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Abstract Stability, in particular in outdoor sloped conditions, is one of the most

important requirements for design safe and effective future mobile robotic platforms.

In this work, the authors’ recent results on the study and development of an artic-

ulated mobile robot for agricultural and forestry activities in hilly/mountain envi-

ronments are presented. First of all, a dynamic model for the stability analysis of

a generic articulated platform has been designed and implemented. Then, different

practical working conditions have been simulated to assess the stability of the sys-

tem; possible stabilizing actions when travelling on a sloped surface on the steering

angle, velocity and central joint have been finally evaluated and discussed.
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1 Introduction

Among different possible mobile robot architectures, the 4-wheeled articulated kine-

matics is one of the most promising [1]. Basically, it is composed of two main

parts, i.e. front (f) and rear (r), interconnected by an articulated 2 Degrees of Free-

dom (DoF) joint. The first DoF, i.e. yaw angle, is controlled and allows steering.

The second DoF is passive, i.e. roll angle, allowing to adapt to uneven terrains.
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With this architecture a minimal steering radius, if compared with other classical

kinematics, is achievable. In literature, monitoring and predicting the stability of a

mobile platform is a well treated problem. Indeed, the stability of multi-legged or

-wheeled robots has been widely investigated since the sixties, e.g. [2], in particular

for rigid chassis machines. Two main classes of stability criteria have been proposed:

(quasi-)static and dynamics-based criteria. These can also be grouped in: distance-
based [2], angle-based [3], energy-based [4], moment-based [5] and force-based
criteria [6], according to the idea behind the formulation. Recent stability studies on

articulated architectures refer to tractors/machines with the joint on the front axle

[7, 8] demonstrated how, in addition to the “standard” stability condition (type II

instability), the passive roll DoF creates a second critical stability condition that

results in the triangle which is made by considering the position of two wheels of a

vehicle half and the joint (type I instability).

2 Articulated Mobile Robot Model

The kinematic and dynamic model is based on the main basic hypothesis of the

Guzzomi’s work [7] except for the robot speed. These are: (a) the roll DoF of the

articulated joint is considered frictionless; (b) the robot does not slide down the slope,

due to a non-limiting coefficient of friction between surface and tyres; (c) tyres are

considered stiff, so the contact surfaces result in discrete points (not areas); (d) the

joint mass is negligible, so it does not affect the dynamic behaviour.

By referring at Fig. 1a, the articulated robot kinematics can be explained. The

front “f” and rear “r” parts are connected by a 2 DoF joint made of a first revolute

DoF, i.e. the yaw 𝛽 angle, and a second passive revolute DoF, i.e. the roll 𝛼 angle. In

Table 1, the geometric parameters of the model shown in Fig. 1a are explained.

Fig. 1 Articulated robot: a kinematic model (𝛼 ≠ 0 and 𝛽 = 0), b orientation angles and reference

systems (𝛼 = 0 and 𝛽 ≠ 0)
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Table 1 Main parameters of the kinematic model

Gr CoG of the rear part s4 Distance from front axle to central joint

Gf CoG of the front part s1 Rear CoG distance from rear axle

R1 Contact point between rear wheel 1 and

surface

erx Rear CoG x distance from rear

midplane

ery Rear CoG y height above roll axis

R2 Contact point between rear wheel 2 and

surface

s2 Front CoG distance from front axle

efx Front CoG x distance from front

midplane

F3 Contact point between front wheel 3

and surface

efy Front CoG y height above roll axis

wr Rear track width

F4 Contact point between front wheel 4

and surface

wf Front track width

h1 Roll axis height from ground

𝛼 Roll angle between rear and front part mr Rear mass

𝛽 Yaw angle between rear and front part mf Front mass

s3 Distance from rear axle to central joint

In order to study the system configurations, both travelling along a slope and

turning among different rows, the robot has been considered travelling a circle with

a constant speed v on a sloped surface, i.e. 𝜗. A global coordinate system
(
x0 y0 z0

)

and two local ones
(
x1 y1 z1

)
and

(
x2 y2 z2

)
, rigidly attached on the moving rear and

front robot parts respectively, are defined. By naming 𝜑 the robot orientation with

respect to the maximum slope direction, 𝛽 the trajectory followed by the robot and 𝛼

the surface conformation (𝛼 = 0 implies a plane surface), see Fig. 1b, the kinematics

of the motion can be represented.

2.1 Dynamic Model

The instability of an articulated robot can be subdivided in phase I and II [7]. By

increasing the slope, the force distribution on the four wheels changes according

to the configuration and system properties. Instability occurs when one of the four

reaction forces falls to zero. After that, the roll moment equilibrium is not satisfied,

one wheel loses the contact and the phase I instability occurs.

