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Abstract. The paper presents notion of horizontal membership func-
tion (HMF) and based on it fuzzy, relative distance measure (fuzzy
RDM) arithmetic that is compared with standard fuzzy arithmetic (SF
arithmetic). Fuzzy RDM-arithmetic possess such mathematical proper-
ties which allow for achieving complete fuzzy solution sets of problems,
whereas SF-arithmetic, in general, delivers only approximate, partial
solutions and sometimes no solutions of problems. The paper explains
how to realize arithmetic operations with fuzzy RDM-arithmetic and
shows examples of its application.
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1 Introduction

Operations of SF-arithmetic mostly are realized on fuzzy numbers (F-numbers)
and on fuzzy intervals (F-intervals), [2,3,5–8]. Any trapezoidal F-interval A is
fully characterized by the quadruple (a, b, c, d) of real numbers occuring in the
special canonical form (1),

A(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x − a)/(b − a) for x ∈ [a, b)
1 for x ∈ [b, c]
(d − x)/(d − c) for x ∈ (c, d]
0 otherwise

(1)

Let A = (a, b, c, d) be used as a shorthand notation of trapezoidal fuzzy
intervals. When b = c in (1), A is usually called triangular fuzzy number (TF-
number). F-number is a special case of F-interval. Conventional interval can be
defined as follows [10]: closed interval denoted by [a, b] is the set of real numbers
given by (2),

[a, b] = {x ∈ R : a ≤ x ≤ b} (2)

Figure 1 shows conventional interval, fuzzy interval, and fuzzy number.
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Fig. 1. Conventional interval (a, b), fuzzy interval (a, b, c, d), fuzzy number (a, b, c).

Fuzzy set A can be defined as sum of its μ-cuts, also called α-cuts. Definition
of μ-cut is as follows [7]: Given a fuzzy set A defined on R, and a real number
μ ∈ [0, 1], the crisp set Aμ = {x ∈ R : A(x) ≥ μ} is called μ-cut of A. The crisp
set S(A) = {x ∈ R : A(x) > 0} is called the support of A. When max

x∈R

A(X) = 1,

A is called a normal fuzzy set.
Figure 2 shows μ-cut of F-interval on the level μ = 0.5.

Fig. 2. Fuzzy interval about (3, 6) characterized by quadruple (1, 3, 6, 7) and its μ-cut
A0.5 = {x ∈ R : A(x) ≥ 0.5}.

Because fuzzy set A can be defined as set of its μ-cuts Aμ then arithmetic
operations (+,−, ·, /) realized on fuzzy sets A and B can be understood as
arithmetic operations on intervals. Hence, interval arithmetic (I-arithmetic) can
be basis for F-arithmetic. In the practice mostly used I-arithmetic is Moore’s
arithmetic called also standard interval arithmetic (SI-arithmetic), [10]. Further
on realization of basic operations of this arithmetic will be presented. If we have
two intervals [a1, a2] and [b1, b2] then basic operations are realized according to
(3) and (4).

[a1, a2] ⊕ [b1, b2] = [a1 ⊕ b1, a2 ⊕ b2] (3)

[a1, a2] ⊗ [b1, b2] = [min(a1 ⊗ b1, a1 ⊗ b2, a2 ⊗ b1, a2 ⊗ b2),
max(a1 ⊗ b1, a1 ⊗ b2, a2 ⊗ b1, a2 ⊗ b2)]

(4)

where: ⊕ ∈ {+,−}, ⊗ ∈ {·, /} and 0 /∈ [b1, b2] if ⊗ = /.
If an arithmetic operation on F-intervals A and B is to be realized then

operations defined by (3) and (4) have to be performed for each μ-cut, μ ∈
[0, 1]. Figure 3 shows subtraction of two identical F-intervals X − X where X =
(1, 2, 4, 5).

In the case of SF-arithmetic subtraction of two identical F-intervals does not
result in crisp zero but in fuzzy zero (0̃).

X − X �= 0, X − X = 0̃ = (−4,−2, 2, 4) (5)
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Fig. 3. Visualization of subtraction of two identical intervals X − X determined by
quadruple (1, 2, 4, 5).

