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Abstract. Intelligent algorithm provides a promising approach for solving the
Assembly Sequence Planning (ASP) problem on complex products, but there is
still challenge in finding best solutions efficiently. In this paper, the artificial bee
colony algorithm is modified to deal with this challenge. The algorithm is
modified from four aspects. First, for the phase that employed bee works, a
simulated annealing operator is introduced to enrich the diversity of nectar
sources and to enhance the local searching ability. Secondly, in order to prevent
the swarm from falling into local optimal solutions quickly, a tournament
selection mechanism is introduced for the onlooker bees to choose the food
source. Thirdly, for the phase that scout bee works, a learning mechanism is
introduced to improve the quality of new generated food sources and to increase
the convergence speed of the algorithm. Finally, a fitness function based on the
evaluation indexes of assemblies is proposed to evaluate and select nectar
sources. The experimental results show that the modified algorithm is effective
and efficient for the ASP problem.

Keywords: Artificial bee colony algorithm � Simulated annealing operators �
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1 Introduction

Assembly sequence planning (ASP) aims to find a proper sequence of assembly
operations under some operational constraints and precedence constraints. ASP is an
important manufacturing process in that the quality of assembly has a direct effect on
the performance of product. According to a statistical report, a good assembly sequence
can reduce costs of manufacturing about 20 %–40 %, and can increase the productivity
about 100 %–200 %.

Traditional methods of assembly sequence planning are based on cut-sets [1] or
assembly knowledge representation [2]. A shortcoming of these methods is that they
have to face the combinatorial state explosion problem caused by the increasing of the
number of parts [3]. During the past 20 years, many researchers tried to apply intel-
ligent algorithms to solve the ASP problem [4–9] and got many good results.

Artificial bee colony (ABC) algorithm is an artificial intelligence algorithm that was
proposed for the multi-variable and multi-modal optimization of continuous functions.
It simulates the emergent intelligent behaviour of foraging bees in three phases. At the
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initial phase, the scout bees start to explore the environment randomly in order to find a
nectar source. After finding a nectar source, a bee becomes an employed bee and starts
to exploit the discovered source; it returns to the hive with the nectar and share
information about the source site by performing a dance on the dance area. Onlooker
bees waiting in the hive watch the dances and choose a nectar source through the
information shared by employed bees by using a wheel selection. If a source is
exhausted, then the employed bees that are working in that source become scouts again
and start to randomly search for new sources. Compared with the genetic algorithm [4],
the firely algorithm [6] and the particle swarm optimization algorithm [7], the ABC
algorithm is more competitive in the ability of global searching and the speed of
convergence. It has been used to solve the global optimization problem [10], global
numerical optimization [11], real-parameter optimization [12], shop scheduling prob-
lem [13] and disassembly planning problem [14].

In this paper, we apply the ABC algorithm to solve the assembly sequence planning
problem. In order to improve the ability of searching optimal solution; we embed the
simulated annealing algorithm and a local searching algorithm into the ABC algorithm.
At the same time, we use a tournament selection mechanism to replace the wheel
selection mechanism for escaping from local optimum. Furthermore, we apply a
cooperative learning mechanism in the scout bee phase to improve the convergence
speed, and propose a suitable fitness function to evaluate and filter nectar sources. In
the rest of this paper, we call the improved algorithm as hybrid artificial bee colony
algorithm (HABC).

2 Optimization Model of Assembly Sequences

In this paper, we use the following assumptions to simplify the optimization model of
assembly sequences. (1) All the parts are rigid. In another word, no part is deformable
in the assembly process. (2) The assembly directions are restricted to �X;�Y;�Z
direction in the three orthogonal coordinate axes. (3) Along each direction only one
part is assembled, and in each assembly operation process only one tool is used.

An evaluation index for the fitness function is proposed to evaluate and filter the
nectar sources: geometric feasibility, assembly stability, the number of parts violating
local assembly precedence, and changes of assembly directions, tools and connections.
The fitness function is applied to find the optimal nectar sources which are the optimal
or near-optimal assembly sequences.