As drawn in Fig. 2a, b, two 𝐅𝐆𝐫 and 𝐅𝐆𝐟 forces are present on the rear and front

CoGs, given by the vectorial sum between weight 𝐏𝐢 and centrifugal𝐅𝐜𝐢 forces. These

are counteracted by the four reaction forces 𝐅𝐫𝟏, 𝐅𝐫𝟐, 𝐅𝐟𝟑 and 𝐅𝐟𝟒. Through the cen-

tral joint, both forces (𝐅𝐣𝐫 and 𝐅𝐣𝐟 ) and moments (𝐌𝐫 e 𝐌𝐟 ) are exchanged. The two

forces 𝐅𝐆𝐫 and 𝐅𝐆𝐟 and, due to the absence of friction, the moment Mf ,z are known.
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Fig. 2 Dynamic model: a rear part, b front part

To study the stability, the four normal force components acting on the wheels, i.e.

Fr1,y, Fr2,y, Ff3,y and Ff4,y, are needed. Thus, it is advisable to reduce the system

dimension to improve the computational speed with respect to solve the whole sys-

tem made of 23 equations. By exploiting the joint forces and torques relationships

as well as the ones between the exchanged forces on the wheels and those acting

on the CoGs, the problem can be reformulated and simplified from the initial 23

to 6 unknowns: Fr1, Fr2, Ff3, Ff4, Mf ,x and Mf ,y. In such a manner, six equilibrium

equations in 6 unknowns (Fr1, Fr2, Ff3, Ff4, Mf ,x and Mf ,y) can be written:

Fr1 + Fr2 + Ff3 + Ff4 = −FGr − FGf (1)

Mf ,x + Ff3
(
−kfys4 − kfzh1

)
+ Ff4

(
−kfys4 − kfzh1

)
= Fgf

[
kfy

(
s4 − s2

)
+ kfzefy

]
(2)

Mf ,y + Ff3

(
kfxs4 − kfz

wf

2

)
+ Ff4

(
kfxs4 + kfz

wf

2

)
= Fgf

[
−kfx

(
s4 − s2

)
+ kfzefx

]
(3)

Mf ,z + Ff3

(
kfxh1 + kfy

wf

2

)
+ Ff4

(
kfxh1 − kfy

wf

2

)
= Fgf

(
kfxefy − kfyefx

)
(4)

Mr,x + Fr1
(
krys3 − krzh1

)
+ Fr2

(
krys3 − krzh1

)
= Fgr

[
−kry

(
s3 − s1

)
− krzery

]
(5)

Mr,z + Fr1

(
krxh1 − kry

wr

2

)
+ Fr2

(
krxh1 + kry

wr

2

)
= Fgr

(
krxery − kryerx

)
(6)

where Mf ,z = 0, Mr,x = −Mf ,x cos 𝛼 cos 𝛽 +Mf ,y sin 𝛼 cos 𝛽, Mr,z = Mf ,x cos 𝛼
sin 𝛽 −Mf ,y sin 𝛼 sin 𝛽,

(
krx, kry, krz

)
= 𝐅𝐆𝐫

‖𝐅𝐆𝐫‖
, and

(
kfx, kfy, kfz

)
= 𝐅𝐆𝐟

‖𝐅𝐆𝐟‖
.

The rear and front weight forces components can then be computed. Moreover,

the rear and front centrifugal forces components while, see Fig. 3a, are:
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Fig. 3 a Centrifugal forces. b Phase II instability
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(7)

where 𝜁r and 𝜁f angles are computed as:

𝜁r = arctan
(

s1
R − erx

)
𝜁f = arctan

(
s2

R − efx cos 𝛼 + efy sin 𝛼

)
(8)

Given a 𝛽 angle, it is possible to compute the steering radius R in the following

manner (see Fig. 3a):

R = AD
tan 𝛽

=
AC + BC

cos 𝛽

tan 𝛽
=

s3 cos 𝛽 + s4
sin 𝛽

(9)

Now, by considering as reference the rear/front axle central point speed v, the

CoGs speeds vGr and vGr and the centrifugal forces can be computed (see Fig. 3):

vGi = v
RGi

R
RGi =

sj
sin 𝜁i

Fci =
miv2Gi
RGi

=
miv2RGi

R2 (10)

with i = r, f and j = 1, 2. The vectorial sum between weight and centrifugal forces

allows then to compute the two forces FGr and FGf .
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The phase II instability detection method is based on force moments evaluation.

The dashed lines in Fig. 3b represent the four oriented axes that pass through the four

contact points. The robot could rotate around these axes, if there is no moment equi-

librium. The force 𝐅𝐠, that acts on the overall Center of Gravity G, generates four dif-

ferent moments on every axis. So, in a given robot configuration, if all the moments

are positive, there is stability; if one of the moments becomes negative, the robot

starts overturning. The global CoG coordinates can be obtained starting from Gr and

Gf and, then, the force 𝐅𝐠, expressed with respect to the
(
x1 y1 z1

)
reference system,

can be computed as 𝐅𝐠 = 𝐏 + 𝐅𝐜, where P =
(
mr + mf

)
g, and Fc =

(mr+mf )v2RG

R2 with

RG = Gz

sin 𝜁
(see Fig. 3a).

