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Preface

Retrotransposons are highly repetitive and dispersed sequences. These transposable 
elements have the ability to proliferate via an RNA-mediated copy-and-paste mech-
anism, called retrotransposition, and belong to several distant subclasses in humans.

The Long INterspersed Element-1 (L1 or LINE-1) is the only autonomous trans-
posable element able to generate new copies in the modern human genome. The role 
of this process as a source of genetic diversity and diseases in humans has been 
recognized since the late 1980s. However, the advances of deep-sequencing tech-
nologies have recently shed new light on the extent of L1-mediated genome varia-
tions. They have also led to the discovery that L1 is not only able to mobilize in the 
germline—resulting in inheritable genetic variations—but can also jump in somatic 
tissues, such as embryonic stem cells, neuronal progenitor cells, and in many can-
cers. L1 is also able to mobilize in trans other sequences, leading to the expansion 
of Alu elements, which belong to another class of repeats, the Short INterspersed 
Elements (SINEs); or to the formation of processed pseudogenes, which also con-
tribute to genome plasticity. Understanding the link between retrotransposon- 
mediated structural genomic variation and human phenotypes or diseases has 
become an intense field of research.

Although insertional mutagenesis is one of the mechanisms by which retrotrans-
posons reshape our genome, retrotransposition-independent mechanisms also 
impact genome stability and cellular physiology (e.g., recombination, exaptation, 
creation of novel or alternative transcripts or proteins, DNA damage). These pro-
cesses implicate a much broader set of retrotransposon sequences, some being very 
ancient and totally unable to mobilize, at least in humans. For example, the remod-
eling of the epigenetic landscape during early embryonic development activates the 
transcription of defective retrotransposons. The latter are unable to jump, but their 
transcription allows the synthesis of long noncoding RNA (lncRNA) with essential 
roles in stemness.

One of the originalities of this book is to explore not only insertion-based effects 
and their related consequences on germline and somatic genome dynamics but also 
the role and impact of retrotransposon sequences in a broader context, including a 
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number of novel topics that emerged recently (lncRNA, neuronal disorders, exapta-
tion, aging). We hope that it will illustrate how much retrotransposon biology is 
tightly connected to a myriad of cellular or physiological processes and will stimu-
late the next generation of young scientists to join a fascinating field and a highly 
dynamic research community.

Nice, France Gael Cristofari 

Preface
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Retrotransposons and the Mammalian 
Germline

Ian R. Adams

1  Retrotransposons in Mammalian Genomes

Retrotransposons are a class of mobile genetic elements that make up around 40 % 
of the sequenced mammalian genome (Chinwalla et al. 2002; Lander et al. 2001). 
Retrotransposons contribute to genomic instability in mammalian genomes by pro-
viding interspersed repeats of homologous sequences that can act as substrates for 
recombination causing deletions, duplications and structural rearrangements in the 
genome (Romanish et al. 2010). Retrotransposons are thought to be the only active 
class of mobile genetic element in most mammalian genomes, and can also cause 
genome instability through jumping to new locations in the genome. These de novo 
retrotransposon insertions have been reported as the causal mutation in various 
human genetic diseases (Crichton et  al. 2014; Hancks and Kazazian 2012). The 
copy-and-paste mechanism that retrotransposons use to jump to new locations in the 
genome involves reverse-transcription of retrotransposon RNA, and integration of 
the resulting cDNA into new locations in the genome. There are typically a few 
hundred different types of retrotransposon annotated in each mammalian genome, 
with each type of retrotransposon being present in up to 10,000 copies. However, 
the types of retrotransposon, their copy numbers and their genomic locations vary 
significantly between species.

Mammalian retrotransposons are classified into LINE (long interspersed nuclear 
elements), SINE (short interspersed nuclear elements) and LTR (long terminal 
repeat) retrotransposon classes (Chinwalla et al. 2002; Lander et al. 2001). Each 
class of retrotransposons can be further subdivided into families, and each family 
into individual types. The LINE class of retrotransposons in mammals is primarily 
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represented by the LINE-1 family. Only the human-specific L1HS-Ta subfamily of 
LINE-1 is still active in the human genome, whereas the L1MdA, L1MdTf and 
L1MdGf types of LINE-1 are all active in the mice (Beck et al. 2011; Hancks and 
Kazazian 2012; Sookdeo et al. 2013). Full-length LINE-1s are typically 6–7 kb long 
and are transcribed from an internal promoter located in the 5′ untranslated region 
(UTR) of these elements (Beck et al. 2011; Hancks and Kazazian 2012; Swergold 
1990). The LINE-1 promoter also generates an antisense transcript that can extend 
into the adjacent flanking cellular DNA (Cruickshanks et al. 2013; Li et al. 2014; 
Macia et al. 2011; Speek 2001). The LINE-1 5′ UTR varies significantly between 
species, and even between individual types of LINE-1 within species (Khan et al. 
2006; Lee et  al. 2010; Sookdeo et  al. 2013). LINE-1 encodes two open reading 
frames in mice and rodents, and three open reading frames in humans and primates 
(Beck et al. 2011; Denli et al. 2015; Hancks and Kazazian 2012). The recently dis-
covered primate-specific LINE-1 ORF0 protein is localised to nuclear bodies and 
enhances LINE-1 retrotransposition activity, although its mechanism of action is 
not currently understood (Denli et  al. 2015). LINE-1 ORF1 protein encodes an 
RNA-binding protein that forms a particle with LINE-1 RNA and is required for 
LINE-1 retrotransposition activity (Khazina and Weichenrieder 2009; Martin and 
Branciforte 1993; Moran et al. 1996). The LINE-1-encoded ORF2 protein is also 
required for LINE-1 retrotransposition and encodes an endonuclease and reverse 
transcriptase that nicks the host genomic DNA and catalyses target-primed reverse 
transcription of LINE-1 RNA into DNA at the site of genomic integration (Cost et al. 
2002; Feng et al. 1996; Mathias et al. 1991; Moran et al. 1996). LINE-1 elements 
display a strong cis-preference where LINE-1 ORF1p and ORF2p tend to associate 
with the same mRNA molecule from which they are translated (Esnault et al. 2000; 
Kulpa and Moran 2006; Wei et al. 2001).

The SINE class of retrotransposons includes a group of elements that are typically 
100–300 bp long and are derived from small non-coding cellular RNAs including 
7SL RNA, 5S rRNA and tRNAs (Kramerov and Vassetzky 2011). SINE retrotrans-
posons are transcribed from internal RNA polymerase III promoters, and include the 
Alu family in humans and primates. The human genome contains hundreds of active 
Alu elements, particularly those belonging to AluY and AluS subfamilies (Bennett 
et al. 2008). Alu elements have been proposed to utilise a ‘stealth’ mode of amplifica-
tion where elements mobilise at low frequencies for a long time, occasionally gener-
ating hyperactive copies that expand aggressively but rapidly become extinct 
(Han et  al. 2005). Alu elements, and SINEs in general, are non- autonomous ret-
rotransposons that rely on LINE-1-encoded proteins to catalyse their retrotransposi-
tion (Dewannieux et  al. 2003; Hancks et  al. 2011; Raiz et  al. 2012). The crystal 
structure of the Alu ribonucleoprotein particle suggests that Alu elements hijack 
LINE-1 reverse transcriptase by binding to ribosomes that are stalled when LINE-1 
ORF2p reverse transcribes its encoding mRNA (Ahl et al. 2015). Other active SINEs 
in the human genome include SVA elements which can be up to 2 kb in length and 
contain regions derived from SINE-R and Alu retrotransposons (Hancks and 
Kazazian 2010; Wang et al. 2005).

I.R. Adams
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The LTR retrotransposon class, whose members are also known as endogenous 
retroviruses (ERVs), typically encodes the Gag, Pol, Pro and sometimes also Env 
proteins that are found in retrovirus genomes (Bannert and Kurth 2006). These ret-
roviral proteins function in the production of retroviral capsid proteins, retroviral 
DNA synthesis and integration into the host genome, processing of retroviral pro-
teins, and forming the surface envelope on the retroviral capsid, respectively. The 5′ 
LTR acts as a promoter for these elements. LTR retrotransposons typically reverse- 
transcribe their RNA in the cytoplasm of the host, then translocate the cDNA into 
the nucleus and use a LTR retrotransposon-encoded integrase to insert the DNA into 
the genome. Some LTR retrotransposons are autonomous and encode the proteins 
required to catalyse their own retrotransposition, whereas others use proteins 
encoded by other types of LTR retrotransposon to retrotranspose in trans 
(Dewannieux et al. 2004; Ribet et al. 2004). LTR retrotransposons actively mobilise 
in rodents, and de novo retrotransposition of LTR retrotransposons accounts for 
around 10 % of spontaneously occurring mutations in mice (Maksakova et al. 2006). 
However, the vast majority of LTR retrotransposons in human genomes are probably 
extinct, and mobilisation of LTR retrotransposons in humans is extremely limited 
(Wildschutte et al. 2016).

Despite the diversity in retrotransposon structure and life cycle, the reason why 
each and every one of these elements has been able to accumulate multiple copies 
in the genome during evolution is because they are able to retrotranspose in the cells 
that can transmit those new genomic copies to the next generation. These crucial 
cells that play a key role in the life cycle and biology of retrotransposons in mam-
mals belong to the germline.

2  The Mammalian Germline

In mammals, genetic information is transmitted from generation to generation by germ 
cells. Germ cells are conceptually distinct from the somatic cells that populate organs 
like the liver, brain, kidney, lungs and heart in that any genetic change that arises in 
germ cells can potentially be transmitted to subsequent generations whereas those that 
arise in somatic cells cannot (Fig. 1). This defining distinction between germ cells 
and somatic cells, as first proposed by the evolutionary biologist August Weismann 
(1834–1914) (Weismann 1889), means that it is events and activities that occur within 
germ cells that shape the landscape of mammalian genomes during evolution. Thus, 
while any individual retrotransposon might retrotranspose in any specific somatic tissue, 
all successful retrotransposons must retrotranspose in the germline.

Weismann’s distinction between germline and soma means that genetic information 
and mutations that arise in somatic cells cannot be transmitted to the germ cells and 
subsequent generations, but this barrier between germ cells and soma is unidirec-
tional (Fig. 1). Weismann realised that the soma must originate from the germline 
during early development, and therefore genetic information and mutations that 
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arise in the germline can be propagated into the soma. These early embryonic cells 
that can give rise to both the germline and all somatic tissues would correspond to 
totipotent and pluripotent cells in modern terminology (Nichols and Smith 2009), 
while the term ‘germ cell’ is now typically reserved for lineage-restricted cells that 
have the capacity to differentiate into the mature gametes, but that do not normally 
contribute to somatic tissues in that individual (McLaren 2003). Weismann’s germ-
line encompasses totipotent cells, pluripotent cells and germ cells as they are all 
able to transmit genetic information and mutations to the next generation. Similarly, 
I will include the totipotent and pluripotent cells that are present in early mamma-
lian development as part of the germline for the purposes of this review.

The major stages in mammalian germline development are outlined in Fig. 2. 
As many of these events are best characterised in mice, the timings and stages of 
germline development will be described for this species although there are likely to 
be broad similarities with other mammalian species. Mouse development initiates 
when mature germ cells, that is, female eggs and male sperm, fuse during fertilisa-
tion to generate a single-celled zygote. This zygote is totipotent in that it has the 
potential to differentiate into all extra-embryonic and embryonic cell types in the 
conceptus, which includes the germ cells. As pre-implantation development pro-
ceeds to blastocyst stage, some cells in the embryo differentiate into trophectoderm 
and primitive endoderm lineages that contribute only to extra-embryonic tissues. 
The remaining cells differentiate into pluripotent epiblast cells which retain the 
capacity to differentiate into all cell types in the embryo proper, including the germ 
cells (Magnúsdóttir and Surani 2014; Nichols and Smith 2009). After the blastocyst 
implants into the uterus, some pluripotent epiblast cells located close to the extra- 
embryonic ectoderm are induced by extracellular signals to differentiate into pri-
mordial germ cells. This germ cell specification event occurs around 6.25–7.25 days 
post coitum (dpc) in mouse embryos, and generates a founding population of around 
40 primordial germ cells (Lawson and Hage 1994; Ohinata et al. 2005). The nascent 
primordial germ cells then embark on a phase of proliferation as they migrate 

GAMETES

GERMLINESOMA

ZYGOTE

GAMETES

ZYGOTE

Fig. 1 The germline cycle. A schematic diagram showing the mammalian germline cycle. Genetic 
information, variation and mutations are inherited in the zygote from the parental gametes. The 
zygote gives rise to an individual containing soma (white) and germline (grey) tissues. Genetic 
information, variation and mutation in germline tissues can be incorporated into the gametes and 
transmitted to the next generation, whereas that in the soma cannot
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through the embryo to reach the emerging gonads around 10.5 dpc. The germ cells 
are typically referred to as primordial germ cells during the early stages of their 
development until they reach the gonad, and primordial germ cell development at 
this point occurs similarly in male and female embryos. Once the primordial germ 
cells colonise the gonad, they continue to proliferate for a few more days, then initi-
ate sex-specific differentiation into either male prospermatogonia or female oocytes 
(Kocer et al. 2009).

The germ cells’ decision to differentiate along a male or a female pathway 
depends on sex-determining cues present in the gonadal environment rather than the 
sex chromosome constitution of the germ cells themselves (Kocer et al. 2009). In mice, 
germ cells in a foetal ovary become committed to develop down a female pathway 

AdultFoetusPre-implantation
embryo

Primordial germ cell specification

Primordial germ cell migration

Germ cell sex determination

Initiation of meiosis (♀)

Dictyate arrest (♀)

Oocyte growth (♀)

Quiescence (♂)

Spermatogonia mitosis (♂)

Initiation of meiosis (♂)

Spermiogenesis (♂)

Blastulation

Gastrulation

♂

♀

Post-
implantation

embryo

Fig. 2 Germline development in mice. A schematic diagram summarising the main stages of 
germline development in mice. Germ cells and their developmental precursors (totipotent and 
pluripotent cells) are coloured grey. For pre-implantation stages, a totipotent zygote and cleavage 
stage embryo, and a blastocyst containing pluripotent epiblast cells are shown. Post-implantation 
embryos before and after gastrulation are also shown, with pluripotent epiblast cells and primor-
dial germ cells coloured grey. For foetal stages, primordial germ cells are shown within the gonads, 
and meiotic cells are indicated by a pair of homologous chromosomes in their nuclei. Pachytene 
stage of meiosis is depicted by the ladder-like synaptonemal complex between homologous chro-
mosomes, which is absent in dictyate oocytes. Products of the first and second meiotic divisions 
are depicted by nuclei with a single replicated chromosome and an individual chromatid, respec-
tively. Note that the second meiotic division in oocytes is typically only completed at fertilisation. 
Chromosomes are not shown in diploid mitotic cells for clarity, and the distinctive morphologies 
of fully grown oocytes and mature sperm are also indicated
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between 12.5 dpc and 13.5 dpc (Adams and McLaren 2002). These oocytes initiate 
meiosis around 13.5 dpc and progress through most of the first meiotic prophase 
during late foetal development, then arrest as dictyate oocytes a few days after birth. 
The dictyate oocytes will eventually be stimulated to grow and resume meiosis in 
response to hormonal cues in adult animals. Fully grown oocytes then arrest meiosis 
during the second meiotic division before being ovulated and potentially fertilised 
(MacLennan et al. 2015).

In contrast, germ cells in a foetal mouse testis become committed to male devel-
opment between 11.5 dpc and 12.5 dpc (Adams and McLaren 2002). The resulting 
prospermatogonia, also termed gonocytes, enter a period of quiescence and differ-
entiation during late foetal development, then resume mitotic proliferation a few 
days after birth (Rossitto et al. 2015). The prospermatogonia give rise to mitotic 
spermatogonia and to a pool of spermatogonial stem cells which will self-renew and 
differentiate into more mitotic spermatogonia, thereby maintaining spermatogene-
sis throughout adulthood (Yang and Oatley 2014). The spermatogonia undergo a 
number of mitotic divisions before initiating meiosis which, in contrast to oocytes, 
typically proceeds without interruption. During spermiogenesis, the post-meiotic 
spermatids undergo a series of morphological changes that include condensation of 
the chromatin, elongation of the nucleus, specialisation of the Golgi membranes 
into an acrosome, generation of a flagella and elimination of residual cytoplasm 
(O’Donnell 2015). The sperm chromatin is delivered, along with a limited amount 
of cytoplasmic material, into the oocyte at fertilisation. The highly condensed and 
specialised sperm chromatin is predominantly associated with protamines rather 
than histones, and is reprogrammed with oocyte-derived histones shortly after 
fertilisation (Hogg and Western 2015).

3  Retrotransposon Expression in the Mammalian Germline

For a retrotransposon to accumulate new genomic integrations during evolution it 
needs to be active in the mammalian germline. While each retrotransposon does not 
need to be expressed and active at all stages in the germline cycle, each retrotrans-
poson needs to be expressed and active at least at one point in the germline cycle. 
As outlined in the previous section, the germline cycle involves multiple distinct 
phases of development, and germline cells appear to use distinct transcription factor 
networks during these phases. Thus, it is rare to find germline-specific genes or 
transcription factors that are expressed throughout pre-implantation development, 
primordial germ cell development, foetal gametogenesis, oogenesis and spermato-
genesis. One might expect individual retrotransposon expression profiles to behave 
similarly.

LINE-1 element transcripts, for example, are reported to be present in 
 pre- implantation embryos, and in primordial germ cells in foetal gonads from 11.5 
onwards (Fadloun et al. 2013; Hayashi et al. 2008; Molaro et al. 2014; Seisenberger 
et  al. 2012). Although LINE-1 transcripts are present in foetal germ cells from 
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11.5 dpc, LINE-1 ORF1 protein is not detected in these cells until 15.5 dpc (Trelogan 
and Martin 1995). In female germ cells, LINE-1 ORF1p protein is expressed during 
early meiotic prophase but does not appear to be as abundant during post-natal 
oocyte development (Malki et al. 2014; Trelogan and Martin 1995). In male germ 
cells, LINE-1 ORF1 protein levels decrease after birth and, somewhat analogously 
to females, increase transiently during early meiotic prophase, then decrease as 
spermatogenesis proceeds (Branciforte and Martin 1994). Thus, early meiotic 
prophase appears to be a point in the germline cycle that LINE-1 retrotransposons 
target for expression. Interestingly, different types of LINE-1 retrotransposon have 
distinct RNA expression profiles during mouse spermatogenesis (Zamudio et  al. 
2015), which presumably reflects differences in the transcription factors binding to 
the distinct 5′ UTRs that each type of LINE-1 possesses.

LTR retrotransposons have a rich diversity of expression patterns during the 
germline cycle. Multiple types of LTR retrotransposon are highly expressed in 
pre- implantation and early post-implantation embryos, and retroviral-like particles 
are abundant in the totipotent and pluripotent cells present in these stages, although 
each LTR retrotransposon has quite specific expression profiles within these devel-
opmental stages (Brûlet et al. 1985; Dupressoir and Heidmann 1996; Fadloun et al. 
2013; Macfarlan et al. 2012; Peaston et al. 2004; Piko et al. 1984; Reichmann et al. 
2012; Ribet et al. 2008; Yotsuyanagi and Szöllösi 1981). The complete germline 
expression patterns of many types of LTR retrotransposon have not been reported, 
and additional intricacies are likely to emerge from next generation sequencing of 
RNA isolated from germline cells. As the retrotransposon LTRs will contain bind-
ing sites for transcription factors that are expressed in the germline, understanding 
how retrotransposons are expressed at specific stages in the germline cycle may 
help decipher some aspects of the transcriptional regulatory networks operating in 
these cells and can potentially help identify developmentally distinct subpopulations 
in the germline cycle (Macfarlan et al. 2012).

4  Retrotransposon Activity in the Mammalian Germline

The rate of de novo retrotransposition in the germline is presumably subject to 
evolutionary constraint. Although retrotransposons and de novo retrotransposition 
provide a rich source of genetic material and genetic variation, the insertional muta-
tions that arise from these events contribute to genome instability and high de novo 
retrotransposition rates could prove to be deleterious for both the host and the ret-
rotransposon. Rates of de novo retrotransposition in the germline have been esti-
mated from sequencing genomic DNA, and from identification of disease and 
phenotype-causing mutations in mice and humans (Hancks and Kazazian 2012). 
In humans, de novo LINE-1 insertions are estimated to arise in 1 in every 100 births, 
with de novo Alu insertions estimated to occur five times more frequently. SVA ele-
ments have a somewhat lower de novo retrotransposition rate of approximately 1 in 
every 1000 births. LTR retrotransposons are not thought to be retrotranspositionally 
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active in humans, but in mice de novo LTR retrotransposition events account for 
around 10–15 % of sequenced spontaneous mutant alleles (Maksakova et al. 2006). 
However, in general the stages of germline development during which the 
retrotransposition can occur are not known.

Retrotransposition at different stages of germline development can have distinct 
consequences for the host. Retrotransposition in the one cell zygote immediately 
after fertilisation and before the first round of DNA replication would theoretically 
result in the de novo retrotransposition event being present in a heterozygous state in 
all germ cells and somatic cells in that individual. However, retrotransposition at later 
times during pre-implantation development or during early post-implantation devel-
opment would likely result in a mosaic conceptus containing some cells that have 
new heterozygous retrotransposition events, and some that do not. The characterisa-
tion of a mutagenic LINE-1 insertion in humans suggests that LINE-1 retrotransposi-
tion can generate extensive somatic mosaicism consistent with retrotransposition 
occurring early in development (van den Hurk et al. 2007). Importantly, if a de novo 
retrotransposition event has phenotypic consequences, the genetically distinct cells 
in the conceptus could potentially compete with each other, and select for or against 
cells carrying the de novo retrotransposition event. Lastly, de novo retrotransposition 
within the germ cells themselves once they are specified will generate mosaicism and 
potential competition and selection in the germ cell population, but these events will 
not be present in the soma.

The timing of de novo retrotransposition is probably best studied for LINE-1 
elements. Experiments using transgenic mice and rats carrying human or mouse 
LINE-1 retrotransposition reporter cassettes suggest that de novo LINE-1 ret-
rotransposition occurs infrequently in the germ cells themselves, and is more read-
ily detectable in pre-implantation embryos (Kano et al. 2009). It is not clear if the 
inner cell mass, trophectoderm and primitive endoderm layers present in mouse 
blastocysts have differential susceptibilities to LINE-1 retrotransposition. Even 
though expression of these LINE-1 reporter transgenes was significantly higher in 
spermatogenic cells than somatic cells, the relative abundance of cells carrying de 
novo retrotransposition events in sperm was an order of magnitude lower than that 
in somatic tissues (Kano et al. 2009). Thus germ cells may possess host defence 
mechanisms that inhibit LINE-1 retrotransposition at a post-transcriptional level. 
Intriguingly, this study also indicates that pre-implantation embryos can inherit 
LINE-1 RNA from both the mature parental sperm and egg, and that this parentally 
transcribed RNA can retrotranspose in pre-implantation embryos (Kano et al. 2009). 
The finding that transgenic LINE-1 reporters can retrotranspose in early pre- 
implantation embryos when pluripotent cells are present in mice is consistent with 
the observation that transgenic LINE-1 reporter and endogenous LINE-1 and SINE 
retrotransposition occurs in human induced pluripotent stem cells and human 
embryonic stem (ES) cells in culture (Garcia-Perez et  al. 2010; Klawitter et  al. 
2016; Wissing et al. 2011). However, data on retrotransposition rates of endogenous 
LINE-1 elements at different stages of the germline cycle is still lacking. Similarly, the 
rates of de novo retrotransposition of LTR retrotransposons at different stages of the 
mouse germline cycle also remain poorly understood. The application and adaptation 
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of new methodologies to identify de novo retrotransposition events in genomic 
DNA (Baillie et al. 2011; Evrony et al. 2012; Ewing and Kazazian 2010; Upton et al. 
2015) should help characterise the natural retrotransposition rates of individual 
retrotransposons during different stages of the germline cycle.

Although viable retrotransposons must be able to retrotranspose in the germline 
cycle, some retrotransposons may also be active in somatic tissues. In recent years, 
evidence has accumulated for de novo LINE-1 retrotransposition in human and 
mouse brain tissue, and de novo retrotransposition has been shown to be a mutational 
mechanism that can inactivate tumour suppressor genes in cancer (Baillie et al. 2011; 
Coufal et al. 2009; Evrony et al. 2012; Muotri et al. 2005; Shukla et al. 2013; Solyom 
et al. 2012; Upton et al. 2015). This aspect is detailed in chapters ‘Retrotransposon 
Contribution to Genomic Plasticity’, ‘The Mobilisation of Processed Transcripts in 
Germline and Somatic Tissues’, ‘Neuronal Genome Plasticity: Retrotransposons, 
Environment and Disease’ and ‘Activity of Retrotransposons in Stem Cells and 
Differentiated Cells’ of this book. Similarly, various types of LTR retrotransposon 
are also expressed in specific somatic tissues (Chuong et al. 2013; Faulkner et al. 
2009; Gimenez et al. 2010; Seifarth et al. 2005). Some retrotransposon expression in 
somatic tissues may represent additional somatic roles for the transcription factors 
that individual retrotransposons are using to drive their expression in the germline 
cycle. For example, SOX2, which associates with the LINE-1 5′UTR in human cells 
(Coufal et al. 2009), is an integral component of the transcription factor network in 
pluripotent cells, but it also maintains the identity of neural progenitor cells (Avilion 
et  al. 2003; Boyer et  al. 2005; Graham et  al. 2003). For other retrotransposons, 
expression in somatic tissues may represent the transcription of a small number of 
specific integration events that have occurred at genomic loci that promote their 
expression in somatic tissues. The liver- specific expression of a subset of IAP 
elements in mice appears to fall into this category (Puech et al. 1997), as does 
expression of the active L1HS-Ta LINE-1 subfamily in human cell lines (Philippe 
et al. 2016).

It is often not clear whether retrotransposon expression in somatic tissues has a 
functional role or if it is evolutionarily neutral. Retrotransposition itself can gener-
ate mosaicism in an individual, and it is possible that this provides some evolution-
ary advantage in some somatic tissues (Muotri et al. 2007). Some retrotransposons 
can influence expression of nearby host genes, for example, the LTRs of some types 
of LTR retrotransposon appears to act as enhancers in the placenta, and the activity 
of these elements in the placenta could be being selected for (Chuong et al. 2013). 
In some cases, specific copies of retrotransposon-encoded proteins appear to have 
been co-opted into the host genome to provide key functions in somatic cells, with 
the repeated independent co-option of LTR retrotransposon proteins to promote 
cell–cell fusions in the placenta during mammalian evolution being a good example 
of this (Dupressoir et al. 2011; Mi et al. 2000) (see chapter ‘Roles of Endogenous 
Retrovirus-Encoded Syncytins in Human Placentation’). The domestication of an 
ancient LINE-like retrotransposon to generate telomerase, the enzyme that maintains 
telomeres at the ends of chromosomes in eukaryotes, suggests that retrotransposon- 
derived sequences can evolve to have functions in somatic tissues (Belfort et al. 2011; 
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Curcio and Belfort 2007; Eickbush 1997). Thus, although  viable retrotransposons 
must be expressed and active in the germline cycle, this requirement is not incom-
patible with potential roles for these elements in somatic tissues.

5  The Impact of Retrotransposons on the Mammalian 
Germline

Retrotransposons are able to impact on the germline as a source of trans- generational 
genomic instability that can cause insertional mutations due to jumping to new loca-
tions in the genome, and due to recombination between homologous retrotranspo-
son loci causing genetic deletions, segmental duplications and other chromosomal 
rearrangements (Fig. 3). However, retrotransposons also influence the biology of 
germline cells in other ways (Fig. 3). Retrotransposons use germline transcription 
factors to drive their expression, therefore each retrotransposon locus provides clus-
ters of binding sites for transcription factors that are active in the germline that can 
provide a useful source of DNA sequence modules for evolution (Bourque et al. 
2008; Rebollo et  al. 2012). For example, retrotransposon sequences, particularly 
those from the ERV1 family of LTR retrotransposons, account for around 15–20 % 
of the genomic locations occupied by either OCT4 or NANOG pluripotency- 
associated transcription factors in human ES cells, and can drive expression of 
nearby genes in human ES cells (Kunarso et al. 2010). The ERVL family of LTR 
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Non-coding RNA
co-activator

Genetic
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Insertional
mutation
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Fig. 3 Impact of retrotransposons on germline biology. A schematic diagram summarising some 
of the ways that retrotransposons impact on mammalian germ cells. A region of a chromosome 
containing a gene (grey) flanked by retrotransposons (RPNs, black) is indicated. Transcription is 
indicated by corner arrows, and active enhancers by asterisks. RNA transcripts are indicated by 
wavy lines. For details see main text
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retrotransposons similarly appears to strongly influence the oocyte transcriptome 
and a subset of oocyte transcripts are chimaeras between ERVL retrotransposons 
and host genes (Peaston et al. 2004). One gene that has an oocyte-specific isoform 
driven by an ERVL retrotransposon promoter in oocytes is DICER1, which encodes 
an RNA endonuclease that is involved in the production of endogenous short inter-
fering RNAs (Flemr et al. 2013). This oocyte-specific isoform of DICER1 influ-
ences the abundance of retrotransposon transcripts in mouse oocytes, presumably 
through endogenous siRNAs targeting retrotransposon transcripts (Flemr et  al. 
2013). Thus, retrotransposon sequences in the genome are even promoting expres-
sion of retrotransposon defence mechanisms in the germline. Chimaeric oocyte 
transcripts originating from ERVL-derived promoters can encode retrotransposon- 
host gene fusion proteins that are translated in the oocytes (Peaston et al. 2004). 
Similarly, the recently discovered primate LINE-1 ORF0 transcript can run through 
to adjacent host genes and generate fusions between the ORF0 polypeptide and host-
encoded proteins in human ES cells (Denli et al. 2015). Non-coding RNAs derived 
from LTR retrotransposons are also reported to be essential to maintain human ES 
cells in a pluripotent state, possibly through facilitating the binding of some 
transcriptional co-activator proteins to chromatin (Lu et al. 2014; Wang et al. 2014). 
Thus retrotransposons appear to be a rich source of genetic material that is contribut-
ing to the evolution of the transcriptome and the proteome of germline cells.

Mutations in retrotransposon defence mechanisms can result in high levels of 
retrotransposon expression during the germline cycle (Crichton et al. 2014; Ollinger 
et al. 2010; Zamudio and Bourc’his 2010). Mutations in the PIWI-piRNA pathway 
(Fu and Wang 2014), or in the accessory de novo methyltransferase DNMT3L, can 
result in high levels of LINE-1 expression in male germ cells, particularly during 
meiotic prophase (De Fazio et al. 2011; Di Giacomo et al. 2013; Soper et al. 2008; 
Zamudio et al. 2015). In general, these mutants arrest spermatogenesis during meio-
sis, typically around the pachytene stage (Crichton et al. 2014; Ollinger et al. 2010; 
Zamudio and Bourc’his 2010). Mice that have mutations in MAEL, a component of 
the PIWI-piRNA pathway, are reported to arrest during meiosis with high levels of 
meiosis-independent DNA damage that could potentially be caused by high levels 
of de novo retrotransposition of the de-repressed retrotransposons (Soper et  al. 
2008). In contrast, DNMT3L-/- mice are reported to have no detectable increase in 
meiosis-independent DNA damage, and have been proposed to arrest during meio-
sis due to histone modifications at transcriptionally active LINE-1 retrotransposon 
loci recruiting the meiotic recombination machinery, and disrupting the pairing of 
homologous chromosomes that characterise meiotic prophase (Zamudio et  al. 
2015). However, mice that de-repress LINE-1 post-transcriptionally also exhibit 
chromosome asynapsis and pachytene arrest (Di Giacomo et al. 2013), suggesting 
that there may be additional aspects to this phenotype that are not currently under-
stood. Importantly, although de-repression of retrotransposons has been reported in 
various germline genome defence mutants, it remains to be determined whether de 
novo retrotransposition events are accumulating in the mutant germ cells.

De-repression of retrotransposons in oocytes is also associated with defects in 
progression through meiotic prophase. Mutations in LSH, a gene implicated in the 
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establishment or maintenance of DNA methylation at retrotransposons and some 
single copy genes, result in loss of methylation at IAP retrotransposon sequences in 
oocytes, a failure of oocytes to progress through pachytene, and foetal oocyte death 
(De La Fuente et al. 2006). Mutating LSH in somatic cells also results in loss 
of DNA methylation and de-repression of retrotransposons (Dunican et al. 2013). 
This loss of DNA methylation appears to have indirect effects on other chromatin 
modifications in the genome as polycomb repressive complexes re-localise to sites 
normally occupied by DNA methylation, and sequestering polycomb repressive 
complexes away from their normal targets (Dunican et al. 2013). A similar phenom-
enon is seen in somatic cells with mutations in the maintenance DNA methyltrans-
ferase DNMT1 (Reddington et al. 2013), and in hypomethylated embryonic stem 
cells (Lynch et  al. 2012). It is not clear if relocalisation of polycomb repressive 
complexes also happens in LSH mutant oocytes or in PIWI-piRNA mutant sper-
matocytes, but DNA hypomethylation at abundant retrotransposon sequences does 
have the potential to cause significant effects on the genome-wide distribution of 
other histone modifications that could be contributing more to the mutant pheno-
types than retrotransposon de-repression itself.

Mutations in MAEL result in de-repression of retrotransposons, meiotic abnormali-
ties and foetal oocyte death (Malki et al. 2014). The MAEL-/- oocyte phenotype appears 
to be related to de-repression of LINE-1 retrotransposons, and differences in the level 
of LINE-1 expression between individual oocytes in wild-type mice has been 
proposed to influence foetal oocyte attrition and the number of oocytes present in the 
ovarian pool at birth (Malki et al. 2014). The rate of foetal oocyte attrition is acceler-
ated in transgenic mice carrying an active LINE-1 transgene, and delayed by treating 
pregnant mice with an anti-retroviral drug, although these manipulations do not 
change the final number of oocytes in the ovarian pool (Malki et al. 2014). There are 
fundamental differences in the way that the oocyte pool influences fertility and meno-
pause between humans and mice, and it will be of interest to determine if manipulating 
LINE-1 activity can influence the size of the oocyte pool in humans. Human oocytes do, 
however, contain the host factors to support LINE-1 retrotransposition, at least using 
engineered LINE-1 reporter constructs (Georgiou et al. 2009).

6  Genome Defence Mechanisms Operating 
in the Mammalian Germline

The mammalian germline possesses a number of defence mechanisms that suppress 
the potentially mutagenic activity of retrotransposons in these cells (Crichton et al. 
2014; Friedli and Trono 2015; Zamudio and Bourc’his 2010). Histone modification 
appears to play an important role in repressing retrotransposons in mouse ES cells, 
with H3K9me3 and H3K27me3 chromatin marks frequently associating with 
silenced retrotransposons in these cells (Day et al. 2010). Canonical and alternative 
polycomb repressive complexes, which catalyse trimethylation of H3K27, are 
involved in repressing multiple families of LTR retrotransposons in mouse ES cells 
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(Hisada et al. 2012; Leeb and Wutz 2007; Reichmann et al. 2012). SETDB1 and 
SUV39H1/SUV39H2, which trimethylate H3K9, are similarly implicated in 
repressing LINE-1 and multiple families of LTR retrotransposons on mouse ES 
cells (Bulut-Karslioglu et al. 2014; Karimi et al. 2011; Matsui et al. 2010; Reichmann 
et al. 2012). The lysine demethylase KDM1A also plays a role in repressing LINE-1 
elements and ERVL LTR retrotransposons (Macfarlan et  al. 2012), and histone 
deacetylases are implicated in repression of ERVK LTR retrotransposons in mouse 
ES cells (Reichmann et al. 2012), and in suppressing de novo but not pre-existing 
LINE-1 integrations in human embryonal carcinoma cells (Garcia-Perez et  al. 
2010). The variety of different mechanisms operating in ES cells may reflect the 
diversity of retrotransposons in the genome and the multiple strategies that these 
elements use to drive their transcription in the germline.

As retrotransposons hijack the transcriptional networks present in the host to drive 
their transcription, it is possible that some of the silencing mechanisms operating in 
ES cells reflect the mechanisms normally used to regulate the developmental timing 
of host genes whose expression is driven by the same transcription factors. For exam-
ple, endogenous gene transcripts that have a role in the zygote might be downregu-
lated as pre-implantation development proceeds such that they are not expressed in 
pluripotent epiblast cells or ES cells. Similarly, retrotransposons that are using this 
transcription factor network to drive their expression in zygotes would be expected 
to be downregulated in ES cells. Some of the mechanisms involved in repressing 
retrotransposons in ES cells will presumably reflect the normal mechanisms that 
mediate developmental changes in host gene transcription in these cells, with ret-
rotransposon sequences being repressed ‘by association’ due to their co- regulation 
with host genes that are downregulated at this stage of development.

In contrast, the specific targeting of repressive chromatin marks to retrotranspo-
sons that is mediated by Krüppel-associated box zinc finger proteins (KRAB-ZFPs) 
appears to represent a more active and directed defence mechanism against these 
elements. Specific KRAB-ZFPs bind to specific retrotransposon sequences, recruit-
ing the co-repressor KAP1 (also known as TRIM28) and H3K9me3 chromatin modi-
fications to these sites (Friedman et al. 1996; Rowe et al. 2010; Wolf and Goff 2009, 
2007). KAP1 interacts with the histone H3K9 methyltransferase SETDB1, which 
appears to be the major H3K9 histone methyltransferase involved in silencing LTR 
retrotransposons in mouse ES cells (Karimi et al. 2011; Matsui et al. 2010; Sripathy 
et al. 2006). Some LINE-1 elements are silenced by SUV39H1/SUV39H2 H3K9 
histone methyltransferases rather than SETDB1 (Bulut-Karslioglu et  al. 2014; 
Matsui et al. 2010), but it is not clear why different histone methyltransferases are 
being used to silence different retrotransposons. For KAP1 to target a retrotranspo-
son for silencing, a KRAB-ZFP must evolve to bind to that retrotransposon sequence, 
and KRAB-ZFPs appear to be evolving rapidly for this purpose (Jacobs et al. 2014). 
Furthermore, retrotransposon loci that mutate or delete their KRAB- ZFP binding 
sites can escape from KAP1-dependent repression and evolve into new retrotranspo-
son sub-types (Jacobs et al. 2014). Thus while some LINE-1 elements recruit and are 
repressed by KAP1 in mouse and human ES cells, the youngest types of LINE-1 are 
repressed by alternative mechanisms (Castro-Diaz et al. 2014).
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DNA methylation plays an important role in repressing retrotransposons in germ 
cells and somatic cells (Bourc’his and Bestor 2004; Davis et al. 1989; De La Fuente 
et al. 2006; Dunican et al. 2013; Jackson-Grusby et al. 2001; Walsh et al. 1998), 
although its role in repressing retrotransposons in mouse ES cells may be more 
restricted than either KAP1 or SETDB1 (Karimi et al. 2011; Matsui et al. 2010; 
Rowe et al. 2010). The ability of mouse ES cells to induce compensatory histone 
modifications at some retrotransposons in response to DNA hypomethylation 
(Walter et  al. 2016) may contribute to this. Pluripotent epiblast cells in mouse 
embryos undergo a wave of de novo DNA methylation during post-implantation 
development (Borgel et al. 2010) and it is possible that DNA methylation is recruited 
to retrotransposons that are already silenced by histone modifications at this stage to 
reinforce and stabilise the repressed state (Rowe et al. 2013). This mechanism bears 
some resemblance to the observation that bulk of the de novo DNA methylation that 
occurs during tumourigenesis is located at genes that are already silenced by other 
mechanisms (Sproul et al. 2011). However, at least for some retrotransposons, per-
sistent KAP1/KRAB-ZFP activity is required to maintain repression of some ret-
rotransposon loci in differentiating and adult somatic cells (Ecco et al. 2016), and 
the interplay between histone modifications and DNA methylation in establishing 
and maintaining silencing at different retrotransposon sequences in different cell 
types is likely to be complex and requires further study.

In the developing germ cells, DNA methylation is globally lost from the genome 
from 8.5 dpc through to 11.5 dpc as the primordial germ cells migrate to and colonise 
the genital ridge (Hajkova et al. 2008, 2002). This global loss of DNA methylation 
includes retrotransposon sequences, although IAP elements are amongst the most 
resistant to this phenomenon (Popp et al. 2010; Seisenberger et al. 2012). This loss 
of DNA methylation is part of a more extensive epigenetic reprogramming event 
that also involves genome-wide loss of various repressive histone modifications 
including H3K9me1 and H3K9me2 (Hajkova et al. 2008). It is not clear how ret-
rotransposons are transcriptionally repressed during this stage of germ cell develop-
ment, but the histone arginine methyltransferase PRMT5 localises to the nucleus 
and symmetric dimethylation of histones H2AR3 and/or H4R3 is upregulated dur-
ing the early part of this reprogramming event and are present at LINE-1 and IAP 
retrotransposon sequences (Ancelin et al. 2006; Kim et al. 2014). PRMT5-/- primor-
dial germ cells have undetectable levels of H2A/H4R3me2s in their nuclei, and 
de-repress LINE-1, IAP and other retrotransposons suggesting that PRMT5- 
dependent symmetric dimethylation of histones H2AR3 and H4R3 may contribute 
directly to the repression of retrotransposons in hypomethylated primordial germ 
cells (Kim et al. 2014). There may of course be additional, presently uncharacterised, 
histone modifications associated with specific types of retrotransposon that are 
helping to repress transcription of these elements in hypomethylated germ cells.

At around 11.5 dpc, PRMT5 is re-localised from the primordial germ cell nucleus 
into the cytoplasm and levels of H2A/H4R3me2s concomitantly decrease (Ancelin 
et al. 2006). Additional mechanisms likely become important to limit  retrotransposon 
activity in hypomethylated germ cells at this stage. Analysis of retrotransposon tran-
script abundance in the transcriptome of 13.5 dpc primordial germ cell from wild-type 
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mice supports widespread low level transcriptional de-repression of retrotransposons 
in hypomethylated germ cells at this stage (Molaro et al. 2014). The DNA hypo-
methylation that occurs in the developing primordial germ cells is not restricted to 
retrotransposons and extends to most genomic features including endogenous gene 
promoters (Popp et al. 2010; Seisenberger et al. 2012). Thus this global DNA hypo-
methylation event can influence expression of host genes in the developing germline 
(Hackett et al. 2012). Interestingly, many genes that are primarily and causally regu-
lated by DNA methylation in mice are germline-specific genes that are involved in 
suppressing retrotransposon activity (Hackett et al. 2012). DNA hypomethylation in 
the developing germline therefore appears to induce expression of a group of ret-
rotransposon-suppressing genome defence genes to compensate for the increase in 
potential retrotransposon activity caused by loss of this repressive epigenetic mark.

One of the genome defence genes that is most sensitive to DNA hypomethylation 
is TEX19.1. TEX19.1 is required to repress MMERVK10C LTR retrotransposons in 
spermatocytes, and also to repress LINE-1 elements and LTR retrotransposons in 
the hypomethylated somatic cells present in the placenta (Öllinger et  al. 2008; 
Reichmann et al. 2013). Most of the other germline genome defence genes induced 
in response to global DNA hypomethylation are components of the PIWI-piRNA 
pathway for repressing retrotransposons. The PIWI-piRNA pathway uses small 
RNAs encoded in the genome to target retrotransposons for suppression by epigen-
etic and post-transcriptional mechanisms in the germline (Fu and Wang 2014; 
Iwasaki et al. 2015). There are three PIWI proteins in mouse and rat genomes, but 
four PIWI proteins in many other mammals including humans. The three mouse 
PIWI proteins have distinct expression profile during spermatogenesis. These PIWI 
proteins physically interact with small single-stranded PIWI-interacting RNAs 
(piRNAs) whose sequence is thought to target the PIWI proteins to retrotransposon 
sequences (Aravin et  al. 2006, 2008, 2007; Carmell et  al. 2007; Kuramochi- 
Miyagawa et al. 2001). Genomic piRNAs are derived from long RNA precursors 
that undergo a number of processing events to generate mature piRNAs. These pri-
mary piRNAs can facilitate processing of complementary precursor sequences, 
such as retrotransposon transcripts, into secondary piRNAs which in turn can pro-
mote processing of genomic precursors into primary piRNAs. This ping-pong cycle 
can amplify groups of piRNAs and is important for generating an effective piRNA 
response against LINE-1 elements in male mouse germ cells (De Fazio et al. 2011). 
The slicer RNA endonuclease activity of PIWI proteins plays an important role in 
processing piRNA precursors, and PIWI-piRNA-directed slicing of retrotransposon 
RNAs by PIWIL1 and PIWIL2 contribute to the PIWI-piRNA defence against ret-
rotransposons (De Fazio et al. 2011; Di Giacomo et al. 2013; Reuter et al. 2011). 
PIWIL2 and PIWIL4 are required for male germ cells to establish de novo DNA 
methylation at retrotransposon sequences (Aravin et al. 2008; Kuramochi-Miyagawa 
et al. 2008). De novo methylation of retrotransposons occurs from 16.5 dpc onwards 
in foetal male germ cells, and it is possible that sequence information present in the 
PIWI-piRNA pathway is being used to direct the de novo DNA methylation machin-
ery to these sequences. It is not clear if PIWI-piRNA complexes regulate DNA 
methylation directly, or indirectly through other chromatin modifications. H3K9 
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methylation has been implicated in PIWI-dependent retrotransposon silencing in 
Drosophila, and in silencing retrotransposons in post-natal male germ cells in mice 
(Di Giacomo et al. 2014, 2013; Huang et al. 2013; Pezic et al. 2014). Perhaps one 
of the reasons that genome-wide loss of DNA methylation occurs in the developing 
germ cells is to expose retrotransposon loci to the PIWI-piRNA pathway so that 
retrotransposons can be identified and epigenetic repression of these elements 
established de novo in preparation for transmission of the genome to the next gen-
eration. Removing and resetting epigenetic marks on these sequences may be pref-
erable to propagating existing marks in order to prevent epimutations from being 
transmitted across multiple generations. There may also be some analogies to the 
mechanisms operating in Arabidopsis, where programmed loss of DNA demethyl-
ation in the pollen’s vegetative nucleus results in de-repression of retrotransposons 
whose transcripts are processed into small RNAs, transported to the pollen’s germ-
line nucleus, and used to direct epigenetic silencing of retrotransposons in the germ-
line DNA (Calarco et al. 2012; Slotkin et al. 2009). The DNA methylation-sensitive 
coupling of expression of post-transcriptional genome defence mechanisms and 
components of the PIWI-piRNA pathway to transcriptional de-repression of ret-
rotransposons in mouse germ cells may similarly allow mouse germ cells to  generate 
the retrotransposon RNA transcripts needed to direct de novo identification and 
silencing of retrotransposon loci in the mammalian germline (Fig. 4).

RetrotransposonsGenome defence genes

Retrotransposition

DNA hypomethylation De novo DNA methylation

?

Fig. 4 Potential role of genome defence genes in the male germline. A schematic diagram outlin-
ing the potential role of genome defence genes during epigenetic reprogramming in the male 
germline. Germ cells losing DNA methylation (filled grey circles → filled white circles) transcribe 
RNA (wavy lines) encoding genome defence genes and retrotransposons, which can be translated 
into protein (filled triangles and squares, respectively). Genome defence proteins, including compo-
nents of the PIWI-piRNA pathway, that inhibit any post-transcriptional stages of the retrotransposon 
life cycle (grey) can limit mutations caused by retrotransposition, while allowing retrotransposon 
RNA transcripts to prime the PIWI-piRNA pathway (broken wavy lines). The PIWI-piRNA pathway 
slices retrotransposon RNA transcripts to generate piRNAs and can potentially use sequence 
information in the piRNAs to direct de novo DNA methylation onto retrotransposon sequences 
(indicated by question mark)
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Components of the PIWI-piRNA system also appear to play roles in post- 
transcriptional suppression of retrotransposons in oocytes, and PIWIL2 suppresses 
LINE-1 mobility in human induced pluripotent cells (Lim et al. 2013; Malki et al. 
2014; Marchetto et  al. 2013; Watanabe et  al. 2008). In mice, PIWI function in 
oocytes is primarily provided by PIWIL2 although additional members of the PIWI 
family may also contribute to PIWI function in oocytes in other mammalian species 
including human (Roovers et al. 2015). Mutating PIWIL2 in mice does not have the 
severe consequences for fertility in females that it does in males (Kuramochi- 
Miyagawa et al. 2004; Lim et al. 2013), which may in part reflect differences in the 
way that de novo DNA methylation is regulated between spermatogenesis and 
oogenesis (Smallwood and Kelsey 2012). De novo DNA methylation occurs post- 
natally during oocyte growth in the female germline, and oocytes are therefore in a 
DNA hypomethylated state throughout their prolonged dictyate arrest and for much 
of their adult life. In the absence of PIWIL2, the abundance of some retrotransposon 
transcripts is elevated in oocytes, potentially reflecting PIWIL2-dependent post- 
transcriptional suppression of these elements during oogenesis (Lim et  al. 2013; 
Watanabe et al. 2008). However, the PIWI-piRNA system is not the only mecha-
nism that operates in oocytes to post-transcriptionally suppress retrotransposons, 
and DICER1-dependent endogenous siRNAs also make a significant contribution 
(Flemr et al. 2013; Stein et al. 2015; Tam et al. 2008; Watanabe et al. 2008). MARF1 
may represent another mechanism regulating retrotransposons at a post- transcriptional 
level in these cells (Su et al. 2012a, b).

The distinct post-transcriptional suppression mechanisms operating in mouse 
oocytes appear to complement each other to target different types of retrotransposon 
(Watanabe et al. 2008). Pools of endogenous siRNA and piRNA present in fully 
grown oocytes can potentially be transmitted to the next generation to provide some 
protection against retrotransposons in pre-implantation embryos. However, 
retrotransposon- encoded transcripts, proteins, and ribonucleoprotein particles that 
are expressed during the oocyte’s prolonged dictyate arrest or post-natal growth can 
similarly be transmitted in the oocyte cytoplasm and can cause retrotransposition in 
the next generation (Kano et al. 2009). The presence of multiple overlapping and 
complementary genome defence mechanisms in oocytes may therefore provide 
some protection against retrotransposon mobilisation during oogenesis, and also 
help to limit maternal transmission of retrotransposon-derived ribonucleoprotein 
particles than can retrotranspose in the next generation.

7  Concluding Remarks

As described in this chapter, the mammalian germline and retrotransposons are 
intrinsically linked in multiple ways. All retrotransposons need to be expressed and 
active in the mammalian germline in order to accumulate in the genome during 
evolution, and while the germline appears to have evolved multiple defence mecha-
nisms to limit the mutagenic activity of these elements, these mechanisms are 
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helping to drive evolution of retrotransposons to escape suppression. This situation 
is analogous to the Red Queen hypothesis (van Valen 1973) as both retrotransposons 
and germline defence mechanisms need to continue to evolve simply to keep up 
with each other. However, in addition to this antagonistic relationship, retrotransposons 
appear to be participating in the transcriptional and proteomic networks of germline 
cells and providing regulatory modules for gene expression that are being repur-
posed by the germline to help it evolve. Additional intricacies will likely emerge in 
the coming years as the interplay between retrotransposons and the germline 
becomes better understood, but it would appear that retrotransposons can be viewed 
as having both beneficial and deleterious effects on their germline hosts.
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1  Introduction

Transposable elements (TEs) represent one of the most dynamic components of 
mammalian genomes. Genome sequencing has illuminated the abundance, com-
plexity, and diversity of TEs. TEs constitute approximately 50 % of human and 
mouse genomes (Lander et al. 2001; Waterston et al. 2002). Based on the mode of 
mobilization, they are classified as either DNA transposons, which mobilize through 
a cut-paste mechanism, or retrotransposons, which mobilize through a copy-paste 
mechanism (i.e., via an RNA intermediate). While DNA transposons have lost their 
activities in the human and mouse genomes during evolution, retrotransposons have 
been far more successful in colonizing these genomes (Lander et al. 2001; Waterston 
et  al. 2002). Retrotransposons are further categorized into LTR (long terminal 
repeat) retrotransposons and non-LTR retrotransposons. LTR retrotransposons are 
also known as endogenous retroviruses (ERVs) and comprise 9 % and 10 % of the 
human and mouse genomes, respectively (Lander et al. 2001; Waterston et al. 2002). 
ERVs remain active in rodents (Maksakova et al. 2006), but do not show any recent 
insertional activity within the human genome (Magiorkinis et al. 2015). Non-LTR 
retrotransposons include long interspersed elements (LINEs) and short interspersed 
elements (SINEs). LINE-1s (L1s) constitute 17 % and 19 % of the human and mouse 
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genomes, respectively (Lander et al. 2001; Waterston et al. 2002). A full-length L1 
is ~6 kb in length and contains an internal promoter in its 5′ untranslated region 
(5′UTR), two open reading frames (ORF1 and ORF2), and a poly(A) signal in its 
3′UTR (Furano 2000) (Fig. 1). SINEs, on the other hand, do not encode any pro-
teins and rely on L1 proteins for mobilization.

Both mouse and human genomes have over 500,000 copies of L1, most of which 
are incapable of further mobilization. The lack of activity is primarily due to “struc-
tural defects.” In other words, mutations concurrent or subsequent to retrotransposi-
tion (i.e., 5′ truncations, inversions, substitutions, INDELs, and any other types of 
debilitating mutations) render the elements incompetent (Szak et al. 2002). Within 
these inactive elements lie the remnants of many L1 families and subfamilies, high-
lighting the evolving battles between retrotransposons and the host (Khan et  al. 
2006). Only full-length intact L1s retain the ability to mobilize autonomously and 
amplify within the genome, and have the potential to generate additional full-length 
copies. It is estimated that the diploid human genome harbors an average of 80–100 
retrotransposition competent L1 elements (Brouha et  al. 2003). The number of 

Fig. 1 L1 is regulated at distinct stages of replication. L1 mobilizes through a bicistronic 
mRNA intermediate and inserts into the genome through target primed reverse transcription 
(TPRT). L1s must overcome transcriptional silencing mechanisms. Both piRNA-guided DNA 
methylation and several histone marks (H3K9me3/2 and H2A/H4R3me2) suppress the expres-
sion of L1s in the germline. Posttranscriptionally L1s face (both pachytene and fetal) piRNA-
mediated endonucleolytic cleavage. It remains unclear what barriers or host-factors are involved 
in nuclear import and TRPT
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potentially active elements is much higher in the mouse genome (Goodier et  al. 
2001). It is worth noting that retrotransposition-competent L1s usually belong to 
younger L1 families and many are polymorphic among individuals. Accordingly, 
there can be large interindividual variation in genomic L1 retrotransposition potential 
(Beck et al. 2010).

Retrotransposons impact and modify the genome in a multitude of ways (Goodier 
and Kazazian 2008). The most obvious is insertional mutagenesis, which is high-
lighted by the observed >100 cases of human diseases caused by L1-mediated ret-
rotransposition events (Hancks and Kazazian 2016). Thus, in the short term, 
retrotransposition activity represents a formidable threat to the host genome and 
must be properly regulated in both somatic and germ cells. However, in the long 
term, TEs may benefit a species through expansion of genomic material and altera-
tion of expression patterns. Since L1s mobilize through an RNA intermediate, it 
expands the repertoire of alterations that L1s can engender to the genome. Due to its 
weak polyadenylation signal, donor L1s frequently utilize downstream polyadenyl-
ation signals and thus mobilize 3′ flanking genetic information (3′ transduction) 
(Moran et al. 1999). Intronic L1s can be exonized through cryptic splicing events 
(Zemojtel et  al. 2007). Cellular mRNAs can also be mobilized, resulting in the 
expansion of processed pseudogenes (Esnault et al. 2000). In fact, through a process 
termed exaptation, TE-derived genes have adopted critical functions in many physi-
ological processes, including immune response, centromere assembly, and placen-
tal formation (Alzohairy et al. 2013). Additionally, there is evidence that some TE 
sequences have been exapted into novel regulatory elements, potentially serving as 
promoters, enhancers, silencers, or insulators (Rebollo et al. 2012; de Souza et al. 
2013). TEs may also spread repressive epigenetic marks to neighboring sequences 
and affect the activity of nearby promoters (Rebollo et al. 2011; Macfarlan et al. 
2011; Grandi et al. 2015). Finally, L1 sequences may serve important roles during 
X chromosome inactivation through participating in the assembly and propagation 
of heterochromatin on the inactive X chromosome (Chow et al. 2010).

In order to survive or remain active in the genome, an L1 family needs to consis-
tently generate full-length insertions that can be passed through the germline to the 
next generation, albeit expectedly at rates that do not significantly endanger the 
reproductive fitness of the host (Bestor 2003). Such insertions may occur by bona 
fide retrotransposition in developing germ cells, or by retrotransposition during early 
embryonic development in cells fated to become primordial germ cells (PGCs). The 
nature of TE regulation in the germline has been expounded in several recent reviews 
(Bao and Yan 2012; Zamudio and Bourc’his 2010). However, our understanding of 
just how complex the dance is between the two unwilling partners—host and L1s—
has been expanded by new insights into the transcriptional and posttranscriptional 
coordination and the subtleties of regulatory mechanisms. This review will focus on 
retrotransposons, especially L1s, and how they are regulated in the mouse and human 
germlines. As LTR retrotransposons remain active in the mouse genome, differential 
regulation of L1 and LTR retrotransposons will be compared as appropriate. Our 
goal is to accent recent regulatory insights and provide a synopsis of the interplay 
between the host and L1.
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2  L1 Activities Can Be Controlled at Different  
Stages of L1 Replication

L1 retrotransposition involves multiple steps, which can be schematically summa-
rized as transcription, translation, ribonucleoprotein (RNP) formation, nuclear 
entry, and target-primed reverse transcription (Goodier and Kazazian 2008) (Fig. 1). 
It begins when a full-length donor L1 is transcribed into a bicistronic mRNA by 
RNA polymerase II. L1 mRNA is then exported to the cytoplasm, where the two L1 
proteins are synthesized and form an RNP complex with the template L1 mRNA. 
The ORF1 protein (ORF1p) has nucleic acid binding and chaperone activities. Both 
activities are essential for retrotransposition (Kolosha and Martin 2003; Martin 
et al. 2005). The ORF2 protein (ORF2p) possesses two enzymatic activities: endo-
nuclease and reverse transcriptase, both playing vital roles in target-primed reverse 
transcription (TPRT) of L1 mRNA (Feng et al. 1996; Mathias et al. 1991; Moran 
et al. 1996). To generate a new copy, the full-length donor L1 has to negotiate with 
the host cell through each of these steps. On the other hand, each step provides an 
opportunity for the host cell to control L1 activity.

From the L1’s perspective, host regulatory mechanisms can be generally catego-
rized as transcriptional regulation or posttranscriptional regulation. Inarguably, tran-
scriptional regulation can be the most effective means of controlling L1 activities, 
simply because without transcription retrotransposition is impossible. In vivo, this has 
been illustrated by conditional activation of L1 transgenes in mice either through Cre-
mediated excision of a transcriptional stop cassette (An et al. 2008) or through tetracy-
cline induction of an inducible promoter (O’Donnell et  al. 2013). Indeed, multiple 
mechanisms have been adopted to transcriptionally repress full- length L1s in the germ-
line, including DNA methylation, histone modifications, and the fetal Piwi-interacting 
RNA (piRNA) pathway (Fig. 1). Posttranscriptional regulation includes both fetal and 
pachytene piRNA pathways. Additionally, entry into the nucleus and access to open 
chromatin seems to be an inherent obstacle for mobilization. While it may seem arbi-
trary to group regulatory methods into these categories, it highlights the multiple layers 
of regulation observed within the germ cells. Each of these regulatory mechanisms will 
be discussed in the context of germ cell development. Most of the mechanisms have 
been principally characterized in the mouse male germline (Sects. 4 and 5), but emerg-
ing factors involved in L1 regulation in the female mouse germline will be discussed 
(Sect. 6). L1 expression and regulation in human germ cells will also be summarized 
(Sect. 8). As this discussion occurs, keep in mind that essentially two antagonistic evo-
lutionary processes are at play: the host needs to suppress mobile DNA from irrepara-
ble damage and TEs need to adapt and “reproduce” in the germline to survive.

3  L1 Expression During Male Germ Cell Development

Male germ cell development involves distinct cellular stages (Fig. 2). In the mouse, 
it starts from a founder population of PGCs at around embryonic day (E) 7.25 
(Saitou and Yamaji 2012). Shortly after, they begin migration toward the future 
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gonadal site and colonize the genital ridge at ~E10.5. PGCs exit the mitotic cell cycle 
and arrest in G0 phase between E12.5 and 14.5 (McLaren 2001; Western et al. 2008), 
becoming prospermatogonia. The mitotically arrested prospermatogonia resume 
proliferation after birth at around postnatal day (P) 2, and give rise to undifferentiated 
and differentiating spermatogonia via mitotic divisions (Yoshida et  al. 2006; de 
Rooij and Russell 2000; Drumond et al. 2011). The most primitive spermatogonia 
may undergo up to ten successive mitotic divisions before differentiating into 
preleptotene spermatocytes, starting at P8–P10, signaling the first wave of meiosis. 
Leptotene, zygotene, pachytene, and diplotene spermatocytes start to appear 
approximately at P10, P12, P14, and P17, respectively, during the prophase of meio-
sis I. Haploid spermatids first appear at P20 after two meiotic divisions and differ-
entiate into mature spermatozoa at P30 (de Rooij and Russell 2000; Nebel et al. 
1961; Bellve et  al. 1977). Spermatogenesis continues in the adult testis in an 

Fig. 2 L1 expression and important regulatory factors during male germ cell development. 
The timeline depicts male germ cell development in mice from PGC specification through the first 
wave of spermatogenesis (RS round spermatid, ES elongating spermatid). Normally suppressed 
through multiple transcriptional and posttranscriptional mechanisms, there are two periods of 
well-documented L1 expression. The first results from the loss of DNA methylation during fetal 
DNA reprogramming around E13.5–E14.5. DNA methylation is quickly restored, presumably 
guided to active TE elements through MIWI2-bound fetal piRNAs. H2A/H4R3me2 acts to sup-
press excessive L1 expression at this stage. This histone modification has also been found in post-
natal germ cells but a stage-specific profile remains unavailable (indicated by question marks). The 
other period of L1 expression (striped area) seems to occur sporadically in a subset of spermato-
cytes. H3K9me2 is diminished at L1 loci during the transition from spermatogonia to spermato-
cytes. Additionally, there is extensive chromatin remodeling during meiosis, both of which likely 
contribute to the sporadic L1 expression observed in spermatocytes. Pachytene piRNAs associated 
with MIWI posttranscriptionally degrade TEs in pachytene spermatocytes and are known to 
contribute to the absence of L1 expression for the remainder of spermatogenesis. A role in the 
germline has not been established for zinc finger proteins (box in dotted line)
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asynchronous yet precisely timed fashion: spermatogonia stem cells divide mitoti-
cally every 8.5 days and form spermatozoa 34.5 days later (Oakberg 1957).

In normal human and mouse individuals, L1 expression is predominantly found 
in germ cells (Rosser and An 2012). In the male germline, it is restricted to two 
specific developmental time windows (Fig. 2). The first time window occurs in the 
mitotically arrested prospermatogonia. Abundant ORF1p signals are detected in 
E14.5–E17.5 fetal testes (Trelogan and Martin 1995; Aravin et al. 2009). The sec-
ond time window is in spermatocytes. Prominent ORF1p signals are observed in 
primary spermatocytes (leptotene and zygotene stages) of the prepuberal mouse 
testis (P10, P14, P18, and P25) (Branciforte and Martin 1994). In the adult testis, 
L1 ORF1p is detected sporadically (i.e., not in all cells or seminiferous tubules) by 
immunofluorescence in leptotene, zygotene, and pachytene spermatocytes (Soper 
et al. 2008), although positive signal was also reported in round spermatids, elongat-
ing spermatids and residual bodies when detected by immunohistochemistry in the 
initial study (Branciforte and Martin 1994). The same polyclonal antibody was used 
for both studies. The variation in ORF1p expression pattern might be due to meth-
odological differences. Note in the following sections, when the term upregulation 
or derepression is used, it refers to a significant increase in L1 expression 
(i.e., above the normal levels) or unexpected expression in otherwise non-expressing 
cellular stages.

4  Transcriptional Silencing of L1s During Male Germ Cell 
Development

4.1  Transcriptional Silencing by DNA Methylation

DNA methylation is a critical mechanism for transcriptional silencing of retrotrans-
posons in the germline. During animal development, there are two critical periods 
during which CpG methylation is programmatically removed from TEs: first in pre-
implantation embryos and then in migrating/post-migratory PGCs (Messerschmidt 
et  al. 2014). In particular, L1 5′UTR sequences undergo rapid demethylation in 
mouse PGCs between E10.5 and E13.5 (from 65 to 17 %) (Lane et  al. 2003; 
Hajkova et  al. 2002; Ohno et  al. 2013), and later become fully remethylated, 
through de novo methylation, in prospermatogonia by E17.5 (Lees-Murdock et al. 
2003). This demethylation correlates with modest L1 expression in normal 
prospermatogonia (Fig. 2). As will be discussed in later sections, now we know 
that other regulatory mechanisms exist to prevent excessive L1 activities when L1s 
are hypomethylated.

The role of DNA methylation is clearly supported by TE activation in mice deficient 
in DNA methyltransferases (DNMTs). The mammalian genome encodes three 
enzymatically active cytosine methyltransferases (DNMT1, DNMT3A, and 
DNMT3B). The earliest in vivo evidence is from functional ablation of DNMT1. 
DNMT1 prefers hemi-methylated DNA as its substrate and mediates the mainte-
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nance of genomic methylation patterns. Deletion of Dnmt1 causes embryonic 
lethality in mice (Li et  al. 1992). In somatic tissues of Dnmt1-deficient mouse 
embryos, there is widespread hypomethylation and derepression of a major class of 
mouse LTR retrotransposons, intracisternal A particles (IAPs) (Walsh et al. 1998). 
However, a change in methylation of other types of retrotransposons, including L1s, 
has not been reported in Dnmt1-deficient embryos. It is possible that L1 methylation 
may be unaffected because in other cellular environments, such as mouse embry-
onic stem cells (ESCs), DNMT1 appears to play a major role in regulating IAPs but 
not in regulating L1 expression (Li et al. 2015a). Indeed, unlike IAPs, L1 expression 
is undetectable in Dnmt1-deficient embryos (Bourc’his and Bestor 2004). UHRF1 
(also known as Np95 and ICBP90) has an essential role in DNA methylation main-
tenance by recruiting DNMT1 to hemi-methylated DNA sites (Sharif et al. 2007; 
Bostick et al. 2007). Similar to Dnmt1 knockouts, deletion of Uhrf1 causes embryonic 
lethality. Interestingly, Uhrf1 deletion is accompanied by demethylation and dere-
pression of IAPs, L1s, and SINE-1 (Sharif et al. 2007).

DNMT3A and DNMT3B are required for de novo DNA methylation during 
animal development. Mice deficient for Dnmt3a die at ~4 weeks of age and those 
deficient for Dnmt3b die in utero (Okano et al. 1999). Embryos deficient for both 
Dnmt3a and Dnmt3b, but not for either enzyme alone, display reduced methylation 
at C-type retroviruses, IAP, and major satellite repeats, suggesting DNMT3A and 
DNMT3B have redundant functions at these sequences. In contrast, minor satellite 
repeats appear to be specific targets of DNMT3B (Okano et  al. 1999). Detailed 
methylation analyses of conditional Dnmt3a and Dnmt3b knockouts revealed the 
timing and target specificity of DNMT3A and DNMT3B in the male germline 
(Kaneda et al. 2004; Kato et al. 2007). In terms of timing, the methylation of repetitive 
sequences and paternally differentially methylated regions (DMRs) occurs progres-
sively in fetal prospermatogonia and is completed by the newborn stage (Kato et al. 
2007). In terms of target specificity, DNMT3A mainly methylates B1 SINEs and 
some paternal DMRs, such as the H19 and Dlk1/Gtl2 loci. DNMT3B predomi-
nantly methylates minor and major satellite repeats. Both DNMT3A and DNMT3B 
are required for de novo methylation of L1 and IAPs as well as the paternal DMR at 
the Rasgrf1 locus (Kaneda et al. 2004; Kato et al. 2007).

DNMT3L, a homologue of DNMT3A/3B, lacks cytosine methyltransferase 
activity but is specifically expressed in growing oocytes of adult females and pros-
permatogonia of perinatal males (Bourc’his et al. 2001). Consistent with its germ 
cell specific expression pattern, deletion of Dnmt3l does not affect animal viability 
but causes infertility in both sexes (Bourc’his et  al. 2001). In knockout males, 
 spermatogenesis is arrested at the zygotene/early pachytene spermatocyte stages 
(Bourc’his and Bestor 2004; Webster et al. 2005). Despite the lack of enzymatic 
activity, DNMT3L plays a pivotal role in de novo methylation of all repetitive 
sequences and paternal/maternal DMRs examined in the germline (Bourc’his et al. 
2001; Hata et al. 2002; Bourc’his and Bestor 2004; Webster et al. 2005; Kato et al. 
2007). For example, deletion of Dnmt3l results in the global loss of de novo meth-
ylation at L1s and IAPs (Bourc’his and Bestor 2004; Kato et al. 2007) as well as B1 
SINEs (Kato et al. 2007) in male germ cells. More significantly, hypomethylation 
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leads to TE derepression, as evidenced by high levels of L1 and IAP transcripts in 
neonatal and juvenile testes (Bourc’his and Bestor 2004). As compared to some 
piRNA pathway mutants discussed later, the spermatogenic defect manifested in 
Dnmt3l mutants appears to be more pronounced. Germ cells were completely absent 
in some seminiferous tubules by 4 weeks and in almost all tubules by 8–10 weeks 
(Hata et al. 2006). This Sertoli-cell-only phenotype suggests a functional deficit in 
spermatogonial stem cells. Indeed, careful analysis of neonatal animals revealed a 
mitotic defect in spermatogonia and reduced germ cell numbers as early as P6 
(La Salle et al. 2007). In contrast, the female infertility has been attributed to the 
loss of maternal imprinting and inappropriate expression of maternally imprinted 
genes in fetuses (Bourc’his et al. 2001; Hata et al. 2002). Accordingly, IAPs and 
major satellite repeats show little change in methylation in fetuses carried by Dnmt3l 
knockout females (Bourc’his et al. 2001).

