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Abstract. Alice wants to join a new social network, and influence its
members to adopt a new product or idea. Each person v in the network
has a certain threshold t(v) for activation, i.e. adoption of the prod-
uct or idea. If v has at least t(v) activated neighbors, then v will also
become activated. If Alice wants to activate the entire social network,
whom should she befriend? We study the problem of finding the mini-
mum number of links that Alice should form to people in the network, in
order to activate the entire social network. This Minimum Links Prob-
lem has applications in viral marketing and the study of epidemics. We
show that the solution can be quite different from the related and widely
studied Target Set Selection problem. We prove that the Minimum Links
problem is NP-complete, in fact it is hard to approximate to within an
ε ln n factor for some constant ε, even for graphs with degree 3 and with
threshold at most 2. In contrast, we give linear time algorithms to solve
the problem for trees, cycles, and cliques, and give precise bounds on the
number of links needed.

1 Introduction

The increasing popularity and proliferation of large online social networks,
together with the availability of enormous amounts of data about customer bases,
has contributed to the rise of viral marketing as an effective strategy in promot-
ing new products or ideas. This strategy relies on the insight that once a certain
fraction of a social network adopts a product, a larger cascade of further adop-
tions is predictable due to the word-of-mouth network effect [3,14,22]. Inspired
by social networks and viral marketing, Domingos and Richardson [11,27] were
the first to raise the following important algorithmic problem in the context of
social network analysis: If a company can turn a subset of customers in a given
network into early adopters, and the goal is to trigger a large cascade of further
adoptions, which set of customers should they target?

We use the well-known threshold model to study the influence diffusion
process in social networks from an algorithmic perspective. The social network
is modelled by a node-weighted graph G = (V,E, t) with V (G) representing
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individuals in the social network, E(G) denoting the social connections, and t
an integer-valued threshold function. Starting with a target set, that is, a subset
S ⊆ V of nodes in the graph, that are activated by some external incentive, influ-
ence propagates deterministically in discrete time steps, and activates nodes. For
any unactivated node v, if the number of its activated neighbors at time step
t − 1 is at least t(v), then node v will be activated in step t. A node once acti-
vated stays activated. It is easy to see that if S is non-empty, then the process
terminates after at most |V | − 1 steps. We call the set of nodes that are acti-
vated when the process terminates as the activated set. The problem proposed
by Domingo and Richardson [11,27] can now be formulated as follows: Given a
social network G = (V,E, t), and an integer k, find a subset S ⊆ V of size k
so that the resulting activated set is as large as possible. In the context of viral
marketing, the parameter k corresponds to the budget, and S is a target set that
maximizes the size of the activated set. One question of interest is to find the
cheapest way to activate the entire network, when possible. The optimization
problem that results has been called the Target Set Selection Problem, and has
been widely studied (see for eg. [1,4,25]): the goal is to find a minimum-sized set
S ⊆ V that activates the entire network (if such a set exists). In a certain sense,
the elements of this minimum target set S are the most influential people in the
network; if they are activated, the entire network will eventually be activated.

There are, however, two hidden flaws in the formulation of the target set
problem. First, the nodes in the target set are assumed to be activated imme-
diately by external incentives, regardless of their own thresholds of activation.
This is not a realistic assumption; in the context of viral marketing, it is possi-
ble, perhaps even likely, that highly influential nodes have high thresholds, and
cannot be activated by external incentives alone. Secondly, there is no possibility
of giving partial external incentives; indeed the target set is activated only by
external incentives, and the remaining nodes only by the internal network effect.

In this paper, we address the flaws mentioned above. We study a related
but different problem. Suppose Alice wants to join a new social network, whom
should she befriend if her goal is to influence the entire social network? In other
words, to whom should Alice create links, so that she can activate the entire
network? If Alice creates a link to a node v, the threshold of v is only effectively
reduced by one, and so v in turn is activated only if its threshold is one. We call
our problem the Minimum Links problem (Min-Links).

