
Public vs. Private Randomness in Simultaneous
Multi-party Communication Complexity

Orr Fischer(B), Rotem Oshman, and Uri Zwick

Computer Science Department, Tel-Aviv University, Tel Aviv, Israel
{orrfischer,roshman}@mail.tau.ac.il, zwick@tau.ac.il

Abstract. In simultaneous number-in-hand multi-party communication
protocols, we have k players, who each receive a private input, and wish
to compute a joint function of their inputs. The players simultaneously
each send a single message to a referee, who then outputs the value of
the function. The cost of the protocol is the total number of bits sent to
the referee.

For two players, it is known that giving the players a public (shared)
random string is much more useful than private randomness: public-coin
protocols can be unboundedly better than deterministic protocols, while
private-coin protocols can only give a quadratic improvement on deter-
ministic protocols.

We extend the two-player gap to multiple players, and show that the
private-coin communication complexity of a k-player function f is at
least Ω(

√
D(f)) for any k ≥ 2. Perhaps surprisingly, this bound is tight:

although one might expect the gap between private-coin and determin-
istic protocols to grow with the number of players, we show that the
All-Equality function, where each player receives n bits of input and the
players must determine if their inputs are all the same, can be solved
by a private-coin protocol with Õ(

√
nk + k) bits. Since All-Equality has

deterministic complexity Θ(nk), this shows that sometimes the gap scales
only as the square root of the number of players, and consequently the
number of bits each player needs to send actually decreases as the num-
ber of players increases. We also consider the Exists-Equality function,
where we ask whether there is a pair of players that received the same
input, and prove a nearly-tight bound of Θ̃(k

√
n) for it.

1 Introduction

In his seminal ’79 paper introducing the notion of two-party communication
complexity [18], Yao also briefly considered communication between more than
two players, and pointed out “one situation that deserves special attention”:
two players receive private inputs, and send randomized messages to a third
player, who then produces the output. Yao asked what is the communication
complexity of the Equality function (called “the identification function” in [18])
in this model: in the Equality function Eqn, the two players receive vectors
{0, 1}n, and the goal is to determine whether x = y.

c© Springer International Publishing AG 2016
J. Suomela (Ed.): SIROCCO 2016, LNCS 9988, pp. 60–74, 2016.
DOI: 10.1007/978-3-319-48314-6 5

Public vs. Private Randomness 61

Yao showed in [18] that Eqn requires Ω(n) bits for determistic communi-
cation protocols, even if the players can communicate back-and-forth. Using a
shared random string, the complexity reduces to O(1), and using private ran-
domness, but more than a single round, the complexity is Θ(log n). In modern
nomenclature, the model described above is called the 2-player simultaneous
model, and the third player (who announces the output) is called the referee.
Yao’s question is then: what is the communication complexity of Eqn using
private randomness in the simultaneous model of communication complexity?

Some seventeen years later, Yao’s question was answered: Newman and
Sezegy showed in [16] that Eqn requires Θ(

√
n) bits to compute in the model

above, if the players are allowed only private randomness. (Using shared random-
ness the complexity reduces to O(1), even for simultaneous protocols.) Moreover,
Babai and Kimmel showed in [3] that for any function f , if the deterministic
simultaneous complexity of f is D(f), then the private-coin simultaneous com-
munication complexity of f is Ω(

√
D(f)), so in this sense private randomness

is of only limited use for simultaneous protocols.
In this paper we study multi-player simultaneous communication complex-

ity1, and ask: how useful are private random coins for more than two players?
Intuitively, one might expect that as the number of players grows, the utility
of private randomness should decrease. We first extend the Ω(

√
D(f)) lower

bound of [3] to the multi-player setting, and show that for any k-player function
f , the private-coin simultaneous communication complexity of f is Ω(

√
D(f)).

We then show, perhaps contrary to expectation, that the extended lower bound
is still tight in some cases.

To see why this may be surprising, consider the function AllEqk,n, which
generalizes Eqn to k players: each player i receives a vector xi ∈ {0, 1}n, and
the goal is to determine whether all players received the same input. It is easy
to see that the deterministic communication complexity of AllEqk,n is Ω(nk)
(not just for simultanoues protocols), and each player must send n bits to the
referee in the worst case. From the lower bound above, we obtain a lower bound
of Ω(

√
nk) for the private-coin simultaneous complexity of AllEqk,n. It is easy

to see that Ω(k) is also a lower bound, as each player must send at least one bit,
so together we have a lower bound of Ω(

√
nk + k). If this lower bound is tight,

then the average player only needs to send O(
√

n/k + 1) bits to the referee in
the worst-case, so in some sense we even gain from having more players, and
indeed, if k = Ω(n), then the per-player cost of AllEqk,n with private coins is
constant, just as it would be with shared coins.

