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Abstract. The essence of machinery fault diagnosis is pattern recogni-
tion. Extracting the fault pattern contained in the vibration signal is the
frequently used method to diagnose mechanical fault. Manifold Learning
is widely used to extract the non-linear structure within the data and
could do the dimensionality reduction of high-dimensional signal. There-
fore manifold learning is employed to diagnose the machinery fault. The
feature space is constructed by characters in time-frequency domain of
vibration signal firstly, and then the manifold learning method named as
sparse manifold clustering and embedding is used to extract the essen-
tial nonlinear structure of feature space. Afterwards, the fault diagnosis
is implemented with spectral clustering and support vector machine. The
experiment demonstrates that the approach can effectively diagnose the
fault of Machinery.
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1 Introduction

With the increment of precision and operation complexity in industry, the tech-
niques of machinery fault diagnosis, which is used for the safe guarantee in
operation of mechanical equipments, has gained more and more attention. At
present, data-driven methods play a important role in the mechanical fault diag-
nosis. The vibration signal contains a wealth of information which indicate the
condition of machinery, therefore it is widely used in fault diagnosis that the
method based on vibration signal processing [1]. The characters of vibration sig-
nal in time-frequency domain that is used to establish the initial feature space
can be extracted by methods such as Fourier transform or wavelet transform
etc. And then, the classifier is constructed with the further processing of initial
feature space [1]. The dimensionality reduction method is taken to get a low-
dimensional feature representation since the initial feature space is generally
high-dimensional. The frequently used dimensional reduction methods, such as
principal component analysis [2] or linear discriminant analysis [3], is the linear
dimensional reduction method. For the nonlinear signal, the linear method is
not the best choice.
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Manifold learning has been applied in many fields since three articles pub-
lished in Science [4–6]. Manifold learning is a nonlinear data dimensional reduc-
tion method, which is used to extract low-dimensional manifold structure embed
in high-dimensional space. Therefore there is a new way to diagnose the machin-
ery fault. Generally speaking, the operation data of machinery with the same
condition lie on the same manifold and the different condition lie on different
manifold [7]. Based on this setting, manifold learning can be applied to machin-
ery fault diagnosis.

A typical manifold learning method includes Local Linear Embedding
(LLE) [5], Isometric Mapping (ISOMAP) [6] etc. A proper choice of neighbor-
hood size is critical in manifold Learning. Using a fixed neighborhood size is
inappropriate, such as in LLE and ISOMAP, because the curvature of the man-
ifold and the density of the sample points may be different in different regions
of the manifold in the engineering applications. Sparse Manifold Clustering and
Embedding (SMCE) is proposed in [8]. In SMCE, the automatic choice of the
neighborhood size is done by solving a sparse optimization problem. Thus SMCE
is more suitable for engineering applications. In this paper, we briefly introduce
the principle of SMCE and discuss its application in feature extraction and diag-
nosis of mechanical fault.

2 The principle of SMCE

SMCE can be used for manifold clustering and dimensionality reduction for mul-
tiple nonlinear manifold simultaneously. The key difference between SMCE and
other manifold learning methods is that SMCE can automatically search neigh-
bors by solving a sparse optimization problem and weight matrix is established
by calculating weights between each points and its neighbors. And then, spectral
clustering [9] and Laplacian eigenmap [10] can be used for manifold clustering
and dimensional reduction respectively.

Given a set of N samples {xi ∈ R
D}Ni=1 lying in n different manifolds

{Ml}nl=1 with intrinsic dimensions {dl}nl=1. For each sample point xi ∈ Ml

consider the smallest ball Bi ⊂ R
D contains that the dl + 1 nearest neighbors of

xi. Namely, the affine subspaces with intrinsic dimensions dl is spanned by the
dl + 1 neighbors. This is the fundamental assumption of SMCE. That is,

||
∑

j∈Bi

kij(xj − xi)||2 � ε and
∑

j∈Bi

kij = 1 (1)

Where xj ∈ Bi and j �= i, ε(� 0) is the upper bound of error, kij is coefficient.
It is hard to know the diameter of Bi, therefore the Eq. (1) can not be solved
directly. The diameter of Bi is selected according to empirical rules in the LLE
and ISOMAP which are local and global manifold learning algorithm respec-
tively. In SMCE, this challenge is to be solved by a sparse optimization problem.
Consider a sample point xi and a sample set {xj |j �= i, j = 1, 2, · · · , N}, the
column vector ci with dimension N − 1 is obtained by solved Eq. (2).

||[x1 − xi, · · · ,xN − xi]ci||2 � ε and 1T ci = 1 (2)
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Where the solution ci is sparse and the non-zero elements are corresponding
to several sample points lying in the same manifold that xi belongs to. It is the
key difference between SMCE and other manifold learning algorithm.

