ
@pk

¼
@pi
@pj
@pi
@pk

ð12:13Þ

From the expression for eco-efficiency in the reparameterized model in (12.5) it

is clear that @DiðpÞ
@pk

¼ ebk , so that in this particular case (12.13) becomes:

ebj

ebk
¼ @pi=@pj

@pi=@pk
ð12:14Þ

Once the b parameters have been estimated, ebk therefore represents the marginal
contribution of pressure pk to firm i’s value added, i.e., it is the monetary loss in
value added if pressure pk were reduced by one unit.

As expression (12.14) represents the marginal rate of technical substitution of
environmental pressures, it provides valuable information on the possibilities for
substitution between pressures. If this marginal rate of substitution took a value of
2, say, we could reduce pressure pj by two units and increase pk by one unit without
changing economic value added. This also sheds light on the consequences for
firms of legislation requiring reductions in individual pressures. Continuing with the
previous example, it would be relatively less onerous for the firm to reduce pressure
pk rather than pj as the fall in value added associated with a reduction in pk would
be only half that which would occur from a reduction in pj.

12.3.2 Heteroskedastic Specification

Aside from measuring firms’ eco-efficiency, we also would like to analyse the
determinants of eco-efficiency. The concern about the inclusion of contextual
variables or z-variables has led to the development of several models using para-
metric, non-parametric or semi-parametric techniques. For a more detailed review
of this topic in SFA and DEA, see Johnson and Kuosmanen (2011, 2012). The
inclusion of contextual variables in DEA has been carried out in one, two or even
more stages. Ruggiero (1996) and other authors have highlighted that the one-stage
model introduced in the seminal paper of Banker and Morey (1986) might lead to
bias. To solve this problem, other models using several stages have been developed
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in the literature. Ray (1988) was the first to propose a second stage where standard
DEA efficiency scores were regressed on a set of contextual variables. This practice
was widespread until Simar and Wilson (2007) demonstrated that this procedure is
not consistent because the first-stage DEA efficiency estimates are serially corre-
lated. These authors proposed a bootstrap procedure to solve this problem in two
stages which has become one of the most-widely used method in DEA to identify
inefficiency determinants.

As the inefficiency term in the ALS model has constant variance, our SFA model
in (12.7) does not allow the study of the determinants of firms’ performance. It
might also yield biased estimates of both frontier coefficients and farm-specific
eco-inefficiency scores (see Caudill and Ford 1993). To deal with these issues, we
could estimate a heteroskedastic frontier model that incorporates z-variables into
the model as eco-efficiency determinants. The specification of ui that we consider in
this paper is the so-called RSCFG model (see Alvarez et al. 2006), where the
z-variables are treated as determinants of the variance of the pre-truncated normal
variable. In other words, in our frontier model we assume that

rui ¼ h zið Þ � ru ð12:15Þ

where

hðziÞ ¼ ea
0zi ð12:16Þ

is a deterministic function of eco-inefficiency covariates, a ¼ ða1; . . .; aJÞ, is a
vector of parameters to be estimated, and zi ¼ ðzi1; . . .; ziJÞ is a set of J potential
determinants of firms’ eco-inefficiency. This specification of rui nests the ho-
moskedastic model as (12.15) colapses into ed if we assume that hðziÞ ¼ 1 or a = 0.

The so-called ‘scaling property’ (Alvarez et al. 2006) is satisfied in this
heteroskedastic version of our SFA model in the sense that the inefficiency term in
(12.7) can be written as ui ¼ hðziÞ � u�i , where u�i ! N þ ð0; edÞ is a one-sided
random variable that does not depend on any eco-efficiency determinant. The
defining feature of models with the scaling property is that firms differ in their mean
efficiencies but not in the shape of the distribution of inefficiency. In this model u�i
can be viewed as a measure of “basic” or “raw” inefficiency that does not depend on
any observable determinant of firms’ inefficiency.

The log likelihood function of this model is the same as Eq. (12.8), but now rui
is heteroskedastic and varies across farms. The resulting likelihood function should
then be maximized with respect to h; b; c; d and a to obtain consistent estimates of
all parameters of the model. As both frontier parameters and the coefficients of the
eco-inefficiency determinants are simultaneously estimated in one stage, the
inclusion of contextual variables in our SFA model is much simpler than in DEA.
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12.3.3 Eco-efficiency Scores

We next discuss how we can obtain the estimates of eco-efficiency for each firm
once either the homoskedastic or heteroskedastic model has been estimated. In both
specifications of the model, the composed error term is simply ei ¼ vi � ui. Hence,
we can follow Jondrow et al. (1982) and use the conditional distribution of ui given
the composed error term ei to estimate the asymmetric random term ui. Both the
mean and the mode of the conditional distribution can be used as a point estimate of
ui. However, the conditional expectation E uijeið Þ is by far the most commonly
employed in the stochastic frontier analysis literature (see Kumbhakar and Lovell
2000).

Given our distributional assumptions, the analytical form for E uijeið Þ can be
written as follows:

E uijeið Þ ¼ �li þ �ri
/ ��li=�rið Þ

1� U ��li=�rið Þ
	 


ð12:17Þ

where

r2i ¼ r2v þ hðziÞ2r2u
�li ¼

eihðziÞ2r2u
r2i

�ri ¼ hðziÞrurv
ri

To compute the conditional expectation (12.17) using the heteroskedastic model,
we should replace the deterministic function hðziÞ with our estimate of (12.16),
while for the homoskedastic model we should assume that hðziÞ ¼ 1.

12.4 Data

The data we use come from a survey which formed part of a research project whose
objective was to analyse the environmental performance of dairy farmers in the
Spanish region of Asturias. Agricultural activity has well-documented adverse
effects on the environment, and the increasing concerns among policymakers about
environmental sustainability in the sector are reflected in the recent Common
Agricultural Policy (CAP) reforms in Europe. Dairy farming, through the use of
fertilizers and pesticides in the production of fodder, as well as the emission of
greenhouse gases, has negative consequences for land, water, air, biodiversity and
the landscape, so it is of interest to see whether there is scope for farmers to reduce
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environmental pressures without value added being reduced and identify any farmer
characteristics that may influence their environmental performance.

A questionnaire was specifically designed to obtain information on individual
pollutants, including nutrients balances and greenhouse gas emissions. These
individual pollutants were then aggregated using standard conversion factors into a
series of environmental pressures. Questions were included regarding farmers’
attitudes towards aspects of environmental management as well as a series of
socioeconomic characteristics. The data collected correspond to the year 2010.

A total of 59 farmers responded to the questionnaire and the environmental and
socioeconomic data were combined with economic data for these farmers which is
gathered annually through a Dairy Cattle Management Program run by the regional
government. Given that there were missing values for some of the variables we
wished to consider, the final sample comprised 50 farms.

These data were used by Pérez-Urdiales et al. (2015) to measure the farmers’
eco-efficiency and relate it to attitudinal and socioeconomic factors. These authors
used the two-stage DEA-based bootstrapped truncated regression technique pro-
posed by Simar and Wilson (2007) to estimate eco-efficiency and its determinants,
finding evidence of considerable eco-inefficiency. We will use the same variables as
Pérez-Urdiales et al. (2015) to estimate eco-efficiency and its determinants using the
SFA methods proposed in the previous section, which will permit us to see whether
the SFA model yields similar results. We will use the results from Pérez-Urdiales
et al. (2015) as a reference for comparison but it should be stressed that the dataset
is far from ideal for using a SFA approach. In particular, the number of observations
is relatively small and there are several determinants of eco-efficiency whose
parameters have to be estimated.

The variables are described in detail in Pérez-Urdiales et al. (2015) but we will
briefly discuss them here. For the numerator of the eco-efficiency index, we use the
gross margin for our measure of economic value added (Econvalue). This is the
difference between revenues from milk production (including milk sales and the
value of in-farm milk consumption) and direct (variable) costs. These costs include
expenditure on feed, the production of forage, expenses relate to the herd, and
miscellaneous expenses. Costs related to the production of forage include purchases
of seeds, fertilizers and fuel, machine hire and repairs, and casual labour, while
herd-related costs include veterinary expenses, milking costs, water and electricity.
The environmental pressures comprise nutrients balances and greenhouse gas
emissions. The nutrients balances measure the extent to which a farm is releasing
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nutrients into the environment, defined as the difference between the inflows and
outflows of nutrients. The nutrients balances used are nitrogen (SurplusN), phos-
phorous (SurplusP) and potassium (SurplusK), all measured in total kilograms.
These environmental pressures are constructed using the farm gate balance
approach and are calculated as the difference between the nutrient content of farm
inputs (purchase of forage, concentrates, mineral fertilizers and animals, legume
fixation of nitrogen in the soil and atmospheric deposition) and the nutrient content
of outputs from the farm (milk sales and animal sales). The volume of greenhouse
gas emissions captures the contribution of the farm to global warming and the
dataset contains information on the emissions of carbon dioxide (CO2), methane
(CH4) and nitrous oxide (N2O). Each of these greenhouse gases is converted into
CO2 equivalents, so that the variable used is (thousands of) kilos of carbon dioxide
released into the atmosphere (CO2).

The second set of variables are the potential determinants of eco-efficiency,
which comprises socioeconomic characteristics and attitudes of farmers. The
socioeconomic variables are the age of the farmer (Age); the number of hours of
specific agricultural training that the farmer received during the year of the sample
(Training); and a variable capturing the expected future prospects of the farm and
which is defined as a dummy variable taking the value 1 if the farmer considered
that the farm would continue to be in operation five years later, and 0 otherwise
(Prospects). As explained in Pérez-Urdiales et al. (2015), eco-efficiency would be
expected to be negatively related to age (i.e., older farmers should be less
eco-efficient) and positively related to professional training and the expectation that
the farm continue.

Three attitudinal variables were constructed from responses to a series of
questions on farmers’ beliefs regarding their management of nutrients and green-
house gas emissions as well as their attitudes towards environmental regulation.
Thus, on a five-point Likert scale respondents had to state whether they strongly
disagree (1), disagree (2), neither agree nor disagree (3), agree (4) or strongly agree
(5), with a series of statements regarding their habits and attitudes towards envi-
ronmental management. The variables HabitsCO2 and HabitsNutrients are con-
structed as dummy variables that take the value 1 if respondents stated that they
agreed or strongly agreed that management of grenhouse gases and nutrients was
important, and 0 otherwise. The final variable measuring attitudes towards envi-
ronmental regulation, defined as a dummy variable taking the value 1 if respondants
agreed or strongly agreed that environmenatl regulation should be made more
restrictive and 0 otherwise (Regulation).

Some descriptive statistics of the variables used for measuring eco-efficiency and
the determinants of estimated eco-efficiency are presented in Table 12.1.
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12.5 Results

We focus initially on the results from the stochastic frontier models and then on the
comparison of these with the DEA results.

Table 12.2 presents estimates from different specifications of the homoskedastic
(ALS) and heteroskedastic (RSCFG) stochastic eco-efficiency frontier, with their
corresponding eco-efficiency scores presented in Table 12.3. Columns (A) and
(B) of Table 12.2 report estimates from the ALS model with all environmental
pressures included and it can be seen that all the estimated coefficients on the
pressures were highly significant. The parameter d corresponding to ln ru was also
highly significant, implying that the frontier specification is appropriate.

Table 12.1 Descriptive statistics of variables

Variable Description Mean S. dev.

Econvalue Value added (€) 77,137 40,423

Environmental pressures

SurplusN Nitrogen surplus (kg) 5966 4705

SurplusP Phosphorous surplus (kg) 2770 2168

SurplusK Potassium surplus (kg) 2096 1681

CO2 Greenhouse gases (‘000s kg) 427 142

Eco-efficiency determinants

HabitsCO2 Attitude towards greenhouse gas management 0.09 0.29

HabitsNutrients Attitude towards nutrient management 0.77 0.43

Age Age of head of household 45.98 7.97

Prospects Continuity of farm 0.98 0.14

Regulation Attitude towards regulation 0.58 0.50

Training Hours of specific training in last year 45.14 63.10
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As the pressure function parameters bk enter the eco-efficiency specification
exponentially rather than linearly (12.5), in the bottom part of Table 12.2 the
exponents of the coefficients are presented. The t-statistics here correspond to the
null that ebk is equal to zero for each of the k pressures, and this is rejected in all
cases.

However, focusing on the magnitudes rather than the statistical significance, it
can be seen that the marginal contribution of the phosphorous balance to value
added is almost negligible. Also, the value of ebk for potassium is almost twice as
large as that of nitrogen. Recalling our discussion of the interpretation of these
parameters after Eq. (12.14) above, this implies that potassium contributes twice as
much to value added as nitrogen and would therefore be more costly for the farmer
to reduce. Similarly, if farmers were required to reduce nitrogen, this could in
principle be substituted by potassium: for a given reduction in kilos of nitrogen,
farmers could increase their use of potassium by half this number of kilos and
maintain the same value added. In this particular application, such substitution
could be achieved through changes in the composition of feed, fertilizers, and a
change in the composition of forage crops. Reducing phosphorous, on the other
hand, would be virtually costless.

In light of the negligible contribution of phosphorous to value added, we rees-
timate the ALS model eliminating the phosphorous balance from the pressure
function, and the results are presented in columns (C) and (D). The parameters on
the nutrients are not significantly differently from 0, implying that the ebk are not
significantly different from 1. Note that the frontier specification is still appropriate
and a comparison of the the efficiency scores from the two models in Table 12.3
shows that are practically identical.

We now turn to the heteroskedastic (RSCFG) specification of the stochastic
frontier where we incorporate the determinants of eco-efficiency described in the
previous section. Some of the farms had missing values for one or more of these
determinants, and after eliminating these observations we were left with 40 farms
with complete information. When estimating the model for these 40 observations
with all nutrients balances included, it did not converge. We then eliminated the
phosphorous balance as we had done in columns (C) and (D) for the homoskedastic
(ALS) specification, but the model still did not converge. Following our earlier
strategy of eliminating the nutrient balance with the lowest marginal contribution,
from column (A) we see that the nitrogen balance has a far lower marginal con-
tribution than the potassium balance. We therefore specified the model without the
nitogen balance, keeping only the potassium balance and grenhouse gas emissions
as pressures. With this specification the model converged successfully and the
results are reported in columns (I) and (J). The homoskedastic specification with the
potassium and greenhouse gases as the only pressures for both the complete sample
of 50 observations (ALS-50C) and the reduced sample of 40 observations
(ALS-40C) are reported in Columns (E)-(H), and a comparison of these estimates
reveals that the coefficients on the pressures change very little across the three
models.
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To compare the eco-efficiencies estimated by DEA and SFA, a scatterplot of the
DEA efficiency scores and the efficiency estimates from the SFA model is presented
in Fig. 12.2. These DEA scores are based on a simple DEA calculation as opposed
to the bootstrapped DEA scores reported in Pérez-Urdiales et al. (2015). As can be
seen, the eco-efficiencies are almost identical. Also plotted on Fig. 12.2 is the
regression line from the regression of the SFA estimates on the DEA scores, where
the R2 is 0.9805. The Spearman Rank Correlation Coefficient (Spearman’s rho) was
0.996, showing that the models yielded virtually identical rankings of eco-efficiency
levels. Even when the reduced sample of 40 observations is used, the
eco-efficiencies are again very similar, with almost identical mean values and a
Spearman Rank Correlation Coefficient of 0.959.

While the raw eco-efficiency scores between DEA and SFA are very similar, the
questions remains as to whether the models yield similar results with regard to the
determinants of eco-efficiency. The estimates of the efficiency determinants from
the SFA model from Table 12.2 are presented in Table 12.4 alongside the
parameter estimates reproduced from Pérez-Urdiales et al. (2015). While all the
determinants in Pérez-Urdiales et al. (2015) were found to be significant at the 95%
level, only two of the determinants—HabitsCO2 and Prospects—are significant at
this level in the heteroskadastic SFA model (though two other variables—Age and
Regulation - were significant at the 90% level). Notably, however, the SFA model
yields exactly the same signs on the eco-efficiency determinants as the bootstrapped
DEA-based truncated regression used by Pérez-Urdiales et al. (2015).

Fig. 12.2 Comparison of Eco-efficiency scores
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12.6 Conclusions

Measurement of eco-efficiency has been carried out exclusively using
non-parametric DEA techniques in the literature to date. In the present work we
have proposed using a (parametric) stochastic frontier analysis (SFA) approach.
While such models are highly non-linear when estimating eco-inefficiency, in an
empirical application we find that such an approach is feasible even when the
sample size is relatively small and determinants of eco-inefficiency - which
increases the number of parameters to be estimated - are incorporated. Using data
from a sample of 50 Spanish dairy farms previously used by Pérez-Urdiales et al.
(2015), we begin by estimating a stochastic frontier model without eco-efficiency
determinants, and find that our model yields virtually identical eco-efficiency scores
to those calculated by DEA. Estimating eco-efficiency without determinants
involves relatively few parameters, so sample size should not be a major obstacle to
using SFA. Our results corroborate this.

We then estimated a heteroskedastic SFA model which incorporated determi-
nants of eco-inefficiency. We use the same determinants used by Pérez-Urdiales
et al. (2015), who carried out their analysis applying bootstrapped truncated
regression techniques. As extra parameters have to be estimated, the small sample
size became more of an issue for the stochastic frontier model. Indeed, in order for
the model to converge we had to use fewer environmental pressures in our appli-
cation than Pérez-Urdiales et al. (2015). Encouragingly, however, we found the
exact same signs on the determinants of eco-efficiency as those found by
Pérez-Urdiales et al. (2015). Thus, even with a small sample size and multiple
determinants of eco-inefficiency, the stochastic frontier model yields similar con-
clusions to those obtained by truncated regression techniques based on DEA esti-
mates of eco-efficiency.

Using stochastic frontier models for eco-efficiency measurement has some
advantages over the bootstrapped truncated regression techniques that have been

Table 12.4 Estimated coefficients and significance of eco-efficiency determinants

SFA DEA

Estimated
parameter

Significant at
95% level?

Estimated
parameter

Significant at
95% level?Variable

HabitsCO2 −1.060 Yes −0.689 Yes

HabitsNutrients −0.210 No −0.231 Yes

Age 0.011 No 0.008 Yes

Prospects −0.641 Yes −2.144 Yes

Regulation 0.270 No 0.230 Yes

Training −0.004 No −0.002 Yes

Intercept −0.317 Yes 0.161 Yes

The SFA results come from Table 12.2. The DEA results are obtained from Pérez-Urdiales et al.
(2015, Table 12.3)
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employed in the litrature to date. In particular, the stochastic frontier model can be
carried out in one stage and the coefficients on the environmental pressures
(‘technology’ parameters) have interesting interpretetations which shed light on the
contribution of these pressures to firm economic value added. The estimated
coefficients also uncover potentially useful information on the substitutability
between environmental pressures. As such, we advocate the use of SFA for mea-
suring eco-efficiency as a complement to or substitute for DEA-based approaches.
When sample size is small and we wish to incorporate determinants of
eco-efficiency, the DEA-based truncated regression techniques may permit more
environmental pressures to be included in the analysis. However, with larger
sample sizes, we would expect this advantage to disappear and the stochastic
frontier models can provide extra valuable information for producers and policy-
makers, particularly with regard to substitutability between pressures.
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Chapter 13
Bankruptcy Prediction of Companies
in the Retail-Apparel Industry Using Data
Envelopment Analysis

Angela Tran Kingyens, Joseph C. Paradi and Fai Tam

Abstract Since 2008, the world has gone through a significant recession. This
crisis has prompted many small businesses and large corporations to file for
bankruptcy, which has grave global social implications. While the markets have
recovered much of the lost ground by now, there is still great opportunity to learn
about all the possible factors of this recession. We develop a model using DEA to
predict the likelihood of failure of US companies in the retail-apparel industry based
on information available from annual reports—financial statements and their cor-
responding Notes, Management’s Discussion and Analysis, and Auditor’s Report.
It was hypothesized that variables that reflect managerial decision-making and
economic factors would enhance the predictive power of current mathematical
models that consider financial data exclusively. This is an effective prediction tool,
separating companies with a high risk of bankruptcy from those that were healthy,
with a reliable accuracy of 80%—an improvement over the widely-used Altman
bankruptcy model having 70, 58 and 50% accuracy when predicting cases today,
from one year back and from two years back, respectively.

13.1 Introduction

Bankruptcy is a legally declared financial inability of an individual or organization
to meet its debt obligations. In the US, nearly 1.59 million filings for bankruptcy
protection were made in 2010, an increase of 8% from 2009 and 43% from 2008
(US Courts, Bankruptcy Statistics 2010). The effect of bankruptcy is two-fold.
Creditors lose at least part of their interest payments and principal investment, while
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business owners are subject to unpleasant legal, financial and personal
consequences. For example, bankruptcy may harm the owner’s reputation, damage
existing relationships and make it difficult to obtain credit in the future. Thus there
are economic and social incentives for predicting bankruptcy. Creditors could better
assess risk and price interest accordingly. For owners, prediction would translate to
prevention, buying time for them to secure more financing and avoid potential
demise. Investors could use the information to invest in healthy companies and
short those at risk.

Most of the prevalent mathematical models used for bankruptcy prediction rely
on financial data and ratios, ignoring managerial, market and economic factors.
Also, while these techniques generally make dichotomous (i.e. survive or fail)
predictions, they do not provide owners with strategies to improve their operations
when bankruptcy is looming. Therefore the objective of this paper is to develop a
bankruptcy prediction model based on Data Envelopment Analysis (DEA) that will
assess the likelihood of bankruptcy and suggest preventive measures. The model
considers data from financial statements and their accompanying Notes (which
provide hints on managerial decision-making) as well as market and economic
influences, as it is hypothesized their inclusion will enhance predictive power. The
performance of this new model is compared with that of the industry standard
Altman Z-score, which had accuracy rates of 70, 58 and 50% predicting
bankruptcies on the data studied today, one year, and two years back, respectively.
Although the model is adaptable to other industries, the data used was from the
American retail-apparel industry.

The remainder of this paper is organized as follows. Section 13.2 gives the
background and a literature review of prior work on bankruptcy prediction is
presented, as well a basic description of DEA, the basis of the developed model.
Section 13.3 describes the US retail-apparel industry and financial statement data
utilized. Section 13.4 presents the developed methodology. Section 13.5 details the
formulations and results of the individual financial statement DEA models used as
first-stage metrics. Section 13.6 presents the results of the second-stage DEA
model. Discussion of the results is given in Sects. 13.7 and 13.8 offers conclusions.

13.2 Background

Bankruptcy is a legally declared financial inability of an organization to meet its
debt obligations. It is distinguished from insolvency which is a financial state where
a company’s liabilities exceed its assets, or it is unable to meet debt payments as
they become due. Causes of bankruptcy include: financial mismanagement, poor
location, competition, difficulties with cash flow, loss of capitalization, high debt,
lack of planning, tax burdens and regulations, loss of a key person, lack of tech-
nology, poor record keeping, personal issues, and natural disaster or accident
leading to high insurance (Bradley and Cowdery 2004).

Bankruptcy prediction has been a prolific field of study, and researchers have
considered various factors such as financial ratios, geographic location, type of
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industry and competition. To date, there are over 200 journal articles reporting on
bankruptcy prediction using common financial ratios alone. Ravi Kumar and Ravi
(2007) conducted an extensive review of nearly 120 papers, grouping them by
methodology into nine categories: statistical techniques, neural networks, case-based
reasoning, decision trees, operations research, evolutionary approaches, rough set
based techniques, other techniques subsuming fuzzy logic and support vector
machine and isotonic separation, and combinations of multiple techniques. Statistical
techniques are amongst the most popular and serve as the benchmark for the
developed model, and operations research is the basis for the model presented here.

One of the standard bankruptcy prediction models is the Altman Z-score
(Altman 1968), which was derived by applying multiple discriminant analysis to
common financial ratios, yielding a single score from a linear combination of these
ratios. The range of Z-scores was broken down into three zones: high scores rep-
resenting the safe (non-bankrupt) zone, and low scores the distress (bankrupt) zone.
No prediction was made for firms with intermediate scores (the grey zone). Despite
the simplicity of the Z-score, it has been found to work well in a variety of
circumstances. The original model was developed on a 50–50 dataset of bankrupt
and non-bankrupt public manufacturing companies, and was able to predict
bankruptcies up to 2 years beforehand with overall error rates of 5 and 17% in years
1 and 2 respectively.

Two further models were proposed for private firms and public
non-manufacturing firms (Hanson 2003). The public non-manufacturing model is
given by:

Z 0 ¼ 6:56�Working Capital
Total Assets

þ 3:26� Retained Earnings
Total Assets

þ 6:72� Earnings Before Interest and Taxes
Total Assets

þ 1:05� Market Value of Equity
Market Value of Total Liabilities

Z′ ≥ 2.6 represents the safe zone, and Z′ ≤ 1.1 is the distress zone.
Another statistical model is the Ohlson model (Ohlson 1980), based the maxi-

mum likelihood estimate of the conditional logit model to predict bankruptcy. It was
derived using data on publicly-listed industrial firms from 1970 to 1976, repre-
senting a sample of 105 bankrupt and 2068 non-bankrupt firms, which was more
representative of reality than the 50–50 split used to develop the Altman Z-score

A comparison of the two models (see Ohlson 1980 for the formulation) shows
the Z-score considers inefficient use of assets as a key driver for bankruptcy, while
the Ohlson model incorporates firm size and considers large firms less likely to go
bankrupt.

Beaver (1966), Wilcox (1971), Deakin (1972), Edmister (1972), Blum (1974),
Libby (1975) and Moyer (1977) also considered statistical methods (e.g. quadratic
discriminant analysis, logical regression and factor analysis) for bankruptcy pre-
diction. Some issues identified from these studies were that the proportion of
bankrupt firms in the economy is much smaller than non-bankrupt firms. However,
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prediction was generally better with a higher proportion of bankrupt firms in the
data, suggesting that using representative data samples is important to avoid bias.
As industries have different structures and environments, it is important to develop
models for specific industries, and they should be normalized for firm size.
Companies are subject to market and economic forces which change over time.
Bankruptcy prediction models may not be stationary and should be periodically
updated, including reflecting new financing vehicles that become available.

Data Envelopment Analysis (DEA) is a non-parametric fractional linear pro-
gramming technique that can rank and compare the relative performance of DMUs
operating under comparable conditions. It is particularly useful in cases where
DMUs use multiple inputs to produce multiple outputs. DEA arrives at a score for
each DMU relative to the entire data sample (production possibility set) as the ratio
of a combined virtual output to virtual input. The frontier of empirically efficient
DMUs provides a benchmark or target for the changes required in inputs and
outputs to render an inefficient DMU efficient.

The basic DEA model choices include the returns to scale assumption (variable
or constant), orientation (input, output or non-oriented), and model type—c.f.
Cooper et al. (2007) for a detailed treatment of these, including respective model
formulations. The shape of the efficient frontier is not affected by the choice of
orientation for any of the basic models; however, the projection of inefficient DMUs
onto the frontier can differ markedly.

The work presented herein employs the non-oriented form of the slack-based
measure (SBM) DEA model. The linearized form of this model is expressed as
(Tone 2001):

Minimize s ¼ t � 1
m

X
m

i¼1

S�i =xio

Subject to 1 ¼ tþ 1
s

X
s

i¼1

Sþ
r =yro

X
n

j¼1

xijKj þ S�i ¼ txio ði ¼ 1; . . .;mÞ

X
n

j¼1

yrjKj � Sþ
r ¼ tyro ðr ¼ 1; . . .; sÞ

Kj � 0 ðj ¼ 1; . . .; nÞ
S�i � 0 ði ¼ 1; . . .;mÞ
Sþ
r � 0 ðr ¼ 1; . . .; sÞ

t[ 0

; ð13:1Þ

where τ is efficiency score (ρ) for DMUo, t is a scaling parameter introduced to
linearize the program, m is the number of input variables, s is the number of
outputs, xij is the amount of the ith input to DMUj, yrj is the amount of the rth
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output from DMUj, Si� is the scaled slack on input i, Sr þ is the scaled slack on
output r, and Λj is the scaled intensity variables representing the weight of each
DMUj in the benchmark reference for DMUo. The optimal solution for DMUo is
defined by: q� ¼ s�, k� ¼ K�=t�,s�� ¼ S��=t�, sþ� ¼ Sþ�=t�.

The VRS formulation has the additional constraint that the sum of Λj = t.
The SBM model cannot have negative data, and any zero outputs need to be

replaced with a very small positive constant to prevent division by zero.1 The SBM
model can be deemed to measure both technical and mix efficiencies as it permits
the proportions or mixes of inputs and outputs to vary.