Nevertheless, our lower bound is nearly tight, and we are able to give a
simultaneous private-coin protocol for AllEqk,n where each players sends only
O(

√
n/k + log(k)) bits to the referee, for a total of O(

√
nk + k log min {k, n})

bits. This matches the lower bound of Ω(
√

nk) when k = O(n/ log2 n). We also

1 We consider the number-in-hand model, where each player receives a private input,
rather than the perhaps more familiar number-on-forehead model, where each player
can see the input of all the other players but not its own.

62 O. Fischer et al.

show that AllEqk,n requires Ω(k log n) bits, so in fact our upper bound for
AllEq is tight.

We then turn our attention to a harder class of k-player problems: those
obtained by taking a 2-player function f and asking “do there exist two play-
ers on whose inputs f returns 1?”. An example for this class is the function
ExistsEqk,n, which asks whether there exist two players that received the same
input. We show that ExistsEqk,n requires Θ̃(k

√
n) bits for private-coin simul-

taneous protocols, and moreover, any function in the class above has private-coin
simultaneous complexity Õ(kR(f)), where R(f) is the private-coin simultaneous
complexity of f (with constant error).

1.1 Related Work

As we mention above, two-player simultaneous communication complexity was
first considered by Yao in [18], and has received considerable attention since.
The Equality problem was studied in [3,7,16], and another optimal simultane-
ous protocol is given in [2], using error-correcting codes. In [12], a connection
is established between simultaneous and one-round communication complexity
and the VC-dimension. [8,11] consider the question of simultaneously solving
multiple copies of Equality and other functions, and in particular, [8] shows that
solving m copies of Equality requires Ω(m

√
n) bits for private-coin simultaneous

2-player protocols.
Multi-player communication complexity has also been extensively studied,

but typically in the number-on-forehead model, where each player can see the
inputs of all the other players but not its own. This model was introduced in [9];
sufficiently strong lower bounds on protocols in this model, even under restricted
(but not simultaneous) communication patterns, would lead to new circuit lower
bounds. Simultaneous communication complexity for number-on-forehead is con-
sidered in [4].

In contrast, in this paper we consider the number-in-hand model, where each
player knows only its own input. This model is related to distributed computing
and streaming (see, e.g., [17], which gives a lower bound for a promise version
of Set Disjointness in our model).

An interesting “middle case” between the number-in-hand and number-on-
forehead models is considered in [1,5,6]: there the input to the players is an
undirected graph, and each player represents a node in the graph and receives
the edges adjacent to this node as its input. This means that each edge is known
to two players. This gives the players surprising power; for example, in [1] it is
shown that graph connectivity can be decided in a total of O(n log3 n) bits using
public randomness. The power of private randomness in this model remains a
fascinating open question and is part of the motivation for our work.

The functions AllEq and ExistsEq considered in this paper were also
studed in, e.g., [10], but not in the context of simultaneous communication;
the goal there is to quantify the communication cost of the network topology on
communication complexity, in a setting where not all players can talk directly
with each other.

Public vs. Private Randomness 63

2 Preliminaries

Notation. For a vector x of length n, we let x−i denote the vector of length n−1
obtained by dropping the i-th coordinate of x (where i ∈ [n]).

Simultaneous Protocols. Fix input domains X1, . . . ,Xk of sizes m1, . . . ,mk

(respectively). A private-coin k-player simultaneous communication protocol Π
on X1 × . . . × Xk is a tuple of functions (π1, . . . , πk, O), where each πi maps the
inputs Xi of player i to a distribution on a finite set of messages Mi ⊆ {0, 1}∗,
and O is the referee’s output function, mapping each tuple of messages in
M1 × . . . × Mk to a distribution on outputs {0, 1}.

We say that Π computes a function f : X1 × . . . × Xk → {0, 1} with error ε
if for each (x1, . . . , xk) ∈ X1 × . . . × Xk we have:

Pr
{mi∼πi(xi)}i∈[k]

[O(m1, . . . ,mk) �= f(x1, . . . , xk)] ≤ ε.

A deterministic protocol is defined as above, except that instead of distri-
butions on messages, the protocol maps each player’s input to a deterministic
message, and the referee’s output is also a deterministic function of the messages
it receives from the players.

Communication Complexity. The communication complexity of a protocol Π
(randomized or deterministic), denoted by CC(Π), is defined as the maximum
total number of bits sent by the players to the referee in any execution of the
protocol on any input.2

For a function f , the deterministic communication complexity of f is defined
as

D(f) = min
Π

CC(Π),

where the minimum is taken over all deterministic protocols that compute f with
no errors. The private-coin ε-error communication complexity of f is defined as

Rε(f) = min
Π:Π computes f with error ε

CC(Π).

