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Retrotransposons and the Mammalian 
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Ian R. Adams

1  �Retrotransposons in Mammalian Genomes

Retrotransposons are a class of mobile genetic elements that make up around 40 % 
of the sequenced mammalian genome (Chinwalla et al. 2002; Lander et al. 2001). 
Retrotransposons contribute to genomic instability in mammalian genomes by pro-
viding interspersed repeats of homologous sequences that can act as substrates for 
recombination causing deletions, duplications and structural rearrangements in the 
genome (Romanish et al. 2010). Retrotransposons are thought to be the only active 
class of mobile genetic element in most mammalian genomes, and can also cause 
genome instability through jumping to new locations in the genome. These de novo 
retrotransposon insertions have been reported as the causal mutation in various 
human genetic diseases (Crichton et  al. 2014; Hancks and Kazazian 2012). The 
copy-and-paste mechanism that retrotransposons use to jump to new locations in the 
genome involves reverse-transcription of retrotransposon RNA, and integration of 
the resulting cDNA into new locations in the genome. There are typically a few 
hundred different types of retrotransposon annotated in each mammalian genome, 
with each type of retrotransposon being present in up to 10,000 copies. However, 
the types of retrotransposon, their copy numbers and their genomic locations vary 
significantly between species.

Mammalian retrotransposons are classified into LINE (long interspersed nuclear 
elements), SINE (short interspersed nuclear elements) and LTR (long terminal 
repeat) retrotransposon classes (Chinwalla et al. 2002; Lander et al. 2001). Each 
class of retrotransposons can be further subdivided into families, and each family 
into individual types. The LINE class of retrotransposons in mammals is primarily 
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represented by the LINE-1 family. Only the human-specific L1HS-Ta subfamily of 
LINE-1 is still active in the human genome, whereas the L1MdA, L1MdTf and 
L1MdGf types of LINE-1 are all active in the mice (Beck et al. 2011; Hancks and 
Kazazian 2012; Sookdeo et al. 2013). Full-length LINE-1s are typically 6–7 kb long 
and are transcribed from an internal promoter located in the 5′ untranslated region 
(UTR) of these elements (Beck et al. 2011; Hancks and Kazazian 2012; Swergold 
1990). The LINE-1 promoter also generates an antisense transcript that can extend 
into the adjacent flanking cellular DNA (Cruickshanks et al. 2013; Li et al. 2014; 
Macia et al. 2011; Speek 2001). The LINE-1 5′ UTR varies significantly between 
species, and even between individual types of LINE-1 within species (Khan et al. 
2006; Lee et  al. 2010; Sookdeo et  al. 2013). LINE-1 encodes two open reading 
frames in mice and rodents, and three open reading frames in humans and primates 
(Beck et al. 2011; Denli et al. 2015; Hancks and Kazazian 2012). The recently dis-
covered primate-specific LINE-1 ORF0 protein is localised to nuclear bodies and 
enhances LINE-1 retrotransposition activity, although its mechanism of action is 
not currently understood (Denli et  al. 2015). LINE-1 ORF1 protein encodes an 
RNA-binding protein that forms a particle with LINE-1 RNA and is required for 
LINE-1 retrotransposition activity (Khazina and Weichenrieder 2009; Martin and 
Branciforte 1993; Moran et al. 1996). The LINE-1-encoded ORF2 protein is also 
required for LINE-1 retrotransposition and encodes an endonuclease and reverse 
transcriptase that nicks the host genomic DNA and catalyses target-primed reverse 
transcription of LINE-1 RNA into DNA at the site of genomic integration (Cost et al. 
2002; Feng et al. 1996; Mathias et al. 1991; Moran et al. 1996). LINE-1 elements 
display a strong cis-preference where LINE-1 ORF1p and ORF2p tend to associate 
with the same mRNA molecule from which they are translated (Esnault et al. 2000; 
Kulpa and Moran 2006; Wei et al. 2001).

The SINE class of retrotransposons includes a group of elements that are typically 
100–300 bp long and are derived from small non-coding cellular RNAs including 
7SL RNA, 5S rRNA and tRNAs (Kramerov and Vassetzky 2011). SINE retrotrans-
posons are transcribed from internal RNA polymerase III promoters, and include the 
Alu family in humans and primates. The human genome contains hundreds of active 
Alu elements, particularly those belonging to AluY and AluS subfamilies (Bennett 
et al. 2008). Alu elements have been proposed to utilise a ‘stealth’ mode of amplifica-
tion where elements mobilise at low frequencies for a long time, occasionally gener-
ating hyperactive copies that expand aggressively but rapidly become extinct 
(Han et  al. 2005). Alu elements, and SINEs in general, are non-autonomous ret-
rotransposons that rely on LINE-1-encoded proteins to catalyse their retrotransposi-
tion (Dewannieux et  al. 2003; Hancks et  al. 2011; Raiz et  al. 2012). The crystal 
structure of the Alu ribonucleoprotein particle suggests that Alu elements hijack 
LINE-1 reverse transcriptase by binding to ribosomes that are stalled when LINE-1 
ORF2p reverse transcribes its encoding mRNA (Ahl et al. 2015). Other active SINEs 
in the human genome include SVA elements which can be up to 2 kb in length and 
contain regions derived from SINE-R and Alu retrotransposons (Hancks and 
Kazazian 2010; Wang et al. 2005).
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The LTR retrotransposon class, whose members are also known as endogenous 
retroviruses (ERVs), typically encodes the Gag, Pol, Pro and sometimes also Env 
proteins that are found in retrovirus genomes (Bannert and Kurth 2006). These ret-
roviral proteins function in the production of retroviral capsid proteins, retroviral 
DNA synthesis and integration into the host genome, processing of retroviral pro-
teins, and forming the surface envelope on the retroviral capsid, respectively. The 5′ 
LTR acts as a promoter for these elements. LTR retrotransposons typically reverse-
transcribe their RNA in the cytoplasm of the host, then translocate the cDNA into 
the nucleus and use a LTR retrotransposon-encoded integrase to insert the DNA into 
the genome. Some LTR retrotransposons are autonomous and encode the proteins 
required to catalyse their own retrotransposition, whereas others use proteins 
encoded by other types of LTR retrotransposon to retrotranspose in trans 
(Dewannieux et al. 2004; Ribet et al. 2004). LTR retrotransposons actively mobilise 
in rodents, and de novo retrotransposition of LTR retrotransposons accounts for 
around 10 % of spontaneously occurring mutations in mice (Maksakova et al. 2006). 
However, the vast majority of LTR retrotransposons in human genomes are probably 
extinct, and mobilisation of LTR retrotransposons in humans is extremely limited 
(Wildschutte et al. 2016).

