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Abstract. Fault-tolerant consensus has been studied extensively in the
literature, because it is one of the important distributed primitives and
has wide applications in practice. This paper surveys important works on
fault-tolerant consensus in message-passing networks, and the focus is on
results from the past decade. Particularly, we categorize the results into
two groups: new problem formulations and practical applications. In the
first part, we discuss new ways to define the consensus problem, which
include larger input domains, enriched correctness properties, different
network models, etc. In the second part, we focus on real-world systems
that use Paxos or Raft to reach consensus, and Byzantine Fault-Tolerant
(BFT) systems. We also discuss Bitcoin, which can be related to solving
Byzantine consensus in anonymous systems, and compare Bitcoin with
BFT systems and Byzantine consensus algorithms.
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1 Introduction

Fault-tolerant consensus has received significant attentions over the past three
decades [14,50] since the seminal work by Lamport, Shostak, and Pease [43,67]
– some important results include solving consensus in an optimal way and iden-
tifying bounds on time and communication complexity under different models –
please refer to [14,50,70] for these fundamental results. In this paper, we survey
recent efforts on fault-tolerant consensus in message-passing networks, with the
focus on results from the past decade. References [18,26,69] presented early sur-
veys on the topic. To complement theses prior surveys, our paper focus on the
following two directions:

– Exploration of new problem formulations: Lots of different consensus prob-
lems have been proposed in the past ten years in order to solve more com-
plicated tasks and accommodate different system and network requirements.
New problem formulations include enriched correctness properties, different
fault models, different communication networks, and different input/output
domains. For this part, we focus on the comparison of recently proposed prob-
lem formulations and relevant techniques.
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– Exploration of practical applications: Consensus has been applied in many
practical systems. Here, we focus on three types of applications: (i) crash-
tolerant consensus algorithms (mainly Paxos [40] and Raft [63]) and their
applications in real-world systems, (ii) Practical Byzantine Fault-Tolerance
(PBFT) [20] and subsequent works on improving PBFT, and (iii) Bitcoin
[2] and its comparison with Byzantine consensus algorithms and Byzantine
Fault-Tolerance (BFT) systems.

For lack of space, discussions on some results are omitted here. Further details
can be found in [77].

Classic Problem Formulations of Fault-tolerant Consensus. We consider the con-
sensus problem in a point-to-point message-passing network, which is modeled
as an undirected graph. Without specifically mentioning, the communication
network is assumed to be complete in this survey, i.e., each pair of nodes can
communicate with each other directly. In the fault-tolerant consensus problem
[14,50], each node is given an input, and after a finite amount of time, each
fault-free node should produce an output – consensus algorithms should sat-
isfy the termination property. Additionally, the algorithms should also satisfy
appropriate validity and agreement conditions. There are three main categories
of consensus problems regarding different agreement properties:

– Exact [40,67]: fault-free nodes have to agree on exactly the same output.
– Approximate [30,32]: fault-free nodes have to agree on “roughly” the same

output – the difference between outputs at any pair of fault-free nodes is
bounded by a given constant ε (ε > 0) of each other.

– k-set [22,68]: the number of distinct outputs at fault-free nodes is ≤ k.

Validity property is also required for consensus algorithms to produce mean-
ingful output(s), since the property defines the acceptable relationship between
inputs and output(s). Some popular validity properties include: (i) strong valid-
ity : output must be an input at some fault-free node, (ii) weak validity : if all
fault-free nodes have the same input v, then v is the output, and (iii) validity
(for approximate consensus): output must be bounded by the inputs at fault-
free nodes. A consensus algorithm is said to be correct if it satisfies termination,
agreement and validity properties given that enough number of nodes are fault-
free throughout the execution of the algorithm. In this paper, we focus on three
types of node failures – Byzantine, crash, and omission faults.

The other key component of the consensus problem formulation is system
synchrony, i.e., a model specifying the relative speed of nodes and the network
delay. There are also three main categories [14,16,31,50]:

– Synchronous: each node proceeds in a lock-step fashion, and there is a known
upper bound on the network delay.
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– Partially synchronous: there exists a partially synchronous period from time to
time. In such a period, fault-free nodes and the network stabilize and behave
(more) synchronously.1

– Asynchronous: no known bound exists on nodes’ processing speed or the net-
work delay.