Individual Communication Complexity of a Player. We let CCi(Π) denote
the maximum number of bits sent by player i to the referee in any execu-
tion. For general communication protocols, it could be that the players never
simultaneously reach their worst-case message sizes — that is, we could have
CC(Π) <

∑k
i=1 CCi(Π). However, with simultaneous protocols this cannot

happen:

2 Another reasonable definition for randomized protocols is to take the maximum over
all inputs of the expected total number of bits sent. For two players this is asymp-
totically equivalent to the definition above [13]. For k > 2 players, the expectation
may be smaller than the maximum by a factor of log(k).

64 O. Fischer et al.

Observation 1. For any private-coin (or deterministic) simultaneous protocol
Π we have CC(Π) =

∑k
i=1 CCi(Π).

Proof. For each i ∈ [k], let xi be some input on which player i sends CCi(Π) bits
with non-zero probability. Then on joint input (x1, . . . , xk), there is a non-zero
probability that each player i sends CCi(Π) bits, for a total of

∑k
i=1 CCi(Π)

bits. Therefore CC(Π) ≥ ∑k
i=1 CCi(Π). The inequality in the other direction is

immediate, as there cannot be an execution of the protocol in which more than∑k
i=1 CCi(Π) bits are sent.

In the sequel we assume for simplicity that all players always send the same
number of bits, that is, each player has a fixed message size. By the observation
above, this does not change the communication complexity.

Maximal Message Complexity of a Protocol. The maximal message complexity of
a protocol Π is the maximum individual communication complexity over all play-
ers. The deterministic maximum message complexity is D∞ = min

Π
maxi CCi(Π),

and the private-coin ε-error maximal message complexity of f is defined as

R∞
ε = min

Π computes f with error ε
max

i
CCi(Π)

Problem Statements. The two main problems we consider in this paper are:

– AllEqk,n(x1, . . . , xk) = 1 iff x1 = . . . = xk, where x1, . . . , xk ∈ {0, 1}n;
– ExistsEqk,n(x1, . . . , xk) = 1 iff for some i �= j we have xi = xj , where

x1, . . . , xk ∈ {0, 1}n.

We often omit the subscript when the number of players and the input size
are clear from the context.

3 Lower Bound

In this section we extend the lower bound from [3] to multiple players, and show
that for any k-player function f and constant error probability ε ∈ (0, 1/2) we
have Rε(f) = Ω(

√
D(f)).

When proving two-party communication complexity lower bounds, it is help-
ful to view the function being computed as a matrix, where the rows are indexed
by Alice’s input, the columns are indexed by Bob’s input, and each cell contains
the value of the function on the corresponding pair of inputs. The natural exten-
sion to k players is a “k-dimensional matrix” (or tensor) where the i-th dimension
is indexed by the inputs to the i-th player, and the cells again contain the val-
ues of the function on that input combination. For conciseness we refer to this
representation as a “matrix” even for k > 2 players.

In [3] it is observed that the deterministic simultaneous communication com-
plexity of a function is exactly the sum of the logarithms of the number of unique
rows and the number of unique columns in the matrix (rounded up to an integer).
We generalize the notion of “rows and columns” to multiple players as follows.

Public vs. Private Randomness 65

Definition 1 (Slice). Fix a k-dimensional matrix M ∈ {0, 1}m1×...×mk For
a player i and an input (i.e., index) xi ∈ [mi], we define the (i, xi)-th slice
of M to be the projection of M onto a (k − 1)-dimensional matrix M |(i,xi) ∈
{0, 1}m1×...×mi−1×mi+1×...×mk obtained by fixing player i’s input to xi. That is,
for each x ∈ X1 × . . . × Xk we have M |(i,xi)(x−i) = M(x).

Note that for k = 2 and a 2-dimensional matrix M , the (1, x)-th slice of M is
simply the row indexed by x, and the (2, y)-th slice is the column indexed by y.

We assume that the matrices we deal with have no redundant slices: there
does not exist a pair (i, xi), (i, x′

i) (where xi �= x′
i) such that M |(i,xi) = M |(i,x′

i)
.

If there are redundant slices, we simply remove them; they correspond to inputs
to player i on which the function value is the same, for any combination of
inputs to the other players. Such inputs are “different in name only” and we
can eliminate the redundancy without changing the communication complexity
of the function being computed.

Let dimi(M) denote the length of M in the i-th direction: this is the number
of possible inputs to player i, after redundant slices are removed (i.e., the number
of unique slices for player i in M). We rely upon the following observation, which
generalizes the corresponding observation for two players from [3]:

Observation 2. Let f : X1 × . . . × Xk → {0, 1} be a k-player function, and
let Mf be the matrix representing f . Then in any deterministic protocol for f ,
each player i sends at least log dimi(Mf) bits in the worst case, and D(f) =
∑k

i=1	log dimi(Mf)
.
Proof. Suppose for the sake of contradiction that there is a deterministic protocol
Π for f where some player i that always sends fewer than 	log dimi(Mf)
 bits
in Π. For this player there exist two slices (i.e., inputs to player i) M |(i,xi) and
M |(i,x′

i)
, with xi �= x′

i, on which the player sends the same message. Because
we assumed that there are no redundant slices, there exists an input x−i to the
other players such that M |(i,xi)(x−i) �= M |(i,x′

i)
(x−i). But all players send the

same messages to the referee on inputs (xi, x−i) and (x′
i, x−i), which means that

on one of the two inputs the output of the referee is incorrect.
This shows that each player i must send at least 	log dimi(Mf)
 bits in the

worst-case. This number of bits from each player is also sufficient to compute f ,
as the players can simply send the referee their input (after removing redundant
slices, the number of remaining inputs is the number of unique slices). Therefore
by Observation 1, D(f) =

∑k
i=1	log dimi(Mf)
.

