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Foreword

This book is a tribute to Prof. Claudio Moraga on the occasion of his 80th birthday.
It is a great honor for me to have the opportunity to write this foreword. I met
Prof. Moraga in the late eighties when he came to the University of Chile, in
Santiago, one day to visit my former supervisor, Carlos Holzmann, who had been
his classmate at the Catholic University of Valparaiso. They both belong to a
generation of engineers who pioneered in television, designing and building the first
TV camera in Chile in 1960, as senior undergraduate students.

Professor Moraga started his academic career in Chile in the 1960s, and a few
years later he became one of the founders of the Department of Computer Science
(currently the Department of Informatics) at the Technical University Federico
Santa Maria (UFSM), in Valparaiso, Chile. In 1974 he migrated to Germany,
where he was Professor at the Technical University of Dortmund until his retire-
ment in 2002. Soon after that he became a visiting researcher at the Technical
University of Madrid. From 2006 to 2016, he became Emeritus Researcher at the
European Center of Soft Computing, in Asturias, Spain.

Although he spent more than 40 years in Europe, he never forgot his mother
country, Chile, where he had established long-lasting research collaborations with
Hector Allende and Rodrigo Salas of the UFSM.

Professor Moraga is recognized worldwide as a pioneer in multiple-valued logic,
a field that includes digital hardware, models, algebra, and applications. In partic-
ular, he started a research line in spectral techniques applied to multiple-valued
logic, in which orthogonal transformations are applied to the analysis and synthesis
of discrete functions. His seminal paper, “Complex Spectral Logic”, presented at
the 1978 Eighth International Symposium on Multiple Valued Logic, opened new

v



avenues for research that led to organizing special sessions at international con-
ferences, workshops, and publishing two books on the topic, the latest in 2012.1

Although I don’t know what the topic of conversation was between
Prof. Moraga and my former supervisor in their meeting in the eighties, I would like
to think that it was about fuzzy logic. According to Prof. Moraga’s own story in
Memories of a Crisp Engineer,2 his work on multiple-valued switching was all
about being “precise” and “crisp”, because a variable may have an integral number
of truth values.

The first time he heard about fuzzy logic was at a Symposium on
Multiple-Valued Logic, where Lofti A. Zadeh was a keynote speaker in the late
1970s. Later he was systematically exposed to the world of fuzzy logic by
Prof. Enric Trillas.

In fuzzy logic the truth values of variables may be any real numbers between
0 and 1. In the mid-1980, Prof. Moraga started teaching and doing research on
computational intelligence: artificial neural networks, fuzzy logic, and evolutionary
computation. He was immediately attracted by neuro-fuzzy systems and by the
synergy between fuzzy systems and evolutionary computation. He supervised
several doctoral and master theses on the theory and applications of computational
intelligence. More recently he has been involved in the area of computing with
words and fuzzy formal languages.

During all these prolific years, Prof. Moraga collaborated with many researchers,
among them Igor Aizenberg, Jaakko Astola, Zizhong Chen, LLuis Godo, Francisco
Herrera, Manuel Lozano, Rudolf Seising, Radomir Stanković, Michio Sugeno,
Karl-Heinz Temme, Enric Trillas, and Gracian Triviño Barros. I would like to close
this foreword by congratulating Prof. Moraga on his 80th birthday, and quoting his
own words: “It has been a fuzzinating experience!”.

1Moraga; C.: Complex Spectral Logic, in: MVL ’78 Proceedings of the eighth international
symposium on Multiple-valued logic, IEEE Computer Society Press Los Alamitos, CA, USA
1978, pp. 149–156.
2Moraga, M.: Memories of a Crisp Engineer’, in: Seising, R.; Trillas, E.; Termini, S.; Moraga, C.
(eds.): On Fuzziness. A Homage to Lotfi A. Zadeh—Vol. II, (Studies in Fuzziness and Soft
Computing, Vol. 299), Berlin, Heidelberg [et al.]: Springer 2013, pp. 449–453.
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Pablo A. Estévez
President, IEEE Computational Intelligence

Society (2016–2017)
Professor, Department of Electrical Engineering

University of Chile

Fig. 1 Prof. Dr. Pablo Estévez at July 24 opening the 2016 IEEE World Congress on
Computational Intelligence in Vancouver, Canada
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Preface

This edited book on recent advances in Multivalued Logic and Soft Computing
was proposed as a Festschrift for the celebration of the 80th Birthday of Prof.
Dr. Claudio Moraga, Department of Computer Science, University of Dortmund,
Germany. The contributions of this book are written by his friends, colleagues,
former students, and experts whose research interests are closely related to his
work.

As the editors of this book in homage to Prof. Claudio Moraga we would like to
thank all authors for their contributions, for their willingness to write their papers, to
look for old or new photographs, and for their patience to us.

We are very glad that we can publish some pictures in this volume as important
contemporary documents or at least nice memorabilia. We publish them with the
courtesy of the owners. Other photographs we have taken from the “Fuzzy
Archive” of one of the editors.

We thank Prof. Dr. Janusz Kacprzyk for accepting the book in the series Studies
in Fuzziness and Soft Computing. We also thank Prof. Dr. Pablo Estevez, Faculty of
Exact Physical and Mathematical Science, Universidad de Chile, for writing this
foreword, and a few former students of Claudio Moraga, who have provided us with
details on his academic career and other useful information. Last but not least, we
thank Springer Verlag and in particular to Dr. Thomas Ditzinger, Dr. Leontina Di
Cecco, and Holger Schäpe for helping this edition find its way to the publisher’s list.
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Fig. 2 Claudio Moraga and Héctor Allende after the latter’s Thesis presentation in the
Universidad Técnica Federico Santa María in Chile) in January 2015

Fig. 3 Claudio Moraga and Rudolf Seising during the at the “1. International Symposium
Fuzziness, Philosophy and Medicine” at the ECSC, in Mieres, Spain, in March 2011
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The invaluable help of colleagues, friends, and former students allowed us to
carry out this project with ease while keeping it a secret until its publication on his
birthday.

Munich, Germany Rudolf Seising
Valparaíso, Chile Héctor Allende-Cid
September 2016
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Chapter 1
From Multi-valued Logics to Fuzzy Logic

Rudolf Seising

1.1 A Personal Introduction

When, in February 2008, I visited the European Centre for Soft Computing (ECSC)
inMieres Asturias, Spain, for the first time to to give a talk, I stayed for about a week.
It was Enric Trillas who extended the invitation, and it was Claudio Moraga who
made my first weekend in Asturias—this then unknown and foreign landscape—
enjoyable. One of the first places of interest he showed me was the old church of
San Julián de los Prados, or Santullano (built between the years 812 and 842 AD)
in Oviedo’s suburb Pumarí, close to the A-6 motorway (Fig. 1.1).

I remember this last point only too well. It was a Sunday morning and the square
in front of this church was the meeting point; however, I missed it when I drove the
rented car in this foreign city. I ended up on that highway and I had to drive almost
an hour to Gijon and back. Fortunately, when I came back and reached the church,
Claudio was still there. He said that he was not sure anymore whether the time of our
appointment was at 11 or at 12 o’clock. On this afternoon, we drove along the coast
road visiting very beautiful and interesting places, such as Colunga and Ribadesella.
Regrettably, the Jurassic Museum of Asturias was closed in the winter season, but
we had some great stops on this trip (Fig. 1.2).

Later, Claudio showed me the Requexu Square—the Cider Square in Mieres del
Camino with the town’s landmark, where we sampled a bottle of the famous sidra
(cidre) and some tapas.

R. Seising (B)
Geschichte der Nat, “Ernst-Haeckel-Haus”,
Friedrich-Schiller-Universität Geschichte der Nat, Jena, Germany
e-mail: rudolf.seising@softcomputing.es; rudolf.markus.seising@uni-jena.de

© Springer International Publishing AG 2017
R. Seising and H. Allende-Cid (eds.), Claudio Moraga: A Passion
for Multi-Valued Logic and Soft Computing, Studies in Fuzziness
and Soft Computing 349, DOI 10.1007/978-3-319-48317-7_1

1



2 R. Seising

Fig. 1.1 San Julián de los Prados in Oviedo; photograph by Rudolf Seising

In these days I did not yet know that I was going to have many more opportunities
to enjoy Asturian cuisine, dishes and beverages in the years to come. Some months
later, however, I was offered a position as a Visiting Researcher for almost a year,
and, at the end of this period, I was employed as “Adjoint Researcher” in the unit
“Fundamentals of Soft Computing” in the ECSC inMieres. As I was amember of the
ECSC for about 5 years, I became acquainted with many researchers, among them
(in alphabetical order) Héctor Allende, Hector Allende-Cid, JoséMaría Alonso, Luis
Argüelles, Christian Borgelt, Nicola Bova, Óscar Cordón, Sergio Damas, Luka Ecio-
laza, Itziar García Honrado, Sergio Guadarrama, Takehiko Nakama, María Navarro,
Martín Pereira, David Picado, Enrique Ruspini, Adolfo Rodríguez de Soto, Daniel
Sánchez, Veronica Sanz, Prakash Shelokar, Arnaud Quirin, Alejandro Sobrino,
Michio Sugeno, Marco Elio Tabachhi, Settimo Termini, Gracián Triviño, Krzysztof
Trawinski, Wolfgang Trutschnig, Albert van Der Heide, Juan Zamora, Fátima Zohra
Hadjam, and many of us became friends. Some of these researchers contributed to
this volume honouring Claudio Moraga (Fig. 1.3, left).

It was thanks to Claudio and Enric that I, as a historian and philosopher of sci-
ence, could enjoy these years in this research and development centre promoted by
the Foundation for the Advancement of Soft Computing. I was able to conduct my
historical research on the history of various disciplines in Soft Computing. And,
from 12 September to 14 October 2011 under the sponsorship of the Government
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Fig. 1.2 ClaudioMoraga at the (closed) Jurassic Museum of Asturias in February 2009; photograph
by Rudolf Seising (see the dropped shadow)

of Asturias and CajAstur Savings Bank, I could organize and direct a course, with a
new format for teaching in our area, on “Reflecting on fuzziness (CRF)” which had
the subtitle “Philosophy, Science, Technology”.

Very quickly, I became acquainted with Claudio Moraga’s refinement not only in
his capacity as a Computer Scientist; however, in this contribution in honour of him,
I will focus on only one dimension of Claudio’s cultivation, namely, his scientific
knowledge. There are so many disciplines, theories and methods in science, and it
seems he knows them all. He is interested in old instruments and books, in various
cultures and religions, in different countries and languages. However, regarding his
scientific interests, he first chose Electrical Engineering and Computer Science. He
studied and taught automata theory and switching theory, and his interests lie in
abstractmachines. Such scientific interests have close links to various formsof logical
calculus, such as propositional and predicate logic, multi-valued logic, probability
logic, quantum logic and fuzzy logic. He is also a virtuoso in the concepts and
calculus of artificial neural networks and evolutionary algorithms.

This paper is just a brief historical survey on these various logic concepts.
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Fig. 1.3 Claudio Moraga and Rudolf Seising at the market place of Mieres in Asturias, Spain, in
February 2009; photographs by Rudolf Seising

1.2 Classical Logic and Non-classical Logics

In science, the most used formal logic calculus is classical logic or sometimes also
referred to as standard logic. Classical logic is as old as ancient Greek thought and
thinkers of the ancient world already established some of its properties1:

• the Law (or principle) of Excluded Middle (or Third), the tertium non datur:
For any proposition, either that proposition is true, or its negation is true.

• the Law (or principle) of Noncontradiction: Contradictory statements cannot
both be true in the same sense at the same time.Thismeans that the twopropositions
“A is B” and “A is not B” are mutually exclusive.2

Many “non-classical logics” (or “alternative logics”) were considered in the 20th
century (see [9, 10]). “Non-classical” means that other and “special” properties

1There are other properties of classical logics thatwe don’t consider here:Monotonicity and Idempo-
tency of entailment, Commutativity of conjunction,DeMorgan duality, double negative elimination,
and the principle of explosion (ex falso (sequitur) quodlibet, “from falsehood, anything (follows).”
2Aristotle said in On Interpretation [1] that of two contradictory propositions one must be true, and
the other false—(Contradictory propositions are propositions where one proposition is the negation
of the other.) Russell and Whitehead stated this principle as a theorem of propositional logic in the
Principia Mathematica.
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identify these logics as extensions, variations or deviations of classical logic. Here,
we consider only one of them and three of its special cases:

• Many-valued logic. In this logic bivalence is rejected. In many-valued logic the
set of possible truth values is more than {true, false}, e.g. three-valued logic,
infinitely-valued logics, and fuzzy logic.

Our history begins in the early years of the 20th century when the English math-
ematician and philosopher Bertrand Russell (1872–1970) published two important
works. In 1903 The Principles of Mathematics appeared; in it he argued that mathe-
matics and logic are identical:

The fact that all Mathematics is Symbolic Logic is one of the greatest discoveries of our
age; and when this fact has been established, the remainder of the principles of mathematics
consists in the analysis of Symbolic Logic itself. [29, p. 5]

In the introduction to the second edition Russell wrote on the first page (Fig. 1.4):

The fundamental thesis of the following pages, that mathematics and logic are identical, is
one which I have never since seen any reason to modify. [29, p. 1]

Fig. 1.4 Bertrand Russell and the title page of the shortened version of the Principia Mathemat-
ica; photographs: public Domain http://russell.mcmaster.ca/~bertrand/youngbr.html and http://en.
wikipedia.org/wiki/File:Pmdsgdbhxdfgb2.jpg

http://russell.mcmaster.ca/~bertrand/youngbr.html
http://en.wikipedia.org/wiki/File:Pmdsgdbhxdfgb2.jpg
http://en.wikipedia.org/wiki/File:Pmdsgdbhxdfgb2.jpg
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Russell wrote the sequel in collaboration with the English mathematician and
philosopher Alfred North Whitehead (1861–1947). They originally aimed to write
only a second volume to the first work; however, the subject became a very much
larger than they had originally expected. The two authors therefore finally wrote a
three-volume work on the foundations of mathematics, the Principia Matematica
that was published in 1910, 1912, and 1913 [30].

Starting with usual propositional logic every proposition has one and only one
of the two truth values “true” or “false”—alternatively “1” or “0”. If a proposition’s
truth value is ‘true”, then we say that the proposition is true; if the proposition’s truth
value is “false”, then we say that the proposition is false.

Because in this two-valued, or “bi-valent”, logic “false” is the negation of “true”
we could name these values “truth values”. However, this condition does not pertain
if the assignment to propositions of other values than the two values of bi-valent
logic is allowed. In that case we move on to multi-valued logic where the name of
the values are called “quasi truth values” or simply “values”.

The Polish philosopher and logician Jan Łukasiewicz (1876–1956), who devel-
oped a three-valued system, and, the mathematician Emil Leon Post (1897–1954),
(Fig. 1.5) who published his work on multi-valued logics in 1921, are known as the
pioneers ofmany-valued logics (see [19, 28]). The latter, whowas also born in Poland

Fig. 1.5 Jan Łukasiewicz and Emil Post; photographs: Public Domain https://commons.
wikimedia.org/w/index.php?curid=23607576 and https://commons.wikimedia.org/w/index.php?
curid=2326395

https://commons.wikimedia.org/w/index.php?curid=23607576
https://commons.wikimedia.org/w/index.php?curid=23607576
https://commons.wikimedia.org/w/index.php?curid=2326395
https://commons.wikimedia.org/w/index.php?curid=2326395
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but emigrated in the USA, developed his multi-valued logic at about the same time
as but independently of the former.

The mathematical methods for handling proposition logics as they were devel-
oped in the Principia Mathematica of Russell and Whitehead was a precondition to
working out systems of multi-valued logics. This was the starting point for Post. He
introduced truth matrices that allow values of the set {t1, . . . , tm} with integer m > 2
as values for relevant variables and expressions.

Post did not look for an interpretation of the m-valued proposition function in a
multi-valued logic. This was, however, the intention of the philosopher Łukasiewicz.
He questioned two-valued logic. To begin with, he replaced it by a three-valued logic
using “true” (1), “false” (0) and “possible” (1/2). Later he surpassed the conception
of Post when he assumed infinitely many “truth values”.

Łukasiewicz was a member of the Lwów-Warsaw school, which was very active
and innovative in the philosophy of science as well as in the fields of logic and
semantics. The school was founded by the “father of Polish logic” Kazimierz Jerzy
Skrzypna-Twardowski (1866–1938), who studied philosophy in Vienna with Franz
Brentano (1838–1917) and Robert Zimmermann (1824–1898) and later lectured in
Vienna (1894–1895). He became professor at the university in Lwów (Lemberg in
Austrian Galicia, now Lviv in the Ukraine).

Twardowski propagated an absolute concept of truth. Every proposition is a
semantic unity, in the sense that it represents an absolute truth or falsehood—
independently of the point in time when the statement was made. In contrast,
Kotarbinski (who later changed his mind) and Łukasiewicz resolutely denied the
“pre-eternality” of propositions. It was from this perspective that Łukasiewicz stud-
ied the Aristotelian law of non-contradiction.

In search of the criteria for his indeterministic world view, he acquainted himself
with the Aristotelian “Sea-battle argument”. According to Łukasiewicz’s interpre-
tation, Aristotle advocated the openness and rejected the determinism of the future.
Accordingly, single statements directed at the future cannot have one of the truth
values “true” or “false”, since the future is not predictable. Lukasiewicz wrote:

I can assume without contradiction that my presence in Warsaw at a certain moment of next
year, e.g. at noon on 21 December, neither positively, nor negatively. Hence it is possible,
but not necessary, that I shall be present at Warsaw at the present time. On this assumption,
the proposition ‘I shall be present in Warsaw at noon on 21 December of the next year’, can
at the present time be neither true nor false. For if it were true now, my future presence in
Warsaw would have to be necessary, which is contradictory to the assumption. If it were
false now, on the other hand, my future presence in Warsaw would have to be impossible,
which is also contradictory to the assumption. Therefore the proposition considered is at the
moment neither true nor false and must possess a third value, different from “0” or falsity
and “1” or truth. This value we can designate by “1/2”. It represents “the possible” and joins
“the true”and “the false” as a third value.

The three-valued system of propositional logic owes its origin to this line of thought. [22]3

3Ich kann ohneWiderspruch annehmen, dassmeine Anwesenheit inWarschau in einem bestimmten
Zeitmoment des nächsten Jahres, z.B. mittags den 21. Dezember, heutzutage weder im positiven
noch im negativen Sinne entschieden ist. Es ist somit möglich, aber nicht notwendig, dass ich zur
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Łukasiewicz assumed that the real world is an manifestation of one of all compet-
ing logical systems; in other words he thought that one of the many-valued logics is
ontologically true. In the 1940s and later, he divorced himself from this assumption.
At this time he declared that choosing a logic is a convention, various systems serving
as the need arises. In 1951, he published Aristotle’s Syllogistic from the Standpoint
of Modern Formal Logic [21], and here he considered the 4-valued logic as perhaps
being the most interesting system because in this logic we can formalize modali-
ties like “necessary”, “possible”, “accidentally”, “impossible”. In his Philosophical
remarks on many-valued systems of propositional logic he wrote some time earlier:

it was clear to me from the outset that among all the many-valued systems only two can
claim any philosophical significance: the three-valued one and the infinite-valued ones.
For if values other than “0” and “1” are interpreted as “the possible”, only two cases can
reasonably be distinguished: either one assumes that there are no variations in degrees of the
possible and consequently arrives at the three-valued system; or one assumes the opposite,
in which case it would be most natural to suppose, as in the theory of probabilities, that there
are infinitely many degrees of possibility, which leads to the infinite-valued propositional
calculus. I believe that the latter system is preferable to all others. Unfortunately this system
has not yet been investigated sufficiently; in particular the relations of the infinite-valued
system to the calculus of probabilities awaits further inquiry. [20]4

1.2.1 Fuzzy Logic

During this attempt to construe quasi truth values of multi-valued logic as prob-
abilities in a probability logic, there arose in the mid-1960s in the USA another
variant for interpreting the set of quasi truth values between “0” and “1”. The name

(Footnote 3 continued)
angegebenen Zeit in Warschau anwesend sein werde. Unter diesen Voraussetzungen kann die Aus-
sage: “Ichwerdemittags den 21.Dezember nächsten Jahres inWarschau anwesend sein”, heutzutage
weder wahr noch falsch sein. Denn ware sie heutzutage wahr, so müsste meine zukünftige Anwe-
senheit in Warschau notwendig sein, was der Voraussetzung widerspricht; und wäre sie heutzutage
falsch, so müsste meine zukünftige Anwesenheit in Warschau unmöglich sein, was ebenfalls der
Voraussetzung widerspricht. Der betrachtete Satz ist daher heutzutage weder wahr noch falsch und
muss einen dritten, von “0” oder dem Falschen und von “1” oder dem Wahren verschiedenen Wert
haben. Diesen Wert können wir mit “1/2” bezeichnen; es ist eben ‘das Mögliche’, das als dritter
Wert neben “das Falsche” und “das Wahre” an die Seite tritt. Diesem Gedankengang verdankt das
dreiwertige System des Aussagenkalküls seine Entstehung. [20, p. 165].
4“Es war mir von vornherein klar, dass unter allen mehrwertigen Systemen nur zwei eine
philosophische Bedeutung beanspruchen können: das dreiwertige und das unendlichwertige Sys-
tem. Denn werden die von “0” und “1” verschiedenen Werte als “das Mögliche” gedeutet, so
konnen aus guten Gründen nur zwei Fälle unterschieden werden: entweder nimmt man an, dass das
Mögliche keine Gradunterschiede aufweist, und dann erhält man das dreiwertige System; oder man
setzt das Gegenteil voraus, und dann ist es am natürlichsten ebenso wie in der Wahrscheinlichkeit-
srechnung anzunehmen, dass unendlich viele Gradunterschiede des Möglichen bestehen, was zum
unendlichwertigen Aussagenkalkul führt. Ich glaube, dass gerade dieses letztere System vor allen
anderen den Vorzug verdient. Leider ist dieses System noch nicht genau untersucht; insbesondere
ist auch das Verhältnis des unendlichwertigen Systems zurWahrscheinlichkeitsrechnung noch nicht
geklärt.” [22, p. 173].
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of this attempt is “Fuzzy Logic” and the founder of the underlying mathematical
theory, called “Fuzzy Set Theory”, is Lotfi A. Zadeh (born in 1921), (Fig. 1.7 left)
a professor of electrical engineering, who was born in 1921 in Baku, the capital of
Azerbaijan, then moved to Tehran, the capital of Iran, and later settled in the USA
where he continued his studies at Massachusetts Institute of Technology (MIT) in
Cambridge, Massachusetts. In the 1950s he was a member of the Department of
Electrical Engineering at Columbia University in New York and in 1959 he joined
the Department of Electrical Engineering and Computer Science at the University of
California in Berkeley.

The word “fuzzy” means hazy, vague, unclear, or foggy. It was the aim of Zadeh
to introduce the vagueness inherent in natural languages into engineering. To this
end, he established a logic of “fuzzy” entities by a generalization of the usual set’s
characteristic function, the so- called “membership function” μA of a “fuzzy set” A.
The range of μA, i.e. all possible membership values ti of an object x in the universe
of discourse X are all numbers between 0 and 1:

μA(x) =

⎧
⎪⎨

⎪⎩

t1 = 1, i f x ∈ A

ti
tm = 0, i f x /∈ A.

(1.1)

Zadeh founded the theory of fuzzy sets as a mathematical theory for dealing
with uncertainties in the summer of 1964 [42].5 When he analyzed the ability of
conventional mathematical tools in engineering, he saw serious shortcomings: The
framework was not adequate for the treatment of systems as complex as those in
modern information and communication technology and even less so for those in
biology and medicine.

In contrast to conventional set theory, an object is not required to be either an
element of a set (membership value 1) or not an element of this set (membership
value 0) but can have a membership value between 0 and 1.

Thus, he defined fuzzy sets by their membership function μ, which is allowed to
assume any value in the interval [0, 1], instead of by the characteristic function of a
usual set that exclusively assumes the values of 0 or 1 [42]. For fuzzy sets A and B in
any universe of discourse X , Zadeh defined equality, containment, complementation,
intersection, and union (for all x ∈ X ), see Fig. 1.6:

• A = B if and only if μA(x) = μB(x),
• A ⊆ B if and only if μA(x) ≤ μB(x),
• ¬A is the complement of A if and only if μ¬A(x) = 1 − μA(x),
• A = ∪B if and only if μA∩B(x) = max(μA(x), μB(x)),
• A = ∩B if and only if μA∩B(x) = min(μA(x), μB(x)),

The space of all fuzzy sets in X builds a distributive lattice with 0 and 1, but it is
not Boolean because in this lattice there is no complementation (Fig. 1.6):

5For a detailed presentation of the history of Fuzzy Set Theory see [33].
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Fig. 1.6 Illustration of the union as maximum of membership functions f A and fB (1, 2) and the
intersection as minimum of membership functions f A and fB (3, 4), [42]

μA(x) ∩ μ¬A(x) �= 0 (1.2)

μA(x) ∪ μ¬A(x) �= 1 (1.3)

A propositional logic with fuzzy concepts constitutes a “Logic of Inexact Con-
cepts.” This was demonstrated by the US-American computer scientist Joseph
Amadee Goguen (1941–2006), when he was a doctoral student studying with Zadeh
at Berkeley in the late 1960s [5] and in articles he published later [6, 7]. The US-
American cognitive linguist George Lakoff (born 1941), a Professor at UC Berkeley,
introduced the term “fuzzy logic” for this logic in 1973 [15].

Here is an interesting link concerning LotfiA. Zadeh in the time before he founded
the theory of fuzzy sets and the field of multi-valued logics in the middle of the 20th
century:

In the mid-fifties Zadeh applied for a guest residency at the Institute for Advanced
Study (IAS) in Princeton. His friend Herbert Ellis Robbins (1915–2001) was the
chairman of Columbia University’s department of mathematical statistics at the
time, and Deane Montgomery (1909–1992), another friend, was a member of the
IAS. Both Robbins and Montgomery campaigned for the approval of Zadeh’s IAS
guest residency, even though it was rare for requests by scientists who were neither
mathematicians, theoretical physicists, nor historians to receive a positive response
[32]. Zadeh initially took a half-year sabbatical from Columbia University in 1956.
During this time he wanted to learn more about logic, an interest he had cultivated
since 1950, when he predicted that logic, and particularly multi-valued logic, would
become increasingly more important for the problems of electrical engineering in
the future [40].

In Princeton he attended lectures by Stephen Cole Kleene (1909–1994), (Fig. 1.7)
who had also continued developing the multi-valued logic devised by the Polish
school of logic [13, 14]. Kleene becameZadeh’smentor at Princeton: “StevenKleene
was my teacher in logic”. Yes, I learned logic from Steven Kleene! [31]

Similar to the leap from two-dimensionality to n-dimensionality in mathematics,
Zadeh found multi-valued logic to be a natural generalization of the conventional
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Fig. 1.7 LotfiA. Zadeh at theWorld Conference on Soft Computing, San Francisco State University
in 2011 and Stephen C. Kleene; photographs: Rudolf Seising and https://en.wikipedia.org/wiki/
Stephen_Cole_Kleene#/media/File:Kleene.jpg

logic of just two values into n values [32]. He was now also toying with the ideas of
introducingmulti-valued logic into automata theory and implementing it in electrical
circuits. Once he had returned to Columbia University in New York he assigned two
dissertations that dealt with multi-valued logic in the design of transistor circuits and
with multi-valued coding:

• Werner Ulrich completed his dissertation on “Nonbinary Error Correction Codes”
in 1957 [37].

• Oscar Lowenschuss completed his dissertation on “Multi-Valued Logic and
SequentialMachines orNon-Binary SwitchingTheory” in 1958 [16–18] (Fig. 1.8).

“That’s why I wanted to know about logics!” Zadeh recalled in an interview he
gave for me in 2000 [31].

This history shows that Zadeh’s road to fuzzy sets and fuzzy logic led acrossmulti-
valued logic but this was only half the journey. In addition and more importantly in
my view, the road also led across a new mathematics of approximation that was
different from probability theory and statistics; it was a road via “the mathematics
of fuzzy or cloudy quantities” as he wrote already in 1962 [41, p. 856ff]!

https://en.wikipedia.org/wiki/Stephen_Cole_Kleene#/media/File:Kleene.jpg
https://en.wikipedia.org/wiki/Stephen_Cole_Kleene#/media/File:Kleene.jpg
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Fig. 1.8 First pages of the Ph.D. dissertation thesis by Ulrich [37] and Lowenschuss [16] in 1957
and 1958, the latter with Zadeh’s signature; photographs: Rudolf seising

1.3 And Quantum Logic?

The scientific revolution brought about by the discovery of quantum mechanics in
the first third of the 20th century resulted in a fundamental change in the relationship
between physics and the phenomena observed in experiments. Classical experiments
showed the need for a new physical theory and new physical terms to represent and
predict what happens at the subatomic level. The theory of quantum mechanics
was developed to fill the gap in the existing physical theories; however, quantum
mechanics is completely abstract: it is a theory of mathematical state functions that
have no exact counterpart in reality.

The German physicist Werner Heisenberg (1901–1976), (Fig. 1.9 left) his Dan-
ish colleague Niels Bohr (1885–1962), (Fig. 1.9 right) and others introduced new
objects into the new quantum mechanics theory that differ significantly from those
of classical physics. The properties of these objects are neither particles nor waves,
which are the standard objects of classical physics. The properties of these objects
are completely new and not comparable with those of the observables in classical
theories, such as Newton’s mechanics or Maxwell’s electrodynamics.

However, in experimental physics classical variables like position and momen-
tum can be observed and physicists subjected the subatomic objects of reality to
experiments designed to elicit these classical variables. However, determining the
state of a quantum mechanical system is much more difficult than determining the
state of classical systems since sharp values for both variables cannot be measured
simultaneously. This is the meaning of Heisenberg’s uncertainty principle.
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Fig. 1.9 Werner Heisenberg and Niels Bohr; photographs: Public Domain https://en.wikipedia.
org/wiki/Werner_Heisenberg#/media/File:Bundesarchiv_Bild183-R57262,_Werner_Heisenberg.
jpg and https://en.wikipedia.org/wiki/Niels_Bohr#/media/File:Niels_Bohr.jpg

We can perform experiments on quantum mechanical objects designed to mea-
sure a position value; we can also perform experiments with these objects in order
to measure their momentum value. However, we cannot conduct both experiments
simultaneously since it is impossible to measure both values for the same point in
time. Nonetheless, the values at the point in time in question can be predicted on the
basis of the outcomes of experiments. Since predictions are targeted at future events,
we cannot give them the logical values “true” or “false.”

In 1926, the German physicist Max Born (1882–1970) (Fig. 1.10 right) proposed
an interpretation of the non-classical peculiarity of quantum mechanics, namely that
the quantum mechanical wave function is a “probability-amplitude” [3, 4]. This
is an abstract magnitude without any significance for the measurement of one of
the possible observables. The absolute square of its value equals the probability
of its having a certain position or a certain momentum if we measure the position
or momentum respectively. The higher the probability of the position value, the
lower that of the momentum value and vice versa. Thus, the absolute square of
the quantum mechanical state function equals the probability density function of
its having a certain position or a certain momentum in the position or momentum
representation of the wave function respectively. There are varying representations
of the state of a quantum mechanical object, e.g., the “position picture” and the

https://en.wikipedia.org/wiki/Werner_Heisenberg#/media/File:Bundesarchiv_Bild183-R57262,_Werner_Heisenberg.jpg
https://en.wikipedia.org/wiki/Werner_Heisenberg#/media/File:Bundesarchiv_Bild183-R57262,_Werner_Heisenberg.jpg
https://en.wikipedia.org/wiki/Werner_Heisenberg#/media/File:Bundesarchiv_Bild183-R57262,_Werner_Heisenberg.jpg
https://en.wikipedia.org/wiki/Niels_Bohr#/media/File:Niels_Bohr.jpg
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Fig. 1.10 GeorgeWhitelawMackey andMaxBorn; photographs: PublicDomain https://commons.
wikimedia.org/wiki/File:GWMackey_c1980s.jpg and https://upload.wikimedia.org/wikipedia/
commons/f/f7/Max_Born.jpg

“momentum picture.” These representations are complementary, which means that
a subatomic object cannot be presented in both classical pictures at the same time.

However, from themathematical point of view it has to be stated that no joint prob-
ability for the event in which both variables have a certain value exists since there is
no classical probability space (noBoolean lattice) that constitutes such events. There-
fore we need a radically different kind of uncertainty theory that is not describable
in terms of classical probability distributions.

The mathematician John von Neumann (1903–1957), who was originally born in
Hungary, then adopted German citizenship and later settled in the USA, had been
collaborating withMax Born on the mathematical foundation of quantummechanics
since 1927 [24]. In 1932 he published his famous book Mathematical Foundations of
Quantum Mechanics [25], inwhichhedefined thequantummechanicalwave function
as a one-dimensional subspace of an abstract Hilbert space, which is defined as the
state function of a quantum mechanical system.

In 1936, (Fig. 1.11 left) not long after founding the mathematical theory of quan-
tum mechanics John von Neumann together with the US-American mathematician
Garett Birkhoff (1911–1996) (Fig. 1.11 right) proposed the introduction of a “quan-
tum logic”. The set of quantummechanical predictions constitutes a non-distributive
lattice; this lattice is, therefore, non-Boolean [2]. The distributive law, says that, if
x , y and z are propositions we have

x ∧ (y ∨ z) �= (x ∧ y) ∨ (x ∧ z) (1.4)

https://commons.wikimedia.org/wiki/File:GWMackey_c1980s.jpg
https://commons.wikimedia.org/wiki/File:GWMackey_c1980s.jpg
https://upload.wikimedia.org/wikipedia/commons/f/f7/Max_Born.jpg
https://upload.wikimedia.org/wikipedia/commons/f/f7/Max_Born.jpg
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Fig. 1.11 Garett Birkhoff and John von Neumann; photographs: Public Domain https://
commons.wikimedia.org/wiki/File:Garrett_Birkhoff.jpegbyKonradJacobs,Erlangen and https://
en.wikipedia.org/wiki/John_von_Neumann#/media/File:JohnvonNeumann-LosAlamos.gif

Birkhoff and Neumann remarked that “the study of mechanics points to the dis-
tributive identities as the weakest link in the algebra of logic” [2, p. 837]. It is possible
to find an even weaker law that is satisfied in the case of a finite-dimensional Hilbert
space. In that case, the lattice of quantum mechanical prediction has the property of
“modularity”; the modular law is formulated as follows:

x ≤ y ⇒ x ∨ (y ∧ z) = y ∧ (x ∨ z) (1.5)

Later, in 1963, the US-American mathematician George Whitelaw Mackey
(1916–2006) (Fig. 1.10 left) attempted to provide a set of axioms for the proposi-
tional system of predictions of experimental outcomes. He was able to show that this
system is an orthocomplemented partially ordered set [23]. In this logico-algebraic
approach, the set of predictions of the properties of a quantum mechanical object is
not additive and not distributive.

In the 1960s the US-American philosopher Patrick Colonel Suppes (1922–
2014) discussed the “probabilistic argument for a non-classical logic of quantum
mechanics” [35, 36]. He introduced the concept of a “quantum mechanical σ -field”

https://commons.wikimedia.org/wiki/File:Garrett_Birkhoff.jpegbyKonradJacobs,Erlangen
https://commons.wikimedia.org/wiki/File:Garrett_Birkhoff.jpegbyKonradJacobs,Erlangen
https://en.wikipedia.org/wiki/John_von_Neumann#/media/File:JohnvonNeumann-LosAlamos.gif
https://en.wikipedia.org/wiki/John_von_Neumann#/media/File:JohnvonNeumann-LosAlamos.gif
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as an “orthomodular partial ordered set” covering the classical σ -fields as substruc-
tures.

Eventually, in the 1980s, a “quantum probability theory” was proposed and devel-
oped by authors such as the US-American mathematician Stanley P. Gudder and
the Israeli historian and philosopher of science Itamar Pitowski (1950–2010) [8,
27]. These developments regarding a theory of probabilistic structures of quantum
mechanics became very complex. The quantum mechanical lattice of predictions is
Suppes’ “quantum mechanical σ -field,” which can be restricted to Boolean lattices,
each corresponding to a given observable and those observables compatible with it.
In every case of one of these restrictions, the quantum probabilities became classical
probabilities again that only apply to predictions of compatible observables.

1.4 Outlook

Soon after “FuzzySets” appeared in the journal Information and Control the Japanese
physicist Satosi Watanabe (1910–1993) wrote an article for the same journal entitled
“Modified Concepts of Logic, Probability, and Information Based on Generalized
Continuous Characteristic Function”, which was published in 1968 [39]. Watanabe
had studied at Tokyo Imperial University, and the university had sent him to Europe,
where he studied under the French physicist Luis de Broglie (1892–1987). In 1937,
he moved to Leipzig to study nuclear theory under Heisenberg. He left Germany
because of World War II, but he stayed in Copenhagen for some time with Niels
Bohr before returning to Japan.

In the short abstract to this paper he stated: “All the basic laws of the traditional
logic can be derived from the characteristic function f (A/a)which is 1 or 0 according
as object a satisfies predicate A or not. There is good reason to believe that it is
worthwhile to extend this formalism to the case where f (A/a) can take any value
in the continuous domain [0, 1].” [39, p. 1].

In his introduction, Watanabe stated that the basic postulate—he called it “the
postulate of fixed truth set”—saying “that a and A determine the value of f (A/a)

is not always satisfied” [39, p. 1]. Watanabe emphasized that this postulate is valid
if the characteristic function is two-valued, and in that case “everything with regard
to predicates can be reduced to the set theory of objects, and it is easy to derive
directly therefore logical operations such as conjunction, disjunction, negation etc.”
However, his intension was to “reconstruct logic, probability and information theory
on the basis of irreducibly continuous characteristic functions” in this article; in
that case the characteristic function is multi-valued and the postulate is not valid;
therefore “we have to derive these logical operations of predicates independently of
the set-theoretical operations applied to objects.” [39, p. 2].

Watanabe had read “Fuzzy Sets”, and he distanced his approach from Zadeh’s
theory “which uses from the beginning the notions of set, conjunction, disjunction,
etc. as if they were already known to us. His determination of the values of the
membership function for conjunction and disjunction is arbitrary.” [39, fn. 2].
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Interestingly, when Watanabe described the background of the emergence of his
“stream of thought” in the last section of his article, he highlights the fact that this
was not Zadeh’s theory of fuzzy sets or fuzzy logic but quantum logic. He referred to
the “theoretical structure of quantum mechanics” “on what Birkhoff and Neumann
called quantum logic” [39, p. 19].

Watanabe pointed to the deepmathematical formulation of quantum logic in terms
of the infinitely-dimensional Hilbert Space, on the one hand and the Japanese physi-
cist Kodi Husimi (1909–2008), on the other, who tried already in 1937, the year after
Birkhoff and von Neumann’s publication [11], “to found the non-distributive modu-
lar logic directly on the experimental basis of atomic phenomena without relying on
the Hilbert space” [39, p. 19].

Husimi demonstrated that a weaker law than the modular law, the orthomodular
law, is satisfied in the lattice of quantum mechanics6:

x ≤ y ⇒ x ∨ (
x⊥ ∧ y

) = y (1.6)

As the Israeli physicist, philosopher and historian of scienceMax Jammer (1915–
2010)wrote inThe Philosophy of Quantum Mechanics, Husimi presented this attempt
at a meeting of the Physico-Mathematical Society in Japan in 1937:

Defining the implication by the statement that the numerical probability of the antecedent
is smaller or equal to that of the consequent Husimi showed that the existence of the meet
requires the sum of two quantities whose existence he derived from the correspondence
principle according to which ‘every linear relation between the mean values in the classical
theory is conserved in the process of quantization’. [12, p. 354]

At the end of his article Watanabe stated his belief “that the modular logic would
have a wide application outside atomic physics”. Already in 1959 he taught on
non-Boolean logic in a lecture series at Yale Graduate School of Physics where he
introduced the characteristic function f (A/a).7

His goalwas to derive from this characteristic function f (A/a) the logical relation
of implication. Here, he followed the dictum of the American philosopher, logician
and mathematician Charles Sanders Peirce (1839–1914), who wrote in his essay
“The New Elements of Mathematics” [26] on the Boolean mathematics and on a
sign that he called “illation”. Watanabe referred to Peirce as follows: “there is one
primary and fundamental logical relation, that is illation [implication].” [39, p. 19].

Watanabe argued that we have to move on from the sharp dichotomy between
“true” and “false” to a fluid decision from “Yes” to “No”. One of his reasons for
this “blasphemous sentence” was related to logics and probabilities: “it seems more
natural and truthful to our human experience to derive logic form a probability-like
function such as μA. Probability precedes logic”!

6Here we need the definition of the “orthocomplement” x⊥ of the element x : This element satisfies
(1) the complement law x⊥ ∨ x = 1 and x⊥ ∧ x = 0; (2) the involution law x⊥⊥ = x ; (3) the order
reserving law if x ≤ y then y⊥ ≤ x .
7The lecture notes of this course Physical Information Theory (1959–60) were published under the
title “Algebra of Observations” but not until 1966 unfortunately [38].
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Fig. 1.12 Claudio Moraga and Rudolf Seising had an hour’s rest during Saturday’s Scientific
Conversations “Thinking and Fuzzy Logic” in Palermo (Sicily, Italy), 14th May, 2011, photograph
by Rudolf Seising

The “Peirce-principle” signifies that the basic operation of human deductive rea-
soning is implication. However, the appropriate implication is an implication based
on our everyday-usage of vague or inexact reasoning and decisions.

Acknowledgments I would like to thank Mark Winstanley for proofreading and suggestions for
improvement.

References

1. Aristotle: On Interpretation, Translated by E. M. Edghill: https://ebooks.adelaide.edu.au/a/
aristotle/interpretation/.

2. Birkhoff, Garett, von Neumann, John: The Logic of Quantum Mechanics, Annals of Mathe-
matics, Series 2, vol. 37, 1936, p. 823 ff.

3. Born, Max: Zur Quantenmechanik der Stoßvorgänge, Zeitschrift für Physik, vol. 37, 1926, pp.
863–867.

4. Born, Max: Das Adiabatenprinzip in der Quantenmechanik, Zeitschrift fär Physik, vol. 40,
1926, pp. 167–191.

5. Goguen, Joseph A.: L-Fuzzy Sets, Journal of Mathematical Analysis and Applications, vol.
18, 1967, pp. 145–174.

https://ebooks.adelaide.edu.au/a/aristotle/interpretation/
https://ebooks.adelaide.edu.au/a/aristotle/interpretation/


1 From Multi-valued Logics to Fuzzy Logic 19

6. Goguen, Joseph A.: Categories of Fuzzy Sets: Applications of a Non-Cantorian Set Theory,
Ph.D. Dissertation, University of California at Berkeley, June 1968.

7. Goguen, Joseph A.: The Logic of Inexact Concepts, Synthese, vol. 19, 1969, pp. 325–373.
8. Gudder, Stanley P.: Quantum Probability, Academic Press: San Diego, 1988.
9. Haack, Susan: Deviant Logic, Chicago, Ill.: Cambridge University Press, 1974.
10. Haack, Susan: Deviant Logic, Fuzzy Logic: Beyond The Formalism, Chicago, Ill.: University

of Chicago Press, 1996.
11. Husimi, Kodi: Studies in the Foundations of QuantumMechanics, Proceedings of the Physico-

Mathematical Society of Japan, vol. 19, 1937, pp. 766–789.
12. Jammer,Max: The Philosophy of Quantum Mechanics. The Interpretations of QM in Historical

Perspective, John Wileys and Sons, 1974.
13. Kleene, Stephen C.: On a notation for ordinal numbers, The Journal of Symbolic Logic, vol. 3,

1938, pp. 150–155.
14. Kleene, Stephen C.: Introduction to Metamathematics, Amsterdam: North-Holland, 1952.
15. Lakoff,George:Hedges:AStudy inMeaningCriteria and theLogic of FuzzyConcepts, Journal

of Philosophical Logic, vol. 2, 1973, pp. 458–508.
16. Lowenschuss, Oscar: Multi-Valued Logic in Sequential Machines. Ph.D. Thesis. School of

Engineering, Columbia University, New York, 1958.
17. Lowenschuss, Oscar: A Comment on Pattern Redundancy, IRE Transactions on Information

Theory, December 1958, p. 127.
18. Lowenschuss, Oscar: Restoring Organs in Redundant Automata, Information and Control, Vol.

2, 1959, pp. 113–136.
19. Łukasiewicz, Jan: O logice trójwartościowej (in Polish), Ruch filozoficzny, vol. 5, 1920, pp.

170–171. English translation: On three-valued logic, in: Borkowski, L. (ed.), Selected works
by Jan Łukasiewicz, Amsterdam: North–Holland, 1970, pp. 87–88.

20. Łukasiewicz, Jan: Philosophische Bemerkungen zu mehrwertigen Systemen des Aus-
sagenkalküls, Comptes rendus de séances de la Société de Sciences et des Lettres de Varsovie.
Cl. iii, vol. 23, 1930, pp. 51–77.

21. Łukasiewicz, Jan: Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic. Oxford:
Clarendon Press, 1951. 2nd, enlarged ed., 1957.

22. Łukasiewicz, Jan: Selected Works, ed. L. Borkowski. Amsterdam: North-Holland, 1970.
23. Mackey, George W. Mathematical Foundations of Quantum Mechanics, New York: W. A.

Benjamin, 1963.
24. von Neumann, John: Mathematische Begründung der Quantenmechanik, Güttingen: Nachr.

Ges. Wiss., Math.-phys. Klasse, 1927, pp. 1–57.
25. vonNeumann, John:Mathematical Foundations of Quantum Mechanics, PrincetonUniv. Press,

Princeton, New Jersey, 1955.
26. Peirce, Charles S.: The New Elements of Mathematics, Eisele, Carolyn (ed.): Volume IV –

Mathematical Philosophy, Chapter VI – The Logical Algebra of Boole, The Hague: Mouton
Publishers, Paris: Humanities Press, N. J.: Atlantic Highlands, 1976, pp. 106–115.

27. Pitowski, Itamar: Quantum Probability, Quantum Logic, Lecture Notes in Physics, Berlin:
1989.

28. Post, Emil L.: Introduction to a General Theory of Elementary Propositions, American Journal
of Mathematics, vol. 43, 1921, pp. 163–185.

29. Russell, Bertrand: Principles of Mathematics, 1903; 2nd edition: W. W. Norton & Company
1938.

30. Whitehead, AlfredN.; Russell, Bertrand:Principia mathematica 1 (1 ed.) 1910; 2 (1 ed.), 1912;
3 (1 ed.), 1913, Cambridge: Cambridge University Press.

31. Seising, Rudolf: Interview with L. A. Zadeh on July, 26, 2000, University of California, Berke-
ley, Soda Hall.

32. Seising, Rudolf: Interview with L. A. Zadeh on June 16, 2001, University of California, Berke-
ley, Soda Hall.

33. Seising, Rudolf: The Fuzzification of Systems. The Genesis of Fuzzy Set Theory and Its Initial
Applications – Developments up to the 1970s, Berlin, New York, [et al.]: Springer 2007.



20 R. Seising

34. Seising, Rudolf: General Systems, classical systems, quantum systems, and fuzzy systems:
an introductory survey, International Journal of General Systems (Special Issue: Fuzzy and
Quantum Systems, Rudolf Seising (guest editor), vol. 40 (1), 2011), pp. 1–9.

35. Suppes, Patrick: Probability Concepts in Quantum Mechanics, Philosophy of Science, vol. 28,
1961, pp. 378–389.

36. Suppes, Patrick: The ProbabilisticArgument for aNon-Classical Logic ofQuantumMechanics,
Philosophy of Science, vol. 33, 1966, pp. 14–21.

37. Ulrich,Werner: Nonbinary Error Correction Codes,Bell Systems Technical Journal, November
1957, pp. 1341–1142.

38. Watanabe, Satosi: Algebra of Observation, Progress of Theoretical Physics, Suppl. Nos. 37-38,
1966, pp. 350–367.

39. Watanabe, Satosi: Modified Concepts of Logic, Probability, and Information Based on Gener-
alized Continuous Characteristic Function, Information and Control, vol. 15, 1069, pp. 1–21.

40. Zadeh, Lotfi A.: Thinking Machines. A New Field in Electrical Engineering, Columbia Engi-
neering Quarterly, January 1950, pp. 12–30.

41. Zadeh, Lotfi A.: From Circuit Theory to System Theory, Proceedings of the IRE, vol. 50, 1962,
pp. 856–865.

42. Zadeh, Lotfi A.: Fuzzy Sets, Information and Control, vol. 8, 1965, pp. 338–353.
43. Zadeh, Lotfi A.: Fuzzy Sets and Systems. In: J. Fox (ed.): System Theory, Microwave Res. Inst.

Symp. Series XV, Brooklyn, New York: Polytechnic Press, 1965, pp. 29–37.



Chapter 2
A Dialogue Concerning Contradiction
and Reasoning

Enric Trillas

To Claudio Moraga, who, joyously for me, is more than a
colleague, is a loved friend.

Carla. The understanding of an idea, once it is linguistically expressed, requires
moving back up to reduce it to something that is currently considered clear enough.
For instance, and concerning precise predicates, the Aristotle’s principle of contra-
diction expressed by ‘nothing can and cannot be simultaneously’, is often understood
by mathematicians [1] passing through the following steps:

1. Question: Can it be that x is P and is not P , for some elements x into considera-
tion?

2. Suppose that X is the set containing all those elements x .
3. Let it be P the subset of X specified by the use of P .
4. The subset Pc of X , the complement of P, just contains those elements in X to

which P is not applicable.
5. The principle of contradiction is just represented by the set’s law P ∩ Pc = ∅;
6. This law is ‘identified’ with the contradiction principle.

But this is only acceptable for predicates specifying a set, and fuzzy logic deals
with those that can’t specify a set where the principle, if identified in an analogous
form, fails.

Karl. Well, it depends on the forms of expressing both the ‘and’, and the ‘not’.
For instance, if the ‘and’ is represented by a continuous t-norm T , and the ‘not’ by a
strong negation function N , the corresponding functional equation T (a, N (a)) = 0,
with a in [0, 1], has the solutions T = W f , N ≤ N f , with f any order-automorphism
of the unit interval. Hence, it is not true that the principle always fails, but it is true
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Fig. 2.1 Claudio Moraga, Enric Trillas, and Fatima Zohra Hadjam at the “1. International Sym-
posium Fuzziness, Philosophy and Medicine” at the European Centre for Soft Computing, Mieres
(Asturias), Spain,March 23–24, 2011; in the background,MilaKwiatkowska; photograph byRudolf
Seising

that it fails in many cases; it holds with f = id, T = W and N = 1 − id, and fails
with f = id, T = prod, T = min, and the same negation 1 − id [2].

Carla. Yes, and without considering strong negations there are also positive and
negative cases. For instance, with the order-automorphism f (x) = x2, and the non-
strong but continuous negation N (x) = 1 − x2, it isW f (a, 1 − a2) = [max(0, a4 −
a2)]1/2 = 0, but with f = id, it is W (a, 1 − a2) = max(0, a − a2) = 0 ⇐⇒ a ≤
a2 ⇐⇒ a = 0, or a = 1. In the first case the principle holds, but it does not hold in
the second.

Karl. Yes, by keeping a continuous t-norm for representing the ‘and’, and indepen-
dently of the strong character of the negation, the solutions of the functional equation
T (a, N (a)) = 0, are T = W f and N ≤ N f , with independence on the properties of
N . Obviously, with f (x) = x2, it is N (x) = 1 − x2 ≤ N f (x) = [1 − x2]1/2. Actu-
ally, even without strong negation, there are cases in which the principle fails, and
cases in which it holds.

Carla. Even if it is true that the preservation of the Aristotle’s principle is bounded,
in the standard algebras of fuzzy sets, to expressing the conjunction by a ‘ f -
modification’ of the Łukasiewicz t-norm W (a, b) = max(0, a + b − 1), that is, to
continuous t-norms in the ‘family’ of Łukasiewicz, it is also true that the principle not
always fails. Hence, it cannot be properly said that fuzzy sets violate the principle [3].
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Karl. Let me add that all that comes from understanding the principle more clas-
sico, that is, in the form μ · μ′ = μ0 that, when μ ∈ {0, 1}X , reduces to the classical,
or crisp, ‘empty intersection’. It is a view directly coming from the theory of crisp
sets. Are there other views?

Carla. Yes, of course. For instance, by understanding “it is μ · μ′ impossible”
as “μ · μ′ is not deducible from μ′′ and the relation of deduction as the pointwise
ordering between fuzzy sets, if it were μ · μ’ deducible from μ, or μ ≤ μ · μ′, since
it is clear that the principle holds. But notice that this validity depends on a particular
form of interpreting deduction, and only for those μ such that its intersection with
μ′ is not coincidental with μ; certainly, for a lot of fuzzy sets [4].

Karl. Ok, but I doubt that Aristotle could think on ‘impossible’ as a synonym
of ‘deductible’. Even if, perhaps, he could thought on the absurdity of a syllogism
with premises p, and p & p′; that any conclusion of such syllogism seems to be
contradictory.

Carla. Yes, this is the right concept, self-contradictory! The greatest ‘sin’ that can
be considered. Something that nobody will accept.

Karl. Although Aristotle did state that the principle cannot be submitted to proof,
you should have just proven in which cases it holds in the standard algebras of fuzzy
sets, and also its validity under the equivalence of impossible and non-deductible. Is
it possible to prove it under the interpretation of impossible as self-contradictory?

Carla. Well, it is indeed possible by taking into account some definitions and by
supposing some properties of what is defined. What is interesting to note is that
the proof can be achieved under a simple symbolism verifying very few and soft
suppositions.

Karl. It seems to mean that the principle holds in very general settings. Go ahead,
please!

Carla. Suppose it exists a ‘natural’ relationship of inference that, even produced
in the brain as a part of the natural phenomenon called thinking, can be represented
by the symbol≤, with which p ≤ q represents that the statements p and q are linked
in the form ‘q is inferred from p’. Two statements p and q are called inferentially
equivalent whenever p ≤ q and q ≤ p, and can be written p = q. Of this symbol we
need to just supposing it is, in itself, transitive, that is, verifies: p ≤ q, q ≤ r =⇒ p ≤
r. In addition, it is required to count with the symbols (&) for ‘and’, and (′) for ‘not’,
of which it will be supposed they verify the simple laws p & q ≤ p, p & q ≤ q,
and p ≤ (p′)′. Finally, a definition: p is contradictory with q if and only if p ≤ q ′;
hence, p is self-contradictory if and only if p ≤ p′.

Karl. Wow, I see the proof! It is very simple [5]:

p & p′ ≤ p,
p & p′ ≤ p′ =⇒ (p′)′ ≤ (p & p′)′,
p ≤ (p′)′ =⇒ p ≤ (p & p′)′:
p ≤ p′ ≤ (p & p′)′.
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That is, p & p′ is self-contradictory, or impossible!
Carla. Yes, that’s all. Under very few hypotheses on the behavior of the conjunc-

tion, and the negation, a symbolic proof of the principle follows. And such proof
holds when the symbols & and ′ are interpreted in different forms; for instance,
when taking the relation ≤ as the natural ordering of the lattice, as the connectives
in an Ortholattice, or a De Morgan algebra, and of course, in a Orthomodular lattice,
a Boolean algebra, and, of course, as those in a Basic algebra of fuzzy sets and, in
particular, in a standard algebra of themwith, always, the inference relation identified
with the pointwise ordering of fuzzy sets. Actually, the proof covers a big number of
frameworks where statements are typically represented, and, in particular, all cases
where the negation is strong, that is, verifies p ≤ (p′)′ and (p′)′ ≤ p, or p and (p′)′
are inferentially equivalent.

Karl. Really nice! All that means that in classical, quantum, intuitionistic, and
fuzzy logics, the contradiction principle actually holds, and thinkers can be relaxed
for what concerns the solid character of their grounds. The fact that the principle can
be proven is, in my view, something new.

Carla. Notice that neither commutative nor associative laws for &, no duality law
for both & and ′, no functional expressibility of the connectives in the fuzzy case,
etc., are supposed. The theorem is free frommost of the constraints that are typically
considered. Anyway, the theorem can fail in those cases in which it is not p ≤ (p′)′,
that is, the double negation of a single statement p cannot be inferentially obtained
from it; nevertheless, in any case, the principle will fail for this statement p, or for
all those statements whose double negation will be not reachable from them.

Karl. Turning back to the concept of contradiction, it should be noticed that in the
setting of Ortholattices it is p ≤ q ′ =⇒ p · q = 0, since the inequality implies p ·
q ≤ q ′ · q = 0. In the case of Orthomodular lattices, and provided p and q commute,
that is, p = p · q + p · q ′, the reciprocal holds since p · q = 0 implies p = p · q ′,
or p ≤ q ′. In particular, since in Boolean algebras all pair of elements commute, it
is p ≤ q ′ ⇐⇒ p · q = 0. Thus, in Boolean algebras, it is p ≤ p′ ⇐⇒ p = 0: the
only self-contradictory element is 0; this is perhaps a reason for which it is difficult,
at least for children, to accept the empty set, ∅, as a set.

Carla. But this is not the case in De Morgan algebras, since, for instance, in
the case of the De Morgan algebra in the unit interval [0, 1] with · = min, + =
max , and ′ = 1 − id, it is 0.3′ = 1 − 0.3 = 0, 7, but 0.3 · 0.7 = 0.3 	= 0, even if
0.3 < 0.7 = 0.3′. In this example, there are a lot of self-contradictory elements since
p ≤ p′ = 1 − p ⇐⇒ p < 0.5, that is, all numbers in the sub-interval [0, 0.5], and
only they, are self-contradictory. Anyway, if p · q = min(p, q) = 0, since it implies
p = 0, or q = 0, it follows 0 = p ≤ q ′, or 0 = q ≤ p′.

Karl. Contradiction is a symmetrical property, p ≤ q ′ ⇔ q ≤ p′, provided the
negation verifies q ≤ (q ′)′, since p ≤ q ′ ⇒ (q ′)′ ≤ p′ ⇒ q ≤ p′.

Carla. Boolean algebras are endowed with so a lot of laws that many theorems
can be proven in them. Boolean algebras cannot allow, for instance, to distinguish
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Fig. 2.2 Claudio Moraga and Ramon López de Mántaras during the First “Alfredo Dean” Seminar
on Ordinary Reasoning, to be held at the Cultural Center “Muralla Romana” of Gijon (Asturias),
Spain, April 29, 2011.; photograph by Rudolf Seising

between incompatibility and contradiction. In the classical setting contradiction and
incompatibility are indistinguishable concepts, but not in the quantum, nor in the
fuzzy case, and less again in language. That is, Boolean algebras are not well suited
for representing commonsense reasoning; they have too much constrictions, and it
analogously happens with Ortholattices even if the particular case of Orthomodular
lattices are sometimes taken to represent and to study some aspects of quantum rea-
soning. But in commonsense reasoning there are laws common to both Ortholattices
and De Morgan algebras, that are not always valid like it appears, for instance, when
studying the validity of the laws (μ · σ)′ = σ + (μ′ · σ ′), and μ = μ · σ + μ · σ ′,
with fuzzy sets [6]. Let me say that what cannot be supposed for the second law
when dealing with imprecise predicates is duality!

Karl. And what on the principle of excluded middle? Since it does not hold in
intuitionistic logic, I suppose no straightforward proof is available.

Carla. Well, excluded middle, or tertium non datur, was not so clearly explicitly
posed by Aristotle as it was contradiction, but, and from very early in the Middle
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Age, it is understood by ‘either the affirmative, or the negative, always hold’, that
in set theory is represented by P ∪ Pc = X , if the statements are on a universe of
discourse X , and are specified by its subsets. In this case, it straightforwardly follows
from contradiction because of duality: P ∪ Pc = (P ∩ Pc)c = ∅c = X , and reciprocally.
In classical logic both principles are equivalent. They correspond to stating “‘x is P’
or ‘x is not P”’ for all x in X .

Karl. In the case of lattices with a negation it corresponds to p + p′ = 1, with the
disjunction + and the maximum, 1, of the natural order, and that, in Ortholattices
is a structural law, but not in De Morgan algebras. Of course, since in these lattices
the negation is strong, the disjunction is commutative, and the duality law p‘ + q ′ =
(p · q)′ holds, it is clear that, like with sets, it is p + p′ = p" + p′ = (p′ · p)′ =
(p · p′)′ = 0′ = 1. The two laws of contradiction and excludedmiddle are equivalent,
and both do hold.

Carla. With fuzzy sets in a Basic algebra, the principle can be posed in the same
form μ + μ′ = μ1, and in the very particular case of a standard algebra its validity
comes from solving the functional equation S(a, N (a)) = 1, for all a in [0, 1], with
S a continuous t-conorm, N a negation either strict, or strong, and whose solution is
S = W∗ f , and N f ≤ N , for all order-automorphisms f of the unit interval. Hence,
there are cases in which the principle holds and others that not as, for instance and
respectively, with S = W∗, or with S = max , and in both cases with N = 1 − id [2].

Karl. Thus, the two principles jointly hold in the standard algebras of fuzzy
sets with T = W f , S = W∗g , and Ng ≤ N ≤ N f , where f and g are order-
automorphisms of the unit interval [2]. Of course, if S is the N -dual of T , S =
N ◦ T ◦ (N × N ), the two principles are equivalent like it happens in lattices.

Carla. Analogously to the first principle, the second can be analogously posed by
asking if “p or p′" is deductible from the single premise p, and each time the dis-
junction+ verifies p ≤ p + q, it is p ≤ p + p′. That is, p + q is actually deductible
from p.

Karl. By interpreting ≤ as the ‘natural’ relation of inference, and accepting it
verifies p ≤ p + q, what can be simply said is that p + q is inferable from p. Is not it?

Carla. Yes, it is, and ‘inferable from p′ either can mean that p + q can be con-
jectured from p, or that it can be deduced from p depending from which properties
can have the relation ≤.

Karl. And, concerning the beforehand interpretation of impossible by self-
contradictory, what can be said?

Carla. The problem is not identical to that of contradiction, since what should be
here represented is ‘always holds’. It is an affirmative argument for which it seems
that a constructive argument could be in order. Trying to prove it through a reduction
to absurd reasoning is another possibility that, notwithstanding, has the trouble of
representing the ‘always’.

In the case of the unit interval before mentioned, notice that the numbers that are
not self-contradictory are those in (0.5, 1), coming from the inequality p′ ≤ p ⇔
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1 − p ≤ p ⇔ 0.5 ≤ p, equivalent to p′ ≤ (p′)′. This last expression shows that the
numbers p not self-contradictory are those whose negation is self-contradictory;
these numbers, being not self-contradictory, and after being understood those in
[0, 0.5] as ‘impossible’, can be seen as ‘possible’. Thus, and since in presence of
duality it is p + p′ = (p · p′)′, it appears the possibility of identifying the excluded
middle with the inequality (p + p′)′ ≤ ((p + p′)′)′. Can it be proven?

Karl. I see. Under duality and double negation, last inequality reduces to p′ ·
p ≤ p + p′, whose validity is obvious. I suppose, by analogy with the proof of
contradiction, that it should come from accepting the inferences p ≤ p + q, and
q ≤ p + q. Is not it?

Carla. Yes, it seems so. They imply (p + q)′ ≤ p′, (p + q)′ ≤ q ′, and then the
question is how to continue for arriving at a proof.

Karl. Very easy once accepted that the negation verifies p ≤ (p′)′. The proof is:

p ≤ p + p′ ⇒ (p + p′)′ ≤ p′ ≤ p + p′ ≤ ((p + p′)′)′.

Carla. Yes, but there is a problem in it. The step p′ ≤ p + p′, is allowed?
Karl. You are right . . . we did not yet accept the commutative property of the

operations. It is p′ ≤ p′ + p.
Carla. There is the exit’s way of supposing not only p ≤ p + q, but also p ≤

q + p, that does not seem anything bizarre. What do you think?
Karl. Certainly it is not a bizarre supposition that can be also accepted for con-

junction: p · q ≤ p, and q · p ≤ p. Hence, with it the proof is ok.
Carla. In the case of the unit interval, the inequalities translating the two principles

should be verified by all the numbers between 0 and 1. Since there is duality and the
negation is strong it suffices to see it for just one of them, for instance, p · p′ ≤ (p ·
p′)′ ⇔ min(p, 1 − p) ≤ 1 − min(p, 1 − p) = max(1 − p, p), obviously true.

Karl. What turns in my mind is that intuitionistic logic not accepts excluded
middle, but that in the form we established the principle, it should hold. There seems
to be something rare.

Carla. I don’t think so since no constructive procedure asserts here that p + p′ is
true.We just prove the principle as a theorem by saying that “not (p or not q)” is self-
contradictory that, in some way, means that “p or not p” is not self-contradictory.
Passing from this to truth, it lacks a form of asserting what is true, and we don’t
entered in such a question that, I think, is in the center of intuitionism. We left
constructive truth aside. What we add is just that in all those cases in which the
inference relation, the negation, the conjunction, and the disjunction, satisfy a few
and very soft properties, the principles hold as theorems on the basis of considering
self-contradiction as a death ‘sin’. We escaped from truth and the ways for asserting
it. But nothing else!
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Karl. May be ours is merely an idealistic way of posing the principles . . .

Carla. Why? I am not sure. In the classical case p · p′ ≤ ((p · p′)′ just means p ·
p′ = 0, and (p + p′)′ ≤ ((p + p′)′)′ means p + p′ = 1. That is, our way of posing
the principles reduces to the commonway inwhich they are classically posed,with the
difference that there the principles are axioms and here theorems. I see the classical
axiomatic way more idealistic than is ours. We find minimal conditions supporting
the principles, and these conditions seem to be of a so great generality that allow the
validity of both principles in many settings.

Karl. The Aristotle’s idea that the principle of contradiction cannot be submitted
to proof seems to be challenged by an interpretation of the word impossible he did
use, as the concept self-contradictory, and in a framework of great amplitude, where
the two principles of contradiction and excluded middle, appear as theorems. These
theorems reduce, in the classical case, to the set interpretation of the principles, and
shows that both the algebras of fuzzy sets and also De Morgan algebras satisfy these
principles: It cannot be properly said that De Morgan algebras and fuzzy sets violate
the two principles.

Carla. There are indeed somemultiple-valued logics also verifying them, although
some others did not because of the properties their negations ‘enjoy’. Nevertheless,
what still is not fully clear is which Is the relationship between what has been pre-
sented with both the concept of truth, and, specially, with the constructivism for
asserting truth and that intuitionists consider essential for assuming mathematical
results. In fact, from what we escape is from constructivism.

Karl. This, jointly with the analysis of the two principles for consequences opera-
tors whatsoever, that is, for any kind of deductive inference, remains open to scrutiny.

Carla. Anyway, all that on which we jointly debated here cannot be seen as some-
thing belonging to just the province of logic, but to the larger domains of natural
language and commonsense reasoning. And, at this respect the words of Russell and
Whitehead, that mathematics and logic are merely concerned with ‘the correct use of
a certain small number of words’, should be specifically taken into account. Common
reasoning concerns all words, and in all contexts.

Karl. All right. May be, and provided our discussion could have any value at all,
it could lie in a change of perspective for the study of the reasoning’s phenomena
by placing at its center the ideas of a natural linking between statements, and con-
tradiction, instead of truth and the representation of conditional, If/Then, statements
by any sort of material conditional.

Carla. Also, and from my point of view, to abandon the expression of the condi-
tional ‘If p, then q ′ coming from, for instance and in Boolean algebras, the logical
equivalence between p′ + q = 1 and p ≤ q, by substituting the partial order by a
just transitive ‘natural’ relation that links statements, could arrive to be fruitful. Who
knows!
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Fig. 2.3 ClaudioMoraga, at the “1. International SymposiumFuzziness, Philosophy andMedicine”
at the European Centre for Soft Computing, Mieres (Asturias), Spain, March 23–24, 2011, in the
background, Clara Barroso; photograph by Rudolf Seising
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Chapter 3
Some Entertainments Dealing
with Three Valued Logic

Itziar García-Honrado

3.1 Introduction

I met Professor Claudio Moraga when I was carrying out my Ph.D. in the European
Centre for Soft Computing (ECSC) in Mieres (Spain), I was a member of the Unit
of Fundamentals of Soft Computing and he was working there as an Emeritus
Researcher.

During that time he was a great supporter, he helped me in my researches correct-
ing some papers and commenting me some ideas to enlarge them. I am grateful for
his work and his kindness.

In 2011, we attended together to the IEEE International Symposium on Multiple-
Valued Logic in Tuusula, Finland. I presented there a study elaborated with Professor
Enric Trillas [1] about symmetric difference. This work studied the behavior of
symmetric difference found out in which cases disjunctive syllogism for a exclusive
or is verified. The study was done in three valued logic, and in Standard Algebras
of fuzzy sets through functional equations. So, in that paper an idea which I want to
show in this writing is collected, it is that in the path to generalize some classical rules
to fuzzy logic, an intermediate steep could be considered: to analyze the behavior in
multiple-valued logic, for instance in three valued logic.

This is the reason to propose along this chapter some “entertainments” with some
well known three valued logic: Łukasiewicz, Gödel, Kleene, Bochvar and Post.
Through the truth tables of basic operation (+, ·,′ ) in all these logics. I propose
to study the behavior of Sheffer stroke and its classical properties (following the
methodology done for symmetric difference) and from new conception of the prin-
ciple of no contradiction to study of different set of conjectures [2]. Therefore, some
examples of howConjecturesmodelsworks in these three valued logicwill be shown.
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3.2 Three-Valued Logic

Classical logic allows elements to totally verify or not a proposition, deals with
values 0 and 1. In the case of three-valued logic a new value is introduce, 1

2 , this
is the simplest way to break the duality of classical logic and what makes difficult
translating directly our knowledge of classical logic.

Along this chapter operations in three-valued logic are considered. All these oper-
ations are based in the basic operation: negation (′), intersection or product (·), and
union or addition (+). Behind, tables [3] defining these basic operations are collected
for the logic of: Łukasiewicz, Gödel, Kleene, Bochvar and Post.

• Łukasiewicz

′
1 0
1
2

1
2

0 1

· 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2 0

0 0 0 0

+ 1 1
2 0

1 1 1 1
1
2 1 1

2
1
2

0 1 1
2 0

• Gödel

′
1 0
1
2 0
0 1

· 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2 0

0 0 0 0

+ 1 1
2 0

1 1 1 1
1
2 1 1

2
1
2

0 1 1
2 0

• Kleene

′
1 0
1
2

1
2

0 1

· 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2 0

0 0 0 0

+ 1 1
2 0

1 1 1 1
1
2 1 1

2
1
2

0 1 1
2 0

• Bochvar

′
1 0
1
2

1
2

0 1

· 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2

1
2

0 0 1
2 0

+ 1 1
2 0

1 1 1
2 1

1
2

1
2

1
2

1
2

0 1 1
2 0

• Post

′
1 1

2
1
2 0
0 1

· 1 1
2 0

1 0 0 1
2

1
2 0 1 1

2
0 1

2
1
2

1
2

+ 1 1
2 0

1 1 1 1
1
2 1 1

2
1
2

0 1 1
2 0
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3.3 Translating Terms and Operations from Classical Logic

The presence of a third element, the undecided one, make difficult translating all
principles or laws that are verified in classical logic. The conflict starts with prin-
ciples that are considered the basis of the logic, as it is the case of the Aristotelian
Principles of Non-Contradiction and Excluded-Middle [4]. The Principle of Non-
Contradiction formulated by ‘It is impossible for anything at the same time to be
and not to be’ it is usually translated as a · a′ = 0. It is clear that, for instance, in the
three-valued logic of Łukasiewicz, taking a = 1

2 , it is obtained that a · a′ = 1
2 �= 0.

Then, dealing with multi-valued logic some conflicts happened: our knowledge of
classical logic translated to multiple-valued logic fails (or mostly, fails) or we have
the challenge of rethink how the solid bases of classical logic could work.

Therefore, in this chapter to proceed with three valued logic, to different aspects
are considered:

• To analyze the behavior of some classical laws directly translated into the opera-
tions (′, ·,+) as it is done in classical logic.

• To find some translations that covered the case of classical logic and englobe the
verification of some three-valued logics.

Regarding these second vision, the Aristotelian principle of Non- Contradiction
could be translated as ‘a and not a’ is ‘self-contradictory’, that is equivalent to “If
‘a and not a’, then not (a and not a)” [5, 6]. With this translation three-valued logic
of Łukasiewicz verifies that principle, but it is not the case of the three-valued logic
of Post, in which taking a = 1

2 , it is obtained that a · a′ = 1
2 · 0 = 1

2 � 0 = ( 12 )
′ =

(a · a′)′.

Along this writing, with respect to the first point, two classical lawswill be named:

• Symmetric difference, a · b = (a + b) · (a · b)′, and the exclusive syllogism dis-
junctive (a · b) · a′ ≤ b and (a · b) · a ≤ b′.

• Sheffer stroke, a|b = (a · b)′, and the relation of sheffer stroke and its classical
equivalences a′ = a|a, a · b = (a|b)|(b|a) and a + b = (a|a)|(b|b)
The representation of both of them with Venn diagrams is shown in Fig. 3.1. Both

of them get rid of the intersection. To translate both operations in language; sym-
metric difference could be understood as either a or b, while Sheffer stroke could be
understood as neither a nor b.

On other hand, considering different interpretation of the term not inconsistent:
not incompatible, not self-contradictory or not contradictory, an analysis of sets of
conjectures depending on these interpretations in all the previous three-valued logic
will be done.
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Fig. 3.1 Venn diagrams of symmetric difference and Sheffer stroke

In classical logic, the term not incompatible a · b �= 0 is equivalent to not
self-contradictory a · b � (a · b)′ of to not contradictory a � b′. If a · b = 0 and
0 ≤ 1, it is a · b ≤ (a · b)′. In the same way from a · b ≤ (a · b)′, it is obtained
a = a · b · b′ ≤ (a · b)′ · b′. Finally, if a ≤ b′, it is a · b′ ≤ b · b′ = 0.

These equivalences are not verified in three-valued logic. For instance, in three
valued logic of Post, for 1 · 1

2 = 0 but 1 � 1
2

′ = 0. Therefore, the variety of these
logics allow us to study the behavior of those interpretations of not incompatible
through the set of conjectures.

Conjectures are those elements that are not incompatible with the information
available that is, with the information contents in the set of premises. That is the rela-
tion, which shows the reason to obtain three different set of conjectures depending
of the previous translations of the term, not incompatible.

Let me deals with a resumé of Premises r(P). Framing set of conjectures in three
valued logic, the resumé will be considered an element in L = {0, 1

2 , 1}.

Then, these three set of conjectures will be considered:

• Conj1(P) = {q ∈ L; r(P)·q �= 0}
• Conj2(P) = {q ∈ L; r(P)·q � (r(P)·q)′}
• Conj3(P) = {q ∈ L; r(P) � q ′}

3.4 Two Operations: Symmetric Difference
and Sheffer Stroke

In a previous publication [7], it is analyzed the behavior of symmetric difference in
those three valued logics. Firstly, tables of the operation aΔb = (a + b) · (a · b)′ are
obtained one for Łukasiewicz, Kleene and Bochvar logics, other for Gödel’s, and
other for Post’s.
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• Łukasiewicz, Kleene and Bochvar
Δ 1 1

2 0
1 0 1

2 1
1
2

1
2

1
2

1
2

0 1 1
2 0

• Gödel
Δ 1 1

2 0
1 0 0 1
1
2 0 0 1

2
0 1 1

2 0

• Post
Δ 1 1

2 0
1 0 0 1
1
2 0 1 1

2
0 1

2
1
2

1
2

Then, the schemes of inference ‘(a · b) · a′ ≤ b and (a · b) · a ≤ b′’ are studied,
getting as results that only in the three valued logic of Gödel those schemes are
verified.

To proceed with Sheffer stoke the same steps will be follows.
Four different tables of the operation a|b = (a · b)′ are obtained, one for

Łukasiewicz and Kleene, and the other three for: Gödel, Bochvar, and Post.• Łukasiewicz and Kleene

| 1 1
2 0

1 0 1
2 1

1
2

1
2

1
2 1

0 1 1 1

• Bochvar

| 1 1
2 0

1 0 1
2 1

1
2

1
2

1
2

1
2

0 1 1
2 1

• Gödel

| 1 1
2 0

1 0 0 1
1
2 0 0 1
0 1 1 1

• Post

| 1 1
2 0

1 1 1 0
1
2 1 1

2 0
0 0 0 0

Note that the values hold in classical logic when dealing with elements {0, 1} are
preserved in Łukasiewicz, Kleene, Gödel and Bochvar but not in Post. And in the
case of three valued logic of Gödel Sheffer stroke does not allow undecided elements
as result.

With the tables of operations it is easy to analize what happens with the clas-
sical equivalences of Sheffer stroke: a′ = a|a, a · b = (a|b)|(b|a) and a + b =
(a|a)|(b|b). In the case of Łukasiewicz, Kleene, and Bochvar those equivalences
are hold, but it is not the case of Gödel where only the equivalence related to the
negation is hold, the others do not hold since through Sheffer stroke all undecidable
elements become 0 or 1.

• Gödel

(a|b)|(b|a) 1 1
2 0

1 1 1 1
1
2 1 0 1
0 1 1 0

(a|a)|(b|b) 1 1
2 0

1 1 1 0
1
2 1 1 0
0 0 0 0

Regarding to Post, any equivalence is hold, in fact the table of Sheffer stroke is
coincidental with the one of (a|b)|(b|a), and with the table of the negation of the
operation a · b.
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• Post

(a|b)|(b|a) 1 1
2 0

1 1 1 0
1
2 1 1

2 0
0 0 0 0

(a|a)|(b|b) 1 1
2 0

1 1
2 0 1

1
2 0 0 0
0 1 0 1

3.5 Conjectures

As it is indicated before, this section is devoted to study how the sets of conjectures
previously defined behave in the collected three valued logic.

First of all, to obtain conjectures we need an algebraic structure. In [2] it appears
the definition of Basic Flexible Algebra (BFA), this structure collects the minimum
characteristics an algebraic structure should verify in order to build a Conjectures
models.