Barring a disruption of the de novo methylation process, the vast majority of the 
full-length L1 elements are remethylated by birth and remain hypermethylated as 
the germ cells progress through spermatogenesis (Fig. 2). So far there is no evi-
dence for global or dynamic demethylation of L1s at the onset of meiosis (Oakes 
et  al. 2007). However, not all copies of retrotransposons are methylated in sper-
matocytes (Molaro et al. 2014). A small fraction of L1s, SINEs, and LTR retrotrans-
posons remain hypomethylated in adult spermatocytes as compared to E13.5 PGCs. 
These hypomethylated loci comprise both old and young subfamilies but are 
enriched for “middle-aged” subfamilies, such as the F subfamily of L1s and the MT 
subfamily of LTRs (Molaro et al. 2014). Such constitutively hypomethylated loci 
may underlie the sporadic L1 ORF1p expression seen in prepuberal and adult sper-
matocytes (Branciforte and Martin 1994; Soper et  al. 2008) (Fig.  2), especially 
when considering the extensive chromatin remodeling during meiosis (Crichton 
et al. 2014).

4.2  The Role of Fetal piRNA Pathway in Transcriptional 
Silencing

piRNAs play critical roles in regulating retrotransposon expression. piRNAs are 
small noncoding RNAs abundant in germ cells. Unlike miRNAs (typically 19–22 
nucleotides), piRNAs are longer and range from 24 to 31 nucleotides. First described 
in mouse, rat, and human adult testes in 2006 (Aravin et  al. 2006; Grivna et  al. 
2006a; Girard et al. 2006; Lau et al. 2006), piRNAs are expressed mainly in two 
separate phases of male germ cell development. Accordingly, they are loosely 
categorized into fetal piRNAs and pachytene piRNAs (Fig. 2). The mouse genome 
encodes three Piwi proteins (MIWI/PIWIL1, MILI/PIWIL2, and MIWI2/PIWIL4). 
Fetal piRNAs are associated with MILI and MIWI2, highly enriched for TE 
sequences (Aravin et al. 2007; Kuramochi-Miyagawa et al. 2008), and function in 
both transcriptional and posttranscriptional silencing of retrotransposons (this sec-
tion and Sect. 5.1). In contrast, pachytene piRNAs are associated with MILI and 
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MIWI, relatively depleted of TE sequences, expressed from genomic clusters 
(Aravin et al. 2006; Grivna et al. 2006a; Girard et al. 2006; Grivna et al. 2006b), and 
have an important role in posttranscriptional silencing (Sect. 5.2). More details on 
piRNA production and processing can be found in recent reviews (Iwasaki et al. 
2015; Czech and Hannon 2016). Here we will focus our discussion of piRNAs as to 
what is applicable to TE regulation.

Transcriptional silencing by the fetal piRNA pathway is primarily mediated 
through DNA methylation. This putative mechanism is supported by molecular phe-
notypes in Mili and Miwi2 knockout mice. Both Mili and Miwi2 are expressed in 
embryonic testes when the genome is being remethylated (Kuramochi-Miyagawa 
et al. 2001) (Fig. 2). MILI expression starts at E12.5 in both sexes and stops after 
birth in female but continues until the round spermatid stage in males. In contrast, 
MIWI2 expression is restricted from E15.5 to P3 in male and absent in female germ 
cells (Aravin et al. 2008; Kuramochi-Miyagawa et al. 2001). Deletion of either Mili 
or Miwi2 leads to male-specific infertility, mimicking the Dnmt3l knockout pheno-
type in spermatogenesis. Spermatogenesis arrests at the zygotene stage in Miwi2 
mutants (Carmell et  al. 2007) and at the early pachytene stage in Mili mutants 
(Kuramochi-Miyagawa et al. 2004). The spermatogenic defect is accompanied by 
the concomitant loss of piRNAs and TE methylation (Aravin et al. 2008; Kuramochi- 
Miyagawa et al. 2008; Carmell et al. 2007). The role of the fetal piRNA pathway on 
DNA remethylation is highly specific towards repetitive sequences, as whole 
genome bisulfite sequencing shows that global methylation is not affected in Mili 
and Miwi2 mutants (Manakov et al. 2015; Molaro et al. 2014). In agreement with 
the proposed pathway, deletion of Dnmt3l has no effect on piRNA production, con-
firming that the fetal piRNA pathway acts upstream of de novo DNA methylation 
(Aravin et al. 2008).

The fetal piRNA-mediated methylation appears to selectively target active full- 
length retrotransposons (Molaro et al. 2014). In spermatocytes, where genome-wide 
remethylation has already occurred, overall TE methylation levels are very similar 
between wild-type and Mili-deficient mice. This observation suggests that most TEs 
are remethylated nonselectively along with the rest of the genome by a default wave 
of de novo DNA methylation (Molaro et  al. 2014). In contrast, the youngest L1 
subfamilies (e.g., A and T) manifest the most pronounced reduction in methylation 
and corresponding upregulation in Mili-deficient spermatocytes (Molaro et al. 2014). 
A remarkable feature of this phenomenon is that it selectively targets transcriptional 
regulatory regions, i.e., L1 and IAP promoters are differentially  methylated between 
wild-type and Mili-deficient backgrounds (Molaro et  al. 2014). This provides a 
mechanism to effectively silence full-length, transcriptionally active elements. In con-
clusion, fetal piRNAs partner with the DNA methylation machinery to re-suppress 
L1s through de novo DNA methylation, specifically homing in on active full-length 
elements (Fig. 3).

The two principal components of the fetal piRNA pathway, MILI and MIWI2, 
cooperate but carry distinct roles in fetal germ cells. Besides temporal difference in 
expression, they differ in intracellular location (Aravin et  al. 2008; Aravin et  al. 
2009). In male prospermatogonia, MILI is localized primarily in the cytoplasm, in 

 L1 Regulation in Mouse and Human Germ Cells 



38

Fig. 3 L1 subfamily-specific regulation in the male germline. Next-generation sequencing-based 
approaches have revealed that L1 regulatory mechanisms differ in their subfamily specificity. 
MIWI2-guided de novo DNA methylation and H3K9me3 primarily target young active L1s 
through specificity granted by fetal piRNAs. In vitro data in ESCs suggest that KAP1, presumably 
guided by KRAB-ZFPs, recruits repressive histone marks to “middle-aged” L1s but not the young-
est subfamilies. More general suppression occurs through piRNA-independent de novo methyla-
tion and posttranscriptional regulation by pachytene piRNAs. Pachytene piRNAs are generated 
from piRNA clusters and enrichment for specific subfamilies seems stochastic. Loss of H2A/
H4R3me2 or H3K9me2 is associated with L1 activation in PGCs or spermatogonia. However, the 
distribution of either histone mark has not been defined for L1 subfamilies

perinuclear cytoplasmic granules that represent intramitochondrial cement. MIWI2 
proteins, on the other hand, are both cytoplasmic and nuclear. In the cytoplasm, 
MIWI2 is localized to distinct granules sharing many components of the processing 
body. In the nucleus, MIWI2 distribution is homogenous. An early model built on 
observations from global Mili and Miwi2 deletion mutants suggested that TE-derived 
fetal piRNAs are amplified through a heterotypic Ping-Pong loop, involving slicer 
activities of both MILI and MIWI2 (Aravin et al. 2008). However, when the slicer 
activity of MIWI2 is abolished by a point mutation, piRNA amplification is unaffected, 
both L1 and IAP remain repressed, and mutant males stay fertile (De Fazio et al. 
2011). These results suggest that MIWI2 slicer activity is not required for piRNA 
amplification. In a revised model, MILI alone was proposed to drive the production 
of secondary piRNAs through an intra-MILI Ping-Pong cycle, which feeds anti-sense 
piRNAs to MIWI2 for subsequent targeted DNA methylation in the nucleus 
(De Fazio et al. 2011). Interestingly, in Mili slicer mutants, L1 is derepressed but 
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IAP remains silenced, indicating that L1 but not IAP silencing is dependent on 
piRNA amplification (De Fazio et al. 2011).

Transcriptional silencing by fetal piRNAs may also involve the repressive histone 
modification H3K9me3. SUV39H1/2 methyltransferases are known to specifically 
deposit H3K9me3 marks at pericentric and intergenic major satellite repeats. Using 
genome-wide ChIP-Seq approaches, two recent studies have provided novel insights 
into a functional role of H3K9me3 in transcriptional silencing of L1 retrotransposons 
(Bulut-Karslioglu et al. 2014; Pezic et al. 2014). In both somatic cells and premeiotic 
male germ cells (i.e., spermatogonia), H3K9me3 is enriched not only in major 
satellite repeats but also in L1s and LTR retrotransposons. However, its enrichment on 
L1s is much more pronounced in germ cells. Overall, transcriptionally active L1 sub-
families (A, F, Gf, T), which contain the majority of full- length elements, display 
higher levels of H3K9me3. The distribution of H3K9me3 over full-length L1s is 
asymmetric, with significant concentration toward the 5′UTR promoter (Pezic et al. 
2014). In spermatogonia from Miwi2-deficient mice, levels of H3K9me3 are reduced 
from L1 A, Gf, and T elements, especially from the promoter region, but relatively 
constant at F elements. Coincidently, L1 A, Gf, and T transcripts are elevated (Pezic 
et al. 2014). This study did not identify the histone methyltransferases responsible for 
H3K9me3 modification on L1 loci in the spermatogonia. In mouse ESCs, by comparing 
H3K9me3 distribution in wild-type and Suv39h1/2-deficient ESCs, L1s and ERVs are 
identified as the major targets of SUV39H1/2 outside constitutive heterochromatin. 
The 5′UTR of full-length L1s are specifically targeted for H3K9me3 modification. 
Accordingly, these L1s are derepressed in Suv39h1/2-deficient ESCs (Bulut-
Karslioglu et al. 2014). Additionally, it has been previously shown that SUV39H1/2 
are responsible for H3K9me3 in type B spermatogonia and preleptotene spermatocytes 
(Peters et al. 2001). Suv39h1/2-deficient male mice are infertile with most spermato-
cytes becoming apoptotic between mid- and late-pachytene stages (Peters et al. 2001). 
However, the effect of Suv39h1/2 deletion on L1 expression in germ cells has not been 
reported. H3K9me3 also marks L1s and IAPs in E13.5 PGCs (Liu et  al. 2014). 
However, conditional ablation of Setdb1, another H3K9 methyltransferase, in PGCs 
results in IAP upregulation only (Liu et al. 2014).

How fetal piRNAs target retrotransposons for de novo DNA methylation and/or 
H3K9me3 modification remains elusive. The observations that these marks are 
enriched at transcriptionally active L1 loci suggest a model in which fetal piRNAs 
guide the chromatin modifying apparatus to specific loci through interacting with 
nascent L1 transcripts (Molaro et al. 2014; Pezic et al. 2014). GTSF1 is a mouse 
protein with two tandem copies of the putative RNA-binding CHHC Zn-finger 
domain. Deletion of Gtsf1 leads to phenotypes similar to those found in Mili or 
Miwi2 mutants (Yoshimura et  al. 2009). Additional insights into the function of 
GTSF1 in the piRNA pathway came from flies. In Drosophila, Gtsf1 is required for 
Piwi-guided transcriptional silencing and deposition of H3K9me3 on 
 retrotransposons, potentially mediating piRNA/target RNA interaction through its 
zinc finger domains (Donertas et al. 2013). Another Drosophila protein, CG3893 
(Asterix), belongs to the same protein family characterized by the CHHC Zn-finger 
domain. Coincidently, CG3893 is also essential for TE silencing and selected depo-
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sition of H3K9me3 on certain transposons (Muerdter et al. 2013). Therefore, mouse 
GTSF1 may play roles analogous to Gtsf1 or Asterix in Drosophila, bridging the 
interaction between fetal piRNAs and nascent transcripts of targeted retrotranspo-
sons (Yu et al. 2015). It is unknown how piRNAs coordinate target-specific DNA 
methylation and histone modification. However, preliminary analysis of selected L1 
loci indicates that H3K9me3 modification is uncoupled from DNA methylation 
(Pezic et al. 2014).

4.3  Transcriptional Silencing by Histone Modifications

Histone modifications have been well established as critical mechanisms in tran-
scriptional silencing of ERVs in mouse ESCs and preimplantation embryos (Leung 
and Lorincz 2012), but little was known about their roles in L1 regulation during 
germ cell development until very recently. Compelling evidence indicates that two 
histone marks (H2A/H4R3me2 and H3K9me2; discussed below) repress L1 ret-
rotransposons at different stages in the germline. In addition, as discussed in the 
previous section, H3K9me3 may function in fetal piRNA-mediated transcriptional 
silencing of L1s.

The symmetric methylation of arginine 3 of histones H2A and H4 (H2A/
H4R3me2) is essential for transcriptional silencing of retrotransposons in PGCs 
(Kim et  al. 2014). In PGCs, H2A/H4R3me2 is deposited by protein arginine 
methyltransferase 5 (PRMT5) (Ancelin et al. 2006). PRMT5 is expressed in both 
PGCs and somatic cells as early as E7.5 (Ancelin et al. 2006). It is transiently 
enriched in the nucleus of PGCs between E8.0 and E11.0, and later relocates back 
to the cytoplasm at E11.5 (Kim et al. 2014). The nuclear presence of PRMT5 is 
accompanied by progressive enrichment of H2A/H4R3me2 in PGCs from E8.5 to 
E10.5 and this modification persists at least until E12.5 (Kim et al. 2014) (Fig. 2). 
The function of H2A/H4R3me2 accumulation in PGCs was revealed by condi-
tional ablation of Prmt5 specifically in fetal germ cells (Kim et al. 2014; Li et al. 
2015b). Both mutant males and females are sterile because of complete loss of 
PGCs by E16.5 (Kim et al. 2014; Li et al. 2015b). This early germ cell develop-
mental defect is associated with an upregulation of L1 and IAP expression at both 
RNA and protein levels (Kim et  al. 2014). In wild-type animals, both L1s and 
IAPs are enriched for H2A/H4R3me2 in PGCs at E10.5-E11.5. In mutant PGCs, 
H2A/H4R3me2 is globally lost with no significant changes in other chromatin 
markers, such as H3K9me2, H3K9me3, and H3K27me3. There is also no reduc-
tion of DNA methylation at L1 and IAP sequences. These results suggest PRMT5-
mediated H2A/H4R3me2 modification is a dominant silencing mechanism for 
retrotransposons during PGC growth (Kim et  al. 2014). This time period coin-
cides with global DNA demethylation and loss of H3K9me2, when the germ cell 
genome is most vulnerable for retrotransposon activation, highlighting the impor-
tance of H2A/H4R3me2 modification in transcriptionally controlling retrotrans-
poson expression in fetal gonads (Fig. 2).
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The function of PRMT5 is not limited to its modification of histones. PRMT5 has 
many nonhistone protein substrates, including spliceosomal Sm proteins and Piwi 
proteins (Vagin et al. 2009; Kirino et al. 2009). Therefore, its function in PGC devel-
opment may partially depend on its role in the methylation of Sm proteins. Indeed, 
conditional loss of Prmt5 leads to aberrant splicing in PGCs (Li et al. 2015b). The 
PRMT5 protein also functions in the piRNA pathway by symmetrically dimethylating 
specific arginine residues of all three mouse Piwi proteins (Vagin et al. 2009). These 
modifications are required for proper interaction with specific Tudor family members 
(Vagin et al. 2009). In addition, PRMT5 is expressed postnatally during spermatogen-
esis. It is predominantly cytoplasmic in spermatogonia and nuclear in spermatocytes 
(Wang et al. 2015). Conditional deletion of Prmt5 in postnatal male germ cells leads 
to loss of H2A/H4R3me2 and a meiotic defect. However, there is no significant 
change in L1 and IAP transcription (Wang et al. 2015). This observation does not 
necessarily refute a role in transcriptional silencing of retrotransposons by H2A/
H4R3me2 modification in spermatocytes because other silencing mechanisms, such 
as DNA methylation, likely remain intact.

H3K9me2 marks silenced domains in euchromatin. It is catalyzed by the 
histone- lysine N-methyltransferase G9a/GLP heteromeric complex. The level of 
H3K9me2 is reduced in PGCs at E8.0 (Seki et al. 2005) and this low level is main-
tained in fetal prospermatogonia as a result of posttranscriptional downregulation 
of GLP (Deguchi et al. 2013). In postnatal mice, the H3K9me2 mark is detected in 
spermatogonia through the zygotene stage of spermatocytes (Fig. 2). The eventual 
loss of H3K9me2 is due to diminished G9a expression from the preleptotene stage 
(Di Giacomo et al. 2013, 2014). Conditional ablation of G9a in germ cells leads to 
the loss of H3K9me2 signal in postnatal germ cells, resulting in meiotic arrest at 
early pachytene stage, but has no impact on L1 and IAP expression (Tachibana 
et al. 2007). This unperturbed expression is not an indication that H3K9me2 is not 
involved in controlling L1 and IAP transcription. Instead it reflects remarkable 
functional redundancy among multiple retrotransposon silencing pathways (Di 
Giacomo et  al. 2013). This multilayered regulation was revealed by comparing 
retrotransposon expression in different genetic backgrounds (Di Giacomo et  al. 
2014). Like many other piRNA pathway mutants, in Mili-deficient mice, L1s are 
derepressed only in spermatocytes but not in spermatogonia despite impaired 
piRNA biogenesis and the consequent loss of DNA methylation at L1 promoters. 
However, conditional inactivation of G9a in Mili-deficient adult mice aggravates 
the disruption of spermatogenesis: spermatogonia are the only germ cells remain-
ing in seminiferous tubules of such animals (Di Giacomo et al. 2014). Unlike mice 
deficient in either G9a or Mili alone, L1 expression is derepressed in spermatogo-
nia of double-deficient mice, indicating H3K9me2 is required to co-suppress L1 
expression in spermatogonia (Di Giacomo et al. 2014). However, H3K9me2 alone 
is not sufficient in silencing IAP in spermatogonia, as evidenced by IAP upregula-
tion in mice deficient for Mili alone (Di Giacomo et  al. 2014). Thus, the pro-
grammed loss of H3K9me2 repression is the most likely cause of sudden TE 
expression at the onset of meiosis seen in many of the DNA methylation/piRNA 
pathway knockouts.
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4.4  Transcriptional Silencing Mediated by Zinc  
Finger Proteins

Both human and mouse genomes encode a highly diverse family of transcription 
factors that can recognize specific target sequences through the tandem zinc finger 
DNA binding domains (Collins et al. 2001). The most abundant subgroup is known 
collectively as KRAB-zinc finger proteins (KRAB-ZFPs), which are characterized 
by the repressive Kruppel-associated box (KRAB) domain. A smaller subgroup 
comprises POZ-ZFPs, which is defined by the poxvirus and zinc finger (POZ) 
domain. Although a role in the germline has not been established, several members 
of KRAB-ZFP and POZ-ZFP families have been shown to mediate sequence- specific 
targeting and transcriptional silencing of L1 elements in other cellular contexts 
(Castro-Diaz et al. 2014; Jacobs et al. 2014; Puszyk et al. 2013).

KRAB-ZFPs are able to tether KRAB-associated protein 1 (KAP1, also known 
as tripartite motif-containing 28 or TRIM28) to the target site, which further recruits 
chromatin modifying enzymes to transcriptionally repress the target genes (Wolf 
et  al. 2015). First demonstrated for exogenous retroviruses, KRAB-ZFPs also 
repress endogenous retrotransposons in both human and mouse ESCs. The deple-
tion of KAP1 results in upregulation of specific subfamilies of LTR retrotranspo-
sons (e.g., IAP) (Rowe et al. 2010; Turelli et al. 2014) and L1s (Castro-Diaz et al. 
2014). Interestingly, only “middle-aged” L1 subfamilies (e.g., full-length human 
L1PA5 and L1PA4 and mouse L1MdF2 elements) are subjected to KAP1-mediated 
suppression. Evolutionarily older and younger L1s are not affected in KAP1- 
depleted ESCs (Castro-Diaz et al. 2014) (Fig. 3). This phenomenon is consistent 
with evolutionary dynamics of KRAB-ZFPs and their retrotransposon targets. 
Simply put, a substantial amount of time is required for the host to evolve specific 
KRAB-ZFPs targeting active L1 lineages. Meanwhile, older L1s have accumulated 
sufficient mutations to obscure the original interaction with cognate KRAB-ZFPs. 
KRAB-ZFPs that are responsible for sequence-specific L1 targeting have started to 
emerge. Mouse L1MdF2 elements are specifically bound by Gm6871, a mouse- 
specific KRAB-ZFP, and derepressed in Gm6871-depleted mouse ESCs (Castro- 
Diaz et  al. 2014). Primate-specific ZNF93 recognizes L1PA3-6  in the human 
genome (Jacobs et al. 2014). Most extraordinarily, a subgroup of L1PA3 elements, 
as well as the evolutionarily younger L1PA2 and L1PA1 subfamilies, are able to 
evade ZNF93-mediated transcriptional silencing due to a deletion at the ZNF93 
binding site (Jacobs et al. 2014), highlighting an evolutionary arms race between 
retrotransposons and host factors.

Promyelocytic leukemia zinc finger (PLZF), encoded by Zfp145, is a member of 
the POZ-ZFP family (Collins et al. 2001). Acting as a transcription repressor, PLZF 
is an important factor in regulating cell growth and differentiation, typically acting 
through binding to specific DNA motifs and instigating repressive chromatin state 
locally by recruiting DNMTs and histone deacetylases. In the male germline, PLZF 
is first seen in prospermatogonia at E17.5 and subsequently restricted to undifferen-
tiated spermatogonia after birth. Functional ablation of Plzf causes progressive loss 
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of spermatogonial stem cells and male infertility (Costoya et al. 2004). Interestingly, 
in a mouse model that is defective in PLZF DNA binding, methylated DNA immu-
noprecipitation (MeDIP) identified many hypomethylated L1 loci in the bone mar-
row and testis, and RT-PCR detected increased L1 RNA levels in these tissues 
(Puszyk et al. 2013). Follow-up experiments in cultured cells confirmed that many 
L1s contain a PLZF binding site in a conserved region of ORF2. PLZF binding 
appeared to establish and propagate DNA methylation and repressive histone marks 
to the 5′UTR of a full-length L1 element. Lastly, L1 expression was negatively cor-
related with PLZF rich tissues and those tissues had a closed chromatin conforma-
tion around the L1 sequences (Puszyk et al. 2013).

5  Posttranscriptional Silencing of L1s During Male  
Germ Cell Development

5.1  Posttranscriptional Silencing by the Fetal piRNA Pathway

As discussed earlier, much emphasis has been placed on the role of fetal piRNA 
in transcriptional silencing thorough targeting retrotransposons for DNA methyla-
tion. Its function in posttranscriptional silencing should not be ignored. Obviously, 
one way the fetal piRNA pathway can act posttranscriptionally is by cleaving TE 
transcripts into short piRNAs, which reduces the abundance of full-length TE 
transcripts in this process. The challenge is that most fetal piRNA pathway muta-
tions have a deficit in de novo methylation of retrotransposons. So it is almost 
impossible to differentiate transcriptional from posttranscriptional mechanisms in 
these mutants. However, there are at least two cases where piRNA genesis was 
disrupted without a disruption of de novo methylation, revealing posttranscrip-
tional silencing of TEs by the fetal piRNA pathway (Aravin et al. 2009; Ichiyanagi 
et al. 2014).

Maelstrom (MAEL) contributes to posttranscriptional silencing of L1/IAP in fetal 
prospermatogonia (Aravin et al. 2009). Dynamics of L1 ORF1p expression has been 
examined in wild-type and Mael mutant germ cells from E14.5 to P10. In wild-type 
germ cells, L1 expression peaks at E16.5, when the L1 promoter has not been fully 
remethylated (61 % of CpGs methylated), but significantly declined by E18.5 and 
became almost undetectable by P2 (Aravin et al. 2009). This expression pattern is 
consistent with DNA methylation dynamics as L1 promoters are mostly remethyl-
ated by E18.5 (Fig. 2). In Mael mutant mice, L1 expression is similar to wild type at 
E16.5, but is further elevated in E18.5 germ cells. The high levels of ORF1p signals 
persist beyond P6. The increase in ORF1p is not due to loss of methylation as 
methylation levels are comparable to the wild type at E18.5 and P2. These results 
suggest that MAEL participates in posttranscriptional silencing of retrotransposons 
in fetal germ cells. The authors also reported that a similar mechanism targets IAPs 
(Aravin et al. 2009).
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HSP90AA1 is one of the two isoforms of heat-shock protein 90 in mammals. 
HSP90AA1 protein is specifically expressed in germ cells of the mouse testis 
(Gruppi and Wolgemuth 1993). Deletion of Hsp90aa1 causes a threefold reduction 
of fetal piRNA in E16.5 testes (Ichiyanagi et al. 2014). The levels of L1 ORF1p are 
increased in both E16.5 and E18.5 germ cells. However, L1 mRNA levels remain 
largely unchanged in E16.5 and P10. There is little change in L1 promoter methyla-
tion in P0 prospermatogonia between wild-type and mutant mice across multiple 
subfamilies, suggesting the presence of posttranscriptional regulation (Ichiyanagi 
et al. 2014).

5.2  Pachytene piRNA Pathway

Pachytene piRNAs were the first piRNA species reported in mammals (Aravin et al. 
2006; Grivna et al. 2006a; Girard et al. 2006; Lau et al. 2006). Two mouse PIWI 
proteins, MIWI and MILI, are involved in pachytene piRNA biogenesis. MIWI 
expression is specific to meiotic and post-meiotic male germ cells (Deng and Lin 
2002). It begins in mid-pachytene spermatocytes, peaks in diplotene spermatocytes, 
and persists in steps 1–3 round spermatids (Deng and Lin 2002). In adult animals, 
pachytene piRNAs are close to background level in spermatogonia, expressed at the 
highest level in spermatocytes, modesty expressed in round spermatids, but absent 
in elongating spermatids (Beyret and Lin 2011) (Fig. 2). In spermatocytes, MIWI is 
cytoplasmic; in spermatids, MIWI is cytoplasmic but enriched in chromatoid body 
(Grivna et  al. 2006b). Deletion of Miwi causes spermatogenic arrest at step 4  in 
round spermatids (Deng and Lin 2002). The spermatogenic phenotype is accompa-
nied by increased L1 RNA and ORF1p in purified round spermatids as well as in 
spermatocytes by immunofluorescence analysis (Reuter et al. 2011).

MIWI silences L1 retrotransposons posttranscriptionally. This was demonstrated 
by using a Miwi mutant that carries a point mutation in its conserved slicer domain 
DDH (termed MiwiADH) (Reuter et al. 2011). Similar to global Miwi knockout, 
spermatogenesis is arrested at the round spermatid stage in MiwiADH mutants. 
Unlike Miwi knockout, which does not express MIWI, MiwiADH mutant shows no 
change in MIWI protein abundance, subcellular localization, piRNA abundance, or 
genomic annotation. There is also no change in DNA methylation at L1 promoters 
in both Miwi and MiwiADH mutants. Nevertheless, L1 RNA and ORF1p are upreg-
ulated in both mutants. Together, these results suggest that MIWI silences L1s post-
transcriptionally by cleaving L1 mRNAs (Reuter et al. 2011).

MILI’s role in pachytene piRNAs cannot be interrogated by a global deletion of 
Mili because MILI is also involved in fetal piRNA biogenesis (see Sect.  4.2). 
Conditional deletion of Mili or its slicer activity (i.e., via a point mutation in the 
slicer domain) in spermatocytes, by crossing to Stra8-Cre mice, leads to a spermato-
genic arrest at stages ranging from pachytene spermatocytes to elongating spermatids 
(Di Giacomo et al. 2013). Interestingly, L1, but not IAP, is upregulated only in late 
zygotene and pachytene spermatocytes, but not in surviving round and elongating 
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spermatids. Detailed analysis of MILI expression pattern reveals that, contrary to a 
common belief, which holds that MILI is continuously expressed in all stages of 
spermatogenesis, Mili ceases its expression from preleptotene to late zygotene stage 
(Di Giacomo et al. 2013) (Fig. 2). Because L1 methylation is unaffected in these 
mutant animals, these results suggest that MILI is required for posttranscriptional 
silencing of L1 at the onset of the zygotene/pachytene transition and in pachytene 
spermatocytes (Di Giacomo et  al. 2013). MIWI expression and piRNA loading 
remain intact in these mutants, which could explain the lack of L1 derepression in 
spermatids.

Whether or not pachytene piRNAs themselves are necessary for L1 suppression 
is still unclear. MOV10L1 is an RNA helicase (Vourekas et al. 2015) that is required 
for both fetal (Frost et al. 2010; Zheng et al. 2010) and pachytene piRNA biogenesis 
(Zheng and Wang 2012). A conditional knockout of Mov10l1 in spermatocytes dis-
plays limited pachytene piRNAs with no effect on fetal piRNA production. However, 
no derepression of L1 and IAP is observed in these mutants. These results suggest 
that pachytene piRNAs per se are not required for retrotransposon silencing (Zheng 
and Wang 2012). In these mutant mice, L1 transcripts may have been degraded by 
the slicer activity of MIWI through a pachytene piRNA-independent mechanism 
(Zheng and Wang 2012).

6  L1 Regulation During Female Germ Cell Development

The timing of mouse female germ cell development is significantly different from 
the male counterpart (Pepling 2006). The difference manifests shortly after PGCs 
have colonized the gonadal ridge at E10.5. Unlike male germ cells, which enter 
mitotic arrest between E12.5 and E14.5, the majority of female germ cells begin 
meiosis at E13.5–E15.5, becoming primary oocytes (Peters 1970; Baltus et  al. 
2006) (see also chapter “Retrotransposons and the Mammalian Germline” in this 
book). Primary oocytes progress through leptotene, zygotene, and pachytene stages, 
and become arrested at the diplotene stage of meiosis I between E17.5 and P5 
(Peters 1970). Shortly after birth, oocytes become individually surrounded by 
somatic granulosa cells, forming primordial follicles (Peters 1969; Pepling and 
Spradling 2001). The majority of the primordial follicles will remain dormant for 
months or years until being recruited to the growing follicle pool. After the initial 
recruitment, primordial follicles must progress through primary, secondary, and 
antral stages before oocytes resume meiosis and ovulate as secondary oocytes rest-
ing at meiotic metaphase II (McGee and Hsueh 2000).

Male and female germ cells also differ in genome-wide DNA methylation 
dynamics. Unlike male germ cells, which have regained high levels of DNA meth-
ylation by E17.5, demethylation at the L1 promoter is protracted in fetal oocytes. 
There is no apparent remethylation even at E17.5 (Lees-Murdock et  al. 2003; 
Seisenberger et al. 2012). In postnatal mice, primary oocytes arrested at the diplo-
tene stage still display minimal methylation at L1 sequences (Sanford et al. 1987; 
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Howlett and Reik 1991). Methylation increases during meiosis, but L1 sequences 
remain modestly methylated in ovulated secondary oocytes (Howlett and Reik 
1991), including active L1 A, Gf, and T subfamilies as evidenced by recent methy-
lomic studies (Smith et al. 2012).

Consistent with relaxed DNA methylation, L1 expression is readily detected in 
primary oocytes during the meiotic I prophase. L1 ORF1p is first detected at 
E15.5 in primary follicles and throughout all stages of prophase I in fetal and neo-
natal ovaries (Trelogan and Martin 1995; Malki et al. 2014). ORF1p signals were 
not found in adult ovaries (Trelogan and Martin 1995). Interestingly, ORF1p signals 
in the nucleus are highly variable among primary oocytes (Malki et  al. 2014). 
Detailed analyses of nuclear ORF1p signals in E15.5, E18.5, and P5 oocytes sug-
gest that differential L1 expression may play a role in fetal oocyte attrition, a pro-
grammed loss of developing oocytes in humans and rodents (Malki et al. 2014).

Among the three mouse Piwi genes, only Mili is expressed during female germ 
cell development (Deng and Lin 2002; Kuramochi-Miyagawa et al. 2001; Aravin 
et al. 2008; Watanabe et al. 2008). MILI protein can be detected as early as E12.5 
(Unhavaithaya et al. 2009; Aravin et al. 2008). The signal increases at E13.5 with 
the onset of meiosis but is significantly diminished at E18.5 (Unhavaithaya et al. 
2009). Using transgenic animals that express GFP-tagged MILI under the endoge-
nous Mili promoter, distinct MILI signals are detected in postnatal primary follicles 
and localized to cytoplasmic granules in both diplotene-arrested and growing pri-
mary oocytes (Aravin et  al. 2008). Protein quantification indicates that MILI is 
more abundant in earlier stages of growing oocytes (Watanabe et al. 2008).

Although MILI is the only mouse Piwi gene expressed in female germ cells, 
piRNAs are produced in growing oocytes (Watanabe et al. 2008; Tam et al. 2008). 
The majority of these piRNAs are 25-26 nucleotides long and bound to MILI 
(Watanabe et al. 2008). Similar to fetal piRNA in prospermatogonia, oocyte piR-
NAs are enriched for retrotransposon sequences, including L1s and IAPs (Watanabe 
et al. 2008; Tam et al. 2008). Deletion of Mili leads to increased expression of L1s 
as well as IAPs (Watanabe et al. 2008; Lim et al. 2013). In addition to piRNAs, 
growing oocytes produce 21–22 nucleotides long small interfering RNAs (siRNAs) 
(Watanabe et al. 2006; Watanabe et al. 2008; Tam et al. 2008). Most of such siRNAs 
are derived from retrotransposons. In Dicer-deficient oocytes, neither IAP nor L1 
transcription increases although other LTR retrotransposons are upregulated 
(Watanabe et al. 2008). Therefore, piRNAs and siRNAs complement each other to 
regulate distinct retrotransposon families in growing oocytes.

7  Other Factors Implicated in L1 Regulation

The male germline is a potential hub for retrotransposition. A recent study suggests 
that, for all three active classes of retrotransposons (L1, SINE, and LTR), new insertions 
occur almost exclusively through the male germline genome (Nellaker et al. 2012). 
Using whole-genome sequencing data, the authors catalogued polymorphic TE 
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variants among 18 inbred mouse strains (Nellaker et  al. 2012). Based on the 
evolutionary divergence among the mouse strains analyzed, these polymorphic TE 
variants represent “recent” insertion events within the past two million years. 
Interestingly, when chromosomal distribution was analyzed, all classes of polymor-
phic variants (L1, SINE, and LTR) were relatively depleted on the X chromosome. 
The deficit of polymorphic TEs on the X chromosome contrasts sharply with fixed 
TEs, which are distributed evenly among all chromosomes (an exception is fixed 
L1s, which are enriched on the X chromosome due to positive selection). The rela-
tive depletion of TE variants on the X chromosome versus autosomes is indicative 
of a male-driven insertional mechanism. Simply put, if retrotransposition occurs at 
equivalent rates in males and females, there should be no chromosomal bias. 
However, the calculated ratio of male-to-female insertion rates is 7.3, 151.8, and 7.8 
for polymorphic L1, SINE, and LTR variants (Nellaker et al. 2012).

What might be responsible for this apparent gender bias in retrotransposition? 
A prime candidate is the vast difference in the number of germ cell divisions 
between male and females (Drost and Lee 1995). Mouse PGCs have committed to 
sex- specific trajectories by E13.5. From this point on, female germ cells enter meio-
sis and meiotically divide twice to become eggs, whereas male germ cells undergo 
a minimum of 9 mitotic divisions plus two meiotic divisions (i.e., 11 divisions) to 
become sperm at the end of the first wave of spermatogenesis (de Rooij and Russell 
2000). The number of cell divisions can be substantially higher in adult animals as 
spermatogonia stem cells divide every 8.5 days to sustain continued spermatogenesis 
(Oakberg 1957). For example, the corresponding number of cell divisions would be 
around 17 for a 3-month-old male mouse. Thus, the ratio of male-to- female cell divi-
sions would be ~8.5 (e.g., 17 divided by 2). This back-of-the- envelope calculation 
suggests that the bulk of retrotransposition in the male germline must occur before 
male meiosis, either in prospermatogonia or dividing spermatogonia.

Mitotically dividing spermatogonia might be the most important cellular niche 
for retrotransposition. In vitro experiments demonstrate that cell division promotes 
L1 retrotransposition (Shi et al. 2007; Xie et al. 2013). In these experiments, ret-
rotransposition of engineered L1 constructs is diminished in cell-cycle arrested cells 
(Shi et al. 2007; Xie et al. 2013) and non-dividing cells (Kubo et al. 2006). Even in 
dividing but cell-cycle synchronized cells, retrotransposition frequency is lower if 
cells just go through one fewer cell division (Xie et al. 2013). These results suggest 
that the intact nuclear membrane may act as a barrier for L1 RNP to access the 
nuclear genome (Fig. 1). A recent analysis of polymorphic processed pseudogenes 
in the 1000 Human Genomes Project supports the importance of cell division in 
L1-mediated retrotransposition (Abyzov et  al. 2013). Processed pseudogenes are 
copies of cellular mRNAs that have been reversed transcribed and inserted into the 
genome by the L1 machinery (Esnault et al. 2000). The first piece of evidence is that 
polymorphic processed pseudogenes are enriched for parent genes being expressed 
during M or M/G1 transition. The second piece of evidence is that M/G1 expressed 
genes possess higher copies of fixed processed pseudogenes. Both are consistent with 
a model in which retrotransposition is coupled to cell division (Abyzov et al. 2013). 
The potential requirement for active cell division may help to explain a peculiar 
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observation from L1 transgenic mice (Kano et al. 2009). Despite abundant RNA 
signals in male meiotic and post-meiotic germ cells, no heritable L1 insertions were 
detected in these L1 transgenic mice. Part of this “posttranscriptional block” to 
retrotransposition may be the expectedly low number of cell divisions by spermato-
cytes (e.g., twice for primary spermatocytes, once for secondary spermatocytes, and 
no further division for spermatids and sperm), although the unique properties of 
meiotic chromatin and spermatid DNA compaction may present a formidable chal-
lenge to the retrotransposition machinery (Fig. 1). However, it has not been formally 
shown that a cell cycle arrest in vivo blocks L1 retrotransposition.

8  L1 Expression and Regulation in Human Germ Cells

The vast majority of the findings discussed above were obtained from mouse mod-
els. How do they translate into humans? Due to tissue accessibility issues, time 
points of L1 expression in human germ cells are rather limited but the overall 
expression pattern is similar to what has been found in mice (Rosser and An 2012). 
Both human L1 ORF1p and ORF2p are detectable in fetal and adult testes (Ergun 
et al. 2004). L1 protein expression has not been reported in human ovaries. As for 
DNA methylation, multiple recent methylomic analyses indicate that global demeth-
ylation is conserved in human PGCs (von Meyenn and Reik 2015; Guo et al. 2015; 
Tang et  al. 2015; Gkountela et  al. 2015). However, global demethylation is not 
accompanied by significant derepression of retrotransposon transcripts in human 
PGCs, suggesting other silencing mechanisms are in place. H3K9me3 has been sug-
gested as a candidate. It is consistently present during this stage of germ cell devel-
opment (Gkountela et  al. 2015; Guo et  al. 2015; Tang et  al. 2015), but whether 
H3K9me3 is enriched on retrotransposons has not been investigated.

Human germ cells also have an intact piRNA pathway. The human genome 
encodes four Piwi proteins: HILI (MILI for mouse), HIWI1 (MIWI for mouse), 
HIWI2 (MIWI2 for mouse), and HIWI3 (Sasaki et  al. 2003). At the RNA level, 
HILI and HIWI are expressed specifically in testes and ovaries (Sasaki et al. 2003; 
Williams et al. 2015). HILI and HIWI proteins have also been confirmed in adult 
ovaries (Roovers et al. 2015). Unlike mouse MIWI2, which is restricted to embry-
onic/neonatal male germ cells, HIWI2 is ubiquitously expressed in normal human 
tissues (Keam et al. 2014; Williams et al. 2015). HIWI3, which has no ortholog in 
mouse, is also detected specifically in human testes and ovaries, but its transcript 
abundance is at least tenfold lower than its three other paralogs (Williams et  al. 
2015). Pachytene piRNAs are abundant in adult human testes (Aravin et al. 2006; 
Girard et al. 2006; Ha et al. 2014; Yang et al. 2013; Williams et al. 2015). They can 
be enriched by antibodies against HILI and HIWI, suggesting these piRNAs are 
HILI and HIWI-bound (Williams et al. 2015). piRNAs are also present in human 
ovaries, and more abundant in fetal ovaries than in adult ovaries (Williams et al. 
2015; Roovers et al. 2015). The role of the piRNA pathway on human L1 regulation 
has not been determined. There is a general lack of enrichment of retrotransposon 
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sequences in piRNA libraries isolated from human adult testes and fetal ovaries 
(Williams et al. 2015; Roovers et al. 2015). However, in parallel to male infertility 
found in Miwi2-deficient mice, increased L1 ORF1p expression is correlated with 
reduced HIWI2 expression in the spermatogonia of boys with cryptorchidism who 
are at a high risk of infertility (Hadziselimovic et al. 2015).

9  Functional Consequences of L1 (De)regulation 
in the Germline

9.1  Implication on the Timing of L1 Retrotransposition

Both the frequency and timing of new L1 insertions remain unexplored during 
germline development. Nevertheless, recent studies have improved and refined our 
knowledge about L1 expression during normal germ cell development (Sect. 3). L1 is 
expressed at both RNA and protein levels in both male and female germ cells. For 
males, there are two developmental time windows (Fig. 2); for females, only in mei-
otic germ cells. How do these restricted expression windows impact L1 retrotranspo-
sition? As transcriptional activation is a prerequisite for L1 retrotransposition, it is 
expected that the bulk of retrotransposition in germ cells occurs during these time 
windows. As discussed in Sect. 7, retrotransposition may also favor actively dividing 
cellular stages. One caveat is that, for the great majority of studies, ORF1p is used as 
a surrogate for L1 expression at the protein level. This is because endogenous ORF2p 
has been notoriously difficult to detect, partially due to its low expression levels (Dai 
et al. 2014). As ORF2p function is required for L1 retrotransposition (Moran et al. 
1996), the control of ORF2p expression may be a key mechanism. L1 ORF2p has 
been detected in human fetal and adult testes (Ergun et al. 2004), but a careful analysis 
of ORF2p during germ cell development is lacking in mouse models.

The timing of retrotransposition in the male germ line will have a huge impact on 
the allelic frequency of new L1 insertions in the resulting spermatozoa. If an inser-
tion occurs at the prospermatogonia/spermatogonia stage, it may be represented in 
thousands of gametes. In contrast, if retrotransposition occurs at the spermatid stage, 
this specific insertion can only be found in a single gamete. Thus, early retrotranspo-
sition timing increases the allelic frequency for a specific insertion by  several thou-
sand-fold as compared to late retrotransposition events. The above interpretation is 
based on the premise that all insertions are selectively neutral and do not affect the 
fitness of afflicted germ cells. However, the orientation bias of intronic L1 and LTR 
elements in the human genome suggests that some TE insertions are subjected to 
purifying selection (Smit 1999; Medstrand et al. 2002). Even if a small fraction of the 
insertions are deleterious or adaptive mutations, the difference in retrotransposition 
timing will significantly impact the overall fitness landscape. This is because late 
insertions, by definition, occur only in terminal stage of germ cell development and 
the selection pressure will act on a limited number of developmental pathways (i.e., 
post-meiotic development for spermatids). In contrast, early-stage germ cells carry-
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ing insertions have to survive a myriad of additional developmental processes and 
eventually emerge as de novo mutations in the population (i.e., the journey for pros-
permatogonia to become spermatozoa). A corollary of germ cell selection is that the 
actual frequency of retrotransposition in developing germ cells can be substantially 
higher than what would be observed in live births. Future studies in animal models 
are required to address these important questions.

9.2  Impact on Germ Cell Development

What is the functional consequence of retrotransposon deregulation? As discussed 
above, genetic ablation of various host factors leads to retrotransposon derepression, 
evidenced by increased RNA and protein expression. Indeed, some of these mecha-
nisms preferentially target transcriptionally and transpositionally active retrotranspo-
son lineages (Fig. 3). In mice, these include several evolutionarily young non-LTR 
and LTR-retrotransposon subfamilies, such as L1s and IAPs, which can potentially 
wreak havoc to the germline genome due to insertional mutagenesis. A common 
theme emerging from these mouse knockout studies is a disruption of the spermato-
genic program and subsequent male infertility. An unanswered question is whether 
spermatogenic failure is caused by the derepression of retrotransposons itself. One of 
the biggest obstacles is how to quantitatively determine the number of new insertions 
while facing an extremely high baseline signal from preexisting retrotransposon 
copies. Real-time PCR has been used to quantify endogenous human and mouse L1 
copies (Coufal et al. 2009; Muotri et al. 2010). A similar strategy failed to detect any 
significant changes in L1 copy number in Dnmt3l-deficient mice (Zamudio et  al. 
2015). Therefore, there is an urgent need for novel, sensitive detection methods so 
that the relationship between L1 expression and mobilization in  vivo can be 
established. It is also important to emphasize that TE activation can potentially act 
on germ cells at three different stages of the replication cycle: transcription, transla-
tion, and insertion (Fig. 1). Besides insertional mutagenesis, overexpression of L1 
ORF2p is known to be cytotoxic (Belgnaoui et al. 2006; Gasior et al. 2006; Malki 
et al. 2014; Wallace et al. 2008). Additionally, transcriptional activation of normally 
silenced L1 loci genome-wide has the potential to interfere with chromosome pair-
ing, synapses, and recombination (Zamudio et al. 2015).

10  Concluding Remarks

It has been a decade since the initial discovery of mammalian piRNAs in 2006. 
Follow-up studies spotlight critical roles of fetal and pachytene piRNA pathways 
for retrotransposon regulation in the male germline. Remarkable progress has also 
been made in delineating the intricate relationships between piRNAs, DNA meth-
ylation, and histone modifications. It is clear that the host has evolved multiple 
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layers of mechanisms to prevent uncontrolled retrotransposon activities at each 
stage of the male germ cell development (Fig. 2). Retrotransposons are demethyl-
ated in post-migratory PGCs, which rely on H2A/H4R3me2 modification to tran-
scriptionally silence L1 and IAP (Sect.  4.3). The mitotically arrested 
prospermatogonia are protected by the fetal piRNA pathway, which establishes 
DNA methylation (and potentially H3K9me3) by birth (Sect. 4.2). After birth, ret-
rotransposons are silenced in spermatogonia by H3K9me2, in addition to DNA 
methylation (Sect. 4.3). In meiotic germ cells, retrotransposons are transcription-
ally silenced by DNA methylation and posttranscriptionally suppressed by pachy-
tene piRNAs (Sect. 5.2). In contrast, our understanding of how retrotransposons 
are regulated in the female germline is much less complete (Sect. 6). Even less is 
our knowledge about L1 regulation in human germ cells (Sect. 8). It is imperative 
to understand how different repression systems cooperate to suppress individual 
retrotransposons. Future studies can no longer view all L1s as equivalent and sub-
families should be separately analyzed (Fig.  3). Furthermore, analysis must be 
germ cell specific and stage specific. Tools to quantify retrotransposition must be 
improved and new methods be developed.
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1  Introduction

L1 sequences comprise approximately 17 % of the genome; however, taking into 
account the mobilized Alu, SVA, and pseudogene insertions which occurred due to 
L1 protein expression, L1 is responsible for ~33 % of the sequence of the genome 
(Lander et al. 2001). Most of the transposable elements in the human genome are no 
longer identifiable as TEs due to the age of their sequences and their sequence diver-
gence is so great that they cannot be assigned to a single TE family (Lander et al. 
2001; Smit et al. 1995). The majority of the L1 elements in the human genome are 
not actively transposing because only one subfamily of each type of elements is 
active at a time (Smit et al. 1995; Khan et al. 2006). Subfamilies are determined by 
differences in sequence content which occur as mutations accrue over evolutionary 
time in the respective elements.

The emergence of new active subfamilies of elements is largely due to a situation 
referred to as an “arms race,” a part of the “Red Queen” hypothesis (Van Valen 
1973). The arms race serves the purpose of evading the host defenses and the race 
is waged between both retrotransposons and the mechanisms for controlling their 
activity, such as APOBEC3 proteins (Chen et  al. 2006; Bogerd et  al. 2006a; 
Muckenfuss et al. 2006; Stenglein and Harris 2006). To limit the activity of poten-
tially mutagenic TE insertion events, eukaryotic cells have acquired several defense 
mechanisms to derail the process of L1 mobilization at various stages. The fossils 
of older inactive elements are a testament to the fact that continued evolution of 
transposable elements occurs nearly constantly although the rate of retrotransposition 
has not been constant (Khan et al. 2006).
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One of the main tools utilized to limit retrotransposition is the methylation of 
retrotransposon promoters to restrict the transcription of the elements. Varied epi-
genetic modifiers are active in retrotransposition silencing, including the DNA 
methyltransferase-like protein Dnmt3L (Bourc’his and Bestor 2004; Kato et  al. 
2007). Dnmt3L is essential for Dnmt3A mediated methylation of retrotransposons 
in primordial germ cells (Bourc’his and Bestor 2004; Kato et al. 2007). In addition 
there is a mechanism for controlling retrotransposon activity in the germline via a 
piRNA-specific pathway which mediates genome-wide CpG methylation of TEs 
and restricts their activity (Bourc’his and Bestor 2004; Aravin et al. 2008; Woodcock 
et al. 1997; Yoder et al. 1997; Walsh et al. 1998). It has been demonstrated that L1 
expression levels are inversely correlated with the methylation of the canonical pro-
moter in the 5′ UTR of the element (Baba et al. 2010; Muotri et al. 2010; Perng et al. 
2013), and numerous epigenetic modifiers contribute to establishing and maintain-
ing the methylation status of L1 elements in the genome. To reinforce the suppres-
sion of TE activity, eukaryotic cells have also developed a Piwi-interacting RNA 
silencing pathway (Aravin et al. 2008; Aravin et al. 2006). Piwi-interacting RNAs, 
repeat-associated small interfering RNAs, and microRNAs all act to degrade 
retrotransposon transcripts via RNA interference (Heras et al. 2013; Macias et al. 
2012; Sijen and Plasterk 2003; Watanabe et al. 2006; Chow et al. 2010; Levin and 
Moran 2011).

RNA interference is yet another mechanism by which the host can control TE 
expression using repeat-associated small interfering RNAs and microRNAs to 
degrade TE transcripts (Bogerd et al. 2006a; Heras et al. 2013; Macias et al. 2012; 
Sijen and Plasterk 2003; Chow et  al. 2010; Levin and Moran 2011; Watanabe 
et  al. 2008; Yang and Kazazian 2006; Czech et  al. 2008; Malone and Hannon 
2009; Slotkin et al. 2009). In addition to epigenetic and posttranscriptional regu-
lation of L1, there are numerous host factor proteins which target the process by 
which L1s and other retrotransposons integrate into the genome (Pizarro and 
Cristofari 2016). Oftentimes, these host factors are also used to control retroviral 
infection in the host. MOV10, a host factor, is a potential RNA helicase and has 
the ability to restrict L1 retrotransposition in cell culture (Arjan-Odedra et  al. 
2012; Goodier et al. 2012; Goodier et al. 2013). MOV10 restricts TEs by associat-
ing with the key RNA- induced silencing complex component AGO2 and the L1 
ribonucleoprotein particle (RNP). After association with AGO2 and the RNP, 
MOV10 is theorized to degrade or block the translation of L1 RNA (Liu et al. 
2012). The exonuclease Trex1 metabolizes reverse transcribed retrotransposon 
DNA to stunt the process of retrotransposition (Stetson et al. 2008). In addition to 
Trex1 and MOV10, many studies have reported members of the APOBEC3 (A3) 
family of cytidine deaminases having a role in restricting the activity of L1 ele-
ments in cultured cells (Chen et al. 2006; Muckenfuss et al. 2006; Stenglein and 
Harris 2006; Bogerd et al. 2006b).

For TE families, especially L1, to continue to propagate in the human genome, 
elements must evolve to circumvent cellular host control mechanisms. In addition 
to the competition between the host and the TE, the TEs themselves must compete 
among other elements to retain their activity as well. The competition among L1 

T.T. Doucet-O’Hare and H.H. Kazazian Jr.



65

elements has been demonstrated in  vivo in studies of rodent L1s (Casavant and 
Hardies 1994; Cabot et al. 1997) and further supported by evidence that L1 subfamilies 
seem to only coexist when the elements contain differing 5′ UTR sequences (Khan 
et al. 2006). In the mouse genome there are three subfamilies of active L1 elements 
and all have sequence differences in their 5′ UTR (Goodier et al. 2001).

The currently active L1 elements, L1PA1 and L1Hs, are the products of a long 
succession of L1 element evolution. The active elements can be subclassified based 
on certain “diagnostic” nucleotides. Elements in the transcribed group a subfamilies 
are referred to as “Ta” elements (Skowronski et al. 1988) and appeared approxi-
mately 2–3 million years ago (Boissinot et al. 2000; Myers et al. 2002) and have 
“ACA” at positions 5924-5926 and a “G” at 6010 relative to the active L1RP element. 
Older and inactive elements instead have a “GAG” and an “A” at the same positions. 
A family which is slightly older, yet still active, known as the pre-Ta elements, have 
the sequence “ACG” in place of “ACA.”

Only a subset of the preTa and Ta L1 elements are capable of transposing to new 
locations in the genome and there are several requirements which must be met. 
Because many L1s are 5′ truncated upon insertion, a large number of the elements 
are unable to promote their own transcription because the 5′ promoter is absent 
from the insertion site (Grimaldi et al. 1984). The 5′ truncations may be due to 
poor processivity during the reverse transcriptase reaction or potentially because of 
degradation of the L1 RNA after translation and prior to the reverse transcription. 
During or after the insertion process, oftentimes L1 DNA accumulates mutations, 
frame shifts, or other inactivating alterations in either of the ORFs which causes 
them to be potentially inactive. It has been determined that approximately 80–100 
L1 elements are active in a diploid genome and are therefore able to mobilize 
themselves and other TEs in trans (Brouha et al. 2003). Both copies of the L1 pres-
ent in a diploid genome can generate new insertions (Brouha et  al. 2003). 
Additionally, there are approximately 2000–3000 Alu elements and less than 100 
SVA elements capable of retrotransposition in the genome (Mills et  al. 2007; 
Bennett et al. 2008). There is allelic variability between L1 elements (Seleme et al. 
2006; Lutz et al. 2003). In a mechanism not dissimilar to single nucleotide poly-
morphisms (SNPs) (Cheung et al. 2005), SNPs in active L1 elements can change 
the activity up to 16-fold (Lutz et al. 2003). A study comparing three active L1s 
across ~200 haploid genomes from six geographic regions resulted in 0–390 % 
activity when compared to a reference (Seleme et al. 2006). In this study compar-
ing a trio of L1s, it was also noted that one new L1 allele (i.e., the same L1 with a 
different nucleotide sequence variant) existed for every 3–5 L1s sequenced in the 
study. Because the active elements are mobilizing to novel insertion sites in the 
genome, it is logical that individuals will differ with respect to the presence or 
absence of L1 insertions at loci throughout their genomes. These retrotransposons 
insertion polymorphisms (RIPs) segregate with populations in much the same way 
that SNPs do. Because many insertions derived from retrotransposons which are 
active occurred recently, they are polymorphic with regard to the presence or 
absence of the insertion in different human populations (Boissinot et  al. 2000, 
2004; Myers et al. 2002; Sheen et al. 2000; Batzer and Deininger 2002; Wang et al. 
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2006). In a study using fosmid end resequencing and mapping to identify 6000 
nucleotide and greater structural variants, 68 non-reference L1 RIPs were identi-
fied (Beck et al. 2010). Of the 68 RIPs identified, 37 were found to be “hot” or 
highly active when assayed in cell culture using the retrotransposition assay 
(Moran et al. 1996). In addition to the new RIPs discovered, the authors noted that 
each of the six individuals studied possessed 2/6 insertions present in the reference 
genome that were classified as “hot” in previous work (Brouha et  al. 2003). In 
addition to the two aforementioned “hot” L1 elements, each individual possessed 
between three and nine additional “hot” elements which were not in the reference 
genome (Beck et al. 2010). Altogether, these studies demonstrate L1 is active and 
mobilizing in the genome.

2  Retrotransposition Can Cause Disease

Spontaneous and inherited occurrences of disease-causing mutations have been 
observed in greater than 100 cases, including diseases such as hemophilia, cancer, 
and diabetes (Kazazian et al. 1988; Beck et al. 2011; Hancks and Kazazian 2012; 
Kaer and Speek 2013; Kutsche et al. 2002; Gu et al. 2007; Conley et al. 2005; Apoil 
et al. 2007; Claverie-Martin et al. 2003; Masson et al. 2013; Sukarova et al. 2001; 
Ganguly et al. 2003; Green et al. 2008; Vidaud et al. 1993; Wulff et al. 2000; Li et al. 
2001; Zhang et al. 2000; den Hollander et al. 1999; Beauchamp et al. 2000; Kloor 
et al. 2004; Muratani et al. 1991; Janicic et al. 1995; Sobrier et al. 2005; Gallus et al. 
2010; Anagnou et al. 1989; Halling et al. 1999; Su et al. 2000; Tucker et al. 2011; 
Manco et  al. 2006; Chen et  al. 2008; Abdelhak et  al. 1997; Udaka et  al. 2007; 
Bouchet et al. 2007; Oldridge et al. 1999; Bochukova et al. 2009; Tighe et al. 2002; 
Stoppa-Lyonnet et al. 1990; Mustajoki et al. 1999; Tappino et al. 2008; Miki et al. 
1996; Teugels et al. 2005; Schollen et al. 2007; Peixoto et al. 2013; Wallace et al. 
1991; Wimmer et al. 2011; Meischl et al. 2000; Brouha et al. 2002; Musova et al. 2006; 
Narita et al. 1993; Holmes et al. 1994; Mukherjee et al. 2004; Morisada et al. 2010; 
Kondo-Iida et al. 1999; Bernard et al. 2009; Lanikova et al. 2013; Miné et al. 2007; 
Kagawa et al. 2015; Nakamura et al. 2015; Makino et al. 2007; Arca et al. 2002; 
Takasu et al. 2007; Kobayashi et al. 1998; Taniguchi-Ikeda et al. 2011; Akman et al. 
2010; Segal et al. 1999; Wang et al. 2001; Qian et al. 2015) (see Table 1). Previously, 
it has been suggested that ~0.27 % of human genetic disease is caused by TE inser-
tions (Callinan et  al. 2006). An example of a somatic insertion causing disease 
would be a processed pseudogene which inserted into the CYBB gene and caused 
primary immunodeficiency (de Boer et al. 2014). Yet another example of a somatic 
event causing disease occurred when SVA mediated deletions in the NF1 gene 
caused disease (Vogt et al. 2014). A somatic L1 insertion caused Choroideremia in 
a patient when it was inserted into the coding region of the gene (Van Den Hurk 
et al. 2003). There are many mechanisms by which TEs could disrupt normal gene 
expression or affect genome structure. TEs can disrupt genomic sequences when 
they insert; however, they can also cause deletions and rearrangements in the 
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genome (via 5′and 3′ transduction) (Kaer and Speek 2013; Raiz et  al. 2012). 
Transductions can occur from both non-reference and reference L1 elements and 
are a result of the weak poly(A) signal in the L1 element (Holmes et  al. 1994; 
Goodier et al. 2000; Pickeral et al. 2000; Szak et al. 2002). Because of the weak 
poly (A) signal, RNA polymerase II reads through the L1 to the adjacent DNA fol-
lowing the 3′ end of the element. This process is estimated to occur in 15–23 % of 
all L1 mobilization events (Holmes et al. 1994; Goodier et al. 2000; Pickeral et al. 
2000; Szak et al. 2002). An L1 mediated 3′ transduction of a novel noncoding gene 
into exon 67 of the dystrophin gene was observed; however, due to severe 5′ trunca-
tion of the element there was no recognizable L1 sequence present (Solyom et al. 
2012a; Awano et al. 2010). When L1s carry regulatory sequences in the transduc-
tion, “exon shuffling” can also occur which can affect gene expression (Moran et al. 
1999). Yet another mechanism by which L1 insertions can cause aberrant gene 
expression is “gene breaking” (Wheelan et al. 2005). For gene breaking to occur 
and L1 must insert into an intron in the antisense orientation and then split the asso-
ciated transcript into two parts through the combined effects of the L1 polyadenyl-
ation signal and the L1 antisense promoter (Wheelan et  al. 2005). TEs can also 
provide an alternative promoter for a gene following their insertion into a new loca-
tion. A TE which is fixed in the genome or even polymorphic in the population can 
acquire mutations which enable the sequence to create a cryptic splice site (Varon 
et al. 2003) or it can undergo deletions which facilitate branch site recognition and 
result in Alu exonization (Meili et al. 2009).

In addition to insertional mutagenesis, retrotransposons can mediate ectopic 
recombination through non-allelic homologous recombination (NAHR) and non- 
homologous end joining (NHEJ) in the genome (Callinan et  al. 2005; Kazazian 
2004; Hedges and Deininger 2007; Belancio et  al. 2008; Goodier and Kazazian 
2008; Lee et al. 2012a). In fact, a frequently observed example of this process is also 
the most frequently observed translocation in the human genome where there is a 
recombination of two Alu sequences on chromosomes 11 and 22, respectively (Hill 
et al. 2000). Additionally, it has been demonstrated that Alu repeats are enriched in 
segmental duplication breakpoints (Bailey et al. 2003) and countless examples of 
NAHR mediated by Alu elements have been found (Belancio et al. 2008). Recently a 
broad analysis of pathogenic variants in Fanconi anemia genes found that up to 75 % 
of FANCA deletions are Alu-Alu mediated, predominantly mediated by NAHR due 
to Alu Y elements (Flynn et al. 2014). Occasionally, the homologous sequences of L1 
elements cause mis-alignment during meiosis and result in NAHR, especially when 
elements are proximal to each other and in the same orientation (Kazazian 2004; 
Hedges and Deininger 2007; Belancio et al. 2008; Goodier and Kazazian 2008). 
A 520 kb deletion containing four genes occurred due to an L1 associated non-allelic 
recombination and caused Ellis von Creveld syndrome in a family (Temtamy et al. 
2008). Other previous reports also noted a recombination between L1 elements 
flanking the PHKB gene (Burwinkel and Kilimann 1998) and a similar event occurred 
due to the same mechanism causing Alport syndrome diffuse leiomyomatosis (Segal 
et  al. 1999). More recently, a deletion in the factor IX gene between two highly 
homologous L1 sequences seems to have occurred due to  non- allelic homologous 
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recombination between the two tandem L1s (Wu et al. 2014). SVA elements, through 
NAHR, are also responsible for disease-causing mutations occurring due to copy 
number changes with nonrecurrent breakpoints (Vogt et al. 2014). In a recent study 
by Vogt and colleagues, large NF1 deletions were studied and two of 17 deletions 
with nonrecurrent breakpoints occurred with the concomitant insertion of SVA 
elements at the deletion breakpoints (Vogt et al. 2014).

Many of the previously described disease-causing events associated with the pres-
ence of retrotransposons in the human genome occur during a post-zygotic stage 
(Vogt et al. 2014) or occur in the germline. Although diseases caused by insertion or 
aberrant recombination events have mostly been due to insertions prior to or during 
development, insertions occurring in somatic cells of diseased organisms have also 
been clearly exhibited. Although the somatic insertions appear to be occurring in 
various regions of the brain, a subset of normal tissues, and most epithelial cancers, 
it has yet to be determined to what extent the insertions are changing gene expression 
and potentially contributing to human disease. Somatic insertions in cancer will 
comprise the bulk of this book chapter and will be further discussed later in this text 
(Lee et al. 2012b).

2.1  Conclusions

Due to the various mechanisms through which repetitive elements can cause dis-
ease, the host has evolved many pathways to thwart the amplification of retrotrans-
posons and thereby the potential mutations which come along with them. The 
defense mechanisms employed by the cell are diverse as they affect various aspects 
of the L1 life cycle. The previously discussed L1 control mechanisms display how 
the host uses multiple, if not redundant, mechanisms to control retrotransposon 
mobility and suggest when any of these mechanisms is not operating optimally L1 
may be more active. In other words, a cell subject to aberrant expression of its pro-
tective mechanisms may be particularly susceptible to L1 somatic insertions that are 
inherently mutagenic.

3  L1 and Cancer

It follows logically that genetic instability caused by retrotransposition activity 
would be elevated in diseases where normal cellular check points during prolifera-
tion and DNA replication are absent, such as cancer. Indeed, many cancers have 
shown high L1 expression and a high occurrence of somatic insertions in patients 
evaluated thus far (Tubio et al. 2014; Solyom et al. 2012b; Ewing et al. 2015; Shukla 
et al. 2013; Doucet-O’Hare et al. 2015; Lee et al. 2012c; Rodić et al. 2015; Rodić 
et al. 2014; Helman et al. 2014). Although L1 activity in cancer, especially epithelial 
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cancers, is prevalent, it is still unclear how much somatic retrotransposon insertions 
are contributing to oncogenesis. Furthermore, it is still unclear if the relationship 
between cancer and retrotransposition in epithelial cancers is due to cancer activat-
ing the process of retrotransposition or due to retrotransposition causing somatic 
mutations which contribute to tumor formation. Cancer is by no means a simple 
disease; in fact, it encompasses a wide-ranging group of more than 200 diseases that 
involve uninhibited proliferation of cells leading to tumor formation, in addition to 
several additional common features (Hanahan and Weinberg 2011, 2000). 
Epidemiological studies on twins suggest that environment plays a much clearer role 
in the process of tumorigenesis than genetics (Lichtenstein et al. 2000; Sorenson et al. 
1988). For example, Sorenson and colleagues found that when an adoptive parent died 
as a result of cancer before the age of 50, the rate of mortality due to cancer for the 
adoptees increased (Sorenson et al. 1988). These findings suggest that a strong enough 
environmental mutagen will have a potent effect on individuals who live in the same 
environment despite differences in genetic background.

Furthermore, another study found that the overwhelming contributor to cancer 
development in twins was the environment (Lichtenstein et al. 2000). The authors 
found that even when they considered cancer for which there was statistically signifi-
cant evidence of cancer heritability, most twin pairs were discordant for presence of 
the cancer (Lichtenstein et  al. 2000). Environmental factors contribute to sporadic 
cancer occurrence as much as 58–82 %, as compared to the highest known genetic 
contribution to cancers, colorectal, breast, and prostate cancers which is 27–42 % 
(Lichtenstein et  al. 2000). Mutations which contribute to cancer development are 
referred to as drivers, and mutations which accumulate due to the dysregulation of 
DNA replication and repair pathways are referred to as passengers. It is a continuous 
challenge in the study of cancer genetics to differentiate between driver and passenger 
mutations. The apparent dysregulation of L1 elements in cancer is only one of many 
sources of genetic aberrations that frequently contribute to cancer development. 
However, L1 elements and other retrotransposons have a large size effect upon inser-
tion and due to their structure have multiple ways in which their newly acquired pres-
ence can disrupt gene expression and regulation. It is also telling that L1 mobilization 
has been observed in many different tumors (Lee et  al. 2012b; Tubio et  al. 2014; 
Solyom et al. 2012b; Ewing et al. 2015; Shukla et al. 2013; Doucet-O’Hare et al. 
2015; Rodić et al. 2015; Helman et al. 2014; Miki et al. 1992; Iskow et al. 2010), 
cancer cell lines (Moran et al. 1996; Garcia-Perez et al. 2010; Ostertag et al. 2000), 
and during development (Garcia-Perez et al. 2007; Kano et al. 2009; Coufal et al. 
2009). Due to the potentially substantial effect of an L1 insertion and the predomi-
nantly deleterious effects on host gene expression observed thus far (Shukla et  al. 
2013; Baillie et al. 2011; Evrony et al. 2012), L1 insertions may be more prone than 
other types of mutations to have an impact on tumorigenesis.

There are many carcinogenic environmental factors (Boffetta and Nyberg 2003) 
which have an impact on retrotransposon activity in cultured cells (Fornace and 
Mitchell 1986). Benzopyrenes, for example, are a risk factor for lung cancer, 
colorectal cancer, and breast cancer (Denissenko et al. 1996; Tabatabaei et al. 2010; 
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Rathore and Wang 2013) and have been shown to increase L1 retrotransposition in 
HeLa cells (Stribinskis and Ramos 2006). Exposure to certain metals such as cad-
mium, chromium VI, and nickel are risk factors for lung and breast cancer (Beveridge 
et  al. 2010; Al-Qubaisi et  al. 2013), and interestingly nickel has been shown to 
induce a higher rate of L1 retrotransposition (Kale et al. 2005). Another feature of 
many tumors is a higher level of free radicals involved in oxidative stress (Toyokuni 
et al. 1995), and oxidative stress has also been demonstrated to affect L1 activity 
(Giorgi et  al. 2011). Furthermore, oxidative stress and DNA damage frequently 
occur as a result of cellular senescence and can also increase both retrotransposition 
rates and chromosomal instability, thereby potentially contributing to somatic 
mosaicism and cancer development (Maxwell et al. 2011; Jacobs et al. 2012; Laurie 
et al. 2012). It is certainly plausible that many more environmental factors which 
contribute to cancer development also activate L1 retrotransposition and thereby 
increase the probability of L1 generating an insertion which affects an oncogenic 
locus and contributes to tumorigenesis (Carreira et al. 2014). The role of environ-
mental stress in L1 mobilization is developed in chapter “Retrotransposon-Driven 
Transcription and Cancer” of this book.