In [3], Babai and Kimmel prove the following for two players:

Lemma 1 ([3]). For any 2-player private-coin protocol Π with constant error
ε < 1/2,

CC1(Π) · CC2(Π) ≥ Ω(log dim1(Mf) + log dim2(Mf)).

66 O. Fischer et al.

Using this property of 2-player protocols, we can show:

Lemma 2. Let Π be a k-player private-coin protocol for f : X1 × . . . × Xk →
{0, 1} with constant error ε ∈ (0, 1/2). Then for each i ∈ [k]:

CCi(Π) ·
⎛

⎝
∑

j �=i

CCj(Π)

⎞

⎠ = Ω(log dimi(Mf)).

Proof. Fix a player i ∈ [k]. The k-player protocol Π induces a 2-player protocol
Π ′, where Alice plays the role of player i, and Bob plays the role of all the other
players. We have CC1(Π ′) = CCi(Π) and CC2(Π ′) =

∑
j �=i CCj(Π) (recall that

we assume the message size of each player is fixed).
The 2-player function computed by Π ′ is still f , but now we view it as a

2-player function, represented by a 2-dimensional matrix M ′
f with rows indexed

by Xi and columns indexed by X1 × . . . × Xi−1 × Xi+1 × . . . × Xk. Note that
dim1(M ′

f) ≥ dimi(Mf): if Mf |(i,xi) and Mf |(i,x′
i)

are slices of Mf that are not
equal, then the corresponding rows of M ′

f , indexed by xi and x′
i, differ as well.

Thus, by Lemma 1,

CCi(Π) ·
⎛

⎝
∑

j �=i

CCj(Π)

⎞

⎠ = CC1(Π ′) · CC2(Π ′)

= Ω(log dim1(M ′
f)) = Ω(log dimi(Mf)).

We can now show:

Theorem 1. For any k-player function f and constant error ε < 1/2 we have
Rε(f) = Ω(

√
D(f)).

Proof. Let Π be an ε-error private-coin simultaneous protocol for f . By the
lemma, for each i ∈ [k] we have

CCi(Π) ·
⎛

⎝
n∑

j=1

CCj(Π)

⎞

⎠

≥ CCi(Π) ·
⎛

⎝
∑

j �=i

CCj(Π))

⎞

⎠ = Ω (log dimi(Mf)) .

Summing across all players, we obtain
(

n∑

i=1

CCi(Π)

)

·
⎛

⎝
n∑

j=1

CCj(Π)

⎞

⎠ = Ω

(
n∑

i=1

log dimi(Mf)

)

,

that is, by Observations 1 and 2,

CC(Π)2 = Ω (D(f)) .

The theorem follows.

Public vs. Private Randomness 67

From the theorem above we see that the average player must send
Ω(

√
D(f)/k) bits. But what is the relationship between the maximum num-

ber of bits sent by any player in a private-coin protocol and a deterministic
protocol for f? This question is mainly of interest for non-symmetric functions,
since for symmetric functions all players must send the same number of bits in
the worst-case.

Theorem 2. For any k-player function f and constant error ε, we have
R∞

ε (f) = Ω(
√

D∞(f)/k).

Proof. Recall that by Observation 2, D∞(f) = maxi log dimi(Mf). Let i be a
player maximizing log dimi(Mf). As we showed in the proof of Theorem 1, for
this player we have in any private-coin simultaneous protocol Π:

CCi(Π) ·
⎛

⎝
n∑

j=1

CCj(Π)

⎞

⎠ = Ω (log dimi(Mf)) = Ω(D∞(f)).

Now let � be the player with the maximum communication complexity in Π,
that is, CCj(Π) ≤ CC�(Π) for each j ∈ [k]. We then have

CCi(Π) ·
⎛

⎝
n∑

j=1

CCj(Π)

⎞

⎠ ≤ CC�(Π) · (k − 1)CC�(Π) < kCC2
�(Π).

Combining the two, we obtain CC�(Π) = Ω
(√

D∞(f)/k
)
, which proves the

theorem.

