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Abstract. Due to semantic gap, some image annotation models are not ideal in
semantic learning. In order to bridge the gap between cross-modal data and
improve the performance of image annotation, automatic image annotation has
became an important research hotspots. In this paper, a hybrid approach is
proposed to learn automatically semantic concepts of images, which is called
Deep-CC. First we utilize the convolutional neural network for feature learning,
instead of traditional methods of feature learning. Secondly, the ensembles of
classifier chains (ECC) is trained based on obtained visual feature for semantic
learning. The Deep-CC corresponds to generative model and discriminative
model, respectively, which are trained individually. Deep-CC not only can learn
better visual features, but also integrates correlations between labels, when it
classifies images. The experimental results show that this approach performs for
image semantic annotation more effectively and accurately.

Keywords: Semantic learning � Image auto-annotation � Convolutional neural
network

1 Introduction

In the past decades, several state-of-the-art approaches have been proposed to solve the
problems of automatic image annotation, which can be roughly categorized into two
different models. The first one is based on generative model. The auto-annotation is
first defined as a traditional supervised classification problem [1, 7], which mainly
depends on similarity between visual features and predefined tags to model the clas-
sifier, then a unknown image is annotated relevant tags by computing similarity of
visual level. The other is based on discriminative model, which are treat image and text
as equivalent data. These methods try to mine the correlation between visual features
and labels on an unsupervised basis by estimating the joint distribution of
multi-instance features and words of each image [7, 16]. In brief, these methods extract
various low-level visual features. These approaches greatly reduces the ability of fea-
ture presentation, therefore it makes the semantic gap become more serious between
image and semantic.

Furthermore, the performances of image annotation are highly dependent on the
representation of visual feature and semantic mapping. In view of the fact that deep
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convolutional neural networks (CNNs) has been demonstrated a outstanding perfor-
mance in computer vision recently. Besides, Mahendran and Vedaldi [3, 4, 9] and [11]
have demonstrated that CNN has a better effect over existing methods of hand-crafted
features in many applications, such as object classification, face recognition, and image
annotation. Inspired these articles, this paper proposes a hybrid architecture based on
CNN for image semantic annotation to improve the performances of image annotation.

In this paper, our main contributions are the following. Firstly, we use redesigned
CNN model to learn high-level visual features. Secondly, we employ the ensembles of
classifier chains (ECC) to train model on visual features and predefined tags. Finally,
we propose a hybrid framework to learn semantic concepts of images based CNN
(Deep-CC). Deep-CC not only can learn better visual features, but also integrates
correlations between labels when it classifies images. The experimental results show
that our approach performs more effectively and accurately.

2 CNN Visual Feature Extraction

In the past few years, some recent articles [14, 17] have demonstrated that the CNN
models pre-trained on large datasets with data diversity, e.g., AlexNet [4] which can be
directly transferred to extract CNN visual features for various visual recognition tasks
such as image classification and object detection. CNN is a special form of neural
network that consists of different types of layers, such as convolutional layers, spatial
pooling layers, local response normalization layers and fully connected layers. Dif-
ferent network structures will show different ability of visual features representation.
Krizhev et al. [4] have proved that the Rectified Linear Units (ReLUs) not only saves
the computing time, but also implements the features of sparse representation, and
ReLU also increases the sample characteristic diversity. So in order to improve the
generalization ability of the feature representation, we extract fc7 visual vectors after
ReLU. As shown in the top of the Fig. 1, our CNN model has the similar network
structure to the AlexNet. As reflected in Fig. 1, which contains five convolutional
layers (short as conv) and three fully-connected layers (short as fc). The CNN model is
pre-trained in 1.2 million images of 1000 categories from ImageNet [14].

2.1 Extracting Visual Features from Pre-trained CNN Model

Li and Yu [5] and Razavian et al. [12] have demonstrated the outstanding performance
of the off-the-shelf CNN visual features in various recognition tasks, so we utilize the
pre-trained CNN model to extract visual features. Particularly, each image is resized to
227 * 227 and fed into the CNN model. As shown in Fig. 1, it represents the feature
flow extracted from the convolutional neural network. The fc7 features are extracted
from the secondly convolution layer after ReLU. The fc7 denote the 4096 dimensional
features of the last two fully-connected layers after the rectified linear units (ReLU) [4].
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2.2 Exacting Visual Feature from Fine-Tuned CNN Model