When a cancer genome is sequenced, tens or hundreds of thousands of single 
nucleotide variants, insertions, deletions, translocations, rearrangements, and other 
mutations may be found. In order to understand the role L1 mobilization plays in 
tumorigenesis, it is necessary to separate the winnow from the chafe, determine 
whether any somatic L1 insertions are present in the tumor, and absent from the 
normal tissues. To determine whether or not somatic insertions are contributing to 
tumor development, the insertions must be mapped in individuals with relevant dis-
ease. In 1992, Miki et al. mapped a somatic L1 insertion in a colorectal tumor in an 
exon of the APC gene (Miki et al. 1992). The somatic insertion was confirmed with 
Southern blot and because APC is the primary tumor suppressor gene in colorectal 
cancer and causes familial adenomatous polyposis (Kinzler et  al. 1991a, b) it is 
reasonable to conclude that the somatic L1 insertion, which was found to be absent 
from normal colon, was sufficient to drive oncogenesis (Carreira et  al. 2014). 
Although the preliminary discovery of an L1 insertion contributing to cancer 
occurred in the early 1990s, it was two decades before researchers returned to the 
topic to investigate the role of L1 in carcinogenesis. To date, only one other defini-
tive somatic insertion has been found in the exon of a tumor suppressor gene. An 
insertion into an exon of the PTEN gene was discovered with whole genome and 
whole exome sequencing by Helman and colleagues in 2014 (Helman et al. 2014). 
High-throughput next-generation sequencing enabled researchers to examine the 
genomes of more individuals at one time and compare those genomes between the 
cancer and normal samples in addition to comparing individuals’ genome differ-
ences. Due to the new technology available, many methods were subsequently spe-
cifically developed for assessing L1 activity in the genome, for detailed reviews see 
(Ray and Batzer 2011; Faulkner 2011). Prior to a paper from Iskow and colleagues, 
several groups were able to successfully identify novel L1 insertions; however, they 
used assays which were inherently low-throughput and which had high false posi-
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tive rates (Sheen et al. 2000; Ovchinnikov et al. 2001; Badge et al. 2003). The initial 
high-throughput method utilized for the discovery of somatic insertions, termed 
“Transposon-seq” utilized digested genomic DNA using restriction enzymes which 
recognize the 3′ end of the L1 and Alu elements (Iskow et al. 2010). The authors 
linked adapters to the resulting fragments and amplified them with PCR to create 
retrotransposon-specific libraries (Iskow et  al. 2010). In the initial efforts of the 
study, 38 ethnically diverse humans and 8 ATCC cell lines derived from human 
tumors were utilized to create libraries (Iskow et  al. 2010). Approximately 4600 
library fragments were cloned and sequenced with ABI capillary sequencing yield-
ing 152 putative novel L1 insertion polymorphisms (Iskow et al. 2010). In order to 
ensure a low false positive rate, the authors applied specialized informatics to filter 
the datasets and identified high probability L1Ta insertion candidates (Iskow et al. 
2010). The PCR validation rate for the insertions was 97 % with approximately a 
third of the insertions possessing a minor allele frequency (MAF) equal to or below 
5 % (Iskow et al. 2010). Additionally, 47 “rare” insertions were found in very few 
individuals and 9 of them were only found in one cell line evaluated (Iskow et al. 
2010). One of the nine rare insertions in only one cell line was deemed as a somatic 
insertion due to its presence in the tumor cell line and its absence from the normal 
cell line (Iskow et al. 2010). After finding the somatic insertion, the authors imple-
mented their technique in a high-throughput fashion by acquiring 20 non-small cell 
lung cancers with matched normal tissues. Previous work in the mouse brain (Muotri 
et al. 2005) and in human neural stem cells (Coufal et al. 2009) suggested that L1 
activity in the brain was highly active. Two types of brain tumors were also evalu-
ated in the study including glioblastoma and medulloblastoma (Iskow et al. 2010) 
with five cases of each condition along with matched blood leukocyte controls 
(Iskow et al. 2010). The high-throughput version of “Transposon-seq” utilized bar-
coding sequences to assign a given sequence to specific samples within the sample 
pool sequenced with 454 pyrosequencing (Iskow et al. 2010). Following sequencing 
analysis, 1389 distinct L1 insertions were detected in the 30 samples assessed. After 
all the novel insertion candidates were compared to the human reference genome 
and to dbRIP (Wang et al. 2006), 650 putative novel L1 insertions remained, and 
45 % of them had MAFs less than or equal to 5 %. Of all the individuals evaluated, 
93 % of the genomes had at least one rare L1 insertion present in only a single 
human in the study. After screening the low frequency alleles with PCR assays, the 
authors found there were nine tumor-specific somatic L1 insertions present in their 
lung cancer cohort. Surprisingly, no somatic insertions were confirmed in the brain 
tumors evaluated. In 6 of the 20 lung tumors studied, somatic tumor-only insertions 
were confirmed. Lastly, the authors confirmed hypomethylation of many potentially 
active polymorphic L1 elements in the genomes of affected patients (Iskow et al. 
2010). The hypomethylation present in the affected individuals suggests that one 
mechanism of L1 escape from host control in cancer is due to changes in methyla-
tion due to mutations in tumor suppressor genes.

Several years later, Lee et al. used a computational method, “Tea” for transpos-
able element analyzer, to analyze whole genome paired end sequencing data from 
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tumors and matching blood samples (Lee et al. 2012b). In this study, the authors 
performed a single nucleotide resolution analysis of retrotransposons in 43 high 
coverage whole-genome sequencing data sets from five cancer types (Lee et  al. 
2012b). The study samples consisted of colorectal tumors, ovarian tumors, prostate 
tumors, blood cancer, and brain cancer (Lee et al. 2012b). The authors identified 
194 high-confidence putative somatic retrotransposon insertions in the samples of 
epithelial origin only, e.g., ovarian, prostate, and colorectal tumors (Lee et  al. 
2012b). Of the 194 high-confidence putative insertions, 183 of them were purported 
to be L1s, 10 Alu elements, and 1 endogenous retrovirus (ERV) (Lee et al. 2012b). 
It was later determined that the putative ERV insertion was likely caused by a 
microhomology-mediated break-induced repair mechanism (Hastings et al. 2009). 
With regard to the PCR and capillary sequencing validation of the predicted somatic 
insertions, 25/26 insertions were validated in colorectal cancer and 13/13 insertions 
validated in ovarian cancer with an overall rate of 97 % validation (Lee et al. 2012b). 
Finally, the authors noted that somatic and germline L1 insertion sites differed in 
genomic distribution as well as epigenetic characteristics. When comparing germ-
line insertions to somatic insertions, germline events are depleted from genes sig-
nificantly, likely due to strong negative selection on the events (Graham and 
Boissinot 2006). The authors assert that the retrotransposon insertions seem to pro-
vide a selective advantage in certain individuals and that the insertions occurred in 
genes commonly mutated in cancers and substantially disrupted their expression 
(Lee et al. 2012b).

In a publication from our own group in the same year, two high-throughput 
sequencing techniques which enrich for retrotransposons in different ways were 
utilized. L1-seq, developed by Adam Ewing (Ewing and Kazazian 2010), utilizes a 
hemi-specific PCR-based library construction method to enrich for the young, 
active subfamily of L1s in the genome. RC-seq (version 1), developed by the 
Faulkner lab (Baillie et al. 2011), uses probes designed to bind the 5′ and 3′ ends of 
L1 and SVA elements and probes tiled across the full length of an Alu. The probes 
are tiled on an array and the sheared genomic DNA is applied to the array as the 
relevant sequences bind. This DNA later has adapters ligated to it and is minimally 
amplified with PCR using only eight cycles (Baillie et al. 2011). Using L1-seq on 
two cohorts of 16 total colorectal cancer patients with matched tumor and normal 
tissues, 26/40 and 37/51 high stringency somatic insertions were identified and vali-
dated, respectively. An additional 9 out of 16 lower stringency insertions with lower 
read-counts and map scores were identified and validated between both cohorts as 
well. In total, L1-seq resulted in the 3′ validation of 69/107 putative tumor-specific 
somatic insertions and both 5′ and 3′ validation of 35 of said insertions. As is typical 
of both previous and follow-up studies, one tumor had 17 insertions present while 
three others had no insertions. Most of the insertions identified had severe 5′ trunca-
tion and averaged about 1 kb in size. Five of the 16 colorectal cancer patient sam-
ples were barcoded, pooled, and analyzed by shallow, multiplexed RC-seq. Using 
RC-seq, 8L1, 83 Alu, and 5 SVA somatic insertions different from those identified 
with L1-seq were predicted. Only one of the L1 insertions predicted was confirmed 
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to be truly tumor-specific, and 11 high-confidence predicted L1 insertions identified 
by L1-seq were also identified with RC-seq. Of the remaining putative insertions, 
6/8 L1s, 30/57 Alu elements, and 6/11 SVA elements were validated in both tumor 
and paired normal tissue.

A year later, Faulkner and colleagues published an updated version of RC-seq 
which was utilized to analyze retrotransposon activity in 19 hepatocellular carcinomas 
(HCC) (Shukla et al. 2013). The HCC cases consisted of fresh frozen tissue from 
patients positive for HBV or HCV and matched normal tissue. In the new version of 
RC-seq, a liquid phase capture was utilized to increase the number of probes available 
for binding to increase efficiency; furthermore the sequences of the probes used 
were also refined and edited to be a more effective pool for binding active elements. 
The optimized version of RC-seq produced a fourfold increase in reads which 
aligned to non-reference genome L1s per library sequenced. Twelve out of 17 
potential somatic insertions were validated in tumor only with PCR and sequencing 
confirmed the L1 is active in HCC. No SVA or Alu element somatic insertions were 
confirmed in any of the patients; however, a single L1 insertion was confirmed in 
normal liver and was found to be absent from the corresponding tumor. The inser-
tion into normal liver is surprising because it had been previously assumed that 
retrotransposition was not an active process in somatic tissues with the exception of 
the brain (Coufal et al. 2009; Baillie et al. 2011; Evrony et al. 2012; Cai et al. 2014). 
If somatic retrotransposition happens in the normal tissues of some individuals, it is 
possible that in those individuals it could cause mutations which lead to disease like 
cancer development. Interestingly, the authors noted three different germline inser-
tions into the MCC gene, mutated in colorectal cancers, in three individuals with 
HCC. The germline insertions coincided with a strong reduction of MCC expression 
as confirmed with immunoblot and qRT PCR. Although this study did not defini-
tively address whether or not somatic insertions contribute to tumorigenesis, it did 
present evidence that in some individuals inherited polymorphic L1 insertions may 
play a role. It seems plausible to assume that if a germline insertion can cause such 
a reaction, then so too can somatic insertions.

In 2014, yet another pipeline emerged for analyzing whole genome sequencing 
data from 200 tumor samples and their matched normal counterparts (Helman et al. 
2014). The following cancers were analyzed in the study: lung adenocarcinoma, lung 
squamous cell carcinoma, ovarian carcinoma, rectal adenocarcinoma, colon adeno-
carcinoma, kidney clear-cell carcinoma, uterine corpus endometrioid carcinoma, 
head and neck squamous cell carcinoma, breast carcinoma, acute myeloid leukemia, 
and glioblastoma multiforme (Helman et al. 2014). The study identified 7724 unique, 
non-reference germline insertion sites and approximately 65 % of them are known 
retrotransposon insertion polymorphisms (RIPs) previously identified in other studies 
(Beck et al. 2010; Lee et al. 2012c; Iskow et al. 2010; Ewing and Kazazian 2010; 
Xing et al. 2009; Hormozdiari et al. 2013; Huang et al. 2010). In total, 810 putative 
retrotransposon insertions were predicted in the cancer  samples and absent from nor-
mal samples. The candidate insertions exhibited the hallmarks of TPRT including 
target site duplications averaging 15 nucleotides in addition to a canonical 
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 endonuclease motif (Feng et al. 1996; Morrish et al. 2002). However, 47 putative 
somatic retrotransposition events were selected for experimental validation. The 47 
tested insertions were predicted across 21 individuals and 4 tumor types. Thirty-nine 
of the insertions (83 %) were validated as tumor specific by PCR and sequencing of 
either the 5′ or the 3′ end. For 32 of the 47 insertions, evidence was present for both 
the 3′ and 5′ ends. Two of the putative somatic insertions were found to be germline, 
present in both tumor and normal, after the validation attempt. Six of the 47 putative 
somatic insertions were not amplified in either the normal or the tumor samples. 
Not unlike previous similar studies, it was noted that 97 % of the L1 somatic insertions 
are in the L1Hs subfamily. After considering which cancers exhibited L1 activity 
among their samples the authors noted that cancers of epithelial origin were the only 
ones which had detectable somatic retrotransposition events. Historically, nearly all 
cancers found to possess retrotransposon activity, in the form of newly acquired 
somatic insertions unique to the tumor, have been epithelial cancers. Interestingly, 
the authors also observed several 3′ transduction events from different regions of the 
genome in a single patient. The 3′ transductions are evidence that at least three dif-
ferent source L1 elements contributed to the somatic insertions in the cancer. In 
contrast to this finding, the authors also noted a patient in which a single L1 element 
caused at least four events, detected due to their 3′ transductions, into different areas 
of the genome. These findings seem to suggest two models for somatic retrotranspo-
sition activity in cancer. In some patients, a single hyperactive source element may 
insert itself into multiple genomic locations in the same tumor. In others, there may 
be several active source elements which contribute the somatic insertions present in 
the sample. It is also possible that both of these situations happen simultaneously in 
the same individual as well.

Later in 2014, a paper analyzed whole-genome sequencing data on 290 tumor and 
matched normal pairs consisting of 210 primary tumors, 52 metastatic tumors, and 
28 cancer cell lines with matched normal cell lines (Tubio et al. 2014). The samples 
were obtained from 244 patients across 12 cancer types, including bladder, bone, 
breast, colon, head and neck, lung, pancreatic, prostate, and renal cancer as well as 
mesothelioma, melanoma, and glioma (Tubio et  al. 2014). The algorithm used to 
analyze the sequencing data, “TraFiC,” identified 2756 putative L1 retrotransposition 
events including both “solo” L1 events and 3′ transductions. PCR validation was 
attempted on 308 putative insertions and 259 insertions were confirmed with PCR 
and capillary sequencing (Tubio et  al. 2014). The authors also observed a single 
patient with 22 somatic 3′ transduction events from a hyperactive L1 which mobi-
lized many times in the same cancer (Tubio et al. 2014). The average insertion length 
was approximately 1 kb for insertions lacking a 5′ inversion, the TSDs averaged 
between 10 and 20 base-pairs, and 3′ transductions occurred in one- fourth of the 
cancer genomes evaluated (Tubio et al. 2014). Due to the abundance of 3′ transduc-
tions in many of the samples, the authors were able to conclude that few loci were 
driving the 3′ transductions in cancer (Tubio et al. 2014).

Recently, another paper analyzing whole-genome paired-end sequencing was pub-
lished in which the authors studied 43 cases of esophageal adenocarcinoma (Paterson 
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et al. 2015). The authors predicted an average of 16 insertions per tumor and a range 
of 0–153 insertions among the patients studied (Paterson et al. 2015). One-fifth of the 
L1 insertions found was predicted to have 5′ inversions and there were nine insertions 
identified with 3′ transductions. The authors also attempted to correlate p53 loss with 
L1 activity by evaluating p53 mutations in all of the patients. The authors observed a 
p53 mutation present in over 88 % of patients with esophageal adenocarcinoma 
patients studied; furthermore, two of the five cases where no p53 mutation were pres-
ent were cases with no insertion (Paterson et al. 2015). In addition, it is noted that it is 
not possible to conclude that the L1s are only active in the tumor as the technique is 
not sensitive enough to detect potential events in the non-cancer cells due to their 
potentially highly polyclonal nature (Paterson et al. 2015). A serious deficit in this 
study was the lack of matched normal tissues for nearly all patients. Without matched 
normal tissue, it is impossible to know whether putative somatic insertions detected in 
the cancer are truly somatic or if they occurred in early development and are present 
throughout the tissue of interest. The continuous development of databases, such as 
euL1db (Mir et al. 2015), and the cataloguing common and rare germline insertions 
obtained from large-scale sequencing projects, such as the 1000 Genome Project 
(Stewart et  al. 2011), will help to discriminate natural variants from somatic ret-
rotransposition events.

Using a technique dubbed “Tip-seq,” Rodic and colleagues studied 20 cases of 
pancreatic ductal adenocarcinoma (PDAC) to detect somatic L1 insertions present 
in the cancer and absent from normal pancreatic tissue (Rodić et  al. 2015). The 
authors had previously described L1 protein ORF1 expression in up to 89 % of 
PDAC patients (Rodić et al. 2014). Tip-seq is a PCR-based L1 enrichment library 
preparation technique and it detected 268 somatic L1 insertions in the tumors of 18 
patients evaluated which were absent from matched normal tissue (Rodić et  al. 
2015). A range of 0–65 insertions was detected in the patients and an average of 15 
insertions per case was calculated (Rodić et al. 2015). There were 15 metastases 
which were evaluated with Tip-seq as well from 15 different patients and 242 inser-
tions were detected in these samples (Rodić et al. 2015). In 13 of the cases where 
both a metastasis and a primary tumor from a patient were shared, 45 insertions 
were confirmed by PCR and capillary sequencing to be present in both tissues and 
absent from the normal tissue (Rodić et al. 2015). The expression of ORF1p in the 
samples subjected to Tip-seq correlated with the number of somatically acquired 
insertions per sample (Rodić et al. 2015). The authors reported 81 % of tested inser-
tions validated with both PCR and capillary sequencing with all insertions being 5′ 
truncated and an average size of approximately 1 kb (Rodić et al. 2015). Finally, the 
authors noted two 3′ transductions among the validated insertions in the study 
(Rodić et al. 2015).

Ewing et al. published a study looking at multiple types of cancer including four 
colorectal cancer patients with matched colonic polyps and normal colon, seven 
patients with pancreatic ductal adenocarcinoma with matched normal, seven patients 
with gastric cancer and matched normal tissue, and eight testicular germ cell tumors 
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with matched blood (Ewing et al. 2015). For eight of the aforementioned cases, met-
astatic tissues were available and evaluated as well (Ewing et al. 2015). Following 
L1-seq (Ewing and Kazazian 2010) and subsequent computational analysis 104 
somatic heterozygous L1Hs insertions were validated by PCR and Sanger sequenc-
ing in the 18 gastrointestinal cancers and 1 insertion was validated in a single patient 
with a testicular germ cell tumor (Ewing et al. 2015). However, the most interesting 
finding in this article was insertions occurring in the polyps which precede the cancer 
development (Ewing et al. 2015). This pattern suggests that L1 is active in tissue 
before the cancer develops and certainly makes it seem more likely that L1 could 
contribute to the process of tumorigenesis.

All of the cancer studies performed to date have strongly established the hyper-
activity of L1 in epithelial cancer; furthermore, many of the studies have established 
similar patterns with regard to retrotransposition. Several of the studies noted an 
average insertion size of approximately 1 kb likely due to the dramatic 5′ trunca-
tions which most of the validated insertions possess (Tubio et  al. 2014; Doucet- 
O’Hare et al. 2015; Rodić et al. 2015). Thus far, nearly all the papers have reported 
target-site duplications in the same size range, approximately 10–20 nucleotides on 
average, and approximately 20 % of the insertions detected in cancer have 5′ 
inversions.

3.1  Conclusions

Although the activity of L1 elements in cancer has been firmly established and the 
events seem to adhere to most of the hallmarks of the process, it is still uncertain 
to what degree these elements play a role in carcinogenesis. Anything short of a 
glaringly obvious insertion disrupting a known tumor suppressor or activating an 
oncogene is a difficult sell to the scientific community as a cause or contributor to 
cancer. Furthermore, there is the possibility that the dysregulation of normal cel-
lular processes in cancer may simply be enabling L1 activity due to differences in 
methylation or the under expression of host genes which normally suppress ret-
rotransposons activity. The evidence contrasting the simple activation of elements 
due to cancer development is the confirmed somatic insertions in not only the 
precursor conditions to cancer, but also in normal tissues. Observations of vali-
dated somatic insertions in tissues which are the precursor to cancer were made in 
the recent publication by Ewing and colleagues. Although there is mounting evi-
dence of somatic retrotransposition occurring in normal tissues, it has not been 
definitively shown that this activity leads to cancer. Like any other potential muta-
gen, retrotransposition likely leads to disease a certain percentage of the time 
regardless of the disease type. However, when retrotransposons are hyperactive in 
a tissue, like in cancer or potentially precancerous conditions, it may be more 
likely to be the cause of a mutation which leads down the path to cancer 
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development. In the future, to distinguish between retrotransposons as passengers 
versus drivers, single-cell sequencing, database development and the acquisition of 
larger cohorts of patients will likely lead to an answer.
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1  The Annotation of Retrogenes in Reference Genome 
Assemblies

The term ‘processed pseudogene’ was first used to describe a copy of a 5S RNA 
gene in Xenopus laevis which was very similar to the known 5S RNA sequence, but 
with a number of changes leading the authors to label the pseudogene as a ‘relic of 
evolution’ (Jacq et al. 1977). A number of publications followed, describing pro-
cessed pseudogenes in mice, rats, and humans, reviewed in 1985 by Vanin (Vanin 
1985). In that review, Vanin proposes that the term pseudogene only be used to refer 
to copies that are non-functional but related in sequence to their progenitor or ‘par-
ent’ gene. It is important when considering the potential impact of re-integrated 
processed transcripts to have a standardised nomenclature with reference to their 
potential for functionality (Mighell et al. 2000): therefore we adopt the convention 
where the term retrogene refers to a functional copy, retropseudogene refers to a 
non-functional processed pseudogene, and retrocopy refers to the sequence reverse- 
transcribed from the processed transcript without specifying whether the result is 
functional or not (Vinckenbosch et al. 2006; Kaessmann et al. 2009).

The repetitive nature of many plant and animal genomes was suggested from early 
hybridisation and dissociation experiments (Britten and Kohne 1968), and confirmed 
by the sequencing and assembly of mammalian genomes, beginning with human in 
2001 (Lander et al. 2001) and mouse in 2002 (Mouse Genome Sequencing Consortium 
et al. 2002). There are many sequences that exist in more than one copy, which is one 
of many reasons why genome assembly following shotgun sequencing is not straight-
forward (Pevzner et al. 2001). This problem is further exacerbated today when current 
genome sequencing technology yields billions of reads even shorter than those used 
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to assemble the first draft of the human genome reference (Alkan et al. 2011). 
The existence of multiple copies of many exon sequences is not only problematic for 
accurate genome assembly of the gene sequences, but it is also an important consider-
ation when designing probes for hybridisation or PCR experiments (Menon et  al. 
1991; Hurteau and Spivack 2002), and when mapping RNA- seq reads to the reference 
genome (Schrider et al. 2011b). Therefore, it is practically important to have a cata-
logue or annotation of which genes have retrocopies and where in the reference 
genome the retrocopies are located. A number of approaches have yielded retrocopy 
annotations in assembled reference genomes (Zhang et al. 2002, 2003; Torrents et al. 
2003; Emerson et al. 2004; Marques et al. 2005; Baertsch et al. 2008; Carelli et al. 
2016). The list maintained at pseudogene.org (Karro et al. 2007) is a frequently used 
example, and is regularly updated with new reference genome assemblies. In its sim-
plest form, the process for finding retrocopies in an assembled genome reference is 
reasonably straightforward, provided that some gene annotation exists in the form of 
protein or mRNA sequences. The sequences corresponding to processed messenger 
RNAs (i.e. without introns) are aligned to the reference assembly via a sequence 
aligner such as BLAST (Altschul et al. 1990), and post-processed into gene copy and 
retrocopy predictions through a series of filters and heuristics to further categorise 
them and remove false positives that might be due to transposable elements or low-
complexity matches. The results for the human genome vary between about 4000 
(Marques et al. 2005; Baertsch et al. 2008) and about 8000 (Zhang et al. 2003) retro-
copies or more (Torrents et al. 2003), with the variability likely due to a combination 
of dataset choice, alignment parameters, and filtering methods. When choosing a 
pseudogene annotation to use, the nature of the application should be considered: 
studies of pseudogene functionalization might choose a more stringent filtering, 
whereas studies that require a pseudogene list as a filter for false positives might 
consider using a more extensive list of candidates.

Surveys of retrocopies in the human genome allow analysis of global patterns of 
retrocopy acquisition. From these surveys, it is immediately obvious that some genes 
produce more retrocopies than others. This appears to be related to genes that are 
highly and broadly expressed, and genes that are expressed in the germline 
(Vinckenbosch et al. 2006). The latter criteria should be expected, as for retrocopies 
to accumulate they must be heritable. This includes genes such as GAPDH (Liu et al. 
2009), ribosomal genes (Zhang et  al. 2002) including cytochrome c (Zhang and 
Gerstein 2003), and olfactory receptors (Glusman et  al. 2001; Gilad et  al. 2005). 
Another observation is the high level of retrocopy ‘traffic’ from the X chromosome 
onto autosomes relative to random expectation (Emerson et al. 2004; Vinckenbosch 
et al. 2006; Marques et al. 2005). There are a number of examples of ‘out-of-X’ retro-
genes critical for fertility (Rohozinski and Bishop 2004; Bradley et  al. 2004; 
Rohozinski et al. 2006), providing evidence that this increase in autosomal retrogenes 
originating from the X chromosome is related to meiotic male sex chromosome inac-
tivation (MSCI), specifically to compensate for the silencing of critical genes during 
MSCI. This phenomenon has also been explored in the other logical direction: the 
divergence between out-of-X genes and their parents can be used to date the onset of 
MSCI in therian evolution to ~180 MYA (Potrzebowski et al. 2008).
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2  Processed Transcripts as Non-autonomous Mobile DNA

The genomes of humans, mice, and most other mammalian species are colonised by 
a family of non-LTR retrotransposons known as Long INterspersed Elements, or 
LINEs. LINEs are autonomous retroelements, meaning that they encode all the 
machinery necessary for their own mobilisation through target-primed reverse tran-
scription (TPRT) (Luan et  al. 1993). While there seems to be a preference for 
LINE-1 elements mobilising their own transcripts (cis-preference) (Kulpa and 
Moran 2006), they have also been shown to mobilise other RNA species in trans. 
This includes non-autonomous retroelements, which in humans include Alu ele-
ments (Dewannieux et  al. 2003), SVA elements (Hancks et  al. 2011; Raiz et  al. 
2012), and most topically processed mRNAs (Esnault et al. 2000). The insertion 
mechanism is why retrogenes lack introns: TPRT operates on processed transcripts. 
This is clear from the cultured cell retrotransposition assay, which uses a globin 
intron in an antisense-driven reporter gene which when processed by the spliceo-
some yields an intact reporter transcript which is subsequently reverse-transcribed 
and integrated at the endonuclease cut site (Moran et al. 1996). Additionally, recent 
evidence indicates a requirement for polyadenlyation at the 3′ end of sequences 
retroposed by LINE-1 (Doucet et al. 2015), which is generally satisfied by the poly-
 A signals found at the 3′ end of most genes (Colgan and Manley 1997).

In total, the activity of LINE elements in cis and in trans is responsible for ~25 % 
of the human genome and some 4000–8000 processed pseudogenes depending on 
the annotation method, respectively. The number of processed pseudogene annota-
tions differs considerably across species (Navarro and Galante 2015; Carelli et al. 
2016). Interestingly, but perhaps not unexpectedly, species which lack substantial 
non-LTR retrotransposition activity, or whose retrotransposable elements operate 
through a mechanism non-conducive to mobilising mRNAs in trans, accumulate 
relatively few retrocopies. Examples include platypus (Warren et al. 2008; Carelli 
et al. 2016) and chicken (International Chicken Genome Sequencing Consortium 
2004; Suh 2015; Carelli et al. 2016): the chicken genome is populated by CR1 ele-
ments which may require a specific sequence on the 3′ end for mobilisation to occur 
(Suh 2015), and the platypus genome contains active LINE-2 elements (Warren 
et al. 2008) which also share 3′ sequence with the non-autonomous MIR elements 
they mobilise (Jurka et al. 2005), perhaps suggesting that in these species, specific 
sequences are necessary for recognition and trans mobilisation, which would gener-
ally preclude mobilisation of processed gene transcripts.

3  Pseudogenes as a Source for Evolutionary Innovation

Gene duplication was first proposed as a key mechanism feeding evolutionary 
innovation by Susumu Ohno in his 1970 book “Evolution by Gene Duplication” 
(Ohno 1970). A number of features of gene retrocopies suggest that they are impor-
tant for driving the evolution of the coding and non-coding repertoire of the genome. 
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Firstly, many retrocopies have coding potential immediately upon retrotransposition 
as they are derived directly from processed mRNAs—of course, many of these new 
copies will not be functional due to mutations introduced by the transcription or 
reverse transcription, or due to the propensity for TPRT to generate truncated tran-
scripts (Pavlícek et al. 2002). Most new retrocopies are probably transcriptionally 
inactive upon retrotransposition as the promoters that drove their parent genes are 
generally not included in the duplicated mRNAs. This is an important consideration 
for evolutionary innovation: the lack of the parental promoter means new retrocopies 
will, in some instances, be driven by promoters and regulated by enhancers which 
lead to expression in a different tissue context than the parent gene. An example of 
this is the jingwei gene in Drosophila teissieri and D. yakuba which appeared about 
2.5 Ma ago when a processed transcript originating from the alcohol dehydrogenase 
(Adh) gene was retrotransposed into a new location where it attracted transcription 
originating from upstream exons (Long and Langley 1993). This ability for retro-
copies to create functional fusion products is the basis for another evolutionary 
innovation, TRIM5-CypA gene fusions which restrict infection by retroviruses such 
as HIV and MLV (Sayah et al. 2004; Nisole et al. 2004; Yap et al. 2004). Insertions 
of a cyclophilin A (CypA) retrocopy into the TRIM5α gene have occurred at least 
twice, independently, in owl monkeys (Sayah et al. 2004; Nisole et al. 2004; Virgen 
et al. 2008) and in rhesus species where it has been detected in both rhesus macaque 
(Wilson et al. 2008) and pigtail macaque (Virgen et al. 2008).

As previously mentioned, some retrogenes compensate for genes silenced during 
MSCI, and these provide interesting examples of how retrocopies might take on 
functional roles similar to the parent gene but in a different temporal context. The 
first documented example is phosphoglycerate kinase (PGK), a critical enzyme for 
glycolysis (McCarrey and Thomas 1987): PGK-1 is expressed in all somatic tissues 
and in the premeiotic germline, but after MSCI the autosomal testis-specific copy of 
PGK, PGK-2 on chromosome 6, takes over during the later stages of spermatogen-
esis. Additional more recently discovered examples include UTP14c and UTP14b, 
which are autosomal retrogenes originating from a parent gene on the X chromo-
some and are critical for spermatogenesis in mice (Rohozinski and Bishop 2004; 
Bradley et al. 2004) and in humans (Rohozinski et al. 2006).

Transcriptional activity has been detected corresponding to a myriad number of 
retrocopies (Vinckenbosch et al. 2006; Baertsch et al. 2008; Kalyana-Sundaram et al. 
2012; Carelli et al. 2016). Detecting transcription of duplicated genes requires special 
precautions, given that the sequences of the retrocopy-derived transcripts will have 
strong similarity to transcripts originating from the parent gene locus. In general, this 
problem is approached through the use of unique regions within the retrocopy that 
differ from the parent gene through the accumulation of mutations. Examination of 
transcribed retrocopies suggests multiple mechanisms for the establishment of new 
promoters. These include ‘piggybacking’ on the transcriptional activity of other genes 
or transcribed elements nearby the insertion site, inclusion of the promoter region 
from the parent transcript, and de novo origination of new promoters. While it has 
been suggested that pre-existing promoters nearby the retrocopy insertion sites 
account for many of the transcribed retrocopies (Vinckenbosch et al. 2006), a recent 
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study suggests that ‘enhancer-like’ regions enriched for CpG islands and active 
histone marks account for the origins of a large majority of retrocopy- associated tran-
scripts (Carelli et al. 2016). Transcribed pseudogenes have the potential to affect the 
transcript levels of their parent genes through a number of documented mechanisms. 
Most of these involve antisense RNAs produced by retrocopies which are able to 
duplex with the transcript originating from the parent gene. Examples of this duplex 
formation include nitric oxide synthase (NOS) from snail neurons (Korneev et  al. 
1999). Further studies provide a mechanism for the duplex decreasing parent tran-
script levels: a pair of papers identified many genes regulated in mouse oocytes via a 
mechanism where dicer-mediated generation of regulatory siRNAs from dsRNAs 
derived from the RNA-RNA duplex between transcribed retrocopies and their parent 
genes (Watanabe et al. 2008; Tam et al. 2008). Additional evidence for this retrocopy-
mediated means of affecting parent gene transcript level includes a study in 
Trypanosoma brucei, again showing dicer-mediated formation of siRNAs from the 
retrocopy:parent dsRNA duplex (Wen et al. 2011). This effect can also point in the 
opposite direction: endogenous miRNAs which would normally regulate a canonical 
protein-coding gene can be ‘absorbed’ by retrocopy- derived transcripts present in the 
same cell. A key example of this involves PTEN, an important tumour suppressor 
disrupted in many tumours: loss of an expressed PTEN pseudogene (PTENP1) leads 
to miRNAs which were normally binding to the PTENP1 transcript to bind and down-
regulate PTEN, thus suppressing the tumour suppressor and contributing to tumour 
growth (Poliseno et al. 2010). In addition to these small RNA-mediated mechanisms, 
an effect of the retrocopy-derived transcript on parent gene transcript stability has also 
been reported (Hirotsune et al. 2003). In an interesting functional example of a retro-
copy insertion interfering with its parent gene, Ostrander and colleagues (Parker et al. 
2009) identified a novel expressed retrocopy of Fgf4 which reduced the expression of 
the parent gene, leading to the chondrodysplastic (i.e. ‘short-legged’) phenotype asso-
ciated with several popular dog breeds.

4  Gene Retrocopy Insertion Polymorphisms

Recent LINE insertions and insertions of the other non-autonomous retrotranspo-
sons mobilised by LINEs often exist as insertional polymorphisms: copies present 
in one or more individuals but not fixed across all human populations. Current esti-
mates for the rate at which new insertions accumulate in the human germline range 
from 1 new insertion for every 100–200 live births for LINE-1 elements (Xing et al. 
2009; Ewing and Kazazian 2010; Huang et al. 2010; Stewart et al. 2011), to 1 in 
20–50 births for Alu elements (Cordaux et al. 2006; Xing et al. 2009; Stewart et al. 
2011) and 1  in 500–800 births for the seemingly more quiescent SVA elements 
(Xing et  al. 2009; Stewart et  al. 2011). As these mutations accumulate, they are 
passed along to subsequent generations as segregating variation, often linked to other 
nearby variants by virtue of becoming part of a common haplotype (Kuhn et al. 2014; 
Sudmant et al. 2015). As methods for detecting insertions absent from reference 
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genomes have advanced, many thousands of these retrotransposon insertion poly-
morphisms (RIPs) have been catalogued through dozens of studies (Ewing 2015). 
It stands to reason that since gene retrocopies arise through non-autonomous LINE-
mediated retrotransposition, and since retrotransposons are actively accumulating 
in the genomes of virtually all plant and animal species, gene-derived retrocopies 
should also be accumulating in genomes that have active non-LTR retrotransposons, 
depending on the sequence requirements for non-autonomous retrotransposition.

Initial observations of non-reference spliced introns present in DNA from flies 
(Schrider et  al. 2011a) and observations of non-reference retrocopies in humans 
accompanying larger studies of structural variation (Conrad et al. 2009; Lam et al. 
2010; Karakoc et al. 2012) provided evidence that many retrocopies may exist that 
are not fixed in populations. These studies were followed by a series of papers spe-
cifically focused on identifying non-reference retrocopy insertions from various 
WGS data sets (Ewing et al. 2013; Schrider et al. 2013; Abyzov et al. 2013; Cooke 
et al. 2014; Kabza et al. 2015), although the exact terminology for differentially 
present processed transcript insertions varied. Terminology across these studies 
includes gene retrocopy insertion polymorphism (GRIP) (Ewing et al. 2013), retro-
duplication variant (RDV) (Abyzov et al. 2013; Kabza et al. 2015), and retroCNV 
(Schrider et al. 2011a, 2013). In this chapter, we use the term ‘GRIP’ to refer to 
polymorphisms where an insertion is shared between multiple people at some allele 
frequency, and gene retrocopy insertion (GRI) to refer to instances where the allele 
frequency is not known or not relevant, as is the case for somatically acquired GRIs. 
Each of these studies used whole-genome sequence (WGS) data to identify GRIPs 
across multiple individuals, and two (Ewing et al. 2013; Cooke et al. 2014) also 
examine patient-matched pairs of tumour and normal genomes to identify instances 
where processed transcripts were retrotransposed somatically. The findings in terms 
of number of insertions, species, and approach are summarised in Table 1.

The bioinformatic approach to GRIP discovery closely mirrors the approach for 
detecting transposable elements in WGS data, reviewed in Ewing (2015) and shown 
in Fig. 1b, c. Detection of transposable elements mostly uses two signals to identify 
insertion locations from short paired-end sequence data: discordant read mapping 
and split read (or junction read) mapping. Discordant read mappings are those 
where the two ends of a read pair to not map in a way that is consistent with expecta-
tion set by the library preparation protocol. These might be cases where the ends 
best map to different chromosomes, distal locations on the same chromosome, or in 
the wrong orientation. Split reads are based on the direct detection of non-reference 
junctions in reads or contigs assembled from reads: one region of the split read 
maps to the insertion site while the other maps to the sequence that was inserted but 
not reflected in the reference genome assembly. There are some important differ-
ences between detecting gene retrocopy insertions and detecting transposable 
element insertions. Processed transcripts lack introns, as do the resulting insertions, 
so the presence of non-reference junctions is an indicator of a gene retrocopy inser-
tion (Fig. 1b, c). In general, the hallmarks of retrotransposition apply to detection of 
novel retrocopy insertions and should be considered in approaches to their detection: 
most have target-site duplications (TSDs), the presence of a poly-A tail, and ideally 
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detection at both the 5′ and 3′ junctions between the insertion and the reference 
genome (Fig. 1b). Many of the GRI-focused studies (Schrider et al. 2011a, 2013; 
Abyzov et al. 2013; Cooke et al. 2014; Kabza et al. 2015) also report events using 
exon-exon junctions as evidence for the existence of a retrocopy, although the 
genomic location of the GRI is unknown—this method of detection may be associ-
ated with a higher false-positive rate (Richardson et al. 2014).

In addition to cataloging this source of genomic variation, these studies have 
contributed various pieces of information concerning the biology of retrocopies and 
insights into retrotransposon biology in general. Schrider et al. found that an appre-
ciable amount of gene copy number variation in Drosophila melanogaster can be 
explained by GRIPs (Schrider et al. 2011a), and in another study showed that GRIPs 
in humans could create chimeric transcripts (Schrider et  al. 2013). 
 Retrocopy- associated chimeric transcripts were also observed for some somatically 
acquired insertions (Cooke et al. 2014). Applying some basic assumptions about 
effective population size and sharing of GRIP alleles between individuals, we were 
able to conservatively estimate the rate of new GRIP occurrence at 1 for about every 
5000 live births (Ewing et al. 2013). In another study, the parent gene’s relationship 
with cell cycle was used to infer that retrotransposition may occur more often 
during the transition from M to G1 phase (Abyzov et al. 2013). Given that ret-
rotransposon insertions are known to cause disease through insertional mutagene-
sis (Kazazian et  al. 1988; Hancks and Kazazian 2012), it stands to reason that 

Table 1 Differential retrocopy insertions discovered among individual genomes

Study Species Samples
In 
reference

Genome 
junction

Exon 
junction 
only Somatic

Cooke et al. (2014) Human 660 n/a 31 11 42
Abyzov et al. 
(2013)

Human 968 27 37a 111 n/a

Schrider et al. 
(2013)

Human 17 
(Discovery)b

18 21 52 n/a

Ewing et al. (2013) Human 1024 10 51 n/a 3
Ewing et al. 2013 Chimpanzee 10 n/a 19 n/a n/a
Ewing et al. (2013) Mouse 17 Lines n/a 755 n/a n/a
Schrider et al. 
(2011a)

Drosophila 37 Lines n/a n/a 34 n/a

‘In reference’ denotes insertions present in the human reference genome assembly but absent from 
one or more individual genomes
‘Genome junction’ refers to insertion with a known genomic location
‘Exon junction only’ refers to reported retrocopy insertions only evident from detection of non- 
reference exon-exon junctions
Somatic insertions, if present, are included in the total number of detected insertions
aCounted TMEM126B with 2 insertions as an additional insertion in addition to the 36 presented 
in this study
bLarger set of samples was used for genotyping
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retrocopy insertions might also play a similar role in a limited number of instances. 
Indeed, a retrotransposed copy of TMP1 mRNA was found in the first intron of the 
CYBB gene in a patient affected by X-linked chronic granulomatous disease 
(CGD) (de Boer et al. 2014). This led to the inclusion through exonisation of an 
additional sequence between CYBB exons 1 and 2, which introduced a premature 
stop codon. In summary, gene retrocopy insertions are a mechanistically interest-
ing, and in a few cases medically relevant, form of insertional structural variation 
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- Target-primed Reverse Transcription
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Fig. 1 Detection of non-reference retrocopy insertions from whole-genome sequencing. (a) 
Mechanism of retrocopy insertion: retrocopies are derived from L1-mediated retrotransposition of 
processed transcripts. Because mobilisation is L1 mediated, insertions occur preferentially at 
canonical ‘TTTTAA’ endonuclease motifs. (b) Read mapping signatures of retrocopies, shown 
with retrocopy present. (c) Read mapping signatures indicating the presence of a non-reference 
retrocopy, shown relative to the empty insertion site
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that should be considered along with retrotransposon insertions and DNA repair-
mediated events.
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1  Introduction

Transposable elements (TEs) play a central role in genome evolution and genetic 
innovation, as first proposed by Barbara McClintock’s seminal work describing 
somatic transposition in maize, and many subsequent studies (Johnson and Guigo 
2014; Feschotte 2008; Oliver and Greene 2011; Bourque 2009; Sasaki et al. 2008; 
Böhne et  al. 2008; Hutchins and Pei 2015; Casacuberta and González 2013; 
McClintock 1950). The remnants of now inactive TEs pervade most eukaryotic 
genomes and, in some cases, carry out biological functions that favour the host cell, 
a phenomenon called ‘exaptation’ (Bejerano et al. 2006; Jordan et al. 2003; Jacques 
et al. 2013; Gifford et al. 2013; Kelley et al. 2014; Fort et al. 2014; Faulkner et al. 
2009). In humans, the only class of TE still able to mobilise autonomously is the 
retrotransposon LINE-1 (L1). A full-length L1 is a transcribed 6 kb genetic unit 
(Grimaldi et al. 1984) that encodes two proteins essential for L1 mobility (called 
ORF1p and ORF2p) (Moran et al. 1996; Scott et al. 1987; Singer et al. 1993), as 
well as an unusual antisense open reading frame (ORF0) of unclear relevance to L1 
retrotransposition (Denli et al. 2015). Although ~500,000 L1 copies comprise 17 % 
of human genomic DNA, nearly all of these copies are now immobile due to 5′ 
truncations, internal rearrangements and mutations (Lander et al. 2001). As a result, 
~100 L1 copies remain retrotransposition competent (Sassaman et al. 1997) and, of 
these, only a small number, dubbed ‘hot’ L1s, account for the vast majority of new 
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L1 retrotransposition events observed in human populations (Brouha et al. 2003; 
Beck et al. 2010). The L1 proteins can also recognise and mobilise non-autonomous 
retrotransposons, such as Alu and SINE-VNTR-ALU (SVA) elements, in trans 
(Dewannieux et al. 2003; Belancio et al. 2010; Garcia-Perez et al. 2007a; Wei et al. 
2001; Doucet et al. 2015). Until recently, it was considered that mammalian cells 
only allowed somatic L1 retrotransposition during early embryonic development 
and under pathological circumstances, such as cancer (Kazazian et al. 1988; Garcia-
Perez et al. 2007b; Kano et al. 2009; Trelogan and Martin 1995; Iskow et al. 2010; 
Miki et al. 1992). However, Muotri et al., analysing the transcriptional profiles of 
multipotent neural progenitor cells (NPC), were the first to discover that L1 tran-
scripts were also expressed in the brain under normal conditions (Muotri et  al. 
2005). Here we consider the last decade of discoveries relating to L1 activity in the 
mammalian brain that followed on from the key findings of Muotri et al. We particu-
larly emphasise the role of the environment and neurological disease in modulating 
neuronal L1 retrotransposition, as this is arguably the clearest route available to 
understand the functional significance of L1 mobilisation in the brain.

2  Detecting Retrotransposition in the Neuronal Lineage

The developmental timing of neuronal L1 retrotransposition is decisive in determin-
ing how many somatic L1 insertions are found per neuron, and how many neurons 
each L1 insertion is found in. It is now well established that L1 mobilisation occurs 
during neuronal differentiation, when neural stem cells (NSCs) commit to neuronal 
progenitor cells (NPCs), and potentially in mature, postmitotic neurons. The key 
findings supporting this conclusion are primarily based on in vitro and in vivo mea-
surements of L1 activity using transgenic L1 elements, and in vivo studies of endog-
enous L1 behaviour. Cultured adult rat NPCs, as well as human NPCs derived from 
foetal brain stem cells, each support retrotransposition of a human L1 element bear-
ing an enhanced green fluorescence protein (EGFP) reporter cassette during the 
early stages of neuronal differentiation (Muotri et al. 2005; Coufal et al. 2009). The 
L1-EGFP cassette contains the gene encoding EGFP in reverse orientation to the L1 
transcript. Due to an interruption of the EGFP gene by an intron in the same tran-
scriptional orientation as the L1, EGFP-positive cells only arise when L1 retrotrans-
position is completed and the EGFP intron is removed from the RNA intermediate 
before reverse transcription (Ostertag 2000). Additionally, endogenous L1 mRNAs 
are detectable in human NPCs (Coufal et al. 2009). The cells that support retrotrans-
position events and contain endogenous L1 transcripts present a multipotent NSC 
phenotype with bias towards neuronal differentiation (Muotri et al. 2005; Coufal 
et al. 2009). L1 insertions can occur within neuronal genes and thereby have the 
potential to cause gene expression changes (Muotri et  al. 2005; Klawitter et  al. 
2016; Han et al. 2004; Upton et al. 2015). As well as during adult neurogenesis, L1 
retrotransposition occurs during early embryonic development, as found in human 
embryonic stem cells (hESCs) (Garcia-Perez et al. 2007b) and transgenic L1-EGFP 
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mice where an engineered human L1 is under the control of a native L1 promoter 
(L1RP) (Muotri et al. 2005).

Coufal et al. subsequently developed an L1 copy number variation (CNV) assay 
based on qPCR which, when applied to human central nervous system (CNS) and 
other somatic tissues, displayed an overall elevation of L1 copy number in the CNS 
(Coufal et al. 2009), consistent with substantial full-length and processed L1 mRNA 
expression occurring in the brain (Faulkner et  al. 2009; Belancio et  al. 2010; 
Tyekucheva et al. 2011). This higher L1 copy number is particularly observed in the 
hippocampal dentate gyrus (DG) (Coufal et al. 2009; Baillie et al. 2011). It is nota-
ble that although the engineered L1-EGFP and L1 CNV assays provide a window 
into endogenous L1 activity in the brain, they also carry considerable drawbacks. 
For example, the L1-EGFP assay requires reverse transcription of the sizeable 
EGFP cassette, at a minimum, to observe EGFP-positive cells, and the EGFP pro-
moter is subject to host genome silencing (Garcia-Perez et al. 2010). The L1 CNV 
assay, by contrast, measures endogenous L1 genome content, but is primarily useful 
as an indicator of relative L1 copy number, and does not provide the genomic loca-
tions of L1 integration sites.

High-throughput DNA sequencing can overcome these issues by allowing the 
detection and genomic localisation of endogenous L1 variants. Briefly, this usually 
involves sequencing genomic DNA in order to identify L1 integration sites in brain 
tissue that are not present in matched non-brain tissue (e.g. liver or heart). 
Subsequently these data is cross referenced to databases containing known poly-
morphic insertions (Baillie et al. 2011; Kurnosov et al. 2015; Mir et al. 2015) to gain 
further confidence in predicted somatic L1 variants. To facilitate higher sequencing 
depth at L1 insertion sites, DNA can be enriched prior to sequencing. Retrotransposon 
capture sequencing (RC-seq), for instance, is a hybridisation-based method devel-
oped to enrich sequencing libraries for fragments containing L1 junctions (Baillie 
et al. 2011; Upton et al. 2015; Shukla et al. 2013). Using RC-seq, Baillie et al. again 
identified the hippocampus as a region prone to somatic L1 retrotransposition 
(Baillie et al. 2011), corroborating the earlier Coufal et al. study (Coufal et al. 2009). 
Interestingly, the hippocampus is one of the primary brain regions where neurogen-
esis is maintained in adulthood (Eriksson et al. 1998), which is consistent with the 
finding that L1 activity becomes more prominent during neurogenesis and neuronal 
differentiation (Coufal et al. 2009; Muotri et al. 2005). Investigating the genome- 
wide integration site pattern of detected somatic L1 insertions, Baillie et al. found 
an overrepresentation of insertions in some protein-coding loci, specifically the 
introns of neurobiological genes, corroborating a preliminary observation made by 
Muotri et al. based on genomic mapping of L1-EGFP insertions (Baillie et al. 2011; 
Muotri et al. 2005).

That the hippocampus is a major source of adult neurogenesis, and provides a 
substantial contribution to behavioural phenotypes (Kim et al. 2015; McDonald and 
Hong 2013), combined with Baillie et al.’s finding that somatic L1 insertions pri-
marily occur in gene-rich regions, is stunning because in this setting the chances of 
an L1 insertion leading to phenotypic change are greatly increased (Richardson 
et al. 2014). However, the rate at which L1 mobilisation takes place in neurons is 
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still unclear. Single-cell genomic analyses, where DNA is obtained from individual 
cells and then massively amplified, estimate that 1 L1 insertion is found per 300 
neurons (Evrony et al. 2012), through to multiple insertions per cell (Upton et al. 
2015). The last study aiming to resolve this issue reported 13.7 somatic L1 insertions 
per hippocampal neuron (Upton et  al. 2015), leaving the chances of functional 
consequences relatively high.

3  Insertional Impact and Regulation of Retrotransposons

The integration of new L1 insertions, or other TEs, into genes can significantly 
impact gene expression by constraining or differentially regulating transcription or 
altering the encoded protein. The consequences of an L1 insertion depend on the 
characteristics of the insertion (full-length or 5′ truncated, sense or antisense to 
the gene) and the cellular environment, including the response of the host cell to the 
insertion. For example, L1 insertions in the sense orientation to a gene are expected 
to be more detrimental to that gene than an antisense insertion because RNA poly-
merase II struggles to process the L1 sequence in sense (Chen et al. 2006; Han and 
Boeke 2004; Han et al. 2004). This is the primary explanation for a strong depletion 
of sense-oriented L1 insertions in protein-coding genes in the human reference 
genome (Ewing and Kazazian 2011). New L1 insertions can, however, impact host 
gene expression via many routes, and generate phenotypes (Beck et al. 2011). This 
is nicely illustrated in two distinct mouse models: the spastic mouse and the Orleans 
reeler. The spastic mouse contains a homozygous mutation in the brain-expressed 
glycine receptor β subunit-encoding (Glyrb) gene. This mutation results in defects 
of the glycine signalling pathway and subsequent motor deficiency and is the con-
sequence of a full-length L1 insertion in intron 5 of the Glyrb gene, leading to aber-
rant splicing of the pre-mRNA by skipping of exon 5 (Mülhardt et  al. 1994; 
Kingsmore et al. 1994). As the L1 insertion solely affects splicing of the adult iso-
form of the receptor subunit (GlyRA), the spastic phenotype only becomes apparent 
around 2 weeks of age, when a developmental switch from the neonatal isoform 
(GlyRN) to GlyRA takes place (Becker 1990). By comparison, the Orleans reeler 
mouse has a full-length L1 insertion into an exon of the Reelin (Reln) gene, induc-
ing exon skipping (D’Arcangelo et al. 1995). Exon skipping leads to a frame shift 
that causes a 220 bp deletion of the Reln mRNA, which encodes a truncated protein 
that is secreted inefficiently (de Bergeyck et al. 1997; Takahara et al. 1996). As Reln 
is an extracellular signalling protein required for the regulation of neuronal migra-
tion, deficiency in its secretion leads to a severe impairment of neuronal migration 
and, as a consequence, cortical and cerebellar delamination and subsequent typical 
neurological symptoms. These archetypal examples of germline L1 retrotransposi-
tion leading to neuronal phenotypes, in the Orleans reeler and spastic mouse, point 
to the possible consequences of somatic L1 retrotransposition occurring during neu-
rogenesis. Unsurprisingly, the host genome has evolved several mechanisms to limit 
L1 mobilisation in germ cells, and the neuronal lineage (Fig. 1).

M.-J.H.C. Kempen et al.



111

Methylation of the L1 promoter region is the first line of defence for cells to guard 
against potentially deleterious L1 mobilisation (Hata and Sakaki 1997). Methyl 
CpG-binding protein 2 (MeCP2), a protein required for DNA methylation- mediated 
gene repression and mainly expressed in mature neurons (Fig. 2), is closely involved 
in inhibiting L1 activity. MeCP2 knockdown correlates with an increase in L1 pro-
moter activity (Muotri et  al. 2010). Under normal circumstances, MeCP2 binds 
methylated CpG dinucleotides and interacts with histone deacetylase protein (HDAC) 
and SIN3A corepressor complex resulting in blockage of transcription factors, his-
tone deacetylation and methylation (Fig.  1) (Fuks et  al. 2003; Nan et  al. 1998). 
Inhibition of an MeCP2-interacting protein, HDAC1, by valproic acid enhances the 
transcriptional activity of L1 (Lennartsson et al. 2015). This indicates that HDAC1 is 
also involved in L1 repression (Fig. 1). HDAC1 dysfunction is known to play a role 
in psychiatric disorders, specifically schizophrenia, suggesting a potential mecha-
nism underlying the symptoms experienced by these patients (Weïwer et al. 2013). 
The mono-ADP ribosyltransferase enzyme, Sirtuin 6 (SIRT6), another deacetylase, 

Fig. 1 L1 regulation is complex and dynamic. Numerous proteins, including YY1, RUNX3, SRY 
(Sox2 and 11), HDAC1, MeCP2, SIRT6 and P53, regulate L1 activity via epigenetic modifications, 
and through transcriptional stimulation/repression
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is suggested to inhibit L1 transcription by promoting heterochromatin formation 
(Van Meter et  al. 2014). SIRT6 localises to the L1 promoter and, interestingly, 
appears to be displaced during aging as well as in oxidative stress conditions, circum-
stances known to enhance TE activity (Li et al. 2013). Although L1 is silenced by the 
MeCP2 complex and other mechanisms in most tissues, the brain exhibits signifi-
cantly lower L1 methylation than matched skin samples (Coufal et  al. 2009). 
Furthermore, during cell differentiation the L1 promoter tends to be demethylated 
(Muotri et al. 2010) potentially creating a brief window for retrotransposition to take 
place (Kano et al. 2009; Muotri et al. 2005).

Beyond epigenetic suppression, L1 can be regulated by transcription factors 
(TFs) expressed in neural cells. For instance, Ying Yang 1 (YY1), a zinc finger pro-
tein TF, strongly and predominantly expressed in neurons (Rylski et al. 2008), is 
involved in neuronal differentiation (Fig. 2) (reviewed in He and Casaccia-Bonnefil 
2008) and facilitates L1 transcription, potentially by directing the RNA polymerase 
II (pol II) complex to its proper binding site (Fig. 1) (Becker et al. 1993; Athanikar 
et al. 2004). Members of the sex-determining region Y (SRY) protein family can 
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Fig. 2 Dynamic L1 activity during neurogenesis. The factors illustrated in Fig. 1 are involved in 
proliferation, differentiation and neuronal function. L1 expression is, as a result, differentially 
regulated during brain development as well as early and adult neurogenesis, resulting in potentially 
dynamic L1 activity, and mobilisation, during these stages (CA 1, 3 cornu ammonis 1 and 3, GCL 
granule cell layer)
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also impact L1 activity. SRY-box 2 (Sox2) can inhibit L1 transcription (Kuwabara 
et al. 2009; Coufal et al. 2009; Muotri et al. 2005), while Sox11 is suggested to 
stimulate L1 activity (Tchénio et al. 2000). During embryonic and adult neurogen-
esis Sox2 is involved in maintenance of the multipotent state of NSCs and NPCs 
(Graham et al. 2003; Heinrich et al. 2014; Ring et al. 2012). By contrast, Sox11 is 
mainly expressed in non-proliferative, committed neuronal cells in the neurogenic 
niches of the adult brain, where it acts as a transcriptional activator of several neu-
ronal genes (Haslinger et al. 2009; Mu et al. 2012; Bergsland et al. 2006). Another TF, 
runt-related transcription factor 3 (RUNX3), which is involved in neurogenesis, devel-
opment and survival of proprioceptive neurons, stimulates the L1 promoter region 
(Yang et al. 2003; Inoue et al. 2008; Lallemend et al. 2012). Finally, p53 supresses L1 
retrotransposition through its involvement in H3K9 trimethylation (H3K9me3), a 
silencing marker, which has been found to occur at the L1 enhancer region (Wylie 
et al. 2015; Harris et al. 2009). P53 expression is found in proliferating and newly 
formed neurons where it helps regulate proliferation and differentiation (reviewed in 
Tedeschi and Di Giovanni 2009). Thus, L1 activity in the brain is regulated by TFs 
essential to neurogenesis. It remains unclear as to whether this is by coincidence or 
because L1, a molecular parasite, has found a niche where it is derepressed as part of 
the greater cascade of gene regulation governing neurogenesis.

As new L1 insertions attract epigenetic suppression and carry TF-binding sites, 
the integration of an L1 into introns or intergenic regions upstream of protein- 
coding genes can alter the expression pattern of those genes. For example, 79 
protein- coding genes were shown by Kuwabara et al. to present SRY-binding sites 
from L1 insertions occurring proximal to their transcription start sites in the human 
genome (Kuwabara et al. 2009). In these cases, transcriptional activation or sup-
pression of L1 by one of the members of the SRY family may lead to the activation 
or suppression of the downstream protein-coding gene. That the regulatory factors 
described above play a role in neurogenesis and differentiation may suggest that L1 
can influence these processes by, for example, genetically reprogramming differen-
tiating cells (Spadafora 2015; Peaston et al. 2004; Muotri et al. 2005). It follows that 
L1 mobilisation in the brain is proposed as a source of neuron functional diversity 
(Muotri et al. 2005; Baillie et al. 2011; Upton et al. 2015; Singer et al. 2010; Coufal 
et al. 2009; Richardson et al. 2014). Hypothetically, if L1 causes genome plasticity 
in neurons, it may provide itself, and the host organism, extra capacity to adapt to 
its environment (Casacuberta and González 2013; Oliver and Greene 2011) at the 
cost of, perhaps, occasional catastrophic consequences for the individual, including 
neurological disorders (reviewed in Reilly et al. 2013).

4  Environmental Influences upon L1 Activity

Barbara McClintock was the first to propose the “genomic shock” hypothesis, 
speculating that environmental factors have the ability to stimulate the activity of 
TEs (McClintock 1984). Since then, numerous studies have aimed to address this 
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hypothesis for environmental/cellular changes ranging from stress and toxic agents 
to voluntary physical activity. Although these studies have often reported enhanced L1 
activity, we must emphasise that many of these observations require replication.

Preliminary experiments suggest that heavy metals may, for instance, modulate 
L1 mobilisation. Mercury (Hg), nickel (Ni) and cadmium (Cd) exposure appear to 
increase L1 retrotransposition (El-Sawy et al. 2005; Kale et al. 2005, 2006). The 
particulate, water-insoluble forms of these heavy metals (mercury sulfide (HgS), 
nickel oxide (NiO) and cadmium sulfide (CdS)) increase L1 mobilisation in HeLa 
cells (Kale et al. 2005). Exploring the effect of the soluble forms of these substances 
produces slightly different results for mercury (HgCl2) (Habibi et al. 2014). No dif-
ference in L1 promoter activity, transcription or putative genomic L1 integration is 
detected for non-neuronal cells, including HeLa cells, after HgCl2 exposure. By 
contrast, a neuroblastoma cell line (NB) does potentially show an increase in all of 
these measurements. The soluble form of nickel (NiCl2) and cadmium (CdCl2) how-
ever generates similar results to those of their particulates (Kale et al. 2006; El-Sawy 
et al. 2005). Examination of these phenomena reveals that L1 endonuclease activity 
associated with the increase in L1 mobilisation does not contribute to the toxicity 
observed for CdS or CdCl2 (Kale et al. 2006). Furthermore, the increased L1 ret-
rotransposition resulting from NiCl2 exposure is not mediated by enhancement of 
L1 promoter activity (El-Sawy et al. 2005); also the direct genotoxicity of CdS and 
NiCl2, which could potentially facilitate L1 insertion into DNA double-stranded 
breaks (DSBs), is not causative (El-Sawy et al. 2005; Kale et al. 2006). Instead, it 
appears that the influence of Ni and Cd on the displacement of magnesium (Mg) and 
zinc (Zn) cofactors induces L1 activity, as is demonstrated by the abolishment of 
this effect after Mg and Zn supplementation (El-Sawy et al. 2005; Kale et al. 2006).

L1 activity induced by other genotoxic agents, such as benzo[a]pyrene (BaP), an 
aromatic hydrocarbon produced by wood burning and found in coal tar and automo-
bile exhaust fumes, is plausibly dependent on their ability to induce DNA damage 
(Stribinskis and Ramos 2006). This potentially reflects cellular attempts to recruit 
L1 as a compensatory mechanism, either to induce apoptosis via genome instability 
triggered via ORF2p activity or to use the ability of L1 to repair DNA damage 
through EN-independent L1 integration (Stribinskis and Ramos 2006; Morrish 
et al. 2002; Teng et al. 1996). Morrish et al. described enhanced levels of retrotrans-
position of an EN-incompetent L1  in cell lines lacking DNA repair mechanisms 
(Morrish et al. 2002). However, induced DSBs in cell lines with intact DNA repair 
mechanisms were not found to increase retrotransposition of an EN-incompetent L1 
(Farkash et al. 2006). Coufal et al. further reported that mutations inactivating the 
function of both non-homologous end joining (NHEJ) and p53 are required for 
efficient EN-incompetent L1 retrotransposition (Coufal et al. 2011). Therefore, L1 
could be used by the cell to mediate the repair of DNA damage, but exclusively in 
cells suffering from NHEJ and p53 dysfunction. Finally, oxidative stress, which can 
result from a number of natural stimuli as well as toxic agents, appears to increase 
retrotransposition of an L1 reporter in cultured neuroblastoma cells (Giorgi et al. 
2011), an interesting finding considering that the brain is a metabolic hotspot. 
Despite the studies described above, it remains unclear whether L1 can function as 

M.-J.H.C. Kempen et al.



115

a cellular buffer against the environmental impact of toxic agents. Additionally, the 
observed influence of environmental factors may be dependent on the exact charac-
teristics of the chosen stimulus, as well as the cell type investigated. As a result, 
more extensive investigation is required in this area, particularly for primary neuro-
nal cells, as most data obtained thus far has been from immortalised cancer cell 
lines.

Although environmental factors impact neurogenesis (Koehl 2015) and, as the 
above-mentioned literature suggests, may also alter L1 activity, it remains to be 
proven whether environmental perturbation during neuronal differentiation leaves 
L1 more prone to mobilise. The only substantive data in this area is from a 2009 
study by Muotri et al.: using transgenic mice carrying the human L1-EGFP reporter 
construct, they found that voluntary exercise resulted in an increase in EGFP- 
positive cells in the brain (Muotri et al. 2009). However, these EGFP-positive cells 
were not only found in the hippocampus where exercise was shown to lead to a 
significant increase in NPC proliferation and newborn neurons, providing the 
opportunity for L1 to mobilise, but also in the cerebellum, a non-neurogenic area. 
L1 retrotransposition in the cerebellum was an intriguing observation because it 
either indicated that L1 could jump in postmitotic neurons or that the detected EGFP 
was found in cells born elsewhere that migrated to the cerebellum and then under-
went derepression of the EGFP cassette in mature neurons due to chromatin remod-
elling. Hence, it is difficult to conclude whether exercise led to an increased 
detection of L1 insertions due to increased L1 mobilisation, neurogenic rate, chro-
matin accessibility or a combination of these factors. Muotri et al.’s experiments 
therefore highlight difficulties in attributing phenotypic effects to L1 mobilisation 
in vivo, but do at least favour speculation that L1 can mediate neuronal genome 
plasticity in response to environmental changes.

5  Retrotransposon Involvement in Neurological Disorders

Traumatic early life events and chronic stress are major risk factors for the develop-
ment of a range of neurological disorders (Bagot et al. 2014). If L1 is reactive to 
environmental stressors, it could play a potentially important role in the develop-
ment or exacerbation of neurological diseases. Here we highlight the intriguing 
findings in this area while noting that there are no certain causative links at this 
stage established between any brain disorder and somatic L1 retrotransposition.
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5.1  Retrotransposons in Neurodevelopmental 
and Neurodegenerative Disorders

Neurological disorders resulting from inherited or spontaneous genetic mutations 
can reproducibly present upregulation of L1 retrotransposition in the brain. In par-
ticularly, recent works have revealed that L1 copy number is elevated in Rett syn-
drome (RTT) and ataxia telangiectasia (AT) patient brains (Coufal et  al. 2011; 
Muotri et al. 2010).

RTT is a progressive and devastating disease predominantly associated with 
mutation of the MeCP2 gene, characterised by a range of neurological problems 
from ataxia to autism and usually developing before 2 years of age (Amir et  al. 
1999). As noted above, MeCP2 is involved in transcriptional repression by binding 
methylated DNA and inducing histone methylation and deacetylation. MeCP2 is 
highly expressed in mature neuronal nuclei (Fig. 2) and, when mutated, is associ-
ated with aberrant epigenetic profiles, potentially explaining the severe CNS defects 
seen in RTT (Shahbazian 2002; Gabel et al. 2015). Although Yu et al. established 
that MeCP2 influences L1 promoter activity and L1 retrotransposition in trans-
formed cell lines (Yu et al. 2001), Muotri et al. brought this work forward by show-
ing that MeCP2 knockout in mouse neuroepithelial cells increases L1 promoter 
activity fourfold (Muotri et al. 2010). This result was specific for the reduction of 
MeCP2 and was not found for methyl CpG-binding domain protein 1 (MBD1), a 
protein from the same family but with a different DNA specificity. L1-EGFP trans-
genic mice deficient for MeCP2 also showed increased L1 retrotransposition com-
pared to wild-type animals, with the strongest effects found in the cerebellum, 
striatum and hippocampus. Muotri et al. also found, using the L1 qPCR assay, a 
marked increase in L1 ORF2 copy number but not the L1 5′UTR, perhaps indicat-
ing that new L1 retrotransposition events were characterised by substantial 5′ trun-
cations. NPCs produced from induced pluripotent stem cells (iPSCs) derived from 
RTT patient fibroblasts supported a higher (twofold) retrotransposition rate of the 
L1-EGFP reporter compared to unaffected controls. Altogether, this seminal work 
from Muotri et al. showed conclusively that L1 activity was higher in RTT patients 
than in controls. L1 insertion site mapping with single-cell genomics (Upton et al. 
2015) would be a valuable future strategy to demonstrate differential L1 activity in 
RTT. It also should be considered that a wild-type phenotype can be rescued in a 
conditional mutant mouse RTT model (Guy et al. 2007), raising an important ques-
tion as to whether elevated L1 activity impacts RTT phenotype.

AT patients suffer from a loss-of-function mutation in the ATM gene, a 350 kDa 
serine/threonine kinase (Taylor et al. 2015). The most severe and typical form of AT 
cases start to show symptoms between 1 and 2 years of age. ATM dysfunction leads 
to neuronal degeneration, immunodeficiency, chromosomal instability and a predis-
position to cancer (Shiloh 2001). Under normal circumstances, ATM phosphory-
lates downstream factors as CHK2, p53, BRCA1 and the MRN complex (MRE11, 
Rad50 and NBS1) in response to the presence of double-stranded DNA breaks, 
which activates DNA damage checkpoint and cell cycle arrest leading to the repair 
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of damaged DNA or p53-mediated apoptosis. NPCs produced from hESCs and car-
rying ATM mutations present a two- to fourfold increase of L1-EGFP retrotranspo-
sition but do not show a significant difference in promoter activity or endogenous 
ORF1p levels (Coufal et al. 2011). Even though L1 retrotransposition may be toxic 
for cells (Wallace et al. 2008), no difference in survival rates, nor cell cycle or cell 
division pattern, is observed in ATM-mutated versus wild-type cells (Symer et al. 
2002; Coufal et al. 2011; Haoudi et al. 2004). These findings led to speculation that 
ATM-deficient cells might have a survival advantage due to higher tolerance for 
L1-induced toxicity (Coufal et al. 2011). Further experiments are required to address 
whether this is the case, and why ATM mutations result in higher L1 retrotransposi-
tion. Notably, ATM mutation appears to lead to longer L1 insertions, possibly due to 
the role of ATM in cellular DNA repair, which may interfere with L1 retrotransposition 
in wild-type cells. Although the L1 CNV assay revealed an increase in L1 content in 
post-mortem hippocampal neurons from AT patients compared to age/gender-matched 
healthy individuals, single-cell genomic analyses are again required to corroborate this 
result, and identify if the endogenous L1 insertions generated are longer, or follow a 
different genome-wide integration pattern compared to wild-type cells.

Although RTT and AT present the clearest evidence of unusual retrotransposon 
activity in the brain, TEs have also been observed to undergo derepression in neu-
rodegenerative disorders commonly associated with aging (Bollati et al. 2011). For 
example, TAR DNA-binding protein 43 (TDP-43) dysfunction, a hallmark for a 
number of neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), 
frontotemporal lobar degeneration (FTLD) and Alzheimer’s disease, is found to 
correspond to higher transcription levels of LINEs, SINEs and LTRs, the three 
major classes of TEs, in mice (Li et al. 2012). Brain samples with TDP-43 dysfunc-
tion, from transgenic mouse models as well as human FTLD patients, show a 
reduced association between this protein and a range of TE-derived transcripts. 
These particular TE transcripts are the same transcripts identified as being upregulated 
in response to TDP-43 dysfunction, indicating that this multifunctional RNA- binding 
protein might play a role in the regulation of TEs in somatic tissue. Furthermore, 
aging itself has been found to lead to activation of transposable elements (Li et al. 
2013; Van Meter et al. 2014), suggesting that the increase of TE transcripts and poten-
tial copy number in the genome may lay at the base of the development of these 
neurodegenerative disorders.

5.2  Do Retrotransposons Link Environmental and Genetic 
Risk Factors in Psychiatric Disorders?

In RTT and AT, where the mutated gene responsible for pathophysiology also influ-
ences L1 activity, the detected increase in L1 expression and, potentially, L1 copy 
number is most likely a direct effect of the main driver mutation in these diseases. 
However, abnormal retrotransposon activity in the brain has also been observed for 
several psychiatric disorders where the interaction between genetic and 
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environmental risk factors, or solely environmental factors, is considered central to 
disease aetiology. For example, use of methamphetamines and cocaine, a major risk 
factor for the development of psychiatric disorders (Akindipe et al. 2014; Zhornitsky 
et al. 2015), with the potential to turn into substance-use disorder (SUD), is sug-
gested to lead to L1 activation (Okudaira et al. 2014; Maze et al. 2011). This effect 
is observed using an engineered L1 reporter in vitro for neuronal, but not non-
neuronal, cell lines (Okudaira et al. 2014). Furthermore, the abolishment of unusual 
L1 mobilisation after knockdown of the cAMP response element-binding protein 
(CREB) suggests that this neuronal response to methamphetamine and cocaine is 
CREB dependent. Investigation of the mechanism underlying this phenomenon 
identified an enhanced recruitment of L1 ORF1p to chromatin-rich fractions, with-
out increasing the total expression of L1 mRNA or ORF1p. This startling result 
suggests that methamphetamine and cocaine use may elevate L1 mobilisation by 
recruiting L1 ORF1p to the chromatin in a CREB-dependent manner, facilitating L1 
integration into the genome. This in turn could induce changes in chromatic struc-
tures and gene expression, with the potential to lead to psychiatric disorders.