In the case of densely sampled set, the affine subspace coincides with the
dl dimensional tangent space of Ml at xi. In other words, the sample point
corresponding to non-zeros elements of ci may no longer be the closest points to
xi in Ml. Therefore, the vectors {xj − xi}j �=i is normalized and let

Xi :=
[

x1 − xi

||x1 − xi||2 , · · · ,
xN − xi

||xN − xi||2

]
∈ R

D×(N−1) (3)

Thus the (2) has the following form:

||Xici||2 � ε and 1T ci = 1 (4)

In this way, among all the solutions of (4), the one that uses a few closest
neighbors of xi is searched by considering the following �1 optimization problem.

min ||Qici||1 s.t. ||Xici||2 � ε, 1T ci = 1 (5)

Where the proximity inducing matrix Qi, which is a positive definite diagonal
matrix, is defined as

Qi =
||Xj − Xi||2∑
t�=i ||Xt − Xi||2 ∈ (0, 1] (6)

Another optimization problem which is related to (5) by the method of
Lagrange multipliers is

min λ||Qici||1 +
1
2
||Xici||22 s.t. 1T ci = 1 (7)

Where the parameter λ sets the trade-off between the sparsity of the solution
and the affine reconstruction error. By solving the optimization problem above
for each sample point, it is obtained that the solution cTi := [ci1, · · · , ciN ]. Thus,
the weight vector wT

i = [wi,1, · · · , wiN ] ∈ R
N is defined as

wii = 0, wij :=
cij/||Xj − Xi||2∑
t�=i cit/||Xt − Xi||2 , j �= i (8)

The similarity graph G = (V,E) whose nodes represent sample points is built.
Node i, corresponding to xi, connects the node j, corresponding to xj , with an
edge whose weight is equal to |wij |. Each node i connects only a few other nodes
named sparse neighbors that correspond to the neighbors of xi in the same
manifold. Hence, the similarity matrix W is constructed with weight vector wi

and reflect the distance from sparse neighbors to xi. The samples are clustered by
applying spectral clustering to W [9], or by applying dimensionality reduction
for original samples with Laplacian eigenmap [10], and then the classifier is
constructed effectively.
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Table 1. Characters in time domain

k yk k yk k yk k yk

1 Peak value 4 Root mean square value 7 Kurtosis 10 Impulsion index

2 Peak to peak value 5 Variance 8 Peak index 11 Wave index

3 Absolute mean value 6 Degree of skewness 9 Kurtosis index 12 Tolerance index

3 The Method of Feature Extraction Based on SMCE

The mathematical principles of SMCE adapt to engineering applications because
the high-dimensional Euclidean space in SMCE is corresponding to the feature
space that is spanned by feature vectors of machinery. In practice, the manifolds
embedded in feature space have the following characters: the density of sample
points in manifold is different in different regions in the manifold, and curvature
of each point in manifold is also different. Therefore, it is inappropriate that
the fixed neighborhood size is used to extract the manifold structure within
mechanical operation data.

The initial feature space should be constructed firstly before that the non-
linear dimensionality reduction is done by manifold learning. In the engineering
application, the initial feature space can be spanned by feature vectors that
should be composed by characters in time domain or characters in frequency
domain, or characters in both time and frequency domain of vibration signal [1].
In this paper, we combine characters in time domain and frequency domain of
vibration signals as an initial feature vector. The term of characters in time
domain is shown in Table 1, and the sub-band energy method is employed to
establish frequency feature vector.

The energy distribution in different frequency sub-bands of the vibration
signals indicates the operation condition of machinery. Thus the sub-band energy
vector could regard as the frequency feature vector. Divide vibration signal into
m sub-bands with a constant bandwidth and the frequency range of i-th sub-
band is shown in (9).

fi = fi−1 + Δf (9)

Where i = 1, 2, · · · ,m, fi and fi−1 is the upper and low limiting frequency
of i-th sub-band, Δf is the bandwidth of i-th sub-band. Through Fast Fourier
Transform(FFT), the number of frequency lines ni in each sub-band is equal,
that is

ni =
fi − fi−1

ξ
(10)

Where ξ is frequency resolution. Hence, all frequency lines can be divided into
m equal partitions related to m sub-bands. Suppose that the sequence index of
frequency lines in i-th sub-band is corresponding to ki−1 and ki, the energy of
i-th sub-band is obtained by (11) according to Parseval’s theorem.

Ei =
ki∑

k=ki−1

|Ak|2Δf (11)
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Where Ak is the amplitude of frequency line whose sequence index is k. In
this paper, the vibration signal is divided into 16 equal sub-band, thus we can
obtain a feature vector yf of dimension 16. And yf is normalized by (12). In
a similar way, the feature vectors in time domain that is shown in Table 1 can
be normalized, and we obtained a normalized feature vector in time domain Yt

with dimension 12. And then, the feature vectors Y = [Yf , Yt] with dimension
28 is used to span the initial feature space.

Yf =
yf − min(yf )

max(yf ) − min(yf )
(12)

The presented method of machinery fault diagnosis based on manifold learn-
ing is done with following stage.

(1) For each vibration signal, the feature vector with dimension 28 is constructed
firstly.

(2) Using appropriate parameter λ to build similarity matrix W . Due to there is
not mature theory to guide us to choose the best parameter λ, therefore the
choice of best parameter λ is done by equal step length searching. Namely,
the diagnosis accuracy is different under different λ, and we fixed the λ
corresponding to best accuracy.