Taking into account the different categories (and the number of categories) between the
target dataset and ImageNet, if we directly utilize the pre-trained model on the Ima-
geNet to exact image visual features, it may not be the optimum strategy. To make the
model fit the parameters better, we redesign the last hidden layer for visual feature
learning task, later re-designed CNN model by fine-tuning parameters with each of
images in the target dataset. Considering the rationality of the design of the convolu-
tional neural networks, our CNN model has the similar network structure to the
AlexNet. As show in the mid of Fig. 1, the overall architecture of our CNN model still
contains five conv layers, followed by a pooling layer and three fully-connected layers.
We redesign the last hidden layer for feature learning task. The number of neural units
of the last fully-connected layer is modified from 1000 to m, where m is the number of
the target dataset’s categories. The output of the last fully-connected layer is then fed
into a m-way softmax which produces a probability distribution over m categories.

Given one training sample x, the network extracts layer-wise representations from
the first conv layer to the output of the last fully connected layer fc8 2 R

m, which can
be viewed as high level features of the input image. Followed by a softmax layer, fc8 is
transformed into a probability distribution p 2 R

m for objects of m categories, and
cross entropy is used to measure the prediction loss of the network. Specifically, we
define the following formula.

pi ¼ exp v̂ið Þ
P

i exp v̂ið Þ and L ¼ ti log pið Þ ð1Þ
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Fig. 1. The Pipeline of Image Annotation
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In formula (1), L is the loss of cross entropy. The gradients of the deep convolu-
tional neural network is calculated via back propagation

@L

@ĥi
¼ pi � ti ð2Þ

In formula (2), t ¼ ti ti 2 0; 1f g; i ¼ 1; . . .;m;
Pm

k¼1 ti ¼ 1
��� �

denotes the true label
of the sample xj, where the {xj|j = 1,2, …, n} is a bag of instances. t ¼ ti ti 2 0; 1f g;jf
i ¼ 1; . . .;m:g is the label of the bag; Convolutional neural network extracts repre-
sentations of the bag, it can get a feature vector v ¼ vij

� � 2 R
m�n; in which each

column is the representation of an instance. The aggregated representation of the bag
for visual vectors are defined as follows.

v̂i ¼ f vi1; vi2; . . .; vinð Þ ð3Þ

In the training phase, similarly back propagation algorithm is used to optimize the
loss function L. Suppose that we have a set of training images I = {Mi}. The trained
instances of traditional supervised learning in which training instances are given as
pairs {(mi, li)}, where mi 2 R

m is a feature vector and li 2 {0,1} is the corresponding
label. In visual feature learning, trained sample is regarded as bags {Ii}, and there are a
number of instances xij in each bag. Finally, the network extracts layer-wise repre-
sentations from the first conv layer to the output of the last fully connected layer visual
vectors vi, which can be viewed as high level features of the input image. By
fine-tuning like this, the parameters can better adapt to the target dataset by rectifying
the transferred parameters. For the task of visual feature learning, we first employ
existing model to fine-tune the parameters in the target dataset, then we apply the
fine-tuned CNN model to learn image visual features. Similarly, the FT-fc7 denotes the
4096 dimensional features of the last two fully-connected layers after the rectified
linear units (ReLU).

3 Ensembles of Classification Classifiers for Semantic
Learning

In the discriminative learning phase, the ensemble of classification classifiers
(ECC) [13] are used to accomplish the task of multi label classification, and each of the
binary classifier is implemented by SVM. Taking into account the semantic correla-
tions between tags, ECC can classify images into multiple semantic classes, with a high
degree of confidence and acceptable computational complexity. Furthermore, by
learning the semantic relevance between labels, classifier chain can effectively over-
come the problems of label independence in image binary classification.

The classifier chain model consists of |L| binary classifiers, where L denotes the truth
label set. Classifiers are linked along a chain where each classifier deals with the binary
relevance problem associated with label lj 2 L. The feature space of each linked in the
chain is extended with the {0, 1} label associations of all previous links. The training

84 Y. Zheng et al.



procedure is outlined in Algorithm 1 in the left of Table 1. Lastly, we can note the
notation for a training example (x, S), where S � L and x is an instance feature vector.