2.1 Geometric Feasibility

An assembly sequence satisfying geometric feasibility can ensure that the movement
path of part is collision-free. In this paper, we use Cartesian 6 coordinate to represent
the assembly directions dk ¼ �x;�y;�zf g. The values of 0 and 1 represent the
interference between the parts. The Iijdk represents the interference in the dk direction
between pi and pj, which is shown in formula (1);
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Iijdk ¼
0; there is no interference in the dk direction between pi and pj
1; there is an interference in the dk direction between pi and pj

�
ð1Þ

We assume an assembly sequence AS ¼ p1f ; p2; . . .; png; when the subsequence
AS1 = p1f ; p2; . . .; pmg was assembled and pi will be assembled, we represent the sum
total of interference between pi and all parts of AS1 in the dk direction with SkðpiÞðk ¼
1; 2; . . .; 6Þ which is shown in formula (2):

Sk pið Þ ¼
Xm

j¼1
Ipipjdk ð2Þ

Sk pið Þ ¼ 0 indicates that the part pi can be assembled in the dk direction; otherwise
it cannot. Then we can get a set of assembly directions of the part pi:
DC pið Þ ¼ dkjSk pið Þ ¼ 0f g. For any part pi, if DC pið Þ 6¼ ;, AS is a geometric feasible
assembly sequence, infeasible otherwise. We represent the number of interference of
AS with nf , that is the number of DC pið Þ ¼ ;.

2.2 Assembly Stability

Parts or subassembly may be unstable, for its own gravity in the actual assembly
process. Auxiliary devices are needed to maintain the stability of parts in the assembly
process once some parts are unstable. For this reason, we consider the assembly sta-
bility as an evaluation index.

The tight fit, interference fit, screw, rivet and welding are the strong assembly
connections which are the stable connections. The clearance fit, sticking and attach-
ment are the weak connections; the surface mating and other fits without force are the
unstable connections [15]. The values of sij represent the assembly connections
between the pi and pj: sij ¼ 2 indicates that they are joined by strong connections;
sij ¼ 1 indicates that they are joined by weak connections; sij ¼ 0 indicates that they
are joined by surface mating without force. Then the assembly stability can be rep-
resented with the stability matrix which is shown in formula (3):

SM ¼ sij
� �

n�n ð3Þ

It is a stable connection if sij ¼ 2, otherwise not.
Given that the temporary stable subassembly is represented as AS1 ¼

p1f ; p2; . . .; pmg (m is the number of parts which have been assembled), the part pi is to
be assembled in the next step. The assembly stability of the part pi with AS1 can be
concluded depending on the stability matrix SM. The correlative stability value
sij 1� j �mð Þ can be inferred as si1; si2; . . .; simf g. If sij ¼ 2ð1� j �mÞ, the part pi and
AS1 will be stable after they are assembled. Otherwise, the part pi needs auxiliary
devices in the assembly process. The assembly stability of each part will be checked
and the number of parts ns that make the subassembly self-stable in the assembly
sequence can be computed.
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2.3 The Number of Parts Violating Local Assembly Precedence

The reasonable assembly sequences not only satisfy the geometrical feasibility, but also
the constraint relationships between parts. Therefore, the assembly precedence rela-
tionships of parts must be taken into consideration. For the complex assemblies, there
will be too many possible assembly sequences, but most of them are actually not
ensured to be correct. Even if the assembly sequences satisfy the geometrical feasi-
bility, some parts maybe violate the local assembly precedence still. So the violating
assembly precedence is another considerable index to evaluate assembly sequences. To
an assembly sequence AS ¼ p1f ; p2; . . .; png, the number of parts violating local
assembly precedence np can be obtained easily by assembly precedence matrix
(APM) described in Sect. 3.2.

2.4 Changes of Assembly Directions, Tools And connections

The changes of the assembly directions, the assembly tools and the assembly con-
nection types in the assembly process have a great effect on the assembly efficiency and
cost. To improve the assembly efficiency and reduce the assembly cost, the parts
assembled in the assembly direction, and the assembly connection types and assembly
tools are suggested to be assembled in groups. The assembly directions of parts can be
derived from the assembly interference matrix. Once the assembly sequence is con-
firmed, the number of change nd of the assembly directions of all parts can be counted.

The assembly tools used to assemble one part may be multiple. The selected tools
to assemble the current part should be the same as those used to assemble the former
part so that the time for changing the tools can be shortened. All the assembly tools can
be represented by a tool matrix TM = tij

� �
n�m; here n is the number of parts and m is

the number of practicable tools to assemble the corresponding part. After the optimal or
near-optimal assembly sequences have been generated, the corresponding tools are also
confirmed at the same time and the number of change nt of the assembly tools can be
obtained.

It is assumed that the connection type for assembling each part is unique and the
connection types of parts are determined in the design process. The assembly con-
nections to assemble the parts can be represented as a vector of connection
CM = cij

� �
n�1: When the assembly sequences have been ascertained, the number of

change nt of the assembly connection types can also be acquired.