There are a couple of limitations to DEA worth mentioning as they are relevant
to the work presented. DEA cannot accurately model small sample sizes, and
yielding in high efficiency scores and a high proportion of efficient DMUs. The
rough rule of thumb for minimum sample size is

n�max m� s; 3ðmþ sÞf g; ð13:2Þ

where n, m and s are the number of DMUs, inputs and outputs, respectively (Banker
et al. 1989). It is also problematic to use inputs or outputs in ratio form. DEA would
evaluate the ratio variable for a possible production as the weighted sum of indi-
vidual ratios, whereas the correct calculation would be the ratio of the weighted
sums of the numerator and denominator. This can lead to a misspecification of the
efficient frontier, inaccurate scores and distorted projections (Hollingsworth et al.
2003;Emrouznejad and Amin 2007).

DEA’s advantages and the intuitive relationship between inefficiency and failure
have led to many studies employing DEA to predict failures, primarily in banks.
Ravi Kumar and Ravi (2007) provide a comprehensive survey. Barr et al. (1993,
1994) incorporated the international bank ratings system CAMELS (Capital ade-
quacy, Asset quality, Management quality, Earnings, Liquidity, Sensitivity to
market risk) with DEA to predict failures for 930 banks over 5 years. Kao et al.
(2004) incorporated financial forecasts from general managers into DEA to predict
bankruptcy in a sample of 24 Taiwanese banks. The results of both studies were
promising.

Extending beyond banks to more general companies, Cielen et al. (2004) used
11 financial ratios in a DEA model to predict bankruptcy with type I and type II
errors of 21 and 24%, respectively, in a sample of 276 non-bankrupt and 90
bankrupt firms between 1994 and 1996. Premachandra et al. (2011) used an
additive DEA model on over 1000 US firms in a variety of industries from 1991 to
2004, which was relatively weaker at predicting failures relative to correctly clas-
sifying healthy firms. Xu et al. (2009) showed that using DEA scores as a variable
(representing operational efficiency) in other bankruptcy prediction methodologies,

1As the constraints in (1) prevent any increase in inputs, the projection for a DMU with a zero
input will also use none of that input, so 0/0 for inputs can be interpreted as zero in the objective
function, i.e. no improvement.
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i.e. support vector machines, logistic regression and MDA, improved prediction
accuracy. However, their data sample had a non-representative 50–50 proportion of
bankrupt and non-bankrupt firms.

New types of DEA models have been created for bankruptcy studies. Paradi
et al. (2004) analyzed manufacturing companies with their worst practice DEA
model, i.e. a model formulated to identify distressed firms as “efficient”. This model
performed well in the initial data sample that had equal numbers of bankrupt and
non-bankrupt firms; however, it did not perform as well on a larger, more repre-
sentative dataset. Sueyoshi (1998), and Sueyoshi and Goto (2009) developed
DEA-DA, combining an additive DEA model with discriminant analysis, and
applied it to bankruptcy analysis. It was designed to find overlaps between two
groups (i.e. bankrupt and healthy) in a first-stage, and determine a piecewise linear
classification function to separate the groups in a second-stage. In the dataset
studies consisting of 951 non-bankrupt DMUs and 50 bankrupt, DEA alone mis-
classified bankrupts due to the small proportion of bankrupts, while DEA-DA was
able to deal with the data imbalance by controlling the importance of the two
groups, as determined by size.

13.3 US Retail-Apparel Industry—Data Collection
and Exploration

The US retail-apparel industry (classification: SIC Division G, Major Group 56)
was chosen for the study because the industry is sufficiently competitive such that
turnover of firms is not uncommon, and its environment was relatively consistent
over the time period considered, other than the effects of inflation and recession.
The industry is characterized by low capital investment requirements and barriers to
entry, resulting in high competition levels and low profit margins. Thus, the
strategic focus to increase returns in these industries is to increase asset turnover
(Stickney et al. 2006). In addition, its firms were comparable, being of similar size,
and operating with similar business models in the same country. A total of 85 firms
that were active and publicly traded from 1996 to 2009 were considered, 24 of
which had declared bankruptcy at least once during this period. The most common
reasons for the bankruptcy filings were debt burden, change in management, fraud
and recession.

Each combination of a firm and year of operation was considered a separate
DMU; this is a common DEA practice when analysis is across time periods.
A DMU was considered as bankrupt up to three years prior to the year in which a
firm filed for bankruptcy; otherwise, it was considered active. In total, there was 701
DMUs, 50 of which were bankrupt. The financial information for each firm was
taken from the spreadsheets in the Capital IQ database. Common templates for
financial statements were created using the Financial Statement Analysis Package
(Stickney et al. 2006) to address any issues arising from inconsistencies in data
labelling between companies. These templates were populated via Visual Basic
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code, verified via balance checks and matching important totals with the original
statements, and any discrepancies were manually addressed.

Financial variables from the three major financial statements, i.e. the balance
sheet (BS), income statement (IS) and cash flow statement (CFS), were considered
for inclusion into the model development. In the final model, no variables were
taken from the CFS. Cost of goods sold (COGS); income tax expense (ITE); net
interest expense (IE); sales, general and administrative expenses (SGA); net income
(NI) and revenue were used from the income statement. Variables taken from the
balance sheet were: accounts receivable (AR); current assets (CA); ‘goodwill’;
inventory; marketable securities (MS); net property, plant and equipment (PPE);
long-term investment in securities (LTIS); total assets; cash; retained earnings (RE);
shareholders’ equity (SE); accounts payable (AP); current liabilities (CL);
long-term debt (LTD); current maturities of LTD (CM); notes payable and
short-term debt (NPSTD); and total liabilities (TL).

The strongest correlations in the BS and IS were found between the larger, i.e.
total, amounts. Between the variables from the two statements, revenue, COGS, and
SGA (which were themselves highly correlated) were found be strongly correlated
with asset and liability items. The variables with strong correlations (above 0.85
and significant at the 0.01 level) are detailed in Table 13.1.

Common profitability and solvency ratios were computed and compared
between the active and bankrupt DMUs (c.f. Gill 1994 for the definition of common
financial variables and ratios employed throughout this paper). For each firm, the
median values of its ratios were taken across all the years for which there was data.
The firms were divided into two states: bankrupt if they had ever declared bank-
ruptcy in the 1996–2009 time period, and active otherwise; and averages of these
medians values were taken over all firms in a particular state. These ratio values are
summarized in Table 13.2.

Profit margin and return on assets were found to be higher for active firms. Total
asset turnover was not a significant predictor of failures, contrary to expectations
that it would be the most important component of profitability for a highly com-
petitive industry (Stickney et al. 2006). Active firms had higher accounts receiv-
ables and inventory turnovers, and higher return on equity. They also had better
short-term liquidity ratios and more days of revenue as cash on hand, higher interest
coverage, and lower ratios of liabilities to assets and equity.

The annual reports for the firms studied, with the exception of BSST and CSS,
were available from EDGAR, the SEC and/or company websites. From the abun-
dant information contained in the Notes, MD&A and Auditor’s Report sections, six
types were chosen to be extracted based on their satisfying four characteristics:
relevance to the retail-apparel industry, being commonly reported across all com-
panies, ease of extraction from the annual report, and ability to be translated into a
useful (e.g. binary) scale. These were:

1. Significant Related-Party Transactions, in the form of leases or loans to the
executive, etc.;

2. Auditor’s Opinion, either unqualified or qualified;
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3. Independent Auditing Company;
4. Legal proceedings, such as those arising in the normal course of business that do

not have a material adverse effect on the company, litigations that lead to
significant payouts and filing of Chap. 11 bankruptcy;

5. Name of Chairman, Name of Chief Executive Officer, and Name of Chief
Financial Officer; and,

6. Retirement plans, where if applicable, employees are eligible to participate in
the company’s 401(k) plan or there is a specific company-sponsored pension
program.

Table 13.1 Highly
correlated accounts on the
balance sheet and income
statement

Accounts Correlation Accounts Correlation

Inv, CA 0.95 AP, TL 0.91

Inv, PPE 0.87 CM, CL 0.94

Inv, TA 0.94 CM, TL 0.93

Inv, AP 0.94 CL, TL 0.97

Inv, CM 0.87 CL, SE 0.86

Inv, CL 0.94 RE, SE 0.86

Inv, TL 0.92 Revenue, COGS 0.99

Inv, SE 0.86 Revenue, SG&A 0.98

CA, PPE 0.91 COGS, SG&A 0.95

CA, TA 0.98 ITE, Net Income 0.87

CA, AP 0.93 Inv, Revenue 0.86

CA, CM 0.90 Inventories,
COGS

0.86

CA, CL 0.95 Inventories,
SG&A

0.85

CA, TL 0.93 CA, Revenue 0.89

CA, SE 0.93 CA, COGS 0.87

PPE, TA 0.93 CA, SG&A 0.88

PPE, AP 0.87 PPE, SG&A 0.85

PPE, CM 0.87 TA, Revenue 0.89

PPE, CL 0.89 Total Assets,
COGS

0.87

PPE, TL 0.88 Total Assets,
SG&A

0.89

PPE, SE 0.88 AP, Revenue 0.86

TA, AP 0.92 AP, COGS 0.86

TA, CM 0.91 CL, Revenue 0.89

TA, CL 0.95 CL, COGS 0.88

TA, TL 0.95 CL, SG&A 0.88

TA, SE 0.94 TL, Revenue 0.87

AP, CM 0.87 TL, COGS 0.85

AP, CL 0.96 TL, SG&A 0.87
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This qualitative information was translated into variables representing manage-
ment decision making (MDM), detailed in Table 13.3. Numerical values were
given for each category, which were mostly binary or counts. Legal proceedings
were assigned a range of 0–25 based on the frequency of occurrence of each
category in the data.

As the financial and MDM data were collected from audited financial statement,
missing data and errors were not significant concerns. The DMU (firm-year pair)
was omitted if the annual report could not be found. Extreme year-to-year changes
were scaled down to 20 times the average change in magnitude. This was done to
keep the DMU and recognize the extreme change it represented, without skewing
the rest of the data.

Seventeen variables of economic data compiled by US agencies were considered
for the model. There were chosen on the bases of having a direct effect on the
retail-apparel industry and being mostly weakly correlated (magnitude < 0.4)
between each other. Table 13.4 lists these variables, their units of measure, and
their timing (leading/coincident/lagging) and relation (pro- or countercyclical) to
the business cycle.

The influence of the market was proxied by the returns of the NYSE and
NASDAQ composite indices. Of the 85 firms in the data, 38, 35 and 17 traded on
the NASDAQ, NYSE and over the counter (OTC) markets respectively. Active

Table 13.2 Average median ratio values by state

Ratio Type Ratio Active Bankrupt All

Profitability TA turnover 2.4 ± 0.9 2.7 ± 0.9 2.4 ± 0.9

Profit margin 4.2 ± 3.0% −3.1 ± 6.0% 2.1 ± 5.5%

ROA 10.6 ± 6.0% −3.3 ± 14.7% 6.9 ± 10.9%

AR turnover 150 ± 220 96 ± 95 147 ± 210

Inventory
turnover

100 ± 290 15 ± 20 94 ± 280

ROE 15.9 ± 13.7% −7.3 ± 20.9% 9.4 ± 19.1%

Liquidity Current ratio 2.5 ± 1.1 1.8 ± 1.0 2.4 ± 1.1

Quick ratio 1.1 ± 1.0 0.6 ± 0.6 1.1 ± 0.9

CFO to CL ratio 0.6 ± 0.6 0.2 ± 0.5 0.6 ± 0.6

Days revenue in
cash

35 ± 66 12 ± 15 33 ± 64

Solvency Interest
coverage

41.7 ± 79.1 9.1 ± 45.4 38.6 ± 77.1

Liabilities to
assets

0.4 ± 0.2 0.7 ± 0.3 0.5 ± 0.2

Liabilities to SE 0.9 ± 1.2 1.3 ± 3.0 0.9 ± 1.4

Market
performance

Return 0.013 ± 0.055 −0.019 ± 0.099 0.011 ± 0.059

Volatility 0.16 ± 0.08 0.26 ± 0.15 0.17 ± 0.09

Beta 1.16 ± 1.45 1.63 ± 3.11 1.19 ± 1.61
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firms had higher returns, lower volatility and betas (see Table 13.2). Table 13.5
shows that the correlations between market return, firm returns, volatilities and
betas were weak, suggesting that the variables should be individually considered.

The various variables detailed in this section (financial, MDM, economic and
market) were found to be poor predictors of bankruptcy when used individually,
and exhibited weak mutual correlation. This reinforced the motivation to combine
them into a single model or methodology to capture more and different dimensions
of company health.

13.4 Methodology

The objective of this research is to develop a (DEA)-based model which predicts
the likelihood of failure of American retail-apparel companies (although the
developed methodology can be adapted to other industries) and suggests preven-
tative measures based upon the results of its analysis. It is hypothesized that sup-
plementing the data available from financial statements with their accompanying
Notes (which provide hints on managerial decision-making), as well as market and
economic influences, will enhance the predictive power of mathematical models
that consider financial data exclusively. A summary of how DEA fits into the
bankruptcy prediction landscape, along with some current relevant limitations, is

Table 13.3 Managerial decision-making (MDM) variables

Variable Outcome Value assigned

Significant related party transactions None 0

Yes 1

Auditor’s opinion Unqualified 0

Qualified 1

Legal proceedings None 0

Insignificant 2

Significant 10

Going
concern

20

Bankruptcy
Filing

25

Retirement plan None 0

Yes 1

Auditor change (change in auditor company) None 0

Yes 1

Turnover of management (change in either
chairman, chief executive officer or chief
financial officer)

None 0

Yes 1, 2 or 3 (depending on how
many changed in that year)
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presented in Fig. 13.1. This work aims to address some of these limitations by
introducing novel measures incorporating contributions from the fields of finance,
accounting, and operations research.

DEA was chosen as the underlying method for the model, as it can be used to
determine the state of each company within a sample. The non-oriented, VRS form

Table 13.4 Economic factors considered

Factor Measured
in

Analysis
in

Timing and relation
to business cycle

General economic factors

E1 GDP rate $B % Coincident,
procyclical

E2 Debt as % of GDP % Same Coincident,
countercyclical

E3 Inflation % Same Coincident,
procyclical

E4 Interest rate % Same Coincident,
procyclical

E5 Unemployment rate % Same Lagged,
countercyclical

Apparel factors

E6 Personal consumption expenditures:
clothing and footwear

$B % Coincident,
procyclical

E7 GDP: clothing and footwear $B % Coincident,
procyclical

E8 CPI: apparel Index
(1982)

% Coincident,
procyclical

E9 Industrial production: clothing Index
(2007)

% Coincident,
procyclical

E10 Apparel unit labor cost = (total labour
compensation/hours)/productivity

% Same Coincident,
procyclical

E11 Apparel labor
productivity = output/hours

% Same Coincident,
procyclical

E12 Apparel imports $ % Coincident,
procyclical

E13 Apparel exports $ % Coincident,
countercyclical

Other factors

E14 New privately owned housing units
started

1000 s Same Leading, procyclical

E15 Median number of months for a sale Months Same Leading,
countercyclical

E16 Oil price $/bbl Same Coincident,
countercyclical

E17 Cotton price cent/lb Same Coincident,
countercyclical
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of the SBM model was used for the analyses detailed in this paper. As such, any
negative values had to be removed from the data. This was accomplished by
defining new variables to house the negative values on the opposite side of the
input/output designations. For example, if a DMU had an EBIT (earnings before
interest and taxes - an output variable) of −$2M, this was replaced by zero and the
DMU was given a value of +$2M for the created input variable, Negative EBIT.

- ratios are simplistic 
- lack effects of 
economy, market, 
fraud, and managerial 
decision -making
-do not provide 
targets for bankruptcy 
“prevention ”
- inherently constant 
returns -to-scale
- sometimes do not 
have a sample with 
real life proportion  of 
active and bankrupt 
firms in order to 
improve prediction

- difficulty handling 
inputs and output in 
ratio form
- prediction is a 
work in progress

Limitations of 
Data Envelopment Analysis 

(DEA)

Limitations of Current 
Indicators of 

Bankruptcy Prediction

Limitations of
DEA Bankruptcy Studies

- focus mainly on banks
- data from financial statements 
only and are ratios
- managerial decision -making 
excluded
- lack market, economic and 
fraud risk 
- methodologies presented 
unclearly
- counterintuitive results
- possible improvements not 
exploited
- sometimes do not have a 
sample with real life proportion  
of active and bankrupt firms

Fig. 13.1 Current limitations of DEA in bankruptcy prediction

Table 13.5 Correlations between composite indices and stock performance

Return Volatility Beta

Active Bankrupt Active Bankrupt Active Bankrupt

Return

Active 1.00 0.73 0.37 0.75 0.03 −0.06

Bankrupt 1.00 0.33 0.53 0.17 −0.12

Volatility

Active 1.00 0.61 0.24 −0.19

Bankrupt 1.00 0.25 0.25

Beta

Active 1.00 0.16

Bankrupt 1.00

Market performance (composite indices)

NYSE 0.48 0.19 −0.12 0.37 0.20 0.59

NASDAQ 0.49 0.13 0.00 0.33 −0.02 0.46
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The bankruptcy models considered were evaluated based on the type I and II
error rates. Type I and II errors are the misclassification of bankrupt and active
DMUs, respectively. In the context of this work, “positive” and “negative” results
denote classifying a DMU as active and bankrupt, respectively. Thus a type I error
would be a false positive, and a type II error a false negative. The error and overall
success rates are defined as:

type I error rate = FP/(FP + TN),
type II error rate = FN/(FN + TP), and
success rate = (TP + TN)/(FP + FN + TP + TN),

where FP, FN, TP and TN are the number of false positive, false negative, true
positive and true negative results, respectively. The various outcomes are sum-
marized in the confusion matrix shown in Table 13.6.

The developed models are compared to the results of the public,
non-manufacturing form of the Altman Z-score on the retail-apparel data set. The
Altman model was chosen as the benchmark as it is a widely used standard in
bankruptcy prediction, and this form of the model was the best performer of the
three formulations on the data. As it is assumed that type I errors would be the more
costly type, most of the focus is on comparing the type I error rates of the DEA
models with those obtained from the Z-score. The type I error rates of the three
Z-scores, as well as those from Altman’s original paper (Altman 1968) are shown
in Fig. 13.2.

DEA models generally classify DMUs by placing the obtained efficiency scores
into zones by comparison with cut-off values. The focus of this work is a two-stage
DEA model. The first-stage consists of various DEA models meant to reflect dif-
ferent aspects of the financial, MDM, and economic and market characteristics of
the firm. The scores from these models were employed in a second-stage DEA
model, and the DMUs were classified based on a layering approach. Layering is a
DEA technique wherein the efficient DMUs are removed and the sample rerun, and
is often helpful in discriminating between efficiency scores that are close in value,
c.f. (Divine 1986; Thanassoulis 1999; and Paradi et al. 2004). Most studies only
remove or “peel” off 2 or 3 layers of efficient DMUs. The novel approach employed
here is to continue to remove layers until the remaining number of DMUs is less
than minimum given by the accepted approach, i.e. n ≥ max{m × s, 3(m + s)}, and
to utilize the efficient layer number on which the DMU appears as the means to rank
them and thus classify them as active or bankrupt. This approach is illustrated in
Fig. 13.3.

Table 13.6 Confusion matrix

Actual

+ −

Predicted

+ True positive (TP) False positive (FP) type I error

− False negative (FN) type II error True negative (TN)
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13.5 First-Stage DEA Models

DEA can act as a multicriteria sorting tool with the objective function, i.e. relative
efficiency score, serving as a benchmark to organize and classify firms by their level
of health. Higher scores will generally be interpreted as a lower relative bankruptcy
risk based on the given set of criteria. Thus, the selection of variables and their
designation as inputs or outputs is of the utmost importance as this directly affects
the determined frontier (i.e. benchmarks) from which scores are determined.

While most studies focus on measuring profitability and/or insolvency, a dif-
ferent approach was taken in this work: creating individual metrics that reflect a
particular aspect of an annual report. In addition to considering the financial aspects
of the firms, potential models reflecting management decision making and the
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economic and market conditions were also considered. While these aspects have
not been typically considered in prior works, it was felt that they may capture
additional important dimensions of the firms’ health, and thus improve the pre-
dictions made. Figure 13.4 gives the flowchart of the overall methodology, as it
could be applied to any industry.

Financial information is contained in the balance sheet, income statement and
cash flow statement. For the retail-apparel industry, it was found that models
generated from cash flow statement variables did not provide much discriminatory
power, as score distribution produced was heavily bimodal, with over 90% of the
scores less than 0.1. Three financial models were used: one for the income state-
ment (IS) and one each representing assets (BSA) and liabilities (BSL) from the
balance sheet. Many different combinations of variables were attempted, and sev-
eral other models performed similarly to those chosen. Table 13.7 gives the inputs
and outputs of each chosen model.

The MDM model used the six variables described in the data collection section
as inputs (see Table 13.3), with a unit dummy output for all DMUs. A model based
on the firms’ trading performances using their returns, betas and volatilities pro-
duced similar score distributions as the cash flow statement model, i.e. heavily
bimodal with little discriminatory power, and was not considered further.

Select 
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Twenty overall market and economic factors had been selected, with data
covering the period from 1988 to 2009. As each DMU is a year for this data, there
were insufficient data points to run them together. Instead, they were divided into
four DEA models representing separate indicators for: the general economy, the
apparel industry, the housing market, and prices. A fifth indicator representing the
general equity market performance was determined as the 45–55 weighted average
of the normalized values of the NASDAQ and NYSE composite indices, where the
weights were chosen based on the proportion of the firms studied listed on each
exchange (OTC firms were grouped with the NYSE firms). The precise input and
output variables for each of these indicator DEA models are presented in
Table 13.8. The five scores were averaged to provide an overall market and eco-
nomic indicator.

All of the first-stage variable sets for the three financial models (IS, BSA, and
BSL) were run in regular and inverse DEA models—an inverse DEA model has the
inputs and outputs from a regular DEA model reversed, i.e. an input variable in the
original model is an output in the inverse model. Based on the DEA results, a single
set of cut-off values was chosen that was found to work well, in sample, for all the
financial models. For the regular models, scores below 0.4 were deemed bankrupt,
those above 0.7 were deemed active, and DMUs with intermediate scores were not
classified by the model. A single cut-off value of 0.7 was used for the inverse DEA

Table 13.7 Inputs and outputs variables of IS, BSA and BSL (financial) models

Model Inputs Outputs

IS (income
statement)

COGS (costs of goods sold) NI (net income)

ITE (income tax expense) Revenue

IE (net interest expense)

SGA (selling, general and administrative
expenses)

BSA (balance
sheet—assets)

AR (accounts receivable) Cash

CA (current assets) RE (retained earnings)

Goodwill SE (shareholders’
equity)

Inventory

MS (marketable securities)

PPE (net property, plant and equipment)

LTIS (long-term investment in securities)

TA (total assets)

BSL (balance
sheet—
liabilities)

AP (accounts payable) RE

CL (current liabilities) SE

LTD (long-term debt)

CM (current maturities of LTD)

NPSTD (notes payable and short-term debt)

TL (total liabilities)
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models run, and DMUs with scores below 0.7 were considered active while those
above 0.7 bankrupt.

In general, the distributions of scores obtained from the inverse models run were
heavily bimodal, with the majority (90%+) of scores below 0.1, some efficient
DMUs, and very little probability mass in between. This distribution led to poor
discriminatory power and very high type I error rates, which is considered partic-
ularly undesirable as type I errors are generally deemed more expensive than type II
errors in bankruptcy prediction. The normal DEA models had lower type I errors
and higher overall success rates, but also resulted in some DMUs being
unclassified.

The scores from the regular DEA models were only weakly correlated with those
of the corresponding inverse models. As such, combining the regular and inverse
models both in series (using the inverse model on the unclassified DMUs from the
normal model) and in parallel (requiring agreement between the two models) were
also investigated. The performance of these combinations in terms of error and
classification rates was intermediate between that of the individual models, without
any particular improvement to overall performance. Thus, inverse DEA models
were not considered further.

The benchmark Altman Z-score had type I error rates of 30, 42, 50 and 60%,
zero to three years prior to bankruptcy respectively. The type II error rate was
relatively consistent at 12% across the same period. The results from the individual
financial statement DEA models were used to classify the DMUs by two means.
The scores were compared to fixed classification cut-offs (0.4 and 0.7). The overall
classification results, covering all predictions for the year of bankruptcy up to three
years prior, are summarized in Table 13.9.

With the exception of the MDM model, the DEA models had lower overall type
I errors but higher type II errors than the Z-score. The MDM had extremely high

Table 13.8 Description of market and economic (ME) factors models

Indicator model Inputs Outputs

General economic Unemployment rate GDP growth rate

Debt as % of GDP Inflation

Prime interest rate

Apparel industry Dummy (DMU
input = 1)

Personal consumption expenditures:
clothing

GDP: clothing

Apparel labour productivity

Apparel imports

Housing market Median months for a
sale

Housing unit starts

Prices Oil prices Dummy (DMU output = 1)

Cotton prices

General market
performance

Score is 45–55 weighted average of normalized NASDAQ and
NYSE composites
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type I errors, but low type II errors. The unclassified rates were approximately 20%
for all the models.

The process of peeling back layers until insufficient DMUs remained was also
applied to each model. Figure 13.5 shows the variation of error rates with cut-off
layer for the IS model, one year prior to bankruptcy, where a DMU is considered
bankrupt up to one year prior to filing. All DMUs on the efficient frontiers from the
first to the cut-off peel are considered active, and all others are classified as
bankrupt. If only the first frontier is used, almost all the efficient DMUs will be
active, resulting in a very low type I error rate. However, most DMUs, including
many of the active ones, will not be on the first frontier, causing a very high type II
error rate. As the number of layers used for classification increases, the type I error
rate increases, and type II error rate decreases.

Although type I errors are probably more costly than type II errors, the point
where type I and II error rates intersected was chosen as the cut-off layer since no
explicit information about their relative costs were available. For example, for the
IS model this cut-off would be layer 3 (Fig. 13.5). The 1-year prior to bankruptcy
results for the 4 models are given in Table 13.10. The IS model had comparable
type I errors and worse type II errors than the Z-score (c.f. type I and II error rates of

Table 13.9 Summary of
first-stage results for IS, BSA,
BSL and MDM models

Model Rates (%)

Type I
error

Type II
error

Success Unclassified

IS 11.9 31.8 69.7 21.3

BSA 6.7 77.7 27.7 21.0

BSL 0 87.3 19.9 22.8

MDM 82.6 2.8 92.9 15.7
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Type II Error
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Altman:  Type I Error
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Fig. 13.5 Prediction by IS
model from one year back (A
DMU was classified bankrupt
up to a year prior to filing)
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42 and 12% respectively). The error rates for the other three models fell in between
those of Z-score, i.e. lower type I errors, higher type II errors. Note that in some
cases, better performance relative to the Z-score could have been achieved with
different cut-off layers. For example, if layer 7 was employed as the cut-off for the
BSL model, it would have the same type II error rate, but lower type I errors than
the Altman model. Although not shown, the error rates for predictions two and three
years prior to bankruptcy were somewhat higher than those one year prior, as
expected.

The correlations between the efficiency scores from the four models are given in
Table 13.11. The correlation coefficients were all significant at the 1% level, and
were generally weak. The BSA and BSL models had a correlation of 0.71, and all
other pairs were below 0.5. This supports the hypothesis that the models represent
different aspects of company health, and could be considered together to provide a
more complete view.

Table 13.10 Cutoff layer
and type I error, type II error
and success rates for
first-stage models

Model Cutoff
layer

Rates (%)

Type I
error

Type II
error

Success

IS 3 40 43 58

BSA 4 18 24 77

BSL 8 22 23 77

MDM 2 34 35 65

Table 13.11 Correlation
between first-stage DEA
scores (all correlations were
significant at 0.01 level)

IS BSA BSL MDM

Income statement 1 0.49 0.47 0.14

Balance sheet assets 1 0.71 0.08

Balance sheet liabilities 1 0.15

Managerial
decision-making
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Fig. 13.6 All-encompassing market and economic indicator by year
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Figure 13.6 gives the determined overall market and economic indicator. Note
that the local minimums roughly correspond to the three US recessions that occurred
during this period: the savings and loans crisis (1990–91), the tech bubble collapse
and Sept. 11 attacks (2001–02), and the subprime mortgage crisis (2007–09).

13.6 Second-Stage DEA Models

Three second-stage DEA models were investigated. These were DEA (VRS,
output-oriented SBM) models with a dummy unit input, and first stage scores as
outputs. The first model only considered the scores from the financial models (i.e.
IS, BSA, and BSL). The second model used the financial and MDM model scores
as outputs, and the final model used all of the financial and MDM model scores and
the overall market and economic (ME) indicator as outputs (all DMUs for a par-
ticular year have the same value for the ME indicator).