This result seems rather illogical, because F-interval X represents only one
true value x that really occurred in a system. However, it is not known precisely
but only approximately as (1, 2, 4, 5). Hence, the difference should be equal to
crisp zero. Let us consider now fuzzy equation A−X = C, where A = (1, 2, 4, 5)
and C = (7, 8, 9, 10). Solving this equation with SF-arithmetic gives strange
result X = (−5,−, 5,−6,−6) shown in Fig. 4 in which xmin > xmax.

Fig. 4. Paradoxical and incomplete solution X = [−6, −6, −5, −5] of fuzzy equation
A − X = C with A = (1, 2, 4, 5] and C = (7, 8, 9, 10) in which xmin > xmax.

One can also try to solve the equation A − X = C using other forms of it,
e.g.: A − X − C = 0, A = C + X, A − C = X. The form A − X − C = 0
gives paradoxical result X = (−2,−4,−7,−9) in which xmin > xmax. The form
A = C+X gives result X = (−6,−6,−5,−5) which is not fuzzy but conventional
interval. The form A − C = X gives result X = (−9,−7,−4,−2) being inverse
form of the result X = (−2,−4,−7,−9) delivered by the form A − X − C = 0.
This paradoxical phenomenon of different results achieved from different forms
of one and the same equation has been described in many publications, e.g. in [4].
To “enable” solving of equations of type A−X = C apart of the usual calculation
way of the difference A − B = X a second way called Hukuhara difference (H-
difference) has been in SF-arithmetic introduced. It is calculated from equation
A = B + XH [11]. Thus, officially two ways of difference calculation exist in
SF-arithmetic. In SF-arithmetic many next paradoxes exist which are reason of
its limited application. SF-arithmetic can solve only part of real problems but
the rest lies outside its possibilities. What are reasons of this situation?

Reason 1 is assumption and conviction that result X of arithmetic operation
on two 2D fuzzy intervals A and B also is a 2D fuzzy-interval. However, this is
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not true. Result X of such operation exist not in 2D-space but in 3D-space what
will be shown further on. Each next F-interval added to the operation increases
dimension of the result. This state of matter is diametrically different from the
state in crisp, conventional arithmetic.

Reason 2. In SF-arithmetic and SI-arithmetic calculations are performed
only with interval borders. Interiors of intervals do not take part in calculations.
And after all calculations should be made on full and complete sets and only on
their borders.

Reason 3. In SF-arithmetic as calculation result is accepted not complete
solution set but partial, incomplete solution set. In interval arithmetic being
basis of SF-arithmetic S.P. Shary [16] introduced 3 different notions of solutions
of linear equation systems: the united solution set, the tolerable solution set, the
controlled solution set. There also exists notion of the interval algebraic solution
[9]. Basing on [9] definitions of the above solution sets for the case of equation
A − X = C are as below.

The united solution set
∑

∃∃ (A,C) is the set of solutions of real systems
a − x = c with a ∈ A and c ∈ C, i.e.,

∑

∃∃ (A,C) = {x ∈ R|∃a∈A∃c∈C(a − x = c)} (6)

The tolerable solution set
∑

∀∃ (A,C) is the set of all real values x such
that for every real value a ∈ A the real difference a − x is contained in the
interval vector C, that is;

∑

∀∃ (A,C) = {x ∈ R|∀a∈A∃c∈C(a − x = c)} (7)

The controlled solution set
∑

∃∀ (A,C) of all real values x ∈ R, such that
for any c ∈ C we can find the corresponding value a ∈ A satisfying a − x;

∑

∃∀ (A,C) = {x ∈ R|∃a∈A∀c∈C(a − x = c)} (8)

The united, tolerable and controlled solution sets are not complete algebraic
solutions of the equation A − X = C because there exists also point solutions
being outside these sets. The full solution set was called “interval algebraic solu-
tion”. Notion of it [9] adapted for the equation A − X = C is as below.

The interval algebraic solution of interval equation A − X = C is an
interval X, which substituted in the equation A − X, using interval arithmetic,
results in C, that is (9).