Despite the diversity in retrotransposon structure and life cycle, the reason why 
each and every one of these elements has been able to accumulate multiple copies 
in the genome during evolution is because they are able to retrotranspose in the cells 
that can transmit those new genomic copies to the next generation. These crucial 
cells that play a key role in the life cycle and biology of retrotransposons in mam-
mals belong to the germline.

2  �The Mammalian Germline

In mammals, genetic information is transmitted from generation to generation by germ 
cells. Germ cells are conceptually distinct from the somatic cells that populate organs 
like the liver, brain, kidney, lungs and heart in that any genetic change that arises in 
germ cells can potentially be transmitted to subsequent generations whereas those that 
arise in somatic cells cannot (Fig. 1). This defining distinction between germ cells 
and somatic cells, as first proposed by the evolutionary biologist August Weismann 
(1834–1914) (Weismann 1889), means that it is events and activities that occur within 
germ cells that shape the landscape of mammalian genomes during evolution. Thus, 
while any individual retrotransposon might retrotranspose in any specific somatic tissue, 
all successful retrotransposons must retrotranspose in the germline.

Weismann’s distinction between germline and soma means that genetic information 
and mutations that arise in somatic cells cannot be transmitted to the germ cells and 
subsequent generations, but this barrier between germ cells and soma is unidirec-
tional (Fig. 1). Weismann realised that the soma must originate from the germline 
during early development, and therefore genetic information and mutations that 
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arise in the germline can be propagated into the soma. These early embryonic cells 
that can give rise to both the germline and all somatic tissues would correspond to 
totipotent and pluripotent cells in modern terminology (Nichols and Smith 2009), 
while the term ‘germ cell’ is now typically reserved for lineage-restricted cells that 
have the capacity to differentiate into the mature gametes, but that do not normally 
contribute to somatic tissues in that individual (McLaren 2003). Weismann’s germ-
line encompasses totipotent cells, pluripotent cells and germ cells as they are all 
able to transmit genetic information and mutations to the next generation. Similarly, 
I will include the totipotent and pluripotent cells that are present in early mamma-
lian development as part of the germline for the purposes of this review.

The major stages in mammalian germline development are outlined in Fig. 2. 
As many of these events are best characterised in mice, the timings and stages of 
germline development will be described for this species although there are likely to 
be broad similarities with other mammalian species. Mouse development initiates 
when mature germ cells, that is, female eggs and male sperm, fuse during fertilisa-
tion to generate a single-celled zygote. This zygote is totipotent in that it has the 
potential to differentiate into all extra-embryonic and embryonic cell types in the 
conceptus, which includes the germ cells. As pre-implantation development pro-
ceeds to blastocyst stage, some cells in the embryo differentiate into trophectoderm 
and primitive endoderm lineages that contribute only to extra-embryonic tissues. 
The remaining cells differentiate into pluripotent epiblast cells which retain the 
capacity to differentiate into all cell types in the embryo proper, including the germ 
cells (Magnúsdóttir and Surani 2014; Nichols and Smith 2009). After the blastocyst 
implants into the uterus, some pluripotent epiblast cells located close to the extra-
embryonic ectoderm are induced by extracellular signals to differentiate into pri-
mordial germ cells. This germ cell specification event occurs around 6.25–7.25 days 
post coitum (dpc) in mouse embryos, and generates a founding population of around 
40 primordial germ cells (Lawson and Hage 1994; Ohinata et al. 2005). The nascent 
primordial germ cells then embark on a phase of proliferation as they migrate 
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Fig. 1  The germline cycle. A schematic diagram showing the mammalian germline cycle. Genetic 
information, variation and mutations are inherited in the zygote from the parental gametes. The 
zygote gives rise to an individual containing soma (white) and germline (grey) tissues. Genetic 
information, variation and mutation in germline tissues can be incorporated into the gametes and 
transmitted to the next generation, whereas that in the soma cannot
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through the embryo to reach the emerging gonads around 10.5 dpc. The germ cells 
are typically referred to as primordial germ cells during the early stages of their 
development until they reach the gonad, and primordial germ cell development at 
this point occurs similarly in male and female embryos. Once the primordial germ 
cells colonise the gonad, they continue to proliferate for a few more days, then initi-
ate sex-specific differentiation into either male prospermatogonia or female oocytes 
(Kocer et al. 2009).

The germ cells’ decision to differentiate along a male or a female pathway 
depends on sex-determining cues present in the gonadal environment rather than the 
sex chromosome constitution of the germ cells themselves (Kocer et al. 2009). In mice, 
germ cells in a foetal ovary become committed to develop down a female pathway 
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Primordial germ cell migration

Germ cell sex determination

Initiation of meiosis (♀)

Dictyate arrest (♀)

Oocyte growth (♀)

Quiescence (♂)

Spermatogonia mitosis (♂)

Initiation of meiosis (♂)

Spermiogenesis (♂)

Blastulation

Gastrulation

♂

♀

Post-
implantation

embryo

Fig. 2  Germline development in mice. A schematic diagram summarising the main stages of 
germline development in mice. Germ cells and their developmental precursors (totipotent and 
pluripotent cells) are coloured grey. For pre-implantation stages, a totipotent zygote and cleavage 
stage embryo, and a blastocyst containing pluripotent epiblast cells are shown. Post-implantation 
embryos before and after gastrulation are also shown, with pluripotent epiblast cells and primor-
dial germ cells coloured grey. For foetal stages, primordial germ cells are shown within the gonads, 
and meiotic cells are indicated by a pair of homologous chromosomes in their nuclei. Pachytene 
stage of meiosis is depicted by the ladder-like synaptonemal complex between homologous chro-
mosomes, which is absent in dictyate oocytes. Products of the first and second meiotic divisions 
are depicted by nuclei with a single replicated chromosome and an individual chromatid, respec-
tively. Note that the second meiotic division in oocytes is typically only completed at fertilisation. 
Chromosomes are not shown in diploid mitotic cells for clarity, and the distinctive morphologies 
of fully grown oocytes and mature sperm are also indicated
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between 12.5 dpc and 13.5 dpc (Adams and McLaren 2002). These oocytes initiate 
meiosis around 13.5 dpc and progress through most of the first meiotic prophase 
during late foetal development, then arrest as dictyate oocytes a few days after birth. 
The dictyate oocytes will eventually be stimulated to grow and resume meiosis in 
response to hormonal cues in adult animals. Fully grown oocytes then arrest meiosis 
during the second meiotic division before being ovulated and potentially fertilised 
(MacLennan et al. 2015).

