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Abstract The paper presents a sensitivity study on the first five vibration modes of
a bimorph piezoelectric beam. More in detail, the analysis focuses on the kinematic
response of these kind of strips to uncertainties in the identification of electric,
piezoelectric and mechanical parameters. The study defines these uncertainties as
input errors in the identification process of the first five natural frequencies. The free
vibration problem for bimorph piezoelectric beam constrained by simple supports
has been solved, and results have been compared with the exact two-dimensional
solution. Numerical simulations have also been implemented and data analyzed
according to the Weibull distribution theory; eventually, high order functions have
been identified, enabling to foresight the final frequency identification error.
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1 Introduction

Piezoelectric devices are nowadays broadly spread and commonly adopted in
various industrial fields. In the last years, bimorph piezoelectric systems are gath-
ering great attention by scholars and technicians as interesting actuators, able to
perform mechanical motion or, in particular, vibration [1–8].

In 2005, Zhou et al. [9] presented semi-analytic approach for the evaluation of
the eigenfrequencies of a piezoelectric bimorph based on an improved first-order
shear deformation theory (FSDT) beam model.

In 2013, Borboni and Faglia [10] described how uncertainties on the knowledge
of mechanical, piezoelectric or electric parameters reflect on the first vibration mode
of a simply supported piezoelectric bimorph. Nevertheless, good practice for finest
machine design would require a thorough awareness of the non-ideal responses of
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the system until the fifth vibration mode: for this reason, the present paper aims to
investigate the previous models to the fifth vibration mode, thanks to a stochastic
evaluation of the free vibrations of the piezoelectric bimorph.

2 Model Definition

The basic system is composed of two piezoelectric layers, mechanically connected,
and is constrained by simple supports; the layers are also electrically connected
thanks to a parallel arrangement for the electric circuit and the Timoshenko theory
[11] is applied in order to study the beam deformation.

According to this theory, the beam deformation can be properly analyzed in a
planar space, since the deflection can be reduced to a two-dimensional movement.
Referring to Fig. 1, a beam l long and having two layers h thick each, performs a
movement in the x1Ox3 plane, and the neutral axis of the beam overlaps the x1 axis
in the undeformed configuration. The selection of the Timoshenko theory impli-
cates that: (i) displacement u of the axis points only depends by the linear x1
variable, (ii) consecutive segments, normal to the neutral axis, remain consecutive
after the deformation, and (iii) segments normal to the neutral axis in undeformed
configuration do not strictly remain normal to the axis under deflection, indeed they
could perform an additional Ψ rotation around the axis itself, as a consequence of
the shear strain.

Under the effect of mechanical and/or electric actions, the beam deflects as
presented in Fig. 1: in the deformed configuration, the bender presents for each
section a w displacement along the x3 direction and a Ψ rotation around x2.

Under the hypotheses of small deflection and plane stress state, the equilibrium
equations along the ith direction (i = 1, 3) for an infinitesimal portion of the beam
are described by Eq. (1), according to the definitions introduced by Eqs. (2)–(4),
where σ and τ are components of the stress tensor is the stress tensor, f is a body
force, ρ is the mass density of the bar, c ̄ and are e ̄ the components of the stiffness

Fig. 1 Simply supported
piezoelectric bimorph
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and piezoelectric matrix, ε and γ are the components of the strain tensor and E are
the components of the electric field.
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σx3 = c1̄3εx1 + c3̄3εx3 − ð−1Þre3̄1Ex3 ð2Þ

σx1 = c1̄1εx1 + c1̄3εx3 − ð−1Þre3̄1Ex3 ð3Þ

τx1x3 = c5̄5γx1x3 − ð−1Þre1̄5Ex1 ð4Þ

Since no external electrical charge is applied to the beam, the divergence and
Gauss theorems led to Eq (5), where the components of the electric displacement
matrix Dx3 and Dx1 are defined according to Eqs. (6) and (7), where ε ̄ are the
components of the dielectric matrix.
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Moreover, Eqs. (8)–(12) describe the relation of kinematics with displacement
and electric potential ϕ.
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Finally, according to the first-order shear deformation theory, the final
mechanical displacement can be presented as in Eqs. (13) and (14); merging those
definitions with the previous relations, the final Eqs. (15) and (16) can be obtained,
where w and ψ are the translation and rotation of a cross section.
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Under the further hypothesis of parallel electric configuration, Eqs. (17)–(21)
can be written to approximate Eqs. (1) and (2), where m and p are the applied
torque and force, Mx and Qx are the bending moment and the shear force.
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The initial conditions are then described by Eqs. (22)–(24), and expanding in
Fourier series, the solving system in Eq. (25) can be defined: Eqs. (26)–(35) collect
the definition of the A matrix coefficients, where b are the components of a
parameter matrix opportunely dependent on the shear coefficient k and on different
parameters of the model, as shown in [9]
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The determinant of the system in Eq. (25) solved for the nth value allows to
define the nth eigenvalue.