A − X = C (9)

According to [9] “the interval algebraic solutions do not exist in general in the
ordinary intervals space (the space without improper intervals)”. However, let
us remark that in definition of “the interval algebraic solution” as solution “an
interval X” is understood, i.e. the same mathematical object as intervals A and
C occurring in the equation A − X = C. As will be shown further on algebraic
solution of expression A − X = C exists and it can be called complete solution.
It can be achieved with use of RDM fuzzy arithmetic what will be shown further
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on. However, this solution is not an interval but a multidimensional granule
existing in 3D-space.

Reason 4. SF-arithmetic does not possess certain important mathematical
properties which are necessary in solving more complicated problems as fuzzy
equation systems. In particular, SF-arithmetic does not possess the inverse ele-
ment (−X) of addition and (1/X) of multiplication. Hence properties (10) are
true (except for degenerate intervals), 0 means crisp zero and 1 means crisp 1.

X + (−X) �= 0, X · (1/X) �= 1 (10)

In SI- and SF-arithmetic also subdistributivity law and cancellation law for
multiplication does not hold in general, (11) and (12).

X(Y + Z) �= XY + XZ (11)

XZ = Y Z � X = Y (12)

2 RDM Variables and Horizontal Membership Functions

Figure 1 shows an interval. It is a model of x-value that is not precisely but
only approximately known and the knowledge about it is expressed in the form
x ∈ [a, b]. If such a model is used in calculations of SI-arithmetic then only the
interval borders a and b take part in the calculations. The whole interior does
not take part. The Relative-Distance-Measure (RDM) allows for participation
also the interval interior in calculations. The RDM model of interval is given by
[10] and shown in Fig. 5.

Fig. 5. Visualization of the RDM interval model.

In Fig. 5 x∗ means the true precise value of variable x that has occurred in
a real system but that is not precisely known. This true value can be expressed
by (13).

x∗ = a + (b − a)αx, αx ∈ [0, 1] (13)

However, for simplicity notation (14) will be used.

x = a + (b − a)αx (14)

The RDM-variable αx has here meaning of the relative distance of the true
value x∗ from the interval beginning a. Thus, it can be interpreted as a local
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coordinate. A fuzzy interval (a, b, c, d) is shown in Fig. 1. For such intervals verti-
cal MFs can be used. Vertical models express the vertical dependence μ = f(x).
Vertical MF of fuzzy interval (a, b, c, d) is given by (15).

μ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x − a)/(b − a) for x ∈ [a, b)
1 for x ∈ [b, c]
(d − x)/(d − c) for x ∈ (c, d]
0 otherwise

(15)

The model (15) is a model of the fuzzy interval borders only. It does not
model the interval interior. This fact limits usefulness of the vertical model in
calculations. A question can be asked: would it be possible to create a horizon-
tal model of fuzzy interval in the form x = f−1(μ)? At first glance it seems
impossible because such dependence would be ambiguous and hence would not
be function. However, let us consider a horizontal cut of the MF shown in Fig. 6
on level μ. The cut is a usual 1D interval and has two boundaries xL(μ) and
xR(μ) that are expressed by (16).

xL(μ) = a + (b − a)μ, xR(μ) = d − (d − c)μ (16)

The RDM variable αx with its increase transforms the left boundary xL(μ)
in the right one xR(μ), Fig. 6.

Fig. 6. Visualization of the horizontal approach to fuzzy membership functions.

The contour line x(μ, αx) of constant αx-values in the interior of the MF
(Fig. 6) is expressed by (17).

x(μ, αx) = xL(μ) + [xR(μ) − xL(μ)]αx, μ, αx ∈ [0, 1] (17)

The contour line x(μ, αx) is set of points lying at equal relative distance αx

from the left boundary xL(μ) of the MF in Fig. 6. A more precise form (18)
of (17) can be called horizontal MF (HMF).

x = [a + (b − a)μ] + [(d − a) − (d − c + b − a)μ]αx, μ, αx ∈ [0, 1] (18)

The horizontal MF x = f(μ, αx) is function of two variables and exists in
3D-space, Fig. 7. It is unique and expresses the 2D MF with its interior shown
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Fig. 7. The horizontal membership function x = (1 + 2μ) + (4 − 3μ)αx, μ, αx ∈ [0, 1],
corresponding to vertical function shown in Fig. 6.

in Fig. 1. The HMF defines a 3D information granule, Fig. 7, and hence can be
denoted as xgr.