Definition 3.1 A Basic Flexible Algebra (BFA) is a seven-tuple L = (L ,≤, 0,
1; ·,+,′ ), where L is a non-empty set, and

1. (L ,≤) is a poset with minimum 0, and maximum 1.
2. The binary operations · and + are mappings L × L → L , such that:

(a) a·1 = 1·a = a, a·0 = 0·a = 0, for all a ∈ L
(b) a + 1 = 1 + a = 1, a + 0 = 0 + a = a, for all a ∈ L
(c) If a ≤ b, then a·c ≤ b·c, c·a ≤ c·b, for all a, b, c ∈ L
(d) If a ≤ b, then a + c ≤ b + c, c + a ≤ c + b, for all a, b, c ∈ L

3. The operation ′ : L → L verifies

(a) 0′ = 1, 1′ = 0
(b) If a ≤ b, then b′ ≤ a′

4. It exists L0, {0, 1} ⊂ L0 � L , such that with the restriction of the order and the
three operations ·,+, and ′ ofL ,L0 = (L0,≤, 0, 1; ·,+,′ ) is a Boolean algebra

Many well known algebraic structures [8] are BFA: Boolean algebras, ortholat-
tices, De Morgan algebras,...

In this section, set of conjectures are built from aBFA using the operations defined
in three-valued logic. The poset is L = {0, 1

2 , 1} with the linear order 0 ≤ 1
2 ≤ 1.

Then, the operations (+, ·,′ ) defined in Łukasiewicz, Kleene and Gödel three valued
logic verify items 2 and 3 in the definition. It is not the case of the operations defined
in Bochvar or Post three valued logic, since it is not verified the monotonicity of
· or +. In the case of Bochvar it is enough to take 0 ≤ 1

2 , and then 1 = 0 + 1 ≤
1
2 + 1 = 1

2 . Analogously, in the case of Post, it is enough to take 0 ≤ 1
2 and then

1
2 = 0 · 1 � 1

2 · 1 = 0.
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Finally, regarding item 4 of the definition, the operations defined in Łukasiewicz,
Kleene andGödel verify the classical operations in {0, 1}. Therefore, since operations
in Łukasiewicz, Kleene are coincidental, two different BFA can be considered, let
me referee to each one as Łukasiewicz and Gödel BFA.

To obtain a conjecture, it is necessary to have a body of information, that is called
set of premises, P . In this section, it is dealt with elemental sets of premises, those
that have only one element. If it were a set of two or more premises, these premises
would be summarized in the résumé, that could be the intersection of all of them.

This premise is selected from the set L = {0, 1
2 , 1}, the element 0 is not considered

as a premise since 0 do not give any information.
So, a table of conjectures from the element of total knowledge (1), and another

table for conjectures from the undecidable element ( 12 ) are obtained for each different
sets of Conjectures depending of the translation of not inconsistent:

P = {1} Conj1(P) Conj2(P) Conj3(P)

Łukasiewicz and Kleene {1, 1
2 } {1} {1, 1

2 }
Gödel {1, 1

2 } {1, 1
2 } {1, 1

2 }
P = { 12 } Conj1(P) Conj2(P) Conj3(P)

Łukasiewicz and Kleene {1, 1
2 } ∅ {1}

Gödel {1, 1
2 } {1, 1

2 } {1, 1
2 }

In the case of Gödel BFA, all sets of conjectures are equal, all elements different
to 0 are conjectures. In Łukasiewicz BFA different sets of conjectures depending the
on the interpretation of not inconsistent and the premise used are obtained.

Accordingly, let us considered some properties that conjectures verify in ortho-
modular lattices [2]:

1. Conji (p) �= ∅, for p ∈ L and i = 1, 2, 3.
2. Conj is expansive: P ⊂ Conj (P)

3. It exists an operator Ci such that Conji (P) = {q ∈ L; q ′ /∈ Ci (P)}, for i =
1, 2, 3.

Let us check if the sets Ci (P) (for P = {1}, { 12 } and i = 1, 2, 3) obtained above
verify that properties:

1. In the case of Łukasiewicz BFA, it is Conj2(
1
2 ) = ∅.

2. In the case of Łukasiewicz BFA, it is { 12 } /∈ Conji (
1
2 ) for i = 2, 3.

3. In orthomodular lattices the operatorsC are operators of consequences in the sense
of Tarski: extensive (P ⊂ C(P)),monotonic (If P ⊂ Q, thenC(P) ⊂ C(Q)) and
a clausure (C(C(P)) = C(P)). For each set of conjectures they are defined as:

• C1(p) = {q ∈ L; p · q ′ = 0}
• C2(p) = {q ∈ L; p · q ′ ≤ (p · q ′)′}
• C3(p) = {q ∈ L; p ≤ q}.

Todefine sets of conjectures asConji (P) = {q ∈ L; q ′ /∈ Ci (P)} (for i = 1, 2, 3),
it is necessary that the negation is involutive, it is (a′)′ = a. But this property is not
hold on Gödel BFA.
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Therefore, let’s calculate sets of Ci ({1}), and Ci ({ 12 }), for i = 1, 2, 3 in Łukasie-
wicz BFA.

Łukasiewicz C1(P) C2(P) C3(P)

P = {1} {1} { 12 , 1} {1}
P = { 12 } {1} {0, 1

2 } {1, 1
2 }

In that case, it is not possible that Ci is an operator of consequences since it is not
extensive, since for i = 1, 2, 3. For instance, taking P = { 12 }, it is { 12 } � C1(P) =
{1}.

Moreover, in orthomodular lattices Ci (P) ⊂ Conji (P), but in Łukasiewicz BFA
is not hold since taking P = { 12 }, C2(P){ 12 } = {0, 1

2 } � ∅ = Conj2({ 12 }).

These problems are solved in [9] by avoid set of premises, or elements in premises
p that are self contradictory in the sense that p ≤ p′. In thatway, the premise P = { 12 }
could not be considered. What is more, in [9] operators of consequences considered
are consistent operator of consequences, so it is impossible the existenceof an element
and its negation in the same set of conjectures, therefore self contradictory elements
could not be considered consequences. It is easy to cheek that in Łukasiewicz BFA
the operator C2 is not consistent since 1

2 = ( 12 )
′ ∈ C2({1}).

As conclusion, all this operations donewith three valued logic under the definition
ofBFA, allows us to corroborate that the problems that appearswhen trying to enlarge
Conjectures models into Standard Algebras of Fuzzy Sets, that is the set of fuzzy set
defined in a Universe of discourse X , and endowed with a t-conorm, a t-norm and
a negation ([0, 1]X , T, S, N ), actually until now only some results are obtained for
([0, 1]X , T, S, N ), which is a DeMorgan algebra. Notwithstanding, some definitions
that look for avoid self contradictory elements in those models solve many problems,
but are there other ways to solve them or at least control these problems? I would
like this study could highlight these conflicts and maybe inspire future studies.

3.6 To End Up

This is not a research work, it is nothing else than an entertainment to work with
three valued logic. I do not work in the field of multi-valued logic, nor in the field
Professor Claudio Moraga works. But since Professor Claudio Moraga is strongly
related with multi-valued logic, and some times I look for some strange behavior of
classical world in three valued logic, I consider that it is interesting to devote this
chapter to look over what happens in three valued logic. Therefore, in this writing I
do some games with three valued logic. I considered two types of games: The first
one is relating to translate a operation, the Sheffer stroke, and trying to cheek whether
classical properties are hold. And the second one, through the new interpretations of
not inconsistent some curiosities are shown related to models of Conjectures using
the operations defined in some three-valued logic.
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Fig. 3.2 Professors Rudolf Seising, Claudio Moraga and Enric Trillas during the second edition
of Saturday’s Scientific Conversations in Parlermo, 2011

Finally, I want to remark that the years spent working in the Unit of Fundamentals
of Soft Computing in ECSC, was a very nice period to approach to Research, and I
should thanks all my mates in that unit the great atmosphere of research generated.
In the photogram3.2 some of them appears.
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Chapter 4
Fuzziness as an Experimental Science:
An Homage to Claudio Moraga

Marco Elio Tabacchi and Settimo Termini

4.1 Introduction

To choose a topic to homage Claudio is at the same time very easy and very difficult.
Easy as, due to his widespread scientific interests, we will be spoiled for choice of a
topic. Difficult since every specific choice would impinge on a very subtle and tiny
aspects of his omni-comprehensive interests, overlooking many others as prominent
as the chosen one.

Our first reaction, was then to pick up a very specific topic: the idea that Church-
Turing thesis can serve as a meeting point to establish a dialogue of ideas between
a few considerations briefly touched upon in our previous work [1–7] and Claudio’s
considerations in his fuzzy computation paper [8], in the hope that this “dialogue at a
distance” could subsequently produce a real, verbal dialogue, possibly as a basis for
approaching in a new way what is now the twenty years old notion of “Computing
WithWords”; a very challenging idea but still immature with regards to its theoretical
and conceptual aspects.

However, after ruminating a little on this project, we concluded that this was not
the right way to homage Claudio. And the reason was the following: it is possible to
begin a true dialogue either in the case in which one is affording a very specific topic
with definite tools or in the case in which one has in mind a few general questions
but it is clear the context in which the discussion can be developed (in other words,
the conceptual space in which we want to explore the ideas is clearly defined).
The reflection on possible connections between Church-Turing Thesis and CWW
does not belong to either of the two previously mentioned cases. Much work is still
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Fig. 4.1 Enric Trillas, Settimo Termini and Claudio Moraga attending the Saturday’s Scientific
Conversations “Thinking andFuzzyLogic” inPalermo (Sicily, Italy), 14th ofMay, 2011; photograph
by Rudolf Seising

necessary to understand what is the “conceptual space” in which these connections
can be seen and studied. So we decided that this could be the occasion for beginning
giving a personal small contribution to the clarification of which is the nature of this
conceptual space.

More or less we shall, then, move around such general questions as: “Are there
connections between the research program of Cybernetics and the birth of Fuzzy
Sets theory?”, “Why the new large field of challenging investigations moving around
the notion of information has not yet found a stable name?”, “The successions of
names Cybernetics, General Systems, Cognitive Sciences indicates only changes
of names or reflect a deep change of the focus?”, “In which sense approximation
and uncertainty are essential parts of this field?” and we fear that we should ask
again—50years after Zadeh’s seminal paper: “What is fuzziness?”

Very big questions, indeed. We are listing them not hoping to provide answers but
just to stress the horizon in which one should move when facing fundamental (and
foundational) problems regarding Fuzzy Sets. In the following pages we shall limit to
askwhich can be the best way of formally studying fuzziness expressing some doubts
about the fruitfulness of taking as a unique possible paradigm classical mathematical
logic. In this direction (and influenced by cybernetic suggestions), we shall comment
on an old paper by NorbertWiener on the nature ofMathematics (Sect. 4.2). We shall
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then askwhether it is not the case of trying to understand fuzziness going back to a sort
of experimental study as advocated by Trillas (Sect. 4.3). Subsequently, in light of the
conceptual connections existing between Cybernetics and the birth of FST, we shall
ask which kind of constraints Cognition (the present avatar—or reincarnation?—of
Cybernetics) poses on the previously discussed questions (Sect. 4.4).

4.2 Mathematizing Fuzziness

Some authors [9–12] have outlined the analogy and similarity of development of
Fuzzy logic and Cybernetics (innovative initial ideas, crucial new questions posed
and asked but not completely answered, difficulty of going on by developing the
original program along the same conceptual lines presented at the beginning). In our
view these analogies are rooted in some of the central questions of the new informal
field that begin to grow in the mid of last Century and which, in our view, has not
yet reached its point of equilibrium. This is also the reason why we realized that an
old paper by Norbert Wiener can be useful for pinpointing some questions.

4.2.1 The Resistible Legacy of Mathematical Logic
in the Mathematization of Uncertainty

The authors of a relatively recent paper [13], mathematical logicians by trade, write
that: “our results appear to document the fact that fuzzy logic, taken seriously, is
not just applied logic but may well be considered a branch of philosophical logic
(since it offers a rich formal model of consequence under vagueness) as well as of
mathematical logic (since it brings problems demanding non-trivial mathematical
solutions)”.

Let us remember that “fuzzy logic, taken seriously”, is what is usually called
“fuzzy mathematical logic”. So what the authors affirm is that if we want to “take
seriously” fuzzy logic we cannot but take as reference and model the problems and
questions of classical mathematical logic. We are not questioning here the impor-
tance of the results of “fuzzy logic, taken seriously” in itself. What we want to ask
is whether such a theory can be considered an applied logic and, more importantly,
a general model of reasoning. We think that—independently from the value of the
obtained results—it cannot provide any true help for applications in situations where
uncertainty and fuzziness play a crucial role (see [14]. And this for very simple and
fundamental reasons; namely the central notions of mathematical logic, coherence
and completeness, in the first place, lose their crucial role when we are concerned
from the start with uncertainty and imprecision. And its complex (and wonderful)
machinery (if taken seriously) complicates any approach both to solving concrete
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problems and understanding “reasoning” as it is intended and used in natural lan-
guage. We know that we are not saying something new, mathematical logicians have
always been perfectly aware of the points remembered above. And the same holds
also for the work done in fuzzy, and in general, in non standard logics.

However, since these points, although known, are rarely discussed, we would
call, with a particular urgency, the attention to them, asking to draw the necessary
conclusions. From a practical, or could we say, procedural point of view the urgency
about the centrality of these reflections can only stress the necessity of paying a
different attention to what is involved. In the long run this may perhaps lead to a
paradigmshift, or, on a lesser scale, to a change of perspective. Let us clarify our point.
We are not affirming that we must not afford the problem of modelling reasoning
with rigor and with sophisticated mathematical tools; what we are saying is that we
have to look for this modelling forgetting the burdensome legacy of the (wonderful)
achievements of mathematical logic of last Century. If we look, in fact, at the true
questions staying behind the informal notion of reasoning (permeated, imbedded,
as it is, with approximations, uncertainty and ambiguity and—notwithstanding all
these things—miraculously working) we realize that we are moving in a universe
completely different from the one inhabited by Hilbert and Gödel.

4.2.2 From a Norbert Wiener’s Early Idea

We chose, then, to introduce the argument of looking at and seeing fuzziness as
an experimental science, by reading again a quite dated paper, written before the
great results in logic of the Thirties of last Century [15]. In our search, in fact, to go
back to more informal uses of the term reasoning we found interesting a few simple
considerations done by such a mathematician as Norbert Wiener in 1923; before
than the complete outline (as well as the decline and fall) of Hilbert program (and
the brilliant gems produced in the course of this gigantic struggle). What Wiener
does is to describe in a very plain style what—according to him—is the Nature of
Mathematics. We want, then, to recall these remarks by Wiener on the empirical
nature of math which are very consonant and tuned with the ones heralded by Enric
Trillas at the end of his long scientific engagement in doing research inFST (a position
we completely and wholeheartedly share). But let us now try to report, briefly, some
of the content of Wiener’s remarks. After observing that the way in which something
new is obtained (“order of being”) is very different from the way in which the new
findings are presented (“order of thinking”) he continue by affirming: “Now there
is perhaps, no place where the order of being and the order of thinking need to
be differentiated with such care as in mathematics. It needs but little reflection to
see that any account of mathematics which makes logic not only the norm of the
validity of its processes but also its chief heuristic tool is absurd on the face of it”,
and subsequently: “Logic will never answer a question for you until you have put
it a definite question . . . logic is a critic, not a creator, even as regards its own laws
of criticism”. (ibid., p. 268) Later, after observing that “Mathematics is every bit as
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much an imaginative art as a logical science and the art of mathematics is the art
of asking the right questions”, he asks the question of recognizing the interesting
results among all that can be mechanically derived from the premises and answer by
affirming that “This charge is entirely beyond the jurisdiction of logic, but the ability
to discriminate between such trivial theorems and the really vital conclusions of a
mathematical science is precisely that quality which the competent mathematician
has and the incompetent mathematician lacks”. The emphasis of the style can be,
perhaps, related to the appearance of Principia mathematica from 1910 to a decade
before.

In fact, “In order to do good mathematical work, then, and in fact to do any
mathematical work, it is not enough to grind out mechanically the conclusions to be
derived from a given set of axioms, as by some super-Babbage computing machine.
We must select”. (ibid., p. 269) The reference to Babbage seems particularly mean-
ingful, sincewemust remember that his paper appeared in 1923, thirteen years before
the appearance of Turing’s (and Church’s) paper. This shows, in our view, the fact
that—notwithstanding the fact of writing more than a decade before the birth of
the Theory of Computation, Wiener had clear in mind what should be avoided by
simplistic mechanizations. Which does not, of course, imply that we cannot look
for sophisticated mechanical (algorithmic) models of human activities. In fact, he
writes: “The imagination is the mainspring of mathematical work, while logic is
its balance-wheel”. Parallel to the imagination an important role is played by the
“habits of thought” which represent a new acquisition of the human mind: “Habits
of thought—it is these rather than the sensory and imaginational content of the mind
which constitute what is vital inmathematical imagining. Inasmuch as themathemat-
ical imagination must sooner or later submit to the criticism of logic, it is essential
that these habits should accord with logic.” (ibid., p. 270) All this machinery will
help along the mathematical investigation guiding to find the right level at which it
is better to move: “In every branch of mathematics there is one plane of general-
ity on which the theorems are easiest to prove and needless complication arises as
quickly by falling short of this as by exceeding it”. And the same habits of thought
allow the great mathematician to take “a number of separate theories, fragmentary,
intricate and tortuous, and by a profound perception of the true bearing and weight
of their methods to have welded them into a single whole, clear, luminous, and sim-
ple.” And he continues by affirming that: “Mathematics is an experimental science.
The formulation and testing of hypotheses play in mathematics a part not other than
in chemistry, physics, astronomy, or botany . . . An experiment is the confronting of
preconceived notions with hard facts, and the notions of the scientist are just as much
the result of preconceptions, the facts just as hard, in mathematics as anywhere else”
(ibid., p. 271).

To sumupWiener’s ideas as presented in this essay,we can say thatmathematics is
seen as an experimental science (a bold statement explicitly done by him), the use of
logic in math is crucial but it does not play a role at the beginning of a process which
can lead to a new theorem or a new theory. However, at the beginning, there is not a
free imagination alone seen as a sort of dream; there is imagination regimented by
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the habit of knowing how a certain field is or should be structured, of understanding
the connections among the new ideas and suggestions: a very complex conception,
indeed. In this perspective he can conclude that “it is just these waifs of notions that
may furnish the new point of view which will found a new discipline or reanimate
an old. He who lets his sense of the mathematically decorous inhibit the free flow of
his imagination cuts off his own right hand” (ibid., p. 272).

4.3 Fuzziness as an Experimental Science

Now we shall try to present—albeit in a very synthetic way—Enric Trillas’ argu-
ments, championed at least since 2006 [16, 17] and, recently, in two complementary
books, respectively, in Catalan [18] and Spanish [19] on the importance of consid-
ering Fuzziness as an experimental science.

Fuzziness is usually seen as just an extension of two values (true/false) logic aimed
at a better treatment of missing information, imprecision and uncertainty, but in any
respect an extension of traditional mathematical means, built on axioms and rules. In
Trillas’ opinion, which we make our own, Fuzziness is also something more: a para-
digm shift that highlights newways to implement the treatment of imprecision, which
is worthwhile to pursue in a separate but intertwined path as the rest of “traditional”
Fuzzy Logic. In his 2006 paper [16] Trillas traced a possible pathway: “[R]ethinking
fuzzy logic [will lead to] a ramification of current fuzzy logic in three branches: An
experimental science of fuzziness, mainly dealing with imprecision in natural and
specific languages; theoretical fuzzy logic, dealing with mathematical models and
their linguistic counterparts as well as the necessary computing tools for their com-
puter implementation, and a broad field of new practical applications to amultiplicity
of domains, like internet, robotics,management, economy, linguistics,medicine, edu-
cation, etc.” The first two versions of fuzziness, the formal/mathematical approach
and the experimental one, seem—at a first reading to have a strong analogue in what
Lotfi Zadeh termed respectively Narrow and Wide Fuzzy Logic [20]. One side a
toolbox for reasoning about uncertainty and vague predicates using a formal logical
system, the other a complex “system of reasoning and computation” made of many
components, that should allow to create a description of the real world that enclose
its inherent imprecision. From one perspective a toolset living in the formal realm
of logic whose predicates need a constant translation to and from the real world, in a
constant switching from precisiations to vague descriptions and back; from the other
an all-encompassing system, self-sufficient in its abilities of reality description and
control, where fuzzy concepts are the only needed citizens. All this justified by the
fact that “Despite its name, fuzzy logic is, in the first place, used for representing
some reasonings involved with imprecision and uncertainty [and as such] closer to
an experimental science than to a formal one” [16].

We have discussed further consequences of this idea in [4, 7], noting that due
to the normal mechanisms of science advancement, development of Fuzziness has
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been rich in dichotomies and strong contraposition, mainly due to the fact that the
intrinsic innovativeness of the basic ideas rendered a normal process of assimilation
impossible. Trillas managed to take away a portion of the development of FST usu-
ally devoted to the paradigm of mathematical logic, and to aim at a general strategy
centered instead on the nuances of the concepts related to topics such as language
and cognition; the experimental model seems more at ease with problems of such
nature, more at least than the strict realm of mathematical logic. But let us to say
more. Perhaps, we could also speak of a pernicious role of mathematical logic in the
assessment of the mathematical foundations of fuzzy set theory, in the sense that the
paradigm of mathematical logic was seen as the unique, the only possible to which
refer for providing formally acceptable and respectable mathematical developments.
As we have briefly indicated at the beginning of this Section and argued, in more
detail, in [14], in order to obtain good mathematical modellings of phenomena con-
nected to an unavoidable presence of fuzziness, the attitude to follow is to go back to
the attitude of mathematicians before the storm of the Thirties of last Century and the
discovery of the jewels of XX Century mathematical logic. They are incomparable
jewels, but to acknowledge this does not imply that every attempt at model reasoning
must take it as the unique possible paradigm. The correct rules of reasoning in every-
day language full of precious slippery notions (ambiguity, fuzziness, imprecision,
locality, context dependence, irony etc.) cannot coincide with the ones needed to
construct what we could call Gödel-Hilbert Cathedral.

In this perspective, we can read Trillas’ threefold division in a different sense.
“Theoretical fuzzy logic”, by using Trillas words does not coincide with “Fuzzy
logic in the narrow sense”, in Zadeh’s words, if this “narrow sense” is interpreted,
as it is usually done, as Fuzzy mathematical logic. This last one is only a tiny frag-
ment of what is and will be “Theoretical fuzzy logic” which will try to model in a
mathematical reasonable way aspects of human reasoning for which such notions
as soundness and coherence have no role to play. Results, we maintain, will show
that considering Fuzziness in a very general sense as an experimental science and
looking for an “old style” mathematization of relevant classes of phenomena not
only has a specific place in the history of the discipline, but reinforces the idea that
the new developments in the field, if supported by the experimental checking, will
preserve all the conceptual innovativeness of the original idea. The idea of Fuzziness
as an experimental science offer a solution to the problem of further development
of fuzziness; by following the experimental approach, the existence of a “coherent
something” which has many distinguishing and specific features which prevent its
total collapse into other, less appropriate and already established paradigms could be
usefully employed. We think that this idea is in synch with the discipline founders’,
and strongly reinforces the possibility that the new developments will merge in a
coherent framework all the conceptual originality of the primitive vision.
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4.4 Cognitive Aspects and the Constraints Induced
on “Reasoning”

In this last Section we shall consider and review some cognitive aspects which rein-
force the previous analysis. It would be interesting to investigate whether there are
fundamental reasons explaining the conditions under which the notion of rational
behavior can (and cannot) be captured by a (finite) set of mechanical rules.

As a good starting point for such analysis we could consider a recent paper on
the subject by Pere Julià [21]. Julià starts from the idea that “Experience is fuzzy”,
and as such Fuzzy Logic and even more Soft Computing are disciplines whose con-
tribution to cognition should be valued more, and said contributions should also be
the catalyst for a continuous interchange that could foster both the development of
cognitive sciences and computational intelligence. He then proceeds to lament a pre-
dominance of the engineering approach to fuzziness, which brings with it a primacy
of the machine view of cognition; in this context cognitive research in fuzziness
seems to be driven by the quality of achievement in the AI domain over the under-
standing of human performances, a directionwhich in any sensible cognitive research
program should be reversed, and akin to championing the unicity of machines over
the specificities of human reasoning when delimiting the area of action of cogni-
tive fuzziness—especially when language is concerned. From here Julià moves to
pinpoint the forced identification of reasoning with written language as the main
cause for the failure of properly achieving understanding of cognition, and while
voluntarily glossing over the conative aspects of language, a debate that would have
brought to the table long debated and unresolved questions about state of minds,
qualia and the likes, he embarks on a detailed discussion of how “confusing con-
structs and events” brings hard sciences, although at different degrees, to the risk of
valuing more accuracy than the integration of empirical data when natural language
is involved. Conclusions show an apparent and sincere optimism for the future of
cognitive research in fuzziness, well represented by a citation of Klir and Yuan [22]
on the importance of computational intelligence in cognition (the ‘psychology’ and
‘FST’ labels sounds like an anachronism due to the age of the cited paper) and on
the bidirectional relationship they should enjoy: “Psychology is not only a field in
which it is reasonable to anticipate profound applications of fuzzy set theory, but
also one that is very important to the development of fuzzy set theory itself.”; this
is reinforced by Smithsons’ observation that [applications of FST to humanities] are
creatively stimulating for both researchers and theorists” [23].

But in fairness Julià’s reflection seems to end on some sour notes: the centrality
of natural language in fuzziness and Soft Computing is strongly dependent on the
use of Language Variables and Rules, which, according to the author, are semantic
insufficient, relying on a symmetry between the speaker and the listener that exists
only in computer models and theories; knowledge cannot be represented by rules
alone, and this is pointed as a recurring error in computational intelligence, already
beleaguering cybernetics and various system theories; the actual process of “smartifi-
cation” of machines seems to be leaving behind the behaviour of humans themselves,
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and with it the ability to learn how to comprehend and interact; even worse, the lack
of a theory of mind approach based on emotions and intentions highlights the pre-
sumed impossibility of a specificmachine effort (as intended today). In Julià’s words,
“[t]he fundamental fact remains: machines just do not have the right nerves going to
the right places. In their case, we do not have to worry about all-too-human factors
like frustration, fatigue, self-doubt, cognitive dissonance, absent stimulation, delayed
action in the sense described, the perceptual/verbal/motor triad, not to speak of the
automatic/non-automatic dichotomy that proves pivotal in human self-knowledge
and self-regulation.” [21] Some of the argumentation previously discussed is, in our
opinion, less cogent and central to the debate today as it was in the past. A certain
vein of biologicism seemingly in accordance with the original Searlian ideas of sin-
gle realisation has been one of the strong contenders in the AI debate of the eighties,
but it is a much less tenable position today. There is a large agreement nowadays that
multiple realisation of intelligence is possible, and as such the community at large
has accepted the idea that even the simulation of human behaviour should not nec-
essarily depend by physical structures that are isomorphic to the ones human beings
have been blessed with. Research has recently reached a number of milestones in
human performance replication [24], and the fact that such results have been obtained
employing means that are certainly different both in development and design from
the ones at disposal in humans is a clear sign of how the intelligence target can be
aimed at from different perspectives and achieved in different guises; reasoning in
particular is concerned here, as it would be hardly opinable that it is not an impor-
tant, if not altogether essential, part of intelligent behaviour. It is also significative
that such results are not simply, to use Julià’s wording, “spectacular achievements in
engineering”, devoid of any context and place in human experience—as indeedmany
similar feats were in the eighties and nineties. When they are of the competitive type
(such as IBM Watson applied to Jeopardy! or chess, or Google Deep Mind) their
reasoning power is surely based on a vast amount of data, but at the same time the
choice to operate using spoken language is indication of a stern intention to confront
the subject on her own terms (perhaps an instance of the kind of rigor we mentioned
in the introduction. A further proof of this is the recent inclusion in Watson’s speech
recognition algorithms of a module that includes emotion detection, or with its tech-
nical name a “tone analyzer”. This is a clear first attempt at bringing into the picture
the conative factors, without doubt in order to learn from humans and one day include
as well in a production paradigm the emotional layer. When of the collaborative type
(of which autonomous vehicles are probably the most advanced example) reason-
ing must necessarily involve the subjects, and a continuous interchange of signals
and information could not avoid all the dimensions of communication—something
stressed out by the non verbal nature of the task itself. In time any autonomous agent,
in order to be really useful and integrated, must assume at least partially the role of
Subject, using its knowledge as Expert to gain an acceptable level of social behav-
iour. This is in no way an attempt to emulate Mamdani’s “human controllers”, but a
specific attempt at integrating human and artificial reasoning in search of solutions
for common problems.
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But when Julià goes right at the core of the reasoning question, his argumentation
really hits a target. We have already noted [3, 25] that there really is an unfortu-
nate evidence of the fact that due to its roots in engineering [10] soft computing
community tends to give special evidence to result obtained in control theory, rein-
forcing the idea that fuzziness is mainly a formal science, akin to mathematics or
propositional logic (which, in turn, explain the particular affection for the use of the
original term FST, instead of the more current Soft Computing, Fuzziness or Com-
putational Intelligence). As already discussed in Sect. 4.2, and again following Enric
Trillas [11, 26] we have championed the necessary evolution of Fuzziness toward
an experimental science [4]. This approach, especially when applied to methodolo-
gies that are already experimental in essence, such as Computing with Words and
Perception (CWP), can bring to the already rich plate of Fuzziness the aspect of
human experience that is so sorely missed. In an experimental approach to CWP,
Rules are no more “orders/commands to be executed if other well-specified vari-
ables and constraints concur” [21], but they evolve naturally from the observation
of the surrounding environment, including the contribution of human actors, and the
behaviour inspired by them is constantly changing and adapting, its only guide and
inspiration being the evaluation of the agent’s performance and the integration with
what is acting around and above it. Experience is fuzzy indeed, and can be obtained
by learning—we do this every day, constantly, with a certain nonchalant indifference,
something which is deeply ingrained in human nature. By favouring an experimen-
tal approach to Fuzziness the same mechanism can be implemented in machines,
not necessarily in the same physical structure, through evolution. We do not know
beforehand if there are and what are the intrinsic limits to what is obtainable by an
experimental approach that employs a CWP paradigm in terms of reasoning, but are
optimistic for the future, as this approach would see the conjunction of an approach
that keeps first and foremost the very nature of human reasoning, and means that
intrinsically value the imperfection and uncertainty of the real word.

4.5 Final Remarks

Wemust confess that the fact that the situation appears to be so intricate is unpleasant.
However epistemological analyses have the vantage point of focusing critical aspects.
Now it seems to us that substantial parts of the problems appear to emerge from the
(uncritical) use of technical tools and of previous results which looked as the right
instruments for solving the open questions.

We must be brave enough to recognize that some of the questions asked in the
midst of last Century are both more innovative and slippery than one thought. Think
about the notion of intelligence as presented—smartly—by Turing in order to have
a tractable notion. Think at the way in which the problem of mechanical translation
was presented and afforded in the fifties of last Century (without doing any success-
ful step forward) and the brutal way in which it is afforded today (with moderately
broad results). Think to the recent success of obtaining unforeseeable and unpre-
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Fig. 4.2 Enric Trillas, Settimo Termini and ClaudioMoraga and students Valerio Perticone, Sergio
Perticone andFabioD’Asaro attending theSaturday’s ScientificConversations “Thinking andFuzzy
Logic” in Palermo (Sicily, Italy), 14th of May, 2011; photograph by Rudolf Seising

dictable results in a “mechanical” playing of GO. Everything should be reviewed
and reconsidered. We have already a context that has been successfully laid down
decades ago (and by such giants as Norbert Wiener). However, this context must be
refined and adapted according to the indications grown by the work done in the last
decades. The trick, if we may use this word, is to use new and traditional method-
ologies, trying to control what happens in these new fields to be explored, without
any dogmatism, ready to adapt and change when it seems desirable to do so. And,
maybe, also the problem of reflecting on possible (unusual) connections between
Church-Turing Thesis and Computing with Words, can be taken into account.
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Chapter 5
Some Reflections on the Use of Interval
Fuzzy Sets for Dealing with Fuzzy
Deformable Prototypes

José A. Olivas

5.1 Introduction

I had the pleasure ofmeeting Prof.Moraga in aWorkshop at Santiago deCompostela,
organized by Prof. Alejandro Sobrino in mid-nineties. He gave very valuable advice
of my doctoral work [1] (advised by Prof. Trillas), that I finished in the year 2000
where I introduced the Fuzzy Deformable Prototypes (from now on FDPs), which
can provide a formal framework for working with prediction systems and, in general,
representing and dealing with prototypical knowledge in every application.

FDPs come from the confluence of two interesting approaches to the concept of
prototype: Bremermann’s “deformable prototypes” [2], introduced in the late seven-
ties from the field of pattern recognition, and Zadeh’s fuzzy prototypes [3], as a result
of his controversy with cognitive psychologists [4]. This proposal firstly summarize
some concepts initially presented in author’s doctoral work and the application of
such ideas to several real fields and problems such as Forest Fires Prediction and
Prevention, Software Engineering, Medicine, etc.

In early seventies, Zadeh [5] said that the construction of a fuzzy set, with the
membership degrees of each element to the fuzzy set is the biggest problem for using
fuzzy sets in real applications. So he introduced the concept of a type-2 fuzzy set: A
type-2 fuzzy set is a L-fuzzy set over a referential set X for which the membership
degrees of the elements are given by fuzzy sets defined over the referential set [0, 1],
which is a lattice with respect to Zadeh’s union and intersection operators. Starting
with this idea many works and concepts had been developed, which will be later on
described.
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Fig. 5.1 Prof. Sobrino and Prof. Moraga, University of Santiago de Compostela, June 2016

The aim of this paper is to show some thoughts on how the application of the pro-
posals based on Zadeh’s initial idea, such as interval fuzzy sets, to Fuzzy Deformable
Prototypes management could improve the performance of real applications. The
work will be organized as follows: A short introduction, definition and applications
of Fuzzy Deformable Prototypes will be presented in Sect. 5.2. Section5.3 briefly
introduces interval fuzzy sets and in Sect. 5.4 some reflections on the use of interval
fuzzy sets for dealing with Fuzzy Deformable Prototypes are presented at the end of
the chapter.

5.2 Fuzzy Deformable Prototypes

Fuzzy Deformable Prototypes model tries to be a closer representation than the
standard AI ones on how humans take decisions. Many AI tools use patterns, but
most of them adopt the behavior of the most similar pattern with a real situation. But
each real scenario is different to any other one (mainly when dealing with natural
or human phenomena, it is not possible that a past situation occurs again). Then, it
seems adequate trying to describe any new situation deforming the patters abstracted
of known occurred ones (Data+knowledge), basing this deformation on the similarity
of the real situation with the old data patterns.

In the framework of Bremermann’s ‘deformable prototypes’ a real element is
classified according to the minimum energies required for physically deforming the
closest pattern. Zadeh criticized the classical prototype theories from the point of view
of psychology, due to the fact that these theories do not fit the function that a prototype
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should have:A fuzzy prototype is not an element—usually the best representative of a
set or class for the classical prototype theories—, but fuzzy schemas of good, bad and
borderline elements of a category. Zadeh’s idea suggests a concept that encompasses
a set of patterns, which represent the high, medium, or low compatibility of the
instances with the concept. So FDPs can be defined as a linear combination of Fuzzy
Prototypical Categories (described as tables of attributes) able to be adapted to any
real situation, where the coefficients are the degrees of membership to each of these
Fuzzy Prototypical Categories, represented by standard fuzzy sets.

For the combination to the case of affinity with more than one Fuzzy Prototypical
Category, the definition of a real situation would be:

Creal (w1, . . . ,wn) =
∣
∣
∣
∑

μpi (ν1, . . . , νn)
∣
∣
∣ . (5.1)

where:

Creal Real case.
(w1, . . . ,wn) Parameters describing the real case.

μpi Degrees of compatibility with Fuzzy Prototypical Categories different
from 0.

(ν1, . . . , νn) Parameters of these Fuzzy Prototypical Categories.

Usually, these Fuzzy Prototypical Categories are defined using a Data Min-
ing/KDD inspired process (which we called FPKD: Fuzzy Prototypical Knowledge
Discovery, Fig. 5.2).

The prototypes are represented as fuzzy numbers with the aim of obtaining the
degrees of affinity of a real situation with the prototypes. Taking into account these
degrees of affinity with several prototypes, the prototypes with degree of affinity
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Fig. 5.2 Data/knowledge, patterns and fuzzy representation
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Fig. 5.3 Deformation of the
closest fuzzy deformable
prototypes for describing
uniquely the new real
situation
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different from zero are deformed for describing the real situation, as it is shown in
Fig. 5.3 with an arbitrary example.

Applying these ideas to the problem of assigning and optimizing resources in the
daily fight against forest wild fires (usually due to the frequency and simultaneity
of the fires together with the limited resources available), the INCEND-IA [6, 7]
system was developed for predicting the evolution of the forest fire occurrence-
danger rate for a given area in the short and medium term. Many other applications
of this approach had been further developed, such as the ones related to Information
Systems and Software Engineering [8, 9], traffic control [10], health records and
documents management [11], social sciences [12] or Information Retrieval and Web
Search [13].

5.3 Interval Fuzzy Sets

Karnik andMendel [14] provided this definition of a type-2 fuzzy set: “A type-2 fuzzy
set is characterized by a fuzzy membership function, i.e. the membership value (or
membership grade) for each element of this set is a fuzzy set in [0, 1], unlike a type-
1 fuzzy set where the membership grade is a crisp number in [0, 1]”. Membership
functions of type-2 fuzzy sets are three dimensional. It is the third dimension of type-2
fuzzy sets that provides additional degrees of freedom that make it possible to model
uncertainties in complex systems. There are several options like interval and general
Type-2 fuzzy sets including geometric Type-2 fuzzy sets and non-stationary fuzzy
sets [15–17]. The concept of an interval-valued fuzzy set was presented in 1975 by
Sambuc [18] and Jahn [19] in mid-seventies. At the end of this decade the definition
of an interval-valued membership function (Grattan-Guinness [20]) was published,
but it was in the next decade, starting with some works of Gorzalczany [21], when
these interval-valued fuzzy sets took importance in the scientific community. Later,
there are many relevant works, mainly the Karnik et al. [14], Liang andMendel [22],
Mendel et al. [23] ones.
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Finally, it is important to underline theworks of Bustince et al. [24] where all these
concepts are widely described and the Multi-valued Logic Descriptive Power Hier-
archy is shown, where: Type-1 fuzzy sets → interval-valued fuzzy sets → interval
T 2 fuzzy sets → T 2 fuzzy sets

5.4 Some Reflections on the Use of Interval Fuzzy Sets
for Dealing with Fuzzy Deformable Prototypes

A short introduction, definition and applications of Fuzzy Deformable Prototypes
were presented and also a brief description of interval fuzzy sets. The main short-
coming to solve for the using of the type-2 and interval fuzzy systems models is the
computational complexity of the inference mechanisms. The use of interval-valued
type-2 fuzzy sets (IVT2FS) can solve this problem because this representation is a
simplified version of full type-2 fuzzy sets. Concepts like embedded type-2 fuzzy
sets [22], and the Footprint of Uncertainty [23] could allow us tomanage the different
points of view of the patterns/prototypes.

But perhaps the most important that it can bring the use of interval-valued fuzzy
sets for dealing with Fuzzy Deformable Prototypes is the ability to represent more
fully the uncertainty and vagueness (noise) inherent to large databases of that are
currently often to extract patterns and all the problems associated with Big Data. We
have applied some of these ideas to work with big databases of the field of Intelligent
Tutoring Systems [24] with very promising results.

Fig. 5.4 Prof. Trillas and Prof. Moraga after Trillas’ honorary doctorate ceremony, University of
Santiago de Compostela, June 2016
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Finally, I fondly acknowledge Prof. Moraga his support and high quality (from
all points of view) advice and ideas in all my research fields. But the most important
is our friendship over the years.
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Chapter 6
The Way to the BliZ

Erdmuthe Meyer zu Bexten

6.1 Introduction

6.1.1 Our First Meeting

Dear Claudio,
We came to know each other in the winter term 1986/87, so this year marks

our thirtieth anniversary! As I remember, you and Christian Krieb held the project
group 108 (PG 108) together at the University of Dortmund (todays TH Dortmund)
(Fig. 6.1). Here is a reminder of that time:

If my memory serves me correctly, at that time you just arrived from the Univer-
sity of Bremen back to Dortmund. Our work on the projects was a very fulfilling
experience for all of us; not only from a professional point of view but on a social
level as well.

6.1.2 Transition from Studying to Teaching

Later, after my studies were finished we led both project groups together: The PG
„Entwicklung eines symbolischen Simulators für Signalverarbeitungssysteme” in
the summer term 1991 and winter term 1991/92 (Fig. 6.2).

On the following winter term 92/93 and summer term 93 we led the PG 212 titled
„CASSY 2: Weiterentwicklung eines Simulationssystems”.

E.M. zu Bexten (B)
Zentrum für blinde und sehbehinderte Studierende (BliZ),
Technische Hochschule Mittelhessen (THM), Wiesenstrasse 14, 35390 Giessen, Germany
e-mail: emzb@bliz.thm.de
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R. Seising and H. Allende-Cid (eds.), Claudio Moraga: A Passion
for Multi-Valued Logic and Soft Computing, Studies in Fuzziness
and Soft Computing 349, DOI 10.1007/978-3-319-48317-7_6
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Fig. 6.1 PG 108 group shot

You took also took care as my superviso over my diploma thesis that I wrote at
Siemens, Munich and together with my future husband Dr. Volker Meyer zu Bexten,
in 1988, titled: „Testbarkeitskriterien und Testmustererstellung für iterative logische
und systolische Felder” (Fig. 6.3).

I held my very first class during the summer term in 1992 (seen on the picture)
(Fig. 6.4).

To this time you introduced me to the topic of handicapped accessible user inter-
faces („Behindertengerechte Benutzeroberflächen”). This topic is today known as
barrier freedom („Barrierefreiheit”) and is still my field of research which I convey
to my students in the classes called „Software-Ergonomie”.

6.1.3 Graduation

From this field I drew the topic for my doctor thesis „Eine Simulationsumgebung
für Signalverarbeitende Systeme” which I worked on at the Frauhofer Institute for
Microelectronic Circuits and Systems in Duisburg, Germany and the examination
was on the 20th August in 1992. You and Prof. Dr. Franz Pichler from the Johannes
Kepler University at Linz, Austria were my doctoral thesis supervisors (Fig. 6.5).
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Fig. 6.2 Final report PG 186—1991/1992

6.1.4 The Years After Graduation

After my graduation we worked together on many occasions. I remember two
instances very well: the conference in Iizuka in 1994 and the Workshop in Man-
galia 1996, shortly after this I got appointed as professor to Gießen. In Iizuka, Japan
we gave a presentation onKnowledge-based Genetic Algorithmswith Fuzzy Fitness.
Later, in 1996 we went together with the professorship on a workshop for some days,
which I remember fondly, as the following pictures show (Figs. 6.6, 6.7, 6.8 and 6.9):
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Fig. 6.3 Diploma, 1988
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Fig. 6.4 First class in the summer term 1992
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Fig. 6.5 Prof. Dr. Claudio Moraga (2nd from the left) and Prof. Dr. Franz Pichler (on the right)

6.1.5 Appointment to Gießen and the Development of the BliZ

It was thanks to your supervision and guidance that I learned not only the practice of
good science. You also taught me how to give good lectures. On a more important
note you prepared me for my job as a professor and did spark my interest for the field
of study I am engaging. It was you who introduced me to the topics of medicinal
engineering, which I still adhere today. In the end it was you who led me on the path
I followed and on its end I developed the BliZ.

„You see more blind persons walking alone, not because there are more of us
these days but because we have learned to make our own way” to quote Malinao
[5]. I stumbled upon this quote and found it to be quite inspiring, as it sums up in
easy words what the original idea of the BliZ was. To help blind and visual impaired
people in their education and empower them to lead their life as normal as possible.

We in our society tend to envision disabled people as helpless persons, victim
to their inborn or acquired conditions. This thinking has long been the dominant
mindset and is inherent to the so called medical model, one of the two dominant
models to define disability in the academic discourse. The medical model views
disability as a problem that is belonging to the individual and of no concern to any
other person, hence the way of thinking that blind people have to overcome their two
major’problems’ on their own:

First, they must learn the skills and techniques which will enable them to carry
on as a normal, productive citizen in their community; and second, they must
become aware of and learn to cope with the public attitude and misconceptions about
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Fig. 6.6 Center The 3rd international conference on fuzzy logic, neural nets and soft computing.
Iizuka, August 1–7, 1994. Right Prof. Dr. Erdmuthe Meyer zu Bexten, Dr. Volker Meyer zu Bexten,
Prof. Dr. Claudio Moraga
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Fig. 6.7 FU Dortmund, FB Informatik, Lehrstuhl I, Mangalia, Romania at the Black Sea,
September 27–29, 1996

Fig. 6.8 Prof. Dr. Claudio Moraga giving a presentation during the workshop in Mangalia
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Fig. 6.9 Mangalia: Dinner with the group, Dr. Prof. Claudio Moraga, Prof. Dr. Erdmuthe Meyer
zu Bexten, Dr. Jens Hiltner

blindness which go deep into the very roots of our culture and permeate every aspect
of social behavior and thinking [3].

Our culture is heavily build around the ability to see and so blind people are
confronted with a number of visual challenges everyday—be it reading the label of
canned food or figuring out if they’re at the right bus stop.

The medical approach would suggest that the problem exists because of their
blindness, rather than normal eyesight being the only possible way to decipher what
is included in the frozen dinner. Nowadays the favors shift more towards the second
big defining model: The social model. This model draws on the idea that it is actually
the society that disables people, through designing everything to meet the needs of
the majority of people who are not disabled. There is a recognition within the social
model that there is a great deal that society can do to reduce, and ultimately remove,
some of these disabling barriers, and that this task is the responsibility of society
as a whole, rather than the disabled person alone. An important principle of the
social model is that the individual is the expert on their requirements in a particular
situation, and that this should be respected, regardless of whether the disability is
obvious or not [4].

The advancement of the social model is associated with the rapid development of
the Information and Communication Technology (ICT). As mentioned, our culture
is heavily build around the ability to see. When the internet got more and more
developed it slowly penetrated every aspect in our modern day lifes; everything is
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managed online relaying more on text and video than ever before, so people with
a visual impairment may find different online environments can be significantly
disabling. This, together with a lecture I attended a long time ago, led me to the
thought: „Does not anybody feel disabled some-times in his or her life? How easy
it is to lose eyesight or suffer from any other disability. Is it therefore not in all our
interests to help those, who have difficulties?“

As I was—and am—a professional in the medical information sciences I began to
work on handicapped accessible workplaces. Since the late 80s I worked in cooper-
ation with medical scientists and patients on handicapped accessible user interfaces.
As time went by and I got to work as a professor at the THM Gießen I realized
firsthand the one thing that Dobransky and Hargittai [1] warn for.

„The increasing spread of the Internet holds much potential for enhancing oppor-
tunities for people with disabilities. However, scarce evidence exists to suggest that
people with disabilities are, in fact, participating in these new developments. Will the
spread of information technologies (IT) increase equality by offering opportunities
for people with disabilities? Or will a growing reliance on IT lead to more inequality
by leaving behind certain portions of the population including people with disabili-
ties?“ [1].

To include these portions of the populace it is important to enable them to the right
education. As a result more young people aim for higher education to participate in
this new environment, but at the same time they are faced with new unique barriers
and challenges at the university.

They might face difficulty in keeping up with the curriculum due to the visual
nature of the classes, e.g. power point presentations, the requirement of reading
specific literature which might not be available in embossed printing and so on.
Much of the progress shown by blind pupils in the field of higher education stems
from their interaction with the environment. Therefore, it is extremely important
for the student to have a good learning environment with the necessary amount of
support.

The responsibility of the learning and teaching support for blind students rests
in the hands of the institution staff, the student body, the academic staff (that is
the teaching staff, programme managers and module leaders) and the support staff.
They must provide the optimum environment setting required by visually disabled
students for education by working together in the best way possible and provide the
technology required for learning. So many different institutions that need to work
together can only result in chaos. My position as professor in medical computer
science allowed me to change that. As such my first step was to establish a study
course for blind students. Once this course was running, it was only a small step to
the next big project: An institution that combines all the different services needed to
enable—at first—blind and visually-impaired people normal academically studies.

All this specifications are met by the THM Gießen in one facility: with the BliZ,
headed by me. In my responsible for practical computer science and medical com-
puter science I came up with the idea to design a facility with the sole purpose to aid
disabled persons with their academic carrier. This text is about this facility and the
great opportunities it offers to those who need it. Let me introduce you to the …
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The BliZ that is short for „Zentrum für Blinde und Sehbehinderte Studierende”
was brought to life in 1998 at the THM Gießen (formerly known as Fachhochschule
Gießen-Friedberg) under my supervision. It is in Germany the first and up to this
date the only institution.

The next few pages are about this BliZ, a project I am very proud of. Then you
will read the following passage always keeping in mind that this was only possible
through all the teaching and guiding you offered to me.

6.2 The BliZ

The first year started with five students, three of them studied computer sciences
while the other two were enrolled in economics. Today in the year 2015/16 there are
approximately 40 students and a staff of 32 people (Fig. 6.10).

Fig. 6.10 The BliZ today—picture from the official homepage
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Besides supporting the handicapped students, themain objectives areR&Dof soft-
ware and hardware for blind and visually impaired people. The BliZ is also involved
in many projects to improve the situation of persons with low vision or without any
residual vision in the professional context. Nowadays most of our visually impaired
professionals have to use computers in their daily work. They have to deal with doc-
ument management, video conferencing, unified messaging, application sharing or
even teleworking. Teleworking in particular offers an interesting future perspective
for people with disabilities. It is a good starting point for equal opportunities in pro-
fessional work. In an environment of up to date information technology combined
with the respective adapted access, it is possible to work effectively and with good
efficiency.

But, alas, the available solutions for adapted access are far from being perfect.
As of this, the BliZ is in close contact with the manufacturers of these devices
to give advice and assistance for testing and improving ergonomics. If a problem
is experienced with the adapted access technology, then new alternative working
strategies will be developed, evaluated and finally implemented.

Nonetheless, the main objective lies in supporting the students and offer them the
best study environment possible.

6.2.1 Services for Students

Deciding to undertake academic studies and visit a college for at least three years is
one of the most important decisions a person has to make in his or her lifetime. It is
only natural that a number of questions arise before, during and after college. The
people working at the BliZ are well aware of this and therefore developed a wide
program to assist young people during their academic life and beyond.

Starting life at the university can be a daunting experience, especially if one has a
special condition to consider. Therefore, it is one of the most important tasks to make
this transition as easy and successful as possibly. The most crucial task is to find the
field of study that pleases oneself the most. Therefor the BliZ provides educational
and career guidance for young adults who are interested in taking up their studies
at the THM or just want information on their general options. The Staff of the BliZ
will assist students with their orientation around the campus and their way to the
different facilities and identifying external agencies.

The workroom (as depicted in the following photographs) is fitted with six differ-
ent computers, each with a different monitor of varying size. Additionally available
are two notebooks for presentations out of the THM. To be able to work the room
also holds three Braille-output devices and diverse screen readers. Together with a
number of other assistive technologies the BliZ offers a wide range of possibilities
for the students to work on their curricula (Figs. 6.11 and 6.12).

To give a better understanding here you can find a short description of all the
devices that can be used by the students:
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Fig. 6.11 Workstation with Braillekeyboard and -display

Fig. 6.12 The workroom
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Fig. 6.13 Braille display (from our partner Papenmeier)

Braille Displays

This device displays information on a computer screen by raising and lowering
combinations of braille pins. It typically sits underneath the user’s key-board and
refreshes in real time as the user moves the cursor on the screen (Fig. 6.13).

Braille Printers

Also known as „braille embossers”, these printers translate print text in Braille format
onto specialized paper.

Screen Readers

Screen Readers are software programs that interface with the computer’s operating
system and provides the user full control over reading and interacting with their
computer (e.g. using a navigationmenu, highlighting text, using a spell checker, etc.).
Jobs Access with Speech (JAWS)1 is arguably the most widely used screen-reading
program. It is a huge help for students in using any software which is displayed on
the screen.

Screen Magnification

Screen Magnification Systems allow the user to enlarge the graphic, media, and text
on a computer screen. Similar to a magnifying glass, the user can control what gets

1http://www.freedomscientific.com/Products/Blindness/JAWS.

http://www.freedomscientific.com/Products/Blindness/JAWS
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Fig. 6.14 Screen magnification as used in our workrooms

magnified (e.g. text cursor, mouse pointer, icons, title bars, etc.). ZoomText2 is an
example of a screen-reading and magnification program that provides students with
access to visual and auditory translation for what’s appearing on their computer
screen.

Video Magnifiers/CCTV

Also known as a closed-circuit television system, video magnifiers use stand-alone
cameras to project magnified images onto a television screen, computer monitor or
video monitor (Fig. 6.14).

Additional to these assistive technologies the BliZ offers a wide range of different
services:

Individual Coaching

The staff assists the students based on their individual needs. They will find a tutor to
teach the student the subjects he might fall behind or edit the script used in lectures,
so that it can be read by the student.

Text in Alternative Formats

Most visually impaired students rely on texts in an alternate format like large print-
ing or in Braille. Only a small number of books used in university are available

2http://www.zoomtext.de/.

http://www.zoomtext.de/
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in electronic formats and the presentations are oftentimes not co-rectly read by a
screenreader. The BliZ assists students by reformatting these texts as needed.

Test Format

Tests can be administered to students with visual impairment in a number of ways. In
consultation with the lecturer students can take their tests fitted to their special needs.
Tests may be converted to Braille or texts in alternate for-mat or read by a computer
with voice output (see JAWS further up). Faculty members also allow extra time for
exams. Tests are taken in the workroom of the BliZ as it helds the assistive devices
needed for the students. They are supervised by members of the staff.

Punkt Bilder

To enable blind and visual impaired students to write their tests the BliZ devel-
oped its own unique solution. The project Punkt Bilder (which roughly translates to
„point picture”) was programmed to make tests „readable” by transferring them into
Braillegraphics which can directly viewed on the screen or can be printed in Braille.

E-Learning/HeLB

The HeLB Project (short for Hessisches elektronisches Lernportal für chronisch
Kranke und Behinderte) is the heart of the BliZ. It is its central selfdeveloped
e-learning platform. All the aforementioned activities are made possible through
HeLB. The reduced access to information technology experienced disabilities (see
[1]) creates an initial barrier to this type of learning. An elearning platform therefore
has to address both the technical issues and pedagogical aspects of accessibility and
inclusion.

For the development of HeLB the BliZ adheres to the seven basic rules, the so
called „seven pillars of barrier-freedom”, formulated by Hellbusch [2]

1. Text orientation
2. Contrast and colors
3. Scalability
4. Linearizability
5. Device-independence and dynamic
6. Comprehensibleness, navigation and orientation
7. Structured contents

Following these basic guidelines enables the BliZ to deliver software which is
tailored to the specific needs of each individual student or professional and allows
for intuitive use during the course of their academic carrier or later in their field of
work as a professional. The portal is specially tailored tomeet the specific needs of the
individual student/user by adjusting the graphical interface, diagrams, video- audio-
and live streams to the specific form of disability. Additionally, HeLB serves as an
online-learning platform by offering complete e-lectures and online exams. With its
services HeLB contributes to the principle of equal opportunities by enabling people
to get an academic degree and start with the best chances in their life after graduation
(Fig. 6.15).
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Fig. 6.15 The Information page ofHeLB, the online Portal, which connects student to the university
and the outside world

Being able to actually utilize their newly learned skills and techniques and be a
productive part of the community is the ultimate goal of every student. Even after
their studies we remain in contact with our former students. The curriculum of the
BliZ therefore does not end with the final exam. The transition program focuses
on life after being a student at the THM and is help-ing each graduate to make
his or her own personal transition into a professional carrier. To realize its agenda
the BliZ is working together with different partners in industry, other colleges and
teaching hospitals in Research and Development on different projects to further the
development in assistive technologies.

6.2.2 Projects

While primary focusing on the students, the BliZ is not only working in the acad-
emically field. Its expertise proofs valuable for a wide range of professional fields.
This paragraph introduces some of the bigger projects. They encompass a wide area
of uses and range from assistance in healthcare to different online services but in the
end they all serve the bigger goal to include visual impaired people into the society.

Barrier Free Information

In cooperation with TransMIT GmbH, which is one of the biggest german corpo-
rations dealing in transfer of technology, the BliZ developed the TransMIT Project
sector for barrier free information and rehabilitation technology. The projects inten-
tions are to provide customers with an array of solutions to barrier free information
access.



80 E.M. zu Bexten

Appraisal of Webpages, Software and Creation of Barrier Free Documents

Far too many Webpages and are hard to navigate for someone who is blind. The
same goes for Software which is needlessly complicated in its structure. The BliZ
offers its yearlong experience and if asked evaluates webpages and different pieces
of software, giving suggestions how to make them more accessible.

Likewise, many important Documents are not easily accessible for people with a
visual impairment. This is especially frustrating if they are losing information vital to
their life. The BliZ therefore is editing this documents in away, that it can be accessed
by anyone and in different formats like HTML, PDF and the DAISY-Standard.

Counseling and Workshops

Besides evaluating the existing products, the BliZ offers counseling on topics like
barrier free documents, barrier free web design and inclusion into education. Espe-
cially educational institutions profit from this offer, as they can build on the long
years of experiences gathered in the BliZ.

Diverse Literatures

The BliZ also aims to provide its patrons with literature of many diverse topics. To
make this possible, several contracts with different publishers were made. If asked
for a certain book, the people at the BliZwill rework it in away, that it can be accessed
by blind people in a comfortable way.

BAUM

BAUM is a abbreviation for Barrierefreies Aufbereiten/Umsetzen von Materialien.
Many barrier free documents come with the problem that way have no unifying
structure like for example no alternative description for pictures which can be read by
screen reading software. These documents need to be reworked to bemore accessible.
BAUM acts as a guideline for the BliZ staff how to work with different formats like
HTML, Word or PDF and make them accessible for everyone (Fig 6.16).

Healthcare

Vital areas, like hospitals, rely more and more on new technology to simplify the
process of determining the cause of the patient.Mostly the solicited in-put is done via
touchscreen, which is a real hindrance for blind and visually impaired people. The
BliZ, together with its partners, is working on possible solutions to this problem, like
equipping the terminals with assistance soft-ware. The center also offers trainings
for emergency aid personal to increase their knowledge in critical situations. For
better results, the ambulance assignments will be monitored with interactive mobile
software and through a special developed controlling system.

Linux for Blind and Visual Impaired People

Another project specifically aims to make the operation System Linux usable for
blind people. Linux is divided into a text oriented and a graphical user interface.
Solutions for blind people to work with the text based interface exist since 1996, the
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Fig. 6.16 The Interface for BAUM. By choosing a format on the right the user will get a description
on how to work with it

most known screenreader is Suse-Blinux. It does recognize Braille-displays and is
as such easily accessible by blind people. Over the course of the last years graphical
interfaces, like the ones used by Windows, become more and more important. The
members of the BliZ areworking on projects whichwill make this graphical interface
usable to the blind and visually impaired people.

Arbe-IT

Arbe-IT is a project developed especially to make the entrance into the working live
as easy as possible. The goal is to link the BliZ, the THM and the job market. It is a
web-portal that provides barrier free information and working offers. It works both
ways, meaning that students can look for work and employers, which are interested
in employing disabled persons, can look up information on the students too. The
project is a co-venture with the Agentur für Arbeit Gießen (Jobcenter Gießen) and
the Landeswohlfahrtsverband Hessen.

6.3 Closing Words

As you can see the BliZ is a smashing success story. Its services are well received
among the students, the facilities and the job market. The combination of practical
computer science with the individual, personal care from the staff helps to keep
barriers for blind people to a minimum. Over the last few years we managed to work
together with contributors from many areas, from publishers to healthcare and IT
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companies. Thanks to our commitment we opened up a whole new area for people
who suffer from an otherwise disabling condition like blindness in the higher job
market.

Dear Claudio, I thank you again for your great and exemplary patronage during
and after my academic studies, during my time with the doctoral thesis and none the
less for your guidance and preparation into my academic carrier. I wish you the very
best for your future but healthiness above everything else.

Sincerely yours, Erdmuthe Meyer zu Bexten.
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Chapter 7
Milestones of Information
Technology—A Survey

Franz Pichler

7.1 Electrical Transmission of Written Documents:
Telegraphy

7.1.1 Needle Telegraphy

After the discovering of the fact that an electrical current causes a movement of a
magnetic needle (compass) by Oersted (1820) and the development of the “multi-
plier” by Schweigger which consists simply by a winding of wires (solenoid) it was
straightforward to use this for the invention of a device for the electrical transmis-
sion of information. Gauß andWeber, both professors at the University of Göttingen,
Germany are considered of being the first which designed a system for the transmis-
sion of numerical data between the astronomical Observatory and the University. In
England Cooke andWheatstone developed on the same basis their system of “needle
telegraphy” with great success (Fig. 7.1). English railways used needle telegraphs
until the midst of the 20th century.

7.1.2 ABC-Telegraphy

After the invention of the electromagnet by Henry and the use of it to construct
clockworks tomove apointer itwas possible to realize telegraphswhichmadedirectly
use of the normal alphabet. Werner von Siemens, the famous German inventor and
founder of the Siemens Company was one of the first to construct such an “ABC-
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telegraph”which found application in theGerman railway system (Fig. 7.2a). Besides
of Germany and England ABC-telegraphs were widely used in France replacing the
optical telegraph of Chappe. A major company in France which manufactured such
telegraphs was Breguet of Paris (Fig. 7.2b).

Fig. 7.1 5-needle telegraph by Cooke and Wheatstone (1837)
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7.1.3 Morse-Telegraphy

The American inventor Samuel Morse got in 1837 a patent for an “electromagnetic
telegraph”. The main new idea for the receiving part of this telegraph was the use
of the electromagnet for the printing by an embossing lever the combination of dots
and dashes—the “Morse-code”—on a moving paper strip. In early receivers, called
“Morse-registers”, the paper strip was moved by a weight-driven clockwork. The
first “Morse-line” from Washington to Baltimore dates from the year 1844. Besides
of the USA also most of the countries in Europe adopted the Morse system. Until
the midst of the 20th century it stayed in operation for the postal telegram services
and in railway systems (Figs. 7.2 and 7.3).

The Morse-code was also used for the transatlantic telegraphy (from 1866 on)
and also in the wireless telegraphy of Marconi (from 1897 on).

Fig. 7.2 a Siemens magnet inductor telegraph; b ABC telegraph of Breguet

Fig. 7.3 a German Morse register, about 1848; b Austrian Morse register, about 1860
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Fig. 7.4 a Hughes printing telegraph; b Teletype (about 1960)

7.1.4 Print-Telegraphy

The British born American engineer David Hughes invented in 1855 an electromag-
netic telegraph of the kind which got later known as “teletype”. By a wheel, turning
synchronous both, at the transmitter and receiver, printed letters into a moving strip
of paper. Hughes telegraphs served in Europe long time for international telegram
service and also for the military. The invention of the teletype (about 1930) replaced
the Hughes telegraph in such systems (Fig. 7.4). Today the e-mail service of the
Internet and also the Short Message Service (SMS) of mobile telephony represents
telegraph.

7.2 Electrical Transmission of Speech: Telephony

7.2.1 The Telephone of Reis

TheGerman teacher in Physics Philip Reis presented in 1861 by a lecture in Frankfurt
a “telephone”which allowed the electrical transmission of sound andmusic by awire.
The transmitter consisted of a diaphragm of bird skin on which a contact made of
platinum was mounted. The receiver was realized by a coil of isolated wire around
a needle of steel (“knitting needle receiver”) which was fixed on both ends on a
wooden resonance box. Although the telephone of Reis was able to transmit sounds
and pieces of music the transmission of speech was very poor (Fig. 7.5).
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7.2.2 The Telephone of Bell

Graham Bell of Boston was the first to give a practical solution to the problem of
electrical transmission of speech. The telephone of Bell (1876) consists in its final
form of a permanent magnet with a coil on one end together with a iron membrane.
If sound waves effect the membrane the magnetic flux in the coil is changed which
induces an electrical signal (Bell telephone as transmitter). On the other hand, if a
electrical signalwhich is generated by aBell transmitter is led on the coil of aBell tele-
phone, by its magnetic forces the membrane oscillates according to the speech (Bell
telephone as a receiver) (Fig. 7.6). An important improvement of the Bell telephone
was made by Werner von Siemens by the application of a horse-shoe magnet which
increased the magnetic flux and improved the sensitivity. David Hughes invented in
1877 the carbon transmitter (the microphone) which replaced the Bell transmitter.
Themicrophone of Hughes used the physical effect of grains of carbon which change
its electrical resistance dramatically by a change of pressure. Carbon microphones
were used in telephony until recent years. Today they are replaced by microphones
which are based on the pressure properties of certain semiconductors.

Fig. 7.5 Telephone of Philip Reis (1861)



88 F. Pichler

7.2.3 Automatic Telephone Switching

The great public acceptance of the telephone services brought within a short time in
the cities a large number of subscribers such that automation of the task of switching
became desirable. Almon B. Strowger of Kansas City, USA, invented in 1889 an
electromagnetic switch which made such an automation possible. The Strowger
system is based on step by step switching which realizes the connection according

Fig. 7.6 a Bell’s diaphragm magneto telephone (1875); b Bell’s butterstamp telephone (1877)

Fig. 7.7 a German Strowger switch; b Strowger system telephone exchange
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to a dialed number. Step by step automatic dialing systems of this kind became
in Europe very popular and were in practical until the digital revolution (Fig. 7.7).
Besides of switching systems of Strowger type other systems of switching such as
systems based on the crossbar switch or the switch of the Ericsson company. Today,
in the age of microelectronics telephone switching is realized by networks which are
implemented on specific computers.

7.3 Electrical Transmission of Images: Picture Telegraphy

7.3.1 The Pioneering Years

The history of transmission of pictures (facsimile transmission) by electrical means
can be traced to the inventions of Bakewell (1848) and Caselli (1855), to mention
important inventors. The transmitter of the picture telegraph of Bakewell consists
of a drum on which a metallic foil with the drawing (made by a ink which isolates)
is mounted. The foil on the turning drum is scanned by a contact line by line and
depending on the isolation of the drawing a digital “ON/OFF” signal (electrical
current) is produced. The receiver consists of a comparable identical arrangement.
However the drum of the receiver is covered by a chemical prepared paper, which
gets a colour depending whether the scanning contact produces a current (signal is
“ON”) or not (signal is “OFF”). The pantelegraph of Caselli uses instead of a drum a
pendulum for scanning the picture, otherwise the function is similar to the telegraph
of Bakewell. It is reported that the pantelegraph was in 1855 successfully used in
France to transmit a picture from Paris to Marseille by a distance of about 800Km
(Fig. 7.8).

Fig. 7.8 a Picture telegraph of Bakewell; b Picture telegraph communication system
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Fig. 7.9 Picture telegraph system according to Arthur Korn

7.3.2 Arthur Korn

Arthur Korn, by his academic education a mathematician, born in Breslau, Germany
(today Wroclaw, Poland) felt the strong desire “to see across space and time”. The
electrical properties of the element Selenium (as result of the research by Hallwachs)
together with the development of the light-electric cell by Elster (1888) provided the
basis for Korn’s system of picture telegraphy. Scanning a picture by the selenium
cell allowed the electrical representation of the grey levels of the picture; the string
galvanometer, originally developed for electro-cardiography, together with a special
light tube which was controlled by a sparc relays made a true reproduction of the
picture on a photographic film possible. In 1914 Korn showed successfully the trans-
mission of pictures on a wired loop from Munich to Nürnberg and return (Fig. 7.9).

7.3.3 Development of the Fax-System

On the basis of the systems for picture telegraphy as developed by Arthur Korn
and others it was from 1930 on possible to establish practical applications for the
general use by organisations such as the press, the police or the weather offices.
In the USA the leading company was the Times Facsimile Corporation (TFC), in
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Fig. 7.10 Belinograph, France ca. 1960 (Museum für Kommunikation, Riquewihr, Alsace)

Germany Siemens & Halske and the Hell company. In France the Belin Company
manufactured the “Belinograph” for its applications for the press. An important step
forward was achieved by the establishment of international standards for facsimile
transmission tomake the use of the existing international telephone network possible.
In this respect the recommendations of the CCITT (today ITU, the International
Telecommunication Union) are important. Today, in the age of microelectronics and
digital technology, fax machines are integrated with the telephone or the personal
computer (Fig. 7.10).

7.4 Mechanical Computing

7.4.1 Handcrafted Machines

The invention and development of instruments which can give support in mathemat-
ical computations has a long history. For the computation with ordinary numbers
the machine of Schickard (1623) is a milestone (Fig. 7.11). The Schickard machine
was able to perform addition and subtraction; multiplication and division were real-
ized by an aggregate of turning drums with tables similar to Neper’s sticks. For
its construction Schickard got valuable suggestions by the famous astronomer and
mathematician Johannes Kepler. The machines of Pascal (ca 1640), Leibniz (1694),
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Braun (1727) and Hahn (ca. 1790) are further examples of handcrafted mechanical
computing machines which show the high technical skill of the constructors and
constitute beautiful pieces of art.

Fig. 7.11 a Machine of Schickard (1623); bMachine of Müller (1784)

Fig. 7.12 Machine of Thomas de Colmar
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7.4.2 Industrial Manufacturing of Machines

Charles Xavier Thomas of Colmar was at the year 1820 the first to start the industrial
manufacturing of mechanical computing machines (Fig. 7.12). His “Arithmometer”
made use of the principles of the Leibniz machine. Until 1900 about 1500 machines
weremanufactured in his company. In Germany it was Burkhardt in Glashütte (Saxo-
nia) who started in 1880 the industrial manufacturing of the Thomas-machine being
followed by other companies (“Saxonia”, “Archimedes” and others). Besides of
machines which used the the “Leibniz wheel” as principal construction element also
machines which were based on the wheel originally invented by the Italian scientist
Giovanni Polenus (1709). Here the companies Odhner (St. Petersburg and Stock-
holm) and also Brunsviga (Braunschweig, Germany) have to be mentioned being
important manufacturers.

7.5 Wireless Telegraphy

7.5.1 The Marconi System

The experimental discovery of the electromagnetic waves by the german physicist
Heinrich Hertz (1887) together with the practical and theoretical results as con-
tributed by Oliver Lodge (England), Edouard Branly (France), Alexander Popov
(Russia) and Augusto Righi (Italy) to name one of the most important one led the
young Italian student Guglielmo Marconi in the years 1896 to the invention of a sys-
tem for wireless telegraphy (Fig. 7.13). The Marconi Company, founded in England,
started immediately to produce stations for wireless telegraphy for the communica-
tion between ships and the shore. Already in 1901 Marconi proved that a wireless
telegraphic transmission between Europe (Ireland) and America (Newfoundland,
Canada) is possible. The first transmitter of Marconi consisted of an induction coil
together with a sparc gap as proposed by his teacher Augusto Righi. Later high
voltage dynamos were used to get the necessary sparcs for the generation of elec-
tromagnetic waves and, to modulate the waves with a tone, rotating sparc gaps were
used. The first receivers of Marconi consisted of a coherer as invented by the French
scientist professor Branly together with the associated decoherer for interruption
and therefore demodulation of the received electromagnetic wave. For registration
of the received signal served a usual Morse register. In later Marconi receivers the
magnet detector and also the Fleming diode was applied. An important step forward
in receiver technology was the introduction of the syntonic system by application
of resonance circuits, as developed by the famous British physicist Sir Ambrose
Fleming.
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Fig. 7.13 Marconi wireless telegraphy ship station (AWA museum, Bloomfield, N.Y.)

7.5.2 The Telefunken System

In Germany important research on wireless telegraphy was performed an two dif-
ferent places: In Berlin Professor Slaby, after his participation at early Marconi
experiments successfully experimented with wireless telegraphy. He got financial
support by the Allgemeine Elektrizitäts Gesellschaft (AEG), one of the leading com-
panies in Germany in the field of electrical engineering. In Straßburg, being at that
time a part of Germany, Professor Ferdinand Braun, well known by the invention
of the cathode ray tube, got interest in the scientific aspects of wireless telegraphy
and investigated the role of resonance to achieve wireless transmission over long
distances. His group got support from Siemens & Halske. To concentrate nationally
the efforts of the two groups, AEG and Siemens & Halske established in 1903 the
company Telefunken. Telefunken and its systems for wireless telegraphy became a
strong competitor for the Marconi company. A specific success was the application
of the quenched sparc gap, which allowed higher transmitting power and realized at
the same time a modulation of the electromagnetic waves with a musical sound. On
the part of the receiver the crystal detector, as proposed by Professor Braun, replaced
the mechanical demodulators such as tickers and rotary interrupters.
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Fig. 7.14 a Alexandersson dynamo by GE; b Transcontinental station in Nauen, Germany

Fig. 7.15 Telefunken
1.5 kW transmitter with
quenched sparc gap
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7.5.3 Long Distance Wireless Telegraphy

For wireless telegraphy to overseas, here especially to the United States of America
and to the colonies of European countries in Africa and Asia high power trans-
mission stations were needed. Marconi erected such stations in Poldhu (Cornwall,
England) and in Clifden (Ireland). In Germany the trans-radio station Nauen and the
station Königswusterhausen of the Reichspost were important. Big high-frequency
dynamos provided the necessary high power. While transmitters for wireless teleg-
raphy of smaller transmission power used wavelength from 200–800m, the high
power transmitters used wavelength above which means extremely low frequen-
cies. In consequence for transmission the propagation along the earth surface was
essential. Today such stations for long distancewireless telegraphy have disappeared.
However, as a museum the Swedish station SAQ in Grimeton, near the city of Gothe-
borg, still exists. SAQ uses Alexandersson dynamos from General Electric and stays
operational until today (Figs. 7.14 and 7.15).

7.6 Radio Broadcasting

7.6.1 The Electronic Tube

The beginning of the electronic age can be set to the year 1906 were important
inventions were made. The American physicist and inventor by profession Lee de
Forest got a patent for his audion, a sensitive detector for wireless telegraphy. Robert
von Lieben from Austria got in that year his patent “Das Kathodenstrahlenrelais” for
the friction-less amplification of telephone signals. Both inventions are based on a
electrical control of beams of electron in vacuum. The audion of de Forest had only
a limited success. However, by the outstanding research of Arnold at the Western
Electric Laboratories of AT&T and by Langmuir at General Electric it served as
a basis for the development of the high vacuum tube in 1913. Also Robert von
Lieben could not get by his patent directly a practical realization. However, in the
year 1910 he and his collaborators Eugen Reisz and Siegmund Strauss realized an
electrostatic control of their tube by a third electrode, the grid, and were able to
show how to build a working telephone repeater (Fig. 7.16). The LRS relays (LRS =
Lieben, Reisz, Strauss) which was manufactured by the German industry served in
WWI in different devices in communication systems. However, since the function of
the LRS relay depended on mercury vapour, it was difficult to get a stable operation.
In Germany Telefunken pioneered the development of the high vacuum tube and
the LRS relay became obsolete. The high vacuum tube allowed different kind of
applications. The most successful one was probably its use in radio broadcasting.



7 Milestones of Information Technology—A Survey 97

Fig. 7.16 a Lieben laboratory in Vienna 1906; b Amplifier with Lieben tube (1913)

7.6.2 Radio Broadcasting

After the end ofWWI (1918) the idea was born to apply the existing modern technol-
ogy for wireless communication for the public and to establish broadcasting systems
for the purpose of education and entertainment. The station KDKA in Pittsburg,
USA, was the first which transmitted such programs in 1920 to its listeners. Radio
Broadcasting as it was called was immediately a big success in USA and also in the
European countries. Within a few years a large network of station was established
and a new industry to manufacture the necessary radio receivers had to be erected.
The first radio apparatus needed batteries of galvanic elements for their operation
which was expensive (Fig. 7.17). From about 1930 on radio apparatus got a power
supply and could be directly connected with the usual electrical power line. Further
technological progress in radio engineering was the introduction of the superhetero-
dyne circuit (from about 1925 on) and later the introduction of FM radio (FM=
Frequency Modulation) to supplement AM radio (AM = Amplitude Modulation)
with improvement in bandwidth and avoidance of statics.
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Fig. 7.17 a AEG radio (1925); b Radio at the hair dressing shop

7.7 Television

7.7.1 Mechanical Television

At the end of the 19th century picture telegraphy had already reached thematurity for
practical application.Naturally there appeared also thewish to transmit instantaneous
moving pictures by electrical means over distances in space (“television”). It was the
young student Paul Nipkow who in 1884 made in Berlin the necessary invention for
the realization of television. Nipkow proposed for the scanning of moving pictures
(and in consequence also for the reverse operation, the synthesis of the scanned
picture) a fast turning disk with a spiral of holes, every single hole being responsible
for scanning a row of the picture. A light sensitive cell (at the time of Nipkow a cell
of Selenium, later a photocell) transforms the light beam through the holes into a
electrical signal. At the receiver the electrical signal drives a fluorescent lamp and
the resulting light beam is synthesized by the turning Nipkow disk row by row. It is
due the inborn inertia of our eyes that this gives a full picture. From the invention of
Paul Nipkow it took more that 30 years until in England the first practical realization
of television was made by John Logie Baird. Mechanical television on the basis of
Nipkow disks (also mirror screws and mirror wheels were used for scanning) got
only limited practical application. In 1935 a British committee decided to stop the
development in favour of “electronic television” (Fig. 7.18).