2 Exploration of New Problem Formulations

In the past decade, researchers proposed many new consensus problems to han-
dle more complicated tasks and/or environments. We categorize these efforts
into four groups: (i) input/output domain, (ii) communication network and syn-
chrony assumptions, (iii) link fault models, and (iv) enriched correctness prop-
erties, such as early-stopping and one-step properties. In this survey, we focus
on the discussion of works on different input/output domain and communication
networks. Please refer to [77] for works in other groups. In this section, we assume
that the system consists of n nodes, and up to f of them may crash or become
Byzantine faulty. Byzantine faulty nodes may have an arbitrary behavior.

2.1 Input/Output Domain

Multi-valued Consensus. In the original exact Byzantine consensus problem
[43,67], both input and output are binary values. Later, references [51,80]
proposed the multi-valued version in which input may take more than two
real values. Recently, multi-valued consensus received renewed attentions and
researchers proposed algorithms that achieve asymptotically optimal communi-
cation complexity (number of bits transmitted) in both synchronous and asyn-
chronous systems. Perhaps a bit surprisingly, for L-bit inputs, these algorithms
achieve asymptotic communication complexity of O(nL) bits when L is large
enough.

In synchronous systems, Fitzi and Hirt proposed a Byzantine multi-valued
algorithm with small error probability [35]. Their algorithm is based on the
reduction technique and has the following steps: (i) hash the inputs to much
smaller values using universal hash function, (ii) apply (classic) Byzantine con-
sensus algorithm using these hash values as inputs, and (iii) achieve consensus
by obtaining the input value from nodes that have the same hash values (if there
is enough number of such nodes) [35]. Later, Liang and Vaidya combined a dif-
ferent reduction technique (that divides an input into a large number of small
values) with novel coding technique to construct an error-free algorithm in syn-
chronous systems [47]. One key contribution is to introduce a lightweight fault
detection (or fault diagnosis) mechanism using coding [47]. Their coding-based
fault diagnosis is efficient for large inputs because the inputs are divided into
batches of small values, and in each batch, either consensus (on the small value
1 Note that there are also other definitions of partial synchrony. We choose to present

this particular definition, since many BFT systems only satisfy liveness under this
particular definition. Please refer to [12,31] for more models on partial synchrony.
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of this batch) can be achieved with small communication complexity or some
faulty nodes will be identified. Once all faulty nodes are identified, then consen-
sus on the remaining batches becomes trivial. Since number of faulty nodes is
bounded, consensus on most batches can be achieved with small communication
complexity [47].

Subsequently, variants of reduction technique were applied to solve consen-
sus problems with large inputs in asynchronous systems. References [65,66] pro-
vided multi-valued algorithms with small error probability. Afterwards, Patra
improved the results and proposed an error-free algorithm [64]. These algorithms
terminate with overwhelming probability; however, the expected time complex-
ity is large because these algorithms first divide inputs to small batches and
achieve consensus on each batch using variants of fault diagnosis mechanisms.

Typically, to achieve optimal communication complexity, the number of
batches is in the same order of L. Consequently, the number of messages is
large, since by assumption, L is a large value (compared with n). Instead of
achieving optimal bit complexity, Mostéfaoui and Raynal focused on a different
goal – minimizing number of messages in asynchronous systems [56,58]. Their
algorithm relies on two new all-to-all communication abstractions, which have
an O(n2) message complexity (i.e., O(n2L) bits) and a constant time complexity.
The first communication abstraction allows the fault-free to reduce the number
of input values to a small constant c, which ranges from 3 to 6 depending on
the bound on the number of faulty nodes. The second abstraction allows each
fault-free node to obtain a set of inputs such that, if the set at a fault-free node
contains a single value, then this value belongs to the set at any other fault-free
nodes. The algorithm in [56,58] consists of four phases: (i) nodes exchange input
values in the first three phases with the first phase based on the first communi-
cation abstraction, and the two subsequent phases based on the second, and (ii)
nodes use binary consensus in the final phase to determine whether it is safe to
agree on the value learned from phase 3.