Post-traumatic stress disorder (PTSD), a disorder closely related to SUD 
(Jacobsen et al. 2001), has been found to lead to differential epigenetic regulation of 
L1 as well as Alu copies in the genome (Rusiecki et al. 2012). PTSD and SUD share 
numerous cellular circuits and signalling pathways in their pathophysiology, due to 
similar involvement of the learning and memory system (reviewed in Tipps et al. 
2014). PTSD is an anxiety disorder characterised by persistent re-experiences of a 
past traumatic event or events, often accompanied by memory and concentration 
problems, anxiety, panic attacks, insomnia, substance abuse and/or depressive 
symptoms (American Psychiatric Association 2013). PTSD patients present gene 
expression signatures not found in controls (Segman et al. 2005). Multiple studies 
have shown that epigenetic alterations play an important role in facilitating changes 
in gene expression associated with the formation and persistence of memory 
(Kwapis and Wood 2014; Zovkic and Sweatt 2013). Changes in methylation levels 
of L1 and Alu in soldiers pre- and post-deployment, of which a subset developed 
PTSD after their return, have been detected, potentially reflecting resilience or vul-
nerability factors to PTSD development (Rusiecki et al. 2012). Increased methyla-
tion of L1 was detected in the control group post-deployment compared to 
pre-deployment which, to speculate, might be a result of the body’s response to 
stress-mediated L1 activation (Li and Schmid 2001). By contrast, a pre-existing 
abundance of Alu methylation in cases compared to controls might reflect a poten-
tial vulnerability to stress or a protective effect of hypomethylation. Specific pat-
terns of Alu expression have been previously linked to physiological stress responses, 
with perhaps functional consequences (Berger et al. 2014; Pandey et al. 2011; Li 
and Schmid 2001). Hypermethylation may prevent Alu from fulfilling a protective 
function, although the mechanism involved is unknown at this stage.

More recently, Bundo et al. investigated L1 CNV in schizophrenia (SCZ), major 
depression (MD) and bipolar disorder (BD), detecting increased L1 copy number in 
the prefrontal cortex (PFC) of patients suffering from SCZ compared to healthy con-
trols (Bundo et al. 2014). SCZ is a multifactorial disorder with a typical onset between 
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late puberty and early adulthood and characterised by a chronic and dynamic progres-
sion, with genes and environment playing important aetiological roles (Brown 2011). 
Diagnosis of SCZ is based on a collection of positive, negative and cognitive symp-
toms, persisting over a period of time (American Psychiatric Association 2013). The 
PFC is considered to be involved in SCZ symptomology and show differential gene 
expression when patients are compared to controls, making the finding of Bundo et al. 
particularly interesting (Kimoto et  al. 2014; Joshi et  al. 2014; Farzan et  al. 2010; 
Guillozet-Bongaarts et al. 2014). Repeating the L1 CNV analysis using solely neuronal 
cells yielded a more prominent difference, suggesting that the phenomenon is neuron 
specific (Bundo et al. 2014). In order to investigate the contribution of genetic factors, 
Bundo et al. assessed L1 CNV in neurons derived from iPSCs of patients suffering 
from a rare variant of schizophrenia caused by a 22q11 deletion, one of the highest 
genetic risk factors. This resulted in the detection of a consistent increase in L1 copy 
number in the neuronal cells of patients. Furthermore, the influence of environmental 
risk factors was explored by determining L1 CNV in the PFC of two established SZ 
animal models and, consistently, higher L1 copy number was detected in both models. 
Several environmental risk factors for the development of schizophrenia, such as 
metal exposure and drug use (Modabbernia et al. 2016; Akindipe et al. 2014), were 
discussed above to also influence L1 activity, making it plausible that L1 would be 
involved in the development of this disorder.

Although these studies of L1 activity in psychiatric disorders are correlative, they 
do suggest that L1 mobilisation may be more than a secondary effect of abnormal 
neurobiology. Particularly impressive were the experiments by Bundo et al. showing 
that L1 content is increased in SCZ patient samples, iPSC-derived neurons and SCZ 
animal models. Consistent L1 upregulation in SCZ across very diverse experimental 
systems indicates a close association between disease phenotype and ectopic L1 
activity, though it remains unknown whether L1 plays an active role in the manifesta-
tion of SCZ symptoms or is merely a passenger. Given that L1 can influence genome 
stability, as well as gene transcription, and is responsive to environmental cues, it is 
plausible that subtle genetic differences arise in genes related to SCZ symptomology. 
Alternatively, inability to control L1 activity is at the least emblematic of neuronal 
genome vulnerability and instability. A great deal of more future research is required 
in this area to make any substantive conclusions regarding the functional role of L1 
mobilisation in SCZ and other psychiatric disorders.

6  Conclusion and Future Directions

Somatic L1 retrotransposition is now well established to occur in the neuronal 
lineage. The field also has a reasonable idea of how this process is regulated, by 
MeCP2 and other factors. However, we lack even basic understanding of how L1 
mobilisation in the brain impacts normal neurobiology, let alone neuronal pheno-
type in psychiatric, neurodevelopmental or neurodegenerative disorders. As a result, 
the significance of L1 retrotransposition to brain function is still largely unclear. To 
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move forward in this area, we require improved resolution of the precise timing and 
cell specificity of retrotransposition during embryonic and adult neurogenesis as 
well as, potentially, in mature neurons. These parameters are prerequisites to define 
the contribution of L1 mobilisation to neuronal genome diversity. Moreover, despite 
advances in single-cell genomics, it is currently not possible to assay the genome 
and transcriptome of the same individual neuron, precluding detection of gene 
expression changes associated with somatic L1 insertions. One alternative approach 
in this area would be to use newly developed genome editing tools (e.g. CRISPR- Cas9) 
(Wright et al. 2016) to artificially introduce L1 insertions found in patient samples 
into homogenous neuronal cultures in vitro, or into transgenic animal models. This 
could facilitate a more comprehensive analysis of how individual L1 insertions alter 
normal neuronal physiology and, potentially, behaviour. Moreover, although L1 
deregulation has been found in several neurological disorders, the mechanisms 
through which L1 retrotransposition could impact disease symptomology remain 
largely unexplored. Therefore, the role of L1-derived genomic mosaicism in neuro-
biology remains unclear, despite its obvious appeal as a foundation for complex 
brain functions (e.g. memory formation), and as an aetiological factor in the 
dysregulation of those functions.
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1  Introduction

Mobile genetic elements are present in virtually all-eukaryotic genomes examined to 
date, from plants to mammals, and their activity has generated diverse types of effects 
in their hosts over evolution. While a typical cellular gene resides at a discrete chro-
mosomal locus, TEs are present in multiple copies across the genome and thus influ-
encing its integrity and organization. In general, the majority of the mobile DNA 
load in a mammalian genome consists of evolutionary old or “fixed” TE insertions 
unable to further mobilize due to the accumulation of mutations and rearrangements 
over genome evolution (Lander et  al. 2001; Richardson et  al. 2015). However, a 
minor fraction typically retains the ability to mobilize in genomes (Mills et al. 2007). 
The percentage of genome occupied by TEs and their ongoing activity varies widely 
between organisms. In humans, TE-derived sequences may account for up to two-
thirds of our genome (de Koning et al. 2011), and the human genome contains TEs 
with very different structures and modes of amplification, including DNA transpo-
sons and retrotransposons (Goodier and Kazazian 2008). DNA transposons, which 
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replicate by a cut-and-paste mechanism, are excised from one location and 
reintegrated into a new genomic location using a transposase activity (reviewed in 
(Munoz-Lopez and Garcia-Perez 2010; Tellier et  al. 2015)). These elements are 
widely distributed in nature and are usually found in plants and lower- order organ-
isms. Although often no longer active in mammals (Richardson et al. 2015), bats 
contain active DNA transposons in their genomes suggesting that their activity con-
tinues to generate genetic diversity in some mammals (Ray et al. 2008). By contrast, 
DNA transposons account for only 3 % of the human genome and are no longer 
active (Lander et al. 2001). On the other hand, retrotransposons are DNA sequences 
that move through an intermediate RNA by a copy-and-paste process that results in 
their amplification in genomes over evolution (Moran and Gilbert 2002). Indeed, 
the majority of TEs found in both humans and mice are retrotransposons. 
Retrotransposons are classified into long terminal repeat (LTR) or non-LTR 
retrotransposons depending on the presence/absence of LTR sequences. LTR ret-
rotransposons (also known as endogenous retroviruses or ERVs) comprise approxi-
mately 8 % of the human genome and their structure resembles simple retroviruses 
(recently reviewed in (Mager and Stoye 2015)). Despite their prevalence in the 
human genome, de novo LTR-retrotransposon mobilization events in humans remain 
uncharacterized, suggesting they are no longer active in our genome (Mager and 
Stoye 2015). Why LTR-retroelements are no longer active in humans is a constant 
source of research and debate. In this article, we will focus on the non-LTR class of 
retrotransposons present in the human genome, as this is the class that is currently 
active in our genome (Mills et al. 2007; Richardson et al. 2015).

Within the non-LTR retrotransposons class, a minor fraction of LINE-1s and Short 
Interspersed Elements (SINEs) remains active in the human genome; non- LTR ret-
rotransposons can be also classified in autonomous (LINE-1s) and non- autonomous 
(SINEs)  retrotransposons respectively. LINE-1 or L1 is the most common super-
family of autonomous retrotransposons in mammals and constitute approximately 
21 % of the human genome (Lander et al. 2001). Active LINE-1 elements are con-
sidered autonomous elements as they encode the minimal proteins required to medi-
ate their mobilization by a process termed retrotransposition. On the other hand, Alu 
and SVA (SINE-VNTR-Alus) non-LTR retrotransposons are two types of SINEs 
that have found an effective way to amplify in the human genome without coding 
enzymatic machinery, as they both rely on L1-encoded proteins to mediate their 
own mobilization (Dewannieux et al. 2003; Hancks et al. 2011; Raiz et al. 2011). 
Alu is present in more than 1 million copies in the human genome and together 
with SVA elements represents more than 10 % of our genome. Thus, due to their 
ongoing activity and as a result of retrotransposon mobilization our genetic con-
figuration is susceptible to changes over time, and new insertions can generate new 
genomic variants by a combination of DNA deletions, epigenetic alterations, or 
chromosomal rearrangements among other mechanisms. Indeed, recent retrotrans-
poson insertions and TE-mediated recombination processes in humans have been 
linked to more than a 100 human genetic disorders (Hancks and Kazazian 2012). 
In sum, non-LTR retrotransposon activity is a constant source of genetic variation 
among humans.
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2  Retrotransposition of Active LINE-1 Elements 
in the Human Genome

Human LINE-1s comprise more than 20 % of our genome and the 500,000 copies 
of L1s present in the human genome can be subclassified in several families. Since 
the emergence of apes, L1 elements have evolved and amplified rapidly during the 
last 25  Ma, generating five distinct L1 subfamilies (L1PA5 to L1PA1) (Furano 
2000). The human-specific L1 family, L1Hs, is the only current family of active 
LINE-1s in humans, generating genomic variability among humans (Lander et al. 
2001). Indeed, the completion of the Human Reference Genome (HRG) in combi-
nation with functional assays in cultured human cells has revealed that the average 
human genome contains approximately 80–100 L1 copies that are able to mobilize, 
termed retrotransposition-competent L1s (or RC-L1s (Brouha et al. 2003; Sassaman 
et al. 1997)). A full-length active RC-L1Hs is typically 6.0 kb in length (Scott et al. 
1987) and contains a 5′ untranslated region (UTR), possesses up to three open read-
ing frames (ORF0, ORF1, and ORF2) and ends in a short 3′ UTR followed by a 
poly(A) tail (Fig. 1). The 5′ UTR from human LINE-1s contains both sense and 
antisense RNA polymerase II promoter activity (Athanikar et al. 2004; Swergold 
1990; Becker et al. 1993; Speek 2001; Macia et al. 2011). The sense promoter activ-
ity of the L1-5′ UTR is key to generate the sense L1 mRNA transcript that is used 
to translate LINE-1 encoded proteins and that later serves as a template to generate a 
new LINE-1 insertion during retrotransposition. Within this sense L1 mRNA, active 
LINE-1s contain two ORFs named ORF1 and ORF2. ORF1 codes for a 40 kDa pro-
tein (ORF1p) that has RNA binding and nucleic acid chaperone activities (Hohjoh 
and Singer 1996, 1997a, b; Martin and Bushman 2001; Khazina and Weichenrieder 
2009). ORF2 encodes a 150 kDa protein (ORF2p) with DNA endonuclease (EN) and 
reverse transcriptase (RT) activities (Alisch et al. 2006; Feng et al. 1996; Mathias 
et al. 1991). ORF1p and ORF2p are strictly required for L1 retrotransposition (Moran 
et al. 1996). Intriguingly, and despite its conservation in mammalian LINE-1 ele-
ments (Furano 2000), the 3′ UTR of human LINE-1s is not strictly required for 
retrotransposition, at least using an engineered retrotransposition assay (Moran 
et al. 1996). However, the presence of a poly(A) tail is required for efficient LINE-1 
retrotransposition (Doucet et  al. 2015), both by recruiting ORF2p (Doucet et  al. 
2015) and facilitating the initiation of reverse transcription (Monot et  al. 2013). 
More recently, and due to the presence of a conserved antisense promoter in full-
length LINE-1s (Macia et al. 2011), a third ORF, named ORF0, has been discovered 
in selected human LINE-1s (Denli et al. 2015). Indeed, ORF0 is a primate-specific 
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Fig. 1 Structure of active human LINE-1 elements. Details are provided in the main text
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antisense ORF located in the RNA transcript generated by the antisense L1 promoter 
(Denli et al. 2015). ORF0 is present in approximately 800 loci in the human genome 
and it can increase retrotransposition of LINE-1s using an engineered based assay 
(Denli et al. 2015), although its mechanism of action remains to be determined.

A round of L1 retrotransposition starts with the production of a full-length L1 
mRNA using the sense L1 promoter (Swergold 1990) (Fig.  2); the transcript is 
exported to the cytoplasm where ORF1p and ORF2p are translated by cap- dependent 
and unconventional termination-reinitiation mechanisms, respectively (Alisch et al. 
2006; Dmitriev et al. 2007). Notably, both ORF1p and ORF2p preferentially associ-
ate with their own RNA in a cis-preference manner (Wei et al. 2001), leading to the 
formation of a ribonucleoprotein particle (RNP). The assembly of the L1 RNP is 
strictly necessary for L1 retrotransposition (Kulpa and Moran 2005, 2006; Doucet 
et  al. 2010; Martin 1991; Hohjoh and Singer 1996; Wei et  al. 2001). Next, the 
L1-RNP complex gains access to the nucleus by a process that does not require cell 
division (Kubo et al. 2006). Once in the nucleus, integration of a new L1 copy occurs 
by a mechanism known as target primed reverse transcription (TPRT), initially 
described for R2Bm retrotransposons (Luan et al. 1993; Cost et al. 2002). During 
TPRT, the EN activity of L1-ORF2p makes a single strand nick in the genomic DNA 
at a degenerate consensus sequence (5′-TTTT/A-3′) (Cost and Boeke 1998; Cost 
et al. 2002; Morrish et al. 2002; Jurka 1997). The exposed 3′-OH is then used to 
prime L1 cDNA synthesis using the RT activity of L1-ORF2p and using the L1 
mRNA as a template during polymerization (Luan et  al. 1993; Cost et  al. 2002). 
Notably, the efficiency of the initiation of reverse transcription is thought to be 
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Fig. 2 Control of L1 Retrotransposition. Model of the retrotransposition cycle displaying a sum-
mary of the main cellular pathways controlling L1 replication
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influenced by the 10 last nucleotides of the target DNA, with 4 Ts being the most 
optimal sequence configuration (Monot et al. 2013). Second strand cleavage and sub-
sequent cDNA synthesis will generate a new L1 insertion, although how these steps 
occur at the molecular level requires elucidation. Thus, TPRT will give rise to a new 
L1 inserted elsewhere in the genome, although the vast majority of de novo L1 inte-
grations are 5′ truncated (Grimaldi and Singer 1983). Although the process of 5′ 
truncation is not fully understood, it has been demonstrated that it is influenced by 
DNA-repair processes (Coufal et al. 2011) rather than reflecting an inherent limita-
tion of the L1 encoded RT activity; notably, it has been demonstrated that the RT 
activity encoded by a LINE element from the silkworm is very processive (Bibillo and 
Eickbush 2002) and new L1 insertions can be full-length. In addition to 5′ truncation, 
other alterations of the L1 sequence are often observed in new retrotransposition 
events: it has been described that new L1 insertions can produced inverted/deleted L1 
structures (a process termed Twin Priming (Ostertag and Kazazian 2001)) and can 
also be accompanied by flanking genomic sequences (3′ or 5′ transductions) (Gilbert 
et al. 2002; Moran et al. 1999). Thus, there is variation in the structures generated 
during retrotransposition.

In general, L1 retrotransposition is initiated by cleaving genomic DNA through the 
action of the L1-encoded EN. However, it has been described that a preexisting free 
3′-OH may also be used by the L1-RNP to initiate retrotransposition. This pathway of 
retrotransposition is termed endonuclease-independent (ENi) L1 retrotransposition and 
is thought to occur when L1 use genomic DNA lesions (i.e., free 3′ OH ends) to initiate 
TPRT. However, efficient ENi L1-retrotransposition has only been described in cells 
defective for both the non-homologous end-joining (NHEJ) pathway of DNA repair 
and p53 function (Morrish et al. 2002, 2007; Eickbush 2002; Coufal et al. 2011). In 
NHEJ-mutant cells, it has been proposed that L1s can parasitize unrepaired DNA sites 
present in these cells to initiate retrotransposition, leading to insertions with altered 
structures (Morrish et al. 2002, 2007; Eickbush 2002; Coufal et al. 2011). Finally, and 
although TPRT is the canonical mechanism of retrotransposition, it is tempting to spec-
ulate that in selected circumstances reverse transcription by the L1 encoded RT could 
also occur in the cytoplasm, in an analogy to retroviruses and LTR-retrotransposons 
(Telesnitsky and Goff 1997). However, how the L1 RT would prime cDNA synthesis 
(non-canonical reverse transcription or NCRT, Fig. 2) and how this cytoplasmic DNA 
may be integrated in the nucleus remain to be determined.

3  The Impact of LINE-1 Retrotransposition in the Human 
Genome

New LINE-1 retrotransposition events can impact the genome in multiple ways 
(reviewed in (Cordaux and Batzer 2009; Kaer and Speek 2013; Beck et al. 2011; 
Belancio et al. 2009; Belancio et al. 2008a; Richardson et al. 2015)). Briefly, from 
simply disrupting an exon (Kazazian et al. 1988) to inducing gross alterations of the 
insertion site (Mine et al. 2007), there is a myriad of ways in which a new L1 inser-
tion can impact the genome. Additionally, a new retrotransposition event can disrupt 
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and modify a gene structure by a process known as “gene breaking,” but can also 
affect gene expression by adding promoter sequences or polyadenylation signals, by 
altering the chromatin status of nearby sequences, by altering splicing patterns, etc. 
(Ostertag and Kazazian 2001; Wheelan et al. 2005; Belancio et al. 2008b; Kazazian 
et al. 1988; Han et al. 2004; Garcia-Perez et al. 2010; Goodier and Kazazian 2008; 
Matlik et al. 2006; Nigumann et al. 2002; Speek 2001). In sum, the impact of each 
insertion will be influenced by where in the genome the insertion took place and 
what type of L1 structure is generated at the insertion site. Indeed, L1s are a 
recurrent source of genomic novelty, and can provide a unique configuration to 
mammalian genomes.

4  LINE-1 Regulation by Host Factors

Despite the presence of approximately 80–100 RC-L1s that are able to move in our 
genome, it is also clear that the human genome is in a constant battle with TEs to 
prevent their amplification and exacerbated activity, as this could be negative at the 
individual level. The process of 5′ truncation is a good example of how our genome 
prevents the accumulation of active L1s over evolution (Goodier and Kazazian 
2008). Indeed, there are many layers of retrotransposition control, from transcrip-
tion to the latest stages of TPRT (Heras et al. 2014). In general, DNA methylation, 
chromatin remodeling, and post-transcriptional regulation of L1 mRNAs are the 
main actors to control retrotransposition (Fig. 2).

The epigenetic regulation of L1 expression is perhaps the most efficient manner 
to reduce retrotransposition over evolution; thus, different mechanisms have evolved 
in mammalian cells to recruit the silencing machinery necessary to control and reg-
ulate L1 expression and its subsequent activity. Similarly, it is also likely that L1s 
have evolved to avoid the inhibitory mechanisms created by the host, as recently 
demonstrated (Jacobs et  al. 2014). Cytosine methylation of the canonical CpG 
island located in the promoter region of L1 elements regulate its transcription 
(Thayer et al. 1993), and this process is governed by the action of the DNA methyl-
transferase- 3 like (DNMT3L) protein in germ cells (Bourc’his and Bestor 2004). 
However, when genomes are hypomethylated during normal biological processes, 
alternative mechanisms to regulate L1 retrotransposition must be present in these 
cells (Munoz-Lopez et al. 2011; Castro-Diaz et al. 2014). It is well known that dur-
ing embryogenesis a wave of DNA hypomethylation results in TE expression 
(Munoz-Lopez et  al. 2011; Castro-Diaz et  al. 2014). Consistently, both human 
embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) show 
significant hypomethylation of L1 promoters, resulting in the accumulation of L1 
mRNAs in these pluripotent cell types (Shen et al. 2006; Garcia-Perez et al. 2010; 
Munoz-Lopez et al. 2011; Wissing et al. 2012). Thus, if L1s are regulated during 
embryogenesis, other epigenetic mechanisms may exist in these cells. Indeed, 
KRAB-containing zinc finger protein (KRAB-ZFPs), a mediator of heterochromatin 
formation, binds the 5′ UTR of old L1 subfamilies regulating L1 expression in 
pluripotent cells (Castro-Diaz et al. 2014; Jacobs et al. 2014). Additionally, other 
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modifications like 5-hydroxymethylcytosine (5hmC) induced by the TET family of 
proteins are also located within L1 sequences (Branco et al. 2012), although their 
functional significance in regulating L1 expression is less clear.

However, the epigenetic silencing of TE expression is not the only strategy used by 
the host to control L1 retrotransposition. The microprocessor complex (Drosha- 
DGCR8), which processes pre-miRNAs to generate miRNAs, has been recently 
described to regulate LINE-1 mRNA levels (Heras et al. 2013). Indeed, the micropro-
cessor complex has been shown to mediate the degradation of L1 mRNAs and thus 
could control the rate of L1 retrotransposition in human cells (Heras et  al. 2013). 
Other proteins involved in L1 RNA regulation are Piwi proteins. Piwi proteins are 
highly conserved across evolution and specifically interact with piwi- interacting small 
RNAs (piRNAs), inducing TE RNA degradation by a complex mechanism (Heras 
et al. 2014; Aravin et al. 2007, 2008). Additional host factors such as MOV10 (RNA 
helicase) or RNAse L are also known for being potent restriction factors of L1 expres-
sion and retrotransposition (Goodier et al. 2012; Zhang et al. 2014). More recently, the 
use of epitope-tagged L1 constructs has allowed to generate a list of host factors that 
interact with L1-RNPs; however, their role on L1 regulation remains to be discovered 
for most identified factors (Goodier et al. 2013; Moldovan and Moran 2015; Taylor 
et al. 2013). One of these factors, ZAP, is a zinc-finger protein that targets positive and 
negative strand RNA viruses, as well as some DNA viruses. Remarkably, ZAP can 
also interact with human retrotransposons. ZAP associates with L1-RNPs and strongly 
restricts retrotransposition in cell culture assays by a mechanism that affects L1-RNP 
integrity (Goodier et al. 2015). Notably, many of the identified host factors interacting 
with L1-RNPs may act at later stages, specifically during TPRT in the nucleus, and 
may regulate retrotransposition by still unknown mechanisms. Indeed, APOBEC3 
(A3) is a family of cytidine deaminase enzymes that are known to limit HIV infection 
and can also regulate L1 retrotransposition, likely by deamination and editing L1 
sequences (Schumann 2007; Wissing et al. 2011; Marchetto et al. 2013; Richardson 
et al. 2014b). Other factors that may regulate TPRT include Proliferating cell nuclear 
antigen (PCNA); PCNA functions as a scaffold protein during DNA replication and 
during DNA repair and it has been proposed to promote ORF2p loading on the 
genomic DNA, to act as an ORF2p processivity factor, and/or to help resolving the 
integration process after reverse transcription (Taylor et al. 2013). In sum, we are just 
starting to uncover new host factors that control and regulate L1 activity during the 
retrotransposition cycle.

Finally, it is becoming more evident that there might be a connection of L1 ret-
rotransposition with selected genetic disorders, including Ataxia Telangiectasia 
(Coufal et  al. 2011), Rett Syndrome (Muotri et  al. 2010), and Aicardi-Goutieres 
Syndrome (AGS), among others (see below). Intriguingly, the AGS-related enzymes 
SAMHD1 and TREX1, dNTP phosphohydrolase, and 3′ repair exonuclease, respec-
tively, are known to control the mobilization of L1 retrotransposons (Zhao et al. 2013; 
Stetson et al. 2008). Interestingly, mutations in either enzyme result in the accumulation 
of DNA fragments, which may trigger autoimmunity and therefore cause AGS 
(Volkman and Stetson 2014). This topic of research is in its infancy, and more 
research will be required to definitively learn how TE and TE-derived products 
could contribute to the molecular basis of these human genetic disorders.
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5  L1 Activity in Pluripotent and Somatic Cells

Historically, TEs were catalogued as “junk DNA” (Orgel and Crick 1980); however 
when the Kazazian laboratory identified the first mutagenic L1 insertion in 1988 
(Kazazian et al. 1988) this view started to change, and it became undeniable that 
active TEs can impact the function of the human genome. Since 1988, and as L1 
insertions presumably occur randomly in the genome, mutagenic L1 retrotransposi-
tion events have been implicated in a variety of human diseases such as Hemophilia 
A, X-linked retinitis pigmentosa, or Duchenne muscular dystrophy (Hancks and 
Kazazian 2012). The generation of a human genetic disorder by retrotransposition 
is likely a by-product of their inherent capability to generate new transmissible L1 
insertions in man. To ensure its evolutionary success, L1 elements may generate 
new copies in a cell type that will guarantee its transmission to the next generation; 
thus, early embryogenesis and germ cells are cell types where new L1 insertions 
could accumulate. Indeed, the work from different laboratories has demonstrated 
that most heritable L1 insertions accumulate during early embryonic development 
in both mouse models and using in vitro pluripotent human cells (An et al. 2006; 
Babushok et al. 2006; Garcia-Perez et al. 2007; van den Hurk et al. 2007; Kano et al. 
2009; Levin and Moran 2011). From an evolutionary point of view, these L1 inser-
tions can perpetuate LINE-1 presence within the human genome. However, recent 
research has demonstrated that LINE-1s are also active in selected somatic cell 
types; thus, the load of retrotransposition in humans is not restricted to early 
embryogenesis. Indeed, several studies have shown that L1 expression and 
retrotransposition can occur in selected tumors and in the human brain (Fig.  3) 

Fig. 3 Schematic representation of somatic L1 retrotransposition. The adult brain and tumors 
have the highest L1 retrotransposition efficiency in humans
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(Muotri et  al. 2005; Coufal et  al. 2009; Baillie et  al. 2011; Evrony et  al. 2012; 
Goodier 2014; Miki et al. 1992) (Carreira et al. 2014; Iskow et al. 2010). From an 
evolutionary point of view, the somatic accumulation of new L1 copies does not 
represent a straightforward selective advantage. However, it is tempting to speculate 
that this variability in somatic genomes may increase our plasticity over the life of 
an individual. In the following sections, we will discuss known facts about somatic 
retrotransposition of TE in humans but will also discuss the rate of accumulation 
and genomic impact in the human genome in a healthy or diseased background.

5.1  L1 Retrotransposition During Embryogenesis: L1s Can 
Be Transmitted to the Next Generation

As discussed above, and as a TE, L1s can be considered as the prototype of “selfish 
DNA” whose sole function is to accumulate more copies of themselves in new-
borns. To do that, L1s generate new insertions in cells that can transmit genetic 
information to the next generation. Notably, pluripotent genomes are characterized 
by their low content in DNA methylation especially after fertilization, which cor-
relates with elevated levels of L1 mRNA expression. For a better understanding of 
L1 biology during embryogenesis, hESC and iPSCs, which mimic early stages of 
human development, have been used to model this process in vitro, due to the dif-
ficulty of conducting research with human embryos. hESCs are pluripotent cells 
derived from the inner cell mass of human blastocysts that can self-renew indefi-
nitely and undergo differentiation to generate the three embryonic germ layers 
(Thomson et  al. 1998). Notably, it has been described that hESCs overexpress a 
constellation of L1 RNA derived sequences, including both potentially active and 
inactive copies of L1 and Alu elements (Garcia-Perez et al. 2010; Macia et al. 2011; 
Wissing et al. 2012). Importantly, the expression level of L1 in these cells inversely 
correlates with the level of methylation of the L1 promoter (Garcia-Perez et  al. 
2007; Munoz-Lopez et al. 2011, 2012). Additionally, the use of an engineered L1 
retrotransposition assay (Moran et al. 1996) has demonstrated that the minimal set 
of host factors required to accumulate new L1 insertions is present in hESCs and 
hiPSCs (Garcia-Perez et al. 2007, 2010; Klawitter et al. 2016; Wissing et al. 2011, 
2012). The retrotransposition assay relies on the use of engineered L1s tagged with 
a reporter cassette that can only be activated after a round of retrotransposition 
(Moran et al. 1996). Thus, these data support the notion that new heritable L1 inser-
tions can accumulate during early embryogenesis (van den Hurk et al. 2007). The 
rate of endogenous L1 retrotransposition at this developmental stage remains to be 
determined. However, estimates have suggested that the global rate of inherited L1 
retrotransposition events in humans may be as high as 1/50 (Kazazian 1999; Xing 
et al. 2009; Ewing and Kazazian 2010; Huang et al. 2010).

More recently, the development of hiPSCs from somatic differentiated cells 
allowed researchers to study the overall rate of engineered L1 retrotransposition in 
a variety of genetic backgrounds (healthy or diseased). Others and we have demonstrated 
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that hiPSCs, as hESCs, are characterized by expressing elevated levels of endogenous 
L1 RNPs due to the severe hypomethylation of the L1 promoter (Wissing et al. 2012; 
Friedli et al. 2014). In addition, the retrotransposition of engineered L1s in hiPSCs 
is 10–15-fold more efficient than in fibroblasts, indicating that hiPSCs are also a 
good model to study L1 biology (Wissing et al. 2012). Additionally, the character-
ization of engineered L1 insertions in hiPSCs and hESCs revealed canonical hall-
marks associated with L1 insertions (Garcia-Perez et al. 2007; Wissing et al. 2012). 
Notably, the presence of restriction factors such as APOBEC and Piwi proteins in 
hESCs and iPSCs indicates that not only the molecular machinery required to ret-
rotranspose is present in these cells, but also several major mechanisms acting to 
regulate retrotransposition (Marchetto et  al. 2013; Wissing et  al. 2011). More 
recently, to elucidate if the genome-wide remodeling of epigenetics marks, which 
occurs upon cellular reprogramming, activates endogenous L1 retrotransposition, 
researchers applied retrotransposon capture sequencing (RC-seq) to identify and 
map potential new L1 insertions that might accumulate in the genome of hiPSCs 
and hESCs, either during reprogramming or long-term cultivation (Klawitter et al. 
2016). Notably, this demonstrated that endogenous non-LTR retrotransposons are 
active in both hESCs and hiPSCs (Klawitter et  al. 2016). Intriguingly, an unex-
pected fraction of characterized L1 insertions in hiPSCs are full-length insertions, 
which suggests that endogenous L1 retrotransposition events have the potential to 
impact hiPSC genomes and perhaps compromise their future application in bio-
medicine (Klawitter et al. 2016; Gore et al. 2011). These observations suggest that 
L1 expression may be a marker of pluripotent cells. However, a number of open 
questions remain and will require additional studies in the future. For example: Can 
endogenous retrotransposition lead to altered hiPSCs phenotypes? What is the rate 
of endogenous L1 retrotransposition in humans? When does retrotransposition start 
upon fertilization?

5.2  L1 Retrotransposition in Human Tumors: The Chicken or 
the Egg Argument

Genomic instability, driver point mutations and karyotype abnormalities are major 
driving forces of tumorigenesis (Ellsworth et al. 2004). The role that TEs may play 
in the initiation of tumorigenesis might be merely speculative; despite this, there are 
good examples of this possible relationship. For example, the disruption of a tumor 
suppressor gene caused by a somatic or early embryonic TE insertion could facili-
tate additional genomic insults that may lead to cancer. Indeed, in 1992, it was 
described that a new L1 retrotransposition event disrupted the APC gene in a patient 
affected with colon cancer, suggesting that this could be a tumorigenic L1 insertion 
(Miki et al. 1992). Thus, in this particular case, the L1 insertion in the APC gene 
could be causative of the colorectal tumor, independently of its somatic or early 
embryogenesis origin. This study was likely the tip of the iceberg; indeed, the 
genomics revolution has revealed ongoing retrotransposition in most epithelial 
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cancers examined to date (reviewed in (Carreira et al. 2014)). However, whether 
somatic retrotransposition of L1s in healthy tissues is a common process that may 
normally participate in tumorigenesis is far from clear, as only selected cells within 
the human brain have been shown to support endogenous retrotransposition in 
healthy conditions (reviewed in (Richardson et al. 2014a); see below). Indeed, it is 
tempting to speculate that somatic retrotransposition of L1s in the brain is the 
exception more than the generic rule, although further studies are required to firmly 
determine if retrotransposition can occur in other cell types or tissues present in a 
healthy human body. Related to this, recent studies suggest that only a small number 
of L1 copies (some being polymorphic between individual) escape cellular silencing 
mechanisms in a cell-type specific manner, and might be associated with increased 
cancer risk (Philippe et al. 2016; Scott et al. 2016).

Furthermore, it is possible that ongoing L1 retrotransposition can also impact 
tumor progression. Several studies have shown an inverse correlation between the 
DNA methylation level of the L1 promoter and L1 expression, and intriguingly also 
with a poor clinical prognosis in cancer patients (Rhee et al. 2015; Inamura et al. 
2014; Suter et al. 2004; Cho et al. 2007). Similarly, a correlation between low levels 
of L1 promoter methylation and high levels of nuclear L1 ORF1p expression with 
poor clinical outcomes has been observed (Harris et  al. 2010). Intriguingly, L1 
ORF1p is expressed at low or undetectable levels in most adult tissues and at early 
tumorigenesis stages; however L1 ORF1p expression is exacerbated in several neo-
plasms including lung, ovarian, or prostate carcinomas (Belancio et  al. 2010a; 
Rodic et al. 2014). The use of L1 expression or CpG methylation as a cancer bio-
marker is discussed in Chap. 12 of this book. In sum, it is still unclear whether 
reactivation of L1 expression by CpG hypomethylation is a cause or consequence of 
tumor progression. Indeed, it is likely that DNA hypomethylation on tumors reflects 
rapid cell division and thus results in loss of DNA methylation patterns on L1 pro-
moters, which lead to L1 mRNA overexpression. As DNA hypomethylation in 
tumors typically occurs in a genome-wide manner, it is likely that a fraction of 
overexpressed L1s might correspond to mRNAs from active RC-L1s; next, and if 
the tumor cells express the host factors required for L1 retrotransposition to occur, 
it is likely that these RC-L1s may generate new insertions. As in any mutagenic 
loop, the more insertions produced, the higher the probability to disrupt a gene that 
may affect tumor progression. This model rather implicates L1 retrotransposition in 
the late stages of cancer development. However, this model was very recently chal-
lenged by the detection of de novo L1 somatic insertions in precancerous colorectal 
and esophageal lesions or even in normal tissue (Doucet-O’Hare et al. 2015; Ewing 
et al. 2015; Scott et al. 2016). Thus, studying the extent of this phenomenon will 
require the development of more sensitive techniques to detect L1 insertions in a 
small number of cells or even in single cells.

Aside from the putative role that L1 retrotransposition may exert during tumor 
initiation, in general most tumors are characterized by their inherent genomic insta-
bility. Notably, studies in cultured tumor cells have demonstrated that a fraction of 
new L1 retrotransposition events are associated with genomic instability processes 
(Symer et al. 2002; Gilbert et al. 2002). On the other hand, it was also described that 
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L1 ORF2p expression, a key protein in the retrotransposition process, is associated 
with DNA damage formation, genotoxicity, and a marked increase of both intra- 
and inter-chromosomal translocations (Gasior et  al. 2006; Wallace et  al. 2008; 
Belancio et al. 2010b; Lin et al. 2009). Consistently, altered expression patterns of 
ORF1p and ORF2p have been found within invasive cancers, which is again associ-
ated with poorer patient survival (Chen et al. 2012).

Over the past years, several methods have appeared to precisely map new L1 ret-
rotransposition events in human DNAs (Doucet and Kazazian 2016; Sanchez- Luque 
et al. 2016). Briefly, these methods were either based on previous established meth-
ods to identify young and likely RC-L1s (Badge et  al. 2003) or have exploited 
hybridization/capture protocols to enrich for L1-fragments (Baillie et  al. 2011). 
These protocols were coupled to next-generation DNA sequencing (NGS) platforms, 
greatly facilitating the identification of new L1 retrotransposition events in human 
DNA, although astringent controls are required at all steps (Evrony et  al. 2016; 
Goodier 2014). Using NGS, and for the first time, Iskow and colleagues reported 
nine tumor-specific somatic L1 insertions in 6/20 primary lung carcinomas (Iskow 
et al. 2010). Since then, other studies have reached similar conclusions using other 
tumor types and other sequencing approaches (reviewed in (Carreira et  al. 2014; 
Goodier 2014)). More recently, other studies have exploited Whole Genome 
Sequencing data (WGS) from tumor–normal tissue pairs to identify somatic L1 inser-
tions in tumors. Using this approach, Lee et al. discovered 183 insertions in colorectal, 
ovarian, and prostatic carcinomas (Lee et al. 2012). Interestingly, the analysis of mul-
tiple cancer types has revealed that somatic retrotransposition occurs preferentially in 
cancers with an epithelial origin. Notably, these cells have the potential to switch from 
an epithelial to mesenchymal phenotype, in which migrating cells would trigger the 
metastasis. Epithelial cells can also be transformed to yield cancer stem cells, where 
an oncogenic L1 insertion in this cell type would increase the probability to spread the 
mutation (Carreira et al. 2014). Thus, it is reasonable to propose that the plasticity of 
epithelial tumors could explain their permissiveness for L1 activity. In sum, it is well 
established that L1s are actively retrotransposing in tumor cells but it is less clear if 
new L1 insertions represent merely passenger mutations or if they have the capability 
to affect tumor progression.

Finally, and from a therapeutic point of view, the use of RT inhibitors (RTis) has 
been proposed to treat cancer patients, using commercially available drugs against 
HIV infection that also inhibit L1 retrotransposition (Jones et al. 2008; Dai et al. 
2011). However, a proper clinical trial must be established to definitively conclude 
if L1 retrotransposition could be a valuable pharmacological target to treat cancer.

5.3  L1 Retrotransposition in Adult Healthy Tissues

Over the past years, several laboratories have used complementary approaches and 
experimental models to conclude that there is ongoing somatic retrotransposition of 
L1s in selected brain cells. However, many questions remain unsolved regarding the 
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landscape of somatic retrotransposition in other human tissues. Given their potential 
relationship with tumorigenesis, understanding the impact of this process on the 
cellular physiology should be a high research priority. Although the ongoing activ-
ity of L1s is well supported in tumors and in the healthy human brain, it is currently 
unknown whether the somatic activity of L1 is an active process regulated by the 
developmental potency of the host cell. In a recent study, researchers investigated 
L1 expression in a broad spectrum of normal human tissues including adult stem 
cells (Belancio et  al. 2010b). Belancio et  al. found that tissues from esophagus, 
prostate, stomach, and heart muscle expression levels were similar to those detected 
in HeLa cells. In contrast, L1 expression levels in adrenal gland, spleen, kidney, and 
cervix were below the sensitivity of the assay (Belancio et al. 2010b). However, we 
simply do not know which fraction of these L1 RNAs correspond to mRNAs from 
RC-L1s or if these cells support the mobilization of RC-L1s. In sum, whether L1 
somatic retrotransposition is an active process in human tissues or whether it is 
restricted to the brain remains unknown.

5.4  L1 Retrotransposition in the Adult Brain

The first evidence demonstrating that L1s are able to mobilize in mammalian brains 
used engineered human L1-EGFP reporter assays in both cultured rodent cells and 
animal models (Muotri et al. 2005) (see also Chap. 5). Remarkably, Muotri and 
colleagues demonstrated that Neuronal Progenitor Cells (NPCs) isolated from the 
adult rat hippocampus were able to accommodate the retrotransposition of human 
L1 retrotransposons with elevated frequency and that a fraction of these engineered 
L1 insertions occurred into neuronal expressed genes (Muotri et al. 2005). These 
initial observations have been further reinforced by additional experiments done 
in vivo with L1-EGFP transgenic mice, in which cells containing new insertions 
could be directly visualized in the rodent brain. This animal model identified that 
some de novo human L1 retrotransposition events co-localized with a postmitotic 
neuronal marker (NeuN) in striatum, cortex, hypothalamus, hilus, cerebellum, ven-
tricles, amygdala, and hippocampus (Muotri et al. 2005). Interestingly, it was later 
reported a higher level of L1-EGFP expressing cells after voluntary exercise in 
transgenic mice versus controls (Muotri et  al. 2009). This increase in L1-EGFP 
expression rate could be explained by an increase of neurogenesis where new L1 
events will accumulate, or by the de-repression of previously silenced L1 insertions 
(Muotri et al. 2009). However, this seminal study demonstrated for the first time that 
the mammalian brain is a mosaic of genomes.

Next, similar studies were extended to humans (Coufal et al. 2009, 2011). Coufal 
and colleagues isolated NPCs from human fetal brain or use hESCs to derive NPCs 
and conducted retrotransposition assays; surprisingly, this study revealed that 
human NPCs could accumulate new L1 insertions with a very high frequency, even 
higher than previously reported in tumor cell lines (Coufal et al. 2009). Additionally, 
an increase in the copy number of endogenous L1s was found in several regions of 
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the adult human brain compared to other somatic tissues (liver and heart) isolated 
from healthy donors, further suggesting ongoing retrotransposition of L1s in the 
human brain (Coufal et al. 2009). However, these qPCR estimates were not valid to 
establish a rate of brain retrotransposition, as the assay compared a plasmid to 
genomic DNA among other caveats. However, and with these caveats, it was 
observed that the adult hippocampus, a major neurogenic niche in the brain, con-
tained elevated L1 copies compared with other brain regions. Thus, it is tempting to 
speculate that L1 retrotransposition may occur frequently during the formation of 
the central nervous system (CNS) and later during neurogenesis in the adult brain. 
Intriguingly, this mobilization in individual cells could lead to neuron-to-neuron 
variation and might be partially responsible for the generation of somatic mosa-
icism; however the functional consequences of these findings remain unknown 
(Richardson et al. 2014a). What is certainly clear is that NPCs are very permissive 
for L1 retrotransposition, even higher than cancer cell lines (Coufal et al. 2009).

Next, and due to the development of NGS, several independent laboratories have 
subsequently demonstrated that the human brain is indeed made of a mosaic of 
genomes, although there is a serious debate about what the real frequency of ret-
rotransposition in the human brain might be (Baillie et al. 2011; Evrony et al. 2012, 
2015, 2016; Upton et al. 2015). In 2011, a high-throughput methodology was used 
to identify de novo L1 insertions in three individual’s hippocampus (Baillie et al. 
2011). Briefly, Baillie and colleagues developed a new capture method named 
RC-seq that relies on a low number of PCR cycles and thus is less prone to artifacts 
(Sanchez-Luque et al. 2016). In RC-seq, the DNA junctions between retrotranspo-
sons and adjacent genomic regions are enriched by hybridization/capturing, fol-
lowed by paired-end sequencing and alignment to the human genome to identify L1 
insertions absent from the HRG. Using RC-seq, these researchers were able to iden-
tify numerous somatic L1 insertions inserted in protein-coding genes differentially 
expressed in the brain; however this could be explained by the fact that  neuron- related 
genes have a larger average gene length in humans. However, it is also possible that 
the chromatin status of brain cells might be influencing where retrotransposition 
events in the brain may occur (Thomas et  al. 2012). In this study, thousands of 
somatic L1 insertions were identified, although only a small fraction of insertions 
was thereof validated (Baillie et al. 2011).

Next, single-cell technology was exploited to determine the timing and load of 
L1 retrotransposition events in the brain. In 2012, Evrony and colleagues exploited 
single cell genomics and a modified L1-seq (Ewing and Kazazian 2010) approach 
to identify and validate the first somatic full-length L1 insertion reported in the 
human brain (Evrony et al. 2012). However, and in stark difference with the previ-
ous study, Evrony et al. reported an average of 1.1 somatic L1 insertions per neu-
ron, and 0.6 unique somatic insertions per neuron from cerebral cortex and caudate 
nucleus of three normal individuals (Evrony et al. 2012). However, in this study 
only 5/81 insertions were validated. More recently, Upton and colleagues adapted 
RC-seq to single cells, and concluded that an estimated 13.7 and 6.5 somatic L1 
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insertions occurred per hippocampal neuron and glial cell, respectively (Upton 
et  al. 2015). Notably, hippocampal L1 insertions were specifically enriched in 
transcribed neuronal stem cell enhancers and hippocampus genes (Upton et  al. 
2015). Thus, these data suggest that somatic retrotransposition is ubiquitous in the 
human brain, and that perhaps every neuron of the human brain may contain a 
unique genome (Upton et al. 2015). However, and very recently, a controversial 
debate has appeared regarding what the real rate of retrotransposition in the brain 
might be (Evrony et  al. 2016). Simply stated these studies used very different 
approaches and bioinformatics analyses that in part may explain part of the dis-
crepancy between both studies. However, none of these studies validated the full 
spectrum of identified L1 insertions. That said, a recent study used a very different 
approach (reprogramming of mature neuronal cells) to biologically amplify 
genomes and used WGS to map the full repertoire of mutations accumulated in 
neuronal cells over time (Hazen et al. 2016). In this study, authors identify a small 
number of putative de novo L1 insertions in MT neurons, and some insertions 
were PCR validated. Notably, this alternative study concluded that up to 1.3 de 
novo somatic L1 insertions could be accumulated in MT neuronal cells from the 
rodent brain (Hazen et al. 2016). However, further thereof studies are required to 
resolve what the real ratio of L1 retrotransposition in the human brain might be and 
whether different brain areas have different capabilities to support retrotransposi-
tion of human L1s.

No matter what the real number of somatic L1 insertions per neuron might be, 
the biological impact of neuronal retrotransposition remains an open question. It is 
undeniable that the adult brain contains approximately 86 billions of neurons 
(Azevedo et al. 2009), with likely more than 1015 connections. Thus, and although 
the role of L1 retrotransposition in generating ubiquitous neuronal diversity has 
been recently challenged (Evrony et al. 2016), additional thereof studies must be 
conducted in order to infer the impact of somatic retrotransposition in the brain. 
This is especially important as a subtle change in a genome can have a dramatic 
impact in any biological process (i.e., a point mutation can be fully detrimental to a 
cell) but also because we simply lack real information about what the impact of 
retrotransposition in the brain might be. Additionally, speculating that the somatic 
retrotransposition of LINE-1s might not be significant enough to allow retrotrans-
position to manifest a role on brain biology (Evrony et al. 2016) is not based on 
functional analyses and it is likely detrimental for this field of research. Notably, 
long ago TEs were classified as merely “junk DNA” but it is now undeniable that 
TEs have dramatically impacted the structure of the human genome, as well as its 
evolution and genome-wide regulation. Thus, reusing the concept “junk DNA” for 
the putative role that the somatic retrotransposition of L1s may have on brain biol-
ogy is inaccurate, at least at present. In sum, more research on this topic must be 
conducted before concluding that L1 somatic retrotransposition is involved (or not) 
in any biological process operating on the human brain, no matter what the real rate 
of retrotransposition in the brain might be (Evrony et al. 2016).
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5.5  L1 Retrotransposition in the Adult Brain of Model 
Organisms

More recently, studies suggested that L1s are more active in somatic tissues during 
the course of aging (see also Chap. 13). It has been shown that Sirtuin 6 (SIRT6) is 
a powerful repressor of L1 activity (Van Meter et  al. 2014). SIRT6 is a protein 
deacetylase and mono-ADP ribosyltransferase that promotes chromatin silencing 
through KAP1 (KRAB-associated protein 1), and facilitates DNA repair. Notably, 
SIRT6 KO mice develop a severe premature aging syndrome, characterized by 
genomic instability, while mice overexpressing SIRT6 exhibit extended lifespans. 
Intriguingly, it has been demonstrated that SIRT6 silences L1 by binding to its pro-
moter and recruiting repressive heterochromatin factors, regulating the expression 
of these retroelements (Van Meter et  al. 2014). In this study, authors found that 
SIRT6 is depleted from L1 loci in aged cells, allowing the reactivation of these pre-
viously silenced retroelements. Thus, upon aging and DNA damage, SIRT6 leaves 
L1 promoters and localizes to sites presumably containing DNA breaks (Van Meter 
et al. 2014). Similarly, in another study conducted in Saccharomyces cerevisiae, the 
authors described that the mobility of the Ty1 LTR-retrotransposon is elevated in 
mother cells versus their daughter cells (Patterson et al. 2015). Overall, these data 
suggest that retrotransposons can become more active during the course of aging; 
however, many questions remain unanswered regarding the relationship between 
retrotransposons and age-related neurodegenerative disorders.

Notably, somatic retrotransposition in the brain might not be exclusive to mam-
mals and recent studies strongly suggest that retrotransposition also occurs in the 
Drosophila brain (Perrat et al. 2013). Specifically, retrotransposon expression and 
retrotransposition of LTR-retrotransposons have been described in αβ neurons from 
the mushroom body, a brain structure critical for olfactory memory in Drosophila. 
The authors of this study observed that Piwi-interacting RNA (piRNA) proteins 
were less abundant in this type of neuron, and was inversely correlated with elevated 
retrotransposon expression in the brain. In order to identify somatic mobilization 
events, whole genome sequencing (WGS) and paired-end deep sequencing were 
performed and more than 200 somatic insertions were identified. Consistently, Li 
and colleagues reported retrotransposition in Drosophila brains using a LTR- 
retrotransposon gypsy-TRAP engineered system where neural retrotransposition 
activation may contribute to neuronal decline with age, also in mushroom body 
neurons (Li et al. 2013).

In sum, it is tempting to speculate that on one hand retrotransposition may pro-
vide a source of somatic diversity in the brain as a normal part of brain physiology. 
However, it is unknown whether mutations caused by new TE insertions could alter 
the brain circuitries or even contribute to neuronal decline in humans and other 
organisms. On the other hand, in mammals, L1 elements are de-repressed in a vari-
ety of neurodegenerative disorders or models, suggesting that deregulation of TEs 
could exacerbate some aspects of these diseases or even have a major causative role. 
Thus, the impact of TEs in the brain may be much higher than previously antici-
pated but functional testing of these hypotheses requires further experimentation.
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5.6  L1 Retrotransposition and Brain Disorders

Consistent with a potential role of L1 activity in the pathophysiology of brain disor-
ders, several of these diseases are associated with mutations in factors also known 
to regulate retrotransposition. Sox2 is a negative regulator of neuronal differentia-
tion but is known to interact with the L1 promoter limiting its retrotransposition 
(Kuwabara et al. 2009). Additionally, methyl CpG binding protein 2 (MeCP2) also 
regulates L1 expression and retrotransposition in NPCs and neurons of mouse and 
human brains (Muotri et al. 2010). Notably, de novo MECP2 mutations in humans 
cause Rett Syndrome (RTT), a progressive neurological disorder being considered 
part of the autism spectrum disorders (ASD) (Marchetto et al. 2010). Both Mecp2 
KO mouse and MECP2 deficient human cells seem to accommodate increased 
endogenous L1 retrotransposition (using a copy number qPCR assay). Thus, it is 
possible that L1 retrotransposition rates in Rett Syndrome patients might be higher, 
although the biological significance of the increased retrotransposition rate remains 
to be determined.

Similarly, other host factors involved in DNA repair pathways that act to regulate 
L1 retrotransposition may have a differential impact on brain biology when mutated. 
Ataxia telangiectasia mutated (ATM) is a serine/threonine protein kinase that is 
activated by DNA double-strand breaks (Coufal et al. 2011). Mutations in the ATM 
gene cause Ataxia telangiectasia disorder, characterized by progressive neuronal 
degeneration, immunodeficiency, and predisposition to cancer. Notably, ATM- 
deficient hESCs, NPCs, and human fetal neural progenitor cells accumulate more 
L1 insertions per cell and/or longer L1 insertions (Coufal et  al. 2011). Notably, 
these differences were also observed in an in vivo mouse model of ATM. Thus, 
ATM may be implicated in the recognition, resolution, and/ or repair of DNA breaks 
generated normally during L1 integration. However, whether altered levels of L1 
retrotransposition as observed in ATM cells is involved in some of the symptoms 
observed in ATM patients remains to be determined.

Other candidate L1 regulator in the brain is the TAR DNA-binding protein-43 
(TDP-43). Mutations in TDP-43 have been associated with amyotrophic lateral 
sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Notably, TDP-43 
can naturally bind to L1-derived RNA transcripts (Li et  al. 2012). Interestingly, 
binding to L1 RNAs is reduced in patients with FTLD, resulting in a dramatic up- 
regulation of L1s (Li et al. 2012). This phenomenon might not only involve L1 ele-
ments but other TEs. Indeed, a recent study demonstrated that human endogenous 
retroviruses (HERVs) could play a role in ALS. Specifically, activation of HERV-K 
was reported in cortical and spinal neurons of sporadic ALS patients (sALS), reduc-
ing number of cells and causing neurite retraction. Notably, expression of HERV-K 
is also regulated by TDP-43, which binds to its LTR sequences (Li et al. 2015).

Finally, a recent study reported a higher content of L1 copy number in patients 
with schizophrenia (Bundo et al. 2014). The increase in L1 copy number observed 
in schizophrenic patients was observed in neurons from the prefrontal cortex of 
patients and in iPSCs-derived neurons containing 22q11 deletions (22q11-del), one 
of the highest risk factors for schizophrenia patients (Karayiorgou et  al. 2010). 
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Notably, when the site of new insertions was mapped, L1 insertions were preferentially 
enriched in or near genes related to synaptic function and neuropsychiatric diseases 
(Bundo et al. 2014). However, none of the L1 insertions identified in this study were 
validated, and further studies are required to conclude that retrotransposition might 
be differential in schizophrenia. Finally, this study also demonstrated an increase in 
L1 copy number in an animal model of schizophrenia, induced by maternal immune 
activation with poly-I:C in mice or epidermal growth factor in macaques, suggest-
ing that L1 might be involved in the pathogenesis of schizophrenia.

In sum, a growing list of research suggests that TEs might be involved, directly 
or indirectly, in the molecular basis of several neurodegenerative disorders and 
future studies will surely help to determine whether LINE-1s might be a new phar-
macological target in these and others neurodegenerative disorders.

5.7  L1 Retrotransposition and Brain Homeostasis

The expression of L1s has also been linked to several psychopathological condi-
tions. One example is drug consumption. Indeed, it has been shown that when preg-
nant rats were treated with cocaine (starting on the second day of pregnancy), the 
born pups had increased L1 mRNA levels in selected organs such as heart, spinal 
cord, and the brain (Voskresenskiy and Sun 2008). Additionally, researchers have 
described changes in the heterochromatin status of brain cells of cocaine-treated 
mouse. Indeed, cocaine use can cause a decrease of the H3K9me3 enrichment (a 
mark of transcriptional repression) at specific genomic repeats such as L1s, which 
could result in increased L1 expression in nucleus accumbens (Maze et al. 2010). 
Additionally, further studies using another drug of abuse, morphine, detected global 
DNA methylation changes in the CpG island of L1 promoters; additionally, mor-
phine treatment have shown to increase L1 mRNA expression in cultured neuronal 
SH-SY5Y cells (Trivedi et al. 2014). Thus, and although very preliminary, these 
studies suggest that the consumption of selected addictive drugs may affect the nor-
mal homeostasis of L1 expression in the mammalian brain.

Similarly, stress represents another environmental factor related with changes in 
epigenetic marks associated with L1 expression. Indeed, Hunter and colleagues 
described an increase of the repressive histone H3 lysine 9 trimethylation 
(H3K9me3) in the hippocampus after the implementation of acute stress in rats 
(Hunter et al. 2012). Surprisingly, L1 expression was increased in the cerebellum of 
stressed rats compared to controls. Interestingly, studies in human have also shown 
variations in L1 DNA methylation levels between veterans with post-traumatic 
stress disorder (PTSD) and combat-deployed controls in the US military service 
members (Rusiecki et al. 2012). Specifically, L1 was found to be hypomethylated in 
PTSD cases versus controls. Altogether, these studies suggest that stress could be 
influencing L1 expression and perhaps retrotransposition in the human brain. 
If stress is a risk factor for future mental illnesses that could be developed by people who 
had experienced PTSD remains to be determined. Interestingly, using a computational 
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analysis that can predict phenotypic changes associated with genetic modifications, 
a recent study investigated the influence of somatic retrotransposition on brain 
metabolites, including neurotransmitters (Abrusan 2012). This study revealed that 
somatic retrotransposition could influence the biosynthesis of more than 250 metab-
olites including dopamine, serotonin, and glutamate which could indeed contribute 
to the development of many neurodegenerative and neurodevelopmental diseases 
such as Parkinson’s in this case, schizophrenia or even autism (Abrusan 2012).

In conclusion, although L1 expression, methylation status, and retrotransposition 
have been associated with several pathological conditions in the brain such as drug 
addiction, schizophrenia, or PTSD, further investigation is required in order to 
establish if L1 can indeed participate in the disease onset and/or progression. Thus, 
future studies should uncover the role of L1  in diseased brains and whether L1 
activity can be the cause or the consequence of a given pathological condition.

5.8  L1 Retrotransposition and Neuroinflammation

In addition to its contribution to somatic mosaicism and disease, recent research has 
discovered that L1s may also play a role in the induction of inflammation in various 
conditions. More specifically, intracellular intermediates of the L1 retrotransposi-
tion cycle might act as key effectors of inflammation. In patients with an autoim-
mune condition such as rheumatoid arthritis (RA), AGS, and systemic lupus 
erythematosus (SLE), altered levels of L1 intermediates in affected tissues have 
been documented (Ali et al. 2003; Stetson et al. 2008; Pokatayev et al. 2016). While 
the exact contribution of these intermediates to inflammation has yet to be fully 
determined, it is becoming more evident that TEs may interact with key immune 
pathways. In some type I interferonopathies such as AGS, it is thought that levels of 
L1-derived nucleic acid species are elevated as a result of the compromised function 
of key host factors that are involved in cytosolic nucleic acid processing and degra-
dation (Burdette and Vance 2013; Woo et al. 2014; Stetson and Medzhitov 2006). 
Thus, the inability to clear these anomalous cytosolic nucleic acid species may lead 
to the activation of endogenous antiviral nucleic acid sensing mechanisms that ulti-
mately could initiate an immune response. Indeed, and by acting through various 
innate DNA-sensing mechanisms that are stimulated in response to deregulated ret-
roelement production, certain cells have the ability to produce immune molecules, 
even in the absence of an intact immune system. For example, in AGS mice it has 
been shown that abnormal cytosolic DNA (presumably L1 sequences) triggers a 
STING-dependent type I interferon and interferon stimulated gene (ISG) activation 
through the DNA sensor cGAS in various peripheral tissues including the heart and 
kidney, but not in the brain (Pokatayev et al. 2016). By either blocking the formation 
of L1 intermediates using reverse transcriptase inhibitors or disrupting the DNA- 
sensing mechanism through STING knockout, inflammation is reduced and overall 
survival is enhanced. Interestingly, while human AGS patients demonstrate a severe 
psychomotor retardation and neuroinflammation, the AGS mice do not display any 
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neurological deficit. Perhaps a similar type I interferon and ISG signature can be 
seen in AGS human brain tissue but not in the mouse brain, explaining the differ-
ences in presentation of neurological phenotypes between the different species. 
However, part of these data based on the use of nucleoside-analogs reverse tran-
scriptase inhibitors should be reevaluated, as it was recently demonstrated that 
some reverse transcriptase inhibitors have intrinsic anti-inflammatory properties 
(Fowler et al. 2014).

However, we speculate that in order to attenuate an undesired immune response 
and to prevent initiation of disease through retrotransposition, our genome has 
likely evolved various mechanisms to suppress harmful endogenous mobile ele-
ments but many of these mechanisms may also be involved in antiviral functions. 
Interestingly, many of these dual-functioning antiviral/antiretroelement host factors 
are ISGs, some of which are produced as a result of immune activation by L1 retro-
elements and contribute to inflammation. The zinc-finger antiviral protein (ZAP) is 
an ISG that targets specific viruses by functioning as a cofactor with the RNA exo-
some to degrade viral RNAs (Guo et al. 2007). However, it has also been shown that 
ZAP can function to regulate human L1 activity through stress granule association 
with the L1 RNA. Overexpression of ZAP results in strong restriction of L1 ret-
rotransposition while depletion allows enhanced retrotransposition (Goodier et al. 
2015; Moldovan and Moran 2015). In sum, the interactions between molecules like 
ZAP and L1 display a glimpse of the complex interplay between regulatory immune 
molecules involved in inflammation such as ISGs and IFNs and mobile elements. 
Thus, we propose that normally beneficial negative feedback mechanisms that 
restore proper L1 levels through ISGs may actually serve to cause adverse effects, 
including severe inflammation, which could further exacerbate disease pathology.
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Preface

Transposable elements (TEs) or transposons are discrete pieces of DNA capable of 
either mobilizing themselves or creating a copy of themselves to insert into a new 
genomic location. Although misleading, TEs are often referred to as “junk DNA.” 
However, TEs are far from innocuous, having a profound impact on genomes and 
functioning as drivers of mutation and evolution. Interestingly, TEs respond to envi-
ronmental stimuli. Since the initial discovery of “jumping genes” in maize by 
Barbara McClintock (McCLINTOCK, Proc Natl Acad Sci U S A 36:344–355, 
1950), transposons have been shown to be widespread across species. McClintock 
observed and characterized chromosomal rearrangements in maize created by trans-
position events stimulated by ionizing radiation treatment. Thus, she was the first to 
postulate that transposition activation can be induced in response to stress in order 
for the cells to survive to DNA damage (Fedoroff, Proc Natl Acad Sci U S A 109: 
20200–20203, 2012). More recent research supports McClintock’s hypothesis that 
transposons play an important role in the adaptation to environmental stress (Capy 
et  al., Heredity 85(Pt 2):101–106, 2000; Grandbastien, J Soc Biol 198:425–432, 
2004; Foster, Crit Rev Biochem Mol Biol 42:373–397, 2007; Taruscio and 
Mantovani, Cytogenet Genome Res 105:351–362, 2004; Cho et al., Shock 30:105–
116, 2008; Chadha and Sharma, PLoS ONE 9: e94415, 2014; Stapley et al., Mol 
Ecol 24:2241–2252, 2015). This chapter focuses on the currently active human TEs, 
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the retroelements, specifically on the Long INterspersed Element-1 (LINE-1 or L1) 
and its response to environmental stimuli. The chapter is divided into four basic sec-
tions: an introduction to the human retroelements, the impact of L1 on human 
health, regulatory mechanisms of L1 activity, (i.e., host defense mechanisms), and 
the impact of environmental factors on L1 activity. To conclude the chapter, three 
basic mechanisms of how L1 is affected by the environment are proposed: (1) by 
altering epigenetic silencing mechanisms; (2) by increasing functional L1 tran-
scripts; and (3) by deregulating host defense strategies that prevent L1 insertion.

1  Introduction

1.1  L1 is the Main Driver of Retrotransposition in the Human 
Genome

Conservative estimates indicate that 45 % of the human genome is composed of 
transposable element sequences, making these genetic elements highly successful 
in mammalian genomes (Lander et al. 2001). There are two classes of transposable 
elements: the class I (retrotransposons) and the class II (DNA transposons). The 
class II DNA transposons insert into new genomic locations through a “cut and 
paste” mechanism and they represent the true “jumping genes.” Conversely, the cur-
rently active (in the human genome) class I retrotransposons insert into new genomic 
locations through a copy and paste mechanism using an RNA intermediate. Thus, 
the original retroelement does not “jump” per se, but it generates a new copy of 
itself that inserts elsewhere in the genome. Interestingly, many examples of TEs that 
respond to stress belong to class I, e.g., the plant LTR retrotransposons BARE-1 and 
Ty1 in yeast (Mourier et al. 2014; Casacuberta and Gonzalez 2013).

One of the most successful mobile elements in the human genome is the non- LTR 
retroelement Long INterspersed Element 1 (LINE-1 or L1). There are over 500,000 
L1 copies which comprises about approximately 17 % of the human genome (Lander 
et  al. 2001; Smit 1999). However, most of the L1 copies are short 5′ truncated 
sequences with only less than 5000 being a full-length L1 element. Furthermore, 
once inserted, the new copies tend to accrue inactivating mutations. Therefore, it is 
estimated that on average the human genome will only have between 80 and 100 
retrotranspositionally competent full-length L1 elements (Beck et al. 2010). Further 
analyses of the human genome revealed that active L1 copies significantly vary in 
their retrotransposition efficiency with as few as 10 L1 elements being highly active. 
These highly active L1 elements are responsible for the bulk of de novo polymorphic 
insertions, earning the moniker “Hot L1s” (Brouha et al. 2003).
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1.2  L1 Structure

An active, full-length human L1 element is ~6000 base pair-long and contains two 
open reading frames coding for the proteins ORF1p and ORF2p. L1 transcripts are 
bicistronic where both proteins get translated from the same RNA molecule (Smit 
1999). ORF1p interacts with the L1 transcript and is proposed to be a nucleic acid 
chaperone. ORF2p has endonuclease and reverse transcriptase functions, both 
required for L1 retrotransposition (Mathias et al. 1991; Feng et al. 1996). The gen-
eration of new L1 copies occurs through a process termed retrotransposition and 
uses a Target Primed Reverse Transcription (TPRT; Fig. 1) mechanism for insertion 
(Luan et al. 1993; Christensen et al. 2006). Briefly, the endonuclease function of the 
L1 ORF2p nicks the genome at an AT-rich sequence. This nick exposes thymine 

Fig. 1 Target Primed Reverse Transcription (TPRT) process. A schematic representation of the 
TPRT step of the retrotransposition process is shown. (a) The genomic DNA contains an AT-rich 
sequence that is cleaved by the ORF2p and shown on the bottom strand (consensus 5′-TTTTAA-3′). 
(b) A genomic nick is thought to occur between the T and the A, creating a single strand with avail-
able Ts that base pair with the poly-A tail of the RNA (dashed light blue line) and provide the 
priming site for (c) reverse transcription by ORF2p. The cDNA (depicted as a dashed dark blue 
line) is then synthetized. (d) The generation of the second DNA strand and final steps of insertion 
are currently undefined but a double strand break is formed in order to complete the process
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bases to provide the L1 RNA A-tail with the complementary sequence to base pair 
at the site of insertion (Monot et al. 2013). Next, the ORF2p reverse transcribes the 
L1 RNA to generate the cDNA sequence. When and how the second DNA nick and 
the second DNA strand are generated remains poorly understood.

L1 retrotransposition events take place in the germline and/or early in embryo-
genesis and passed down to the progeny (Branciforte and Martin 1994; Trelogan 
and Martin 1995). Estimates calculate that new L1 insertions can occur in between 
1/100 and 1/200 live births (Ewing and Kazazian 2010; Cordaux and Batzer 2009). 
Most of these new L1 insertions are thought to arise from the few active polymor-
phic “Hot L1” elements harbored in an individual’s genome (Streva et al. 2015). 
More recent data indicate that L1 retrotransposition events are not restricted to the 
germline, as L1 RNA, protein, and de novo insertions have been detected in somatic 
tissues (Belancio et al. 2010; Ergun et al. 2004; Baillie et al. 2011). However, up 
until now, reports of L1 somatic activity remain scarce. The paucity of reports may 
be either due to a genuine lack of somatic L1 retrotransposition or due to the diffi-
culty of detecting single events present within hundreds of thousands of somatic 
cells. Somatic retrotransposition events in cancers may be easier to detect due to the 
clonal nature of some of these malignancies that may enrich the number of cells 
containing the somatic event. Thus, most of the current examples of somatic L1 
mobilization and protein expression derive from detailed analyses of tumor tissues 
(Streva et al. 2015; Solyom et al. 2012; Doucet-O’Hare et al. 2015; Rodic et al. 
2014). However, a few reports of somatic L1 retrotransposition events in normal 
tissues exist, specifically in the brain (Evrony et al. 2012). In addition, it may be 
possible that under certain conditions (stress or an environmental exposure) L1 ele-
ments get activated (i.e., de-repressed) in somatic tissues. Further evaluation is 
needed to confirm this hypothesis.

2  Impact of L1 on Human Health

L1 functions as an efficient genomic mutagen, as insertions into a gene can disrupt 
its function. Multiple examples of L1 insertional mutagenesis that contribute to a 
large diversity of genetic diseases have been reported (reviewed in (Kaer and Speek 
2013), see also Chap. 3 of this book).

2.1  Insertional Mutagenesis

2.1.1  Germline Mutagenesis

The first description in humans of an endogenous L1 causing a disease by insertional 
mutagenesis was reported in 1988. In that case, an L1 had inserted into the coagulation 
Factor VIII gene, causing hemophilia A (Kazazian et  al. 1988). Since then, many 
descriptions of genetic diseases caused by de novo L1 insertions have been reported 
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(Kaer and Speek 2013). The number of L1 insertions in the human genome continues 
to increase. This observation strongly supports the accepted notion that insertions occur 
in the germline, which are then passed on to the progeny. However, recent work indi-
cates that some insertions may occur very early during embryogenesis. In one report, 
van den Hurk et al. (2007) reported an example of an early embryonic L1 insertion in 
a human who exhibited both germline and somatic mosaicism for an L1 insertion. 
Furthermore, Kano et al. (2009) showed that human and mouse L1 transgenes produce 
more retrotransposition events in early embryogenesis in mice and rats than in the 
germline. Interestingly, Garcia-Perez et al. (2007) showed that embryonic stem cells 
can support retrotransposition of an engineered L1. However, the proportion of these 
events contributing to L1 somatic mosaicism in humans remains unknown.