In contrast, germ cells in a foetal mouse testis become committed to male devel-
opment between 11.5 dpc and 12.5 dpc (Adams and McLaren 2002). The resulting 
prospermatogonia, also termed gonocytes, enter a period of quiescence and differ-
entiation during late foetal development, then resume mitotic proliferation a few 
days after birth (Rossitto et al. 2015). The prospermatogonia give rise to mitotic 
spermatogonia and to a pool of spermatogonial stem cells which will self-renew and 
differentiate into more mitotic spermatogonia, thereby maintaining spermatogene-
sis throughout adulthood (Yang and Oatley 2014). The spermatogonia undergo a 
number of mitotic divisions before initiating meiosis which, in contrast to oocytes, 
typically proceeds without interruption. During spermiogenesis, the post-meiotic 
spermatids undergo a series of morphological changes that include condensation of 
the chromatin, elongation of the nucleus, specialisation of the Golgi membranes 
into an acrosome, generation of a flagella and elimination of residual cytoplasm 
(O’Donnell 2015). The sperm chromatin is delivered, along with a limited amount 
of cytoplasmic material, into the oocyte at fertilisation. The highly condensed and 
specialised sperm chromatin is predominantly associated with protamines rather 
than histones, and is reprogrammed with oocyte-derived histones shortly after 
fertilisation (Hogg and Western 2015).

3  �Retrotransposon Expression in the Mammalian Germline

For a retrotransposon to accumulate new genomic integrations during evolution it 
needs to be active in the mammalian germline. While each retrotransposon does not 
need to be expressed and active at all stages in the germline cycle, each retrotrans-
poson needs to be expressed and active at least at one point in the germline cycle. 
As outlined in the previous section, the germline cycle involves multiple distinct 
phases of development, and germline cells appear to use distinct transcription factor 
networks during these phases. Thus, it is rare to find germline-specific genes or 
transcription factors that are expressed throughout pre-implantation development, 
primordial germ cell development, foetal gametogenesis, oogenesis and spermato-
genesis. One might expect individual retrotransposon expression profiles to behave 
similarly.

LINE-1 element transcripts, for example, are reported to be present in 
pre-implantation embryos, and in primordial germ cells in foetal gonads from 11.5 
onwards (Fadloun et al. 2013; Hayashi et al. 2008; Molaro et al. 2014; Seisenberger 
et  al. 2012). Although LINE-1 transcripts are present in foetal germ cells from 
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11.5 dpc, LINE-1 ORF1 protein is not detected in these cells until 15.5 dpc (Trelogan 
and Martin 1995). In female germ cells, LINE-1 ORF1p protein is expressed during 
early meiotic prophase but does not appear to be as abundant during post-natal 
oocyte development (Malki et al. 2014; Trelogan and Martin 1995). In male germ 
cells, LINE-1 ORF1 protein levels decrease after birth and, somewhat analogously 
to females, increase transiently during early meiotic prophase, then decrease as 
spermatogenesis proceeds (Branciforte and Martin 1994). Thus, early meiotic 
prophase appears to be a point in the germline cycle that LINE-1 retrotransposons 
target for expression. Interestingly, different types of LINE-1 retrotransposon have 
distinct RNA expression profiles during mouse spermatogenesis (Zamudio et  al. 
2015), which presumably reflects differences in the transcription factors binding to 
the distinct 5′ UTRs that each type of LINE-1 possesses.

LTR retrotransposons have a rich diversity of expression patterns during the 
germline cycle. Multiple types of LTR retrotransposon are highly expressed in 
pre-implantation and early post-implantation embryos, and retroviral-like particles 
are abundant in the totipotent and pluripotent cells present in these stages, although 
each LTR retrotransposon has quite specific expression profiles within these devel-
opmental stages (Brûlet et al. 1985; Dupressoir and Heidmann 1996; Fadloun et al. 
2013; Macfarlan et al. 2012; Peaston et al. 2004; Piko et al. 1984; Reichmann et al. 
2012; Ribet et al. 2008; Yotsuyanagi and Szöllösi 1981). The complete germline 
expression patterns of many types of LTR retrotransposon have not been reported, 
and additional intricacies are likely to emerge from next generation sequencing of 
RNA isolated from germline cells. As the retrotransposon LTRs will contain bind-
ing sites for transcription factors that are expressed in the germline, understanding 
how retrotransposons are expressed at specific stages in the germline cycle may 
help decipher some aspects of the transcriptional regulatory networks operating in 
these cells and can potentially help identify developmentally distinct subpopulations 
in the germline cycle (Macfarlan et al. 2012).

4  �Retrotransposon Activity in the Mammalian Germline

The rate of de novo retrotransposition in the germline is presumably subject to 
evolutionary constraint. Although retrotransposons and de novo retrotransposition 
provide a rich source of genetic material and genetic variation, the insertional muta-
tions that arise from these events contribute to genome instability and high de novo 
retrotransposition rates could prove to be deleterious for both the host and the ret-
rotransposon. Rates of de novo retrotransposition in the germline have been esti-
mated from sequencing genomic DNA, and from identification of disease and 
phenotype-causing mutations in mice and humans (Hancks and Kazazian 2012). 
In humans, de novo LINE-1 insertions are estimated to arise in 1 in every 100 births, 
with de novo Alu insertions estimated to occur five times more frequently. SVA ele-
ments have a somewhat lower de novo retrotransposition rate of approximately 1 in 
every 1000 births. LTR retrotransposons are not thought to be retrotranspositionally 
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active in humans, but in mice de novo LTR retrotransposition events account for 
around 10–15 % of sequenced spontaneous mutant alleles (Maksakova et al. 2006). 
However, in general the stages of germline development during which the 
retrotransposition can occur are not known.