Lower Bound of Ω(k logn) for AllEqk,n

We next show that in the specific case of AllEq, each player needs to send at
least Ω(log n) bits, yielding a lower bound of Ω(k log n). This improves on the
lower bound of Theorem 1 when k = Ω(n/polylog(n)), and will show that the
protocol in the next section is optimal.

Theorem 3. For any constant ε < 1/2, Rε(AllEqk,n) = Ω(k log n).

Proof. Fix a player i ∈ [k]. To show that player i must send Ω(log n) bits, we
reduce from Eqn, but this time our reduction constructs a one-way protocol,
where Alice, taking the role of player i, sends a message to Bob, representing all
the other players and the referee; and Bob then outputs the answer. It is known
that Eqn requires Ω(log n) bits of communication for private-coind protocols —
this is true even with unrestricted back-and-forth communication between the
two players [13]. The lower bound follows.

Let Π be a simultaneous private-coin protocol for AllEqk,n. We construct a
one-way protocol for Eqn as follows: on input (x, y), Alice sends Bob the message
that player i would send on input x in Π. Bob computes the messages each player
j �= i would send on input y, and then computes the output of the referee; this is
the output of the one-way protocol. Clearly, AllEqk,n(x, y, . . . , y) = Eqn(x, y),
so the one-way protocol succeeds whenever Π succeeds.

68 O. Fischer et al.

The lower bounds above use a series of 2-player reductions; they do not
seem to exploit the full “hardness” of having k players with their own individual
private randomness. This makes it more surprising that the lower bounds are
tight, as we show in the next section.

4 Tight Upper Bound for AllEQ

In this section, we show that the lower bound proven in Sect. 3 is tight for
AllEqk,n. This is done by showing a protocol with maximal message of size
O(

√
n
k + log (min(n, k))) bits per player, and O(

√
nk + k log (min(n, k))) bits of

communication overall.

Theorem 4. There exists a private-coin one sided error randomized simul-
taneous protocol for AllEqk,n with maximal message of size O(

√
n
k +

log (min(n, k))) = O(
√

D∞(AllEqk,n)

k + log (min(n, k))) bits per player.

Corollary 1. There exists a private-coin one sided error randomized simul-
taneous protocol for AllEqn,k of cost O(

√
nk + k log (min(n, k))) =

O(
√

D(AllEqk,n) + k log (min(n, k))).

We note that the deterministic communication complexity of AllEqn,k is
Θ(nk), and hence also D∞(AllEqk,n) = Θ(n). This follows immediately from
Observation 2.

Our randomized private-coin protocol is as follows.

Error-Correcting Codes. In the first step of the protocol, each player encodes its
input using a predetermined error correcting code, and uses the encoded string
as the new input. We review the definition of an error correcting code. In the
definition below, n and k are the standard notation for error correcting codes,
which we keep for the sake of consistency with the literature in coding; they are
unrelated to the parameters n, k of the communication complexity problem and
will be used in this context in the following definition only.

Definition 2. ([14]). M ⊆ {0, 1}n is called an [n, k, d]-code if it contains 2k

elements (that is, |M | = 2k) and dH(x, y) ≥ d for every two distinct x, y, where
dH is the Hamming distance. For a [n, k, d] code, let δ = d

n denote the relative
distance of the code.

An [n, k, d]-code maps each of 2k inputs to a code word of n bits, such that any
two distinct inputs map to code words that have large relative distance. We use
a simple error-correcting code (see [14]), which was also used in [2]:

Lemma 3 ([14], Theorem 17.303). For each m ≥ 1 there is a [3m,m, m
2]-

code.
3 The theorem in [14] gives a general construction for any distance up to 1/2; here we

use distance 1/6.

Public vs. Private Randomness 69

The relative distance of the code in Lemma 3 is δ = (1/2)m
3m = 1

6 .
When the players use the code from Lemma 3 to encode their inputs, each

player’s input grows by a constant factor (3), while the relative Hamming dis-
tance of any two differing inputs becomes at least δ. Let N = 3n denote the
length of the encoded inputs, and let x̄i denote the encoding of player i’s input xi.

Partitioning into Blocks. After computing the encoding of their inputs, each
player splits its encoded input into blocks of L = 	N

k
 bits each, except possibly
the last block, which may be shorter. For simplicity we assume here that all
blocks have the same length, that is, L divides n. Let b = N/L be the resulting
number of blocks; we note that b ≤ min(3n, k). Let Bi(�) ∈ {0, 1}L denote the
�-th block of player i.

Because any two differing inputs have encodings that are far in Hamming
distance, we can show that two players with different inputs will also disagree
on many blocks:

Lemma 4. For any two players i, j such that xi �= xj, we have
|{� ∈ [b] | Bi(�) �= Bj(�)}| ≥ δb.