2.1.2  Somatic Mutagenesis

Laboratory studies provide some evidence for somatic activity of L1 elements in 
human and mouse cells. Although artificial, engineered L1 elements are able to 
retrotranspose in multiple cell lines derived from a large variety of somatic tissues. 
Although not all cell lines support L1 retrotransposition, this suggests that under the 
appropriate conditions, L1 elements can mobilize in somatic cells. In addition, there 
are a few in vivo reports from animal models that support somatic activity. Using 
engineered human L1 transgenes, Muotri et al. (2005) reported that L1 retrotrans-
position occurred in neuronal precursors in mouse brains, specifically the hippo-
campus (Muotri et al. 2005, 2010). In addition, An et al. (2006, 2008), using two 
different transgenic L1 mouse model systems, also observed L1 somatic activity in 
a variety of tissues in both models. These findings indicate that L1 elements are 
occasionally active in somatic tissue and could therefore contribute to somatic 
mutagenesis. Detection of de novo L1 inserts in the cancer genome provides indi-
rect evidence of somatic mobilization (Solyom et al. 2012; Iskow et al. 2010; Lee 
et al. 2012a; Tubio et al. 2014; Ewing et al. 2015). Currently, little is known about 
the regulation, frequency, and relevance of such retrotransposition events. In some 
cancers, L1 insertions occurred in genes that are frequently mutated in tumors, pos-
sibly implicating a potential role of L1 insertional mutagenesis in cancer (Lee et al. 
2012a). Furthermore, one report shows that a somatic L1 insertion in the APC tumor 
suppressor gene played a critical role in the initiation of a human colorectal cancer 
(Scott et al. 2016). However, in most of the cancer cases studied to date, the data are 
unclear if these cancer-specific L1 inserts are driver or passenger events.

2.2  NAHR

Copy-number variation (CNV) contributes significantly both to human genetic vari-
ation and disease (Sebat et  al. 2004; Stankiewicz and Lupski 2010). Non-allelic 
homologous recombination (NAHR), occurring during meiosis, is the most com-
mon mechanism underlying the formation of recurrent CNVs in humans (Gu et al. 
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2008; Chen et al. 2010). NAHR events contribute to genomic deletions, reciprocal 
duplications, inversions, and inter- or intrachromosomal translocations (Stankiewicz 
and Lupski 2010; Dittwald et al. 2013). NAHR events between L1 elements have 
been previously reported (Han et  al. 2008; Startek et  al. 2015; Burwinkel and 
Kilimann 1998). Comparative analysis of human and chimpanzee genomes, verified 
by wet-lab analyses, identified 73 human-specific L1 recombination-associated 
deletion events, of which 55 (75 %) were classified as NAHR events (Han et  al. 
2007). Furthermore, several L1-L1 NAHR events have been identified as the causal 
factor in several germline diseases (Temtamy et al. 2008; Szafranski et al. 2013; 
Belancio et al. 2009).

In addition to insertional mutagenesis and NAHR, L1 induced double strand 
breaks (DSBs) have been implicated as an underlying factor promoting specific 
translocations in cancer (Lin et  al. 2009). Furthermore, L1-induced DSBs near 
repetitive sequences, such as Alu elements, also contribute to genetic instability 
through NAHR between Alu elements (Morales et al. 2015a). This topic is covered 
in great details in Chap. 10. Interestingly, repetitive elements are reported to be 
enriched at deletion breakpoints (Vissers et al. 2009). However, the contribution of 
L1-induced DSBs to larger genomic rearrangements and other mutagenic events 
remains uncharacterized and current estimates likely represent an underestimation.

2.3  Expression of L1 Proteins Affects Cellular Homeostasis

One of the side consequences of the expression of L1 proteins is the mobilization of 
RNAs from other mobile elements (e.g., Alu and SVA), as well as mRNA from cel-
lular genes (retropseudogenes). Thus, L1 has indirectly contributed to the insertion 
of over one million Alu elements (Lander et al. 2001), ~2700 SVA elements (Wang 
et al. 2005), and ~33,000 pseudogenes (Goncalves et al. 2000). Furthermore, the 
retrotransposition of these RNAs driven by L1 also contributes to insertional muta-
genesis and disease (Kaer and Speek 2013).

Other effects have been reported in association with the expression of L1 pro-
teins. The exogenous expression of L1 generates a greater number of DSBs than the 
predicted numbers of successful insertions, suggesting an intrinsic inefficiency in 
the integration process (Gasior et al. 2006; Belgnaoui et al. 2006). Because DSBs 
are deleterious, overexpression of ORF2p is toxic to cells (Kines et al. 2014, 2016). 
Furthermore, the impact of the chronic induction of DSBs appears to alter cellular 
response as an adaptation to the L1-related insults (Wallace et al. 2010).

3  Mechanisms of Host Repression of Mobile Elements/
Regulatory Mechanisms of L1 Activity

Host defense mechanisms mostly comprise preventive measures, as there are no 
specific mechanisms designed to remove TE inserts. A large variety of strategies to 
limit mobile element activity have been reported. Up until now, the majority of the 
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Fig. 2 (a) L1 replication cycle. Schematic representation of the main steps of the L1 retrotranspo-
sition cycle. Briefly, an L1 retrotransposon is transcribed from the L1 sense promoter and produces 
a full-length mRNA, which is capped, polyadenylated, and exported to the cytoplasm. The L1 
proteins are then generated and assembled with the mRNA to form a ribonucleoprotein particle. 
The L1 ribonucleoprotein (RNP) somehow localizes to the nucleus where the insertion of a new 
copy of the retroelement into the genome occurs using the TPRT process (cf. Fig. 1). (b) Schematic 
of the L1 element structure and promoter. The full-length L1 element comprises five main compo-
nents: the 5′ UTR, two open reading frames (ORF1 and ORF2) and inter-ORF region, the 3′ UTR, 
and ends with a poly-A tract (AAA). The 5′ UTR contains the self-transcribing promoter (SP) 
function, a CpG island that is usually methylated (represented as CH3), one RUNX3 (blue), one 
YY1 (yellow), and two SRY (green) binding sites. Antisense promoter (ASP) activity is also pres-
ent in the 5′ UTR. ORF1 (light blue box) has a coiled-coil (c-c) domain, an RNA recognition motif 
(RRM), and a C-terminal domain (CTD). ORF2 (dark blue box) encodes the endonuclease (EN) 
and the reverse transcriptase (RT) activities, as well as a cysteine-rich (cys) motif, whose function 
is unknown, but is important for the L1 retrotransposition. The 3′ UTR contains the poly-A 
signal
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reported L1 defense mechanisms target expression. Indeed, in L1-positive somatic 
cells or tissues, only a minor fraction of the numerous full-length L1 copies present 
in the genome are transcriptionally active, in a tissue-specific manner (~5 copies on 
average, some being retrotransposition-competent (Tubio et al. 2014; Scott et al. 
2016; Philippe et  al. 2016)). Additional mechanisms also specifically hinder the 
insertional process itself.

3.1  Transcriptional Regulation of the L1 Element

3.1.1  The L1 Promoter

The first step of the L1 replication cycle (Fig.  2a) is the transcription of L1 
mRNA. The full-length L1 mRNA consists of the 5′ UTR, both coding sequences, 
and the 3′ UTR (Fig. 2b). The first 100 bp of the 5′ UTR contains the internal sense 
promoter (SP), which is required for transcription initiation (Swergold 1990). This 
promoter is unusual, as it self-transcribes and its sequence gets included in the final 
L1 transcript. L1 transcripts show variability in their first nucleotide which suggests 
that L1 can use different transcription initiation sites (Lavie et al. 2004). Analysis of 
L1 inserts has identified the occasional presence of additional nucleotides between 
the tandem site duplications (TSD) and the beginning of the 5′ UTR of the L1 ele-
ment. These sequences correspond to the 5′ flanking genomic sequence of the 
parental L1 which indicates that the genomic flank can impact the transcriptional 
initiation site leading to 5′ transduction events.

The L1 5′ UTR also contains an internal antisense promoter between nucleotides 
400 and 600 that drives transcription of genomic sequences upstream of the L1 ele-
ment in a wide variety of normal tissues (Speek 2001; Yang and Kazazian 2006). 
Sequences located between nucleotide 600 and the end of the 5′ UTR are required 
to enhance this antisense promoter activity (Yang and Kazazian 2006). The discov-
ery of chimeric mRNAs that contain part of the antisense L1 5′ UTR sequence plus 
additional exons suggests that the L1 antisense promoter can serve as an alternative 
promoter for expression of upstream adjacent genes (see Chap. 11). Furthermore, 
the antisense promoter activity can also generate antisense complementary RNAs 
for both the L1 and the adjacent genes. One study reports L1-generated antisense 
RNAs to two annotated genes, COL11A1 and BOLL (Matlik and Redik 2006), 
which could have regulatory effects on these genes. In addition, the synthesis of 
antisense L1 5′ UTR mRNA is associated with the decrease of L1 expression and 
retrotransposition, likely through the induction of RNA interference (see below) 
(Yang and Kazazian 2006; Soifer et al. 2005). However, it is unknown if the pres-
ence of either the antisense promoter or the enhancer sequences directly interferes 
with the L1 transcription.
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3.1.2  Transcriptional Factors

Transcription of the L1 mRNA is critical for retrotransposition as the transcript 
serves as the template for reverse transcription in the insertion process, as well as 
the RNA used for translation of the ORF1 and ORF2 proteins (Wei et al. 2001). 
Therefore, the first cellular line of defense to protect genomic integrity is to limit L1 
transcription. Several transcription factors have been shown to influence the tran-
scriptional efficiency of L1 through binding to the 5′ UTR of L1 (Fig. 2b). The L1 
5′ UTR interacts with the SRY family of transcription factors (Tchenio et al. 2000), 
YY1 (Athanikar et  al. 2004), RUNX3 (Yang et  al. 2003), and p53 (Harris et  al. 
2009). SRY factors bind to two central regions (nucleotides 472–477 and 572–577) 
(Tchenio et al. 2000), YY1 binds nucleotides 13–21 (Minakami et al. 1992; Becker 
et al. 1993), while RUNX3 binds to nucleotides 83–101 (Yang et al. 2003).

The tumor suppressor gene p53 is often referred to as “the guardian of the 
genome,” as this gene is induced in response to stress in order to prevent genomic 
alterations (Yoshida and Miki 2010). In cancer cells, p53 is responsible for activat-
ing apoptotic signaling cascades in response to L1 retrotransposition events, result-
ing in cell death (Belgnaoui et al. 2006; Haoudi et al. 2004). Interestingly, a more 
recent study found p53 responsive elements in the 5′ UTR of younger genomic L1 
elements (Harris et al. 2009). This study showed that p53 protein can bind to these 
sequences and that the overexpression of p53 is associated with an increase in L1 
transcription. These findings suggest that the p53-mediated increase in L1 expres-
sion may be a strategy employed by cells in order to induce genomic instability in 
an attempt to reactivate p53, thereby stimulating apoptosis in affected cells.

3.1.3  L1 Silencing by the Promoter Methylation

The human L1 5′ UTR shows a relative conservation of transcription factor binding 
sites and CpG sites (Lee et al. 2012b), suggesting an important role in transcription. 
Although L1 elements are A-rich, the 5′ UTR contains 34 CpG sites spread over a 
371 bp CpG island (Hata and Sakaki 1997). DNA methylation of the 5′ UTR is one 
of the strongest and best characterized regulatory mechanisms of L1 activity (Thayer 
et al. 1993). Growing evidence suggests that hypomethylation of L1 elements in 
somatic tissues may play a significant role in deregulating L1 (Chalitchagorn et al. 
2004; Roman-Gomez et al. 2005; Suter et al. 2004), particularly in cancers (Roman- 
Gomez et al. 2005; Chalitchagorn et al. 2004; Perrin et al. 2007).

Several DNA methyltransferases are reported to restrict TEs (Zamudio and 
Bourc’his 2010). In particular, the DNA methyltransferase 3-like, Dnmt3L plays an 
important role repressing mobile elements during embryonic reprogramming (Kato 
et  al. 2007). In Dnmt3L knock-out mice, loss of this gene prevents the de novo 
methylation of L1 elements after reprogramming, leading to their reactivation 
(Bourc’his and Bestor 2004). This repression mechanism of L1 expression involves 
members of the methyl-CpG binding domain proteins (MBD), specifically MeCP2 
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and MBD1 (Muotri et al. 2010; Yu et al. 2001). One study using cervical cancer 
cells showed that the MeCP2 protein binds to the methylated L1 5′ UTR and induces 
a decrease in promoter activity (Yu et al. 2001). In addition, a MeCP2 knockout 
transgenic mouse showed more L1 insertions from an engineered L1 transgene in 
the hippocampus when compared to control mice (Muotri et al. 2010). The study 
also reports that female human patients with the neurodevelopmental disorder Rett 
syndrome (who have a deficiency of MeCP2) have small but significant increases of 
L1 insertions in their hippocampi. However, the significance of these observations 
and correlation with this disorder is unclear at this time.

3.2  Posttranscriptional Regulation of the L1 Element

3.2.1  Destabilization of L1 mRNA by Small RNAs

Experimental data suggest that RNA interference downregulates L1 retrotransposi-
tion (Soifer et al. 2005; Horman et al. 2006; Yang and Kazazian 2006). The presence 
of sense and antisense promoters in the 5′ UTR of L1 elements (Fig. 2b) can generate 
complementary transcripts to form double stranded (ds) L1 RNAs. Yang et  al. 
reported the detection of L1 dsRNAs, as well as small interfering RNAs (L1 siR-
NAs), in several cultured cell lines, which corresponded to both strands of the L1 5′ 
UTR (Yang and Kazazian 2006). Furthermore, these L1 siRNAs are shown to have a 
regulatory effect by posttranscriptionally degrading L1 RNA in cultured cells, which 
directly correlates with the antisense promoter activity (Yang and Kazazian 2006).

In addition to siRNA regulation, one microRNA, miRNA-128, is reported to be 
a regulator of L1 expression by directly binding to the L1 mRNA (Hamdorf et al. 
2015). The authors propose that miRNA-128 binds to the L1 mRNA at a specific 
sequence located in the ORF2 coding region which correlates with a decrease in L1 
ORF1p expression and in L1 retrotransposition rate. A previous study has already 
showed that the microprocessor, an enzymatic complex involved in the miRNA 
biogenesis, can directly cleave L1 mRNA in vitro, suggesting the inhibition of L1 
retrotransposition by the degradation of L1 mRNA (Heras et al. 2013). However, the 
authors did not provide the evidence of a direct role of the microprocessor on L1 
regulation and this inhibition can also result in the inhibition of a factor required for 
L1 expression.

Another category of small RNAs regulating retrotransposons at both transcrip-
tional and posttranscriptional levels in germ line cells are the PIWI-interacting piR-
NAs. The role of PIWI proteins and the piRNA pathway is well characterized in the 
regulation of transposable element activity in Drosophila (for review, see (Thomson 
and Lin 2009; Luteijn and Ketting 2013)). However, in mammalian cells, the regula-
tion of transposable elements by PIWI proteins is less characterized. In contrast to 
Drosophila, the proportion of piRNAs corresponding to transposable elements varies 
depending on the stage of gametogenesis with the highest proportion of piRNAs 
detected in the early developmental stages (Aravin et al. 2008). Studies show that the 
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deficiency of one of the mouse PIWI proteins, Miwi2, causes defects in the formation 
of male gametes and an arrest during meiosis (Carmell et al. 2007). Interestingly, the 
Miwi2 mutation also correlated with the demethylation of the promoters of transpo-
sons in mice and the activation of their expression in germline cells. Regulation of 
retrotransposons in the germline is detailed in Chaps. 1 and 2 of this book.

3.2.2  Processing of the L1 mRNA

The L1 transcript is capped, polyadenylated, and can be spliced (Moran et al. 1996; 
Faulkner et al. 2009; Perepelitsa-Belancio and Deininger 2003; Belancio et al. 2006). 
An effective mechanism to regulate the amount of L1 expression is through attenua-
tion by posttranscriptional processes, such as premature polyadenylation and splicing 
of coding sequences (Perepelitsa-Belancio and Deininger 2003; Belancio et al. 2006). 
Not surprisingly, polyadenylation of the L1 transcript is needed for efficient L1 ret-
rotransposition. Replacing the poly-A tail with a structured unrelated sequence causes 
a dramatic decrease in the retrotransposition rate (Doucet et al. 2015). Interestingly, 
addition of 16 adenosines or 16 cytosines to the structured end allows for retrotrans-
position to occur at very low rates. Notably, this study also reports that the poly-A tail 
is needed for an efficient interaction of the L1-ORF2p and the L1 mRNA (Doucet 
et al. 2015). In addition, the poly-A tail also provides the priming site for reverse tran-
scription during TPRT (Monot et al. 2013) (see Fig. 1). The requirement of a poly-A 
tract at the 3′ end of the retrotransposon transcript is not unique to L1. All the 
sequences mobilized by the L1 protein contain a poly-A tract at their 3′ end (Boeke 
1997; Roy-Engel 2012). Interestingly, the length of the poly-A-tract determines ret-
rotransposition efficiency (Roy-Engel et al. 2002; Dewannieux and Heidmann 2005). 
In addition, poly-A binding proteins (PABPs) also play a role in L1 and, possibly, 
SINE retrotransposition (Roy-Engel et al. 2002; Dai et al. 2012; Muddashetty et al. 
2002). These proteins specifically bind to the poly-A tracts of mRNA and play a dual 
role. In the nucleus, they stimulate the synthesis of the mRNA poly-A tail, and in the 
cytoplasm they increase the stability of mRNAs and the translation rate (reviewed in 
(Gray et al. 2015)). In addition, Dai et al. have suggested that the binding of PABPs to 
the poly-A tail may be needed for the import of L1 mRNA and proteins into the 
nucleus for retrotransposition to occur (Dai et al. 2012).

An L1 transcript contains multiple cryptic splicing sites and alternative polyad-
enylation signals that can modify the size of the RNA (Perepelitsa-Belancio and 
Deininger 2003; Belancio et al. 2006). The processing of the L1 transcript yields a 
variety of smaller L1 RNA species that are easily detected by Northern blot analy-
ses. The amount of L1 processing differs between different human tissues, with 
each tissue type showing varying amounts of full-length L1 mRNA and smaller 
RNA species (Belancio et al. 2010). Splicing and premature polyadenylation of the 
L1 mRNA proves to be an efficient mechanism for regulating L1, as most of the 
processed transcripts produced would be unable to support L1 retrotransposition. 
However, a subset of the spliced products do contain coding sequences that could 
allow for the expression of ORF2p, which is capable of generating deleterious 
DSBs in addition to mediating Alu retrotransposition (Belancio et al. 2010).
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3.3  Translational and Posttranslational Regulation of L1 
Elements

3.3.1  Translation of L1 Proteins

L1 elements generate a bicistronic transcript that contains the 5′ UTR promoter 
and two open reading frames (ORF1 and ORF2); each contains their own stop 
codons and are separated by a noncoding sequence (inter-ORF region). L1 
mRNA is exported to the cytoplasm where the translation of L1 proteins occurs 
(Fig.  2a). Translation of the L1 bicistronic transcript yield higher amounts of 
ORF1p than ORF2p (Dai et al. 2014). This effect is proposed to function as a 
built-in mechanism to control and regulate expression of ORF2p and limit its 
damaging effects (Alisch et al. 2006). The mechanism of translation of the sec-
ond ORF (ORF2) is unclear, but some rules have been identified. The Moran 
laboratory has described that an unconventional termination/reinitiation mecha-
nism is used in the synthesis of ORF2p (Alisch et al. 2006). The authors show 
that the ORF1 coding sequence and the inter-ORF region are not required for the 
expression of ORF2p, but the two open reading frames need to be separated by a 
stop codon in order for ORF2p to be translated. Additionally, any secondary 
structure in the L1 RNA, such as a hairpin, stalls the ribosome at the end of ORF1 
and inhibits ORF2p expression, excluding an internal ribosome entry sequence 
(IRES)-mediated mechanism.

3.3.2  L1 Ribonucleoprotein Particle Formation

After synthesis, both L1 proteins are reported to associate with the L1 mRNA to 
form ribonucleoprotein particles (RNPs) in the cytoplasm (Doucet et  al. 2010). 
ORF1p forms a trimeric structure that binds directly to RNAs (Khazina et al. 2011). 
Little is known about the interaction between ORF2p and the RNA, but mutations 
in ORF2p affect L1 RNP formation (Doucet et al. 2010). Additionally, ORF1p and 
ORF2p do not appear to interact directly, but both proteins are thought to remain 
associated through their interaction with the L1 RNA (Taylor et al. 2013).

ORF1p phosphorylation seems to be a necessary modification for L1 retrotrans-
position to occur, as mutations in several phosphorylation sites reduce L1 retrotrans-
position without modifying protein stability (Cook et  al. 2015). However, 
phosphorylation is not required for the RNA binding and chaperone activities of the 
ORF1 protein. Thus, it is unclear how this posttranslational modification modulates 
ORF1p activity. ORF1p phosphorylation is hypothesized to be required for the for-
mation of the L1 RNPs by altering the interaction either within the trimeric ORF1p 
complex or with other uncharacterized interacting proteins. In addition, phosphory-
lation of ORF1p seems to be required for the control of L1 retrotransposition by the 
circadian rhythm (see below) (deHaro et al. 2014).

The overexpression of L1 results in the sequestration of the L1 proteins and 
mRNA in the stress granules (Goodier et al. 2007). Stress granules are usually aggre-
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gations of proteins and mRNA molecules in the cytoplasm that form in order to store 
and protect mRNA in response to an environmental stress (Anderson and Kedersha 
2006). Currently, it is unclear if localization to the stress granules is part of the L1 
amplification cycle or is a dead end event. Because L1 RNPs need to reach the 
nucleus in order for a new copy to insert into the genome, localization to the stress 
granules may function as a limiting step in order to restrict L1 retrotransposition.

The analysis of proteins interacting with ORF1p or ORF2p has provided a valuable 
insight into the characterization of some of the cellular factors controlling L1 ret-
rotransposition (Taylor et al. 2013; Goodier et al. 2015; Moldovan and Moran 2015). A 
large number of co-immunoprecipitated proteins identified are still under investigation 
in order to evaluate their potential role in L1 regulation. Interestingly, some of these 
proteins, such as the Zinc finger Antiviral Protein (ZAP) and the RNA helicases 
MOV10 and UPF1 also inhibit retroviral replication (Kurosaki and Maquat 2016; 
Meister et al. 2005; Xuan et al. 2013; Mao et al. 2013). ZAP, MOV10, and UPF1 pro-
teins are involved in the degradation of viral RNAs in the stress granule (Kurosaki and 
Maquat 2016; Goodier et al. 2012; Gregersen et al. 2014). Overexpression of these 
three proteins disorganizes the L1 RNP structure and destabilizes L1 proteins and L1 
mRNA. Intriguingly, overexpressed ZAP and MOV10 proteins co-localize with ORF1p 
and L1 mRNA in cytoplasmic granules (Goodier et  al. 2012, 2015; Moldovan and 
Moran 2015; Li et al. 2013). A comprehensive list of the identified proteins associating 
with L1 components is available (Pizarro and Cristofari 2016).

3.4  Regulation of L1 Integration into the Genome

Although there are no specific mechanisms to remove L1 inserts, cells have devel-
oped a variety of preventive defense strategies. The following section will explore 
the identified defense mechanisms that have been reported to prevent the insertion 
of a new L1 copy into the genome.

3.4.1  APOBEC3: Sequestration of L1 RNP/Inhibition of the cDNA 
Synthesis

Apolipoprotein B mRNA-editing enzyme 3 (APOBEC3) proteins, particularly 
APOBEC3A (A3A) and APOBEC3C (A3C), prevent retrotransposition of 
 endogenous L1 elements, although the exact mechanism is unclear (Chen et al. 
2006; Muckenfuss et al. 2006; Bogerd et al. 2006; Kinomoto et al. 2007). The 
enzymes of the APOBEC3 family are known to restrict the replication of retrovi-
ruses and LTR retrotransposons by catalyzing the deamination of cytidine nucleo-
tides to uridine during the synthesis of the first strand of cDNA. This nucleotide 
conversion leads to either the degradation of the cDNA or the integration of a 
mutated and inactive provirus or LTR retrotransposon. However, the replication of 
LTR retrotransposons differs from the non-LTR retrotransposons because the 
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reverse transcription of the mRNA into cDNA occurs in the cytoplasm and not in 
the nucleus at the site of insertion. In other words, LTR retrotransposons do not 
use TPRT (Fig. 1) for integration. Thus, APOBEC3 enzymes appear to restrict the 
retrotransposition cycle of L1 elements in a different manner than how they 
restrict retroviruses. In addition, the deaminase activity does not seem to be 
required for the inhibition of L1 retrotransposition by the A3C protein. In fact, no 
evidence of editing has been found when evaluating the sequences of new L1 
inserts (Kinomoto et al. 2007). Horn et al. (Horn et al. 2014) showed that overex-
pression of A3C restricts L1 retrotransposition in a deaminase-independent man-
ner. However, the dimerization and RNA binding domains of A3C protein are 
both required. Additionally, the A3C proteins interact with L1 RNPs in cytoplas-
mic granules. Thus, it appears that A3C uses a mechanism of RNA sequestration 
similar to that of A3G (Chiu et al. 2006) in order to block reverse transcription in 
the nucleus (Horn et al. 2014). A study from the Moran lab reported that the over-
expression of A3A protein does not inhibit cDNA synthesis, because the hybrid 
RNA-cDNA seems to protect the single stranded DNA from deaminase activity 
(Richardson et al. 2014). Instead, the enzyme edits the single stranded DNA that 
is exposed during the insertion process in order to limit L1 insertions (Richardson 
et al. 2014). Up to date, very little is known about the recruitment mechanism of 
the APOBEC3 enzymes to the L1 insertion site.

3.4.2  DNA Repair Proteins: Control of L1 Insertion Process

The L1 insertion process is not completely understood, particularly which proteins 
participate in the process. However during the insertion process, a double strand 
break (DSB) has to be created in order for the de novo L1 copy to insert into the 
genome. Gasior et  al. (2006) have shown that the overexpression of ORF2p is 
associated with an induction of DSBs. Unrepaired DSBs are deleterious lesions 
that can lead to cell death. Cells have developed multiple mechanisms for repairing 
DSBs in an effort to preserve genomic integrity. Several of the proteins involved in 
DNA DSB repair pathways regulate L1 retrotransposition. Proteins from the non- 
homologous end joining (NHEJ) pathway, such as XRCC4 and DNA PKcs, appear 
to have a role in the integration of L1, generating longer L1 inserts in NHEJ-
deficient DT40 cells (Suzuki et al. 2009). Additionally, mutations in NHEJ pro-
teins increase the number of endonuclease-independent L1 retrotransposition 
events in a p53- deficient environment (Morrish et  al. 2002). Endonuclease-
independent insertions are unconventional, as they do not show the typical hall-
marks of retrotransposed insertions, such as target site duplications and a poly-A 
tails. This suggests that the in the absence of a functional NHEJ pathway insertions 
occurred at preexisting DSBs.

The Ataxia Telangiectasia Mutated (ATM) protein kinase, which is involved in 
the recognition and repair signaling of DNA DSBs (reviewed in (Guleria and 
Chandna 2016)), is also involved in the regulation of L1 retrotransposition. 
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However, the exact regulatory mechanism remains to be elucidated as two sepa-
rate reports using different approaches describe opposite effects of ATM on L1 
retrotransposition. Using established cell lines derived from a patient carrying the 
ATM mutation, Gasior et al. reported that ATM is required for retrotransposition, 
as no de novo L1 insertion events were detected in ATM-deficient cells (Gasior 
et al. 2006). In contrast, Coufal et al. concluded that ATM restricts retrotransposi-
tion from data obtained from shRNA ATM knock-down experiments (Coufal et al. 
2011). Variation between cell lines and approaches used may explain the discor-
dant conclusions.

The heterodimer ERCC1/XPF has been shown to repress L1 retrotransposition 
(Gasior et al. 2008). The ERCC1/XPF complex is a specific endonuclease that rec-
ognizes 3′ flap DNA structures and cleaves DNA at the junction of the single 
stranded and double stranded DNA (de Laat et al. 1998). The inhibition of L1 ret-
rotransposition by ERCC1/XPF suggests that the complex interacts with the elon-
gating cDNA, an intermediate of the TPRT process, which forms a DNA flap 
structure (Fig.  1). Cleavage of the elongating cDNA by ERCC1/XPF effectively 
would prevent the integration of a new L1 copy. Furthermore, other proteins from 
the nucleotide excision repair (NER) pathway also limit L1 retrotransposition 
(Servant et al. 2016). XPD, XPA, and XPC are involved in limiting L1 retrotranspo-
sition. Interestingly, recovered L1 inserts from NER-deficient cells contained abnor-
mally large duplications at the site of insertion, suggesting that NER proteins may 
also play a role in the normal L1 insertion process (Servant et al. 2016).

The PCNA protein, a cofactor of DNA polymerases, interacts with ORF2p 
(Taylor et  al. 2013). Furthermore, ORF2p contains a highly conserved region 
between the endonuclease and reverse transcriptase domain known to be a PCNA 
Interacting Protein motif, or PIP box. The ORF2p-PCNA interaction depends on the 
endonuclease activity of ORF2p, and the loss of the interaction between the two 
proteins correlates with a fourfold decrease in the rate of L1 retrotransposition. 
Because PCNA is involved in both genome replication and DNA synthesis during 
DNA lesion repair (reviewed in (Wang 2014)), the specific interaction between 
ORF2p and PCNA suggests a potential role of PCNA in the TRPT process, either in 
the synthesis of the second strand of L1 cDNA or in the ligation step.

3.5  Overview Host Regulation of L1

Overall, there are multiple steps during the L1 life cycle that host factors can inter-
act with L1 to regulate its activity. Knowing when or how cellular factors regulate 
L1 provides a foundation to understand how environmental factors may influence 
L1 activity. For example, exposure to compounds known to inhibit DNA repair 
pathways is likely to stimulate L1 activity. As an overview, Fig. 3 shows a simplified 
summary of some the known host regulatory factors and their interactions with dif-
ferent steps of the L1 cycle.
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4  Environmental Influences on L1

4.1  Introduction

A large variety of environmental factors, including therapeutic drugs, have the 
potential to influence L1 activity by either directly interacting with the L1 compo-
nents or indirectly by interfering with the cellular mechanisms that regulate L1. A 
direct effect is usually observed when the external factor changes expression of the 
L1 machinery L1 expression, leading to altered retrotransposition rates. In contrast, 
indirect effects do not necessarily increase L1 expression, but instead they deregu-
late cellular control mechanisms that affect L1 retrotransposition efficiency. Because 
of L1’s genetic damage potential, it is of particular interest when exposure to envi-
ronmental stimuli increases L1 retrotransposition rates.

Fig. 3 Schematic overview of the cellular factors that interact with the different steps of L1 ret-
rotransposition cycle. Known cellular factors with positive effects on L1 activity are shown in 
green, while the factors that reduce L1 activity are in red. Factors with both positive and negative 
effects on L1 retrotransposition are shown in purple
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To better understand and interpret the existing data, it is first important to discuss 
the limitations of the assays used to evaluate exposure effects on L1 activity. The 
three most commonly used assays reported in the literature are: (1) bisulfite sequenc-
ing to evaluate L1 promoter methylation status, (2) L1 promoter-luciferase assay to 
evaluate L1 promoter activity (El Sawy et al. 2005; Terasaki et al. 2013), and (3) the 
L1 retrotransposition assay (Moran et al. 1996; Rangwala and Kazazian 2009).

Although bisulfite sequencing is a well-established approach to evaluate meth-
ylation status, several critical factors need to be considered when studying the pro-
moters of the genomic L1 elements. Of the approximately 7000 full-length L1 
elements, only about 300 belong to the currently active L1Hs subfamily (Khan et al. 
2006). Most L1 promoters in the genome belong to inactive, older elements that, 
even if expressed, are far less likely to have an impact on the cell. Thus, distinguish-
ing between the active and inactive loci may be important when evaluating methyla-
tion status of L1 promoters. In other words, demethylation of the promoter of a 
“hot” active L1 is significantly more biologically interesting than the demethylation 
of a dead L1 fossil. Additionally, promoter hypomethylation is not always synony-
mous with an increase in L1 expression. Therefore, promoter methylation status 
does not necessarily correlate with L1 retrotransposition.

The next approach, the L1 promoter-luciferase assay, is the application of a stan-
dard approach used to evaluate promoters. In this approach, the L1 5′ UTR (~900 bp) 
is cloned upstream of the firefly luciferase reporter gene and reporter output is mea-
sured in the presence/absence of the compound of interest and normalized to a con-
trol (e.g., HSV-tk-Rluc). A limitation of this approach is that the expressed L1 is not 
in the natural genomic context losing the ability to evaluate exposure effects on 
tissue-specific regulation of L1 expression (Tubio et  al. 2014; Scott et  al. 2016; 
Philippe et al. 2016). In addition, there is a difference between the transcript gener-
ated by the control and the L1 promoter driven plasmid. Specifically, the L1 pro-
moter sequence will be included in the transcript (Fig. 4). The concern is that the 5′ 

HSV-tk
~750bp

Rluc

5’UTR L1
~900bp

Fluc

RNA

RNA

construct

construct

Fig. 4 Transcripts generated by the L1 promoter-reporter constructs differ from the transcripts 
generated by the internal control construct. For illustration, a schematic of the constructs used by 
Terasaki et al. (2013) are shown. The reference control plasmid driven by the HSV-tk promoter 
(top) and the L1 5′ UTR-driven plasmid (bottom) are shown with their corresponding transcription 
start sites (arrows). The RNA generated by each construct is shown underneath the construct. Note 
that the L1 driven construct will generate a larger transcript due to the inclusion of the L1 promoter 
(orange portion ~900 bp) in the RNA sequence
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UTR contains multiple splice signals that may respond differently to the presence of 
the compound tested. These sequences could change how the RNA is processed, 
affecting the stability of the RNA molecules, altering the final luciferase output. 
Although this assay is ideal for an initial high throughput screening of compounds, 
further confirmation to verify an increase/decrease of L1 expression should be per-
formed. The importance of RNA analysis for this type of L1 reporter assays has 
been previously highlighted (Belancio 2011). Northern blot analysis of the full- 
length L1 element to confirm reported effects on L1 transcription is likely the best 
option. Other approaches, such as RT-PCR and RNA-seq, are limited in their ability 
to distinguish between bona fide L1 transcripts and processed L1 RNAs or other 
transcripts containing L1 sequences (discussed in (Deininger and Belancio 2016)).

Finally, the retrotransposition assay is designed to evaluate L1 activity in cul-
tured cells, which relies on an engineered L1 that will generate an L1 insert tagged 
with a marker. Usually this marker confers resistance to an antibiotic (neomycin or 
blasticidin), but fluorescence (Ostertag et al. 2000) and luciferases (Terasaki et al. 
2013) have also been used. A limitation of this assay is its dependence on cell viabil-
ity and the cell’s efficiency to express the marker. Compounds that affect these 
parameters will skew the results. Thus, controls to evaluate the effect of the com-
pound on cell viability or marker expression are needed for proper interpretation of 
results. Because of these nuances, in this chapter we will cautiously recapitulate the 
published data, but the reader needs to keep in mind that in many instances further 
corroboration is probably needed.

4.2  Effectors of L1 Expression

As previously described in this chapter, the L1 promoter contains several conserved 
transcription factor binding sites and a CpG island (Lee et al. 2012b). Although any 
environmental stimuli could influence L1 transcription through any of these compo-
nents, the most commonly studied effect is the impact of exposure on L1 methyla-
tion status.

4.2.1  Changes in the L1 Promoter Epigenetic Status

Compounds that directly alter methylation or affect DNA methylation maintenance 
enzymes could influence L1 expression levels (Bourc’his and Bestor 2004). Due to 
L1’s abundance in the genome, many studies use L1 methylation as a proxy to 
evaluate the global methylation status of a cell or tissue. Because of this, there are 
numerous studies evaluating the methylation status of L1 in a variety of diseases, as 
well as studies in cultured cells that were exposed to selected compounds. In par-
ticular, L1 methylation has been analyzed in a large variety of cancers and blood 
samples from cancer patients (Miousse and Koturbash 2015; Kitkumthorn and 
Mutirangura 2011; Kitkumthorn et al. 2012). The list of evaluated compounds and 
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Table 1 A few selected examples of exposures reported to influence methylation status of the L1 
promoter (direction of the arrow indicate increase or decrease)

Factor Study
Effect on L1 
promoter References

phthalate Test neonates and cord 
blood.

↓L1 methylation 
Weak inverse 
correlation with 
concentration

Huen et al. (2016)

In utero exposure

Arsenic In vitro exposure of 
lymphoblastoid cells

↓L1 methylation Intarasunanont et al. 
(2012)

Cadmium Non-smoking women in 
Argentina

↓L1 methylation 
Weak inverse 
correlation with 
concentration

Hossain et al. (2012)

Cadmium Blood from exposed 
individuals of Mae Sot 
Thailand

↑L1 methylation Virani et al. (2016)

Airborne benzene Individuals exposed (gas 
station attendants)

↓L1 methylation Bollati et al. (2007a, 
b)

BPA: bisphenol A Blood and sperm from 
factory workers.

↓L1 methylation 
inverse correlation 
with urine BPA

Miao et al. (2014)

Tobacco smoke Oral mucosal cells from 
smokers

Altered 
methylation 
patterns of L1

Wangsri et al. (2012)

Trihalomethane Granulocyte DNA from 
exposed individuals

↓L1 methylation 
was associated 
with bladder 
cancer risk

Salas et al. (2014)

Triclosan In vitro exposure HepG2 
cells

↓L1 methylation Zeng et al. (2016)

Tobacco and alcohol Neonates Altered L1 
methylation levels

Wilhelm-Benartzi 
et al. (2012)In utero exposure

H2O2 reactive 
oxygen species

In vitro exposure bladder 
and kidney cells

↓L1 methylation Kloypan et al. (2015)

Lead Umbilical cord DNA ↓L1 methylation Pilsner et al. (2009)
Xenoestrogens Placenta DNA Altered L1 

methylation levels
Vilahur et al. (2014)

Pyrazinamide Rat livers ↓L1 methylation Kovalenko et al. 
(2007)

5-aza-2′-
deoxicytidine

Treatment of patients with 
leukemia

↓L1 methylation Yang and Kazazian 
(2006a)

etoposide In vitro exposure of 
cultured cells

↓L1 methylation Hagan et al. (2003)

BaP: benzo-alpha 
pyrene

Cervical cancer cells under 
prolonged exposure

↓L1 methylation Teneng et al. (2011)

tamoxifen Rat induced 
hepatocarcinogenesis

↓L1 methylation Tryndyak et al. 
(2007)

Cocaine Brain regin nucleus 
accumbens of mice

↓L1 H3K9me3 Maze et al. (2011)
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exposures that promote hypomethylation of the L1 promoter includes a large variety 
of chemical agents from smoking to therapeutic agents. Table 1 highlights a few of 
the studies with reported effects on L1 promoter methylation. Most of these studies 
only show an association with L1 promoter hypomethylation and not causality. 
However, one study using cervical cancer cells demonstrated that prolonged treat-
ment with the carcinogen Benzo-alpha-pyrene (BaP) changed the methylation sta-
tus of the L1 promoter and increased L1 expression (Teneng et al. 2011; Stribinskis 
and Ramos 2006). The authors proposed that BaP inhibits the assembly of the meth-
ylation machinery (DNMT1 and DNMT3A) to induce hypomethylation 
(Weisenberger and Romano 1999). In addition, the authors also indicated that BaP 
exposure promoted the enrichment of histones with the hallmarks for open chroma-
tin at the L1 promoter (Teneng et al. 2011). Unfortunately, the vast majority of L1 
methylation studies to date lack the analysis of L1 RNA levels, limiting the interpre-
tation of the results (Deininger and Belancio 2016). Until validation studies are 
performed, it is difficult to determine which of the compounds reported have an 
effect on L1 biology. In addition to CpG methylation, exposure to chemicals that 
alter histone methylation can also affect L1 expression. For example, cocaine has 
been reported to decrease the H3K9me3 at L1 loci and to increase L1 expression 
(Maze et al. 2011).

4.2.2  Effectors of L1 Transcription

The strength of the L1 promoter can vary in a tissue-specific manner depending on 
the availability of the required transcription factors in that tissue. Thus, the exposure 
to agents or compounds affecting L1 transcription factor function or expression can 
alter the transcriptional efficiency of the element. For example, cadmium and cobalt 

Table 2 Compounds affecting reporter expression driven the L1 5′ UTR

Study Compounds References

Morales part 
1: steroid 
hormone-like 
(lacZ)

Serum, testosterone, dihydrotestosterone, organochloride 
pesticides

Morales 
et al. (2002)

Morales et al. 
part 2 : 
stressors 
(lacZ)

Tetradecanoylphorbol 13-acetate (TPA), UV light, heat shock Morales 
et al. (2003)

Terasaki et al. 
(firefly 
luciferase)

Mitomycin C, actinomycin D, cisplatin, 6-Thioguanine, 
campothecin, merbarone, BaP, vinblastine, cytochalasin D, 
Diethyl malate, phorone, Thenoyltrifluoroacetone, citrinin, 
cyclosporine A, etomoxir,exol, Bezafibrate, Fenofibrate, 
Fluvastatin, Pravastatin, Aminoglutethimide, Metyrapone, 
Acetylsalicylic acid, Diflunisal, Flufenamic acid, Mefenamic 
acid, Salicylamide, Sulindac, Sulindac, Guaiacol glyceryl 
ether, Nifedipine, Ticlopidine, BaP, merbarone

Terasaki 
et al. (2013)
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Table 3 Compounds affecting L1 retrotransposition in culture

Factor Effect on L1 References

UV ↑Retrotransposition Teneng et al. (2007), 
Servomaa and Rytomaa 
(1988, 1990), Tanaka et al. 
(2012)

Heat shock ↑Retrotransposition Puszyk et al. (2013)
Ionizing radiation ↑Retrotransposition Servomaa and Rytomaa 

(1988, 1990), Tanaka et al. 
(2012), Luzhna et al. (2015), 
Farkash et al. (2006)

Gamma radiation ↑Retrotransposition Farkash et al. (2006)
H2O2 (oxidative stress) ↑Retrotransposition Giorgi et al. (2011)
Mitomycin C ↑Retrotransposition Terasaki et al. (2013)
Etmoxir ↑Retrotransposition Terasaki et al. (2013)
Salicylamide ↑Retrotransposition Terasaki et al. (2013)
WY-14643 ↑Retrotransposition Terasaki et al. (2013)
Morphine ↑Retrotransposition Okudaira et al. (2016)
Cocaine ↑Retrotransposition Okudaira et al. (2014)
Heterocyclic amines (HCAs) ↑Retrotransposition Okudaira et al. (2010)
Fentanyl citrate ↑Retrotransposition Okudaira et al. (2016)
Methamphetamine ↑Retrotransposition in vitro, 

increased expression rat brain
Okudaira et al. (2014), 
Moszczynska et al. (2015)

FICZ (6-formylindolo[3,2-b] 
carbazole)

↑Retrotransposition Okudaira et al. (2010)

X-ray ↑Retrotransposition Banaz-Yasar et al. (2012)
Aluminum ↑Retrotransposition Karimi et al. (2014a)
Iron ↑Retrotransposition Habibi et al. (2013a)
Copper ↑Retrotransposition Habibi et al. (2013a)
Arsenic trioxide ↑Retrotransposition Karimi et al. (2014b)
Mercury ↑Retrotransposition Kale et al. (2005)
Nickel ↑Retrotransposition El Sawy et al. (2005)
Cadmium ↑Retrotransposition Kale et al. (2005)
BaP ↑Retrotransposition Stribinskis and Ramos (2006)
DMBA + TPA ↑Retrotransposition Okudaira et al. (2011)
Cigarette smoke extract 
(CSE)

Detection of ORF2 in primary 
human lung fibroblast

Miglino et al. (2012)

Circadian disruption/
melatonin

↑Retrotransposition deHaro et al. (2014)

Reprogramming ↑Retrotransposition Klawitter et al. (2016), 
Wissing et al. (2012), 
Arokium et al. (2014)
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have been shown to upregulate a variety of transcriptional factors, including SRY 
and YY1, in primary normal human bronchial epithelial cells (Glahn et al. 2008). 
Several genotoxic agents activate p53 (Nelson and Kastan 1994), which may in turn 
bind to the L1 promoter (Harris et al. 2009). Furthermore, some responses to differ-
ent exposures have been reported to be “context specific” or cell specific (Teneng 
et al. 2007). For example, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, also known 
as “dioxin,” a contaminant in agent orange) and UV gamma irradiation induced L1 
expression only in one cell type tested (Lu et al. 2000). Alternatively, environmental 
stress conditions can affect the ability of cellular proteins to alter their ability to 
process L1 RNA transcripts. For example, exposure to ultraviolet-C alters RNA 
splicing patterns by diminishing the presence of the nuclear splicing factor hSlu7 
via changes in its nuclear/cytoplasmic localization (Shomron et al. 2005). In addi-
tion, UV-light is also reported to reduce the expression of several small nuclear 
RNAs involved in RNA splicing (Thirunavukkarasu et al. 1988). Multiple studies 
have evaluated the effect of UV-light on L1 mobility. UV exposure was shown to 
increase reverse transcriptase activities in cell lines that express L1 (Deragon et al. 
1990). One study showed a small increase in human L1 promoter activity after 
exposure to UV light (Morales et al. 2003). This modest increase in promoter activ-
ity could potentially lead to an increase in L1 mRNA levels if the promoter was 
driving transcription of full-length L1 elements. Furthermore, L1 ORF2 mRNA was 
upregulated in cells exposed to UV light (Banerjee et al. 2005).

A variety of compounds (Table 2) have been shown to influence/alter the activity 
of the L1 promoter by using the previously described luciferase reporter assay 
(Fig. 4). Two reports from the same research group investigated the effects of expo-
sures to hormone-like or hormone precursor agents (part 1) and stressors (part 2) on 
the L1 promoter (Morales et al. 2002, 2003). In part 1, the authors suggest that the 
L1 promoter may respond to the treatment with testosterone, dihydrotestosterone, 
and organochloride pesticides (Morales et al. 2002). In part 2, the authors reported 
that UV, heat shock, and TPA affected expression, but X-rays and hydrogen perox-
ide showed no increase in reporter gene activity (Morales et al. 2003). However, 
both Morales et al. studies (Morales et al. 2002, 2003) did not evaluate RNA levels, 
the effect of the exposure on a full-length L1 element and they lacked critical con-
trols for toxicity and growth. Thus, further studies are needed to validate any of 
these results. The study by Terasaki et al. (Terasaki et al. 2013) also tested some of 
the compounds using the L1 retrotransposition assay (see Table  3) providing an 
additional support of their observations.

A few studies have used the full-length tagged L1 vector to evaluate the effect of dif-
ferent compounds on L1 expression. For example, cobalt treatments increased L1 
mRNA in tissue culture experiments but retrotransposition activity remained unaffected 
(El Sawy et al. 2005; Habibi et al. 2014). In addition, studies on the environmental car-
cinogen BaP in both human and mouse tissue culture assays showed that exposure 
increased both L1 RNA levels and L1 activity (Stribinskis and Ramos 2006; Lu et al. 
2000). However, studies on how any of these exposures affect endogenous L1 transcrip-
tion are currently unavailable.
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4.3  Effectors of L1 Retrotransposition

A large variety of compounds and environmental exposures (e.g., stress) have been 
reported to have some effect on L1 retrotransposition in cultured cells. Table 3 com-
piles the wide range of compounds tested that showed some increase in L1 activity 
relative to a control.

4.3.1  DNA Damaging Agents, Drugs, and Therapeutics

The effects of stress inducers on transposable element activation have been 
reported in many organisms (Capy et al. 2000). One report has shown increased 
L1 activity upon heat shock in vivo due to the deregulation of the PLZF-mediated 
epigenetic control of L1 (Puszyk et  al. 2013). However, most studies have 
focused on DNA damaging agents. The DNA damage caused by UV light (thy-
midine dimerization) and ionizing radiation (DNA breaks) dramatically induce 
L1 activity in cultured rat chloroleukemia cells (Servomaa and Rytomaa 1988, 
1990; Tanaka et al. 2012; Luzhna et al. 2015; Farkash et al. 2006). However, not 
all types of DNA damaging agents increase L1 retrotransposition. Studies in 
human cells demonstrate that diverse DNA damaging agents can exhibit very 
different effects on L1 mobilization (El Sawy et al. 2005; Kale et al. 2005; Kale 
et al. 2006; Farkash and Prak 2006) and reviewed in (Farkash and Prak 2006). 
For example, gamma irradiation stimulates L1 activity (Farkash et al. 2006), but 
the chemotherapeutic agents, cisplatin (a DNA crosslinking agent), calicheami-
cin γ (a DNA cleaving agent), and camptothecin (a topoisomerase inhibitor) do 
not increase L1 retrotransposition (Terasaki et al. 2013). Similarly, DNA damag-
ing heavy metals like nickel and cadmium also stimulate L1 mobilization, which 
is not observed with exposures to paraquat (a pesticide that generates reactive 
oxygen species), and etoposide (a topoisomerase inhibitor and anticancer drug) 
(El Sawy et  al. 2005; Kale et  al. 2005, 2006). Because of the diversity in the 
response to DNA damaging agents, it is unlikely that the natural endonuclease- 
dependent L1 insertions benefit from having additional DNA breaks in the 
genome. Instead, these agents are likely to increase L1 activity through a differ-
ent mechanism, such as the inhibition of cellular regulators of L1.

4.3.2  Heavy Metals and Carcinogens

Heavy metals are of great interest as they are well-known carcinogens (1993). 
However, the mechanism by which they cause cancer is not well defined. 
Interestingly, multiple reports indicate that a variety of heavy metals stimulate L1 
activity in culture (Table 3), which suggests that L1-induced genetic instability may 
be an underlying mechanism of heavy metal carcinogenesis (reviewed in (Morales 
et al. 2015b)). The list of heavy metals tested include both soluble and particulate 
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mercury (Habibi et al. 2014; Kale et al. 2005), arsenic trioxide (Karimi et al. 2014a, 
b), aluminum (Karimi et al. 2014a), copper (Habibi et al. 2013), both soluble and 
particular cadmium (Kale et al. 2005, 2006), and nickel (Kale et al. 2005).

Although most heavy metals contribute to genetic instability by generating reactive 
oxygen species (ROS) (Ercal et al. 2001; Klein et al. 1991), data indicate that their 
effect on L1 is not likely a generalized stress response to metal exposure. Not all met-
als affect L1 retrotransposition, and the ones that stimulate L1 activity do not share the 
same mechanism of action. For example, treatment with cobalt (CoCl2) increases L1 
mRNA and L1 promoter activity (Habibi et al. 2014), but does not increase L1 ret-
rotransposition (Kale et al. 2005; Habibi et al. 2014). Furthermore, analyses of the 
new L1 inserts showed that treatment with cobalt lead to a greater proportion of full-
length L1 inserts (Kale et al. 2005). In addition, increases in L1 retrotransposition by 
nickel exposure can be reversed by zinc and magnesium treatment (Kale et al. 2006). 
In this case, nickel is thought to displace Zn and Mg (which function as enzymatic 
cofactors) from important cellular proteins, such as DNA repair proteins (Hartwig 
et al. 1994, 2002a, b; Asmuss et al. 2000). A separate study hypothesized that mercury 
sulfide (HgS) treatment could lead to an increase in L1 retrotransposition by removing 
the silencing factors associated with cell senescence (Habibi et al. 2013). Other stud-
ies in neuroblastoma cells show that iron and copper only increased LINE-1 ret-
rotransposition in dividing cells, while mercury stimulated activity in both dividing 
and nondividing cells (Habibi et al. 2013). However, the effect of copper on L1 activ-
ity is controversial. One study showed that exposure caused a decrease in L1 silencing 
in a dividing neuroblastoma cell line and increased L1 retrotransposition. In contrast, 
copper exposure in a hepatocellular carcinoma cell line decreased L1 retrotransposi-
tion (Karimi et al. 2014a, 2015). The complexity of the responses triggered by differ-
ent heavy metals limits the ability to dissect all of the mechanistic pathways responsible 
for the effects on the activity of the L1 element. Furthermore, it would not be surpris-
ing that each individual heavy metal would have different mechanisms of how they 
affect L1 activity, which could also be cell type-dependent.

4.3.3  Regulation of L1 Retrotransposition by Circadian Rhythm 
(Melatonin): In the Jungle the LINE Sleeps at Night

Exposure to light at night disrupts circadian rhythm, which is shown to suppress 
melatonin production and increase cancer risk (Schernhammer and Schulmeister 
2004). Recent studies from the Belancio lab demonstrated that L1 is regulated by 
the circadian rhythm via a melatonin-mediated mechanism. In this system, tumors 
established in nude male rats were transfused with human blood collected from 
healthy adult male donors that was either collected during the day (low melatonin), 
at night (high melatonin), or at night after exposure to light (reduced melatonin) 
(Blask et al. 2005). Tumors transfused with blood collected during the day or blood 
collected at night after light exposure that contained a low concentration of melato-
nin showed high L1 expression in comparison to tumors transfused with blood col-
lected at night, which contains high concentrations of melatonin (deHaro et  al. 
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2014). Additionally, overexpression of the melatonin receptor MT1 in cultured cells 
induced a downregulation of L1 retrotransposition which was associated with a 
decrease in L1 mRNA and ORF1p. Furthermore, the downregulation of ORF1p by 
overexpression of MT1 receptor is lost when several phosphorylation sites in the 
ORF1p sequence are mutated. The data suggest that the circadian rhythm regulates 
L1 expression in a melatonin receptor-dependent manner. Overall, the data suggest 
that L1 appears to remain inactive at night (i.e., “sleeps”). However, any disruption 
of the melatonin expression cycle could modify the regulation of L1 expression in 
tissues and promote genetic instability caused by L1 retrotransposition. Thus, expo-
sure to light or melatonin inhibitors are likely to increase L1 activity. Because the 
disruption of the circadian rhythm is associated with an elevated cancer risk in night 
shift workers (Blask et al. 2011; Kochan and Kovalchuk 2015), the upregulation of 
L1 activity and the accumulation of de novo L1 insertions are predicted to occur in 
these cancers.

4.3.4  Cellular Reprogramming (iPSC Cells)

Transcriptional silencing by methylation and chromatin remodeling is considered 
an effective mechanism of global L1 regulation. However, during human develop-
ment, chromatin is dynamically remodeled through distinct phases of reprogram-
ming and de novo methylation (Hackett and Surani 2013). Thus, it is likely that one 
of the best moments for L1 retrotransposition to escape control from piRNA or 
other mechanisms is during development when global demethylation occurs. Not 
surprisingly, abrogating pathways that regulate endogenous retroelements during 
development leads to harmful consequences, e.g., the conditional loss of PRMT5 
(Kim et al. 2014) and knock-out of Dnmt3L (Bourc’his and Bestor 2004).

Data show that the artificial reprogramming of cells into induced pluripotent 
stem cells (iPSCs) via overexpression of reprogramming factors involves epigenetic 
remodeling (Planello et  al. 2014). Interestingly, studies show that the artificial 
reprogramming of cells into iPSCs causes increases in L1 expression and L1 inser-
tions (Klawitter et al. 2016; Wissing et al. 2012; Arokium et al. 2014). An initial 
report using human embryonic stem cells (hESCs) and iPSCs cells showed signifi-
cant increases in full-length L1 mRNA and ORF1p expression, which was corre-
lated with an overall hypomethylation of L1 elements (Wissing et  al. 2012). A 
separate study, using deep sequencing of the 3′ ends of L1, also observed increased 
L1 expression during reprogramming and found potential somatic L1Hs insertions 
that occurred after reprogramming (Arokium et al. 2014). More recently, Klawitter 
et al. further verified L1 activity during reprogramming by reporting the detection 
of de novo somatic L1 inserts by sequencing eight human iPSC lines and three 
hESC lines (Klawitter et al. 2016). Furthermore, they were able to detect an intronic 
L1 insertion in the CADPS2 gene that occurred during iPSC cultivation (Klawitter 
et al. 2016). Although cellular reprogramming would not likely occur in a natural 
context, these data reinforce the concept that external actions on cells and cellular 
processes can lead to significant effects on L1 mobilization. For example, the poten-
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tial impact of exposure effects during fertilization and embryonic development is of 
particular interest in the field of public health.

5  Conclusions

Overall, it is well established that many environmental factors trigger a variety of 
cellular responses. Thus, it is not surprising that L1 elements also respond to envi-
ronmental stimuli. TE response to stress is well documented in plants and nonmam-
malian species, but it is only until recently that studies on the human L1 
retrotransposition have become available.

One of the limitations of evaluating xenobiotics or other environmental factors is 
due to the difficulty of distinguishing between direct and indirect effects. For exam-
ple, exposure to a compound that affects the ability of the cell to form colonies 
would cause a decreased number of colonies in the L1 retrotransposition assay. 
However, the decrease would not be a direct effect of L1 activity, but an indirect 

Fig. 5 Proposed mechanisms by which exposure to environmental factors can influence L1 ele-
ments. (1) Changing epigenetic status: L1 transcription can be affected by environmental factors 
that modify the epigenetic controls of silent loci. (2) Increased amount of full-length L1 transcripts 
from expressing loci: exposures that reduce L1 RNA processing or promote L1 transcription 
would directly impact the efficiency full-length L1 RNA production. (3) Interference with cellular 
host defenses against L1 insertion. Compounds inhibiting critical proteins such as the APOBECs 
would increase L1 activity

C.M. Ade et al.
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effect due to altered cell growth. In addition, some compounds may affect multiple 
pathways in a cell. For example, cadmium exposure is shown to trigger the DNA 
damage response, inhibit a variety of enzymatic pathways, as well as induce cellular 
growth (Waalkes 2000). To complicate matters, because most of the current data are 
obtained from tissue culture experiments, any negative impact on cell viability 
caused by the compound tested would affect the experimental outcome. Another 
limitation is the difficulty in evaluating L1 somatic retrotransposition, creating a 
void of any exposure studies and L1 in humans.

Although there are multiple complex ways that environmental factors can affect 
L1, based on the current knowledge we propose three basic mechanisms (Fig. 5). 
The first mechanism is through the alteration of the epigenetic silencing of the L1 
causing expression of normally repressed loci. The next mechanism is through the 
increase of functional L1 transcripts of expressing loci by directly increasing tran-
scription or diminishing processing/degradation of the L1 RNA. Finally, the third 
mechanism is through the deregulation of host defense strategies that prevent L1 
insertion. In this scenario, the perfect L1-stimulating compound would promote L1 
promoter demethylation, increase transcription, and inhibit host defense strategies. 
It would not be surprising if future studies revealed that the risk of an individual to 
develop an L1-induced disease is determined by both the presence of “hot” L1s in 
their genome, as well as by their history of exposure to identified xenobiotics that 
upregulate L1 activity. Of note, each particular L1 loci in different tissues might 
respond differently to physiological or environmental triggers, adding a supplemen-
tal layer of complexity (Tubio et al. 2014; Scott et al. 2016; Philippe et al. 2016).
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1  Introduction

TEs have made many important contributions to mammalian gene regulation 
(Rebollo et al. 2012; Sundaram et al. 2014) and, because TE expansions are often 
lineage specific, they have helped shape the regulatory landscape of different 
species (Bourque et al. 2008; Bourque 2009; Jacques et al. 2013). One human 
cell type that sees species-specific regulation associated with TEs is the pluripo-
tent embryonic stem cells (ESCs) (Kunarso et  al. 2010). Retrotransposons in 
these cells have been shown to affect pluripotency through the introduction of 
transcription factor (TF)-binding sites (Kunarso et  al. 2010). Additionally, 
because the regulatory machinery tries to shut down retrotransposons (Jacobs 
et al. 2014; Wolf et al. 2015), TE-targeting repressive mechanisms can also affect 
neighboring genes.

The discovery of the contributions of TEs to stemness came from studies 
combining unbiased genome-wide profiling of chromatin and unannotated RNA 
transcripts in ESCs. Some of the studies that have characterized long noncoding 
RNAs (lncRNAs) have associated them with TEs (Kelley and Rinn 2012; 
Kapusta et al. 2013) and have shown that, in some cases, they prevent the deg-
radation of pluripotency- related transcription factor mRNAs (Wang et al. 2013). 
In pluripotent cells, one key role of these TE-derived lncRNAs is in transcrip-
tional activation through mechanisms such as recruiting pluripotency-related 
transcription factors (Lu et al. 2014). The combination of some of these differ-
ent functions relates in a feedback loop that maintains the pluripotent state 
(Wang et  al. 2013). The hallmark retrotransposon in defining the pluripotent 
state in humans is the human endogenous retrovirus histidine (HERVH), which 
can serve as a precise marker for naive pluripotency (Lu et al. 2014; Santoni 
et  al. 2012; Wang et  al. 2014). HERVH is not the only TE of importance in 
human stemness and various other LINEs, SINEs, and ERVs have also been 
shown to be expressed in pluripotent cells (Chen and Carmichael 2009; Fuchs 
et al. 2013). Ultimately, these studies have changed the way we view the inter-
action between foreign and host DNA, especially within the transcriptomes of 
pluripotent cells.

Unlike previous reviews in this field that have focused on describing the broad 
impact of TEs on gene regulation (Rebollo et al. 2012; Bourque 2009) or on the 
balance between the activation and the repression of TEs (Rowe and Trono 2011; 
Robbez-Masson and Rowe 2015), this chapter summarizes recent advances that 
have shown that retrotransposons have contributed not only novel regulatory 
regions, but also functional noncoding RNAs and new proteins. We focus on pre-
senting results on human and other mammalian pluripotent stem cells, because of 
their importance and since that is where many of these recent studies have been 
performed. Finally, this review also discusses the applications, implications, and 
questions that are raised from this newfound knowledge.
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2  Pluripotency and Stemness

Pluripotent cells are cells that can differentiate into any cell whose origin is one 
of the three germ layers. The study of pluripotent cells plays an important role in 
both understanding early development and health care, for example the regrowth 
of damaged tissues through reprograming healthy tissues. The topic of pluripotent 
cells and their applications in science and medicine has been extensively reviewed 
(Nichols and Smith 2012; De Los Angeles et al. 2015; Ji et al. 2016; Romito and 
Cobellis 2016); we only introduce the basics here. Two important features define 
pluripotent stem cells (PSCs). First, these cells can continue to be pluripotent 
given the correct external stimuli. Second, with appropriate changes to these 
external stimuli, these cells are able to differentiate into any desired progenitor 
cell with an ectodermal, mesodermal, or endodermal origin, which includes 
almost all human cell types. PSCs include ESCs, which are acquired from the 
inner cell mass of the blastocyst in preimplantation embryos during the early 
stages of pregnancy, and induced pluripotent stem cells (iPSCs), which are pro-
duced when a differentiated cell is reprogrammed into a pluripotent cell through 
the introduction of various combinations of TFs, for instance, using the Yamanaka 
factors OCT4, SOX2, cMYC, and KLF4 (Takahashi and Yamanaka 2006), or 
other TFs like NANOG (Mitsui et al. 2003). Reprogramming results in a notice-
able increase in the expression of certain TEs (Friedli et al. 2014; Garcia-Perez 
et al. 2007; Klawitter et al. 2016).

Studies have shown that the transcription profiles are highly similar between 
iPSCs and ESCs (Wang et al. 2014), though not all iPSC cells in culture express the 
same transcripts (Santoni et al. 2012). These differences can likely be attributed to 
factors such as heterogeneity within iPSC cultures as both naive and primed iPSCs 
are present (Wang et  al. 2014). Some PSCs are more dedicated in their fate or 
“primed” than the fully pluripotent, or “naive” pluripotent cells, which—as we will 
see later on—can be easily identified through the contrasting contributions of some 
specific endogenous retroviral transcripts in their transcriptomes (Wang et al. 2014; 
Weinberger et al. 2016). As the scientific usage of PSCs expands, understanding the 
environments required to maintain a pluripotent state and to differentiate between 
different pluripotent cell types becomes exceedingly important.

3  TEs Have Provided Novel Regulatory Elements in ESCs

TF-binding sites (TFBS) are sometimes found in repetitive elements. In particu-
lar, it has been shown that many of the TFBS for the regulatory proteins ESR1, 
TP53, OCT4, SOX2, and CTCF are found in distinctive classes of TE, which are 
referred to as repeat-associated binding sites (RABS) (Bourque et al. 2008). For 
example, B2 repeats are rich in CTCF-binding sites, while ERVK repeats are rich 
in OCT4- and SOX2-binding sites in mouse ESCs. In human, it was also shown 
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that the ERV families LTR10 and MER61 are highly enriched in the tumor-sup-
pressor protein p53 TFBS (Wang et al. 2007). Moreover, certain SINE insertions 
have produced species-specific binding sites for CTCF (Schmidt et  al. 2012). 
TFBS are predominantly found within the TE untranslated regions, such as long 
terminal repeats (LTR) of HERVs (Bourque et  al. 2008; Jacques et  al. 2013; 
Kunarso et al. 2010) and within LINEs (Kuwabara et al. 2009). This type of con-
tribution of TEs to the regulatory landscape of a genome is summarized in Fig. 1a. 
Additionally, Table 1 provides a summary of the studies that have demonstrated 
the roles that TE play in stemness.

In addition to being associated with the binding sites of specific TFs, TEs are also 
associated with functional genomic features, such as promoters, enhancers, or open 
chromatin. Several regions containing ERV sequences have transcriptional  activities 
characteristic of enhancer regions, namely, a bidirectional distribution of transcripts 
around TSSs unlike canonical TSSs with transcripts synthesized mostly downstream of 
it. In human, LTR7 (flanking HERVH elements) and LTR9 are responsible for the most 
abundant of these putative enhancer RNAs (Fort et al. 2014), which are highly specific 
for pluripotent cells. The majority of the long- range chromatin interactions stemming 
from these LTR enhancers are intrachromosomal and within 100 kb of the LTR enhancer. 
The affected genes have varied function, from metabolism to chromatin structure. In 

Fig. 1 Insertion of transposable elements (TEs) has affected gene regulation in several ways. (a) 
TEs have transcription factor-binding sites that activate nearby genes. (b) TE insertions have been 
silenced through mechanisms such as DNA methylation or histone modifications such as H3K9me3. 
This may also silence or otherwise affect expression of nearby genes. (c) TEs have added them-
selves to the host cell’s transcriptome—mostly as noncoding RNAs, but some transcripts can be 
translated into functional protein. These two mechanisms often work together as some insertions 
both provide binding sites for transcription factors and are themselves transcribed
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ESCs, several HERVH loci are associated with open chromatin and enriched for active 
histone marks (H3K4me3), an enrichment not seen in other cell types nor with other 
repetitive elements (Kelley and Rinn 2012; Santoni et al. 2012).

Another study showed that a large portion of human open chromatin regions, deter-
mined via DNase I hypersensitivity, overlap TEs (Jacques et al. 2013). Indeed, 44 % 
of human open chromatin regions were found to overlap TEs, and even a larger por-
tion (63 %) when considering primate-specific open chromatin regions. The LTR/
ERV class of repetitive elements were overrepresented in cell-type-specific regions. 
The majority of cell-type-specific repeat-associated DNase hypersensitive sites 
(DHSs) were found in ESCs as well as in cancer cells. For example, 40 % of LTR7 
repeats were annotated as enhancers in ESCs but only 2.2 % in other cells. The LTR9B 
repeat, which was observed to be bound by OCT4 and SOX2, was also overrepre-
sented in open chromatin regions in stem cells. KLF4, another pluripotency marker, 
joins the two aforementioned TFs among the three most enriched motifs found in 
ESC-specific open chromatin sites. Though the majority of cell- type- specific DHS-
associated repeats were found in ESCs and cancer cells, a few examples, such as 
LTR2B and MER121, were enriched in the DHSs of differentiated cell types. 
Altogether, these results highlight the idea that the introduction of certain repetitive 
sequences into the human genome has provided novel transcription factor-binding 
sites, many of which are specific to individual cell types of individual species.

4  TEs Have Wired New Genes in the Regulatory Network 
of ESCs

The lineage specificity of some of these TEs highlights the importance of RABS as 
a source of non-conserved regulatory elements that may explain some of the pheno-
typic differences observed between species. The largest contributor of repeat 

Table 1 Summary of the roles that TEs play in human pluripotent stem cells

Role of TEs References

Regulatory elements

– Binding site for 
TFs

Bourque et al. (2008), Bourque (2009), Jacques et al. (2013), Kunarso 
et al. (2010) and Wang et al. (2007)

– Repression Jacobs et al. (2014), Wolf et al. (2015), Rowe and Trono (2011), Rowe 
et al. (2013) and Reynolds et al. (2012)

Transcripts

– Source of 
lncRNAs

Kelley and Rinn (2012), Kapusta et al. (2013) and Santoni et al. (2012)

– Sources of 
protein

Fuchs et al. (2013), Qiu et al. (2010), Shi et al. (2015) and Parker and 
Sheth (2007)

Function

– Self-regulation Wang et al. (2013), Lu et al. (2014), Schmidt et al. (2012), Loewer et al. 
(2010), Guttman et al. (2011) and Qiu et al. (2010)

– Other function Fuchs et al. (2013) and Shi et al. (2015)
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binding sites for OCT4 and NANOG in human is the ERV1 lineage-specific repeat 
family. As an example, 33 % of LTR9B repeats, a type of ERV1-associated LTR, 
contain an OCT4-binding site. One study showed that unlike the ubiquitous master 
gene expression regulator CTCF (Kim et al. 2015), TFs indicative of pluripotency, 
such as OCT4 and NANOG, have less conserved genome-wide binding profiles, 
when comparing human and mouse (Kunarso et al. 2010). About 17 % of human 
CTCF-binding sites have homologs in mouse, but only about 2 % of OCT4 and 
NANOG do; and this is despite the fact that their DNA-binding sequences them-
selves are highly conserved between the two species.

The same study showed that following OCT4 knockdown in ESCs, 137 genes are 
downregulated in both human and mouse, half of them having OCT4-NANOG- 
binding sites, but only 15 % of the binding sites being conserved between the two 
species (Kunarso et al. 2010). The OCT4-binding regions in these human-specific 
OCT4-regulated genes have about twice as much overlap with repetitive elements 
than genes regulated by OCT4 in both human and mouse. For example, AEBP2 is a 
conserved gene regulated by OCT4 but has a human-specific promoter site that 
overlaps the insertion of a TE. One example of a gene highly expressed in human 
ESCs but not in mouse ESCs is SCGB3A2, a secretoglobin gene. The most likely 
contributor of this differential regulation is a human-specific ERV1 insertion, which 
brought new OCT4-binding sites driving SCGB3A2 expression in human ESCs. 
The same study identified up to 50 genes which acquired human-specific transcrip-
tion factor-binding sites originating from human-specific TE insertions, 23 of which 
are from an ERV1 insertion (Kunarso et al. 2010). That study concluded that many 
new genes have been rewired into the regulatory network of human embryonic stem 
cells by TEs.