2.5 Fitness Function

Each evaluation index has different effects in the assembly process, so it is reasonable
to put different weights on each index. Then the fitness function can be defined as the
formula (4) and (5) by using the different weights:
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f1 ¼ csns þ cpnp þ cdnd þ ctnt þ ccnc ð4Þ

f2 ¼ cf nf ð5Þ

cf ; cs; cp; cd ; ct, and cc are the weights of the evaluation indices respectively.
Fitness function is the metric of evaluating assembly sequences. Similarly, it is the

metric of evaluating nectar sources in the search process. The smaller the value, the
better the nectar source quality, and the assembly sequence is better correspondingly. If
an assembly sequence satisfies the geometrical feasibility, formula (4) will be used to
calculate the assembly cost; otherwise formula (4) and (5) will be used.

3 Assembly Sequences of HABC

The basic ABC algorithm was first used to solve optimization problems of continuous
functions. A hybrid ABC algorithm is proposed to solve multi-objective optimization
problems in the assembly sequence planning. HABC algorithm makes full use of
swarm intelligence sharing information to accelerate search efficiency.

3.1 Nectar Source Code

In HABC algorithm, nectar position can be represented with the decimal sequence.
Each nectar source is an assembly sequence. Profitability of nectar sources is used to
measure the quality of assembly sequences. Each number and its location in the
sequence represent the number and the assembly order of parts respectively. Suppose
that a product is made up of 9 parts, the coding scheme can be described in Fig. 1:

If the assembly sequence of Fig. 1 is a feasible sequence, the parts are assembled
orderly from 3 to 7. Its quality is evaluated by the fitness function.

3.2 Initial Nectar Source

If the initial nectar sources are produced random completely, it will generate large
amount of infeasible sequences which can affect the efficiency of algorithm. If all initial
nectar sources are feasible sequences, it will affect the diversity of nectar sources. To
guarantee an initial population with certain quality and diversity, a portion of nectar
sources are generated by using some priority rules whereas the rest are produced
randomly.

Assembly sequence: 3 6 8 1 4 9 5 2 7 

Sequence order: 1 2 3 4 5 6 7 8 9 

Fig. 1. Nectar source code
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The assembly precedence matrix (APM) is used to generate partial sequences as the
initialization nectar sources in a generator (Fig. 5) assembly [16]. A value of bij ¼ 1
represents that part ci must be assembled before part cj; a value of bij ¼ 0 represents
that there is no precedence between the two parts ci and cj. If i ¼ j, we set bij ¼ 0.
APM for a generator is shown as follows (Fig. 2):

3.3 Employed Bee Phase

In the basic ABC algorithm, for each nectar source, there is only one employed bee.
Employed bees use a greedy selection through its observed information to search for a
better nectar source in the neighborhood of the present nectar source. To enrich the
neighborhood structure and diversify of the population, simulated annealing algorithm
are utilized to generate neighboring nectar sources for the employed bees [17].

The above method for generating new nectar sources follows the assembly
precedence relations, thus it can improve the quality of nectar sources continually in the
evolution process. ABC algorithm has strong exploration ability and weak exploitation
ability. Therefore, a local search algorithm is presented in Sect. 3.6 in order to balance
the global exploration and local exploitation of HABC. The selection of nectar sources
carries out a greedy selection which is the same as in the basic ABC algorithm: if new
nectar source is superior to its current nectar source in terms of profitability, the
employed bee memorizes the new position and forgets the old one; otherwise, the
previous position will be kept in memory.

3.4 Onlooker Bee Phase

Onlooker bees wait in the hive and select a nectar source to exploit with a certain
probability based on the information shared by the employed bees. This selection is
called the wheel selection which is easy to fall into local optimum. It maybe causes all
the onlooker bees fly to the same nectar source, while the others cannot recruit onlooker

Fig. 2. Assembly precedence matrix for a generator
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bees. Instead of the wheel selection, we use the tournament selection due to its sim-
plicity and ability to escape from local optimum.

In the tournament selection, an onlooker bee selects a nectar source in such a way
that two nectar sources are picked randomly from the population and the better one is
chosen. It means that half of the nectar sources will be exploited by onlooker bees and
there is a greater probability to find the optimal nectar sources (the optimal or
near-optimal assembly sequences). In addition, the onlooker utilizes the greedy
selection as used by the employed bee. Then all the local nectar sources approach the
local optimum, and this could help find better nectar sources. There are three options
for the employed bee which has not recruited onlooker bees:

(a) It can return to the nectar source and continue to exploiting it.
(b) It can be an onlooker, waiting to be recruited by other employed bees in the hive.
(c) It can be a scout and starts searching around the hive for a new nectar source.