3 Numerical Evaluation

The stability model has been implemented in a Matlab™ simulator. Given informa-

tion on the geometric and physical parameters of the robot (see Table 2), and on the

configuration in terms of 𝛼, 𝛽 and 𝜑 angles, via an iterative method the stability

limit angles of phase I, i.e. 𝜗lim,I , and phase II, i.e. 𝜗lim,II , are found. In Fig. 4, the

output of the simulator is reported: the top plot refers to the limit stability angles

while the central plot indicates which wheel firstly detaches from the terrain when

phase I instability occurs; finally, the plot on the bottom reports the angular differ-

ence between phase II and phase I critical angles.

Now, the centrifugal terms influence on the emulator stability is evaluated. A

constant steering angle, i.e. 𝛽 = 15◦, and three different speeds (v = 0 m∕s , v =
0.75 m∕s and v = 1.5 m∕s ) are considered. In Fig. 4, the curve with no centrifugal

influence, i.e. v = 0 m∕s quasi-static approach, and the others are reported.

In the simulated case it can be easily highlighted how the centrifugal force

plays against stability, both in phase I and II, when 𝜑 is inside the range of about

−80◦(280◦) ÷ 80◦ (i.e. centrifugal forces are directed downstream). Furthermore this

range tends to become larger if the speed increases. Varying the robot speed could

represent a driving strategy, or a part of it, combined with a blocking action on the

joint free DoF; indeed, in that manner, a safer stability state could be reached while

maintaining the same configuration. Considering the range where the centrifugal

effect plays against the stability, decreasing the speed helps increasing the stability.

This strategy, if v > 0.75 m∕s , guarantees a higher angular margin with respect to

blocking the joint. Below that speed the two effects are comparable. Outside this

Table 2 Robot emulator geometric and physical parameters

s1s1s1
[mm]

s2s2s2
[mm]

s3s3s3
[mm]

s4s4s4
[mm]

wrwrwr
[mm]

wfwfwf
[mm]

h1h1h1
[mm]

erxerxerx
[mm]

efxefxefx
[mm]

eryeryery
[mm]

efyefyefy
[mm]

mrmrmr
[kg]

mfmfmf
[kg]

26 55 200 200 240 180 94 0 0 20 14 1.34 1.84
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Fig. 4 Stability maps at different speeds (𝛽 = 15◦)

range, decreasing the speed becomes a dangerous manoeuvre. Considering 𝜑 ≃ 0,

i.e. the robot on the lower point of the circular trajectory, the centrifugal effect is

maximum. In this condition, it is interesting to evaluate this stability angle reduc-

tion. At speed v = 0 m∕s , the phase I stability angle is about 40◦, at v = 0.75 m∕s
the reduction is about 2◦, and at v = 1.5 m∕s it is about 7◦. For the phase II case, the

values are almost the same. Now, if the angular margin that is gained by blocking

the free joint DoF (see the bottom plot of Fig. 4), it could be seen that the centrifugal

forces affect only the curves offset.

The transition between different sloped surfaces is another important case to be

evaluated. In order to do so, the following condition has been considered:

∙ the base surface is inclined by an angle of 𝜗 = 15◦;

∙ the robot runs crosswise the slope (𝜑 = 0◦);

∙ on the base surface it is located another plane (obstacle) that gradually increases

its inclination from 𝜗 to 𝜗 + 𝛼;

∙ this obstacle is overcome firstly by the front part, and then by the rear one.

In Fig. 5 the results are presented. Firstly considering the front part overcoming

the obstacle, by increasing 𝛼, i.e. higher obstacle inclination, the angular margin for

the roll-over decreases. However, the phase I and phase II have different negative

slopes (less in the second case), so it is possible to gain stability margin by blocking

the free DoF. It can be noticed how the instability concerns only the front part, but

with the base inclination considered, 𝜗 = 15◦, the roll-over does not occur (i.e. the

𝜗lim − 𝜗 values reported in the figure is always positive). When the rear part over-

comes the obstacle, two different phase I instability behaviours can be observed.

Until 𝛼 < 8◦, the angle at which instability occurs remains constant; indeed, in this

configuration, the front part is the one more critical and it is not influenced by an 𝛼
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Fig. 5 Front and rear parts passing the obstacle (15◦ of plane inclination)

variation. When 𝛼 > 8◦, the rear part becomes the most critical in terms of phase I

stability and the angular margin decreases with 𝛼. Also in this case the phase II has

a negative constant slope, thus the support polygon reduces its area and the stability

margin is reduced.

4 Conclusion

In this paper, an articulated kinematics has been chosen as basis of a future mobile

robot able to operate in hilly terrains. After the definition of the dynamic model,

the two main instabilities of the chosen platform has been discussed and a stability

criterion chosen. The implemented model have been exploited for evaluating the

critical configurations on different slopes; after that, given the importance of the

working speed and of the current slope, the possible stabilizing effect of speed and

steering angle variation, together with a blocking of the joint passive DoF have been

simulated and highlighted.
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