Zone classification results of the second-stage DEA models are summarized in
Table 13.12. They showed that adding MDM scores to the financial scores gen-
erally improved results, reducing type I errors from 32 to 21%, with slight effects on
type II errors (increased from 16 to 19%), success (decreased from 83 to 81%) and
unclassified rates (decreased from 33 to 32%). Adding the overall ME indicator to
the model proved detrimental, increasing the type I error rate to 98%. These results
partially support one of the main hypotheses of this paper, that considering the
MDM information improves model predictions, whereas adding the ME indicator
did not. As such, further layering classification proceeded with the second model,
i.e. incorporating financial and MDM first stage DEA scores.

Classification using layering was chosen over that by zones for the final model
because it had better discrimination, resulted in no unclassified DMUs, and required
a less subjective choice of cut-offs points (choosing the cut-off layer to equate the
two error rates versus choosing high and low score zones). Additionally, a novel
technique was developed to translate the layer classifications into an efficiency
score-type measure. This layered score is defined as Eq. 13.3:

0\Layered Score =
N + 1� L

N
� 1; ð13:3Þ

Table 13.12 Second-stage model predictions with classifications by zones

% IS, BSA, BSL IS, BSA, BSL, MDM IS, BSA, BSL, MDM, ME

TP rate 84.0 80.7 100.0

FP rate 32.3 20.7 97.7

Type I error 32.3 20.7 97.7

Type II error 16.0 19.3 0

Success rate 82.9 80.6 93.6

Unclassified 33.1 31.5 4.0
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where N is the total number of layers (i.e. until the remaining number of DMUs is
less than the accepted minimum to run another analysis), and L is the layer on
which the DMU appears on the frontier (L = N + 1, i.e. layered score = 0, for those
DMUs that were still inefficient after layer N). This score definition had the desired
property of varying from a minimum of zero for those DMUs not on any layer to a
maximum of one for those on the first layer, and hence lower values can be
expected to correspond to increased risk of bankruptcy. Layered scores for the four
first-stage DEA models (i.e. financial statement and MDM models) were generally
weakly correlated (max. of 0.74 between BSA and BSL, less than 0.25 otherwise),
and are given in Table 13.13.

The cumulative total % curves of active and bankrupt DMUs identified up to a
given layer (Fig. 13.7) show that both increase as the number of layers increases, as
expected. Also, as expected, as the layer number increases, the active-to-bankrupt
ratio of DMUs on that frontier tends to decrease.

The error rates of the layering predictions are given in Table 13.14. Overall, the
second-stage DEA model provided comparable error rates to the BSA and BSL
first-stage models (a little better 1–2 years before bankruptcy, a little worse 3 years
before), and lower errors than the IS and MDM models alone. The second-stage
model’s type I error rates are lower than those from the Altman Z-score, for each of
1–3 years before bankruptcy, while its type II error rates are higher (choosing the
intersection of the two errors rates as the cut-off number of layers). As type I errors

Table 13.13 Correlation of
first-stage layered scores

IS BSA BSL MDM

Income statement (IS) 1 0.23 0.14 0.06

Balance sheet assets (BSA) 1 0.74 0.12

Balance sheet liabilities (BSL) 1 0.19
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(MDM)

1

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

C
um

ulative %
 of D

M
U

s
on Frontier

%
 o

f D
M

U
 o

n 
Fr

on
tie

r

Layer

% Active of Classified This Layer % Bankrupt of Classified This Layer
Cumulative of Total Active DMUs Cumulative  of Total Bankrupt DMUs

Fig. 13.7 Classification by layer in percentages, one year back

13 Bankruptcy Prediction of Companies in the Retail-Apparel Industry … 319



are assumed to be more costly, the DEA model may still outperform the Z-score
even if its error rate lies between the Altman type I and II error rates. Furthermore,
unlike the Z-score, DEA layering classification results in no unclassified DMUs.

The various DEA models are further compared by examining the receiver
operating character (ROC) curves, which plot the TP rate (=1 − type II error rate)
versus the FP rate (=type I error rate), in Fig. 13.8. The ideal for these curves would
be the upper left corner (i.e. no errors), and employing only a few layers with any of
the models will tend to result in a location near the origin. By these curves (both
visual inspection and computing areas under the curves), the 2-stage and BSL
models are comparable and the best performers; the BSA is a slightly worse per-
former by this measure, mainly in the initial (left side) of the curve, which is the
more important section. All DEA models performed better than random guessing
(the y = x line). Also if the intersection type I and II errors is chosen as optimal
number of layers, the intersection of ROC plot with y = 1 − x curve would give
this.

Figure 13.9 compares the zone and layering classification predictions, one year
prior to bankruptcy, of the second-stage DEA model. It had a total of 25 layers, and
layer 16 was the cut-off. The correlation between the two sets of scores was 0.82,
and was stronger for the higher scores, with more variation in the number of peels
for the lower raw scores. Interestingly, the data is bounded from below by the

Table 13.14 Accuracy of classification by layering of second stage model and individual metrics

One year back Two years back Three years back

Accuracy
(%)

Error
(%)

Layer Accuracy
(%)

Error
(%)

Layer Accuracy
(%)

Error
(%)

Layer

Second
stage

80 20 16 73 27 14 69 31 13, 14

IS 58 42 3 55 45 3 55 45 3

BSA 78 22 4, 5 72 28 4 70 30 3, 4

BSL 78 22 4 72 28 7, 8 70 30 7

MDM 65 35 2 60 40 2 61 39 2
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y = x2 curve. The error rates from layering are comparable to those from using two
zones, although it was more effective as it classified all DMUs. These results, as
well as those using various cut-offs for a single zone are given in Table 13.15.

13.7 Discussion

Like most prior bankruptcy studies, the layering DEA results provide a yes/no
classification, but not a probability of bankruptcy. However, the scores can be
translated into probabilities. Figure 13.10 shows that as the layered scores decrease
(i.e. higher layer number), the number of bankrupts on that layer increase, as
expected. The actual probabilities of active and bankrupt DMUs on each layer
(from 26, i.e. not on any frontier, to 1) are tabulated in Table 13.16, and used to
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Table 13.15 Performance of layering and non-layering techniques

Evaluation
(%)

Layering Non-layering:
two zones

Non-layering:
cut-off of 0.8

Non-layering:
cut-off of 0.7

Non-layering:
cut-off of 0.6

TP rate 80.3 80.7 37.7 54.6 66.9

FP rate 20.0 20.7 0 4.0 20.0

Type I error 20.0 20.7 0 4.0 20.0

Type II
error

19.7 19.3 62.3 45.4 33.1

Success rate 80.3 80.6 39.9 56.1 67.3

Unclassified 0 31.5 0 0 0
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generate CDFs for the bankruptcy probabilities. A second order polynomial was
fitted, i.e.

y ¼ 0:47x2 � 0:78xþ 0:39

which matched the actual data well and is shown in Fig. 13.11.
Window analysis was used for validation of the bankruptcy predictions. The

2-stage DEA model was used in six windows, from 1996 to each of 2004–2009, to
fit a bankruptcy probability polynomial. These were then used to predict
bankruptcies in the next two years after the window in five of the six cases. As the
fitted CDF and the underlying empirical data were not monotonically decreasing for
the shortest (1996–2004) window, the fitted function could not be reliably used for
bankruptcy prediction. In-sample classification results and bankruptcy probability
functions for each of the windows are summarized in Table 13.17. Accuracy
decreased as the number of years (i.e. DMUs) decreased, as DEA generally per-
forms better with more DMUs, but was consistent (75–80%), indicating the
selection of variables and metrics used was robust. With the exception of the last
window, the second-order CDFs fitted for each window had good fits, with results
similar to that shown in Fig. 13.11.

The out-of-sample predictions were carried out by converting the scores of all
the remaining DMUs in the last year of the window into bankruptcy probabilities
(y) and noting whether they declared bankruptcy in either of the next two years. In
general, the forward predictions were less reliable as the model timeframe short-
ened, (i.e. lower accuracy as the number of DMUs in the fitting window decreased).

For the window ending in 2009, there were 39 firms in the final year, all of
which were active. Twenty-three had scores above 0.6 (y < 3%), all of which
remained active. Of the 3 that had scores below 0.3 (y > 13%), one went bankrupt,
one stayed active, and one underwent a restructuring. Although they did not declare
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Table 13.16 Probabilities of bankruptcy (B) and non-bankruptcy (NB)

Layer Score Actual Estimate

Count of DMUs
on frontier

Cumulative count
of DMUs on
frontier

P(NB) (%) P(B) (%) Second order
polynomial function

Total NB B Total NB B P(NB) (%) P(B) (%)

26 0.00 – – – – – – – – 60.8 39.2

25 0.04 6 4 2 6 4 2 66.7 33.3 63.9 36.1

24 0.08 11 7 4 17 11 6 64.7 35.3 66.8 33.2

23 0.12 10 6 4 27 17 10 63.0 37.0 69.5 30.5

22 0.16 10 9 1 37 26 11 70.3 29.7 72.1 27.9

21 0.20 16 14 2 53 40 13 75.5 24.5 74.6 25.4

20 0.24 18 18 0 71 58 13 81.7 18.3 76.9 23.1

19 0.28 18 15 3 89 73 16 82.0 18.0 79.0 21.0

18 0.32 23 19 4 112 92 20 82.1 17.9 81.0 19.0

17 0.36 32 29 3 144 121 23 84.0 16.0 82.9 17.1

16 0.40 30 28 2 174 149 25 85.6 14.4 84.6 15.4

15 0.44 29 27 2 203 176 27 86.7 13.3 86.1 13.9

14 0.48 45 42 3 248 218 30 87.9 12.1 87.5 12.5

13 0.52 48 43 5 296 261 35 88.2 11.8 88.8 11.2

12 0.56 52 48 4 348 309 39 88.8 11.2 89.9 10.1

11 0.60 36 35 1 384 344 40 89.6 10.4 90.8 9.2

10 0.64 49 49 0 433 393 40 90.8 9.2 91.7 8.3

9 0.68 46 44 2 479 437 42 91.2 8.8 92.3 7.7

8 0.72 56 54 2 535 491 44 91.8 8.2 92.8 7.2

7 0.76 39 39 0 574 530 44 92.3 7.7 93.2 6.8

6 0.80 38 38 0 612 568 44 92.8 7.2 93.4 6.6

5 0.84 24 24 0 636 592 44 93.1 6.9 93.5 6.5

4 0.88 23 23 0 659 615 44 93.3 6.7 93.4 6.6

3 0.92 19 19 0 678 634 44 93.5 6.5 93.1 6.9

2 0.96 9 9 0 687 643 44 93.6 6.4 92.7 7.3

1 1.00 1 1 0 688 644 44 93.6 6.4 92.2 7.8

y = 0.47x2 - 0.78x + 0.39
R² = 0.95
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bankruptcy, most of the 13 firms with intermediate layered scores underwent
transitions (e.g. reached new credit agreements, closed stores, merged and/or went
private), indicating that they were less stable and higher risk than those with higher
scores.

There were 52 firms in 2008, 1 of which was bankrupt. Twenty-nine active firms
had scores above 0.6 (y < 2%), of which 27 stayed active and 2 went bankrupt at
the onset of the recession. Seven active firms and the bankrupt firm had scores
below 0.4 (y > 8%). Of the active firms, three stayed active, one went private, one
changed its name while two went bankrupt. The firm that was already bankrupt in
2008 emerged from bankruptcy during the two year period. Of the 15 firms with
intermediate scores, 10 remained active and 5 experienced transitions (new credit
agreements or store closings).

There were 55 active and 1 bankrupt firm in 2007. All but 1 of the 35 firms with
scores above 0.6 (y < 4%) remained active over the two years. Five active firms has
scores below 0.3 (y > 10%); 3 of these went bankrupt, 1 went private and 1 stayed
active. The bankrupt firm also had a score below 0.3, and emerged from bank-
ruptcy. Ten of the 15 firms with intermediate scores remained active, and 2 went
bankrupt.

All 50 firms in 2006 were active. The thirty firms that had scores above 0.6
(y < 4%) remained active over the two years. Of the 6 firms with scores below 0.3
(y > 9%), 2 went bankrupt and 4 stayed active. One of the 14 firms with inter-
mediate scores went bankrupt and the rest remained active. There were 47 active
firms in 2005; of these all 26 that had scores above 0.6 (y < 5%) remained active.
Five firms had layered scores below 0.3 (y > 7%), and 16 had scores in between.
One firm from each of those groups went bankrupt, and the remainder stayed active.

Table 13.17 Classification by layering and fitted second order bankruptcy probability polyno-
mials from one year back for different windows

Time
window

Total number of
DMUs (active,
bankrupt)

Total
number of
peels

Accuracy
(%)

Error
(%)

Layer Probability of
bankruptcy (y)
from layered
score (x)

1996–
2009

701 (651, 50) 26 80 20 16 y = 0.54x2 −
0.81x + 0.32

1996–
2008

584 (543, 41) 23 76 24 14 y = 0.63x2 −
0.91x + 0.34

1996–
2007

532 (492, 40) 22 76 24 13,
14

y = 0.24x2 −
0.41x + 0.20

1996–
2006

476 (439, 37) 21 76 24 13 y = 0.16x2 −
0.31x + 0.17

1996–
2005

409 (379, 30) 19 75 25 11,
12

y = 0.05x2 −
0.12x + 0.10

1996–
2004

357 (331, 26) 18 77 23 11,
12

N/A
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Another aspect of the DEA model in comparison to other bankruptcy prediction
methodologies is that the DEA model can also be used to provide comparison and
improvement targets for the DMUs. From the results of the first run (layer) of the
second-stage model, the required improvements for the individual scores to attain
overall efficiency can be ascertained. The first-stage model results for those scores
give the necessary improvement targets for the individual inputs and outputs. By
concentrating on the company aspects, represented by first-stage scores, and the
individual inputs and outputs within those models, allowing the greatest potential
improvements, areas for these companies to focus upon in order to improve are
identified. This procedure can also be applied to active DMUs as a means to
improve profitability.

Overall, the bankrupt DMUs generally required improvement in all four
first-stage metrics to achieve efficiency. For the first-stage IS model, the main
improvement identified for most bankrupt DMUs was to decrease net interest and
income tax expenses, and increase net income. In the BSA model, bankrupt DMUs
should look to reduce accounts receivable, inventories, PPE and total assets, and
increase cash, retained earnings and shareholders’ equity to become efficient.
Improving all variables was found to be important in the BSL model, and reducing
the management turnover, legal proceedings, related party transactions, and pension
variables were identified as important in the MDM model.

Including the ME factor made predictions worse. One hypothesis to explain this
is that the information in the ME data is already being captured by the other
financial and MDM data included. The plots of the ME overall indicator and the
average DEA layered scores (Fig. 13.12) are similar. The various tests performed to
test the null hypothesis that there is no significant difference between them are
summarized in Table 13.18. All of these showed no significance, except that their
correlation was weak, and also their annual direction of change (up or down), which
is probably more important than the actual magnitude of the scores, was the same in
10 out 12 years. Thus it was concluded that the hypothesis was true.

In the data sample studied, the ratios of companies that were active (never
bankrupt) to those that were bankrupt at least once was 61–18 (3.4–1), and active to
bankrupt DMUs was 651–50 (13–1). Figure 13.13 demonstrates that by reducing
this ratio of companies from 3.4–1 to 1–1, classification improved, as was previ-
ously seen in other bankruptcy studies. In fact at ratios below 2–1, perfect
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separation of the active and bankrupt firms was achieved using the classification by
zones depicted. It should be noted that as the firms were being compared, it is their
average score over all years for which they had data that was plotted and used for
classification. Also, when the active-to-bankrupt ratio was reduced, the active firms
used were not random, but instead the firms were those with the highest average
scores—it would be assumed that this improves the results obtained.

Table 13.18 Tests of similarity between second-stage layered scores and overall ME indicator

Evaluation Conclusion

Significance in difference of means

Mann-Whitney U test 0.29 No significant difference between means of scores

T-test 0.77

ANOVA 0.77

Correlation

Pearson 0.62 Weak correlation between scores

Spearman 0.50

Difference in area

Area under the Curves 3.6% No significant difference

Coefficient of Divergence (Wongphatarakul et al. 1998)

Coefficient of divergence 0.15 Similarity
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Fig. 13.13 Classification with active-to-bankrupt firms ratios of 3.4–1, 3–1, 2–1 and 1–1
respectively
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13.8 Conclusions and Future Work

This paper studied bankruptcy prediction in 85 US retail-apparel firms that were
traded for some continuous period from 1996–2009. Financial, management deci-
sion making (MDM), and key market and economic data were considered as
possible explanatory variables. They were found to be largely uncorrelated with
each other, but individually poor at predicting bankruptcy. This led to the main
hypothesis that including variables for MDM and market and economic factors
would improve prediction compared to models that considered financial data alone;
for the retail-apparel industry, only inclusion of the former was found to be ben-
eficial; however, market and economic data could be helpful in models for other
industries.

The developed methodology involved creating metrics (DEA SBM models)
based on different aspects of the annual report, and combining them into a
second-stage SBM model. An extended DEA layering technique was used to
classify the DMUs, and the results compared favorably to the public,
non-manufacturing form of the Altman Z-score used as a benchmark. The final
model had a type I error rate of 20% one year prior to bankruptcy, compared to 42%
for the Z-score. A layered efficiency based on the frontier number where a DMU
appeared was developed, and it was found that a 2nd order polynomial of this score
could be used to provide bankruptcy probabilities in addition to a simple
bankrupt/non-bankrupt classification. Finally, as the model is DEA-based, the
efficient projection can provide explicit improvement targets for individual data
items for both bankrupt and active firms.

The developed methodology could easily be adapted to other industries.
Although the chosen variables for the individual metrics, and even the metric
themselves (e.g. including market and economic factors, or a metric from the cash
flow statement) would likely be different, the selection process was based on
reducing an all-inclusive list to those which are shown to have an effect, based on
the tests of correlation and similarity. Thus, it was not overly subjective.

Other extensions to this work could involve incorporating corporate governance
risk indicators and other data not captured by the financial statements, or trends or
some other means to reflect or calibrate for time, since the data from companies do
not overlap entirely over the same time period. The differing costs of type I and II
errors could be determined and accounted for in determining the model cut-off
layers, or the percentage losses in bankruptcies could be considered as the opti-
mizing objective instead of the correct classification of bankrupt and non-bankrupt
firms. As there was some variation in the zone and layering scores for the lower
scores, there might be some means to combine the two to improve predictions.

Furthermore, credit ratings determined by agencies such as S&P and Moody’s
could be considered in model extensions, especially given the importance placed by
investors on their work with regards to default risk. These ratings could be incor-
porated as model variables, or the default probabilities determined from the layering
results could be compared to historical default probabilities implied by the firm’s
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credit ratings, either across all industries, or preferably those specific to the industry
under study.
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Chapter 14
Banking Crises, Early Warning Models,
and Efficiency

Pavlos Almanidis and Robin C. Sickles

Abstract This paper proposes a general model that combines the Mixture Hazard
Model with the Stochastic Frontier Model for the purposes of investigating the main
determinants of the failures and performances of a panel of U.S. commercial banks
during the financial crisis that began in 2007. The combined model provides
measures of the probability and time to failure conditional on a bank’s performance
and vice versa. Both continuous-time and discrete-time specifications of the model
are considered in the paper. The estimation is carried out via the expectation-
maximization algorithm due to incomplete information regarding the identity of
at-risk banks. In- and out-of-sample predictive accuracy of the proposed models is
investigated in order to assess their potential to serve as early warning tools.

Keywords Financial distress � Panel data � Bank failures � Semiparametric
mixture hazard model � Discrete-time mixture hazard model � Bank efficiency

JEL Classification Codes C33 � C41 � C51 � D24 � G01 � G21

14.1 Introduction

In light of the recent 2007–2011 financial meltdown in the United States (U.S.),
during which more than 400 banks and thrifts failed, that is were forced into closure
by regulatory agencies,1 the need for effective regulations and intervention policy
that would identify and resolve future crises and undertake prompt corrective
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1According to the Federal Deposit Insurance Corporation's Failed Bank List available at: http://
www.fdic.gov/bank/individual/failed/banklist.html.
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actions to resolve such crises with minimal cost in a timely fashion has been
recognized as essential to the health of the U.S. economy. In this paper we only
consider failed banks as ones that appear on the FDIC’s failed bank list and ceased
their operation due to reasons other than merger or voluntary liquidation, or that
remained inactive or no longer were regulated by the Federal Reserve. The 2007–
2011 financial crisis, which originated from the secondary market for residential
mortgage-backed securities (RMBS) immediately after the collapse of the housing
bubble in 2006, caused severe losses to banks and in particular large banks, which
were highly involved in the RMBS market. At the same time and as a result of the
large banks’ widespread distress and contagion effects, the number of problem
banks on the watch list maintained by the Federal Deposit Insurance Corporation
(FDIC) dramatically increased. Systemically important financial institutions at risk,
commonly described as too-big-to-fail, received heavy doses of government funds
through the Troubled Asset Relief Program (TARP) from regulatory authorities
who apparently believed that the banks’ failures would impose greater systemic risk
that could substantially damage the economy and lead to conditions similar to, or
possibly exceeding, those of the Great Depression. The financial crisis footprint was
not the same across the states. Those that experienced the most failures were
California, Florida, Georgia and Illinois, accounting for more than half of the
failures in the U.S.

Banking crises are not a new phenomena in the U.S. economy2 and regulatory
authorities have always considered banking failures as a major public policy con-
cern, because of the special role that banks play in the economic network and in the
implementation of an effective monetary policy. The distinguishing characteristic of
the banking crisis of 2007–2011 from those in the 1980s and 1990s, however, is
that failures were not limited to small financial institutions. Rapid credit expansion
and low quality loans and investments made during a period of economic expansion
mainly took their toll on large multi-billion dollar financial institutions.
Approximately one in five banks that failed had assets of over $1 billion and in
2008 thirty-six percent were large banks, among them the largest bank failure in the
history of the U.S., that of Washington Mutual with $307 billion in assets.3 That
same year saw Lehman Brothers file for Chap. 11 bankruptcy protection and
IndyMac Bank with $32 billion in assets taken over by the FDIC.4 These large
financial institution failures created large uncertainties about the exposure of other
financial institutions (healthy and troubled) to additional risks, reduced the avail-
ability of credit from investors to banks, drained the capital and money markets of

2The Great Depression of 1930s and savings and loan (S&L) crisis of the 1980s and 1990s are the
two most obvious examples from the last century.
3Continental Illinois Bank and Trust Company of Chicago failed in 1984 and had one-seventh of
Washington Mutual's assets.
4Chapter 11 permits reorganization under the bankruptcy laws of the United States. A financial
institution filling for Chap. 11 bankruptcy protection usually proposes a plan of reorganization to
keep its business alive and pay its creditors over time.
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confidence and liquidity, triggered the failure of smaller community banks,5 and
raised fears of severe instability in the financial system and the global economy.

In the U.S., the FDIC and state banking regulatory authorities are responsible for
the identification and resolution of insolvent institutions. A bank is considered at a
risk of immediate closure if it is unable to fulfil its financial obligations the next day
or its capital reserves fall below the required regulatory minimum.6 The FDIC is
required to resolve outstanding issues with problem banks in a manner that imposes
the least cost on the deposit insurance fund (DIF) and ultimately on the taxpayer.
Thus, early detection of insolvent institutions is of vital importance, especially if the
failure of those institutions would pose a serious systemic risk on the financial
system and the economy as a whole. The FDIC and state authorities utilize on-site
and off-site examination methods in order to determine which institutions are
insolvent and, thus, should be either closed or be provided financial assistance in
order to rescue them. The off-site examinations are typically based on statistical and
other mathematical methods and constitute complementary tools to the on-site visits
made by supervisors to institutions considered at risk. There are three advantages to
off-site versus on-site examinations: (i) the on-site examinations are more costly as
they require the FDIC to bear the cost of visits and to retain extra staff during times
when economic conditions are stable; (ii) the on-site examinations are usually
time-consuming and cannot be performed with high frequency; and (iii) the off-site
examinations can help allocate and coordinate the limited on-site examination
resources in an efficient way with priority given to financial institutions facing the
most severe challenges. The major drawback of statistically-based off-site tools is
that they incorporate estimation errors which may affect the classification of banks
as failure and nonfailures. An effective off-site examination tool must aim at
identifying problem banks sufficiently prior to the time when a marked deterioration
of their financial health would occur. Therefore, it is desirable to develop a model
which would identify future failures with a high degree of accuracy in a timely
manner and would rarely flag healthy banks as being at risk of closure.

This paper develops an early warning model of bank troubles and failures based
on the Mixture Hazard Model (MHM) of Farewell (1977, 1982) with continuous
and discrete time specifications.7 MHM effectively combines the static model,
which is used to identify troubled banks, and the duration model, which provides
estimates of the probability of failure along with the timing of closure of such

5Community banks are banks with assets sizes of $1 billion or less. Their operation is oftentimes
limited to rural communities and small cities. Community banks usually engage in traditional
banking activities and provide more personal-based services.
6Under the current regulations issued by the Basel Committee on Banking Supervision (Basel
II&III), a bank is considered as failed if its ratio of Tier 1 (core) capital to risk-weighted assets is
2% or lower. This ratio must exceed 4% to avoid supervisory intervention and prompt corrective
action as underlined in Federal Deposit Insurance Corporation Improvement Act (FDICIA) of
1992. A bank with ratio of 6% or above is considered as a well-capitalized bank.
7Applications of the discrete-time version of the MHM can be found in Gonzalez-Hermosillo et al.
(1997), Yildirim (2008) and Topaloglu and Yildirim (2009).
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troubled banks. We view the financial crisis as a negative shock that affected banks
in an unequal way. Well-capitalized, well-prepared, and prudently-managed insti-
tutions may have felt relatively little distress during the financial turmoil. On the
other hand, poorly-managed banks that previously engaged in risky business
practices faced an increased probability of their being on the FDIC watch list and,
subsequently forced into closure or merger with a surviving bank by regulatory
authorities. Unlike standard duration models, which assume that all banks are at the
risk of failure, we implicitly assume that a proportion of banks will survive for a
sufficiently long time after the end of a crisis and thus are incapable of entering an
absorption state. In other words, we assume that the probability of failure for a bank
that has never been on the watch list is arbitrarily close to zero. The MHM is
appropriate for dealing with this issue as it is able to distinguish between healthy
and at-risk of failure banks.

One of our (testable) assumptions concerns the fact that banks with low per-
formance, as calculated by the radial measure of realized outcome to the maximum
potential outcome, will increase their probability of failure. An inefficiently-
managed bank could cumulatively save valuable funds by improving its perfor-
mance. The saved funds often prove to be vital in servicing a bank’s short-term
obligations during financial crisis periods when interbank markets suffer from poor
liquidity, and would therefore prevent the bank to need to draw on shareholders’
equity. Shareholders’ equity is the most expensive source of financing, the reduc-
tion of which would trigger on-site examination by regulators and possibly would
place the bank on the watch list of problem banks. On-site examination subse-
quently would redirect the bank management’s focus on clearing problem accounts
rather than on improving its overall performance and thus could make it even less
efficient. This process could continue in a spiral fashion, deteriorating the bank’s
financial assets and the capital. To account for this mutual effect, we employ a
single step joint estimation procedure proposed by Tsionas and Papadogonas
(2006), wherein a stochastic frontier model (SFM) is jointly estimated with a frailty
model.

A challenge that we face in this paper is the incomplete information associated
with the troubled banks on the watch list of the FDIC. Each quarter the FDIC
releases the number of problem banks, but their identities are not publicly disclosed.
To address this problem of missing information, we make an assumption that a
bank that failed was on this list and based on available information we make a
prediction of which banks potentially could be on this list through an
expectation-maximization (EM) algorithm, which is designed to deal with this type
of incomplete information. We also follow a forward step-wise procedure in model
building and covariates selection, which is not only based on the conventional
measures of the goodness-of-fit and statistical tests, but also on the contribution of
these covariates to the predictive accuracy of the proposed models.

Finally, our model recognizes the fact that insolvency and failure are two dif-
ferent events. The realization of the first event is largely attributed to the actions
undertaken by a bank itself, while the second usually occurs as a result of regu-
lators’ intervention following its insolvency. Supervisors typically tend not to seize

334 P. Almanidis and R.C. Sickles



an insolvent bank unless it has no realistic probability of survival and its closure
does not threaten the soundness and the stability of the financial system. Based on
the above considerations, we are able to assess the type I and type II errors implicit
in bank examiners’ decision process when closing banks.8 We find that the within
sample and out-of-sample average of the two misclassification errors is less than 6
and 2%, respectively, for our preferred model. We also find that the predictive
power of our model is quite robust when using estimates derived from different
sub-periods of the financial crisis.

The remainder of the paper is organized as follows. In Sect. 14.2 we provide a
brief review of banking crisis models. Section 14.3 describes the potential decision
rule adopted by the regulatory authorities in determining and closing insolvent
banks, which naturally will lead to the MHM. Two variants of the MHM are
discussed, the continuous-time semiparametric proportional MHM and
discrete-time MHM. In Sect. 14.4 we discuss the joint MHM-SFM. Section 14.5
deals with empirical specification issues and the data description. Estimation,
testing, and predictive accuracy results are provided in Sect. 14.6, along with a
comparison of various models and specifications. Section 14.7 contains our main
conclusions.