Retrotransposition at different stages of germline development can have distinct 
consequences for the host. Retrotransposition in the one cell zygote immediately 
after fertilisation and before the first round of DNA replication would theoretically 
result in the de novo retrotransposition event being present in a heterozygous state in 
all germ cells and somatic cells in that individual. However, retrotransposition at later 
times during pre-implantation development or during early post-implantation devel-
opment would likely result in a mosaic conceptus containing some cells that have 
new heterozygous retrotransposition events, and some that do not. The characterisa-
tion of a mutagenic LINE-1 insertion in humans suggests that LINE-1 retrotransposi-
tion can generate extensive somatic mosaicism consistent with retrotransposition 
occurring early in development (van den Hurk et al. 2007). Importantly, if a de novo 
retrotransposition event has phenotypic consequences, the genetically distinct cells 
in the conceptus could potentially compete with each other, and select for or against 
cells carrying the de novo retrotransposition event. Lastly, de novo retrotransposition 
within the germ cells themselves once they are specified will generate mosaicism and 
potential competition and selection in the germ cell population, but these events will 
not be present in the soma.

The timing of de novo retrotransposition is probably best studied for LINE-1 
elements. Experiments using transgenic mice and rats carrying human or mouse 
LINE-1 retrotransposition reporter cassettes suggest that de novo LINE-1 ret-
rotransposition occurs infrequently in the germ cells themselves, and is more read-
ily detectable in pre-implantation embryos (Kano et al. 2009). It is not clear if the 
inner cell mass, trophectoderm and primitive endoderm layers present in mouse 
blastocysts have differential susceptibilities to LINE-1 retrotransposition. Even 
though expression of these LINE-1 reporter transgenes was significantly higher in 
spermatogenic cells than somatic cells, the relative abundance of cells carrying de 
novo retrotransposition events in sperm was an order of magnitude lower than that 
in somatic tissues (Kano et al. 2009). Thus germ cells may possess host defence 
mechanisms that inhibit LINE-1 retrotransposition at a post-transcriptional level. 
Intriguingly, this study also indicates that pre-implantation embryos can inherit 
LINE-1 RNA from both the mature parental sperm and egg, and that this parentally 
transcribed RNA can retrotranspose in pre-implantation embryos (Kano et al. 2009). 
The finding that transgenic LINE-1 reporters can retrotranspose in early pre-
implantation embryos when pluripotent cells are present in mice is consistent with 
the observation that transgenic LINE-1 reporter and endogenous LINE-1 and SINE 
retrotransposition occurs in human induced pluripotent stem cells and human 
embryonic stem (ES) cells in culture (Garcia-Perez et  al. 2010; Klawitter et  al. 
2016; Wissing et al. 2011). However, data on retrotransposition rates of endogenous 
LINE-1 elements at different stages of the germline cycle is still lacking. Similarly, the 
rates of de novo retrotransposition of LTR retrotransposons at different stages of the 
mouse germline cycle also remain poorly understood. The application and adaptation 
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of new methodologies to identify de novo retrotransposition events in genomic 
DNA (Baillie et al. 2011; Evrony et al. 2012; Ewing and Kazazian 2010; Upton et al. 
2015) should help characterise the natural retrotransposition rates of individual 
retrotransposons during different stages of the germline cycle.

Although viable retrotransposons must be able to retrotranspose in the germline 
cycle, some retrotransposons may also be active in somatic tissues. In recent years, 
evidence has accumulated for de novo LINE-1 retrotransposition in human and 
mouse brain tissue, and de novo retrotransposition has been shown to be a mutational 
mechanism that can inactivate tumour suppressor genes in cancer (Baillie et al. 2011; 
Coufal et al. 2009; Evrony et al. 2012; Muotri et al. 2005; Shukla et al. 2013; Solyom 
et al. 2012; Upton et al. 2015). This aspect is detailed in chapters ‘Retrotransposon 
Contribution to Genomic Plasticity’, ‘The Mobilisation of Processed Transcripts in 
Germline and Somatic Tissues’, ‘Neuronal Genome Plasticity: Retrotransposons, 
Environment and Disease’ and ‘Activity of Retrotransposons in Stem Cells and 
Differentiated Cells’ of this book. Similarly, various types of LTR retrotransposon 
are also expressed in specific somatic tissues (Chuong et al. 2013; Faulkner et al. 
2009; Gimenez et al. 2010; Seifarth et al. 2005). Some retrotransposon expression in 
somatic tissues may represent additional somatic roles for the transcription factors 
that individual retrotransposons are using to drive their expression in the germline 
cycle. For example, SOX2, which associates with the LINE-1 5′UTR in human cells 
(Coufal et al. 2009), is an integral component of the transcription factor network in 
pluripotent cells, but it also maintains the identity of neural progenitor cells (Avilion 
et  al. 2003; Boyer et  al. 2005; Graham et  al. 2003). For other retrotransposons, 
expression in somatic tissues may represent the transcription of a small number of 
specific integration events that have occurred at genomic loci that promote their 
expression in somatic tissues. The liver-specific expression of a subset of IAP 
elements in mice appears to fall into this category (Puech et al. 1997), as does 
expression of the active L1HS-Ta LINE-1 subfamily in human cell lines (Philippe 
et al. 2016).

It is often not clear whether retrotransposon expression in somatic tissues has a 
functional role or if it is evolutionarily neutral. Retrotransposition itself can gener-
ate mosaicism in an individual, and it is possible that this provides some evolution-
ary advantage in some somatic tissues (Muotri et al. 2007). Some retrotransposons 
can influence expression of nearby host genes, for example, the LTRs of some types 
of LTR retrotransposon appears to act as enhancers in the placenta, and the activity 
of these elements in the placenta could be being selected for (Chuong et al. 2013). 
In some cases, specific copies of retrotransposon-encoded proteins appear to have 
been co-opted into the host genome to provide key functions in somatic cells, with 
the repeated independent co-option of LTR retrotransposon proteins to promote 
cell–cell fusions in the placenta during mammalian evolution being a good example 
of this (Dupressoir et al. 2011; Mi et al. 2000) (see chapter ‘Roles of Endogenous 
Retrovirus-Encoded Syncytins in Human Placentation’). The domestication of an 
ancient LINE-like retrotransposon to generate telomerase, the enzyme that maintains 
telomeres at the ends of chromosomes in eukaryotes, suggests that retrotransposon-
derived sequences can evolve to have functions in somatic tissues (Belfort et al. 2011; 
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Curcio and Belfort 2007; Eickbush 1997). Thus, although viable retrotransposons 
must be expressed and active in the germline cycle, this requirement is not incom-
patible with potential roles for these elements in somatic tissues.