Proof. Assume by contradiction that |{� ∈ [b]|Bi(�) �= Bj(�)}| < δb.
Let Δ = {s ∈ [N] | x̄i(s) �= x̄j(s)} be the set of coordinates on which players

i, j disagree. By the properties of the error correcting code, |Δ| ≥ δN .
Now partition Δ into disjoint sets Δ1, . . . ,Δb, where each Δ� contains the

locations inside block � on which the encoded inputs disagree. Each Δ� contains
between 0 and N/b coordinates, as the size of each block is L = N/b. By our
assumption, there are fewer than δb blocks that contain any differences, so the
number of non-empty sets Δ� is smaller than δb. It follows that |Δ| < δb·(N/b) =
δN , which contradicts the relative distance of the code.

Comparing Blocks. Our goal now is to try to find two players that disagree on
some block. We know that if there are two players with different inputs, then
they will disagree on many different blocks, so choosing a random block will
expose the difference with good probability. In order to compare the blocks, we
use an optimal 2-player private-coin simultaneous protocol for Eq:

Theorem 5 ([3] Theorem 1.5). There exists a private-coin one-sided error
simultaneous protocol for the two player function EQm of cost Θ(

√
m). If the

inputs are equal, the protocol always outputs “Equal”. If the inputs are not equal,
then the protocol outputs “Equal” with probability < 1/3.

Remark 1. We refer here to the symmetric variant of the equality protocol in
Remark 3.3 of [3], in which both Alice and Bob use the same algorithm to
compute their outputs.

We proceed as follows. Each player i chooses a block � ∈ [b] at random.
The player applies Alice’s algorithm from [3]’s 2-player equality protocol on the
chosen block Bi(�), and sends the output to the referee, along with the index

70 O. Fischer et al.

� of the block. In this process each player sends O(
√

n
k + log (min(n, k))) bits,

because the length of a block is L = O(n/k), and b ≤ min(3n, k).
The referee receives the player’s outputs o1, ..., ok, and for each pair that

chose the same block index, it simulates [3]’s 2-player equality referee. If for all
such pairs the output is 1 then the referee also outputs 1, otherwise it outputs
0. Let us denote by Ref(o1, . . . , ok) the referee’s output function.

Analysis of the Error Probability. Note that if all inputs are equal, then our
protocol always outputs 1: the EqL protocol from [3] has one-sided error, so
in this case it will output 1 for any pair of blocks compared. On the other
hand, if there exist two different inputs, we will only detect this if (a) the two
corresponding players choose a block on which their encoded inputs differ, and
(b) the EqL protocol from [3] succeeds and outputs 0. We show that this does
happen with good probability:

Lemma 5. If AllEq(x1, ..., xk) = 0, then the protocol outputs 0 with probability
at least 2

3δ(1 − e− 1
2).

Proof. Since there are at least two distinct input strings, there exists an input
string received by at most half the players. Let i be a player with such a string,
and let j′

1, ..., j
′
k
2

be k
2 players that disagree with player i’s input.

Let At be the event that player j′
t chose the same block index as player i.

Then

Pr [Ref(o1, ..., ok) = 0] ≥ Pr

⎡

⎣Ref(o1, ..., ok) = 0
∣∣∣

k/2⋃

t=1

At

⎤

⎦ · Pr

⎡

⎣
k/2⋃

t=1

At

⎤

⎦ .

We bound each of these two factors individually.
Since all At’s are independent, and for a fixed t we have Pr[At] = 1

b then

Pr

⎡

⎣
k/2⋃

t=1

At

⎤

⎦ = 1 −
(

1 − 1
b

)k/2

≥ 1 −
(

1 − 1
k

)k/2

≥ 1 −
(
e−1/k

)k/2

= 1 − e−1/2.

Next, let us condition on the fact that some specific Ar occurred. Given that
at least one of the At’s occurred, let Ar be such an event, that is, player r chose
the same block as player i.

Clearly, conditioning on Ar does not change the probability of each block
being selected, because the blocks are chosen uniformly and independently: that
is, for each i, r ∈ [k] and � ∈ [b],

Pr [player i chose block � | Ar] =
1
b
.

Therefore, by Lemma 4, given the event Ar, players i and r disagree on the
block they sent with probability at least (δb)/b = δ. Whenever i and r send a

Public vs. Private Randomness 71

block they disagree on, the protocol from [3] outputs 0 with probability 2/3. So
overall,

Pr

⎡

⎣Ref(o1, ..., ok) = 0
∣
∣∣

k
2⋃

t=1

At

⎤

⎦ ≥ 2
3
δ.

Combining the two yields Pr[Ref(o1, ..., ok) = 0] ≥ 2
3δ(1 − e− 1

2).

Proof (Proof of Theorem 4). By Lemma 5, if AllEq(x1, ..., xk) = 0 the algo-
rithm errs with constant probability. If AllEq(x1, ..., xk) = 1 then since
∀i,p,p′Bp(i) = B′

p(i), and the fact that [3]’s protocol is a one-sided error pro-
tocol, the global protocol will always output 1, which is the correct value. Since
this is a one-sided error protocol with constant error probability, this protocol
can be amplified by repeating the protocol in parallel a constant number of
times, so that the error probability becomes an arbitrarily small constant, and
the communication is only increased by a constant factor.