The Min-Links problem provides a new way to model a viral marketing strat-
egy, which addresses the flaws described in the target set problem formulation.
Indeed, Alice can represent the external initiator of a viral marketing strategy.
The links added from the external node correspond to the external incentive
given to the endpoints of these links. The nodes that are the endpoints of these
new links may not be immediately completely activated, but their thresholds
are effectively reduced; this corresponds to their receiving partial incentives.
One way of seeing this is that every individual to whom we link is given a $10
coupon; for some people this may be enough for them to buy the product, for
others, it reduces their resistance to buying it. Individuals with high thresholds
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cannot be activated only by external incentives. The Min-Links problem also has
important applications in epidemiology or the spread of epidemics: in the spread
of a new disease, where an infected person arrives from outside a community, the
Min-Links problem corresponds to identifying the smallest set of people such that
if the infected external person has contact with this set, the entire community
could potentially be infected.

Observe that the solution to the Min-Links problem can be quite different
from the solution to the Target Set Selection problem for a given network. For
example, consider a star network, where the leaves all have threshold 1, while
the central node has degree n− 1 and has threshold n. The optimal target set is
the central node, while the only solution to the Min-Links problem is to create
links to all nodes in the network. Thus, a solution to the Min-Links problem can
be arbitrarily larger than one to the Target Set Selection problem for the same
social network. However, any solution to the Min-Links problem is clearly also a
feasible solution to the Target Set Selection problem.

1.1 Our Results

We prove that the Min-Links problem is NP-hard, and is in fact, hard to approxi-
mate to within an ε log n factor for some ε < 1. In light of the hardness results, we
study the complexity of the problem for social networks that can be represented
as trees, cycles, and cliques. In each case, we give a necessary and sufficient
condition for the feasibility of the Min-Links problem, based on the structural
properties and an observation of the threshold function. We then give O(|V |)
algorithms to solve the Min-Links problem for all the studied graph topologies.
Finally, we give exact bounds on the number of links needed to activate the entire
network for all the above specific topologies, as a function of the threshold values.

1.2 Related Work

The problem of identifying the most influential nodes in a social network has
received a tremendous amount of attention [2,5,12,15–18,23]. The algorithmic
question of choosing the target set of size k that activates the most number
of nodes in the context of viral marketing was first posed by Domingos and
Richardson [11]. Kempe et al. [20] started the study of this problem as a dis-
crete optimization problem, and studied it in both the probabilistic independent
cascade model and the threshold model of the influence diffusion process. They
showed the NP-hardness of the problem in both models, and showed that a nat-
ural greedy strategy has a (1−1/e−ε)-approximation guarantee in both models;
these results were generalized to a more general cascade model in [21].

In the Target Set Selection problem, the size of the target set is not specified
in advance, but the goal is to activate the entire network. Chen [4] showed that
it is hard to approximate the optimal Target Set to within a polylogarithmic
factor, even when all nodes have majority thresholds, or have constant degrees
and thresholds two. A polynomial-time algorithm for trees was given in the
same paper. Ben-Zwi et al. [1] generalized the result on trees to show that target
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set selection can be solved in nO(w) time where w is the treewidth of the input
graph. The effect of parameters such as diameter, vertex cover number etc. of the
input graph on the complexity of the problem are studied in [25]. The Minimum
Target Set has also been studied from the point of view of the spread of disease
or epidemics. For eg., in [19], the case when all nodes have a threshold k is
studied; the authors showed that the problem is NP-complete for fixed k ≥ 3.

Influence diffusion under time window constraints were studied in [13]. Max-
imizing the number of nodes activated within a specified number of rounds has
also been studied [9,24]. The problem of dynamos or dynamic monopolies in
graphs (eg. [26]) is essentially the target set problem restricted to the case when
every node’s threshold is half its degree.

The paper closest to our work is [8], in which Demaine et al. introduce a
model to partially incentivize nodes to maximize the spread of influence. Our
work differs from theirs in several ways. First, they study the maximization of
influence given a fixed budget, while we study in a sense the budget (number
of links) needed to activate the entire network. Second, they consider thresholds
chosen uniformly at random, while we study arbitrary thresholds. Finally, they
allow arbitrary fractional influence to be applied externally on any node, while
in our model, every node that receives a link has its threshold reduced by the
same amount.