7.7.2 Electronic Television

By the year of 1930 electronic technology had reached a degree of maturity such
that the electronic realization of television systems became feasible. A pioneering
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Fig. 7.18 a Building a Nipkow television receiver; b Televisor of John Logie Baird

contribution in this respect was the application of the cathode ray tube to realize a
scanner (today called a “flying spot scanner”) by the german inventor Manfred von
Ardenne in 1930. This allowed for the first time the electronic scanning of motion
pictures. The electronic realization of the camera operation was proposed by the
American inventors Philo Farnsworth by the patent for his Image Dissector in 1927
and 1933 and by Vladimir Zworykin for the patent to his Iconoscope. Both camera
tubeswere in 1935 in operational use andwerewith success applied onoccasion of the
OlympicGames in Berlin 1936 (Fig. 7.19). For the electronic realization of television
pictures in the receivers the cathode ray tube as developed inGermany by the Leypold
company under assistance of Manfred von Ardenne. The outbreak of WWII delayed
the introduction of public television systems in the USA, England and Germany, the
leading countries in television technology. By end of WWII new efforts were taken
and the known standards, NTSC from USA, SECAM from France and PAL from
Germany were defined. Today the existing semiconductor electronics together with

Fig. 7.19 a Ikonoscope of Zworykin (1923); b Ikonoscope camera at the Olympic games 1936



100 F. Pichler

the high intergration of microelectonics allow new solutions to realize television
systems (“digital television”). As an example for a high integrated micro electro
mechanical system (MEMS) we mention the mirror matrix of Texas Instruments
which realizes pictures in the size of 1024 times 1024 pixels and which is used for
large screen projection.

7.8 Electromagnetic Computing: Relay Computer

7.8.1 Introduction

A relay R is a electromagnetic device with a moving lever which can assume two
states: state “ON” in the case that the lever has been moved by the magnetic field of
the coil; state “OFF” otherwise. The lever of R moves electrical switches r and r∗ of
two kind, one if it being closed in state “ON” otherwise open, the other working just
in the opposite, being closed in case of state “OFF” otherwise open. With two Relay
R and S it is possible to realize electrically the mathematical structure of a switching
algebra with Boolean variables r and s in the following way: r + s corresponds to
a parallel circuit of the switches r and s, r · s corresponds to a serial connection of
the switch r with the switch s. A switch r∗ realizes the negation of the variable r . It
follows that an aggregate of n relays R1, R2, . . ., Rn is able two realize any binary
operation defined on the set of binary words of length n. To prove that it is possible to
build digital computing devices by relays we have to show that also a digital memory
can be realized. This can be done by the concept of a register of relay flip flop circuits
as memory cells. Each such flip flop can be realized by two relays Q and Q∗. This
shows that with relays it is possible to realize by electrical means mathematical
structures which are finite state machines, which is, from a mathematical point of
view, sufficient to build a computing machine.

7.8.2 Relay Computer

The introductory chapter pointed out that relays, which are well known from their
common use in telephone switching systems, can be used to build a electromag-
netic computer. This idea was followed at different places and “relay computers”
of dramatically increased computing power, as compared to the existing mechanical
computing devices, could be realized. In the USA theModel I-VI (1940–1949) of the
Bell Laboratories, the model Mark II (constructed by Professor Howard H. Aiken)
at Harvard University and the PSRC (=Pluggable Sequence Relay Computer) of
IBM can be considered as pioneering installations. In Germany Konrad Zuse accom-
plished his outstanding contribution in computer technology by the construction of
the machines Z1 (1936), Z3 (1941) and Z4 (1944). Unfortunately for Z1 and Z3 no
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original designs have been preserved (although a replica of Z1 can be seen at themost
interesting exhibition of ZUSE computers an theDeutsches TechnikMuseumBerlin).
The machine Z4 could survive WWII and was later for many years in service at the
Institute of Mathematics at ETH Zürich. Today the Z4 is on display at theDeutsches
Museum in Munich. The ZUSE company continued after WWII the production of
relay computers. Themodel Z11was especially successful for applications in optical
and geodetic computations (Figs. 7.20, 7.21).

Fig. 7.20 a Konrad Zuse (1910–1998); b Zuse Z4 relay computer (Deutsches Museum Munich)

Fig. 7.21 The ZUSE Z11 Computer
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7.9 Electronic Computers and Electronic Calculators

7.9.1 Technological Prerequisites

Relay computer are necessarily limited in the speed of their operation. The mechan-
ical moving parts have a certain inertia which can not be avoided. To increase the
speed of computing it was necessary to realize the switches and the memory by elec-
tronic devices. Electronic tubes, which found in different military high speed systems
of WWII such as Radar systems a successful application (for example in high speed
counters), proved to be suitable. The today famous first electronic computer which
used ordinary radio tubes for its realization (18.000 in number!) was the ENIAC
machine (ENIAC = Electronic Numerical Integrator and Computer) of 1946 at the
University of Pennsylvania, Philadelphia, USA. Other examples of “electronic tube
computers” followed immediately and also industrial production got started in the
years after. We mention as examples the production of the model 650 from IBM
and the model Z22 from the ZUSE KG. However in that time the market for sell-
ing electronic computers was still small, besides the prices were very high. It was
the technological revolution initiated by the invention of the transistor (1948) and
the invention of the integrated circuit which changed the situation and allowed the
design and implementation of a new generation of computers. New companies such
as for example the Digital Equipment Corporation (DEC) which manufactured suc-
cessfully computers for real time applications for process control (e.g. the models
PDP-8 and PDP-11) were founded. IBM developed the famous model 360 fam-
ily with a new architectural design. The development of the microprocessor by US
companies such as INTEL, Texas Instruments and Motorola allowed the design of
“home computers” which eventually led to the personal computer and notebook of

Fig. 7.22 a IBM 650 computer with electronic tubes; b Intel R 80186 microprocessor chip
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our time. The development of software for the operating and application of personal
computers gave a chance of the founding of new companies. One of it was the found-
ing of MICROSOFT, today one of the leading companies in software development
(Fig. 7.22).

7.10 Conclusion and Outlook

The paper covers the overall development of electrical information technology and
the invention and manufacturing of the associated equipment and systems which
is needed to enable the communication and control between men and machines.
The discovery of the physical phenomena of electricity as observed in nature, both
in space and in the world of materials, was without any doubts one of the most
important one. It opened the invention and development of technical means for the
transmission andprocessingof electrical signalswhich carry information.Thehistory
of the development of information technology shows us, that new results in physics
are accompanied by the invention and development of new engineering systems.
The goals which are represented by the requirements which a engineering system
has to meet can be considered as constant if we allow also futuristic goals. The
feasibility of goals depends however always on the state of the currently available
scientific knowledge and on the existing methods and tools for engineering design
and implementation. The knowledge of the historymay help to give support in getting
this means.
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Chapter 8
On the Ability of Automatic Generation
Control to Manage Critical Situations
in Power Systems with Participation
of Wind Power Plants Parks

Suad S. Halilčević and Claudio Moraga

8.1 Introduction

Synchronization of machines and the parallel switching of power systems is always
a very important and sensitive step to change the conditions of a power systems
work. At the time of closing the parallel switch (circuit breaker) a minimum of
energy transfer is desired [1]. To have that condition realized, one must satisfy the
conditions in which it is possible to get the machines run in parallel. Whether the
synchronism conditions are fulfilled or not is a process that can be done by either the
electromechanical or electronic synchronizing equipment (SE).

There are two ways of paralleling power systems: that based on the attended
synchroscope-furnished stations, and that designed as a remote synchronism indica-
tor, the information registered by the latter, forwarded to the operator through special
communication channels. Today, however, with large interconnected power systems
and new competitive environment for electricity, paralleling is very frequently a task
for the system’s operator and demands a great attention.

Nowadays, SE is set into operation by the system operator. However, utilization
of real-time rating systems and integration with existing utility communication net-
works (SCADA) gives chances for automation of starting SE. Having this in mind,
sophisticated SE needs to be responsive to that kind of signals or information that
will excite it and which will act toward circuit breaker installed to connect the power
systems (or generating unit to a power system).
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The crisis such as the one arising from the system’s own generator outagewill only
be deepened should the operator have to waste time in considering whether or not to
resort to some of the ancillary services (exploiting the available spinning reserve or
introducing the appropriate quantity of the generation ready-reserve power). Though,
as a matter of fact, to have access to such a resort is what heavily outages must be
followed by; otherwise, nothing would save a great number of related consumers
fromhaving a black-out time. Therefore, without the continuous control of the related
parameters—especially those of an off-on stage of generating units (or generating
areas), systems load (power demand), and available power of the numerous wind
power plants introduced into the power systems—neither the opportune paralleling
nor the systems integrity preservation would be possible.

Response rate (MW /min.) requires maintaining an active power margin so that
the generators have the thermal stored energy and generators capability to actually
respond when the turbine’s governor opens the valve. The quantity of response is
important, and the appropriate policy needs to define requirements (which generators
will maintain a MW -margin, what is the minimum response rate requirement). In
addition, the owners of generators need to maintain load angles and aMVAr-margin
of their generators within allowable limits. This is necessary for contingencies in
which the generators, in these crisis situations, should keep their transient stability
and provide voltage support. That will be successful if an appropriate quantity and
also a spatial distribution of active and reactive power reserve have been maintained.

In the past twodecades the power systemshas hosted a huge number ofwindpower
plants. The inertia and frequency responses of wind power plants with different wind
turbine technologies can contribute to the inertial and primary frequency response
during the frequencydrop [2, 3]. There are numerous studies that document frequency
response implications in cases with high levels of wind generation. It has been found
out that reduction in system inertia due to higher levels of renewable generation will
not have a significant impact on frequency response when compared with governor
action of synchronous generators driven by steam and/or hydro-power. The fast
transient frequency support using controlled inertial response from wind power will
help increase the underfrequency load-shedding margin and avoid load shedding due
to low frequencies. It has been demonstrated here that many systems and regional
transmission operators in different countries began recognizing the value of inertial
response by wind power and its importance for system reliability [4–6]. However,
there are no studies on recognizing available wind power in the critical situations
where the system operator should know the number of MW s that will stay at his
disposal for overcoming the frequency drop and possible frequency and transient
instability. That know-how, presented in this paper, is based on the logical decision-
making and the degree of satisfaction of the current WPPP available power ϕW by
particular WPPP available power ranges Wi. In that way, the stochastic nature of
the wind and, accordingly, the power available fromWPPP, can be identified, and so
offer a basis on which the needed RR can be calculated and eventually have the SE
initialized.
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The range of the load shifts that a power system may happen to undergo is
very wide (load duration diagram). On the other side, the load duration diagram
can be divided into few classes, each having a mean value of the load quantity,
and the same duration. All the classes can further be attributed by the RR amounts
that—if applied—will achieve that the power system generation meets consumption
demands. There are several methods by which the information on the emergency
power demands may be obtained. One of them—based on the chart of the RR gener-
ators in function of the outage affected generators and load classes—enables one to
find out how much RR to apply, or—if the reserve should prove insufficient—how
much power to buy at the power market [7]. In any case, such an operation is to be
carried out by a skillful operator.

The need for an operating reserve is emphasized in competitive environment of
power system work. That reserve is important for frequency response, security (load
angles) and adequacy (generation meets consumption); but to keep the appropriate
synchronous generation margins at a satisfying level, the chosen generators that are
in operation have to maintain the difference between nominal and actual engaged
power (spinning reserve). Among inertial power from wind power plants, the WPPP
can provide the power in the form of spinning reserve, too. Due to stochastic nature
of the wind, the electric power fromwind power plants is also stochastic. That is why
the need for RR to recover the emerged power deficit, consideringWPPP, should be
estimated on the base of a statistic approach, which includes a Rayleigh distribution
[8]. The Rayleigh distribution is observed when themagnitude of a variable is related
to its directional component such as it is a case with wind speed. In that case, there
is an assumption that two components that describe the variable (wind speed and
direction of wind) are not correlated, normally distributed with an equal variance
and a zero mean.

The available spinning reserve of the conventional generators and available output
electric power from WPPP in the circumstances of the current power demand, are
the starting point for a calculation of the needed RR and determination of the need to
initialize the SE. The appropriate quantity of the RR also needs to be maintained. RR
(or contingency reserve-supplemental) consists of the fast start-up generating units
that can be in operation within 10min at most. Having RR generators available, the
process of paralleling should be made first.

The aim of this paper is describe a fast way of SE initiation for paralleling RR
generators. Namely, the SE start is automated in the process of paralleling RR gener-
ator to a power system. By this innovative method the RR power can be installed in
a very short time reducing customers loss of power. This method enables an imme-
diate emergency response of the RR generator to the power system. Such an action
requires an efficient mechanism of HNM. Neural computing is appropriate because,
if a neural network (NN) is properly trained, it can undertake an adequate action in all
situations including those that neither the operator nor the neural network itself has
ever faced [9, 10]. The HNM designed can be understood as a part of the automatic
generation control capable to manage critical situations.
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8.2 The Hybrid Neural Model

The hybrid neural model—developed so as to recognize the information signals
able to excite (start) the SE—contains two kinds of neurons: those with a sigmoid
activation function and a perceptron [11]. The latter enables dividing the possible
stage space into two areas characterizing the need forRR or sufficient power available.
Neurons with sigmoid activation function are used to build a feedforward, three-layer
neural network that is trained (learned) by a supervised, backpropagation learning
rule based on the gradient descent algorithm. The second part of the adopted HNM
is a perceptron that is suited for problems in pattern classification due to its hard
limiting activation function.

The back-propagation learning rule is used to continually adjust the weights and
biases of NN in the direction of the steepest descent with respect to the error:

W(t+1) = W(t) + dW

B(t+1) = B(t) + dB
(8.1)

where:

W(t+1)—the updated weight matrix (weights from the (t + 1st)- phase of the NN
training procedure),

W(t)—the weight matrix from the t-phase of the NN training procedure,
B(t+1), B(t)—the bias vector from the (t + 1st)-phase and t-phase of the NN training

procedure, respectively,
dW , dB—the weight change matrix and the bias change vector, respectively.

In addition, an improved backpropagation learning rule is used which includes ele-
ments for decreasing backpropagation’s sensitivity to details in the error surface
and training time. These elements are momentum m and adaptive learning rate alr,
respectively. In that way, the weight change matrix can be expressed as:

ΔWi,j(t + 1) = mΔW(i,j)(t) + (1 − m) · alr · Δ(i)(t) · P(j) (8.2)

where:

Δ(i)—the layer’s delta vector, and
P(j)—the layer’s input vector.

The backpropagation learning rule is used to adjust the weights and biases of NN
in order to minimize the sum squared error of the corresponding output signals. In
this way, the values of the network weights and biases are continually changed until
a previously defined acceptable error is reached. Delta vectors Δ (as a difference
between the actual and the desired output’s value) are calculated for the network’s
output layer, and then backpropagated through the network until delta vectors are
available for a given hidden layer. In order to speed up the learning procedure, a
batch presentation of input data (vectors) and delta vectors is used.
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Since the NN outputs may be too noisy to make a decision in favor of either
making (1), or not making (0) a demand to the SE, the output is forwarded to the
perceptron which is based on the hard-limit transfer function (bias b for the presented
case being 0.5). Therefore, the perceptron neuron’s output is:

O = hard lim(ONN + b). (8.3)

where

ONN—output of the feed-forward NN ,
b—bias that enables shifting of the NN’s output to the left by the accepted amount

of b.

In other words, the applied hard limit transfer function enables the perceptron to
classify (divide) the output signal of the feedforward NN into two areas:

Area 1 (output = 1): activation of SE,
Area 2 (output = 0): no signal (SE does not need to operate).

The input vector toHNM (Fig. 8.1) consists of twoparts: one concerning the generator
(or generating area) that has suffered outage, and another one concerning the load
(load class) at which the outage has taken place. The outage-affected generator is
marked with 1; the sounds ones, with 0.

Fig. 8.1 Hybrid neural
network model
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Fig. 8.2 Daily diagram of load (a) and load duration curve (b)

8.2.1 The Logical Decision-Making Strategy

The second part of the input vector comprises the indicators of the matching of the
current load (power demand) regime with the defined load ranges. The load duration
curve (daily diagram of load Fig. 8.2) is divided into the load classes:D1 = (D1max −
D1min), . . . ,Dn = (Dnmax − Dnmin). These load classes are defined in accordancewith
the load shifting in a positive and negative directionwith respect to their mean values.
Unpredictability of the load shift is estimated by classical methods of estimation
based on the Central Limit Theorem, [12].

As a result of the stochastic nature of the load, overlaps of the power demand
ranges defined for the particular time intervals have to be considered. For each of the
chosen time intervals (one or two hours or other time intervals) an estimation of the
load ranges with the “three-sigma” rule will be made. This rule provides a 99, 7%
confidence interval of estimation. In order to find out to which power demand range
belongs the current power demand regime of the power system, a decision-making
strategy has to be designed.

The logical decision-making uses the operating condition—the current power
demand regime and defined power demand ranges—in accordance with the normal
distribution of load (power demand) uncertainties and the rules given below.

LetDi represent the i-th power demand range and ϕDi, the degree to which the cur-
rent power demand may be satisfied by the i-th power demand range. The following
decision rules may be used for a given current power demand D:
IF

ϕD1(D) > max (ϕD2(D), ϕD3(D), . . . , ϕDn(D)) , (8.4)

THEN
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D1 = 1

D2 = 0

. . . . . .

Dn = 0

(8.5)

∀1 ≤ i ≤ n; n-number of power demand ranges.

IF
ϕDi(D) > max (ϕD1(D), . . . , ϕDi−1(D), ϕDi+1(D), . . . , ϕDn(D)) , (8.6)

THEN

D1 = 0

. . . . . .

Di−1 = 0

Di = 1

Di+1 = 0

. . . . . .

Dn = 0

(8.7)

IF
ϕDn(D) > max (ϕD1(D), . . . , ϕDn−1(D)) , (8.8)

THEN

D1 = 0

. . . . . .

Dn−1 = 0

Dn = 1

(8.9)

The left side of the implications presented in (8.9) are defined as illustrated in
Fig. 8.3 and determined in (8.1). A degree value of 1 indicates that the current power
demand corresponds to the appropriate power demand range; while 0, that the current
power demand cannot be satisfied by the corresponding power demand range.

Let us recall that RR is defined on the base of estimation under “three sigma” rule
with respect to the upper limit of the confidence interval of power demand and lower
limit of the confidence interval of electric power available from WPPP:

RRGx =
ND∑

iD=1

(D0
i + 3σD,i) −

NG−1∑

iG=1

PGi −
NW∑

iW=1

(W 0
i − 3σW,i) (8.10)
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Fig. 8.3 The defined power demand ranges

where:

(RR)Gx—capacity of RR needed to compensate for the outage of the generating unit
“x”,

D0
i —mean value of power demand (MW) for the considered time interval; i.e., the
mean value of particular power demand range,

W 0
i —mean value of available wind power (MW) for the considered time interval;
i.e., the mean value of particular wind power range,

σD,i—standard deviation for the i-th power demand range in the considered time
interval (MW),

σW,i—standard deviation for the i-thwind power range in the considered time interval
(MW)

ND—number of consumers’ buses,
NG—number of generating units,
NW—number of wind power plants (or WPPPs),
Pgi—nominal active power of the i-th generating unit (MW),
Di,min, Di,max—minimum and maximum level of the i-th power demand range,

respectively (MW) (these levels mach the −3σD,i, i.e. +3σD,i),
Wi,min, Wi,max—minimum and maximum level of the i-th power range of WPPP,

respectively (MW) (these levels mach the −3σW,i, i.e. +3σW,i).

If one takes into consideration the security side of the evaluation of the RR power
for outage of a generating unit Gx, the degree of satisfaction of the current demand
regime ϕD by particular demand range Di may be defined as follows:

ϕD =

⎧
⎪⎨

⎪⎩

1 if D = Di,min
Di,max−D

Di,max−Di,min
if Di,min < D < Di,max

0 else D ≥ Di,max

(8.11)

where D is the current power demand.
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Example Let the current power demand of a power system be 1,200 MW. On the
basis of the load duration diagram, four power demand ranges (for four time intervals
of six hours each) are chosen: 500–1,000 MW; 800–1,450 MW; 950–1,700 MW and
1,500–2,000 MW. Each demand range represents a 3-sigma confidence interval of
power demand estimation. Taking into consideration the proposed decision rules, the
demand range of 1,200 MW corresponds to the third power demand range or more
precisely, to the interval (D3m,D3M) (shown in bold in Fig. 8.3). This implies that
D3 as an input data for the second part of the input vector is equal to 1 (all other Di

are equal to 0). In addition,
(
D0

3 + 3σD3
)
is used as a relevant data in the calculation

of the needed RR. In [13] the input vector consisted of two parts has been applied to
HNN . Here the input vector is expanded by indicators of the current electric power
available from WPPP with the defined generation ranges, Fig. 8.4.

If one takes into consideration the security side of the evaluation of the RR power
for outage of a generating unit Gx, the degree of satisfaction of the current WPPP
output electric power ϕW by particular power range Wi may be defined in a similar
way as in (8.11):

ϕW =

⎧
⎪⎨

⎪⎩

1 if W = Wi,max
Wi,max−W

Wi,max−Wi,min
if Wi,min < W < Wi,max

0 else W ≤ Wi,min

(8.12)

Example Let the current available power from one wind power plants park (WPPP)
(A wind-farm or wind park is a group of wind power plants in the same location
used to produce electricity) be 8.6 MW. Four available power ranges of WPPP are
chosen: 0.0–4.0 MW; 2.0–7.5 MW; 6.0–11.0 MW and 7.5–14 MW (for four six-
hour intervals). Each power range represents a 3-sigma confidence interval of the
available power estimation. Taking into consideration the proposed decision rules,
the available power of 8.6MW corresponds to the fourth power range with degree of
satisfaction of 0.83 (Fig. 8.4). This implies that W4 as an input data for the third part
of the input vector, is equal to 1 (all otherWi are equal to 0). In addition, (W 0

4 − 3σW4 )
is used as a relevant data in the calculation of the needed RR in (8.10). The input

Fig. 8.4 The defined electric power ranges available from WPPP
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Fig. 8.5 Model of the studied situation

data for the third part of the input vector are all equal to zero when the WPPP is
disconnected from power system.

If a neural network is used to activate the SE, the inputs to the neural network
should comprise information about the generator state (or state of the generating area)
received through the communication channel (1—outage, 0—operating state), data
about the present demand class, and current available electric power from WPPP
provided by the above rules.

An input vector with the following structure drives the HNM:

I = [G1G2 . . .Gi . . .GnD1D2 . . .Di . . .DnW1W2 . . .Wi . . .Wn]
T (8.13)

with Gi, Di, and Wi taking values 0 or 1, depending on the current working regime.
After a proper training, the hybrid neural network gives valid information, i.e. the

signal for either activating (marked by 1) or not activating SE (marked by 0).
The acting scheme of HNM for automation of the power system SE exciting is

presented in Fig. 8.5.

8.3 Test Model

The resultswith adopted neural networkmodel have been verifiedwith those reported
in [14],—Fig. 8.6 and Table8.1.

The difference between results reported in [14] and those found here is that we
have one WPPP nominal power of 14 (MW). The feed-forward neural network is
trained for several cases of generator outages, system demand and available electric
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Fig. 8.6 Test model for checking the HNM performance

Table 8.1 One part of the training data obtained by using of (8.10)

Outage Upper limit of the power
demand range D (MW)

Upper limit of theWPPP
range W (MW)

1− SE should
act, 0− SE
should not act

155 165 175 185 4 7,5 11 14

G2 + G3 0 1 0 0 1 0 0 0 1

G2 0 0 1 0 0 0 1 0 1

G3 0 0 0 1 0 1 0 0 1

G4 0 1 0 0 0 0 1 0 0

G1 0 0 1 0 0 1 0 0 0

G1 + G2 0 0 0 1 0 0 0 1 1

G4 0 0 1 0 0 0 0 1 1

G5 1 0 0 0 0 0 1 0 0

G6 0 1 0 0 1 0 0 0 1

G7 0 0 0 1 0 1 0 0 0

G1 + G4 1 0 0 0 0 0 0 1 1

WPPP 0 1 0 0 0 0 1 0 0

WPPP 0 0 0 1 0 0 0 1 1

WPPP + G5 0 0 1 0 0 1 0 0 1
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power fromWPPP (Mathlab’s Neural Network Toolbox—1998). The neural network
has three layers. The input layer has fifteen neurons, the hidden layer twenty-seven,
and the output layer one neuron. (This architecture was obtained experimentally,
however an evolutionary design could have been used [15]). Test cases not applied in
the training phase were used to evaluate the generalizing performance of the HNM.

The overall input matrix for a batching operation, that is, as required for the
learning process of the adopted HNM has the following structure:

I =

G1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
G2 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0
G3 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
G4 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
G5 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1
G6 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0
G7 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
D1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0
D2 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
D3 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
D4 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0
W1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(8.14)

The signals produced by HNM for unseen cases are given in Table8.2.

Table 8.2 Test results

Outage Upper limit of the power
demand range D (MW)

Upper limit of theWPPP
range W (MW)

1− SE should act,
0− SE should not act

155 165 175 185 4 7,5 11 14

G2 + G3 0 1 0 0 0 0 1 0 1

G2 0 1 0 0 0 0 1 0 0

G3 0 0 0 1 0 0 0 1 1

G4 1 0 0 0 1 0 0 0 0

G1 0 1 0 0 0 0 1 0 1

G1 + G2 0 1 0 0 1 0 0 0 1

G4 0 0 0 1 1 0 0 0 1

G5 1 0 0 0 0 0 0 1 0

G6 0 0 1 0 0 0 1 0 0

G7 0 0 1 0 1 0 0 0 0

G1 + G4 0 1 0 0 0 0 0 0 1

WPPP 1 0 0 0 0 0 1 0 0
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By simulating a power system work, where HNM is served for an automatic
sending of a driving signal for the SE initiation has been illustrated. The response of
the HNM has been correct in all cases. This automatic work takes just a couple of
moments, and one can say that the automatic production of an activating signal for
the SE is done in a real time.

Furthermore,wemade additional time domain simulations to determine frequency
as indication of a momentary imbalance in the power system and responses of the
RR generator in the case of its manual introduction to operation and by means of
HNM through SE. We present two characteristic cases:

Case I.
Generator G6 outage at the power system demand of 175MW. The loading of the
generator G6 at the moment of outage is 18MW. Taking into account governor
speed load characteristic of 5% the total composite self-regulation of the generators
for described case is 75 MW/Hz. The self-regulation of the consumers, taking into
account the factor of consumer self-regulation of 4 (%/Hz), is 7 MW/Hz. The over-
all power system self-regulation is the sum of the above mentioned self-regulation
factors and has value of the 82 MW/Hz. In that way, the frequency change is 18
(MW)/82 (MW/Hz) = 0.219 Hz (Fig. 8.7). Comparing with results in [13] it can
be concluded that the frequency drop is lower in this case due to benefit of WPPP
introduction into the power system, and as result of that, more spinning reserve on
the synchronized classical generators.

The output of HNM is “0” which means the stand-by of the SE. The power
deficiency that is caused by the failed generator is recovered by the spinning reserve
of the sound generators (including available electric power fromWPPP). The power
system has been returned to the normal operating state (50Hz) after a transient
process determined by the response rate of the available spinning reserve.

Case II:
Generator G1 outage at the power system demand of 185 MW. The loading of the
generator G1 at the moment of outage is 37 MW. Taking into account governor

Fig. 8.7 Frequency change for the first case
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Fig. 8.8 Frequency change for the second case

speed load characteristic of 5% the total composite self-regulation of the generators
for the described case is 66 MW/Hz. The self-regulation of the consumers, taking
into account the factor of consumer self-regulation of 4 (%/Hz), is 7.4 MW/Hz.
The overall power system self-regulation is the sum of the above mentioned self-
regulation factors and has value of the 73.4MW/Hz. In thatway the frequency change
is 37 (MW)/71.4 (MW/Hz) = 0.518 Hz (Fig. 8.8). As in the first case, the frequency
drop is lower with respect to the case described in [13] due to more installed power
(in the view of WPPP); however, it is not enough to recover the emerged power
deficit caused by outage of generator G1.

The output of the HNM is “1” which requires activation of SE. The power defi-
ciency that is caused by the failed generator cannot be recovered by the spinning
reserve of the sound generators and available power fromWPPP. The power system
has been returned to the normal operating state (50 Hz) after a transient process
determined by the response rate of the available spinning and supplemental reserve
(ready reserve generator).

The effects of generator outages and putting of the RR generator into operation
manually (curve “c” in Fig. 14.8) and by means of HNM (curve “b” in Fig. 8.8) may
be approximately modeled by examining Hz/sec (the Euler numerical method “step-
by-step” is applied). Deceleration and calculating the change in system frequency is
done for the described system by using the following relationship:

Δf

Δt
= Pdec

2H
· frated (8.15)

with frated in Hz, Pdec in p.u. MW , and H (the total system inertia) in p.u. MW s
(in the first case it is amounted to 4 p.u.MW s and in the second case it is amounted to
3 p.u. MWs).We assume that all remaining plants have inertia constant (on their own
base) of 2 s. Substituting the appropriate data into (8.15) the frequency deceleration
for the first and the second case are 1.25 Hz/s (Fig. 8.7) and 3.0 Hz/s (Fig. 8.8),
respectively. In the previous work [13] without introduction of WPPP into power
system these changes have had values of 1.47 Hz/s and 3.78 Hz/s, respectively. The

http://dx.doi.org/10.1007/978-3-319-48317-7_14
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benefit of the WPPP to the power system management in the case of load changes
is obvious and it can be and has to be treated as a positive contributor in the process
of keeping the power system frequency stable.

If SE is governed by HNM, the power system takes 300 s to restore a normal
operation. If not, it takes 350 s. The reason for the promptness of the former case is the
ability of HNM to recognize the crisis symptoms immediately, and to consequently
suggest introduction of the RR generator through SE.

8.4 Conclusion

The work presents HNM as a means of an on-line outage crisis counteraction. The
proposal is particularly helpful in making a decision on whether or not to have the
outage affected power system paralleled with the RR generator. Based on the logical
decision-making and neural calculation procedures, the HNM is a prompt and a
precise starter of the SE, thus making it possible for the outage-suffering system to
have a power compensating resort in a very short time. In this way, the high level
of reliability can be kept. By leaving the decision on paralleling to the HNM-based
automatic starter, the operator can devote himself to taking care of other aspects of
the crisis.

In the competitive environment of the area of electricity, opportune counter-
emergency action is certainly a step towards having reliable energy management
services.

Future research in the field of a crisis regime of the power system work will
probably include a decision-making automation in the load shedding process in
addition to the presented model.
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Chapter 9
The Reed-Muller-Fourier
Transform—Computing Methods
and Factorizations

Radomir S. Stanković

9.1 Introduction

In late 1960s and early 1970s, there was apparent interest in discrete dyadic analysis
based on the discrete Walsh functions, as can be seen from the organization of a
series of international workshops dedicated exclusively to this subject. For more
information see a discussion of that in [39]. From the abstract harmonic analysis
point of view, these functions are kernels of the discrete Walsh transform which can
be viewed as the Fourier transforms on finite dyadic groups consisting of a set of
binary n-tuples equipped with the addition modulo 2, the operation that is usually
called EXOR in switching theory.

Dr. James Edmund Gibbs from the National Physical Laboratory, Teddington,
Middlesex, UK, was deeply involved in these research activities and his work in
this area led to the definition of the so-called logical derivative, or the discrete Gibbs
derivative, as an operator enabling the differentiation of piecewise constant functions,
such as the Walsh functions [13, 14].

By looking for a counterpart of the Walsh (Fourier) analysis in the Boolean
domain, J.E. Gibbs defined a transform that he called the Instant Fourier transform
[15]. The name of the transform comes from the possibility to compute the related
spectrum instantaneously through a network consisting of AND and EXOR logic
gates. A study of the relationships between the discrete Walsh series and the Reed-
Muller expressions of Boolean functions was carried out several years after [30]. In
the frame of this research, it was recognized that the set of basis functions in terms
of which the Instant Fourier transform is defined is identical with the basis functions
used in the definition of the Reed-Muller (RM) expressions. The spectral interpreta-
tion of the Reed-Muller expressions, where the coefficients in the RM-expressions
are viewed as spectral coefficients of a Fourier-like transform over the finite Galois
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(GF) field GF(2), i.e., with computations modulo 2, or equivalently in terms of log-
ical operations AND and EXOR, was championed by Ph.W. Besslich [2–5], and the
same approach was accepted by some other authors [18, 19].

The main difference between these two concepts, the Reed-Muller (RM) trans-
form and the Instant Fourier transform, is in the underlying algebraic structures,
the Boolean ring for the Reed-Muller expressions, and the Gibbs algebra defined in
terms of theGibbsmultiplication for the Instant Fourier transform [15]. Themain idea
behind the definition of this new algebraic structure was to derive properties of the
Instant Fourier transform (equivalently, the Reed-Muller transform) corresponding
to the properties of the classical Fourier transform on the real line.

A generalization of the Gibbs algebra to multiple-valued functions presented in
[31] provided a way to define a transform, called the Reed-Muller-Fourier (RMF)
transform, that can be viewed as a generalization of the Reed-Muller transform for
binary functions to multiple-valued functions. Professor Claudio Moraga immedi-
ately realized that the RMF-transform is an interesting concept and already in 1993
started working on the development of a related theory by putting a lot of effort
towards the refinement of its definition and the study of its properties for differ-
ent classes of multiple-valued functions [24, 42]. That was the motivation for the
selection of the Reed-Muller-Fourier (RMF) transform as the subject in this book
dedicated to Professor Moraga on the occasion of his 80th birthday. In particular, we
will discuss the different methods used to compute the Reed-Muller-Fourier spectra
of multiple-valued functions efficiently in time and space. The definition of the so-
called algorithms with constant geometry for the Reed-Muller-Fourier transform as
well as various factorizations of the RMF-matrix derived from the factorization of
the Pascal matrices can be consider as new contributions to the field.

9.2 Reed-Muller-Fourier Transform

In this section, we present the basic definitions of the Reed-Muller-Fourier transform.

9.2.1 The Gibbs Algebra

Denote by G a group of n-ary p-valued sequences x = (x1, . . . , xn) with the group
operationdefinedas componentwise additionmodulop. Thus, for all x = (x1, . . . , xn),
y = (y1, . . . , yn) ∈ G,

x ⊕ y = (x1, . . . xn) ⊕ (y1, . . . , yn)

= ((x1 ⊕ y1), . . . , (xn ⊕ yn)) mod p.

Denote by Zq the set of first q non-negative integers. For each x ∈ G, the p-adic
contraction is defined as a mapping σ : G → Zq given by
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σ(x) =
n∑

i=1

xip
n−i.

We denote by P(G) the set of all functions f : G → Zq. In P(G), we define the
addition as modulo p addition,

(f ⊕ g)(x) = f (x) ⊕ g(x),∀x ∈ G,

and multiplication as a convolutionwise (Gibbs) multiplication [15]

(f g)(0) = 0

(f g)(x) =
σ(x)−1∑

s=0

f (σ (x) − 1 − s)g(s),∀x ∈ G, x �= 0.

Denote by W a particular function in P(G) such that

W (x) = p − 1, ∀x ∈ G,

and by S the set of first q positive integer powers ofW , i.e., S = {W 1, . . . ,Wq} with
exponentiation in terms of the Gibbs multiplication defined above. The set S is a
basis in P(G) with respect to which the Reed-Muller-Fourier (RMF) transform is
defined [31]

f =
q−1∑

i=0

ciW
i+1 mod p,

where ci ∈ Zp.
As is shown in [31], if a p-valued variable xi is considered as a particular function

in P(G), f (x1, . . . , xn) = xi, then the RMF-transform matrix can be expressed in
terms of the variable xn as

f (x1, . . . , xn) =
q−1∑

i=0

ciφi+1(xn) mod p, ci ∈ {0, . . . , p − 1},

where

φi(xn) =
{

(p − 1) · x�i/2�
n , i-odd,

xi/2n , i-even,

where �a� is the integer part ofa, and xrn = xn · xn . . . xn r timeswith themultiplication
defined as convolutionwise (Gibbs) multiplication in P(G).
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This definition corresponds to the interpretation of the RMF-expressions as an
analogue of the Fourier series expressions with functions φi(xn) viewed as coun-
terparts of the exponential functions. The following alternative definition allows us
to consider the RMF-expressions as polynomial expressions. In this way, the RMF-
expressions can be viewed as a generalization of the Reed-Muller expressions for
binary logic functions to multiple-valued functions. At the same time, being com-
puted modulo p, with no restrictions to p prime, the RMF-expressions can be viewed
as a counterpart of GF-expressions for multiple-valued functions [34].

Definition 9.2.1 (Reed-Muller-Fourier expressions) Any p-valued n-variable func-
tion f (x1, . . . , xn) can be expanded in powers of variables xi, i = 1, . . . , n as

f (x1, . . . , xn) = (−1)n
∑

a∈V n

q(a)x∗a1
1 . . . x∗an

n ,

where V n is the set of all p-valued n-tuples, q(a) ∈ {0, 1, 2, . . . p − 1}, and the expo-
nentiation is defined as x∗0 = −1 modulo p, and for i > 0, x∗i is determined in terms
of the convolutionwise (Gibbs) multiplication defined above.

Whendiscussed in theGibbs algebra, properties of theRMF-transformcorrespond
more likely to the properties of the classical Fourier transform than the properties of
the Galois field (GF) transforms [34]. We point out the following two chief features
among those expressing the differences between the RMF-transforms and the GF-
transforms, since these features influence performances of the computation methods
discussed below.

1. The operations used in the definition of the RMF-transform are modulo p opera-
tions, also in the case of a non-prime p. Therefore, in computations, these oper-
ations can be performed faster than the field operations used in GF-transforms.
Note that modulo operations are provided in contemporary programming envi-
ronments such as CUDA for computing over Graphics Processing Units (GPUs)
[26].

2. The RMF-transform matrix is a triangular matrix, but expresses a Kronecker
product structure in the same way as the GF-transform matrices. In this respect,
the triangular structure of this transform matrix corresponds directly to the RM-
transform matrix, which is the RMF-transform for p = 2. Recall that the GF-
transform matrices are not triangular and have a larger number of non-zero ele-
ments than the RMF-transform matrices.

Although the entire theory of RMF-transforms is valid for any p, for simplicity,
the discussion of computation methods will be given on the example of functions
for p = 3 and, therefore, we provide the corresponding case examples of the Reed-
Muller-Fourier transform. Examples for p = 4 elaborated in detail are presented in
[34].
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Table 9.1 Addition and multiplication modulo 3

⊕ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Table 9.2 3EXP and 3AND

∗ 0 1 2
0 2 0 0
1 2 1 0
2 2 2 2

� 0 1 2
0 0 0 0
1 0 2 1
2 0 1 2

9.2.2 RMF Expressions for p = 3

Consider the ring of integersmodulo 3 defined in terms of addition andmultiplication
modulo 3. For a uniformpresentation of all the operations thatwill be used,wepresent
these operations in Table9.1. In order to generate the product terms of three-valued
variables corresponding to those appearing in the RM-expressions for switching
functions and GF-expressions for multiple-valued functions, we define in Table9.2
the 3ANDmultiplication and3EXPexponentiation, denoted by
 and∗, respectively.
Note that the 3AND table is actually the multiplication modulo 3 table multiplied by
2, and 2 = −1 modulo 3.

We generate a set of 3n product terms given in the matrix notation by

X3(n) =
n⊗

i=1

[
x∗0
i x∗1

i x∗2
i

] =
n⊗

i=1

[
2 xi x∗2

i

]
,

with 3AND and 3EXP applied to the three-valued variables. In matrix notation, the
basis functions are expressed as columns of the matrix

X3(1) =
⎡

⎣
2 0 0
2 1 0
2 2 2

⎤

⎦ .

Definition 9.2.2 Each n-variable 3-valued logic function given by the truth-vector
F(n) = [f (0), . . . , f (3n − 1)]T can be represented as a Reed-Muller-Fourier (RMF)
polynomial given by

f (x1, . . . xn) = (−1)nX3(n)Sf ,3(n),
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with calculationsmodulo3,where the vector ofRMF-coefficientsSf ,3(n) = [a0, . . . ,
a3n−1]T is determined by the matrix relation

Sf ,3(n) = R3(n)F(n),

R3(n) =
n⊗

i=1

R3(1),

where

R3(1) = X−1
3 (1) = 2

⎡

⎣
1 0 0
1 2 0
1 1 1

⎤

⎦ .

Note that X−1
3 (1) is its own inverse.

Example 9.2.1 For p = 3 and n = 2, the RMF-transform matrix is

R3(2) = 2

⎡

⎣
1 0 0
1 2 0
1 1 1

⎤

⎦ ⊗ 2

⎡

⎣
1 0 0
1 2 0
1 1 1

⎤

⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 0 0 2 0 0 0 0 0
1 2 0 2 1 0 0 0 0
1 1 1 2 2 2 0 0 0
1 0 0 1 0 0 1 0 0
1 2 0 1 2 0 1 2 0
1 1 1 1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= X3(2).

The basis functions used to define the RMF-expressions for p = 3 are defined as

2X3(2) = [2, x2, x∗2
2 , x1, x1 
 x2, x1 
 x∗2

2 , x∗2
1 , x∗2

1 
 x2, x
∗2
1 
 x∗2

2 ].

Example 9.2.2 For the ternary function f (x1, x2) = x1 ⊕ x2, specified by the func-
tion vector F = [0, 1, 2, 1, 2, 0, 2, 0, 1]T , the RMF-spectrum is Sf ,3 = [0, 2, 0, 2,
0, 0, 0, 0, 0]T .

Due to its Kronecker product structure, the RMF-matrix R3(n) can be defined
recursively as
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R3(n) = 2

⎡

⎣
R3(n − 1) 0(n − 1) 0(n − 1)
R3(n − 1) 2R3(n − 1) 0(n − 1)
R3(n − 1) R3(n − 1) R3(n − 1)

⎤

⎦ , (9.1)

where 0(n − 1) is the ((n − 1)×(n − 1))matrix all of whose elements are equal to 0.

9.3 Methods for Computing the RMF-Transform

The definition of RMF-expressions and the corresponding arithmetic counterparts
can be uniformly extended to functions for p non-prime.

In applications, efficient computing of RMF-spectra is essential for the feasibility
of algorithms based on GF-coefficients. Therefore, in the following sections we
discuss different methods to compute theRMF-coefficients over vectors and decision
diagrams as underlying data structures.

9.3.1 Cooley-Tukey Algorithms for GF-Expressions

Elements of the set P(X) (the basis functions in RMF-expressions) can be gener-
ated as elements of a matrix defined by the Kronecker product of basic matrices

corresponding to all variables Xi(1) =
[

x0i x1i . . . xp−1
i

]
, i = 1, . . . , n. Due to the

properties of the Kronecker product, the matrix Rp, inverse to Xp, can also be gen-
erated as the Kronecker product of basic matrices Rp(1) inverse to Xi(1). Thus,

Rp(n) =
n⊗

i=1

Rp(1). (9.2)

Due to this Kronecker product representation, the RMF-transform matrix can be
factorized as

Rp(n) = C1C2 . . . Cn, (9.3)

where factor matrices Ci are defined as

Ci =
n⊗

k=1

Rk,

with

Rk =
{

Ri(1), k = i,
Ii, otherwise,
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Fig. 9.1 Basic
RMF-transform matrices for
p = 3 and p = 4

p = 3 p = 4

R3(1) =
1 0 0
1 2 0
1 1 1

R4(1) =

⎡
⎢⎣
1 0 0 0
1 3 0 0
1 2 1 0
1 1 3 3

⎤
⎥⎦

1
2

1
2
3

where Ri(1) = Rp(1) and Ii is the (p × p) identity matrix. See for instance [33].
The computations specified by Rp(1) can be represented by a flow-graph called

the butterfly by analogy to the corresponding FFT-like algorithm.

Example 9.3.1 Figure9.1 shows the basic RMF-matrices for p = 3 and p = 4 and
the corresponding butterfly operations.

Matrices Ci are obviously sparse, since except for k = i, all other factors of the
Kronecker product are identity matrices Igi , and even R3(1) is by itself a triangular
matrix. It follows that, as in the case of FFT, this factorization leads to a fast compu-
tation algorithm consisting of butterflies performing the computations specified by
R3(1).

The algorithmsderived from this factorization belong to the class ofGood-Thomas
FFT algorithms, since the factorization of Rp in (9.3) is usually reported as the
Good-Thomas factorization by referring to the work of Thomas [45], and Good
[16]. In the case of FFT, the Good-Thomas algorithms are tightly related to the
Cooley-Tukey algorithms, and differ from them in the correspondence between the
single and multiple dimensional indexing [17] and the requirement that factors in
the factorization of the transform length have to be mutually prime. The difference
with respect to dealing with twiddle factors in these two classes of FFT algorithms is
important in the case of DFT. However, it is irrelevant in the case of multiple-valued
functions due to computations in finite fields.

Example 9.3.2 For p = 3 and n = 3, the RMF-transform matrix is defined as

R3(3) = R3(1) ⊗ R3(1) ⊗ R3(1).
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f(0) S f (0)
f(1) S f (1)
f(2) S f (2)
f(3) S f (3)
f(4) S f (4)
f(5) S f (5)
f(6) S f (6)
f(7) S f (7)
f(8) S f (8)
f(9) S f (9)
f(10) Sf (10)
f(11) S f (11)
f(12) S f (12)
f(13) S f (13)
f(14) S f (14)
f(15) S f (15)
f(16) S f (16)
f(17) S f (17)
f(18) S f (18)
f(19) S f (19)
f(20) S f (20)
f(21) S f (21)
f(22) S f (22)
f(23) S f (23)
f(24) S f (24)
f(25) S f (25)
f(26) S f (26)

Fig. 9.2 Flow-graph of the Cooley-Tukey algorithm for the RMF-transform for p = 3 and n = 3

Then,

R3(3) = C1C2C3,

with

C1 = R3(1) ⊗ I1 ⊗ I1,

C2 = I1 ⊗ R3(1) ⊗ I1,

C3 = I1 ⊗ I1 ⊗ R3(1),

where I1 is the (3 × 3) identity matrix.
Figure9.2 shows the flow-graphs of the Cooley-Tukey algorithm for p = 3 and

n = 3 based on this factorization of R3(3).
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9.3.2 Constant Geometry Algorithms for RMF-Transform

In this section, we derive the so-called constant geometry algorithms for computing
coefficients in RMF-expressions.

We consider the rows of the basic RMF-matrix in GF(p) as vectors of length p

Rp(1) = (Xp(1))
−1 =

⎡

⎢
⎢
⎢
⎣

q0,0 q0,1 · · · q0,p−1

q1,0 q1,1 · · · q1,p−1
...

...
...

...

qp−1,0 qp−1,1 · · · qp−1,p−1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

q0

q1
...

qp−1

⎤

⎥
⎥
⎥
⎦

.

We define a row zero matrix with p elements which are equal to 0, 0 = [0, 0, . . . 0].
With this notation, the RMF-transform matrix can be factorized as

Rp(n) = (Xp(n))
−1 = Qn

where

Q =

⎡

⎢
⎢
⎢
⎣

Q0

Q1
...

Qp−1

⎤

⎥
⎥
⎥
⎦

,

where Qi are (p × p) diagonal matrices whose non-zero elements are vectors of p
elements

Qi = diag(qi, qi, . . . , qi).

Thus, the (p × p) matrix Qi converts into a (p × pn) matrix with elements in GF(p).
Since in Q there are p matrices Qi, the matrix Rp(n) is obtained.

Example 9.3.3 For R3(1), it is

q0 = [1, 0, 0],
q1 = [1, 2, 0],
q2 = [1, 1, 1],
0 = [0, 0, 0].

Therefore, for n = 3,
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Q =
⎡

⎣
Q0

Q1

Q2

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q0 0 0 0 0 0 0 0 0
0 q0 0 0 0 0 0 0 0
0 0 q0 0 0 0 0 0 0
0 0 0 q0 0 0 0 0 0
0 0 0 0 q0 0 0 0 0
0 0 0 0 0 q0 0 0 0
0 0 0 0 0 0 q0 0 0
0 0 0 0 0 0 0 q0 0
0 0 0 0 0 0 0 0 q0

q1 0 0 0 0 0 0 0 0
0 q1 0 0 0 0 0 0 0
0 0 q1 0 0 0 0 0 0
0 0 0 q1 0 0 0 0 0
0 0 0 0 q1 0 0 0 0
0 0 0 0 0 q1 0 0 0
0 0 0 0 0 0 q1 0 0
0 0 0 0 0 0 0 q1 0
0 0 0 0 0 0 0 0 q1

q2 0 0 0 0 0 0 0 0
0 q2 0 0 0 0 0 0 0
0 0 q2 0 0 0 0 0 0
0 0 0 q2 0 0 0 0 0
0 0 0 0 q2 0 0 0 0
0 0 0 0 0 q2 0 0 0
0 0 0 0 0 0 q2 0 0
0 0 0 0 0 0 0 q2 0
0 0 0 0 0 0 0 0 q2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then,

R3(3) = Q3.

Example 9.3.4 Figure9.3 shows the flow-graph of the constant geometry algorithm
for p = 3 and n = 3.

9.3.3 The Difference Between Algorithms

In this section we briefly summarize the main features of Cooley-Tukey algorithms
and constant geometry algorithms.

In both algorithms the computations are determined by the basic transform matri-
ces Rp(1) and organized as butterflies performed in parallel within each step, with
steps performed sequentially. The number of steps is equal to the number of variables
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f(0) S f (0)
f(1) S f (1)
f(2) S f (2)
f(3) S f (3)
f(4) S f (4)
f(5) S f (5)
f(6) S f (6)
f(7) S f (7)
f(8) S f (8)
f(9) S f (9)
f(10) S f (10)
f(11) S f (11)
f(12) S f (12)
f(13) S f (13)
f(14) S f (14)
f(15) S f (15)
f(16) S f (16)
f(17) S f (17)
f(18) S f (18)
f(19) S f (19)
f(20) S f (20)
f(21) S f (21)
f(22) S f (22)
f(23) S f (23)
f(24) S f (24)
f(25) S f (25)
f(26) S f (26)

Fig. 9.3 Flow-graph of the constant geometry algorithm for p = 3 and n = 3

in the function whose spectrum is computed, since in each step the RMF-transform
with respect to a variable is performed.

In Cooley-Tukey algorithms and algorithms based on the Good-Thomas factor-
ization, the factor matrices Ci are mutually different, which causes that in each step
the address arithmetic is different, meaning that in each step we have to calculate the
addresses of memory locations from which the data are read (fetched). This com-
puting of addresses for input data repeated in each step is a kind of drawback of the
algorithm. The good feature is that the output data, the results of the computation in
the step, are saved in the same locations fromwhich the input data are read. It follows
that computations can be performed in-place, meaning that thememory requirements
areminimal and equal to those to store the function vector to be processed. As noticed
above, the computations performed in each step of the algorithm consists of pn−1

sets of identical computations. These are computations defined by the basic RMF-
transform matrix Rp(1). When graphically represented, the computations are called
butterflies by analogy with similar computations in FFT.
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The distance between memory locations from which the data are fetched is dif-
ferent in each step, and ranges from pn−1 in the first step to p in the n-th step of the
algorithm. Due to this, the time to perform a step is different from that for other steps.
A discussion of the impact of that feature for the case of GF-transforms for ternary
and quaternary functions is experimentally analyzed in [12, 38]. Similar conclusions
can be derived for the RMF-transforms, since the difference between the GF- and
RMF-transforms relevant for this consideration is just in the number of non-zero ele-
ments in the basic transform matrices. In the case of RMF-transforms, the number
of non-zero elements is smaller.

The chief idea in constant geometry algorithms is to perform computations over
data fetched from identical memory locations in all the steps. It follows that address
arithmetic is simpler, since the addresses of memory locations to fetch data are
computed in the first step and used later in other steps. This results in a speed up of
computations, however, the drawback is that in-place computations are impossible
and a memory twice as large is required to sore the input and output data of each
step.

9.3.4 Computing the RMF-Transform over Decision
Diagrams

In this section, we present the method for computing the RMF-spectrum over deci-
sion diagrams as the underlying data structure to represent the functions whose
spectrum is computed. In this order, for the sake of completeness of presentation,
we first introduced the concept of Multiple-place decision diagrams (MDDs) used to
represent multiple-valued functions. MDDs are a generalization of Binary Decision
Diagrams (BDDs) [6] that are defined in terms of the so-called Shannon expan-
sion rules. Alternatively, BDDs can be viewed as graphical representations of the
disjunctive normal forms, Sum-of-Product (SOP) expressions, viewed as particular
examples of functional expressions for Boolean functions [33]. Therefore, we first
introduce the corresponding concepts, the generalized Shannon expansion, and the
multiple-valued counterpart of the disjunctive normal form.

9.3.5 Multiple-Place Decision Diagrams

We will illustrate the derivation of the generalized Shannon expression for multiple-
valued functions by referring to this example.

Definition 9.3.1 (Characteristic functions) For a multiple-valued variable xj taking
values in the set {0, 1, . . . , p − 1}, j = 0, . . . ,m − 1, the characteristic functions
Ji(xj), i = 0, 1, . . . , p − 1 are defined as Ji(xj) = 1 for xj = i, and Ji(xj) = 0 for
xj �= i.
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Table 9.3 Characteristic functions for p = 3 and n = 2

x1x2 J0(x1) J1(x1) J2(x1) J0(x2) J1(x2) J2(x2)

00 1 0 0 1 0 0

01 1 0 0 0 1 0

02 1 0 0 0 0 1

10 0 1 0 1 0 0

11 0 1 0 0 1 0

12 0 1 0 0 0 1

20 0 0 1 1 0 0

21 0 0 1 0 1 0

22 0 0 1 0 0 1

Example 9.3.5 For p = 3 and n = 2, the characteristic functions Ji(xj) are given in
Table9.3.

Definition 9.3.2 (Generalized Shannon expansion) The generalized Shannon
expansion for ternary logic functions is defined as

f = J0(xi)f0 + J1(xi)f1 + J2(xi)f2, (9.4)

where fi, i = 0, 1, 2 are the co-factors of f for xi ∈ {0, 1, 2}.
The recursive application of the generalized Shannon expansion rule to all the

variables in a given function f results in a functional expression which when graph-
ically represented yields to the decision diagrams that are an analogue of the Binary
decision diagrams (BDDs) [27] and represent a generalization of this concept to
the representation of multiple-valued functions. These diagrams are called Multiple-
place decision trees (MTDTs) and Multiple-place decision diagrams (MDD) [29].

Example 9.3.6 For p = 3 and n = 2, by expanding a given f (x1, x2) with respect to
x1,

f (x1, x2) = J0(x1)f (x1 = 0, x2) + J1(x1)f (x1 = 1, x2) + J2(x2)f (x1 = 2, x2).

After application of the generalized Shannon expansion with respect to x2, it follows

f (x1, x2) = J0(x2)(J0(x1)f (x1 = 0, x2 = 0) + J1(x1)f (x1 = 1, x2 = 0)

+J2(x1)f (x1 = 2, x2 = 0)) + J1(x2)(J0(x1)f (x1 = 0, x2 = 1)

+J1(x1)f (x0 = 1, x1 = 1) + J2(x0)f (x0 = 2, x1 = 1))

+J2(x2)(J0(x1)f (x1 = 0, x2 = 2) + J1(x1)f (x1 = 1, x2 = 2)

+J2(x1)f (x1 = 2, x2 = 2)
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Fig. 9.4 MDT for f in
Example 9.3.6

= J0(x2)J0(x1)f (x1 = 0, x2 = 0) + J0(x2)J1(x1)f (x1 = 1, x2 = 0)

+J0(x2)J2(x1)f (x1 = 2, x2 = 0) + J1(x2)J0(x1)f (x1 = 0, x2 = 1)

+J1(x2)J1(x1)f (x1 = 1, x2 = 1) + J1(x2)J2(x1)f (x1 = 2, x2 = 1)

+J2(x2)J0(x1)f (x1 = 0, x2 = 2) + J2(x2)J1(x1)f (x1 = 1, x2 = 2)

+J2(x2)J2(x1)f (x1 = 2, x2 = 2).

Figure9.4 shows the Multiple-place decision tree (MDT) for ternary functions of
two variables.

For a function of n variables, the decision tree has (n + 1) levels, and each level
consists of nodes to which the same variable is assigned. The first level has a single
node called the root node. The level (n + 1) consists of constant nodes showing
the coefficients in the functional expressions whose graphical representation are the
decision trees.

9.3.6 Reduction of Decision Trees

Decision diagrams are derived by the reduction of decision trees by eliminating the
redundant information expressed in terms of the isomorphic subtrees, and the corre-
sponding subdiagrams. Reduction is accomplished by sharing isomorphic subtrees
and deleting any redundant information in the decision tree. It is assumed that two
subtrees are isomorphic if

1. They are rooted in nodes at the same level,
2. The constant nodes of the subtrees represent identical subvectors Vi in the vector

of values of constant nodes V.

This definition includes different reduction rules used in different decision dia-
grams for either binary or multiple-valued functions, as well as bit-level and word-
level decision diagrams [32].
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The minimum possible isomorphic subtrees are equal constant nodes. In this case,
the function represented has equal values at the points corresponding to these equal-
valued constant nodes.

The maximum possible isomorphic subtrees are p equal subtrees rooted at the
nodes pointed by the outgoing edges of the root node. In that case, the function f is
independent of the variable assigned to the root node.

Definition 9.3.3 (MDD reduction rules)

1. If descendent nodes of a node are identical, then delete the node and connect the
incoming edges of the deleted node to the corresponding successor. The label
of this incoming edge is re-determined as the product of the label at the initial
incoming edge with the sum of labels at the outgoing edges of the deleted node.

2. Share isomorphic subtrees, i.e., if there are isomorphic subtrees, keep a single
subtree and redirect to it the incoming edges of all other isomorphic subtrees.

Definition 9.3.4 (Cross points) A cross point is a point where an edge longer than
one crosses a level in the decision diagram.

Cross points are useful in expressing the impact of deleted nodes, which is impor-
tant to take into account in computing over decision diagrams or performing the
realizations of functions represented by decision diagrams. A cross point is illus-
trated by the decision diagram in Fig. 9.5 for the function f in Example 9.3.7.

J x0 1( )

J x0 2( )

J x0 3( )
J x0 3( )+J x1 3( ) J x0 3( )+J x1 3( )

J x0 2( )

J x0 2( )

J x1 1( )

J x1 2( )

J x1 3( )

J x1 2( )+J x2 2( )J x1 2( )

J x2 1( )

J x2 2( )

J x2 3( ) J x2 3( ) J x2 3( )

J x2 2( )

0 0 01 1 1 12 2 2

S

S S S

S S S

c1

c2 c3 c4

c5 c6 c7 c8 c9 c10 c11

f

Fig. 9.5 MDD for the function f in Example 9.3.7
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In a decision tree, edges connect nodes at successive levels, and we say that the
length of such edges is 1. Due to the reduction, in a decision diagram, edges longer
than one, i.e., connecting nodes at non-successive levels, can appear. For example,
the length of an edge connecting a node at the (i − 1)-th level with a node at the
(i + 1)-th level is two.

Nodes to which the same decision variable is assigned form a level in the decision
tree or the diagram.

A path consists of nodes at different levels, with a single node at each level, from
the root node to a constant node. Thus, each path connects the root node and a single
node from each level, including the level of constant nodes, i.e., a path consists of
edges connecting a single node per level, and the length of the path is the sum of the
lengths of edges the path consists of.

9.3.7 Computing the RMF-Transform over MDDs

The same computations as in the above example can be performed assuming the
decision diagram representations as the underlying data structure.

Example 9.3.7 Figure9.5 shows theMDDfor the function f specified by the function
vector

F = [0, 1, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]T .

In this figure, the symbol a + b means that both edges labeled by a and b point to
the same node.

The steps of the FFT-like algorithm described above can be performed over this
MDD by processing each node in the diagram by the basic butterfly operation spec-
ified by R3(1). The processing means that the inputs to the butterfly operation are
subfunctions represented by the subdiagrams rooted at the nodes pointed by the out-
going edges of the processed node. For the clarity of presentation, wewill express the
impact of deleted nodes through cross points shown by small circles in Fig. 9.5 and
viewed as crossings of a path in the diagramwith an imaginary line connecting nodes
at the same level in the diagram. In practical programming implementations, these
computations are avoided and the procedure simplified by using properties of the
performed transforms. In particular, the computations are reduced to transforming
the related subfunctions and padding with zeros. It can be followed, depending on
the transform, by the multiplication of the constant value of a terminal node or the
subfunction pointed by the edge of the processed node by a constant value equal to
the length of the path between these two nodes. The explanation for this implementa-
tion is the following. If a node is deleted from theMDD, this means that the outgoing
edges of this node point to the identical subfunctions. Therefore, in the considered
case of ternary functions, nodes have three outgoing edges and the subfunction rep-
resented by the deleted node has three identical parts. Thus, this node represents a



138 R.S. Stanković

Fig. 9.6 MDDs for
subfunctions ci,
i = 5, 6, 7, 8, 9, 10, 11 in
Example 9.3.7

J x0 3( )+J x2 3( ) J x0 3( )+J x2 3( )

J x0 3( )+J x2 3( ) J x1 3( )+J x2 3( )

J x0 3( )+J x J x1 3 2 3( )+ ( )J x1 3( ) J x1 3( )

J x1 3( ) J x0 3( )

0 0

0 0

02 2

1 1

S S

S S

S

c5 c6

c9 c10

c c c7= 8= 11

periodic subfunction or a constant. Then, due to the properties of the transforms,
the spectrum of a constant function is the delta function, while the spectrum of a
periodic function is the delta function of the length of a period Kronecker multiplied
by the spectrum of the periodically repeated subfunction in the considered periodic
functions.

If the nodes and cross points are labeled as in Fig. 9.5, the RMF-coefficients for
the considered function f are computed as follows.
Step 1

c5 = R3(1)

⎡

⎣
0
1
2

⎤

⎦ =
⎡

⎣
0
2
0

⎤

⎦ c6 = R3(1)

⎡

⎣
2
2
1

⎤

⎦ =
⎡

⎣
2
0
2

⎤

⎦

c7 = R3(1)

⎡

⎣
0
0
0

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ c8 = R3(1)

⎡

⎣
0
0
0

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦

c9 = R3(1)

⎡

⎣
1
1
2

⎤

⎦ =
⎡

⎣
1
0
1

⎤

⎦ c10 = R3(1)

⎡

⎣
1
1
1

⎤

⎦ =
⎡

⎣
1
0
0

⎤

⎦

c11 = R3(1)

⎡

⎣
0
0
0

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ .

Step 2
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J x0 2( )

J x0 3( )J x0 3( )

J x0 3( )+J x2 3( )
J x0 3( )+J x2 3( ) J x1 3( )+J x2 3( )

J x1 3( )+J x2 3( )

J x0 3( )+J x2 3( )

J x0 2( )+J x2 2( )
J x0 2( )+J x J x1 2 2 2( )+ ( )

J x1 2( )
J x1 2( )

J x1 3( )J x1 3( )
J x0 3( )

J x1 3( )

J x2 2( )

J x2 3( )J x2 3( )

J x1 3( )
J x1 3( ) J x0 3( )

c8c5 c9c6 c6c7

0 0 01

c10 c11

2 2 122

S S S

SS S

S S S S

c2 c3 c4

c3c2 c4

Fig. 9.7 MDDs for subfunctions ci, i = 2, 3, 4 in Example 9.3.7

c2 = R3(1)

⎡

⎣
c5
c6
c7

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎣
0
2
0

⎤

⎦

⎡

⎣
0
2
0

⎤

⎦ + 2

⎡

⎣
2
0
2

⎤

⎦

⎡

⎣
0
2
0

⎤

⎦ +
⎡

⎣
2
0
2

⎤

⎦ +
⎡

⎣
0
0
0

⎤

⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
2
0
1
2
1
2
2
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

c3 = R3(1)

⎡

⎣
c8
c9
c6

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎣
0
0
0

⎤

⎦

⎡

⎣
0
0
0

⎤

⎦ + 2

⎡

⎣
1
0
1

⎤

⎦

⎡

⎣
0
0
0

⎤

⎦ +
⎡

⎣
1
0
1

⎤

⎦ +
⎡

⎣
2
0
2

⎤

⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
2
0
2
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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c4 = R3(1)

⎡

⎣
c10
c11
c11

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎣
1
0
0

⎤

⎦

⎡

⎣
1
0
0

⎤

⎦ + 2

⎡

⎣
0
0
0

⎤

⎦

⎡

⎣
1
0
0

⎤

⎦ +
⎡

⎣
0
0
0

⎤

⎦ +
⎡

⎣
0
0
0

⎤

⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
1
0
0
1
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Step 3

c1 = R3(1)

⎡

⎣
c2
c3
c4

⎤

⎦

=
⎡

⎣
[0, 2, 0, 1, 2, 1, 2, 2, 2]T

[0, 2, 0, 1, 2, 1, 2, 2, 2]T + 2 [0, 0, 0, 2, 0, 2, 0, 0, 0]T

[0, 2, 0, 1, 2, 1, 2, 2, 2]T + [0, 0, 0, 2, 0, 2, 0, 0, 0]T + [1, 0, 0, 1, 0, 0, 1, 0, 0]T

⎤

⎦

T

= [0, 2, 0, 1, 2, 1, 2, 2, 2, 0, 2, 0, 2, 2, 2, 2, 2, 2, 1, 2, 0, 1, 2, 0, 0, 2, 2]T .

Each step of the computation can be represented by MDDs, which then can be
combined into the MDD for the RMF-coefficients. From the spectral interpretation
of decision diagrams, this MDD for the RMF-spectrum of f after conversion of the
meaning of nodes and corresponding labels at the edges becomes the RMFDD for f

J x0 1( )

J x0 2( )

J x0 3( )+J x2 3( )
J x0 3( )+J x2 3( )

J x0 3( )
J x1 3( )

J x0 3( )

J x0 2( )+J x1 2( )

J x1 1( )

J x1 2( )

J x1 3( )+J x2 3( )

J x1 2( )+J x2 2( )

J x2 1( )

J x2 2( )

J x1 3( )J x1 3( ) J x2 3( )

J x2 2( )

0 0 01 1 12 2 2

S

S

S S

S

S S

S

f

J x0 2( )

Fig. 9.8 RMFDD for f in Example 9.3.7
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[33]. Figure9.8 shows this RMFDD for the considered function f . It can be noticed
that, counting from the left to the right, the third and fourth node for x3, as well as the
sixth and seventh node for the same variable, represent, respectively, subfunctions
that are identical to each other multiplied by 2. Thus, the diagram can be simplified
by allowing edges with multiplicative attributes in the same way as this is done in
BDDs with negated edges. See for instance [27].

9.4 Algorithms Derived from Pascal Matrix Factorizations

In this section, we discuss various factorizations of the RMF-matrix based on its
relationships with the Pascal matrix [10]. The Pascal matrix defined as the matrix
of binomial coefficients is an infinite matrix. However, in finite domains, the term
Pascal matrix Pi refers to an (i × i) matrix consisting of first i rows and i columns
of the Pascal matrix.

We will distinguish the Pascal matrix and the relatively recently defined Pascal
transformmatrix [1],which is actually the Pascalmatrixwith aminus sign assigned to
elements of every second column [1]. Note that in modulo p arithmetic, the negative
sign of an integer can be interpreted as the multiplication by p − 1.

9.4.1 RMF-Matrix and Pascal Matrices

There is a strong relationship between the RMF-matrix and the Pascal matrix and
Pascal transform matrix which can be expressed as follows.

Observation 9.4.1 The (pn × pn) RMF-matrix is derived from the Pascal matrix of
the same dimensions by multiplying every second column by p − 1 and reducing
the elements of the resulting matrix modulo p. The RMF-matrix is derived from the
Pascal transform matrix by replacing the sign minus with multiplication by p − 1
and reducing the elements of the resulting matrix modulo p.

Notice that the second column of the (pn × pn) Pascal matrix is the sequence
{0, 1, 2, . . . , pn − 1}, which, as remarked above, can be generated by the Gibbs
exponentiation of the constant sequence all of whose elements are equal to p − 1.
When elements of this sequence are computed modulo p, we get the n-th variable
in p-valued functions. In [31], it is pointed out that the n-th variable can be used to
generate the RMF-matrix, provided the multiplication by p − 1 of elements of every
second column of the resulting matrix. The same observation holds in general for
any p. FromObservation 9.4.1, directly follows that a (pn × pn) Pascal matrix Pn can
be converted into an RMF-matrix Rp(n) of the same dimensions by the following

Procedure 9.4.1 1. Multiply elements of every second column of the matrix Pn by
p − 1, i.e., perform the columnwise Hadamard product with the vector [1, (p −
1), 1, (p − 1), . . . , (p − 1), 1].



142 R.S. Stanković

2. Compute elements of the produced matrix modulo p. The resulting matrix is the
(pn × pn) RMF-matrix.

The similar procedure can be applied to the Pascal transform matrix. Therefore,
various factorizations proposed for the Pascal matrix and the Pascal transformmatrix
can be simplymodified for the factorizations of the RMF-matrix, as will be illustrated
by the following examples. Some of these factorizations can be useful for efficient
computing of the RMF-spectra since they allow parallel implementations offering
the exploitation of both data and task parallelism.

Example 9.4.1 For p = 3 and n = 2, the Pascal matrix is

P32 = P9 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0
1 3 3 1 0 0 0 0 0
1 4 6 4 1 0 0 0 0
1 5 10 10 5 1 0 0 0
1 6 15 20 15 6 1 0 0
1 7 21 35 35 21 7 1 0
1 8 28 56 70 56 28 8 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The columnwise Hadamard product multiplication
with the vector v = [1, 2, 1, 2,
1, 2, 1, 2, 1], results in

v 
 P9 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0 0
1 4 1 0 0 0 0 0 0
1 6 3 2 0 0 0 0 0
1 8 6 8 1 0 0 0 0
1 10 10 20 5 2 0 0 0
1 12 15 40 15 12 1 0 0
1 14 21 70 35 42 7 2 0
1 16 28 112 70 112 28 16 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

which by computing its elements modulo 3 produces the RMF-matrix R3(2) in
Example 9.2.1.

Example 9.4.2 For p = 5 and n = 1, the Pascal matrix P5 is

P5 =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

⎤

⎥
⎥
⎥
⎥
⎦

.
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The columnwise Hadamard product with v = [1, 4, 1, 4, 1] produces

v 
 P5 =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
1 4 0 0 0
1 8 1 0 0
1 12 3 4 0
1 16 6 16 1

⎤

⎥
⎥
⎥
⎥
⎦

.

Computing elements of this matrix modulo 5 produce the RMF-matrix for p = 5.
The Pascal matrix P5 can be factorized as [48]

P5 =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0

−2 1 1 0 0
−5 −1 2 1 0
−9 −6 1 3 1

⎤

⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
1 1 0 0 0
2 1 1 0 0
3 2 1 1 0
5 3 2 1 1

⎤

⎥
⎥
⎥
⎥
⎦

.

When these two matrices are computed modulo 5, we get the matrices whose
product is the RMF-matrix for p = 5,

R5(1) =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
3 1 1 0 0
0 4 2 1 0
1 4 1 3 1

⎤

⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
1 1 0 0 0
2 1 1 0 0
3 2 1 1 0
0 3 2 1 1

⎤

⎥
⎥
⎥
⎥
⎦

.

9.4.2 Computing Algorithms

Certain factorizations of Pascal matrices can be a basis to derive computing algo-
rithms for the RMF-spectra.

Example 9.4.3 The Pascal matrix P5 can be factorized in terms of four binary matri-
ces as [21]

P5 = V1 · V2 · V3 · V4,

where

V1 =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎦

, V2 =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎦

, V3 =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎦

, V4 =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎦

.
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Fig. 9.9 Flow-graph of the
algorithm in Example 9.4.3

f(0)
f(1)
f(2)
f(3)
f(4)

Sf (0)
Sf (1)
Sf (2)
Sf (3)
Sf (4)

Their product is

V1234 =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

⎤

⎥
⎥
⎥
⎥
⎦

.

The columnwise Hadamrd product with v = [1, 4, 1, 4, 1], produces

V1234−new =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
1 4 0 0 0
1 8 1 0 0
1 12 3 4 0
1 16 6 16 1

⎤

⎥
⎥
⎥
⎥
⎦

.

This matrix, after computing its elements modulo 5, becomes the RMF-matrix R5.
Since the columnwise Hadamard product with v can be transferred to the Hadamard
product of v with the function vector F to be processed, this factorization leads to
the computing algorithm for the RMF-transform. Figure9.9 shows the flow-graph of
this algorithm for the RMF-transform for p = 5 and n = 1.

The factorization in Example 9.4.3 can be extended to any p and n, as Example
9.4.4 illustrates for p = 3 and n = 2. A good feature of this factorization is that
there is no multiplication and the addition is performed over neighboring elements
of the function vector. A drawback of the algorithm is the number of steps, that is
pn − 1, which are performed serially. Another good feature is that computations can
be performed in-place as in the case of Cooley-Tukey algorithms. Therefore, the
algorithm is space efficient.

Example 9.4.4 The RMF-matrix R3(2) can be factorized into 8 matrices Ri, i =
1, 2, . . . , 8, whose elements are 0 except elements on themain diagonal and elements
on the subdiagonal in i rows counting from the bottom. In other words, these factor
matrices are derived from the identity matrix by replacing with 1 the 0 value of
elements of the left subdiagonal starting from the pn − i-th row. For example, the
factor matrix R4 is
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R4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

The other factor matrices are defined in the same way.
Thematrix obtained by the product of these matricesRi becomes the RMF-matrix

R3(2) after the multiplication of elements of every second column by 2.

As stated above, the recently introduced discrete Pascal transform is defined as a
transformwhose transformmatrix is the Pascalmatrixwith the signminus assigned to
elements of every second column [1]. In [31], the RMF-transformmatrix is generated
as the matrix whose second column is the n-th p-valued variable. Other columns
are obtained as the Gibbs exponentiation of the second column, with every second
columnmultiplied by p − 1. This multiplication corresponds to the sign minus in the
case of the Pascal transform. Since by computing elements of the Pascal transform
matrix modulo pwe get the RMF-matrix, it follows, that the decompositions used to
define the fast algorithms to compute the Pascal transform can be used to compute
the RMF-transform.

Example 9.4.5 The Pascal transform matrix for p = 4 is

P4 =

⎡

⎢
⎢
⎣

1 0 0 0
1 −1 0 0
1 −2 1 0
1 −3 1 −1

⎤

⎥
⎥
⎦ .

It can be factorized as [28]

P4 = Y1 · Y2 · Y3

where

Y1 =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 −1

⎤

⎥
⎥
⎦ , Y2 =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 1 −1 0
0 0 1 −1

⎤

⎥
⎥
⎦ , Y3 =

⎡

⎢
⎢
⎣

1 0 0 0
1 −1 0 0
0 1 −1 0
0 0 1 −1

⎤

⎥
⎥
⎦ .
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This is a factorization representing amodification of the factorization of the Pascal
matrix corresponding to the modification of the Pascal matrix to define the Pascal
transformmatrix. Returning back to the modulo computations, we get a factorization
for the RMF-matrix.

If the factor matrices Y1, Y2, and Y3 are computed modulo 4, matrices

W1 =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 3

⎤

⎥
⎥
⎦ , W2 =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 1 3 0
0 0 1 3

⎤

⎥
⎥
⎦ , W3 =

⎡

⎢
⎢
⎣

1 0 0 0
1 3 0 0
0 1 3 0
0 0 1 3

⎤

⎥
⎥
⎦ ,

are obtained, whose product produces the RMF-matrix for p = 4.

Another factorization of the RMF-matrix can be derived from a particular way
of defining the Pascal matrix as the matrix exponential of an appropriately selected
matrix.

For a real or complex (n × n) matrix X, the exponential of X, eX, is the (n × n)
matrix determined by the power series

eX =
∞∑

r=0

1

r!Xr = I + X + 1

2!X2 + 1

3!X3 + · · · , (9.5)

where I is the (n × n) identity matrix.
Consider the (pn × pn) matrix X whose main subdiagonal is the sequence

{1, . . . , pn − 1}. This is a nilpotent matrix and, therefore, the power series of its
exponential is finite having pn terms. The resulting matrix is the (pn × pn) Pascal
matrix [35].

The procedure of converting the Pascal matrix into a RMF-matrix discussed above
can be applied to the representation of the Pascal matrix as the matrix exponential
and it follows that the computation of the RMF-spectrum of a given function vector
F can be performed as the sum of products of summands in eX with the vector F. This
observation offers the possibility to perform the required computing over a parallel
architecture as, for example, the Graphics Processing Unit (GPU) based architec-
ture by exploiting task parallelism. A task is viewed as computing the product of a
summand 1

k!X
k , k = 1, 2, . . . , nwith the function vector F. The addition of obtained

vectors followed by the componentwise addition with F due to the appearance of I
in (9.5) produces the RMF-spectrum. These tasks can be combined in various ways
depending on the number of available processors. Due to the simplicity of summands
1
k!X

k , the computation can be fast. It should be noticed that referring to values of
elements in summands, this way of computing resembles the computing of each
RMF-spectral coefficient separately, which is also an acceptable way of computing
spectral coefficients, especially when dealing with large functions, as discussed for
the discrete Walsh transform in [7, 8, 11].
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Example 9.4.6 For p = 3 and n = 2, the RMF-transform matrix can be obtained as

R3(2) = I3(2) + D3(2) + 1

2!D3(2)
2 + 1

3!D3(2)
3 + 1

4!D3(2)
4

+ 1

5!D3(2)
5 + 1

6!D3(2)
6 + 1

7!D3(2)
7 + 1

8!D3(2)
8,

where I3(2) is the (9 × 9) identitymatrix, andD3(2) is amatrix of the samedimension
all of whose elements are 0 except the elements on the main subdiagonal which take
values from the ordered sequence {1, 2, 3, 4, 5, 6, 7, 8}. Thus,

D3(2) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 5 0 0 0 0
0 0 0 0 0 6 0 0 0
0 0 0 0 0 0 7 0 0
0 0 0 0 0 0 0 8 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

After computing the matrices D3(2)i for i = 2, 3, . . . , 8, we

1. Divide each matrix D3(2)i with 1
i! , i = 1, 2, 3, 4, 5, 6, 7, 8

2. Perform a columnwise Hadamard multiplication of the produced matrices with
v = [1, 2, 1, 2, 1, 2, 1, 2, 1],

3. Reduce elements of these matrices modulo 3.

The sum of these matrices produces the RMF-transformmatrix and it follows that
the RMF-spectrum of a given function f specified by its function vector F can be
computed as the sum of products of these matrices with F.

It should be notices that non-zero elements in the matrix D3(2)i are equal to
the elements of the i-th subdiagonal in the RMF-matrix. In other words, the RMF-
matrix is decomposed into the sum of pn matrices with each matrix representing a
subdagonal in it.