5  �The Impact of Retrotransposons on the Mammalian 
Germline

Retrotransposons are able to impact on the germline as a source of trans-generational 
genomic instability that can cause insertional mutations due to jumping to new loca-
tions in the genome, and due to recombination between homologous retrotranspo-
son loci causing genetic deletions, segmental duplications and other chromosomal 
rearrangements (Fig. 3). However, retrotransposons also influence the biology of 
germline cells in other ways (Fig. 3). Retrotransposons use germline transcription 
factors to drive their expression, therefore each retrotransposon locus provides clus-
ters of binding sites for transcription factors that are active in the germline that can 
provide a useful source of DNA sequence modules for evolution (Bourque et al. 
2008; Rebollo et  al. 2012). For example, retrotransposon sequences, particularly 
those from the ERV1 family of LTR retrotransposons, account for around 15–20 % 
of the genomic locations occupied by either OCT4 or NANOG pluripotency-
associated transcription factors in human ES cells, and can drive expression of 
nearby genes in human ES cells (Kunarso et al. 2010). The ERVL family of LTR 
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Non-coding RNA
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Fig. 3  Impact of retrotransposons on germline biology. A schematic diagram summarising some 
of the ways that retrotransposons impact on mammalian germ cells. A region of a chromosome 
containing a gene (grey) flanked by retrotransposons (RPNs, black) is indicated. Transcription is 
indicated by corner arrows, and active enhancers by asterisks. RNA transcripts are indicated by 
wavy lines. For details see main text
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retrotransposons similarly appears to strongly influence the oocyte transcriptome 
and a subset of oocyte transcripts are chimaeras between ERVL retrotransposons 
and host genes (Peaston et al. 2004). One gene that has an oocyte-specific isoform 
driven by an ERVL retrotransposon promoter in oocytes is DICER1, which encodes 
an RNA endonuclease that is involved in the production of endogenous short inter-
fering RNAs (Flemr et al. 2013). This oocyte-specific isoform of DICER1 influ-
ences the abundance of retrotransposon transcripts in mouse oocytes, presumably 
through endogenous siRNAs targeting retrotransposon transcripts (Flemr et  al. 
2013). Thus, retrotransposon sequences in the genome are even promoting expres-
sion of retrotransposon defence mechanisms in the germline. Chimaeric oocyte 
transcripts originating from ERVL-derived promoters can encode retrotransposon-
host gene fusion proteins that are translated in the oocytes (Peaston et al. 2004). 
Similarly, the recently discovered primate LINE-1 ORF0 transcript can run through 
to adjacent host genes and generate fusions between the ORF0 polypeptide and host-
encoded proteins in human ES cells (Denli et al. 2015). Non-coding RNAs derived 
from LTR retrotransposons are also reported to be essential to maintain human ES 
cells in a pluripotent state, possibly through facilitating the binding of some 
transcriptional co-activator proteins to chromatin (Lu et al. 2014; Wang et al. 2014). 
Thus retrotransposons appear to be a rich source of genetic material that is contribut-
ing to the evolution of the transcriptome and the proteome of germline cells.

Mutations in retrotransposon defence mechanisms can result in high levels of 
retrotransposon expression during the germline cycle (Crichton et al. 2014; Ollinger 
et al. 2010; Zamudio and Bourc’his 2010). Mutations in the PIWI-piRNA pathway 
(Fu and Wang 2014), or in the accessory de novo methyltransferase DNMT3L, can 
result in high levels of LINE-1 expression in male germ cells, particularly during 
meiotic prophase (De Fazio et al. 2011; Di Giacomo et al. 2013; Soper et al. 2008; 
Zamudio et al. 2015). In general, these mutants arrest spermatogenesis during meio-
sis, typically around the pachytene stage (Crichton et al. 2014; Ollinger et al. 2010; 
Zamudio and Bourc’his 2010). Mice that have mutations in MAEL, a component of 
the PIWI-piRNA pathway, are reported to arrest during meiosis with high levels of 
meiosis-independent DNA damage that could potentially be caused by high levels 
of de novo retrotransposition of the de-repressed retrotransposons (Soper et  al. 
2008). In contrast, DNMT3L-/- mice are reported to have no detectable increase in 
meiosis-independent DNA damage, and have been proposed to arrest during meio-
sis due to histone modifications at transcriptionally active LINE-1 retrotransposon 
loci recruiting the meiotic recombination machinery, and disrupting the pairing of 
homologous chromosomes that characterise meiotic prophase (Zamudio et  al. 
2015). However, mice that de-repress LINE-1 post-transcriptionally also exhibit 
chromosome asynapsis and pachytene arrest (Di Giacomo et al. 2013), suggesting 
that there may be additional aspects to this phenotype that are not currently under-
stood. Importantly, although de-repression of retrotransposons has been reported in 
various germline genome defence mutants, it remains to be determined whether de 
novo retrotransposition events are accumulating in the mutant germ cells.

De-repression of retrotransposons in oocytes is also associated with defects in 
progression through meiotic prophase. Mutations in LSH, a gene implicated in the 
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establishment or maintenance of DNA methylation at retrotransposons and some 
single copy genes, result in loss of methylation at IAP retrotransposon sequences in 
oocytes, a failure of oocytes to progress through pachytene, and foetal oocyte death 
(De La Fuente et al. 2006). Mutating LSH in somatic cells also results in loss 
of DNA methylation and de-repression of retrotransposons (Dunican et al. 2013). 
This loss of DNA methylation appears to have indirect effects on other chromatin 
modifications in the genome as polycomb repressive complexes re-localise to sites 
normally occupied by DNA methylation, and sequestering polycomb repressive 
complexes away from their normal targets (Dunican et al. 2013). A similar phenom-
enon is seen in somatic cells with mutations in the maintenance DNA methyltrans-
ferase DNMT1 (Reddington et al. 2013), and in hypomethylated embryonic stem 
cells (Lynch et  al. 2012). It is not clear if relocalisation of polycomb repressive 
complexes also happens in LSH mutant oocytes or in PIWI-piRNA mutant sper-
matocytes, but DNA hypomethylation at abundant retrotransposon sequences does 
have the potential to cause significant effects on the genome-wide distribution of 
other histone modifications that could be contributing more to the mutant pheno-
types than retrotransposon de-repression itself.