14.2 Banking Crisis Studies

Accurate statistical models that serve as early warning tools and that potentially
could be used as an alternative or complement to costly on-site visits made by
supervisors have been well documented in the banking literature. These models
have been applied successfully to study banking and other financial institutions’
failures in the U.S. and in other countries. As the literature that deals with bank-
ruptcy prediction of financial institutions is vast and there are a myriad of papers
that specifically refer to the banking industry failures, we will discuss only few the
studies that are closely related to our work and are viewed as early warning models.

The more widely-used statistical models for bankruptcy prediction are the
single-period static probit/logit models and the methods of discriminant analysis.
These method usually estimate the probability that an entity with specific charac-
teristics will fail or survive within a certain time interval. The timing of the failure is
not provided by such models. Applications of the probit/logit models and dis-
criminant analysis can be found in Altman (1968), Meyer and Pifer (1970), Deakin
(1972), Martin (1977), Lane et al. (1986), Cole and Gunther (1995, 1998), Cole and
Wu (2011), among others.

Others in this literature have employed the Cox proportional hazard model
(PHM) and the discrete time hazard model (DTHM) to explain banking failures and

8Typically, a type I error is defined as the error due to classifying a failed bank as a non-failed
bank, while a type II error arises from classifying a non-failed bank as a failed bank.
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develop early warning models.9 In the hazard model the dependent variable is time
to the occurrence of some specific event, which can be equivalently expressed either
through the probability distribution function or the hazard function, which provides
the instantaneous risk of failure at some specific time conditional on the survival up
to this time. The PHM has three advantages over the static probit/logit models: (i) it
provides not only the measure of probability of failure (survival), but also the
probable timing of failure; (ii) it accommodates censored observations, those
observations that survive through the end of the sample period; and (iii) it does not
make strong assumptions about the distribution of duration times. The disadvantage
of the PHM model is that it requires the hazard rate to be proportional to the
baseline hazard between any two cross-sectional observations. Moreover, inclusion
of time-varying covariates is problematic. The DTHM, on the other hand, easily
allows for time-varying covariates and has the potential to provide more efficient
estimates and improved predictions. The application of PHM to the study the U.S.
commercial banking failures was undertaken by Lane et al. (1986), Whalen (1991),
as well as in Wheelock and Wilson (1995, 2000).10

Barr and Siems (1994) and Wheelock and Wilson (1995, 2000) were the first to
consider inefficiency as a potential influential factor explaining U.S. commercial
banking failures during the earlier crisis. They estimated the efficiency scores with
Data Envelopment Analysis (DEA) techniques, which were then used in a static
model to predict banking failures.11 Wheelock and Wilson (1995, 2000), on the
hand, included inefficiency scores among their regressors to allow these to affect the
probability of failure and acquisitions by other banks in the PHM framework. They
employed three measures of radial technical inefficiency, namely the parametric
cost inefficiency measure, the nonparametric input distance function measure, and
the inverse of the nonparametric output distance function measure. According to the
authors, the first two had a statistically significant (positive) effect on the probability
of failure, while only the first measure significantly decreased the acquisition
probability. The estimation of the models was conducted in two stages. The first
stage involved the parametric or nonparametric estimation of inefficiency scores. In
the second stage these scores were used among the explanatory variables to
investigate their effect on the probabilities of failure and acquisition. Tsionas and
Papadogonas (2006) criticize the two-step approach, arguing that this may entail an
error-in-variables bias as well as introduce an endogenous auxiliary regressor.

9A thorough discussion of hazard models can be found in Cox (1972), Lancaster (1990),
Kalbfleisch and Prentice (2002), and Klein and Moeschberger (2003).
10Shumway (2001), Halling and Hayden (2006), Cole and Wu (2009), and Torna (2010) provide
non-banking applications, along with arguments for using the DTHM over the static models and
PHM.
11DEA, which was proposed by Charnes et al. (1978), is a nonparametric approach that estimates a
relative efficiency score for a bank based on linear programming techniques.

336 P. Almanidis and R.C. Sickles



14.3 Mixture Hazard Model

Our banking failure modelling approach is based on the rules and policies that
regulatory authorities implement in order to identify problem banks that subse-
quently fail or survive.12 We first let Hit define the financial health indicator of bank
i at time t and assume that there is a threshold level of it, H�

it, such that if the
financial health falls bellow this level then the bank is considered at risk of closure
by regulatory authorities. Second, we let the difference between H�

it and Hit, denoted
by h�it, be dependent on bank-specific financial metrics and market variables as
follows:

h�it ¼ H�
it � Hit ¼ x0itbþ eit ð14:1Þ

where eit represents the error term, which is assumed to be identically and inde-
pendently distributed (iid) across observations and over time.13

The financial health threshold of a particular bank is a composite and oftentimes
subjective index and its lower bound is not observable to the econometrician;
therefore, h�it is not observable as well. Instead a binary variable hit can be defined
such that

hit ¼ 1 if h�it [ 0
0 if h�it � 0

�

Based on the above, the probability that a bank will become a problem bank is
given by

Pðhit ¼ 1Þ ¼ Pðh�it [ 0Þ ¼ Pðeit [ � x0itbÞ ¼ Feðx0itbÞ

where Fe is the cumulative distribution function of the random error e, which can be
assumed to be either normally distributed (probit model) or logistically distributed
(logit model).

Specification of the likelihood function then follows that of the standard hazard
model, wherein a nonnegative random variable T represents the time to failure of a
bank within a given period of time. This is characterized by the conditional
probability density function fT and the cumulative distribution function FT .
A binary variable di is also specified and takes on a value of 1 for observations that
fail at time t and 0 for observations that are right censored (i.e., when a bank does
not fail by the end of the sample period or disappears during the period for reasons

12See Kasa and Spiegel (2008) on various regulatory closure rules.
13The iid assumption of the error term can be relaxed in the panel data context by assuming
eit ¼ li þ nit with li �Nð0; r2lÞ and nit �Nð0; r2nÞ independent of each other. This adds an
additional complication to the model and it is not pursued in this paper.
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other than failure).14 Assuming that the rate at which regulatory authorities tend to
seize healthy banks is arbitrarily close to zero, the likelihood function for a bank i is
given by

Liðh; x;wÞ ¼ ½Feðx0ibÞkpi ðt;wiÞSpðt;wiÞ�di Feðx0ibÞSpðt;wiÞþ 1� Feðx0ibÞ
� �� �1�di

ð14:2Þ

where Sp is a survivor function, which represents the probability that a problem
bank will survive for a period longer than t and kp represents the hazard rate or
probability that such bank will fail during the next instant, given that it was in
operation up until this time. The h represents the parameter vector, while x and w
are covariates associated with the probability of being problem and failed,
respectively. A detailed derivation of the likelihood function is provided in
Appendix A of this paper. After rearranging the expression in (14.2) and dropping
the superscript from measures pertaining to problem banks to reduce notational
clutter, the sample likelihood for all banks can be written as:

Lðh; x;w; dÞ ¼
Yn
i¼1

Liðh; x;w; dÞ

¼
Yn
i¼1

FeðxibÞhitð1� FeðxibÞÞ1�hitfkiðt;wiÞgdihitfSiðt;wiÞghit
ð14:3Þ

If T is assumed to be a time-varying variable, then the model can be estimated
based on the proportional hazards assumption (Cox 1972), which unfortunately
does not allow for time-varying covariates. Following Kuk and Chen (1992) and Sy
and Taylor (2000), the survivor and hazard functions in this case are given by the
expressions bellow:

kiðt;wiÞ ¼ k0ðtÞ exp ðw0
iaÞ and Siðt;wiÞ ¼ S0ðtÞexpðw

0
iaÞ ð14:4Þ

where, k0ðtÞ and S0ðtÞ define the conditional baseline hazard function and baseline
survivor function, respectively. These are nonnegative functions of time only and
are assumed to be common to all banks at risk.

The discrete-time version of the model on the other hand is more flexible and
adds more dynamics to the model by allowing for inclusion of time-varying
covariates. This specification, however, requires that the time-varying regressors

14In this paper, failed banks are only considered as the banks that appear on the FDIC's failed bank
list. Banks that ceased their operation due to reasons other than failure (e.g., merger or voluntary
liquidation) or remained inactive or are no longer regulated by the Federal Reserve, have censored
duration times.
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remain unchanged in the time interval ½t; tþ 1�. The survivor and hazard functions
in the discrete-time MHM can be shown to be derived as:15

Sijðt;w; uÞ ¼
Yti
j¼1

1
1þ expðw0

ijaÞ

" #
and kijðt;wÞ ¼ 1� SðtijÞ

Sðti;j�1Þ for j ¼ 1; 2; . . .; ti:

In what follows, we refer to the continuous-time MHM as Model I and the
discrete-time MHM as Model II. Following the standard nomenclature in the
medical and biological sciences, we refer to the portion of the model that assesses
the financial health of a bank as the incidence component and the portion of the
model that assesses survival times as the latency component.

If hit is observed by the econometrician for each individual bank as it is by
regulators then the estimation process reduces to that of the standard MHM.
However, as discussed above hit is only partially observed by the econometrician.
We address this problem of incomplete information by utilizing the EM algorithm
to deal with the missing data. The EM algorithm consists of two iterative steps: the
expectation (E) step and the maximization (M) step. The expectation step involves
the projection of an appropriate functional (likelihood or log-likelihood function)
containing the augmented data on the space of the original (incomplete) data. Thus,
the missing data are first estimated, given the observed data and the initial estimates
of the model parameters, in the E step. In the M step the function is maximized
while treating the incomplete data as known. Iterating between these two steps
yields estimates that under suitable regulatory conditions converge to the maximum
likelihood estimates (MLE).16

To implement the EM algorithm first consider the expectation of the full
log-likelihood function with the respect to the hit and the data, which completes the
E step of the algorithm. Linearity of log-likelihood function with respect to the hit
considerably facilitates the calculations and the analysis.

The log-likelihood for the ith observation in the M step is given by:

EðMÞ
hjX;W ;h;k0

Liðh; x;w; dÞ½ � ¼ ~hðMÞ
it log FeðxibÞ½ � þ ð1� ~hðMÞ

it Þ log 1� FeðxibÞ½ �
þ ~hðMÞ

it di log kiðt;wiÞ½ � þ ~hðMÞ
it log Siðt;wiÞ½ �

ð14:5Þ

where ~hit is the probability that the ith bank will eventually belong to the group of
problem banks at time t, conditioned on the observed data and the model param-
eters. It represents the fractional allocation to the problem banks and is given by:

15See Cox and Oaks (1984), Kalbfleisch and Prentice (2002), and Bover et al. (2002) for dis-
cussion on discrete-time proportional hazard models.
16For more discussion on the EM algorithm and its convergence properties and limitations see
Dempster et al. (1977) as well as McLachlan and Krishnan (1996).
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~hðMÞ
it ¼ E hitjhðMÞ;Data

h i
¼ PrðhðMÞ

it ¼ 1jti [ TiÞ

¼
Feðx0ibðMÞÞSiðt;wiÞ

Feðx0ibðMÞÞSiðt;wiÞþ ð1�Feðx0ibðMÞÞÞ if di ¼ 0

1 otherwise

( ð14:6Þ

In Model I, the nuisance baseline hazard function k0 is estimated nonparamet-
rically from the profile likelihood function as:

k̂0ðtÞ ¼ NðtiÞP
j2RðtiÞ

~hjt expðw0
jaÞ

ð14:7Þ

where NðtiÞ is the number of failures and RðtiÞ is the set of all individuals at risk at
time ti , respectively. Substituting (14.7) into (14.5) leads to the M step
log-likelihood for Model I:

~Lðh; x;w; ~hÞ ¼
Xn
i¼1

~hit logFeðx0ibÞþ ð1� ~hitÞ logð1� Feðx0ibÞÞ
� �

þ
XN
i¼1

w0
ia� NðtiÞ log

X
j2RðtiÞ

~hjt expðw0
jaÞ

	 
n o
¼ L1ðb; x; ~hÞþ ~L2ða;w; ~hÞ

ð14:8Þ

The full implementation of the EM algorithm involves the following four steps:

• Step 1: Provide an initial estimate for the parameter b and estimate the ordinary
MHM in order to obtain the starting values for k0;

• Step 2 (E step): Compute ~hit from (14.6) based on the current estimates and the
observed data;

• Step 3 (M step): Update the estimate of parameter b using (14.5); and
• Step 4: Iterate between steps 2 and 3 until convergence is reached.17

Alternatives to the EM method can also be utilized. For example, in his study of
the recent U.S. commercial banking failures Torna (2010) attempted to identify
troubled banks on the FDIC’s watch list based on their tier 1 capital ranking. Banks
were ranked according to their tier 1 capital ratio and the number of banks with the
lowest value were selected to match the number provided by the FDIC in each
quarter. Other ratios, such as Texas ratio, also can be utilized to deduce the problem
banks. The Texas ratio was developed by Gerard Cassidy to predict banking

17Convergence to a stationary point in the EM algorithm is guaranteed since the algorithm aims at
increasing the log-likelihood function at each iteration stage. The stationary point need not,
however, be a local maximum. It is possible for the algorithm to converge to local maxima or
saddle points. We check for these possibilities by selecting different starting values and checking
for the proper signs of the Hessian.
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failures in Texas and New England during recessionary periods of the 1980s and
1990s. It is defined as the ratio of nonperforming assets to total equity and loan-loss
reserves and banks with ratios close to one are identified as high risk. There are at
least two limitations to these approaches besides their crude approximation. First,
they ignore other variables that play a pivotal role in leading banks to a distressed
state. For example, ratios based on nonperforming loans are major indicators of
difficulties that bank will face in near future, even if their current capital ratios are at
normal levels. Second, financial ratios that are used to classify banks as healthy or
troubled cannot be subsequently employed as determinants due to a possible
endogeneity problem.

14.3.1 Combined SFM and MHM Model

In this section we consider the efficiency performance of a bank as a determinant
of the probability of being both a problem bank and one that subsequently fails.
The efficiency performance of a firm relative to the best practice (frontier)
technology firm was formally considered by Debreu (1951) and Farrell (1957).
Aigner et al. (1977), Meeusen and van den Broeck (1977), and Battese and Cora
(1977) introduced the parametric stochastic frontier model (SFM). In the SFM the
error term is assumed to be multiplicative in a levels specification of the pro-
duction or of one of its dual presentations, such as the cost function we use in our
analysis, and is composed of two parts: (i) a one-sided error term that captures the
effects of inefficiencies relative to the stochastic frontier; and (ii) a two-sided error
term that captures random shocks, measurement errors and other statistical
noise.18

The general SFM is represented by the following functional relationship:

yit ¼ gðzit; gÞ expðeitÞ ð14:9Þ

where the dependent variable yit could represent cost, output, profit, revenue and so
forth, zit is a vector of independent regressors, and gð�Þ is the frontier function,
which can be either linear or non-linear in coefficients and covariates. Depending on
the particular dual representation of technology specified, e ¼ t�
u ¼ log yit � log gðzit; gÞ½ � represents the composed error term, with tit representing
the noise and ui the inefficiency process. The noise term is assumed to be iid
normally distributed with zero mean and constant variance. Inefficiencies are also
assumed to be iid random variables with distribution function defined on the
domain of positive numbers ðu 2 Rþ Þ. Both t and u are assumed to be independent

18Excellent surveys of frontier models and their applications are found in Kumbhakar and Lovell
(2000) and Greene (2008).
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of each other and independent of the regressors.19 In this paper, we follow Pitt and
Lee (1981) and assume that the inefficiency process is a time-invariant random
effect, which follows the half-normal distribution (i.e., ui �N þ ð0; r2uÞ).

Under the above assumptions the marginal distribution of the composed error
term, which for the production or cost frontier model is derived as:

feðeitÞ ¼ 2

ð2pÞTi=2rTi�1
t r

exp � e0iteit
2r2t

þ �e2i k
2

2r2

� �
1� U

Ti�eik
r

 �� �
ð14:10Þ

where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2t þ Tir2u

p
, k ¼ ru=rt, and �ei ¼ ð1=TiÞ

PTi
t¼1 eit.

20 The parameter k is
the signal-to-noise ratio and measures the relative allocation of total variation to the
inefficiency term. In practice we can use an alternative parametrization, called the
c—parameterization, which specifies c ¼ r2u=r

2.21

It can be also shown (see Jondrow et al. 1982) that the conditional distribution of
the inefficiency term is given by

fujeðuijeitÞ ¼ fe;uðei; uiÞ
feðeiÞ ¼

1
r /ð

ui�l�i
r�

Þ
1� U � l�i

r�

	 
h i ð14:11Þ

where fujeð�Þ represents the normal distribution truncated at 0 with mean
l�i ¼ �Ti�eir2u=r

2 ¼ �Ti�eic and variance r2� ¼ r2ur
2
t=r

2 ¼ cr2ð1� cTiÞ; and /ð�Þ
and Uð�Þ are, respectively, the pdf and cdf functions of the standard normal dis-
tribution. The mean or the mode of this conditional distribution function provides
an estimate of the technical inefficiency.

In the absence of any effect of the inefficiencies on the probability of being
troubled and failed, (14.10) and (14.11) can be employed to obtain the maximum
likelihood estimates of model parameters and efficiency scores. However, consis-
tent and efficient parameter estimates cannot be based solely on the frontier model
when there is feedback between this measure of economic frailty and the likelihood
of failure and the ensuing tightening of regulatory supervision. There is a clear need
for joint estimation of the system when the decision of a firm is affected by these
factors.

19The assumption of independence of the inefficiency term and the regressors is restrictive, but is
necessary for our current analysis. Its validity can be tested using the Hausman-Wu test. In the
panel data context, this assumption can be relaxed by assuming that inefficiencies are fixed effects
or random effects correlated with all or some of the regressors (Hausman and Taylor 1981;
Cornwell et al. 1990).
20The cost frontier is obtained by reversing the sign of the composed error.
21This reparametrization is desirable as the c parameter has compact support, which facilitates the
numerical procedure of maximum likelihood estimation, hypothesis testing, and establishing the
asymptotic normality of this parameter.

342 P. Almanidis and R.C. Sickles



In deriving the likelihood function for this model, we maintain the assumption
that censoring is non-informative and statistically independent of hi. Following
Tsionas and Papadogonas (2006) we also assume that conditional on inefficiency
and the data the censoring mechanism and hi are independent of the composed error
term. To simplify notations, let Xi ¼ fxi;wi; zig denote the set of covariates and
H ¼ b; a; d1; d2; g;r2t ; r

2
u

� �
be the vector of the structural and distributional

parameters. The observed joint density of the structural model for bank i, given hi
and after integrating out the unobserved inefficiency term, can be written as:

Liðyi; hi; dijXi;H
0Þ ¼

Z 1

0
Feðx0ibþ d1uiÞhið1� Feðx0ibþ d1uiÞÞ1�hi

	 fkiðt;wi; uiÞgdihifSiðt;wi; uiÞghi ftðeit � uiÞf ðuiÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
feðeÞfujeðujeÞ

dui

¼ feðeitÞ
Z 1

0
Feðx0ibþ d1uiÞhið1� Feðx0ibþ d1uiÞÞ1�hi

	 fkiðt;wi; uiÞgdihifSiðt;wi; uiÞghi fujeðujeÞdui:
ð14:12Þ

The hazard rate and survival function for the continuous-time counterpart of the
model are now given by:

kiðt;wi; uiÞ ¼ k0ðtÞ exp ðw0
iaþ d2uiÞ and Sðt;wiÞ ¼ S0ðtÞexp ðw

0
iaþ d2uiÞ

It should be noted that the above model is rather a general one and consists of
three individual parts: (1) the SFM; (2) the probit/logit model for the incidence part;
and (3) the standard hazard model for the latency part. Each of these three models
are nested within the general model. For example, if there is no association between
inefficiency and the probability of being troubled or failed (d1 ¼ 0 and d2 ¼ 0),
then (14.12) consists of two distinct parts, the SFM and the MHM. Both can be
estimated separately using the methods outlined in the previous sections.

The integral in the joint likelihood (14.12) has no closed form solution and thus
the maximization of this function requires numerical techniques, such as simulated
maximum likelihood (SML) or Gaussian quadrature.22 In SML the sample of draws
from fujeð�Þ are required to approximate the integral by its numerical average
(expectation). As such, the simulated log-likelihood function for the ith observation
becomes:

22Tsionas and Papadogonas (2006) employed the Gaussian quadrature in estimation of the model
where the technical inefficiency has a potential effect on firm exit. Sickles and Taubman (1986)
used similar methods in specifying structural models of latent health and retirement status, while
controlling for multivariate unobserved individual heterogeneity in the retirement decision and in
morbidity.
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Li ¼ log Liðyi; hi; dijXi;H
0Þ ¼ Constant � ðTi � 1Þ

2
log r2ð1� cTiÞ

� 1
2
log r2 þ log 1� U

Ti�ei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=ð1� cÞp
r

 !" #
� e0iteit
2r2ð1� cTiÞ þ

�e2i c
2r2ð1� cÞ

þ log
1
J

XJ

j¼1
Feðxibþ d1uijÞhit 1� Feðxibþ d1uijÞ

� �1�hit kiðt;wi; uijÞ
� �dihit Siðt;wi; uijÞ

� �hitn o
ð14:13Þ

where uis is a random draw from the truncated normal distribution fujeð�Þ and J is the
number of draws. We utilize the inverse cdf method to efficiently obtain draws from
this distribution as:

uij ¼ l�i þ r�U�1 Uis þð1� UisÞU � l�i
r�

 �� �
ð14:14Þ

where U is a random draw from uniform U½0; 1� distribution or a Halton draw. By
substituting (14.14) into (14.13) and treating the hits as known we can maximize the
log-likelihood function L ¼Pi Li by employing standard optimization techniques
and obtain the model parameters.

Finally, after estimating the model parameters, the efficiency scores are obtained
as the expected values of the conditional distribution, in the spirit of Jondrow et al.
(1982):

ûi ¼ E ui ĵei; ~hi; di;Xi;H
0� � ¼

R1
0 uiGðui;HÞfujeðujeÞduiR1
0 Gðui;HÞfujeðujeÞdui

ð14:15Þ

where Gðui;HÞ ¼ ~Fðx0ibþ d1uiÞ~hit 1� ~Fðx0ibþ d1uiÞ
� �1�~hit kiðt;wi; uiÞ½ �di~hit

Sðt;wi; uiÞ½ �~hit . The integrals in the numerator and denominator are calculated
numerically by the SML method and the efficiency score of the ith firm is estimated
as TEi ¼ expð�ûiÞ. It is straightforward to check that if d is zero then (14.15)
collapses to the formula derived by Jondrow et al. for production frontiers (i.e.,

ûi ¼ E ui ĵei½ � ¼ l� þ r/ l�
r�

	 

=U l�

r�

	 

).

The EM algorithm for the stochastic frontier MHM involves the following steps:

• Step 1: Provide initial estimates of the parameter vector H. Set the initial value
of parameters d1 and d2 equal to zero and obtain the initial value of the baseline
hazard function from (14.7). Consistent starting values of the variances of the
noise and inefficiency terms are based on method of moments estimates
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r̂2u ¼
ffiffiffiffiffiffiffiffi
2=p

p p
p� 4

	 

m̂3

h i2=3
r̂2t ¼ m̂2 � p� 2

p

 �
r̂2u

� � ð14:16Þ

where m̂2 and m̂3 are the estimated second and third sample moments of the
OLS residuals, respectively. Estimates of r and c parameters are obtained
through the relevant expressions provided above.

• Step 2 (E step): Compute ~hit based on the current estimates and the observed
data from

~hðMÞ
it ¼ E hitjHðMÞ;Xi

h i
¼ PrðhðMÞ

it ¼ 1jti [ TiÞ
Feðx0ibðMÞ þ dðMÞ

1 uiÞSiðt;wi;uiÞ
Feðx0ibðMÞ þ dðMÞ

1 uiÞSiðt;wi;uiÞþ ð1�Feðx0ibðMÞ þ dðMÞ
1 uiÞÞ

if di ¼ 0

1 otherwise

8<
:

ð14:17Þ

• Step 3 (M step): Update the estimate of parameters by maximizing L via sim-
ulated maximum likelihood technique.

• Step 4: Iterate between steps 2 and 3 until convergence.
Continuous-time and discreet-time versions of this combined model are referred
as Model III and Model IV, respectively, throughout this paper.

14.4 Empirical Model and Data

In this section we outline the empirical specification used in estimating the four
models described above (Models I–IV). We describe the data on which our esti-
mates are based and the step-wise forward selection procedure we employ in model
building and variable selection.

14.4.1 Empirical Specification

Following Whalen (1991) we employ a model with a two-year timeline to estimate
the probability of distress and failure and the timing of bank failure. In the Model I
and Model III, the time to failure is measured in months23 (1–24 months) starting
from the end-year of 2007, while in the Model II and Model IV the duration times
are measured in quarters as banks report their data on a quarterly basis. The

23Duration times measured in weeks were also considered, but not reported in this paper.
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covariates used in the estimation process of Model I and Model III are based on
information from the fourth quarter of the 2007 Consolidated Reports of Condition
and Income (Call Reports). State-specific macroeconomic variables are also derived
from the Federal Reserve databases to control for state-specific effects.

We employ the cost frontier in the stochastic frontier model specification, which
describes the minimum level of cost given output and input prices. The gap between
the actual cost and the minimum cost is the radial measure of total (cost) ineffi-
ciency and is composed of two parts: (i) the technical inefficiency arising from
excess usage of inputs and (ii) the allocative inefficiency that results from a
non-optimal mix of inputs. We do not make this decomposition but rather estimate
overall cost inefficiency. We adopt the intermediation approach of Sealey and
Lindley (1977), according to which banks are viewed as financial intermediaries
that collect deposits and other funds and transform them into loanable funds by
using capital and labor. Deposits are viewed as inputs as opposed to outputs, which
is assumed in the production approach.24

As in Kaparakis et al. (1994) and Wheelock and Wilson (1995), we specify a
multiple output-input short-run stochastic cost frontier with a quasi-fixed input.
Following the standard banking literature we specify a translog functional form to
describe the cost function:25

log Cit ¼ a0þ
X5
m¼1

am log ymit þ
X4
k¼1

bk log wkit

þ 1
2

X5
m¼1

X5
j¼1

amj log ymit log yjit þ h1tþ 1
2
h2t

2

þ 1
2

X4
k¼1

X4
n¼1

bkn log wkit logwnit þ g1 log Xit þ 1
2
g2ðlog XitÞ2

þ
X5
m¼1

X4
k¼1

dmk log ymit log wkit þ
X5
m¼1

k1x log ymit log Xit

X4
k¼1

k2x logwkit log Xit þ
X5
m¼1

kmt log ymittþ
X4
k¼1

/kt log wkittþ tit þ ui

where C is the observed short-run variable cost of an individual bank at each time
period, ym is the value of the mth output, m ¼ 1; . . .; 5. Outputs are real estate loans
ðyrelnÞ, commercial and industrial loans ðycilnÞ, installment loans ðyinlnÞ, securities
ðysecÞ, and off-balance sheet items ðyobsÞ. The w

0
s represent input prices of the

total interest-bearing deposits ðdepÞ, labor ðlabÞ, purchased funds ðpurf Þ, and

24See Baltensperger (1980) for example.
25The translog function provides a second-order differential approximation to an arbitrary function
at a single point. It does not restrict the share of a particular input to be constant over time and
across individual firms.
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capital ðcapÞ. The quasi-fixed input ðXÞ consists of non-interest-bearing deposits.
Kaparakis et al. assume that a bank takes the level of non-interest-bearing deposits
as exogenously given and since there is no market price associated with this input,
the quantity of it should be included in the cost function instead of its price. We also
include the time and its interaction with outputs and input prices to account for
non-neutral technological change. Symmetry (amj ¼ ajm and bkn ¼ bnk) and linear

homogeneity in input price (
P4

k¼1 bk ¼ 1;
P4

k¼1 bkn ¼
P4

k¼1 dmk ¼
P4

k¼1 k2x ¼P4
k¼1 /kt ¼ 0) restrictions are imposed by considering capital as the numeraire and

dividing the total cost and other input prices by its price.

14.4.2 Data

The data are from three main sources: (i) the public-use quarterly Call Reports for
all U.S. commercial banks, which is collected and administrated by the Federal
Reserve Bank of Chicago and the FDIC; (ii) the FDIC website, which provides
information regarding failed banks and industry-level indicators; and (iii) the
website of the Federal Reserve Bank of St. Louis, which provides information on
regional-specific macroeconomic variables.

We drop bank observations with zero costs, zero output and input levels, as well
as those with obvious measurement errors and other data inconsistencies. In
addition, we exclude banks that voluntarily liquidated during the sample period and
those that were chartered and started to report their data after the first quarter of
2007,26 which require a special treatment. The estimation sample consists of 125
banks that failed during 2008 and 2009 and 5843 surviving banks.