(3) Clustering of the samples data by applying spectral clustering [9] to W .
The samples data from the same machinery condition is in one set and
from the different condition is in different set. This is the unsupervised
fault diagnosis approach. In addition, we apply laplacian eigenmap [10] to
do dimensionality reduction and the low-dimensionality representation of
original high-dimensionality feature space is obtained. And then, the sup-
port vector machine(SVM) is employed to do the classification of the low-
dimensionality space. Because of SVM is one of supervised classifier, this
approach of fault diagnosis is named supervised method of fault diagnosis.

4 Experiment

Bearing Date Center(BDC) [11] of Case Western Reserve University has been
used by many researchers [12,13]. The availability of BDC has been proved, and
this database has become a standard database of vibration signal of bearing
defect. In this paper, The deep groove ball bearings SKF 6205-2RS-JEM-SKF
with 9 rolling elements made by Swedish is employed as the analysis object. In
experiment, the shaft speed is 1750RPM and the sampling frequency is 48KHZ.
The vibration signal that collected by a accelerometer is shown in Fig. 1. Con-
sidering four condition of bearing, that is, normal, inner-race defect, ball defect,
outer-race defect, 200 samples were chosen for each condition. Thus there are 800
samples in all and the sample length is 2048 of all. The feature space is spanned
by 800 feature vectors, denoted by x1,x2, · · · ,x800 ∈ R

28, and the manifold
structure in the feature space is extracted by the method described previously.
Similarity matrix W ∈ R

800×800 is obtained with fixed parameter λ. And then,
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Fig. 1. The original signal of bearing. (a) Normal condition. (b) Inner-race defect.
(c) Ball defect. (d) Outer-race defect.

the unsupervised fault diagnosis can be achieved by spectral clustering [9]. For
the supervised fault diagnosis, Laplacian eigenmap [10] is applied to the W ,
and original feature space is mapped to three dimensional space. And then, the
samples of each condition in three dimensional space is divided into 2 equal par-
tition. One of the half samples are taken as training samples, and the remaining
are testing samples. The problem we faced is to classify 4 conditions, but SVM
can classify only 2 condition at a time. Generalizing method to solve this chal-
lenging is by decomposing the 4 class problem into 2 class problem. Each time
take one class of the training samples as positive class and take remaining class
as negative class, thus classification of 4 class is done by doing SVM 4 times.
The parameter λ play a important role for diagnosis, we make the parameter
λ to traverse [10,200] with step 5. Under different λ, the diagnosis accuracy of
spectral clustering and support vector machine is shown in Fig. 2.

As the Fig. 2 show, the best accuracy of diagnosis with spectral clustering is
up to 97.125 % when the λ is set as 30. In the other way, three dimensional rep-
resentation of origin feature space with dimension 28 is obtained under different
λ. The best accuracy of diagnosis with SVM is up to 98.75 % when the λ is set
as 130. And the three dimensional space is shown in Fig. 3. Spectral clustering
do the classification using the geometric structure of space spanned by sample
point and without the tag of samples. This is the reason that it is named unsu-
pervised diagnosis. Conversely, SVM do the classification with tags of samples,
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Fig. 2. The diagnosis accuracy with different λ

Fig. 3. Three dimensional representation of original feature space

thus the diagnosis based on SVM is named supervised diagnosis. From Fig. 3, the
diagnosis accuracy of SVM is higher than spectral clustering and the accuracy
of both has remained stable under different λ. The accuracy difference between
maximum and minimum is 0.625 % and 1 % with spectral clustering and SVM
respectively. Namely, the parameter λ is easily fixed. It is demonstrated that
the presented method is suitable for engineering applications. To reveal the out-
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Fig. 4. The diagnosis accuracy with LLE and SVM

Table 2. The comparison of accuracy between SMCE and LLE

Diagnosis method Minimum Maximum Mean Standard variance

SMCE 97.75 % 98.75 % 98.12 % 0.32 %

LLE 61.38 % 97.88 % 89.66 % 8.57 %

standing characters of presented method, the fault diagnosis is done with LLE
[5] instead of SMCE. The classifier is established with SVM. The accuracy of
diagnosis is shown in Fig. 4. It is illustrated that the diagnosis accuracy vary
in a large range with different parameter. The comparison of diagnosis accu-
racy between SMCE and LLE is shown in Table 2. The diagnosis method with
SMCE is more stable than LLE. The satisfactory result is reached with nearly
almost arbitrary parameter with SMCE, but the diagnosis result with LLE is
more affected by the parameters. Therefore the convenience of parameter choice
is one of the advantages of presented method.

5 Conclusion

(1) The method of feature extraction based on SMCE could extract low dimen-
sional manifold structure that indicates the nature of mechanical condition
embed in high-dimensional feature space.

(2) The feature vector that consist of time-domain characters and sub-band
energy can be used to diagnose the condition of machinery.

(3) The diagnosis accuracy of presented method in this paper is less affected
by the parameters, therefore it is more suitable for engineering applications
thanks to the convenience of parameter choice.
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