Hence a chain C1;C2; . . .;Ci of binary classifier is formed. Each classifier Cj in the
chain is responsible for learning and predicting the binary association of label lj, which
is given in the feature space and is augmented by all prior binary relevance predictions
in the chain l1; l2; . . .; lj�1

� �
: The classification procedure begins at C1 and propagates

along the chain C1 determines Pr(l1|x) and every following classifier C2; . . .;Cj predicts
Pr lj xi; l1; l2; . . .; lj�1

��� �
. This classification procedure is described in Algorithm 2 in the

right of Table 1.
This training method passes label information between classifiers, with classifier

chain taken into account label correlations, so it overcomes the label independence
problem of binary relevance method. However, classifier chain still remains advantages
of binary relevance method including low memory and runtime complexity. Although
|L|/2 features are added to each instance on an average, this item is negligible in
computational complexity because |L| is invariably limited in practice.

Different order of the chain clearly has a different effect on accuracy. This problem
can be solved by using an ensemble framework with a different random train ordering
for each iteration. Ensembles of classifier chains train m classifier chains C1;C2; . . .;Cm.
Each Ck model is trained with a random chain which can order the L outputs and get a
random subset of D. Hence each Ck model is likely to be unique and able to give
different multi-label predictions. These predictions are summed by label so that each
label receives a number of votes. A threshold is used to select the most popular labels
which form the final predicted multi-label set. These predictions are summed by label so
that each label receives a number of votes. A threshold is used to select the most popular
labels which form the final predicted multi-label set.

Table 1. Training and prediction procedures of ensembles of classifier chains for multi-label
learning

Processing Algorithm 1.
Training steps of classifier chain

Algorithm 2.
Classifying procedure ECC

Input Training set I = {(x1, S1), (x2, S2), …, (xn,
Sn)}

Test example x.

Output Classifier chains {C1, C2, …, C|L|} Y = {l1, l2, …, l|L|}.
procedures
1 For i 2 1, 2, … |L| Y ← {}
2 Semantic learning For i 2 1, 2, …, |L|
3 I′ ← {} Do Y ← Y [ (li ← Ci: (xi, l1,

l2, … lj−1))
4 For (x, S) 2 I Return (x, Y)
5 Do I′ ← I′ [ ((x, l1, l2, …, li−1), li)
6 Train Ci to predict binary relevance of li
7 Ci: I′ ! li 2{0,1}
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Each kth individual model predicts vector yk ¼ l1; l2; . . .; l Lj j
� � 2 0; 1f g Lj j: The

sums are stored in a vector W ¼ k1; k2; . . .; k Lj j
� � 2 R

Lj j; where kj is defined as kj ¼Pm
k¼1 lj 2 yk: Hence each kj 2 W represents the sum of the votes for label lj 2 L: We

then normalize W to Wnorm, which represents a distribution of scores for each label in
[0,1]. A threshold is used to choose the final multi-label set Y such that lj 2 Y where
kj � t for threshold t. Hence the relevant labels in Y represent the final multi-label
prediction.

4 Hybrid Framework for Image Annotation

On the deep model and ensembles of classifier chains, we propose a hybrid learning
framework to address cross-modal semantic annotation problem between images and
text with Multi-label. Figure 2 shows two setups of the hybrid architecture approach
for semantic learning based on deep learning. The first path (generative learning) feeds
training image to the fine-tune pre-trained CNN step which is also called the feature
learning phase, then in the discriminative learning phase, we utilize ensemble of
classifier chains to model the visual vectors which are co-occurrence matrix consisting
of texture and exacted visual features by pre-trained CNN model. This hybrid pipeline
model is called Deep-CC image annotation system.

Bases on the learning feature, the trained CNN model output visual features after
ReLU. Suppose that we have a set of imagesM ¼ m1;m2; . . .;mif g; this model extracts
visual vectors by pre-trained CNN model and we denote the space of visual vectors as
V ¼ v1; v2; . . .; vif g; where vi denotes the visual vector of ith image. Noting the
notation for a training example (vi, S), where S 2 L, L denotes the label set and v is a
feature vector. Then, by making use of the aspect distribution and original labels of
each training image, we build a series of classifiers in which every word in the
vocabulary is treated as an independent class. The classifier chain model implements
the feature classification task and it can effectively learn the semantic correlation
between labels in discriminative step. Finally, given a test image, the Deep-CC system
will return a correlative label subset l 2 L.
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Fig. 2. Comparison of annotations made by HGDM and Deep-CC on Corel5k
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As a comparison, we evaluate the deep feature’s performance from the
AlexNet CNN on those same benchmarks. Following by [10], we choose 5 words with
highest confidence as annotations of the test image. After each image in the database is
annotated, the retrieval algorithm ranks the images labeled with the query word by
decreasing confidence.