More than forty bank-specific financial metrics, state-specific macroeconomic,
geographical, and market structure variables are constructed from variables
obtained form the above sources as potential determinants of banking distress and
failure. We apply the stepwise forward selection procedure (Klein and
Moeschberger 2003) to chose the most relevant explanatory variables based on
conventional statistical tests and the Akaike Information Criterion (AIC). In addi-
tion to these tests, we base our variable selection on their contribution to the overall
prediction accuracy of a particular model we employ. The final set of variables
pertaining to the incidence and the latency part includes proxies for the capital
adequacy, asset quality, management, earnings, liquidity, and sensitivity (the
so-called “CAMELS”),27 six market structure and geographical variables, and four
state-specific variables. We use the same set of explanatory variables in both the
incidence and latency parts of our models in order to capture the different effects

26These are typically referred to as the “De Novo” banks (DeYoung 1999, 2003).
27The “CAMELS” variables construction closely follows that of Lane et al. (1986) and Whalen
(1991).
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that these have on the probability that a particular bank is troubled, as well as the
probability and timing of the resolution of the bank’s troubles by the FDIC.
Tables 14.1 and 14.2 provide our mnemonics for the variable names, as well as
their formal definitions.

The first variable in Table 14.1 is the tier 1 risk-based capital ratio. Banks with a
high level of this ratio are considered having sufficient capital to absorb the
unexpected losses occurring during the crisis and hence, have a higher chance of
survival. We expect a negative sign for this variable in both the incidence and
latency parts. The next variable is the ratio of nonperforming loans28 to total loans,
which is the primary indicator of the quality of loans made by banks and histori-
cally has been an influential factor in explaining their distress and failure. The
higher this ratio, the higher the probability that the bank will enter the watch list and
subsequently fail. The next five ratios also reflect the banks’ asset quality. We
expect the ratio of allowance for loan and lease loss to average total loans to have a

Table 14.1 CAMELS proxy financial ratios

Capital adequacy (C)

tier1 Tier 1 (core) capital/risk-weighted assets

Asset quality (A)

rnpl Nonperforming loans/total loans

alll Allowance for loan and lease loss/average loans and leases

reln Commercial real estate loans/total loans

coffs Charge-offs on loans and leases/average loans and leases

lrec Recoveries on allowance for loan and lease losses/average loans and leases

llp Provision for loan and lease losses/average loans and leases

Managerial quality (M)

fte (Number of fulltime equivalent employees/average assets) * 1000

imr Total loans/total deposits

u Random effects inefficiency score

Earnings (E)

oi Total operating income/average assets

roa Net income (loss)/average assets

roe Net income (loss)/total equity

Liquidity (L)

cash Noninterest-bearing balances, currency, and coin/average assets

cd Total time deposits of US$100,000 or more/total assets

coredep Core deposits/total assets

Sensitivity (S)

sens Difference in interest rate sensitive assets and liabilities repricing within one
year/total assets

28Nonperforming loans consist of total loans and lease financing receivables that are nonacrual,
past due 30–89 days and still accruing, and past due 90 days or more and still accruing.
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positive effect on a bank’s survival. Higher ratios may signal banks to anticipate
difficulties in recovering losses and thus this variable may positively impact inci-
dence. Similarly, charge-offs on loan and lease loss recoveries provide a signal of
problematic assets that increase the probability of insolvency and failure. Provision
for loan and lease losses are based upon management’s evaluation of loans and
leases that the reporting bank intends to hold. Such a variable can expect to
decrease the probability of distress and increase the probability of survival. We can
also view this as a proxy to control for one of the several ways in which different
banks pursue different risk strategies (Inanoglu et al. 2014). An often-used measure
of credit risk is the gross charge-off rate (dollar gross charge-offs normalized by
lending book assets). We control for risk-taking strategies in which banks may
engage that differ from their role as a provider of intermediation services–the
service we analyze–by including both of these risk measures as explanatory
variables.

Two of the three management quality proxies that we include are constructed
from the balance sheet items of the reporting banks. The first is the ratio of the
full-time employees to average assets, which has an ambiguous sign in both the
incidence and latency parts of our model. We conjecture, however, a negative sign
on this variable as the FDIC may face constraints in seizing large banks with a large
number of employees. The second is the intermediation ratio, which shows the
ability of a bank to successfully transform deposits into loans and thus we expect its
overall impact also to be negative. Finally, the third management quality proxy is
managerial performance, which we estimate as part of our combined model. The
level of banks’ earnings as measured by the operating income and returns on assets
and equity are also expected to have a negative effect on both the incidence and
latency parts. From liquid assets we expect cash and core deposits to have negative

Table 14.2 Geographical, market structure, and state-specific macroeconomic variables

Geographical and market structure variables

chtype Charter type (1 if state chartered, 0 otherwise)

frsmb FRS membership indicator (1 if federal reserve member, 0 otherwise)

ibf International banking facility (1 if bank operates an international based facility,
0 otherwise)

frsdistrcode FRS district code: [Boston(1), New York (2), Philadelphia (3), Cleveland (4),
Richmond (5), Atlanta (6), Chicago (7), St. Louis (8), Minneapolis (9), Kansas
City (10), Dallas (11), San Francisco (12), Washington, D.C.
(0-referensedistrict)]

lgta log of total assets

age Age (measured in months or quarters)

State-Specific macroeconomic variables

ur Unemployment rate

chpi Percentage change in personal income

chphi Percentage change in house price index

chnphu Change in new private housing units authorized by building permits
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signs, while the direction of the effect of Jumbo time deposits is uncertain. Banks
with relatively more market price sensitive liabilities and illiquid assets should be
considered at a higher risk of failure ex ante.

14.5 Results and Predictive Accuracy

In Table 14.3, we report the results for Model I and Model II. Both models produce
qualitatively similar results. The influential factors that were considered to have a
strong effect on both sets of probabilities a priori turn out to have the correct sign
and most are statistically significant in both models. Results indicate that there is a
large marginal effect of the tier 1 capital ratio on the incidence probability. Other
measures of earnings proxies and asset quality also have a material effect on this
probability. In other words, well-capitalized banks with positive earnings and
quality loans are less likely to appear on the FDIC watch list. In contrast, banks that
already are on this list will increase their probability of failure if their capital ratio is
insufficient, their ratio of nonperforming loans is high, and their earnings are
negative and have a decreasing trend. The certificates of deposits and core deposits
have the expected effect though not a statistically significant one. On the other hand,
cash has a positive and significant effect. One explanation of this could be that, after
controlling for profitability, banks that remain cash idle have a higher opportunity
cost. It would only stand to reason for these banks to be costly and inefficient.
Banks with a large number of full-time employees are shown to have less chances to
fail. Banks that successfully transform deposits into vehicles of investment are
considered potentially stronger, while others with more rate sensitive liabilities
appear to be less promising.

The state-specific variables have the expected economic congruences which
appear to be non-significant in the incidence part of the models. We would expect
these variables to significantly affect the probability of incidence of banks in the
states with higher unemployment rates, lower growth in personal income, limited
construction permits, and falling housing prices, all of which would give cause for
increased on-site inspections. Only two of the four geographical variables have a
significant effect. Banks that are Federal Reserve System (FRS) members have a
higher probability of failure than those that are not. This is associated with behavior
consistent with moral hazard. Such banks have felt secure as members of the FRS
and hence may have assumed higher risks than they would have had they not been
FRS banks. The positive result of the FRS district code indicates that the probability
of insolvency and failure is higher for banks in the Atlanta (6) district than for banks
in the Boston (1) district, for example. Bank size is shown to have a negative and
significant effect only in the incidence part of Model II, which could be interpreted
that larger banks are less likely to be placed on the watch list and subsequently fail.
Finally, the older and well-established banks appear to have lower failure proba-
bilities than their younger counterparts.
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Table 14.3 Parameter estimates obtained under Model I (SPMHM) and Model II (DTMHM)

Variable Model I Model II

Latency Incidence Latency Incidence

Intercept −2.5989
(2.8512)

4.9130 (2.9266)

lgta 0.0797 (0.0885) 0.0607 (0.1103) 0.0531 (0.0875) −0.3320***
(0.1056)

age −0.0004*
(0.0002)

0.0004 (0.0003) −0.0003
(0.0002)

0.0001 (0.0003)

tier 1 −48.417***
(3.0567)

−86.791***
(5.3156)

−47.060***
(3.0856)

−88.728***
(5.3516)

alll −9.5829**
(4.7047)

16.473**
(7.9759)

−8.8615*
(4.6962)

8.8671 (7.7594)

reln 4.4321***
(1.1801)

2.0116 (1.2748) 3.7811***
(1.1731)

3.9762***
(1.2796)

rnpl 7.2555***
(1.3348)

6.3838***
(2.1574)

6.1802***
(1.3433)

9.6447***
(2.1510)

roa −6.1672
(5.1795)

−11.248**
(5.5416)

−7.2727
(5.0983)

−8.8145
(6.1201)

roe 0.0003 (0.0003) 0.0002 (0.0013) 0.0003 (0.0004) 0.0003 (0.0017)

cd 1.0098 (0.8644) 1.6651 (1.0274) 1.2499 (0.8425) 0.8245 (1.0003)

coredep −2.7654
(1.7546)

−1.2140
(2.0839)

−2.5466
(1.7496)

−3.1272
(2.0927)

coffs 0.2351***
(0.0804)

0.3168***
(0.1183)

0.2319***
(0.0848)

0.2703**
(0.1243)

lrec 38.162**
(18.672)

14.463 (56.448) 35.681*
(21.726)

37.945 (42.003)

llp −10.427**
(4.9577)

−15.501**
(6.5158)

−11.688**
(4.8628)

−13.155**
(6.6190)

fte −0.8228
(1.0468)

−3.0004**
(1.4396)

−0.8329
(1.0512)

−3.1287**
(1.4021)

imr −4.2141***
(1.0634)

−1.7238
(1.2254)

−3.7792***
(1.0603)

−4.4020***
(1.2016)

sens 2.3255***
(0.8386)

2.5869**
(1.0320)

2.0025**
(0.8403)

5.6444***
(1.0042)

cash 6.7983***
(2.0542)

6.7497**
(3.2628)

6.9211***
(2.0472)

4.5465 (3.6333)

oi −3.9670
(4.4353)

−6.1756
(6.6955)

−3.1670
(4.3948)

−4.9651
(6.6585)

ur 0.1198***
(0.0379)

0.0196 (0.0490) 0.0655*
(0.0390)

0.0548 (0.0482)

chpi −15.091*
(8.1323)

−10.555
(9.7490)

−20.313**
(8.0823)

−10.645
(10.017)

chhpi −8.1375*
(4.9453)

−3.1678
(5.8411)

−9.8817**
(4.8428)

−5.4824
(5.8215)

(continued)
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In Table 14.4, we present results for the continuous-time semiparametric and
discrete-time MHM with the stochastic frontier specification. With few exemptions,
the results are qualitatively similar to those reported in Table 14.3. Inefficiency has
a positive effect on the incidence and failure probabilities. The effect is only sig-
nificant on the latter probability and this is consistent with the view that bank
performance is not the criterion for an on-site examination, but rather a factor
affecting a bank’s longer term viability. The distributional parameters are significant
at the one-percent significance level. The descriptive statistics for the efficiency
score obtained from Models III and IV as well as from the standard time-invariant
random effects (RE) model for the sample of nonfailed and failed banks are sum-
marized in Table 14.5. There is a small, but a statistically significant difference
between the average efficiencies estimated form Models III and IV. This difference
is not statistically significant for efficiencies derived from the RE model.
Figure 14.1 depicts the distribution of inefficiencies obtained from the three models
(Model III, Model IV and RE). It is worthwhile to note that the RE model reports
certain surviving banks as extremely inefficient, while the most efficient banks are
banks that failed. Based on these observations, we suspect that the two-step
approach would yield the opposite sign on inefficiency component from what we
would expect. The difference in average efficiencies from the single step estimation
can be mainly attributed to the fact that distressed banks typically devote their
efforts to overcome their financial difficulties and clean up their balance sheets.
These impose additional costs on banks and worsen their already bad financial
position.

In Figs. 14.2 and 14.3 we depict the survival profile of the average bank that
failed during the 2008–2009 period for all four models. It can be seen from
Fig. 14.2 that average failed banks in Model I are predicted to have a duration time
of twenty two months. After controlling for inefficiencies, the time to failure drops

Table 14.3 (continued)

Variable Model I Model II

Latency Incidence Latency Incidence

chnphu −0.6570***
(0.2490)

0.0006 (0.0523) −0.5246**
(0.2417)

0.0047 (0.0581)

chtype −0.2151
(0.5058)

0.4441 (0.6871) 0.0223 (0.5051) −0.7143
(0.5943)

frsmb 0.4707***
(0.1797)

0.4018*
(0.2352)

0.4617***
(0.1808)

0.3466 (0.2363)

ibf 1.1171 (0.7589) 1.4405 (0.8883) 1.2816*
(0.7592)

−2.5959***
(0.7825)

frsdistrcode 0.2465***
(0.0329)

0.2615***
(0.0430)

0.2295***
(0.0325)

0.2457***
(0.0427)

LogL 1763.87 1714.92

N 5968 38,571

p* < 0.1, p** < 0.05, p*** < 0.01 (Robust standard errors in parentheses)
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Table 14.4 Parameter estimates obtained under Model III (SPMHM + SF) and Model IV
(DTMHM + SF)

Variable Model III Model IV

Latency Incidence Latency Incidence

Intercept −2.6934
(2.8039)

4.7694*
(2.9201)

lgta −0.0408
(0.0935)

−0.0087
(0.1243)

−0.0742
(0.0958)

0.3466***
(0.1117

age −0.0004*
(0.0002)

0.0004 (0.0003) −0.0004*
(0.0002)

0.0001 (0.0003)

tier 1 −48.647***
(3.0631)

−86.280***
(5.3068)

−48.452***
(3.0678)

−88.684***
(5.339)

alll −8.5073*
(4.6488)

17.003**
(7.9738)

−8.8587*
(4.6066)

8.8881 (7.7741)

reln 4.6588***
(1.1259)

2.1044*
(1.2631)

4.4871***
(1.0878)

3.9288***
(1.2805

rnpl 6.9014***
(1.3206)

6.0653***
(2.1661)

6.7347***
(1.3210)

9.5835***
(2.1554

roa −6.4175
(5.0868)

−11.451***
(5.5328)

−6.1672
(5.1423)

−8.8129
(6.1180)

roe 0.0002 (0.0004) 0.0001 (0.0013) 0.0002 (0.0003) 0.0002 (0.0017)

cd 0.8641 (0.8608) 1.5840 (1.0277) 0.7565 (0.8579) 0.7329 (1.0244)

coredep −2.3913
(1.6224)

−1.0244
(2.0568)

−1.5432
(1.6367)

−2.9196
(2.1285)

coffs 0.2447***
(0.0801)

0.3232***
(0.1172)

0.2516***
(0.0798)

0.2720**
(0.1243

lrec 37.309**
(19.148)

14.661 (56.167) 37.219**
(19.011)

38.569 (41.568)

llp −11.175**
(4.9577)

−15.784**
(6.5199)

−11.654**
(4.7671)

−13.211**
(6.6345

fte −2.1781**
(1.0195)

−3.8780**
(1.5932)

−2.8670***
(1.0298)

−3.3559**
(1.5165

imr −3.7660***
(0.9728)

−1.4553
(1.2128)

−3.2640***
(0.9832)

4.2466***
(1.2601

sens 2.2143***
(0.8294)

2.5264**
(1.0309)

2.0894**
(0.8282)

5.6036***
(1.0068

cash 7.4166***
(2.0368)

7.1461**
(3.2558)

7.6605***
(2.0375)

4.6012 (3.6396)

oi −3.9483
(4.3968)

−6.4722
(6.6946)

−4.1980
(4.3825)

−5.0126
(6.6601)

ur 0.1210***
(0.0377)

0.0234 (0.0491) 0.1208***
(0.0378)

0.0555 (0.0487)

chpi −15.567**
(8.1081)

−9.7061
(9.7811)

−15.551*
(8.0642)

−10.639
(10.021)

chhpi −8.1886*
(4.9593)

−3.2387
(5.8526)

−8.1802**
(4.9731)

−5.4864
(5.8139)

(continued)
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to twenty one months. Based on the Model II results, Fig. 14.3 demonstrates that a
bank with the same characteristics as the representative failed bank will survive up
to 7 quarters, after accounting for inefficiency.

It is also interesting to look at the survival profile of the most and the least
efficient banks derived from Model III and Model IV. Figure 14.4 displays the
survival profiles obtained from Model III. The least efficient bank with an efficiency
score of 0.149% and is predicted to fail in eight months. This bank was closed by
FDIC in the end of August of 2008. On the other hand, the most efficient bank with
efficiency score of 0.971% has a survival probability of one throughout the sample

Table 14.4 (continued)

Variable Model III Model IV

Latency Incidence Latency Incidence

chnphu −0.6300***
(0.2471)

−0.0001
(0.0531)

−0.6171***
(0.2456)

0.0046 (0.0578)

chtype −0.1496
(0.5045)

0.4875 (0.6876) −0.1293
(0.5028)

−0.7224
(0.5953)

frsmb 0.4960**
(0.1801)

0.3994*
(0.2349)

0.4977***
(0.1801)

0.3487 (0.2512)

ibf 1.1325 (0.7574) 1.4718*
(0.8945)

1.1295*
(0.7571)

−2.5923***
(0.7815)

frsdistrcode 0.2612***
(0.0332)

0.2725***
(0.0445)

0.2663***
(0.0334)

0.2469***
(0.0429

d1 0.2062 (0.1577) 0.0343 (0.0828)

d2 0.3058***
(0.0468)

0.4137***
(0.0750)

r 0.0552*** (0.0011) 0.0548*** (0.0011)

Y 0.5173*** (0.0017) 0.5278*** (0.0015)

LogL 67,701 66,360

N 5968 38,571

p* < 0.1, p** < 0.05, p*** < 0.01 (Robust standard errors in parentheses)

Table 14.5 Cost efficiencies results

Mean Standard deviation Minimum Maximum

Non failed banks

Model III 0.6817 0.0691 0.3167 0.9705

Model IV 0.7295 0.1630 0.1992 0.9688

Random effects 0.6466 0.0662 0.4636 0.9650

Failed banks

Model III 0.6721 0.1022 0.1499 0.8722

Model IV 0.6804 0.0824 0.1539 0.8488

Random effects 0.6408 0.0798 0.3845 0.8626

The top and bottom 5% of inefficiencies scores are trimmed to remove the effects of outliers
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period. This is also illustrated in Fig. 14.5, where the least efficient bank with an
efficiency score of 0.154% is predicted to fail by fifth quarter, using the Model IV
results. This bank failed in the third week of April of 2009.29 The most efficient
bank with an efficiency score of 0.969 has an estimated survival probability that
exceeds 95%.
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29The least efficient bank is not the same in these two models. However, the most efficient bank is.
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We next examine our results by recasting our model estimates as early warning
tools that can correctly classify failed and nonfailed banks within our sample used
for estimation as well as in our hold-out 2010–2011 sample. The tests are based on
two types of errors, similar to those that arise in any statistical hypothesis testing.
These are type I and type II errors.30 A type I error is defined as the error due to
classifying a failed bank as a nonfailed bank, while a type II error arises from
classifying a non-failed bank as a failed bank. There is a trade-off between these
two type of errors and both are important from a public policy standpoint. Models
with low type I error are more desirable, since timely identification of failed banks
allows the regulator to undertake any prompt corrective action to ensure that the
stability and the soundness of the financial system is not compromised. On the other
hand, models with high type II error unnecessary will be flagging some banks as
failures while they are not, and hence could waste the regulators’ time and
resources. However, it is oftentimes hard to interpret the costs of a type II error
since various constraints faced by the FDIC could delay the resolution of an
insolvent bank. Thompson (1992) attributes this to information, administrative,
legal and political constraints, among others. Whalen (1991) notes that some type II
error predictions actually represent failures that occur in the near future and hence
should be considered as a success of the model rather than its failure.

In Table 14.6, we report the in-sample predictive accuracy for the four models
based on type I, type II, and overall classification error. Overall classification error
is a weighted average of type I and type II errors. In what follows we set the weights
at 0.5 for both errors.31 In our predictive accuracy analysis, each bank is charac-
terized as a failure if its survival probability falls bellow a probability cutoff point,
which we base on the sample average ratio of failed to nonfailed banks (0.021). The
results in Table 14.6 indicate that the discrete-time specification yields a lower type
I error than does the continuous-time specification. This is to be expected since the
former incorporates multi-period observations for each bank and thus is more
informative about a bank’s financial health than the single-period cross-sectional
observations. There is a significant drop in type I error in both specifications when
the performance of a bank is added to the model as an additional factor. On the
other hand type II error is increased in the discrete-time models and it is doubled
when inefficiency is included. Based on the overall classification error, Model IV
performs somewhat better than Model III, but it largely outperforms Models I and
II.

Table 14.6 also presents the errors that judge the 2010–2011 out-of-sample
classification accuracy of our models based on the estimates obtained using 2008–
2009 data. The continuous-time models’ errors are based on the estimated survival
profiles of banks using the 2009 end-year data, while the discrete-time models’
errors use the full 2010–2011 data. By comparing these errors with the 2008–2009

30See (Lane et al. 1986; Whalen 1991; and Thompson 1992) among others.
31Clearly this weighting scheme is arbitrary and alternative weighting schemes could be based on
different risk preference assumptions, implicit and explicit costs of regulation, etc.
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in-sample classification errors, we observe that there is a significant drop in type I
error for all four models. This is may be due to the fact that the data used to estimate
the banks’ survival profiles are more informative than what was used to estimate the
model parameters, which is reasonable given that the end of 2009 was considered
the peek year of the 2007–2011 banking crisis. The inter-model comparison is the
same as above with Model IV favored over the other models based on predictive
accuracy. In addition, all four models predict the major (i.e., with total assets size
over $1 billion) and the minor bank failures equally well, by reporting very low
estimated type I errors. In fact, type I error is zero for all major in- and
out-of-sample bank failures.32

In order to examine the sensitivity of the models’ classification accuracy to the data
period selection (high risk period versus low risk period), we also estimate the models’
in-sample classification accuracy using 2010–2011 data.33 The 2010–2011 in-sample
classification errors are also summarized in Table 14.6. Comparing the 2010–2011
out-of-sample results to the 2010–2011 in-sample results, we observe that type I error is
slightly decreased for the continuous-timemodels (by 0.0295 inModel I and by 0.0226
inModel III), but it is increased in the discrete-timemodels (by 0.041 inModel II and by
0.0176 inModel IV). More specifically, Model II fails to predict the failure of 12 out of
171 banks that failed in our 2010–2011 sample, while Model IV fails to predict the
failure of 8 out of 171 failed banks during the same period. The corresponding
2010–2011 out-of-sample predictions failed to identify only 5 of such failures. Overall,
the predictive power of ourmodels appears to be quite robust across different estimation
sub-periodswithin the currentfinancial crisis.Wenote, however, that conditions that led
to the 2007–2011 banking crisis may be substantially different from those of future

Table 14.6 Predictive accuracy results

Model I Model II Model III Model IV

2008–2009 in-sample classification

Type I error 0.3840 0.2882 0.1123 0.0644

Type II error 0.0047 0.0051 0.0231 0.0476

Overall classification error 0.1937 0.1465 0.0581 0.0573

2010–2011 out-of-sample classification

Type I error 0.2283 0.0292 0.1630 0.0292

Type II error 0.0049 0.0012 0.0062 0.0012

Overall classification error 0.1157 0.0152 0.0840 0.0152

2010–2011 in-sample classification

Type I error 0.1988 0.0702 0.1404 0.0468

Type II error 0.0025 0.0012 0.0025 0.0012

Overall classification error 0.1007 0.0357 0.0715 0.0240

Overall classification error is a simple average of type I and type II errors

32Detailed survival profile series for each bank in our sample are available upon request.
33The parameter estimates from the 2010–2011 estimation are available upon request.
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banking crises. In this case, not only the model estimates, but also the variables that are
used to predict banking troubles and failures can significantly differ.

14.5.1 Endogenous Variables and Identification

Two potential complications naturally may arise in structural models like the ones
presented in this paper: the presence of endogenous variables and issues of iden-
tification of the structural model. Testing for potential endogenous control variables
from our variable list and identification of the casual effect of the efficiency com-
ponent is the purpose of this subsection.

First, we note that some of the control variables from our list of covariates may
be potentially treated as endogenous in the sense that these are under a bank’s
management control and potentially can be affected by the probability and timing of
failure. In particular, there is the possibility that a bank that is placed on the FDIC’s
watch list may erroneously report (underestimate or overestimate) the amount of
these variables in its Call Reports. Such variables may include the provision for
loan and lease losses,34 which involves subjective assessment by a bank’s man-
agement, and the number of the full-time employees, which is subject to substantial
variation during distressed times. Other variables, such as allowance for loan and
lease loss, charge-offs on loans and leases and recoveries on allowance for loan and
lease losses also can be treated as endogenous. However, we note that these are
subject to stringent scrutiny by regulators and auditors who can recognize and
measure the effectiveness and appropriateness of management’s methodology for
collectively and individually assessing these accounts in accordance with interna-
tionally accepted reporting standards. We, therefore, treat these variables as
exogenous in our models and do not further test for their exogeneity.

Below we do test for the endogeneity of the provision for loan and lease losses and
the number of the full-time employees.Weuse a nonparametric test based onAbrevaya,
Hausman and Khan (2010). The test is carried out using the following steps:

• Step 1: Identify, select and validate instrumental variables for the potentially
endogenous variables;

• Step 2: Project the potentially endogenous variables onto the column space of
the instrumental and exogenous variables and obtain their fitted values;

• Step 3: Estimate the model35 separately by using the potentially endogenous
variables and instrumented endogenous variables and obtain the survival profiles
under both cases (label these as S_end and S_iv, respectively)

34The provision for loan and lease loss is the amount required to establish a balance in the
allowance for credit losses account, which management considers adequate to absorb all credit
related losses in its loan portfolio.
35Note that for testing purposes only the time-varying model combined with efficiencies (i.e.,
Model IV) is used.
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• Step 4: Use Kendall’s tau rank correlation statistic to test for
association/dependence of S_end and S_iv (i.e., test for the null that S_end and
S_iv are not associated/dependent)

• Step 5: Reject the null hypothesis of endogeneity if the p-value of Kendall’s tau
statistic is below the desired confidence level.

For the provision for loan and lease losses/average loans and leases variable, the
selected instruments are (i) one period lagged values of the provision for loan and
lease losses/average loans and leases; (ii) one period lagged values of the non-
performing loans/total loans; (iii) one period lagged values of the allowance for loan
and lease loss/average loans and leases; and (iv) one period lagged values of the
recoveries on allowance for loan and lease losses/average loans and leases. The
estimated Kendall’s tau statistic is 0.9293 (with p-value = 0) and thus we reject the
null hypothesis that the provision for loan and lease losses variable is endogenous
in our estimation sample. Similarly, for the number of full-time equivalent
employees/average assets variable, the selected instruments are (i) current period
overhead expense; (ii) one period lagged values of the overhead expense;
(iii) current period ratio of non-interest expense/total assets; (iv) one period lagged
values of the ratio of non-interest expense/total assets; (v) current period ratio of
non-interest expense/interest expense; and (vi) one period lagged values of the ratio
of non-interest expense/interest expense. The estimated Kendall’s tau statistic is
0.9723 (with p-value = 0) and we thus reject the null hypothesis that the number of
the full-time equivalent employees variable is endogenous in our estimation sample.
Joint testing yields Kendall’s tau statistic of 0.9115 (with p-value = 0), thus leading
to the same conclusion that both of these variables are not endogenous in our
sample.

To corroborate the testing results above, we also test for the endogeneity of the
provision for loan and lease losses and the number of the full-time employees by
considering only the incidence part of the model. The rationale for using this
alternative testing approach is that one might consider that these variables would be
affected primarily by the incidence probability, as a bank’s management could
potentially manipulate these accounts to avoid being placed on the FDIC’s watch
list in the first place. The testing results are based on the Wald statistic on the
hypothesis is exogeneity of the potential endogenous variables.36 The Wald statistic
is 1.74 (with p-value = 0.1866) for the provision for loan and lease losses/average
loans and leases and 3.06 (with p-value = 0.0804) for the number of the full-time
employees/average assets. These estimated test statistics are not significant at the
5% confidence level and generally corroborate the findings using the alternative
null hypothesis.