5  Repression of TEs in ESCs Alters Gene Expression

Because uncontrolled transposon activity and repeated insertions could have a del-
eterious effect on the host, TEs are typically silenced (Rowe and Trono 2011; 
Slotkin and Martienssen 2007). But this repression itself can also have an impact on 
gene regulatory networks. The TRIM28 pathway is prevalent for this silencing in 
ESCs at a transcriptional level. Through the interaction with sequence-specific 
Krüppel-associated box zinc finger proteins (KRAB-ZFPs), TRIM28—also known 
as Kap1—associates with DNA to silence gene expression through the activation 
and/or recruitment of histone methyltransferases to trimethylate lysine 9 of histone 
3, histone deacetylases such as the NuRD complex, DNA methyltransferases, and 
heterochromatin protein 1 (Rowe et al. 2013). Specifically, through histone methyl-
transferase activation, TRIM28 silences ERVs in ESCs. The knockdown of 
TRIM28 in ESCs results in immediate cell death or differentiation and a lack of 
repressive histone mark along retrotransposon loci, leading to the activation of 
retrotransposon- based enhancers. The loci that do not undergo TRIM28 silencing 
can act as activators. One way that TEs are able to escape TRIM28-mediated 
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silencing is through mutations, such that the TRIM28 or the associated KRAB-
ZFPs lose the ability to recognize them. One example of this evolutionary arms race 
is the evolution of ZFP91 to silence a new SVA SINE insertion, or the evolution of 
ZFP to silence a new L1 LINE insertion (Jacobs et al. 2014). This leads to a scenario 
where the newly integrated retrotransposons are not silenced because none of the 
KRAB- ZFP of the human repertoire has (yet) the ability to recognize them. This 
mechanism does not seem to target the oldest classes of retrotransposons, which are 
anyway inactive. Intermediately aged TE families are the ones that are the most 
heavily regulated through this mechanism; while DNA methylation helps silence 
the most recent retrotransposons (Castro-Diaz et al. 2014).

Importantly, TRIM28-mediated KRAB-ZFP silencing not only affects the tar-
geted TEs, but also silences nearby genes. For example, upon knockdown of 
TRIM28, genes such as ZFP575, Prnp, and Serinc3 are upregulated in ESCs, likely 
because they are located nearby a TRIM28-regulated ERV (IAP575) (Rowe et al. 
2013). As another example, the ectopic expression of ZNF91, which represses some 
SVA repeats, results in a 70 % inhibition of the expression of genes surrounding the 
SVA elements, in a 25 kb window (Jacobs et al. 2014). Interestingly, these local side 
effects have only been observed for ERVs and SVAs but so far not for L1 LINEs. A 
graphical summary of these side effects is shown in Fig. 1b and additional informa-
tion is shown in Table 1.

6  Noncoding RNA Sequences are Prevalent in Human 
Pluripotent Stem Cells

Ever since the human transcriptome started to be analyzed globally in the early 
2000s, a large amount of transcripts not matching with the known proteome have 
been identified. These RNAs, which some have labeled as “dark matter” RNA, can 
be antisense transcripts, novel protein-coding genes, or alternatively spliced iso-
forms of known genes (Johnson et al. 2005). Even then, the noncoding RNA can 
make up somewhere between 50 and 65 % of the transcripts in normal, non- diseased, 
cells (Kapranov et al. 2010), most of them not being annotated. Their functions and 
roles in gene regulation (Cabili et al. 2011), diseases (Wapinski and Chang 2011), 
and human pluripotency (Schmidt et al. 2012; Loewer et al. 2010; Guttman et al. 
2011; Fatica and Bozzoni 2014) are just starting to be uncovered. These transcripts 
tend to localize in the nucleus, be less conserved, be shorter, be expressed at lower 
levels, and overlap TEs more than known transcripts (Fort et al. 2014). In PSCs, 
long noncoding RNAs (lncRNAs) affect gene expression on a global scale through 
trans-acting effects to maintain a pluripotent state while repressing differentiation. 
The expression of these lncRNAs is often promoted by core pluripotency factors 
mentioned previously and interacts with chromatin remodelling complexes 
(Guttman et al. 2011). About 300 of the lncRNAs that Guttman et al. identified are 
transcribed in human ESC (Tang et  al. 2013). Half of them have orthologues in 
mouse and 78 are expressed significantly higher in ESCs than in any other cell 
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types. Gene ontology analyses show that conserved lncRNAs are associated with 
processes linked to embryonic development, chromatin segregation, and ribosome 
biogenesis, while the human-specific lncRNAs are mostly involved in mitosis, 
embryonic development, and mRNA processing (Tang et al. 2013).

7  Noncoding RNA in Human Pluripotent Stem Cells are 
Prevalent in TEs

One additional way by which retrotransposons contribute to pluripotency gene reg-
ulatory network is through their transcription in a manner that is separate from the 
retrotransposon cycle (see Fig. 1c). These TE-derived loci produce mostly noncod-
ing RNAs (ncRNAs) though some functional proteins have also been identified 
(Kelley and Rinn 2012; Kapusta et al. 2013), as reviewed in Robbez-Masson and 
Rowe (2015). Although the produced ncRNAs may vary in function, one major role 
is the regulation of pluripotency-related transcription factors (Wang et al. 2013; Lu 
et al. 2014; Qiu et al. 2010).

Many of the previously discovered functional noncoding transcripts ESCs 
were shown to overlap with different TEs including those involved in stem cell 
identity and pluripotency (Kelley and Rinn 2012; Kapusta et al. 2013). TEs may 
overlap with any part of a transcript, including the exons, TSS, polyadenylation 
sites, splicing sites, or any combination of the above. TE insertions can also 
help lncRNAs to form specific secondary structures (Kapusta et  al. 2013). In 
one study, 83.4 % of all known lncRNAs were shown to overlap TEs, while the 
overlap of protein-coding genes with TEs was 6.2 % (Kelley and Rinn 2012). 
The promoters of these transcripts are located more often than expected by 
chance in LTR-containing subfamilies in stem cells but not in any of the differ-
entiated cell types tested (Kelley and Rinn 2012). The level of expression of 
these transcripts is higher for transcripts that contain an LTR in their promoters, 
something that is not seen with any known gene. Unlike non-expressed repeti-
tive elements associated with the repressive histone mark H3K9me3 (Karimi 
et  al. 2011), these transcripts are associated with the active histone mark 
H3K4me3 (Kelley and Rinn 2012). Within the collection of non- annotated 
RNAs, LINEs and SINEs are depleted despite actually being the most prevalent 
in both the human genome and lncRNAs, but endogenous retroviruses are sig-
nificantly enriched, for example, ERV1, ERVL-MaLR, ERVL, ERVK, and most 
significantly ERVH, one of the most recent endogenous retroviruses (Kelley and 
Rinn 2012). Kelley and Rinn also showed that seven out of the ten identified 
lncRNAs involved in pluripotency from a previous study had HERVH elements 
near their TSS (Loewer et al. 2010). A majority of these LTR-associated tran-
scripts are not canonical full-length retrotransposons as they lack nearby open 
reading frames (Fort et al. 2014).
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The LTR of ERVs can also initiate the formation of chimeric transcripts, and 
splice donor sites embedded within these retroelements can result into fusions of 
ERV sequences to canonical gene transcripts (Wang et al. 2014; Göke et al. 2015). 
This phenomenon is common in cancer and is described in details in Chap. 11 of 
this book. Over 80 % of these fusion transcripts have not been characterized, while 
the remaining are split equally between known lncRNAs and known protein-coding 
genes. ERV families such as MER73, THE1A, HERVH, and HERVK not only gen-
erate pure ERV transcripts, but they also link near-identical ERV-derived sequences 
to a vast array of non-ERV exons, further diversifying the transcriptome of many 
specific stages of the embryonic development.

These TE-derived transcripts are not only present in the pluripotent stem cells 
but in fact all throughout early development. XIST, an important conserved embry-
onic lncRNA involved in X chromosome inactivation in females, also overlaps with 
retrotransposon sequences (Elisaphenko et al. 2008).

Specific ERVs are transcribed at each developmental stage of preimplantation 
embryos, from the oocyte to the ESCs, but then most of them are silenced in adult 
cell types (Göke et al. 2015). The overall expression of ERVs rises from oocyte to 
zygote and decreases from zygote through the 2-, 4-, and 8-cell stages, the morula 
and the blastocyst, before a sharp rise in expression after the formation of ESCs 
where HERVH becomes the most expressed transposon-derived transcript (Göke 
et  al. 2015). Until recently, however, functional roles for these transcripts were 
unknown. These roles are summarized in Fig. 2 and discussed below.

Fig. 2 Various roles of TE-derived transcripts in pluripotency. (a) Act as a scaffold for chromatin 
remodelers and transcription factors. (b) Repress repressors of transcription factor mRNA. (c) 
Function in alternative splicing of known genes. (d) Form virus-derived proteins. (e) Associate 
with apoptosis factors. (f) Upregulate translation of transcription factor mRNA
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8  The Most Prevalent Retrotransposon-Derived Transcript 
in ESCs is HERVH

Through the study of the contribution of TEs and lncRNAs in ESCs, the endoge-
nous retrovirus HERVH rose to prominence. A global annotation of total RNA in 
many cell types showed that ESCs and iPSCs had a significantly higher number of 
non-annotated (stem) transcripts (NASTs) compared to differentiated cells, both in 
human and mouse (Fort et  al. 2014). About 40 % of NASTs show interspecies 
homology, compared to about 80 % for known transcripts. The non-conserved 
NASTs show high levels of enrichment in TEs. About 80 % of the genomic loci of 
these NASTs show promoter- or enhancer-related chromatin marks. This study also 
showed that LTR7 and its associated HERVH element were the most expressed 
retrotransposon-derived transcripts in ESCs. Variants of the HERVH LTR7 pro-
moter, such as LTR7B and LTR7Y, were also highly expressed. This high level of 
expression is surprising despite the fact that HERVH and LTR7 families did not 
have the highest number of copy numbers of TEs in the human genome (Fort et al. 
2014). HERVH internal genes (gag, pol, and env) are also significantly more tran-
scribed than neighboring genomic regions at a level comparable to regular protein- 
coding genes. Estimates of the total contribution of HERVH-associated RNA to the 
human ESCs transcriptome suggest that they might represent up to 2 % of polyA+ 
RNA (Santoni et al. 2012). HERVH is not only the most expressed member of the 
ERV family but also the most expressed retrotransposon (Santoni et al. 2012). Fifty- 
four of all the HERVH-associated transcripts have been implicated as playing some 
role in pluripotency (Wang et al. 2014). HERVH-associated transcripts are specific 
to stem cells and are not seen in healthy differentiated cells or in many malignant 
cancerous cells (Lu et al. 2014; Santoni et al. 2012; Wang et al. 2014). The decrease 
of HERVH-associated transcripts is in line with the decrease of SOX2, NANOG, 
and OCT4 as embryonic stem cell differentiation progresses (Santoni et al. 2012).

9  HERVH-Derived Transcripts Control Pluripotency- 
Related Transcription Factors

Given the very strong association between HERVH and pluripotency through both 
stem-cell-specific regulatory regions and stem-cell-specific transcripts, we will now 
describe what the HERVH loci and transcripts do. Lu et al. performed knockdowns 
of genes containing HERVH sequences in pluripotent cells, which gave them a 
fibroblast-like appearance (Lu et al. 2014). Differentiation markers such as GATA6 
and RUNX1 were upregulated, while canonical pluripotency markers such as 
NANOG, SOX2, and OCT4 were downregulated. These results make sense as fac-
tors of pluripotency bind to HERVH loci. NANOG binds to 96 % of the LTRs of the 
50 most highly expressed HERVH elements. The other pluripotency factors OCT4 
and SOX2 bind upstream of the LTR element, at about 1 kb and 2 kb, respectively, 
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away from the 5′ end of the LTR of the HERVH sequence. Another pluripotency 
marker, KLF4, does not associate with HERVH (Santoni et  al. 2012). ShRNA- 
mediated HERVH knockdown reduces not only HERVH transcript levels, but also 
the levels of expression of coding and noncoding genes nearby HERVH loci, sug-
gesting that HERVH can act as an enhancer regulating surrounding genes on a long 
distance. RNA cross-linking and RNA immunoprecipitation assays have further 
shown that HERVH RNA is bound by the pluripotency transcription factors OCT4 
(Lu et al. 2014), and NANOG (Wang et al. 2014), further supporting its property of 
self-enhancer. HERVH transcripts also associate with coactivators CBP, p300, 
MED6, and MED12 (Lu et al. 2014) chromatin-modifying complexes (Wang et al. 
2014) but not with corepressors ESET, HDAC1, and PRC2 (Lu et al. 2014) (Fig. 2a).

A specific HERVH repeat-associated transcript is lncRNA-ES3, a putative 
NANOG partner, which, like previously mentioned transcripts, is also specific of 
ESCs and iPSCs (Schmidt et  al. 2012). The lncRNA linc-RoR (long intergenic 
nonprotein- coding RNA, regulator of reprogramming), one of the lncRNAs that 
overlap HERVH, is another well-studied example of an upregulated lncRNA in 
iPSCs whose expression levels decrease after exposure to differentiation signals 
(Fig. 2b). Linc-RoR is involved in pluripotency as its knockdown reduces the size 
of iPSC colonies after a return to pluripotency, without effect on the source cells 
(Loewer et al. 2010). It was later shown that linc-RoR acts like a scaffold that binds 
to various micro-RNAs (miRNAs) that would normally silence pluripotency factors 
(Wang et al. 2013). Like other HERVH elements, linc-RoR is present in undifferen-
tiated ESCs. During pluripotency, but not during differentiation, the pluripotency 
factors are present at the promoter of LincRoR. Moreover, the levels of pluripotency 
transcription factors and lincRoR decrease simultaneously. This suggests that linc- 
ROR and the pluripotency factors are co-regulated. Indeed, Linc-RoR shares the 
same miRNA response elements as the pluripotency transcription factors and 
becomes the target for these miRNAs, preventing them from targeting the pluripo-
tent transcription factors. However, to ultimately differentiate, the levels of miRNA 
outclass those of Linc-RoR which turns off both the pluripotency transcription fac-
tors and Linc-RoR itself (Wang et al. 2013). This adds to the current knowledge that 
we have on miRNAs playing an important role in cellular differentiation (Ivey and 
Srivastava 2010).

Not all HERVH-derived transcripts function as noncoding genes. ESRG is a 
translated HERVH-derived gene that interacts with COXII, a protein that pro-
motes apoptosis in ESCs (Shi et al. 2015). Though present in the genome of mul-
tiple closely related primate species, ESRG may only be translated in humans 
(Wang et al. 2014). The exons of ESRG contain some of the intronic sequences 
from the genes in which it originally inserted in addition to two HERVH-derived 
exons (Fig. 2e).

One question that has been brought up is whether the presence of TEs within 
lncRNAs came from the fact that TEs are inserted in preexisting lncRNAs, or 
whether a conglomeration of several TE insertions introduced a transcription start 
site and a novel lncRNA gene (Kapusta et al. 2013). For some of the most ancestral 
and conserved lncRNAs that contain less significant portions of nonfunctional TEs, 
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the “lncRNA-first” model is more likely, this is the case for example for the XIST 
lncRNA. On the other hand, new HERVH-derived lncRNAs are more likely to have 
been derived from de novo insertions due to their lineage specificity.

10  Presence of HERVH Allows Differentiation of Naive 
and Primed Pluripotent Cells

Cultures of pluripotent cells are often heterogeneous and include cells with differ-
ent levels of pluripotency. Some cells are naive, the most pluripotent state, while 
some are primed, i.e., able to differentiate only into specific cell types (Weinberger 
et  al. 2016). The cellular phenotypes of naive pluripotent cells include higher 
levels of pluripotency-associated transcription factors, specifically LBP9 and 
KLF4, DNA hypomethylation, two active X chromosomes in females, and reduced 
levels of the repressive H3K27me3 histone mark on genes important for develop-
ment (Nichols and Smith 2009). Surprisingly, the level of HERVH transcripts is 
able to distinguish distinct pluripotency states within these cell cultures. Using a 
GFP reporter gene under the control of the LTR7 of some HERVH sequences and 
selecting cells with the highest levels of GFP allow the isolation of colonies of 
naive pluripotent cells from an ESC culture (Wang et al. 2014, 2016). In contrast, 
cells with low GFP levels match a more differentiated state from an epigenetic 
and morphological point of view. However, this method is still in its infancy and 
imperfect. This approach of isolating pluripotent stem cells requires a significant 
number of in vitro stages and may not perfectly match the in vivo environment 
(Wang et al. 2016). Hence, Wang et al. also pointed out that in vitro-sorted cells 
and inner cell mass cells from preimplantation embryos differ in their respective 
transcriptomes. Knowledge that HERVH is specifically transcribed in the most 
naive pluripotent cells provides an excellent tool to isolate these highly undiffer-
entiated cells from a culture of iPSCs or ESCs and help develop in vitro models 
of human development.

11  Parallel Examples Exist in Other Mammalian Species

In addition to being important in human ESCs, TE-derived lncRNAs have shown to 
play roles in mouse pluripotency (Dinger et al. 2008). Mice also contain a specific 
ERV, the MERVL, which define the two-cell state (Macfarlan et al. 2012). Not only 
are these elements present in the two-cell stage of early embryonic development, 
pluripotent cell cultures were shown to contain specific individual cells that con-
tained the two-cell-stage gene expression, namely, lacking pluripotency transcrip-
tion factors and containing MERVL. These cells are totipotent, meaning they can 
differentiate not only into the three germ layers but also into the placenta.
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In human, the HERVH lncRNAs contain a binding motif for LBP9, a well- 
characterized pluripotency marker and reprogramming factor in mouse that upregu-
lates NANOG and promotes self-renewal (Martello et al. 2013; Ye et al. 2013). In 
mouse, this interaction is independent of ERV regulation, but in human, the disrup-
tion of LBP9 promotes differentiation through an interaction with ERV loci (Wang 
et al. 2014). Either HERVH or LBP9 knockdowns are able to modify the transcrip-
tome to a similar outcome. It has been suggested that LBP9, a transcription factor 
that can differ in function based on its binding partner, has been adopted in primates 
to guard against transposition and viral infection, and also suppresses the HERVH 
loci in human ESCs. Some have suggested that this allowed HERVH to be incorpo-
rated into the pluripotency interactome but, due to the bivalent nature of LBP9, 
allowed HERVH to be expressed (Izsvák et al. 2016).

The specific lncRNAs that have been discussed are also found in closely related 
primate species. The lincROR is found in all apes, while the lncRNA-ES3 is evolu-
tionarily more recent, having been inserted after the marmoset split off from the 
human-orangutan common ancestor (Kapusta et al. 2013). Their functions in these 
primate species are not well characterized, but it is quite possible that they serve the 
same function as in human. Other characterized endogenous retroviruses include 
BERV-P in cows (Nakagawa et al. 2013), ERVs in rabbits (Heidmann et al. 2009), 
and ERV-Ls in elephants (Greenwood et al. 2004). As with humans, many of these 
ERVs have roles in the placenta (Chuong 2013). Endogenous retroviruses have 
entered the evolution of clades many different times in the past producing a wide 
range of diversity (Gifford and Tristem 2003). For example, the aforementioned 
ERVL sequences are present in all placental mammals, entering the evolutionary 
tree over 100 Ma ago (Gifford and Tristem 2003; Bénit et al. 1999). Since the spe-
cific examples of HERVH-derived regulatory sites and lncRNA are so recent in 
evolutionary terms, it is interesting to think about what parallel mechanisms exist 
not only in distantly related species that are not well characterized, but also in 
ancestral species where new insertions such as HERVH were not yet present. Did 
the transcripts from other—now silenced—retroelements play a role in maintaining 
pluripotency? Will a novel insertion lead to a new lncRNA that forever changes the 
gene regulatory network in human pluripotent cells, which may in turn drive evolu-
tion and speciation? Answering these questions may lead to a better understanding 
of lineage-specific developmental processes.

12  Other Proteins Derived from Retrotransposon Sequences

The viral transcripts of some other HERV insertions, like ESRG, are still competent 
for translation. HERV-K (HML2) is the newest human ERV (Subramanian et al. 
2011). Unlike other human ERVs, HERV-K (HML2) still contains retroviral open 
reading frames that code for retroviral proteins. HERV-K (HML-2) transcription is 
induced through OCT4 binding, and thus the transcript is present in ESCs and 
iPSCs and silenced during differentiation. HERV-K elements also contain an LTR 
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promoter, LTR5, which has LTR5Hs, LTR5A, and LTR5b types, the former of 
which corresponds to the most recent HERV in the human genome (Hanke et al. 
2016). This has been shown to code for several viral proteins such as Np9, Gag, and 
Rec. Np9 protein comes from a mutated form of the ERV where the Rec ORF is lost 
but a new ORF is created (Armbruester et al. 2002). Rec and Np9 associate with 
MYC and NOTCH, two proteins involved in pluripotency, respectively (Fuchs et al. 
2013). Rec binds to viral RNAs and promotes their nuclear export and translation, 
and inhibits viral infection in pluripotent cell lines. It has been suggested that this 
process may lead to innate antiviral responses (Grow et al. 2015). Rec also upregu-
lates IFITM1, a gene that codes for a viral restriction factor. These pathways may 
protect embryos from both external viral infections and transposition of actively 
jumping retrotransposons. Interestingly, these viral particles not only likely play a 
role in differentiation or pluripotency maintenance, but they could also be human 
specific as Rec and Np9 are not encoded by rodent ERVs (Fuchs et al. 2013). It has 
been suggested that the HERVK could possibly be a better single marker than 
HERVH to distinguish between human PSCs naive and primed states, as it is also 
expressed specifically in the most naive pluripotent cells (Robbez-Masson and 
Rowe 2015). The aforementioned mouse MERVL also produces its own type of 
viral protein derived from the gag gene (Ribet et al. 2008) (see Fig. 2d and Table 1). 
Note that the role of ERV envelope proteins in placental development is addressed 
in Chap. 9 of this book.

13  LINEs and ALUs

Despite the focus of the field on ERV-derived regulation and gene expression in 
pluripotent cells, other retrotransposons also might contribute to pluripotency with 
related mechanisms. For example, L1TD1, a gene evolved from LINE-1 ORF1, is 
required for the self-renewal of pluripotent cells and is a marker for undifferentiated 
human ESCs (Wong et al. 2011). The gene lacks a promoter site for OCT4, but both 
SOX2 and NANOG bind to its promoter. The L1TD1 protein contains an RNA- 
binding domain with high homology to its ancestor ORF1 protein. L1TD1 helps 
maintaining P-bodies, cytoplasmic bodies containing a collection of untranslated 
RNAs within ribonucleoprotein complexes (Parker and Sheth 2007). L1TD1 associ-
ates with another RNA-binding protein, LIN28, through binding to a common RNA 
and can also complex together with RNA helicase A (Närvä et al. 2012) (Fig. 2f).

Finally, ESCs also express many different Alu elements including subfamilies of 
different ages, though the most highly expressed Alu RNAs are from the recent 
AluY and middle-aged AluS subfamilies (Macia et al. 2011). mRNAs containing 
inverted Alu elements are retained in the nucleus through ADAR1-mediated A-to-I 
RNA editing and sequestration into nuclear bodies called paraspeckles. The lncRNA 
NEAT1 helps forming paraspeckles and retaining such mRNAs. However, NEAT1 
is not expressed in hESCs. Thus, despite the editing of these mRNA in ESCs, these 
transcripts are not retained in the nucleus. The example of the Lin-28 mRNA, which 
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contains inverted Alu sequences in its 3′ UTR, and contributes to the maintenance 
of pluripotency in ESCs, illustrates well this process. Lin-28 mRNA is not retained 
in the nucleus specifically in ESCs even though the editing is active, and is trans-
lated (Chen and Carmichael 2009). Through interactions with the aforementioned 
L1TD1, the Lin-28 protein promotes OCT4 expression at the level of translation 
through binding to the OCT4 mRNA.  This upregulation of OCT4 coupled with 
other effects, such as cell cycle modulation and suppression of the differentiation 
and cell growth by the let-7 miRNA, places Lin-28 as an important contributor in 
the reprogramming process (Qiu et al. 2010). Like HERVH, L1TD1 is also directly 
involved in pluripotent stem cell physiology through the upregulation of pluripo-
tency transcription factors.

14  Perspectives

Why are retrotransposons, especially ERVs, involved in the pluripotency networks of 
various mammalian species? It has been proposed that, among other possibilities, it is 
perhaps purely by chance that TE-derived elements have been incorporated into this 
network (Izsvák et al. 2016). The alternative is that there is a tug-of-war between host 
differentiation pathways and retroviral replication pathways (Schlesinger and Goff 
2015). Host organisms have given TEs a chance to escape their silencing through a 
global loss of repression during stemness, so it makes sense that that’s also where they 
have been co-opted to play important roles. Interestingly, the focus of the roles that 
have been identified so far is to maintain the pluripotent state, which in turn continues 
to allow TEs to be unrepressed and attempt to replicate, opposing differentiation.

The metastability of ERV loci has been suggested as a reason why retroviruses 
belong so well in pluripotency networks (Schlesinger and Goff 2015). The NuRD 
complex is important in shutting down transcription in the absence of pluripotency 
factors and is regulated through the opposing action of these factors (Reynolds et al. 
2012). NuRD regulates transcription by reducing gene expression levels rather than 
completely removing it. It has been long observed that there is transcriptional het-
erogeneity in a few genes within pluripotent cells, even those grown using a stan-
dard medium. Even though the majority of cells are in a naive pluripotent state, a 
fraction of them generally starts differentiating in the population. One mouse study 
showed that ERVs are among the loci regulated by NuRD and affect pluripotency 
and differentiation (Ramírez et al. 2006). ERVs, which are prone to variegation and 
subjected to stochastic silencing mechanisms, may have been recruited to pluripo-
tency networks as facilitators of cell heterogeneity and localized differentiation 
(Reynolds et al. 2012).

Though much of the focus of this chapter has been on the highly researched 
ERV-derived functional elements, there has been some work done on the role of 
other repeats, such as LINEs and SINEs, in pluripotency. The evolution of new ret-
rotransposon function has also been suggested to be caused by rapid genome rear-
rangements (Schlesinger and Goff 2015). Although these studies have highlighted 
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the preponderant effects of TEs at the genomic level, research still needs to be 
done to uncover the specific phenotypic changes linked to this rapid evolutionary 
process.

15  Conclusion and Outlook

The maintenance of pluripotency in human embryonic stem cells relies on different 
retrotransposons, many of which are lineage specific, to provide binding sites for 
transcription factors and various functional transcripts. Notably, many of these 
TE-derived transcripts and proteins are involved in a feedback loop in which they 
maintain their own expression levels. These transcripts and proteins, which manage 
to evade highly effective repression processes, can uniquely define a naive pluripo-
tent state and their mechanisms have been shown to be crucial to stemness. Scientists 
have advanced significantly from the era where much of the DNA sequences and 
transcripts were labeled as dark matter, to show that these entities are crucial in 
lineage differentiation and species specificity. Yet, it is remarkable how elements, 
that are classically considered to be disruptive, can integrate so smoothly into very 
important developmental networks. Though multiple theories have been proposed 
in the literature, there is still much speculation on how these retrotransposon-derived 
functional elements fit into the big picture of evolutionary biology and why they 
play such an important role in developmental biology. Ultimately, to better under-
stand human stemness, we should characterize the developmental gene networks of 
different extant organisms and comprehensively assess the impact of lineage- 
specific retrotransposon insertions.
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1  Introduction

The human genome sequencing project revealed that transposable elements 
represent 45 % of the human genome and that, among these, 8 % are LTR retrotrans-
posons (Lander et al. 2001). This class of retrotransposons are composed of human 
endogenous retroviruses (human ERVs) and attest to the ancient relationship 
between retroviruses and humans. Indeed, human ERVs are genomic traces of 
ancient retroviral infections that occurred throughout human evolution. The particu-
larity of these ancestral retroviruses is that they infected germ cells of our ancestors 
and, in doing so, some of the integrated proviruses have been vertically transmitted 
from one generation to the other over millions of years (Dewannieux and Heidmann 
2013). In our genome, most human ERV sequences are degenerated or were excised 
from the genome after recombination events between both LTRs, leaving solo LTRs 
only in the genome (Lander et  al. 2001; Dewannieux and Heidmann 2013; de 
Parseval and Heidmann 2005). However, some human ERVs remarkably possess 
intact open reading frames (ORFs), in particular in the envelope-coding region (de 
Parseval and Heidmann 2005). In fact, the search for intact env ORFs in the human 
genome led to the identification of 16 coding env genes that are transcriptionally 
active in different tissues including the placenta, where three env transcripts were 
particularly highly expressed (de Parseval et al. 2003). Additional studies showed 
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that two human ERV envelope proteins, called Syncytin-1 and -2, are expressed in 
the placenta and exert specific functions in this organ (Mi et al. 2000; Blond et al. 
2000; Blaise et al. 2003).

The placenta is a transitory and complex organ with numerous functions during 
pregnancy. It allows exchanges of nutrients and gas between maternal and fetal 
circulations but also protects the fetus against pathogens and the maternal immune 
system. Furthermore, the placenta possesses endocrine functions and is responsible 
for the release of several hormones and soluble factors that are necessary for the 
maintenance of pregnancy (Costa 2016). The placenta derives from epithelial cells, 
called trophoblasts, that differentiate into villous and extravillous cytotrophoblast 
(CTB) cells. Extravillous cytotrophoblasts (EVCTBs) have an invasive phenotype 
and penetrate the maternal endometrium, whereas villous cytotrophoblasts (VCTB) 
are noninvasive and further differentiate into fusogenic CTs that form the syncytio-
trophoblast (STB) layer of the placenta (Gerbaud and Pidoux 2015). The STB cor-
responds to a giant multinucleated structure that covers the chorionic villi and is in 
direct contact with maternal blood (Carr 1967). The STB functions as a nutrient and 
hormone exchange barrier and plays a major role in the establishment of the feto- 
maternal tolerance state by regulating the function of numerous immune cells 
(Muyan and Boime 1997; Lacroix et al. 2002; Munoz-Suano et al. 2011; Warning 
et al. 2011). The STB is in a continuous state of renewal and its regeneration depends 
on the fusion of underlying CTBs. Importantly, Syncytin proteins were shown to be 
involved in this process, as these proteins possess fusogenic capacities and induce 
cell fusion upon interaction with specific cellular receptors (Mi et al. 2000; Blond 
et al. 2000; Blaise et al. 2003; Frendo et al. 2003). Moreover, Syncytin could favor 
immune tolerance at the placental and systemic levels during pregnancy. Indeed, 
Syncytin-1 and -2 harbor an active immunosuppressive domain (ISD) and by being 
incorporated in placental extracellular vesicles, such as exosomes, might act distally 
on the various immune cell populations (Vargas et al. 2014; Lokossou et al. 2014).

The objective of this chapter is to provide an overview of the known functions of 
the Syncytin proteins and to provide and update on recent findings over their func-
tion in the development and function of the human placenta as well as their potential 
implication in various placental disorder and cancers.

2  The Human Endogenous Retroviral Proteins Syncytin-1 
and Syncytin-2

2.1  Endogenous Retroviruses

Retroviruses are enveloped RNA viruses that exist under infectious forms (termed 
exogenous retroviruses) or endogenous forms. Endogenous retroviruses (ERVs) are 
ancient exogenous viruses that infected germ cells of several species ancestors, 
including humans, and that became endogenized during evolution. Alike retroviral 
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sequences, ERVs can be composed of elements present in all infectious retrovi-
ruses: that is, two long terminal repeats (LTRs) that surround three essential coding 
genes: gag, pol, and env (Stoye 2012). During the life cycle of an infectious retrovi-
rus, the viral RNA genome is reverse transcribed into a double-stranded proviral 
DNA by the viral reverse transcriptase (RT), which is then integrated by the viral 
integrase (IN) into the host genomic DNA. Once integrated, these retroviral genomic 
sequences, called proviruses, can be transcribed by the host machinery into genomic 
and coding viral RNA in order to produce new infectious viral particles. In the case 
of ERVs, the initial integration of proviral DNAs in the germline genome led to the 
Mendelian transmission of these proviruses to the descendants, and some of these 
retroviral sequences have been maintained throughout evolution (Dewannieux and 
Heidmann 2013). Interestingly, in some cases, exogenous and endogenous viruses 
coexist. This is the case in koalas and sheep, in which both infectious and endoge-
nous forms of the KoRV (koala retrovirus) and JSRV (jaagsiekte sheep retrovirus) 
are present in some of these animal populations (Tarlinton et al. 2006; Varela et al. 
2009). In the human lineage, independent and repetitive infection of germ cells by 
different exogenous retroviruses in the course of time gave rise to the incorporation 
of several ERV sequences in the human genome. Human ERVs and other retrovirus- 
like sequences represent up to 8 % of the human genome and are dispersed through-
out the chromosomes (Lander et al. 2001). Despite the large copy number of human 
ERVs, most proviruses are defective and/or noncoding due to accumulation of 
mutations, deletions, or complete excision of viral genes after homologous recom-
bination between LTRs (Dupressoir et al. 2012). Nevertheless, some human ERVs 
conserved coding sequences such as the env gene and three of these remnant env 
genes are capable of encoding proteins expressed in the placenta, including 
Syncytin-1 and -2 (de Parseval et al. 2003).

2.2  ERV and Placentation

In eutherian mammals, gestation is supported by a fetal-derived organ called pla-
centa. The placenta is essential for nutrient and gas exchange between mother and 
fetal blood flow. Among the four eutherian clades (Afrotheria, Xenarthra, 
Euarchontoglires, and Laurasiatheria), different placental structures and invasion 
properties have been reported (Carter and Enders 2004). From a histological point 
of view, placentas are classified in four types according to the connection between 
the chorion and the endometrium: epitheliochorial, synepitheliochorial, endothelio-
chorial, and hemochorial. The latter type can be further subdivided into three sub-
types based on the number of trophoblast cell layers: hemomonochorial, 
hemodichorial, and hemotrichorial (Carter and Enders 2004; Furukawa et al. 2014). 
In eutherian mammals, several Syncytin-related genes were successively discovered 
in three clades, representing all types of placental structures found in eutherian 
mammals: Syncytin-A and -B in Muroidea (Dupressoir et  al. 2005), Syncytin-
Ory1  in lagomorphs (Heidmann et  al. 2009) and Syncytin-Mar1  in the Rodentia 
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order Sciuromorpha (Redelsperger et al. 2014) (Euarchontoglires clade), Syncytin-
Car1 (Cornelis et al. 2012) and Syncytin-Rum1 (Cornelis et al. 2013) (Laurasiatheria 
clade), and Syncytin-Ten1 (Cornelis et al. 2014) (Afrotheria clade). Although unre-
lated to the human Syncytins, these Syncytin-like proteins are all expressed in the 
placenta and harbor fusogenic capacities (Lavialle et al. 2013). In the mouse, two 
Syncytin proteins, Syncytin-A and -B, are functional homologues of Syncytin-1 and 
-2 and knockout transgenic mice are unable to support gestation (Dupressoir et al. 
2009). In the human placenta, several ERVs are expressed: ERVW-1, ERVFRD-1, 
ERV-3, ERVV-1, ERVV-2, and ERV-Pb. However, only ERVW-1- and ERVFRD-1-
encoded proteins have been shown to be biologically functional (Mi et al. 2000; 
Blond et al. 1999; Blaise et al. 2003, 2005; Kato et al. 1987; Kjeldbjerg et al. 2008; 
Esnault et al. 2013).

Initially, three human ERV sequences were found to be expressed in the human 
placenta, to possess intact ORF in the envelope-coding region and to code for a 
fusogenic env protein, namely ERV-3 (previously, known as HERV-R), ERVW-1, 
and ERVFRD-1. In the case of ERV-3, a stop-codon polymorphism that leads to the 
synthesis of a nonfunctional truncated envelope protein exists in 1 % of the 
Caucasian population, thus indicating that this ERV-encoded protein is not essential 
for placental functions (de Parseval and Heidmann 1998). In contrast, ERVW-1 and 
ERVFRD-1 endogenous retroviral sequences express fully functional envelope gly-
coproteins with conserved fusogenic properties, renamed Syncytin-1 and Syncytin-2 
(Mi et al. 2000; Blond et al. 2000; Blaise et al. 2003). These particular human ERV 
copies are found on the seventh and the sixth human chromosomes, respectively, 
and, while the gag and pol genes have been rendered inactive during evolution, both 
express a glycosylated envelope glycoprotein with features typical of other known 
retrovirus envelope proteins. Syncytin-1 and -2 are thus encoded by these preserved 
env genes originating from past retroviral infections dating back to 25 and 40 mil-
lions of years, respectively (Blaise et al. 2003; Voisset et al. 1999). As these con-
served env genes are highly expressed in the placenta, their early identification 
suggested that they could play a role in placental function and/or development 
(Mi et al. 2000; Blond et al. 2000; Blaise et al. 2003).

2.3  Structural Organization and Functional Domains 
of Syncytin Proteins

Syncytin proteins demonstrate a structure, which resembles exogenous retroviral 
envelope proteins. The function of Syncytin proteins in the human placenta is linked 
to three functional domains: the fusion peptide, the receptor-binding domain, and 
the immunosuppressive domain (Fig. 1). Syncytin-1 and -2 are two 538-amino acid- 
long proteins, synthesized as 73–75 kDa precursors (Mi et al. 2000; Blond et al. 
2000; Blaise et al. 2003). They both possess a surface (SU) and a transmembrane 
(TM) subunit and are expressed as homotrimers at the cell plasma membrane 
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(Chang et al. 2004; Chen et al. 2008) (Figs. 1 and 2). The SU subunit is responsible 
for recognition and binding to the cellular receptor (see below) and thereby pos-
sesses a receptor-binding domain, which has been tentatively positioned between 
amino 1 and 124 for Syncytin-1 (Cheynet et al. 2006). The TM subunit is rather 
involved in the immunosuppressive and fusogenic functions attributed to retroviral 
envelope proteins and contains three domains: the fusion peptide (FP) and the 
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Fig. 1 Structural organization of Syncytin-1 and Syncytin-2. Human Syncytin-1 (a) and 
Syncytin-2 (b) are 538 amino acid long and are depicted with their various motifs and domains. 
The surface (SU) and transmembrane (TM) subunits are indicated with thick black arrows. The 
furin cleavage sites are marked by a thick discontinuous line with the position of the site indicated 
in bold above. The signal peptide (SP) is represented as a red plain box, the fusion peptide (FP) as 
a grey crossed box, the immunosuppressive domain (ISD) as a plain blue box, and the transmem-
brane domain (TMD) as an orange-striped box. Of note, both FP and ISD are included in the 
ectodomain, which is referred to the segment of the TM subunit, which is exposed extracellularly 
(amino acids 317–436 for Syncytin-1 and 350–477 for Syncytin-2). The sequence for each ISD is 
shown in bold capital letters with amino acid positions being indicated on each side. Potential sites 
of glycosylation are indicated by blue vertical lines along with their amino acid position. The 
CX2C and CX7C sequences of interaction between the SU and TM subunits are indicated in small 
capital letters inside the SU and TM subunits
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Fig. 2 Processing of Syncytin proteins and their addressing to the plasma membrane. In this fig-
ure, Syncytin proteins are represented in red. A monomeric protein is composed of the surface 
(SU) and transmembrane (TM) subunits. The intracellular part of the protein corresponds to the 
C-terminal domain (CTD) in this figure. Following transcription, Syncytin mRNA are exported in 
the cytoplasm (1) and translated. The presence of a signal peptide addresses the Syncytins to the 
endoplasmic reticulum (RE) (2). In the RE, Syncytins form homotrimeric structures and are 
addressed to the trans-Golgi network (TGN). During this process, proteins are glycosylated (3). 
The SU and TM moieties are then cleaved by furin in the TGN (4). This cleavage is necessary to 
obtain mature proteins. Finally, Syncytins are routed to the plasma membrane (5), where they will 
be accessible to interact with their specific receptors and induce fusion
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immunosuppressive domain (ISD), both being part of the external ectodomain of 
this subunit, and the transmembrane domain (TMD), anchoring envelope proteins to 
the plasma membrane (Fig. 1). Both SU and TM subunits are held together by disul-
fide bonds and interact over two sequences: CX2C in the SU and CX7C in the TM.

Similar to exogenous envelope glycoproteins, Syncytins are synthesized as full- 
length precursors, following a canonical secretory pathway. They are initially 
addressed to the endoplasmic reticulum where the signal peptide is cleaved and are 
embedded in the membrane to form homotrimers (Cheynet et  al. 2005) (Fig. 2). 
Syncytin proteins then pass through the trans-Golgi network where the endoprote-
ase Furin cleaves the precursors (at a specific cleavage site matching the consensus 
sequence RXXR) into two different subunits, after which both subunits are glyco-
sylated and addressed to the plasma membrane. Importantly, all Syncytin-like pro-
teins described to date have the same structural organization, i.e., SU and TM 
subunits, separated by an RXXR cleavage site; the TM subunits containing an FP 
motif, an ISD, and a transmembrane domain (Dupressoir et al. 2011; Redelsperger 
et al. 2014; Cornelis et al. 2012, 2014, 2015).

2.3.1  ERV-W and Syncytin-1

ERV-W is a multicopy family of ERVs that was characterized in 1999, with only 
one member that has conserved an intact envelope open reading frame with a coding 
potential (Blond et  al. 1999). In 2000, two successive studies characterized this 
envelope glycoprotein. Mi and coworkers first identified ERV-W transcripts in tes-
tis, brain, and placental tissues by Northern blot analyses and localized the only 
protein-coding human ERV gene, ERVWE1, on chromosome 7 (position 7q21–7q22). 
Finally, in situ hybridization and cell-cell fusion assays showed that Syncytin-1 
expression seems restricted to STB and possesses fusogenic properties (Mi et al. 
2000). The fusogenic capacity of Syncytin-1 was later confirmed in a subsequent 
study, which also showed that, despite a stronger Syncytin-1 signal in STB, the 
protein could also be detected in CTB cells (Blond et al. 2000). Moreover, in this 
report, SLC1A5 (previously known as ASCT2 or type D mammalian retrovirus 
receptor) was identified as the cellular receptor of Syncytin-1, thereby mediating 
fusion upon interaction with this ERV protein (Blond et al. 2000). SCL1A4 (also 
known as ASCT1) has also been identified as another receptor (Lavillette et  al. 
2002). Both SCL1A4 and SCL1A5 are amino acid transporters. Further character-
ization showed that the fusogenicity of Syncytin-1 is similar to that of other retrovi-
ral envelope glycoproteins and depends on two heptad repeats, HRA and HRB, 
localized in the ectodomain of the TM subunit between the FP and TMD regions 
(Chang et al. 2004).

The ERVWE1 locus is composed of 5′ and 3′ LTRs surrounding the Env open 
reading frame. The 5′ LTR region contains the transcription start site, a core pro-
moter with a CAAT box, several transcription factor-binding sites, and two 
enhancer regions that specifically regulate Syncytin-1 expression in trophoblasts 
(Cheng et  al. 2004; Cheng and Handwerger 2005). Syncytin-1 expression is 
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induced by cAMP in trophoblastic cells and GCM1a is an essential transcription 
factor, potentially implicating other factors, such as Sp1 and GATA2 and -3 
(Prudhomme et al. 2004; Yu et al. 2002; Knerr et al. 2004). Importantly, regulation 
of ERVWE1 gene expression depends on DNA methylation as well. Indeed, in the 
placenta, CpG islands present in the 5′ LTR promoter region are hypomethylated 
while being hypermethylated in other tissues (Matouskova et al. 2006; Huang et al. 
2014a). Also, abnormal increased Syncytin-1 expression is associated with hypo-
methylation of its promoter and reduced binding of H3K9m3, as opposed to condi-
tions in which its gene is repressed (Yu et al. 2014; Lu et al. 2015; Zhuang et al. 
2014; Li et al. 2014).

2.3.2  ERVFRD and Syncytin-2

Syncytin-2 was first described in 2003 as the envelope glycoprotein encoded by the 
human ERVFRD-1 locus. The ERVFRD family contains several copies, but only 
one sequence codes for a functional protein (de Parseval et al. 2003). ERVFRD-1 is 
located on chromosome 6 and was acquired around 40 million years ago. The 
encoded Syncytin-2 protein is placenta specific, is expressed in the syncytiotropho-
blast, and demonstrates fusogenic properties (Blaise et al. 2003; Chen et al. 2008; 
Cui et al. 2016). Syncytin-2 has a similar structure to Syncytin-1, being first synthe-
sized as a 75 kDa precursor (Gp75) and then cleaved into the active TM and SU 
subunits by furin. Both subunits interact via disulfide bonds and assemble as a 
homotrimeric structure at the plasma membrane. As expected for a retroviral enve-
lope protein, the SU subunit binds to its receptor, which has been identified as 
MFSD2a, a lipid membrane transporter (Esnault et al. 2008). The TM subunit har-
bors typical functional domains, such as the fusion peptide (FP) and the ISD 
(Fig. 1b). In addition to the FP, the fusogenic capacity of the protein seems to depend 
on a 54-amino acid-long ectodomain, which has functional similarities with other 
retroviruses (Renard et al. 2005), and on its C-terminal domain (Chen et al. 2008). 
In normal placenta, Syncytin-2 levels increase from the first to the third trimester 
(Chen et al. 2008) and similarly augment during syncytiotrophoblast differentiation 
(Vargas et al. 2009). Interestingly, in preeclampsia, Syncytin-2 expression is drasti-
cally reduced in placental tissue (Chen et al. 2008).

ERVFRD-1 gene expression is activated by cAMP signaling in trophoblastic-like 
fusogenic cells as shown by pharmacological approaches, such as treatment with 
forskolin, an activator of adenylyl cyclase, or inhibition of protein tyrosine phospha-
tase activity (Vargas et  al. 2009; Chen et  al. 2008). In non-stimulated cells, 
Syncytin-2 is generally very poorly expressed when compared to Syncytin-1. A 
number of studies have looked at the promoter region of the Syncytin-2 gene, and, 
upon testing of the 5′ LTR, revealed that the GCM1 transcription factor was impli-
cated in its modulation but that, most importantly, CREB2 and JunD were 
 upregulating Syncytin-2 expression via the binding of a CRE/AP-1-like motif 
(Liang et  al. 2010; Toufaily et  al. 2015). In non-trophoblastic cells, Syncytin-2 
expression is also regulated by epigenetic and posttranscriptional mechanisms, 
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involving CpG methylation, H3K9 trimethylation, and alternative splicing 
(Trejbalova et  al. 2011; Liang et  al. 2010). Of note, comparable mechanisms of 
regulation of the inducible Syncytin-2 receptor gene, MFSD2a, seem to be operat-
ing in trophoblast cells, including the involvement of identical transcription factors 
and promoter methylation (Liang et al. 2010).

2.4  Syncytins and the Formation of the Placental 
Syncytiotrophoblast Layer

2.4.1  Different Types of Syncytiotrophoblast Structures in Mammals

In eutherian mammals, different types of placental structures exist and are distin-
guished through histological observations (Carter and Enders 2004). The human 
placenta has a hemomonochorial structure, with direct contact of the placental villi 
with maternal blood, and an outer syncytiotrophoblast layer that overlays the inner 
cytotrophoblast layer. Hemodi or -trichorial placentas, such as in rabbits and 
rodents, possess two or three layers of trophoblastic cells, respectively (Metz et al. 
1978; Furukawa et al. 2014). The second type of placenta is the endotheliochorial 
type, which shows less invasion of maternal tissues. In endotheliochorial placentas, 
an STB layer is present but, instead of being in direct contact with the maternal 
blood, this cellular structure comes in contact with the endothelium of maternal 
vessels (Furukawa et al. 2014). Finally, in epitheliochorial placentas, maternal and 
fetal blood are not in direct contact and are separated by six layers of tissues. In 
these placentas, there is no STB layer but, in the syndesmochorial type, such as 
represented in ruminants, cell fusion events occur and give rise to trinucleated or 
multinucleated cells (Furukawa et al. 2014; Cornelis et al. 2013).

2.4.2  Role of Syncytins in STB formation

In the early steps of their characterization, Syncytin-1 and -2 were both described as 
human placenta-specific and fusogenic proteins (Mi et al. 2000; Blond et al. 2000; 
Blaise et al. 2003). The work of Frendo and coworkers soon clearly established that 
Syncytin-1 had a direct role in STB formation, mediating cytotrophoblast fusion 
(Frendo et al. 2003). Thus Syncytin-1 was considered as the major STB-forming fac-
tor during pregnancy. Syncytin-2 has initially been considered to play a different role 
from Syncytin-1 in the placenta because of its distinct expression pattern. Indeed, 
Malassine et al. showed that Syncytin-2 is only expressed in villous CTBs, whereas 
Syncytin-1 is expressed in villous and extravillous CTBs. Furthermore, Syncytin-2 
expression is restricted to cytotrophoblasts, showing a membranous localization in 
these cells, at the interface between CTB and STB, whereas Syncytin-1 is mostly 
expressed in the STB layer (Malassine et al. 2007; Blond et al. 2000). However, our 
team later presented evidence that Syncytin-2 could play a determinant role in STB 
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formation (Vargas et al. 2009). Indeed, the specific siRNA- mediated inhibition of 
Syncytin-1 and -2 expression in the choriocarcinoma cell line BeWo and in CTBs 
revealed a more pronounced inhibition of cell fusion when Syncytin-2 was targeted 
as compared to Syncytin-1 (Vargas et al. 2009). The demonstrated role of MFSD2a 
in trophoblast fusion and its restricted expression to the STB layer further supported 
Syncytin-2 as a major contributor of CTB fusion (Esnault et al. 2008; Toufaily et al. 
2013; Chen et  al. 2006). It is also important to note that the expression of the 
Syncytin-2 receptor is reduced in severe preeclamptic placentas whereas ASCT2 
(SLC1A5) is seemingly not affected (Toufaily et  al. 2013). Thus, the interaction 
between Syncytin-2 and MFSD2a indeed seems to play a critical role in the STB 
formation. In summary, Syncytin-1 and -2 are retrovirus-derived sequences, captured 
independently in the course of primate evolution. They exhibit partially overlapping 
functions, being important for both the formation and renewal of STB, although 
Syncytin-2 might be more critical for cytotrophoblast fusion.

Other Syncytin proteins have been implicated in fusion processes associated 
with the formation of multinucleated cell layers in other eutherian mammals. For 
several years, Heidmann’s group has focused on the identification of other 
Syncytin or Syncytin-like proteins in these mammal species in order to establish 
a possible link between Syncytin capture and placentation (Dupressoir et  al. 
2012). After the human Syncytins, the first Syncytin-like env gene to be discov-
ered was murine syncytin- A and -B (Dupressoir et al. 2005). Both genes encode 
functional fusogenic proteins and were thereby named Syncytin-A and -B. These 
proteins show the characteristic structure of envelope glycoproteins, are specifi-
cally expressed in the placenta (hemotrichorial type), and are localized in the 
labyrinthine zona, in the two STB layers (Dupressoir et al. 2005). Interestingly, 
double-knockout mice led to 100 % fetal death, while depletion of either gene 
impaired the formation of the STB layers (Dupressoir et  al. 2009, 2011). 
Interestingly, Syncytin-Ory1, Syncytin-Mar1, and Syncytin-Ten1 were added to 
the list of fusogenic proteins with a retroviral origin, implicated in the formation 
of the STB layer of other orders demonstrating a hemochorial organization 
(Heidmann et  al. 2009; Redelsperger et  al. 2014; Cornelis et  al. 2014). In the 
Carnivora order, Syncytin-Car1 was identified as the envelope glycoprotein from 
a retroviral element acquired more than 60 Ma ago by its Carnivora ancestor. In 
the feline and canine placentas, which has an endotheliochorial structure, 
Syncytin-Car1 is expressed at the junctional zone and more specifically in the 
STB layer close to maternal vessels (Cornelis et al. 2012). In the ruminant order, 
showing a placenta with a poorly invasive synepitheliochorial structure, the ERV 
syncytin-rum1 envelope protein is expressed in binucleated trophoblastic cells 
before their fusion with maternal mononucleated cells and allows the formation of 
multinucleated structures, in which the protein is no longer expressed (Cornelis 
et al. 2013). Finally, in the marsupial order, which is not included in eutherian 
mammals and therefore presents a very different placentation process, Syncytin-
Opo1 was recently identified as a Syncytin-like gene coding for a fusogenic 
 protein in the syncytial part of the placenta (Cornelis et al. 2015).
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2.5  Syncytins, Exosomes, and Immunosuppressive Functions

A number of recent studies have demonstrated that Syncytin proteins are present at 
the surface of varying types of extracellular vesicles, including exosomes. Exosomes 
are 30–100 nm extracellular vesicles, which play important roles in intercellular 
communication (Denzer et al. 2000a; Mathivanan et al. 2010). Exosomes originate 
in the endosomal compartment following internal invagination of the membrane of 
early endosomes, which forms intraluminal vesicles (ILVs) resulting in multivesic-
ular bodies. The process of ILV formation requires several factors (ESCRT- 
dependent and -independent Rab GTPase) (Babst 2011). Exosomes are released 
from numerous cell types, including immune cells (Denzer et al. 2000b; Raposo 
et al. 1996), stem cells (Lai et al. 2010; Sahoo et al. 2011), placental cells (Vargas 
et al. 2014; Luo et al. 2009; Atay et al. 2011), or cancerous cells (Sun and Liu 2014). 
During pregnancy, placental exosomes are released with other extracellular vesicles 
from syncytiotrophoblasts and carry specific placental markers, such as the placen-
tal alkaline phosphatase (PLAP) enzyme (Mincheva-Nilsson and Baranov 2010). It 
has been suggested that the number of placental exosomes increases during preg-
nancy and that these exosomes could have specific functions during gestation, 
including materno-fetal communication, cell migration, vascular remodelling, and 
immune functions (Salomon et al. 2014; Mitchell et al. 2015; Hedlund et al. 2009; 
Stenqvist et al. 2013). Interestingly, Syncytin-1 and -2 are present at the surface of 
exosomes isolated from culture media of villous cytotrophoblasts. Furthermore, in 
preeclamptic patients, the level of Syncytin proteins in the placenta, which is 
reduced compared to unaffected women, is reflected by the change in their abun-
dance on the surface of circulating placental exosomes (Vargas et al. 2014).

The incorporation of Syncytin protein in exosomes bears a very interesting impli-
cation over one of their potential functions. Indeed, during pregnancy, an important 
immune balance state has to be maintained to allow the growth and development of a 
semi-allogenic fetus. Several lines of evidence have shown that the ISD domain of 
Syncytins could be involved in this state of immunosuppression. The study of 
Mangeney et al. first showed that human and murine Syncytin proteins harbor immu-
nosuppressive functions. Results from tumor rejection assays suggested that the 
human Syncytin-2, together with three other human ERV envelope glycoproteins, 
namely ERV-3 env, EnvV2, and EnvP(b), and the murine Syncytin-B were immuno-
suppressive, whereas Syncytin-1 and -A were not (Mangeney et al. 2007). For human 
Syncytins, recent works from our group and others came to a different conclusion 
regarding Syncytin-1. Indeed, in  vitro analysis of Syncytin-1 immunosuppressive 
activity using either a Syncytin-1 recombinant ectodomain or a synthetic peptide cor-
responding to the ISD domain showed that Syncytin-1 inhibits the production and 
release of Th1 cytokines (TNF-α and IFN-γ) and of the CXCL10 chemokine by 
human blood cells (Tolosa et al. 2012). A more recent study suggested that Syncytin-1 
and -2 could indirectly modify T cell response, through the conditioning of dendritic 
cells (DCs) (Hummel et al. 2015). In this study, Syncytin-1- and -2-expressing cells 
were cocultured with T cells or DCs. Syncytin-1 or -2-expressing CHO cells cocul-
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tured with T cells promoted the production of pro- inflammatory cytokines (IL-12 and 
TNF-α), and Syncytin-expressing choriocarcinoma cells stimulated the release of 
anti-inflammatory cytokines (mostly IL-10) when incubated in the presence of T cells. 
Furthermore, conditioning DCs with culture media of human ERV-expressing cells, 
before initiating coculture of DCs with T cells, resulted in reduced T cell activation. 
Hence, the association of Syncytin proteins to exosomes could lead to a more sys-
temic modulation of the immune response by these placental proteins. Indeed, Holder 
et al. showed that Syncytin-1-expressing BeWo microvesicles dampen PBMC activa-
tion and that this effect was Syncytin-1 dependent (Holder et al. 2012b). Our unpub-
lished data further suggests that exosome- associated Syncytin-2 also downmodulates 
Th1 response of T lymphocytes (Lokossou et al., unpublished results).

Hence, human ERV envelope proteins, specifically Syncytin-1 and -2, are likely 
implicated in the state of feto-maternal tolerance prevailing in pregnant women and 
could be mediated by their presence at the surface of various populations of tropho-
blast or derived microvesicles. Their implication in maintaining a maternal immune 
balance might thereby be connected to pregnancy-related disorders associated with 
reduced expression of Syncytin proteins.

3  Syncytins and Pathologies

3.1  Syncytins and Placental Pathogenesis

3.1.1  Preeclampsia

Preeclampsia (PE) is a life-threatening disease that concerns 5–8 % of pregnant 
women worldwide and in fact accounts for around 12 % of maternal mortality in 
certain countries (Duley 2009). Preeclampsia is characterized and often diagnosed 
by two symptoms that appear near the 20th week of gestation, i.e., recurrent/perma-
nent hypertension (values >140/90  mmHg for several measurements separately 
taken 4–6 h apart) and proteinuria (>300 mg of proteins in urine in 24 h) (Sibai et al. 
2005). The only known cure for PE is delivery, which often leads to early preterm 
birth and fetal mortality (Duley 2009). Preeclampsia is a multimodal disease, to 
which is associated several risk factors such as obesity, diabetes, hypertension, and 
ethnic and genetic factors. Despite intensive research efforts, the cause of this dis-
order remains unknown (Walker 2000; Sibai et al. 2005).

PE is associated with placental dysfunction and chronic inflammation. At the pla-
cental level, PE is characterized by poor vascularization due to poor extravillous tro-
phoblast invasion and moderate remodelling of maternal spiral arteries (Fischer 2015). 
In addition, preeclamptic placentas demonstrate a reduced syncytiotrophoblast layer. 
This decrease in the size of the layer is believed to be caused by reduced trophoblast 
cell fusion associated to a concomitant decrease in Syncytin expression. The initial 
study of Lee et al. demonstrated a reduced expression of Syncytin-1 in preeclamptic 
placentas by in situ hybridization and further suggested that Syncytin-1 proteins were 
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abnormally localized at the apical syncytiotrophoblast membrane in preeclamptic pla-
centas instead of being expressed at the syncytiotrophoblast- cytotrophoblast interface 
(Lee et al. 2001). In subsequent studies, lower Syncytin-1 expression was confirmed 
in PE placental tissues at the mRNA and protein levels (Chen et al. 2006; Vargas et al. 
2011; Zhuang et al. 2014), although one study did not confirm reduced Syncytin-1 
levels in PE placentas (Holder et al. 2012a). Of interest, Kudo et al. associated hypoxic 
conditions with downexpression of Syncytin-1 and its cellular receptor, SLC1A5 
(ASCT2), thus leading to decreased cell-cell fusion events at least in the trophoblastic-
like BeWo cell line (Kudo et al. 2003). Hypoxic conditions can also alter Syncytin-1 
expression in cultured cytotrophoblasts, with a significant decrease in mRNA levels 
after 12  h of culture under hypoxic conditions (Chen et  al. 2006). The reduced 
Syncytin-1 expression levels under hypoxic conditions might be explained by tran-
scriptional deregulation as hypoxia modifies the PI3K-Akt signaling pathway, leading 
to the degradation of the glial cell missing-1 (GCM-1) transcription factor (Chiang 
et  al. 2009; Wich et  al. 2009). Recently, Huang and coworkers also correlated 
Syncytin-1 low expression levels with the apoptotic rates observed in trophoblasts in 
PE placentas. Syncytin-1 expression was inversely correlated with apoptosis-inducing 
factor (AIF) and Calpain1 in PE placenta. These results were confirmed in BeWo cells 
using siRNA against Syncytin-1 to mimic the typical expression profile of Syncytin-1 in 
PE (Huang et al. 2014b).

Although the majority of studies converge toward the importance of Syncytin-1 in 
cytotrophoblast fusion and that its reduced expression in PE might explain the 
decrease of syncytialization observed in PE placentas, the role of Syncytin-2 must 
not be underestimated. Indeed, Chen et al. and Kudaka et al. showed that Syncytin-2 
expression was significantly reduced in PE and hypertensive placentas compared to 
controls (Chen et al. 2008; Kudaka et al. 2008). We have also reported that both 
Syncytins are reduced at the mRNA and protein levels in PE placentas compared to 
controls and that the downregulation of Syncytin expression correlated with the 
severity of PE symptoms (Vargas et al. 2011). Moreover, our results also suggest 
that Syncytin-2 expression is more affected than Syncytin-1  in PE placentas. An 
additional interesting aspect of PE relates to its association with increased inflam-
mation and immune reactivity of the maternal immune system against the fetal anti-
gens (Borzychowski et  al. 2006; Raghupathy 2013; Taufield et  al. 1983; Vlkova 
et al. 2010). In this respect, the reduction in the levels of Syncytin-1 and -2 at the 
surface of trophoblasts and derived exosomes could also be linked to an inadequate 
immune response prevailing in PE patients.

Preeclampsia diagnosis is still dependent on the monitoring of blood pressure 
and metabolic symptoms and no early diagnosis currently exists. Clinical diagnosis 
can also be ambiguous as moderate PE can be asymptomatic (Duley 2009). Because 
Syncytin expression is significantly reduced in PE and reduced abundance is 
reflected in circulating placental exosomes (Vargas et  al. 2014), monitoring 
exosome- associated Syncytin proteins (and most specifically, Syncytin-2) during 
the early stages of pregnancy could allow the early identification of pregnant women 
predisposed to develop severe PE.  As depicted in Fig.  3, early testing could be 
accomplished through the isolation of exosomes from standard blood samples har-
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Fig. 3 Isolation of maternal blood-circulating exosomes and quantification of surface Syncytin-2 
expression. Isolated exosomes from blood samples can serve as potential biological material for 
diagnostic kit development. (a). Exosomes are isolated from maternal blood harvested as early as 

C. Toudic et al.



229

vested during the first trimester and analyzed directly for Syncytin-2 levels using 
exosomal extracts or with a preceding step involving binding of exosomes to the 
plate through the placenta-specific PLAP marker with subsequent detection of 
Syncytin-2 at their surface. Such an assay obviously requires rigorous quantification 
of exosomes to correctly monitor the intensity of the Syncytin-2 signal. This step of 
the assay remains challenging and efforts are currently under way to improve the 
protocols for exosome isolation and quantification.

3.1.2  IUGR and HELLP Syndromes

The hemolysis, elevated liver enzymes, and low platelet (HELLP) syndrome was 
described by Weinstein in 1982, through the clinical review of 29 patients with 
severe preeclampsia presenting other symptoms in addition to those associated to 
PE: thrombocytopenia, hemolysis, and liver dysfunction (Weinstein 1982). The 
HELLP syndrome develops in less than 1 % of pregnancies but is often associated 
with PE (10–20 % of PE patients), considerably increasing the risk of mortality for 
the mother and the fetus (Haram et al. 2014; Dusse et al. 2015). Intrauterine growth 
restriction (IUGR) is defined by a fetal weight below the 10th percentile of its ges-
tational age and fetal abdominal circumference below the 2.5th percentile (Peleg 
et al. 1998). IUGR is often associated with both PE and HELLP syndromes.

Because HELLP and IUGR are associated with placental dysfunction and abnor-
mal placentation (Fischer 2015; Khong 2004; Abildgaard and Heimdal 2013), 
Syncytin expression might also be dysregulated in these complications. Few studies 
are available regarding the assessment of Syncytin protein levels in the context of 
IUGR or HELLP, but these reports all point toward a downregulation of Syncytin-1. 
Knerr et al. studied Syncytin-1 mRNA expression by RT-PCR in placental villi of 
30 normal, 16 PE, and 6 HELLP pregnancies. Although the reduction of Syncytin-1 
mRNA was not statistically significant compared to controls and PE placentas, a 
reduced expression of Syncytin-1 in HELLP placentas was observed (Knerr et al. 
2002). In another report, Langbein et al. showed a reduced cytotrophoblast fusion 
index and a highly and significant reduction in Syncytin-1 mRNA levels by qRT-
PCR in both cultured villous cytotrophoblasts and tissue extracts from PE- and 
 HELLP- associated IUGR placentas (8.1-fold and 222.7-fold lower in PE-IUGR and 
HELLP- IUGR cytotrophoblasts and 5.4- and 10.6-fold lower in tissues, respec-
tively) as well as an elevated apoptotic rate of trophoblasts (Langbein et al. 2008). 
Due to its role in villous CTB fusion, reduced expression level of Syncytin-1 could 
partly explain placental dysfunction in these pathologies. Finally, Holder et al. have 

Fig. 3 (continued) the first trimester. Exosome number can be quantified using various approaches 
and equal number of exosomes from different samples are lysed, added in 96-well plates and ana-
lyzed for Syncytin-2 levels using a standard ELISA assay. (b). In this protocol, identical number 
of blood-derived exosomes are added to anti-PLAP-coated wells and bound exosomes are then 
directly analyzed for the amount of Syncytin-2 by the addition of HRP-conjugated anti-Syncy-
tin-2 antibodies followed by substrate addition and revelation
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also studied Syncytin-1 expression in IUGR- and PE-IUGR-associated pregnancies 
and showed a significant reduction in protein levels in IUGR and a more severe 
reduction in PE-IUGR placentas (Holder et al. 2012a). Since Syncytin-2 downregu-
lation seems more severe in the case of PE compared to Syncytin-1 (Vargas et al. 
2011), it will be important to examine Syncytin-2 expression in HELLP and IUGR 
pathologies.

3.2  Syncytins and Cancers

Although several changes in ERV expression have been described in animal and 
human cancers, the causality between ERV expression and tumorigenicity has only 
been demonstrated in certain animal cancers and remains uncertain in humans 
(Ruprecht et al. 2008). In certain cancers, Syncytin-1 expression has been shown to 
be increased when compared to normal tissue (Maliniemi et al. 2013; Buslei et al. 
2015) and occasionally induced in cancerous cells in which it is normally silenced 
(Sun et al. 2010). This induced expression can be linked to demethylation of the 
Syncytin-1 promoter region in ovarian, testis, and endometrial carcinomas (Strissel 
et al. 2012; Huang et al. 2014a). Furthermore, in urothelial carcinomas, mutations 
in the ERVWE1 promoter region were described, leading to increased expression of 
Syncytin-1 compared to non-tumorigenic tissues. The analysis of urothelial carci-
nomas showed that 75 % of the tumor cells express high levels of Syncytin-1 and 
that, in 88 % of tumor cells, the Syncytin-1 3′ LTR region presents two mutations 
responsible for the upregulation of its expression. Of interest, the 142 T-to-C muta-
tion in the 3′ LTR region was associated with increased binding of the c-Myb tran-
scription factor to the Syncytin-1 promoter region, thus causing ERVWE1 
transcriptional activation (Yu et  al. 2014). In contrast, in pancreatic cancers, 
Syncytin-1 expression was reduced. Indeed, the study of Lu et al. reported constitu-
tive Syncytin-1 expression in normal pancreas tissues, as determined by RT-PCR, 
Western blot, and immunohistochemistry analyses, while, in pancreatic adenocarci-
nomas, Syncytin-1 protein levels and ERVWE1 promoter activity were downregu-
lated (Lu et al. 2015).

Unlike Syncytin-1, very few investigations have been undertaken to study modi-
fication in Syncytin-2 expression in tumors, but overexpression of this gene has also 
been found in certain types of cancer. Indeed, Larsson and coworkers showed that 
both Syncytin-1 and -2 are expressed in breast cancer carcinomas and breast cancer 
cell lines (Larsson et al. 2007a).

Based on these previous reports, it has been suggested that Syncytin expression 
levels could have a prognostic value in various cancers. As an example, in breast 
cancers, Larsson et  al. analyzed Syncytin-1 expression levels in breast cancer-
tumor and found that it positively correlated with an absence of cancer recurrence 
following treatment (Larsson et al. 2007b). One proposed hypothesis is related to 
previous data showing expression of SLC1A5 (the cellular receptor of Syncytin-1) 
in noncancerous endothelial cells and fusion between breast cancer cells and 
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endothelial cells (Bjerregaard et al. 2006). By inducing the fusion of cancerous to 
noncancerous cells, tumor cells could, for example, activate tumor-suppressor-
expressing genes and become less malignant (Anderson and Stanbridge 1993). 
Also, expression of Syncytin-1 in a melanoma cancer cell model has been associ-
ated with a reduced invasive phenotype (Mo et al. 2013). Thus, induced Syncytin 
expression could reduce the extent of invasiveness of tumor cells. However, cell 
fusion events in cancer have also been shown to increase cancerous cell malig-
nancy (Mohr et al. 2015). The study of Larsen and colleagues illustrates this idea 
by showing that Syncytin-1 expression correlates with a poor prognosis in rectal 
carcinomas but not in colonic tumors (Larsen et  al. 2009). Thus, the level and 
impact of Syncytin-1 expression in tumors clearly depend on the cancer type.

4  General Conclusion

Human ERV sequences represent an important component of the human genome 
and, despite intense effort over recent years, their function and role remain largely 
unknown. The implication of human ERV-encoded fusogenic Syncytin proteins in 
the development and function of the human placenta is an outstanding exception to 
this fact in that it is currently firmly believed that these proteins are strongly altering 
the surface of placental villi by maintaining the formation of the syncytiotropho-
blast layer through induced fusion with underlying cytotrophoblasts. Besides the 
involvement of Syncytin-1 and -2 in the formation and maintenance of the placenta 
structure, recent findings also argue that these proteins, through their immunosup-
pressive domain, could act on an otherwise fatal alloantigen-induced immune 
response against the fetus and contribute to the state of feto-maternal tolerance 
existing in pregnant women. Furthermore, the recently reported association of 
Syncytin proteins with extracellular vesicles, such as exosomes, could extend their 
immunosuppressive activity by reaching more distal immune cell populations. 
More studies are needed to understand the functional roles of these proteins and the 
potential use of murine models, which express their own distinct Syncytin proteins 
demonstrating shared features to the human Syncytins, will be of interest to further 
examine functions of Syncytin, either in their cell- or exosome-associated state.