Multi-valued consensus has also been studied under the crash fault model.
Mostéfaoui et al. proposed multi-valued consensus algorithms in both synchro-
nous and asynchronous systems [9]. Later, Zhang and Chen proposed a more
efficient multi-valued consensus algorithm in asynchronous systems [90].

High-Dimensional Input/Output. In the Byzantine vector consensus (or multi-
dimensional consensus) [52,82], each node is given a d-dimensional vector of
reals as its input (d ≥ 1), and the output is also a d-dimensional vector. In com-
plete networks, the recent papers by Mendes and Herlihy [52] and Vaidya and
Garg [82] addressed approximate vector consensus in the presence of Byzantine
faults. These papers yielded lower bounds on the number of nodes, and algo-
rithms with optimal resilience in asynchronous [52,82] as well as synchronous
systems [82]. The algorithms in [52,82] are generalizations of the optimal itera-
tive approximate Byzantine consensus for scalar inputs in asynchronous systems
[11]. The algorithms in [52,82] require sub-routines for geometric computation
in the d-dimensional space to obtain each node’s local state in each iteration,
whereas, a simple average operation suffices when d = 1 (i.e., classic approximate
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consensus) [11]. These two papers [52] and [82] independently addressed the same
problem, and developed different algorithms – mainly on different geometric
computation techniques – which also resulted in different proofs.

Subsequent work by Vaidya [81] explored the approximate vector consensus
problem in incomplete directed graphs. Later, Tseng and Vaidya [78] proposed
the convex hull consensus problem, in which fault-free nodes have to agree on
“largest possible” polytope in the d-dimensional space that may not necessarily
equal to a d-dimensional vector (a single point). The asynchronous algorithm in
[78] bears some similarity to the ones in [11,52,82]; however, Tseng and Vaidya
used a different communication abstraction to achieve the “largest possible”
polytope. Moreover, Tseng and Vaidya introduced a new proof technique to
show the correctness of iterative consensus algorithms when the output is a
polytope [78].

2.2 Communication Network

The fault-tolerant consensus problem has been studied extensively in complete
networks (e.g., [14,30,40,50,67]) and in undirected networks (e.g., [29,33]). In
these works, any pair of nodes can communicate with each other reliably either
directly or via at least 2f + 1 node-disjoint paths (for Byzantine faults) or f + 1
node-disjoint paths (for crash faults). Recently, researchers revisited the assump-
tions on the communication network and enriched the problem space in four main
directions: directed graphs, dynamic graphs, unknown/anonymous networks and
partial synchrony. Here, we focus on the works on directed graphs. Please find
the discussion on the later three directions in [77].

Directed Graphs. Researchers started to explore various consensus problems in
arbitrary directed graphs, i.e., two pairs of nodes may not share a bi-directional
communication channel, and not every pair of nodes may be able to communicate
with each other directly or indirectly. Significant efforts have also been devoted
on iterative algorithms in incomplete graphs. In iterative algorithms, (i) nodes
proceed in iterations; (ii) the computation of new state at each node is based only
on local information, i.e., nodes own state and states from neighboring nodes;
and (iii) after each iteration of the algorithm, the state of each fault-free node
must remain in the convex hull of the states of the fault-free nodes at the end
of the previous iteration. Vaidya et al. [83] proved tight conditions for achiev-
ing approximate Byzantine consensus in synchronous and asynchronous systems
using iterative algorithms. The tight condition for achieving approximate crash-
tolerant consensus using iterative algorithms in asynchronous systems was also
proved in [76].