Mutations in MAEL result in de-repression of retrotransposons, meiotic abnormali-
ties and foetal oocyte death (Malki et al. 2014). The MAEL-/- oocyte phenotype appears 
to be related to de-repression of LINE-1 retrotransposons, and differences in the level 
of LINE-1 expression between individual oocytes in wild-type mice has been 
proposed to influence foetal oocyte attrition and the number of oocytes present in the 
ovarian pool at birth (Malki et al. 2014). The rate of foetal oocyte attrition is acceler-
ated in transgenic mice carrying an active LINE-1 transgene, and delayed by treating 
pregnant mice with an anti-retroviral drug, although these manipulations do not 
change the final number of oocytes in the ovarian pool (Malki et al. 2014). There are 
fundamental differences in the way that the oocyte pool influences fertility and meno-
pause between humans and mice, and it will be of interest to determine if manipulating 
LINE-1 activity can influence the size of the oocyte pool in humans. Human oocytes do, 
however, contain the host factors to support LINE-1 retrotransposition, at least using 
engineered LINE-1 reporter constructs (Georgiou et al. 2009).

6  �Genome Defence Mechanisms Operating 
in the Mammalian Germline

The mammalian germline possesses a number of defence mechanisms that suppress 
the potentially mutagenic activity of retrotransposons in these cells (Crichton et al. 
2014; Friedli and Trono 2015; Zamudio and Bourc’his 2010). Histone modification 
appears to play an important role in repressing retrotransposons in mouse ES cells, 
with H3K9me3 and H3K27me3 chromatin marks frequently associating with 
silenced retrotransposons in these cells (Day et al. 2010). Canonical and alternative 
polycomb repressive complexes, which catalyse trimethylation of H3K27, are 
involved in repressing multiple families of LTR retrotransposons in mouse ES cells 
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(Hisada et al. 2012; Leeb and Wutz 2007; Reichmann et al. 2012). SETDB1 and 
SUV39H1/SUV39H2, which trimethylate H3K9, are similarly implicated in 
repressing LINE-1 and multiple families of LTR retrotransposons on mouse ES 
cells (Bulut-Karslioglu et al. 2014; Karimi et al. 2011; Matsui et al. 2010; Reichmann 
et al. 2012). The lysine demethylase KDM1A also plays a role in repressing LINE-1 
elements and ERVL LTR retrotransposons (Macfarlan et  al. 2012), and histone 
deacetylases are implicated in repression of ERVK LTR retrotransposons in mouse 
ES cells (Reichmann et al. 2012), and in suppressing de novo but not pre-existing 
LINE-1 integrations in human embryonal carcinoma cells (Garcia-Perez et  al. 
2010). The variety of different mechanisms operating in ES cells may reflect the 
diversity of retrotransposons in the genome and the multiple strategies that these 
elements use to drive their transcription in the germline.

As retrotransposons hijack the transcriptional networks present in the host to drive 
their transcription, it is possible that some of the silencing mechanisms operating in 
ES cells reflect the mechanisms normally used to regulate the developmental timing 
of host genes whose expression is driven by the same transcription factors. For exam-
ple, endogenous gene transcripts that have a role in the zygote might be downregu-
lated as pre-implantation development proceeds such that they are not expressed in 
pluripotent epiblast cells or ES cells. Similarly, retrotransposons that are using this 
transcription factor network to drive their expression in zygotes would be expected 
to be downregulated in ES cells. Some of the mechanisms involved in repressing 
retrotransposons in ES cells will presumably reflect the normal mechanisms that 
mediate developmental changes in host gene transcription in these cells, with ret-
rotransposon sequences being repressed ‘by association’ due to their co-regulation 
with host genes that are downregulated at this stage of development.

In contrast, the specific targeting of repressive chromatin marks to retrotranspo-
sons that is mediated by Krüppel-associated box zinc finger proteins (KRAB-ZFPs) 
appears to represent a more active and directed defence mechanism against these 
elements. Specific KRAB-ZFPs bind to specific retrotransposon sequences, recruit-
ing the co-repressor KAP1 (also known as TRIM28) and H3K9me3 chromatin modi-
fications to these sites (Friedman et al. 1996; Rowe et al. 2010; Wolf and Goff 2009, 
2007). KAP1 interacts with the histone H3K9 methyltransferase SETDB1, which 
appears to be the major H3K9 histone methyltransferase involved in silencing LTR 
retrotransposons in mouse ES cells (Karimi et al. 2011; Matsui et al. 2010; Sripathy 
et al. 2006). Some LINE-1 elements are silenced by SUV39H1/SUV39H2 H3K9 
histone methyltransferases rather than SETDB1 (Bulut-Karslioglu et  al. 2014; 
Matsui et al. 2010), but it is not clear why different histone methyltransferases are 
being used to silence different retrotransposons. For KAP1 to target a retrotranspo-
son for silencing, a KRAB-ZFP must evolve to bind to that retrotransposon sequence, 
and KRAB-ZFPs appear to be evolving rapidly for this purpose (Jacobs et al. 2014). 
Furthermore, retrotransposon loci that mutate or delete their KRAB-ZFP binding 
sites can escape from KAP1-dependent repression and evolve into new retrotranspo-
son sub-types (Jacobs et al. 2014). Thus while some LINE-1 elements recruit and are 
repressed by KAP1 in mouse and human ES cells, the youngest types of LINE-1 are 
repressed by alternative mechanisms (Castro-Diaz et al. 2014).
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DNA methylation plays an important role in repressing retrotransposons in germ 
cells and somatic cells (Bourc’his and Bestor 2004; Davis et al. 1989; De La Fuente 
et al. 2006; Dunican et al. 2013; Jackson-Grusby et al. 2001; Walsh et al. 1998), 
although its role in repressing retrotransposons in mouse ES cells may be more 
restricted than either KAP1 or SETDB1 (Karimi et al. 2011; Matsui et al. 2010; 
Rowe et al. 2010). The ability of mouse ES cells to induce compensatory histone 
modifications at some retrotransposons in response to DNA hypomethylation 
(Walter et  al. 2016) may contribute to this. Pluripotent epiblast cells in mouse 
embryos undergo a wave of de novo DNA methylation during post-implantation 
development (Borgel et al. 2010) and it is possible that DNA methylation is recruited 
to retrotransposons that are already silenced by histone modifications at this stage to 
reinforce and stabilise the repressed state (Rowe et al. 2013). This mechanism bears 
some resemblance to the observation that bulk of the de novo DNA methylation that 
occurs during tumourigenesis is located at genes that are already silenced by other 
mechanisms (Sproul et al. 2011). However, at least for some retrotransposons, per-
sistent KAP1/KRAB-ZFP activity is required to maintain repression of some ret-
rotransposon loci in differentiating and adult somatic cells (Ecco et al. 2016), and 
the interplay between histone modifications and DNA methylation in establishing 
and maintaining silencing at different retrotransposon sequences in different cell 
types is likely to be complex and requires further study.