5 On EXISTSEQ

The upper bound of Sect. 4 reduces the AllEq problem to a collection of
2-player Eq problems, which can then be solved efficiently using known pro-
tocols (e.g., from [3]). This works because asking whether all inputs are equal,
and finding any pair of inputs that are not equal is sufficient to conclude that
the answer is “no”. What is the situation for the ExistsEq problem, where we
ask whether there exists a pair of inputs that are equal? Intuitively the approach
above should not help, and indeed, the complexity of ExistsEq is higher:

Theorem 6. If k ≤ 2n−1, then Rε(ExistsEqk,n) = Ω(k
√

n) for any constant
ε < 1/2.

Proof. We show that each player i must send Ω(
√

n) bits in the worst case,
and the bound then follows by Observation 1. The proof is by reduction from
2-player Eqn−1 (we assume that n ≥ 2).

Let Π be a private-coin simultaneous protocol for ExistsEqk,n with error
ε < 1/2. Consider player 1 (the proof for the other players is similar). Assign to
each player i ∈ {3, . . . , k} a unique label bi ∈ {0, 1}n−1 (this is possible because
k ≤ 2n−1.

We construct a 2-player simultaneous protocol Π ′ for Eqn−1 with error ε <

1/2 as follows: on inputs (x, y) ∈ {0, 1}n−1, Alice plays the role of player 1 in
Π, feeding it the input 1x (that is, the n-bit vector obtained by prepending ‘1’
to x); Bob plays the role of player 2 with input 1y; and the referee in Π ′ plays
the role of all the other players and the referee in Π, feeding each player i the
input 0bi, where bi is the unique label assigned to player i.

72 O. Fischer et al.

After receiving messages from Alice and Bob, and sampling the messages
players 3, . . . , k would send in Π when given the inputs described above, the
referee computes the output of Π and that is also the output of Π ′.

Because we prefixed the true inputs x, y with 1, and players 3, . . . , k received
inputs beginning with 0, we have ExistsEq(1x, 1y, 0b3, . . . , 0bk) = Eq(x, y).
Therefore Π ′ succeeds whenever Π does, and in particular it has error at most
ε. By the lower bound of [3], then, player 1 must send Ω(

√
n) bits in the worst

case.

We note that if k ≥ 2n then ExistsEq is trivial, as there must always exist
two players with the same input. (The depencence of k on n in Theorem 6 can
be improved to k ≤ (1 − o(1)) · 2n by assigning inputs to player 3, . . . , k more
cleverly.)

The lower bound above is tight up to O(log k), and indeed we can state
something more general: for any 2-player function f : X ×Y → {0, 1}, let ∃kf be
the k-player function that outputs 1 on input (x1, . . . , xk) iff for some i, j ∈ [k]
we have f(xi, xj) = 1.

Lemma 6. For any 2-player function f and k ≥ 2 we have Rk2ε(∃kf) = O(k ·
Rε(f)).

Proof. Let Π = (ΠA,ΠB , O) be a 2-player private-coin simultaneous protocol
for f with communication complexity Rε(f).

We construct a protocol Π ′ for ∃kf as follows: on input (x1, . . . , xk), each
player i samples two messages, M i

A ∼ ΠA(xi) and M i
B ∼ ΠB(xi), and sends

them to the referee. The referee samples outputs Zi,j ∼ O(M i
A,M j

B) for each
(i, j) ∈ [k]2 (i �= j) and outputs “1” iff for some pair Zi,j = 1.

If ∃kf(x1, . . . , xk) = 1, then there exist i, j such that f(xi, xj) = 1, and for
this pair of players we have Pr [Zi,j = 0] ≤ ε. Therefore the referee outputs “1”
except with probability ε.

On the other hand, if ∃kf(x1, . . . , xk) = 0, then for every pair i, j of players
we have f(xi, xj) = 0, so Pr [Zi,j = 1] ≤ ε. By union bound, in this case the
probability that the referee outputs “1” is bounded by

(
k
2

)
ε < k2ε.

To handle the increased error of the protocol for ∃kf , we can use a protocol for
f that has error O(1/k2); this is achieved by taking a constant-error protocol for
f , executing it O(log k) independent times, and taking the majority output [13].
We obtain the following:

Theorem 7. For any 2-player function f , k ≥ 2, and constant ε < 1/2 we have
Rε(∃kf) = O(k log k · Rε(f)).

Corollary 2. For ExistsEq we have Rε(ExistsEq) = O(k log k
√

n), matching
our lower bound up to a logarithmic factor.