Formula (18) describes the trapezoidal MF. However, it can be adapted to
triangular MF by setting a = b and to rectangular MF by a = b and c = d.
Boundaries of these functions are here linear. To derive formulas for nonlin-
ear boundaries, e.g. of Gauss type, formulas for the left xL(μ, αx) and for the
right boundary xR(μ, αx) should be determined and set in (17). Concept of the
horizontal MF was elaborated by A. Piegat [12–15,17].

3 RDM Fuzzy Arithmetic with Horizontal Membership
Functions

Let xgr = f(μ, αx) be a horizontal MF representing a fuzzy interval X (19) and
ygr = f(μ, αy) be a horizontal MF representing a fuzzy interval Y (20).

X : xgr = [ax+(bx−ax)μ]+[(dx−ax)−(dx−cx+bx−ax)μ]αx, μ, αx ∈ [0, 1] (19)

Y : ygr = [ay+(by−ay)μ]+[(dy−ay)−(dy−cy+by−ay)μ]αy, μ, αy ∈ [0, 1] (20)

Addition of two independent fuzzy intervals, (21).

X + Y = Z : xgr(μ, αx) + ygr(μ, αy) = zgr(μ, αx, αy), μ, αx, αy ∈ [0, 1] (21)

For example, if X is trapezoidal MF (1, 3, 4, 5), (22),

xgr(μ, αx) = (1 + 2μ) + (4 − 3μ)αx (22)

and Y is trapezoidal MF (1, 2, 3, 4), (23),

ygr(μ, αy) = (1 + μ) + (3 − 2μ)αy (23)

then zgr(μ, αx, αy) is given by (24),

zgr(μ, αx, αy) = (2 + 3μ) + (4 − 3μ)αx + (3 − 2μ)αy, μ, αx, αy ∈ [0, 1] (24)
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The 4D-solution (24) exists in the space which cannot be seen. Therefore
we can be interested in its low dimensional representations. Frequently, the 2D-
representation in the form of span s(zgr) is determined. It can be found with
known methods of function examination (25).

s(zgr) = [ min
αx,αy

zgr(μ, αx, αy), max
αx,αy

zgr(μ, αx, αy)] (25)

In the case of discussed example, extrema of (25) lie not inside but on bound-
aries of the result domain. The minimum corresponds to αx = αy = 0 and the
maximum to αx = αy = 1. Span of the 4D-result granule (24) is given by (26).

s(zgr) = [2 + 3μ, 9 − 2μ], μ ∈ [0, 1] (26)

The span (26) is not the addition result. The addition result has the form of
4D-function (24). The span is only a 2Dinformation about the maximal uncer-
tainty of the result.

Subtraction of two independent fuzzy intervals, (27).

X − Y = Z : xgr(μ, αx) − ygr(μ, αy) = zgr(μ, αx, αy), μ, αx, αy ∈ [0, 1] (27)

For example, if X and Y are trapezoidal MF (22) and (23) then the result is
given by (28).

zgr(μ, αx, αy) = μ + (4 − 3μ)αx − (3 − 2μ)αy, μ, αx, αy ∈ [0, 1] (28)

If we are interested in the span representation s(zgr) of the 4D-subtraction
result, then it can be determined from (29).

s(zgr) = [ min
αx,αy

zgr, max
αx,αy

zgr] = [−3 + 3μ, 4 − 2μ], μ ∈ [0, 1] (29)

The span (29) of zgr (28) corresponds to αx = 0, αy = 1 for min zgr and
αx = 1, αy = 0 for max zgr.

Multiplication of two independent fuzzy intervals, (30).