A more restricted fault model – called “malicious” fault model – in which the
faulty nodes are restricted to sending identical messages to their neighbors has
also been explored extensively, e.g., [44–46,89]. LeBlanc and Koutsoukos [45]
addressed a continuous time version of the consensus problem with malicious
faults in complete graphs. LeBlanc et al. [44] have obtained tight necessary and
sufficient conditions for tolerating up to f faults in the network.
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The aforementioned approximate algorithms (e.g., [44,74,83]) are general-
izations of the iterative approximate consensus algorithm in complete network
[30,32]. However, to accommodate directed links, the proofs are more involved.
Particularly, for the sufficiency part, one has to prove that all fault-free nodes
must be able to receive a non-trivial amount of a state at some fault-free node in
finite number of iterations. The necessity proofs in the work on directed graphs
(e.g., [44,83]) are generalizations of the indistinguishability proof [13,33]. The
main contributions are to identify how faulty nodes can block the information
flow so that (i) fault-free nodes can be divided into several groups, and (ii) there
exists certain faulty behaviors for up to f nodes such that different groups of
fault-free nodes have to agree on different outputs.

There were also works on using general algorithms to achieve consensus –
an algorithm is general if nodes are allowed to have topology knowledge and
the ability to route messages (send and receive messages using multiple node-
disjoint paths). Furthermore, unlike iterative algorithms (e.g., [11,30]), the state
maintained at each node in general algorithms is not constrained to a single
value. Tseng and Vaidya [79] proved tight necessary and sufficient conditions
on the underlying communication graphs for achieving (i) exact crash-tolerant
consensus in synchronous systems, (ii) approximate crash-tolerant consensus in
asynchronous systems, and (iii) exact Byzantine consensus in synchronous sys-
tems using general algorithms. The tight condition for achieving approximate
Byzantine consensus in asynchronous systems remains open. Lili and Vaidya [74]
proved tight conditions for achieving approximate Byzantine consensus using
general algorithms.

The exact consensus algorithms in [79] require that some “common informa-
tion” has to be propagated to all fault-free nodes even if some nodes may fail.
Generally speaking, the algorithms in [79] proceed in phases such that in each
phase, a group of nodes try to send information to the remaining nodes. The
algorithms are designed to maintain validity at all time. Additionally, if no fail-
ure occurs in a phase, then agreement can be achieved, because some “common
information” are guaranteed to be received by all nodes that have not failed
yet. The algorithm in [74] can be viewed as an extension of the iterative algo-
rithm that tolerates Byzantine faults in directed networks [83], and it utilized
the routing information and network knowledge to tolerate more failures than
the algorithm in [83] does.

3 Exploration of Practical Applications

Fault-tolerant consensus has been adopted in many practical systems. We start
with real-world systems that are designed to tolerate crash node faults, par-
ticularly, those based on two families of algorithms – Paxos [40] and Raft [63].
Then, we discuss efforts on designing BFT (Byzantine Fault-Tolerance) systems.
Finally, we compare Bitcoin-related work [60] with BFT systems and Byzantine
consensus. In [77], we also discuss systems tolerating “arbitrary state corruption
faults”.
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3.1 Paxos and Raft

Here, we discus exact consensus algorithms developed for asynchronous systems.
Consensus algorithm needs to satisfy validity, agreement and termination as dis-
cussed in Sect. 1. However, it is impossible to achieve exact consensus in asyn-
chronous systems [34]. Hence, the termination property is relaxed – progress
(or liveness) is only ensured when there exist some time periods that enough
messages are received within time.

Paxos [40–42,54] is the well-known family of consensus protocols tolerat-
ing crash node faults in asynchronous systems. Since Paxos was first proposed
by Lamport [40,41], variants of Paxos were developed and implemented in real-
world systems, such as Chubby lock service used in many Google systems [17,25],
and membership management in Windows Azure [19].2 Yahoo! also developed
ZaB [71], a protocol achieving atomic broadcast in network equipped with
FIFO channels, and used ZaB to build the widely-adopted coordination service,
ZooKeeper [38]. ZooKeeper is later used in many practical storage systems, like
HBase [4] and Salus [86]. Recently, many novel mechanisms have been proposed
to improve the performance of Paxos, including quorum lease [55], diskless Paxos
[75], even load balancing [54], and time bubbling (for handling nondeterminis-
tic network input timing) [28]. While the original Paxos [40,41] is theoretically
elegant, practitioners have found it hard to implement Paxos in practice [21].
One difficulty mentioned in [21] is that membership/configuration management
is non-trivial in practice, especially, when Multi-Paxos, and disk corruptions
are considered. (Multi-Paxos is a generalization of Paxos which is designed to
optimize the performance when there are multiple inputs to be agree upon [21].)