The identification of the casual effect of the efficiency term, on the other hand, is
performed by testing for the over-identifying restrictions using the testing approach
outlined above. Due to the fact that the efficiency term is latent (unobserved) in our
models, we use the efficiency scores obtained from the random effects (RE) model

36This testing is carried out by using STATA's ivprobit command.
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as a proxy for the combined model’s efficiencies. We identify the one period lagged
values of the return on assets, the one period lagged values of the return on equity,
the one period lagged value of the intermediation ratio (total loans/total deposits),
the ratio of non-interest expense/interest expense, and the one period lagged values
of the ratio of non-interest expense/interest expense as instrumental variables for the
estimated efficiency scores. The resulting Kendall’s tau statistic is estimated as
0.7970 (with p-value = 0); thus, rejecting the null hypothesis that the casual effects
are not identified in our estimation sample.

14.6 Concluding Remarks

Massive banking failures during the financial turmoil of the Great Recession has
resulted in enormous financial losses and costs to the U.S. economy, not only in
terms of bailouts by regulatory authorities in their attempt to restore liquidity and
stabilize the financial sector, but also in terms of lost jobs in banking and other
sectors of economy, failed businesses, and ultimately slow growth of the economy
as a whole. The design of early warning models that accurately predict the failures
and their timing is of crucial importance in order to ensure the safety and the
soundness of the financial system. Early warning models that can be used as off-site
examination tools are useful for at least three reasons. They can help direct and
efficiently allocate the limited resources and time for on-site examination so that
banks in immediate help are examined first. Early warning models are less costly
than on-site visits made by supervisors to institutions considered at risk and can be
performed with high frequency to examine the financial condition of the same bank.
Finally, early warning models can predict failures at a reasonable length of time
prior to the marked deterioration of a bank’s condition and allow supervisors to
undertake any prompt corrective action that will have minimal cost to the taxpayer.

In this paper we have considered early warning models that attempt to explain
recent failures in the U.S. commercial banking sector. We employed a duration
analysis model combined with a static logit model to determine troubled banks
which subsequently fail or survive. Both continuous and discrete time versions of
the mixed model were specified and estimated. These effectively translated the
bank-specific characteristics, state-related macroeconomic variables, and geo-
graphical and market structure variables into measures of risk. Capital adequacy
and nonperforming loans were found to play a pivotal role in determining and
closing insolvent institutions. State-specific variables appeared to significantly
affect the probability of failure but not insolvency. The discrete-time model out-
performed the continuous-time model as it is able to incorporate time-varying
covariates, which contain more and richer information. We also found that man-
agerial efficiency does not significantly affect the probability of a bank being
troubled but plays an important role in their longer term survival. Inclusion of the
efficiency measure led to improved prediction in both models.
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Appendix

In this appendix we show the derivation of the sample likelihood function given in
expression (14.3). For this purpose we first note that at time t, bank i can fall into
four mutually exclusive states of nature:

States ¼

hi ¼ 1; di ¼ 1 ðProblem& FailedÞ with prob:Feðx0ibÞkpi ðt;wiÞSpi ðt;wiÞ
hi ¼ 0; di ¼ 1 ðSound& FailedÞ with prob: 1� Feðx0ibÞ

� �
ksðt;wiÞSsi ðt;wiÞ

hi ¼ 1; di ¼ 0 ðProblem&CensoredÞ with prob:Feðx0ibÞSpi ðt;wiÞ
hi ¼ 0; di ¼ 0 ðSound&CensoredÞ with prob: 1� Feðx0ibÞ

� �
Ssi ðt;wiÞ

8>>><
>>>:

Then

Lðh; x;w; dÞ ¼
Yn
i¼1

Liðh; x;w; dÞ

¼
Yn
i¼1

Feðx0ibÞkpi ðt;wiÞSpi ðt;wiÞ
� �hi 1� Feðx0ibÞ

� �
ksi ðt;wiÞSsi ðt;wiÞ1�hi

	 
n odi

	 Feðx0ibÞSpi ðt;wiÞ
� �

hi 1� Feðx0ibÞ
� �

Ssi ðt;wiÞ
� �1�hi

n o1�di

¼
Yn
i¼1

Feðx0ibÞhi 1� Feðx0ibÞ
� �ð1�hiÞ kpi ðt;wiÞ½ �dih

	 ksi ðt;wiÞ
� �dið1�hiÞ Spi ðt;wiÞ½ �hi Ssi ðt;wiÞ

� �1�hi

By assumption, ksi ðt;wiÞ ¼ 0, if and only if, h ¼ 0 and di ¼ 0 (i.e., a bank is
healthy and is not observed failing). Similarly Ssi ðt;wiÞ ¼ 1 if and only if hi ¼ 0
(i.e., a bank is healthy). The final sample likelihood function is then given by

Lðh; x;w; dÞ ¼
Yn
i¼1

Feðx0ibÞhi 1� Feðx0ibÞ
� �ð1�hiÞ kpi ðt;wiÞ½ �dihi Spi ðt;wiÞ½ �hi

which implies that the completely healthy banks contribute to the likelihood
function only through their probability being troubled.

362 P. Almanidis and R.C. Sickles



References

Abrevaya J, Hausman JA, Khan S (2010) Testing for causal effects in a generalized regression
model with endogenous regressors. Econometrica 78(6):2043–2061

Aigner DJ, Lovell CAK, Schmidt P (1977) Formulation and estimation of stochastic frontier
models. J Econometrics 6:21–37

Altman EI (1968) Financial ratios, discriminant analysis, and the prediction of corporate
bankruptcy. J Finance 23:589–609

Baltensperger E (1980) Alternative approaches to the theory of the banking firm. J Monetary Econ
6:1–37

Barr RS, Siems TF (1994) Predicting bank failure using DEA to quantify management quality.
Financial industry studies working paper 94–1, Federal Reserve Bank of Dallas

Battese GE, Cora GS (1977) Estimation of a production frontier model: with application to the
pastoral zone of eastern Australia. Aust J Agric Econ 21:169–179

Bover O, Arellano M, Bentolila S (2002) Unemployment duration, benefit duration and the
business cycle. Econ J 112:223–265

Charnes A, Cooper WW, Rhodes EL (1978) Measuring the efficiency of decision making units.
Eur J Oper Res 2:429–444

Cole RA, Gunther JW (1995) Separating the likelihood and timing of bank failure. J Bank Finance
19:1073–1089

Cole RA, Gunther JW (1998) Predicting bank failures: a comparison of on- and off-site monitoring
systems. J Fin Serv Res 13:103–117

Cole RA, Wu Q (2009) Predicting bank failures using a simple dynamic hazard model. FDIC
working paper, Washington, DC

Cole RA, Wu Q (2011) Is hazard or probit more accurate in predicting financial distress? Evidence
from U.S. bank failures. MPRA Paper No. 29182, Munich, Germany

Cornwell C, Schmidt P, Sickles RC (1990) Production frontiers with cross-sectional and time
series variation in efficiency levels. J Econometrics 46:185–200

Cox DR (1972) Regression models and life-tables (with discussion). J Roy Stat Soc B 34:187–220
Cox DR, Oakes D (1984) Analysis of survival data. Chapman & Hall, New York
Deakin E (1972) A discriminant analysis of predictors of business failure. J Account Res

Spring:167–179
Debreu G (1951) The coefficient of resource utilisation. Econometrica 19:273–292
Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em

algorithm (with discussion). J Roy Stat Soc B 39:1–38
DeYoung R (1999) Birth, growth, and life or death of newly chartered banks. Econ Perspect

23:18–35
DeYoung R (2003) The Failure of new entrants in commercial banking markets: a split-population

duration analysis. Rev Fin Econ 12:7–33
Farewell VT (1977) A model for a binary variable with time-censored observations. Biometrika

64:43–46
Farewell VT (1982) The use of mixture models for the analysis of survival data with long-term

survivor. Biometrics 38:1041–1046
Farrell M (1957) The measurement of productive efficiency. J Roy Stat Soc A Gen 120:253–281
Gonzalez-Hermosillo B, Pazarbasioglu C, Billings R (1997) Determinants of banking system

fragility. IMF Staff Papers 44(3)
Greene WH (2008) The econometric approach to efficiency analysis, chapter 2. In: Fried HO,

Lovell CAK, Schmidt SS (eds) The measurement of productive efficiency: techniques and
applications. Oxford University Press, New York

Halling M, Hayden E (2006) Bank failure prediction: a two-step survival time approach. In:
Proceedings of the international statistical institute’s 56th session

Hausman JA, Taylor WE (1981) Panel data and unobservable individual effects. Econometrica
49:1377–1398

14 Banking Crises, Early Warning Models, and Efficiency 363



Inanoglu H, Jacobs M, Liu R, Sickles RC (2014) Analyzing bank efficiency: are “too-big-to-fail”
banks efficient? Rice University, Mimeo

Jondrow J, Lovell CAK, Materov IS, Schmidt P (1982) On the estimation of technical inefficiency
in the stochastic frontier production function model. J Econometrics 19:233–238

Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data, 2nd edn. Wiley,
New York

Kaparakis EI, Miller SM, Noulas AG (1994) Short-run cost inefficiency of commercial banks: a
flexible stochastic frontier approach. J Money Credit Bank 26:875–893

Kasa K, Spiegel MM (2008) The role of relative performance in bank closure decisions. Econ Rev,
Federal Reserve Bank of San Francisco

Klein JP, Moeschberger ML (2003) Survival analysis. Techniques for censored and truncated data,
2nd edn. Springer, New York

Kuk AYC, Chen CH (1992) A mixture model combining logistic regression with proportional
hazards regression. Biometrika 79:531–541

Kumbhakar S, Lovell CAK (2000) Stochastic frontier analysis. Cambridge University Press,
Cambridge, MA

Lancaster T (1990) The econometric analysis of transition data. Cambridge University Press,
Cambridge, MA

Lane W, Looney S, Wansley J (1986) An application of the Cox proportional hazards model to
bank failure. J Bank Finance 10:511–531

Martin D (1977) Early warning of bank failure: a logit regression approach. J Bank Finance 1:249–
276

McLachlan G, Krishnan T (1996) The EM algorithm and extensions. Wiley, New York
Meeusen W, van den Broeck J (1977) Efficiency estimation from Cobb-Douglas production

functions with composed error. Int Econ Rev 18:435–444
Meyer PA, Pifer HW (1970) Prediction of bank failures. J Finance 25:853–868
Pitt M, Lee L (1981) The measurement and sources of technical inefficiency in the Indonesian

weaving industry. J Dev Econ 9:43–64
Sealey S, Lindley JT (1977) Inputs, outputs, and a theory of production and cost at depository

financial institutions. J Finance 32:1251–1266
Shumway T (2001) Forecasting bankruptcy more accurately: a simple hazard model. J Bus

74:101–124
Sickles RC, Taubman P (1986) An analysis of the health and retirement status of the elderly.

Econometrica 54:1339–1356
Sy L, Taylor J (2000) Estimation in a Cox proportional hazards cure model. Biometrics 56:227–

236
Thompson JB (1992) Modeling the regulator’s closure option: a two-step logit regression

approach. J Fin Serv Res 6:5–23
Topaloglu Z, Yildirim Y (2009) Bankruptcy prediction. Working paper, Graduate Center, CUNY,

Department of Economics
Torna G (2010) Understanding commercial bank failures in the modern banking era. http://www.

fma.org/NY/Papers/ModernBanking-GTORNA.pdf
Tsionas EG, Papadogonas TA (2006) Firm exit and technical inefficiency. Empirical Econ 31:535–

548
Whalen G (1991) A proportional hazards model of bank failure: An examination of its usefulness

as an early warning model tool. Econ Rev, Federal Reserve Bank of Cleveland, 21–31
Wheelock D, Wilson P (1995) Explaining bank failures: deposit insurance, regulation, and

efficiency. Rev Econ Stat 77:689–700
Wheelock D, Wilson P (2000) Why do banks disappear? the determinants of U.S. bank failures

and acquisitions. Rev Econ Stat 82:127–138
Yildirim Y (2008) Estimating default probabilities of cmbs with clustering and heavy censoring.

J Real Estate Finance Econ 37:93–111

364 P. Almanidis and R.C. Sickles

http://www.fma.org/NY/Papers/ModernBanking-GTORNA.pdf
http://www.fma.org/NY/Papers/ModernBanking-GTORNA.pdf


Chapter 15
A Decomposition of the Energy Intensity
Change in Spanish Manufacturing

Pablo Arocena, Antonio G. Gómez-Plana and Sofía Peña

Abstract The excessive consumption of energy has become a major economic and
environmental concern in many countries over the last two decades. A country’s
energy performance is typically proxied by the rate of aggregate energy intensity,
calculated as the ratio of energy consumed to GDP. The index number decompo-
sition analysis is the usual approach to analyze the changes in a country’s aggregate
energy intensity. In this paper we analyze the energy intensity change as well as the
energy efficiency change by combining the index decomposition analysis approach
with non-parametric frontier efficiency methods. We apply this framework to
decompose and analyze the sources of the change observed in the energy intensity
of Spanish manufacturing industries during the period 1999–2007.

Keywords Energy intensity � Energy efficiency � Technical change � Index
decomposition analysis � Frontier methods

15.1 Introduction

The efficient use of energy and the promotion of energy savings have come to
occupy a prominent place in the economic and environmental agenda of many
countries. It has received particular attention in the European Union, where a
considerable number of Directives and other legislative initiatives have been passed
in the last two decades (e.g. EC 2006, 2012). Today, energy efficiency constitutes
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one of the cornerstones of the European Union’s 2020 strategy (EC 2010). The
latest increase of energy prices and the increasing impact of energy costs on
industrial competitiveness have further encouraged the need of generating output
with less consumption of energy (IEA 2013; Deloitte 2010).

An economy’s energy efficiency is typically proxied by the rate of the aggregate
energy intensity, calculated as the ratio of energy consumed to GDP. Thus, the
evolution of the energy intensity is seen as a direct indicator of the relationship
between economic growth and energy use, and specifically, to identify whether
there is a decoupling of energy consumption from economic growth. Note however
that a decrease in energy intensity is not a synonym of energy savings or of lower
energy consumption in absolute terms. A decrease in energy intensity may also
occur if energy consumption grows at a lower rate than GDP, which is known as
relative decoupling.

Hence, it is important to determine the factors that influence the evolution of the
energy intensity. To that end, energy researchers have developed a number of index
decomposition methodologies in the last decades. In essence, the most widespread
way of decomposing the change of the energy intensity index with this approach
allows decomposing the change in the aggregate energy intensity into two types of
components: the structural effect (sometimes called product mix or compositional
effect), and the sectoral energy intensity effect (often called intrasectoral energy
intensity or efficiency effect).

The traditional index decomposition approach has however a fairly limited
analytic power to assess the effect of a number of factors that are critical to
understand the variation of energy productivity rates within an industry, such as the
improvement in the technical energy efficiency or the reduction of waste in the use
of energy, the technical progress, the change in the degree of vertical integration
and capital-labor ratio, the change in the scale of operations, and the variation in the
spatial arrangement of production.

In this chapter we provide a decomposition analysis of the energy intensity
change that combines frontier efficiency methods with the conventional index
decomposition approach. The proposed approach allows the identification of a more
comprehensive set of factors that explain the observed variation in energy intensity.
Furthermore, it addresses the analysis of energy efficiency as an integral part of
energy intensity. We apply this framework to identify the sources of the variation of
energy intensity in Spanish manufacturing between 1999 and 2007.

The rest of the paper is organized as follows. Section 15.2 reviews the relevant
literature on energy intensity. Section 15.3 develops the decomposition of the
energy intensity change. Section 15.4 describes the methods employed to imple-
ment the decomposition. Section 15.5 presents the data and variables employed in
the analysis. The results are discussed in Sect. 15.6. Conclusions and final remarks
are commented in Sect. 15.7.
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15.2 Energy Intensity and Energy Efficiency

As stated above, the energy-to-GDP ratio, referred to as energy intensity, is the
most popular measure used in energy efficiency studies. Actually, the change of the
energy intensity ratio is not strictly a measure of the change of energy efficiency,
but the change in the reciprocal of the energy productivity ratio. Such distinction
will be made clear later.

In any case, the index decomposition analysis (IDA) is the usual approach to
quantify the underlying factors that contribute to changes in energy intensity,
energy consumption, and related CO2 emissions over time.1 Since the late 1970s, a
variety of index decomposition methods have been developed in the energy and
environmental fields. The earliest studies were based on Laspeyres, Paasche,
Marschall-Edgeworth, and Fisher ideal indexes. Boyd et al. (1988) pioneered the
index decomposition based on the Divisia index, and introduced the so-called
arithmetic mean Divisia index method. Ang and Zhang (2000) and Ang (1995,
2004a) provide comprehensive surveys of this earlier literature. However all these
index approaches have the drawback of leaving a residual term i.e. the product (or
the sum) of the estimated factors is not exactly equal to the observed change in the
aggregate, which complicates the interpretation of the results. Moreover, they are
unable to handle zero values in the data set.

The logarithmic mean Divisia index (LMDI) method was introduced by Ang and
Choi (1997), and since then has become by far the most popular IDA approach due
to its superior properties and its ease in practical implementation. As demonstrated
in various papers (Ang and Zhang 2000; Ang and Liu 2001; Ang 2004b), the LMDI
method jointly satisfies the factor reversal test and the time reversal test, it is robust
to zero and negative values, and is perfect in decomposition (i.e. it ensures null
residual terms). Further, the LMDI decomposition has both additive and multi-
plicative formulations (see Ang and Zhang 2000; Ang 2004b, 2015 for detailed
analysis on alternative LMDI models).

To illustrate the LMDI method let us define the aggregate energy intensity of one
country in period t as the ratio between the energy consumed (E) and the output
(Y) obtained in year t, i.e.

It ¼ Et

Yt
ð15:1Þ

The aggregate energy intensity can be expressed as a summation of the sectoral
data

1An alternative approach is the structural decomposition approach (SDA), which uses the input–
output table as a basis for decomposition. Reviews of SDA can be found in Su and Ang (2012),
Hoekstra and van den Bergh (2003).
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It ¼ Et

Yt
¼
X
i

Ei;t

Yi;t

Yi;t

Yt
¼
X
i

Ii;tSi;t ð15:2Þ

where Et is the total energy consumption; Ei,t is the energy consumption in sector i;
Yt is the aggregate output; Yi,t is the output of sector i; Ii,t is the energy intensity of
sector i and Si,t = Yi,t/Yt is the production share of sector i.

The change in the aggregate energy intensity between period 0 and 1 can be
expressed as

dI ¼ I1
I0

ð15:3Þ

We apply the multiplicative LMDI-II model (Ang and Choi 1997; Ang and Liu
2001) to decompose the aggregate energy intensity2:

dI ¼ I1
I0

¼ exp
X
i

wi ln
Ii;1
Ii;0

� � !" #
� exp

X
i

wi ln
Si;1
Si;0

� � !" #
ð15:4Þ

where

wi ¼
L Ei;1

E1
;
Ei;0

E0

� �
P

i L
Ei;1

E1
;
Ei;0

E0

� � ð15:5Þ

In (15.5) Ei,t/Et is the share of sector i in the aggregate energy consumption in
period t, and L is the logarithmic mean function introduced by Vartia (1976) and
Sato (1976), which is defined as3

L
Ei;1

E1
;
Ei;0

E0

� �
¼

Ei;1

E1
� Ei;0

E0

ln Ei;1

E1
� ln Ei;0

E0

ð15:6Þ

The first component in (15.4) is the intensity effect, and measures the impact
associated with changes in the energy intensity of individual sectors. The second
component in (15.4) is the so-called structural effect, which accounts for the impact
of the change in the sectoral composition of the economy, i.e. the variation in the
share of each sector in total GDP.

2Ang (2015) argues that the multiplicative model is the preferred model for decomposing intensity
indicators, while the additive composition analysis procedure is more suited when used in con-
junction with a quantity indicator. In any case, there exists a direct relationship between the
additive and multiplicative decompositions (Ang 2004b).
3The use of the logarithmic mean is more widespread than in the energy efficiency decomposition
literature. Thus, its use in the analysis of price and quantity indexes is discussed in detail by Balk
(2008), while Balk (2010) makes use of it in measuring productivity change.
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The LMDI method has been widely used to decompose changes in energy
intensity, energy consumption and energy-related carbon emissions in many
countries (see e.g. Mulder and Groot 2012; Fernández et al. 2013, 2014; Voigt et al.
2014 for recent applications). In the case of Spain a number of studies apply LMDI
methods to analyze the energy intensity change of the whole country (Cansino et al.
2015; Fernández-González et al. 2003; Mendiluce 2007; Marrero and Ramos-Real
2008; Mendiluce et al. 2010), and that of specific regions (e.g. Ansuategui and Arto
2004; Colinet and Collado 2015).

The efficient consumption of energy has been equally analyzed from the liter-
ature on efficiency and productivity measurement from a somehow different per-
spective. Basically, the measurement of efficiency is based on the idea of comparing
the actual performance of an economic unit with respect to the optimum perfor-
mance that technology allows. This technological boundary is not however directly
observable, so it must be empirically estimated from the data. Therefore, the effi-
ciency of a company is determined by comparing their performance with that of the
best observed performers, which define the efficient frontier.

Filippini and Hunt (2015) relate this literature, which is firmly based on the
economic foundations of production, with the concept of energy efficiency. There
are many examples of energy efficiency studies that use the two dominant
approaches in the field of efficiency measurement: the parametric Stochastic
Frontier Analysis (SFA) and the non-parametric Data Envelopment Analysis
(DEA). For instance, Filippini and Hunt (2011, 2012) and Orea et al. (2015)
investigate the energy efficiency in various countries with stochastic frontier
analysis, while Zhou and Ang (2008), and Zhou et al. (2008) provide examples of
measuring the energy efficiency by means of linear programming techniques. In the
next section, we combine the LMDI decomposition referred to above with a
non-parametric frontier efficiency approach.

15.3 Methodology

15.3.1 Decomposing Firm’s Energy Intensity Change

Let us first define the energy intensity of firm4 j in year t as the ratio between the
energy that consumes (Ej) and the output (Yj) obtained in year t, i.e.

Ij;t ¼ Ej;t

Yj;t
ð15:7Þ

4Here, we refer to the ‘firm’ as any producer or economic unit. The economic unit can equally
refers to a region, as we do in our empirical application.
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The observed change in the energy intensity of firm j between period 0 and 1,
can then be expressed as

dIj ¼ Ij;1
Ij;0

¼
Ej;1

Yj;1
Ej;0

Yj;0

ð15:8Þ

We decompose the change in energy intensity in (15.8) as the product of three
elements

dIj ¼
E1

E�
1 y1ð Þ
E0

E�
0 y0ð Þ

" #
� E�

1 y0ð Þ
E�
0 y0ð Þ

� �
�

E�
1 y1ð Þ
y1

E�
1 y0ð Þ
y0

2
4

3
5 ¼ EECHj � TCHj � SCHj

¼ Energy efficiency change � Technical change effect � Scale change effect
ð15:9Þ

The first component in brackets in (15.9) is the Energy Efficiency Change
(EECH). This element is defined as the quotient of two ratios. The numerator
represents the firm’s energy efficiency in period 1, measured as the ratio of the
observed energy consumption in period 1 (E1) and the minimum (efficient) level of
energy required to produce the observed output level in period 1, E�

1 y1ð Þ. A firm is
energy efficient if this ratio is equal to one, whereas a value greater than 1 indicates
an excessive consumption of energy in producing the current output level.

Similarly, the denominator captures the energy efficiency relative to period 0.
Therefore, a value of EECHj lower (greater) than unity indicates that energy effi-
ciency of firm j has increased (decreased) between year 0 and 1, and thereby has
contributed to reduce (increase) the observed energy intensity rate of firm j.

The second component in (15.9) represents the Technical Change effect (TCH),
measured at the output level of period 0. This term quantifies the variation in the
energy intensity driven by the shift in the technology between period 0 and period
1. Thus, it compares the minimum amount of energy required to produce the output
level y0 in period 1, with the minimum quantity of energy that was needed in period
0 to produce the same output level. Therefore, a value of TCHj lower (greater) than
one indicates that technical progress (regress) has occurred between the two time
periods, contributing to reduce the firm’s energy intensity.

Finally, the third component in (15.9) is the Scale Change effect (SCH). This
term accounts for the impact on the variation of energy intensity resulting from a
change in the scale of operations, taking the technology of period 1 as a reference.
Thus, it is defined as the ratio between the minimum quantity of energy per unit of
output needed to produce y1 in period 1, and the minimum energy quantity per unit
of output needed to produce y0 in the same period 1.

Figure 15.1 illustrates our decomposition in a single-(energy) input
single-output case. The picture represents two production technologies prevailing in
two different time periods. Particularly, the curve Ft represents the boundary (or
frontier) of the production technology of period t. Thus, production frontier F0
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represents the minimum input that is required in period 0 to produce any given level
of output or, alternatively, the maximum output that can be obtained in period 0
from any given input quantity.

The figure shows the observed output level and the energy consumption of firm
A in period 0 (A0) and period 1(A1). Specifically, it reflects a situation where a
decrease in the firm’s energy intensity rate has occurred between period 0 and
period 1 (E1/y1 < E0/y0). In this example, it is easy to see that part of the reduction
in the intensity rate is due to the improvement of energy efficiency. The energy
efficiency of firm A has improved because the observed energy consumption of firm
A in period 1 (E1) is closer to the efficient energy quantity E�

1, denoted by point P in
its contemporaneous production frontier (F1), than what it was in period 0 (i.e. A0 is
relatively farther from the point C in F0), and therefore EECH < 1.

Secondly, the upward shift of the production frontier reveals that a technological
progress has occurred between the two time periods. Consequently the production
of the output quantity y0 requires a lower amount of energy in period 1 than the
quantity that was needed in the previous period, i.e. E�

1 y0ð Þ\E�
0 y0ð Þ, and therefore

TCH = <1. In Fig. 15.1, the energy savings due to the technical progress are rep-
resented by the horizontal distance between points D and C.

Finally, the impact of the change in the scale of operations on the variation of the
energy intensity is reflected by the movement along the production frontier F1 from
point D y0;E�

1 y0ð Þ� 	
to point P ðy1;E�

1

� 	
, which results in SECH < 1.

The Energy Efficiency Change (EECH) component in (15.9) can be further
decomposed into two terms:
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Fig. 15.1 Decomposing the
change in energy intensity
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EECH ¼
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1 y1ð Þ
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0 y0ð Þ
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2
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3
5

¼ Technical efficiency change � Input mix change
ð15:10Þ

Therefore, the full decomposition of the energy intensity change of firm j can be
formulated as

dIj ¼
E1

E0
1 y1ð Þ
E0

E0
0 y0ð Þ

" #
�
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1 y1ð Þ

E�
1 y1ð Þ
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�

E�
1 y1ð Þ
y1

E�
1 y0ð Þ
y0

2
4

3
5

¼ TECHj � IMCHj � TCHj � SCHj

ð15:11Þ

As Filippini and Hunt (2015) observe, there is not a unique and generally
accepted definition of energy efficiency. Thus, a possible measure is the Farrell’s
radial input measure of technical efficiency (Farrell 1957), in which the improve-
ment of the level of efficiency requires a proportional reduction in both energy and
the other inputs. However, we are interested in measuring the specific efficiency in
the use of energy, and to that end in (15.10) we have introduced two different
energy efficient benchmark quantities. To explain the differences between them, let
us consider a KLEM model, which defines output as a function of capital (K), labor
(L), energy (E) and other intermediate inputs (M). Other intermediate inputs
(M) include materials (e.g. raw materials and components) and services firms
acquire to external suppliers.

In (15.10) E0 denotes the minimum amount of energy that a firm requires to
produce output y, while holding constant its current level of non-energy inputs (K,
L and M). Therefore, the first component in brackets in (15.11), the technical
efficiency effect (TECHj), is a ratio of two measures of technical efficiency that
captures the rate at which a firm reduces (or increases) the waste in the use of
energy in its existing production process. Note that energy savings can only arise
from an improvement in the management of the use of energy, but not from any
substitution between inputs because non-energy inputs are not allowed to vary.

By contrast, E� denotes the minimum amount of energy that can be achieved
among all technically feasible input combinations that permit obtaining a given
level of output. In other words, E� is the quantity of energy that results from the
least energy intensive feasible input bundle to produce output level
y. Consequently, in calculating E� any input substitution possibilities are allowed,
and firms are allowed to fully adjust K, L and M in any direction, i.e. the observed
quantities of K, L and M can either decrease or increase. Consequently, the element
IMCHj in (15.11) captures the contribution of the change in the input mix to the
observed energy intensity change between periods t and t + 1. Specifically, a value
of IMCHj lower (greater) than unity indicates that the input mix efficiency of firm
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j has increased (decreased) between year 0 and 1, and thereby has contributed to
reduce (increase) the observed energy intensity rate of firm j.