X · Y = Z : xgr(μ, αx) · ygr(μ, αy) = zgr(μ, αx, αy), μ, αx, αy ∈ [0, 1] (30)

For example, if X and Y are trapezoidal MF (22) and (23) then the multi-
plication result zgr is expressed by (31).

zgr(μ, αx, αy) = xgr · ygr

= (1 + 2μ) + (4 − 3μ)αx] · [(1 + μ) + (3 − 2μ)αy], μ, αx, αy ∈ [0, 1] (31)

Formula (31) describes the full 4D-result of the multiplication. If we are
interested in the 2D simplified representation of this result in the form of a span
s(zgr) then formula (32) should be used.

s(zgr) = [ min
αx,αy

zgr, max
αx,αy

zgr] = [(1 + 2μ)(1 + μ), (5 − μ)(4 − μ)], μ ∈ [0, 1] (32)
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Fig. 8. MF of the span representation of the 4D multiplication result (31).

Figure 8 shows the MF of the span representation of the multiplication result.
Division X/Y of two independent fuzzy intervals, 0 /∈ Y , (33).

X/Y = Z : xgr(μ, αx)/ygr(μ, αy) = zgr(μ, αx, αy), μ, αx, αy ∈ [0, 1] (33)

For example, if X and Y are trapezoidal MF (22) and (23) then the division
result zgr is given by (34).

zgr(μ, αx, αy) = xgr/ygr =
(1 + 2μ) + (4 − 3μ)αx

(1 + μ) + (3 − 2μ)αy
, μ, αx, αy ∈ [0, 1] (34)

The span representation s(zgr) of the result (34) is expressed by (35) and is
shown in Fig. 9.

s(zgr) = [ min
αx,αy

zgr, max
αx,αy

zgr] =
[
1 + 2μ

4 − μ
,
5 − μ

1 + μ

]

, μ ∈ [0, 1] (35)

Fig. 9. Span representation of the 4D division result (34).

The solution granule of the division (34) is 4-dimensional, so it cannot be
presented in its full space. However, it can be shown in a simplified way, in
the X × Y × Z 3D-space, without μ-coordinate. Figure 10 presents surfaces for
constant μ = 0 and μ = 1 values.

As Fig. 10 shows, the solution granule (34) is uniform. This results from the
fact that the divisor does not contain zero. Division results can be discontinuous
and multigranular in more complicated cases.

What happens when uncertain denominator Y of division X/Y contains
zero? Then the solution is multi-granular. Such situation does not occur in con-
ventional crisp arithmetic.
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Fig. 10. Simplified view of the 4D-solution granule (34) zgr(x, y, z) in 3D-space X ×
Y × Z, without μ-coordinate

Let us now apply RDM fuzzy arithmetic to solve equation A − X = C =
(1, 2, 4, 5) − X = (7, 8, 9, 10) which previously has been “solved” with use of SF-
arithmetic. Using Eq. (18) HMF of A is achieved in form of (36) and HMF of C
in form of (37).

agr = (1 + μ) + (4 − 2μ)αa, μ, αa ∈ [0, 1] (36)

cgr = (7 + μ) + (3 − 2μ)αc, μ, αc ∈ [0, 1] (37)

The solution xgr can be found similarly as in crisp number arithmetic accord-
ing to (38).

xgr = agr − cgr = [(1+μ)+(4−2μ)αa]− [(7+μ)+(3−2μ)αc], μ, αa, αc ∈ [0, 1]
(38)

agr − xgr = cgr = agr − (agr − cgr) = cgr (39)

One can easily check that after substitution of the solution xgr in the solved
equation A − X = C (39) is achieved which gives the result cgr = cgr, which
means that the solution (38) is the algebraic solution of the equation according
to [9]. One can easily check that solution (38) is complete by substituting various
possible triple combinations of variables (μ, αa, αc). E.g. for μ = 0, αa = 1/5
and αc = 2/5 we have a = 1.8, c = 8.2 and x = −6.4. It is one of point solutions
of equation A − X = C because a − x = 1.8 − (−6.4) = c = 8.2. With various
combinations (μ, αa, αc) one can generate each triple (a, x, c) satisfying equation
a − x = c.