Since the involved matrices Dp(n)i have a small number of non-zero elements,
they can be combined to reduce the number of matrices to be multiplied with F. The
number of resulting matrices can be adjusted to the number or processors provided.
In this way, we can produce a series of possible factorization offering a trade-off
between the number of processors and speed of computing.
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9.5 Concluding Remarks

Multiple-valued logic is an area where Professor Claudio Moraga has been mak-
ing important contributions over more than 45years. Spectral logic in general, and
various application of spectral methods to the analysis of multiple-valued functions,
synthesis of related circuits, and certain optimization problems, can especially be
emphasized as topics of his research interest in this area. For that reason, in this
chapter, we discussed the Reed-Muller-Fourier transform as a particular spectral
transform tailored for the processing ofmultiple-valued functions sharing at the same
time some important properties of related operators in a classical Fourier analysis
and their generalizations.

As a continuation of recent discussions with Professor Moraga and a common
friend, Professor Jaakko Astola, about relationships between the RMF-transform
and Pascal matrices [37], we used these relationships to devise certain factorizations
of the RMF-matrix which might potentially led to fast computing algorithms with
efficient implementation on different many-core and multi-processor architectures.

9.6 Personal Note

After over 30years of joint workwithClaudio, enjoying all the time a gentle guidance
almost invisible on the surface, but deep and very strong inside, and above all his
friendship, I could write many pages on what we did, explored, traveled together,
organized, and most importantly, learned. In spite of my desire to express all my
gratitude to Claudio here, I am aware that I should spare the readermy reminiscences,
and I will point out a single detail that I consider essentially important not just for
me, but also as a message for future generations. Through it I have learn how an
experienced researcher should support young researchers in their first steps into
research world.

I have found and wanted to learn some publications by Claudio in 1976 while
preparing my BSc thesis on Walsh and Haar discrete transforms. As it was a cus-
tomary practice at that time, I sent him letters typed on a mechanical typewriter in
my broken English asking for reprints. In this way we started our communication,
and I got the impression that Claudio is a person ready to help and support young-
sters in their attempts to learn. By continuously looking for his new publications,
I realized that Claudio is regularly contributing to the international symposia on
multiple-valued logic (ISMVL). In 1984, it happen that I was lucky and a paper
of mine submitted to the ISMVL in Winnipeg, Canada, was accepted. A couple of
persons close to me easily concluded that I am now in trouble since being so crazy
to dare to submit something at a conference, without having the slightest idea how I
can possibly manage to attend it if the paper eventually accepted. After some days
of deep thinking and much wondering about, I addressed Claudio by sending a letter
explaining shortly, but quite openly, the situation and with the paper and comments
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by reviewers enclosed. I directly and openly asked him that, if he possibly likes
the idea discussed in the paper, could accept to be the co-author and present it. I
easily assumed that he was going to attend the symposium knowing that he was a
regular participant. The absence of any answer for some time, provoked many inter-
esting, comical but friendly, comments on my (mis)understanding of the scientific
and research world. I was greatly rewarded for all this ribbing when I received a letter
by Claudio saying that he would accept to be the co-author and present the paper
under the condition that I will accept his corrections in the manuscript. He attached
a long list of improvements of various statements and reformulations, so many that
the paper was basically completely rewritten. Just the main idea was preserved and
emphasized in a very appropriated manner and expressed, much better that I could
comprehended it myself. Further, enclosed was a research technical report that Clau-
dio usually prepared and publishing at the Lehrstuhl 1 (Informatik) at the Dortmund
University, Dortmund, Germany. The report contained the rewritten version of the
paper as specified in the corrections list. It was easy to realize that this was a gentle
push to direct me towards a proper attitude in the research work and I of course very
gladly and gratefully followed it.

For all these years, I think this answer by Claudio was very fortunate for me. If
it had been be some other, possibly less friendly answer, or equally important not
so determined and decisive request on my part, accompanied by a complete solution
of the matter, I am not sure how I might have reacted and responded. Without his
strong support and the manner in which it was offered, it might easily have happened
that I would stop submitting to international conferences and trying to find a way to
participate in them.

That was the first lecture of Claudio gave me personally that determined my atti-
tude towards research work and communicating with researchers. I am very grateful
that I have continuously been learning from Claudio for many years and I wish to
continue in the same way for a long time.
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Chapter 10
Multiple-Valued Logic and Complex-Valued
Neural Networks

Igor Aizenberg

“What a nice thing is Man when he is indeed a Man”
Menander

To my Dear and Great Friend Claudio Moraga

10.1 Instead of Introduction

This is an unusual and non-traditional paper. On the one hand, it is a regular paper
presenting some interesting research results. But on the other hand, it is devoted to
Claudio Moraga, my Great Friend and Colleague. This is not only because this book
is devoted to him and not only because of his 80th birthday. But this is also because
the results presented here could not be obtained without him and his support, without
his ability to look at the future and see a beauty in mathematical abstractions, which
then can be miraculously transformed into applications.

I am very happy and proud of saying that Claudio is my Great Friend. I am also
happy simply because I had a great privilege to closely collaborate with him. I am
also happy because when it was some period of heavy challenges in my life, Claudio
was the first who was willing to help.

In October 1989, the International Workshop on Gibbs Derivatives was held in
Kupari (Croatia). My dad, Professor Naum Aizenberg was invited there to give a
lecture. For the first time in his life he got an opportunity to attend an international
conference. He as a great majority of his colleagues in the communist Soviet Union
was banned fromany international travel until 1989.After comingback home,mydad
was absolutely excited. He told me: “I met there a great, smart and highly intelligent
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colleague.We spend a couple of days in scientific discussions andwe became friends,
like we knew each other for many years”. This colleague was Professor Claudio
Moraga. And it is important to say that discussions he had with my dad during
those 2 days in 1989 became very important for me because I am not sure that the
results, which are a scientific part of this paper, would ever be obtained without those
discussions.

So what they discussed? In late 60s—early 70s Naum Aizenberg and his co-
authors developed a new approach to multiple-valued logic. It was suggested to
encode values of k-valued logic not using traditional alphabet K = {0, 1, . . . , k − 1}
of non-negative integers, but using an alphabet created from the kth roots of unity
Ek = {

1, ε − k, ε2k , . . . , ε
k−1
k

}
(εk = ei2π/k is the primitive kth root of unity, i is the

imaginary unit, and k is somepositive integer).Aone-to-one correspondence between
K and Ek can easily be established by j → ε

j
k, j ∈ K, ε

j
k ∈ Ek . This approach has

been for the first time presented in [1] and then described in detail in [2]. Then
a comprehensive presentation of this approach was done in [3]. It is important to
say that both papers [1, 2], and then the book [3] were published in Russian. That
time 99% of Soviet researches were completely banned by the official regulations
from publishing anything in English and from submitting any paper to international
journals. The paper [2] was translated into English. However its English translation
was practically not available that time because just a few libraries across the Globe
were subscribed to English translations of Soviet scientific journals. But this was not
an obstacle forClaudio because he can read scientific papers inRussian!After reading
papers [1, 2], he suggested very interesting ideas in the development of multiple-
valued logic over the field of complex numbers, involving spectral techniques there
[4, 5].

So it is not necessary to say how excitedmy dadwaswhen hemet Claudio in 1989.
As we can easily recall now, late 1980s was a time of new boost in artificial neural
networks. When this area was boosted for the first time in late 1950s—early 1960s, it
was closely related to Boolean threshold logic. In fact, that time an artificial neuron
was basically the same as a threshold element or an element of Boolean thresh-
old logic. So it could implement linearly separable Boolean functions or linearly
separable mappings [−1, 1]n → {−1, 1}.

The works [1–3] were inspired by threshold logic and aspiration of its extension
to the multiple-valued case in such a way that classical Boolean threshold logic
should be a particular case of multiple-valued threshold logic. During that meeting
in October 1989 Claudio just mentioned that it probably should be great to utilize
ideas of multiple-valued logic over the field of complex numbers in a new artificial
neuron, which should be significantly more functional than traditional neurons with
the threshold and sigmoid activation functions. Then it would be possible to design a
network from such neurons, which can also be more functional than traditional pop-
ular networks (first of all a multilayer feedforward neural network). Unfortunately,
my dad did not have a chance to meet with Claudio again. But their meeting in 1989
had a continuation, which is very important and valuable for me.

Since 1991 I concentratedmy research on the development ofmulti-valued neuron
and its learning. In 1992, the multi-valued neuron (MVN) and its learning algorithm
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were suggested in [6]. It was also suggested in the same paper to use MVN as a basic
neuron in cellular neural networks (CNN), which in turn can be used as an associa-
tive memory for storing gray-scale images. In 1996 I moved from my home country
Ukraine. I got a grant and went to work in Belgium. And in November 1997 we met
with Claudio for the first time. We kept contacts by e-mail and Claudio invited me to
Dortmund, to give a seminar and to spend a couple of days in research discussions.
I was very impressed by his hospitality, by his kindness, by a unique depth of his
knowledge in different areas. Three days, which we spent in very intensive discus-
sions, then resulted in our collaboration, which started those rainy November days
in 1997 and has been developing since that time. We met again in Dortmund in 1999
when I attended “Fuzzy Days” there. Our collaboration on medical image process-
ing using MVN-based cellular neural network resulted in the journal paper [7]. In
2001, again I attended “Fuzzy Days” in Dortmund and again we met and had very
productive discussions on everything. It is impossible to overestimate how important
these meetings and our discussions were for me. But our collaboration reached its
peak when with Claudio’s support I got a number of consecutive grants, which made
it possible for me to work in Dortmund with Claudio in 2003–2005. I was not there
permanently, but used to come and stay for several months. This was a time when I
got my best research result. It was succeeded to develop a multilayer neural network
with multi-valued neurons (MLMVN) and its derivative-free backpropagation learn-
ing algorithm [8]. It was also succeeded a bit earlier to generalize and modify MVN,
employing continuous inputs and outputs [9]. This was perhaps the most productive
time in my research career. I greatly appreciate Claudio’s support. I will never forget
our discussions and how we worked on our papers, Claudio’s wise advices and very
useful remarks.

We then continued our collaboration after I got a faculty position in the United
States and moved there in 2006. It was still very productive and resulted in more
publications.

Let me devote a scientific part of this paper to brief presentation of multiple-
valued threshold logic over the field of complex numbers, MVN and MLMVN,
which resulted from this model of multiple-valued logic. Thus Sect. 10.2 is devoted
to the theoretical foundations ofmultiple-valued logic over the field of complex num-
bers and MVN. Section10.3 is devoted to MLMVN and its derivative-free learning.
Section10.4 is devoted to personal things (like most of Sect. 10.1).

10.2 Multiple-Valued Threshold Logic over the Field
of Complex Numbers and Multi-valued Neuron

10.2.1 Multiple-Valued Threshold Logic over the Field
of Complex Numbers

In this section we will use a conceptual narrative of multiple-valued logic over the
field of complex numbers as it is presented in [10].
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As it was and is well known, the McCulloch-Pitts neuron [11], which is the first
historically known artificial neuron, implements input/output mappings described
by threshold Boolean functions. Later, when continuous inputs were introduced, a
neuron still produced a binary output. A continuous output was introduced along
with a sigmoid activation in 1980s. But what about multiple-valued input/output
mappings? Can we consider a concept of multiple-valued threshold logic similarly
to the one of Boolean threshold logic?

From the time when a concept of multiple-valued logic was suggested by Jan
Łukasiewicz in 1920 [12], the values of multiple-valued logic are traditionally
encoded by non-negative integers. While in Boolean logic there are two truth values
(“False” and “True” or 0 and 1), in multiple-value logic there are k truth values.
Thus, while in Boolean logic, truth values are elements of the set K2 = {0, 1}, in
k-valued logic, it was suggested to encode the truth values by elements of the set
K = {0, 1, . . . , k − 1}. Thus, in classicalmultiple-valued (k-valued) logic, a function
of k-valued logic is f (x1, . . . , xn) : Kn → K . At the same time, in many applications
(particularly in neural networks), it is very convenient to consider a normalized
Boolean alphabet, that is E2 = {1,−1} instead of K2 = {0, 1}. For example, this is
important in neural learning rules, where a value of an input is an essential multi-
plicative term participating in the weight adjustment.

Is it possible to create a normalized k-valued alphabet fromK = {0, 1, . . . , k − 1}
similarly to the creation of normalized E2 = {1,−1} from K2 = {0, 1}, which is not
normalized? Moreover, is it possible to do this in such a way that for k = 2 E2 =
{1,−1} should be a particular case of such a normalized multiple-valued alphabet?

A very beautiful answer to these questions was suggested by Naum Aizenberg in
early 1970s. It was presented in [1, 2] and then summarized in [3].

Let M be an arbitrary additive group and its cardinality is not lower than k. Let
Ak = {ao, . . . , ak−1}, Ak ⊆ M be a structural alphabet.

Definition 10.2.1 [2]. A function f (x1, . . . ; Xn) | f : An
k → Ak of n variables (where

An
k is the nth Cartesian power of Ak) is a function of k-valued logic over the group M.

It is very easy to check, that a classical definition of a function of k-valued logic
follows from Definition 10.2.1. Indeed, the set K = {0, 1, . . . , k − 1} is an additive
group with respect to mod k addition. If K is taken as a group M and if the structural
alphabet Ak = K , then any function f (x1, . . . ; Xn) : Kn → K is a function of k-
valued logic over the group K according to Definition 10.2.1.

Let us now take the additive group of the field of complex of complex numbers
C as a group M. As it is well known from algebra, there are exactly k kth complex-
valued roots of unit. The root εk = ei2π/k (i is an imaginary unit) is a primitive kth
root of unity. The rest k − 1 roots can be obtained from εk by taking its 0th, 2nd, 3rd,
. . ., k − 1st powers. Thus, we obtain the set Ek = {

1, ε0k , εk, ε
2
k , . . . , ε

k−1
k

}
, of all the

kth roots of unity, all located on the unit circle (see Fig. 10.1).
Since the set Ek contains exactly k elements, we may use this set as a structural

alphabet in terms of Definition 10.2.1. Thus, any function f (x1, . . . , xn) : En
k → Ek
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Fig. 10.1 kth roots of unity
1 = ε0k , εk, ε

2
k , . . . , εk−1

k are
located on the unit circle.
They form a structural
alphabet of multiple-valued
logic over the field of
complex numbers

is a function of k-valued logic over the additive group of the field of complex numbers
or simply a function of k-valued logic over the field of complex numbers C.

If k = 2, then E2 = {1,−1}. Indeed, −1 is the primitive 2nd root of unit, and
1 = −10 is the second of two 2nd roots of unit. As well as values of two-valued
logic are normalized in E2, values of k-valued logic are also normalized for any k in
Ek . Evidently, there is a one-to-one correspondence between sets K and Ek , and any
function Kn → K can be represented as a function En

k → Ek and vice versa.
The use of the alphabet E2 in the threshold neuron is very important for definition

of its activation function and for derivation of its learning algorithms. We will show
now how important is that approach, which we have just presented, for multiple-
valued threshold logic and multi-valued neurons.

Let us consider a function f (x1, . . . , xn) : T → Ek; T ⊆ En
k of k-valued logic over

the field of complex numbers. Evidently, f (x1, . . . , xn) is a fully defined function (if
T = En

k ) or a partially defined (if T ⊆ En
k ).

Definition 10.2.2 [1–3] A function f (x1, . . . , xn) : T → Ek; T ⊆ En
k of k-valued

logic is a threshold function of k-valued logic (or multiple-valued (k-valued) thresh-
old function) if there exist n + 1 complex numbers wo, w1, . . . , wn such that for any
(x1, . . . , xn) ∈ T

f (x1, . . . , xn) = P (wo, w1, . . . , wn) (10.1)

where P (z) is defined as follows:

P (z) = CSIGN (z) = ε
j
k, 2π j/k ≤ arg(z) ≤ 2π (j + 1) /k (10.2)

Function (10.2) is illustrated in Fig. 10.2 The complex plane is divided into k
equal sectors by the lines passing through the origin and points on the unit circle
corresponding to the kth roots of unity. Sectors are enumerated in the natural way:
0th, 1st, 2nd, . . ., k − 1st. The jth sector is limited by the boarders originating in
the origin and crossing the unit circle at the points corresponding to the kth roots of
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Fig. 10.2 Definition of
multiple-valued activation

function (10.2). P(z) = ei2 pij
k

unity ε
j
k and ε

j+1
k . If a complex number z is located in the jth sector, which means

that 2π j
k ≤ arg(z) ≤ 2π (j+1)

k , then P(z) = ei2 pij
k .

The vector W = (w0, . . . , wn) is called a weighting vector of the function f .

10.2.2 Multi-valued Neuron (MVN)

The discrete multi-valued neuron (MVN) was introduced in [6] as a general-
ization of an element of multiple-valued threshold logic considered in [2, 3].
This is a neuron with n inputs and one output (all belonging to the set Ek ={
1, ε0k , εk, ε

2
k , . . . , ε

k − 1k,
}
) and activation function (10.2). The discrete MVN

transforms n inputs x1, x2, . . . , xn into its output according to (10.1). This means
that an MVN input/output mapping is always a k-valued threshold function.

So like a neuron with the threshold activation function sgn (z) implements an
input/output mapping, which is a Boolean threshold function, MVN implements
an input/output mapping, which is a k-valued threshold function. In [8, 9], it was
suggested to consider MVN with continuous inputs and continuous output. Let O
be the continuous set of the points located on the unit circle. Let T ⊆ Ek (as we
considered above) or T ⊆ O. Let MVN inputs belong to T , thus they can be kth
roots of unity or arbitrary points located on the unit circle. In such a case, a discrete
MVN input/output mapping is described by a function of n variables f (x1, . . . , xn),
which is a function f : Tn → Ek . Discrete MVN transforms n inputs x1, . . . , xn into
its output according to (10.1).

To consider MVN with a continuous output, activation function (10.2) shall be
modified. Function (10.2) divides the complex plane into k sectorswhose angular size
is 2π/k. Evidently, k → ∞ in the continuous case. But this means that the angular
size of a sector approaches 0. In such a case, an MVN output can be determined as a
projection of the weighted sum on the unit circle. Hence if z = w0 + w1x1 + w2x2,
then

P(z) = z

|z| = eArgz (10.3)
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where Argz is a main value of the argument of the complex number z, is a continuous
activation function of MVN. This activation function was suggested in [9]. It should
also be mentioned that this idea of continuity was discussed earlier in [13] by George
Georgiou, but that time it was not further developed.

Themost efficientMVN learning algorithm is based on the error-correction learn-
ing rule. This rule is a generalization of the classical Rosenblatt’s error-correction
learning rule [14]. The MVN learning algorithm based on the error-correction learn-
ing rule was suggested in [15]. It is described most comprehensively in [15] where
the convergence theorem is also proven.

According to the error-correction learning rule, the adjustment of the weights for
both discrete and continuous MVN is completely determined by the neuron’s error,
which is the arithmetic difference δ = D − Y between the complex numbers D (a
desired output) and Y (an actual output) located on the unit circle (see Fig. 10.3).

The error-correction learning rule is [10]

Wr+1 = Wr + Cr

(n + 1)
δX̄ (10.4)

and with a modification suggested in [8]:

Wr+1 = Wr + Cr

(n + 1) |zr |δX̄ (10.5)

where X̄ is the input vectorwith the components complex-conjugated, n is the number
of neuron inputs, r is the number of the learning step, Wr is the current weighting
vector (to be corrected), Wr+1 is the following weighting vector (after correction),
Cr is the constant part of the learning rate (complex-valued in general), and |zr | is
the absolute value of the weighted sum obtained on the rth learning step. A factor
1

|zr | in (10.5) is a variable part of the learning rate. The error-correction rule (10.4)

Fig. 10.3 Geometrical
interpretation of the MVN
learning rule
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and its modification (10.5) ensure such a correction of the weights that the weighted
sum moves exactly from the actual output Y to the desired output D or at least closer
to D (see Fig. 10.3).

It should also be mentioned that it might be reasonable to calculate the error not
as the difference between the desired (D = ε

q
k ) and actual (Y = εs

k) outputs, but as
the difference between the desired output D and the projection z

|z| of the current
weighted sum z on the unit circle. Evidently, in such a case δ = D − z

|z| . This is
useful for example, to learn highly nonlinear input/output mappings.

The discrete MVN with a periodic activation function was suggested in [16].
A periodic activation function makes it possible to increase the functionality of a
single MVN. Let us consider the MVN input/output mapping described by some k-
valued function f (x1, . . . , xn) : T → E − K , whereT ⊆ Ek orT ⊆ O. If this function
f (x1, . . . , xn) is not a k-valued threshold function, it cannot be learned by a single
MVN with the activation function (10.2).

Let us project the k-valued function f (x1, . . . , xn) into m-valued logic, where
m = kl and l ≥ 2. To do this, let us define the following new discrete activation
function for MVN:

Pl(z) = j mod k, if
2π j

m
≤ argz ≤ 2π

(j + 1)

m
(10.6)

j = 0, 1, . . . , m − 1; m = kl, l ≥ 2. (10.7)

This definition is illustrated in Fig. 10.4. The activation function (10.6) separates
the complex plane into m equal sectors and ∀d ∈ K there are exactly l sectors, in
which the activation function (10.6) equals to d. This means that the activation func-
tion (10.6) establishes mappings from K into M = {0, 1, . . . , k − 1, k, k + 1, . . .
m − 1}, and from Ek into Em = {

1, εm, ε2m, . . . , εm−1
m

}
, respectively.

Since m = kl, then each element from M and Em has exactly l prototypes in K and
Ek , respectively. In turn, this means that the neuron’s output determined by (10.6) is
equal to

0, 1, . . . , k − 1
︸ ︷︷ ︸

0

, 0, 1, . . . , k − 1
︸ ︷︷ ︸

1

, . . . , 0, 1, . . . , k − 1
︸ ︷︷ ︸

l−1
︸ ︷︷ ︸

lk=m

(10.8)

depending on which one of the m sectors (whose ordinal numbers are determined
by the elements of the set M) the weighted sum is located in. Hence, the MVN’s
activation function in this case becomes k-periodic and l-multiple.

It is important that in terms of multiple-valued logic, activation function (10.6)
projects a k-valued function f (x1, . . . , xn) into m-valued logic. Evidently,
f (x1, . . . , xn) is a partially defined function in m-valued logic because K ⊆ M =
{0, 1, . . . , m − 1}, Ek ⊆ Em and En

k ⊆ En
m. Since f (x1, . . . , xn) is a k-valued func-

tion, it takes only k values out of m in m-valued logic. The projection established by
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Fig. 10.4 Geometrical interpretation of the k-periodic and l-multiple discrete-valued MVN acti-
vation function (10.6)

(10.6) makes a great practical sense. On many occasions, a function f (x1, . . . , xn),
being a non-threshold function in k-valued logic, can be at the same time a partially
defined threshold function in m-valued logic and therefore it is possible to learn it
using a single MVN with the activation function (10.6).

MVN with the activation function (10.6) is referred to as the multi-valued neuron
with a periodic activation function (MVN-P) [16]. It is important to mention that
if l = 1 in (10.6) then m = k and the activation function (10.6) coincides with the
activation function (10.2) accurate within the interpretation of the neuron’s output
(if the weighted sum is located in the jth sector then according to (10.2) the neuron’s
output is equal to eij2π/k = εj ∈ Ek , which is the jth of kth root of unity, while in
(10.6) it is equal to j ∈ K), and the MVN-P becomes the regular MVN.

Learning of MVN-P is based on the same error correction learning rule (either
(10.4) or (10.5)) as MVN learning, with a slight modification. Let L ≥ 2 in (10.6)
and d ∈ {0, 1, . . . , k − 1} be the desired output. The activation function (10.6) deter-
mines the k-periodic and l-multiple sequence (10.8) with respect to sectors on the
complex plane. Suppose that the current MVN-P’s output is not correct and the cur-
rent weighted sum is located in the sector s ∈ M = {0, 1, . . . , m − 1}, wherem = kl.
Since l ≥ 2 in (10.6), there are l sectors on the complex plane, where function (10.6)
takes a correct value (see also Fig. 10.4). Two of these l sectors are the closest ones to
sector s (from right and left sides, respectively). From these two sectors, we choose
sector q whose border is closer to the current weighted sum z in terms of the angu-
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Table 10.1 MVN-P with the activation function (10.6) (where k = 2, l = 2) implements the
f (x1, x2) = x1XORx2 function with the weighting vector (0, i, 1) in the original 2-dimensional
space

x1 x2 z = w0 + w1x1 + w2x2 arg(z) Pl(z) f (x1, x2) = x1XORx2

1 1 i + 1 π
4 1 1

1 −1 i − 1 3π
4 −1 −1

−1 1 −i + 1 7π
4 −1 −1

−1 −1 −i − 1 5π
4 1 1

lar distance. Then we take εq as the desired output and apply learning rule (10.4)
or (10.5). MVN-P makes it possible to learn non-linearly separable input/output
mappings using a single neuron. The simplest example is its ability to learn the
XOR problem when k = 2, l = 2 in (10.6). This is illustrated in Table10.1. A single
MVN-P can easily learn such non-linearly separable problems as Parity n [10, 17]
and mod k sum of n variables [10, 18].

10.3 Multilayer Neural Network with Multi-value Neurons
(MLMVN)

MLMVN was first suggested in [9, 19] and then comprehensively presented and
discussed in [8]. I am really happy that working on MLMVN, its concept and its
learning algorithm, I very closely collaborated with Claudio. I sincerely believe that
MLMVN is the best idea, which I ever developed. But I would say that I am not sure
it would be possible to develop it without Claudio, his support and comprehensive
discussions with him. I am proud of our joint publications [8, 9, 19] resulted from
this great work. And I am especially proud of the fact that our paper [8] is my and
Claudio’s most cited journal paper!

MVN was nice, but the question on how it should be possible to design an MVN-
based feedforward neural network was open for a long time. Since the functionality
of a single MVN is higher than the one of a sigmoidal neuron, it could be expected
that an MVN-based feedforward neural network should also be more functional than
a multilayer feedforward neural network with sigmoidal neurons (MLF) also known
as a multilayer perceptron (MLP) [20]. The bottleneck (as it was seen) was how to
train an MVN-based feedforward neural network. The MLF learning [20] is based
on solving the optimization problem of minimization of the error function. To solve
this optimization problem, the differentiability of an activation function is of crucial
importance. But MVN activation functions (10.2) and (10.3) are not differentiable
as functions of a complex variable. So, what we should do?

A wonderful answer was found! To train MLMVN, it is possible to generalize
the error-correction learning rule for a single MVN. In this way, MLMVN learning
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becomes derivative-free as MVN learning for a single MVN! MLMVN has exactly
the same topology as MLF-MLP, but its learning algorithm is based on the same
error-correction learning rule as the one for a single MVN, just modified in order
to backpropagate the error. Thus the error backpropagation is the MLMVN learn-
ing algorithm differs from the one in the classical MLF-MLP learning algorithm.
Let us describe here the MLMVN learning algorithm, which was for the first time
comprehensively presented in [8].

MLMVN is a multilayer neural network with a standard feedforward topology
where neurons are integrated into layers, and output of each neuron from the current
layer is connected to the corresponding inputs of neurons from the following layer.

Let MLMVN contain one input layer, m − 1 hidden layers and one output layer.
Let us use the following notations. Let Djm be a desired output of the jth neuron from
the mth (output) layer; Yjm be an actual output of the jth neuron from the mth (output)
layer; wjr

i be the weight corresponding to the ith input of the jrth neuron (jth neuron
of the rth layer); Yjr and zjr be the actual output and the weighted sum of the jth
neuron from the rth layer (r = 1, . . . , m), respectively; Ỹjr be the updated (after the
weights are corrected) output of the same neuron; Nr be the number of the neurons
in the rth layer, and x1, . . . , xn be the network inputs. Evidently, the neurons from
the r + 1st layer have exactly r + 1st inputs (r = 1, . . . , m).

The global error of the network taken from the jth neuron of themth (output) layer
is calculated as follows:

δ∗
jm = Djm − Yjm; j = 1, Nm (10.9)

The backpropagation of the global errors δ∗
jm through the network is used (from the

mth (output) layer to the m − 1st one, from the m − 1st one to the m − 2nd one, . . .,
from the 2nd one to the 1st one) to express the error of each neuron δjr , r = 1, . . . , m
by means of the global errors δ∗

jm of the entire network.
The error backpropagation in MLMVN is based on the error sharing principle

[8, 10]. This principle states the following. (1) The error of a single MVN must be
shared among all the weights of the neuron. (2) The network error and the errors of
each particular neuron in MLMVN must be shared among those neurons from the
network that contribute to this error.

This principle is utilized for MLMVN as follows [8].
The global errors of the entire network are determined by (10.9). The local neurons

errors are represented in the followingway. First,we need to backpropagate the global
errors of the network to the output layer neurons. The errors of the mth (output) layer
neurons are:

δjm = 1

tm
δ∗

jm; j = 1, Nm (10.10)

where jm specifies the jth neuron of the mth layer; tm = Nm−1 + 1, i.e. the number
of all neurons in the preceding layer (layer m − 1 where the error (10.10) will be
then backpropagated to) incremented by 1. Thus, to obtain a local error of any output
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neuron, a global error of the network calculated for this output neuron, shall be
divided by the number of neurons connected to this output neuron plus 1 (this output
neuron itself).

The errors of the hidden layers neurons are then calculated using the following
backpropagation procedure

δir = 1

tr

Nr+1∑

j=1

δj,r+1(w
j,r+1
i )−1 (10.11)

where ir specifies the ith neuron of the rth layer (r = 1, . . . , m − 1); tr = Nr−1 + 1,
r = 2, . . . , m is the number of all neurons in the layer r − 1 incremented by 1, (n
is the number of network inputs). Thus Eqs. (10.10)–(10.11) determine the error
backpropagation for MLMVN.

Theweights for all neurons of the network are corrected using the error-correction
learning rules (10.4) and (10.5) adapted to MLMVN. For the neurons from the mth
(output) layer (jth neuron of the mth layer),

w̃jm
i = wjm

i + Cjmδjm
¯̃Yi,m−1, i = 1, . . . , Nm−1 (10.12)

w̃jm
0 = wjm

0 + Cjmδjm, (10.13)

for the neurons from the 2nd hidden layer till m − 1st hidden layer (jth neuron of the
rth layer (r = 2, . . . , m − 1),

w̃jr
i = wjr

i + 1|zjr|Cjrδjr
¯̃Yi,r−1, i = 1, . . . , Nr−1 (10.14)

w̃js
0 = wjs

0 + 1|zjr|Cjrδjr, (10.15)

and for the neurons from the 1st hidden layer

w̃j1
i = wj1

i + 1|zj1|Cj1δj1x̄i, i = 1, . . . , n (10.16)

w̃j1
0 = wj1

0 + 1|zj1|Cj1δj1, (10.17)

The learning rateCjr; j = 1, . . . , Nm; r = 1, . . . , m in (10.12)–(10.16) is complex-
valued in general, but to our best knowledge, in all actual applications described so
far it was not used at all, so this means that in all known MLMVN applications
Cjr = 1; j = 1, . . . , Nm; r = 1, . . . , m.

TheMLMVN learning algorithm consists of the sequential checking for all learn-
ing samples whether an actual output of the network coincides with a desired output.
If for some sample there is no coincidence, then the errors (10.9) must be back-
propagated according to (10.10)–(10.11), and the weights must be then adjusted
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according to (10.12)–(10.16). The learning process continues either until the zero-
error is reached or the root mean square error (RMSE) criterion is satisfied. For any
output neuron in MLMVN with discrete activation function (10.2), RMSE should
be applied to the errors in terms of the numbers of sectors (see Fig. 10.2), thus not
to the elements of the set Ek = {

ε0k , εk, . . . , ε
k−1
k

}
, but to the elements of the set

K = {0, 1, K − 1}. The local errors for the rth learning sample in these terms are
calculated as

γr = (
αjr − αr

)
mod k;αjr , αr ∈ {0, 1, . . . , k − 1} (10.18)

(ε
αjr

k is the desired output and εαrk is the actual output).
For any output neuron in MLMVN with continuous activation function (10.3),

RMSE should be applied to the arguments of the output neurons’ weighted sums and
calculated in terms of the angular error. Let Δr be the square error of the network
for the rth learning sample. For MLMVN with a single output neuron it is

Δr = γ 2
r , r = 1, . . . , N, (10.19)

(γr is the local error taken from (10.18) and for MLMVN with Nm output neurons
(m is the output layer index) it is

Δr = 1

Nm

Nm∑

j=1

(
γjr

)2 ; r = 1, . . . , N . (10.20)

The MLMVN learning process in such a case continues until RMSE drops below
some pre-determined acceptable minimal value λ (N is the number of learning sam-
ples):

RMSE = √
MSE =

√
√
√
√ 1

N

N∑

r=1

Δr ≤ λ. (10.21)

This learning algorithmwas for the first time described in detail and the backprop-
agation learning rule (10.10)–(10.11) was justified in [8]. The convergence theorem
for this learning algorithm for MLMVN containing arbitrary amount of layers and
neurons in layers was proven in [10].

MLMVN has many remarkable applications. It significantly outperforms MLF-
MLP in terms of functionality (a smaller MLMVN may learn input/output map-
pings, which cannot be learned even using a bigger MLF-MLP), speed of learning,
and generalization capability. In a number of applications, MLMVN shows results
comparable or even better than support vector machines (SVM). MLMVN was suc-
cessfully used for example, in the following applications: generation of a genetic
code as a function of multiple-valued logic [21] (it is very pleasant that this applica-
tion was again developed in collaboration with Claudio!), recognition of type of blur
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and its parameters for image restoration [22], recognition of blurred images [23],
decoding of signals in an EEG-based brain-computer interface [24], and different
kinds of long-term time series prediction [10, 25, 26]. In [27], the learning algo-
rithm for MLMVN with discrete outputs was modified by introducing soft margins.
This makes it possible to avoid classification errors caused by closeness to each other
of some learning samples belonging to different classes. A batch learning algorithm
forMLMVNwith a single hidden layer was proposed in [28]. It was then generalized
in [29] for MLMVN with multiple output neurons. This algorithm converges much
faster than a regular learning algorithm.

Fig. 10.5 Finland, May 2011.A tour during ISMVL’2011. My Great Friend Claudio Moraga
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Fig. 10.6 Barcelona, Spain, July 2010, IEEE WCCI-2010. Claudio with me and my wife Ella

Fig. 10.7 Uzhhorod, Ukraine, August 2008. Claudio with me after a workshop session. It was a
workshop devoted to scientific heritage and commemoration of Prof. Naum Aizenberg
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Fig. 10.8 Barcelona, Spain, July 2010, IEEE WCCI-2010. A conference dinner

Fig. 10.9 Uzhhorod, Ukraine, August 2008. Claudio with me at the Ethnographic Museum
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Thus MLMVN is a really powerful and very promising tool. We may hope it will
find many new applications. It is very pleasant for me to say that Claudio’s merit in
its creation cannot be overestimated and I am really proud of the fact that I worked
on MLMVN together with Claudio, feeling every day his great support.

10.4 Best Wishes to My Great Friend Claudio Moraga!

Claudio is a great personality. It is difficult to overestimate his great intellect. It is
difficult to overestimate his great research contributions. But the most important is
that Claudio is a Great Friend and a Great Colleague! I was happy to work with him.
I know for sure that I could not achieve many things without his support and his
influence. Claudio is one of the brightest personalities I ever met. And I am sure that
many of his colleagues and former students share the same feelings. Let me forward
my warmest wishes to my Great Friend Claudio Moraga! Let me conclude this paper
with some pictures taken in different parts of our planet where we were together with
Claudio (Figs. 10.5, 10.6, 10.7, 10.8 and 10.9).
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Chapter 11
Sequential Bayesian Estimation
of Recurrent Neural Networks

Branimir Todorović, Claudio Moraga and Miomir Stanković

11.1 Introduction

The central problem of the sequential Bayesian estimation is to determine the prob-
ability density function of the hidden state of a dynamical system. The hidden state
is defined as a vector of variables which evolution through time completely describe
the behaviour of the dynamical system. The hidden state xk with initial distribu-
tion p (x0) evolves as an unobserved first order Markov process according to the
conditional probability density p (xk/xk−1). The observations yk are conditionally
independent given the state d are generalized according to the probability density
p (yk/xk). The state space model can be written as a set of system equations:

xk = f (xk−1, uk, dk) (11.1)

yk = h (xk, νk) (11.2)

where dk represents the dynamic (process) noise that drives the dynamic system
through the nonlinear state transition function f , and vk is the observation noise
corrupting the observation of the state through nonlinear observation function h.
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Faculty of Mathematics and Sciences, Computer Science Department,
University of Nis, Nis, Serbia
e-mail: branimirtodorovic@pmf.ni.ac.rs

C. Moraga
Technical University of Dortmund, Dortmund, Germany

M. Stanković
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The state transition density p (xk/xk−1) is fully specified by f and the process
noise pdf p (dk), whereas h and the observation noise pdf p (νk) fully specify the
observation likelihood p (yk/xk).

In a sequential estimation framework, the state filtering probability density func-
tion (pdf) p (xk/y0:k), where y0:k = {y0, y1, . . . , yk} denotes the set of all observations,
represents the complete solution. The optimal state estimate with respect to any crite-
rion can be calculated based on this pdf. Sequential (or recursive)Bayesian estimation
algorithm for determination of the filtering pdf consists of two steps: prediction and
update.

In the first step (prediction) the previous posterior p (xk−1/y0:k−1) is projected
forward in time through nonlinear probabilistic transition equation (11.1):

p (xk/y0:k−1) =
∫

p (xk/xk−1) p (xk−1/y0:k−1) dxk (11.3)

The state transition density p (xk/xk−1) is completely specified by f (·) and the
process noise distribution.

In the second step (update), the predictive density is updated by incorporating
the latest noisy measurement yk using the observation likelihood p (yk/xk), which is
completely specified by observation function h (·) and observation noise distribution,
to generate the posterior:

p (xk/y0:k) = p (yk/xk) p (xk/y0:k−1)
∫
p (yk/xk) p (xk/y0:k−1) dxk

(11.4)

The recurrence relations (11.3) and (11.4) are only conceptual solutions and the
posterior density cannot be determined analytically in general. The restrictive set
of analytical solutions includes the well-known Kalman filter [Kalman], which rep-
resents an optimal solution of (11.3) and (11.4) if the posterior density p (xk/y0:k)
and dynamic and observation noise are Gaussian and f (·) and h (·) are known linear
functions.

At the beginning of our research in this area, the framework of Bayesian sequen-
tial estimation was not new in the field of neural networks training. Kalman fil-
ter’s counterpart for nonlinear systems—Extended Kalman Filter (EKF), have been
repeatedly considered as on-line training algorithm for feed forward and re-current
neural networks [1, 2]. EKF often outperformed gradient based algorithms like Back
Propagation, for feed forward and Real Time Recurrent Learning (RTRL) or Back
Propagation Through Time (BPTT ) for recurrent neural net-works training, mainly
because it uses the second order information in estimation [1]. Additionally, when
Extended Kalman Filter was applied for simultaneous estimation of synaptic weights
and neuron outputs of recurrent neural networks, it has been shown that it generalizes
the well-known heuristic “teacher forcing” which improves speed and the stability
of RNN training [2].

The derivation of EKF as Recurrent Neural Network (RNN) training algorithm
is based on the assumption that a good approximation of optimal sequential (or
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recursive) Bayesian estimator can be obtained by propagating only first and second
moment of probability density function of RNN hidden variables (synaptic weights
and neuron outputs) through a linearized dynamics of RNN (which is obtained by
applying first order Taylor expansion), instead of propagating the complete probabil-
ity density function through nonlinear (in general) RNN dynamics. This assumption
is of course violated when the dynamics is significantly non-linear or noise on data is
non-Gaussian: heavy tailed or even multimodal. Therefore, in our research we have
addressed the following problems.

1. Can we derive better recurrent neural network training algorithms if we apply
more accurate approximations of nonlinear dynamics or more clever ways of
propagating probability density function of RNN hidden states through nonlinear
transformation?

2. What if the noise on data is non-Gaussian?
3. Can we use statistics (first and second moments) sequentially calculated by

approximate Bayesian estimators to derive somehow the algorithm for structure
adaptation of recurrent neural networks?

In order to be able to start working on this problems the first obvious step was
to represent the dynamics of recurrent neural network in the form of the state space
model, similar to the system of probabilistic equations (11.1) and (11.2).

11.2 State Space Models of Recurrent Neural Networks

We will give here, as an example, the state space models of three representative
architectures of globally recurrent neural networks: Elman, fully connected, and
NARX recurrent neural network. Experimental evaluation of these architectures in
long term chaotic time series prediction is given in [3, 4].

11.2.1 Elman Network State Space Model

In Elman RNNs adaptive feedbacks are provided between every pair of hidden units.
The network is illustrated in Fig. 11.1(a), and the state space model of the Elman
network is given by equations

⎡

⎣
xHk
wO
k

wH
k

⎤

⎦ =
⎡

⎣
f
(
xHk−1,w

H
k−1, uk

)

wO
k−1

wH
k−1

⎤

⎦ +
⎡

⎣
dxHk
dwO

k

dwH
k

⎤

⎦ (11.5)

yk = xOk + νk, xOk = h
(
xHk ,wO

k

)
(11.6)



176 B. Todorović et al.
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Fig. 11.1 Elman and fully connected RNN

where xHk represents the output of the hidden neurons in the k-th time step, xOk is
the output of the neurons in the last layer, wO

k−1 is the vector of synaptic weights
between the hidden and the output layer and wH

k−1 is the vector of recurrent adaptive
connection weights. Note that in the original formulation of Elman, these weights
were fixed. Random variables dxHk , dwO

k
, dwH

k
represent the process noises.

It is assumed that the output of the network xOk = h
(
xHk ,wO

k

)
is corrupted by the

observation noise νK .

11.2.2 Fully Connected Recurrent Network State Space
Model

In fully connected RNNs adaptive feedbacks are provided between each pair of
processing units (hidden and output). The state vector of a fully connected RNN
consists of outputs (activities) of hidden xHk and output neurons xOk , and their synap-
tic weights wH

k and xOk . The activation functions of the hidden and these output neu-
rons are f H

(
xOk , xHk ,wH

k−1, uk
)
and f O

(
xOk , xHk ,wO

k−1, uk
)
, respectively. The network

structure is illustrated in Fig. 11.1(b).
The state space model of the network is given by:

⎡
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yk = H ·

⎡

⎢
⎢
⎣

xOk
xHk
wO
k

wH
k

⎤

⎥
⎥
⎦ + νk, H = [

In0×n0 On0×(nS−nO)

]
(11.8)

The dynamic equation describes the evolution of neuron outputs and synaptic
weights. In the observation equation, the matrix H selects the activities of output
neurons as the only visible part of the state vector, where nS is the number of hidden
states which are estimated: nS = nO + nH + nWO + nWH , nO and nH are the numbers
of output and hidden neurons respectively, nWO is the number of adaptive weights of
the output neurons, nWH is the number of adaptive weights of the hidden neurons.

11.2.3 NARX Recurrent Neural Network State Space Model

The non-linear AutoRegressive with eXogenous inputs (NARX) recurrent neural
network has adaptive feedbacks between the output and the hidden units. These
feedback connection and possible input connections are implemented as FIR filters.
It has been shown [5] that NARX RNN often outperforms the classical recurrent
neural networks, like Elman or fully connected RNN, in tasks that involve long term
dependencies for which the desired output depends on inputs presented at times far
in the past (Fig. 11.2).

The state vector of NARX RNN consists of outputs of the network in Δx time
steps xOk , xOk−1, . . . , x

O
k−Δx+1 the output wO

k , and hidden synaptic wH
k weights. The

dynamic equation of the NARX RNN state space model describes the evolution of
network outputs and synaptic weights:

Fig. 11.2 NARX recurrent
neural network

xk
O

O O

z-1 z-1z-1z-1

u uxk-1 uk-1kxk-Δ u
x k-Δ  +1



178 B. Todorović et al.
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The observation equation selects the output neurons as observable:

yk = H ·

⎡
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wO
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ νk, H = [
In0×n0 On0×(nS−nO)

]
(11.10)

where nO represents the number of output neurons. nS is the number of hidden states
of the NARX RNN: nS = nO + nWO + nWH , nWO is the number of adaptive weights
of output neurons, nWH is number of adaptive weights of hidden neurons.

All consideredmodels havenonlinear hiddenneurons and linear output neurons. In
order to insure stability, in fully recurrent neural network, self-recurrent connections
of linear output neurons are not allowed. Two types of nonlinear activation functions
for hidden neurons have been often considered, the sigmoidal and theGaussian radial
basis function.

11.3 Gaussian Approximate Sequential Bayesian
Estimation—Linear Minimum Mean Square
Error (MMSE) Estimation

The well-known Kalman filter represent exact solution of the sequential Bayesian
estimation problem if both dynamic and observation equations are linear, and initial
state, process noise and observational noise are Gaussian random variables. However
Kalman filter can be (and it was actually) derived in different way. Kalman assumed
that the state estimator x̂k can be represented as a linear function of the current
observation yk:

x̂k = Akyk + bk (11.11)

where matrix Ak and vector bk are derived by minimizing mean square estimation
error criterion:

Rk =
∫ ∫

(
xk + x̂k

)T (
xk − x̂k

) · p (xk, yk/y0:k−1) dxkdyk (11.12)
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or, equivalently, by satisfying constraints that an estimator is unbiased:

∫ ∫
(
xk − x̂k (yk)

) · p (xk, yk/y0:k−1) dxkdyk = 0 (11.13)

and the estimation error is orthogonal to the current observation:

∫ ∫
(
xk − x̂k

)
yTk · p (xk, yk/y0:k−1) dxkdyk = 0. (11.14)

In its final form the estimator is given as:

x̂k = x̂k̄ + PxkykP
−1
yk

(
yk − ŷk̄

)
. (11.15)

If assumptions on linearity and Gaussian distributions hold, the matrix Mean
Square Error (MSE) corresponding to (11.15):

E
[(
xk − x̂k

) (
xk − x̂k

)T
]

= P−
xk − PxkykP

−1
yk P

T
xkyk . (11.16)

is the estimator covariance matrix Pxk , otherwise it is an approximation. In previous
equations

x̂k̄ = E
[
xk/y0:k−1

] =
∫

xkp (xk/y0:k−1) dxk . (11.17)

represents state prediction, and

Px̄k = E
[(
xk − x̂k̄

) (
xk − x̂k̄

)T
/y0:k−1

]
. (11.18)

is state prediction covariance matrix, while

ŷk̄ = E
[
yk/y0:k−1

] =
∫

ykp (yk/y0:k−1) dyk (11.19)

is observation prediction, and

Pyk = E
[(
yk − ŷk̄

) (
yk − ŷk̄

)T
/y0:k−1

]
(11.20)

is observation prediction covariance matrix, and finally

Pxkyk = E
[(
xk − x̃k̄

) (
yk − ŷk̄

)T
/y0:k−1

]
(11.21)

is cross covariance matrix between state and observation.
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If the dynamic and the observation models are linear and process and observation
noises are Gaussian, the linear MMSE estimator is optimal and exact solution of the
recursive Bayesian estimation equations, it is the best MMSE estimator and is equal
to the conditional mean E

[
xk/y0:k

]
, and it is also optimal Maximum Aposteriory

(MAP) estimator, otherwise it is the best within the class of linear estimators.
The problem that remains to be solved is how to calculate (11.17), (11.18), (11.19),

(11.20) and (11.21), which in general can be considered as propagating first and
second order statistics of a random variable trough the nonlinear transformation.

11.3.1 Extended Kalman Filter

The extended Kalman filter uses the multidimensional Taylor series expansion to
approximate the dynamic and observation equation of the RNN state space models.
In our research we have considered only linear expansions.

Linearized dynamic equation is:

xk = f
(
x̂k−1, uk, d̄k

) + Fk
(
xk−1 − x̂k−1

) + Gk
(
dk − d̄k

)
, (11.22)

where Fk = ∂fk(xk−1,uk ,dk)
∂xk−1

∣
∣
∣
∣
∣
∣
∣
xk−1 = x̂k−1

dk = dk̄

, Gk = ∂fk(xk−1,uk ,dk)
∂xk

∣
∣
∣
∣
∣
∣
∣
xk−1 = x̂k−1

dk = dk̄

,

x̂k−1 = E
[
xk−1/y1:k−1

]
represents the estimate of the state in time step k − 1 and

d̄k = E [dk] is process noise mean.

Prediction of the state x̂k−1 = E
[
xk−1/y1:k−1

]
and prediction covariance P−

xk =
E
[(
xk − x̂k̄

) (
xk − x̂k̄

)T
/y0:k−1

]
are obtained after applying (11.17) and (11.18) to

linearized dynamic equation (11.22):

x̂k̄ = f
(
x̂k−1, uk, d̄ : k) (11.23)

P−
xk = FkPxk−1F

T
k + GkQkG

T
k (11.24)

where Qk = E
[(
dk − dk̄

) (
dk − dk̄

)T
]
represents the process noise covariance.

After the linearization of the observation equation we obtain:

xk = fk
(
x̂bark, ν̄

) + Hk
(
xk − x̂k̄

) + Lk (νk − ν̄) , (11.25)
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where Hk = ∂hk(xk ,νk)
∂xk

∣
∣
∣
∣
∣
∣
∣
xk = x̂k̄
νk = νk̄

and Lk = ∂hk (xk−1, νk) /∂νk

∣
∣
∣
∣
∣
∣
∣
xk = x̂k̄
νk = νk̄

,

and νk = E [νk] is the mean of the observation noise.
The prediction of the observation is given by:

ŷk̄ = h
(
x̂ − k̄, ν̄k

)
(11.26)

and the prediction covariance is:

Pyk = HkP
−
xkH

T
k + LkRkL

T
k (11.27)

and cross covariance:
Px,yk = P−

xkH
T
k (11.28)

where Rk = E
[
νkν

T
k

]
is the observation noise covariance.

11.3.2 Divided Difference Filter (DDF)

In [6] Nørgaard et al. proposed a new set of estimators based on a derivative free
polynomial approximation of nonlinear dynamic and observation equation using Stir-
ling’s interpolation formula which uses central divided differences. We have consid-
ered only second order polynomial approximation, which is for arbitrary nonlinear
function f (x) given by:

f (x) ≈ f (x̄) + D̃Δxf + 1

2! D̃
2
Δxf (11.29)

where D̃Δxf and D̃2
Δxf are the first and second order central divided difference oper-

ators acting on f (x):

D̃Δxf = (x − x̄)
f (x̄ + h) − f (h − h)

2h
(11.30)

D̃2
Δxf = (x − x̄)

f (x̄ + h) − f (h − h)

h2
(11.31)

h is the central difference step size and x̄, around which we expand f (x), is the prior
mean of random variable x.

Previous formulation can be extended to the multidimensional case by stochastic
decoupling of random variable x:

z = R−T
x x, (11.32)
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where Rx represents the upper triangular Cholesky factor of the covariance matrix
Px = E

[
(x − x̄) (x − x̄)T

] = RT
x Rx. After decoupling we have:

f (x) = f
(
R−T
x z

) = f (z) . (11.33)

Individual components of random variable z are mutually uncorrelated, with unity
variance Pz = E

[
(z − z̄) (z − z̄)T

] = I and consequently we can apply the first and
the second order central difference operators independently to the components of
f̃ (z), in order to obtain the following multidimensional central difference operators:

D̃Δz f̃ = 1

h

(
n∑

i=1

Δziμiδi

)

f̃ (z̄) (11.34)

D̃2
Δz f̃ = 1/h2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

n∑

i=1

Δ2
ziδ

2
i +

nx∑

i=1

nx∑

j = 1
j �= i

ΔziΔzj (μiδi) (μiδi)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

f̃ (z̄) (11.35)

where Δzi represents the i-th component of (z − z̄). Partial first and second order
difference operators δi and δ2i , and the mean operator μi are defined as:

δi f̃ (z) = f̃

(

z̄ + h

2
ei

)

− f̃

(

z̄ − h

2
ei

)

(11.36)

δ2i f̃ (z) = f̃ (z̄ + hei) + f̃ (z̄ − hei) − 2f̃ (z̄) (11.37)

μi f̃ (z) = 1

2
f̃

(

z̄ + h

2
ei

)

+ f̃

(

z̄ − h

2
ei

)

(11.38)

where ei is the i-th unit vector.
Approximation of the mean is given by:

ȳ ≈ E

[

f̃ (z) + D̃Δx f̃ + 1

2! D̃
2
Δx
f̃

]

(11.39)

= h2 − nx
h2

f (x̄) + 1

2h2

nx∑

i=1

(
f
(
x̄ + hRT

x,i

) + f
(
x̄ − hRT

x,i

))
(11.40)
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The approximation of the posterior covariance is:

Py = 1

4h2

nx∑

p=1

(
f
(
x̄ + hRT

x,i

) − f
(
x̄ − hRT

x,i

))
(11.41)

· (
f
(
x̄ + hRT

x,i

) − f
(
x̄ − hRT

x,i

))T
(11.42)

+ h2 − 1

4h4

nx∑

p=1

(
f
(
x̄ + hRT

x,i

) + f
(
x̄ − hRT

x,i

) − 2f (x̄)
)

(11.43)

· (
f
(
x̄ + hRT

x,i

) + f
(
x̄ − hRT

x,i

) − 2f (x̄)
)T

(11.44)

where we select h2 > 1, and consequently the covariance approximation well always
be positive semi definite [6]. Nørgaard et al. have derived the alternative covariance
estimate as well [6]:

Py = h2 − nx
h2

(f (x̄) − ȳ) (f (x̄) − ȳ)T (11.45)

+ 1

2h2

nx∑

p=1

(
f
(
x̄ + hRT

x,i

) − ȳ
) (
f
(
x̄ + hRT

x,i

) − ȳ
)T

(11.46)

+ 1

2h2

nx∑

i=1

(
f
(
x̄ − hRT

x,i

) − ȳ
) (
f
(
x̄ − hRT

x,i

) − ȳ
)T

(11.47)

This estimate is less accurate than (11.44). Moreover, for h2 < n the last term
becomes negative semi-definite with a possible implication that the covariance esti-
mate (11.62) becomes non-positive definite. The reason why this estimate is con-
sidered here is to provide a comparison with the covariance estimate obtained by
the Unscented Transformation described in the next subsection. The estimate of the
cross-covariance matrix is:

Pxy =
nx∑

p=1

(
f
(
x̄ − hsx,p

) − ȳ
) (
f
(
x̄ − hsx,p

) − ȳ
)T

(11.48)

11.3.3 Unscented Kalman Filter (UKF)

The unscented transformation [7] is amethod for calculating the statistics of a random
variable which undergoes a nonlinear transformation. It is based on the intuition that
is easier to approximate a probability distribution than arbitrary function.

Again we consider propagating the nx-dimensional continuous random variable x
with priormean x̄ = E [x] and covariancePx = E [(x − x̄) (x − x̄)] throughnonlinear
function y = f (x). To calculate the first two moments of random variable y using
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unscented transformation we first select the set of 2nx + 1 samplesXi called sigma
points with corresponding weightsωi. The weights and sample locations are selected
to accurately capture the prior mean and covariance of a random variable and to
capture the posterior mean and covariance accurately up to the and including second
order terms in the Taylor series expansion of the true quantities [7]. Sigma points
and their weights which satisfy previous constraints are given by:

X0 = x̄, ω0 = κ/ (nx + κ) , i = 0 (11.49)

Xi = x̄ + √
nx + λ · sx,i, ωi = 0.5/ (nx + κ) , i = 1, . . . , nx (11.50)

Xi+nx = x̄ − √
nx + λ · sx,i, ωi+nx = 0.5/ (nx + κ) , i = 1, . . . , nx (11.51)

where κ ∈ R is the scaling parameter, sx,i is the i-th row or column of the matrix
square root of Px. For weights associated with sigma points it holds

∑2nx
i=0 wi = 1.

Note that using this idea is possible to capture the higher order moments of
posterior random variable, but at the cost of a larger set of sigma points [7].

After propagating sigma points through the nonlinear function Yi = f (Xi),
approximations of the posterior mean, covariance and cross covariance are:

ȳ =
2nx∑

i=0

ωiYi (11.52)

Py =
2nx∑

i=0

ωi (Yi − ȳ) (Yi − ȳ)T . (11.53)

Py =
2nx∑

i=0

ωi (Xi − x̄) (Yi − ȳ)T . (11.54)

The approximations are accurate to the second order of the Taylor series expansion
of f (x) (third order for Gaussian prior). Errors in the third and higher moments can
be scaled by appropriate choice of scaling parameter κ . When prior random variable
is Gaussian a useful heuristic is to select κ = 3 − nx [7].

It can be easily verified that for h = √
n + λ, the estimates of the mean (11.40)

and the covariance (11.47) obtained by applying Stirling’s interpolation formula are
equivalent to the estimates (11.52) and (11.53) obtained by unscented transformation
[6].

In [6] Nørgaard showed that DDF has slightly smaller absolute error compared to
UKF in the fourth order terms and also guarantees positive semi definiteness of the
posterior covariance.
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11.3.4 Square Root Implementation of Recursive Bayesian
Estimators as RNN Training Algorithms [3, 4]

Straightforward implementation of Unscented Kalman Filter andDividedDifference
Filter requires calculation of the prior state covariance matrix, which has O

(
n3/6

)

computational complexity. However it is the full covariance matrix of the estimate
which is recursively updated. The square root implementations of UKF and DDF
recursively update the Cholesky factors of the covariance matrices. Although the
general complexity of the algorithms is still O

(
n3
)
, they will have better numerical

properties, comparable to the standard square root implementation of Kalman filter.
The square root implementations of EKF, UKF and DDF are based on three linear

algebra algorithms: matrix orthogonal-triangular decomposition (triangularization),
rank one update of a Cholesky factor and efficient solution of the over-determined
least square problem.

The orthogonal-triangular decomposition of m × n matrix A ([Q,R] = qr (A))

produces m × n upper triangular matrix R, which is Choleskey factor of ATA, and
m × n unitary matrix Q such that A = Q × R.

Rank one update of a Choleskey factor R, returns upper triangular Choleskey
factor R̃ for which holds:

R̃T R̃ = RTR ± xxT , (11.55)

where x is column vector of appropriate length.
For overdetermined lest squares problem AX = B, if A is an upper triangular

matrix, then X is simply computed by back substitution algorithm.
Using Cholesky decomposition of the prior covariance Pxk−1 = RT

xk−1
Rxk−1 we can

represent the state and observation prediction covariance in EKF as:

P−
xk = FkR

T
xk−1

Rxk−1F
T
k + RT

dkRd−k = [
FkRxk−1 RT

dk

] ·
[
Rxk−1F

T
k

Rdk

]

= (
R−
xk

)T
R−
xk

(11.56)

P−
yk = Hk

(
R−
xk

)T
R−
xkH

T
k + RT

νk
Rνk =

[
Hk

(
R−
xk

)T
RT

νk

]
·
[
R−
xkH

T
k

Rνk

]

= (
R−
yk

)T
R−
yk .

(11.57)

where Rdk and Rνk represent the Choleskey factors of process and observation noise
respectively.

We obtain the recursive update of the estimation covariance Choleskey factor
using the numerically stable Joseph form of the covariance:

Pxk = (
I − KkHk

(
R−
xk

))T
R−
xk (I − KkHk)

T + KkR
T
νk
RνkK

T
k (11.58)

=
[
(I − KkHk)

(
R−
xk

)T
KkR

T
νk

]
·
[
R−
x−k (I − KkHk)

T

RνkK
T
k

]

= RT
xkRxk (11.59)
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11.4 Gaussian Sum Filters as RNN Training Algorithms

Gaussian filters, described in previous section, approximate propagation of state pdf
through dynamic and observation equation by propagating first two moments. Such
approximation of state pdf is not accurate enough if one wants to train RNN on noisy
data, when noise pdf is multimodal or heavy tailed [8]. In order to deal with these
problems, we have turned to the assumption that any probability density function
can be approximated sufficiently accurately using finite Gaussian mixture [9, 10]:

p (x) ≈
n∑

i=1

P {Ai} p (x/Ai) =
n∑

i=1

wiN (x; x̄i,Pi) (11.60)

where Ai represents the event that the x is Gaussian distributed with mean x̄i
and covariance Pi, that is Ai = {x ∼ N (x̄i,Pi)}. Events Ai are mutually exclusive
P
{
AiAj

} = 0,∀i �= j, and exhaustive
∑N

i=1 P {Ai} = 1, and P {Ai} = wi. Based on
previous assumptions we have derived equations of Gaussian Sum filter as recur-
rent neural network training algorithm [8, 11].

11.4.1 Gaussian Sum Filter Equations

To derive GS filter equations we will assume that the filtering and prediction den-
sities as well as non-Gaussian noise densities can be represented as finite Gaussian
mixtures.

p (xk−1/y0:k−1) =
nk−1∑

j=1

P
{
Ak−1,j/y0:k−1

}
p
(
xk−1/y0:k−1,Ak−1,j

)
(11.61)

=
nk−1∑

j=1

wk−1,jN
(
xk−1; x̂k−1,j,Pxk−1,j

)
(11.62)

p (dk) =
ndk∑

j=1

P
{
Bk,j

}
p
(
dk/Bk,i

) =
ndk∑

j=1

wdk,iN
(
dk; d̄k,i,Qk,i

)
(11.63)

p (νk) =
nνk∑

j=1

P
{
Ck,j

}
p
(
νk/Ck,i

) =
nνk∑

j=1

wνk,iN
(
νk; ν̄k,i,Rk,i

)
(11.64)
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The predictive density is obtained as:

p (xk/y0:k−1) =
∫

p (xk/xk−1) p (xk−1/y0:k−1) dxk−1 (11.65)

=
nd∑

i=1

n∑

j=1

P
{
Bk,i

}
P {Ak−1/y0:k−1} (11.66)

·
∫

p
(
xk/xk−1,Bk,i

) · p (xk−1/y0:k−1,Ak−1,i
)
dxk−1 (11.67)

If we introduce Dk,l to denote a joint event Bk,i ∩ Ak−1,j, we have:

p (xk/y0:k−1) =
nk̄∑

l=1

P
{
Dk,l/y0:k−1

}
p
(
xk/y0:k−1,Dk,l

)
(11.68)

where l = (i − 1) · n + j, nk̄ = ndk · nk−1

and P
{
Dk,l/y0:k−1

}=P
{
Bk,j

}
P
{
Ak−1,j/y0:k−1

}
since Bk,i are independent events.

Finally, based on assumptions (11.12) and (11.13) we obtain the predictive density
as the finite Gaussian mixture:

p (xk/y0:k−1) =
nk̄∑

l=1

wk̄,lN
(
xk; x̂k̄,l,Px̄k ,l

)
(11.69)

where wk̄,l · w ¯k−1,j, and

x̂k̄,l = E
[
xk/y0:k−1,Dk,l

]
,Px̄k ,l = E

[(
xk − x̂k̄,l

) (
xk − x̂k̄,l

)T
/y0:k−1,Dk,l

]

(11.70)

The posterior state density is obtained as:

p (xk/y0:k) = p (yk/xk) p (xk/y0:k−1)
∫
p (yk/xk) p (xk/y0:k−1) dxk

(11.71)

=
∑n∗

k
l=1 P

{
Ak,l/y0:k−1

}
p
(
yk/y0:k−1,Ak,l

)
p
(
xk/y0:k,Ak,l

)

∑n∗
k
l=1 P

{
Ak,l/y0:k−1

}
p
(
yk/y0:k−1,Ak,l

) (11.72)

where Ak,l denotes a joint event Ck,i ∩ Dk,j and n∗
k = ndk · nk̄ , l = (i − 1) · nk̄ + j. It

can be proved that:

p
(
Ak,l/y0:k

) = P
{
Ak,l/y0:k−1

}
p
(
yk/y0:k−1,Ak,l

)

∑n∗
k
l=1 P

{
Ak,l/y0:k−1

}
p
(
yk/y0:k−1,Ak,l

) (11.73)
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therefore the posterior density is given by:

p (xk/y0:k) =
n∗
k∑

l=1

P
{
Ak,l/y0:k

}
p
(
xk/y0:k,Ak,l

)
(11.74)

The major drawback of the proposed algorithm is exponential growth of the
number of components in a posterior density (11.74), since n∗

k = nνk · nk̄ = nνk ·(
ndk · nk−1

)
. To solve this problem, after updating the posterior density p (xk/y0:k)

we apply a mixture reduction procedure to prevent exponential explosion of the
number of mixture components.

11.4.2 Mixture Reduction

We apply the algorithm which clusters the components of the mixture and replace
the cluster with a single Gaussian. The component of the mixture (11.74) with largest
probabilitywk,j is selected as the principal component, and components that are close
to it are clustered. Closeness of components is defined using Kull-back distance
between two Gaussians:

D2
i = 1

2

(
x̂c − x̂i

)T (
P−1
c + P−2

c

) (
x̂c − x̂i

) + 1

2
tr
(
P−1
1 P2 + P1P

−1
2 − 2I

)
(11.75)

wherewc, x̂c and Pc are the probability, mean and covariance of the principal compo-
nent and wi, x̂i and Pi are the probability, mean and covariance of the ith component.
A component for which D2

i < Tmin is selected as a class member. Threshold Tmin
defines the acceptable modification of the original distribution (11.75).

The cluster of components is approximated by a single Gaussian:

wc =
∑

i∈IC
wi (11.76)

x̂c =
∑

i∈IC wix̂i
wc

(11.77)

Pc =
∑

i∈IC wi
(
Pi + x̂ix̂Ti

) − x̂cx̂Tc
wc

(11.78)

where IC contains the indices of components close to the principle component.
The clustering procedure continues on the remaining components of the original

mixture. If the number of components after clustering is below the user-defined
maximal number Nmax the mixture reduction is completed. Otherwise the minimum
distance is incremented Tmin = Tmin + ΔT and the clustering procedure is repeated.
ΔT is selected as a compromise between a number of iterations required and the
possibility of clustering more components than necessary.
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11.4.3 Implementation of Gaussian Sum Filters

The prediction density of Gaussian sum filter p (xk/y0:k−1) is obtained by solving the
integral:

p (xk/y0:k−1,Dk, l) =
∫

p
(
xk/xk−1,Bk,i

) · p (xk−1/y0:k−1,Ak−1,i
)
dxk−1 (11.79)

for i = 1, . . . , nd and j = 1, . . . , n, where nd is the number of Gaussian components
in dynamic noise pdf, andn is number of components in hidden state pdf. Solving inte-
gral (11.79) involves propagating Gaussian random variables xk−1/y0:k,Ak − 1, i ∼
N
(
x̂k−1,i,Pxk−1

)
through nonlinear dynamic equation. Consequently, the posterior

density of hidden state in Gaussian Sum filter is obtained by propagating random
variables xk/y0:k,Ak,l ∼ N

(
x̂k̄,l,Pxk ,l

)
through observation equation. Since Extended

Kalman Filter, DividedDifference Filter andUnscentedKalman Filter can be consid-
ered as tools for propagating Gaussian random variables through state space model
equations, we have implemented Gaussian sum filter as a bank of parallel EKFs, or
DDFs or UKFs.

11.5 On-line Adaptation of the Recurrent Radial Basis
Function Network Structure

On line adaptation of the structure of Recurrent Radial Basis Function (RRBF)
network is implemented by combining growing and pruning of hidden neurons and
hidden and output connections [10, 12–17].

11.5.1 RRBF Network Growing

Growing of the network by adding new hidden neurons is performed when the adap-
tation of the connection weights is not sufficient to ensure tracking of the dynamics.
The test for adding a new hidden neuron is obtained by applying Kalman filter con-
sistency test which states that the innovations should be acceptable as zero mean and
should have magnitude commensurate with the theoretical covariance as yielded by
the filter [16, 17]. A new hidden neuron should be added if (a) the consistency test
is not satisfied and (b) only specialized hidden neurons are activated by the current
network input. A hidden neuron is referred to as specialized if its input and out-
put parameters have accumulated certain level of knowledge, and new observations
cannot significantly improve it. The moment of neuron specialization is determined
based on the number of samples that have activated the neuron above certain thresh-
old.



190 B. Todorović et al.

11.5.2 RRBF Network Pruning

During adaptation to a time-varying environment some connections or hidden neu-
rons may become insignificant and should be pruned. A connection is insignificant
if its parameter and the parameter change are both insignificant. The well-known
pruning method OBS [9], ranks synaptic weights according to the saliency, defined
as the change in the training error when the particular parameter is eliminated. The
parameter with the smallest saliency is pruned. However, OBS was developed for
the off-line trained networks with fixed training and test set. We have derived an
analogous on-line pruning method for RRBF network [16, 17], by establishing the
relation between the parameter saliency and the statistical significance of the para-
meter. Additional criterion is introduced in order to test the statistical significance of
time-varying parameters. Since inverse of theHessian of the cost function, needed for
the significance test, is recursively updated by the Kalman filter, the pruning method
does not significantly increase the overall computation complexity of the learning
algorithm.

Parameter pruning implies elimination of the corresponding rows and columns in
the Hessian of the cost function, which inverse is estimated as posterior covariance
matrix. Using the partitioned matrix inversion lemma a new covariance matrix is
obtained [16, 17]. The specialized or rarely activated hidden neurons are pruned if
all of its output connections have statistically insignificant parameters.

11.6 Examples

In first two examples derived training algorithms are evaluated on tasks of long term
prediction of chaotic time series. Long term prediction was obtained by iterating the
neural network output, that is, by feeding the current output of the net-work back to
the input through the recurrent connections. As a measure of the difference between
original chaotic signal and long term (iterated) prediction of the recurrent neural
network we have used the Normalized Root Mean Squared Error (NRMSE):

NRMSE =
√
√
√
√ 1

σ 2N

N∑

k=1

(
yk − ŷ−

k

)2
(11.80)

In (11.80) σ stands for the standard deviation of clean time series, yk is the true
value of sample at time step k, and ŷk̄ is prediction of a recurrent neural net-work.
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11.6.1 Non-local Optimization

When Gaussian Sum (GS) filter is applied as the RNN training algorithm the pdf of
RNN hidden variables (synaptic weights and neuron outputs), is approximated by the
weighted sum of Gaussians. Each Gaussian component of such sum is rep-resented
by the estimation of the mean and covariance of the RNN hidden variables and each
component is updated in time using Gaussian filter: EKF, DDF or UKF. GS filters
were implemented as banks of parallel Gaussian filters giving GS_EKF, GS_DDF
and GS_UKF as training algorithms. The several different RNNs were trained in the
same time (each component of the sum represents one RNN) and the estimates were
combined (after being updated independently) in order to reduce the final number of
components. Therefore, GS filters applied as training algorithms can be considered
as non-local optimization techniques.

In this example we compare GS versus Gaussian filters as RNN training algo-
rithms, applied in long term prediction of a Logistic Map chaotic behavior. The
observations were obtained by iterating the difference equation:

xk = 4 · xk−1 (1 − xk−1) (11.81)

and scaling xk into the range [−1, 1].
NARX recurrent radial basis function network with 3 hidden neurons and 2 recur-

rent connections between output and hidden neuronwas used as the basic architecture
for training. In Table11.1. we give the mean and variance of NRMSE as well as time
needed to learn 2000 samples sequentially when Gaussian (EKF, DDF, UKF) and
Gaussian sum filters (GS_EKF, GS_DDF, GS_UKF) were used as training algo-
rithms. The results, were obtained for 30 independent runs with different initial val-
ues of adaptive parameters. The number of components in Gaussian mixture which
represented the pdf of hidden variables (synaptic weights and delayed RNN output)
was 10. Dynamic and observation noise were represented by Gaussian.

The mean of NRMSE for Gaussian sum filters is by two orders of magnitude
smaller than forGaussianfilters and the rate of variances is evenmore impressive. The
reason for such results is that GS filter starts with 10 different RNNs in parallel and

Table 11.1 NRMSE of NARX_RRBF (NARX recurrent neural network with Gaussian hidden
neurons) long term prediction of Logistic Map chaotic time series

mean(NRMSE) var(NRMSE)

DDF 0.133 1.14e-2

UKF 0.136 1.07e-2

EKF 0.187 1.23e-2

GS_DDF 7.52e-3 1.26e-7

GS_UKF 7.86e-3 6.62e-7

GS_EKF 3.64e-2 7.3e-3
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Fig. 11.3 NARXRRBF (Recurrent Radial Basis Function) prediction of LogisticMap chaotic time
series (Training algorithm GS_DDF)

updates each independently for every sample. In this case we do not have the growth
of number of components and the condition that only components with significant
probabilities should survive, proved to be very useful.

As it is shown in Fig. 11.3d after short period of training, algorithm selected
only one recurrent neural network architecture as the best one (one with the highest
probability) and training was continued with only one component in a mixture. That
is the reason why training with Gaussian sum filters did not took significantly longer
time than training with Gaussian filters [11].
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11.6.2 Prediction of Noisy Chaotic Time Series
(Non-gaussian Multimodal Noise)

In this example we have considered a long term-iterated prediction of Mackey Glass
time series, corrupted with non-Gaussian multimodal observation noise. The chaotic
Mackey-Glass differential delay equation:

ẋ (t) = 0.2 · x (t − τ)

1 + x (t − τ)10
− 0.1 · x (t) (11.82)

is integrated using a fourth-order Runge-Kutta method for τ = 30 and sampled with
period 6 to obtain the values of x at discrete time steps. The chaotic attractor of the
clean time series is given in Fig. 11.4a.

Fig. 11.4 a Chaotic
Mackey-Glass attractor; b
Histogram of multimodal
observation noise (11.83)
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Table 11.2 NRMSE of NARX_RMLP (NARX recurrent network with sigmoidal hidden neurons)
iterated prediction of noisy Mackey-Glass chaotic time series mean(NRMSE) var(NRMSE)

mean(NRMSE) var(NRMSE)

GS_DDF 0.190 9.60e-3

GS_UKF 0.281 1.44e-2

GS_EKF 0.266 4.8e-2

Finally, the values of x were corrupted by multimodal observation noise to obtain
the observations. The pdf of multimodal observation noise was Gaussian mixture
given by:

p (νk) = α · N (
νk;m1, σ

2
1

) + (1 − α) · N (
νk;m2, σ

2
2

)
(11.83)

where α = 2/3, m1 = −0.2, σ1 = 0.05, m2 = 0.4, σ2 = 0.1. The histogram of
(11.83) is given in Fig. 11.4b.

We have used GS_EKF, GS_UKF andGS_DDF to train NARX recurrent network
with 6 recurrent inputs, 5 hidden sigmoidal neurons and one output (41 adaptive
parameters). Gaussian filters failed to produce long term prediction be-cause the
Gaussian approximation of multimodal observation nose was not good enough.

Performances of Gaussian sum filters for non-Gaussian noise are documented in
Table11.2. After sequential training on 2000 samples, recurrent neural network was
iterated for next 100 time steps. The mean and variance of NRMSE is obtained from
30 independent runs with different initial values of adaptive parameters.

Figure11.5 shows a typical result of iterated long term prediction for Gaussian
sum filter implemented as a bank of parallel DDF’s. All Gaussian sum filters used
a five-component Gaussian mixture for state posterior, Gaussian process noise and
two-component Gaussian mixture of observation noise. During training only noisy
data were presented to the learning algorithm. In Fig. 11.5a attractor obtained from
noisy data is shown. Attractor of the NARX RMLP (NARX recurrent network with
sigmoidal hidden neurons) is shown in Fig. 11.5b. The evolution of the probabilities
of the Gaussian mixture components is shown in Fig. 11.5c and long term prediction
is shown in Fig. 11.5d.

Next two examples will illustrate the effectiveness of algorithm for on line struc-
ture adaptation. Algorithm uses statistics, sequentially estimated by Bayesian filters,
to derive criteria for growing and pruning of hidden neurons and connections in
recurrent neural networks.
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Fig. 11.5 NARX RMLP (NARX recurrent network with sigmoidal hidden neurons) prediction of
noisy Mackey-Glass chaotic time series (Training algorithm GS_DDF)

11.6.3 On Line Estimation of State, Structure
and Noise Variance

In this example, we have applied recurrent radial basis function network with adap-
tive structure for single step prediction of time series obtained from chaotic system
described by Lorenz equations:

ẋ = −βx + yz (11.84)

ẏ = σ (−y + z) (11.85)

ż = −xy + ρy − z (11.86)
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Fig. 11.6 On line learningofNARXRRBFstate and structure (number ofGaussian hiddenneurons)
for single step prediction of Lorenz chaotic time series

where β, σ and ρ are adjustable parameters. The equations were iterated by the 4th
order Runge Kutta method, where step size of 0.01 was used and the parameters are
set at β8/3, σ = 10 and ρ = 28.

State y (sampled at a period of 0.05 seconds) was scaled between [−1, 1] and
Gaussian noise νk ∼ N

(
0, 1 · e−5

)
was added to obtain the observations. Time series

of 1000 noisy observation was used for training. Each sample was presented only
once to the RNN training algorithm derived from Extended Kalman Filter.

The results of on line adaptation of NARX RRBF parameters, states and structure
for Lorenz time series single step prediction are illustrated in Fig. 11.6. The RRBF
network output error (innovation e (k)) during training is shown in Fig. 11.6a. Growth
pattern (Fig. 11.6b) shows the number of hidden neurons during training. On-line
estimation of observation noise variance is shown in Fig. 11.6c, and comparison of
original time series and RRBF network prediction is given in Fig. 11.6d.

All statistical tests for adding or pruning had the size α = 0.05. Neurons were
addedwith the following initial parameters:αnH+1 = e (k),mnH+1 = s(k) andσnH+1 =
σ0, where σ0 is the initial width. Initial variances of parameters were chosen so that
initial parameter values were statistically insignificant: Ppp (0)−1/2 x̂p (0) < γ . Hid-
den neuron was considered rarely activated if the ratio between the number of data
samples that have activated a neuron above φmin = 0.1, and the total number of data
samples from the moment when neuron was added, was less than 0.01.
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11.6.4 Resolving Noise/Non-stationarity Dilemma

This example will illustrate the ability of the training algorithm to resolve dilemma
whether novelty in a new training example comes from the nonstationarity of the
problem, or because the level of noise on data has been increased. We consider the
identification of the plant described by difference equation:

xk = f (xk−1, xk−2, xk−3, uk−1, uk−2) (11.87)

where function f has the form:

f (x1, x2, x3, x4, x5) = x1x2x3x4x5 (x3 − 1 − α) + (1 − β) x4
1 + x22 + x23

(11.88)

The parameters α and β ware equal to zero for the first 800 observations. For
the next 400 samples parameters are α = β = 0.005k − 4, and for the last 1300
observations α = β = 2. The observations of the plant output are obtained for input:

uk = sin

(
2πk

250

)

if 2mN < k < (2m + 1)N, (11.89)

uk = 0.8sin

(
2πk

250

)

+ 0.2

(
2πk

25

)

if (2m + 1)N < k < (2m + 2)N, (11.90)

where m = 0, 1, 2 and N = 500. For the first 1500 time steps, the variance of the
measurement noise was chosen to give SNR = 30dB, and after that the variance was
chosen to give the SNR = 5dB. The results of identification of a dynamic system (51),
obtained by sequential adaptation of the RRBF network over 2500 data samples, are
illustrated in Fig. 11.7.