3 Stochastic Approach

In order to obtain comparable results, the same stochastic approach introduced by
Borboni and Faglia in 2013 [10] has been adopted in the sensitivity analysis of the
variable parameters collected in the Z vector: the mechanical stiffness C, and the
piezoelectric parameters e and ε.

Once defined µij the nominal value of the ijth element of Z, and ΔZ the maximum
allowed error (i.e. the maximum implemented variation of the parameter), the
variance ζ can be described as Eqs. (36) and (37) present.
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The aims of the work is to test the sensitivity of the model, in terms of ability to
quantify the natural frequencies of the system, to parametric errors. The numerical
simulations are performed for: five values of the geometric ratio λ, five values of the
shear coefficient k, five values of the maximum error ΔInput and four types of error
conditions, as shown in Table 1. Each test is statistically repeated 1000 times,
according to (36) and (37), for each natural frequency from the 1st to the 5th.

Table 1 collects the testing conditions of the stochastic simulations.

4 Numerical Results and Discussion

Numerical evaluation have been performed under the hypothesis of PZT-5A; the
main characteristics of this material are collected in Table 2.

The main result is that the influence of the electric and piezoelectric error on the
frequency evaluation is limited, less than 0.5 %, whereas the mechanical parameters
are predominant. Although the shear coefficient is an important parameter, when its
value is chosen within the range proposed by Cowper [11], the error produced on
the frequency evaluation is limited. The error on the geometric ratio λ is relevant
starting from the 2nd frequency and the instability of the model increases with
increasing vibrational modes (Fig. 2).

Table 1 PZT-5A: nominal values of the main material property

Parameter Tested values
Input C e ε C, e and ε

ΔInput 0.01 0.02 0.03 0.04 0.05

λ 5 10 20 50 100
kρ 0.8333 0.8472 0.8611 0.8750 0.8889

Table 2 PZT-5A: nominal
values of the main material
property

Property Value Measurement unit

c11 105 [GPa]
c12 54.6 [GPa]
c13 52.7 [GPa]
c33 86.8 [GPa]
c55 22.2 [GPa]
e15 12.2 [C/m2]
e31 −9.78 [C/m2]
e33 13.8 [C/m2]
ε11 16.4 [nF/m]
ε33 15.1 [nF/m]
ρ 7800 [kg/m3]
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5 Conclusions

The problem of the computation of the natural frequencies for the 1st–5th modes of
a simply supported piezoelectric bimorph beam was investigated in presence of
evaluation errors in mechanical, piezoelectric and electric parameters. The analysis
was performed on a PZT-5A device. Under some limitations, we can conclude that:
the effect of the errors on mechanical stiffness is predominant with respect to the
piezoelectric and electric errors. The correlation between mechanical errors and
natural frequencies can be represented with simple empirical expressions. These
results was known for the first vibration mode and this work extends the previous
result to the 1st–5th vibration modes. We must also observe that the model is stable
for the first modes, where the effect of the errors on the parameters and of the
number of tests is limited on the natural frequencies. Increasing the number of
modes the model becomes more and more unstable and its ability to predict the
vibrational frequencies of the devices becomes really dependent on the ability to
estimate, particularly its mechanical parameters. Thus a superficial analysis is not
sufficient and a deep mechanical analysis of the device is necessary to accurately
predict high order vibrational behavior of the device.

Δ ω Δ ω Δ ω

Δ ω Δ ω

λ λ λ

λ λ

Fig. 2 Δω with respect to λ. The results of mechanical (diamond), piezoelectric (square), electric
(triangle) and all (dot) parameters variations are presented, under the hypotheses of 1 % input error
and k = 5/6. The first diagram on the top left is the 1st vibration mode, the consequent diagrams
are associated to increasing vibration modes
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