In the developing germ cells, DNA methylation is globally lost from the genome 
from 8.5 dpc through to 11.5 dpc as the primordial germ cells migrate to and colonise 
the genital ridge (Hajkova et al. 2008, 2002). This global loss of DNA methylation 
includes retrotransposon sequences, although IAP elements are amongst the most 
resistant to this phenomenon (Popp et al. 2010; Seisenberger et al. 2012). This loss 
of DNA methylation is part of a more extensive epigenetic reprogramming event 
that also involves genome-wide loss of various repressive histone modifications 
including H3K9me1 and H3K9me2 (Hajkova et al. 2008). It is not clear how ret-
rotransposons are transcriptionally repressed during this stage of germ cell develop-
ment, but the histone arginine methyltransferase PRMT5 localises to the nucleus 
and symmetric dimethylation of histones H2AR3 and/or H4R3 is upregulated dur-
ing the early part of this reprogramming event and are present at LINE-1 and IAP 
retrotransposon sequences (Ancelin et al. 2006; Kim et al. 2014). PRMT5-/- primor-
dial germ cells have undetectable levels of H2A/H4R3me2s in their nuclei, and 
de-repress LINE-1, IAP and other retrotransposons suggesting that PRMT5-
dependent symmetric dimethylation of histones H2AR3 and H4R3 may contribute 
directly to the repression of retrotransposons in hypomethylated primordial germ 
cells (Kim et al. 2014). There may of course be additional, presently uncharacterised, 
histone modifications associated with specific types of retrotransposon that are 
helping to repress transcription of these elements in hypomethylated germ cells.

At around 11.5 dpc, PRMT5 is re-localised from the primordial germ cell nucleus 
into the cytoplasm and levels of H2A/H4R3me2s concomitantly decrease (Ancelin 
et al. 2006). Additional mechanisms likely become important to limit retrotransposon 
activity in hypomethylated germ cells at this stage. Analysis of retrotransposon tran-
script abundance in the transcriptome of 13.5 dpc primordial germ cell from wild-type 
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mice supports widespread low level transcriptional de-repression of retrotransposons 
in hypomethylated germ cells at this stage (Molaro et al. 2014). The DNA hypo-
methylation that occurs in the developing primordial germ cells is not restricted to 
retrotransposons and extends to most genomic features including endogenous gene 
promoters (Popp et al. 2010; Seisenberger et al. 2012). Thus this global DNA hypo-
methylation event can influence expression of host genes in the developing germline 
(Hackett et al. 2012). Interestingly, many genes that are primarily and causally regu-
lated by DNA methylation in mice are germline-specific genes that are involved in 
suppressing retrotransposon activity (Hackett et al. 2012). DNA hypomethylation in 
the developing germline therefore appears to induce expression of a group of ret-
rotransposon-suppressing genome defence genes to compensate for the increase in 
potential retrotransposon activity caused by loss of this repressive epigenetic mark.

One of the genome defence genes that is most sensitive to DNA hypomethylation 
is TEX19.1. TEX19.1 is required to repress MMERVK10C LTR retrotransposons in 
spermatocytes, and also to repress LINE-1 elements and LTR retrotransposons in 
the hypomethylated somatic cells present in the placenta (Öllinger et  al. 2008; 
Reichmann et al. 2013). Most of the other germline genome defence genes induced 
in response to global DNA hypomethylation are components of the PIWI-piRNA 
pathway for repressing retrotransposons. The PIWI-piRNA pathway uses small 
RNAs encoded in the genome to target retrotransposons for suppression by epigen-
etic and post-transcriptional mechanisms in the germline (Fu and Wang 2014; 
Iwasaki et al. 2015). There are three PIWI proteins in mouse and rat genomes, but 
four PIWI proteins in many other mammals including humans. The three mouse 
PIWI proteins have distinct expression profile during spermatogenesis. These PIWI 
proteins physically interact with small single-stranded PIWI-interacting RNAs 
(piRNAs) whose sequence is thought to target the PIWI proteins to retrotransposon 
sequences (Aravin et  al. 2006, 2008, 2007; Carmell et  al. 2007; Kuramochi-
Miyagawa et al. 2001). Genomic piRNAs are derived from long RNA precursors 
that undergo a number of processing events to generate mature piRNAs. These pri-
mary piRNAs can facilitate processing of complementary precursor sequences, 
such as retrotransposon transcripts, into secondary piRNAs which in turn can pro-
mote processing of genomic precursors into primary piRNAs. This ping-pong cycle 
can amplify groups of piRNAs and is important for generating an effective piRNA 
response against LINE-1 elements in male mouse germ cells (De Fazio et al. 2011). 
The slicer RNA endonuclease activity of PIWI proteins plays an important role in 
processing piRNA precursors, and PIWI-piRNA-directed slicing of retrotransposon 
RNAs by PIWIL1 and PIWIL2 contribute to the PIWI-piRNA defence against ret-
rotransposons (De Fazio et al. 2011; Di Giacomo et al. 2013; Reuter et al. 2011). 
PIWIL2 and PIWIL4 are required for male germ cells to establish de novo DNA 
methylation at retrotransposon sequences (Aravin et al. 2008; Kuramochi-Miyagawa 
et al. 2008). De novo methylation of retrotransposons occurs from 16.5 dpc onwards 
in foetal male germ cells, and it is possible that sequence information present in the 
PIWI-piRNA pathway is being used to direct the de novo DNA methylation machin-
ery to these sequences. It is not clear if PIWI-piRNA complexes regulate DNA 
methylation directly, or indirectly through other chromatin modifications. H3K9 
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methylation has been implicated in PIWI-dependent retrotransposon silencing in 
Drosophila, and in silencing retrotransposons in post-natal male germ cells in mice 
(Di Giacomo et al. 2014, 2013; Huang et al. 2013; Pezic et al. 2014). Perhaps one 
of the reasons that genome-wide loss of DNA methylation occurs in the developing 
germ cells is to expose retrotransposon loci to the PIWI-piRNA pathway so that 
retrotransposons can be identified and epigenetic repression of these elements 
established de novo in preparation for transmission of the genome to the next gen-
eration. Removing and resetting epigenetic marks on these sequences may be pref-
erable to propagating existing marks in order to prevent epimutations from being 
transmitted across multiple generations. There may also be some analogies to the 
mechanisms operating in Arabidopsis, where programmed loss of DNA demethyl-
ation in the pollen’s vegetative nucleus results in de-repression of retrotransposons 
whose transcripts are processed into small RNAs, transported to the pollen’s germ-
line nucleus, and used to direct epigenetic silencing of retrotransposons in the germ-
line DNA (Calarco et al. 2012; Slotkin et al. 2009). The DNA methylation-sensitive 
coupling of expression of post-transcriptional genome defence mechanisms and 
components of the PIWI-piRNA pathway to transcriptional de-repression of ret-
rotransposons in mouse germ cells may similarly allow mouse germ cells to generate 
the retrotransposon RNA transcripts needed to direct de novo identification and 
silencing of retrotransposon loci in the mammalian germline (Fig. 4).