The learning algorithm has detected the non-stationarity (for 800 < k < 1200),
by adding new hidden neurons, which soon became significant. The change of the
measurement noise variance at k = 1501, also caused addition of new hidden neu-
rons. However, they did not become significant and therefore theywere susceptible to
pruning (Fig. 11.7c). As a consequence, number of significant (permanent) neurons
hasn’t increased. At the same time the estimate of the measurement noise variance
is updated to track the change (Fig. 11.7d)

11.7 Concluding Remarks

We considered on line training of recurrent neural networks as sequential (recur-
sive) Bayesian estimation of synaptic weights, neuron outputs and structure. In their
simplest form, approximate recursive Bayesian estimators can be considered as a
second order on line optimization algorithms which utilize the recursive estimate
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Fig. 11.7 On line learningofNARXRRBFstate and structure (number ofGaussian hiddenneurons)
for non stationary dynamic system identification

of the inverse of the objective function hessian. Joint estimation of the parameters
(synaptic weights) and states (neuron out-puts) generalizes the heuristic known as
teacher forcing, by estimating the outputs of hidden neurons and by filtering out the
noise from training data samples and using only the ‘deterministic part’ of the data
for on line training.

Better approximation of state probability density function using Gaussian mix-
tures, enables deriving on line training algorithms for recurrent neural networks,
which are capable to deal with non-Gaussian (multi modal or heavy tailed) noise
on training data. Statistics, recursively updated during state estimation, can be effi-
ciently used for deriving criteria for growing and pruning of synaptic connections
and hidden neurons in recurrent neural networks. All derived algorithm have been
empirically evaluated on problems of dynamic system modeling and short and long
term time series prediction.
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Chapter 12
Class-Memory Automata Revisited

Henrik Björklund and Thomas Schwentick

12.1 Introduction

Data words are an extension of traditional finite alphabet words, that have at each
position, besides a symbol from some finite alphabet, a data value from some infinite
domain. Data words and the corresponding model of data trees are being studied in
database theory, e.g. as an abstraction of XML documents [3], and in verification,
where data values might represent process ids [5, 9].

An early automata model for data words, nowadays usually called register
automata, was introduced by Kaminski and Francez [11]. It has a polynomial-time
membership problem [1], but its expressive power is somewhat limited. The non-
emptiness problem and the combined complexity of the membership problem are
NP-complete [16]. The inclusion problem is even undecidable [15].

In [2], data automata were introduced as a much more expressive model, e.g.,
capturing two-variable logic on data words, but still with decidable emptiness prob-
lem. In [1], class-memory automata were defined as an equally expressive model
which, however, has a natural deterministic version. It was shown that class-memory
automata are strictly more expressive than register automata.

Since then, several other automatamodels for datawords have been proposed, e.g.,
in [4, 10, 13, 14, 17]. In [6], it was observed that there is a robust intermediate level
of automata between register automata and class-memory automata, represented by
class counting automata, non-reset history register automata, locally prefix-closed
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data automata, and so-called weak class-memory automata. As expected, the com-
plexity of decision problems for this intermediate level is intermediate as well: the
emptiness problem for weak class-memory automata and containment and equiva-
lence for deterministic class-memory automata are EXPSPACE-complete [6].

Whereas the inclusion of the intermediate level in themost expressive level is obvi-
ous since weak class-memory automata are a syntactic restriction of class-memory
automata, the inclusion of the lower level in the intermediate level requires a proof.
As mentioned above, it was shown in [1] that register automata are captured by
class-memory automata and it is not hard to see that this proof actually only needs
weak class-memory automata. Unfortunately, the presentation of this proof in [1]
was a bit sketchy and it was brought to our attention by colleagues that some details
were described in a misleading way. On the other hand, other work has relied on this
proof, e.g., the proof of Proposition 22 in [17] uses the same proof technique and
leaves the details to the reader.

The main purpose of this paper is to give a much more detailed and polished
proof for a somewhat stronger result. We show in Sect. 12.3 that weak class-memory
automata are strictly more expressive than the extension of register automata by the
ability to guess data values.

In Sect. 12.4 we address another shortcoming of [1]. As pointed out in [7], the
extension of class-memory automata by Presburger acceptance conditions proposed
in [1] (seemingly) fails to capture the expressivity of class-memory automata. We
therefore give a slightly modified definition of Presburger class-memory automata
and show that it has the desired properties.

Acknowledgments.We are grateful to Luc Segoufin and Ahmet Kara for pointing
us to the shortcomings in the presentation of the proof of Theorem 12.3.1 in [1]. We
thank Mikołaj Bojańczyk, Ahmet Kara, Anca Muscholl and Luc Segoufin for many
valuable discussions.

12.2 Preliminaries

Let Σ be a finite alphabet and Δ an infinite set. A data word is a finite sequence
over Σ × Δ. A data language is a set of such words. For each data value d, the
set of all positions with value d is called a class of w. Unless otherwise stated, data
values can only be compared with respect to equality.

In the sequel, we will assume without loss of generality that all data languages
and automata we investigate are defined over the same data set Δ, which contains
all data values used in examples and proofs. In particular N ⊆ Δ. We will also talk
about data languages over Σ , where Σ is a finite alphabet, implicitly assuming that
the data set is Δ.
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12.2.1 Register Automata

Register automatawere introduced byKaminski and Francez [11] and have later been
studied in, e.g., [9, 15]. They were defined for sequences of data values only, but the
generalization to data words is straightforward. Register automata are equipped with
a constant number of registers in which they can store data values, which can later
be compared with the data value of the current position.

The class of languages that RA recognize is closed under union, intersection,
concatenation, andKleene star, but not under complementation and reversal [11]. The
nonemptiness problem and the combined complexity of themembership problem are
NP-complete [16].

Partially in order to overcome the lacking closure under reversal, Kaminski
and Zeitlin [12] defined data guessing register automata, an extension of register
automata, that can nondeterministically guess new data values and assign them to
registers.1

In the formal definition of this model, given next, the set S in a transition contains
those registers into which new data values are loaded. These values need to be
pairwise distinct and different from the current values stored in the registers. The
definition of transition steps requires that in each step the data value d that is being
read is already stored in some register i (and then i /∈ S) or it is not yet there but
newly stored in this step (i ∈ S). In this, our definition differs somewhat from the
one in [12], but it is easily seen to be equivalent.

Definition 12.2.1 A data-guessing register automaton (DGRA) over finite alpha-
bet Σ is a tuple R = (Q, q0, F, k, P), where Q is a finite set of states, q0 is the
initial state, F are the accepting states, k is the number of registers, and P is a finite
set of transitions. A transition is a tuple (p, a, S, i, p′), where p, p′ ∈ Q, a ∈ Σ ,
S ⊆ {1, . . . , k}, and i ∈ {1, . . . , k}.

A configuration of R is a pair (q, τ ), where q ∈ Q and τ : {1, . . . , k} → Δ ∪ {⊥}
is a register assignment. The initial configuration is (q0, τ0), where τ0(i) =⊥ for
all i ∈ {1, . . . , k}.

We refer to the components of a transition δ = (p, a, S, i, p′) by δ. f rom, δ.symb,
δ.Set , δ.reg and δ.to, respectively. If δ.reg = i , we say that δ reads from register i .

A sequence2 ρ
def= (p0, τ0)

δ1−→ · · · δn−→ (pn, τn) is a run of R for a data word w =
(a1, d1) . . . (an, dn), if the following holds.

(i) p0 is the initial state of R,
(ii) τ0(i) = ⊥, for every i ∈ {1, . . . , k}, and
(iii) for every t ∈ {1, . . . , n}, there are i ∈ {1, . . . , k} and S ⊆ {1, . . . , k} such that

(a) δt = (pt−1, at , S, i, pt ),
(b) τt (i) = dt ,

1These automata were called look-ahead finite-memory automata in [18] and finite-memory
automata with non-deterministic reassignment in [12].
2Without the arrow notation, the sequencemight be understood as p0, τ0, δ1, p1, τ1, . . . , δn, pn, τn .
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(c) for every j ∈ {1, . . . , k} \ S: τt ( j) = τt−1( j),
(d) for all i, j ∈ S with i �= j : τt (i) �= τt ( j), and
(e) for every i ∈ S: τt (i) �= ⊥ and τt (i) does not occur in τt−1({1, . . . , k}).
The run is accepting if pn ∈ F . A data word w belongs to the language L(R) of

the automaton if there is an accepting run of R for w.

It should be noted that other definitions of RAs allow a nonempty initial assign-
ment. This makes it possible to consider a finite number of constants, an ability that
isn’t needed when we have a finite as well as an infinite set of data values.

The definition ensures that a data value can never occur in more than one register
at the same time. In particular, this feature can be used to verify that the current data
value is different from those in the registers.

Example 12.2.1 Consider the data language over the finite alphabet Σ = {a} that
contains all data words such that the first data value is unique, i.e., the value that
appears at the first position doesn’t appear anywhere else in the word. This language
can be recognized by an RA (and thus also by a DGRA). The automaton just has to
store the first data value it reads into a register and then verify that all subsequent
values differ from it.

The reversal of this language, however, i.e., the language of all data words in
which the last data value is unique, cannot be recognized by an RA. For a DGRA the
reversal constitutes no problem. It just guesses the last value at the start and verifies
that the guessed value appears nowhere in the word except at the last postition. �

12.2.2 Class-Memory Automata

We next recall the definition of class-memory automata.

Definition 12.2.2 ([1]) A class-memory automaton (CMA)C is a tuple (Q,Σ, δ,

qI , FL , FG), where Q is a finite set of states, Σ is a finite alphabet, qI is the initial
state,

• δ : (Q × Σ × (Q ∪ {⊥})) → P(Q) is a transition function; and
• FG ⊆ FL ⊆ Q are the sets of globally and locally accepting states, respectively.

The semantics of class-memory automata is defined through the notion of class-
memory functions. Such a function simply assigns to every data value d the state
of the automaton that was assumed after reading the last (previous) position with
value d. More formally, a class-memory function is a function f : Δ → Q ∪ {⊥}
such that f (d) �=⊥ for only finitely many d. A configuration of C is a pair (q, f )
where q ∈ Q and f is a class-memory function. We call q the global state of C and
f (d) the local state of d. The initial configuration of A is (qI , f I ), where f I (d) =⊥
for all d ∈ Δ. When reading a pair (a, d) ∈ Σ × Δ, the automaton can go from
configuration (q, f ) to (q ′, f ′) if (1) q ′ ∈ δ(q, a, f (d)), (2) f ′(d) = q ′, and (3)
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for all d ′ �= d, f ′(d ′) = f (d ′). The automaton accepts if, for the final configuration
(q, f ), q ∈ FG and f (d) ∈ FL ∪ {⊥}, for all d ∈ Δ. A CMA is deterministic if each
δ(p, a, q) is a singleton.

It should be noted that δ naturally induces a transition relation which is a subset
of (Q × Σ × (Q ∪ {⊥})) × Q. We freely switch back and forth between these two
points of view.

Example 12.2.2 As an example, consider processes sharing a printerwith three kinds
of events: a print job can be requested (r ), start (s), and terminate (t). Let L0 be the
set of valid traces, i.e., the data words w with the following two properties.

(global)
The string projection of w, that is, the string over Σ resulting from deleting all
data values, matches the expression (r∗sr∗tr∗)∗.

(local)
For each class of w, the string projection of the data word induced by this class
matches (rst)∗.

We construct a CMA C that accepts the language L0. The automaton C , depicted
in Fig. 12.1, has four states

• p (the printer is printing for the current process),
• i (the current process is neither printing nor waiting for a print),
• wi (the current process is waiting for a print and the printer is idle)
• wb (the current process is waiting for a print but the printer is busy)

Edge label (s, {wi, wb}) indicates that the transition can be taken reading symbol s,
in case the class-memory is wi or wb. Likewise for (r, {i,⊥}). The initial state is i
and the accepting states are given by FG = FL = {i}.

To get a better understanding of the automaton let us have a look at the transitions
leaving p. In state p the automaton just read some (s, d) reflecting the start of a
print for the process number d. Thus, there are only two possible kinds of next
data symbols: either (t, d) which ends the print of process d or (r, d ′) which moves
process d ′ �= d into the waiting state. It should be noted that no (s, d ′) could be read
next.

wi

p

i

wb(r,{i,⊥})

(s,{wi,wb}) (r,{i,⊥})

(t, p)

(r,{i,⊥})

(s,{wi,wb}) (r,{i,⊥})

(t, p)

Fig. 12.1 A CMA for L0. The labels are explained in Example 12.2.2
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It is not hard to see that there is no DGRA for L0. For the sake of a contradiction,
assume that DGRA R accepts L0. Let k be the number of registers of R. Letw be the
data word (r, 1) · · · (r, k + 1)(s, 1)(t, 1) · · · (s, k + 1)(t, k + 1). As w ∈ L0, R has
an accepting run ρ on w. After reading the first k + 1 positions of w, there is at least
one data value d ∈ {1, . . . , k + 1} that does not occur in any register of R. Let d ′ ∈ N

be a data value that does not occur in ρ at all. We can conclude that R also accepts
the string w′ /∈ L0 resulting from w by replacing (s, d), (t, d) with (s, d ′), (t, d ′).
Should d be guessed in ρ at some point between (s, 1) and (t, d − 1), then the new
accepting run can guess d ′ instead. �

We will assume in the following that a DGRA R always guesses data values for
all registers in its first step, i.e., for each transition (q0, a, S, i, p′) where q0 is the
initial state, S = {1, . . . , k}. It is easy to see that a DGRA R′ which does not meet
this convention can be adapted accordingly: R can guess values for all registers and
keep track of the set of registers, for which the original R′ would not have guessed
values. For each run of R′ there is a corresponding run of R which guesses additional
values that do not occur otherwise and therefore do not interfere. On the other hand,
if an “incorrect” value is guessed initially, that interacts with a subsequently read
position, then R′ can just abandon that run.

Cotton-Barratt, Murawski and Ong suggested to study a restriction of class-
memory automata which they called weak [6]. The restriction requires that FL = Q,
that is, that all local states are accepting and therefore the acceptance of a data word
only relies on the (global) state at the end of a run. In a nutshell, this means that
one can, in general, not require that all classes reach certain goals (states). However,
classes can still be required to avoid certain behavior and therefore “safety condi-
tions for classes” can be tested. It was shown in [6] that weak CMAs are exactly as
expressive as Class Counting Automata [14], non-reset History Register Automata
[17] and locally prefix-closed Data Automata [8].

12.3 Data-Guessing Register Automata and CMAs

In this section, we demonstrate that CMAs are strictly stronger than data-guessing
register automata. Our goal is to establish the following theorem.

Theorem 12.3.1 Weak CMAs are strictly more expressive than DGRAs.

The strictness of the containment follows by an easy adaptation of Example 12.2.2.
If we set FL = Q in C , then the automaton accepts the set L1 of all prefixes of
data words in L0. However, the non-expressibility proof also works for L1. The
containment follows from Propositions 12.3.1 and 12.3.2 below. We will show that
every DGRA R can be simulated by a CMA C . Before we describe the construction
of C we need to define some notation.

A sequence π
def= p0

δ1−→ · · · δn−→ pn is a pre-run of R for a data word w =
(a1, d1) . . . (an, dn), if it satisfies conditions (i) and (iiia) of the definition of a run



12 Class-Memory Automata Revisited 207

from Definition 12.2.1. Each run induces a unique pre-run by dropping the register
assignments τi . A position t whose transition δt reads register i is called an i -position.

An interval I = (P, i, d) over a data word w consists of a contiguous set P of
positions of w (the position set of I ), a register number i ∈ {1, . . . , k}, and a data
value d ∈ Δ (Fig. 12.2). We denote the three components of an interval I by I.Pos,
I.reg, and I.val, respectively. We call I a j-interval, if I.reg = j , a d-interval if
I.val = d and a (d, j)-interval if it is both a d- and an j-interval. We refer to the
minimal position (min(I.P)) and the maximum position (max(I.P)) of an interval
I by I.min and I.max, respectively.

We say that two intervals I and J overlap if I.Pos ∩ J.Pos �= ∅ and that J meets
I if J.max + 1 = I.min.

An interval structure I of dimension k for a word w is a set of intervals over w

such that, for every i ∈ {1, . . . , k}, the position sets of the i-intervals in I partition
the set of positions of w.

A witness structure for a register automaton R with k registers and a data word
w is a pair (π,I ) consisting of a pre-run π of R for w and an interval structure I
of dimension k for w.

A witness structure W = (π,I ) for R and w is valid if it satisfies the following
conditions.

(W1) The last state pn of π is an accepting state of R.
(W2) For each i-interval I , we have i ∈ δt .Set, where t = I.min. Further more,

i /∈ δs .Set for any s ∈ {I.min + 1, . . . , I.max}.
(W3) In every i-interval I , all transitions reading from register i read data value

I.val. That is, for all t ∈ {I.min, . . . , I.max}, if δt .reg = i then dt = I.val.
(W4) If I and J are intervals with the same data value then I and J do neither

overlap nor meet.

Proposition 12.3.1 For every DGRA R and every data word w it holds that w ∈
L(R) if and only if there exists a valid witness structure W for R and w.

Proof (if) From W = (π,I ) it is straightforward to construct a sequence ρ
def=

(p0, τ0)
δ1−→ · · · δn−→ (pn, τn): The pt and δt can just be taken from π and the reg-

ister assignments can be defined as follows: τ0(i)
def= ⊥, for every register number

i . For every t ∈ {1, . . . , n} and register number i , τt (i) is just I.val for the unique
i-interval I from I with t ∈ I.Pos.

It remains to show that ρ is actually an accepting run of R on w. To verify this,
we check that conditions (i)–(iii) from Definition 12.2.1 are satisfied. Condition (i)
holds because π is a pre-run. Condition (ii) holds by construction of τ0. We show
that for each t ∈ {1, . . . , n} conditions (iiia)–(iiie) hold (with δt .reg and δt .Set as i
and S, respectively):

• Condition (iiia) holds since π is a pre-run.
• Condition (iiib) is guaranteed by (W3).
• Condition (iiic) follows from condition (W2): guess-transitions for a register i can
only occur at first positions of i-intervals.
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• Conditions (iiid) and (iiie) are guaranteed by (W4).

Finally, ρ is accepting due to (W1).
(only-if) It is straightforward to obtain a valid witness structureW = (π,I ) from

an accepting run ρ forw. The pre-run π is just the pre-run induced by ρ. The interval
structure I is constructed as follows.

There can be four kinds of i-intervals:

(A) from position 1 to position n, if i /∈ δt .Set, for every t ∈ {2, . . . , n};
(B) from position 1 to position t − 1, if t is the minimal number in {2, . . . , n}, for

which i ∈ δt .Set;
(C) from position t , for which i ∈ δt .Set, to n, if t is the maximal number in

{1, . . . , n}, for which i ∈ δt .Set;
(D) from a position t to a position t ′ − 1 ≥ t , if i ∈ δt .Set, i ∈ δt ′ .Set and i /∈ δs .Set,

for every s ∈ {t + 1, . . . , t ′ − 1}.
It is easy to see thatI is an interval structure. Condition (W1) is satisfied because ρ

is accepting. Condition (W2) holds by definition ofI . Condition (W3) is guaranteed
by the semantics of DGRAs: inside an i-interval R always has to read the same data
value from register i . Finally, (W4) is also guaranteed by the semantics of DGRAs:
A data value that is guessed in step t is not allowed to be in any register after step
t − 1. �

In the followingwe describe how, given aDGRA R and a datawordw, to construct
a CMA C that tests whether there exists a valid witness structure for R and w.

Proposition 12.3.2 From everyDGRA R aweakCMAC can be computed such that,
for every data word w, C accepts w if and only if there is a valid witness structure
for R and w.

Proof In principle,C will be constructed to guess a witness structureW for R andw

and to verify that it is valid. However, C has to represent W in a somewhat implicit
fashion, as will be detailed below.

We think of C as consisting of three layers. The first layer guesses a pre-run of R
and tests its consistency. The second layer verifies that the interval structure induced
by the pre-run and the datawordw (in away to be described soon), satisfies conditions
(W2) and (W3). The third layer is responsible for the verification of condition (W4)
with the help of two coloring schemes.

We will describe the three layers of C and argue their correctness, separately.
As already mentioned, the first layer of C guesses a pre-run of R for w. To this

end, each state q of C has the following two components.

• q.state, a state of R.
• q.trans ∈ P , a transition (p, a, S, i, p′) of R. For brevity,3 we refer to the com-
ponents of q.trans by q. f rom, q.symb, q.Set, q.reg and q.to, respectively.

3That is, we abbreviate, e.g., q.trans. f rom by q. f rom.
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It is straightforward that C can be defined such that it checks that its sequence of
states indeed induces an accepting pre-run of R on the given data word w. Further-
more, the first layer succeeds if and only if (W1) holds.

The other two layers of C are built on top of this layer. In the following we
will therefore assume that, for the input data word w, there is already a sequence
q0, . . . , qn of “pre-states” of C with a, - and a trans-component. We will refer to the
state after reading position t ofw by qt . In analogy to pre-runs of R we call a position
t with qt .reg = i an i -position.

With a pre-run π of R, guessed by C , we associate an interval structure Iπ as
follows. First, for each register i , the position sets of i-intervals are determined just
as in the (only-if)-proof of Proposition 12.3.1 (points (A)–(D)). We call an i-interval
of Iπ idle if it does not contain any i-positions.

For each non-idle i-interval I , we write I.firstR for the first (smallest) i-position
in I and I.lastR for the last (largest) i-position in I .

For each non-idle interval I , its data value I.val is defined as dI.firstR. For idle
intervals I , we let I.val be some data value that does not occur in w and is not
assigned to any other interval.4

It is easy to verify that Iπ satifies condition (W2). Further more, if a witness
structure for R and w exists at all, there also exists one for which the idle intervals
have the same data values as inIπ . The only property ever used of data values of an
idle interval I is that they are different from all other values occurring in registers
during I .

The second layer of C maintains, for every register i ∈ {1, . . . , k} a mode. More
precisely, each state q has, for every register i , a component q.i.mode which can be
either head, mid, or tail. C makes sure that the mode-components of its state always
respect the following two conditions.

(C1) For each register i and each non-idle i-interval I of Iπ , and each position t it
holds

• qt .i.mode = head if t ∈ {I.min, . . . , I.firstR − 1},
• qt .i.mode = mid if t ∈ {I.firstR, . . . , I.lastR − 1}, and
• qt .i.mode = tail if t ∈ {I.lastR, . . . , I.max}.
For idle intervals I it holds qt .i.mode = tail for all t ∈ I.Pos.

(C2) For each register i and each i-position t ,

• if t = I.firstR, for some i-interval I of Iπ , then ft−1(dt ) = ⊥ or there is a
j ∈ {1, . . . , k} such that ft−1(dt ).reg = j and ft−1(dt ). j.mode = tail,

• otherwise ft−1(dt ).reg = i and ft−1(dt ).i.mode = mid.

We remark that towards condition (C1), C only needs to guess (and verify) for
each register i , which i-positions are the last i-positions of their i-interval. Condition
(C2) can be tested instantly as well. We recall that ft−1(dt ) = qs where s < t is the
maximal position with ds = dt .

4For concreteness, we can assume that the set of data values is ordered and that the �-th idle interval
(in some canonical ordering) gets the �-th data value that does not occur in w as its value.
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I.min
I.firstR I.lastR

I.max

head mid tail

Fig. 12.2 Illustration of an interval

It is straightforward that ifIπ is valid then C can guess the mode-components in
a way that ensures (C1) and (C2).
Claim 1 If (C1) and (C2) are satisfied then (W3) holds for Iπ .

To prove this claim, we first show:

(∗) for each t ∈ {1, . . . , n} and each i ∈ {1, . . . , k},
(1) for every d ∈ Δ, if ft (d).reg = i then ft (d).i.mode ∈ {tail,mid},
(2) there is at most one value d ∈ Δ such that ft (d).reg = i and

ft (d).i.mode = mid, and
(3) if such a d exists, then qt .i.mode = mid.

Condition (1) holds by (C1) since for each i-position t of an i-interval I it clearly
holds t ≥ I.firstR. The proof of (2) and (3) is by induction on t with a straightforward
induction basis t = 1.

For the induction step we consider a position t > 1. The functions ft−1 and ft can
only differ for dt . We distinguish the three cases that (i) t is the first i-position of the
i-interval I at t , (ii) t is some other i-position of I , or (iii) that t is not an i-position.

In case (i) we assume towards a contradiction that there is a value d �= dt with
ft (d).reg = i and ft (d).i.mode = mid. As ft and ft−1 agree besides dt , it follows
ft−1(d).reg = i
and ft−1(d).i.mode = mid. Then, by induction, qt−1.i.mode = mid. However, from
(C1) we can conclude that qt−1.i.mode = head if I.min < t or qt−1.i.mode = tail
if I.min = t , the desired contradiction. Therefore, we can conclude (2) and, since
ft (dt ) = qt , also (3), in this case.
In case (ii) we conclude, by (C2), that ft−1(dt ).reg = i and ft−1(dt ).i.mode =

mid. The existence of a value d �= dt with ft (d).reg = i and ft (d).i.mode = mid
would yield ft−1(d).reg = i and ft−1(d).i.mode = mid and therefore contradict the
induction hypothesis for t − 1. Therefore, we can again conclude (2) and, since
ft (dt ) = qt , also (3).
In case (iii), there would be two distinct data values d, different from dt with

ft (d).reg = i and ft (d).i.mode = mid. However, both of them would also fulfill
ft−1(d).reg = i and ft−1(d).i.mode = mid and therefore contradict the induction
hypothesis for t − 1. Thus (2) follows again and, by induction, also (3). This con-
cludes the proof of (∗).

Now we are ready to show that Iπ satisfies condition (W3) if (C1) and (C2)
hold. Towards a contradiction, let us assume that there is some i-interval I with two
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i-positions s < t such that ds �= dt . Without loss of generality we can assume that
there is no other i-position between s and t . By condition (C2), ft−1(dt ).reg = i and
ft−1(dt ).i.mode = mid. On the other hand,qs .reg = i and, by (C1),qs .i.mode = mid.
By our choice of s and t there are no i-positions s ′ ∈ {s + 1, . . . , t − 1}. By (C2) there
can be no position s ′ ∈ {s + 1, . . . , t − 1}with ds ′ = ds either: the first such position
would be a j-position for some j �= i and would require fs ′(ds).i.mode = tail thanks
to (C2).

Therefore, ft−1(ds) = qs and thus there are two data values d (namely: ds and
dt ) with ft−1(d).reg = i and ft−1(d).i.mode = mid, contradicting (∗). Thus, (W3)
indeed holds and we have shown Claim 1.

It remains to describe the third layer of C . As mentioned before, it uses two
coloring schemes to prevent that intervals with the same data value overlap or meet.
To this end, C guesses, for each interval I of Iπ an overlap color, which can be
blackor yellowand a meet color, blueor white. These colors are guessed at the first
position of I (that is: I.min) and are stored in q.i.oc and q.i.mc, respectively, for
i

def= I.reg.
C then tests that the following conditions hold throughout Iπ .

(C3) For all intervals I , J , where J is the predeccessor interval of I , it holds:
if M is the unique interval with J.lastR ∈ M.Pos and M.reg = I.reg, then M
and I have different overlap colors;

(C4) For all intervals I , J , where J is the predeccessor interval of I , it holds:
if M is the unique interval with I.min − 1 ∈ M.Pos and M.reg = J.reg, then
M and J have different meet colors.

Here, J is the predecessor interval of I if J.val = I.val, J.lastR < I.firstR and there
is no position t with dt = I.val in {J.lastR + 1, . . . , I.firstR − 1}.

Informally, (C3) states that the i-interval M containing the last reading position
of the predeccessor interval J with the same data value as some i-interval I has a
different overlap color than I , and hence must be different from I . Similarly, (C4)
states that if the predeccessor interval J with the same data value as I has register
j , the j-interval M containing the last position before I has a different meet color
than J , and hence must be different from J .

Condition (C3) is tested by C whenever the first i-position t of an i-interval I is
encountered. It holds if ft−1(dt ) = ⊥ or ft−1(dt ).i.oc �= qt .i.oc.

Condition (C4) is also tested whenever the first i-position t of an i-interval I is
met. However, at this point the j-interval M that contains I.min − 1 might already
be closed. Therefore, C guesses, at the beginning of I (at position s

def= I.min) a
register number qs .i.pr (

def=: j) and stores the meet color qs−1. j.mc of that register in
qs .i.pmc. Then it verifies at position t that ft−1(dt ) = ⊥ or (with �

def= ft−1(dt ).reg)
that qt−1.i.pr = � and qt−1.i.pmc �= ft−1(dt ).�.mc.

It remains to show that the intervals of a valid witness structure can always be
colored such that (C3) and (C4) hold and that, conversely, (C1–4) enforce (W4).
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For the former, let us assume that (π,Iπ ) is valid. We call an interval I oc-
dependent on an interval M , if I , M and the predeccessor J of I satisfy the pre-
condition of (C3). Likewise, J is mc-dependent on M , if I , M and J satisfy the
precondition of (C4).

It is easy to see that thanks to the validity of (π,Iπ ) an interval is never depen-
dent on itself: indeed the assumption I = M in the precondition of (C3) immediately
yields that J and I overlap, contradicting (W4). Likewise, J = M in the precondi-
tion of (C4) yields that I and J meet or overlap, again contradicting (W4).

Furthermore, if I is oc-dependent on M then M.max < I.min. Therefore, the
directed graph of the “oc-depends on”-relation is acyclic and every interval can be
oc-dependent on at most one other interval. Therefore, there is a straightforward way
to assign overlap colors:

• color each interval black that is not oc-dependent on any other interval;
• then successively color each interval I that is oc-dependent on some colored inter-
val M by the opposite overlap color of M .

Meet colors can be assigned analogously by observing that if J is mc-dependent on
M then M.min > J.max.

Finally, we show that (C1–4) imply (W4). Towards a contradiction let us assume
that (π,Iπ ) satisfies (C1–4) but there are intervals I, J and a data value d with
J.val = d = I.val such that I and J overlap or meet.

Let us first assume that I and J overlap, more specifically, that J.firstR < I.firstR
but J.max ≥ I.min. Furthermore, we can assume that I and J are chosen such that
I.firstR is minimal. As all intervals with the same register number constitute a par-
tition, we can concude that I.reg �= J.reg, and we set i

def= I.reg and j
def= J.reg.

There can be no positionwith data value d between two consecutive j-positions of
J since the first such position t would have ft−1(d).reg = j and ft−1(d). j.mode =
mid, contradictioning (C2). In particular, there are no i-positions of I between any
j-positions of J .

Since J.firstR < I.firstR, we can therefore conclude that J.lastR < I.firstR.
Thanks to the minimal choice of I and J , there are no positions t ∈ {J.lastR +
1, . . . , I.firstR − 1} with dt = d.

We distinguish two cases.

(1) I starts after the last j-position of J .
(2) The last j-position of J is in I .

We consider case (1) first. Since J.firstR < I.firstR and J.max ≥ I.min it holds that
I.min − 1 ∈ J.Pos. As J.lastR < I.firstR, the j-interval M in the precondition of
(C4) is J , contradicting the fact that J andM have different meet colors—the desired
contradiction. Similarly, case (2) yields a contradiction, as in this case the i-interval
M in the precondition of (C3) is just I , again a contradiction as I andM have different
overlap colors.
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Finally, we assume that I and J meet, more specifically, that J.max = I.min − 1.
However, similarly as before, the intervalM in the precondition of (C4) is J , yielding
a contradiction as M and J have different meet colors.

Therefore, (C1–4) guarantee (W4).
Altogether, we have shown that

1. C can verify conditions (C1–4),
2. if there is a valid witness structure for w then (π,Iπ ) and the colorings can be

chosen such that (C1–4 hold, and
3. if (C1–4) hold then (π,Iπ ) is valid,

and therefore the proof of the proposition is complete by observing that C is indeed
a weak CMA. �

12.4 A Robust Extension of Deterministic CMAs

As was shown in [1], the languages recognized by deterministic CMAs are closed
under intersection, but not under union, complementation, concatenation, or Kleene
star. In the same article, we therefore proposed an automaton model, called Pres-
burger CMA. The class of languages recognized by deterministic Presburger CMA is
closed under Boolean operations. As was pointed out by Decker et al. [7], Presburger
CMA, as defined in [1] do not capture the same class of languages as CMA. Here,
we remedy this situation by redefining Presburger CMA in such a way that

1. nondeterministic Presburger CMA have exactly the same expressive power as
CMA, and

2. the languages acceptedbydeterministicPresburgerCMAis closedunder boolean
operations.

Presburger CMA differ from CMA only with respect to the acceptance condition.
We no longer use global and local accepting states, but rather require that the final
configuration satisfies a limited Presburger formula Φ. A limited Presburger for-
mula over a state set Q is a Boolean combination of atomic formulas of the following
kinds, for states q, q1, . . . , qk from Q and constant numbers c, c′.

(1) q,
(2) (q1 + · · · + qk) = c, and
(3) (q1 + · · · + qk mod c′) = c.

Given a configuration (p, f ) of a CMA with state set Q, we define g(q) to be the
number of data values d such that f (d) = q, i.e., g(q) = | f −1(q)|. Configuration
(p, f ) satisfies

(1) q if p = q,
(2) (q1 + · · · + qk) = c if g(q1) + · · · + g(qk) = c, and
(3) (q1 + · · · + qk mod c′) = c iff (g(q1) + · · · + g(qk) mod c′) = c.
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A run of a Presburger CMA is accepting if its final configuration satisfies Φ.

Proposition 12.4.1 For each Presburger CMA there is an equivalent CMA and vice
versa.

Proof (sketch).It is easy to see that the acceptance condition of a CMA C can be
mimicked by a Presburger CMA: the formula Φ can be chosen as a conjuction
Φ1 ∧ Φ2, where Φ1 =

∨

q∈FG

q and Φ2 =
∧

q /∈FL

(q = 0).

For the other implication, letC be a Presburger CMAwith formulaΦ.We assume,
without loss of generality, that in Φ negation occurs only before atomic formulas.
We construct a CMA C ′ that is equivalent to C . It simulates C while keeping track
of which atoms of Φ are satisfied after each step of a run. The globally accepting
states of C ′ are then simply those that represent a truth assignment to the atoms that
satisfies Φ.

Atoms of the form q or ¬q are easily dealt with – the automaton simply has to
remember what state of C the simulation is currently in.

Atoms of the form (q1 + · · · + qk mod c′) = c or (q1 + · · · + qk mod c′) �= c
are dealt with by keeping a modulo c′ counter that is incremented each time the
simulation enters a state in {q1, . . . , qk} and decremented each time a data value
“leaves” {q1, . . . , qk}, i.e., when the simulated transition (q, a, q ′) → q ′′ is such that
q ′ ∈ {q1, . . . , qk}.

For atoms of the forms (q1 + · · · + qk) = c and (q1 + · · · + qk) �= c we apply a
slightly more complicated construction. First, we construct a modified Presburger
CMA Ĉ fromC that has, for each state q ofC , two states q and q̂ . For each transition
(p, a, p′) → q of C , there is an additional transition (p, a, p′) → q̂ . Furthermore,
there are additional transitions ( p̂, a, p′) → q̂ and ( p̂, a, p′) → q. That is, the copy
q̂ of a state q has the same behavior as q with one exception: it can only be assumed
at the last position of a class, since there are no transitions of the form (p, a, q̂) → q.

To keep track of an atom (q1 + · · · + qk) = c it then suffices that C ′ counts in its
state the number of classes in which a state from {q̂1, . . . , q̂k} is assumed, up to at
most c, and that q1, . . . , qk become locally rejecting states.

An atom (q1 + · · · + qk) �= c can be treated as the disjunction of the atoms (q1 +
· · · + qk) = 0, . . ., (q1 + · · · + qk) = c − 1 and (q1 + · · · + qk) > c. The former can
be tested as just described. To test (q1 + · · · + qk) > c it suffices that C ′ verifies that
at least c + 1 times a state from {q̂1, . . . , q̂k} is assumed. �

Proposition 12.4.2 The class of languages accepted by deterministic Presburger
CMAs is closed under Boolean operations.

Proof Let A = (Q,Σ,Δ, δ, qI , Φ) and B = (P,Σ,Δ, γ, pI , Ψ ) be deterministic
CMAs. To construct an automaton that accepts the complement of L(A), we only
need to negate Φ. For the intersection or the union of L(A) and L(B), we construct
the product automaton A × B and use the conjunction (or the disjunction) of Φ and
Ψ , where, e.g., in the atomic modulo formulas each q of A is replaced by the sum
of those q ′ of A × B with q in their A-component. �
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Chapter 13
Ensemble Methods for Time Series
Forecasting

Héctor Allende and Carlos Valle

13.1 Introduction

Time series forecasting have received a great deal attention in many practical data
mining of engineering and science. Traditionally, the autoregressive integrated mov-
ing average (ARIMA) model has been one of the most widely used linear models
in time series prediction. However, the ARIMA model cannot easily capture the
nonlinear patterns. Artificial neural networks (ANN) and other novel neural network
techniques have been successfully applied in solving nonlinear pattern estimation
problems.

Extensive works in literature suggest that substantial enhancement in accuracies
can be achieved by combining forecasts from different models. However, forecast
combination is a difficult as well as a challenging task due to various reasons, and
often simple linear methods are used for this purpose. In this work, we propose a
nonlinear weighted ensemble mechanism for combining forecasts from time series
models.

Ensemble techniques for time series forecasting have indispensable importance in
many practical data mining applications. It is an ongoing dynamic area of research,
and over the years various forecasting models have been developed in the literature
[1, 2]. These methods consider the individual as well as the correlations in pairs
of forecasts for creating the ensembles without reducing its efficiency, simplicity,
robustness and flexibility. However, this is not at all an easy task and so far no single
model alone can provide best forecasting results for all kinds of time series data [2].
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Combining forecasts from conceptually different methods is a very effective way
to improve the overall precisions in forecast. The earliest use in the practice started
in 1969 with the important work of Bates on Granger [3]. Since then, numerous
forecast combination methods have been developed in the literature [4]. The vital
role of model combination in time series forecasting can be credited in the following
facts: (i) by adequate ensemble techniques, the forecasting strengths of the partici-
pating models aggregate and their weaknesses diminish, thus enhancing the overall
forecasting accuracy to a great extent, (ii) it is frequently a large uncertainty about
the optimal forecasting model, and in such situations combination strategies are the
most appropriate alternatives to use, and (iii) combining multiple forecasting can
efficiently reduce errors arising from faulty assumptions bias, or mistakes in the
data.

The ordinary average is the most simply used forecast ensemble technique. It
is easy to understand implement and interpret. However, this method is frequently
criticized because it does not utilize the relative performances of the contribution
models and is quite sensitive to the outliers. For this reason, other forms of averaging,
such as median, winsorized mean and trimmed mean, have been addressed in the
literature [5]. Another method is the weighted linear combinations of individual
forecasts in which the weights are determined from the past errors of the contributing
models [6].

However, this method completely ignores the possible relationships between two
or more participating models and hence is not adequate for combining nonstationary
models, which have been addressed by researchers [7].

The focus of this chapter will be ensembles for combining time series forecast-
ing. Design, implementation and application will be the main topics of this chapter.
Specifically, what will be considered are the conditions under which ensemble based
systems may be more beneficial than their single machine; algorithms for generating
individual components of ensemble systems and various procedures through which
they can be combined. Various ensemble-based algorithms will be analyzed: Bag-
ging, Adaboost and negative correlation; as well as combination rules and decision
templates.

Finally future research directions will be included like incremental learning,
machine fusion and the others areas in which ensemble of machines have shown
promise.

13.2 Time Series Analysis

13.2.1 Linear Models

The statistical approach for forecasting involves the construction of stochastic mod-
els to predict the value of an observation xt using previous observations. This is
often accomplished using linear stochastic difference equation models, with random
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input. By far, the most important class of such models is the linear autoregressive
integrate moving average (ARIMA) model. Here we provide a very brief review
of the linear ARIMA-models and optimal prediction for these models. A more
comprehensive treatment may be found for example in [1]. The seasonal ARIMA
(p, d, q) × (P, D, Q)S model for such time series is represented by

ΦP(BS)φp(B)∇D
S ∇d xt = ΘQ(BS)θq(B)εt (13.1)

where φP(BS) is the nonseasonal autoregressive operator of order p, θq(B) is the
nonseasonal moving average operator of order q, ΦP(BS), ΘQ(BS) are the sea-
sonal autoregressive and moving average operator of order P and Q and the terms
xt and εt are the time series and a white noise respectively. Moreover it is assumed
that E[εt |xt−1, xt−2, . . .] = 0. This condition is satisfied for example when εt are
zero mean, independent and identically distributed and independent of past xt s. It is
assumed throughout that εt has finite variance σ 2. The backshift operator B shifts
the index of a time series observation backwards, e.g. Bxt = xt−1 and Bkxt = xt−k .
The order of the operator is selected by Akaike’s information criterion (AIC) or by
Bayes information criterion (BIC) [8] and the parameters Φ1, . . . , ΦP , φ1, . . . , φp,
Θ1, . . . , ΘQ and θ1, . . . , θq are selected from the time series data using optimization
methods such as maximum likelihood [1] or using robust methods such as recursive
generalized maximum likelihood [9]. The ARMA-models is limited by the require-
ment of stationarity and invertibility of the time series. In other words, the system
generating the time series must be invariant and stable. In addition, the residuals
must be independent and identically distributed [10].

The ARMA models require a stationary time series in order to be useful for
forecasting. The condition for a series to be weak stationary is that for all t

E[xt ] = μ; V [xt ] = σ 2; COV [xt , xt−k] = γk . (13.2)

Diagnostic checking of the overallARMAmodels is done by the residuals. Several
tests have been proposed, among them themost popular one seems to be the so-called
portmanteau test proposed by [11], and its robust version by [12]. These tests are
based on a sum of squared correlations of the estimated residuals suitably scaled.

13.2.2 Non-linear Models

Theory and practice are mostly concerned with linear methods and models, such as
ARIMA models and exponential smoothing methods. However, many time series
exhibit features which cannot be explained in a linear framework. For example some
economic series show different properties when the economy is going into, rather
than coming out of, recession. As a result, there has been increasing interest in
non-linear models.
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Many types of non-linear models have been proposed in the literature. For exam-
ple, see bilinearmodels [13], classification and regression trees [14], threshold autore-
gressivemodels [15] and Projection Pursuit Regression [16]. The rewards from using
non-linear models can occasionally be substantial. However, on the other side, it is
generally more difficult to compute forecasts more than one step ahead [17].

Another important class of non-linear models is that of non-linear ARMAmodels
(NARMA) proposed by [18], which are generalizations of the linear ARMAmodels
to the non-linear case. A NARMA model obeys the following equations:

xt = h(xt−1, xt−2, . . . , xt−p, εt−1, . . . , εt−q) + εt , (13.3)

where h is an unknown smooth function, and as in Sect. 13.2.1 it is assumed that
E

[
εt |xt−1, xt−2, . . .

] = 0 and that variance of εt is σ 2. In this case the conditional
mean predictor based on the infinite past observation is

x̂t = E[h(xt−1, xt−2, . . . , xt−p, εt−1, . . . , εt−q)|xt−1, xt−2, . . .]. (13.4)

Suppose that the NARMA model is invertible in the sense that there exists a
function ν such as

xt = ν(xt−1, xt−2, . . .) + εt . (13.5)

Then given the infinite past of observations xt−1, xt−2, . . ., one can compute the
εt−1 in (13.3) exactly:

εt− j = κ(xt− j , xt− j−1, . . .), j = 1, 2, . . . , q. (13.6)

In this case the mean estimate is

x̂t = h(xt−1, xt−2, . . . , xt−p, εt−1, . . . , εt−q), (13.7)

where the εt− j are specified in terms of present and past xu’s. The predictor of (13.7)
has a mean square error σ 2.

Since we have only a finite observation record, we cannot compute (13.6) and
(13.7). It seems reasonable to approximate the conditional mean predictor (13.7) by
the recursive algorithm

x̂t = h(xt−1, xt−2, . . . , xt−p, ε̂t−1, . . . , ε̂t−q), (13.8)

ε̂t− j = xt− j − x̂t− j , j = 1, 2, . . . , q, (13.9)

with the following initial conditions

x̂0 = x̂−1 = · · · = x̂−p+1 = ε̂0 = · · · = ε̂−q+1 = 0. (13.10)
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For the special case of non-linear autoregressive model (NAR), it is easy to check
that (13.3) is given by

xt = h(xt−1, xt−2, . . . , xt−p) + εt . (13.11)

In this case, the minimum mean square error (MSE) optimal predictor of xt given
xt−1, xt−2, . . . , xt−p is the conditional mean (for t ≥ p + 1).

x̂t = E[xt |xt−1, . . . , xt−p] = h(xt−1, . . . , xt−p). (13.12)

This predictor has mean square error σ 2.

13.2.3 Concept Drift

A challenging scenario for time series is when the underlying law of probability
changes. It is known as concept drift and it refers to the fact that data is obtained
from a non-stationary environment [19]. In the classification setting, we can describe
concept drift as any scenario where the posterior probability of a class ck that
a given instance belongs, P(ck |x) = P(x |ck)P(ck)/P(x), changes over time, i.e.
Pt+1(ck |x) �= Pt (ck |x). P(x) describes probability of an instance x ∈ X . P(ck |x)
is the likelihood of observing a data point x within a particular class. P(ck), defines
the class prior probabilities, and relates class balance to the overall underlying law
of probability. Note that an observation of change in P(x) might be insufficient to
characterize a concept drift, because of its independence of the class labels.

There are twoways tomake amodel adapt to a concept-drift. The first one consists
in adapting a single model so that it can learn example by example and adapt to a
changing pattern. Another approach is to use an ensemble of models. Zang et al.
[20] conclude that both have the same capacity to handle stream data, including the
presence of concept drift. Incremental single algorithms have a better performance
in terms of efficiency, but the ensembles adapt better to the concept drift and are
more stable.

13.3 Elements of the Ensemble Architecture

Ensemble methods are based on the idea of combining a set of individual predictors
{ f1, f2, . . . , fN }, building a decision function F bymeans of an aggregation operator
that combines the individual forecasts instead of the popular keep-the-best (KTB)
model [21, 22]. Ensemble methods can differ in three different stages: manipulat-
ing data, manipulating the base learner, and the function that the ensemble uses to
generate the “consensus” output.
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13.3.1 Data Manipulation

This is the most popular way to introduce diversity in a ensemble. There are different
forms to manipulate the data: Implicit diversity can be introduced by using a random
sample St to train each learner n according to a distribution D which can be uniform
as in Bagging [23], or Sn can be created by using a weight distribution over the
examples on the training set, as in Wagging [24]. Explicit diversity approaches, like
Adaboost [25] and its variants, compute the distribution of instances for each learner
according to a metric which depends on the previous ensemble.

Another way to encourage diversity is manipulating either the inputs or the out-
puts. For example, input smearing [26] enhances the diversity of Bagging by adding
Gaussian noise to the inputs. The amount of noise, and therefore the amount of diver-
sity, is controlled by a parameter. Experimental results show that this technique can
outperform Bagging in terms of generalization error. Rodriguez et al. [27] encourage
diversity by randomly splitting the feature set into K disjoint subsets. Next, Principal
Component Analysis (PCA) is applied to each subset retaining all principal compo-
nents. On the other hand, Breiman proposes output smearing [28] that adds noise to
the targets in the same way as input smearing.

The next two sub-categories involve sub-sampling, which is a widely-known tech-
nique commonly used to cut down on the memory size and the computational cost
of the training process. But also this technique contributes to implicitly encourage
the diversity in the ensemble, hence, improving performance. For example, Zhang
and Berardi [22] propose a neural network ensemble with both systematic and serial
partitioning to build the sub-samples. The first partition method divides data into k
subsamples, where k is the input lag that the network uses. Each data partition con-
sists of a set of k-lag input vectors, selected from all k-lag input vectors throughout
the original training sample, with non-overlapping examples to feed each ensemble
member. According to the authors, this subsampling scheme diminishes the correla-
tion among the ensemble predictors. The second data partitioning technique divides
data into k disjoint subsamples based on the chronological time sequence. Thus,
each neural network trains with one of the subsamples, obtaining an ensemble of k
models. On the other hand, Subagging [29, 30] trains each predictor by using a sub-
sample of size m from the original training set of M examples without replacement.
This approach has performed similarly to Bagging for high-dimensional datasets.
Crogging [31] uses cross-validation (CV) samples to train each forecasting model.
The authors test different cross validation methods to encourage diversity among
the neural networks. Crogging averages the learner outputs to obtain the aggregated
prediction. Experiments show that this algorithm outperforms Bagging and KBT
model.

Finally, unlike horizontal partitioning methods, vertical (Feature Set) partitioning
techniques keep all the training examples in each subsample; however, each of them
contains a subset of the original set of features. Thus, each classifier learns a different
projection of the training set. This diversity can reduce the correlation among the pre-
dictors [32]. However, in classification setting this methodsmight lead to imbalanced
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class problems [33]. Several researchers have proposed algorithms which belong to
this category, for example, Tumer and Oza [34] present an ensemble algorithmwhich
trains each predictor with a subset of features selected depending on the correlations
between individual features and class labels. The authors claim that this approach
reduces dimensionality and improves generalization performance. Bryll et al. [32]
propose attribute bagging (AB) which selects each subset of features by randomly
selecting the features without replacement. Then, the number of features is selected
by computing the classification performance of different sized random subsets of
attributes.

13.3.2 Manipulating the Base Learner

Introducing differences among the learners is a well-known strategy to add diver-
sity, and there are different forms to apply it. First, depending on the optimization
method, diversity can be encouraged in the ensemble by starting the search in the
hypothesis space from different points. Since back-propagation can lead to local
optima, assigning different initial weights to the neural networks that compound the
ensemble [35] can implicitly generate diversity. It is generally accepted that this way
of introducing diversity obtains poor performance [36]. The second way is to manip-
ulate the inducer’s parameters, for example, using neural networks as base learners,
and several attempts to change the network architecture have been proposed, as in
[37, 38]. Opitz and Shavlik vary the number of the nodes or use different neural
networks topology [39]. The first approach is not effective in practice, but the second
method effectively encourages the diversity and the performance. The third group
of techniques encourages explicit diversity by adding a regularization term in the
optimization function of each learner. Negative correlation algorithms [40, 41] are
the most studied approaches in this category. These methods will be studied in more
detail in Sect. 13.5.3. Finally the fourth class of methods induce implicit diversity by
using different base learners. The gist of this idea is to combine the best of each base
learner. Even more ambitiously, these techniques hope that the synergistic effects
of this combination may improve the performance of the ensemble [33]. Wichard
et al. [42] state that a heterogeneous ensemble can reduce the variance because the
individual errors are strongly uncorrelated. For instance, Woods et al. [43] combine
four types of base learners: decision trees, neural networks, K-nearest neighbors and
quadratic Bayes. Given a new instance from the testing-set, the output is obtained
with model selection, that is, the algorithm chooses the learner classifier with the
highest local accuracy in the feature space. Wang et al. [44] combine decision trees
and neural networks in medical classification. Using different base learners implies
that the bias of the learner has to match with the characteristics of the application
domain [45]. Thus, every ensemble in this category needs an exhaustive tune in stage,
in order to pick the appropriate base learners [46].
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13.3.3 Aggregation Function

There are a wide variety of methods for combining the individual outputs of the
predictors, and the most common in the literature are the following:

1. Linear combination: In regression settings, the joint decision F is commonly
obtained by a linear combination of the individual hypotheses [6].

F(x) =
N∑

n=1

βn ft (x). (13.13)

The weight of each model is usually computed with some quality criteria: (i) it
can be assigned to be the inverse of the previous forecast error (MSE, MAPE,
MAE, etc.) [47]. This is called error based approaches. (ii) the optimal weights
are obtained by minimizing the total sum of squared error (SSE). This is called
variance-based method [47].

2. Simple Average: A particular case of the linear combination is the simple average,
all hypothesis weights are equal, this is, βn = 1/N ,∀n = 1, . . . , N [5, 48].

3. Trimmed mean: This method is an adaptation of the simple average. To predict
a single point, it removes the largest and smallest individual predictions before
computing the average [5].

4. Windorized Mean: This is another average-based approach. To obtain the predic-
tion of a single instance, it replaces the smallest and largest individual predictions
with the predictions closest to them. Next, simple average is computed over the
modified set of predictions [48].

13.4 Why Ensemble?

Dietterich [49] identified statistical, computational and representational reasons
that support these premises. Let us suppose that we have a set of predictors
{ f1, f2, . . . , fN } with good performance in the training set Sm .

1. Statistical.We can pick one of them taking the risk that this single classifiermight
not necessarily be the best choice, since we do not know the exact probability
function underlying the data. We can create a set of classifiers with zero training
error [50], and therefore, all predictors will become indistinguishable.

2. Computational. Some training methods, such as hill-climbing or gradient
descent, may fall into local optima and therefore, the initial parameters of each
machine can affect the choice of the final hypothesis, obtaining a solution that is
far from the optimal model.

3. Representational. The hypothesis space of the classifiers used to approximate
the underlying function f0 to the data may not contain the optimal prediction. For
example, an ensemble of linear functions can approximate any decision function
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with pre-determined performance [51]. Some base learners, such as neural net-
works, with a finite training sample select the first hypothesis that fits the training
data. Thus, the effective space of hypotheses H ′ by the learner is substantially
smaller than the hypotheses space H . In addition, one can note the simplicity
of combining weak predictors, in contrast to the use of a single highly complex
machine. For this reason, ensemble approaches have been successful in solving
real problems, which has made them an increasingly studied discipline.

The remarkable point is that with an appropriate design, the expected performance
of the combined predictor can be better than the average performance of individual
predictors, even if each of them is weakly good [52].

13.5 The Most Popular Ensemble Approaches

As we previously mentioned, different ensemble approaches are distinguished by
the manner in which they manipulate the training data, by the way in which they
select the individual hypotheses and by the way in how those are aggregated to the
final decision. Now we will review the most commonly used ensemble approaches,
namely Bagging, AdaBoost and Negative Correlation.

13.5.1 Bagging

Bagging, introduced by Breiman [23] for classification and regression settings, trains
each learner using a bootstrap sample from the training set Sm and combines each
output by uniform averaging. This technique can be viewed as an algorithm with
only an implicit search for diversity, because no information about the predictions of
the other models is incorporated to generate each individual predictor. According to
Breiman, by averaging a set of predictors trained with a different bootstrap sample,
this method might reduce the influence of the outliers [53, 54]. From this point of
view, resampling has an effect similar to that of robust M-estimators in statistics
[55], where the influence of sample points is bounded using appropriate loss func-
tions, for example, Huber loss or Tukey’s bi-square loss. Hence, this approach might
considerably reduce the variance of the bagged prediction, especially when the base
learner is unstable [23].

However, traditional bootstrap breaks the sequence of data points which may lead
to a bad generalization in time series problems. In order to deal with this important
issue, Inoue andKilian adapt theway that Bagging construct its training samples [56].
Instead, the authors use resampling blocks of instances from the original training set
with replacement, in order to encourage diversity, and at the same time, to capture the
dependence among the examples. This procedure is called block bootstrap, and the
block size is chosen to capture the dependence in error term [57]. A simulation study
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reveals that bagging considerably reduces the out-of-sample mean squared error of
the predictions. In [58] the training samples keep the temporal order of the points,
by introducing a weight for each example that corresponds to the number of times
that the point is selected in the bootstrap sample. Thus, if an example has not been
selected in the sample, its weight is equal to zero. Finally, the output of the ensemble
for a single instance is computed as a weighted average, where the weight of each
predictor is the weighted root mean squared error (WRMSE).

13.5.2 AdaBoost

In 1997, Freund and Schapire introduced Adaboost [25], a sequentially coupled
approach that fits an additive model through a forward stagewise strategy [8], by
training a single predictor to minimize the residual of the previous ensemble in each
round. This algorithm has a theoretical background based on the “PAC” learning
model [59]. The gist of this model is to create a method that combines a group
of weak learners to produce a strong learning algorithm. This approach provides
good generalization ability but it is computationally expensive since the learners are
coupled in a sequential manner. The main idea of AdaBoost is to maintain a sam-
pling distribution over the training set. When the algorithm begins, the distribution
is uniform, that is, all weights are set to w1

m = 1
N ,m = 1, . . . , M . Here, wn

m is the
weight of the mth example at round n. At each round of the algorithm, the weights
of the incorrectly classified examples are increased, in such a way that in the fol-
lowing step the weak learner is forced to focus on the misclassified examples of the
training set. Thus, the algorithm concentrates on the “hard” examples, instead of on
the correctly classified examples. In normal scenarios, this approach usually outper-
forms Bagging. However, under noisy data it is the robust performance of Bagging
that is commonly superior, rather than Adaboost which considerably decreases its
generalization capacity [60].

In time series, Shresta and Solomatine introduce AdaBoost.RT [61], where the
absolute relative error (ARE) for the learner n is computed by considering the error
over a threshold φ. Also, the updating rule reduces the weights of the instances with
errors lower than φ, and subsequently, the weights are then normalized to make
them a distribution. Finally, F is obtained as the weighted average of the individual
learners, with weights equal to− log(βn). It is worth noting that both algorithms have
no proof of convergence [61, 62]. Canestrelli uses Drucker’s AdaBoost.R2 [62] for
tide levels forecasting, which quantifies the loss for each training sample using one
of the three possible functions:

1. Absolute percentage error (APE) wn
m = | fn(xm )−ym |

maxm=1,...,M | fn(xm )−ym | .
2. Quadratic wn

m = ( fn(xm) − ym)2maxm=1,...,M fn(xm) − ym)2.
3. Exponential: 1 − exp −| fn(xm )−ym |

max( m=1,...,M)| fn(xm )−ym | .
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Then, the confidence of the predictor is computed as a function of the weighted
average error according to the weight distribution. And instances with higher errors
increase its weights in order to have more chances to appear in the next training
sample. Finally, the output of the ensemble is computed as the weighted median.
Assaad et al. adapt this method for recurrent neural networks as the base learner [63].
Theymake two changes: first, in order to keep the temporal dependence of the training
data, they weight the example errors in order to update the RNN weights instead of
resampling. Second, an additional parameter is introduced to increase (even more)
the weight of the wrong modeled examples. On the other hand, de Souza et al. [64]
propose the BCC algorithm, an adaptation of Adaboost.R2 technique that uses the
Genetic Programming (GP) as the base learner. It uses the exponential loss function to
compute the error of each example. And, in order to update the weights, it includes a
multiplicative factorwhichdependson the correlationbetween the learner predictions
and the true targets. Finally, Goh et al. [65] introduce Modified Adaboost, which
combinesEllmanNetworks using aweighted linear function.Besides, it computes the
error of each instance by considering two loss functions widely used for comparing
drug dissolution profiles.

According to the gradient descent perspective of Adaboost [8, 66], its goal is to
add the i-th learner in the ensemble which minimizes

(βn, fn) = argmin(β, f )

M∑

m=1

�(ym, F(xm)), (13.14)

where F(xm) = Fn−1(xm) + βn fn(xm). At each round, the algorithm selects the
hypothesis fn which minimizes Eq.13.14 over the sample distribution wn . Then
it performs a line search along the direction. From this point of view, Buhlmann
and Yu [67] introduce a gradient boosting method with the quadratic loss function
which is adapted for time series forecasting for load forecasting [68], finance [69],
economics [70] and production [71].

13.5.3 Negative Correlation Methods

A very important feature of an ensemble is the diversity of their members, because
a group of learners composed exclusively by exact replicas of the same hypothesis
is clearly useless. A way to quantify this property is the so called Bias-Variance-
Covariance decomposition [72]1 for the quadratic loss of an ensemble F obtained
as a convex combination of a set of N predictors and the optimal prediction f0(x)

1If the hypotheses are considered fixed, the expectations are taken based on the distribution of the
inputs x. If they are considered free, expectations are also taken with respect to the distribution of
the sample(s) used to estimate them.
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E[ f0(x) − F(x)2] = bias(F(x))2 +
T∑

t=1

w2
t var( fn(x)) + E

⎡

⎣
∑

i

∑

i �= j

wiw jcov( fi , f j )

⎤

⎦ ,

(13.15)

where bias(F(x)) = E[F(x) − f0(x)] = ∑T
t=1 wt E[ fn(x) − f0(x)], var( fn(x)) =

E
[
( fn(x) − E[ fn(x)])2

]
, and cov( fi , f j ) = E

[
( fi (x) − E[ fi (x)])( f j (x)−

E[ f j (x)])
]
.

This decomposition suggests that selecting a set of hypotheses with negative
covariance cov( fi , f j ) without increasing the individual biases and variances would
be a very convenient scenario, since this would minimize the expected quadratic
loss [8, 41, 72, 73]. Several methods based on the negative correlation among the
learners emerge from this result. In the seminal work of Rosen [74], for example,
the hypotheses are generated sequentially using a base learner which, at each step
t , is provided with a different loss function that directly penalizes correlations with
previous errors,

�R( fn(x), y) = (y − fi (x))2 + λ

t−1∑

j=1

d(t, j)( fn(x) − y)( f j (x) − y), (13.16)

where λ is a scaling function when t = j − 1 and otherwise 0. Note that the learner
alwaysminimizes the errorwithin the original set of examples. However, at each step,
the learner minimizes a different loss function �R and therefore, the target hypothesis
changes from round to round depending on the previous learning step.

In the Negative Correlation algorithm (NC) [41], the N hypotheses f1, . . . , fN
are trained simultaneously. The loss function to be minimized by each individual
hypothesis fn is given by equation

�NC( fn(x), y) = (y − fn(x))2 + λ

n−1∑

j �=n

( fn(x) − F(x))( f j (x) − F(x)). (13.17)

Note that both �R and �NC promote the individual accuracy by penalizing the
differences y − fn(x). However, the correlations among the individual predictions
fn(x) are no longer measured with respect to the target prediction y but with respect
to the composite prediction F(x). This is taking into account that equation (13.17)
can be expressed as

�NC( fn(x), y) = (y − fn(x))2 + λ( fn(x) − F(x))
n−1∑

j �=n

( f j (x) − F(x)). (13.18)

In each training epoch, F(x) is computed as the uniform average of the predictions
made for the whole ensemble in the previous timestep.
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Note that
∑

j �=n ( f j (x) − F) = −( fn − F), since F(x) = 1
N

[
fn + ∑

j �=n f j (x)
]
.

Thus, �NC can be re-written as

�NC( fn(x), y) = (y − fn(x))2 − λ( fn(x) − F(x))2. (13.19)

Rodan and Tiño [75] propose an ensemble of Echo State Networks [76] with
diverse reservoirs, where the negative correlation term defined in equation (13.18) is
used to compute their collective read-out.

Another point of interest is that the Negative Correlation algorithm can also be
motivated by the ambiguity decomposition [77]

(y − F(x))2 =
N∑

n=1

wn(y − fn(x))2 −
N∑

n=1

wn( fn(x) − F(x))2. (13.20)

It states that the quadratic loss of the ensemble is the weight average of the individual
errors, minus the weighted average of the individual deviations with respect to the
ensemble output. The above-mentioned decomposition suggests that the ensemble
error can be reduced by increasing the second term which is called the ambiguity
term [73]. However, uncontrolled deviations can lead to increasing the first term in
(13.20), hence, increasing the ensemble error. Note that the loss given in equation
(13.18) is essentially the above mentioned decomposition corresponding to learner t .

Acknowledgments We thank to ProfessorClaudioMoraga for their continued support in the design
and consolidation of the doctoral program in computer engineering of the Universidad Técnica
Federico Santa María.
This work was supported in part by Research Project DGIP-UTFSM (Chile) 116.24.2 and in part
by Basal Project FB 0821.

References

1. George EP Box, GwilymM Jenkins, and Gregory C Reinsel. Time series analysis: forecasting
and control. Prentice Hall Englewood cliffs nj, third edition edition, 1994.

2. JanGDeGooijer andRob JHyndman. 25 years of time series forecasting. International journal
of forecasting, 22 (3):443–473, 2006.

3. JohnMBates and CliveWJ Granger. The combination of forecasts. Journal of the Operational
Research Society, 20(4):451–468, 1969.

4. G Peter Zhang. Time series forecasting using a hybrid arima and neural network model. Neu-
rocomputing, 50:159–175, 2003.

5. Lilian M de Menezes, Derek W. Bunn, and James W Taylor. Review of guidelines for the use
of combined forecasts. European Journal of Operational Research, 120(1):190 – 204, 2000.

6. Ratnadip Adhikari and R. K. Agrawal. Combiningmultiple time series models through a robust
weighted mechanism. In 1st International Conference on Recent Advances in Information
Technology, RAIT 2012, Dhanbad, India, March 15-17, 2012, pages 455–460. IEEE, 2012.

7. Hui Zou and Yuhong Yang. Combining time series models for forecasting. International Jour-
nal of Forecasting, 20(1):69–84, 2004.



230 H. Allende and C. Valle

8. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer Series
in Statistics. Springer New York Inc., New York, NY, USA, 2001.

9. Hector Allende and Siegfried Heiler. Recursive generalized m-estimates for autoregressive
moving average models. Journal of Time Series Analysis, 13(1):1–18, 1992.

10. Bruce L Bowerman and Richard T O’Connell. Forecasting and time series: An applied
approach. 3rd. 1993.

11. GretaMLjung andGeorgeEPBox.Onameasure of lackoffit in time seriesmodels.Biometrika,
65(2):297–303, 1978.

12. H Allende and J Galbiati. Robust test in time series model. J. Interamerican Statist. Inst,
1(48):35–79, 1996.

13. T Subba Rao. On the theory of bilinear time series models. Journal of the Royal Statistical
Society. Series B (Methodological), pages 244–255, 1981.

14. Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classification and
regression trees. CRC press, 1984.

15. Vector Autoregressive Models for Multivariate Time Series, pages 385–429. Springer New
York, New York, NY, 2006.

16. Jerome H Friedman. Multivariate adaptive regression splines. The annals of statistics, pages
1–67, 1991.

17. Jin-Lung Lin and Clive WJ Granger. Forecasting from non-linear models in practice. Journal
of Forecasting, 13(1):1–9, 1994.

18. Jerome T Connor, R Douglas Martin, and Les E Atlas. Recurrent neural networks and robust
time series prediction. IEEE transactions on neural networks, 5(2):240–254, 1994.

19. Indre Zliobaite. Learning under concept drift: an overview. CoRR, abs/1010.4784, 2010.
20. Wenyu Zang, Peng Zhang, Chuan Zhou, and Li Guo. Comparative study between incremental

and ensemble learning on data streams: Case study. Journal Of Big Data, 1(1), 2014.
21. Graham Elliott, Clive Granger, and Allan Timmermann, editors.Handbook of Economic Fore-

casting, volume 1. Elsevier, 1 edition, 2006.
22. P. G. Zhang and L. V. Berardi. Time series forecastingwith neural network ensembles: an appli-

cation for exchange rate prediction. Journal of the Operational Research Society, 52(6):652–
664, 2001.

23. L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.
24. E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging,

boosting, and variants. Machine Learning, 36:105–139, 1999.
25. Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an

application to boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997.
26. Eibe Frank and Bernhard Pfahringer. Improving on Bagging with Input Smearing, pages 97–

106. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.
27. Juan J. Rodriguez, Ludmila I. Kuncheva, and Carlos J. Alonso. Rotation forest: A new classifier

ensemble method. IEEE Trans. Pattern Anal. Mach. Intell., 28(10):1619–1630, October 2006.
28. Leo Breiman. Randomizing outputs to increase prediction accuracy. Machine Learning,

40(3):229–242, 2000.
29. P. Bühlmann and Bin Yu. Analyzing bagging. Annals of Statistics, 30:927–961, 2002.
30. J.H. Friedman and P.Hall. On bagging and nonlinear estimation. Journal of Statistical Planning

and Inference, 137, 2000.
31. D. K. Barrow and S. F. Crone. Crogging (cross-validation aggregation) for forecasting x2014;

a novel algorithm of neural network ensembles on time series subsamples. In Neural Networks
(IJCNN), The 2013 International Joint Conference on, pages 1–8, Aug 2013.

32. R. K. Bryll, R. Gutierrez-Osuna, and F. K. H. Quek. Attribute bagging: improving accuracy of
classifier ensembles by using random feature subsets. Pattern Recognition, 36(6):1291–1302,
2003.

33. L. Rokach. Taxonomy for characterizing ensemble methods in classification tasks: A review
and annotated bibliography. Computational Statistics & Data Analysis, 53(12):4046–4072,
2009.



13 Ensemble Methods for Time Series Forecasting 231

34. K. Tumer and N. C. Oza. Input decimated ensembles. Pattern Analysis and Applications,
6(1):65–77, 2003.

35. J. F. Kolen, J. B. Pollack, J. F. Kolen, and J. B. Pollack. Back propagation is sensitive to initial
conditions. In Complex Systems, pages 860–867. Morgan Kaufmann, 1990.

36. G. Brown, J. L. Wyatt, R. Harris, and Xin Yao. Diversity creation methods: a survey and
categorisation. Information Fusion, 6(1):5–20, 2005.

37. D. Partridge and W. B. Yates. Engineering multiversion neural-net systems. Neural Computa-
tion, 8:869–893, 1995.

38. W. Yates and D. Partridge. Use of methodological diversity to improve neural network gener-
alization. Neural Computing and Applications, 4(2):114–128, 1996.

39. D. W. Opitz and J. W. Shavlik. Generating accurate and diverse members of a neural-network
ensemble. In Advances in Neural Information Processing Systems, pages 535–541. MIT Press,
1996.

40. R. Ñanculef, C. Valle, H. Allende, and C. Moraga. Training regression ensembles by equential
target correction and resampling. Inf. Sci., 195:154–174, July 2012.

41. Yong Liu andXin Yao. Ensemble learning via negative correlation.Neural Networks, 12:1399–
1404, 1999.

42. Ogorzalek M. Wichard JD, Christian M. Building ensembles with heterogeneous models. In
7th Course on the International School on Neural Nets IIASS, 2002.

43. K. S. Woods, W. P. Kegelmeyer, and K. W. Bowyer. Combination of multiple classifiers using
local accuracy estimates. IEEE Trans. Pattern Anal. Mach. Intell., 19(4):405–410, 1997.

44. Wenjia Wang, P. Jones, and D. Partridge. Diversity between neural networks and decision trees
for building multiple classifier systems. In Josef Kittler and Fabio Roli, editors,Multiple Clas-
sifier Systems, volume 1857 of Lecture Notes in Computer Science, pages 240–249. Springer,
2000.

45. P. Brazdil, J. Gama, and B. Henery. Characterizing the applicability of classification algorithms
using meta-level learning. In F. Bergadano and L. De Raedt, editors, ECML, volume 784 of
Lecture Notes in Computer Science, pages 83–102. Springer, 1994.

46. Niall Rooney, David Patterson, Sarab Anand, and Alexey Tsymbal. Dynamic Integration of
Regression Models, pages 164–173. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

47. Christiane Lemke and Bogdan Gabrys. Meta-learning for time series forecasting and forecast
combination. Neurocomputing, 73(10-12):2006–2016, 2010.

48. Victor Richmond R. Jose and Robert L. Winkler. Simple robust averages of forecasts: Some
empirical results. International Journal of Forecasting, 24(1):163 – 169, 2008.

49. T. G. Dietterich. Ensemble methods in machine learning. In Proceedings of the First Inter-
national Workshop on Multiple Classifier Systems, MCS ’00, pages 1–15, London, UK, UK,
2000. Springer-Verlag.

50. D. M. Hawkins. The Problem of Overfitting. Journal of Chemical Information and Computer
Sciences, 44(1):1–12, 2004.

51. L. I. Kuncheva.Combining Pattern Classifiers: Methods and Algorithms. JohnWiley and Sons,
Inc., 2004.

52. L.K. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 12(10):993–1001, 1990.

53. Y. Grandvalet. Bagging down-weights leverage points. In IJCNN (4), pages 505–510, 2000.
54. Y. Grandvalet. Bagging equalizes influence. Machine Learning, 55(3):251–270, 2004.
55. P. J. Huber. Robust Statistics. Wiley Series in Probability and Statistics. Wiley-Interscience,

1981.
56. Atsushi Inoue and Lutz Kilian. Bagging time series models.CEPRDiscussion Paper No. 4333,

2004.
57. Peter Hall and Joel L. Horowitz. Bootstrap Critical Values for Tests Based on Generalized-

Method-of-Moments Estimators. Econometrica, 64(4):891–916, 1996.
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Chapter 14
A Hierarchical Distributed Linear
Evolutionary System for the Synthesis
of 4-bit Reversible Circuits

Fatima Zohra Hadjam and Claudio Moraga

14.1 Introduction

Reversible technologies and the synthesis of reversible circuits are promising areas of
research considering the expected further technological advances towards quantum
computing, particularly to fulfill the increasing demand of low-power consumption
applications. Benett showed in [1] that in order to limit power dissipation, it is
necessary that all the computations have to be performed in a reversible way. An
elementary reversible circuit, a “gate”, realizes a bijection (one-to-one mapping)
from the set of input tuples to the outputs. A general reversible circuit is made
with a cascade of reversible gates, without fan-out (multiple use of a same signal
is not permitted) and without feedback (the circuit should be cycle free). Quantum
computing circuits are reversible.

So far, various methods for reversible circuits design have been proposed. Com-
mon synthesis approaches and recent comprehensive reviews are presented in [2, 3].
The various constraints imposed by the reversibility, as mentioned above, and the
extended search space make their design very difficult comparing with the classical
irreversible logic circuits design. This suggests that an evolutionary approach might
provide an effective design alternative. There are very few publications on the evo-
lutionary design of reversible circuits. Most of them use Genetic Algorithms (GAs)
focusing on finding alternative realization of gates at the quantum level [4, 5] or on
optimizing aspects of already available circuits, like e.g. reordering the outputs [6].
Papers on reversible circuits design using Genetic Programming are even more rare
[7], although as shown in [8] very good results are obtained. There are important
contributions of Genetic Programming to quantum computing [9], however at the
algorithms level, not at the circuit level.
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14.1.1 Related Works

Even limited to 4-bits reversible functions, the synthesis of optimal reversible circuits
becomes an arduous task owing to the extremely large problem space (16! = 244
functions). According to [10], the output of a search alone, counting only the space
required to list elementary gates for every function, would require over 100 terabytes
of storage. To tackle this specific problem, several techniques have been deployed.
The best and most relevant are presented in [11–21]. Due to space constrains, details
on these methods will not be included.

14.1.2 Motivation

All the methods, whose references were mentioned above, are all based on the
“lookup” in a library, a database, or a hash-table of partial solutions. Several
approaches have been proposed to alleviate the storage space and the search time. To
avoid confusions, in this paper we distinguish between “optimum” and “optimal”.
A solution is called optimum if it has formally been proven that no better solution
exists. A solution is called optimal if no better solution is known. Is it possible to
implement optimal or suboptimal 4-bit reversible functions without relying on exist-
ing libraries?Answering this questionwill be the subject of the current paper. For this
purpose we propose a linear genetic programming based method to design a large
set of benchmarks found in the literature cited above. Reversible Improved Mutli-
Expression Programming, RIMEP2, is such a method. RIMEP2 has been introduced
in [8, 22]. Optimal competitive solutions were reported for a group of 30 selected
benchmarks (n-lines reversible functions, with n = 3 . . . 15), where a quantum cost
reduction up to 96.13% was reached with an average of 41.08%. The meaning of
“quantum cost” will be explained later in Sect. 14.2.2.

To prepare an evolutionary design of the 69 4-bit reversible functions as bench-
marks, aggregated from the references mentioned above, we introduce a new aspect
in RIMEP2: distributed computation. At a first sight, distribution is frequently con-
sidered as parallelizing some inner aspects of the evolutionary algorithm such as dis-
tributing the fitness calculation or using an island model concept. The idea presented
here is completely different. A new hierarchical topology of multiple populations
is used and a new communication policy is introduced. Such architecture helps the
evolutionary algorithm to explore and exploit the search space in an efficient way
(see Sect. 5.3). The obtained results (see Sect. 5.4) outperformed most (or matched a
few) of the already optimized and published 4-bit reversible circuits, reaching a quan-
tum cost reduction of up to 62.71% with an average of 10.79% for the benchmarks
where the quantum cost is considered as a performance measure. A gate count reduc-
tion up to 60% was achieved with an average of 16.82% for the benchmark groups
where the gate count was considered. The rest of the paper is structured as follows:

http://dx.doi.org/10.1007/978-3-319-48317-7_5
http://dx.doi.org/10.1007/978-3-319-48317-7_5
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RIMEP2 is introduced in Sect. 14.2. Section14.3 describes the concept of distribu-
tion for RIMEP2 (leading to DRIMEP2) and explains its mechanism. Section14.4,
presenting a comparative view of design results usingmethods of the early references
and DRIMEP2, illustrates its effectiveness. Some conclusions will close the paper.

14.2 Introduction to RIMEP2

As mentioned earlier, RIMEP2 is a linear graph-coded genetic programming system
able to represent anymultiple inputs-outputsmathematical function in the same chro-
mosome (individual). In our case, n-bit reversible functions. As in any evolutionary
approach, we first explain the encoding of the chromosome, the fitness calculation
and then introduce the different used genetic operators.