To guarantee the diversity of nectar sources and keep the nectar sources quantity
constant at each iteration of the algorithm, we just consider the first and the third
behaviors for such a bee.

3.5 Scout Bee Phase

In the basic ABC algorithm, if a nectar source cannot be further improved through a
predetermined number of trials limit, then the nectar source is assumed to be aban-
doned, and the corresponding employed bee becomes a scout bee. To make full use of
the swarm coordination of information sharing, we suppose that the scout bees learn
from the current optimal (minimum fitness value) nectar sources when generating a
new one. Since the search space around the best nectar source could be the most
promising region, the new nectar source approaches the local optimum after every
iteration of algorithm. This will increase the search efficiency and accelerate the con-
verging speed in later convergence phase.

To avoid the algorithm trap into a local optimum, the scout bee first generates a
nectar source randomly; then it learns from the current optimal nectar source with the
probability P; finally, it can get a new nectar source. Next, the scout performs the
function of the employed bee. The process of a scout generating a nectar source is that
the new nectar source inherit the parts of the optimal nectar source with a random
probability r < P, the rest inherit random sequences in order (Fig. 3).

3.6 A Local Search Algorithm

In order to enhance the exploitation capability of the algorithm, a simple local search is
embedded in the proposed HABC algorithm. The local search is based on the insert and
swap operator.
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3.7 Computational Procedure of the HABC Algorithm

The complete computational procedure is described in Fig. 4. Some parameters are
need to set first: population size SN; learning rate P; local search probability PL; the
threshold value lmax of local search; round Tmax of iteration. Then initial the population
Q ¼ AS1; AS2; . . .; ASSNf g, and half of Q are generated with the constraint APM and
the rest are generated randomly. The employed bee search, onlooker bee search and
scout bee phase which is also called local search and depend on the local search
condition lmax are then executed, and Q is updated by previous steps and the current
best solution is recorded. The algorithm is stopped based on the termination condition,
that is, the round Tmax of iteration. Finally, report the best solution.

Random probability: 0.5 0.8 0.6 0.9 0.8 0.1 0.9 0.9 0.3

Optimal so far: 7 5 2 6 9 4 3 1 8 

New sequence: 7 3 2 6 1 4 9 5 8 

Random sequence: 3 6 8 1 4 9 5 2 7 

Fig. 3. The process of scout bee generate nectar source ðP ¼ 0:7Þ

Generate initial population

Evaluate fitness for each agent

Execute employed bee search

Execute onlooker bee search

Update the population Q

Record the current best solution

Is termination condition met?

Is local search condition met?

Abandon current solution and 
generate a new nectar source

Execute local search
Report best solution

Yes

No

No

Yes

Fig. 4. The flow chart of HABC
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4 Experimental Results and Analysis

The HABC algorithm for assembly sequence planning and optimization has been
programmed with Visual C++ 6.0 language on a PC with 64-bit system of Windows 7
and 8 G memory. By comparing the HABC algorithm with the CPSO algorithm, firefly
algorithm and improved firefly algorithm [18], the validity of this method is confirmed
with actual assembly example.

4.1 Simulation Example

The exploded solid model of a generator assembly is shown in Fig. 5. The generator
comprises 15 parts which are marked with numbers orderly. The assembly directions of
all the parts are along the X and Y axes. Part 7 is viewed as the base part which has the
most assembly relations with the other parts. Suppose that the assembly tool and
assembly connector to assemble the base part 7 are T1 and C1 respectively. The
assembly interference matrix, local preference matrix, stability matrix, connection
matrix and tool matrix are given based on the assembly structure and assembly process.
In this case, the proper tools and the connections for assembling each part are illus-
trated in Table 1, the assembly interference matrix are presented in Sect. 3.2 and the
other assembly process constraints are omitted.