In 2014, Ongaro and Ousterhout from Stanford proposed a new consensus
algorithm – Raft [63]. Their main motivation was to simplify the design of consen-
sus algorithm so that it is easier to understand and verify the design and imple-
mentation. One interesting (social) experiment by Ongaro and Ousterhout was
mentioned in [63]: “In an informal survey of attendees at NSDI 2012, we found
few people who were comfortable with Paxos, even among seasoned researchers”.
To simplify the conceptual design, Raft integrates the consensus-solving element
deeply with leader election protocol and membership/configuration management
protocol [63]. After their publication, Raft has quickly gained popularity, and
been used in practical key-value store systems such as etcd [3] and RethinkDB
[7]. Please refer to their website [6] for a list of papers and implementations.

3.2 Byzantine Fault Tolerance (BFT)

Generally speaking, Byzantine Fault-Tolerance (BFT) systems implement deter-
ministic state machines over different machines (or replicas) to tolerate Byzan-
tine node failures. In other words, BFT systems realize the State Machine Repli-
cation systems [72] that tolerate Byzantine faults. The main challenge is to design

2 We would like to thank the anonymous reviewer who pointed out that Windows
Azure also uses ZooKeepr to manage virtual machines [1].
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a system such that it behaves like a centralized server to the clients in the pres-
ence of Byzantine faults. More precisely, the system is given requests from the
clients, and the goals of a BFT system are: (i) the fault-free replicas agree on the
total order of the requests, and then the replicas execute the requests following
the agreed order (safety); and (ii) clients learn the responses to their requests
eventually (liveness). Usually, safety is guaranteed at all time, and liveness is
guaranteed only in the grace periods, i.e., when messages are delivered in time.

Since Castro and Liskov published their seminal work PBFT (Practical
Byzantine Fault-Tolerance) [20], significant efforts have been devoted to improv-
ing BFT systems. There were mainly two directions of the improvements:
(i) reducing the overhead like communication costs, or replication costs, and
(ii) providing higher throughput or lower latency (in the form of round com-
plexity). Below, we focus on different techniques for improving the performance.
Please refer to [77] for the discussions on other works in this area, including
hardening existing crash-fault-tolerant systems, hardware-based BFTs, BFTs
with relaxed properties, BFT storage systems, and BFTs over intercloud.

Improving Performance. Castro and Liskov’s work on Practical Byzantine Fault-
Tolerance (PBFT) showed for the first time that BFT system is useful in practice
[20]. PBFT requires 3f + 1 replicas, where f is the upper bound on the num-
ber of Byzantine nodes in the system. Subsequently, Quorum-based solutions
Q/U [10] and HQ [27] have been proposed, which only require one round of
communication in contention-free case by allowing clients directly interact with
all the replicas to agree on an execution order. Contention-free case means the
time when all the following conditions hold: (i) no replica fails, (ii) the network
has stable performance, and (iii) there is no contention on the proposed input
value. The quorum-based solutions reduce latency (number of rounds) in some
cases, but was shown to be more expensive in other cases [39]. Hence, Zyzzyva
[39] focuses on increasing performance in failure-free case (when no replica fails)
by allowing speculative operations that increase throughput significantly and
adopting a novel roll-back mechanism to recover operations when failures are
detected. Zyzzyva requires 3f + 1 replicas; however, a single crash failure would
significantly reduce the performance by forcing Zyzzyva to run in the slow mode
– where no speculative operation can be executed [39]. Thus, Kotla et al. also
introduced Zyzzyva5, which can be executed in the fast mode even if there are
crash failures, but Zyzzyva5 requires 5f + 1 replicas [39]. Subsequently, Scrooge
[73] reduces the replication cost to 4f by requiring the participation from clients
which help detect replicas’ misbehaviors. Moreover, Scrooge runs in the fast
mode even if there are crashed nodes.