RetrotransposonsGenome defence genes

Retrotransposition

DNA hypomethylation De novo DNA methylation

?

Fig. 4  Potential role of genome defence genes in the male germline. A schematic diagram outlin-
ing the potential role of genome defence genes during epigenetic reprogramming in the male 
germline. Germ cells losing DNA methylation (filled grey circles → filled white circles) transcribe 
RNA (wavy lines) encoding genome defence genes and retrotransposons, which can be translated 
into protein (filled triangles and squares, respectively). Genome defence proteins, including compo-
nents of the PIWI-piRNA pathway, that inhibit any post-transcriptional stages of the retrotransposon 
life cycle (grey) can limit mutations caused by retrotransposition, while allowing retrotransposon 
RNA transcripts to prime the PIWI-piRNA pathway (broken wavy lines). The PIWI-piRNA pathway 
slices retrotransposon RNA transcripts to generate piRNAs and can potentially use sequence 
information in the piRNAs to direct de novo DNA methylation onto retrotransposon sequences 
(indicated by question mark)
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Components of the PIWI-piRNA system also appear to play roles in post-
transcriptional suppression of retrotransposons in oocytes, and PIWIL2 suppresses 
LINE-1 mobility in human induced pluripotent cells (Lim et al. 2013; Malki et al. 
2014; Marchetto et  al. 2013; Watanabe et  al. 2008). In mice, PIWI function in 
oocytes is primarily provided by PIWIL2 although additional members of the PIWI 
family may also contribute to PIWI function in oocytes in other mammalian species 
including human (Roovers et al. 2015). Mutating PIWIL2 in mice does not have the 
severe consequences for fertility in females that it does in males (Kuramochi-
Miyagawa et al. 2004; Lim et al. 2013), which may in part reflect differences in the 
way that de novo DNA methylation is regulated between spermatogenesis and 
oogenesis (Smallwood and Kelsey 2012). De novo DNA methylation occurs post-
natally during oocyte growth in the female germline, and oocytes are therefore in a 
DNA hypomethylated state throughout their prolonged dictyate arrest and for much 
of their adult life. In the absence of PIWIL2, the abundance of some retrotransposon 
transcripts is elevated in oocytes, potentially reflecting PIWIL2-dependent post-
transcriptional suppression of these elements during oogenesis (Lim et  al. 2013; 
Watanabe et al. 2008). However, the PIWI-piRNA system is not the only mecha-
nism that operates in oocytes to post-transcriptionally suppress retrotransposons, 
and DICER1-dependent endogenous siRNAs also make a significant contribution 
(Flemr et al. 2013; Stein et al. 2015; Tam et al. 2008; Watanabe et al. 2008). MARF1 
may represent another mechanism regulating retrotransposons at a post-transcriptional 
level in these cells (Su et al. 2012a, b).

The distinct post-transcriptional suppression mechanisms operating in mouse 
oocytes appear to complement each other to target different types of retrotransposon 
(Watanabe et al. 2008). Pools of endogenous siRNA and piRNA present in fully 
grown oocytes can potentially be transmitted to the next generation to provide some 
protection against retrotransposons in pre-implantation embryos. However, 
retrotransposon-encoded transcripts, proteins, and ribonucleoprotein particles that 
are expressed during the oocyte’s prolonged dictyate arrest or post-natal growth can 
similarly be transmitted in the oocyte cytoplasm and can cause retrotransposition in 
the next generation (Kano et al. 2009). The presence of multiple overlapping and 
complementary genome defence mechanisms in oocytes may therefore provide 
some protection against retrotransposon mobilisation during oogenesis, and also 
help to limit maternal transmission of retrotransposon-derived ribonucleoprotein 
particles than can retrotranspose in the next generation.

7  �Concluding Remarks

As described in this chapter, the mammalian germline and retrotransposons are 
intrinsically linked in multiple ways. All retrotransposons need to be expressed and 
active in the mammalian germline in order to accumulate in the genome during 
evolution, and while the germline appears to have evolved multiple defence mecha-
nisms to limit the mutagenic activity of these elements, these mechanisms are 
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helping to drive evolution of retrotransposons to escape suppression. This situation 
is analogous to the Red Queen hypothesis (van Valen 1973) as both retrotransposons 
and germline defence mechanisms need to continue to evolve simply to keep up 
with each other. However, in addition to this antagonistic relationship, retrotransposons 
appear to be participating in the transcriptional and proteomic networks of germline 
cells and providing regulatory modules for gene expression that are being repur-
posed by the germline to help it evolve. Additional intricacies will likely emerge in 
the coming years as the interplay between retrotransposons and the germline 
becomes better understood, but it would appear that retrotransposons can be viewed 
as having both beneficial and deleterious effects on their germline hosts.
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