4 Mathematical Properties of Multidimensional RDM
Fuzzy Arithmetic

Commutativity. For any fuzzy intervals X and Y , Eqs. (40) and (41) are true.

X + Y = Y + X (40)
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XY = Y X (41)

Associativity. For any fuzzy intervals X, Y and Z, Eqs. (42) and (43) are true.

X + (Y + Z) = (X + Y ) + Z (42)

X(Y Z) = (XY )Z (43)

Neutral element of addition and multiplication. In multidimensional
RDM FA, there exist additive and multiplicative neutral elements such as the
degenerate interval 0 and 1 for any interval X, Eqs. (44) and (45).

X + 0 = 0 + X = X (44)

X · 1 = 1 · X = X (45)

Inverse elements. In MD RDM FA, fuzzy interval −X : −xgr = −[a + (b −
a)μ]− [(d−a)−μ(d−a+b−c)]αx, μ, αx ∈ [0, 1], is an additive inverse element of
fuzzy interval X : xgr = [a+(b−a)μ]+[(d−a)−μ(d−a+b−c)]αx, μ, αx ∈ [0, 1].

If parameters of two fuzzy intervals X and Y are equal: ax = ay, bx = by,
cx = cy, dx = dy, then the interval −Y is the additive inverse interval of X, when
also inner RDM-variables are equal: αx = αy. It means full coupling (correlation)
of both uncertain values x and y modelled by intervals.

Assuming that 0 /∈ X, a multiplicative inverse element of the fuzzy interval X
is equal in MD RDM FA 1

X

/
1

xgr = 1
[a+(b−a)μ]+[(d−a)−μ(d−a+b−c)]αx

, μ, αx ∈ [0, 1].
If parameters of two fuzzy intervals X and Y are equal: ax = ay, bx = by,

cx = cy, dx = dy, then the interval 1/Y is the multiplicative inverse interval of X
only when also inner RDM-variables are equal: αx = αy. It means full coupling
(correlation) of both uncertain values x and y modelled by intervals. Such full
or partial correlation of uncertain variables occurs in many real problems.

Subdistributivity law. The subdistributivity law holds in MD RDM FA (46).

X(Y + Z) = XY + XZ (46)

The consequence of this law is a possibility of formulas transformations. They
do not change the calculation result.

Cancellation law for addition and multiplication. Cancellation laws (47)
and (48) hold in MD RDM FA:

X + Z = Y + Z ⇒ X = Y (47)

XZ = Y Z ⇒ X = Y (48)
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5 Application Example of RDM Fuzzy Arithmetic in
Solving Differential Equation

Solving fuzzy differential equation (FD-equation) is difficult task that has been
considered since many years and has not been finished until now. In the example
both SF-arithmetic and RDM fuzzy arithmetic will be applied to solve a FD-
equation (49). This equation is a type of benchmark because it has been discussed
in few important papers on FD-equation solving methods, e.g. in [1].

Example. Find the solution of fuzzy differential equation (49) taken from [1].
{

Ẋ(t) = −X(t) + W cos t

X(0) = (−1, 0, 1)
(49)

where W = (−1, 0, 1).
The solution of Eq. (49) for t ≥ 0 expressed in the form of μ-solution sets [1],

for μ ∈ [0, 1], is given by (50).

xμ(t) = 0.5(sin t + cos t)[W ]μ + ([X(0)]μ − 0.5[W ]μ) exp(−t) (50)

The solution (50) obtained by standard fuzzy (SF-) arithmetic for [W ]μ =
[μ−1, 1−μ] and [X(0)]μ = [μ−1, 1−μ] is given by (51). This standard solution
exists in 3D-space.

xSFA
μ (t) = 0.5(sin t+cos t)[μ−1, 1−μ]+([μ−1, 1−μ]−0.5[μ−1, 1−μ]) exp(−t)

(51)
In this case fuzzy numbers [W ]μ = [X(0)]μ = [μ − 1, 1 − μ] are equal.

Figure 11(a) presents in 2D-space border values of the SFA solution (51).