The implication of Syncytin proteins in various obstetrical disorders and can-
cer has also been of great interest in recent years, and generally tends to be linked 
to modified expression of these genes at the transcriptional level. Reduced expres-
sion of Syncytin proteins in preeclampsia thereby provides a potential explanation 
for the association of this disorder with altered immune response and abnormal 
placentation. For the link between Syncytin expression and cancer, further work is 
needed to determine if these proteins could indeed contribute to the transforma-
tion of cells and/or the modulation of their phenotype. The fusogenic potential of 
these proteins conferred to expressing tumor cells is an interesting hypothesis, 
which will need further testing. Finally, the association between Syncytin and 
exosomes provides a potential use of these vesicles as a noninvasive diagnostic 
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tool to assess the abundance of these human ERV proteins and their relationship 
with the predisposition for certain disorders or with the progression of diseases, 
such as certain types of cancer.
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1  Alu Elements

In 2001 the complete sequencing of the human genome revealed that less than 2 % of 
its nucleotide sequences code for proteins, while almost 50 % of its mass is composed 
of repetitive elements (http://genome.ucsc.edu). Alu elements are SINE elements 
(Short, INterspersed Elements) that make up the largest family of repetitive elements in 
terms of copy number, with over one million copies comprising an estimated 11 % of 
the human genome (Lander et al. 2001). Alu elements are specific to primates having 
emerged more than 65 Ma ago derived from the 7SL RNA gene (Deininger et al. 2003). 
They have increased to this enormous copy number through an RNA-mediated copy-
and-paste process termed retrotransposition or retroposition that utilizes an RNA inter-
mediate to insert a new copy in the genome. One key feature of Alu elements is an 
internal RNA polymerase III promoter that initiates transcription at the beginning of 
the Alu to make the RNA intermediate used in their retrotransposition. They also have 
an A-tail encoded at their 3′ end that is critical for priming reverse transcription at a 
nicked site in the genome, a process termed target- primed reverse transcription (TPRT) 
(Luan et al. 1993). Alu elements do not encode any proteins and are completely depen-
dent on L1 elements (the currently active Long INterspersed Element (LINE) in the 
human genome) for retrotransposition (Dewannieux et al. 2003). Alu RNA binds to the 
L1-encoded protein (ORF2) that contains an endonuclease domain (to nick an AT-rich 
genomic region and initiate the insertion process) and a reverse transcriptase activity to 
copy the RNA into cDNA (Fig. 1). The rest of the insertion process is still poorly 
understood, but it is hypothesized to involve other proteins such as those used in DNA 
replication or repair (Pizarro and Cristofari 2016).
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Alu elements contribute to human genetic instability in multiple ways. There has 
been an extensive focus on the role of de novo Alu insertions, contributing to disease 
(Ade et  al. 2013; Deininger and Batzer 2002; Kaer and Speek 2013). 
Retrotransposition of Alu elements can potentially affect the expression of genes by 
providing alternative promoters, gene silencing by transcriptional or RNA interfer-
ence, and creating aberrant transcripts by introducing cryptic splice sites and 
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 polyadenylation signals (Belancio et  al. 2009; Britten 1996; Deininger 2011). 
However the primary focus of this chapter is on the contributions to genetic instabil-
ity after the insertion process.

These instabilities all rely on the homology between Alu elements and their 
abundance to stimulate the instability. For the purpose of our discussion on the 
impact of Alu elements on recombination and related processes of genetic instabil-
ity after their insertion, there are several key features of Alu elements that may be 
relevant:

• Their high copy number (Lander et  al. 2001) and relative enrichment in the 
introns of genes (Medstrand et al. 2002) provide many and varied opportunities 
for homology-dependent interactions.

• Their insertion over a long evolutionary time (see discussion below) has resulted 
in extensive sequence heterogeneity between individual Alu elements with most 
having 15–25 % mismatch between Alu pairs (Sen et al. 2006).

• Their insertion process usually causes duplication of the L1 endonuclease cleav-
age consensus sequence on both ends of the Alu elements, providing more 
opportunities for future cleavage by the endonuclease.

2  Alu Element Accumulation and Evolution

SINEs are known to accumulate throughout the genomes of eukaryotes. They origi-
nated from the retroposition of small RNAs such as 7SL RNA, tRNA, or derivatives 
that feature an internal RNA polymerase III promoter (Kramerov and Vassetzky 
2005). Alu elements are derived from the 7SL RNA gene, an integral part of the 
signal recognition particle (SRP) involved in protein secretion (Walter and Blobel 
1982). Although the details of the origin are not known, it seems likely that a rela-
tively inefficient retrotransposon was formed by a truncated version of the 7SL 
RNA gene sometime before the primate/rodent evolutionary divergence of primates 
and rodents. This precursor then evolved into modern B1 repeats in rodents, and 
into FLAM (free left Alu monomer) and FRAM (free right Alu monomer) sequences 
in the primate lineage (Kriegs et al. 2007; Quentin 1992). A dimer of FLAM and 
FRAM eventually took on the highly efficient amplification characteristics of the 
Alu elements.

Large-scale sequencing studies of primate genomes have provided a great deal of 
detail on the evolution of Alu elements. Because there is no specific mechanism for 
removal of Alu insertions (Fig. 1), Alu inserts accumulate sequence variation over 
time. Different subfamilies of Alu elements have amplified at different stages of 
primate evolution. This has resulted in a very limited and homogeneous group of 
subfamilies active in any given species, suggesting a limited number of source, or 
master, Alu loci (Fig. 1a) (Deininger et al. 1992; Quentin 1992; Shen et al. 1991). 
The earliest Alu elements were the J subfamily, followed by a very active series of 
S subfamilies. For the last 20 Ma, Alu amplification has been dominated by a series 
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of younger Y subfamily members. The dominant S subfamilies included Sx, Sq, Sp, 
and Sc (Batzer et al. 1996). There are several variants on the Y subfamily continuing 
to amplify and cause human disease, mostly of the Ya5 and Yb8 subfamilies (Konkel 
et al. 2015; Kaer and Speek 2013). Collectively, the young active subfamilies of Alu 
elements comprise only about 15 % of the Alu elements present within the human 
genome. In contrast, the older J and S Alu subfamilies comprise approximately 
85 % of all Alu elements in the human genome.

Alu elements are a major contributor to genome variation both through de novo 
insertion and Alu-mediated recombination as evidenced by comparisons between 
various primate species. Overall, insertions of Alu elements have increased the size 
of the primate genome by approximately 11 % (Lander et al. 2001). Even the rela-
tively recent divergence between the chimpanzee and human genomes has allowed 
approximately 5000 new Alu element insertions to be fixed in the human genome 
(Hedges et  al. 2004; Mills et  al. 2006; Chimpanzee Sequencing and Analysis 
Consortium 2005). As discussed in a later section, Alu-related deletions, duplica-
tions, and inversions have also made a major impact on these genomes. Thus, mobile 
element insertions have altered a similar fraction of bases in these genomes to point 
mutations over that period of time.

Alu elements continue to insert in the modern human lineage as evidenced by 
their contribution to human genetic diseases (see below). It is estimated that there is 
about one new Alu insert per 20 human births (Xing et al. 2009). A de novo Alu 
insert is responsible for about 1  in every 1000 new human genetic diseases 
(Deininger and Batzer 1999). Comparison between two completed human sequenced 
genomes showed that there were approximately 800 polymorphic Alu elements 
between those two individuals (Xing et al. 2009). Therefore, Alu element insertions 
are a driver of genetic diversity between individual humans. Most Alu-related 
genomic instability events will have no major functional consequence; on the many 
generations the insertions could simply be lost from the human population gene 
pool through random fixation, or be deleterious and therefore lost through negative 
selection. Thus, Alu events causing genomic diversity or disease described above 
represent only a tiny proportion of the overall genetic instability in the human popu-
lation caused by such elements.

3  Alu Elements, Recombination, and Disease

Because Alu elements are located throughout the genome and even enriched in 
genes (Deininger 2011), the spectrum of diseases caused by Alu-related recombina-
tion events is very broad (Deininger and Batzer 1999). Many observations of Alu 
elements causing disease are anecdotal examples from investigators who discover 
insertions or rearrangements in genetic regions they are studying in depth. However, 
areas with a high density of Alu elements have been particularly associated with 
genomic instability. A broad range of genes have been reported in the literature 
which have undergone Alu/Alu-mediated recombination events leading to genetic 
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defects (Batzer and Deininger 2002; Deininger and Batzer 1999; Boone et al. 2011; 
Gu et al. 2015, 2016). One of the first to be characterized was the low-density lipo-
protein receptor (LDLR). In this gene, several different Alu/Alu-mediated recombi-
nation events were identified that created deletions (Lehrman et al. 1985). Many 
such deletions have been characterized in different populations more recently (Faiz 
et al. 2013; Nissen et al. 2006). Several other genetic diseases regularly arising from 
Alu inserts have been identified. A high proportion of the defects found in those 
genes were caused by Alu-mediated deletions, tandem duplications, and complex 
rearrangements (Strout et al. 1998; Boone et al. 2014; Deininger and Batzer 1999; 
Gu et al. 2015; Reddy et al. 2016). There have been seven independent recombina-
tion events in the BRCA1 gene that have resulted in breast cancer, three mutations 
in the MSH2 gene, and one duplication and one deletion in MSH6. MSH2 and 
MSH6 are essential components of the DNA mismatch repair (MMR) pathway, and 
mutations cause susceptibility to hereditary nonpolyposis colon cancer (HNPCC) 
(Brosens et al. 2015). The majority of acute myelogenous leukemia cases that have 
no visible translocation involve Alu/Alu-mediated duplication events in the MLL 
gene (Strout et al. 1998). Although interchromosomal translocations are generally 
not mediated by Alu elements, evidence indicates that many of these cases have 
additional, smaller rearrangements in the MLL gene that may be Alu mediated 
(Strout et  al. 1998). Recent reports suggest that up to 30 % of mutations in the 
Fanconi anemia gene (FANCA) may be caused by Alu/Alu recombination events 
(Callen et al. 2004). More recently, a careful analysis of deletions in the SPAST 
gene, which leads to spastic paraplegia, has shown that 38 out of 54 CNVs found to 
cause defects involved in recombination events between two nonallelic Alu ele-
ments (Boone et al. 2014). Overall, ~0.3–0.5 % of all human genetic diseases seem 
to have resulted from Alu-mediated unequal homologous recombination (Deininger 
and Batzer 1999).

A number of studies have also suggested the possibility that deletion and dupli-
cation events resembling nonhomologous end joining rather than nonallelic recom-
bination may occur at a higher frequency in the vicinity of Alu elements relative to 
other regions (Bailey et al. 2003; Sharp et al. 2007; Boone et al. 2011; Gu et al. 
2015). Furthermore, some studies also report an enrichment of CNV breakpoint 
junctions within Alu elements, implicating an Alu microhomology-mediated repair 
process (e.g., MMEJ or micro-SSA) in the formation of these CNVs (Boone et al. 
2011; Erez et al. 2009; de Smith et al. 2008).

One of the main features that seem to contribute to Alu-related recombination 
rates is the density of the Alu elements. A recent study (Reddy et al. 2016) revealed 
that ~48 % of the total NLRP7 genomic structure (25,997 bp) is occupied by Alu 
sequences, which represent one Alu insertion every 450 bp, and is much higher than 
average Alu density in the human genome. Another detailed study of CNVs in a 
gene-rich region of chromosome 17 with a high (30 %) density of Alu elements 
similarly showing extensive contributions of Alu elements to CNVs and other rear-
rangements (Gu et al. 2015). They evaluated 39 CNVs affecting several genes in 
this region. They found that 4 out of 5 deletions, 7 out of 14 tandem duplications, 
and 6 out of 13 more complex rearrangements studied were Alu/Alu CNV events. 

 Alu-Alu Recombinations in Genetic Diseases



244

Some of the rearrangements also involved inverted duplications resulting from Alu 
elements being present in an inverted orientation. In these studies, the Alu/Alu non-
allelic recombination (NAR) events were often large, involving tens of thousands of 
bases between the Alu elements, but were generally smaller than deletions that 
occurred independent of Alu elements. There are exceptions, however, with dele-
tions extending over a megabase (Boone et al. 2014). In general, it seems that Alu 
elements are more effective at causing moderate-sized rearrangements. The ten-
dency for Alu elements to recombine with a preference for proximity may also help 
explain why most interchromosomal translocations do not involve Alu/Alu NAR.

The high density of Alu elements alone may be the primary factor that provides 
so many more permutations for Alu interactions, as well as closer spacing. 
However, there may also be unknown factors in these regions that make them par-
ticularly recombinogenic. Those same factors may have contributed in some man-
ner to the higher levels of Alu elements in those regions in the first place. There 
have been suggestions that Alu elements may contain sequences that make them 
particularly prone to recombination (Rudiger et al. 1995). This was first reported 
because there seemed to be a preferential region within the Alu element that was 
enriched for recombination junctions between the nonallelic Alu elements. More 
recently there has been some suggestion that there may be a sequence, 
CCNCCNTNNCCNC, that may contribute to increased meiotic recombination 
that is enriched in the Alu elements that are involved in recombination (McVean 
2010). This sequence is not part of the consensus of Alu elements and therefore if 
it forms it requires some mutation in the Alu elements, making it only present in a 
subset. At this point, the dominant feature driving Alu/Alu CNVs seems to be the 
homology and whether there are distinct factors that make some Alu elements 
specifically more recombinogenic is unclear.

4  Alu Elements, Recombination, and Instability 
in the Primate Genome

Comparative genomics in primates provides further insight into the role of Alu- 
mediated recombination events on the structure and evolution of genomes. Studies 
of the human and chimpanzee genomes show that approximately 5000 deletion 
events have occurred in both genomes affecting well over 1 million bases (Han et al. 
2007; Sen et al. 2006). It has been more difficult to assess the duplication events that 
are also caused by this type of recombination due to bioinformatics limitations, but 
it is likely that there is approximately the same number of events, and these events 
have also been suggested to contribute to approximately 50 chromosomal inversions 
between the chimpanzee and human genomes (Lee et  al. 2008). This represents 
about 20 % of the total inversions detected. Thus, there are extensive, relatively 
small deletions throughout both the human and chimpanzee genomes that contribute 
significantly to their genomic differentiation.
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The human and chimpanzee genomes have been diverged from one another for 
much longer time than two individual human genomes (approximately 6 Ma vs. no 
more than 1 Ma). In a comparison of the human reference genome (Lander et al. 
2001) against another human genome (Levy et al. 2007), there were 98 confirmed 
Alu-recombination-mediated deletions (ARMD) (Sen et al. 2006). These deletions 
were relatively small compared to the ones described above leading to human dis-
ease and on the average only deleted about 1 kb, with the longest being less than 
8 kb. The small size of these events may be because smaller deletions are much 
more common but are often too small to contribute to disease. Alternatively, it is 
also likely that larger deletions are more likely to be deleterious and be lost from the 
population faster than the smaller deletions. This same rationale may explain why 
the much longer L1 elements, but which are also at lower copy number and there-
fore spaced at greater distances, only showed 9 L1-mediated deletions due to recom-
bination (Sen et al. 2006).

From the disease studies (Deininger and Batzer 1999; Hedges and Deininger 
2007; Kaer and Speek 2013) and the whole genome comparisons (Sen et al. 2006), 
two important variables appear to influence the efficiency of the genetic recombina-
tion: the density of the Alu elements in a region and the level of sequence identity 
between the elements. Although all Alu subfamilies contribute to these events, there 
is enrichment for the younger subfamilies, particularly AluY, in the recombination 
events. Also, because Alu elements are enriched in gene-rich regions and within 
genes (Medstrand et al. 2002), they are more likely to preferentially cause deletions 
within genic regions.

5  Mechanistic Aspects of Alu-Based Recombination 
Processes

The primary factor leading to recombination in the human genome is a response to 
double-strand breaks (DSBs). It is critical to repair DSBs to maintain cellular func-
tion. Double-strand breaks can be caused by environmental factors damaging DNA, 
with ionizing radiation being considered a classical cause of such damage. They can 
also be caused by other DNA-damaging agents, and chemotherapeutic agents (both 
genotoxic and Topo2 inhibitors) can also lead to extensive DSBs. However, for 
normal cells, the most common source of DSBs is during replication. In this case, 
anything that causes any kind of single-strand nick can turn into a DSB if a replica-
tion complex reaches the single-strand nick. It has been estimated that as many 50 
DSBs occur per cell division by this mechanism (Vilenchik and Knudson 2003). If 
not accurately repaired, DSBs can result in cell death, mutations, cancer, and pre-
mature aging (Ferguson and Alt 2001).

DSBs can be repaired through homologous recombination (HR), nonhomolo-
gous end joining (NHEJ), or single-strand annealing (SSA) (Featherstone and 
Jackson 1999) (Fig. 2). HR is a mechanism where a homologous DNA sequence is 
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used as a template to repair a DSB. In mitotic cells, the preferred template is an 
identical sister chromatid (Johnson and Jasin 2000). HR is highly conserved in pro-
karyotes and eukaryotes, suggesting that HR is a fundamental biological mecha-
nism. Deficiencies in HR have been associated with cancer development (Kennedy 
and D’Andrea 2006; Luo et al. 2000). If performed accurately, HR will repair the 
DNA without a trace. However, the process is often undermined by abundant and/or 
highly homologous sequences such as Alu elements (Hedges and Deininger 2007; 
Sen et  al. 2006). In these instances, two homologous sequences from different 
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Fig. 2 Genomic rearrangements resulting from recombination between Alu elements. Alu ele-
ments are depicted as blue or green arrows with the orientation indicated by the direction of the 
arrowhead. Capital letters above the thin horizontal lines refer to the flanking unique sequences. 
Homologues on the other strand (can be another chromatid or the homologous chromosome) are 
also shown. Thin diagonal lines refer to a recombination event with the results shown by numbers 
1, and 2. (a). Nonallelic homologous recombination (NAHR). Recombination between two differ-
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the two flanking elements with the loss of the DNA sequence between them
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genomic locations recombine in a process called nonallelic homologous recombina-
tion (NAHR). NAHR involves the alignment and subsequent crossing over between 
two sites in the genome that share regions of sequence homology. NAHR can occur 
both in meiosis (Turner et al. 2008) and, at lower frequencies, in mitosis (Lam and 
Jeffreys 2006, 2007). NAHR can involve genomic rearrangements between para-
logs on homologous chromosomes (interchromosomal) and sister chromatids 
(interchromatid), and within a chromatid (intrachromatid), which consequently 
causes deletions and duplications (Gu et al. 2008).

Classical nonhomologous end joining (C-NHEJ) involves the direct ligation of 
DNA ends and can occur with high fidelity or be commonly associated with small 
alterations at the junctions (McVey and Lee 2008). Early studies of C-NHEJ- 
deficient cells identified alternative error-prone mechanisms of end joining, often 
referred to as alt-NHEJ (Boulton and Jackson 1996; Ma et al. 2003; Yu and Gabriel 
2003). In one type of alt-NHEJ, termed microhomology-mediated end joining 
(MMEJ), repair initiates by resection or unwinding of double-stranded DNA to 
expose short, single-strand microhomologies on the order of 6–20 nucleotides 
(Rodgers and McVey 2016). MMEJ is associated with deletions flanking the origi-
nal DSB site, making this repair pathway particularly error-prone. Alu/Alu recom-
bination events between heterologous elements may arise in some instances from 
MMEJ where the microhomology happens to be “in register” between the two Alu 
elements, allowing formation of a single chimeric Alu element (i.e., in register 
means that the breakpoint contains a complete hybrid Alu, each “half” of which is 
derived from one of the two Alus that flanked the deleted region prior to its loss) 
(Elliott et  al. 2005). MMEJ is more likely to occur when there is a significant 
sequence divergence between the two genomic Alu elements. This process has been 
referred to as “micro-SSA” and occurs more frequently between highly diverged 
Alu elements (Elliott et al. 2005).

The third pathway is single-strand annealing (SSA). During SSA, the process 
initiates when a DSB is made between two repeated sequences (e.g., Alu elements) 
oriented in the same direction. Single-stranded DNA regions are created adjacent to 
the break that extends to the repeated sequences such that complementary strands 
can anneal to each other. When enough homology is found, the two single strands 
of DNA anneal. This annealed intermediate heteroduplex DNA (hDNA) can be pro-
cessed by digesting away the single-stranded tails and filing in the gaps which 
results in the deletion of the sequences between the repeat elements as shown in 
Fig. 3. The resolution of SSA repair is greatly affected by mismatches present in the 
hDNA. If mismatched DNA bases are present in the annealed hDNA, helicases may 
be recruited to unwind the mismatched duplex in a process termed heteroduplex 
rejection (Fig.  3, step 1) (Goldfarb and Alani 2005; Sugawara et  al. 2004). 
Alternatively, molecules that escape heteroduplex rejection are repaired through 
nonhomologous tail removal (Fig. 3, steps 2–3). There is some data suggesting that 
the mismatches may then be repaired by the mismatch repair pathway (MMR) or a 
related pathway (Morales et al. 2015). It is not our goal to review all of the variants 
of these processes, but we will instead discuss how exposure of Alu elements as 
single strands can influence the outcome of the recombination events.
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6  Orientations of Alu Elements and Different Forms 
of Rearrangement

The best characterized events in disease are due to unequal recombination between 
chromosomes because of misalignment of nonallelic Alu elements that are in a 
direct repeat orientation relative to one another (Fig. 2a, c). These are the dominant 
forms of recombination discussed in the mechanistic aspects of Alu-based recombi-
nation processes section, above. They can result in either a deletion, duplication, or 
complex rearrangements of the segments between the nonallelic Alu elements (Gu 
et al. 2015; Morales et al. 2015). In addition, exposed Alu elements flanking a DSB 
can result in an intrachromosomal interaction of Alu elements that result in repair 
by SSA and MMEJ (Morales et al. 2015).

It is easy to picture nonallelic homologous recombination occurring between two 
nearby identical Alu elements in the direct orientation. In fact, it might be somewhat 
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Fig. 3 Model of DSB repair between diverged Alu elements. A double-strand break (lightning 
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occurs through classical NHEJ, a subset of the breaks will undergo end resection followed by Alu 
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MMEJ resulting in the formation of a single chimeric Alu element. (3) Some highly divergent 
(15–25 %) Alu heteroduplexes will be recognized, possibly by mismatch repair (MMR), and 
destroyed by the creation of nuclease-mediated breaks within the heteroduplex, resulting in a dele-
tion and forming a partial heterologous Alu element. The homeology-influenced NHEJ (HI-NHEJ) 
repair pathway was proposed by Morales et al. (2015)
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amazing that with so many Alu elements the genome can show any significant sta-
bility at all. However, the vast majority of Alu elements near one another share 
extensive mismatches and will be subjected to heteroduplex rejection. There are a 
number of lines of evidence that point to the possibility that the interactions of 
exposed nonallelic Alu elements when they are sequence diverged may trigger alter-
native outcomes to nonallelic recombination. One of the first direct experiments to 
demonstrate that diverged Alu/Alu recombination events may be a critical factor in 
prioritizing DNA DSB repair pathway choice, from either several competing DNA 
repair pathways or the degree of Alu sequence divergence, was by Morales et al. 
(2015). The authors developed a novel vector system that, for the first time, allowed 
a highly flexible measurement of diverged intrachromosomal Alu/Alu recombina-
tion events. In this study, the authors investigated Alu/Alu recombination pathway 
choice between different levels of Alu divergence (e.g., 0–30 %). When greater lev-
els of Alu sequence divergence (15–30 %) were tested in HEK293 cells, the authors 
observed a significant increase in variable-length NHEJ repair with junctions around 
the two Alu elements. This study also showed that highly diverged Alu elements 
may still be able to form an Alu heteroduplex DNA (hDNA) as shown in Fig. 3, step 
3. With greater degrees of mismatch within the Alu heteroduplex (≥15 %), the 
authors proposed that heteroduplex rejection is less effective relative to a mismatch- 
related DNA cleavage event. Instead, the Alu hDNA may be preferentially subject 
to DNA cleavage, which may undergo NHEJ or microhomology-mediated end 
 joining (Fig. 4). This process was proposed to be dependent on the MMR pathway 
to create the breaks in the two Alu elements (Fig. 3, step 3). Because this localized 
NHEJ process is dependent on the presence of homeologous Alu hDNA, the authors 
referred to the influence of Alu elements as homeology-influenced nonhomologous 
end joining (HI-NHEJ). This observation helps explain anecdotal observations that 

Alu 1

Alu 2

A

B

Simple chimeras

Complex chimeras

Fig. 4 Distribution of single and complex chimeras. Alu/Alu recombination can generate two 
types of outcomes: simple chimera or complex chimera. (a) A simple chimera shows only one 
recombination junction (left portion of the Alu sequence chimera derived from Alu1 and right por-
tion derived from Alu2). (b) A complex chimera shows multiple shifts from sequences related to 
one Alu or the other across the length of the chimera. This is more likely the result of patchy repair 
processes rather than multiple crossovers
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a number of NHEJ events seem to be concentrated in the vicinity of Alu elements 
(reviewed in (Hedges and Deininger 2007)).

The breakpoint signatures of an SSA product derived from two direct homeolo-
gous Alu elements have been of particular interest. In our recent study, modest lev-
els of sequence divergence between Alu elements (≤10 %) showed that 88 % of the 
Alu/Alu recombination events contained a single-crossover region within the Alu 
element. The remaining events (12 %) contained sequence patches from each Alu 
element, which represents the formation of complex chimeric Alus (Morales et al. 
2015). This paper found that both strands are equivalent targets for mismatch repair 
processes. These characteristics often result in short stretches of repair on both 
DNA strands that has the ability to create chimeras with patches of each repeated 
sequence (Fig. 4). Formation of these complex chimeras seems to reflect two differ-
ent resolutions of SSA repair. The first one is complex chimeras, which shows a 
patchwork of sequence variation from different regions of the two different direct 
Alu sequences (Fig. 4b). Complex chimeras have been observed when solving the 
heteroduplex formed by two homeologous sequences in yeast (Sugawara et  al. 
2004). Complex chimeras have also been seen in Alu/Alu recombinations that cause 
disease. The most recent reports were in the SPAST gene (8 %) (Boone et al. 2014), 
VHL (7 %) (Franke et al. 2009), and EPCAM (11 %) (Kuiper et al. 2011). They have 
also been seen in an elegant vector system to measure rare Alu/Alu recombination 
between chromosomes (Elliott et al. 2005).

Simple Alu recombination junctions (e.g., an intact Alu element with 5′ portion 
derived from Alu1 and the 3′ portion derived from Alu2) make up the majority of 
the Alu NAR breakpoint junctions in the genome (Fig. 4a) (Boone et al. 2014; Gu 
et al. 2015; Morales et al. 2015). Various studies have observed that naturally occur-
ring Alu NAR preferentially occurs near the 5′ region of Alu elements (Morales 
et al. 2015; Boone et al. 2014; Gu et al. 2015). In one of our recently published 
studies, we analyzed 100 reported diseases causing Alu NAR events, and found that 
53 % of the breakpoint junctions preferred recombination within the first 100 bp 
(e.g., 5′ end) of the Alu element (Morales et al. 2015). Several hypotheses have been 
suggested explaining the 5′ preference, including a “chi-like” hotspot for recombi-
nation (Rudiger et al. 1995) and the increased accessibility around the transcription 
factor-binding sites for the RNA polymerase III promoter to recombination proteins 
(Hedges and Deininger 2007). However, the exact mechanism of why recombina-
tion happens at the 5′ end is poorly understood.

An alternative form of Alu-influenced instability occurs when Alu elements are 
arranged in an inverted orientation near one another (Gebow et al. 2000; Lobachev 
et al. 2000; Stenger et al. 2001; Gu et al. 2015). These particular inverted Alu ele-
ments appear to build hairpin structures in the DNA during replication, which can 
cause DSBs and excision of inverted Alu elements from the human genome (Fig. 2b) 
(Lobachev et al. 2000; Voineagu et al. 2008). Moreover, these Alu-mediated hairpin 
structures appear to cause replication stalling and subsequent collapsing of the rep-
lication fork, which can also lead to DSBs and/or intra- or intermolecular template 
switching (Voineagu et al. 2008). A second possibility for Alu elements oriented in 
an inverted orientation is for them to contribute to inverting the sequences in 
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between the Alu elements. Gu et al. (2015) found that 25 % of the Alu/Alu-mediated 
CNVs found in chromosome 17p13.3 lead to an inversion event. Several examples 
of these types of rearrangements have also been found in the human and chimpan-
zee genomes (Lee et al. 2008).

7  Methods for Studying Alu-Based Instabilities

Much of our understanding about the contributions of Alu elements comes from 
anecdotal studies that detect Alu-related instabilities in the course of studying dis-
eases. The ability to detect various types of Alu-related recombination events is 
dependent on the methods applied in the analysis. For instance, prior to the use of 
PCR for detecting genetic defects, many studies utilized Southern blots, which 
were able to robustly detect the larger Alu-related events. However, as PCR became 
the dominant diagnostic tool, most assays were carried out in a way that had diffi-
culty detecting large deletions. Thus, in recent years, most studies have been 
strongly biased against finding the larger rearrangements that might be associated 
with Alu elements.

A number of approaches have been developed to detect CNVs in various genes 
(Boone et al. 2014; de Smith et al. 2008; Gu et al. 2015; Vissers et al. 2009), some 
of which have been specifically utilized to detect Alu-related CNVs. The most com-
mon approach is to utilize a high-density comparative genomic hybridization 
(aCGH) microarray to measure CNVs, followed by PCR to identify the specific 
breakpoint junctions and rearrangements (Gu et al. 2015; Lucito et al. 2003). These 
studies have been highly effective, and detected 584 Alu-mediated hot spots in a 
series of genes associated with autism spectrum disorder, as well as an Alu-rich 
region around the SPAST gene associated with spastic parapalegia (Boone et  al. 
2011, 2014). These types of studies provide outstanding information on Alu-related 
duplication and deletion events that may not represent the average behavior of Alu 
elements in the genome.

Whole-genome analyses for comparative genomics and other next-generation 
sequencing studies for sequence variation also have tremendous potential to detect 
Alu-related instabilities. There are, however, major limitations to these studies. For 
instance, these approaches have been shown to extensively detect Alu-related dele-
tions (Han et  al. 2007); the same investigators found it difficult to establish an 
approach for detecting duplications.

Similarly, paired-end NGS studies have the potential for characterizing most 
types of genome variations. However, the design of appropriate pipelines to detect 
Alu-related deletions and duplications is difficult and rarely used. Thus, the vast 
majority of NGS studies have missed Alu-related CNVs. For instance, with paired- 
end reads spanning 300–400 base fragments, few reads will have one read on either 
side of an Alu element. Therefore, these NGS strategies will have difficulty detect-
ing a deletion or duplication between two Alu elements. An approach such as mate 
pair sequencing (Zeitouni et al. 2010), which allows sequencing the ends of longer 
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fragments, would detect such events better. Mate paired sequencing is rarely per-
formed, and will only be sensitive to those that change the fragment size sufficiently 
to clearly show discordance vs. the size of the original fragment size. Thus, depend-
ing on the preparation and the analytical pipeline, each approach creates biases.

All of the methods described above have the limitation that they are looking at 
events that occurred at an earlier point and have been under varying levels of selec-
tion that may bias the types and sizes of events detected. Furthermore, although it is 
easy to assess that Alu elements must have played some role in any of the NAR- 
related events, one can only model the mechanisms that contributed to them. 
Although several genomic studies have suggested that either direct Alu repeats 
(Bailey et al. 2003) or inverted Alu repeats (Cook et al. 2013; Konkel and Batzer 
2010) may lead to an enrichment of NHEJ-like repair events in the vicinity of Alu 
elements, these observations are relatively indirect and do not allow testing of 
mechanisms.

A complementary approach for observing natural Alu-related CNVs detected 
through the methods above is presented by reporter-gene approaches (Elliott et al. 
2005; Gebow et al. 2000; Morales et al. 2015). Although reporter gene approaches 
do not utilize Alu elements in their natural settings, they do allow complicated 
manipulations to test specific characteristics of Alu elements. These approaches can 
be used to test the influence of genes that may influence the Alu-related recombina-
tion events in cells where specific genes have been manipulated. Thus, reporter gene 
approaches have the capability of providing important mechanistic insights, as well 
as the ability to directly test theories developed from observations of potential Alu- 
related rearrangements in genomes.

Three previous investigators devised vector systems specifically to study Alu/
Alu recombination. The first used the human thymidine kinase gene (HSVtk) as a 
reporter, with the Alu elements placed in introns of the gene (Gebow et al. 2000). 
The Gebow system worked reasonably well, but was integrated randomly into chro-
mosomes and limited to studies in tk-negative cells. More recently, an additional 
system placed two portions of a reporter gene on different chromosomes that could 
be linked by Alu/Alu recombination (Elliott et  al. 2005). Although this system 
detected Alu recombination events, trans-chromosomal Alu recombination events 
are rare. Therefore, this system does not mimic the most common forms of Alu/Alu 
recombination that occur in a more proximal, intrachromosomal manner in vivo. 
The third Alu recombination system was described in Morales et al. (2015). This 
vector system has the benefits of the first system and is able to use almost any pair 
of reporter genes, with one allowing selection against accumulation of background, 
as well as allowing its use at a specific chromosomal site using the FLP/In system 
that will allow direct comparisons between recombination vectors with variations, 
such as mismatch, orientation, and spacing between Alus. This group found that 
highly diverged Alu elements have a higher rate of NAR in mammalian cells than 
expected by processing the Alu heteroduplex DNA through HI-NHEJ. This study 
has laid the foundation for future work on Alu NAR utilizing a unique tool to gain a 
better understanding of this complex and highly regulated process in maintaining 
genome integrity in mammalian cells.
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1  Introduction

Retrotransposons (RTNs), also known as Type 1 or RNA transposons, are repetitive 
sequences that comprise about 43 % of the human genome (Lander et  al. 2001). 
RTNs are divided into virus-like Long Terminal Repeat (LTR), and non-LTR con-
taining elements. Whilst mobilization of LTR elements in humans is limited, several 
subclasses of non-LTR elements remain actively mobile (Mills et al. 2007). “Long 
INterspersed Element 1” (LINE-1s) are the only known autonomous class of non- 
LTR RTNs, accounting for about 17 % of the human genome, nearly eight times the 
amount of protein coding sequences (Lander et al. 2001). LINE-1s carry their own 
promoters and the information to copy and paste themselves to different locations in 
the genome; they are also responsible for the mobilization of nonautonomous Short 
Interspersed Nuclear Element (SINE) retrotransposons such as Alu and SVA 
(Dewannieux et al. 2003; Raiz et al. 2012), as well as some cellular coding and non- 
coding RNAs (Garcia-Perez et al. 2007).

RTNs owe their name to their ability to move to different locations within the 
genome using a “copy-and-paste” mechanism. This requires the elements to be tran-
scribed into an RNA intermediate that is then reverse transcribed to cDNA for inser-
tion at a new site within the genome (Wicker et al. 2007). RTN mobilization can 
thus promote genetic variation and genome reorganization (Ewing and Kazazian 
2010), and not surprisingly can also contribute to disease states, through mutagenic 
insertion (Beck et al. 2011; Belancio et al. 2008; Tubio et al. 2014). In fact, recently 
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it has become clear that, at least in epithelial cancers, activation of RTNs correlates 
with their mobilization and genomic rearrangements (Lee et al. 2012; Solyom et al. 
2012; Rangasamy et al. 2015; Kassiotis 2014). The impact of retrotransposon mobi-
lization is discussed in chapters “Retrotransposon Contribution to Genomic 
Plasticity,” “The Mobilisation of Processed Transcripts in Germline and Somatic 
Tissues,” “Neuronal Genome Plasticity: Retrotransposons, Environment and 
Disease,” and “Activity of Retrotransposons in Stem Cells and Differentiated Cells” 
of this book. However, in addition to the effects of mobilization, RTNs can contrib-
ute to regulating host genome activity independently of retrotransposition (Gifford 
et al. 2013; Goodier and Kazazian 2008). The data supporting these effects in mam-
mals provide evidence that during the course of evolution some RTNs have devel-
oped retrotransposition-independent regulatory functions that can be advantageous 
(Donnelly et al. 1999; Lowe and Haussler 2012) or detrimental (Cruickshanks et al. 
2013; Wolff et al. 2010; Wilkins 2010) to their hosts. Most notable is the contribu-
tion of endogenous retroviruses or ERVs (LTR containing RTNs) to placentation, 
suggesting that RTNs have been pivotal in the evolution of placental mammals 
(Dupressoir et al. 2012) (see also chapter “Roles of Endogenous Retrovirus-Encoded 
Syncytins in Human Placentation” on syncytins). Instances of RTNs acquiring regu-
latory functions in a normal physiological context have also been described for 
non-LTR RTNs; for example, conserved LINE-2 fragments have been shown to act 
as T-cell-specific silencers (Donnelly et al. 1999) and LINE-1s have been proposed 
to play a role in X-inactivation (Lyon 2006; Chow et al. 2010). In the context of 
cancer, retrotransposition-independent effects have been ascribed to both ERVs and 
LINEs (Rangasamy et  al. 2015; Kassiotis 2014; Wilkins 2010). Some of these 
effects occur without active transcription from the promoters of the elements, for 
example, premature transcription termination caused by the usage of an RTN polyA 
site, or RTN exonization caused by usage of cryptic splice sites within the elements 
(Kaer et al. 2011; Cowley and Oakey 2013).

Activation of transcription from RTNs promoters is a necessary step for retrotrans-
position; nevertheless, transcription activation per se can have functional conse-
quences regardless of mobilization (Fig. 1). It was proposed that RTNs have frequently 
acted as alternative promoters for protein coding genes (Faulkner et al. 2009) and that 
they can contribute to tissue-specific expression (Matlik et al. 2006; Peaston et al. 
2004). Remarkably, up to 30 % of all RNA transcripts have been found to initiate 
within RTNs (Faulkner et al. 2009). These studies support a functional role for RTNs 
in genome regulation, suggesting that RTNs have coevolved with the host genome, 
which has developed mechanisms to control their activity whilst exploiting RTNs for 
regulatory functions (Gifford et al. 2013; Goodier and Kazazian 2008; Goke and Ng 
2016). Given that aberrant transcription from RTNs is a well- recognized hallmark of 
cancer, it is possible that activation of RTN promoters could have direct roles, inde-
pendent of mobilization, in the transition from normalcy to malignancy, by altering 
the genome’s transcriptional and epigenetic profiles. Evidence supporting this hypoth-
esis is explored within this chapter. Retrotransposon- derived regulatory regions and 
transcripts in the context of stem cells and pluripotency are reviewed in chapter 
“Retrotransposon-Derived Regulatory Regions and Transcripts in Stemness.”
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2  RTN Promoters’ Activity

It has long been recognized that RTN promoters—generally silenced and heavily 
methylated in normal somatic cells—are usually hypomethylated and aberrantly 
active in cancer. The observed association between decreased levels of DNA meth-
ylation and RTN activity has led to the notion that it is the decrease in methylation 
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Fig. 1 Consequences of activation of RTN promoters in cancer. (a) Activation of the promoters of 
RTNs (black box) can act to drive chimeric transcripts (black and gray lines) that are alternative 
isoforms of protein coding genes (gray boxes), some of which may have oncogenic potential (e.g., 
Wolff et al. 2010; Faulkner et al. 2009; Hur et al. 2013). (b) RTNs can drive expression of non- 
coding chimeric RNAs (black and gray wavy line; e.g., Faulkner et al. 2009; Lu et al. 2014) that, 
similar to the HOTAIR lncRNA (Gupta et al. 2010), can act as a scaffold for chromatin remodeling 
complexes (e.g., PRC), resulting in silencing of regions that are complementary to them. 
Alternatively, non-coding RDTs can be further processed into small and micro RNAs to induce 
posttranscriptional inhibition of complementary RNAs (e.g., Ohms and Rangasamy 2014; Yang 
and Kazazian 2006). (c) In a more speculative scenario, as has been shown for gene body regions 
(Baubec et al. 2015), transcription reading through at host gene promoters could drive their silenc-
ing by inducing recruitment at these promoters of DNA methyltransferases like DNMT3B. (d) 
Activation of some RTNs may be associated with their activity as enhancers for other genes 
(curved arrow; e.g., Fort et al. 2014) or as boundary elements that could either prevent interaction 
of host genes with their enhancers (gray oval) or allow host gene expression by preventing the 
spreading of flanking heterochromatin (not shown; e.g., Lunyak et al. 2007). Note that for simplic-
ity in each panel an RTN located either within (intragenic) or between (intergenic) genes is illus-
trated with only one promoter active. Most RTNs have bidirectional promoters and the effects 
described can be ascribed to both promoter activities and brought about both by intergenic and 
intragenic RTNs. ^ = splicing; bent arrows = promoters
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level that triggers RTN activation in cancer (Eden et al. 2003; Gaudet et al. 2003; 
Symer et al. 2002). It has been proposed that DNA methylation initially evolved as 
a mean to repress endogenous transposable elements (Yoder et al. 1997; Jones and 
Baylin 2007), and indeed loss of methylation is associated with RTN transcrip-
tional activation (Walsh et al. 1998). Decreased methylation at transposable ele-
ment sequences occurs naturally in the early embryo, where increased transcription 
from RTN promoters may be essential for correct development (Peaston et  al. 
2004; Macfarlan et al. 2012). However, whether hypomethylation is a cause or a 
consequence of RTN activation remains to be established. In colorectal cancer, the 
study of LINE-1 methylation has produced controversy, with divergent findings 
reported, for example, with regard to the association of LINE-1 methylation level 
and tumor stage (Ogino et al. 2008; Sunami et al. 2011; Matsunoki et al. 2012; 
Murata et al. 2013). Though it remains to be proven whether methylation of RTNs 
directly regulates their promoters or is rather a reflection of the chromosomal con-
text (Sproul et al. 2011, 2012), it has been established that transcriptional activity 
of RTN promoters is increased in cancer (Criscione et  al. 2014). Intriguingly, 
whilst accumulation of mutations during the course of evolution has rendered the 
majority of RTNs immobile, many non-mobile RTNs have retained strong promot-
ers. For example, of the 500,000 LINE-1s present in the human genome only 
80–100 elements are retrotransposition proficient (RC-L1s) (Brouha et al. 2003); 
by contrast, as many as 7000 L1s contain intact promoters from which transcrip-
tion can be initiated (Khan et al. 2006).

Considering that there are more RTN promoters than actively mobile elements, 
it is feasible to propose that the effects of aberrant transcription from RTN pro-
moters maybe as relevant to cancer as the effects of retrotransposition itself. Many 
RTN promoters are bidirectional and this property allows them to not only drive 
sense transcription of the element itself, but also on the antisense strand (Speek 
2001; Domansky et al. 2000; Dunn et al. 2006; Cruickshanks and Tufarelli 2009). 
Both activities can extend transcription past the RTN into adjacent sequences giv-
ing rise to RNA transcripts comprising part repetitive element and part flanking 
genomic sequence, referred to hereafter as RTN-driven transcripts (RDTs). RDTs 
can possess protein coding potential, or be non-coding, or can simply be the by-
product of aberrant transcription. Nevertheless, their presence demonstrates that 
RTN promoters are active in cancer; as described in detail below, such aberrant 
transcription could in some instances contribute to cancer development or pro-
gression as a consequence of the action of the transcripts generated or of the 
transcription event itself.

2.1  RTNs as Promoters of Protein Coding Transcripts

RTNs’ ability to drive expression of protein coding genes was reported, even before 
the advent of high-throughput sequencing technologies. For example, expression of 
human β1,3-galactosyltransferase 5  in the colon, was shown to be driven by a 
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HERV-LTR (Dunn et  al. 2003). Similarly, studies in mouse mature oocytes and 
cleavage stage embryos demonstrated that expression of a subset of host genes is 
driven and regulated by RTNs (Peaston et al. 2004). The propensity of RTNs to act 
as promoters and first exons for host genes in normal and disease situations was 
later confirmed by genome-wide studies (Faulkner et al. 2009). In cancer, examples 
of both LTR and non-LTR RTNs driving coding chimeric transcripts with potential 
roles in malignancy have been reported. An upstream LTR2 has been found to drive 
aberrant transcription, in diffuse large B-cell lymphoma, of an alternative isoform 
of the brain-specific fatty acid-binding protein gene FABP7 (Lock et al. 2014); sim-
ilarly, upregulation of interferon regulatory factor 5 (IRF5) in Hodgkin lymphoma 
is driven by aberrant activation of an endogenous retroviral LTR upstream of IRF5 
(Babaian et al. 2015). Promoters of LINE-1 elements have also been shown to drive 
transcription of protein coding chimeric transcripts in cancer. Activation of the anti-
sense promoter of an intronic LINE-1 within the receptor tyrosine kinase cMET 
gene causes expression of a truncated isoform of cMET (L1-MET) with oncogenic 
properties both in chronic myeloid leukemia (Roman-Gomez et  al. 2005) and in 
bladder cancer (Wolff et al. 2010). Expression of L1-MET was also observed in 
colon cancer alongside that of other chimeric transcripts coding oncogenic isoforms 
of the RAB3A interacting protein (RAB3IP) and the Cholinergic Receptor 
Muscarinic 3 (CHRM3), also driven by activation of intronic LINE-1 promoters 
(Hur et al. 2013).

These reports highlight the potential contribution of RTNs to cancer progression 
by inducing either ectopic expression of host genes or the production of truncated 
isoforms of cellular genes with oncogenic properties (Fig.1a). It is worth noting that 
at the moment all the examples of coding chimeric transcripts are limited to those 
including sequences of known proteins; further research combining high- throughput 
transcriptomics and proteomics approaches with the development of appropriate 
bioinformatic tools will be required to uncover whether novel coding transcripts can 
arise from activation of RTNs within region expected to be non-coding, such as 
gene desert regions.

2.2  RTN-Driven Non-coding RNA Transcription

An increasing body of evidence indicates that, in addition to their contribution to 
coding transcripts, RTNs can act as regulators of gene expression (Elbarbary et al. 
2016). It has been proposed that initiation of many cancers is triggered by epigen-
etic alterations brought about by activation of RTN promoters (Wilkins 2010). RTN 
promoters can drive transcription of antisense and non-coding RNAs; both non- 
coding and antisense-RNAs are able to alter the epigenetic profile (e.g., DNA meth-
ylation) of the regions through which they are transcribed, or to which they are 
complementary, causing changes in the way in which genes are expressed (Guttman 
and Rinn 2012; Werner 2013). The contribution of RTN promoters to transcription 
initiation of non-coding RNAs in stem cells had been previously reported (Faulkner 
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et al. 2009). This is epitomized by the recent finding that subfamily H of human 
endogenous retroviruses (HERVH) gives rise to nuclear non-coding RNAs neces-
sary for human embryonic stem cell identity through their interaction with coactiva-
tors and pluripotency factors such as OCT4 (Lu et  al. 2014). Recent work also 
suggests that RTN-driven non-coding RNAs predominantly derive from LTR/ERVs 
promoters rather than from LINE-1 and Alu (Kapusta et al. 2013). However, anti-
sense transcription from LINE-1 elements on the X chromosome has been observed 
and is proposed to play a role in silencing of genes that are prone to escape 
X-inactivation (Chow et  al. 2010). Given that the majority of long non-coding 
RNAs tend to be retained within the nucleus, and are of considerably lower abun-
dance than coding transcripts, it is possible that the contribution of RTNs to non- 
coding RNAs is currently underestimated; indeed, most reports have performed 
their analyses on polyadenylated RNA which is predominantly cytosolic (Djebali 
et al. 2012). In support of this, a recent study has shown that in mouse stem cells 
many previously unknown nuclear non-coding RNAs derived from ERVs can only 
be found when analyzing the nuclear RNA fraction (Fort et al. 2014).

Non-coding and antisense-RNAs as well as the process of transcription can have 
functional roles in health and in disease situations (Baubec et al. 2015; Guttman and 
Rinn 2012; Magistri et al. 2012; Tufarelli et al. 2003; Yu et al. 2008). A number of 
long non-coding RNAs (lncRNAs), i.e., those longer than 200 nt, have been shown 
to have genome regulatory functions (Rinn and Chang 2012). lncRNAs are deregu-
lated in a variety of cancer types (Gutschner and Diederichs 2012) and evidence is 
accumulating suggesting that they can play key roles in tumorigenesis (Cheetham 
et  al. 2013). An early example of a long non-coding RNA in cancer is that of 
HOTAIR, an RNA that binds to polycomb repressive complex 2 (PRC2), and whose 
overexpression in breast cancer leads to increased invasiveness and metastasis 
(Gupta et al. 2010). This example highlights the ability of some lncRNAs to act as 
scaffolds for chromatin-remodeling complexes and regulate the complexes’ spatial 
and temporal function (Khalil et al. 2009; Koziol and Rinn 2010). In addition to 
function as scaffolds, lncRNAs can exert other molecular functions—e.g., act as 
signals, decoys, and guides—which given the modular structure of RNAs can be 
exercised in different combinations by individual lncRNAs (Rinn and Chang 2012; 
Wang and Chang 2011). Not do only RTNs contribute heavily to lncRNA sequences 
(Ganesh and Svoboda 2016), but more importantly they provide promoters for 
many lncRNAs, as the majority of naturally occurring antisense transcripts and a 
significant number of non-coding RNAs have been found to initiate at RTNs 
(Faulkner et al. 2009; Conley et al. 2008). It is therefore possible that activation of 
RTN transcription in cancer can also contribute to cancer development or progres-
sion by deregulating lncRNAs (Fig. 1b).

In addition to lncRNAs, RTNs can give rise to short RNAs (including siRNAs 
and miRNAs), some of which play roles in regulating RTN expression, via RNA 
interference pathways (Yang and Kazazian 2006). It has been proposed that RNA 
interference systems that evolved to silence RTNs have been co-opted to give rise to 
miRNA pathways shown to regulate host gene expression, and also that several of 
the miRNAs acting on host gene are derived from RTNs (Piriyapongsa et al. 2007). 
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Interestingly, recent work indicates that expression of LINE-1  in human cancers 
may contribute to downregulation of several miRNAs that may be important in 
maintaining genome integrity (Ohms and Rangasamy 2014), suggesting an addi-
tional way in which RTNs can contribute to cancer progression (Fig. 1b).

Finally, it is worth noting that, in the last few years, it has been established that 
the process of transcription can alter the chromatin of read-through regions: tran-
scribing RNA polymerase II interacts with the histone methyltransferase SETD2 
causing trimethylation at lysine 36 of histone H3 (H3K36me3), which in turn 
recruits the de novo DNA methyltransferase DNMT3B, leading to methylation of 
the read-through region (Baubec et al. 2015). It is therefore possible that transcrip-
tion initiated at aberrantly active RTN promoters in cancer could trigger some of the 
instances of tumor suppressor gene promoter methylation observed in cancer 
(Fig. 1c). Recently, expression of a long RNA driven by the antisense promoter of a 
LINE-1 element (LCT13) has been linked to epigenetic silencing of a known tumor 
suppressor gene (TFPI-2) in breast and colon cancer (Cruickshanks et al. 2013). 
The mechanism underlying this event has yet to be elucidated and the observations 
are compatible with both of the scenarios depicted in Fig. 1b, c. Nevertheless this 
example further supports the hypothesis that transcription driven by LINE-1 pro-
moters can extend over long distances and contribute to epigenetic remodeling of 
the cancer cell genome (Tufarelli et al. 2013).

2.3  Other Regulatory Functions of RTN Promoters

RTN promoter activity can be associated with other regulatory functions (e.g., 
enhancer and boundary activities) besides those directly attributable to the effects 
of transcription described above. The potential for RTNs to regulate gene expres-
sion has been further supported by the observation that at least 20 % of the known 
regulatory sequences in the human genome have been exapted from RTNs (Lowe 
and Haussler 2012). Intriguingly, intragenic enhancers have been found to act as 
alternative promoters (Kowalczyk et al. 2012), and promoters of intergenic long 
non- coding RNAs can show enhancer properties (Zentner et al. 2011). Indeed, a 
large number of functional enhancers have been found to drive transcription of 
non- coding enhancer RNAs, highlighting the similarities between enhancers and 
promoters (Li et al. 2016). It is therefore possible that some intergenic RTNs that 
act as alternative promoters for host genes or intergenic RTNs that initiate tran-
scription of long non-coding RNAs might have enhancer activity. Non-LTR 
SINEs, for example, have been shown to act as enhancers in the developing brain 
to regulate expression of fibroblast growth factor 8 (Fgf8) and special AT-rich 
sequence- binding protein 2 (Satb2) (Sasaki et al. 2008; Tashiro et al. 2011), creat-
ing a precedent for RTNs in this role. Genome-wide approaches have demon-
strated that studying the nuclear RNA fraction allowed the identification of many 
LTR-RTN derived transcripts, several of which co-localize with enhancer activity 
(Fort et al. 2014).
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Transcription events have also been found to be associated with boundary activi-
ties. In the mouse, transcription from a SINE B2 within the growth hormone locus 
is required to prevent flanking heterochromatin from silencing the five genes within 
the locus in a developmentally specific manner (Lunyak et al. 2007). More recently, 
a cross species comparative analysis of sites bound by the CCCTC-binding factor 
(CTCF), a DNA-binding protein found at chromatin boundary regions, has revealed 
that RTNs often flank highly conserved CTCF sites (Schmidt et al. 2012).

Taken together, these observations suggest that transcription from some RTN 
promoters in cancer maybe an indicator of their activity as regulatory elements (e.g., 
enhancers and/or boundaries; Fig. 1d) and the RNA is just a by-product of such 
activity. In this way, RTNs could contribute to cancer transformation by altering the 
structural organization of chromatin domains within cells, with consequent deregu-
lation of host gene expression.

3  Final Remarks

The findings summarized above support the concept that activation of RTN promoters 
can contribute to cancer in ways that go beyond retrotransposition and thus can also 
be exerted by immobilized elements, including ancient RTN subfamilies (Fig. 2).
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RTN
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genetic instability/ 
mutagenesis

oncogene 
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tumour suppressor 
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epigenetic 
remodeling

Fig. 2 Biological implications of RTN promoters activation in cancer—in normal cells RTN 
(black box) promoters (bent arrows) are silenced (crossed out bent arrows) by epigenetic means 
(Goodier and Kazazian 2008). Activation of promoters of RTNs is associated with cancer but the 
mechanisms leading to this have not yet been fully elucidated as shown by the “?”. In addition to 
genome instability and mutagenesis associated with retrotransposition (not discussed in this chap-
ter), activation of RTN promoters can lead to cancer in ways that are independent of retrotransposi-
tion, including the effects depicted in Fig.  1 that can promote oncogene expression, tumor 
suppressor gene silencing, and epigenetic remodeling
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Activation of RTN promoters can play important roles in regulating genome 
function at those stages in which RTNs are active (germline, early embryo stem 
cells/placentation, and cancer (Yoder et  al. 1997; Kazazian 2004; Ostertag and 
Kazazian 2001)). Given that transcription necessarily precedes retrotransposition, 
these effects can also play important roles in the early stages of cancer. Understanding 
the molecular pathways leading to RTN activation in cancer remains a largely unan-
swered question. Although hypomethylation has been proposed as a cause of RTN 
activation, it is unclear how this comes about and in which instances this is the trig-
ger of activation, or simply reflects the methylation of the tissue and/or cell of origin 
of the cancer, or is just a consequence of activation. Intriguingly, the majority of 
cancer-inducing agents—e.g., irradiation, UV exposure, and drugs—cause RTN 
activation (Banerjee et  al. 2005; Farkash et  al. 2006; Terasaki et  al. 2013). RTN 
activation is also observed following viral infection (Karijolich et al. 2015) and in 
ageing (Zane et al. 2014), both associated with an increased risk of cancer. It is pos-
sible that different subsets of RTNs will act in different cancer types and at different 
stages of cancer development. Given the large number of RTNs, it will be important 
to identify the individual elements whose activation drives cancer (drivers) from 
those that become active as a consequence of cancer (passengers). However, due to 
their repetitive nature, until recently it has been challenging to study individual ele-
ments at their natural integration sites.

Rapid advances in sequencing technologies now make it possible to gather infor-
mation about virtually every nucleotide in the genome. Indeed, a newly published 
study used GeneBank ESTs databases and long reads RNA-seq data obtained using 
Pacific Bioscience technology to characterize a large number of transcripts initiating 
at LINE-1s (Criscione et al. 2016). Ongoing work to improve both sequencing tech-
nologies and the bioinformatic analysis tools for repetitive elements will enable a 
thorough investigation of individual RTN insertions. In this way it should be possible 
to determine which RTNs play functional roles in individual cancers and at which 
stages of cancer progression. Recent progresses in measuring the transcriptional activ-
ity of individual RTN copies (Philippe et al. 2016; Scott et al. 2016) will help profiling 
RTN promoters that become active in cancer, and will be fundamental to establish 
which ones play functional roles, and in studying the mechanisms that lead to their 
activation. This will bring insights into how RTN promoters are regulated, the factors 
that control their activity, and the functional consequences of this activity. This knowl-
edge will be pivotal in establishing which RDTs or components of the molecular 
machinery involved in their activation and/or functional outcomes warrant further 
investigation as potential targets for therapy. Finally, it is worth noting that regardless 
of their functional roles, RDTs have the potential to distinguish normal from cancer-
ous tissues (Cruickshanks et al. 2013; Wolff et al. 2010; Hur et al. 2013), suggesting 
they may be a rich source of novel cancer biomarkers to complement those already 
available. As discrete, locus-specific transcripts, they may also be appropriate “liquid 
biopsy” targets, with potential to improve the early detection of cancer.
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1  Introduction

Knowledge is an unending adventure at the edge of uncertainty.

Jacob Bronowski

Thus far, Koch’s postulates have not been satisfied on the question of a putative etio-
logic role of any human endogenous retroelements in human tumorigenesis. The above 
quote illustrates the uncertainty of precisely how, or even if, endogenous retroelements 
play an etiologic role in tumorigenesis. These difficult-to-study genetic elements have 
been suspected to play at least a partial role in tumorigenesis for the following two 
principal reasons. First, germline insertions of most well- studied endogenous ret-
rotransposon, Long INterspesed Element-1 (LINE-1 or L1), cause many nonneoplastic 
heritable genetic disorders in humans (Belancio et al. 2008). Second, increased activity 
of endogenous retroelements has been observed in human cancers (Ting et al. 2011). 
More recent studies on LINE-1 antisense promoter- driven transcription in both human 
health and disease highlight novel and varied aspects of endogenous retrotransposons 
life cycle (Denli et al. 2015). Therefore, it is entirely possible that endogenous ret-
rotransposons play a putative etiologic role in tumorigenesis.

In an authoritative review on the mechanisms of neoplasia development in humans, 
Vogelstein and colleagues remind the readers that much of the primary nuclear 
genome is occupied by repetitive elements (Vogelstein et al. 2013). Selected features 
of such so-called genomic dark matter will be, at least in part, demystified through my 
exposition. What follows is a principled discussion on varied aspects of the role of 
endogenous retrotransposons in tumorigenesis. First, two most  well- studied features 
of LINE-1 in cancers will be defined: measurement of LINE-1 promoter methylation 
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by PCR assay, a proxy for genome-wide DNA methylation level, and measurement of 
LINE-1-encoded proteins (ORF1p ≫ ORF2p), usually as determined by immunohis-
tochemistry. Next, using a current WHO anatomic classification of human neoplasias 
as a conceptual framework, I will discuss salient features of LINE-1 retrotransposon 
biology in selected cancers derived from different somatic organs. Finally, I will con-
clude the exposition with a brief discussion of most notable mechanistic studies impli-
cating LINE-1 retrotransposons in human tumorigenesis.

As of January 2016, there are 932 primary published reports focusing, at least in 
part, on detection of some feature of LINE-1 biology in human neoplasms (Fig. 1). 
Remarkably, almost 13 % of all these reports are collective work of only three 
research groups: (1) the group led by Drs. Shuji Ogino and Charles S. Fuchs, both of 
Harvard Medical School; (2) collaborators of the former group, Drs. Yoshifumi Baba 
and Hideo Baba, both of Kumamoto University; and (3) work of Dr. Prescott 
Deininger, of Tulane University (Fig. 2). Also notable is the pioneering work by Drs. 
Fanning and Singer on LINE-1 expression in cancers. These two remarkable authors 
have, in a series of early original articles, established that LINE-1 is an independent 
genetic element (Fanning and Singer 1987), which is both transcribed and translated 
at increased levels in breast and germ cell cancers (Skowronski et al. 1988; Leibold 
et al. 1990; Bratthauer and Fanning 1992; Asch et al. 1996). Finally, Miki and col-
leagues were the first to document LINE-1 retrotransposition in cancer (Miki et al. 
1992). Specifically, these authors identified LINE-1-derived sequence in the last 
exon of APC gene of colorectal carcinoma but not in adjoining normal tissue. This 
particular LINE-1 insertion gives us arguably the most compelling record, to date, 
for unequivocal deleterious genetic variant caused by LINE-1 retrotransposition.

The vast majority of LINE-1 studies in cancer rely on detection of LINE-1 pro-
moter methylation by PCR assay. Nearly all such studies require pretreatment of 
target analytes, i.e., genomic DNAs, with bisulfite reagent, which in turn allows the 
identification of unmodified cytosine moieties and methylated cytosine bases. The 
analyte in such studies is heterogeneous, composed of unknowable and variable 
proportions of both lesional cancer cells and intercalated contaminating normal 
cells. The second—less used—method to assay LINE-1-encoded proteins in cancer 
specimens is immunohistochemistry. Here, the analyte is individual cancer cell, 
which allows evaluation of both LINE-1 protein expression levels and cellular 
localization in lesional cells. Comparably fewer studies rely on DNA sequencing 
technology, a laborious and imperfect high-complexity assay, to identify somatic 
LINE-1 retrotransposition events in cancer.

2  LINE-1 in Prostate Cancer

To date, studies of LINE-1 in prostate cancer support the notion that some features 
of LINE-1 biology, such as LINE-1 hypomethylation and translation of LINE-1- 
encoded proteins, are detectable in prostate cancers. For instance, a retrospective 
study of 737 men showed that relative decrease in LINE-1 methylation in initial 
biopsy is associated with prostate cancer on re-biopsy, but only in patients with 
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higher pathologic stage prostate cancer (Gleason score >4 + 3) (Zelic et al. 2015). 
Another study of 703 men showed that LINE-1 hypomethylation in matched periph-
eral blood specimens is not associated with subsequent risk of prostate cancer 
(Barry et al. 2015).

An intriguing in  vitro study of human prostate cancer cell lines showed that 
endogenous LINE-1 ORF1p is readily detectable in nuclei of human prostate cancer 
cell lines, where it interacts with androgen receptor (Lu et  al. 2013). Transient 
downregulation of endogenous LINE-1 ORF1p attenuated growth of both androgen- 
dependent and -independent prostate cancer cell lines, as well as caused decrease in 
anchorage-dependent proliferation (Lu et al. 2013) (Table 1). The authors concluded 
that LINE-1 ORF1p functions as a novel androgen receptor co-activator and pro-
motes the growth of human prostatic carcinoma cells (Lu et  al. 2013). Another 
in  vitro study of two human prostate cancer cell lines showed that exogenous 
LINE-1 ORF2p interacts with androgen receptor and promotes double-stranded 
break formation, which are in turn required for generation of TMPRSS2:ERGb and 
TMPRSS2:ETV1b translocations (Lin et al. 2009). Both studies deserve further fol-
low- up inquiries to attribute a definite and easily observable phenotype to exoge-
nous LINE-1 ORF2p overexpression (Table 1).

A small study of six precancerous prostate lesions, termed prostatic intraepithelial 
neoplasias (PINs), revealed that 5/6 PINs express LINE-1 ORF2p, suggesting that 
LINE-1-encoded protein expression occurs early during tumorigenesis and may be 
useful as an early biomarker of incipient prostate cancer (De Luca et  al. 2015). 
Another small in vitro study of 14 human prostate cancers revealed that  cancer cells 
with MPRSS2:ETV1b translocation show a relative loss of methylation (~30 %) in 
genomic loci in and around LINE-1 retrotransposon sequences compared to translo-
cation-negative cohort (~50 %) (Kim et  al. 2011). Because study design involved 
deep sequencing and genomic localization of at least some individual reads, the find-
ings support the notion that attenuation of LINE-1 methylation is roughly equally 
distributed within the primary nuclear genome (Kim et al. 2011).

There are two research articles documenting LINE-1 retrotransposition in pros-
tate cancer. First, work by Lee and colleagues revealed that LINE-1 retrotransposi-
tion is a frequent event in prostate cancers (present in 6/7 tumor specimens studied) 

Fig. 2 Wordle 
representation of most 
published authors on 
LINE-1 retrotransposons in 
human cancers to date. 
Image was obtained by 
analyzing the names of all 
PubMed authors 
(keywords: “LINE-1 AND 
cancer”) using free wordle 
software at http://
worditout.com/word-cloud/
make-a-new-one
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(Lee et al. 2012). However, on average, there were only four LINE-1 retrotransposi-
tion events detected per tumor. The genes near LINE-1 retrotransposition were nota-
ble for two features. They were both mutated at a higher rate than background 
mutational rate and expressed at comparably lower levels relative to normal colorectal 
tissue. More recent collaborative work by Tubio and colleagues showed that ~75 % of 
60 prostate cancers studied supported LINE-1 retrotransposition (Tubio et al. 2014). 
However, similar to the preceding study, the vast majority of LINE-1 permissive can-
cers were marked by a single LINE-1 retrotransposition event per tumor.

Taken together, there is some evidence that LINE-1-encoded proteins are 
expressed early in prostate cancer, and that LINE-1 retrotransposons may play a 
role in the growth of some prostate cancer cells.

3  LINE-1 in Bladder Cancer

Studies of LINE-1 retrotransposons in bladder cancer are preliminary and few. For 
instance, there are no studies documenting LINE-1 retrotransposition in bladder 
cancer. A retrospective study of 548 bladder cancer cases showed modest synergy 
between LINE-1 hypomethylation in patients’ peripheral leukocytes and estimated 
historical trihalomethanes water source levels, a known risk factor for bladder can-
cer tumorigenesis (Salas et al. 2014). A retrospective study of 952 bladder cancer 
cases showed modest tendency for bladder cancer risk in both cases with marked 
LINE-1 hypomethylation and in a subgroup of patient with five single-nucleotide 
variants of phosphatidylethanolamine N-methyltransferase (PEMT) gene, a trans-
ferase enzyme that is involved in biosynthesis of phosphatidylcholine—a putative 
bladder cancer risk factor (Tajuddin et al. 2014).

A small study of 16 bladder cancers showed that LINE-1 promoter methylation 
in bladder cancer is decreased compared to cultured urothelial cells (Kreimer et al. 
2013). A moderate (p = +0.63) positive tendency for concurrent relatively higher 
expression of LINE-1 transcripts by qRT-PCR in hypomethylated LINE-1 bladder 

Table 1 Phenotypes attributed to LINE-1 retrotransposons in empirical cancer studies

References

Due to exogenous LINE-1 retrotransposons
  Cell culture
   ORF2p promotes translocations in cultured cancer cells Lin et al. (2009)
   ORF1p promotes breast cancer cell growth Yang et al. (2013)
Due to endogenous LINE-1 retrotransposons
  Cell culture
   siRNA/RNAi knockdown causes decreased cancer cell line 

growth
Lu et al. (2013), Sciamanna 
et al. (2005)

   siRNA knockdown causes telomere shortening Aschacher et al. (2016)
  Human tissue studies
   Insertional mutagenesis into MCC intron associated with 

haploinsufficiency
Shukla et al. (2013)
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cancers was also noted (Kreimer et al. 2013). This peculiar dissociation between 
degrees of LINE-1 methylation, a feature of transcriptional potential, and steady- 
state levels of LINE-1 transcripts in cancer suggests that the cellular machinery 
might limit LINE-1 transcript accumulation.

A study of 50 bladder cancers noted attenuation of LINE-1 promoter methyla-
tion in bladder cancer (average level, 61.36 %) compared to matched normal speci-
mens, including serum (80.47 %), buffy coat (79.36 %), and buccal cell DNA 
(77.09 %) (van Bemmel et al. 2012). In addition, a moderate association between 
LINE-1 hypomethylation and higher tumor stage and higher grade was identified 
(p = −0.56 and −0.52, respectively) (van Bemmel et al. 2012). Using DNA from 
circulating nucleated cells, mostly leukocytes, a retrospective case-controlled study 
of 285 bladder cancer patients revealed an association between LINE-1 hypometh-
ylation and increased risk of developing bladder cancer (odds ratio, 1.8) (Wilhelm 
et al. 2010). The association was more pronounced in women than in men (odds 
ratio, 2.48) (Wilhelm et al. 2010). Of note, in control cohort comprised of patients 
without diagnosis of bladder cancer, reduced LINE-1 methylation was associated 
with higher levels of arsenic in blood (Wilhelm et al. 2010).

Taken together, while there is some evidence that the epigenome of bladder can-
cers is marked by relative LINE-1 hypomethylation, there is no evidence that 
LINE-1 plays an etiologic role in tumorigenesis of bladder cancers in human.

4  LINE-1 in Renal Cell Carcinoma

There are only a few notable clinical reports focusing on LINE-1 methylation in 
renal cell carcinoma. A recent study documents that LINE-1 retrotransposition 
occurs rarely in most renal cell carcinomas (Helman et  al. 2014). First notable 
study found that LINE-1 methylation was lower in renal cell carcinomas from 
adults compared with neoplasms from younger patients (71.1 % vs. 76.7 %) 
(Malouf et  al. 2013). Second retrospective study notes that comparably higher 
LINE-1 methylation levels are detected in peripheral leukocytes of patients with 
renal cell carcinoma compared to healthy controls (Liao et al. 2011). The authors 
suggest that a risk of developing renal cell cancer may be associated with higher 
LINE-1 methylation.

Taken together, there is insufficient evidence on what, if any, role does LINE-1 
methylation plays in renal cell carcinoma tumorigenesis.

5  LINE-1 in Hepatocellular Carcinoma

Similar to studies of LINE-1 in genitourinary tract, LINE-1 clinical studies in hepa-
tocellular carcinoma model are few. However, a single study by Shukla et al. pro-
vided us with one of the most far-reaching evidences for a causative role of 
LINE-1 in tumorigenesis (Shukla et al. 2013) (Table 1).
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First notable study is that of 208 hepatocellular carcinomas (Harada et  al. 
2015). The authors found that greater degree of LINE-1 hypomethylation is asso-
ciated with higher recurrence rate, but there was no effect on overall survival 
(Harada et  al. 2015). Interestingly, a more pronounced tendency for tumoral 
LINE-1 hypomethylation and higher recurrence rate was observed within a sub-
group of hepatocellular carcinomas that did not harbor concurrent HBV or HCV 
infection (Harada et al. 2015).

Sometimes LINE-1 retrotransposons are co-opted during tumorigenic process to 
provide additional amino acid sequences for alternative chimeric proteins. Studying 
HBV genomic integration sites Lau et al. discovered that newly integrated HBV 
near LINE-1 sequences causes HBV-driven HBV-LINE-1 chimeric transcripts that 
are expressed in up to 30 % of hepatocellular carcinomas (Lau et al. 2014). Of note, 
cases with detectable HBV-LINE-1 chimeric transcripts had shorter overall survival 
(Lau et al. 2014).