14.2.1 The Chromosome Encoding

A RIMEP2 chromosome is a list of expressions. Each sub-expression represents a
k-bit gate, where 1 ≤ k ≤ n. The whole chromosome represents a cascade of gates
which constitutes (or covers) the implemented reversible function. To clarify this
encoding, consider an example: a full subtractor. Its irreversible specification is shown
in Table14.1a. RIMEP2 has evolved a set of different solutions (reversible circuits
having different implementations and costs) using {P, N P,Cnot} as function set
(called later “library”). P , NP andCnot indicate respectively Peres, Negated control
Peres (the first control is negated) and control Not (see [17, 23, 24]). The graphic
representation of the cited gates is given in Fig. 14.1c. Two solutions have been
selected, which encodings are shown in Table14.1b. The encodings given in the
Table14.1b represent cascades of sub-expressions (gates). The chromosomes are
traversed from left to right. Each column corresponds to a sub-expression (gate).

Table 14.1 The specification
of the full subtractor

Inputs Outputs

a b c o1 o2
0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 0

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1
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(a) THE EXACT MAPPINGS OF THE CHROMOSOMES GIVEN IN TABLE 1.b.

The phenotype of Solution 1 The phenotype of Solution 2

(b): THE EFFECTIVE SOLUTIONS ENCODED RESPECTIVELY IN CHROMOSOME 1
AND 2 (SUB-EXPRESSIONS 1AND 2FOR BOTH). 

(c): USED GATES:GATE ENCODING AND ITS CORRESPONDING QUANTUM 
GRAPHIC REPRESENTATION

P NP Cnot

Fig. 14.1 Two evolved realizations of the full subtractor

Consider the solution 1, the first column: P(3, 2, 4). The top of the column indicates
the code of the corresponding gate. The remaining scalars represent line numbers.
Each line is related to a main input of the circuit being evolved. According to [25], to
make such example reversible, 2 outputs are added to assure the one-to-onemapping.
Recall that a reversible circuit has as many inputs as outputs, thus, an additional
constant line “0” (ancillary bit) was added to the original inputs (lines). The drawings
of Fig. 1.b represent the effective implementations of the subtractors encoded by the
chromosomes (1 and 2 respectively) of the Table14.2b. The drawings of Fig. 14.1a
represent the complete mappings of the same chromosomes.

When traversing the chromosome, the algorithm stops once the full specification
of the reversible function is met to avoid accumulating additional gates and therefore,
increasing the size of the circuit (the number of gates). The order number of the cor-
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Table 14.2 The encodings of
the evolved solutions

The chromosome of solution 1

P NP P Cnot

3 1 2 4

2 2 4 2

4 4 3 –

The chromosome of solution 2

NP NP NP P

1 3 1 2

3 2 3 4

4 4 2 3

responding sub-expression will indicate the size of the solution. For both solutions,
RIMEP2 stopped at the second sub-expression, thus, the size of the corresponding
circuits are both equal to 2. The outputs of the circuit do not appear in the chro-
mosome; they are calculated when evaluating the chromosome (see the point 4 of
Sect. 2.2). During the fitness calculation, if a line is not among the inputs of a given
sub-expression (gate), it continues unchanged. RIMEP2 guarantees that any evolved
reversible circuit is syntactically correct, cycle and fan-out free simply by avoiding
the double use of the same line for a given gate. Precautions should be taken when
the mutation occurs. See Sect. 14.2.3.

14.2.2 Computing the Fitness

RIMEP2 is a fitness driven evolutionary algorithm: for a given individual i (evolved
circuit i), the Fitness(individual i) is a vector ( f1, f2, f 3), where f1, f2 and f3 indicate
respectively the number of errors, the quantum cost and the size of the circuit. The
Fitness must be minimized in all its three components.

1. The evolved reversible circuit should first and mainly match the behavioural
specification of the target circuit (the truth table in our case). The value of f1 is
given by the number of not matching values, i.e., by the number of errors and has
to be minimized. A zero- f1 (error) would indicate a perfect fit.

2. f2 and f3 aim to minimize, respectively, the quantum cost and the size of the
evolved circuits (when different error and fan-out free expressions with the same
quantum cost are met, then the one with the lowest number of gates is selected).
For example: Given 2 individuals i and j with: Fitness (i) = ( fi1, fi2, fi3) and
Fitness ( j) = ( f j1, f j2, f j3),

(a) If fi1 < f j1 then individual i is considered to be better than individual j .
(b) If fi1 = f j1 and fi2 < f j2, then individual i is considered to be better than

individual j .

http://dx.doi.org/10.1007/978-3-319-48317-7_2
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Table 14.3 Quantum cost of
some reversible gates

Gate name Abbreviation Quantum cost

Not NOT 1

Controlled NOT Cnot 1

Toffoli T 5

Peres P 4

Negated Peres NP 4

(c) If fi1 = f j1 and fi2 = f j2 but fi3 < f j3, then i is considered to be better
than individual j .

3. Each reversible gate can be built using several elementary quantum gates (the
cost of each elementary quantum gate is assumed to be equal to 1). Accumulating
these costs will constitute the quantum cost of the whole evolved circuit (see [23,
24]).More information is given in Sect. 2.2 of [8]. Quantum cost of the considered
gates is given in Table14.3.

14.2.3 RIMEP2 Genetic Operators

(a) The selection A tournament selection with a size of 2 was used in RIMEP2. The
size of the tournament was chosen based on the fact that low population size
values are used to evolve with RIMEP2.

(b) The crossover The ‘uniform crossover’ (multi-point crossover) was used to
evolve the whole group of selected benchmarks. No post-processing is needed
to guarantee that functional and syntactically correct circuits are produced. This
constitutes a feature of RIMEP2. An example of the crossover operation is illus-

Parent 1 Parent 2
1 2 3 4 1 2 3 4 
T Cnot T T Cnot P Cnot P 
1 2 2 4 4 2 2 1 
2 4 3 3 2 1 1 3 
4 - 4 2 - 3 - 2 

Offspring 1 Offspring 2

T P Cnot T Cnot Cnot T P 
1 2 2 4 4 2 2 1 
2 1 1 3 2 4 3 3 

4 3 - 2 - - 4 2 

Fig. 14.2 The crossover operation
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Individual 1 before mutation Individual 1 after mutation
(a): MUTATION TYPE 1 

1 2 3 4 1 2 3 4 
T P Cnot T T P P T 
1 2 2 4 1 2 2 4 
2 1 1 3 2 1 1 3 
4 3 - 2 4 3 4 2 

(b): MUTATION TYPE 2
T P Cnot T T P Cnot T 
1 2 2 4 1 2 2 4 
2 1 1 3 2 1 3 3 

4 3 - 2 4 3 - 2 
(c): MUTATION TYPE 3

T P Cnot T T P Cnot T 
3 2 2 4 4 2 2 4 
2 1 1 3 3 1 1 3 
4 3 - 2 2 3 - 2 

(d): MUTATION TYPE 4
T P Cnot T Cnot P T T 
1 2 2 4 2 2 1 4 
2 1 1 3 1 1 2 3 

4 3 - 2 - 3 4 2 

Fig. 14.3 The four types of mutation

trated in Fig. 14.2. The numbers appearing on the top the Fig. 14.2 indicate the
order of the sub-expressions in the chromosomes. The operation of the crossover
is repeated PopSize/2 times, where PopSize denotes the size of the population.
Two selected individuals (parents) are candidates to cross with a predefined
probability (see Table14.3).

(c) The mutation Four types of mutation are considered each, randomly selected
and assigned a probability below a predefined threshold:

(1) Mutating the operator from the proposed library. A missing address (input)
should be filled when the new operator needs more inputs than the previous
one. RIMEP2 controls that no input (line) already in use is assigned, thus
avoiding a fanout problem. See Fig. 14.3a.

(2) Mutating an address (an input of a gate): the selected line (input) to be
mutated should not be replaced by another line that is already related to one
of the inputs of the current gate, in order to keep the circuit fanout free. See
Fig. 14.3b.

(3) Circular shifting of the address (inputs) in the same expression (gate). See
Fig. 14.3c.

(4) Exchanging the order of two randomly selected expressions (gates). See
Fig. 14.3d.
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14.3 Distributed RIMEP2

This section describes the concept of distribution for RIMEP2 leading to DRIMEP2.

14.3.1 Motivation

RIMEP2has proved, inmany previous studies, its ability to find competitive solutions
to well known benchmarks. Motivated by the emergence and the availability of many
parallel computer architectures, a new MPI-based hierarchical distributed RIMEP2
was developed, focusing on keeping the search space diverse at all times. Distributed
evolutionary algorithms (EA) have been extensively used in the literature. They
have been developed, studied and applied starting over 20 years ago. Some selected
references are given in [2, 26–30] where a survey of early literature and history of
parallel EAs and their classifications are presented.

The Hierarchical topology (called also master-slave, see for example [31]), in
itself, is not new when specifying the distributed architecture. The master stores the
population, executes genetic operations, and distributes individuals to the slaves who
have to evaluate their fitness and send the evaluated fitness back to the master. In
the current study, both the master and the slave are evolutionary algorithms each
with its own population wherein the communication is established in a one way from
the slaves called workers to the master called main unit. More details are given in
Sect. 14.3.2.

14.3.2 Hierarchically Distributed RIMEP2

As we mentioned before, a new topology with a new communication policy is pre-
sented in order to boost the current RIMEP2 to explore and exploit more regions of
the whole search space in an efficient manner. The new idea may be explained as
follows:

(1) One obstacle that onemaymeet, when using EAs, is “premature convergence”. It
happens when high ranked individuals quickly dominate the population making
the genetic operators unable to produce better individuals (offspring) and to
enhance solution quality. The algorithm is, then, trapped in a local optimum. An
alternative to avoid such a situation is to preserve population diversity during the
evolution. One should point out that high diversity can also prevent sufficient
exploitation and therefore slows down the convergence by making the search
random.

(2) Many approaches have been proposed and implemented to prevent the premature
convergence (see [8, 32–34]).
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(3) The new idea disclosed in this paper is the following: The proposed new system
is multi-population based.

(a) We distinguish a main computation unit (MU) representing the main popu-
lation with a standard size of a sequential RIMEP2.

(b) The rest of the populations are evolving on other units called workers (WU).
Each worker has a small population size.

(c) The whole set of populations evolves in an isolated manner (independently
of the others). Except for the encoding and the length of the chromosome
that are common for all the units, the parameter setting may differ from one
population to another such as using only crossover or only mutation or both,
using different rates of crossover and mutations or may be using different
types of selection. Different libraries can be assigned to different population
with different random generator seeds to assure the maximum of diversity.

(d) The main job of the workers is to evolve independently and shortly in dif-
ferent regions of the search space. The jumping from one region to another
one is assured by a repetitive population reinitialization (partial or quasi
total). The population reinitialization will be called a ‘jump’ for the rest of
the paper.

(e) The communications occur in one way; from the workers to the main unit
every two jumps. The workers have to evolve for a short time. Then, a
predefined number of best individuals will migrate from these WUs to the
MU. After that, a new jump will happen.

(f) TheMU receives migrants from the workers. In this way the diversity is sup-
ported. The MU continues its evolution until the desired solution is encoun-
tered or the limit time is reached.

(g) The topology of the proposed system has a tree structure where the root
constitutes the MU. The structure may be recursive which means that each
worker can be a MU and posses workers. More explanations are given in
Fig. 14.4. The word hierarchical in the naming of the new proposed system
reflects the hierarchical aspect of the proposed topology. One should empha-
size that given two successive levels i and i + 1 in the presented topology,
the workers of the level i have (Population size and maximum number of
generations will be abreviated respectively as PopSize and MaxGenera):
• PopSize(level i + 1) = PopSize (level i)/factor 1

• MaxGenera (level i+1) = MaxGenera(level i)/factor 2

• Factor 1 and factor 2 are predefined values. Factor2 indicates the number
of periods when the migration to the MU should happen and the reinitial-
ization of the WU population takes place.

(h) There are other influencing parameters:
• How many individuals migrate? This parameter is hard to determine,
however, it is correlated with the size of the population receiving these
migrants and also how varied are these migrants. We want to introduce
diversity in the receiving population without over disturbing its evolution.
We have imposed a restriction that similar individuals will not be sent
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The root of the structure represents the MU. Each of the rest of the nodes represents either a worker 
for the upper level or a main unit for the lower level. MU refers to Main unit and WU refers to 
Worker unit.

Fig. 14.4 The proposed hierarchical topology to distribute RIMEP2

twice even from two differentworker i.e. if two similar individuals attempt
to migrate from two different workers, the main unit will receive only one
of them. Two individuals are similar if they have equal fitness (similar
phenotypes).

• Which individuals in the MU populations have to be replaced? The most
popular way is to replace the worst individuals. According to our exper-
iments, an individual is categorized as worse if it has the highest fitness
(remember that our aim is to minimize the fitness; reduce the numbers of
errors) but it does not mean that this individual cannot hold good genetic
material capable to improve the best solution. First the duplicates (indi-
viduals who have similar phenotypes) are replaced and then if necessary,
the worse individuals.

• As reported earlier, the populations of the workers are partially or quasi
totally reinitialized every period indicated by factor2. Let factor3 denote
the number of preserved individuals after the reinitialization. Notice that
a high value of factor3 will dominate the new generated population and
zero value will lead to a blind search.

• These factors, as the list of the parameter setting of any optimization
approach, are generally fixedusing heuristics (experiment-based).Various
relatedworks, in the literature, have addressed this problematic frommeta-
evolutionary algorithms, statistic-based to static and dynamic parameter
tuning (see e.g. [35]).

(i) The background behind choosing such a structure is:
• Our experiments revealed that even the workers were able to encounter an
optimal solution. It is probably due to the possibility of finding the right
place where to search.

• Jumping allows sweeping large regions of the search space while the
micro-evolution develops the initialized new individuals. In the meantime
the MU continues the main evolution.

• The results reveal very interesting aspects. More details about the exper-
iments are given in the following section.
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14.4 Experiments: Performance and Results

In this section, wewill present the experimental aspect of the study. Two performance
statistics are used to compare the DRIMEP2 results to their homologous in the
literature cited below: Gate count or quantum cost. The chosen benchmarks are
divided in 4 sub-groups according respectively to the published results in [10, 16]
where the first statistic (gate count) is considered, and in [19, 36] where the second
statistic (quantumcost) is used. 69 benchmarkswere used to evaluate the performance
of DRIMEP2.

14.4.1 DRIMEP2 Parameter Settings

The parameters of the DRIMEP2 system are separated in two sets. The first set con-
siders the parameter of the sequential RIMEP2 such as the probabilities of crossover
and mutation, the length of the chromosome, the size of the population and the maxi-
mumnumber of generations. These parameters have been fixed according to previous
experiments published in [35]. The second set of parameters concerns the policy of
the new proposed distributed RIMEP2 namely:

(a) The number of levels in the hierarchical structure of the new proposed parallel
architecture of DRIMEP2, and the number of workers associated to every level
(see Fig. 14.4).

(b) The total number of workers for the whole levels additionally to the main unit
will constitute the total number of islands.

(c) Factor1 and factor2 explained earlier in the third sub-section of Sect. 5.3.
(d) The number of migrants from a worker to a main unit,
(e) The factor3 which indicates how many individuals are preserved when the rein-

tialization of a worker occurs.

Table 14.4 The parameter setting

Sequential RIMEP2 parameters Distributed RIMEP2 parameters

Parameter Value Parameter Value

Crossover probability 0.7 Number of levels 2

Mutation probability 0.01 Workers attached to
every main unit

10

Chromosome length 10–20 Factor1 2–5

Population size 50–100 Factor2 10–15

Max-number of
generations

100-10,000 Number of migrants

Selection type Tournament with size = 2 5

Crossover Uniform Factor 3 5

http://dx.doi.org/10.1007/978-3-319-48317-7_5
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The parameter settings are shown in Table14.3. Some of the values are given
in ranges. It means that each benchmark has been evolved using an appropriate
value from a range for each parameter. The purpose of the study was to find optimal
circuits for the proposed benchmarks in a reasonable time. So the parameters were
heuristically (experience-based) tuned to reach this purpose and the results are quite
encouraging.

14.4.2 Experimentation and Results

Various experiments and tests have been performed on DRIMEP2 using a cluster
of computers (LiDOng cluster of the TU Dortmund University, Germany, see [37]
for more details about the total number of nodes, the CPU clock rate and other
features. This support is here gladly acknowledged). The tests were divided in two
parts depending on the literature published results. For the references [10, 16], the
NCT library (Not, CNot, Toffoli) was used (see e.g. [4, 18, 23]) and the gate count
was considered as an optimality measure. For [19, 36], the NCT library has been
also used but the quantum cost was used as a factor of performance taking in account
that some of the cases where a Toffoli gate is associated to a control not gate result
in a Peres gate or in a negated Peres gate (Peres family). In this case, DRIMEP2 was
performing using the NCT ∪ Peres family library.

We chose the maximum number of generations as a stopping criterion of the
DRIMEP2 system for the following reason: formany benchmarks, the corresponding
optimal circuits were found before this criterion was met, but keeping DRIMEP2
searching allows better exploration meanwhile preserving a reasonable response
time. The results are shown in Figs. 14.6, 14.7, 14.8 and 14.9. Gate count is referred to
asGC.Quantumcost is referred to asQC.Figure14.5 shows an example of realization
of the benchmark “4b151” from [19] to illustrate the performance of the DRIMPE2.
This realization has the quantumcost of 35. The input-output specification of “4b151”
is also given in Table14.4. From the evolutionary point of view, this result was
obtained under the following constellation: workers (W) with a population size of
50, main unit (MU) with a population 200 and 100, 000 generations, 44min for 5
independent successful runs. A correct solution was obtained in each run, between
4, 000 and 40, 000 generations with an average of 18400 and a standard deviation
of 12611. An additional experiment on this benchmark under stronger constraints
was done: 10, 000 generations for the MU and 1/2 of the population size. In 1.5min
execution time for 5 runs, two of which were successful, a very near optimal solution
with a quantum cost of 36 was obtained.
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in1 out2

in2 out1

in3 out4

in4 out3

Fig. 14.5 DRIMEP2 Implementation of the benchmark “4b15g1” at the gate level representation

Fig. 14.6 DRIMEP2 results compared with reported benchmarks in [10, 16]. The gate count is
considered as a performance measure

Fig. 14.7 DRIMEP2 results compared with reported benchmarks in [19] (part 1). The quantum
Cost is considered

Fig. 14.8 DRIMEP2 results compared with reported benchmarks in [19] (part 2). The quantum
Cost is considered
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Fig. 14.9 DRIMEP2 results
compared with reported
benchmarks in [36]. The
quantum Cost is considered

Table 14.5 The truth table of
the 4-bit 4b151 reversible
problem

Inputs Outputs

0000 0001

0010 0101

0010 0000

0011 1000

0100 1001

0101 1011

0110 1100

1101 0010

0111 1111

1000 0011

1001 1100

1010 0100

1011 0110

1100 1010

1101 1110

1110 1101

1111 0111

14.5 Conclusions

The hierarchical distributed evolutionary system DRIMEP2 has been tested with a
reasonably large group of benchmark problems taken from a class of problems—
(design of 4 bits reversible circuits)—considered in the literature to be hard, and
showed to be able to outperform the best solutions for most of them (and match
the remaining). The system used in this paper comprised only 2 levels and a total
of at most 10 WUs. The computing time was not over 1 hour for the whole set of
generations. In most cases, when processing the whole set of generations DRIMEP2
found several (different) solutions for a given circuit problem.Also, when obtaining a
solution as good as the best known, DRIME2 found not necessarily the same circuit,
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Fig. 14.10 Claudio Moraga and Fatima Zohra Hadjam at the European Centre for Soft Computing
in Mieres (Asturias), Spain in 2014

but one with the same quantum cost or gate count (size). The fact that DRIMEP2 was
able to obtain better solutions than (or as good as) the best known in the literature
shows that it did an effective exploration together with a partial exploitation.
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Chapter 15
From Boolean to Multi-valued
Bent Functions

Bernd Steinbach

15.1 Introduction

The growing utilization of the internet increases the requirements of cryptosystems.
The aim of such systems is the transmission of a given plain message such that the
transferred message contains the given message in an encrypted form which cannot
be understood by anyone, see, e.g., Chunhui Wu and Bernd Steinbach in the chapter
Utilization of Boolean Functions in Cryptography ([15], p. 220). Both the encryption
and decryption are controlled by Boolean functions. The properties of these functions
strongly influence the required efforts to decrypt a message without knowing the key.

The use of linear functions for the encryption preserves the probability that a
certain character appears in the cipher-text. Hence, simple statistical methods can be
successfully used in an attack against corresponding cryptosystems. Taking functions
with the largest distance to all linear functions within a cryptosystem hedge these
attacks. Such functions are called Bent functions. Bernd Steinbach and Christian
Posthoff derived in Classes of Bent Functions Identified by Specific Normal Forms
and Generated Using Boolean Differential Equations ([13], p. 359) the following
definition of the Bent functions.

Definition 15.1.1 (Bent Function) Let f (x) be a Boolean function of n variables,
where n is even. f (x) is a bent function if its non-linearity is as large as possible.

This contribution reflects some steps on the way of the specification of Boolean
bent functions by O. S. Rothaus in ([8], p. 300) to the generalization to multi-valued
bent function by Claudio Moraga et al. inMultiple-valued Functions with Bent Reed-
Muller Spectra ([7], pp. 309–324).
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15.2 Fundamental Observations of Rothaus

O. S. Rothaus has published in 1976 the pioneering paper On “Bent” Functions
([8], pp. 300–305). He studied Boolean functions P(x) from GF(2n) to GF(2)

and noticed that a small fraction of these functions has the property that all Fourier
coefficients of (−1)P(x) are equal to ±1. He called functions with this property bent.

On the first page of this paper Rothaus introduced the Fourier coefficients as
follows:

Now let ω be the real number −1. Then ωP(x) is a well-defined real function on
Vn , and by the character theory for abelian groups we may write:

ωP(x) = 1

2n/2

∑

λ∈Vn

c(λ)ω<λ,x> (15.1)

where the c(λ), the Fourier coefficients of ωP(x), are given by

c(λ) = 1

2n/2

∑

x∈Vn

ωP(x)ω<λ,x> . (15.2)

In words, 2n/2c(λ) is the number of zeros minus the number of ones of the function
P(x)+<λ, x>.

From Parseval’s equation, we know that

∑

λ∈Vn

c2(λ) = 2n . (15.3)

We call P(x) a bent function if all Fourier coefficients of ωP(x) are equal to ±1.”
Based on this definition O. S. Rothaus found some important propositions:

Proposition 15.2.1 ([8], p. 301) The Fourier transform of a bent function is a bent
function.

Proposition 15.2.2 ([8], p. 301) P(x) is bent if and only if ωP(x+y) is a Hadamard
matrix.

Proposition 15.2.3 ([8], p. 301) If P(x) is a bent function on Vn, then n is even,
n = 2k; the degree of P(x) is at most k, except in the case k = 1.

Proposition 15.2.4 ([8], p. 303) If P(x) is a bent function on V2k , k > 3, of degree
k, then P(x) is irreducible.
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15.3 Boolean Differential Equations of Bent Functions

It is well-known that the solution of a Boolean equation is a set of Boolean vectors.
Bernd Steinbach found in his Ph.D. Thesis that the solution of a Boolean differential
equation is a set of Boolean functions ([10], p. 40). Methods to solve Boolean differ-
ential equations and many applications are recently published by Bernd Steinbach
and Christian Posthoff in the book Boolean Differential Equations ([12], p. 1 ff.).
Knowing these methods it is easy to solve a Boolean differential equation. However,
it remains a difficult problem to find the Boolean differential equation that describes
all Boolean functions that satisfy a certain property.

Bernd Steinbach and Christian Posthoff published in Classes of Bent Functions
IdentifiedbySpecificNormalFormsandGeneratedUsingBooleanDifferentialEqua-
tions a Boolean differential equation that specifies all bent functions of two variables
([13], p. 370) as well as a Boolean differential equation that specifies all bent func-
tions of four variables ([13], p. 372).

All eight bent functions of two variables are specified by the Boolean differential
equation

∂2 f (x1, x2)

∂x1∂x2
= 1 . (15.4)

These are half of all 222 = 16 functions of two variables. The fraction of bent func-
tions will be much smaller for Boolean functions of a larger number of variables.
All 896 bent functions of four variables are specified by the Boolean differential
equation

∂2 f (x)
∂x1∂x2

· ∂2 f (x)
∂x3∂x4

⊕ ∂2 f (x)
∂x1∂x3

· ∂2 f (x)
∂x2∂x4

⊕ ∂2 f (x)
∂x1∂x4

· ∂2 f (x)
∂x2∂x3

= 1 . (15.5)

These are only 1.37 % of all 224 = 65, 536 functions of four variables.
The approach to specify bent functions can be generalized for Boolean functions

of more than four variables. A method of recursive extension of Boolean differen-
tial equations for bent functions was suggested by Bernd Steinbach and Christian
Posthoff in ([13], p. 376), where a Boolean differential equation for bent functions
of six variables was given

∂2 f (x)
∂x1∂x2

·
(

∂2 f (x)
∂x3∂x4

· ∂2 f (x)
∂x5∂x6

⊕ ∂2 f (x)
∂x3∂x5

· ∂2 f (x)
∂x4∂x6

⊕ ∂2 f (x)
∂x3∂x6

· ∂2 f (x)
∂x4∂x5

)

⊕
∂2 f (x)
∂x1∂x3

·
(

∂2 f (x)
∂x2∂x4

· ∂2 f (x)
∂x5∂x6

⊕ ∂2 f (x)
∂x2∂x5

· ∂2 f (x)
∂x4∂x6

⊕ ∂2 f (x)
∂x2∂x6

· ∂2 f (x)
∂x4∂x5

)

⊕
∂2 f (x)
∂x1∂x4

·
(

∂2 f (x)
∂x2∂x3

· ∂2 f (x)
∂x5∂x6

⊕ ∂2 f (x)
∂x2∂x5

· ∂2 f (x)
∂x3∂x6

⊕ ∂2 f (x)
∂x2∂x6

· ∂2 f (x)
∂x3∂x5

)

⊕
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∂2 f (x)
∂x1∂x5

·
(

∂2 f (x)
∂x2∂x3

· ∂2 f (x)
∂x4∂x6

⊕ ∂2 f (x)
∂x2∂x4

· ∂2 f (x)
∂x3∂x6

⊕ ∂2 f (x)
∂x2∂x6

· ∂2 f (x)
∂x3∂x4

)

⊕
∂2 f (x)
∂x1∂x6

·
(

∂2 f (x)
∂x2∂x3

· ∂2 f (x)
∂x4∂x5

⊕ ∂2 f (x)
∂x2∂x4

· ∂2 f (x)
∂x3∂x5

⊕ ∂2 f (x)
∂x2∂x5

· ∂2 f (x)
∂x3∂x4

)

= 1 .

(15.6)

Unfortunately, these extended Boolean differential equations describe only a subset
of all bent functions.

15.4 Enumeration of Bent Functions

It is a very hard problem to determine the numbers of bent functions for larger Boolean
spaces. Natalia Tokareva uses in her paper On the Number of Bent Functions from
Iterative Constructions: Lower Bounds and Hypotheses ([14], p. 609 ff.) an iterative
approach to find tighter lower bounds for the number of bent functions. This approach
has been based on

Theorem 15.4.1 ([14], p. 612) Let the functions f0, f1, f2 be bent functions in n
variables. Then the function g defined by

g(00, x) = f0(x), g(01, x) = f1(x), g(10, x) = f2(x), g(11, x) = f3(x), (15.7)

is a bent function in n + 2 variables if and only if f3 is a bent function in n variables
and

f̃0 ⊕ f̃1 ⊕ f̃2 ⊕ f̃3 = 1 . (15.8)

Natalia Tokareva summarizes her results about the number of iterative bent functions
|BI n| in some propositions:

Proposition 15.4.1 ([14], p. 617)

|BI 4| = 512, |BI 6| = 322, 961, 408 ≈ 228.3 . (15.9)

Proposition 15.4.2 ([14], p. 618) With probability 0.999 it holds that

287.36 < |BI 8| < 287.38 . (15.10)

Proposition 15.4.3 ([14], p. 618)

|BI 8| > 197, 004, 891, 331, 091, 000, 000, 000, 000 ≈ 287.35 . (15.11)

Proposition 15.4.4 ([14], p. 618)

|B10| > |BI 10| > 830, 602, 255, 559, 379 · 1064 > 2262.16 . (15.12)
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Jon T. Butler tried in the paper Bent Function Discovery by Reconfigurable Com-
puter ([1], pp. 1–19) to sieve bent functions from the set of all Boolean functions using
the special SRC-6 reconfigurable computer. Despite of the low clock of 100 MHz of
the reconfigurable computer, the acceleration of the programmed hardware reaches
a speedup factor of 592.0 in comparison to a PC running on 2.8 GHz to find all 896
bent functions of four variables in less than one millisecond ([1], p. 5).

This speedup grows for increased numbers of variables. For example, the speedup
factor reaches 6,805.9 for the task to sieve all bent functions of six variables. Despite
this large speedup of the utilized hardware it will need 5,840 years to find all bent
functions of six variables ([1], p. 5). The evaluated speedup grows to 62,111 in the
case of Boolean functions of 10 variables; however, the expected time to calculate all
bent functions of 10 variables on the reconfigurable computer SRC-6 is 3.67 × 1061

years ([1], p. 5).

15.5 Classes of Bent Functions

Due to the unique flat spectrum, defined by O. S. Rothaus to characterize the bent
functions, it can be assumed that all bent functions have a similar structure. This
assumption is not true. A first hint for this observation gives the approach Class
Separation ([12], p. 64 ff.). The solution set of the Boolean differential equation for
bent functions of four variables consists of 56 classes of 16 functions.

A detailed analysis of these classes was published by Bernd Steinbach and Chris-
tian Posthoff in Classes of Bent Functions Identified by Specific Normal Forms and
Generated Using Boolean Differential Equations ([13], p. 362 ff.). The 56 classes
can be divided into two subsets of classes. Each pair of associated classes of these
subsets has the property that their functions are the complement of each other.

A possibility to distinguish these classes of bent functions consists in the eval-
uation of their complexity. Bernd Steinbach and Alan Mishchenko provided in the
paper SNF: A Special Normal Form for ESOPs ([11], p. 69) the construction of a
unique canonical Exclusive Sum of Product (ESOP) called SNF( f ) among all 23n

ESOPs of n variables. Bernd Steinbach suggested in the journal paper Most Com-
plex Boolean Functions Detected by the Specialized Normal Form ([9], p. 271) the
number of cubes in the SNF( f ) as a complexity measure of the Boolean function f .

Table 15.1, taken from ([13], p. 363), shows in the first column the number of
cubes in the unique SNF( f ) as a complexity measure and in the last column the
number of bent functions belonging to these complexity classes. It can be seen that
48 bent functions of four variables belong to the complexity class of 30 cubes in their
SNF and the 16 most complex bent functions of four variables generate 50 cubes in
the SNF. Table 15.1 shows also that no bent function of four variables belongs to the
set of the 24 most complex Boolean functions of four variables.

Representative bent functions of four variables for all classes are given in ([13],
p. 378 ff.). An example of a simplest bent function is
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Table 15.1 Distribution of 896 bent functions into classes of SN F( f ) for all 65536 boolean
functions of 4 variables

Cubes in the Number of

SNF Minimal ESOP All Functions Bent Functions

0 0 1 0

16 1 81 0

24 2 324 0

28 2 1296 0

30 2 648 48

32 3 648 0

34 3 3888 240

36 3 6624 0

36 4 108 0

38 3 7776 384

40 3 2592 0

40 4 6642 0

42 3 216 0

42 4 14256 192

44 4 12636 0

46 4 3888 0

46 5 1296 16

48 5 1944 0

50 5 648 16

54 6 24 0

fb1 = x1 x2 ⊕ x3 x4 , (15.13)

and the positive polarity ESOP of one of the most complex bent functions of four
variables is

fb28 = x1 x2 ⊕ x1 x3 ⊕ x1 x4 ⊕ x2 x3 ⊕ x2 x4 ⊕ x3 x4 ⊕ 1 . (15.14)

15.6 Bent Functions and Cryptography

Jon T. Butler and Tsutomu Sasao provide in their chapter Boolean Functions and
Cryptography ([2], p. 33 ff.) a concise exposition of properties of Boolean functions
utilized in cryptography. In addition to the to the bent functions they explore Boolean
functions that satisfy other properties needed to resist attacks against the cipher.
Bent functions have the benefit that their distance to all linear function is as large as
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possible; however, the drawback of bent functions is that they are not balanced. In
order to eliminate this drawback other properties of Boolean functions are utilized
in cryptography. Here are the definitions of such properties.

Definition 15.6.1 ([2], p. 45) A function f satisfies the strict avalanche criterion
(SAC) if and only if complementing any single variable complements exactly half of
the function values.

Definition 15.6.2 ([2], p. 45) An n-variable function f is balanced if and only if
the number of function values 1 is equal to 2n−1.

Definition 15.6.3 ([2], p. 46) An n-variable function f satisfies the propagation
criterion (PC(k)) if and only if for any assignment to k of n variables the resulting
function satisfies SAC.

Definition 15.6.4 ([2], p. 47) An n-variable function f has correlation immunity k
if and only if, for every fixed set S of k variables, 1 ≤ k ≤ n, given the value of f ,
the probability that S takes on any of its 2k assignments of values to the k variables
is 1

2k .

Definition 15.6.5 ([2], p. 47) If an n-variable function f has correlation immunity
k and is balanced then it has resiliency of order k.

A similar exploration Utilization of Boolean Functions in Cryptography was
recently published by Chunhui Wu and Bernd Steinbach ([15], p. 220 ff.). In addition
to the properties mentioned above, further relevant properties in cryptography are
explored.

Definition 15.6.6 ([15], p. 227) The nonlinearity N f describes the smallest distance
between the Boolean function f (x) and all linear (affine) functions l(x) ∈ Ln(x):

N f = min
l(x)∈Ln(x)

d( f (x), l(x)) = min
l(x)∈Ln(x)

w( f (x) ⊕ l(x)) . (15.15)

There is the following relation between the nonlinearity and the Walsh spectrum
according to their definitions:

N f = 2n − maxw∈GF(2)n |S( f )(w)|
2

. (15.16)

Definition 15.6.7 ([15], p. 228) The algebraic degree deg( f (x)) of a function f (x)
is defined as the number of Boolean variables in the highest order monomials with
a nonzero coefficient in its antivalence normal form.

There are trade-offs between correlation immunity C I f and algebraic degree deg
( f (x)) as well as the correlation immunity C I f and the nonlinearity N f .
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Definition 15.6.8 (Algebraic Immunity, [15], p. 228) Algebraic attacks have gained
much concern since 2002. An over-defined system of high degree equations between
the original status and the key stream is established and solved using linearization
methods. In order to resist an algebraic attack, the Boolean function f (x) should have
the property that there is no non-zero Boolean function g(x) such that f (x) g(x) =
h(x) (or f (x) g(x) = h(x)) and h(x) has a low algebraic degree. If f (x) g(x) = 0
and g(x) �= 0, then g(x) is called an annihilator of f (x). It has been proven that the
lowest degree of all the multiples of f (x) and f (x) is equal to the lowest degree of
all the annihilators of f (x) and f (x). This lowest degree is defined as the algebraic
immunity AI of f (x) (or f (x)):

AI ( f (x)) = AI ( f (x))

= min{deg(g(x))| f (x) g(x) = 0 or f (x)g(x) = 0} . (15.17)

Chunhui Wu and Bernd Steinbach explored in Utilization of Boolean Functions
in Cryptography ([15], p. 220 ff.) not only the theory of cryptography, but they also
explained several practical applications. Very often the DES-algorithm is used for
both encryption and decryption. Figure 15.1, taken from ([15], p. 234), shows the
hardware structure that implements this algorithm.

ciphertext (64bits)

IP 1

(a)

F

F

for 16 rounds

F

F

IP

plaintext (64bits)

F (32bits)(b)

Permutation

Extension

half block (32bits) subkey (48 bits)

S1 S2 S3 S8

Fig. 15.1 Structure of the DES algorithm: a the overall Feistel structure, b the internal structure
of the Feistel function F
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Table 15.2 Properties of DES S-box and AES S-box

bound (n × m) DES S-box (6 × 4) AES S-box (8 × 8)

Orthogonality - Yes Yes

Algebraic degree of
every function

≤ n − 1 5 (5) 7 (7)

Nonlinearity of every
function

≤ 2n−1 − 2
n
2 −1 14 ∼ 22 (28) 112 (120)

Differential uniformity ≥ 2n−m+1 16 (8) 4 (2)

Robustness ≤
(2−1 + 2m−n−1) ·(1 −
2−m+1)

0.316 ∼ 0.469
(0.546875)

0.984375 (0.9921875)

The security of block ciphers as DES mainly depends on the properties of the
S-box, which is the only nonlinear part. In order to resist known attacks, the Boolean
functions of the S-box require the properties of orthogonality (corresponding to the
balance in the single-output Boolean function), a high algebraic degree, a high nonlin-
earity, and a high algebraic immunity. Additional properties for resisting differential
attacks are the differential uniformity and robustness. All these requirements are
completely satisfied by the four Boolean functions of six variable assigned to the
eight S-boxes. These functions map GF(26) to GF(2).

Using the same basic structure of the DES implementation the advanced encryp-
tion standard (AES) was developed. The 6 × 4 S-box of the DES is replaced in the
AES by an 8 × 8 S-box which is constructed based on a multiple-inverse operation
on GF(28). The analysis shows that the AES S-box is orthogonal, i.e., it is a Boolean
permutation on GF(2)8. Not only all eight Boolean functions, but the S-box as a
whole has the maximum algebraic degree. The low differential uniformity and high
robustness (close to its upper bound) guarantee the ability of AES to resist differ-
ential attacks. Both the eight Boolean functions and the S-box as a whole also have
a high nonlinearity which are close to the totally nonlinear functions, i.e., the bent
functions. The construction of the AES S-box is one step in cryptography from the
Boolean into the multi-valued domain.

Table 15.2, taken from ([15], p. 237), compares the cryptographic properties of
the S-boxes of DES and AES.

15.7 Bent Functions in the Multi-valued Domain

Claudio Moraga explored multi-valued bent function over a long period of time.
Commonly with M. Luis he published already in 1989 the paper On Functions with
Flat Chrestenson Spectra ([3], p. 406 ff.).
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In the last years Claudio Moraga collaborated with Milena Stanković, Radomir S.
Stanković, and Suzana Stojković of the University of Niś and published the new
results in a series of papers and chapters of books.

In the chapter Hyper-Bent Multiple-Valued Functions ([4], p. 250 ff.) they have
shown that multi-valued hyper-bent functions constitute a reduced subset of the multi-
valued bent functions, have provided a simple lemma for their characterization, and
have introduced the new concept of strict hyper-bent functions.

In the paper Contribution to the Study of Multiple-Valued Bent Functions ([5], p.
340 ff.) they used the Vilenkin-Chrestenson transform to determine the bent property
of a multi-valued function.

Definition 15.7.1 (Vilenkin-Chrestenson Transform: [5], p. 340) The direct and
inverse Vilenkin-Chrestenson transform of a function

f : GF(p)n → GF(p) , (15.18)

are defined as follows:

S f (w) =
∑

z∈FG(p)n

χ∗
w(z) · h f (z) , (15.19)

f (z) = h−1

⎛

⎝p−1
∑

w∈FG(p)n

chiw(z) · S(w)

⎞

⎠ , (15.20)

where χ∗
w(z) denotes the complex conjugate of χw(z),

χw(z) = ξwT z and χ∗
w(z) = ξ−wT z . (15.21)

Using this definition, they generalized the definition of Rothaus regarding bent func-
tions for the multi-valued case on two levels of requirements.

Definition 15.7.2 (Multi-Valued Bent Function: [5], p. 341) A function f (15.18),
p prime, p > 2 is called a multi-valued bent function if all elements of its circular
Vilenkin-Chrestenson Spectrum have the same magnitude. In this case the spectrum
is said to be “flat”.

Definition 15.7.3 (Strictly Multi-valued Bent Function: [5], p. 344) Let f (15.18)
be a bent function. This function will be called strictly bent if the elements of its
spectrum may be expressed as rotations of S f (0) by powers of ξ .

Formally, f is strictly bent ⇔ ∃g : GF(p)n → GF(p) such that

∀w ∈ GF(p)n, S f (w) = S f (0) · ξ g(w) . (15.22)

The function g will be called the dual of f .

Based on these definitions they studied some of their properties and have proven,
that there are 18 ternary bent functions with only one argument, 486 ternary bent
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functions with two arguments, and 100 five-valued bent functions with one argument.
All of them are strictly bent.

The same authors presented their extended knowledge about this topic one year
later in the paper TheMaioranaMethod to GenerateMultiple-Valued Bent Functions
Revisited ([6], p. 19 ff.). Reusing Definitions 15.7.2 and 15.7.3 they concluded after
a detailed exploration that the representation of multi-valued functions based on
matrices and the Vilenkin-Chrestenson transform allows a better understanding of
both the power and the limitations of the Maiorana method. In the context of some
proofs they noticed the interesting observation that the Maiorana method is more
flexible due to permutations instead of the identity originally used by Rothaus. The
new formal structure additionally allows an estimation of a lower bound on the
number of multi-valued bent functions. For ternary bent functions of four arguments
they found the lower bound of 708,588 functions.

Claudio Moraga, Milena Stanković, and Radomir S. Stanković continued this
research and contributed recently in their chapter Multi-Valued Functions with Bent
Reed-Muller Spectra an innovative exploration of bent functions in the multi-valued
domain using the Reed-Muller transform ([7], p. 309 ff.).

Definition 15.7.4 (Reed-Muller Transform, [7], p. 311) The matrix T representing
the basis of the Reed-Muller transform of p-valued functions is defined as follows:

T(1) = [
1 x x2 x3 . . . x p−1

]
(15.23)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 . . . 0
1 1 1 1 . . . 1
1 2 22 23 . . . 2p−1

1 3 32 33 . . . 3p−1

...
...

...
...

. . .
...

1 p − 1 (p − 1)2 (p − 1)3 . . . (p − 1)p−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

mod p ,

T(n) =
[

1 xn−1 x2
n−1 . . . x p−1

n−1

]
⊗

[

1 xn−2 x2
n−2 . . . x p−1

n−2

]
⊗ . . . ⊗

[

1 x1 x2
1 . . . x p−1

1

]
⊗

[

1 x0 x2
0 . . . x p−1

0

]
mod p . (15.24)

Numerically:

T(n) = (T(1))⊗n , (15.25)
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where, ⊗, as the operation symbol, denotes the Kronecker product, and as the expo-
nent, the n-fold Kronecker product of the argument with itself.

In detail they explored the Maiorana class which contains only n-place bent func-
tions, where n is even.

Definition 15.7.5 (Maiorana Class, [7], p. 317) Let

M = [mi, j ] , (15.26)

with mi, j = i · j mod p, i, j ∈ Zp.

Lemma 15.7.1 [Property of Maiorana Class, [7], p. 317] Extending the concept
of modular weight to matrices,

ϕ(M) ≡ 0 mod p . (15.27)

Lemma 15.7.2 [Bent Reed-Muller Spectrum of the Maiorana Class, [7], p. 317] If
R is a bent Reed-Muller spectrum of the Maiorana class, then

ϕ(R) ≡ 0 mod p . (15.28)

In addition to the Maiorana class they defined the �-class of multi-valued bent func-
tions.

Definition 15.7.6 (γ -Class, [7], p. 316) For a given p, let γ be the set of all one-
place p-valued bent functions. Let � denote the set of all p-valued functions obtained
as the tensor sum of one-place bent functions, including repetitions and reorderings.

Using the modular weight:

Definition 15.7.7 (ModularWeight ϕ, [7], p. 313) The modular weight of a p-valued
vector is given by the sum mod p of all its components. The symbol ϕ will be used
to denote the modular weight.

they have proven the lemma do determine bent functions within a �-class:

Lemma 15.7.3 [Multi-valued Bent Functions, [7], p. 316] The elements of � are
bent and if V ∈ � then

ϕ(V) ≡ 0 mod p . (15.29)

and concluded the consequences:

Consequence 15.7.1 (Bent Reed-Muller Spectrum, [7], p. 316).
A necessary condition for a Reed-Muller spectrum R to be bent (and belong to �) is
that

ϕ(R) ≡ 0 mod p . (15.30)
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Consequence 15.7.2 (Multi-valued Bent Function, [7], p. 316).
A necessary condition for an n-place p-valued function to have a bent Reed-Muller
spectrum in � is, that

f (πn−1) = 0 . (15.31)

A remarkable observation of this work is that there are 18 ternary two-place bent
functions such that their Reed-Muller spectra are also bent; these functions satisfy
the necessary condition f (4) = 0 and their value vectors are palindromes.

Although a general characterization is still missing, they have found that for the
�-class, the Maiorana class and their tensor sums, the fact that f (π − n − 1) = 0,
(for an n-place function, n > 1), is a necessary condition for f to have a bent Reed-
Muller spectrum, which will have a modular weight congruent to (0 mod p).
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Chapter 16
Claudio Moraga and the University
of Santiago de Compostela: Many Years
of Collaboration

Senén Barro, Alberto Bugarín and Alejandro Sobrino

16.1 A Long-Term Collaboration with the University
of Santiago de Compostela

The relationship of Professor Claudio Moraga with the University of Santiago de
Compostela has been very extensive in time. One of his first visits (may be the
first one?) was to deliver one of the lectures at the University summer course on
“Fuzzy logic: theory and applications” we organized in July 1992. For our Intelligent
SystemsGroup of theUniversity of Santiago de Compostela it was a very remarkable
occasion, since this course was the first event that we organized1 and it gave us the
opportunity to host and to present to the Galician students’ and research community
some researchers of the highest relevance, as Prof. Moraga. His talk dealt about the
“The ORBE (Fuzzy Experimental Computer) project”, which gathered together and
aligned research efforts at that time of most of the relevant research groups of the
Spanish fuzzy community in the areas of fuzzy theory, fuzzy hardware and fuzzy
control. Selected talks of the course were edited in a book in which Prof. Moraga
kindly agreed to contribute with a chapter [17].

This participation in research dissemination and training events was not the sin-
gle contribution of Prof. Moraga to our University summer courses’ program. Many
years after, following the organization of the course “Information and Communica-
tions Technologies in 2000”, we edited the volume “Frontiers of Computation”, in

1Many other summer courses, training activities as well as other scientific events followed this
first one in the forthcoming years.
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which he again accepted to contribute (this time co authoring with Prof. Enric Trillas,
Senén Barro and Alberto Bugarín) with the chapter entitled “Fuzzy Computation”
[2] (Fig. 16.1). In this chapter some of the basics of fuzzy sets and fuzzy reasoning
were introduced as a general framework for Mamdani’s fuzzy control. This perspec-
tive was maintained for years in other papers by Prof. Moraga and Prof. Trillas and
could be considered a far antecedent of Professor Moraga’s later interest about the
formal aspects of fuzzy controllers reasoning and design we will comment about
in Sect. 16.3. The chapter was an important contribution to the book, where other
emerging (by those years) computing paradigms were presented (among them, Opti-
cal, Biomolecular, Quantum or Ubiquitous Computing). Some of these paradigms
are still now frontier fields for research, whilst others have consolidated as techno-
logical developments and are a part of our daily life. In this regard, it is anecdotic
to recover one of the statements of the starting paragraph of Prof. Moraga’s et al.
chapter, regarding the authors concerns about having to develop the topic of “Fuzzy
Computing” in the little space a single book chapter provides, given that by that days
“. . . the Handbook of Fuzzy Computation has more than 800 pages . . .”). Such wor-
ries should have exponentially increased by now, if we recall that Springer’s 2015

Fig. 16.1 Covers of the books “Studies of fuzzy logic and its applications” [17] and “Frontiers of
Computation” [2] in which Prof. Moraga contributed to. Both books were the result of two Summer
Courses respectively held at the University of Santiago de Compostela in 1992 and 2000
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“Handbook of Fuzzy Computation” [10] comprises 81 chapters and more than 1500
pages!

These are just a few samples of some of the first collaborations of Prof. Moraga
with research dissemination activities in the University of Santiago de Compostela.
The collaboration became much more intense when it came to young researchers
training, through his participation in Ph.D. assessment committees or as a lecturer
in the doctoral programs of the Departments of Electronics and Computer Science
(now the Research Centre on Information Technologies, CiTIUS) and Logic and
Philosophy of Science of our university. Throughout the years, Prof. Moraga came
to Santiago in a number of occasions to teach our researchers in a number of differ-
ent emerging fields and hot topics, such as Neural Networks, Fuzzy Computability
Theory, Fuzzy Formal Languages or Multi-nets.

Once again with Prof. Enric Trillas, Prof. Claudio Moraga greatly contributed to
give international visibility of our University as one of the key persons that facilitated
the organization in 1996 of the 26th IEEE International Symposium on Multiple-
Valued Logic (ISMVL) in Santiago de Compostela from 29th to 31st May 1996
(Fig. 16.2).

Fig. 16.2 Announcing poster greeted to the attendants and Front Cover of the Proceedings of the
26th International Symposium on Multiple-Valued Logic, held in Santiago de Compostela. Prof.
Moraga was one of the key persons on the event organization and served as one its Programme
co-Chairs
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This event was organized within the framework of the 5th Centennial of the Uni-
versity of Santiago de Compostela, which programmed and supported a number of
selected scientific events for that solemn celebration. ISMVL’96 was the first rele-
vant international scientific event we organized in the Intelligent Systems Research
Group and that gave us the opportunity of welcoming for the first time in Santiago
the father of fuzzy logic, Prof. Lotfi A. Zadeh (University of California at Berke-
ley), who delivered one of the keynote plenary lectures, about “Inference in Fuzzy
Logic via Generalized Constraint Propagation”. The other plenary speaker was Prof.
Claudi Alsina, from the Open University of Catalonia with the talk “As you like
them: connectives in fuzzy logic”. Prof. Moraga was one of the promoters of Santi-
ago’s candidature to host the event and also served as one of the Program Co-Chairs
of the Conference. The Program Committee of ISMVL’96 selected 46 papers by
92 authors working in 17 different countries that were refereed by reviewers from
14 countries. These are good indicators of the world-wide international dimension
this event had. The topics the conference dealt with ranged from Logic, Algebra, AI,
Soft Computing to Logic Design andDecisionDiagrams. The conference also hosted
a special session dedicated to honor the memory of the late Polish mathematician
Helena Rasiowa (Fig. 16.3).

Apart of this scientific angle of the event we will always have memories about
the relevance that Prof. Moraga always gave to providing support to attendants from
developing countries in order to facilitate their participation in the event, following
the best scientific tradition. He always kept in mind that we as organizers should

Fig. 16.3 Gala dinner of the 26th International Symposium on Multiple-Valued Logic, held in
Santiago de Compostela (May 31st, 1996). Prof. Moraga can be guessed in front of the column at
the right,mostly hidden behind the gray-haired head, near his latewife. At the dinner the Symposium
organizers (also the authors of this chapter) are being acknowledged by the MVL Committee
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help as much as possible in this regard, and we are pretty sure that some researchers
would not have been able to attend the symposium without the support achieved
through Prof. Moraga’s mediation. This concern, worry and care for this kind of
non-scientific, but also equally important responsibilities towards others colleagues
and communities, have always been a constant in Prof. Moraga’s life attitude and
work ethic. Twenty years later, it is a fact that ISMVL still keeps in a very good
scientific healthy state, since its 46th edition has been recently held in Sapporo
(Japan). Prof. Moraga kept actively participating in this event through the years,
since, for example, three papers authored/co-authored by him were included in the
final program of 2016 edition.

16.2 Professor Moraga’s Relationship with the Spanish
Fuzzy Logic and Soft Computing Community

The links between professor Moraga and the Spanish community of researchers in
Fuzzy Computational Intelligence has a long and rich tradition. The beginning of the
relationship perhaps took place in June, 1980, when Professor Enric Trillas met him
at the International Symposium of Multiple-Valued Logic, held in Evanston, Illinois,
USA, was kept alive for decades and was consolidated when, in 1980, he joined the
‘Fundamentals of Soft Computing’ Research Unit, headed in the European Centre
for Soft Computing (ECSC), Mieres, Spain, by Prof. Trillas. So, from the previous
paragraph it can be inferred that, to a good extent, the relationships between Prof.
Moraga and the fuzzy community in Spain is largely due to the friendship and
professional relationship cultivated by both scientists.

Since Prof. Trillas is acknowledged as the father of Soft Computing in Spain,
many of his colleagues and disciples had also the opportunity to meet and collaborate
with Prof. Moraga. Those that did so can certify the commitment, rigor, talent and
generosity decorating him. Prof. Moraga is a paramount scientist and all of us who
attended his lessons recognize many more merits than those announced by the mere
reading of his curriculum (already outstanding by itself).

Moraga is an extraordinary worker, a tireless man in the pursuit of (many-valued)
truth and perfection. His lectures and presentations show clairvoyance, intensity
and supreme accuracy. From his presentations is also possible to infer his artistic
sense and his taste for beauty and transcendence. His friends know that he is an
accomplished photographer and a remarkable guitar player. But perhaps his great
passion is computer science, initiated in his native Chile, extended in the USA and
developed most of his life in Dortmund, Germany.

In the pursuit of theComputational Intelligence challenges, Prof.Moraga shows an
unusual expertise in four areas: soft computing, multiple-valued logic, spectral tech-
niques and reversible computing. The papers hewrote in collaborationwith the Span-
ish fuzzy community are mostly focused to the soft computing and multiple-valued
logic topics, those strictly related to the computer implications from considering
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more than two logical states or values. The coauthored Moraga’s contributions with
Spanish researchers can be organized around people and institutions as follows:

(a) Contributions with E. Trillas, Trillas’ disciples and people linked to the ECSC,
(Mieres, Spain), that covered many relevant topics about soft computing and
many-valued logic, including computing with words [6, 20], fuzzy control [14],
fuzzy logic and fuzzy sets [1, 2, 12, 16, 18, 19, 23, 24] and many valued logic
[21].

(b) Contributions withM. Delgado, F. Herrera, and people linked to DECSAI (Dept.
of Computer Science and Artificial Intelligence, University of Granada, Spain),
focused in the fields of multilayer perceptrons [4] and genetic algorithms [8, 9]

(c) Contribution with IIIA (Research Institute on Artificial Intelligence, CSIC,
Barcelona, Spain), researchers, about the role of fuzzy logic in the design of
a VLSI chip-architecture [5].

The above papers are a small part of the research conducted by Professor Moraga
and a no residual part of the Spanish inquiries in fuzzy and multiple-valued logic
applications to computational intelligence. His suggestions and findings contributed
to increase the interest and knowledge in those areas, but more importantly, his
advices helped to motivate and encourage many Spanish researchers for pursuing the
highest goals in his or her investigations. We hope and wish that Professor Moraga
will continue to work with the Spanish fuzzy community for many years.

16.3 His Research Within the Context of the Intelligent
Systems Group

Some of the previously indicated research topics Prof. Moraga has developed in
his long career have had contact points with part of the research lines we have
conducted in the Intelligent Systems Research Group at the University of Santiago
de Compostela. We will comment in this section about some of these research topics,
without the intention of being exhaustive in its description and presentation, since
our intention is just to provide a short sample of the wide range of research fields
Prof. Moraga has dealt with through the years.

The early research of our group in this area had to dowith computationally efficient
ways of performing the Mamdani fuzzy reasoning process, by following a hardware
approach (through the proposal of systolic architectures for the reasoning execution)
as well as algorithmic approaches (through moving off-line part of the operations
involved in the reasoning procedure).

In this first topic, the research by Prof. Moraga was pioneering, together with
the first proposals in fuzzy hardware by H. Watanabe, M. Togai or T. Yamakawa.
Claudio Moraga’s pioneering work in the field of (fuzzy) hardware was initiated
with the proposal of systolic algorithms and systems for related operations, such as
generalized transitive closure [11] and followed by the proposal of CMOS multiple
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valued circuits [3] It is very remarkable his proposal in the late 90s for using Soft
Computing approaches (in particular, different types of Evolutionary Computation)
as an innovative tool for the design of reversible digital circuits [7, 15]. This field of
research was preceded by his proposals of hybrid paradigms in soft computing, with
papers where he described fuzzy knowledge-based genetic algorithms or genetic
engineering for Artificial Neural Networks, among others.

Apart of this, there were also other contact points between our group’s and Prof.
Moraga’s research, such as the proposal and use of “First-Aggregate-Then-Infer”
(FATI) approaches in fuzzy reasoning, the relation between some Fuzzy Formal
Languages and Fuzzy Petri Nets, or the use of the concept of linguistic variable as
a formal support for computing with words in natural language [13]. Nevertheless,
whatwefind closest contact point is a common concern rather than the use or proposal
of a particular research paradigm. Such concern is related to the need of providing
useful guidelines or criteria that help designers or users of fuzzy (rule based) systems
to correctly address the non-that-easy task of designing fuzzy systems. After having
ourselves arrived to the field of fuzzy logic from an applied and modeler perspective,
we always found that the gap between the theoretical and formal results of fuzzy
logic and the practical needs of designers should be needed to be filled somehow.
Both themathematical and the logical expressions and language were not always that
understandable for other scientist or engineers that confronted the task of providing
comprehensible models for implementing successful systems that solve practical
problems. For us, this need became clear when researching in the field of fuzzy
quantification, where a number of models had been proposed in the literature. It was
well-known that some of them exhibited non-plausible behaviors and we found an
actual need for characterizing them in terms of understandable (high-level) properties
that allow designers to anticipate (unwanted) effects that some of these models could
provoke in systems.

In a similar way, the process of building fuzzy rule-based (Mamdani) systems,
and the design decisions modelers have to take, such as the proper definition of
fuzzy terms and partitions, the choice of the conjunction, conditional or aggregation
operators to be implemented, as well as the selection of the most appropriate defuzzi-
fication operators, was traditionally referred as a trial-and-error task. In this regard,
the work by Prof. Moraga, together with Prof. Enric Trillas and Dr. Sergio Guadar-
rama [14, 18], helped much, thanks to their consideration of this design process as
a task that should be accomplished with “care”. They provide indications for the
different stages that make the design process up, such as conditionals, rule of infer-
ence and reasoning schemes, and established some criteria for selection a particular
fuzzification or defuzzification operator. Also plausible reasons for performing such
careful design are described, not only for the membership functions of fuzzy sets,
but also for linguistic connectives, modifier or quantifiers. Using their own authors
words [18], the papers are related to this research are “. . .a reflection on modeling. . .
starting by asking what happens when the meaning of a predicate P is interpreted by
the membership function of a fuzzy set” After extending this reflection to the other
knowledge representation and reasoning elements in fuzzy-rule based systems, the
final conclusion is that “the involved operations in rules and systems should be at
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least carefully chosen, if not specially designed”. This allows Prof. Moraga and his
co-authors “. . . to improve the famous Zadeh’s statement ‘In fuzzy logic everything
is a matter of degree,’ by extending it to the new form “In fuzzy logic everything
is not only a matter of degree, but also of design,” that can be labeled as their final
summary (and brilliantly brief) statement for their point of view in this realm.

16.4 Epilogue

The involvement of Professor Claudio Moraga in many doctoral meetings, summer
courses, conferences and many other activities held at the University of Santiago
de Compostela helped our Intelligent Systems Group (and University in general)
to increase our knowledge about fuzzy logic and its applications, as well as to the
improve the training of our doctoral students and researchers in this area.

Furthermore, and together with Prof. Enric Trillas, Prof. Moraga participated
from the very beginning in some of the initial and most relevant scientific events
organized by the Intelligent Systems Group in Santiago de Compostela, and we will
be always in debt to him for his support in these early stages. Prof. Moraga’s role as a
supporter for scientific dissemination inmany research fields such asmultiple-valued
and fuzzy logics applied to computer science was also very successfully played by
him in many other groups world-wide (and the list of contributors to this book is just
a short sample of the impact he achieved).

Last, but not least, his friendship and politeness, sometimes with a German touch,
make him a lovely person who never forgets to compliment Christmas to his col-
leagues and friends. In a certain sense, we can say that Christmas does not actually
begin until the email brings us Claudio’s trilingual2 Christmas Greeting Card. We
sincerely hope to keep receiving Prof. Moraga’s Card promptly every December
22nd morning for many and many years.
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Chapter 17
Using Background Knowledge for AGM
Belief Revision

Christian Eichhorn, Gabriele Kern-Isberner and Katharina Behring

17.1 Introduction

Possible worlds and their syntactical representations as complete conjunctions of
literals are vital building blocks of various logical techniques, for instance, to bridge
the gap between syntax and semantics, to define the state of a logical system, or to
define the core of a set of formulas believed by a reasoning agent. We here define
semantical distance measures between possible worlds, using syntactical operations
on semantical relations between possible worlds.

Classical distance measures on possible worlds, like, for instance, the Ham-
ming distance, are strictly syntactical. That means the distance between two worlds
depends on the different instantiations of the variables only, and does not take the
“meaning” of the variables into account. This makes syntactical measures sensible to
(semantically irrelevant) operations like renaming of variables as well as extension
or contraction of the logical language with (semantically irrelevant) variables.

However, syntacticalmeasures are easily implementable, and thedistancebetween
two possible worlds can be determined in polynomial time that depends on the cardi-
nality of the logical alphabet. Semantical operations, however, usually have a com-
putational complexity depending on the cardinality of the set of possible worlds,
which is exponential in the cardinality of the alphabet. Distances between worlds
are needed in different areas, for instance when changing the belief of an agent.
Belief revision is the process of adjusting the belief of a reasoning agent to new
information about the world, where the new information may contradict the actual
belief of the agent, and thus to incorporate the new information, formulas that are
believed a priori to the revision may be retracted from the belief set. The seminal

C. Eichhorn (B) · G. Kern-Isberner
Lehrstuhl Informatik 1, Technische Universität Dortmund, Dortmund, Germany
e-mail: christian.eichhorn@tu-dortmund.de

K. Behring
Accenture PLM GmbH, Leinfelden-Echterdingen, Germany

© Springer International Publishing AG 2017
R. Seising and H. Allende-Cid (eds.), Claudio Moraga: A Passion
for Multi-Valued Logic and Soft Computing, Studies in Fuzziness
and Soft Computing 349, DOI 10.1007/978-3-319-48317-7_17

275



276 C. Eichhorn et al.

article of Alchourrón et al. (AGM) [2] describes postulates to characterise rational
belief revision. It has been shown that an AGM revision can be instantiated using
possible worlds and relations that order worlds with respect to their dissimilarity to
the original belief [12]. Distance measures can be used to define such orderings.

In this paper, based on and extending the ideas from the Master’s thesis of Diek-
mann [5], we combine the advantages of syntactical and semantical approaches by
defining semantical distance measures between possible worlds that have the imple-
mentational merits of syntactical distances while incorporating the semantical infor-
mation of satisfying or violating given background knowledge. We use conditional
structures [14] to connect each possible world to its individual evaluation by the
conditionals of a belief base, and define distances on the syntax of these semanti-
cal structures. We show that semantical distance measures defined in this paper can
be used to instantiate AGM belief revision operations. We compare the resulting
operations with Dalal’s revision [3], which is based on strictly syntactical distance,
and show that incorporating the semantical relationships from background knowl-
edge in this way leads to more intuitive results without losing the implementational
advantages of syntactical measures.

This paper is organised as follows: This introduction is followed by the presen-
tation of the used syntax and semantics of propositional logic and conditionals as
trivalent logical entities and building blocks of knowledge bases which formalize
rule-based knowledge about the world in Sect. 17.2. After than, we present the basic
techniques used in this paper, which consist of the approach of conditional structures
that assign the evaluation of conditionals to possibleworlds using abstract symbols of
verification and falsification in Sect. 17.3.1, the formal background for distance mea-
sures in general, and with the Hamming distance a concrete but strictly syntactical
distance measure between possible worlds in Sect. 17.3.2, and a short introduction
to AGM belief revision in general, and Dalal’s belief revision with minimal models
as concrete revision operation in Sect. 17.3.3. In Sect. 17.4 we define semantical
distance measures on the syntax of conditional structures and show basic properties
of these measures, which are plugged into the general revision operator to define
semantical belief revision operators in Sect. 17.5. We conclude in Sect. 17.6.

17.2 Preliminaries

Let Σ = {V1, . . . , Vp} be a set of propositional atoms and a literal a positive or
negative atom representing variables in their positive (negated) form. We write v̇i
to indicate an arbitrary but fixed outcome of Vi . The set of formulas L over Σ

joined with the symbols for tautology (�) and contradiction (⊥) and closed under
the application of the connectives∧ (and),∨ (or), and¬ (not) shall be defined in the
usual way. For ϕ,ψ ∈ L, we omit the connective ∧ and write ϕψ instead of ϕ ∧ ψ

as well as indicate negation by overlining, that is, ϕ means ¬ϕ.
Interpretations, or possible worlds, are also defined in the usual way; the set of all

possibleworlds is denoted byΩ .Weoften use the 1-1 association betweenworlds and
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complete conjunctions, that is, conjunctions of literals where every variable Vi ∈ Σ

appears exactly once. A model ω of a propositional formula ϕ ∈ L is a possible
world that satisfies ϕ, written as ω |= ϕ. The set of all models ω |= ϕ is denoted
by Mod(ϕ). For formulas ϕ,ψ ∈ L, ϕ entails ψ , written as ϕ |= ψ , if and only if
Mod(ϕ) ⊆ Mod(ψ), that is, if and only if for all ω ∈ Ω , ω |= ϕ implies ω |= ψ . For
sets of formulas Φ ⊆ L we have Mod(Φ) = ⋂

ϕ∈Φ Mod(ϕ).
The set of consequences of a set ϕ ⊆ L is the deductively closed set of classical

entailments of ϕ, formally

Cn(ϕ) = {ψ |ϕ |= ψ} = {ψ |Mod(ϕ) ⊆ Mod(ψ)} (17.1)

The set of theories of a set Ω ′ ⊆ Ω is the set of formulas for which the worlds in Ω ′
are models, formally

Th(Ω ′) = {ϕ|Ω ′ ⊆ Mod(ϕ)} = Cn(
∨

ω∈Ω ′
ω) (17.2)

Note that Th is antitone, i.e., Ω ′′ ⊆ Ω ′ implies Th(Ω ′) ⊆ Th(Ω ′′).
A belief set K is the deductively closed set over a core ϕ, K =Cn(ϕ)=

Th(Mod(ϕ)). A conditional (ψ |ϕ) with ϕ,ψ ∈ L encodes a defeasible rule “if ϕ

then usually ψ” with the trivalent evaluation [4, 14]

[[(ψ |ϕ)]]ω =
⎧
⎨

⎩

true iff ω |= ϕψ (verification)

false iff ω |= ϕψ (falsification)

undefined iff ω |= ϕ (non-applicability)

(17.3)

We denote by Δ a set of conditionals Δ = {(ψ1|ϕ1), . . . , (ψn|ϕn)} and call Δ a
knowledge base that represents the (rule-based) knowledge an agent holds about
relationships in the world and is to be used as a base for the agent’s reasoning. We
assume that this (background) knowledge has been built up from experiences the
agent made in its everyday life. So possible sources of this knowledge include, but
are not limited to, experiences and experiments made by the agent itself (that is,
abductive knowledge collected/learned by the agent on its own), rules provided by
an expert, and methods that mine data sets for rules like, for instance, the Apriori
algorithm [1].

A conditional (B|A) is tolerated by Δ if and only if there is a world ω ∈ Ω

such that ω |= AB and ω |= Ai ⇒ Bi for every 1 ≤ i ≤ n. Δ is consistent if and
only if for every non-empty subset Δ′ ⊆ Δ there is a conditional (B|A) ∈ Δ′ that is
tolerated by Δ′ [10].

Example 17.2.1 For our running example,weuse the alphabetΣ = {R, S, D}where
R indicates whether it is raining (r ) or not (r ), S indicates whether the sun is shining
(s) or not (s), and D indicates whether the ground is dry (d) or not (d). The set of pos-
sible worlds for this alphabet is Ω = {r s d, r s d, r s d, r s d, r s d, r s d, r s d, r s d}.
As example background knowledge we use the conditionals



278 C. Eichhorn et al.

δ1 : (d|r) “If it rains, the ground is usually not dry.”

δ2 : (d|r) “If it does not rain, the ground is usually dry.”

δ3 : (d|s) “If the sun is shining, the ground is usually dry.”

δ4 : (r |s) “If the sun is shining, it usually is not raining.”

δ5 : (s|r) “If it is raining, usually the sun is not shining.”

which we combine to the knowledge base Δ = {δ1, δ2, δ3, δ4, δ5}.

17.3 Basic Techniques

In this section we recall distance measures (Sect. 17.3.2), the strictly syntactical
Dalal distance between worlds, and (AGM) belief revision (Sect. 17.3.3) as basic
groundwork for this paper.

17.3.1 Conditional Structures

In the logic preliminaries, we recalled conditionals to be three-valued logical entities
that are evaluated to true, false, or undefined in a given possible world. In this section
we recall the approach of conditional structures [14] which uses the evaluation
function (17.3) to connect the set of possible worlds with a knowledge base.

Let FΔ = {a−
1 , a+

1 , . . . , a−
n , a+

n } be a set of abstract symbols such that each sym-
bol a+

i (a−
i ) indicates the verification (falsification) of the conditional (ψi |ϕi ) of

a knowledge base Δ = {(ψ1|ϕ1), . . . , (ψn|ϕn)}. We define by σΔ,i a function that
assigns to each world ω ∈ Ω the evaluation of the conditional (ψi |ϕi ) ∈ Δ in the
following way [14, 15]:

σΔ,i (ω) =
⎧
⎨

⎩

a+
i iff [[(ψi |ϕi )]]ω = true iff ω |= ψiϕi

a−
i iff [[(ψi |ϕi )]]ω = false iff ω |= ψiϕi

1 iff [[(ψi |ϕi )]]ω = undefined iff ω |= ψ.

(17.4)

With these indicators we define the free abelian group AΔ = (FΔ, ·, 1) on Δ with
generatorsFΔ, the commutative operation · and neutral element 1. This group consists
of all products (a+

1 )α1 · (a−
1 )β1 · · · · · (a+

n )αn · (a−
n )βn withαi , βi ∈ Z for all 1 ≤ i ≤ n.

With these individual algebraic indicators we define the conditional structure of
a world as follows:

Definition 17.3.1 (Conditional structure (σΔ) [14, 15])
Let Δ = {(ψ1|ϕ1), . . . , (ψn |ϕn)} be a conditional knowledge base. The condi-

tional structure σΔ(ω) of a possible world ω ∈ Ω in the context of Δ is the product
(concatenation) of the individual abstract indicators of all conditionals inΔ, formally
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Table 17.1 Conditional structures for the running example

ω r s d r s d r s d r s d r s d r s d r s d r s d

σΔ(ω) a−
1 a

+
3 a

−
4 a

−
5 a+

1 a
−
3 a

−
4 a

−
5 a−

1 a
+
5 a+

1 a
+
5 a+

2 a
+
3 a

+
4 a−

2 a
−
3 a

+
4 a+

2 a−
2

σΔ(ω) =
n∏

i=1

σΔ,i (ω). (17.5)

Note that the conditional structures of possible worlds from Definition 17.3.1 only
cover a subset of the group AΔ; the conditional structure σΔ(ω) of a world ω ∈ Ω is
the juxtaposition of its respective verification/falsification symbols of all conditionals
in the knowledge base Δ or 1 if ω neither verifies nor falsifies any conditional in Δ.

Example 17.3.1 We illustrate conditional structureswith the running example. Here,
for instance, the world rsd verifies δ1, falsifies δ3, δ4, and δ5, and δ2 is not applicable,
hence σΔ(rsd) = a+

1 · 1 · a−
3 · a−

4 · a−
5 = a+

1 a
−
3 a

−
4 a

−
5 . Table 17.1 shows the condi-

tional structures for every possible world in the running example.

The function σΔ is not injective, it is possible for different worlds to have the
same conditional structure, as we show in the following example.

Example 17.3.2 LetΣ = {A, B} andΔ = {(b|a)}. Then the worlds ab and ab have
the same conditional structure, σΔ(ab) = σΔ(ab) = 1.

This means that two worlds can be structurally equivalent even if they are not identi-
cal; not withstanding two worlds that are identical always have the same conditional
structure, since this structure is calculated by a semantical evaluation of the condi-
tionals with these worlds.

17.3.2 Distance Measures

A distance between two worlds is one option to express similarity or dissimilarity
between the worlds: the shorter the distance, the more similar both worlds are. In
this section we recall the basics of distances between worlds and sets of worlds
and metrics. We also recall the Hamming resp. Dalal distance [3, 11] as a strictly
syntactical distance measure between possible worlds.

In general, a distance measure is a function dist : Ω × Ω → N0 that assigns an
integer (the distance) to each pair ω,ω′ of worlds in Ω . Let A ,B ⊆ Ω be sets of
worlds. We define the distance between A and ω as

dist(A , ω) = min{dist(ω′, ω)|ω′ ∈ A } (17.6)
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and the distance between A and B as

dist(A ,B) = min{dist(ω, ω′)|ω ∈ A , ω′ ∈ B}. (17.7)

With this extension of distance measures we define the set of minimal models in B
with respect to A and dist as the set

MindistA (B) = {ω|ω ∈ B,� ω′ ∈ B such that dist(A , ω′) < dist(A , ω)}.
(17.8)

For formulas ϕ,ψ ∈ L, we overload this notion and define the minimal models of
ψ with respect to a set of worlds A , or a formula ϕ, and dist as

MindistA (ψ) = MindistA (Mod(ψ)) (17.9)

Mindistϕ (ψ) = MindistMod(ϕ)(Mod(ψ)). (17.10)

Definition 17.3.2 (Metric [13]) A metric is a distance measure dist(ω, ω′) between
possible worlds if and only if it satisfies the following properties:

Symmetry d(ω, ω′) = d(ω′, ω)

Identity d(ω, ω) = 0
Positivity d(ω, ω′) ≥ 0 and d(ω, ω′) = 0 only if ω = ω′
Triangle inequality d(ω, ω′′) ≤ d(ω, ω′) + d(ω′, ω′′)

Ametric assigns a total, transitive, antisymmetric, and reflexive ordering ≤ω to each
ω ∈ Ω . The respective strict ordering <ω is defined as usual, we have ω <ω ω′ if
and only if ω ≤ω ω′ and ω′ �ω ω.

To relate distance measures to belief sets, we use K -persistent relations which
order the set of possible worlds with respect to their distance to a belief set K .

Definition 17.3.3 (K -persistent relation [12]) LetK = Cn(ϕ) be a belief set. The
relation≤K ⊆ Ω × Ω is aK -persistent relation if and only if we haveω ∈ Mod(ϕ)

implies ω ≤K ω′ for all ω′ ∈ Ω and ω ∈ Mod(ϕ) implies ω <K ω′ for all ω′ /∈
Mod(ϕ).

Proposition 17.3.1 Let K = Cn(ϕ) be a belief set. The relation

ω ≤K ω′ iff dist(Mod(ϕ), ω) ≤ dist(Mod(ϕ), ω′). (17.11)

is aK -persistent relation if dist is a metric.

Proof If dist is a metric, then by positivity we have dist(ω, ω′) = 0 iff ω = ω′ and
dist(ω, ω′) > 0, otherwise. By (17.8) we have

dist(Mod(ϕ), ω) = min{dist(ω, ω′)|ω′ ∈ Mod(ϕ)}
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which gives us dist(Mod(ϕ), ω) = 0 iff ω ∈ Mod(ϕ) and dist(Mod(ϕ), ω) > 0, oth-
erwise. So we have dist(Mod(ϕ), ω) = dist(Mod(ϕ), ω′) if ω and ω′ ∈ Mod(ϕ) and
dist(Mod(ϕ), ω) < dist(Mod(ϕ), ω′) if ω ∈ Mod(ϕ) and ω′ /∈ Mod(ϕ). Therefore
(17.11) gives us ω ≤K ω′ if ω,ω′ ∈ Mod(ϕ) and ω <K ω′ if ω ∈ Mod(ϕ) and
ω′ /∈ Mod(ϕ), according to the definition of K -persistent relations in Definition
17.3.3.

As baseline for the semantical measures of the following sections, we define a
syntactical edit distance between worlds as Hamming distance [11] between the
literals of the worlds:

Definition 17.3.4 (Dalal distance [3]) Let ω, ω′ be a pair of worlds from Ω . The
Dalal distance distD(ω, ω′) between ω and ω′ is the number of literals in which the
worlds differ, formally

distD(ω, ω′) =
∑

V∈Σ
ω|=v̇,ω′

�v̇

1. (17.12)

We illustrate the Dalal distance with the running example as follows.

Example 17.3.3 The Dalal distance between rsd and rsd is 2 because the worlds
differ in the literals of R and D; Table 17.2 shows all Dalal distances between the
worlds of the running example. Figure 17.1 shows the K -persistent relation ≤D

K

forK = Cn(rsd) and distD .

Proposition 17.3.2 The Dalal distance is a metric.

Proof The Dalal distance counts differences of the literals of two possible worlds,
therefore it cannot be negative and is symmetric, and onlyworldswhere all literals are
identical (and hence worlds that are identical) have a distance of 0, hence symmetry,
positivity and identity follow directly from the definition. We show that the Dalal

Table 17.2 Dalal distance between every pair of worlds in the running example

r s d r s d r s d r s d r s d r s d r s d r s d

r s d 0 1 1 2 1 2 2 3

r s d 1 0 2 1 2 1 3 2

r s d 1 2 0 1 2 3 1 2

r s d 2 1 1 0 3 2 2 1

r s d 1 2 2 3 0 1 1 2

r s d 2 1 3 2 1 0 2 1

r s d 2 3 1 2 1 2 0 1

r s d 3 2 2 1 2 1 1 0
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rsd

rsd

rsd

rsd

rsd

rsd

rsd

rsd

Fig. 17.1 Strict K -persistent relation <D
K with K = Cn(rsd) and the knowledge base from the

running example based on the Dalal distance for conditional structures. Note that ω → ω′ means
ω <D

K ω′

distance also satisfies the triangle inequality: Let Σ = {Vi , ..., Vp} and let ω, ω′ and
ω′′ ∈ Ω , then the definition of distD can be rewritten to

distD(ω, ω′) =
p∑

i=1

{
0 iff ω |= v̇i and ω′ |= v̇i
1 otherwise.