0 2 4 6
−1

−0.5

0

0.5

1

t

x µ
S

FA
 (t

)

(a)

0 2 4 6
−1

−0.5

0

0.5

1

t

x µ
H

M
F (t)

(b)

Fig. 11. 2D presentation of border values of the FD-equation (49) obtained with use
of standard fuzzy arithmetic (a), and horizontal membership function FA (b), for μ ∈
[0 : 0.1 : 1], t ∈ [0 : 0.1 : 6].

The fuzzy numbers in the form of horizontal membership functions are pre-
sented by (52) and (53), where αW , αX are RDM variables defined in 3D-space.

[W ]μ = −1 + μ + 2(1 − μ)αW , αW ∈ [0, 1] (52)
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[X(0)]μ = −1 + μ + 2(1 − μ)αX , αX ∈ [0, 1] (53)

In terms of SF-arithmetic both fuzzy numbers W and X(0) are equal (W =
(−1, 0, 1) and X(0) = (−1, 0, 1)). But it does not mean that real values w ∈ W
and x(0) ∈ X(0) that have occurred in the real system also have been equal. E.g.,
it is possible that w = −0.5 (−0.5 ∈ (−1, 0, 1)) and x(0) = 0.3 (0.3 ∈ (−1.0.1)).
RDM fuzzy arithmetic thanks to RDM variables αW and αX enables modeling
of such situations. If αW = αX then w = x(0). When αW �= αX then w �= x(0).

The μ-solution sets of FD-equation (49) using horizontal membership func-
tion is presented by (54). Let us notice that HMF-solution exists in 5D-space.

xHMF
μ = 0.5(sin t + cos t)(−1 + μ + 2(1 − μ)αW )

+ [(−1 + μ + 2(1 − μ)αX) − 0.5(−1 + μ + 2(1 − μ)αW )] exp(−t)
(54)

where μ ∈ [0, 1], αW ∈ [0, 1], αX ∈ [0, 1].
Figure 11(b) presents the 5D-solution (54) in 2D-space showing only border

values of the HMF-solution.
To check that the solution achieved with use of HMF-functions is correct

and complete let us take the testing point x0
μ(t) from the HMF-solution (54).

It can be proved that the testing point does not belong to the SF-arithmetic
solution (51). Let us take the point x0

μ(2.5) = 0.2245, where t = 2.5, μ = 0,
[W ]μ=0 = −1, [X(0)]μ=0 = 1, αW = 0 and αX = 1. The value x0

μ(2.5) =
0.2245 ∈ xHMF

μ belongs to the HMF-solution but it does not belong to the
SFA-solution x0

μ(2.5) = 0.2245 /∈ xSFA
μ .

Solution of the Eq. (49) equals (50). Derivative of the solution (50) is (55).

[Ẋ(t)]μ = 0.5(cos t − sin t)[W ]μ − ([X(0)]μ − 0.5[W ]μ) exp(−t) (55)

The left-part of Eq. (49) is the derivative (55). The derivative (55) for t = 2.5,
μ = 0, [W ]μ=0 = −1 and [X(0)]μ=0 = 1 equals [Ẋ(2.5)]μ=0 = 0.5767. The right-
part for x0

μ(2.5) = 0.2245, t = 2.5, μ = 0, [W ]μ=0 = −1 also equals 0.5767, so
the testing point x0

μ(2.5) = 0.2245 objectively belongs to the HMF-solution of
Eq. (49).

In conclusion of the example one can say that standard fuzzy arithmetic
can give only a part of full solution. The SF-arithmetic did not find the correct
solution of Eq. (49) in the case w �= x(0). However, when using horizontal mem-
bership function with RDM variables αW and αX the fuzzy numbers W and
X(0) can be independent and w can be different from x(0).

6 Conclusions

The paper has shown a new model of membership function called vertical
MF and its application in RDM fuzzy arithmetic. RDM fuzzy arithmetic pos-
sess important mathematical properties which SF-arithmetic has not. These
properties enable transformation of equations in the process of solving them.
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Further on, they increase possibilities of fuzzy arithmetic in solving real prob-
lems. Examples of such problems were shown in the paper. Because uncertainty
is prevalent in reality, RDM fuzzy arithmetic becomes important tool of solving
real problems.
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