The distinction between E0 and E� is particularly relevant for the analysis of
energy intensity because alternative combinations of non-energy inputs may result
in substantial differences in energy consumption. On the one hand, the firm’s
energy consumption will be influenced by the capital-labor ratio K/L. In principle,
one would expect that an increase of capital intensity would lead to higher energy
consumption rates. For instance, the intensive use of equipment and the automation
of production processes will typically require a higher amount of energy to produce
certain goods than labor-intensive processes. In such case, it is said that capital and
energy are complements. We note however that the effect of an increase of the
K/L ratio can go either way, depending on the relationship between capital and
energy (see e.g. Metcalf 2008; Song and Zheng 2012). Thus, if the increase of K is
based on the replacement of capital stock by more energy efficient equipment then
we should expect a decrease in the energy consumption. In this case energy and
capital are substitutes.

On the other hand, for a given output level, the volume of the intermediate inputs
M reflects the extent to which the activities are outsourced or conducted within the
boundaries of the firm. In other words, it reflects the firm’s buy or make decision,
and thereby its degree of vertical integration. Let us consider two firms producing
the same level of output but showing different levels of M. The firm with a low
M would have internalized most of the value-creating activities associated with its
business, consistent with a high level of vertical integration. In the case of a fully
(perfectly) vertically integrated firm, M = 0. By contrast, a firm that procures most
components and services externally would show a higher value of M and thus a
lower degree of vertical integration. Broadly, we would expect that the lower the
scope of vertical integration, the lower the energy intensity. In other words, a higher
use of M is associated with a lower usage of both K and L, and thereby less energy
consumption. Therefore, the ratio E0=E� captures the energy savings that could be
attained from changing the firm’s degree of vertical integration and adjusting the
capital-labor ratio.

Figure 15.2 illustrates the distinction between E0 and E�. The figure depicts a
(piecewise linear) isoquant that shows the technically efficient combinations of two
inputs, energy and other non-energy input, to produce a given level of output
y. Point A therefore represents a firm that is technically inefficient. Thus, E0 is the
quantity of energy that results from the largest feasible contraction of the observed
energy quantity, given the output level y, and the quantity consumed of other
non-energy inputs xa. To reach the isoquant at point B, firm A should reduce its
excessive consumption of energy by the proportion E0=EA.

In Fig. 15.2, company C has the input combination that uses the lowest quantity
of energy to produce output level y, tough requiring a higher quantity of the other
non-energy input x. If the company A seeks to reduce its energy consumption below
E0 it would require investing more on other inputs, up to x*. Accordingly, the
difference between E0 and E* accounts for the quantity of energy that could be
saved if the company employs the lowest energy intensive input mix.
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15.3.2 The Sectoral Energy Intensity Change

Let us first consider the energy intensity in a particular industry. The total sectoral
output is generated in a number of J economic units. In our empirical application
regions are the economic units under consideration. Thus, the output and the energy
consumption in industry i are respectively the sum of the output and the sum of the
energy consumed in the J different regions that make up the industry i. Thus, the
sectoral intensity can be expressed as a summation of the regional data:

Ii;t ¼ Eit

Yit
¼
X
j

Eij;t

Yij;t

Yij;t

Yit
¼
X
j

IijtRij;t ð15:12Þ

where Eit denotes the total energy consumption in industry i in period t, Yit is the total
output of industry i in period t; Eij,t is the quantity of energy consumed in region j in
the within the industry i; Yij,t is the output of industry i produced in region j in period
t, and Rij denotes the share of region j in the total output of sector i.

Let us assume that the energy intensity of industry i varies from Ii,0 in period 0 to
Ii,1 in period 1. We apply the logarithmic mean Divisia index presented in
Sect. 15.2 to multiplicatively decompose the sectoral energy intensity change as:

dIi;t ¼ Ii;1
Ii;0

¼ exp
X
j

wj ln
Ij;1
Ij;0

� � !" #
� exp

X
j

wj ln
Rj;1

Rj;0

� � !" #
ð15:13Þ

where the summation is taken over the J regions, and

wj ¼
L e1j ; e

0
j

� �
P

j L e1j ; e
0
j

� � ð15:14Þ
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In (15.14) ej = Ei,j/Ei is the share of region j on the total energy consumed in
industry i, and L is the logarithmic mean function.

In expression (15.13) the change in sectoral energy intensity is expressed as the
product of two elements. The first bracketed component in (15.13) captures the
impact of the variation of regional energy intensity rates, while the second brack-
eted term captures the effect of the changes in the composition of the industry
output. By introducing our decomposition of the regional energy intensity change
as stated in (15.11) into the first bracketed term in (15.13) we obtain the decom-
position of the energy intensity change in industry i as the product of five
components:

dIi;t ¼ Ii;1
Ii;0

¼ exp
X
j

wj ln TECHj
� 	 !" #

� exp
X
j

wj ln IMCHj
� 	 !" #

� exp
X
j

wj ln TCHj
� 	 !" #

� exp
X
j

wj ln SCHj
� 	 !" #

� exp
X
j

wj ln
Rj;1

Rj;0

� � !" #

¼ TECHi � IMCHi � TCHi � SCHi � REGi

ð15:15Þ

The last component in (15.15) is the regional effect (REGi) and measures the
impact of the changes in the distribution of the sectoral output among regions.
A value of REGi lower (greater) than one indicates that production in industry i has
moved from high (less) energy intensive regions to less (higher) energy intensive
regions. The volume of production may increase in one region and decrease in
others, and thereby increasing the share of the former on the total industry output.
For instance, firms in one region may become more competitive and increase their
production to the detriment of less competitive firms operating in other regions.
Moreover, there are many reasons that may lead companies to move its activity
from one region to another. For example, a specific region may offer economic
advantages and more attractive conditions for business (e.g. lower labor costs,
lower taxes, better infrastructures and services, higher availability of suppliers,
etc.). However, while there are factors that give a firm some competitive advantage
of operating in certain region, taking advantage of such factors may require, at the
same time, to incur in higher energy needs (e.g. due to the new firm’s location,
weather, process organization).

15.3.3 The Aggregate Energy Intensity Change

The manufacturing industry is an aggregate comprising a wide range of economic
activities. Thus, the overall energy consumption in manufacturing is defined as the
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sum of the energy consumed in its i = 1, …, M different sectors. Hence, the
aggregate energy intensity rate in period t can be expressed as

It¼Et

Yt
¼
X
i

Ei;t

Yi;t

Yi;t

Yt
¼
X
i

Ii;t Si;t ð15:16Þ

where Et is the total energy consumption; Ei,t is the energy consumption in
industrial sector i; Yt is the aggregate output; Yi,t is the output of industry i; Ii,t is the
energy intensity of sector i and Si,t = Yi,t/Yt is the production share of sector i.

By applying again the multiplicative LMDI decomposition the change in the
aggregate energy intensity can then be expressed as

dI ¼ I1
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� exp

X
i

wi ln
Si;1
Si;0

� � !" #
ð15:17Þ
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ið Þ ð15:18Þ

In (15.18) ei = Ei,t/Et is the share of sector i in the aggregate energy consump-
tion, and L is the logarithmic mean function defined above.

By introducing the decomposition of the sectoral energy intensity change as
stated in expression (15.15) into (15.17), and denoting the variation in the output
share of sector i as SHAREi ¼ Si;1

Si;0
, we can express the full decomposition of the

aggregate energy intensity change as
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¼ TECH � IMCH � TCH � SCH � REG � STR

ð15:19Þ

The last element in expression (15.19) is the structural effect (STR), and captures
the impact of the variation in the production structure on the aggregate energy
intensity change. In other words, the structural change is associated with the
varying growth rates among the constituent sectors of the aggregate industry, which
lead to a change in its product mix. A value of STR lower than one indicates that
production has shifted away from energy intensive industries.
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15.4 Implementing the Decomposition of the Energy
Intensity Rate Change

In the decomposition formulated in (15.11), Et and yt are respectively the energy
and output quantities observed in period t = 0,1. However, the efficient energy
quantities E0

t ;E
�
t E

�
t ytþ 1ð Þ;E�

tþ 1 ytð Þ are not directly observed and must be estimated
from the observed data and technologies. Technologies are also unobserved, so they
must be estimated too. A production technology transforms inputs x = (x1, …, xn)
into outputs y = (y1, …, ym). The set of all input-output vectors that are feasible is
called the production set (T), which is defined as

T ¼ x; yð Þ 2 R
nþm
þ : x can produce y


 � ð15:20Þ

We consider a piecewise linear sequential technology defined by the production
set Tt as

Tt ¼ ðx; yÞ : y�
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zsj ¼ 1

( )
ð15:21Þ

The technology defined in (15.21) is constructed in a sequential way, by accu-
mulating information from previous years for each of the J firms (Tulkens andVanden
Eeckaut 1995). Specifically, in the construction of period t technologywe include data
for all producers in t and all preceding years (from s = 1 to t). This approach implies
the assumption that the way in which production has been performed in the past is
always feasible for the company in subsequent years; in other words, technological
regress is not possible. The convexity constraint fzsi0;

P
zsi
¼ 1g in expression (15.21)

allows defining a production technology with variable returns to scale (Banker et al.
1984).

In our empirical application we assume that each firm produces only one output
(m = 1) and employs four inputs (n = 4), being the input vector x = (xK, xL, xE, xM).
The input efficiency measure necessary to calculate the energy quantity E0

t ðytÞ is
calculated as the solution to the following linear programming problem:
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min h
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The solution of (15.22) is an input subvector measure of technical efficiency as
defined in Färe et al. (1994), where only the energy input xE is scaled down and the
other inputs are held constant at their observed levels. Thus, the efficient quantity of
energy E0

t is given by

E0
t ¼ h � Et ð15:23Þ

Similarly, E0
tþ 1 ytþ 1ð Þ can be estimated as the solution to a linear programming

problem identical to (15.22), just replacing period t data and technology with the
corresponding t + 1 data and technology, i.e.
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ð15:220Þ

Finally, the maximum feasible shrinkage of the observed energy consumption
(xE) to produce yt with period t technology is calculated as the solution to the
following linear programming problem:
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Note that in (15.24) only the energy input (xE) is scaled down, but unlike in (15.22),
the use of capital (xK), labor (xL) and the intermediate inputs (xM) is not constrained and
can take any positive value. Consequently, the quantities of xK, xL, and xM can
decrease, increase or remain invariant with respect their observed level. Hence, the
energy quantity E�

t is the result of applying the largest feasible contraction of the
energy input obtained from (15.24) to the observed energy quantity, i.e.

E�
t ¼ k � Et ð15:25Þ

Similarly, E�
tþ 1 ytþ 1ð Þ can be estimated as the solution to a linear programming

problem identical to (15.24), by just replacing period t data and technology with the
corresponding t + 1 data and technology, i.e.
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ð15:240Þ
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Finally, the energy efficiency measure needed to determine E�
tþ 1 ytð Þ, i.e. the

minimum feasible energy quantity to produce yt with period t + 1 technology, is
determined as the solution to a problem identical to (15.24), but now using as
reference the period t + 1 technology:

min k

s.t.

yt �
Xtþ 1

s¼1

XJ
j¼1

zsj y
s
j

Xtþ 1

s¼1

XJ
j¼1

zsj x
s
Ej � kxtE

Xtþ 1

s¼1

XJ
j¼1

zsj x
s
nj � 0 n ¼ K; L;M

Xtþ 1

s¼1

XJ
j¼1

zsj ¼ 1

zsj � 0 j ¼ 1; . . .; J

ð15:2400Þ

15.5 Data and Variables

We apply the decomposition model shown above to quantify the impact of the
different factors that explain the evolution of the energy intensity observed in the
Spanish manufacturing between 1999 and 2007. The manufacturing output is dis-
aggregated into nine sectors, which are those defined in the Energy Balances of the
International Energy Agency for most countries. Table 15.1 shows the sectoral
breakdown with its corresponding National Classification of Economic Activity
(NACE) codes. To be precise, the nine sectors considered in Table 15.1 roughly
accounts for 95% of the manufacturing output in Spain. We have left out the sectors
that are traditionally assorted under the heading of “Other manufacturing indus-
tries” (NACE codes 22, 31 and 32), due to the lack of reliable information on
energy consumption in those industries.
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The output of each industry is produced in seventeen regions. Nevertheless, we
note that some less-industrialized regions show no production in certain industries.
The sector with the smallest number of observations is the Transport equipment
industry, whose total output is generated in thirteen regions.

We estimate separate production technologies for each industry from the
observed input-output data to compute the energy efficiency measures for each
region. As stated above, the frontier of each year is estimated sequentially from
current and all previous (but not subsequent) data. In order to ensure a sufficient
number of observations to estimate each of the annual production frontiers for the
period 1999–2007, in the construction of the frontier corresponding to the first year
(1999) we have accumulated information from the year 1994 to the year 1999.

In most analysis of energy intensity at macroeconomic level the production
output is typically expressed in value added at basic prices. At macro level the costs
of intermediate inputs cancel out against the gross income of delivering these inputs
in the derivation of GDP. However, at industry level the intermediate deliveries do
not cancel out. Thus, at industry level it is more appropriate the use of the gross
production rather than value added as the output variable (EC 2014). Further, as
Hulten (2010) argues, the use of value added as industrial output variable “implies
(improbably) that efficiency-enhancing improvements in technology exclude
material and energy” (Hulten 2010, p. 1004). Consequently, we use the gross
production as the output variable in each industry.

In each region and industry the output is obtained from the utilization of four
inputs: Capital, Labor, Energy and Materials. Data on Labor and Materials are
readily available from the Industrial Companies Survey, conducted by the National
Statistics Institute. Thus, labor quantity is measured by the number of worked
hours, while Materials include the purchases of intermediate inputs and services
consumed in the production process (excluding energy consumption) measured in
constant 1995 €.

To obtain the quantities of capital and energy used in each region and sector we
need to operate a little further. The energy consumption (in thousands of tons of oil
equivalent, ktoe) in each industry is available only at national level, being provided

Table 15.1 Classification of manufacturing industries

NACE codes Energy intensity (E/Y)

Food, beverages and tobacco 10,11,12 0.045

Textile and leather 13,14,15 0.067

Wood and wood products 16 0.139

Paper, pulp and printing 17, 18 0.114

Chemical and pharmaceutical products 20, 21 0.123

Non-metallic mineral products 23 0.323

Basic metals 24 0.284

Machinery and equipment 25,26,27,28 0.019

Transport equipment 29, 30 0.016
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by the Spanish Institute for Diversification and Energy Savings (IDAE). By con-
trast, the energy expenditure is drawn from the Industrial Companies Survey both at
sectoral and regional level. With this data we calculate the toes of energy consumed
in each industry and region by proceeding in three steps. First, we draw from the
Industrial Companies Survey the aggregate (national) expenditure on electricity, gas
and other energies in each industry, and the quantities of final energy in physical
units consumption in electricity, gas and other energies (mostly oil products and to
a lesser extent, coal) from the IDAE. Secondly, we divide the total expense in each
energy type and sector (electricity, gas and others) by its respective quantity con-
sumed in physical units (ktoe). And so we get the national prices for each fuel and
sector. We assume that within the same sector there are no differences in the price
of electricity, gas and other energies across regions. Then, we divide the energy
expenditure by its corresponding price to get the quantity of energy consumed in
each sector and region.

For calculating the capital measure we also proceed in three steps. First, we
extract from the Industrial Companies Survey the value of the depreciation expense
for each region and industry. Second, we calculate the average depreciation rate
applied in each industry from the data contained in the KLEMS database. Finally,
we divide the depreciation expenses in each region by the sectoral average
depreciation rate to get the regional capital stock in each sector.

The sectoral price indices employed to deflate the gross output and materials
were obtained from the EU KLEMS database, while the price indices to deflate the
capital stock series were drawn from the database provided by Fundación BBVA.

Table 15.1 shows the mean values of the energy intensity by sector, revealing
substantial differences in the energy intensity across industries. Thus, the most
energy intensive industries are the Non-metallic mineral products and the Basic
Metals, which use much more energy than the other industries to produce one unit
of output. On the contrary, the Transport equipment and Machinery & equipment
sectors are the less energy intensive consumers.

15.6 Results

Table 15.2 shows the results of our decomposition of the energy intensity change
for the entire manufacturing industry between 1999 and 2007. First column in
Table 15.2 reports the observed annual change in energy intensity, while columns
(2)–(7) show the yearly changes for the six components identified in Eq. (15.19).
Last row in each column shows the change rate of every factor in cumulative terms
from 1999 to 2007. Figure 15.3 displays the evolution of the cumulative change in
the energy intensity and its components over the period under consideration.

The number at the bottom of the first column in Table 15.2 is 0.879, indicating
that the energy used per unit of output obtained in the aggregate manufacturing
industry decreased by 12.1% between 1999 and 2007. A look at Fig. 15.3 reveals
that the energy intensity presents a cumulative growth until 2005, showing an
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abrupt reduction in 2006. A similar sharp decline in 2006 is reported in the official
statistics (MICYT 2006) relative to the overall Spain’s energy intensity (measured
in toe per GDP).

As shown in column (4), such decline is primarily due to Technical Change,
which would have reduced the energy intensity rate by 30.9%. Figure 15.3 con-
firms that a steady and significant technological progress occurred throughout the
period. The second most important factor in reducing energy intensity has been the
change in the input mix (IMCH). Thus, column (3) indicates that this effect would
have led to a decrease of 11.6% in the manufacturing energy intensity. The results
of the effect of the Technical Efficiency Change (EMCH) in column (2) suggests
that only a slight improvement in the use of energy occurred within firms, which
would have caused a cumulative positive effect of 1%.

However, the energy reducing effect of the aforementioned factors is partially
offset by the evolution of the other three components. Above all others, the scale

Table 15.2 The energy intensity change and its components (total manufacturing sector)

(1) (2) (3) (4) (5) (6) (7)

dI TECH IMCH TCH SCH REG STR

1999/00 1.061 0.985 1.035 0.930 1.096 1.000 1.022

2000/01 1.026 1.041 0.954 0.975 1.032 1.000 1.027

2001/02 0.986 0.998 1.001 0.949 1.015 1.010 1.014

2002/03 1.073 0.976 1.120 0.993 1.003 1.003 0.983

2003/04 0.983 0.979 0.949 0.979 1.046 1.002 1.031

2004/05 0.967 0.997 0.968 0.955 1.032 0.999 1.016

2005/06 0.816 0.971 0.883 0.902 1.024 1.003 1.028

2006/07 0.985 1.046 0.984 0.959 0.999 1.001 0.997

1999/07 0.879 0.990 0.884 0.691 1.271 1.018 1.123
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Fig. 15.3 The energy intensity change of manufacturing and its components (1999–2007)
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effect (SCH) reported in column (5) is notably higher than one, indicating that the
increase in the scale of operations registered during the period in the manufacturing
sector was accompanied by a much more intensive use of energy. Specifically, the
energy intensity of manufacturing would have increased by 27.1% throughout the
period due to the scale effect. Figure 15.3 displays the consistent and increasing
trend of the scale effect since the beginning of the period under consideration.

Secondly, column (7) shows the impact of the change registered in the sectoral
composition of the Spanish manufacturing industry throughout the analyzed period.
Specifically, the Structural Effect (STR) would have contributed to rise the
aggregate energy intensity of manufacturing by 12.3%, motivated by the increase of
the share that the relatively higher energy-intensive activities have in the aggregate
industrial output.

Thirdly, the Regional Effect (REG) in column (6) indicates that the variation in
the distribution of the output across regions that occurred over the considered
period would have increased the aggregate energy intensity by 1.8%.

Thus far we have discussed the general results for the aggregate manufacturing.
Let us analyze now the results of individual industries. First of all, before discussing
the results relative to the decomposition of the sectoral energy intensity change, we
focus on the analysis of the level energy efficiency at sectoral level. Specifically,
Table 15.3 shows the estimates of the two energy efficiency measures defined by
the two linear programming problems (15.22) and (15.23), as well as the differences
in the composition of the input vectors corresponding to both energy efficiency
references. All figures in Table 15.3 are the mean values registered over the period
1999–2007.

The first column in Table 15.3 shows the value of the technical energy efficiency
achieved in each industry over the period under consideration. That is, it shows the
average value of h that results from solving the linear programming problem written
in (15.22) for every year. For instance, we note that the average technical energy
efficiency in the Food industry is 0.848, indicating that the Food sector could reduce
its consumption of energy by 15.2% without reducing output and holding fixed the
observed levels of the other inputs.

Table 15.3 Energy efficiency

h ¼ E0=E k ¼ E�=E0 M�=M K�=M L�=L
Food 0.848 0.754 1.008 0.671 0.867

Textile 0.961 0.800 1.017 0.764 0.963

Paper 0.777 0.562 0.977 0.751 1.154

Chemical 0.814 0.630 0.998 0.751 1.057

Non-metallic mineral products 0.934 0.737 1.057 0.782 0.933

Transport equipment 0.808 0.547 1.024 0.822 0.857

Wood 0.872 0.640 1.012 0.687 1.130

Basic metals 0.931 0.580 1.043 0.901 1.154

Machinery and equipment 0.885 0.663 1.020 0.696 0.834

Mean values (1999–2007)
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The second column in Table 15.4 lists the value of the input mix energy effi-
ciency, i.e. the average value of k that results from solving the linear programming
problem written in (15.23) for every year. In the case of the Food industry the value
of k is 0.754. That is, the Food sector could further reduce the consumption of
energy by 24.6%, if the optimal least energy demanding input mix is adopted,
without reducing output.

The Textile industry appears to be the industry that achieves the highest energy
efficiency, both regarding the technical efficiency (0.961) and the input mix effi-
ciency (0.800). Conversely, our results suggest that in the Paper industry there is a
large room for improvement in both efficiency dimensions.

Last three columns in Table 15.3 compare the energy-efficient input quantities
associated to E� K�; L�;M�ð Þ with the observed input quantities (K, L,M), which we
recall are held fixed in computing the technically efficient energy quantity E′. That
is, the ratios between the two show the changes that every sector should make in
their input bundle to achieve the smallest energy consumption. In the case of the
Food industry, the optimal mix would require a quantity of purchased intermediate
inputs 0.8% greater than the quantity actually consumed, while using 32.9% less
capital, and 13.3% less labor than their respective observed quantities.

Most industries reveal a fairly similar pattern: to achieve the smallest energy
consumption it is required to increase the purchase of intermediate inputs and
decrease the use of capital in a larger proportion than labor, resulting in a lower
capital intensity of production. There is however some interesting exceptions. In
some industries the increase ofM is accompanied by an increase of labor (e.g. Basic
Metals, Wood). In the Paper industry, and to a lesser extent in the Chemical sector,
the energy efficient vector is associated with fewer purchases of materials and
services. This suggests that in these manufactures, the processing of purchased raw
materials and components needs more energy than the processing of internally
made feedstock.

Table 15.4 and Fig. 15.4 present the energy intensity change and its determi-
nants for the nine manufacturing sectors considered in this study. In Table 15.4, the

Table 15.4 The energy intensity change and its components across industries 1999–2007

(1) (2) (3) (4) (5) (6)

TECH IMCH TCH SCH REG dI

Food 0.910 0.919 0.877 1.067 1.014 0.793

Textile 1.032 1.023 0.728 0.875 0.907 0.610

Paper 1.142 0.829 0.623 1.425 1.025 0.861

Chemical 1.320 0.807 0.817 1.213 1.040 1.097

Non-metallic mineral products 0.982 0.880 0.653 1.333 1.019 0.767

Transport equipment 0.824 0.953 0.884 1.225 0.984 0.837

Wood 0.725 1.327 0.545 1.512 1.043 0.827

Basic metals 0.869 0.846 0.553 1.406 1.013 0.579

Machinery and equipment 1.009 0.919 0.942 1.066 1.058 0.984
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horizontal product of columns (1)–(5) equals the energy intensity change observed
in 1999–2007 for each sector, which is reported in column (6).

Last column of Table 15.4 reveals that eight out of nine sectors improved its
energy intensity over the period under consideration. Only the Chemical sector
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Fig. 15.4 The cumulative energy intensity change and its components
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registered an increase of 9.7% in its energy intensity rate. The Basic Metals industry
shows the largest reduction (42.1%), followed by the Textile industry (39%).
Table 15.4 nevertheless shows notable disparities across sectors with respect to the
sign and magnitude of the explanatory factors.

As shown in column (3), Technical Change is the main source of energy
intensity reduction in most sectors. Nevertheless, in two industries (Chemical and
Machinery & Equipment) the effect of the input mix change is the most important
driver, as can be seen in column (2). Column (1) reveals that the improvement of
technical energy efficiency is the dominant energy-reducing factor in the Transport
Equipment industry, while Wood, Basic Metals and Food sectors also show
important savings derived from this efficiency increase.

As column (4) indicates, the scale change effect is the main negative force
working against energy intensity. The sole exception is the Textile industry, where
the change in the scale of operations had a positive impact of 12.3%. The period
analyzed was a time of high sustained growth in Spain. The significantly negative
scale effect detected in various industries indicates that such output increase
required a proportionally higher consumption of energy, suggesting the presence of
firm size inefficiencies within those industries with respect to the use of energy.
Finally, with the exceptions of the Textile and Transport equipment sectors, the
regional effect has contributed to deteriorate the energy intensity change. This
suggests that in seven out of nine industries production has moved from less energy
intensive regions to higher energy intensive regions.

15.7 Conclusions

This chapter has presented a way to analyze the change in energy intensity that
combines frontier methods and the index decomposition approached usually
employed in energy studies. The suggested decomposition has the advantage of
providing a more detailed number of determinants as well as allowing an integrated
analysis of the relationship between energy efficiency and energy intensity.

We have applied the proposed decomposition to the analysis of the evolution of
energy intensity in Spanish manufacturing over the period 1999–2007 by using
regional and industry level data. Broadly, our findings confirm that the technical
progress, the change in the input mix and the improvement in the level of technical
energy efficiency are the factors that have contributed to reduce the energy intensity
in most manufacturing industries throughout the analyzed period. By contrast, the
increase in the scale of operations and the change in the regional distribution of
production have acted as energy intensity increasing forces within most industries.

In any case, the individual results at regional level should be interpreted with
caution due to the level of aggregation employed in defining the industries.
Undoubtedly, the accuracy of frontier estimation and efficiency measures would be
higher if we could observe data at the four-digit NACE level and give a more
homogeneous definition of each industry.
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Finally, in Spain, as in many other countries, the enhancement of energy effi-
ciency and the reduction of energy consumption represent major economic and
environmental challenges, as reflected in the successively approved National
Energy Efficiency Action Plans (MITYC 2007, 2011). In such a context, our
analysis can be of help to the industrial policy assessment by identifying the driving
forces that contribute to decline the energy intensity at industry level, and thereby
guiding policy makers in the design of alternative measures and incentives to
further reduce the energy consumption in different industries. Thus, in the light of
our results, in some industries (e.g. Textile) bringing policy measures aimed at
incentivizing a better energy management and the adoption of changes in their
capital-labor ratio would be particularly suitable to reduce the consumption of
energy. By contrast, in other industries (e.g. Non-metallic mineral products, Basic
metals) the application of a different package of measures are expected to be more
effective (e.g. giving stronger incentives to increase the production in smaller firms,
to introduce changes in the degree of vertical integration, to stimulate the pro-
duction in certain regions).
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Chapter 16
The Aging U.S. Farmer:
Should We Worry?

Harold O. Fried and Loren W. Tauer

Abstract The average age of the U.S. farmer continues to increase and exceeded
58 years in 2012. This aging of farmers is not unique to the U.S. If older farmers are
less productive than younger farmers then agricultural output may diminish.
Although Malmquist techniques are often used to measure productivity over time,
we measure the productivity of farmers of various age cohorts with DEA techniques
using the 50 state-level age cohort data from the 2012 U.S. Agricultural Census. We
define a global technology comprising data from all age groups and states.
Productivity of an age cohort in a state is then measured relative to data from all age
groups rather than between adjacent ages. The efficiency component of a state age
group is measured relative to the other state observations in that age
group. Technology is measured as the Malmquist productivity value divided by
efficiency. We find that the productivity of the age group of 35–44 years old is 3%
more productive than the youngest farmers under the age of 25, but that the pro-
ductivity of farmers over the age of 65 is 10% lower than the youngest farmers. The
decrease in productivity of old farmers is due to technology because on average
they remain efficient.

Keywords Age productivity � DEA � Farmer productivity � Global technology �
Malmquist
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16.1 Introduction

This paper is about the productivity of older farmers. The concern is that older
farmers may be less productive than younger farmers, and U.S. farmers on average
are becoming older. If older farmers are less productive and if farmers continue to
age, future farm productivity will decrease. This has important policy implications:
programs could be put into place that mitigate productivity decreases with age, or to
encourage the transition of farm businesses from older and less productive farmers
to younger and more productive farmers. These issues have been discussed by U.S.
Secretary of Agriculture, Tom Vilsack. They are also an issue in other countries
where agriculture is a dominant industry, such as New Zealand (Fairweather and
Mulet-Marquis, 2009).