On the other hand, LINE-1 hypomethylation is common in hepatocellular carci-
nomas. In a study of 71 hepatocellular carcinomas, a ~20 % decrease in genome- 
wide LINE-1 methylation was detected in nearly 90 % of cases (Gao et al. 2014). 
LINE-1 hypomethylation in this cohort was also associated with shorter overall 
survival tumor (Gao et al. 2014).

In a hallmark study of 19 hepatocellular carcinomas by Shukla et al., the authors 
reported a handful of cancer-specific LINE-1 retrotransposition events (Shukla 
et al. 2013). Of note, in three cases, a heterozygous germline LINE-1 insertion into 
an intron of MCC, a known tumor-suppressor gene, was associated with marked 
haploinsufficiency of both MCC mRNA and protein (Shukla et al. 2013). The find-
ings suggest that LINE-1 insert caused MCC downregulation. Albeit limited in 
scope, this study provides the most complete empirical mechanistic evidence to date 
on how exactly LINE-1 activation in cancer can contribute to tumorigenesis.

A unique prospective study of 305 hepatocellular carcinomas revealed that 
LINE-1 hypomethylation is detectable in matched pre-diagnostic blood specimens 
(Wu et al. 2012b). These remarkable results suggest that global hypomethylation 
may be a useful biomarker of hepatocellular carcinoma susceptibility.

Taken together, LINE-1 hypomethylation is a feature of many hepatocellular car-
cinomas, but it remains uncertain how these epigenetic abnormalities arise. LINE-1 
retrotransposons contribute rarely to hepatocellular carcinoma tumorigenesis.

6  LINE-1 in Pancreatic Carcinomas

There are only a few notable studies of the putative role of LINE-1 retrotransposons 
in pancreatic carcinomas. My own recent study of 20 pancreatic ductal carcinomas 
revealed that LINE-1 insertions occur at a comparable rate to single-nucleotide 
mutations (Rodic et al. 2015). However, we found no easily interpretable mechanis-
tic answers on how LINE-1 inserts possibly affect either the epigenome or the tran-
scriptome of pancreatic ductal carcinomas. Most importantly, we detected no 
tendency for LINE-1 to insert into or near genes already implicated in pancreatic 
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cancer development (Rodic et al. 2015; Ewing et al. 2015). However, genome-wide 
changes in LINE-1 methylation levels are readily detectable in many pancreatic 
cancer cases. A retrospective study of peripheral leukocytes from 559 pancreatic 
ductal carcinoma patients revealed LINE-1 hypermethylation in cancers compared 
to healthy controls (Neale et al. 2014; Ewing et al. 2015). The authors noted that 
selection bias might have affected their findings. In contrast to LINE-1 hypermeth-
ylation in peripheral leukocytes, expression of LINE-1-encoded ORF1p is a feature 
of most pancreatic ductal adenocarcinomas (Rodic et al. 2014). However, it appears 
that while transcription from LINE-1 promoters and translation of LINE-1-encoded 
proteins are readily detected in many pancreatic ductal carcinomas, LINE-1 ret-
rotransposition is a comparably rare event in this type of carcinomas.

A study by Stefanoli et al. involving 56 pancreatic neuroendocrine carcinomas 
revealed cancer-specific LINE-1 hypomethylation compared to that seen in healthy 
controls (Stefanoli et al. 2014). Due to cleverly executed study design, the authors 
discerned that LINE-1 hypomethylation is not associated with either copy number 
alterations or gene-specific methylation changes (Stefanoli et  al. 2014). Further, 
LINE-1 hypomethylation was associated with higher pathologic stage and were 
found to be independent significant predictors of outcome (Stefanoli et al. 2014).

Taken together, LINE-1 methylation changes may be an early feature of pancre-
atic cancers, but there is preliminary evidence that endogenous LINE-1 retrotrans-
position does not affect pancreatic cancer tumorigenesis.

7  LINE-1 in Colorectal Carcinomas

Studies of LINE-1 retrotransposons in colorectal cancers are many; perhaps colorec-
tal cancer is the most well-studied cancer type to date when it comes to LINE-1 
retrotransposons, and was the first reported case of somatic retrotransposition in 
humans (Miki et al. 1992).

Focusing on 129 metastatic colorectal carcinoma cases, Lou et al. elucidated that 
LINE-1 hypomethylation correlates to shorter disease-free survival (Lou et  al. 
2014). Of interest, the degree of LINE-1 hypomethylation is more pronounced in 
older patients (>65 years) (Lou et al. 2014). A study of 219 colorectal carcinomas 
by Benard et  al. discerned an association between LINE-1 hypomethylation and 
shorter overall survival (Benard et al. 2013). Of note, attenuation of the H3K27me3 
histone mark, an epigenetic biomarker of global gene repression, further adversely 
affected overall survival in the LINE-1 hypomethylated subgroup, indicating that 
LINE-1 hypomethylation is a likely marker of genome-wide epigenetic changes 
(Benard et al. 2013).

Colorectal carcinomas are a heterogeneous group of disorders, some marked by 
genetic hypermutability of microsatellites (microsatellite instability or MSI) that 
results from impaired DNA mismatch repair. A subgroup analysis of 1336 colorec-
tal cancers by Inamura et al. revealed an association between cancers with MSI high 
and LINE-1 hypomethylation (Inamura et al. 2015). Another study of a comparable 

N. Rodic



283

cohort of 1211 colorectal carcinomas by the same authors focused on studying the 
tumoral LINE-1 methylation level and microsatellite instability in relation to 
colorectal cancer prognosis. Focusing on the MSI high subgroup, the authors dis-
covered that LINE-1 hypomethylation is associated with a shorter cancer-specific 
survival (Inamura et al. 2014).

Because colorectal carcinomas are posited to form via a multistep tumorigenic 
process, LINE-1 hypomethylation has been studied in many early pre-cancerous 
proliferations and adjoining normal colonic tissue. In essence, colorectal cancer is 
thought to originate from some benign proliferations, so-called adenomas. A study 
of 1386 colorectal lesions by Naito et al. revealed that LINE-1 hypomethylation is 
a feature of some adenomas, revealing that LINE-1 hypomethylation occurs in 
many benign adenomas (Naito et al. 2014). A similar study of 158 colorectal neo-
plasms of varied microscopic appearance by Konda et  al. revealed that LINE-1 
hypomethylation is more pronounced in selected colorectal carcinomas with unique 
macroscopic features (Konda et al. 2014). A unique study of 40 colorectal carcino-
mas with adjacent adenomas by Yamada et al. detected LINE-1 hypomethylation in 
normal colon associated with multiple adenomas, suggesting a cancerization “field 
defect” effect (Yamada et  al. 2014). However, in a study of 77 adenomas by 
Quintanilla et al., LINE-1 hypomethylation was not present in normal colon associ-
ated with adenomas (Quintanilla et al. 2014).

Several studies addressed intratumoral heterogeneity of LINE-1 methylation lev-
els in colorectal carcinomas. In a study of 68 metastatic colorectal carcinomas by 
Murata et  al., LINE-1 methylation levels in matched primary and metastatic 
 specimens were similar (Murata et al. 2013). Prognostic impact of LINE-1 hypo-
methylation on overall survival was not detected (Murata et al. 2013). A study of 48 
colorectal carcinomas with matched primary and metastatic specimens by Matsunoki 
et al. showed that LINE-1 methylation shows little intra-patient tumor heterogeneity 
(Matsunoki et al. 2012).

An important retrospective study of 1244 patients with colorectal carcinoma 
diagnosis by Ogino et al. established that LINE-1 hypomethylation associated with 
cases with positive family history of colorectal carcinoma (Ogino et al. 2013).

A study of 281 colorectal adenoma cases by Jung et al. found that LINE-1 hypo-
methylation in peripheral leukocytes is associated with increased risk of colorectal 
carcinoma (Jung et  al. 2013). Interestingly, this study also provides evidence that 
LINE-1 hypomethylation is in turn associated with decreased plasma folate levels 
(Jung et al. 2013). A study of 509 colorectal patients by Walters et al. revealed an 
association between LINE-1 hypermethylation in peripheral leukocytes in cases with 
colorectal cancer compared to healthy controls (Walters et al. 2013). In a study of 343 
colorectal carcinomas by Antelo et  al., LINE-1 hypomethylation was most pro-
nounced in early-onset cases (<50 years old at presentation) compared to LINE-1 
methylation in other clinical cancer subtypes and normal colonic mucosa (Antelo 
et al. 2012). Considering the entire cohort, the authors detected shorter overall sur-
vival in patients with LINE-1 hypomethylation (Antelo et al. 2012). A recent study of 
ten colorectal carcinomas by De Luca et al. showed that LINE-1 ORF2p is expressed 
in all ten cancer specimens by immunohistochemistry (De Luca et al. 2015).
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More recent studies by Solyom and Ewing showed insertions in adjacent normal 
tissue, colonic adenoma, and colorectal carcinoma (Ewing et al. 2015). In addition, 
TCGA-based pancancer studies by Lee and colleagues (Lee et al. 2012), Helman 
and colleagues (Helman et al. 2014), and Tubio and colleagues (Tubio et al. 2014) 
all report LINE-1 retrotransposition in colorectal carcinomas. Similar to several 
other visceral neoplasms, including head and neck carcinomas, lung carcinomas, 
and uterine carcinomas, LINE-1 retrotransposition in colorectal carcinomas appears 
to be biphasic. Specifically, LINE-1 retrotransposition is not identified in the vast 
majority of the above-mentioned neoplasms, but, in rare cases, marked LINE-1 ret-
rotranposition (>50 inserts per tumor) is seen in each of the above-mentioned 
neoplasms.

Taken together, there is moderate evidence that LINE-1 hypomethylation occurs 
early during colorectal carcinoma tumorigenesis. There is an assertion that serum 
folate levels may be inversely related to cancer-specific LINE-1 hypomethylation. 
LINE-1 retrotransposition may drive tumorigenesis in rare cases of colorectal 
carcinomas.

8  LINE-1 in Esophageal Carcinoma

Many organ-specific cancers are commonly divided into histopathologic vari-
ants, based on microscopic appearance of cancer cells. A study of 502 esopha-
geal cancers by Baba et  al. revealed that basiloid esophageal cancers showed 
greater degree of LINE-1 hypomethylation than squamous esophageal cancers 
(Baba et al. 2015).

A study of 140 esophageal cancer cases by Hashimoto et al. revealed that LINE-1 
hypomethylation is present in esophageal cancers compared to normal mucosa 
(Hoshimoto et al. 2015). Furthermore, greater degree of LINE-1 hypomethylation 
was noted in higher pathologic stage cancers (Hoshimoto et  al. 2015). Another 
study of 125 esophageal carcinomas by Li et al. also detected LINE-1 hypomethyl-
ation in esophageal cancers compared to LINE-1 methylation levels in normal 
mucosa (Li et al. 2014).

A study of 109 esophageal carcinomas by Shigaki et al. discovered an associa-
tion between LINE-1 hypomethylation in noncancerous esophageal mucosae of 
esophageal carcinoma cases and smoking history (Shigaki et al. 2012). Importantly, 
there was an additional association amongst LINE-1 hypomethylation and smoking 
duration as well as number of cigarettes smoked per day (Shigaki et al. 2012).

Taken together there is moderate epidemiologic evidence documenting LINE-1 
hypomethylation in esophageal carcinomas. There are no mechanistic studies 
implicating putative role of LINE-1 hypomethylation in tumorigenesis of esopha-
geal carcinomas. LINE-1 retrotransposition has been reported in premalignant 
Barett’s esophagus and esophageal carcinomas (Doucet-O’Hare et  al. 2015; 
Paterson et al. 2015), but the role of LINE-1 insertions in esophageal carcinomas 
remains unclear.
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9  LINE-1 in Gastric Cancers

A study of 24 gastric cancers by Dauksa et al. reported LINE-1 hypomethylation in 
peripheral leukocytes of cancer cases compared to LINE-1 methylation levels of 
healthy controls (Dauksa et al. 2014). The authors suggest that LINE-1 hypometh-
ylation may be a biomarker and/or predictive of gastric cancer (Dauksa et al. 2014).

A study of 88 gastric cancers by Yang et al. reported LINE-1 hypomethylation of 
gastric cancers relative to LINE-1 methylation levels in both gastric adenomas and 
normal gastric mucosa (Yang et al. 2014). A study of 87 gastric carcinoma cases by 
Kosumi et al. determined LINE-1 hypomethylation in noncancerous gastric mucosa 
of gastric cancer patients relative to LINE-1 methylation levels in healthy mucosa 
(Kosumi et al. 2015). The authors note that this feature of LINE-1 abnormality folds 
under the term “field cancerization” and as such LINE-1 hypomethylation may arise 
from exposure to a putative injurious environment.

An interesting study by Wang et  al. characterizes expression of a gene, 
GCRG213p, which shares 88 % protein sequence homology with endonuclease 
C-terminal portion of LINE-1 ORF2p (Wang et al. 2013). Studying a series of 175 
gastric carcinomas, the authors discover that GCRG213p is readily detectable by 
western blotting analysis and immunohistochemistry in gastric carcinomas, but not 
in normal mucosa (Wang et al. 2013). Highest GCRG213p was observed in well- 
differentiated histopathologic appearance and late-age onset of gastric carcinomas 
(Wang et  al. 2013). This report highlights notable genetic pleiotropy of LINE-1 
retrotransposon biology in cancer.

A study of 203 gastric carcinomas by Shigaki et  al. reported an association 
between LINE-1 hypomethylation and shorter overall survival (Shigaki et al. 2013).

A study of 198 gastric cancers by Bae et al. looked at LINE-1 methylation levels 
in early, the most incipient pre-stage of gastric cancers, so-called intestinal metapla-
sia (Bae et al. 2012). The authors detect LINE-1 hypomethylation even in such most 
early stage of gastric precancer (Bae et al. 2012). Of note, it is thought that only a 
few intestinal metaplasias progress to gastric adenoma stage, and, in turn, even 
fewer gastric adenomas progress to gastric carcinomas.

Taken together, there is moderate evidence that LINE-1 hypomethylation is a 
biomarker of early gastric neoplasias. LINE-1 retrotransposition in gastric carcino-
mas has been reported (Ewing et al. 2015), but there is no empirical evidence that 
LINE-1 retrotransposons contribute to tumorigenesis of gastric carcinomas.

10  LINE-1 in Malignant Melanomas

Studies of LINE-1 retrotransposons in malignant melanomas are few but interest-
ing. One such notable study is a report by De Araujo et al. of 69 melanomas (De 
Araujo et al. 2015). The authors discovered no difference in LINE-1 methylation 
in peripheral leukocytes of most melanoma cases compared to LINE-1 
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methylation levels in healthy controls (De Araujo et al. 2015). However, heredi-
tary cases of melanoma carrying germline CDKN2A mutations showed hyper-
methylation of LINE-1 in peripheral leukocytes. This important finding suggests 
that LINE-1 hypomethylation is dispensable for tumorigenesis of some malignant 
melanomas.

Another notable study is that by Pergoli et  al. of 167 malignant melanomas 
(Pergoli et  al. 2014). The study revealed no tendency for LINE-1 methylation 
changes in peripheral leukocytes of malignant melanoma cases compared to LINE-1 
methylation levels in healthy controls (Pergoli et al. 2014). A study of 180 melano-
mas by Hyland et al. also did not detect any significant association between LINE-1 
methylation in peripheral leukocytes and risk of malignant melanomas (Hyland 
et al. 2013). Study of 133 melanomas and 56 peripheral leukocytes specimens from 
melanoma patients by Hashimoto et al. revealed that tumoral LINE-1 hypomethyl-
ation denotes shorter overall prognosis (Hoshimoto et  al. 2012). In addition, the 
authors also report LINE-1 hypomethylation in peripheral leukocytes of high- 
pathologic- stage melanoma patients (Hoshimoto et al. 2012).

Taken together, there is some evidence that LINE-1 hypomethylation occurs in 
most malignant melanomas. There are no mechanistic studies of LINE-1 retrotrans-
posons in malignant melanomas.

11  LINE-1 in Breast Cancer

Cleverly designed studies of LINE-1 retrotransposons in breast cancer have 
provided useful insights into the timing of LINE-1 hypomethylation through-
out tumorigenesis. Of particular importance is a study by Delgano-Cruzata 
et al. of 333 cancer-free females’ family members of the New York site of the 
Breast Cancer Family Registry (Delgado-Cruzata et  al. 2014). The authors 
 discovered that LINE-1 hypomethylation is detectable in individuals with three 
or more first-degree relatives with breast cancer compared to women with only 
one first-degree relative (Delgado-Cruzata et al. 2014). Of note, hypomethyl-
ation of other repetitive sequences, such as Alu and Sat2, also showed a similar 
association (Delgado- Cruzata et  al. 2014). A study of 274 breast cancers by 
Park et  al. identified an association between LINE-1 hypomethylation and 
 several early aberrant molecular features: negative ER status, ERBB2 (HER2) 
amplification, and p53 overexpression (Park et al. 2014). As in the preceding 
study, the authors also reported Alu hypomethylation in the same cohort (Park 
et al. 2014).

Singularly, the most insightful study of this entire chapter is an analysis by Deroo 
et al. of pre-diagnostic LINE-1 methylation levels in the sister study (Deroo et al. 
2014). Here the authors obtained blood specimens from 50,884 females aged 35–74 
years who were not diagnosed with breast cancer at the time of blood draw (Deroo 
et al. 2014). Some females developed breast cancer in the course of the study and 
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two main findings are notable. First, LINE-1 hypomethylation of pre-diagnostic 
peripheral leukocytes was associated with breast cancer risk (Deroo et al. 2014). 
Second, the authors also detected a dose-dependent relationship between the degree 
of LINE-1 hypomethylation and the level of breast cancer risk (Deroo et al. 2014). 
Another sister study by Wu examined DNA methylation levels in 282 breast cancer 
cases and 347 unaffected sisters (Wu et al. 2012a). While methylation of tandemly 
repeating satellite DNA, Sat2, was associated with the risk of breask cancer, no 
association was detected between breast cancer risk and LINE-1 methylation (Wu 
et al. 2012a).

Studying a singular breast cancer cell line Yang et al. reported that exogenous 
LINE-1 ORF1p functions as a novel HGF/ETS-1 signaling pathway co-activator 
(Yang et al. 2013). Authors also noted that exogenous ORF1p promotes breast can-
cer cell line growth (Yang et al. 2013). The study is notable because, to my mind, 
this is one of only a few reported instances of a measurable empirical phenotype 
following LINE-1, albeit exogenous, expression (Table 1).

Several of the following studies focused on varied other aspects of LINE-1 biol-
ogy in breast cancers. A study by Cruickshanks et  al. identified transcription of 
novel chimeric transcripts, termed LCT13, in selected breast cancers (Cruickshanks 
et al. 2013). The authors propose that LCT13 expression likely mediates epigenetic 
silencing of the metastasis-suppressor gene TFPI-2 (Cruickshanks et  al. 2013). 
L1-mediated chimeric transcripts are the topic of chapter “Retrotransposon-Driven 
Transcription and Cancer” in this book.

Pioneering studies by Fanning and colleagues discovered that a majority (~90 %) 
of breast carcinomas support LINE-1 ORF1p expression by immunohistochemistry 
(Bratthauer et al. 1994), raising the possibility that LINE-1 expression contributes 
to the tumorigenesis of breast cancers. A study of 95 breast carcinomas by Chen 
et al. revealed that cancers with both nuclear LINE-1 ORF1p and ORF2p expression 
are associated with shorter overall survival (Chen et  al. 2012). Of note, roughly 
30 % of all breast cancers displayed such phenotype (Chen et al. 2012). A study by 
van Hoesel et al. examined LINE-1 methylation in 395 breast cancers (van Hoesel 
et al. 2012). Subgroup analysis showed that LINE-1 hypomethylation is associated 
with shorter overall survival, but only in younger patients (<55  years old) (van 
Hoesel et al. 2012). A study of 441 breast cancers by Harris showed that LINE-1 
ORF1p expression is detectable in the cytoplasm of tumor cells in approximately 
82 % of breast cancers (Harris et  al. 2010). As shown in the van Hoesel study, 
nuclear localization of the LINE-1 ORF1p protein by immunohistochemistry is 
associated with shorter overall survival (Harris et al. 2010).

Taken together there is evidence that LINE-1 ORF1p nuclear expression is a 
biomarker of aggressive breast cancers. There is preliminary evidence that LINE-1 
hypomethylation is a risk factor for breast cancer. LINE-1 retrotransposition in 
breast cancers has been noted (Helman et al. 2014), but there is no empirical evi-
dence that LINE-1 insertions can drive the tumorigenesis of these malignant 
neoplasms.
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12  LINE-1 in Lung Cancers

A hallmark study by Iskow et al. reported 9 LINE-1 retrotransposition events in 20 
lung cancers (Iskow et al. 2010). Of interest, cases that were LINE-1 retrotransposi-
tion permissive also showed hypomethylation of selected single-copy CpG islands 
suggesting again that global DNA hypomethylation in cancer underlies LINE-1 
hypomethylation (Iskow et  al. 2010). A study by Saito et  al. examined LINE-1 
methylation in 364 lung cancers (Saito et al. 2010). The authors find a link between 
LINE-1 hypomethylation and shorter overall survival, but only in early-pathologic- 
stage lung cancers (Saito et  al. 2010). A study of 211 lung adenocarcinomas by 
Ikeda et al. showed that LINE-1 hypomethylation is associated with several clinical 
and pathologic features such as shorter disease-free survival, higher pathologic 
stage, and presence of lymphovascular invasion (Ikeda et al. 2013).

Taken together, there is only preliminary evidence that LINE-1 hypomethylation 
occurs in lung cancers. Very little is known about putative effect of LINE-1 
 hypomethylation on lung cancer tumorigenesis. Some lung carcinomas are one of 
the most permissive types of neoplasms for somatic LINE-1 retrotransposition 
(Helman et al. 2014). Future studies focusing on the putative role of LINE-1 ret-
rotransposition in the tumorigenesis of lung cancers are warranted.

13  Perspectives

LINE-1 retrotransposons remain peculiar genetic elements with a wide array of 
potential biological ramifications: their transcription may cause downregulation of 
neighboring transcripts, endonuclease activity of LINE-1 ORF2p may cause stag-
gered double-stranded DNA breaks, and completion of LINE-1 retrotransposon life 
cycle can result in insertional mutagenesis. Each feature of LINE-1 retrotransposon 
life cycle can occur unchecked and therefore studies of LINE-1 in cancer are not 
one topic, but many.

The study of LINE-1 retrotransposons as a putative mediator or indicator of muta-
genesis/tumorigenesis is confounded by technological difficulties. The analyte is 
often hard to study for two principal reasons. First, LINE-1 hypomethylation denotes 
only limited decrease in LINE-1 methylation levels, such that LINE-1 hypomethyl-
ation in cancer tissues is usually approximately 70–80 % of that seen in healthy tis-
sue. Alternatively, because methylation-specific PCR primer pairs used in many of 
the above studies could plausibly anneal preferentially only to a subgroup of LINE-1 
sequences, there could be more marked LINE-1 hypomethylation effect, limited only 
to a subgroup of LINE-1 sequences, which are difficult to measure. Second, clinical 
specimens are often heterogeneous, comprised of unknown proportion of lesional 
cancer cells with accompanying and varied assortment of contaminating somatic 
cells, a mixture of stromal cells—fibroblasts, endothelial cells, and circulating hema-
tolymphoid cells. Many studies of LINE-1 hypomethylation are affected by this type 
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of pre-analytical bias, whereby each LINE-1 methylation measure is a composite 
average value of LINE-1 methylation obtained from some lesional cells and variable 
amount of contaminating non-lesional cells. To possibly improve performance char-
acteristics one could consider a change in tissue procurement: dissociating tissue and 
separating lesional cells by flow cytometry prior to analyses. Finally, when evaluat-
ing LINE-1 protein expression by immunohistochemistry or immunofluorescence, 
one should develop empirical standard, either from transfected cells or specimen 
types that support high level of LINE-1 ORF1p expression such as placenta or germ 
cell tumors (Rodic et al. 2014). Low levels of LINE-1-encoded protein expression 
versus background nonspecific staining can be difficult to discern (Doucet-O’Hare 
et al. 2015) even with the use of technical controls.

What studies are then needed to discern possible effect(s) of LINE-1 retrotrans-
posons on tumorigenesis? First, an animal model is desperately needed. Despite 
years of work, current codon-optimized LINE-1 ORFeus transgenic mice display 
limited skin color variegation phenotype, with no propensity for tumor formation 
(O’Donnell et  al. 2013). As an alternative, one should focus on identifying an 
observable phenotype, ascribed preferably to endogenous LINE-1 retrotransposons, 
for instance in cultured cells. Towards that end, works by Yang et al. (2013) and 
Sciamanna et al. (2005) should be revisited and studied in greater detail; both bodies 
of work show cancer cell growth inhibition following siRNA-mediated inhibition of 
endogenous LINE-1 retrotransposons (Table 1). A recent study by Aschacher et al. 
described how endogenous LINE-1 helps maintain telomere length (Aschacher 
et al. 2016). This study also deserves further inquiry (Table 1).

14  Conclusions

LINE-1 hypomethylation marks many, both benign and malignant, human neo-
plasms. The magnitude of hypomethylation is mild, usually ~70–80 % of that seen 
in normal tissue. On the other hand, LINE-1 retrotransposition is a seemingly rare 
event in cancer. With rare exceptions, LINE-1 retrotransposition likely does not 
drive tumorigenesis of most human cancers. Future studies should focus on mecha-
nisms of LINE-1 hypomethylation in cancer.
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1  Introduction

Aging is characterized by a failure within many cells and organs of the normal 
homeostatic mechanisms. It is a major risk factor for numerous disorders, including 
diabetes, hypertension, cardiac disease, osteoarthritis, neurodegeneration, and can-
cer. Slowing the rate of aging offers an opportunity to prevent, or at least delay, the 
onset and extent of these disorders, as well as the possibility of extending healthy 
human life span. Despite the biological complexity that underlies aging, it has 
repeatedly proven possible to extend the life span of model organisms through mod-
ifications of specific physiological systems such as chromatin maintenance, inter-
mediary metabolism, or insulin signaling (Kenyon et al. 1993; Rogina et al. 2000; 
Clancy et al. 2001; Tatar et al. 2001; Giannakou et al. 2004; Hwangbo et al. 2004; 
Kapahi et al. 2004; Oberdoerffer and Sinclair 2007; Dang et al. 2009; Sinclair and 
Oberdoerffer 2009; Feser et al. 2010; Greer et al. 2010; Kenyon 2010; Feser and 
Tyler 2011; Maures et al. 2011; Han and Brunet 2012; Ni et al. 2012).

A critical aspect of aging is the degradation of fundamental biological struc-
tures such as chromatin (Oberdoerffer and Sinclair 2007). In somatic cells, stabil-
ity of the genome and epigenome is essential for the maintenance of proper gene 
expression and silencing. Chromatin remodeling, including changes within 
regions of constitutive heterochromatin that were previously thought to retain 
repressive characteristics throughout the life of the cell, has emerged as an excit-
ing area in the molecular genetics of aging. Chromatin maintenance, especially 
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that of heterochromatin, has been shown to change with age in yeast, nematodes, 
flies, mice, and human cell culture, with far-reaching consequences for gene 
expression and cellular physiology (Kim et  al. 1996; Smeal et  al. 1996; Dang 
et al. 2009; Feser et al. 2010; Wood et al. 2010; Feser and Tyler 2011; De Cecco 
et al. 2013a; Jiang et al. 2013; Sedivy et al. 2013; Wood et al. 2016).

Age-related changes in chromatin states can alter gene transcription, resulting 
in the expression of genes that are normally silenced (or vice versa), with conse-
quent deleterious effects on cellular physiology (Elgin and Grewal 2003; Berger 
2007; Grewal and Jia 2007; Sedivy et al. 2008; Dang et al. 2009; Feser and Tyler 
2011; Han and Brunet 2012). The observed loss of silencing in heterochromatic 
regions with age includes the increased transcription of genes native to hetero-
chromatin, but also transcription and potential mobility of transposable elements 
(TEs), which make up the majority of transcripts emanating from heterochromatic 
regions. The ability of transposable elements not just to express themselves, but to 
mobilize to new genomic locations within individual somatic cells, adds an addi-
tional layer of peril to the potential consequences of the loss of heterochromatin 
silencing with age.

The contributions that loss of silencing of TEs in somatic cells makes toward the 
inevitable decline in organismal health with age are just beginning to be explored in 
detail. The recently discovered ability of TEs to promote aging is expected to open a 
new area of inquiry, with the potential of providing novel insights into the molecular 
mechanisms underlying the aging process, while simultaneously offering the prom-
ise of novel therapeutic interventions for the preservation of a healthier life span.

2  Remodeling of Chromatin During Aging

2.1  Yeast

The link between chromatin and aging has been well interrogated in invertebrate 
model systems. Early work in the budding yeast S. cerevisiae demonstrated a loss of 
silencing with age in heterochromatic regions of the genome, including telomeres, 
the mating type loci, and rDNA (Kim et al. 1996; Smeal et al. 1996; Kennedy et al. 
1997). More recently, a number of studies have examined the specific chromatin 
changes that take place as yeasts age. Histone H4K16 acetylation levels increase 
with age, and Sir2 (which deacetylates H4K16ac) levels drop (Dang et al. 2009). 
Furthermore, subtelomeric heterochromatic regions lose both histones and silencing 
as cells age. Another study confirmed the observation of general histone loss with 
age, and also showed that increasing histone supply genetically is sufficient to 
extend yeast replicative life span (Feser et al. 2010). This age-related loss of his-
tones is also associated with a breakdown in proper gene regulation, with normally 
silent genes becoming transcribed with age upon nucleosome loss or rearrangement 
(Hu et al. 2014). This is accompanied by a general increase in genomic instability, 
with DNA strand breaks, mitochondrial-nuclear DNA transfer, chromosomal 
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alterations and translocations, and retrotransposition all increasing during yeast 
aging (Hu et al. 2014). Additionally, manipulating chromatin by deleting the ISWI 
family chromatin remodeling gene ISW2 also leads to an extension in life span in a 
manner mimicking calorie restriction (Dang et al. 2014).

2.2  Nematodes

Results observed in yeast have also been extended to metazoan invertebrate model 
systems. In C. elegans a number of studies have shown links between chromatin 
structure and life span. Disrupting the ASH-2 complex, which contains a histone 
H3K4 methyltransferase activity, causes an increase in life span (Greer et al. 2010, 
2011). Disruption of the H3K4 demethylases has also been reported to extend life 
span in several studies. RNAi knockdown or null mutations of the H3K4me3 
demethylase RBR-2 as well as the H3K4me1/2 demethylases LSD-1 and SPR-5 
extend life span (Lee et al. 2003; McColl et al. 2008; Ni et al. 2012; Alvares et al. 
2014). Manipulation of the heterochromatic H3K27me3 mark, which is associated 
with Polycomb group complex silencing, also showed effects on life span. Two 
independent studies demonstrated that disrupting the H3K27me3 demethylase 
UTX-1 leads to increased levels of H3K27me3 accumulation in the genome, as well 
as increased life span (Jin et al. 2011; Maures et al. 2011). Similarly to yeast, knock-
ing down expression of the ISWI complex member athp-2 led to an increase in life 
span (Hu et al. 2014).

2.3  Fruit Flies

In addition to C. elegans, D. melanogaster has also been a useful model to inves-
tigate the association between chromatin structure and organismal life span. The 
characteristic enrichments of the constitutive heterochromatin mark H3K9me3 
and the heterochromatin protein HP1 are lost from pericentric heterochromatin 
with age in flies (Wood et al. 2010). In conjunction with this observation, hetero-
chromatic silencing of reporter genes in these same regions was lost with age in 
multiple tissues in the fly (Jiang et al. 2013). Overexpression of HP1 in flies is 
able to extend life span, suggesting the importance of maintaining proper hetero-
chromatin structure with age (Larson et al. 2012). A study examining aging fly 
muscle showed an accumulation of γH2AX, a histone variant associated with 
DNA strand breaks, in old flies (Jeon et al. 2015). Knockdown of HP1 acceler-
ated γH2AX accumulation and also shortened life span (Jeon et al. 2015). Aging 
effects are however not limited to heterochromatin. Histone acetylation levels 
also change with age on multiple residues, including an increase of H4K12ac, 
and mutation of the H4K12 acetyltransferase Chameau confers extended life 
span (Peleg et al. 2016).
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2.4  Mammals

Recent studies show that large regions of the genome undergo significant reorgani-
zation in cellular senescence and in aged mammalian tissues. Cellular senescence is 
an irreversible cell cycle arrest that is triggered by replicative exhaustion, DNA 
damage, oncogene activation, or oxidative stress. Although low in numbers, senes-
cent cells are found in aged tissues and have been shown to contribute to aging 
phenotypes (Baker et al. 2016). During the onset of senescence large segments of 
euchromatin become more closed and accumulate heterochromatic marks (Fig. 1) 
(Kreiling et al. 2011; De Cecco et al. 2013a; Chen et al. 2015; Criscione et al. 2016). 
A key feature of senescent cells is the formation of senescence-associated hetero-
chromatin foci (SAHF) containing specific heterochromatin signatures (Narita et al. 
2003; Zhang et al. 2007; Chandra et al. 2012). In contrast, regions of constitutive 
heterochromatin, such as lamin-associated domains (LADs) and centromeres, 
assume more open characteristics, as exemplified by the senescence-associated dis-
tention of satellites (SADS) (De Cecco et al. 2013a; Sadaie et al. 2013; Swanson 
et al. 2013). In addition, genes associated with the senescence-associated secretory 
phenotype (SASP) take on epigenetic signatures not found in non-senescent cells 
(Rai and Adams 2013; Chen et al. 2015).

Genome-wide changes in chromatin structure also occur in chronologically aged 
cells in vivo, with a closing of euchromatic regions and an accumulation of hetero-
chromatic marks, leading to an overall reduction in mRNA expression (Sarg et al. 
2002; Shumaker et al. 2006; O'Sullivan et al. 2010; Kreiling et al. 2011; De Cecco 
et al. 2013b). A corresponding opening of constitutive heterochromatin (De Cecco 
et al. 2013b) suggests an overall decompaction of the highly heterochromatic regions 
known to contain large numbers of retrotransposable elements (RTEs). Taken together, 

Chromatin reorganization with age

Young

Old

RTE 
expression

Fig. 1 Age-associated chromatin reorganization. In young cells chromatin is organized into 
regions of tightly packed heterochromatin (left) and relatively open euchromatin (right). As cells 
age, some regions of heterochromatin open up and other regions of euchromatin become more 
condensed. As a result, repressed genes (such as RTEs, indicated in blue) in heterochromatic 
regions become susceptible to transcription
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evidence points to large-scale changes in genome organization, with some regions 
becoming more closed and others more open, with the latter leading to an increase in 
the expression of RTEs (O'Sullivan and Karlseder 2012; Sedivy et al. 2013).

The loss of constitutive heterochromatin is correlated with a loss of DNA 
methylation and histone modifications associated with constitutive heterochroma-
tin. Genome-wide methylation patterns change during cellular senescence and 
with age in the mammalian genome, with specific regions gaining methylation 
and others losing methylation (Cruickshanks et  al. 2013a; Day et  al. 2013; 
Hanzelmann et al. 2015). In young cells the repetitive regions of the genome show 
highest levels of DNA methylation, and these regions of hypermethylation become 
hypomethylated with age (Avrahami et al. 2015; Fernandez et al. 2015; Sun and 
Yi 2015). This global loss of methylation is coupled with a genome-wide reduc-
tion in the H3K9me3 histone modification (Scaffidi and Misteli 2006; Shumaker 
et al. 2006; O'Sullivan et al. 2010; Zhang et al. 2015), which is associated with 
repressive heterochromatin and is believed to be actively involved in the repres-
sion of RTEs (Scaffidi and Misteli 2006). As discussed below, these heterochro-
matic marks are involved in silencing RTEs and their loss may contribute to the 
derepression of these elements.

It is also important to note that results obtained in model organisms are not 
always completely consistent. For instance, in flies the disruption of lid, a LSD-1 
H3K4 demethylase analog, shortens life span, in contrast to results observed in C. 
elegans (Li et al. 2010). Disruption of the H3K27 methyltransferase E(Z) in flies 
leads to reduced levels of H3K27me3 and increased life span (Siebold et al. 2010), 
in contrast to worms where higher levels of H3K27me3 were associated with long 
life span (Jin et al. 2011; Maures et al. 2011). Disruption of RBR-2 in worms can 
have differential effects depending on which allele is used (Greer et  al. 2010; 
Alvares et al. 2014). Nevertheless, although there undoubtedly are tissue-specific 
and even organism-specific mechanistic details that remain to be worked out, con-
siderable evidence has accumulated for a strong association between chromatin 
structure, especially that of heterochromatin, and the regulation of longevity in mul-
tiple model systems.

2.5  Changes in the 3D Structure of Chromosomes

Aging cells display dramatic alterations in chromatin accessibility, histone modifica-
tions, DNA methylation, and nuclear lamina associations. These changes in chroma-
tin architecture were hypothesized to extend even to the 3D structure of the 
chromosomes. The first hint that chromosome structure may be altered in aging cells 
came from studies of fibroblasts from patients with the Hutchinson-Gilford progeria 
syndrome (HGPS) (McCord et al. 2013). HPGS is a premature aging disease that is 
caused by mutations in the lamin A gene (LMNA) that result in disruption of interac-
tions between chromatin and the nuclear lamina. In cell culture HGPS patient skin 
fibroblasts display misshapen nuclei and a loss of the peripheral heterochromatin 
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compartment (Goldman et al. 2004). When HGPS skin fibroblasts were examined by 
Hi-C, a method to investigate the three-dimensional architecture of the genome, a 
breakdown of the compartmentalization of active and inactive chromatin domains was 
observed (McCord et al. 2013). The alterations are likely caused by the disruption of 
nuclear lamina-chromatin interactions which normally function to restrict the inactive 
heterochromatin compartment to the nuclear periphery (Guelen et al. 2008).

The 3D structure of chromosomes has also been explored using Hi-C in 
oncogene- induced and replicative cellular senescence, which have some overlap-
ping but also distinct features. Oncogene-induced senescence (OIS) is believed to 
be induced by a DNA damage response that is caused by replication stress (Hills 
and Diffley 2014), whereas replicative cellular senescence is caused by a DNA dam-
age response due to the progressive shortening and deprotection of telomeres. 
SAHF are typically observed in OIS (Narita et al. 2003), whereas in many models 
of replicative senescence SAHF formation is weaker or sometimes not present 
(Kosar et al. 2011). In OIS regions with heterochromatic histone marks as well as 
LADs display loss of local interactions and gain of long-range interactions (Chandra 
et al. 2015). This reorganization is consistent with the presence of SAHF in OIS, 
since heterochromatic regions could cluster spatially over long distances to form the 
SAHFs (Chandra et al. 2015). The alterations in 3D chromosome structure observed 
in OIS are however relatively modest in comparison to the global loss of chromo-
some compartmentalization found in HPGS.

The alterations in chromosome structure observed during replicative senescence 
are more extensive than in OIS, but also not as drastic as in HPGS. In replicative 
senescence chromosomes displayed a global loss of long-range and increase of 
short-range interactions (Criscione et al. 2016). Chromosome painting experiments 
additionally showed that these alterations were associated with a decrease in the 
absolute chromosome volume in senescent cells. In replicative senescence the chro-
mosome compartment organization remained mostly unchanged; however, a subset 
of compartments switched from active to repressive domains (and vice versa). 
Similar to the compartment switching observed during cellular differentiation 
(Dixon et al. 2015), compartment switching in replicative senescence also led to 
correlated changes in gene expression. Interestingly, similarities to cellular differen-
tiation events were noted in studies of both OIS and replicative senescence (Chandra 
et al. 2015; Criscione et al. 2016). These observations highlight that cellular senes-
cence is a programmed response to DNA damage that results in the remodeling of 
chromatin as well as large-scale changes in chromosome architecture, although 
these processes also include some distinct features that are dependent on the 
senescence- inducing stimuli.

3  Control of TEs and Their Activation with Aging

A significant fraction of eukaryotic genomes are comprised of repetitive sequences. 
Among the several types of repetitive sequences, noncoding tandem repeats (satel-
lites, telomeres) and TEs are the most abundant. The TEs can be subdivided into two 
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major groups, the DNA transposons and the retrotransposons (RTEs) (Huang et al. 
2012). Many species, including the model organisms C. elegans and D. melanogas-
ter discussed in this chapter, harbor active elements of both classes. The most prom-
inent TEs in the mammalian genome are the RTEs. There are three major families 
of RTEs: the long terminal repeat (LTR) RTEs, which include retroviruses; the long 
interspersed nuclear elements (LINEs); and the short interspersed nuclear elements 
(SINEs). LTR RTEs and LINEs encode a reverse transcriptase and other proteins 
required for retrotransposition, and hence intact elements can mobilize autono-
mously, whereas the SINEs are noncoding and exploit the machinery encoded by 
LINEs to transpose. It is believed that only the LINE L1 remains capable of autono-
mous retrotransposition in the human genome, whereas both LINE and LTR ele-
ments can mobilize in the mouse genome.

3.1  TEs Are Silenced by RNAi Pathways

Largely conserved across species from plants to animals, RNA interference (RNAi) 
pathways employ small RNAs (smRNAs) to regulate protein-coding genes as well 
as endogenous proviral sequences such as TEs (Shabalina and Koonin 2008). TEs 
are repressed by RNAi at two levels: posttranscriptional regulation by targeting 
mRNA, and transcriptional regulation by the recruitment of repressive heterochro-
matic marks to silence the target genes. smRNA pathways known to regulate TEs in 
animals include the microRNA (miRNA) pathway, the short interfering RNA 
(siRNA) pathway, and the Piwi-interacting RNA (piRNA) pathways. While these 
pathways are known for their roles in silencing TEs, they are largely tissue specific 
with the siRNA and miRNA pathways being active in all tissues while the piRNA 
pathway is predominantly active in the gonads (Slotkin and Martienssen 2007; 
Ghildiyal and Zamore 2009; Heras et al. 2013, 2014; Hamdorf et al. 2015).

Each pathway differs somewhat in its effector proteins, manner of smRNA bio-
genesis, and modes of silencing. The siRNA pathway employs 21 nt siRNAs derived 
from the cleavage of long double-stranded (dsRNA) substrates by the protein Dicer 
(Yang and Kazazian 2006; Brennecke et al. 2007; Czech et al. 2008; Ghildiyal et al. 
2008; Kawamura et al. 2008). These siRNAs are loaded onto an argonaute (AGO) 
effector protein, thereby forming an RNA-induced silencing complex (RISC), 
which then uses its siRNA to target and cleave homologous mRNAs in the cyto-
plasm. The RISC can also move to the nucleus where it recruits chromatin- modifying 
enzymes promoting the formation of heterochromatin at the site of TE transcription 
(Slotkin and Martienssen 2007; Fagegaltier et al. 2009).

The piRNA pathway operates through a mechanism whereby large genomic regions 
consisting of intact as well as fragmented TEs, called piRNA clusters, are transcribed 
into large single-stranded RNA precursors that are then processed into smaller 23–29 nt 
piRNAs. piRNAs are also loaded onto pathway-specific Piwi clade argonaute proteins, 
thus forming piRNA-RISCs (Brennecke et  al. 2007; Ghildiyal and Zamore 2009). 
Similar to the siRNA pathway, these piRNA-RISCs are able to target TE transcripts for 
silencing either through catalytic cleavage or heterochromatization (Aravin et al. 2007, 
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2008; Carmell et al. 2007; Di Giacomo et al. 2013). These smRNA pathways have been 
shown to be critical in preventing the genomic damage caused by the reactivation of 
TEs. Evidence is also growing that the ability of these pathways to perform their vital 
functions of suppressing TEs, in both somatic and reproductive tissues, may be closely 
linked with aging phenotypes.

3.2  Disruption of RNAi Pathways Correlates with Aging 
Phenotypes

The role of RNAi in regulating TEs in metazoans has been well characterized in 
multiple model organisms. In Drosophila, mutations in genes of either the siRNA or 
the piRNA pathways have consistently been associated with a dramatic upregula-
tion of TE transcript levels (Vagin et al. 2006; Rozhkov et al. 2013). This correlates 
with both an increase in transposition and a change in the heterochromatic marks 
associated with TEs (Fagegaltier et al. 2009; Gu and Elgin 2013; Perrat et al. 2013). 
Mutants in the siRNA genes Dcr-2 and Ago-2 have dramatically shortened life 
spans, and this correlates with significant reactivation of TEs (Czech et al. 2008; 
Ghildiyal et al. 2008; Lim et al. 2011; Li et al. 2013). Interestingly, while TEs have 
been shown to reactivate with age across multiple species, the transcript levels of 
RNAi genes that regulate TEs are not known to decline with age and in fact remain 
constant (Li et  al. 2013; Abe et  al. 2014). However, the spectrum of available 
smRNAs that are loaded onto RISCs is known to change with age (Abe et al. 2014). 
In addition, mutation of known modifiers of RNAi efficacy has been shown to mod-
ulate TE activity and life span (Savva et al. 2013). Multiple age-associated diseases 
are also associated with TE reactivation. For example, macular degeneration in mice 
and human cell culture has been shown to be dependent upon RNAi machinery 
where RNAi mutants exhibited increased levels of Alu RNA resulting in RNA tox-
icity (Kaneko et al. 2011; Tarallo et al. 2012; Gelfand et al. 2015). This suggests that 
while RNAi proteins themselves may remain relatively constant with age, the many 
dynamic components and partners of RNAi as well as the overall activity of RNAi 
may not be as stable. Hence, inhibition or enhancement of RNAi silencing of TEs 
would be expected to negatively or positively impact life span, respectively. A better 
understanding of the dynamics of RNAi TE silencing may allow us to control TE 
reactivation with age.

3.2.1  RNA Editing

In the siRNA pathway, dsRNAs serve as the substrates from which RNAi proteins 
produce and employ siRNAs in silencing TEs (Ghildiyal and Zamore 2009). dsR-
NAs in general have also long been known to be substrates for dsRNA-modifying 
enzymes such as ADAR proteins. These enzymes bind to dsRNAs and are able to 
convert adenosine bases to inosines, a base analog of guanine (Savva et al. 2012). 
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This A-to-I editing results in a base pair mismatch between the resulting inosine and 
the thymine that previously paired with the edited adenosine. The capacity of ADAR 
proteins to edit dsRNAs has been shown to confer new properties on their sub-
strates, including modified secondary structures, altered stability, nuclear retention, 
and even novel protein-coding functions (Chen et  al. 2008; Jepson et  al. 2011; 
Rieder et al. 2013).

Since dsRNAs are the substrates for siRNA formation, ADAR may also be able to 
edit these RNAs and thereby modulate the RNAi pathway. The Dicer proteins that 
catalyze the endonucleolytic cleavage of their dsRNA targets often require a high 
degree of base pair complementarity, a property that is impaired by RNA editing 
(Scadden and Smith 2001; Wang et al. 2005; Carpenter et al. 2009; Heale et al. 2009). 
Hence, ADAR could indirectly inhibit the ability of the siRNA pathway to silence 
TEs by impairing the access of Dicer to its dsRNA substrates. In fact, it was recently 
shown that a dsRNA trigger necessary for the silencing of a TE in Drosophila was a 
target of ADAR, and ADAR mutants showed reduced levels of TE transcripts, sug-
gesting enhanced TE silencing (Savva et  al. 2013). These mutants also showed 
altered levels of heterochromatic marks, including HP1 and H3K9me3, and dramatic 
changes in position effect variegation, a phenotype in Drosophila known to be depen-
dent on heterochromatin boundaries. Finally, ADAR mutants showed a dramatic 
extension of life span. These results suggest that RNA editing may abrogate the TE 
silencing effects of RNAi and that disrupting genes that impede RNAi, such as 
ADAR, may enhance TE silencing and thereby extend organismal life span.

3.2.2  RISC Complex Misloading

Argonautes are the main effector proteins that perform RNAi silencing, and the 
siRNA, piRNA, and miRNA pathways all employ such proteins (Ghildiyal and 
Zamore 2009). The argonaute proteins act in concert with their respective smRNAs 
to mediate silencing. The miRNA pathway utilizes miRNAs (21–22 nt long) that 
often imperfectly base pair with their targets upon association with an argonaute 
protein. This miRNA-RISC then prevents translation of the target mRNA by one of 
the two methods: stalling or blocking ribosome access, or cleavage of the target 
mRNA (Ghildiyal and Zamore 2009). Mammals have four argonautes (AGO1–4), 
and while only AGO2 is catalytically active, all four argonautes are able to bind 
smRNAs and facilitate inhibition of translation (Liu 2004; Meister et  al. 2004; 
Wilson and Doudna 2013). Interestingly, human AGO2 can accept both miRNAs 
and siRNAs (Hutvagner and Zamore 2002; Martinez et al. 2002).

In contrast, in Drosophila Ago1 is almost exclusively loaded with miRNAs while 
Ago2 is loaded mostly with siRNAs (Forstemann et  al. 2007). However, recent 
work has shown that miRNAs and siRNAs compete for loading onto Ago2, the 
argonaute responsible for TE silencing in flies (Abe et al. 2014). In both flies and 
mammals, siRNAs are specifically 2′-O-methylated at their 3′ termini (Ghildiyal 
and Zamore 2009). In flies miRNAs were found to be increasingly inappropriately 
methylated with age, allowing them to be loaded onto Ago2, and thus reducing 

 Contribution of Retrotransposable Elements to Aging



306

siRNA access (Abe et al. 2014). This study did not examine the effect of this RISC 
misloading on the ability of siRNAs to silence TEs. However, this is an interesting 
possibility, especially in mammals where siRNAs and miRNAs share AGO2 for 
silencing, and this competition could functionally impact TE silencing.

3.3  The Role of the piRNA Pathway in Aging

3.3.1  piRNA Deficiencies in Aging Gonads

The piRNA pathway has long been known to be a guardian of genomic integrity in 
the germline. These longer smRNAs (23-29  nt) associate with three Piwi clade 
argonaute proteins and, similar to siRNAs, are 2′-O-methylated (Brennecke et al. 
2007; Ghildiyal and Zamore 2009). An exonuclease, known as Nibbler, regulates 
the length of miRNAs, siRNAs, and piRNAs in both somatic and gonadal tissues 
(Feltzin et al. 2015). Nibbler is responsible for the appropriate trimming of the 3′ 
termini of these diverse classes of smRNAs (Liu et al. 2011; Feltzin et al. 2015). In 
flies, Nibbler mutants showed age-associated accumulation of brain damage and 
physiological effects such as loss of climbing ability (Abe et al. 2014; Feltzin et al. 
2015). Another study showed an association between increased Nibbler activity and 
TE reactivation (Wang et al. 2016). piRNA length was also shown to increase in 
aged ovaries and this correlated with lower piRNA abundance, suggesting a disrup-
tion of piRNA biogenesis. piRNA pathway mutants display increased TE reactiva-
tion and a decline or complete loss in fertility (Wang et al. 2016), and both of these 
phenotypes are also observed in aging animals. Aging is also known to directly 
affect the fertility of mammals (Ge et al. 2015) and may be related to reactivation of 
TEs. In support of this, studies in mice where L1 elements were transgenically over-
expressed show increased embryonic lethality suggesting that TEs directly contrib-
ute to infertility (Malki et al. 2014). It is possible that reproductive output is reduced 
with age due to an increase in piRNA trimming, resulting in aberrant piRNA bio-
genesis and increased TE reactivation

3.3.2  The piRNA Pathway in Somatic Tissues

Recent evidence has begun to suggest that the piRNA pathway may also be active in 
tissues outside of the gonad. piRNAs and their argonautes have been found in 
healthy somatic tissues of flies, mice, macaques, and humans (Lee et al. 2011; Yan 
et al. 2011; Perrat et al. 2013; Jones et al. 2016). In addition, multiple studies have 
documented reactivation of piRNA pathway machinery in various types of cancer 
(Ross et al. 2014). However, it is not yet known why these piRNA components are 
expressed in these situations. It is interesting to note that multiple studies have also 
shown reactivation of TEs in cancer (Chenais 2013; Doucet-O’Hare et  al. 2015; 
Ewing et al. 2015; Rodic et al. 2015) (see also chapters “Retrotransposon Contribution 
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to Genomic Plasticity” and “LINE-1 Retrotransposons as Neoplastic Biomarkers”). 
One possibility is that the piRNA pathway, arguably the premier genomic defense 
against TEs, is activated as a compensatory response to TE derepression in cancer-
ous or aging somatic tissues. Our knowledge of piRNA pathway activity in somatic 
tissues is very incomplete, and experiments determining a mechanistic cause for its 
presence and the role it serves in the soma have yet to be performed.

3.4  TEs in the Mammalian Genome

Approximately 50 % of mammalian genomes are comprised of repetitive sequences 
(de Koning et al. 2011). Over evolutionary time most resident RTEs have acquired 
multiple mutations and are no longer active; however a small fraction retain the abil-
ity to transpose (Levin and Moran 2011; Sookdeo et al. 2013). In response, cells 
have evolved mechanisms to keep these elements tightly repressed. The front-line 
defense against RTEs is transcriptional silencing (Fig. 2). In mouse embryonic stem 

Fig. 2 RTEs in the genome are repressed by heterochromatin. (a) Multiple pathways are involved 
in the establishment and maintenance of heterochromatin. In many regions of the genome, these 
domains of heterochromatin encompass RTEs and are instrumental in their silencing. The RB 
complex recruits several histone methyltransferases (HMTs) that methylate specific lysine resi-
dues on histones H3 and H4. Additional HMTs are recruited to the site of heterochromatin forma-
tion as part of a Kruppel-associated box-associated protein 1 (KAP1)-dependent pathway that 
requires ribosylation (Rs) by the sirtuin SIRT6. Together, these mechanisms maintain DNA meth-
ylation at cytosine residues by methyltransferases (DNMTs). (b). These processes are disrupted in 
aging cells resulting in the relaxation of heterochromatin that in turn allows the expression of 
RTEs. RB complex: a complex containing the retinoblastoma protein, elongation factor 2, histone 
deacetylases 1 and 2, methyl CpG-binding protein 2, and the nucleosomal and remodeling deacet-
ylase complex; Me3: methyl group; Ac: acetyl group; MBP: methylation-binding protein
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(ES) cells, LTR RTEs are silenced through multiple mechanisms including DNA 
methylation by the DNA methyltransferases 1 and 3L (DNMT1 and DNMT3L) 
(Slotkin and Martienssen 2007). In addition, ES cells use a Kruppel-associated box- 
associated protein 1 (KAP1)-dependent pathway that results in the tri-methylation 
of histone H3 on lysine 9 (H3K9me3) by the methyltransferase ESET (Matsui et al. 
2010; Rowe et al. 2010). Recruitment of ESET to LTR RTEs requires the deposition 
of the histone variant H3.3 (Elsasser et al. 2015).

LINE RTEs are also silenced through multiple mechanisms in mammalian cells 
including DNA methylation and histone modification. Mouse embryonic fibroblasts 
(MEFs) regulate the expression of the LINE L1 in part through a pathway involving 
the SIRT6-mediated ribosylation of KAP1 (Van Meter et  al. 2014). In addition, 
MEFs and human cancer cell lines require the recruitment of the EF2/RB complex 
along with the histone deacetylases 1 and 2 (HDAC1 and HDAC2), the methyl 
CpG-binding protein 2 (MeCP2), and the nucleosomal and remodeling deacetylase 
(NuRD) complex to silence L1 expression (Montoya-Durango et al. 2009, 2016; 
Teneng et al. 2011). In human and mouse neural tissue some L1s become transiently 
activated during neural progenitor cell differentiation, and this process has been 
hypothesized to drive variation in neuronal genomes (Muotri et  al. 2005; Erwin 
et al. 2014). Expression of L1s in neural stem cells (NSC) is repressed by SOX2, 
HDAC1, MeCP2, DNA methylation, and repressive histone modifications, and 
these factors are reduced during NSC activation (Muotri et al. 2005, 2010; Coufal 
et  al. 2009). SINEs are repressed by DNA methylation, MeCP2, methyl-binding 
proteins 1 and 2 (MBP1 and MBP2), and the histone modification H3K9me3, and 
the removal of the latter is necessary for SINE expression (Varshney et al. 2015). 
The common theme among these repressive pathways is the presence of DNA meth-
ylation and the H3K9me3 histone modification. These repressive heterochromatic 
marks are used by the cell to silence RTEs in an effort to maintain genome integrity. 
However, as discussed above, these repressive pathways are altered during the aging 
process and can lead to the derepression of RTEs.

RTE expression increases during cellular senescence and with age in several dif-
ferent mouse tissues. In senescent human fibroblasts the relaxation of heterochro-
matic regions is correlated with increased expression of L1s and the SINEs Alu and 
SVA (De Cecco et  al. 2013a). Since some of these elements belong to the 
 evolutionarily youngest subfamilies and have intact sequences, they should be capa-
ble of transposition (De Cecco et al. 2013a). Indeed, increased genomic copy num-
bers of L1Hs were observed in senescent cells.

In mouse, members of the LINE (L1), SINE (B1 and B2), and LTR (MusD) 
families were found to increase expression with age in liver and skeletal muscle (De 
Cecco et al. 2013b). Interestingly, there appears to be variability between tissues as 
this increase was more pronounced in muscle than in liver. The transcription of L1s, 
the largest family of potentially active retrotransposons, was also analyzed in mouse 
liver by RNA-seq using a bioinformatic pipeline recently developed for the analysis 
of repetitive sequences in high-throughput DNA sequencing data (Criscione et al. 
2014). Many of the L1 subfamilies in the mouse genome were found to increase 
their expression in liver samples from old animals (De Cecco et al. 2013b).
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Expression of RTE mRNA is only the first step that eventually may lead to actual 
transposition, and several cellular defense mechanisms are known to be active 
downstream of heterochromatinization. In addition, many elements in the genome 
have acquired mutations rendering them incapable of transposition. However, cur-
rent evidence suggests that at least a subset of the derepressed elements are capable 
of transposition during cellular senescence as well as aging of several mouse tissues 
(De Cecco et al. 2013a, b).

4  Consequences of Age-Associated TE Activation

4.1  Chimeric Transcripts

In this section we explore the links between RTE activity and changes in the tran-
scriptome. We refer to this process as transcriptional instability, and discuss here 
the different forms it can take and its potential role in aging. The reader can also 
refer to chapters “Retrotransposon-Derived Regulatory Regions and Transcripts in 
Stemness” and “Retrotransposon-Driven Transcription and Cancer” for a discus-
sion on RTE-induced transcriptome changes in the context of pluripotent cells and 
cancer, respectively. Transcriptional noise, defined as increased cell-to-cell varia-
tion in gene expression, has been described in the aging mouse heart (Bahar et al. 
2006). Dysregulation of alternative splicing has been found in cellular senescence 
(Cao et  al. 2011), in the aging brain (Mazin et  al. 2013) and neurodegeneration 
(Tollervey et al. 2011), and in blood leukocytes (Harries et al. 2011). It has been 
argued that these changes may be of particular relevance in postmitotic cells and 
tissues (Warren et al. 2007). Although a direct link between transcriptional instabil-
ity and RTE activity has not yet been demonstrated in aging, the ability of RTEs to 
affect the transcriptome is well known in other contexts. First and foremost, over the 
course of evolution RTEs have rewired the core regulatory network of the mamma-
lian genome (Kunarso et al. 2010). This demonstrates their ability to influence the 
transcriptome by either disrupting regulatory elements or contributing new ones. 
For example, Alu elements harbor binding sites for nuclear hormone receptors and 
can compete or act as promoters for nearby genes (Polak and Domany 2006; 
Deininger 2011). Their presence in introns can result in alternative or aberrant splic-
ing (Lev-Maor et al. 2008) that can lead to disease (Ganguly et al. 2003).

RTEs, including many transposition-incompetent elements, retain intact pro-
moter sequences that are capable of driving transcription (Faulkner et al. 2009). 
L1s contain both sense and antisense promoters (ASPs) that can transcribe into 
adjacent regions to produce chimeric transcripts (Speek 2001; Cruickshanks and 
Tufarelli 2009). The sense promoter can promote transcription of downstream 
genes (Abyzov et al. 2013), and L1-ASP transcription of upstream genes has also 
been found (Speek 2001; Nigumann et al. 2002). Transformed cancer cell lines and 
prostate tumors display significant upregulation of L1 RNA expression (Criscione 
et al. 2014). The marked increased in L1 promoter activity in cancer cells has been 
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linked to a variety of aberrant L1 chimeric transcripts. In colorectal cancer, hypo-
methylation of L1s leads to activation of the methylation-silenced MET and 
RAB3IP proto-oncogenes (Hur et al. 2014). A truncated isoform of the oncogene 
c-MET can be driven from an alternative promoter by hypomethylation of an 
intronic L1-ASP (Roman-Gomez et al. 2005; Weber et al. 2010; Wolff et al. 2010). 
Conversely, an L1-ASP-driven RNA can silence the metastasis-suppressor gene 
TFPI-2 (Cruickshanks et  al. 2013b). This suggests that activation of L1-ASPs 
might lead to epigenetic silencing of tumor-suppressor genes, potentially by simi-
lar mechanisms as those described for antisense RNAs in development or several 
diseases (Tufarelli et al. 2003; Matzke and Birchler 2005; Yu et al. 2008; Taft et al. 
2010). Hence, it is evident that RTEs are capable of interfering with the transcrip-
tional machinery at multiple levels and could contribute a similar role to cellular 
dysfunction during aging.

4.2  Characterizing the Transposition Landscape in Aging 
Cells

TE sequences posed a great challenge for the initial sequencing and assembly of 
reference genomes. Their analysis has lagged far behind that of non-repetitive 
sequences, and even the most recent draft of the human genome (GRCh38) con-
tained major updates of TE annotations. Short-read sequencing strategies, such as 
Illumina’s HiSeq, provide an additional challenge: it is not possible to unambigu-
ously assign the genomic locations of many reads originating from repetitive ele-
ments. To enable the comprehensive documentation of all existing and novel RTE 
insertions in the genomes of human somatic cells we would ideally require long 
reads spanning the entire RTE and flanking sequences on both sides, sufficient cov-
erage of the genome to make statistically significant calls, and low costs to make the 
profiling of many tissues and ages economically feasible. Recent advances in long- 
read high-throughput sequencing platforms, including Pacific Biosystems Single 
Molecule, Real-Time (SMRT) Sequencing, and Oxford Nanopore MinION, will 
likely aid in discovery of new transposition events; however, these technologies are 
still costly and yield low coverage.

To further complicate studying RTE mobility during cellular senescence or 
aging of tissues, many new insertions are likely to be “private,” i.e., occurring in 
an individual cell after it has ceased dividing. This is likely from theoretical con-
siderations, because many cells in the adult organism are postmitotic. Thus char-
acterization of the transposition landscape in aging cells is complicated by the 
fact that the landscape is likely to be unique for each individual cell. Two 
approaches have been used to overcome this obstacle: greatly enriching for RTEs 
before sequencing, or sequencing single-cell genomes. The principle of RTE 
enrichment is simply to reduce the genomic space that is sequenced in order to 
increase the coverage and the sensitivity of detection. The caveats of enrichment 
are that there is selection bias (it requires prior knowledge of active transposons) 
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and enrichment cannot predict transposition frequency (distinguish between 
equivalent activity in all cells and many hits in some cells). Nevertheless, enrich-
ment methods can provide high coverage, and have been successful in demon-
strating the presence of novel events in different biological contexts by several 
groups (Ewing and Kazazian 2010; Huang et al. 2010; Baillie et al. 2011; Solyom 
et al. 2012; Shukla et al. 2013).

An attractive alternative approach is high-throughput sequencing of single-cell 
genomes. Single-cell sequencing was first used to identify copy number variants 
(CNVs) in single cells from tumors (Navin et al. 2011). Single-cell sequencing was 
also used to examine retrotransposition frequency in the postmortem adult brain 
(Evrony et al. 2012, 2015; Upton et al. 2015). While these studies clearly identified 
novel somatic retrotransposition events in the adult human brain, they differed on 
the frequency of transposition. One group (Upton et al. 2015) reported a frequency 
of approximately 14 new retrotranspositions per hippocampal neuron and approxi-
mately 11 per cortical neuron, while another group (Evrony et al. 2012, 2015) found 
that somatic retrotranspositions were relatively infrequent. The reasons for these 
differences, which may be technical in nature, are currently under discussion (Upton 
et al. 2015; Evrony et al. 2016). Hence, more work is necessary to document the 
retrotransposition frequency in the adult brain, and in particular to address the bio-
informatic challenges of detecting novel transposition events in single-cell high- 
throughput sequencing data.

4.3  Transposable Elements and Autoimmunity

Studies of the negative effects of RTEs have largely focused on the damage caused 
by the transposition process to the genomes of their hosts. While many transposition 
events are abortive, they often cause DNA double-strand breaks and can promote a 
variety of illegitimate recombination events, such as chromosomal rearrangements 
(Farkash and Luning Prak 2006). Recent work has shed light on a new dimension of 
this host-pathogen relationship: an interesting link between RTEs and the develop-
ment of autoimmune disease (Bhoj and Chen 2008).

Arguably, the primal form of infection is the parasitism of nucleic acids (Stetson 
2009). Across billions of years of host-pathogen interactions many antiviral defense 
mechanisms have evolved and became implemented with various degrees of suc-
cess (Hannon 2002; Kawai and Akira 2006; Pichlmair and Reis e Sousa 2007). 
Many of these response networks are centered on the detection of nucleic acids. To 
discriminate self from non-self, antiviral sensors must detect potentially hazardous 
invading nucleic acids among the copious amounts of host-derived DNA and 
RNA. However, overactivation or other failures of these antiviral systems can result 
in hyperstimulation of the immune system and autoimmune responses (Banchereau 
and Pascual 2006). The type I interferon (IFN-I) response is in particular important 
for establishing an antiviral state; however chronic IFN-I signaling can lead to 
hyperimmune activation and inflammation (Wilson et al. 2013).
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Study of one specific human autoimmune disease, Aicardi–Goutieres syndrome 
(AGS), has provided important insights into the contribution of endogenous RTEs 
to the development of autoimmunity (Stetson et al. 2008). The TREX1 gene encodes 
a 3′ exonuclease that degrades perceived invading DNA, including the cDNAs from 
endogenous RTEs. Unless eliminated, these DNA fragments accumulate in the 
cytosol and activate the IFN-stimulatory DNA (ISD) response and innate immune 
signaling. TREX1 was found to be mutated in AGS, and the accumulation of RTE- 
derived cDNAs was associated the hyperactivation of the IFN-I pathway. In addi-
tion to TREX1, mutations in the RNAseH2 enzyme also cause AGS, suggesting that 
accumulation of RNA-DNA hybrids derived from endogenous RTEs contributes to 
the chronic pro-inflammatory state (Bhoj and Chen 2008).

In a fascinating parallel, chronic inflammation was proposed many years ago to 
play a major role in exacerbating the aging process, referred to as the “inflammag-
ing” theory of aging (Franceschi and Campisi 2014). Inflammaging appears to be 
significant risk factor for the morbidity and mortality of the elderly, as most, if not 
all, age-related diseases share an inflammatory component. However, the etiology 
of inflammaging remains largely unknown. Thus, both aging and RTEs have been 
independently associated with chronic IFN-I responses, and aging itself has been 
associated with RTE activation (De Cecco et al. 2013b). It is thus tempting to specu-
late a direct connection between these factors, and a causal role between the age- 
associated expression of RTEs and chronic IFN-I activation.

Autoimmune inflammation that may be caused by the accumulation of RTE- 
derived single-stranded DNA (Yang et al. 2007) can be treated with reverse tran-
scriptase inhibitors (Beck-Engeser et al. 2011). Several different nucleoside reverse 
transcriptase inhibitors (NRTIs), developed to treat HIV, have been tested against 
the reverse transcriptase enzyme encoded by L1 elements, with varying degrees of 
success (Jones et al. 2008; Dai et al. 2011). Note that some of these compounds 
might also exert their effects indirectly by inhibiting inflammation, independently 
of reverse transcriptase inhibition (Fowler et al. 2014). It is thus important to con-
sider the possibility that interventions designed specifically against RTE activities 
may be effective against autoimmune disorders and perhaps other age-related 
diseases.

5  Conclusions

In this chapter we have summarized recent discoveries documenting age-related 
changes in chromatin and transposable element activity. What is the significance of 
these changes to our understanding of aging and for the prospect of developing new 
interventions to ameliorate the decline of organismal function with age?

Studies in yeast, nematodes, and fruit flies have demonstrated a strong link 
between the loss of a “youthful” chromatin state and aging. The salient character-
istic of youthfulness in this context we believe is the effective partitioning and 
maintenance of euchromatic and heterochromatic domains of the genome. An 
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important (albeit not only) consequence of the loss of this chromatin homeostasis 
is a failure to maintain the effective repression of TE activity. The evidence linking 
TE activity to aging, though less abundant, is steadily growing. Studies in yeast, 
flies, mice, and human cell culture show that compromising the cellular TE surveil-
lance mechanisms can result in cellular damage, age-associated diseases, and 
shortened life span (Czech et al. 2008; Ghildiyal et al. 2008; Wallace et al. 2008; 
Kaneko et al. 2011; Lim et al. 2011; Maxwell et al. 2011; Li et al. 2013; Jeon et al. 
2015; Wood et al. 2016). Evidence is also emerging that augmenting the surveil-
lance mechanisms that maintain TE repression improves cellular physiology and 
may extend healthy life span (Savva et al. 2013; Wood et al. 2016 ).

Activation of TEs in the germline has been postulated to drive evolution and cre-
ate genomic diversity. We believe that the sporadic activation of RTEs in somatic 
cells is unlikely to be beneficial. Instead, RTE activation is more likely to result in a 
variety of deleterious effects, such as dysregulation of gene expression, transcrip-
tional noise, chronic activation of an antiviral state, insertional mutagenesis, DNA 
damage, and genome instability (Fig. 3). The emerging understanding of the poten-
tial role of RTEs to promote these rather serious consequences has led us (and oth-
ers) to envision (Li et al. 2013; Sedivy et al. 2013; Volkman and Stetson 2014) that 
drugs targeting RTEs, such as NRTIs, or more indirect interventions, such as 
improving repressive heterochromatin or bolstering some other defense mecha-
nisms, may provide new and novel therapeutic modalities to treat diseases of aging 
and extend healthy life span.

Fig. 3 Retrotransposition theory of aging. RTEs are epigenetically silenced in young somatic cells 
by their incorporation into constitutive heterochromatin, and additionally targeted by RNAi path-
ways and a variety of antiviral surveillance systems. Due to an accumulation of macromolecular 
damage and loss of homeostatic capacity, caused by a variety of extrinsic as well as intrinsic 
stresses, these cellular defense mechanisms become weakened with age. One consequence of this 
decline is the activation of dormant RTEs. The age-related increase in RTE expression and mobi-
lization in turn causes further damage, and thus promotes the dysregulation of cellular physiology, 
loss of tissue function, and ultimately many of the deleterious aspects of aging
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