Clement et al. observed that a single Byzantine replica or client can signif-
icantly impact the performance of HQ, PBFT, Q/U and Zyzzyva [24]. Thus,
they proposed a new system Aardvark, which provides good performance when
Byzantine failures happen by sacrificing the performance in the failure-free case
[24]. Later, Clement et al. also demonstrated how to combine Zyzzyva and
Aardvark so that the new system, Zyzzyvark, not only tolerates faulty clients,
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but also enjoys fast performance in the failure-free case due to the integration
of speculative operations [23].

The aforementioned BFT systems are designed to optimize performance for
certain circumstances, e.g., HQ for contention-free case and Zyzzyva for failure-
free case. Guerraoui et al. proposed a new type of BFT systems that can be
constructed to have optimized performance under difference circumstances [37].
Their tunable design is useful, since it allows the system administrators to
explore the performance tradeoff space. Their systems are based on three core
concepts: (i) abortable requests, (ii) composition of (abortable) BFT instances,
and (iii) dynamic switching among BFT instances. The tunable parameter spec-
ifies the progress condition under which a BFT instance should not abort. Some
example conditions include contention, system synchrony or node failures. In
[37], Guerraoui et al. showed how to construct new BFT systems with different
parameters; particularly, they proposed (i) AZyzzyva which composes Zyzzyva
and PBFT together to have more stable performance than Zyzzyva does and
faster failure-free performance than PBFT’s performance, and (ii) Aliph which
has three components: PBFT, Quorum-based protocol optimized for contention-
free case, and Chain-based protocol optimized for high-contention case without
failures and asynchrony [37].

For computation-heavy workload, Yin et al. proposed a novel idea that sep-
arates agreement protocol from executions of clients’ requests [88]. This sepa-
ration mechanism reduces the replication cost to 2f + 1. Note that the system
still requires 3f + 1 replicas to achieve agreement on the order of the clients’
requests, but the executions of requests, and data storage only occur at 2f + 1
replicas. Later, Wood et al. built a system, ZZ, which reduces the replication
cost to f + 1 using virtualization technique [87]. The idea behind ZZ is that
f +1 active replicas are sufficient for fault detection, and when fault is detected,
their virtualization technique allows ZZ to replace the faulty replica by waking
up fresh replica and retrieving current system state with small overhead [87].

3.3 Bitcoin

Bitcoin is a digital currency system proposed by Satoshi Nakamoto [60] and
later gained popularity due to its characteristics of anonymity and decentralized
design [2]. Since Bitcoin is based on cryptography tools (Proof-of-Work mech-
anism), it can be viewed as a cryptocurrency. Even though Bitcoin has large
latencies (on the order of an hour), and the theoretical peak throughput is up to
7 transactions per second [85], Bitcoin is still one of the most popular cryptocur-
rencies. Here, we briefly discuss the core mechanism of Bitcoin and compare it
with Byzantine consensus and BFT systems.

Bitcoin Mechanism. The core of Bitcoin is called Blockchain, which is a peer-
to-peer ledger system, and acts as a virtually centralized ledger that keeps track
of all bitcoin transactions. A set of bitcoin transactions are recorded in blocks.
Owners of bitcoins can generate new transactions by broadcasting signed blocks
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to the Bitcoin network.3 Then, a procedure called mining confirms the trans-
actions and includes the transactions to the Blockchain (the centralized ledger
system). Essentially, mining is a randomized distributed consensus component
that confirms pending transactions by including them in the Blockchain. To
include a transaction block, a miner needs to solve a “proof-of-work” (POW)
or “cryptographic puzzle”. The main incentive mechanism for Bitcoin partici-
pants to maintain the Blockchain and to confirm new transactions is to reward
the participants (or the miners) some bitcoins – the first miner that solves the
puzzle receives a certain amount of bitcoins. The main reason that the mining
procedure can be related to consensus is because each miner maintains the chain
of blocks (Blockchain) at local storage, and the global state is consistent at all
miners eventually – all fault-free miners will have the same Blockchain eventu-
ally [60]. That is, fault-free Bitcoin participants need to agree on the total order
of the transactions.