5 Experiments and Results

In this section, we conduct experiments of our Deep-CC learning framework on both
image classification and image auto-annotation. We choose a dataset Corel5K which is
widely used in image classification and annotation. In order to make the experimental
result more convinced, we simultaneously compare the experimental results with the
existing traditional model and deep model.

5.1 Datasets and Evaluation Measures

In order to test the effectiveness and accuracy of the proposed approach, we conduct
our experiments on a baseline annotated image datasets Corel5K [2]. Corel5k is a basic
comparative dataset for recent research works on image annotation. The dataset con-
tains 5000 images from 50 Corel Stock Photo cds. We divided this dataset into 3 parts:
a training set of 4000 images, a validation set of 500 images and a test set of 500
images. Like the Duygulu et al. [2], We divide separately the training set of 4500
images and the test set of 500 images.

Image annotation performance is evaluated by comparing the captions automatica-
lly generated for the test set with the human-produced ground truth. It is essential to
include several evaluation measures in multi-label evaluation. Similar to Monay and
Gatica-Perez [10], we use mAP as evaluation measures. Naturally, we define the
automatic annotation as the top 5 semantic words of largest posterior probability, and
compute the recall and precision of every word in the test set.

5.2 Results for Image Annotation on Corel5 K

In this section, we demonstrate the performance of our model on the corel5 k data set
for image multi-label annotation, and compare the results with some existing image
annotation methods, e.g. PLSA-WORDS [10], HGMD [8] and DNN [15]. We evaluate
the returned keywords in a class-wise manner. The performance of image annotation is
evaluated by comparing the captions automatically generated with the original manual
annotations. Similar to Monay and Gatica-Perez [10], we compute the recall and
precision of every word in the test set and use the mean of these values to summarize
the system performance.

Table 2 reports results of several models on the set of all 260 words which occur in
the training set. Data in precision and recall columns denotes mean precision and mean
recall of each word. The off-the-shelf CNN features (i.e. fc7 and FT-fc7) obtain sig-
nificant improvements (7.8 % based on PLSA-WORDS, 3.4 % based on HGDM)
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compared with these traditional feature learning methods. After fine-tuning, a further
improvement (8.2 % based on PLSA-WORDS, 4.6 % based on HGDM) can be
achieved with the best performance of the CNN visual features FT-fc7.

Annotations of several images obtained by our Deep-CC annotation system are
show in Fig. 2. We can see that annotations generated by Deep-CC are more accurate
than HGDM in most cases. In order to be more intuitive to observe different
precision-recall in various methods, the Fig. 3 presents the precision-recall curves of
several annotation models on the Corel5k data set. As is shown in Fig. 3, Deep-CC
performs consistently better than other models. Where the precision and recall values
are the mean values calculated over all words.

5.3 Result Analysis

In summary, the experimental results on Corel5k show that Deep-CC outperforms
many state-of-the-art approaches, which proves that the redesigned CNN and the
hybrid framework is effective in learning visual features and semantic concepts of
images. We compare the CNN visual features with traditional visual features for
learning semantic concepts of images over two traditional learning approaches and a
deep model. Especially, the comparison in terms of rigid and articulated visual features
among Corel5k is shown in Table 2, from which it can be seen that CNN feature
outperforms almost all the original hand-crafted features. To verify this assumption,
different visual features between traditional models (also from the authors of this paper)
and CNN mode, and FT-fc7 is executed to make an enhanced prediction for Corel5k.
Incredibly, the mAP score on Corel5k can surge to 35.2 % as shown in Table 2, which
demonstrates the great dominance in the deep networks. To sum up, based on the above
reported experimental results, we can see that CNN visual features are very effective for
semantic image annotation.

Fig. 3. Precision–recall curves of several models for image annotation on Corel5K
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6 Conclusion

In this paper, we utilize CNN model to learn deep visual features, and we redesign the
last hidden layer for feature learning task, and in order to obtain high performance of
feature representation, we first train our deep model on ImageNet, then the pre-trained
parameters are fine-tuned on target dataset. We showed under what conditions each
visual feature can perform better, and propose a hybrid architecture. We demonstrated
that re-designed CNN model and ensembles of classifier chains can effectively improve
annotation accuracy.

In comparison to many state-of-the-art approaches, experimental results show that
our method achieves superior results in the tasks of image classification and annotation
on Corel5K. However, in the process of learning visual features, Deep-CC only employ
single convolution neural network not fully understanding multiple instance in the
image, and how to excavate the high-level semantic relevance between the tags, it can
be deeply studied. In future research, we aim to take semi-supervised learning based on
a large number of unlabeled data to improve its effectiveness.
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