Public vs. Private Randomness 73

6 Conclusion

In this paper we extended the classical results of Babai and Kimmel [3] to the
multi-player setting, and gave a tight bound for the gap between private-coin and
deterministic communication complexity in the simultaneous setting. We showed
that contrary to our initial expectations, the gap does not grow larger with the
number of players, and indeed the per-player gap can shrink as the number of
players grows. We also addressed a class of functions defined by taking a two-
party function and asking whether there are two players whose inputs cause it
to output 1.

Our work leaves open the interesting question of simultaneous lower bounds
for the model considered in [1,5,6], where each player represents a node in a
graph and is given the edges adjacent to that node. Our techniques do not apply
to this scenario because of the sharing of edges between players. Indeed, the
connectivity problem for this model (see [15]) cannot be addressed by reductions
from two-player communication complexity, because it is easy for two players:
we can simply have Alice and Bob compute spanning forests for their part of
the input and send them to each other, at a total cost of O(n log n). Thus,
further multi-party techniques need to be developed to address the hardness of
connectivity.

References

1. Ahn, K.J., Guha, S., McGregor, A.: Graph sketches: sparsification, spanners, and
subgraphs. In: Proceedings of the 31st Symposium on Principles of Database Sys-
tems, PODS 2012, pp. 5–14 (2012)

2. Ambainis, A.: Communication complexity in a 3-computer model. Algorithmica
16(3), 298–301 (1996)

3. Babai, L., Kimmel, P.G.: Randomized simultaneous messages: solution of a prob-
lem of yao in communication complexity. In: Proceedings of the 12th Annual IEEE
Conference on Computational Complexity, CCC 1997, p. 239. IEEE Computer
Society (1997)

4. Babai, L., Gál, A., Kimmel, P.G., Lokam, S.V.: Communication complexity of
simultaneous messages. SIAM J. Comput. 33(1), 137–166 (2004)

5. Becker, F., Matamala, M., Nisse, N., Rapaport, I., Suchan, K., Todinca, I.: Adding
a referee to an interconnection network: what can(not) be computed in one round.
In: 25th IEEE International Symposium on Parallel and Distributed Processing,
IPDPS 2011, pp. 508–514 (2011)

6. Becker, F., Montealegre, P., Rapaport, I., Todinca, I.: The simultaneous number-
in-hand communication model for networks: private coins, public coins and deter-
minism. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 83–95.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-09620-9 8

7. Bourgain, J., Wigderson, A.: Personal communication (see [3])
8. Chakrabarti, A., Shi, Y., Wirth, A., Yao, A.: Informational complexity and the

direct sum problem for simultaneous message complexity. In: Proceedings of the
Fourty-Second Annual Symposium on Foundations of Computer Science, FOCS
2001, pp. 270–278 (2001)

http://dx.doi.org/10.1007/978-3-319-09620-9_8

74 O. Fischer et al.

9. Chandra, A.K., Furst, M.L., Lipton, R.J.: Multi-party protocols. In: Proceedings
of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC 1983,
pp. 94–99 (1983)

10. Chattopadhyay, A., Radhakrishnan, J., Rudra, A.: Topology matters in commu-
nication. In: 55th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2014, Philadelphia, PA, USA, 18–21 October 2014, pp. 631–640 (2014)

11. Jain, R., Klauck, H.: New results in the simultaneous message passing model via
information theoretic techniques. In: Proceedings of the Twenty-Fourth Annual
IEEE Conference on Computational Complexity, CCC 2009, pp. 369–378 (2009)

12. Kremer, I., Nisan, N., Ron, D.: On randomized one-round communication complex-
ity. In: Proceedings of the Twenty-seventh Annual ACM Symposium on Theory of
Computing, STOC 1995, pp. 596–605 (1995)

13. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1997)

14. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes.
North-Halland, Amsterdam (1981)

15. McGregor, A.: Open problem 65. List of Open Problems in Sublinear Algorithms.
http://sublinear.info/index.php?title=Open Problems:65

16. Newman, I., Szegedy, M.: Public vs. private coin flips in one round communication
games (extended abstract). In: Proceedings of the Twenty-Eighth Annual ACM
Symposium on Theory of Computing, STOC 1996, pp. 561–570 (1996)

17. Weinstein, O., Woodruff, D.P.: The simultaneous communication of disjointness
with applications to data streams. In: Halldórsson, M.M., Iwama, K., Kobayashi,
N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 1082–1093. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-47672-7 88

18. Yao, A.C.-C.: Some complexity questions related to distributive computing (pre-
liminary report). In: Proceedings of the Eleventh Annual ACM Symposium on
Theory of Computing, STOC 1979, pp. 209–213 (1979)

http://sublinear.info/index.php?title=Open_Problems:65
http://dx.doi.org/10.1007/978-3-662-47672-7_88

	Public vs. Private Randomness in Simultaneous Multi-party Communication Complexity
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Lower Bound
	4 Tight Upper Bound for AllEQ
	5 On EXISTSEQ
	6 Conclusion
	References