One important feature of the cryptocurrency system is to prevent the double-
spending attacks, i.e., spending the same unit of money twice. In Bitcoin, the
consistent global state – the order of transactions – can be used to prevent
double-spending attacks. Since the attackers have no ability to reorganize the
order of blocks (i.e., modify the Blockchain, the ledger system), the money recipi-
ent can simply check whether the money has already been spent in the Blockchain
and reject the money if it has already been used.4 In [60], Satoshi Nakamoto pre-
sented a simple analysis that showed with high probability, Bitcoin’s participants
maintain a total order of the transactions if adversary’s computation power is
less than 1/3 of the total computation power in the Bitcoin network. As a result,
no double-spending attack is possible with high probability if adversary’s com-
putation power is bounded. However, the models under consideration were not
well-defined and the analysis was not rigorous in [60]. Thus, significant efforts
have been devoted to formally proving the correctness of Bitcoin mechanism
or improving the design and performance. Please refer to a nice textbook [61]
for a thorough discussion. Below, we focus on the comparison of Bitcoin and
Byzantine consensus/BFT systems.

Comparison with Byzantine Consensus. There are several differences between
the problem formulation of Byzantine consensus (as described in Sect. 1) and
the assumptions of Bitcoin [36,53,60]. For example, in Bitcoin: (i) the number
of participants is dynamic; (ii) participants are anonymous, and the participants
cannot authenticate each other; (iii) as a result of (ii), participants have no
way to identify the source of a received message; and (iv) the Bitcoin network

3 Here, we follow the convention: (i) Bitcoin network includes all the anonymous partic-
ipants in the Bitcoin system and the network that supports the anonymous commu-
nication; and (ii) throughout the discussion, “Bitcoin” refers to the system/network,
whereas, “bitcoin” refers to the basic unit of the cryptocurrency.

4 One technical issue here is that the Blockchain has the “eventually consistent” fea-
ture. The exact mechanism to handle the issue is beyond the scope of this survey.
Please refer to a nice textbook [61] for some mechanisms.
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is synchronized enough, and there is a notion of a “round”, i.e., the network
communication delay is negligible compared to computation time.

It was first suggested by Nakamoto that Bitcoin’s POW-based mechanism can
be used to solve Byzantine consensus [8,59]. However, the discussion was quite
informal [59]. To the best of our knowledge, Miller and LaViola were the first to
formalize the suggestion and proposed a POW-based model to achieve Byzantine
consensus when majority of participants are fault-free. However, the validity is
only ensured with non-negligible probability (but not with over-whelming prob-
ability). Subsequently, Garay et al. [36] extracted and analyzed the core mecha-
nism of Bitcoin [36], namely Bitcoin Backbone. They first identified and formal-
ized two properties of Bitcoin Backbone: (i) common prefix property: fault-free
participants will possess a large common prefix of the Blockchain, and (ii) chain-
quality property: enough blocks in the Blockchain are contributed by fault-free
participants. Then, they presented a simple POW-based Byzantine consensus
algorithm which is a variation of Nakamoto’s suggestion [59], but satisfy agree-
ment and validity assuming that the adversary’s computation power (puzzle-
solving power) is bounded by 1/3. Their algorithm can also be used to solve
Byzantine consensus with strong validity [62]. Finally, they proposed a more
complicated consensus protocol, which was proved to be secure assuming high
network synchrony and that the adversary’s computation power is strictly less
than 1/2. In [36], Garay et al. focused on how to use Bitcoin-inspired mechanism
to solve Byzantine consensus.

Comparison with BFT Systems. Conceptually, BFT and Bitcoin have similar
goals: (i) BFT : clients’ requests are executed in a total order distributively; and
(ii) Bitcoin: a total order of blocks are maintained by participants distributively.
Therefore, it is interesting to compare BFT with Bitcoin as well. Below, we
address fundamental differences between the two.