(17.13)

The difference and therefore distance between the literals of individual variables
is independent from all other variables. We define by Hi (ω, ω′) the Dalal distance
between the literals of Vi in ω and ω′ such that Hi (ω, ω′) = 0 if and only if ω |= v̇i
and ω′ |= v̇i , and Hi (ω, ω′) = 1 otherwise, that is, ω |= v̇i and ω′ � v̇i , which is
equivalent to ω′ |= v̇i . With this distance on literals we rewrite the definition to

distD(ω, ω′) =
p∑

i=1

Hi (ω, ω′). (17.14)

As first step of the proof that the Dalal distance satisfies the triangle inequality, we
show that the triangle inequality holds for Hi and each 1 ≤ i ≤ p, that is, we show
that Hi (ω, ω′′) ≤ Hi (ω, ω′) + Hi (ω

′, ω′′) for all 1 ≤ i ≤ p by case analysis:

1. If ω |= v̇i , ω′ |= v̇i , ω′′ |= v̇i then Hi (ω, ω′′) = 0 = Hi (ω, ω′) + Hi (ω
′, ω′′).

2. If ω |= v̇i , ω′ |= v̇i , ω′′ � v̇i then Hi (ω, ω′′) = 1 = 0 + 1 = Hi (ω, ω′) +
Hi (ω

′, ω′′).
3. If ω |= v̇i , ω′ � v̇i , ω′′ |= v̇i then Hi (ω, ω′′) = 0 ≤ 0 + 1 = Hi (ω, ω′) +

Hi (ω
′, ω′′).

4. If ω |= v̇i , ω′ � v̇i , ω′′ � v̇i then Hi (ω, ω′′) = 1 = 1 + 0 = Hi (ω, ω′) +
Hi (ω

′, ω′′).

By this case analysis we obtain that each individual distance satisfies the triangle
inequality. We recall that aligned inequalities can be added, that is, for numbers a,
b, c, d, e, f we have a ≤ b + c and d ≤ e + f implies a + d ≤ b + e + c + f ,
therefore, since we have shown that the triangle inequality holds for each individual
Hi , it also holds for the sum of all Hi , 1 ≤ i ≤ p, which is distD . This completes the
proof.
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Since distD is a metric we can instantiate a K -persistent relation with distD

according to (17.11) and use this relation to define sets of minimal models with
respect to a belief set:

Definition 17.3.5 (Minimal models) Let K be a belief set and let <K be a K -
persistent relation. Let ψ be a formula. The set of minimal models of ψ with respect
to <K usingK -persistent relations as defined in Definition 17.3.3 is the set

Min<K (ψ) = {ω ∈ Mod(ψ)|� ω′ ∈ Mod(ψ)s.t.ω′ <K ω} (17.15)

We instantiate this definition of minimal models with the Dalal distance and the
respective K -persistent relation as follows:

MinD<K
(ψ) = {ω ∈ Mod(ψ)|� ω′ ∈ Mod(ψ)s.t.ω′ <D

K ω} (17.16)

Example 17.3.4 In the running example, the set ofminimalmodels of r swith respect
toK = Cn(rsd) is the set MinD

Cn(rsd)
(r s) = {r sd}, as can be seen in Fig. 17.1.

17.3.3 Belief Revision

An operation of belief revision changes a deductively closed belief set K with a
formula ψ to obtain a revised belief K ∗ ψ . In this section we recall the basics of
AGM belief revision.

Definition 17.3.6 (AGM Belief revision) A belief revision is an AGM belief revision
if it satisfies the following postulates [2]:

(∗ 1) K ∗ ϕ is a belief state
(∗ 2) ϕ ∈ K ∗ ϕ

(∗ 3) K ∗ ϕ ⊆ K + ϕ

(∗ 4) ϕ /∈ K implies K + ϕ ⊆ K ∗ ϕ

(∗ 5) K ∗ ϕ ≡ ⊥ if and and only if ϕ ≡ ⊥
(∗ 6) ϕ ≡ ψ impliesK ∗ ϕ = K ∗ ψ

(∗ 7) K ∗ (ϕψ) ⊆ (K ∗ ϕ) + ψ

(∗ 8) ψ /∈ K ∗ ϕ implies (K ∗ ϕ) + ψ ⊆ K ∗ (ϕψ)

Here+ is theAGMexpansionoperator that satisfies the six postulates of expansion
(see [2]) and hence is characterised by the deductive closure ofK extended with ϕ,
that is,K + ϕ = Cn(K ∪ {ϕ}) [8].
Proposition 17.3.3 [12] A belief revision operator ∗ for belief setsK and formulas
ϕ ∈ L is an AGM belief revision operator if and only if for each belief set K there
is aK -persistent relation ≤K on Ω such that

K ∗ ϕ = Th
(
Min<K (ϕ)

)
(17.17)
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A special case of the belief revision operator (17.17) is the belief revision operator
of Dalal:

Definition 17.3.7 (Dalal revision [3]) Let K = Cn(ϕ) be a belief set with a core
ϕ ∈ L. The Dalal revision of K with a formula ψ ∈ L is the set of theories of the
minimal models of ψ with respect toK , formally

Cn(ϕ) ∗D ψ = Th
(
MinD<Cn(ϕ)

(ψ)
)
. (17.18)

Example 17.3.5 Let K = Cn(rsd), that is, we believe that it is raining, the sun is
not shining and the ground is not dry, and we get to know that it is not raining, that
is, we revise with r . Using the Dalal revision we calculate the set of minimal models
to be MinDK (r) = {r sd} (see Fig. 17.1) and thus as result of the revision we have
Cn(rsd) ∗ r = Th(r sd).

This example illustrates that a strictly syntactical distance measure, like the Dalal
distance, results in a revision operation that may return counter intuitive results:
In the running example we know that the facts “it is raining” and “the ground is
not dry” are connected, but the Dalal distance cannot incorporate this knowledge.
In the following section we will define semantical measures that are based on the
background knowledge to overcome this problem.

17.4 Conditional Distance Measures

We defined the conditional structure of a world using the verification/falsification
behaviour with respect to individual conditionals encoded in the abstract symbols
a+
i and a−

i . In this section we use these building blocks to define the building blocks
for the semantical distances.

As first semantical distance measure, we define a measure in parallel to the Dalal
distance (Definition 17.3.4) but on conditional structures.

Definition 17.4.1 (Conditional distance) LetΔ = {(ψ1|ϕ1), . . . , (ψn|ϕn)} be a con-
ditional knowledge base.We define by S the distance between two algebraic symbols
according to Sect. 17.3.1 such that for two worlds ω,ω′ and each 1 ≤ i ≤ n

S(σΔ,i (ω), σΔ,i (ω
′)) =

{
0 iff σΔ,i (ω) = σΔ,i (ω

′)
1 otherwise.

and define the conditional distance between ω and ω′ as

distCΔ(ω, ω′) =

⎧
⎪⎨

⎪⎩

0 iff ω = ω′

1 +
n∑

i=1

S(σΔ,i (ω), σΔ,i (ω
′)) otherwise.
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Table 17.3 Conditional distance in the running example

r s d r s d r s d r s d r s d r s d r s d r s d

r s d 0 3 4 5 5 6 6 6

r s d 3 0 5 4 6 5 6 6

r s d 4 5 0 2 6 6 4 4

r s d 5 4 2 0 6 6 4 4

r s d 5 6 6 6 0 3 3 4

r s d 6 5 6 6 3 0 4 3

r s d 6 6 4 4 3 4 0 2

r s d 6 6 4 4 4 3 2 0

Example 17.4.1 Table 17.3 gives the conditional distance between any twoworlds in
the running example; we have, for example, distCΔ(rsd, r s d) = 5 because σΔ(rsd) =
a−
1 a

+
3 a

−
4 a

−
5 and also σΔ(r s d) = a+

1 a
+
5 , so both worlds differ in the evaluation of δ1,

δ3, δ4, and δ5.

Proposition 17.4.1 The conditional distance is a metric.

Proof By definition, the conditional distance between worlds can only be 0 if the
worlds are identical, so we obtain directly that the conditional distance is symmetric,
positive, and satisfies identity. We show that the conditional distance satisfies the
triangle inequality, that is, for three worlds ω, ω′ and ω′′ we have distCΔ(ω, ω′′) ≤
distCΔ(ω, ω′) + distCΔ(ω′, ω′′). By cd(ω, ω′) we abbreviate the expression 1 + ∑n

i=1
S(σΔ,i (ω), σΔ,i (ω

′)) and differentiate between the following cases:

1. If ω = ω′ = ω′′ then distCΔ(ω, ω′′) = 0 = distCΔ(ω, ω′) = distCΔ(ω′, ω′′).
2. Ifω �= ω′ = ω′′ then distCΔ(ω, ω′′) = cd(ω, ω′′) = cd(ω, ω′) = distCΔ(ω, ω′) and

distCΔ(ω′, ω′′) = 0, which gives us cd(ω, ω′′) ≤ cd(ω, ω′′) + 0 if inserted into the
triangle inequality.

3. If ω = ω′ �= ω′′ then distCΔ(ω, ω′′) = cd(ω, ω′′) = cd(ω′, ω′′) = distCΔ(ω′, ω′′)
and distCΔ(ω, ω′) = 0, which gives us cd(ω, ω′′) ≤ 0 + cd(ω, ω′′) when inserted
into the triangle inequality.

4. If ω �= ω′ �= ω′′ and ω = ω′′ then distCΔ(ω, ω′) = cd(ω, ω′) = cd(ω′′, ω′) =
distCΔ(ω′, ω′′) and distCΔ(ω, ω′′) = 0, which gives us 0 ≤ cd(ω, ω′′) + cd(ω′, ω′′)
for the triangle inequality.

All these cases satisfy the triangle inequality, directly. We finally have to examine
the case ω �= ω′ �= ω′′ and ω �= ω′′. Like for the proof of Proposition 17.3.2, the
summands of the conditional distance are independent from one another, so it suffices
to show that the triangle inequality holds for every 1 ≤ i ≤ n, which gives us that the
inequality holds for the sum of the values, that is, distCΔ, as well. Let σΔ,i (ω) = αi ,
σΔ,i (ω

′) = βi and σΔ,i (ω
′′) = γi . We show that S(αi , γi ) ≤ S(αi , βi ) + S(βi , γi ) by

case differentiation.
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Fig. 17.2 K -persistent
relation <C

K ,Δ with

K = Cn(rsd) and the
knowledge base from the
running example based on
the conditional distance

rsd rsd r sd

rsd

r sd

rsd

rsd

rsd

1. If αi = βi = γi then S(αi , γi ) = 0 ≤ 0 + 0 = S(αi , βi ) + S(βi , γi ).
2. If αi = βi �= γi then S(αi , γi ) = 1 ≤ 0 + 1 = S(αi , βi ) + S(βi , γi ).
3. If αi �= βi = γi then S(αi , γi ) = 1 ≤ 1 + 0 = S(αi , βi ) + S(βi , γi ).
4. If αi �= βi �= γi and αi = γi then S(αi , γi ) = 0 ≤ 1 + 1 = S(αi , βi ) + S(βi , γi ).
5. If αi �= βi �= γi and αi �= γi then S(αi , γi ) = 1 ≤ 1 + 1 = S(αi , βi ) + S(βi , γi ).

So the triangle inequality holds for each 1 ≤ i ≤ n, which gives us that distCΔ satisfies
the triangle inequality, bywhichwe conclude that the conditional distance is ametric.

The conditional distance being a metric allows us to define a total K -persistent
preorder according to (17.11), which we illustrate with the following example.

Example 17.4.2 Figure 17.2 shows the K -persistent relation ≤D
K ,Δ for K =

Cn(rsd) and the knowledge base Δ from the running example which can be derived
from Table 17.3.

The conditional distance does not take into account that conditional structures,
like conditionals, are trivalent. The following distances differentiate between the dif-
ferent changes between verification (falsification) and not-applicability, and between
verification and falsification.

Definition 17.4.2 (Weighted conditional distance) LetΔ = {(ψ1|ϕ1), . . . , (ψn|ϕn)}
be a conditional knowledge base.Wedefine a distance functionW (·, ·) : FΔ × FΔ →
{0, 1, 2} thatmeasures the distance for a switch between indicator symbols as follows:

• W (a+
i , a+

i ) = W (1, 1) = W (a−
i , a−

i ) = 0
• W (a+

i , 1) = W (1, a+
i ) = 1

• W (a−
i , 1) = W (1, a−

i ) = 1
• W (a+

i , a−
i ) = W (a−

i , a+
i ) = 2,

and with this the weighted conditional distance distWΔ of Δ as

distWΔ (ω, ω′) =

⎧
⎪⎨

⎪⎩

0 iff ω = ω

1 +
n∑

i=1

W (σΔ,i (ω), σΔ,i (ω
′)) otherwise. (17.19)

Example 17.4.3 Table 17.4 shows the weighted conditional distances between all
worlds of the running example, we have, for example, distWΔ (rsd, r s d) = 1 + 2 +
1 + 1 + 2 = 7.
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Table 17.4 Weighted conditional distance in the running example

r s d r s d r s d r s d r s d r s d r s d r s d

r s d 0 5 5 7 6 8 6 6

r s d 5 0 7 5 8 6 6 6

r s d 5 7 0 3 6 6 4 4

r s d 7 5 3 0 6 6 4 4

r s d 6 8 6 6 0 5 3 5

r s d 8 6 6 6 5 0 5 3

r s d 6 6 4 4 3 5 0 3

r s d 6 6 4 4 5 3 3 0

Proposition 17.4.2 The weighted conditional distance is a metric.

Proof From the definition we obtain directly that the weighted conditional distance
is symmetric, positive, and satisfies identity. For being a metric, finally we have
to show that the triangle inequality holds for the weighted conditional distance.
Following the argumentation from the proof of Proposition 17.4.1, it suffices to
show that the triangle inequality is satisfied on W for each individual distance 1 ≤
i ≤ n. Let ω, ω′ and ω′′ ∈ Ω , we show that for σΔ,i (ω) = αi , σΔ,i (ω

′) = βi and
σΔ,i (ω

′′) = γi we have W (αi , γi ) ≤ W (αi , βi ) + W (βi , γi ) for all configurations
αi , βi , γi ∈ {a+

i , a−
i , 1} by case analysis.

1. αi = βi = γi . In this case W (a, γi ) = W (a, βi ) + W (βi , γi ) = 0.
2. αi �= βi and βi = γi . In this case either W (αi , γi ) = 1 = 1 + 0 = W (αi , βi ) +

W (αi , γi ) or W (a, γi ) = 2 = 2 + 0 = W (αi , βi ) + W (βi , γi )

3. αi = βi and βi �= γi . In this case either W (αi , γi ) = 1 = 0 + 1 = W (αi , βi ) +
W (βi , γi ) or W (αi , γi ) = 2 = 0 + 2 = W (a, βi ) + W (βi , γi )

4. αi �= βi , βi �= γi and α = γ . In this case W (αi , γi ) = 0 ≤ 1 + 1 = W (αi , βi ) +
W (βi , γi ) or W (αi , γi ) = 0 ≤ 2 + 2 = W (αi , βi ) + C(βi , γi ).

5. αi �= βi , βi �= γi , and α �= γ . Here we have to differentiate between the different
configurations of αi , βi and γi :

• αi = a+
i , βi = a−

i and γi = 1
In this case W (αi , γi ) = 2 = 1 + 1 = W (αi , βi ) + W (βi , γi ).

• αi = a+
i , βi = 1 and γi = a−

i
In this case W (αi , γi ) = 2 = 1 + 1 = W (αi , βi ) + W (βi , γi ).

• αi = 1, βi = a+
i and γi = a−

i
In this case W (αi , γi ) = 1 ≤ 1 + 1 = W (αi , βi ) + W (βi , γi ).

• αi = 1, βi = a−
i and γi = a+

i
In this case W (αi , γi ) = 1 ≤ 1 + 1 = W (αi , βi ) + W (βi , γi ).

• αi = a−
i , βi = a+

i and γi = 1
In this case W (αi , γi ) = 1 ≤ 2 + 1 = W (αi , βi ) + W (βi , γi ).

• αi = a−
i , βi = 1 and γi = a+

i
In this case W (αi , γi ) = 2 = 1 + 1 = W (αi , βi ) + W (βi , γi ).
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Fig. 17.3 K -persistent
relation <W

K ,Δ for

K = Cn(rsd) in the running
example r sd r sd

r sd

r sd

r sd

r sd

r sd

r sd

We obtain that the triangle inequality holds for all configurations of αi , βi and γi and
hence for the whole distance measure, and conclude that the weighted conditional
distance is a metric.

After having shown that the weighted conditional distance is a metric, we can
define a total K -persistent relation according to (17.11). We illustrate this relation
with the running example as follows.

Example 17.4.4 We use Table 17.4 to derive the K -persistent relation ≤W
K ,Δ for

K = Cn(rsd) and the knowledge base from the running example (Fig. 17.3).

Differentiating between the verification and the non-applicability of a conditional
may be too rigorous. With the following distance we introduce a measure that dif-
ferentiates only between falsifying and not falsifying a conditional.

Definition 17.4.3 (Conditional penalty distance) Let Δ be a knowledge base. We
define a distance function P(·, ·) : FΔ × FΔ → {0, 1} that measures the distance
between indicator symbols as:

• P(a+
i , a+

i ) = P(1, 1) = P(a−
i , a−

i ) = P(a+
i , 1) = P(1, a+

i ) = 0
• P(a−

i , 1) = P(1, a−
i ) = 1

• P(a+
i , a−

i ) = P(a−
i , a+

i ) = 1

With this function we define the conditional penalty distance distPΔ of Δ as

distPΔ(ω, ω′) =

⎧
⎪⎨

⎪⎩

0 iff ω = ω′

1 +
n∑

i=1

P(σΔ,i (ω), σΔ,i (ω
′)) otherwise. (17.20)

Example 17.4.5 In the running example we have, for example, distPΔ(rsd, r s d) =
1 + 1 + 0 + 1 + 1 = 4; Table 17.5 shows all conditional penalty distances between
the worlds in this setting.

Proposition 17.4.3 The conditional penalty distance is a metric.

This can be shown with a case analysis similar to the proof of Proposition 17.4.2,
and hence we can define a total K -persistent preorder according to (17.11), which
we illustrate in the following example.
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Table 17.5 Conditional penalty distance for the running example

r s d r s d r s d r s d r s d r s d r s d r s d

r s d 0 3 3 4 4 6 4 5

r s d 3 0 5 4 4 4 4 5

r s d 3 5 0 2 2 4 2 3

r s d 4 4 2 0 1 3 1 2

r s d 4 4 2 1 0 3 1 2

r s d 6 4 4 3 3 0 3 2

r s d 4 4 2 1 1 3 0 2

r s d 5 5 3 2 2 2 2 0

r sd

r sd

r sd

r sd

r sd

r sd

r sd

r sd

Fig. 17.4 K -persistent relation <P
K ,Δ for K = Cn(rsd) in the running example

a+i
(Verification)

(Non-applicability)

1

a−i
(Falsification)

1 1

1

(a) Conditional distance

a+i

1

a−i

1 1

2

(b) Weighted conditional distance

a+i

1

a−i

0 1

1

(c) Conditional penalty distance

Fig. 17.5 Illustration of the three conditional distancemeasures on a single indicator symbol, where
the weight on the edges indicate the costs for a switch between these instantiations

Example 17.4.6 Figure 17.4 shows the K -persistent relation <P
K ,Δ for K =

Cn(rsd) and the knowledge base from the running example derived from Table 17.5.

All distance measures defined in this section are semantic distances in that they
make use of the semantical relationships encoded in Δ. We close this section with
an illustration of all three distance measures in Fig. 17.5.
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17.5 Revision with Conditional Distance Measures

In this section we instantiate AGM belief revision with the defined conditional dis-
tances. This is obtained by instantiating minimal models (Definition 17.3.5) with the
K -persistent relations based on conditional, weighted conditional and conditional
penalty distance, which then is used to instantiate the generic belief revision operator
from Proposition 17.3.3. We illustrate the resulting revision operations with exam-
ples, discuss the performance of the revision operations in comparison to the Dalal
revision and the implementational properties of the conditional revision operations.

We illustrate the minimal models generated by conditional distances with the
running example and include the minimal models generated with the Dalal distance
for comparison:

Example 17.5.1 Let K = Cn(rsd) and let Δ be the knowledge base from the run-
ning example. Using Definition 17.3.5 and Figs. 17.1, 17.2, 17.3 and 17.4 we get the
following K -minimal models for r s:

MinD
Cn(rsd)

(r s) = {r sd}
MinC

Cn(rsd),Δ
(r s) = {r sd, r sd}

MinW
Cn(rsd),Δ

(r s) = {r sd, r sd}
MinP

Cn(rsd),Δ
(r s) = {r sd}

We use the generic Definition (17.18) to instantiate conditional revision operators
that are based on background knowledge represented as conditional knowledge base
as follows:

Conditional revision Cn(ϕ) ∗CΔ ψ = Th(MinCϕ,Δ(ψ))

Weighted conditional revision Cn(ϕ) ∗W
Δ ψ = Th(MinWϕ,Δ(ψ))

Conditional Penalty revision Cn(ϕ) ∗P
Δ ψ = Th(MinPϕ,Δ(ψ))

We have constructed all relations ≤x
Δ with x ∈ {C,W, P} to be K -persistent

relations, therefore with Proposition 17.3.3 we directly obtain

Corollary 17.5.1 The conditional revision, weighted conditional revision, and con-
ditional penalty revision are AGM revision operations.

In the following, we give three examples to illustrate the revision processes using
the conditional, weighted conditional and penalty revision and compare the results
to the Dalal revision. We list the instantiations of minimal models for an easier
understanding of the examples, beforehand:
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MinDK (ψ) = {ω ∈ Mod(ψ)|� ω′ ∈ Mod(ψ)s.t.ω′ <D
K ω}

MinCK ,Δ(ψ) = {ω ∈ Mod(ψ)|� ω′ ∈ Mod(ψ)s.t.ω′ <C
K ,Δ ω}

MinWK ,Δ(ψ) = {ω ∈ Mod(ψ)|� ω′ ∈ Mod(ψ)s.t.ω′ <W
K ,Δ ω}

MinPK ,Δ(ψ) = {ω ∈ Mod(ψ)|� ω′ ∈ Mod(ψ)s.t.ω′ <P
K ,Δ ω}

Example 17.5.2 We recall Example 17.3.5 to show the defined conditional revisions
in comparisonwith theDalal revision, sowe believe that it rains, the sun is not shining
and the ground is wet, that is,K = Cn(rsd). In this situation we get to know that it
is not raining, that is, we revise with r , and ask ourselves whether the ground would
be dry or not. We already determined the sets of minimal models in Example 17.5.1,
so we obtain:

• With the Dalal distance, the closest r -satisfying world to K is r sd. Here we
have d ∈ Th(r sd) = Cn(rsd) ∗D r , that is, after the revision we conclude that the
ground is not dry.

• Using the conditional distance, the closest worlds that satisfy r are the worlds
r sd and r sd, thus Cn(rsd) ∗CΔ r = Th({r sd, r sd}) = Cn(r s). Since neither d ∈
Cn(r s) nor d ∈ Cn(r s), it cannot be concluded whether the ground is dry or not.

• The closest r -satisfying worlds under weighted conditional distance are r sd and
r s d. It is neither d ∈ Th(r sd, r s d) = Cn(rsd) ∗W

Δ r , nor d ∈ Th(r sd, r s d) =
Cn(rsd) ∗W

Δ r that is, after the revision it cannot be concluded whether the ground
is dry or not.

• With the conditional penalty distance, the closest worlds to rsd that satisfy r are
rsd and r sd, and so d ∈ Cn(rsd) ∗P

Δ r , and after the revision we conclude that the
ground is dry.

In this example, we see that using the (syntactical) Dalal distance we get the counter-
intuitive result to believe to be in a world where the ground is not dry when it is
not raining, while our background knowledge states that normally the ground should
be dry if it is not raining. In line with the background knowledge, the conditional
distances withdraw the belief that the ground is not dry, and penalty distance even
allows to conclude that the ground is dry.

Example 17.5.3 LetK = Cn(rd), that is, we believe that the ground is not dry and
it is not raining. In this situation we get to know that it is raining, that is, we revise
with r . We use Tables 17.2, 17.3, 17.4 and 17.5 to determine the respective minimal
worlds and obtain:

• Cn(rd) ∗D r = Th({rsd, rsd}) = Cn(rd)

• Cn(rd) ∗CΔ r = Th({rsd, rsd}) = Cn(rs)
• Cn(rd) ∗W

Δ r = Th({rsd, rsd}) = Cn(rs)
• Cn(rd) ∗P

Δ r = Th({rsd}) = Cn(rsd)

Again we see that the Dalal revision preserves the knowledge about the ground,
but also the ignorance about whether the sun is shining or not. Using conditional
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operations, we also believe that the sun is not shining with respect to δ5 “If it is
raining, usually the sun is not shining”. Also, both the Dalal and penalty revision
preserve the information about the ground not being dry, whereas the conditional
and weighted conditional revisions contract this belief since the justification r for d
is contracted.

Example 17.5.4 Finally we assume to believe that the ground is dry and it is either
raining or the sun is shining, which we formalize asK = Cn(d ∧ (r ⇔ s)), and get
to know that the ground is not dry, that is, we revise with d. We use Tables 17.2,
17.3, 17.4 and 17.5 to determine the respective minimal worlds and obtain:

• Cn(d ∧ (r ⇔ s)) ∗D d = Th({rsd, rsd}) = Cn(d)

• Cn(d ∧ (r ⇔ s)) ∗CΔ d = Th({rsd}) = Cn(rsd)

• Cn(d ∧ (r ⇔ s)) ∗W
Δ d = Th({rsd}) = Cn(rsd)

• Cn(d ∧ (r ⇔ s)) ∗P
Δ d = Th({rsd}) = Cn(rsd)

In this example, revising with the Dalal revision relinquishes the belief in sunshine
and rain being mutually exclusive. This belief is preserved in the conditional revi-
sions, and additionally the world that incorporates this belief. The world satisfying
d (the new knowledge) is selected as the world believed to be true from the worlds
in accordance with this belief.

The three Examples 17.5.2 through 17.5.4 illustrate that including background
knowledge in the form of a conditional knowledge base via our conditional measures
in the process of revising an agent’s belief leads to more intuitive results with respect
to the represented background knowledge.

We will finish this section with a discussion about the implementational proper-
ties of the defined conditional measures. The defined conditional distance measures
are defined as a sum of distances, each being a distance between the evaluation of
individual conditionals in the knowledge base. Using the abstract evaluation symbols
of conditional structures allowed us to therefore generate the distance between two
worlds as a sum of distances between the building blocks of elements of the free
abelian group AΔ, that is, we defined conditional distance measures on the syntax
of the elements of AΔ. These elements can be padded with the neutral element to
generate strings of identical length, and the distance between two of these elements
can therefore be calculated by reading each symbol in a pair of strings once. Other
than using strictly syntactical distances like Dalal (Levenshtein, Hamming) distance,
the length of each element does not depend on the size of the alphabet Σ but on the
size of the knowledge base Δ. We expect that the number of variables exceeds the
number of conditionals in honest-to-life examples, so the calculation of the distance
of two conditional structures should be less or equally computationally complex
than the calculation of the syntactical distance of two possible worlds. To obtain the
conditional structure of a world, however, all conditionals in Δ have to be evaluated.
Applying an interpretation to a formula and checking whether it is evaluated to true
or false can be done in linear time, but this has to be repeated at most twice for
every conditional, and hence no more than four times per pair of worlds. Overall, the
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computational complexity of calculating a conditional distance between two worlds
can be done in polynomial time with respect to the size of the knowledge base com-
parison, compared to calculating the Dalal distance in polynomial time with respect
to the size of the alphabet. For the general case we neither know the cardinality of
the alphabet nor the cardinality of the knowledge base. Using conditional structures
partitions the possible worlds into 3|Δ| − 1 equivalence classes equivalent to Gilio’s
constituents (see, e.g., [9]). If the proportion of empty partitions is high, this leads to
an overhead in computational time. But by using approaches to decompose knowl-
edge into sets of mutually relevant information (confer, for example, [6, 7]) we can
ensure that there is no unnecessary blow-up in either.

17.6 Conclusion

In this paper we defined semantical distance measures that calculate the distance
between worlds based on the evaluation of worlds by conditionals from a knowledge
base. This distance was defined on the individual evaluation of the conditionals
stored as abstract symbols of conditional structures. By using this data structure,
we defined distance measures as syntactical distances on the semantical relations
generated from the conditional knowledge base; we discuss that this allows for the
semantical distance between two worlds to be calculated in polynomial time mainly
dependent on the size of the knowledge base. We used these distance measures to
define persistent relations on the worlds with respect to the belief set. With these
relations we derived semantical revision operators. The belief revision operations
change the belief set of an agent, but not the background knowledge. Since the
conditional structure relies only on the latter, the structures and distances that have
been calculated between two worlds are not changed by a revision and therefore the
distances can be used for repeated revisions.

All of the distances have been set up as symmetrical measures. A part of our
ongoing research, we examine the impact of abandoning this symmetry, such that,
for instance, the distance from verification to falsification may be larger than the
distance from falsification to verification, thus favoring transitions from falsification
of conditionals to verification of conditionals over transitions from verification to
falsification. In this line of work, we plan to compare the results of the resulting
measures with the results of [16] regarding belief revision with pseudo-distances.

We implemented belief revision with the semantical metrics as defined in this
paper using the Tweety collection of Java libraries for logical aspects of artificial
intelligence and knowledge representations [17] as a free web service called “SED-
IMENT” (SEmantical DIstance MEasuremeNTs).1

1http://airconditionals.cs.tu-dortmund.de:8080/SDPlugin/.

http://airconditionals.cs.tu-dortmund.de:8080/SDPlugin/


294 C. Eichhorn et al.

Acknowledgments This work was supported by DFG-Grant KI1413/5-1 of Prof. Dr. Gabriele
Kern-Isberner as part of the Priority Program “New Frameworks of Rationality” (SPP 1516). Chris-
tian Eichhorn is supported by this grant. Thanks to Richard Niland for his work on the implemen-
tation and for carefully proof-reading this paper.

References

1. Agrawal, Rakesh; Srikant, Ramakrishnan: Fast Algorithms for Mining Association Rules in
Large Databases, in: Proceedings of the 20th International Conference on Very Large Data
Bases VLDB ’94, 1994, pp. 487–499.

2. Alchourrón, Carlos E.; Gärdenfors, Peter; Makinson, David: On the logic of theory change:
Partialmeet contraction and revision functions, Journal of Symbolic Logic, vol 50, pp. 510–530.

3. Dalal, Mukesh: Investigations Into a Theory of Knowledge Base Revision: Preliminary Report,
Mitchell, Tom M.; Smith, Reid G. (eds.): Proceedings of the Seventh National Conference on
Artificial Intelligence (AAAI-88), Cambridge, MA: MIT Press, 1988, pp. 475–479.

4. de Finetti, Bruno: Theory of Probability, New York: John Wiley & Sons, vols. 1, 2, 1974.
5. Diekmann, Katharina: Ähnlichkeitsbasierte Inferenzen für kontrafaktische Konditionale, Mas-

ter’s Thesis Technische Universiät Dortmund, 2013.
6. Eichhorn,Christian;Kern-Isberner,Gabriele: LEGNetworks forRankingFunctions, in: Fermé,

Eduardo; Leite, João (eds.): Logics in Artificial Intelligence (Proceedings of the 14th European
Conference on Logics in Artificial Intelligence (JELIA’14)), Springer International (Lecture
Notes in Computer Science, vol. 8761) 2014, pp. 210–223.

7. Eichhorn, Christian; Kern-Isberner, Gabriele: Using inductive reasoning for completing OCF-
networks, Journal of Applied Logic, vol. 13 (4, Part 2): Special Issue dedicated to Uncertain
Reasoning at FLAIRS, 2015, pp. 605–627.

8. Gärdenfors, Peter; Rott, Hans: Belief Revision, in: Gabbay, Dov M.; Hogger, C. J.; Robinson,
J. A. (eds.): Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 4, New
York: Oxford University Press, 1994, pp. 35–132.

9. Gilio, Angelo: Probabilistic reasoning under coherence in system P�, Annals of Mathematics
and Artificial Intelligence vol. 34, 2002, pp. 5–34.

10. Goldszmidt, Moisés; Pearl, Judea: Qualitative probabilities for default reasoning, belief revi-
sion, and causal modeling, Artificial Intelligence, vol. 84 (1–2), 1996, pp. 57–112.

11. Hamming,R.W.: Error detecting and error correcting codes,TheBell SystemTechnical Journal,
vol. 29 (2) 1950, pp. 147–160.

12. Katsuno, Hirofumi; Mendelzon, Alberto O.: Propositional knowledge base revision and mini-
mal change Artificial Intelligence, vol. 52 (3), 1991, pp. 263–294.

13. Kelley, J. L.: General Topology, New York: Van Nostrand, 1955.
14. Kern-Isberner, Gabriele:Conditionals in Nonmonotonic Reasoning and Belief Revision – Con-

sidering Conditionals as Agents, Berlin: Springer Science+Business Media (Lecture Notes in
Computer Science, Nr. 2087), 2001.

15. Kern-Isberner,Gabriele:AThoroughAxiomatization of a Principle ofConditional Preservation
in Belief Revision, Annals of Mathematics and Artificial Intelligence, vol. 40 (1–2), 2004, pp.
127–164.

16. Lehmann, Daniel; Magidor, Menachem; Schlechta, Karl: Distance Semantics for Belief Revi-
sion, The Journal of Symbolic Logic, vol. 66 (1), 2001, pp. 295–317.

17. Thimm,Matthias: Tweety – AComprehensive Collection of Java Libraries for Logical Aspects
of Artificial Intelligence and Knowledge Representation, Proceedings of the 14th International
Conference on Principles of Knowledge Representation and Reasoning (KR’14), 2014.



Chapter 18
Associative Globally Monotone Extended
Aggregation Functions

Tomasa Calvo, Gaspar Mayor and Jaume Suñer

18.1 Introduction

Aggregation is the process of combining several input values into a single representa-
tive output value, and the functions that carried out this process are called aggregation
functions. Perhaps the oldest example of aggregation function is the arithmetic mean,
which has been used during all the history of physics and all experimental sciences.

It is easy to understand that aggregation functions play an important role in many
fields: pure and appliedmathematics, computer and engineering sciences, economics
and finance, social sciences aswell asmany other applied fields of physics and natural
sciences.

The problems of aggregation are, in general, very broad and heterogeneous and
the task of defining or choosing the right class of aggregation functions for an spe-
cific problem is often difficult, considering the huge variety of potential aggregation
functions. Here we restrict ourselves in this contribution to the specific topic of the
aggregation of a finite number of real inputs only. In this spirit, if the number of input
values is fixed, say n, an aggregation function is a real function of n variables and,
if not explicity stated, we will assume throughout that both inputs and outputs are
from the unit interval [0, 1], and hence an n-ary aggregation function is a mapping
from [0, 1]n into [0, 1]. Evidently, not all these functions are candidates to be an
aggregation function and, in this sense, two requirements are commonly accepted
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in the field: boundary conditions and increasing monotonicity, that we adopt as the
basic definition of an n-ary aggregation function.

Moreover, it is often the case that aggregation of inputs of various sizes has to be
considered in the same framework. For instance, in some applications, input vectors
may have a varying number of components and, in this case, it is appropriate to
consider a family of functions of n = 1, 2, 3, . . . arguments with the same under-
lying properties (boundary conditions and increasing monotonicity).The concept of
extended aggregation function [1–7] allows us to work with such families of aggre-
gation functions of any number of arguments. It is clear that two members of such
families need be related somehow in order to give consistency to the process of aggre-
gation. This can be done in several ways: to compute each member of the family
using one generic formula (arithmeticmean, geometricmean); requiring somegroup-
ing property (decomposability, associativity); some kind of stability (self-identity,
duplication); and others [8, 9].

The increasing number of research papers appeared in the last decades that either
make use of aggregation functions or contribute to its theoretical study stands for
the great interest in this subject from a theoretical and applied point of view. At this
point, it is worth saying that the publication of several monographs on the subject
in question has contributed to the presentation of a general framework where new
concepts can still appear and develop new techniques in the field of aggregation
[10–13].

Our aim in this contribution is to continue dealingwith a type of globalmonotonic-
ity as a minimum requirement of consistency for an extended aggregation function
[14]. We are here interested in those associative aggregation functions that define
global monotone extended aggregation functions.
After some preliminaries, in Sect. 3 we recall the concept of global monotonicity, and
give two basic examples of extended aggregation functions that satisfy this require-
ment. The Sect. 4 is devoted to analyze the relationship between associativity and
global monotonicity.

18.2 Preliminaries

All the concepts and results in this section can be found in [10, 12, 13] and references
therein.

Definition 18.2.1 An (n–ary) aggregation function is a function F : [0, 1]n → [0, 1]
with the properties:

(i) F(0, . . . , 0) = 0, F(1, . . . , 1) = 1.
(ii) F(x) ≤ F(y) whenever x ≤ y, for all x = (x1, . . . , xn), y = (y1, . . . , yn) in

[0, 1]n .
(iii) In case n = 1, F(x) = x ∀x ∈ [0, 1].

http://dx.doi.org/10.1007/978-3-319-48317-7_3
http://dx.doi.org/10.1007/978-3-319-48317-7_4
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Proposition 18.2.1 For an aggregation function F : [0, 1]n → [0, 1], the following
properties are equivalent:

(i) F(

n
︷ ︸︸ ︷
a, . . . , a) = a for all a ∈ [0, 1] (F is idempotent).

(ii) min(x1, . . . , xn) ≤ F(x1, . . . , xn) ≤ max(x1, . . . , xn) (F is compensative).

If an aggregation function is compensative, we also say that it is a mean or an
average.

Consider a weighting vector w = (w1, . . . , wn) where wi ≥ 0, i = 1, . . . , n and
n∑

i=1
wi = 1. Two classic types of means associated to w can be considered.

Definition 18.2.2 Given aweighting vectorw, theweighted arithmeticmean defined

by w is the function F(x1, . . . , xn) =
n∑

i=1

wi xi .

The only weighted mean which is symmetric is the arithmetic mean

F(x1, . . . , xn) = 1

n

n∑

i=1

xi .

Definition 18.2.3 Given a weighting vector w, the ordered weighted arithmetic
mean (OWA operator, [15]) defined by w is

F(x1, . . . , xn) =
n∑

i=1

wi x(i),

where (x(1), . . . , x(n)) denotes the vector obtained from (x1, . . . , xn) by arranging its
components in decreasing order x(1) ≥ x(2) ≥ . . . ≥ x(n).

Definition 18.2.4 An extended aggregation function is a mapping F : ⋃

n≥1
[0, 1]n →

[0, 1] such that the restriction of this mapping to each [0, 1]n is an n–ary aggregation
function.

We say that an extended aggregation function is idempotent (compensative) if its
restriction to each [0, 1]n is idempotent (compensative). In this contribution we are
interested in extended aggregation functions which are idempotent.



298 T. Calvo et al.

18.3 Extended Monotonicity

Let us consider the following binary relation on
⋃

n≥1
[0, 1]n :

Definition 18.3.1 Let x = (x1, . . . , xn) and y = (y1, . . . , ym). Then x ≤ y means:

• If n = m, xi ≤ yi for all i = 1, . . . , n
• If n < m, xi ≤ yi for all i = 1, . . . , n and max(x1, . . . , xn) ≤ min(yn+1, . . . ,

ym)

• If n > m, xi ≤ yi for all i = 1, . . . ,m and max(xm+1, . . . , xn) ≤ min(y1, . . . ,
ym)

The binary relation given in the definition above is a pre-order1 on the set⋃

n≥1
[0, 1]n . For any n ≥ 1, the restriction of this pre–order to the set of n–dimensional

lists [0, 1]n coincides with the usual product order.
Remark 1 From Definition 18.3.1, we have immediately that x ≤ y and y ≤ x if,

and only if, x = (

p
︷ ︸︸ ︷
a, . . . , a), y = (

q
︷ ︸︸ ︷
a, . . . , a), where a ∈ [0, 1], p, q ≥ 1.

Definition 18.3.2 Afunction F : ⋃

n≥1
[0, 1]n → [0, 1] is globallymonotone (increas-

ing) if F(x) ≤ F(y) whenever x ≤ y.

In the following we will denote min(x1, . . . , xn) = ∧xi and max(x1, . . . , xn) =
∨xi .

Proposition 18.3.1 An extended aggregation function F : ⋃

n≥1
[0, 1]n → [0, 1] is

globally monotone if, and only if,

F(x1, . . . , xn,∧xi ) ≤ F(x1, . . . , xn) ≤ F(x1, . . . , xn,∨xi ) (18.1)

for all (x1, . . . , xn) ∈ [0, 1]n, n ≥ 1.

Proof Let us suppose first that F is globally monotone, then we have (18.1) because

(x1, . . . , xn,∧xi ) ≤ (x1, . . . , xn) ≤ (x1, . . . , xn,∨xi ) , for all (x1, . . . , xn), n ≥ 1.

Reciprocally, let us consider F satisfying the condition (18.1) and x = (x1, . . . , xn),
y = (y1, . . . , ym) such that x ≤ y. If n = m then F(x) ≤ F(y) because the restriction
of F to [0, 1]n is increasing in each variable. In case, n < m, from (18.1) we can
write

F(x) = F(x1, . . . , xn) ≤ F(x1, . . . , xn,

m−n
︷ ︸︸ ︷∨xi , . . . ,∨xi ) ≤

≤ F(y1, . . . , yn, yn+1, . . . , ym) = F(y).

1Reflexive and transitive.
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Finally, if n > m, we have

F(x) = F(x1, . . . , xm, xm+1, . . . , xn) ≤ F(y1, . . . , ym,

n−m
︷ ︸︸ ︷∧yi , . . . ,∧yi ) ≤

≤ F(y1, . . . , ym) = F(y).

Thus F is globally monotone. �

Proposition 18.3.2 If an extended aggregation function F is globallymonotone then
it is idempotent and, therefore, compensative.

Proof Let a ∈ [0, 1] and n ≥ 1. Since (

n
︷ ︸︸ ︷
a, . . . , a) ≤ (a) ≤ (

n
︷ ︸︸ ︷
a, . . . , a) we have that

F(

n
︷ ︸︸ ︷
a, . . . , a) ≤ F(a) ≤ F(

n
︷ ︸︸ ︷
a, . . . , a)

and then F(

n
︷ ︸︸ ︷
a, . . . , a) = a since F(a) = a. Thus F is idempotent. Proposition 18.2.1

proves the compensativeness. �

Remark 2 Note that the family of extended aggregation functions which are globally
monotone is closed under convex linear combinations: if F and G are in this family,
then H = (1 − k)F + kG, 0 ≤ k ≤ 1, is also a member of that family. It is also
closed by duality: if F is a globally monotone extended aggregation function, so is
F∗(x1, . . . , xn) = 1 − F(1 − x1, . . . , 1 − xn).

The set of weighting vectors wn , n = 1, 2, . . ., arranged as indicated below is
called a weighting triangle. We denote it by 
wn

i .

1
w2

1 w2
2

w3
1 w3

2 w3
3

w4
1 w4

2 w4
3 w4

4
. . .

The following two propositions give conditions to determine whether an extended
weighted arithmetic mean and an extended ordered weighted arithmetic mean are
globally monotone in terms of their corresponding associated weighting triangles.
More details can be seen in [6].

Proposition 18.3.3 An extended weighted arithmetic mean F(x1, . . . , xn) =
n∑

i=1

wn
i xi is globally monotone if and only if its weighting triangle 
wn

i satisfies:

wn+1
i ≤ wn

i
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for each n > 1 and i = 1, . . . , n. In this case we say that the weighting triangle is
left descending.

Similarly, we state the following.

Proposition 18.3.4 Anextendedorderedweightedarithmeticmean F(x1, . . . , xn) =
n∑

i=1

wn
i x(i) is globally monotone if and only if its weighting triangle 
wn

i satisfies

the following conditions for each n and all p = 1, . . . , n

p∑

i=1

wn+1
i ≤

p∑

i=1

wn
i ≤

p+1∑

i=1

wn+1
i

In this case, we say that the weighting triangle is left regular.

In [16] the problem of global monotonicity for the class of maximum entropy
extended OWA functions is stated. Some partial results have been obtained but the
complete solution of the problem remains open.

A method for constructing weighting triangles can be obtained from sequences
of non-negative real numbers λ1, λ2, λ3, . . . with λ1 > 0. Thus, definingwn

i = λi
n∑

j=1
λ j

for any n ≥ 1 and i = 1, . . . , n we obtain a weighting triangle that we call generated
by the sequence {λn}. Obviously not every weighting triangle can be constructed
from such a type of sequence.

In the following proposition we characterize those sequences which define left
descending and left regular weighting triangles.

Proposition 18.3.5 If 
wn
i is the weighting triangle generated by the sequence

{λn}, then:
(i) It is left descending.

(ii) It is left regular if, and only if, the sequence
{

λn+1

λ1+...+λn

}
is decreasing.

Example 1 The sequence 1, 2, 4, . . . , 2n−1, . . . generates the weighting triangle

wn

i given by wn
i = 2i−1

2n−1 . According to Proposition 18.3.5, it is left descending
and left regular. Thus, from Propositions 18.3.3 and 18.3.4 we can say that the
extendedgeneralizedweighted arithmeticmean and the extendedgeneralizedordered
weighted arithmetic mean defined by 
wn

i are globally monotone.

There exist other methods for constructing weighting triangles based on quanti-
fiers, negations, and fractals (see [4]).
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18.4 Associativity and global monotonicity

In this section, we deal with associative extended aggregation functions and combi-
nations of them in order to study their consistency (global monotonicity).

It is important to remark that the only definition we know of “consistency” of an
extended aggregation function is given to be used in the context of economic analysis
[8] and it is rather restrictive in the sense that it is achieved only when the extended
aggregation function is symmetric and associative.

Definition 18.4.1 Anextended aggregation function F : ⋃

n≥1
[0, 1]n → [0, 1] isasso-

ciative if for all m, n ≥ 1 and for all (x1, . . . , xn) ∈ [0, 1]n, (y1, . . . , ym) ∈ [0, 1]m :

F(x1, . . . , xn, y1, . . . , ym) = F(F(x1, . . . , xn), F(y1, . . . , ym)).

Associativity is a well-known algebraic property which allows us to omit “paren-
theses” in an aggregation of at least three elements. Implicit in the assumption of
associativity is a consistent way of going unambiguously from the aggregation of
n elements to n + 1 elements, which implies that any associative extended aggre-
gation function F is completely determined by its (binary) restriction to [0, 1]2:
F(x1, . . . , xn+1) = F(F(x1, . . . , xn), xn+1).

A complete description of the extended aggregation functions which are contin-
uous, idempotent and associative is given in [12].

The consistency of associative extended aggregation functions is characterized as
follows.

Proposition 18.4.1 Let F be an associative extended aggregation function. Then F
is consistent (globally monotone) if and only if it is idempotent.

Proof Suppose first that F is globally monotone. Then from Proposition 18.3.2 we
obtain that F is idempotent. Reciprocally, let us assume now that F is idempotent
and let us prove that F is globally monotone. For this purpose, we write for all
(x1, . . . , xn) ∈ [0, 1]n, n ≥ 1 :

F(x1, . . . , xn,∧xi ) = F(F(x1, . . . , xn),∧xi ) ≤ max(F(x1, . . . , xn),∧xi ) =
F(x1, . . . , xn) = min(F(x1, . . . , xn),∨xi ) ≤ F(F(x1, . . . , xn),∨xi ) =

F(x1, . . . , xn,∨xi ).

Consequently, we have F(x1, . . . , xn,∧xi ) ≤ F(x1, . . . , xn) ≤ F(x1, . . . , xn,∨xi )
that, according to Proposition 18.3.1, is equivalent to say that F is globally
monotone. �
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Remark 3 Because of their associativity, t-norms2 are defined for any number of
arguments n ≥ 1 (with the usual convention T (x) = x), hence they are extended
aggregation functions.Also observe that extended t-norms are increasingwith respect
to argument cardinality: T (x1, . . . , xn, xn+1) ≤ T (x1, . . . , xn), therefore they satisfy
the left hand side of condition (18.1) in Proposition 18.3.1. An extended t-norm T
is globally monotone if and only if it is the minimum.3

Dually, we have a similar result for t-conorms.4 They satisfy the right hand side of
condition (18.1) in Proposition 18.3.1. An extended t-conorm S is globallymonotone
if and only if it is the maximum.5

Two well known families of associative mixed aggregation functions6 are uni-
norms7 and nullnorms,8 which are strongly related to triangular norms and conorms.
Details on these aggregation functions can be found in gleb07. Next we are going to
describe under which conditions they are globally monotone.

Proposition 18.4.2 (i) An extended uninorm is globally monotone if and only if it
is idempotent.

(ii) An extended nullnorm is globally monotone if and only if it is idempotent.

Proof The result comes directly from Proposition 18.4.1, given associativity of uni-
norms and nullnorms. �
Remark 4 (i) There are different kinds of idempotent uninorms (once fixed the

neutral e in ]0, 1[). See, for instance, [17].
(ii) Once fixed the absorbent a in [0, 1] there is only one idempotent nullnorm.

18.5 Conclusions

The global monotonicity condition is presented as a minimum requirement for an
extended aggregation function to be considered consistent.Here,we focus our interest
in studying this property for associative aggregation functions.

Acknowledgments The authors have written this contribution in tribute to Prof. Claudio Moraga
in recognition of his important and extensive research in many areas of Soft Computing.
This contribution has been partially supported by the Spanish Grant TIN2013-42795-P.

2A t-norm is a two-variable function T : [0, 1]2 −→ [0, 1]which is associative, symmetric, increas-
ing in each variable and has neutral 1.
3The minimum t-norm (T (x1, x2) = min(x1, x2)) is the only idempotent t-norm.
4A t-conorm is a two-variable function S : [0, 1]2 −→ [0, 1] which is associative, symmetric,
increasing in each variable and has neutral 0.
5The maximum t-conorm (S(x1, x2) = max(x1, x2)) is the only idempotent t-conorm.
6A mixed aggregation function exhibits different types of behavior on different parts of the domain.
7A uninorm is a two-variable function U : [0, 1]2 −→ [0, 1] which is associative, symmetric,
increasing in each variable and has neutral e belonging to [0, 1].
8A nullnorm is a two-variable function V : [0, 1]2 −→ [0, 1] which is associative, symmetric,
increasing in each variable and has absorbent a belonging to [0, 1].
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Chapter 19
Distributed Machine Learning
with Context-Awareness for the Regression
Task

Héctor Allende-Cid

19.1 Introduction

In the last decades, there has been an increasing development of high throughput
data acquisition technologies in a large number of very different domains, such as
Biological Sciences, Environmental Sciences, Astronomy, Meteorological Sciences,
etc. At the same time there have been big advances in communication technologies,
digital storage and computing architectures. Both of these advances in different
areas present unprecedented opportunities for scientists to seize the wealth of the
distributed information by means of automatic learning and decision making. With
the development of related technologies and the increase of Cloud storage services
available, the total amount of potential data to be used is almost incalculable. A
rough estimation of data stored in the entire cloud in 2012 was in the order of 300
exabytes [1]). Most of the times, the information of interest is distributed in different
geographical locations, making the problem even harder.

Because of these characteristics, automatic analysis and learning for distributed
datasets has become of great importance over the last years. The rapid growth of
the distributed data available presents new opportunities for applications of Machine
Learning and Automatic Data Analysis in order to generate insight from this data.
Human reasoning is limited regarding the ability of handling large data sets, so the
need of automatic data analyzers is nowadays a necessity. Thereby, the scalability
and efficiency of these learning algorithms have become of central importance for
many researchers and data scientists.

Although there are many reasons why it is necessary to use the wealth of the
distributed information, there are several challenges that need to be addressed [2]:
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• Data repositories are large in size, dynamic and physically distributed. Conse-
quently, it is neither desirable nor feasible to gather all the data in a centralized
location for analysis, due to the high storing, processing and communication costs.

• Data sources are autonomously owned and operated. This leads to the problem
that the range of operations that can be performed on the data source (e.g. types
of queries allowed), and the precise mode of allowed interactions may be quite
diverse.

• Data sources are heterogeneous in structure (e.g. relational databases, flat files,
etc.) and content (names and types of attributes used to represent the same data).

• Data sources may have the same attributes, but contextual heterogeneity. From a
statistical point of view, the underlying law of probability of each of the distributed
data sources may be different.

• There is also a problem of privacy among different data sources. Distributed data
sources may have different “owners”, who may not be willing or may not be
allowed to share “raw” data.

The challenges previously described, are nowadays present in a variety of real
problems, so it is necessary to keep working in new modelling paradigms that are
able to face them. In this sense, Distributed Data Mining (DDM) is a fast growing
research field that deals with most of the problems described above. More generally
DDM deals with the problem of finding data patterns or relations between inputs
and outputs, in environments with distributed data and computation, but taking into
account the previouslymentioned challenges. Although todaymost data analysis sys-
tems require centralized storage, the increasing merger of computation with commu-
nication nowadays is likely to demand data mining environments that can exploit the
full benefit of distributed computation. Most classic Machine Learning approaches
demand monolithic datasets, an approach not compatible with today’s needs.

Classic machine learning algorithms usually work with the entire data set loaded
intomainmemory.When the size of data is large, this is impossible in practical terms,
since the algorithms are not be able to load the whole data set in the memory (e.g.,
for training purposes), or it is impractical due to computational restrictions (data size
and computation time). Thus, the centralization of the data for analytical purposes
has indeed become a restriction. Moreover, if the amount of information that is dis-
tributed or the number of distributed sources is too large, this could lead to problems
related to Big Data. In order to overcome these problems, Parallel and Distributed
approaches are having a lot of attention from theMachine Learning community these
days. DistributedMachine Learning (DML) is oftenmentioned together with Parallel
Machine Learning (PML) in the literature. These two approaches attempt to improve
the performance of traditional Data Analysis systems, but is necessary to clarify that
they are defined by different system architectures and use different approaches. In
DML, computers and data are distributed and communicate throughmessage passing
and are defined to specific master/node architectures. In PML, a parallel system is
assumed with processors sharing memory and/or storage. This difference in archi-
tecture greatly influences algorithm design, cost model, and performance measure
in Distributed and Parallel Machine Learning.
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Since it was proposed, the area of Distributed Machine Learning (DML) has been
very active and is enjoying a growing amount of attention from theData Science com-
munity. There aremany real world applications where the data is distributed naturally
and stored over distributed sources. In most cases, the amount of data distributed is
so large, that is unfeasible to send it to a centralized node, so there is no alternative
other than to treat the problem with a Distributed Learning approach. Most of the
current DML techniques treat the distributed data sets as a single virtual table and
assume that there is a global model which could be generated if the data were com-
bined or centralized, completely neglecting the different semantic contexts that this
distributed data sets may have [3]. In other words, generally DML algorithms aim to
infer a global model and try to approximate the results one would get from a single
joint data set. Because of this, there are deeper implications, that make the problem
more complicated, since distribution itself may have a meaning and unexpected side
effects. If we see this as a statistical learning problem, we deal with samples of data
that follow different underlying laws of probability. As was explained above, there
is a mismatch between the architecture of most classic data mining systems and the
needs of mining systems for distributed applications. This mismatch may cause a
fundamental bottleneck in many emerging distributed applications. The traditional
data-warehouse architecture for data mining works by regularly uploading mission
critical data in the warehouse for subsequent centralized data mining application.
This centralized approach is fundamentally inappropriate for most of the distributed
and ubiquitous data mining applications. The problems are the long response time,
lack of proper use of distributed resources, and the fundamental characteristics of
centralized data mining algorithms.We need data mining architectures that pay care-
ful attention to the distributed resources of data, computing, and communication in
order to consume them in a near optimal fashion. DDM considers data mining in
this broader context. The objective of DDM is to perform the data mining operations
based on the type and availability of the distributed resources.

In this chapter we discuss some classic distributed machine learning algorithms
and approaches that consider different contexts, thus preventing communicationover-
head andnot exchanging rawdatawhich is a requirement for applicationswith privacy
concerns.

Most of the works that are present in the literature assume that the underlying
laws of probability of the distributed sources are the same (see e.g. [4, 5]). This
is an assumption that is inherited from the ensemble-based approaches in classic
Machine Learning [6]. When the distributed sources are re-sampled, it is assumed
that the re-sampled data follow the same underlying law of probability as the orig-
inal set. In real-world distributed problems, it is impossible to assure that, because
the real underlying law of probability is unknown. The majority of learning algo-
rithms that are found in the state-of-the-art focus on combining the predictions of a
set of classifiers [7]. Combining predictions avoids potential problems with concept
descriptions and knowledge representation. Most of these works do not consider that
the underlying law of probability could change from site to site, making the task of
mapping the feature vectors to the independent variable more difficult. If the under-
lying probability distribution of all sites is the same, we could call this sub-category
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as homogeneous distributed sites, or with contextual homogeneity. If the distribution
changes along the sites, the problem is called heterogeneous distributed sites (con-
textual heterogeneity). If we see this as a statistical learning problem, we deal with
sources of data that might not follow the same underlying laws of probability. We
may have two different subproblems depending on how we define this. The first one
corresponds to the case when data come from the same type of law of probability
but with different parameters, and the second one, when data follow different types
of underlying laws of probability (e.g. normal, gamma, exponential, etc.). In most
cases the true underlying law of probability is unknown, that is why we should not
make strong assumptions. Instead we should find ways to represent it, using only
the available data. The way the data sources are distributed can be divided into two
main categories: with homogeneous and heterogeneous attributes. In the former case
the databases located at different sites have the same attributes in the same format
(same data dictionary). In the latter case, each local site may collect different data,
thus having different number of attributes, types of attributes, format of attributes,
etc. In the literature this categorization is also referred to as horizontal and vertical
fragmentation: Horizontal fragmentation, wherein (possibly overlapping) subsets of
data tuples are stored at different sites (examples are distributed accross the different
sources); and Vertical fragmentation, wherein (possible overlapping) sub-tuples of
data tuples are stored at different sites (attributes are distributed accross the data
sources). This proposal will deal mainly with the first case (data sources with homo-
geneous attributes or horizontally fragmented).

The other category deals with the underlying law of probability that governs each
distributed dataset. Related works in DDM often assume that the underlying law of
probability that each of the sources follows is the same [4, 5, 8, 9].

The organization of this chapter is the following: In Sect. 19.2 a review of thework
done in the field of Distributed Data Mining and Machine Learning is presented. In
Sect. 19.3 a context-aware distributed machine learning models is presented for the
task of regression. In the last Section some concluding remarks are presented and
future work is discussed.

19.2 State of the Art

There is a fair amount of research done in the field of Distributed Data Mining. Most
of the proposed algorithms that we can find in the literature fall in one of these three
categories:

• Data combination: This category deals with algorithms that combine distributed
data sources in a single large centralizeddataset during the learningprocess and that
allow communication of the intermediate results. The learned concept represents
the distributed data and can be applied to incoming data instances. The number
of examples should ideally be less than the union of the entire dataset to reduce
communication costs.
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• LocalModel Combination: Learn at individual local sites independently, and com-
bine the locally learned models to form a global concept. For example, the locally
learned model can be some kind of rules or decision trees. The global concept
is the final rule set or decision tree made by the combination of the local mod-
els. The combination at this level is strictly related with the type of local models.
Black box models can not be combined at this level since, it is not possible to find
interpretability in its topology.

• Predictive Model Combination: When receiving a new instance or example, local
models are used to predict the output and then the locally learned concept in each
local data source is used to form consensus. The final output is then estimated
generally with a voting strategy.

The first approach that combines the distributed datasets (or fractions of the
datasets) is either ineffective or infeasible, because of storage costs, communication
costs, computational costs and privacy issues. The other two approaches (combining
local models, and combining predictive models) seemmore appealing to researchers
for two main reasons. First, local models are normally much smaller than the raw
data; sending the learnt model instead of the raw data reduces the traffic load in the
network as well as the network bandwidth requirement. Second, sharing only the
model, instead of the raw data, would give reasonable security since it overcomes
partially the issues of privacy and security of the raw data.

Several algorithms have been introduced in the literature for combining local
models. In [10, 11] a method to convert decision trees from distributed sites into a
single set of rules is presented. In [12] the authors proposed an alternativemethod that
learns a single rule for each class at each local site. The rule of each class is shortened
by an order of importancewith respect to confidence, support and deviation. The final
rule set contains a set of the first n rules in the list. In [2], authors develop a framework
for learning fromdistributed data based on two steps: extraction of sufficient statistics
from every data set and an hypothesis generation step. To generate the hypothesis,
the framework uses a statistics gathering scheme from every distributed source.
Authors claim that this approach can be provably exact meaning that the decision
tree constructed from distributed data is identical to that obtained in the centralized
setting.

A larger fraction of DDM algorithms focuses on combining predictive models.
This approach has emerged from empirical experimentation due to a requirement for
higher prediction accuracy. Recently, several researchers treat distributed learning
systems as a centralized ensemble-based method [13]. Several learning algorithms
are applied at each local site, using separate training data to mine local knowledge. A
new data point is then classified/predicted from the predictions of all local sites using
ensemble methods such as stacking, bagging, boosting with different output com-
bination schemes like majority voting, simple average, or winner-takes-all [14]. In
general, DDM approaches apply ensemble methods to minimize the communication
costs and to enhance the system predictions. Most of the approaches assume that the
distributed data comes from the same underlying law of probability or have the same
semantic meaning. Classic ensemble learning models work under the assumption,



310 H. Allende-Cid

that the each of themodels that are trainedwith re-sampling of the data, workwith the
same probability density function. In real distributed cases this is not straightforward.
Therefore more care should be put into this.

Most DDM algorithms are designed upon the potential parallelism they can apply
over the given distributed data. Typically the same algorithm operates on each dis-
tributed data site concurrently, producing one local model per site. Subsequently all
local models are aggregated to produce the final model. In essence, the success of
DDM algorithms lies in the aggregation. Each local model represents locally coher-
ent patterns, but lacks details that may be required to induce globally meaningful
knowledge. For this reason, many DDM algorithms require a centralization of a sub-
set of local data to compensate it. Therefore minimum data transfer is another key
attribute of the successful DDM algorithm.

In the following subsection, we present a literature review on DDM algorithms
on both regression and classification tasks.

19.2.1 Distributed Classifier Learning

Most distributed classifiers are based in classical ensemble learning models [15–17].
This approach has been used in various applications and domains in order to improve
the classification accuracy of predictivemodels. The result is a set of multiple models
(base classifiers or learners), typically fromhorizontally fragmented data subsets, that
are combined in order to improve accuracy. Typically, in order to aggregate them,
voting schemes (weighted or un-weighted) are employed.

The ensemble approach is most of the times directly applicable to the distributed
scenario (only in cases where the underlying laws of probability are the same in
all distributed sources). Different models can be generated at different sources and
then aggregated using classical ensemble combining strategies. In [18] an AdaBoost-
based ensemble approach for distributed scenarios is discussed. Breiman [19] con-
sidered Arcing as a mean to aggregate multiple blocks of data, especially in on-line
settings. Homogeneous distributed classifiers are the most studied type of algorithms
in DDM. One notable ensemble approach to learn distributed classifier is the meta-
learning framework [20–22]. It offers a way to mine classifiers from homogeneous,
distributed data. In this approach, supervised learning techniques are first used to
learn classifiers at local data sites; then meta-level classifiers are learned from a
dataset generated using the locally learned concepts. The meta-level learning may
be applied recursively, producing hierarchy of meta-classifiers. Learning at a meta-
level can work in many different ways. For example, we may generate a new dataset
using the locally learned classifiers. We may also move some of the original training
data from the local sites, combine it with the data artificially generated by the local
classifiers, and then run any learning algorithm to train the meta-level classifiers. The
output of the meta-classifier can be also decided by counting votes cast by different
base classifiers. Other examples of homogeneous distributed classifiers can be found
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in [9, 23]. Approaches for vertically fragmented distributed learning, that will not
be addressed in the proposal, can be found in [2, 24–26].

For heterogeneous distributed classifiers, the ensemble approach is not straight-
forward to apply to this kind of distributed problems. In heterogeneous distributed
data, we observe the incomplete knowledge about the complete dataset. Different
local models represent disjoint regions of the problem and DDM has to develop a
global data model, associations, and other patterns with only limited access to the
features observed at non-local sites. For this reason, it is generally believed that
mining of heterogeneous data is more challenging. These issues in mining from het-
erogeneous data are discussed in [25, 26] from the perspective of inductive bias.
This work notes that such heterogeneous partitioning of the feature space can be
addressed by decomposing the problem into smaller sub-problems when the prob-
lem is site-wise decomposable. However, this approach is too restrictive to handle
problems that involve inter-site correlations.

In [24] the authors note that any inter-site pattern cannot be captured by the
aggregation of heterogeneous local classifiers. To detect such patterns, they first
identify a subset of data that any local classifier cannot classifywith a high confidence.
Identified subset is merged in a central site and another classifier (central classifier) is
constructed from it.When a combination of local classifiers cannot classify an unseen
data with a high confidence, the central classifier is used instead. This approach
exhibits a better performance than a simple aggregation of local models. However,
its performance is sensitive to the sample size (or confidence threshold).

In [2] a solution to deal with the semantical heterogeneity problem is proposed,
introducing ontology-extended data sources and define a user perspective consisting
of an ontology and a set of interoperation constraints between data source ontolo-
gies and the used ontology. She shows how these constraints can be used to define
mappings and conversion functions needed to answer statistical queries from seman-
tically heterogeneous data viewed from a user perspective. That is further used to
extend our approach for learning from distributed data into a theoretically sound
approach to learning from semantically heterogeneous data.

More recently, [27] presented a distributed online learning scheme to classify data
captured from distributed, heterogeneous and dynamic data sources. Their proposal
contains a novel online ensemble learning algorithm called Perceptron Weighted
Majority (PWM) to update the aggregation rule used to output the final prediction of
the ensemble. This approach is able to dealwith dynamic data streamsdue to its online
nature. The authors of [28] proposed an evolutionary algorithm-based framework to
generate a function for combining an ensemble in a distributed arrangement. In
this framework, the models on the ensemble are trained only on a portion of the
training set and later using a genetic programming evolved function they combine
the classifiers composing the ensemble. A key property of their proposal is that
the combine function can be recomputed in an incremental way avoiding expensive
computational efforts. In [29], the authors propose a distributed learning algorithm
where parts of the dataset are processed locally at every node of the distributed
network, and then a consensus communication algorithm is employed to create a
consolidate hypothesis. Their principal contribution is to proof the convergence of
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the distributed learning process in the general case where the learning algorithm is
a contraction. To verify their theoretical results, they employ a binary classification
problem where the update equation is based on a feed-forward neural network with
backpropagation.

19.2.2 Distributed Regression Algorithms

There are only a few works dealing with this kind of problem. One of the first works
was proposed by Hershberger [30, 31]. The proposal consisted in a method for
distributed multivariate regression using Collective Data Mining [32] with Wavelet
functions. The authors claim that this method seamesly blends machine learning
and the theory of communication with the statistical methods employed in para-
metric multivariate regression to provide an effective data mining technique for use
in a distributed data and computation environment. The authors test the proposed
method with two benchmark datasets, producing results that are consistent with
those obtained by applying standard parametric regression techniques to centralized
datasets. [33] proposed a local distributed algorithm for multivariate regression in
large peer-to-peer environments. The algorithm can be used for distributed inferenc-
ing, data compactation, data modeling and classification tasks in many peer-to-peer
applications for bioinformatics, astronomy, social networking, sensor networks and
web mining. The authors state that computing a global regression model from data
available at the different peer-nodes using a traditional centralized algorithm can
be very costly and impractical due to many reasons. The paper proposed a two-step
approach to dealwith these problems.Applications toAstronomyData andVertically
Partitioned Data have been proposed in [34, 35].

The authors of [36, 37] proposed a series of algorithms based on a meta-learning
approach to deal with the regression problem addressing the context heterogeneity
case. The authors propose a meta-learning-based hierarchical model that is able to
be successfully used in distributed scenarios with context heterogeneity. The main
contribution of this proposal is that they create a scheme to estimate the context
variance of the datasets, so they can add this information in the final ensemble-
voting scheme. They claim that the context heterogeneity is related with the random
differences in the output space, neglecting the differences that could exist in the input
space.

In [38] an approach for distributed multivariate regression based on sampling
and discuss its relationship with the compression method was proposed. The central
idea is motivated by the observation that, although communication is limited, each
individual site can still scan and process all the data it holds. Thus it is possible for
the site to communicate only influential samples without seeing data in other sites.
They exploit this observation and derive a method that provides trade-off between
communication cost and accuracy.
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In [39], an ensemble approach based onbuilding neighborhoods of similar datasets
is presented. To build the neighborhoods, it is assumed that the datasets follow a
known underlying law of probability (which is possible when working with syn-
thetic examples), and using the Hypothesis Test based on divergence measures, they
form the corresponding neighborhoods. In this work it is necessary to assume a
known underlying law of probability, i.e. multivariate normal distribution, in order
to perform the Hypothesis tests [40]. It can be summarized as follows: At first, local
models are trained with the available distributed data sets. In each distributed node,
a local algorithm is trained with its corresponding data. After that, assuming that the
underlying laws of probability of each distributed data sets are known (multivariate
gaussian distributions), the mean and variance-covariance matrices (parameters of
the underlying law of probability) are shared across all distributed nodes. With this
information, in each distributed node i , an Hypothesis Test is performed with the
parameters of node i and the parameters all other nodes j = 1, . . . , k, where j �= i
and k is the total number of distributed data sets. After performing all Hypothesis
Tests, the neighborhood for node i is built if there was no evidence to reject H0

(that the parameters of both underlying laws of probability were the same). Also all
the local models are shared across the sites. Then, a second stage learner is trained,
where the inputs of this learner are the outputs of all local models. The final output of
the model is the ensemble of all second stage models, that belong to the same neigh-
borhood, where the new data inputs are registered. In [41] an in-depth comparison
between the Context-Aware Distributed Regression and other state-of-the-art models
is presented, while introducing modified stacked generalization regression models
and a discrete manner to represent the probability density function to generate the
neighborhoods of data sources with similar contexts. The details of this model will
be given in the following section.

For amore complete review on the state of the art ofDistributedMachine Learning
Algorithms, please refer to [14].

19.3 Distributed Machine Learning with
Context-Awareness

One of the fundamental keystones of the work done in [39, 41] is to take advantage of
the distributed information of similar data sources, while differencing the distributed
sources that do not follow the same underlying law of probability. So a way to
measure the similarity (or dissimilarity) among the underlying laws of probability
of distributed data sources is needed.
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19.3.1 Representation of the Probability Density Functions
of the Distributed Data Sources

The probability density functions that govern the distributed data sources can be pre-
sented in two ways. In the first approach it is necessary to make an assumption about
the theoretical probability density function, which as usual in the statistical literature
will be abbreviated “pdf”. For example, we need to assume that the pdf belongs to the
multivariate Gaussian probability distributions, and the parameters are inferred from
the data sets. Most of the times the pdf is unknown, but usually some assumptions are
made beforehand, like normality, homoscedasticity and independence of the errors.
So, as a first approach, the assumption of normality seems valid.

To work, avoiding to make this kind of assumptions (where we assume that the
theoretical probability density function is unknown), we can use a discrete represen-
tation of the datasets, in order to get a rough estimation of the pdf. For this, we can
use n-dimensional histograms. If the dataset is one-dimensional, the histogram is a
vector. The length of the vector depends on the number of bins used to represent the
histogram. A bin is a discrete interval, that reflects the frequency of the data points,
that fall into it. If the dataset is 2-dimensional, the histogram is a matrix, and in
n-dimensional cases the data structure used is an n-rank tensor.

19.3.2 Dissimilarity Metrics

There is an enormous number of distance/similarity measures encountered in many
different fields of science. A considerable effort has beenmade in finding appropriate
measures among such a big number of possible choices, because it is of fundamental
importance to pattern classification, clustering and information retrieval [20]. From a
formal point of view, the concept of distance is defined as a quantitativemeasurement
of howapart two different objects are. Those distancemeasures, that satisfy themetric
properties are simply called metrics, while non-metric distance measures are called
divergences. Synonyms for similarity include proximity, and similarity measures are
often called similarity coefficients.

If we assume that the pdf is known, we can use the well-known (h, φ)-divergence
[40] to establish dissimilarities between the underlying laws of probability of the
data sets.

The main problem when using continuous density functions is that the user has
to select a specific theoretical probability density function. As explained before, we
have to work under the assumption, for example, that the data follows a multivariate
Gaussian distribution. This approach was used in the model presented in [39].

If we do not make any assumption about the pdf of the datasets, we may use
histograms to represent the data. In order to compare several different histograms,
it is necessary to count with dissimilarity metrics, that could show the differences
between them. There are various definitions of distance/similarity measures and we
can group them in the following families: L p Minkowski family (Euclidean, City
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block, etc.), L1 family (Sorensen, Gower, etc.), Intersection family (Intersection,
Czekanowski, etc.), Inner Product family (Harmonic mean, Cosine, etc.), Fidelity
family (Fidelity, Bhattacharyya, etc.), Squared L2 family (Squared Euclidean, Pear-
son, etc.) and Shannon’s entropy family (Kullback-Leibler, Jeffreys, etc.) In order to
calculate a distance between these two data sets, it is necessary that both histograms
have the same support and number of bins. These measures will aid to quantify
the dissimilarity between distributed data sources, in order to build neighborhoods
of data that follow similar underlying laws of probability. The type of dissimilar-
ity measure used will depend on the representation of the data sources. For further
details please refer to [20].

19.4 Building Neighborhoods According to Similarity
Measures

In this section we present two ways of constructing neighborhoods according to sim-
ilarity measures. If we assume that the probability density function is known, we
can create the neighborhoods in the following way. We check for every data set Di

if the parameters of the known pdf is the same that the rest D j , with j = 1, . . . , k
and i �= j , with an hypothesis test [40]. With this hypothesis test we build a binary
vector that indicates which of the other datasets D j belong to its neighborhood. In
the case of using the histogram representation of the data, it is necessary to share the
minimum/maximum per input dimension across all data sets. This is needed, in order
to build histograms that are comparable with each other having the same support. To
make them comparable we need bins with the same interval limits. This information
shared across the system, does not contradict the restriction of sharing raw data,
because it only shares the minimum and maximum global values of the examples
of each distributed source. With this data, we obtain the global minimum and max-
imum values of all distributed sources, using this information to build histograms
for all distributed sources, with the same bin limits. The idea is to use a histogram
representation to build a vector of size k, that represents the dissimilarity between
two datasets, using k distance measures. We then define different distance/similarity
measures, using distances from different families, in order to have more diversity of
distance measures.

Supposewe take and example of 5 distributed datasets.Weuse 3 distancemeasures
and we build the following vectors dist(Di , D j ) = (d1, d2, d3). Suppose D1, D3 and
D5 have the same underlying law of probability and that D2 and D4 have a different
one. The distances from D1 to the rest would possibly be like the following:

• dist(D1, D1) = (0, 0, 0)
• dist(D1, D2) = (2.3, 4.3, 3.5)
• dist(D1, D3) = (0.2, 0.06, 0.03)
• dist(D1, D4) = (4.3, 3.5, 6.5)
• dist(D1, D5) = (0.03, 0.1, 0.19)
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If we apply a clustering algorithm to these data, and that the distances dist
(D1, D1), dist(D1, D3) and dist(D1, D5) are in the same cluster, this gives us a
similarity based neighborhood for dataset D1. The number of clusters is fixed to
2, since we want as a result a binary decision, if the dataset D j belongs or not to a
specific neighborhood. We perform this method to dist(Di , Dk), where k = 1, . . . , 5
and i is the value to create the i-th neighborhood. The Datasets that belong to the
i-th neighborhood are the Dk from dist(Di , Dk), that belong to the same cluster
dist(Di , Dk) where k = i . With this method we construct 5 neighborhoods. The user
should choose that one which best suits his/her needs. The representation of this
neighborhood is a binary vector, that indicates which of the other datasets belong to
the cluster. Using the example to illustrate this the generated binary neighborhood
vector is h1 = [1, 0, 1, 0, 1].

As presented previously in both cases, the resulting neighborhoods for each of
the distributed sources are crisp. The binary vector indicates if the other data sources
j belong or not to the neighborhood of a data source i . Although this gives a first
approach we want to know how many of the models that were trained with different
data sources should weight more. So it seems natural then, to use the principle of
membership functions as it is done in fuzzy sets, to define a degree of membership
of the other data sources to the neighborhoods of a data source i . For this purpose
we are going to use a membership function of the form μA = 1 − dist , where dist
represents the dissimilarity of a pair of data sources. The dissimilarity of one data
source with itself is 0, thus we define that the degree of membership of the data
source i to its own neighborhood is μA = 1. To define the degree of membership of
the other data sources to data source i , we take into account only the dissimilarity
measures of the data sources that belong to the neighborhood. The dissimilarity
measure in each calculation is divided by the total sum of all dissimilarities. The
result will give a membership function which indicates the degree of membership of
each data source to the neighborhood. In [42] the authors propose a similar approach
for avoiding crisp outputs using the p-value, but in a different type of application.
This wouldwork in the case that we only used the hypothesis test in order to construct
the neighborhoods, but since we also proposed a solution based on histograms and a
clustering algorithm, it is not directly applicable.

19.5 Distributed Regression Algorithm

The proposed algorithm consists in three phases, which are explain in detail:

1. Phase 1—Local Learning. Given k distributed data sets, with nodes Di , where
i = 1, . . . k, we use an available learning algorithm to train a local predictive
model Li from all instances of that node (see Fig. 3.1). The choice of the learning
algorithm is not restricted to any particular kind. The local data consists in an n
dimensional input vector ((xi1, xi2, . . . , xin)) and a continuous response variable
yi . Let Γi = [xi1, xi2, . . . , xin, yi ], 1 ≤ i ≤ k (Fig. 19.1).

http://dx.doi.org/10.1007/978-3-319-48317-7_3
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Fig. 19.1 Phase 1. Local
learning
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2. Phase 2—Model and information transmission. Eachnode Di ,where i = 1, . . . , k
receives the model parameters (Li learners) of all the other nodes. In case that
the assumption that the real underlying law of probability is known, the mean
vector, variance-covariance matrix and number of samples of the other nodes
are transmitted to all distributed nodes. In case we used the discrete represen-
tation of the pdf, at first the minimum and maximum of each of the attributes
((xi1, xi2, . . . , xin)) and yi is shared to the other distributed nodes in order to
establish the global values of each of the attributes and response. With this infor-
mation we are able to represent the pdf as an n- dimensional histogram, that is
comparable across the different sites. Then the histograms of each site are sent
to each individual node. A hypothesis test is performed based on [40] for each
pair of local data sets of the nodes Di and D j , where i �= j , in the case of the
continuous representation of the pdf. These hypotheses tests will check if the data
of the current local node follow the same underlying law of probability of the rest
of the nodes. The results are k binary variables hi j , where j = 1, . . . , k, which
indicate the nodes j which follow the same underlying law of probability Di . The
variable hii is always 1. In the case of the histogram representation construct the
neighborhoods based on Sect. 19.4.