Table 1. Assembly tools and the con-
nections for the parts

Part
number

Assembly
tool

Connection
type

1 T1, T2, T4 C2

2 T1, T4, T5 C1

3 T2, T3, T4 C3

4 T1, T2, T5 C1

5 T1, T2, T4 C1

6 T1, T2, T3 C1

7 T1 C1

8 T3, T4, T5 C3

9 T1, T2, T4 C1

10 T1, T2, T5 C1

11 T2, T3, T4 C3

12 T1, T4, T5 C1

13 T1, T2, T4 C2

14 T3, T4, T6 C3

15 T4, T5, T6 C3

Fig. 5. The assembly of a generator
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4.2 The Comparison Between Algorithms

By comparing the HABC algorithm with the CPSO algorithm, firefly algorithm and
improved firefly algorithm, the validity of this method is confirmed. Under the same
constraints, the results are shown in Tables 2 and 3 with the same indices and weights
respectively. The other parameters of CPSO algorithm are assigned as literature [7],
and the other parameters of firefly algorithm and improved firefly algorithm are as
literature [6]. Since CPSO algorithm can obtain sub-optimal sequences only in larger
cycles, we present results with 500 cycles. All the parameters of the assembly cost
function and the HPSO algorithm are assigned as: cf ¼ 50; cs ¼ 0:15; cp ¼ 0:15; cd ¼
0:40; ct ¼ 0:15; cc ¼ 0:15; P ¼ 0:7; PL ¼ 0:8; lmax ¼ 5:

As shown in Table 3, the HABC algorithm, firefly algorithm and improved firefly
algorithm can all find two sequences with assembly cost of 2.40. The CPSO algorithm
can only find the near-optimal assembly sequences with assembly cost of 2.50. HABC

Table 2. Comparison of the generated sequences of the four algorithms
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algorithm has certain advantages compared with CPSO algorithm and firefly algorithm
and the advantages are obvious compared with the improved firefly algorithm in the
running time. Although the improved firefly algorithm has made improvements on
firefly algorithm, the results of experiment in literature [15] showed that improved
firefly algorithm is less efficient than firefly algorithm. This is also confirmed in this
experiment.

Literature [6] concentrates on the convergence of firefly algorithm and improved
firefly algorithm. Convergence reflects the approximation of the resulting solutions and
the optimal solution at each iteration. In order to study the convergence of the HABC
algorithm, we used the optimal solutions (the assembly cost of the example is 2.40) that
the algorithm has found at the same iterations. In the same environment, the running
results of the program are shown in Table 4. From the experimental results, conver-
gence of the HABC algorithm has been relatively close to improved firefly algorithm
and HABC algorithm only spent. A few one-tenth of the time of improved firefly
algorithm.

To sum up, the HABC algorithm that we proposed not only has outstanding search
capability (in finding the optimal sequence) and efficiency (in time), but also improves
the convergence rate while solving the assembly sequence planning problems.
Therefore, we have confirmed that HABC algorithm can solve the assembly sequence
planning very well.

Table 3. Comparison on running time (s)

Algorithm Population Cycles c Running time (s)

HABC 50 500 2.40 1.482
CPSO 50 500 2.50 4.652
Firefly algorithm 50 500 2.40 2.65
Improved firefly algorithm 50 500 2.40 65.29

Table 4. Comparison on convergence. (ns is the number of optimal solutions)

Population
Algorithm

30 50

Cycles timens ns(s) time(s)

200

HABC 58 0.40 97 0.65

Improved firefly 

algorithm
66 9.40 118 26.14

400

HABC 123 0.75 194 1.19

Improved firefly 

algorithm
147 18.87 224 52.38
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5 Conclusions and Future Work

The HABC algorithm presented in this paper inherits the advantages of both the ABC
algorithm and the simulated annealing algorithm. We encode the assembly sequences
and discrete the nectar sources to make HABC algorithm suitable for the assembly
sequence planning problems. Then, based on the strong exploration ability and weak
exploitation ability of ABC algorithm, we use a local searching algorithm and a sim-
ulated annealing algorithm to enhance the ability of local exploitation. In the employed
bee phase, we use the tournament selection instead of the wheel selection to escape
from local optimum. In the scout bee phase, we design the scout bees to learn from the
current optimal (minimum fitness value) nectar sources rather than randomly generated
and this can overcome the defect of the slow convergence speed. According to the
experiment, it is shown that the HABC algorithm is powerful for solving the assembly
sequence planning problem.

In the HABC algorithm, there are some subjective operations in setting the weights
of indexes that are closely related to the optimal solution. If some expert knowledge
can be introduced and the interaction process can be analyzed by some professional
method before setting the weights, then the results of ASP may have more guiding
significance in practice. Therefore, the method of setting weights is one of our future
works. Another future work is to extend the HABC algorithm from the assembly in
orthogonal coordinate direction to the assembly in spherical coordinate.
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