– Environment: As discussed above, assumptions for BFT are similar to the ones
for Byzantine consensus, which are very different from the ones for Bitcoin.
One major difference is the anonymous node identity. In BFT, the system
environment is well-controlled, and replicas’ IDs are maintained and man-
aged by the system administrators. In contrast, Bitcoin is a decentralized
system where all the participants are anonymous. As a result, BFT systems
can use many well-studied tools from the literature, e.g., atomic broadcast,
and quorum-based mechanism, whereas, Bitcoin-related systems usually rely
on POW (proof-of-work) or variants of cryptographic tools.

– Features: In [85], Marko Vukolic mentioned that the features of BFT and
Bitcoin are at two opposite ends of the scalability/performance spectrum due
to different application goals. Generally speaking, BFT systems offer good
performance (low latency and high throughput) for small number of replicas
(≤ 20 replicas), whereas, Bitcoin scales well (≥ 1000 participants), but the
latency is prohibitively high and throughput is limited.

– Incentive: In BFT system, every fault-free replica/client is programmed to fol-
low the algorithm specification. However, in Bitcoin, participants may choose
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not to spend their computation power on solving puzzles; thus, there is a
mechanism in Bitcoin to reward the mining process [60].

– Correctness property: As addressed in Sect. 3.2, BFT systems satisfy safety
in asynchronous network and satisfy liveness when network is synchronous
enough (in grace period). As shown in [36,60], Bitcoin requires network syn-
chronous enough for ensuring correctness (when network delay is negligible
compared to computation time).

– Applications: Bitcoin or Blockchain-based systems inspire lots of exciting
applications beyond cryptocurrency, e.g., smart contract, identity/ownership
management, digital access/contents, etc. In contrasts, applications for BFT
systems are more traditional in the sense that there already exist those appli-
cations (that tolerate only crash faults), and BFTs help improve the fault-
tolerance level.

In [85], Marko Vukolic proposed an interesting research direction on finding
the synergies between Bitcoin and BFT systems, since both systems have their
limitations and advantages. On one hand, the poor performance of POW-based
mechanism limits the applicability of Blockchain in other domains like smart
contract application [15,85]. On the other hand, BFT systems are not widely
adopted in practice due to their poorer scalability and lack of killer applications
[48,84]. SCP is a recent system that utilizes hybrid POW/BFT architecture [49].
However, further exploration of the synergy between Bitcoin and BFT systems
is an interesting research direction.

4 Summary and Future Directions

Conclusion. Fault-tolerant consensus is a rich topic. This paper is only managed
to sample a subset of recent results. To augment previous surveys/textbooks on
the same topic, e.g., [14,18,26,50,69], we survey prior works from two angles:
(i) new consensus problem formulations, and (ii) practical applications. For the
second part, we focus on the Paxos- and Raft-based systems, and BFT systems.
We also discuss Bitcoin which has close relationship with Byzantine consensus
and BFT systems.

Future Directions. The future research directions below focus on one theme:
bridging the gap between theory and practice. As discussed in the first part of the
paper, researchers have explored wide variety of different (theoretical) problem
formulations; however, there is no consolidated or unified framework. As a result,
it is often hard to compare different algorithms and models, and it is also diffi-
cult for practitioners to decide which algorithms are most appropriate to solve
their problems. Thus, making these results more coherent and more practical
(e.g., giving rule-of-thumbs for picking algorithms) would be an important and
interesting task.

In the second part, we discuss the efforts of applying fault-tolerant consen-
sus in real-world systems. Unfortunately, the difficulty in implementing or even
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understanding the consensus algorithms prevents wider applications of consen-
sus algorithms. Therefore, simplifying the conceptual design and verifying the
implementation is also a key task. Raft [63] is one good example of how simplified
design and explanation could help gain popularity and practicability. Another
major task is to understand and analyze more thoroughly the real-world dis-
tributed systems. As suggested in [36,85], BFT systems and Bitcoin are not yet
well-understood. The models presented in [36,53] and other works mentioned in
[85] were only the first step toward this goal. Only after enough research and
understanding, could we improve the state-of-art mechanisms. For example, as
mentioned in [61], Bitcoin’s core mechanism depends on the incentive mecha-
nism to reward miners; however, not much work has analyzed Bitcoin from the
perspective of game theory.
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