3. Phase 3—Algorithm combination and output. Since every node Di has a copy
of the other local models, each local model Ll , � = 1, . . . , k, contained in node
Di was trained with the local data from its corresponding node. Each of the
local models in Di outputs a response variable ŷi j , where j = 1, . . . , k with the
available input data at that node. Each local node also trains a global learning
algorithm Gi with the outputs of all the local models (ŷi1, ŷi2, . . . , ŷik) that were
trained with the local sources that belong to the same neighborhood of site i and
the real response variable yi , obtained from the training data of the node Di (see
Fig. 19.2). The output of our model is generated in the followingway:Whenever a
new example arrives at a node Di , we compute all the outputs of the local models
that are stored in this node. We have an a priori information about which of the
other nodes have data following the same underlying law of probability of the
current node, which is reflected in the binary vector mentioned above (hi j , where
j = 1, . . . , k). The final output of the model is the mean of the outputs of all the
Gi models that received the output of all the local models in the current node that
belong to the neighborhood i multiplied by a corresponding weight w j .
E.g. in the example presented above the final output of the model should be the
weightedmean of the outputs ofmodelsG1,G3 andGk , because only the variables
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Fig. 19.2 Phase 3. Algorithm combination and output

h31, h33 and h3k are distinct from zero. Weights of the output of the same node
where data arrives is user-defined as 1. The sum of weights of the other outputs
that belong to the neighborhood is defined by the fuzzy membership function
described in the previous section. The weights indicate the degree of membership
of the nodes to the Neighborhood of node 3.

As explained before, themotivation behind constructing distributed learningmod-
els may differ depending on the use. If there is the need to construct a general model
from distributed sources, stored in a Central Site, the information needed there are
the global models Gi , i = 1, . . . , k, trained in each individual site, the weight vector
wi (stores the degrees of membership of all the nodes to the node i) and the neighbor-
hood vector hi of each distributed source. When new data examples are registered in
a distributed node j , the output vector (ŷ j1, ŷ j2, . . . , ŷ jk) of each example is trans-
mitted to the Central Node to output the final prediction value. In the other case,
if only a model valid in local context is needed, it is only necessary to transmit to
the individual sites the global models Gi , the neighborhood hi and the weight wi

vectors of the sites i that belong to that neighborhood. In this case each individual
sites will have the variables to predict the outputs of the examples that are registered
in site j . The output of the algorithm will be the same in both cases. The difference
lies on the motivation of the user to construct the distributed regression model. In
[39] the proposal that uses theoretical formulations of the pdf is presented, and the
neighborhoods are constructed using Divergence Measures and Hypothesis Tests.
The results presented in this work show that the proposed model outperforms other
models that also work with the assumption that there exist different underlying laws
of probability in different sources. The model is validated using several synthetic
experiments. In [41] the proposal that uses histograms and clustering algorithms is



19 Distributed Machine Learning with Context-Awareness for the Regression Task 319

presented. The results with synthetic and real datasets, show that the model out-
performs other state-of-the-art models. Please refer to [39, 41] for details about the
experiments and the results.

19.6 Concluding Remarks and Future Work

In this chapter we presented a distributed regression framework, that performswell in
distributed scenarios where there are different contexts representing the distributed
data sources. From a statistical learning point of view, the different contexts can be
understood as different underlying laws of probability governing the data sources.
By building neighborhoods of similar data sources we validate, that the use of this
approach gives improved results over state of the art approaches. By merging in
this work different soft computing and statistical methodologies, like degrees of
membership, clustering algorithms, divergence-based test hypothesis and ensemble
of artificial neural networks, we demonstrate that in solving complex problems, most
of the times the solution does not come from only one area of knowledge.We validate
this proposal, by running several synthetic and real world experiments, obtaining in
most of the cases, very favorable results. From this we can infer that by applying
our proposal methodology, we can take more advantage of the information that is
naturally distributed. Also it should be added that the proposal obtained favorable
results in Big Data scenarios, where the whole data set was split in different data
sources. This scenario was not the core of this proposal, but nevertheless the results
obtained show the potential of the proposal for this type of scenario.

There are other problems in Machine Learning that are related with changes in
the underlying law of probability of the data. This method could be suitable also
for Streaming scenarios, for example. The amount of data generated in streaming
scenarios is so huge that it is necessary to propose methods to handle this problems.
An adaptation of this proposal could be suitable to handle streaming scenarios, by
creating batches of data to handle them in a distributed fashion, and taking in con-
sideration the different underlying laws of probability that could govern the data.
The changes in the underlying law of probability is referred as Concept Drift in
Incremental Learning. This proposal could be extended in order to work in this type
of problems and detect the changes in the statistical distribution in order to not be
affected by Concept Drift. Although the proposal is a merger of Distributed Systems
and Machine Learning, it is a conceptual and theoretical proposal, so in the future a
real implementation on a distributed platform will be implemented. I firmly believe,
that this proposal opens a huge number of possibilities to continue doing research in
the field of Machine Learning and Distributed Computing.
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Fig. 19.3 Cutting the tie of the Thesis Supervisor after the Thesis presentations is a tradition in the
Computer Science Engineering Doctoral Program of the Santa María University (January, 2015)
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Chapter 20
Recent Advances in High-Dimensional
Clustering for Text Data

Juan Zamora

20.1 Introduction

The clustering task has a long history in the pattern recognition literature. In a few
words, this task consists in finding a structure of compact and homogeneous groups
of objects according to some similarity measure adhoc to the origin of the data. In
case of document collections, the Cosine and Jaccard similarity measures are often
employed to compare documents, and for evaluating the quality of the clusters built
in these collections, instead of using compactness within each group, other measures
that employ external labels are preferred. Then, provided that external labels are
available, external performance measures such as Purity and Entropy are commonly
used.

The noticeable increase in the computing capacity, along with the wide use of the
Internet and the ease of text content generation around the globe, has led classical
data processing and information extraction techniques to their limits. Under the
classical processing model, the amount of available data was rather low and the
pursued aim was to extract the most of information from the data. The accelerated
development of digital storage media and computational power, along with low data
volume made possible the usage of techniques based on secondary memory without
major concerns on efficiency. At the end of the nineties and especially during the
first decade of the twenty first century, the rise of the Internet led to the need to
develop new algorithms capable of processing data whose volume was much larger
than the amount of available memory, and also that are capable of delivering anytime
responses [9].
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There exist three concepts frequently treated as equivalent, but whose meanings
represent different modes of addressing data captured sequentially. The first one is
Incremental algorithm and denotes an algorithm capable of updating its parameters
as the input is captured. The second one is Online algorithm and represents those
methods that are able to provide an answer at any time without the need of knowing
the whole data. The third and last one is Single-pass algorithm, which denotes an
algorithm that examines each input instance once, extracts a summary of it and then
discards it, leaving room for the upcoming instance. Bishop [12] represents the union
of these three aspects in one concept referred to as Sequential algorithm.

Outline

The rest of this chapter is organized as follows: In Sect. 20.2, the problems generated
by the curse of dimensionality over distance based methods are described and also
the existing approaches that tackle these issues are reviewed. High dimensional data
clustering methods without and with special emphasis on text collections are revised
in Sect. 20.3. The last two sections show a discussion of the recent contributions,
the conclusion of this chapter and a reflection about the potential trends in the high
dimensional clustering task over text collections.

20.2 The Curse of Dimensionality in Clustering

The Curse of Dimensionality is a concept coined by Richard Bellman in 1957 to
denote the exponential growth in volume associated with the increase in the number
of dimensions of the input space of the data under study. Following the example
given by [31], only 100 points are needed to sample the unit interval with no more
than 0.01 distance between points. An evenly spaced grid, having 0.01 inter point
distances, underlying a 10-D unit hypercube would need 1020 points in order to
perform the same sampling operation than the one described in 1-D. Hence, the
10-D unit hyper-cube is 1018 larger than the unit interval.

The Curse of Dimensionality has several impacts on the Clustering task. First,
similarity/distance measures lose their meaning (specially the ones based on the L p

norms). Also high dimensional data is generally sparse, specially text data, hence the
local relevance phenomenon -in which a set of points can be grouped in several ways
depending on the subset of attributes under consideration- occurs. The last impact
consists in occurrence of the Hubness phenomenon, and it consists in the appearance
of points that tend to be among the nearest neighbors of a large number of points.
This issue is observed by measuring the positive correlation that appears between
the increase in dimensionality of the space and the Skewness in the distribution of
the number of times that a point appears in the neighborhood of other points in the
data. Following, a more detailed description of these issues is given.



20 Recent Advances in High-Dimensional Clustering for Text Data 325

20.2.1 Loss of Meaning of Similarity/distance Measures in
High Dimensional Spaces

Beyer et al. [11] explore the impact of the increase in dimensionality of the input
space on the near neighbor search task. As the authors explain, in presence of high
dimensional data, for any point, the proximities/distances to its nearest and furthest
neighbors tend to be quite similar. Thus, this phenomenon, called concentration
of distances, produces a loss of contrast between close and far points, especially
when L p, p ∈ {1, 2, . . . ,∞} based similarities/distances are used. Traditional data
structures for efficient near neighbor search, such as k-d tree, fail when searching for
near neighbors in high dimensional spaces, not only because of the large number of
attributes, but also because the similarities loss their meaning as the dimensionality
increases.

Supporting the ideas mentioned above, [6] provide theoretical and empirical
results showing that for algorithms based on L p norms, as the value of p increases,
then the discriminatory power of similarity/distance measures decreases. In order
to support this claim, they define a numerical coefficient called Relative contrast.
For every point in a dataset, this coefficient allows to measure the relative difference
between the distances to its nearest and furthest neighbors. Under several different
distributions of points, they explore the values taken by this coefficient and find that
for L p, (p > 2) norms, the relative distance between nearest neighbors tends to
zero as p is increased. Also they notice that the tendency to degradation of contrast
accelerates as p is increased. Consequently, this observed degradation of contrast
between similar and dissimilar points affects also to every clustering strategy based
on density and distance (e.g. DBSCAN and K-means).

20.2.2 Sparsity and the Local Relevance Phenomenon

Agrawal et al. [8] observed that in high dimensional spaces, points can be grouped
more compactly onto different subsets of attributes or subspaces. Additionally, [7]
identified the local relevance phenomenon, which consists in that for some sub-
sets of attributes, compact groups can be found and for some other subsets of
attributes, points are uniformly scattered. This local dependence behavior associ-
ated to each group of data points cannot be distinguished in the full dimensional
input space. Therefore, there may exist rich information which full dimensional
algorithms bypass. Finding groups hidden among the different subspaces poses two
big challenges to the high dimensional data clustering task. The former consists in
addressing the exponential combinatory of potential subspaces. The latter consists in
undertaking this task without using traditional dimensionality reduction techniques
(e.g. PCA) prior to the clustering, since these techniques work on the full dimen-
sional space and, as they obtain a single subspace, they can obscure potentially useful
groups of points spanned onto other subsets of attributes.
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More recently, this problem has also been tackled in the research subject of Sparse
Topic Modeling. As far as we could find in recent works, the computational models
presented in this area correspond to generative models of text. For more detailed
information refer to the works of [17, 20, 36].

20.2.3 The Appearance of Hub-Points in High Dimensional
Neighborhoods

Hubness is another phenomenon that emerges in highdimensional data, andmanifests
as the appearance of objects, called Hubs, which tend to be among the k nearest
neighbors of a large number of data points. Radovanović et al. [44] first linked
the Hubness phenomenon to the concentration of distances, already described in
Sect. 20.2.1. They found that accordingly to previous theoretical works that study
the distance concentration phenomenon, as dimensionality increases it is expected
that a considerable number of points closer to the dataset mean exist. Consequently,
this would explain the appearance of Hubs, as this increasing amount of points closer
to the mean has a higher probability of inclusion into the k-nearest neighbor list of
other points. In order to measure the Hubness, under several distance measures, they
computed the distribution of k-occurrences Nk , that is for each point, the number
of times it occurs among the k-nearest neighbors of all other points in the dataset.
Alongwith this, they showed that the increase in skewness of the distribution, i.e. SNk ,
highly correlates with the increase in dimensionality of the data. Recall that, given
the mean μNk and standard deviation σNk for Nk , the skewness of the distribution of
k-occurrences is calculated as

SNk = E[(Nk − μNk )
3]

σ 3
Nk

(20.1)

A positive value of SNk denotes a skew to the right, which means that the right tail is
long relative to the left tail. A negative value of SNk denotes a skew to the left, which
means that the left tail is long relative to the right tail.

The increasing amount of Hubs also generates an increase in the amount of points
farther from the mean and in turn with much lower Nk than the rest. These points can
be regarded as distance-based outliers and they are denominated by [44] as anti-Hubs.
As a consequence, hub points tend to decrease the average inter-cluster distance,
because they are close to many points. Furthermore, anti-Hubs lead to an increase
in average intra-cluster distance. Consequently, [44] experimentally demonstrate the
decrease in the clustering performance in presence of Hubs and anti-Hubs.

Consequently, a new approach used to extend traditional centroid-based methods
is emerging. [46] focused on the asymmetry of the near neighbor relations. That is,
given any two points x and y in a dataset, point y does not belong to the list of the top k
nearest neighbors of x. Nevertheless, point x belongs to the list of k nearest neighbors
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Fig. 20.1 Asymmetry in the
near neighbor relation
between two points. The two
dashed rings denote
neighborhoods for the top 3
nearest neighbors for each
point. Point x belongs to the
top 3 neighborhood of y, but
not vice versa

of y (See Fig. 20.1). This observation impacts directly into those algorithms that use
the shared-nearest-neighbors approach.

Schnitzer et al. [46] denominate theses approaches as local scaling approaches
since they require knowledge of the local neighborhood of every data point in order to
scale distance betweendata points. In contrast, they propose a global scaling approach
that uses a novel distancemeasure that enforces symmetric nearest neighbor relations.
This measure is calledMutual Proximity and it reinterprets the distance between two
objects as a mutual proximity between both distribution of distances of all points to
each one of the two points.

In amore recent contribution, [50] studied the relation between centroids andHubs
as dimensionality is increased. Moreover, they propose iterative methods that exploit
hubness to detect hyper-spherical clusters by selecting Hubs as cluster prototypes.
The attained results over synthetic and real datasets show that using Hubs to approx-
imate data centers leads to better performance in contrast to several centroid-based
approaches.

20.3 Related Work

The document clustering task involves contributions from two fields, namely high-
dimensional data clustering and text processing. The former is more concerned
with the design of methods capable of dealing with the problems attached to high-
dimensional data as mentioned in Sect. 20.2. The latter includes a vast amount of
techniques designed especially to exploit the nature of text data and to cope with the
efficiency issues inherent to its processing. Hence, the contributions in this field are
often concerned with enabling the construction of vector representations suitable to
the application of machine learning methods.

The overall topic of this section is about the previous works in text data clustering.
Nevertheless, in order to enrich the further discussion about the contributions made,
related works in the task of high dimensional data clustering are also included. Con-
sequently, the Sect. 20.3.1 is about the most outstanding works -in the opinion of this
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author- in the general task of high dimensional data clustering, and the Sect. 20.3.2
deals with more specific contributions made in the task of text data clustering.

20.3.1 Previous Advances in High-Dimensional Data
Clustering

Previous progress in the high dimensional data clustering task has been developed
in three lines of research: Subspace clustering, Random sampling of data points or
features, and finally, by using similarity measures based on shared nearest neighbors
(SNN).

20.3.1.1 Subspace Clustering Approach

The Subspace clustering task addresses the curse of dimensionality by integrat-
ing dimensionality reduction into the process of clustering. As [34] explain, in this
approach the combinatorial explosion involved in the selection of a subspace or sub-
set of features made in order to identify groups, is mainly tackled in two ways: either
searching in parallel axes—approach known as Projected clustering—or searching
for subspaces in arbitrarily oriented axes—approach known as Oriented clustering.
Projected clustering directs its search to subsets of the original attributes, which
involves an exponential number of potential feature spaces. Whereas that Oriented
clustering attempts to explore feature spaces built from the combination of original
features, thus projecting the data points in an optimal way. This last approach may
involve a potentially infinite number of subspaces.

In the static setting, where it is assumed that data fits in main memory, several
methods have been proposed since the seminal work of [8] (CLIQUE algorithm).
Among these contributions, the most renowned are PROCLUS [7], ORCLUS [5]
and COSA [22]. These methods make several scans over the data collection and
thus they are not able to cope with big data domains or with the streaming setting.
For instance the CLIQUE algorithm generates an initial set of medoids by using the
classical K-medoids methods, and then, by following a Hill Climbing strategy, it
starts to improve this set of medoids iteratively. A very detailed description of the
methods proposed for the static setting and without massive data considerations is
developed by [10, 34].

In dynamic environments where the data collection does not fit in main memory
because of its large volume, which can even be undetermined, the amount of contri-
butions is far more reduced in comparison with the above mentioned static or offline
setting. Nonetheless, those works whose proposals could be considered as distinctive
in terms of their contribution and more prominent in terms of their impact on the
research community are HPStream [4] and HDDStream [42]. These two methods
employ summarization structures or synopses, derived from the BIRCH system [55],
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in order to fulfill the single-pass constraint. Then the clustering process is performed
on demand using solely the information already stored in the synopsis. Specifically,
HPStream [4] requires the number of clusters to find as a parameter and then uses
a Fading-cluster-structure to represent each one. This structure allows to maintain
updated the first two statistical moments along each feature, together with a bit vector
that indicates the features or dimensions identified as relevant to the current cluster.
On the other hand, HDDStream [42] adapts the number of clusters depending on the
stream, and employs extensions of the micro-clusters proposed by [3]. These exten-
sions allow the maintenance of information about the relevant dimensions to each
cluster (those features presenting the lowest variance), which is found by an offline
density clustering algorithm (PreDeCon [13]). As mentioned by [53], besides that
these algorithms are designed to process high dimensional data streams, the synopses
that they employ are not scalable to high dimensional data, such as text, because of
their feature based structures.

There are few studies focused in processing text streams by using the Subspace
clustering approach [35]. Besides the interesting similarities between the Subspace
clustering and the Text clustering problems, the subspace techniques do not seem to
be directly applicable to the latter problem as [35] also mention. Lastly, it is impor-
tant to emphasize that, as far as we know, in the literature corresponding to offline
and streaming Subspace-clustering algorithms, the dimensionality of the datasets
employed in the experimental setups is not beyond the order of tens of features. In
contrast with this, in text processing scenarios the number of features involved can
easily reach the order of hundreds of thousands.

20.3.1.2 Row and Column Sampling Approach

In the classic data processing scenario, where a data collection fits in main memory,
the input to any algorithm consists in a matrix having one row per each instance and
one column per each feature with which data are represented. An initial approach
to extend classical clustering algorithms under the single-pass constraint, was to
use a random sample of instances or features by means of the Random-projection
method [47]. Both schemes have enabled to address problems with massive and high
dimensional data without making important accuracy losses in performance.

Guha et al. [23], O’Callaghan et al. [43] propose single-pass algorithms that
approximately solve the k-median problem under the streaming model of computa-
tion. This problem is to find k centers in n points minimizing the sum of distances
from each datum to its nearest center. The aforementioned algorithms process data
in a batch manner, keeping also a fixed number of medians meanwhile the stream is
processed. In order to build the final set of medians, these techniques collapse the
list of medians. Scalability is attained by always keeping in memory a fixed amount
of data.

Ackermann et al. [2] propose another interestingmethodbasedon samplingnamed
StreamK++. StreamK++ uses small samples of the data, then at any time it builds a
coreset for the sample and solves the k-median problem on the coreset. A coreset is
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a small weighted point set that approximates the original input point set with respect
to a given optimization problem, in this case the k-median. The main contribution of
this work consists in the mechanism employed to build coresets at any time, using a
reduced fraction of the whole data.

20.3.1.3 Shared Nearest Neighbors (SNN) approach

In [49], the authors compare several Web page clustering methods using various
similarity measures (Jaccard, cosine, correlation and Minkowski). Using labeled
datasets in the evaluation, they observe that when the Jaccard and cosinemeasures are
used, the obtained groups better resemble the manual categorizations. Furthermore,
they empirically show that a graph partitioning method obtains better performance
than other techniques such as k-means when documents are represented by vectors
of term frequencies.

Moreover, the curse of dimensionality impacts distances, generating a poor level of
discrimination between near and far neighbors, especially when the similarity value
is low [21]. Ertöz et al. [21] also show for the TREC collection, that approximately
15% of labeled documents have distinct labels than their near neighbors under the
cosine similarity.

Long time ago and without regard to the high dimensional data problem, [30]
addressed the clustering problem with a neighborhood based approach. To this end,
they proposed a method that uses a similarity measure between two points that
depends on the number of k-nearest-neighbors that they have in common. This is,
the degree in which two points resemble each other is given by the overlap level
between their neighborhoods and eventually by the fact that both points have each
other in their corresponding near neighbor list. Themain advantage of this approach is
that the similarity measure takes into consideration the density of points in the space,
thus it is not necessary to use any distance threshold to define the neighborhoods.
The only parameter used is k and its use allows to find groups either in less dense
and in more compact areas in the feature space.

More recently, [21] use the same abovementioned approach to extend an existing
density-based clustering algorithm for high dimensional data. Regarding the attained
results, they suggest that shared-nearest-neighbors based similarity measures reflect
better the local spatial configuration of points and also they tend to be less sensitive to
high dimensionality and density variations along the feature space. Some time later,
[28] study the performance of classical distance measures over high dimensional
data. Moreover, they propose different secondary (built over underlying classical
measures) similaritymeasures basedonSNN,which showan interestingperformance
even when high dimensional data appear to obscure the discrimination potential of
underlying measures. The results obtained in this work suggest that SNN based
similarity built over classical metrics (cosine or euclidean) appears as a more robust
option for measuring closeness between high dimensional points.

Other clusteringmethods employing this family ofmeasures are ROCK [24],Path
Model [26], SFN [45], Relevant-set correlation [27], [40] and CMUNE [1].
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20.3.2 Scalable Clustering over High Dimensional Text Data
Using Hashing

Considering the nearest neighbors task for high dimensional data, part of the data
mining community has focused its attention on developing techniques based on
hash functions [14, 15, 29] (refer to [51] for more details). These functions have
a solid mathematical formalism provided by previous advances in randomization
methods, and also they have very efficient computational implementations due to
their long history in cryptography and data structures. The advances in this area
have continued introducing interesting improvements to the previously mentioned
works especially highlighting [16, 38, 39, 48]. Consequently, some other massive
and high dimensional tasks have been nourishedwith this progress, such as automatic
classification with kernel methods [52], dimensionality reduction techniques [19],
news recommendation systems [18, 37] and duplicate detection algorithms [41].

In contrast with the aforementioned tasks and as far as we know, the application
of these methods to enhance high dimensional data clustering techniques has been
scarce. Among the specific literature referring to this subject it is possible to identify
the combined use of Minwise functions for set similarity with graph partitioning
methods [15, 25] and also the use of the functions defined by [29] together with a
hierarchical agglomerative clustering algorithm proposed by [32, 33].

Broder et al. [15] use the Resemblance and Containment measures, previously
defined by [14] in the context of duplicate detection on large document databases,
into the task of syntactic clustering of Web documents. With this aim, and from a
feature set representation for documents, they build a summarized representation for
each document by performing several random permutations over the set of features.
Then, they compare every pair of documents and, by means of secondary memory,
they sort the resulting list of pairs by the matching degree between their signatures.
Next, this list is employed in order to build a document net, into which two nodes are
linked if the estimated Resemblance score from the match between their signatures
exceeded a certain threshold. Finally, the document clusters are identifiedbydetecting
connected components in the net.

Haveliwala et al. [25] propose an efficient clustering method capable of dealing
with large Web collections by using Min-hash signatures. Each document is repre-
sented using the Bag-of-Words model over the terms occurring within it and within
the documents that reference it (anchor-text in links). Over this enriched text rep-
resentation several signature values are computed iteratively. In every iteration, the
whole collection is sorted by the current signature value and then, using this sorted
list, each document is linked to the other documents that have the same signature
value in the iteration. Finally, a graph partitioning algorithm is performed over the
document network graph or net to obtain the desired clusters.

Koga et al. [32, 33] followed a different approach than previous contributions. In
bothworks, a locality sensitive hashing scheme is applied in order to avoid performing
distance computation between every document pair in a single-linkage hierarchical
clustering algorithm. The proposed algorithm operates in several stages, each one
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corresponding to a single level in the final hierarchy. In each stage, a new locality
sensitive structure (array of hash tables) is generated and thus new signatures are
built for the whole collection. Then, at the end of each stage, the parameters of the
locality sensitive structure are modified in order to increase the neighborhood radius
and then to provide the algorithm the capability of detecting varying neighborhoods
for each point in every hierarchy. Finally, a complete hierarchy of point distances is
obtained. The proposed method, called LSH-Link, is favorably compared in terms
of speed to the exact Single Link Agglomerative Hierarchical Clustering, and also
obtains close performance results.

Recently, [54] propose a clustering method for text data in which a hashing-based
sketch is built in one pass and then, when clustering is required, pairwise similarities
are estimated in order to build a near neighbor net. Finally, this net is partitioned and
the clusters are identified by performing a single scan over the sketched collection.
The obtained results show that it is possible to obtain an approximate clustering solu-
tion which is very close to the exact one over different text collections bymaintaining
a low-dimensional embedding of the overall collection.

20.4 Discussion

The advances made in the Subspaces clustering task that were presented in
Sect. 20.3.1 are of great interest in presence of data having dimensionality ∼50
attributes, especially due to its gain in interpretability of the clusters. Nonetheless,
despite that this benefit could be valuable on text clustering, the cardinality of the
feature set (vocabulary) in document collections is several orders of magnitude over
the datasets currently used with these techniques. Thus, there exist scalability issues
that still have to be addressed in order to successfully apply these methods for this
task and especially considering the single-pass constraint.

K-means based algorithms have been successfully used on document collections
of moderate size besides the scalability issues and loss of meaning of distances due
to high dimensionality. The methods described in Sect. 20.3.1 have enabled, by using
sampling, the extension of classical algorithms in order to deal with the processing
of large collections. For instance, K-means extensions based on corsets identify
representative points in an efficient manner and have been successfully evaluated
on datasets containing even million of objects. Nevertheless, besides the scalability
improvements, given that the base technique suffers from the curse of dimensionality,
these techniques inherit the same issue.

As far as we know, the Single-pass Shared-Nearest-Neighbor clustering has been
less explored than the previous two approaches presented in Sect. 20.3.1. Notwith-
standing, it offers interesting advantages to process high dimensional data as it is
less prone to suffer from the loss of meaning of distances. The main obstacle for the
methods presented in Sect. 20.3.1 lies in the expensive cost involved in the number
of distance calculations that must be performed to build the neighborhoods, which
explodes exponentially as the number of documents grows. This scenario worsens
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when the single-pass constraint is applied and a light procedure for building the
neighborhoods is needed.

Despite the progress already made, high dimensionality and the sparsity found in
text representations still pose significant challenges to an efficient performance of the
clustering algorithms, such as those presented in Sect. 20.3.1. Additionally, as text
data is generated in increasingly large volumes in several domains, e.g. theWWWand
social networks such as Facebook, there is the need for algorithms capable to process
massive collections, i.e. those whose sizes exceed the available main memory, and
that are also able to perform in an online fashion, attaining a performance comparable
to exact multi-pass algorithms.

The processing of massive text data implies that each collected document must
be processed by making a single scan, meanwhile the online operation restricts the
usage of secondary memory. This also denotes that the algorithm must be able to
return an answer at any time considering the collection of documents received until
then.

The contributions shown in Sect. 20.3.2 highlight the benefits of using approx-
imate near neighbor strategies for text clustering. Among all these works except
the last, the pending task is to address the single pass and the anytime response
constraints. Zamora et al. [54] poses that the approximate construction of neighbor-
hoods, using a locality sensitive scheme, allows the design and implementation of
algorithms capable of clustering high dimensional and massive data by performing
a single-pass over the collection. The results attained by all these contributions sug-
gest that the approximate neighborhoods approach constitute a promising strategy
to address the task of high-dimensional and massive data clustering.

20.5 Conclusions and Future Directions

This article aims to present a detailed survey about the clustering task for high dimen-
sional and massive text data. For this purpose, it first details the computational issues
produced by the curse of dimensionality concerning the processing of text data when
it is represented as multidimensional vectors, which is a common scenario. Addition-
ally, the contributions for this taskwere categorized in two groups: High-dimensional
data clustering, in which general works tackling the computational issues aforemen-
tioned are listed and High-dimensional text data clustering, in which the emphasis
is on the scalability issues that arise from the sparse and (really) high dimensional
nature of the computational representations.

In spite of the fact that the definition of the clustering task applies equally to
any kind of data source, the subtleties of the computational representation for text
data poses interesting challenges not yet solved, specially when larger and larger
document collections are available and more computational constraints are included.
Designing online methods that only perform a single scan over the collection is a
promising approach to enable the processing of very large collections. Additionally,
the distributed computing approach seems an appealing strategy to process large
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Fig. 20.2 Professor Moraga is standing in the second position from left to right

collections but also to work in distributed data scenarios where maybe the document
collection is generated in different geographical locations and there exist constraints
on the size of the transmitted data.
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Chapter 21
From Lisp to FuzzyLisp

Luis Argüelles Méndez

21.1 Introduction

I met Claudio Moraga at the European Centre for Soft Computing back in 2008.
My friend and colleague Enric Trillas introduced him to me and soon I understood
Claudio was not only a scientist in the truest and highest meaning of the word but
also a very special human being: friendly, empathic, cordial and friend of his friends.
Among his many educational achievements, he got a master degree in engineering
in his youth from theMassachusetts Institute of Technology, MIT. This is important
because computing is a helping technique in engineering disciplines and atMIT, Lisp
has always been the “in-house” computing language. Even more interesting: Lisp
can be an excellent tool for teaching Fuzzy Logic theories from a practical viewpoint.

21.2 Why Lisp Today?

Java, Python or PHP are hot these days as programming languages. Other languages
such as C or even actual improved versions of it such as C# or C++ seem to have lost
some momentum when in comparison to the former ones. Java is highly portable.
This means that a program written in Java under Windows can be executed under
Mac OS, or even in your smartphone with some slight additions of XML and some
tricky organization. Java, Python and PHP work extremely well in today’s world of
Internet. So, the question seems obvious: why to use Lisp today?

Lisp is the second older high-level language in the history of computer languages,
so it can seem a strange decision at first to use Lisp as a vehicle for teaching Fuzzy
Sets theory and Fuzzy Logic. In some way it could be seen almost as a contradiction:
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Using a very old language for teaching and spreading forefront computing concepts
that are applied today in robotics, machine learning, adaptive systems and other fields
of Artificial Intelligence (AI).

There are some strong technical reasons for selecting Lisp as the ideal program-
ming tool for learning and understanding Fuzzy Logic in a practical way. First of
all, Lisp offers the user or programmer an automatic system of memory manage-
ment. Other computer languages demand from programmers a special and constant
attention for seizing and liberating memory while writing programs. Lisp manages
memory allocations automatically for the user. This means more confidence in the
code andmore speed inwriting programs. It means superior productivity. Lisp is rela-
tively simple. As with chess, the mechanics of the language are simple and powerful,
yet the possibilities of play are practically infinite. Needless to say, as it happens
with chess, it takes time to be a sophisticated Lisp programmer, but the essential
movements are easy to grasp.

Lisp is elegant. Take recursion as an example: Recursion is a programming par-
adigm (speaking properly it is a mathematical paradigm) where a function written
by the user in Lisp is called inside the same function. Using recursion it is possible
to write short, yet powerful programs. Lisp builds Lisp-thinking on the programmer.
In some way, it happens the same after learning a human language: Learning the
language allows a person to understand the culture of the country that speaks the
language. This feature helps him or her to think on creating programs with Lisp
style, with Lisp organization, with Lisp freedom.

Lisp is highly interactive. While the user writes code he or she can take apart one
function or a set of them and try how they do behave. A Lisp programmer can test
functions or fragments of a Lisp program without effort. Even better, the user can
interactively modify functions in a Lisp session, make some improvements and then
incorporate the transformed functions into the main program. This is described as
the “read-evalprint loop” paradigm. The programmer types Lisp expressions at the
keyboard, Lisp interprets and evaluateswhat the user has entered and after evaluation,
it prints the results. Not only it is possible to run complete programs, but parts of it.
The Lisp programmer feels that he or she is talking with the system, and that talk
creates a special relationship with the system and the Lisp language itself. Finally,
Lisp is probably one of the best general-purpose computer languages for representing
fuzzy-sets, as we shall see later.

21.3 A Short History on Lisp

As previously stated, LISP is one of the oldest high-level languages in the history
of computer science and only FORTRAN, a language whose main goal is to write
technical programs where numbers are the main data type, is older. LISP was born
from the works of John McCarthy and his colleagues at MIT back in the last fifties
of century XX in an attempt to develop a language for symbolic data processing,
deriving in an extraordinary tool for LISt Processing.
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The seminal paper of LISP, “Recursive Functions of Symbolic Expressions and
Their Computation by Machine” was written by McCarthy himself as a program-
ming system for the IBM 704 (the first mass-produced computer with floating point
hardware), in order to facilitate experiments with a proposed system called “Advice
Taker”, that could exhibit some class of “common sense” in carrying out its instruc-
tions [6]. Soon after this theoretical paper, the first real implementation of Lisp was
created by Steve Russell on the 704 using its own machine language, and not much
later, in 1962, TimHart andMike Levin wrote the first Lisp compiler, written in Lisp,
for the IBM 7090, a more advanced (and really expensive) computer at that time.

Two important documents were published by MIT Press afterwards: “LISP 1.5
Programmer’s Manual” [7] and “The Programming Language LISP: Its Opera-
tions and Applications” [1]. These documents, together with the seminal paper by
McCarthy are easily found today on the Internet and constitute the real cradle of
Lisp.

In the late sixties, people at MIT developed an enhanced version of Lisp named
MACLISP for the PDP-6/10, a family of 32 bits computers manufactured by Digi-
tal Equipment Corporation. MACLISP included new data types such as arrays and
strings of characters. It helped to enhance the development of Artificial Intelligence
(AI) until the early 80s. The Reference manual for MACLISP [8] has been preserved
and can be consulted freely in the Internet.

While MIT was the cradle of LISP and even today is considered an in-house
development for completing a curriculum in computer science, it soon spread to other
regions, both academic and commercial. Interlisp [10] was, seen with the perspective
of an historian, a transfer of computer language fromMIT to the Palo Alto Research
Center (PARC) in California, a division of Xerox Corporation at mid seventies last
century. Also from coast to coast in the United States, another dialect of Lisp based
on MACLISP and named Franz Lisp, appeared in Berkeley in the seventies and
eighties, becoming one of the most commonly available Lisp dialects on machines
running under the Unix operating system [5].

The language didn’t take too much time to reach Europe. One of the first dialects
flourished in France under the name of VLISP in 1971. It was developed at the
University of Paris VIII at Vincennes, giving name to the dialect, V(incennes)LISP.
After VLISP soon cameLe-LISP a close variation fromVLISP, also in France. Under
an historic point of view Le-LISP is a milestone that deserves some attention because
it was one of the first implementations of the Lisp language on the IBM PC, thus,
inaugurating an epoch of, let’s say, personal programming in Lisp onmicrocomputers
[4].

Since Lisp can be written using Lisp itself, it is easy to understand the easy and
quick blooming of versions and dialects of the language, so soon it became evident
that some type of standardization was needed in the community of Lisp programmers
and users. Due to this, the American National Standard Institute published in 1994
a language specification document that gave birth to Common Lisp, also known as
ANSI Common Lisp.
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21.4 FuzzyLisp

In the nineties last century I was asked to prepare an introductory course on Fuzzy
Logic to engineering students that were eager to take the fundamentals of the theory,
especially from a practical approach. As a teaching vehicle specifically suited to
the task I wrote a small set of Lisp functions that I designed from scratch in such
a way that students could easily understand the theory and at the same time build
simple fuzzy models. Almost twenty years later, and as a complementary tool for
writing a book titled “A Practical Introduction to Fuzzy Logic using Lisp” [2] I took
the same approach, completely rewriting the code and enhancing it until developing
a complete computing tool for helping readers to understand fuzzy sets and fuzzy
logic theories, providing them with a tool for developing from small to complex
fuzzy logic based applications. In other words, FuzzyLisp is, simply put, a collection
of Lisp functions that allows to explore the world of Fuzzy Logic theories and to
develop Fuzzy Logic applications with relative little effort. It is in fact a small and
compact metalanguage that permits the user to concentrate in the construction of
fuzzy models while still retaining full control of all the Lisp features. FuzzyLisp is
freely available on the Internet [3] and runs in any ANSI Common Lisp compiler or
in the NewLisp environment [9].

21.4.1 Fuzzy Sets Representation in FuzzyLisp

For representing fuzzy sets within FuzzyLisp, both triangular and trapezoidal shaped
membership functions can be defined with only four singular points on the real axis,
x1, x2, x3, and x4:

( f uzzy − set − name x1 x2 x3 x4)

The support of a fuzzy set is thus represented by the interval [x1, x4], while the
nucleus is represented by the interval [x2, x3]. By adequately combining these values
we can obtain any triangular and trapezoidal characteristic function as follows:

x1 �= x2 = x3 �= x4 → Standard triangle
x1 = x2 = x3 �= x4 → Right triangle by-left
x1 �= x2 = x3 = x4 → Right triangle by-right
x1 �= x2 �= x3 �= x4 → Normal trapezium
x1 = x2 �= x3 �= x4 → Right trapezium by-left
x1 �= x2 �= x3 = x4 → Right trapezium by-right

Aside triangular and trapezoidal shaped membership functions, discrete fuzzy
sets can be also represented within FuzzyLisp using the following structure:

( f uzzy − set − name(x1 µ(x1)) (x2 µ(x2)) . . . (xn µ(xn)))
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21.4.2 FuzzyLisp Functions

The complete actual version of FuzzyLisp containsmore than forty functions that can
be categorized in the following sections:Membership functions, Alpha-cutsmanage-
ment, Truth values, Interval arithmetic, Fuzzy arithmetic, Fuzzy sets management,
Fuzzy Rule Based System functions and then other miscellaneous functions. The
following paragraphs give a concise description of them:

Membership functions:

( f l − belongs? f x) returns true if a crisp value x defined on the real axis belongs
to the fuzzy set f , else returns nil.
( f l − set − membership? f x) returns the membership degree of a crisp value
x defined on the real axis to the fuzzy set f .
( f l − belongs2? f x) is a sort of mix of the functions ( f l − belongs?) and
( f l − set − membership?). If the crisp value x is contained in the support of f
it returns the membership degree of x to f , otherwise, it returns nil.
( f l − dset − membership?d f setx) returns the interpolatedmembership degree
of a crisp value x defined on the real axis to the discrete fuzzy set fset.
( f l − lv − membership? lv x) prints all themembership degrees of a crisp value
x to every fuzzy set contained in a linguistic variable lv in the Lisp console.
( f l − lv − membership2? lv x) returns as a list all the membership degrees of
a crisp value x to every fuzzy set contained in a linguistic variable lv.
( f l − dlv − membership2? lv x) returns as a list all the membership degrees of
a crisp value x to every fuzzy set contained in a linguistic variable lv. All the fuzzy
sets from the linguistic variable lv must have a discrete characteristic function.
( f l − set − complement − membership? f x) returns the membership degree
of a crisp value x to the complementary set of f .
( f l − set − intersect − membership?namef 1 f 2x) returns the membership
degree of the crisp value x to the intersection of fuzzy sets f 1 and f 2. Parameter
name is a symbol for associating a name to the function’s resulting list.
( f l − set − union − membership? name f 1 f 2 x) returns the membership
degree of the crisp value x to the union of fuzzy sets f 1 and f 2. Parameter
name is a symbol for associating a name to the function’s resulting list.

Alpha-cuts management:

( f l − alpha − cut f alpha) scans a fuzzy set f represented by a trapezoidal or
triangular membership function from left to right and returns the obtained alpha-
cut alpha as a list, including the name of the original fuzzy set.
( f l − de f − set name a − cut1 a − cut2) defines and creates a fuzzy set by
means of two alpha-cuts a − cut1, a − cut2. The returned fuzzy set has either a
triangular or trapezoidal membership function. The parameter name is a symbol
for associating a name to the resulting fuzzy set.



344 L.A. Méndez

Truth values:

( f l − truth − value − negation − p? P x) returns the truth-value of the nega-
tion of a fuzzy proposition P where x is a real number expressing the subject of
P .
( f l − truth − value − p − and − q? P Q x y) returns the truth-valueof a com-
pound fuzzy proposition containing the logical connective “and”. P and Q are
represented by fuzzy sets with triangular or trapezoidal membership functions.
( f l − truth − value − p − or − q?PQxy) returns the truth-value of a com-
pound fuzzy proposition containing the logical connective “or”. P and Q are
represented by fuzzy sets with triangular or trapezoidal membership functions.
( f l − truth − value − f uzzy − implication − p − q? P Q x y) returns the
truth-value of a compound fuzzy implication p ⇒ q. P and Q are represented
by fuzzy sets with triangular or trapezoidal membership functions.
( f l − dtruth − value − negation − p? P x) returns the truth-valueof thenega-
tion of a fuzzy proposition P where x is a real number expressing the subject of
P . In this case P is represented by a discrete fuzzy set.
( f l − dtruth − value − p − and − q? P Q x y) returns the truth-value of a
compound fuzzy proposition containing the logical connective “and”. In this case
P and Q are represented by discrete fuzzy sets.
( f l − dtruth − value − p − or − q? P Q x y) returns the truth-valueof a com-
pound fuzzy proposition containing the logical connective “or”. In this case P and
Q are represented by discrete fuzzy sets.
( f l − dtruth − value − f uzzy − implication − p − q? P Q x y) returns the
truth-value of a compound fuzzy implication p ⇒ q. P and Q are represented by
discrete fuzzy sets.

Interval arithmetic:

( f lu − intv − add x1 x2 x3 x4) returns a list representing the addition of two
intervals [x1, x2], [x3, x4].
( f l − int − sub x1 x2 x3 x4) returns a list representing the subtraction of two
intervals [x1, x2], [x3, x4].
( f l − intv − mult x1 x2 x3 x4) returns a list representing the multiplication of
two intervals [x1, x2], [x3, x4].
( f l − intv − div x1 x2 x3 x4) returns a list representing the division of two
intervals [x1, x2], [x3, x4].

Fuzzy arithmetic:

( f l − f uzzy − add name A B) returns a fuzzy number as the result of adding
two fuzzy numbers A, B.
( f l − f uzzy − sub name A B) returns a fuzzy number as the result of subtract-
ing two fuzzy numbers A, B.
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( f l − f uzzy − mult name A B n) returns a fuzzy number as the result of mul-
tiplying two fuzzy numbers A, B. A and B are represented by triangular or trape-
zoidal shaped membership functions. The resulting fuzzy number A.B is repre-
sented by means of a discrete characteristic function. The parameter n expresses
the desired resolution.
( f l − f uzzy − div name A B n) returns a fuzzy number as the result of dividing
two fuzzy numbers A, B. A and B are represented by triangular or trapezoidal
shaped membership functions. The resulting fuzzy number A/B is represented by
means of a discrete characteristic function. The parameter n expresses the desired
resolution.
( f l − f uzzy − add − sets f sets name) returns a fuzzy number as the result of
adding all the fuzzy numbers contained in fsets.
( f l − f uzzy − f actor f set k) takes a fuzzy number A and then multiplies it by
a crisp number k, returning the fuzzy number k A. In practical terms when k > 1
it per-forms a multiplication by k and when k < 1 it performs a division by k.

( f l − f uzzy − average f sets name) returns a fuzzy number as the average of
n fuzzy numbers represented by fsets.

Fuzzy sets management:

( f l − dset − hedge dset hedge) applies a fuzzy hedge (linguistic modifier) to a
fuzzy set, where dset is a list representing a discrete fuzzy set and hedge is a Lisp
symbol, either VERY or FAIRLY.
( f l − expand − contract − set f k) expands or contracts a fuzzy set f . The
returned fuzzy set is still placed over its original position, but its support and
nucleus are expanded or contracted accordingly.
( f l − f uzzy − shi f t f x) shifts (moves horizontally) a fuzzy set f towards left
or right over the real axis X by an amount given by a real value x , returning the
shifted fuzzy set.
( f l − discreti ze f steps) takes a fuzzy set f with triangular or trapezoidal char-
acteristic function and discretizes it with a resolution given by steps. In other
words, it transforms a FuzzyLisp Standard Set Representation into a FuzzyLisp
Discrete Set Representation.
( f l − discreti ze − f x name f x steps a b) discretizes any continuous func-
tion y = f (x) in n steps between x = a and x = b, producing a discrete fuzzy
set.

Fuzzy Rule Based System functions:

( f l − translate − ruleheaderrulexy) takes an expert rule at a time from a
Fuzzy Rule Based System, performs the adequate inferences and translates the
rule into membership degrees, that is, into numerical values.
( f l − translate − all − rules set − of − rules x y) evaluates all the fuzzy
rules contained in the knowledge database of a Fuzzy Rule Based System, calling
iteratively to the function ( f l − translate − rule).
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( f l − de f uzzi f y − rules translated − rules) takes as input the list obtained
from either ( f l − dtranslate − all − rules) or ( f l − dtranslate − all −
rules) and then converts that fuzzy information into a crisp numerical value.
( f l − in f erenceset − of − rules x y) is an automatic call to the functions
( f l − translate − all − rules) and ( f l − de f uzzi f y − rules) in a sort of black
box that directly transforms two input crisp x y values entering a Fuzzy Rule
Based System into a resulting crisp value. Conversely, the FuzzyLisp function
( f l − din f erenceset − of − rulesxy) is suited to deal with FRBS where input
linguistic variables are composed by fuzzy sets with discrete membership func-
tions.
( f l − 3d − meshnamef ile set − of − rules nxny) creates an ASCII output
file in comma-separated values format (CSV) where every line adopts the follow-
ing structure: xi , yi , zi . Both xi , yi are input crisp values from the universes of
discourse of their respective linguistic variables from a Fuzzy Rule Based System.
On the other hand, zi is the inferred value from every possible pair (xi, yi). The
output file is in fact a discretized geometrical 3Dmesh. Conversely, the FuzzyLisp
function ( f l − 3d − dmesh) is suited to deal with FRBS where input linguistic
variables are composed by fuzzy sets with discrete membership functions.

Miscellaneous functions:

( f l − list − sets lv) prints all the fuzzy sets belonging to a linguistic variable lv
at the Lisp console.
( f l − simple − de f uzzi f ication f mode) takes a fuzzy number f and pro-
duces a crisp number for it with a simple algorithm.

21.5 A Simple Example of Fuzzy Control with FuzzyLisp

As it is well known, an air-conditioner system’s goal is tomaintain the temperature of
a given enclosure at a constant value. The basic information needed to accomplish the
goal is usually based on two values: actual temperature t and temperature variation
delta-t obtained from two readings from a thermometer obtained every s seconds.
After the readings are made, the proposed fuzzy controller calculates the needed
output airflow, AFT, to stabilize the enclosure’s temperature at a temperature goal,
let us say, T = 21 ◦C.

In this example, the universe of discourse representing temperature has a range
from 0 to 50C, while the universe of discourse representing temperature-variation
has a range from−2.0 to 2.0 ◦C/min. For output, five single-tons, representing airflow
percentage and cold (negative) and hot (positive) temperatures are used. Figures21.2,
21.3 and 21.4 show a graphical representation of the input and output variables of
the air-conditioner controller:
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Fig. 21.1 Luis Argüelles (first from Left) and Claudio Moraga (third from left) during the First
“AlfredoDean”Seminar onOrdinaryReasoning, to be held at theCulturalCenter “MurallaRomana”
of Gijon (Asturias), Spain, April 29, 2011.; photograph by Rudolf Seising

Fig. 21.2 Input linguistic variable lv-temperature

Fig. 21.3 Input linguistic variable lv-delta-t
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Fig. 21.4 Output linguistic variable AFT

The following FuzzyLisp code entirely models the air-conditioner fuzzy
controller:

;fuzzy sets and linguistic variables definitions:

(setq T1 ’(very-cold 0 0 6 11))
(setq T2 ’(cold 6 11 16 21))
(setq T3 ’(optimal 16 21 21 26))
(setq T4 ’(hot 21 26 31 36))
(setq T5 ’(very-hot 31 36 50 50))
(setq lv-temperature ’(T1 T2 T3 T4 T5))

(setq dT1 ’(decreasing -2 -2 -0.2 0))
(setq dT2 ’(no-change -0.2 0 0 0.2))
(setq dT3 ’(increasing 0 0.2 2 2))
(setq lv-delta-t ’(dT1 dT2 dT3))

;singletons representing output:

(setq AFT ’(

(cold-strong -100)
(cold-medium -50)
(stop 0)
(heat-medium 50)
(heat-strong 100))

)

;fuzzy rules section:

(setq rules-controller ’((lv-temperature lv-delta-t
AFT)

(very-cold decreasing heat-strong AND-product)
(very-cold no-change heat-strong AND-product)
(very-cold increasing heat-strong AND-product)
(cold decreasing heat-strong AND-product)
(cold no-change heat-medium AND-product)
(cold increasing heat-medium AND-product)
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(optimal decreasing heat-medium AND-product)
(optimal no-change stop AND-product)
(optimal increasing cold-medium AND-product)
(hot decreasing cold-medium AND-product)
(hot no-change cold-medium AND-product)
(hot increasing cold-strong AND-product)
(very-hot decreasing cold-strong AND-product)
(very-hot no-change cold-strong AND-product)
(very-hot increasing cold-strong AND-product))

)

For testing the controller for actual temperature t = 22C and temperature vari-
ation delta-t = 0.25C/min, the user only needs to type the following at the Lisp
con-sole: ( f l − in f erencerules − controller 22 0.25) producing a result AFT =
−60. This means the controller supplies cold air at %60 of the available output
airflow.

21.6 Summary

Lisp is far from being dead. Although it is the second older high-level program-
ming language it still holds all the great features designed by John McCarthy and
his colleagues at MIT back in the last fifties of century XX: Lisp offers the user or
programmer an automatic system of memory management, it is relatively simple and
easy to learn, it is elegant and even short programs can be extremely powerful. More-
over Lisp is highly interactive and helps to build Lisp-thinking on the programmer.
Even more interesting for the Fuzzy Logic community, Lisp is probably one of the
best general-purpose computer languages for representing and managing fuzzy-sets.

FuzzyLisp is a small and compact metalanguage composed by more than forty
functions that permits the user to experiment with fuzzy sets and concentrate in
the construction of fuzzy models while still retaining full control of all the Lisp
features. It is extremely well suited to teach fuzzy theories from a practical approach
and experience has shown it is an excellent complementary tool in engineering and
computer sciences courses. FuzzyLisp is freely available on the Internet and runs in
any ANSI Common Lisp compiler or in the NewLisp environment. I’m sure Claudio
will have sweet memories from MIT when observing the structure of FuzzyLisp.

References

1. Abrahams, P. et al.: The Programming Language LISP: Its Operations and Applications, The
M.I.T. Press, Cambridge, Mass., 1964 http://www.softwarepreservation.org/projects/LISP/
book/III_LispBook_Apr66.pdf.

http://www.softwarepreservation.org/projects/LISP/book/III_LispBook_Apr66.pdf
http://www.softwarepreservation.org/projects/LISP/book/III_LispBook_Apr66.pdf


350 L.A. Méndez

2. Argüelles, L.: A Practical Introduction to Fuzzy Logic using Lisp, Berlin [et al.]: Springer,
2015.

3. Argüelles, L.: FuzzyLisp, www.fuzzylisp.com, acceded August, 2016.
4. Chailloux, J.; Devin, M; and J. M. Hullot, J. M.: Le Lisp, a portable and efficient Lisp system,

INRIA, 1984.
5. Gabriel, Richard P.: Performance and evaluation of Lisp systems. MIT Press (Computer Sys-

tems Series, LCCN 85-15161), May 1985.
6. McCarthy, J.: Recursive Functions of Symbolic Expressions and Their Computation by

Machine, Communications of the ACM, April, 1960 http://www.cs.berkeley.edu/~christos/
classics/lisp.ps.

7. McCarthy, J. et al.: LISP 1.5Programmer’sManual, TheM.I.T. Press, Cambridge,Mass., 1962.
http://www.softwarepreservation.org/projects/LISP/book/LISP%201.5%20Programmers%
20Manual.pdf

8. Moon, David:MACLISPReferenceManual, TheM.I.T. Press, Cambridge,Mass., 1974. http://
www.softwarepreservation.org/projects/LISP/MIT/Moon-MACLISP_Reference_Manual-
Apr_08_1974.pdf.

9. Müller, L.: NewLisp, www.newlisp.org, acceded August, 2016.
10. Teitelman, W.; Masinter, L.: The Interlisp Programming Environment, IEEE Computer, April

1981. http://larry.masinter.net/interlisp-ieee.pdf.

www.fuzzylisp.com
http://www.cs.berkeley.edu/~christos/classics/lisp.ps
http://www.cs.berkeley.edu/~christos/classics/lisp.ps
http://www.softwarepreservation.org/projects/LISP/book/LISP%201.5%20Programmers%20Manual.pdf
http://www.softwarepreservation.org/projects/LISP/book/LISP%201.5%20Programmers%20Manual.pdf
http://www.softwarepreservation.org/projects/LISP/MIT/Moon-MACLISP_Reference_Manual-Apr_08_1974.pdf
http://www.softwarepreservation.org/projects/LISP/MIT/Moon-MACLISP_Reference_Manual-Apr_08_1974.pdf
http://www.softwarepreservation.org/projects/LISP/MIT/Moon-MACLISP_Reference_Manual-Apr_08_1974.pdf
www.newlisp.org
http://larry.masinter.net/interlisp-ieee.pdf


Claudio Moraga had an hour’s rest during Saturday’s Scientific Conversations
“Thinking and Fuzzy Logic” in Palermo (Sicily, Italy), 14th of May, 2011,

photograph by Rudolf Seising.



Appendix A
You, Claudio

Abstract This speech was delivered to mark the 65th birthday of Claudio Moraga.
The speech tried to be of a festive and joking character, and came not from the head
but from the heart.

0.
Before to begin, letme thank all friends atDortmundUniversity, and speciallyProfes-
sor Bernd Reusch, for givingme this opportunity of publicly addressing to Professor
Claudio Moraga. This speech is like a letter to you, Claudio, but it is not exactly a
letter. It will try to be an average between a letter, a personal reflection endowed with
some touches of humor, and some manifestation of sentiments. Perhaps, better than
“You, Claudio”, the title should be “To you, Claudio”, in the manner a bullfighter
offers to someone his next fight with the bull. Of course, there is no any similarity
between this speech and the 1934 Robert Graves’ famous novel “I Claudio”, a novel
that, ‘unlike’ any university, is lull of gossipery and friend’s treachery.

1.
If I remember it well, I met you by the first time, Claudio, in Chicago during an
International Symposium on Multiple-Valued Logic, in 1981. Hence, our acquain-
tance is not too young: more than 21 years! Furthermore, after 1981 our contacts
have been not only continuous but transformed in what for me is most important,
in a true friendship. A friendship that, happily, was extended to many other Span-
ish researchers. In fact, I have completely lost the count of your stays in Spain:
Barcelona, Girona, Palma de Mallorca, Madrid, Granada, Santiago de Compostela,
etc., are cities in which you have a lot of friends that have a big respect for you. A
respect that is shared by many other people around the world.

2.
When I began to think on what I could say with this speech, three phrases came
to my mind. The first, by Albert Einstein, “Most people say that it is the intellect
which makes a great scientist. They are wrong: it is the character”. The second, by
Samuel Taylor Coleridge, “Men, I think, have to be weighted,pg not counted”. And
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for Multi-Valued Logic and Soft Computing, Studies in Fuzziness
and Soft Computing 349, DOI 10.1007/978-3-319-48317-7
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Fig. A.1 Title page of the
document concerning the
commemorative event on the
65th birthday of Claudio
Moraga

the third, by Isabel Allende, “On a wine’s taste you can say three or four adjectives
and nothing else. On the ideas, you dispose of all the words in the Dictionary”. These
phrases directed me not to your intellectual work but to find adjectives to weight your
character.

Hence, I asked some of our common colleagues to select these adjectives and,
I don’t know if it is surprising or not, but all of them were coincidental with me
in the following seven (more than twice the number Allende would apply to wine):
Honest,Heavyworker,Rigorous,Discrete,MarvelousLecturer,Always ready to help
anyone, Good scientist. To this list, I will add a characteristic that I don’t know how
to compact in an English adjective: your ability to grasp the personality of people.
An ability that some of your characteristics compacted in the former adjectives don’t
allow you to show it too much frequently.

3.
Let me stop for a while to ask myself “What are we doing here today?”. I believe that
we are just taking benefit of the opportunity given by the end of the contract between
you, Claudio, and the University of Dortmund, to pay homage to a distinguished
scholar that now will pass to a new time in his life, a time in which he will have
freedom enough for doing new activities, either of research or of other type, in any
part of the world.

Today people can expect to live more than eighty years. Why retirement at 65?
Which marvelous property has number 65, or 70 it does not matter at all, to legally
cut a contract of professorship and not, for example, one of marriage?Why to punish
Social Security with a new pension? The only reason I can foresee is that of making
room for younger people without putting more money in the system. Well, as I am
approaching 65 I think that this is not a good solution to the problem, it is just a
trivial solution.

As I think that trivial solutions are for nothing, I tried to look at some arithmetical
properties of 65, and the only I found (perhaps someone here knows another) is that
65 is, when written in the bases 2, 4 and 12, a symmetrical number:

65 = 10000012 = 10014 = 5512! (A.1)
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As in Spain we retire at 70, I also looked at number 70 and I found that in no
base until 12 it is symmetrical. Hence, it seems I found the deep reason of the
retirement at either 65 or 70: German Law is for palindromy and Spanish Law is
against palindromy! Certainly, this is not politically correct in today’s European
Union, and perhaps it can be a good subject for the European Parliament.

In my opinion, 81 is a better age to retire professors: 81 is the square of 9, 9 in
base 2 is 1001, palindrome, and the probability of charging the Social Security with
a long-term pension is very low at 81.

4.
Well, after this “serious” argumentation, let me come back again to you, Claudio, to
report a story that is not exactly true but that could be true if we put the imagination
in gear.

All of you know both the Spanish Professor Justo de Montealto and the German
Professor Justus von Hoheberg, as well as their fame as important scientists and
their, let me say, haughty personality, I would say, how proud of themselves they
are. The story can be summarized in the following transparencies. In the first and
second, you can see de Montealto and his team and von Hoheberg and his team,
when they are going to send a paper to a conference; an excellent one, of course,
in both cases. In the third, you can see what happens with the respective teams
when it is spread out the rumor that you, Claudio, are reviewing the papers by de
Montealto and von Hoheberg: It is Panic! In the fourth, you can see anyone of the
two important professors after the rumor’s confirmation: Moraga is reviewing my
paper!, a confirmation that guarantees that no word, no formula, no computation,
no reference, no definition, will remain without a rigorous checking. What the story
does not tell us, is the final report by Moraga; but I can imagine it as a large list of
corrections to be made, and the final acceptance of the paper. A paper that, after the
corrections will be, actually, a new one.

This is, of course, a “kind” of joke. Anyway, as youClaudio are now a free citizen,
God will not give to any EU bureaucrat the idea of appointing you as the Boss of
Security for European Airports. It will mean to be at the Checking Desk more than
four hours before the flight departure. This, of course, only in domestic flights!
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5.
You, Claudio, you are a person who likes precision, but not any kind of precision.
I think that there is a story that reflects this statement of mine. When we met by
the first time in 1981, you were the Chairman of a Session at which one of the
speakers referred several times to the famous logician “Łukasiewicz”with this usual
pronunciation. And I perfectly remember your face when, at the end of the paper
and after yours “Is there any question?”, one person in the room said “Well, it is not
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properly a question, it is only to advice that it is not ‘Lukasiewicz’ but ‘Fukasiewicz’,
as the first letter is not an English L but a Polish W”. Your face completely betrayed
what you were thinking, “What a fretful person appeared here this year!”. I was that
fretful person, and sure that, when at the end of the Session I approached you, you
accepted my conversation with the aim of helping me to non repeat such kind of,
let me say, scrupulous comments. You can believe me, Claudio: Since then I always
tried to avoid such kind of remarks!

6.
After studyingEngineering at theFederico Santamaria University, inValparaiso (that
perhaps we can translate as Paradise Valley), the nice city in the Pacific Ocean Coast
in which you were born 65 years ago, you moved to the MIT for doing the graduate
studies and the Ph.D. Dissertation. After this, you Claudio came back to Valparaiso
where, to properly exploit your research’s capabilities, you were appointed as Vice-
Rector, a position that probably would be the end of Moraga as a researcher if there
were not a General that “firmly supported” a very different opinion. And, as forced
by the General’s insistence, you should immediately flight to Germany, where you
arrived with a von Humboldt grant. And you quickly realized that this is a country
with a deep love for university professors. In fact, in the passports-line a civil servant
looked at your passport and, after confirming that you were a university professor,
introduced you (alone) in an office where someone did for you all the bureaucratical
process for your entrance in Germany. This is actually marvelous, and unbelievable
in Spain. When the von Humboldt grant finished and you had to remain in Germany,
you Claudio realized that Germans have also a deep love for doctorates as, until the
day the grant expired youwere called “ProfessorMoraga” and the day after youwere
called “Doctor Moraga”. Curiously, this is perfectly believable in Spain and, hence,
we can establish as 0.5 the degree of similitude between our respective countries in
what concerns the love for titles. Who knows if this can be a subject for a future
European Program in Social Sciences.

7.
Well, as I can suppose that your life after this time is well known by everybody here,
let me jump to this Festive Colloquium. A Festive Colloquium that clearly shows
the affection this University and your colleagues feel for you, Claudio. Today you
can appreciate the fondness of your German colleagues. Sure than your more than
27 years in Germany have shown you the same I learned when, being a child, I was
educated by a grandmother of mine who was a German lady born in Hamburg: That
at least at the beginning and at the end, this is a country with a people for which
sentiments are very important. May I say that this is very nice, Claudio? Or, even
more, that it is touching? This fondness for you is not closed to Germany, your
country, and to exhibit it let me show a few transparencies containing the messages
of some of your Spanish friends.
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8.
To finish, Claudio, let me offer you a poem by the late Catalan poet Joan Maragall
that, again in my poor translation into English reflects, I think, the main traits of your
character.

Do the best job
as if, of each detail you think,

of each word you say,
of each piece you place,

of each hammer’s blow you give,
will depend mankind’s salvation,
because on it depends. Believe it.

Thank you very much!
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Multiple-valued Logic and Complex-Valued Neural Networks
Igor Aizenberg

In classicalmultiple-valued logic its values are encoded by integers. This complicates
the use of multiple-valued logic as a basic model, which can be utilized in an artificial
neuron, because the values of k-valued logic encoded by integers 0, 1, 2, …, k are
not normalized. To overcome this obstacle, it was suggested to encode the values
of k-valued logic by complex numbers located on the unit circle, namely by the kth
roots of unity. It is described in the paper how this model of multiple-valued logic
over the field of complex numbers was suggested and how it was used to develop a
multi-valued neuron (MVN). Then it is considered how a feedforward neural network
based onMVN—amultilayer neural network with multi-valued neurons (MLMVN)
was designed and its derivative-free learning algorithm based on the error-correction
learning rule was presented. Different applications of MLMVN, which outperforms
many other machine learning tools in terms of learning speed and generalization
capability are also observed.

Ensemble Methods for Time Series Forecasting
Héctor Allende and Carlos Valle

Improvement of time series forecasting accuracy is an active research area that has
significant importance in many practical domains. Ensemble methods have gained
considerable attention from machine learning and soft computing communities in
recent years. There are several practical and theoretical reasons, mainly statistical
reasons, why an ensemble may be preferred. Ensembles are recognized as one of
the most successful approaches to prediction tasks. Previous theoretical studies of
ensembles have shown that one of the key reasons for this performance is diversity
among ensemble members. Several methods exist to generate diversity. Extensive
works in literature suggest that substantial improvements in accuracy can be achieved
by combining forecasts from different models. The focus of this chapter will be on
ensemble for time series prediction. We describe the use of ensemble methods to
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compare different models for time series prediction and extensions to the classical
ensemble methods for neural networks for classification and regression prediction
by using different model architectures. Design, implementation and application will
be the main topics of the chapter, and more specifically: conditions under which
ensemble based systemsmaybemore beneficial than their singlemachine; algorithms
for generating individual components of ensemble systems; and various procedures
through which they can be combined. Various ensemble based algorithms will be
analyzed: Bagging, Adaboost and Negative Correlation; as well as combination rules
and decision templates. Finally, future directions will be time series forecasting,
machine fusion and others areas in which ensemble of machines have shown great
promise.

DistributedMachine LearningwithContext-Awareness for theRegression Task
Héctor Allende-Cid

The amount of information available nowadays is almost incalculable, presenting
new opportunities to gain insight from this data. In this chapter we present some
of the work done in field of Distributed Machine Learning and discuss a problem
not often mentioned in the literature. The problem is related when the distributed
information comes from different contexts. Different contexts can be defined as
the different underlying laws of probability governing the data. This is a problem
not always addressed, where the majority of the contributions assume that between
distributed sources, there is no difference in the underlying law of probability. In this
chapter a distributed regression model is presented that addresses this problem.

From Lisp to FuzzyLisp
Luis Argüelles Méndez

Researchers in Fuzzy Logic have in theory many computer languages at his or her
disposal for developing the work they have initially in mind. However, and maybe
surprisingly, many times they use standard commercial packages that, although pow-
erful, are not as flexible as a pure computer language. The Lisp programming lan-
guage is the second oldest high-level computer language in the history of computing,
but its elegance, powerful memory management model and interactivity converts it
in one of themost interesting programming languages for exploring Fuzzy Logic the-
ories. This chapter shows the basic description of FuzzyLisp, a small and compact
metalanguage that allows the researcher to experiment with fuzzy sets and concen-
trate in the construction of fuzzy models while still retaining full control of all the
Lisp features.

Claudio Moraga and the University of Santiago de Compostela: Many Years of
Collaboration
Senén Barro, Alberto Bugarín and Alejandro Sobrino

In this chapter we summarize the fruitful relationship between Prof. ClaudioMoraga
and the University of Santiago de Compostela. For almost two decades Prof. Moraga
was a regular visitor at our departments as well as a lecturer at our doctoral and
summer courses. A milestone in this long term relationship was his key role in
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the hosting and organization of one of the most important international scientific
meetings the Intelligent Systems Group at the University of Santiago de Compostela
ever organized.

Class-Memory Automata Revisited
Henrik Björklund and Thomas Schwentick

Data words are an extension of traditional strings that have at each position, besides
a symbol from some finite alphabet, a data value from some infinite domain. Class-
memory automata constitute an automata model for data words with a decidable
emptiness problem. The paper improves the previous result that class-memory
automata are strictlymore expressive than register automata, another automatamodel
for data words. More specifically, it shows that weak class-memory automata, a
restriction of class-memory automata introduced by Cotton-Barratt, Murawski, and
Ong are strictly more powerful than the extension of register automata by a data-
guessing facility. While weak deterministic class-memory automata yield a restric-
tion of class-memory automata which is closed under Boolean operations, the paper
also proposes an extension of deterministic class-memory automata with this prop-
erty.

Associative Globally Monotone Extended Aggregation Functions
Tomasa Calvo, Gaspar Mayor and Jaume Suñer

In this contributionwe dealwith a globalmonotonicity condition for the class of asso-
ciative extended aggregation functions.We insist on the idea that globalmonotonicity
can be taken as a minimum requirement for an extended aggregation function to be
considered consistent.

Using Background Knowledge for AGM Belief Revision
Christian Eichhorn, Gabriele Kern-Isberner and Katharina Diekmann

By using the concept of possible worlds as system states, it is possible to express a
system’s internal state with the configuration of the system’s variables. In the same
way, the (usually incomplete and not necessarily correct) belief of an intelligent agent
about the system’s state can be expressed by a set of possible worlds. If this belief
is to be changed due to more accurate information about the system’s true state, it
is reasonable to incorporate the new information while at the same time abandon as
few information as possible, that is, to minimally change the belief of the agent.

In this paper we define semantical distances between possible worlds based on
the background beliefs of an agent which are represented as a conditional knowledge
base, by defining distances on the syntax of the (semantical) conditional structure.
With these distances, we instantiate AGM belief change operators that incorporate
new information into the belief state and implement the principle of minimal change
by selecting a set of worlds that are closest to the actual beliefs. We demonstrate that
using the background knowledge to calculate distances allows us to change the belief
state of the agent in a way that is semantically more correct than using, e.g., Dalal’s
distance. We finally discuss that defining the distances on a syntactical distance on
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conditional structures allows us to implement the resulting belief change operators
more efficiently.

Some Entertainments Dealing with Three Valued Logic
Itziar García-Honrado

This chapter is devoted to do some calculations from the tables of the operations
(+, ·,′ ) in the three valued logic of Łukasiewicz, Gödel, Kleene, Bochvar and Post.
The chapter is divided in two parts: the first one dealing with the Sheffer stroke, and
the second one deals with models of Conjectures from a Basic Flexible Algebra.

On the Ability of Automatic Generation Control to Manage Critical Situations
in Power Systems with Participation of Wind Power Plants Parks
Suad S. Halilčević and Claudio Moraga

The purpose of this work is design an automatic starter for the synchronizing equip-
ment (SE) in power systems. Such a starter leads to a faster and secure decision
concerning the introduction (i.e., a parallel switch) of a ready reserve generator to
the power system as a type of ancillary service. The applied method is based on a
hybrid neural model (HNM). The HNM consists of a feedforward, three-layer neural
network using neurons with a sigmoid activation, and a perceptron with a biased hard
limiter. The adopted HNM is excited by signals of the generator’s operating status,
current load regime, and an available power of the wind power plant park (W PPP).
The logical decision-making is used to find out the actual load regime and the avail-
able power from W PPP relevant to building of HNM’s input. The automatic starter
of the SE enables a reduction of the time spent in seeing whether or not the rescue
action will imply resorting to the ready reserve power. Such a reduction is certainly a
contribution to the efforts of preserving a power system’s integrity during the critical
situations (e.g. generating unit/area outages). HNM has the ability to recognize the
crisis symptoms immediately, and to consequently suggest an introduction of the
ready-reserve (RR) generator (a supplemental reserve) through SE.

The way to the BliZ
Erdmuthe Meyer zu Bexten

In this essay I talk about my professional career in which Claudio Moraga had a
huge part since we first met in 1986. Under his tutelage I found my way into the
field of medicinal engineering and in the end led me to establish the BliZ at the
THM in Gießen, a project I am very proud of. The BliZ (Zentrum für blinde und
sehbehinderte Studierende) is a facility specially designed to aid blind and visual
impaired students throughout their course of studies and beyond by developing new
technologies in the medicinal field with various partners.

Some Reflections on the Use of Interval Fuzzy Sets for Dealing with Fuzzy
Deformable Prototypes
José A. Olivas

In this homage to Prof. Moraga, firstly a short introduction and definition of Fuzzy
Deformable Prototypes, introduced by the author in 2000, referring some of the
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most interesting applications of this concept, mainly concerning prediction systems
is presented. Then, there is a short introduction to interval fuzzy sets with the aim
of showing some reflections on why it could be interesting to use interval fuzzy sets
instead of standard ones for dealing with Fuzzy Deformable Prototypes and some
guidelines for the representation and inferencemechanisms required for applications.

Milestones of Information Technology—A Survey
Franz Pichler

In the following we give a survey on important epochs in the development of the
electrical means for transmission and processing of information between humans and
machines. The goal is to contribute to a kind of holistic knowledge of the function
of the different complex systems and devices of modern information technology. We
are convinced that a historical projection on the different stages of development can
be of great help. However, by the limited space of this paper we can do this only by
a sketch. The list of relevant literature which we give at the end may help to get the
desirable deeper knowledge.

Logics—Many Values, Probabilities, Quantum States, and Fuzzy Sets
Rudolf Seising

This contribution is just a brief historical survey on logical calculuswhich lay inCalu-
dio Moraga’s interest, classical logic, multi-valued logics, fuzzy logic and quantum
logic. After the appearance of Russell and Whitehead’s Principia Mathematica the
papers on multi-valued logics by Łukasiewicz an Post were published in 1920 and
1921. Kleene was interested in the Polish logic systems and Zadeh learned logic
from Kleene. Quantum logic arose in the mid-thirties with a paper of Birkhoff and
von Neumann. Then, some researchers worked in the area to combine these logics
with probability concepts and others preferred fuzzy sets.

TheReed-Muller-FourierTransform—ComputingMethods andFactorizations
Radomir S. Stanković

Reed-Muller (RM) expressions are an important class of functional expressions for
binary-valued (Boolean) functionswhich have a doube interpretation, as analogues to
both Taylor series or Fourier series in classical mathematical analysis. Inmatrix nota-
tion, the set of basic functions in terms of which they are defined can be represented
by a binary triangular matrix. Fourier (RMF) expressions are a generalisation of
RM expressions to multiple-valued functions preserving properties of RM expres-
sions including the triangular structure of the transform matrix. In this paper, we
discuss different methods for computing RMF coefficients over different data struc-
ture efficiently in terms of space and time. In particular, we consider algorithms.
corresponding to Cooley-Tukey and constant geometry algorithms for Fast Fourier
transform. We also consider algorithms based on various decompositions borrowed
from the decomposition of the Pascal matrix and related computing algorithms.
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From Boolean to Multi-valued Bent Functions
Bernd Steinbach

Bent functions are functions that have the largest distance to all linear functions.
Due to this property bent functions hedge statistical attacks against cryptosystems.
This contribution reflects some steps on the way of the specification of Boolean
bent functions by O.S. Rothaus, over the description of such bent functions using
Boolean differential equations by Bernd Steinbach, the enumeration of bent func-
tions by Natalia Tokareva, the evaluation of classes of bent functions using the Spe-
cial Normal Form (SNF) by Bernd Steinbach and Christian Posthoff, the embed-
ding of bent functions into other properties needed in cryptosystems by Jon T.
Buttler and Tsutomu Sasao, the extension of such properties by Chunhui Wu and
Bernd Steinbach, to the generalization to multi-valued bent function by Claudio
Moraga et al.

Fuzziness as an Experimental Science: An Homage to Claudio Moraga
Marco Elio Tabacchi and Settimo Termini

In this contribution we collect a few considerations and remarks on such apparently
unrelated topics as: an early paper by Norbert Wiener on the Nature of Mathematics;
mathematical logic’s heritage on the formalization of reasoning; cognitive aspects on
the modalities of drawing conclusions. We hope that reading the present paper will
show that they are, nevertheless, related in some way at least for what regards the
problem of reasoning in the presence of uncertainty, showing a network of concepts
that can help considering again the innovating aspects of fuzziness—in our opinion
a more than fit homage to Claudio Moraga’s interdisciplinary approach to fuzziness.

Sequential Bayesian Estimation of Recurrent Neural Networks
Branimir Todorović, Claudio Moraga and Miomir Stanković

This is short overview of the authors’ research in the area of the sequential or recur-
sive Bayesian estimation of recurrent neural networks. Our approach is founded on
the joint estimation of synaptic weights, neuron outputs and structure of the recur-
rent neural networks. Joint estimation enables generalization of the training heuristic
known as teacher forcing, which improves the training speed, to the sequential train-
ing on noisy data. By applying Gaussian mixture approximation of relevant prob-
ability density functions, we have derived training algorithms capable to deal with
non-Gaussian (multi modal or heavy tailed) noise on training samples. Finally, we
have used statistics, recursively updated during sequential Bayesian estimation, to
derive criteria for growing and pruning of synaptic connections and hidden neurons
in recurrent neural networks.

A Dialogue Concerning Contradiction and Reasoning
Enric Trillas

What follows is a virtual discussion between two imaginary characters, Carla and
Karl, concerning the widespread idea that, with fuzzy sets, the Aristotle’s principle
of contradiction fails. Most thinkers see this principle as a guarantee for reasoning
on solid grounds, and look at its failure with a suspicion of heterodoxy.
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Recent Advances in High-Dimensional Clustering for Text Data
Juan Zamora

Clustering has become an important tool for every data scientist as it allows to per-
form exploratory data analysis and summarize large amounts of data. Specifically
for text data, clustering faces other challenges derived from the high-dimensional
space into which the data is represented. Furthermore and in spite of the fact that
important contributions have already been made, scalability presents an important
challenge when the whole-data-in-memory approach is no longer valid for real sce-
narios where data is collected in massive volumes. This chapter reviews the recent
contributions on high-dimensional text data clustering with particular emphasis on
scalability issues and also on the impact of the curse of dimensionality over the
distance-based clustering methods.

A Hierarchical Distributed Linear Evolutionary System for the Synthesis of
4-bit Reversible Circuits
Fatima Zohra Hadjam and Claudio Moraga

Even limited to 4-bits reversible functions, the synthesis of optimal reversible circuits
becomes an arduous task owing to the extremely large problem space. The current
paper tries to answer the following question: is it possible to implement optimal 4-bit
reversible circuitswithout relying on existing partial solutions libraries?Adistributed
linear genetic programming based-approach (DRIMEP2) is presented. It consists of
a hierarchical topology with a new communication policy to allow the evolutionary
algorithm to explore and exploit the search space in an efficient way. To test the
effectivity and the efficiency of the proposed system, the design of 69 benchmarks
(4-bits reversible functions) was performed. With respect to good results available
in the literature, a gate count reduction up to 60% was achieved with an average of
16.82% (for the two first benchmark groups where the gate count of the circuit was
considered by the reference authors) and a quantum cost reduction up to 62.71%
was reached with an average of 10.79% (for the two remaining benchmark groups
where the quantum cost of the circuit was considered by the reference authors).
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