Aging and productivity is an issue that applies across individuals and across
occupations. As workers get older, they gain experience, which contributes to
productivity, but beyond some point, the physical and mental deterioration that is
inherent in the aging process manifests itself as a countervailing and eventually
prevailing force to the positive contribution of knowledge gained on the job. The
result is an inverted “U” shaped relationship between age and productivity as the
experience effect dominates initially, only to be trumped by the aging effect
eventually. The manifestation of any upside down “U” is expected to vary across
individuals and occupations. Opportunities exist for economists and other social
scientists to investigate this relationship empirically.

The literature on aging and productivity adopts various perspectives: the rela-
tionship between aging, productivity and wages; the management of older workers;
the time path of mental and physiological aging and productivity; managing the
aging process; aging and economic growth. We focus on aging and productivity.

Feyrer (2007) investigates the relationship between workforce demographics and
economic growth using a large panel of OECD and developing countries. He
concludes that countries with older demographics tend to grow faster than countries
with younger demographics; more workers between the ages of 40–49 is associated
with higher growth. Skirbekk (2003) surveys the literature on age and individual
productivity. In general, job performance tends to peak around age 50; specifically,
performance in jobs that involve problem solving, learning and speed, experience
more rapid deterioration with age than jobs that involve experience and verbal
abilities. Oster and Hamermesh (1998) examine economists’ publishing in leading
journals over their careers and find evidence that performance deteriorates with age:
“creative economics at the highest levels is mainly for the young.” Turning to two
examples from sports, Fried and Tauer (2011, 2012) investigate aging and golf for
men on the PGA tour and women on the LPGA tour. The performance metric is the
ability to perform under pressure, which peaks at age 36 for the men and age 37 for
the women.

The life cycle pattern of farmer productivity is a testable hypothesis. Tauer
(1984, 1995) investigates this pattern using data from various U.S. Agriculture
Census years. These analyses are across age groups at a point in time rather than

392 H.O. Fried and L.W. Tauer



following farmers as they age. He finds evidence that farmer productivity with
respect to age exhibits first an increase and then a decrease across farmer age
cohorts at various Census time periods. Tauer and Lordkipanidze (2000) investigate
the sources of productivity change, decomposing it into technology and efficiency
changes. This matters since policies to boost efficiency are different from policies to
encourage the adoption of new technology. Understanding the profile of efficiency
change and technology change with respect to age enables policy makers to target
policy interventions to farmers of different ages. Mishra and El-Osta (2008), for
instance, find that farm succession decisions are significantly influenced by gov-
ernment farm policy. Like most industries, agriculture has changed, so we revisit
this phenomenon using data from the most recent 2012 U.S. Census of Agriculture.

There are numerous studies that estimate and decompose productivity change in
agriculture in countries around the world, often calculating Malmquist indices using
a non-parametric approach. However, productivity differences across age cohorts
has received almost no attention despite the fact that farmers are getting older all
over the world. Gale (1994) does use Agricultural Census data from the years of
1978, 1982, and 1987 to study farm patterns over time and age, and although he
does not estimate productivity by age, he does find that mean growth rates are
greatest for younger farmers. Katchova and Ahearn (2015) focus on farm expansion
rather than productivity and find that younger beginning farmers tend to expand
over time in contrast to older beginning farmers. Our paper calculates a Malmquist
index using a cross section methodology for 2012 and decomposes it into efficiency
and technology, and further components of efficiency.

As U.S. farms become larger through consolidation, fewer farmers of all ages are
needed. Because fewer additional farmers are needed after consolidation, it is
logical that fewer younger individuals may enter farming, skewing the age distri-
bution to older farmers and increasing the average age. The appeal of farming to the
young may also be waning so that older farmers remain farming, given no apparent
successors, although these operations will eventually be consolidated.

Principal operators are generally getting older each Census, exceeding 58 years
in the 2012 Census.1 See Fig. 16.1. The age reported is the age of the principal
operator of sole-managed or multi-managed farms. The other managers may be
younger, or even older than the reported principal operator. The census form is sent
to each farm, and the farm determines the principal operator. With few exceptions
these are primarily family farms.

Young farmers often do not survive as farmers. Gale (1994) studied the age of
farmer exits and entries and concluded that over the period 1978–1997, the number
of entries by young farmers declined steadily as did the exit rate of older operators,
increasing the average farmer age in U.S. agriculture. This pattern persists in later
censuses. Comparing principal operators by tenure on the farm in the 2007 and

1Over the previous 50 plus years the only time the average farmer age decreased was during the
high commodity price years from 1973 to 1982 when high farm incomes encouraged young
individuals to enter farming. Many of them may have been lost to farming during the farm
financial crisis of the 1980s.
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2012 Census, farmers with tenure of 9 years and less are leaving farming; farmers
with tenure ten years and more are growing (Kurtzleben 2014). It is clear that the
average farmer is older today and if this long term trend continues, the average
farmer will be older in the future.

The remainder of this paper is organized as follows. The next section discusses
the Malmquist methodology using Data Envelopment techniques to measure and
decompose productivity into efficiency, and technology components. The standard
Malmquist approach is typically applied to panel data. In this paper, we modify the
standard approach to apply it to a cross section. Section 16.3 presents the results.
The final section concludes.

16.2 The Method: Cross Section Malmquist with a Global
Technology Set

16.2.1 Standard Malmquist

The Malmquist productivity index, typically based upon panel data of DMUs over
time, is calculated at the level of the individual unit and can be decomposed into
efficiency and technology effects and further into scale and pure (residual) com-
ponents of efficiency (Fare, Grosskopf, and Margaritis 2008). Between two time
periods, a firm undergoes productivity change as a result of a movement closer or
further from the shifting production frontier (efficiency change), an improvement or
deterioration as a result of adopting or failing to adopt new technology (technology
change), and moving to a point of increasing or decreasing returns to scale (effi-
ciency scale effect).

Productivity growth for an individual unit is the change in output over input
between two time periods. In our context, this emanates from three sources: a
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change in the position of the firm due to an expanding production possibilities set
(technology), a change in the position of the firm due to a change in scale of
production (scale efficiency), and a change in the position of the firm relative to the
constant return production possibilities set (pure efficiency). Productivity change
between two time periods is the sum of the three.

16.2.2 Malmquist with a Twist

This paper applies the Malmquist methodology to cross sectional data. The
objective is to identify productivity differences among farmers of different age
cohorts at a point in time, whereas the objective of traditional Malmquist is to
identify productivity change between two adjacent time periods. Productivity
change can still be decomposed into efficiency and technology components. The
farmer age cohort dimension substitutes in the cross section context for the time
dimension in the panel context. An advantage of cross section Malmquist is that it
holds constant variables that change over time. This is particularly important for
agriculture where changes in the weather over time can confound changes in
productivity.

However, productivity can be measured relative to an adjacent age group, which
is analogous to measuring productivity over time by measuring the change in
productivity between adjacent time periods, or productivity of an age cohort can be
measured relative to the technology of all age cohorts. This technique of specifying
a global reference set for measuring productivity rather than an adjacent technology
set was introduced by Pastor and Lovell (2005) and used by Camanho and Dyson
(2006). Whereas the earlier measurement of farmer age productivity by Tauer and
Lordkipanidze (2000) used adjacent age cohorts, in this paper we elect to use the
Pastor and Lovell (2005) global specification of the technology set over all age
cohorts. A recent application of Malmquist using a global technology set is Asmild
(2015). A global specification is appropriate because we are interested in the pro-
ductivity of a farmer age cohort relative to the most productive farmer regardless of
the age of that productive farmer. This permits productivity measurement of any
specific age group relative to the most productive group and allows identification of
the most productive age group. Although we use this procedure to measure pro-
ductivity across age groups, the method can also be used to measure productivity
differences across groups of regions or groups of industries.

An output distance function can be defined for age group k as:

Dk
o xk; yk
� � ¼ max h: xk

0
; hyk

0
� �

2 sk
n o� ��1

: ð16:1Þ

This measures how much output y can be increased for decision maker k′ given a
quantity of input(s) x used by k′, such that x and θy remain in the production set sk.
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An output rather than an input distance function is used because farmers are more
likely increase their outputs given their use of inputs, rather than decrease inputs
given their outputs. The function Dk

o measures the output technical efficiency of age
cohort k, given the technology set used by the members of age cohort k. The
technical efficiency difference between any two age cohorts is then

Ekþ j
o ykþ j; xkþ j; yk; xk

� � ¼ Dkþ j
o xkþ j; ykþ j

� �
Dk

o xk; ykð Þ ; ð16:2Þ

where k is age group k, referred to as the base age group, and j is age group j. If
adjacent age groups are used than j = 1.

To construct the Malmquist index from a global reference technology, it is
necessary to define distance functions for members of an age cohort in reference to
the combined age cohort technology set as:

Gk
o xG; yG
� � ¼ max h: xk

0
; hyk

0� �
2 sG

n o� ��1
; ð16:3Þ

where the G superscript refers to the global inputs x and outputs y from the
combined age cohorts, which is the union of the various age cohorts technology
sets. The output distance function specified by Eq. (16.3) measures the maximal
proportional change in output required to make (xk′, yk′) feasible in relation to the
global technology set sG used by the combined age groups, and is the defined
Malmquist index. The Malmquist index change between any two age groups is
then:

Mkþ j
o xG; yG

� � ¼ Gkþ j
o xG; yG

� �
=Gk

o xG; yG
� �

; ð16:4Þ

where k is the base age group and j is the age group being evaluated. Again, if j = 1
then the Malmquist index is being computed for adjacent age groups.

By definition the Malmquist index consists of the product of technology and
efficiency. Efficiency of a DMU is measured by Eq. (16.1) and the difference in
efficiency between adjacent age cohorts is measure by Eq. (16.2). Thus technology
difference between any two age groups can be obtained by dividing Eq. (16.4) by
Eq. (16.2): Tkþ j

o ð:Þ ¼ Mkþ j
o ð:Þ=Ekþ j

o ð:Þ; where again if j = 1 then adjacent age
groups are used in this evaluation.

Because Malmquist is not transitive across time periods (Førsund 2002) or in our
case across age groups, we elect to measure the Malmquist, efficiency, and then
technology of every age group relative to the age cohort of farmer under the age of
25. By using this constant base all indices by definition are transitive to that base.
Thus the Malmquist, efficiency, and technology indices of all farmers in all age
cohorts are measured relative to the farmers under 25 years of age. This also
converts these three indices to the value of one for all farmers under the age of 25.
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The defined distance functions can be calculated for each age group using linear
programming techniques. The linear programming model to calculate the output
distance function (16.1) for each of the k′ state age cohorts in age cohort group k is:

Dk
o xk

0
; yk

0
� �� �

¼ max hk
0 ð16:5Þ

subject to:

XK
k¼1

zkykm � hk
0
yk

0
m m ¼ 1; . . .;M

XK
k¼1

zkxkn � xk0n n ¼ 1; . . .;N

ð16:5aÞ

zk � 0 k ¼ 1; . . .;K ð16:5bÞ

where k references all the observations in age cohort k, k′ is a specific state level
age cohort, z is the intensity vector, y is output, x is input, h is the inverse of the
efficiency score, M is the number of outputs, N is the number of inputs, and K is the
number of groups. The technology specified here is nonparametric, but assumes
constant returns to scale and strong disposability of inputs and outputs.

The distance function specified in Eqs. (16.3) requires data from all the age
cohorts and is computed for each observation k′ as:

Gk
o xG; yG
� �� � ¼ max hk

0 ð16:6Þ

subject to

XK
k¼1

zkykm � hk
0
yGm m ¼ 1; . . .;M

n ¼ 1; . . .;N

XK
k¼1

zkxkn � xGn k = 1; . . .;K

zk � 0

In linear program models (16.5) and (16.6) each member of the z vector is
bounded below by zero imposing constant returns. To impose variable returns, the
constraint

PK
k¼1 z

k ¼ 1 is added.
Because farm size varies, it is informative to ascertain the role of scale in

productivity differences. Productivity consists of technology and technical effi-
ciency. Technology is determined by dividing Malmquist computed from the
Global technology, by the technical efficiency determined for each observation in
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an age cohort using the technology used by that age cohort. Because total technical
efficiency equals scale efficiency multiplied by pure efficiency, it is possible to
decompose technical efficiency into scale and pure efficiency components by
imposing that the z variables sum to one in distance function equation (16.5) and
estimating the distance function under variable returns to scale. Then to determine
the portion of technical inefficiency that is due to returns to scale, technical effi-
ciency estimated under constant returns to scale is divided by efficiency estimated
assuming variable returns to scale. The remaining technical efficiency is classified
as pure efficiency.2

16.3 Results

16.3.1 Data

Data are obtained from the 2012 U.S. Agricultural Census, which is a complete
enumeration of agricultural production entities in the United States. Individual farm
observations are not publicly available, but data are summarized by age cohorts at
the state level. The age cohorts are (1) under the age of 25 years, (2) age 25–
34 years, (3) age 35–44 years, (4) age 45–54 years, (5) age 55–64 years, and
(6) age 65 and older. Although some of the farms are owned by multiple indi-
viduals, organized into partnerships or corporate legal entities, the age of the
principal operator is used to place a farm into an age cohort. The assumption is that
the principal operator makes most or all final decisions. Burton (2006) makes the
case that an index compiled by averaging the age of family members working on
the farm would be better to study the life cycle phenomenon; those data are not
published in the cohort groupings. Data are not available separately for sole pro-
prietorships. Farms owned and managed by multiple individuals are almost
exclusively family businesses, many parent-child operations.

Data are summarized from farms, where the respondent states that farming is his
full time occupation, and separately into farms where the respondent states that
farming is not his full time occupation. Only the data from farmers who indicated
that farming is their full time occupation are used. Data are constructed for an
average farm in each age cohort by dividing aggregate output or expense for the
state for a specific age cohort by the number of farms in that age cohort in that state.
Aggregate county level data are also available, but unfortunately those data are not
summarized by age cohort, precluding using county level observations. Data are
extracted from the web.

2The software used was Paul Wilson’s FEAR program in the language R. The routine “dea” from
FEAR was used to solve the various linear programs using an output orientation under constant
and variable returns to scale. The linear programming solutions were then used to derive the
various Malmquist and component indices.
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One output is defined as total agricultural sales, which includes sales of all crops
and animal products from the farm. Added to sales as the output are government
agricultural payments received. This is done under the assumption that these pay-
ments occur because of farming activities and thus should be included as agricul-
tural output.

Five inputs are defined: (1) crop input, (2) livestock input, (3) labor input,
(4) operator labor input, and (5) capital input. Unfortunately, these aggregated
categories are not how expenses are reported in the Census. Rather, more detailed
itemized expense items are reported and summed into these five inputs. Items such
as fertilizer, chemicals, seed, etc., are placed into crop inputs, while purchased feed,
utilities, supplies, etc., are placed into livestock input. The detailed expenses from
the Census and where they are placed is reported in Table 16.1. A simple arithmetic
aggregation is used with the aggregate divided by the number of farms in an
age-state cohort to arrive at per farm data. Non-disclosure rules are effective for
some of the detailed expense items for some age cohorts in specific states so as to
not disclose the data from specific farming operations. Those expense items are not
available for summation leading to an incomplete measure of aggregate costs.
When this occurs, that age cohort in that state is excluded from the analysis. This

Table 16.1 Receipt and expense items merged to produce the output and five inputs

Aggregated item Disaggregated items

Agricultural output Agricultural sales

Government payments

Crop input Seed expenses

Fuel expenses

Chemical expenses

Custom work expenses

Fertilizer expenses

Livestock input Utility expenses

Livestock purchased

Feed expenses

Supplies

Miscellaneous expenses

Labor input Hired labor expense

Contract labor

Operator labor input Calculated as 250 days available minus:

25 days if response was 1–49 days off-farm work

75 days if response was 50–99 days off-farm work

150 days if response was 100–199 days off-farm work

225 days if response was 200 plus days off-farm work

Capital input Machinery lease payment

Depreciation

0.05 × machinery value

0.05 × real estate value
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often happens in the states with few farmers in the younger cohort, under age 25.
Missing because of non-disclosure is often the hired labor or contract labor expense
item, but other expense items such as custom work are sometimes the culprit.

Table 16.2 provides the number of state observations and sales by age cohort.
Older farmers are well represented; data for younger farmers are often missing due
to non-disclosure rules. Total aggregate sales peak for cohort 55–65. Although sales
for the oldest cohort (over 65) are lower than the peak, they are still higher than the
sum of sales for the three youngest cohorts under age 45. The productivity of older
farmers matters.

The Census questionnaire asks for products sold and items purchased during the
year 2012, rather than output produced and inputs used. For individual operations,
there can be significant differences between production and sales or usage and
expenses because of inventory changes. However, on average these variations
should average out when we divide total sales or expenses by the number of farms
to arrive at the sales and inputs used by the average farm in an age cohort for each
state. Some of the expense measures are also stocks which are converted into flow
measures. Machinery lease payments and machinery depreciation are used as the
flow of machinery input, although lease payments or tax deprecation may differ
from use flow or economic depreciation. The opportunity cost of machinery and
real estate, computed as 5% of the machinery and real estate value, is added as a
capital expense.

Unfortunately, the quantity of family labor is not recorded unless the family
member is paid a wage, in which case family labor is included as hired labor
expense. More problematic is that the Census questionnaire does not collect hours
each operator worked on the farm, but rather asks the number of days each year that
the operator worked off the farm. This work off the farm could involve tasks that
range from serving as a director of a cooperative to driving a school bus. So from an
assumed 250 available days of work, the mid-point of the days worked off the farm

Table 16.2 Number of state observations for which complete data were available and sales by
age cohort

Age Number of states (out of 50) Sales (millions) (all 50 states)

Under 25 28 1.004

25–34 27 15.593

35–44 43 44.573

45–54 47 98.724

55–65 48 111.707

Over 65 47 77.722

Year 2012 U.S. Agricultural Census (principal operators)
The 27 states that comprise the balanced panel that is used in the empirical work consist of
Alabama, Arkansas, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Massachusetts,
Minnesota, Mississippi, Missouri, Nebraska, New York, North Carolina, North Dakota, Ohio,
Oklahoma, Oregon, Pennsylvania, South Dakota, Tennessee, Texas, Virginia, Washington and
Wyoming
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interval is subtracted as shown in Table 16.1. Descriptive statistics for the core
sample of 27 states are contained in Table 16.3.

It is useful to step back and summarize our procedure. The unit of analysis is a
farmer age cohort in a state. Because of Census non-disclosure rules, we have an
unbalanced panel of states over 6 age cohorts as shown in Table 16.2. We pool
these data and calculate the global constant returns to scale frontier based upon
these 240 observations. To determine productivity change (Malmquist) we estimate
the distance of each of the 240 observations relative to the global frontier. This
provides the Malmquist for each of the 240 observation. Then to determine tech-
nical efficiency for an observation in an age cohort, we evaluate that observation
relative to a frontier based only upon data for all state observations from the same
age cohort. Technical efficiency is then decomposed into scale efficiency and pure
efficiency given the technology used by an age cohort. Thus technical efficiency of
the farmers under the age of 25, for instance, is determined relative to only the other
farmers under the age of 25. Technical change is calculated as Malmquist pro-
ductivity from the global technology divided by efficiency determined within an age
cohort. Because the 25–34 age cohort has the fewest number of complete state
observations at 27, we construct indices for only those 27 states as identified in
Table 16.2. This allows matching state results across all age cohorts.

16.3.2 Results

Malmquist productivity is calculated with total sales of agricultural products as the
output and five inputs: crop expenses, livestock expenses, operator labor in days,
other labor expenses, and capital expenses. The year is 2012. Cross section
Malmquist substitutes the six age cohorts for time periods. All variables are state
averages for each age cohort. Efficiency, technology, scale technology and pro-
ductivity indices are calculated using linear programs (5) and (6) at the state level,
using the FEAR software package authored by Paul Wilson (2008).

Table 16.3 Descriptive statistics of inputs and output (sample = 27) mean and (standard
deviation)

Age cohort Crop expense Livestock
expense

Labor
expense

Capital
expense

Operator
days

Sales

Under 25 41.6 (22.6) 61.7 (54.2) 5.3 (3.0) 62.8 (25.0) 210 (22.8) 161.8 (80.5)

25–34 73.8 (44.0) 111.0 (56.0) 14.1 (8.6) 99.7 (46.8) 213.3 (15.6) 301.5 (137.0)

35–44 105.0 (58.4) 215.7 (120.6) 29.3 (22.7) 144.3 (73.4) 221.7 (12.1) 509.1 (208.7)

45–54 108.0 (63.3) 203.6 (137.0) 31.1 (26.6) 153.0 (82.0) 229.6 (11.5) 500.5 (238.5)

55–64 92.0 (54.4) 145.8 (86.1) 25.7 (20.4) 134.8 (74.2) 247.1 (6.3) 389.6 (194.0)

Over 65 40.1 (27.3) 71.2 (48.4) 13.3 (10.5) 82.5 (41.4) 269.9 (4.19) 192.6 (105.6)

Note crop, livestock, labor, capital and sales are in thousands of dollars
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Although all available data were used to compute distance functions, in order to
derive consistent indices for making comparisons across all age cohorts, we con-
struct a balanced panel from the computed distance functions that is driven by age
cohort 25–34, which has complete data for 27 states. These states are listed in
Table 16.2. Data are available for these 27 states for all other age cohorts. The
major agricultural states are included except for California because of disclosure
rules for the youngest age group in that state, although other age groups from
California for which data were available defined the technology sets. In order to
clearly make comparisons across age cohorts, we normalize the results to the
youngest age cohort so the index value for the youngest age cohort is one. This
comparison makes all of the indices transitive, which is generally not the case for
Malmquist indices using adjacent ages (Førsund 2002).

As a point of comparison, Tauer and Lordkipanidze (2000) present results for
efficiency, technology and productivity indices for the 1992 Census aggregated into
regions. The regional results from the 1992 Census are reasonably consistent.
Efficiency modestly rises to age cohort 35–44 and is then flat for the remaining age
cohorts. Technology generally rises, peaks at age cohort 35–44 and then falls.
Productivity mimics the results for technology. The Tauer and Lordkipanidze
(2000) study applies conventional Malmquist to adjacent age cohorts rather than the
global approach across all age groups used here.

Our results using data 20 years later are different. Consider the 2012 results
shown in Fig. 16.2, which are presented like traditional Malmquist indices except
that age cohorts rather than time periods are on the horizontal axes. Age cohort data
are the geometric means of state results and represent percentage deviations from
the youngest cohort group. The values that underlie the figures are contained in
Table 16.4. Efficiency relative to the youngest cohort rises, dips slightly, rises
through age cohort 55–65 and then falls to age cohort 65 and older. However, since
our focus is on what happens to efficiency as farmers get older, it is interesting that
the most efficient farmers are 55–65, who are 7% more efficient than the youngest
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cohort, and the oldest cohort is 3% more efficient than the youngest cohort, and
slightly more efficient than farmers 35–44. The experience of the oldest farmers
enables them to maintain a position relatively close to the prevailing frontier,
particularly compared to farmers entering the industry. This result is reasonably
consistent with Tauer and Lorkipanidze (2000) who conclude that older farmers are
largely able to maintain efficiency.

The technology results tell a different story. The youngest farmers adopt the
latest technology at the onset of their agricultural careers; 5% more efficient in
technology than the next oldest cohort, 25–34. Why this dip occurs is interesting
and could be because of a number of reasons. This age group, if entered farming
10 years earlier as under 25 years of age farmers, may have faced financial con-
straints limiting their acquisition of state of the art technology. Alternatively they
may simply have purchased technology ten years ago that is not as productive as
current technology. Farmer cohort 35–44 regains a position on the technology
frontier compared to the youngest, possibly because they may have cycled to new
technology. Then the older age cohorts lose ground, concluding with farmers over
65 using 13% less technology than the youngest. There appears to be a fundamental
difference between maintaining a position relatively close to a familiar frontier and
keeping up with an expanding frontier that is driven by technology.

The Malmquist results mimic the technology results as the magnitudes of the
technology comparisons are larger than the efficiency comparisons. Overall, the
oldest farmers are 13% less productive than the most productive age cohort, 35–44,
and 10% less productive than the youngest. From a policy perspective, this
underscores the importance of policies that address the barriers to older farmers
responding to technical change. Tauer and Lorkipanidze (2000) also conclude that
the challenge to older farmers is driven by keeping up with technology.

Figure 16.3 decomposes efficiency into pure efficiency and scale efficiency to
gain insights into to what extent farmer efficiency is driven by changes in size or
changes in their position relative to the frontier holding size constant (Fare et al.
2008). It is important to remember that all efficiency measures were measured using
only the reference technology set of the age cohort for whom efficiency was

Table 16.4 Malmquist and its decompositions relative to the youngest age cohort

Age cohort Malmquist Technology Efficiency Scale
efficiency

Pure
efficiency

Age under
25

1.00 1.00 1.00 1.00 1.00

Age 25–34 0.99 0.95 1.04 0.95 1.09

Age 35–44 1.03 1.00 1.02 0.97 1.06

Age 45–54 0.99 0.94 1.05 0.97 1.08

Age 55–64 0.94 0.88 1.07 0.97 1.10

Age over 65 0.90 0.87 1.03 0.96 1.07
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calculated. The global reference set was used to measure technology differences
only. Average age pure efficiency across age is higher than efficiency generally by
about four percentage points (relative to the youngest cohort) and exhibits the same
pattern. Scale efficiency is generally around 8% lower than efficiency (relative to the
youngest cohort) and exhibits a different pattern—it falls by 5% between the
youngest and age cohort 25–34 and then remains fairly flat. Pure efficiency drives
the pattern of efficiency across age cohorts and scale pulls efficiency down. Farms
of sub-optimal size exert a negative impact on operating close to the existing
frontier. This effect sets in immediately between the youngest farmers and the next
age cohort and then remains constant across subsequent age cohorts. Older farmers
do not behave differently than younger farmers in this case. This might have been
expected since efficiency for each state observation in an age cohort is measured
relative to the other farmers in that age cohort across all states.

The discussion up to this point has focused on the pattern of Malmquist and its
components based upon the geometric means for each state age cohort. The
aggregation by age cohort using the geometric mean hides the distribution of the
results for each age cohort. Figures 16.4, 16.5 and 16.6 focus on the distribution of
productivity and its decompositions for each age cohort. The tighter the distribu-
tion, the more confident we can be that the geometric mean is a good measure. The
graphs are kernel densities of histograms. For the most part these distributions are
similar but right shifted in agreement with their geometric means in Table 16.4 and
Figs. 16.2 and 16.3. The distribution of age cohort 45–44 is comparatively tight for
Malmquist and that is due to efficiency as shown in Fig. 16.5. The distribution for
technology is also comparatively tight for age cohort 35–44. The technology in
Fig. 16.6 shows some slight bimodal distribution for age cohort 55–65, and the
technology distribution for the age cohort 35–44 is more right shifted compared to
the other age groups. The dispersed distribution for the indices suggest that more is
going on than is revealed by the geometric mean aggregations used in the previous
discussions.
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16.4 Conclusion

The benefit of applying a frontier approach to understanding the performance of
farmers of different ages is that it produces measures of productivity, technology,
efficiency, scale efficiency and pure efficiency that can be woven into a coherent
story to shed light on the relationship of productivity and age and customize
appropriate remedial policies. Overall, older farmers produce less given inputs than
do younger farmers. Yes, we should worry about this. Farmers over 65 are 13% less
productive than the most productive age cohort, 35–44 and 10% less productive
than the youngest age cohort. Muting the impact of this lower productivity is that
the older farmers have much lower sales (partially due to low productivity) than do
farmers in the middle age cohort.

But what is driving this discrepancy in performance? Interestingly, it is not effi-
ciency using their current technology. Older farmers on average are 6%more efficient
than the youngest age cohort and lag behind the most efficient age cohort, 55–64, by
only around 3%.Old farmers know how to stay close to a familiar frontier. The answer
is technology. The youngest age cohort appear to be benefiting from technology at the
outset of their careers while the oldest cohort lags behind by 12%.

Technology has changed the nature of farming, and like many other industries,
the pace of technological change in agriculture has accelerated. The hours needed
for previous multiple tillage operations to grow crops have been reduced as farming
moved to minimum or no till in recent years. Corn is still planted using a tractor, but
now the tractor with GPS steers itself down the field while the farmer can use his
smart phone to check on commodity prices (or watch a major league baseball
game). Harvesting equipment cabs are air conditioned and heated, resulting in more
comfort. Backbreaking days of shoveling grain or pitching manure are mostly over.

Old farmers appear not to be fully benefiting from the technology revolution in
agriculture. Since we know that farmers are getting older as fewer young people
enter the profession, this takes a toll on agricultural productivity. Government
policies to provide technical support would help to address this problem.

This paper also makes methodological contributions. It revives the technique to
apply Malmquist to a cross section. This requires a variable that substitutes for time;
in our case, the variable is age cohorts. An advantage of the cross section approach
is that it eliminates noise that is introduced by the passage of time, particularly the
vagaries of the weather, although it introduces noise due to the movement from one
age cohort to another. It also revives a more recent development to use a global
frontier as a fixed benchmark.
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