2 Notation and Preliminaries

Given a social network represented by an undirected graph G = (V,E, t), we
introduce a set of external nodes U that are assumed to be already activated. We
assume that all edges have unit weight; this is generally called the uniform weight
assumption, and has previously been considered in many papers [4,6,7,13]. A
link set for (G,U) is a set S of links between nodes in U and nodes in V , i.e.
S ⊆ {(u, v) | u ∈ U ; v ∈ V }. For a link set S, we define E(S) = {v ∈ V |
∃(u, v) ∈ S}, that is, E(S) is the set of V -endpoints of links in S. For a node v,
define r(v) to be the number of links in S for which v is an endpoint. Since the
set of external nodes U is already activated, observe that adding the link set S
to G is equivalent to reducing the threshold of the node v by r(v). In the viral
marketing scenario, the link set S represents giving v a partial incentive of r(v).

Given a link set S for a graph G, we define I(G,S) to be the set of nodes
in G that are eventually activated as a result of adding the link set S, that is,
by reducing the threshold of each node v ∈ E(S) by min{r(v), t(v)}, and then
running the influence diffusion process. See Fig. 1 for an illustration. Observe
that in the target set formulation, this is the same as the set of nodes activated
by using U as the target set in the graph G′, the graph obtained from G by
adding the set U to the vertex set and the set S to the set of edges.

A link set S such that I(G,S) = V , that is, S activates the entire network,
is called a pervading link set. A pervading link set of minimum size is called an
optimal pervading link set.
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Fig. 1. Node μ is the external influencer and is assumed to be activated. Links in the
link set are shown with dashed edges. The given link set activates the entire network
and is an optimal pervading link set.

Definition 1. Minimum Links (Min-Links) problem: Given a social network
G = (V,E, t), where t is the threshold function on V , and a set of external nodes
U , find an optimal pervading link set for (G,U).

In this paper, we consider the case of a single influencer, that is, U = {μ}.
In this case, a link given to a vertex v reduces its threshold by 1. Since μ must
be an endpoint of each edge in the link set S, each such edge can be uniquely
specified by a vertex in V . We therefore generally omit mention of μ in the rest
of the paper. For each node v ∈ E(S), we say we give v a link, or that v receives
a link. If activating X ⊆ V activates, directly or indirectly, the set of vertices Y ,
we write X ∼ Y (note that there may be vertices outside Y that X activates).
We write x ∼ Y instead of {x} ∼ Y . The minimum cardinality of a link set for
a Min-Links instance G is denoted ML(G).

Observe that for some graphs, a pervading link set may not exist; for exam-
ple, consider a singleton node of threshold greater than 1. The existence of a
feasible solution can be verified in O(E) time by giving a link to every node in
V , and simulating the influence diffusion process. The following simple obser-
vation stating two conditions under which no pervading link set exists, is used
throughout the paper:

Observation 1. A graph G does not have a pervading link set if it has a node
v such that t(v) > degree(v) + 1, or if there is no node with threshold 1.

3 NP-hardness

In this section, we prove that the Min-Links problem is NP-hard; in fact, it is
almost as hard as Set-Cover to approximate, even if G has degree bounded by
3 and thresholds bounded by 2. Given a collection of n sets S = {S1, . . . , Sn}
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whose union is the universe U of cardinality m, with n ≤ mk for some constant
k, the Set-Cover problem is to find a minimum set cover, that is, a sub-collection
of minimum cardinality S ′ ⊆ S such that

⋃
S∈S′ S = U . The cardinality of S ′ is

denoted MSC(S). We shall make use of rooted binary trees. For such a tree T ,
denote the root by r(T ), and the set of leaves by L(T ).

Constructing G from S: Given a Set-Cover instance S, we describe the
construction of a corresponding Min-Links instance G = (V,E, t) in polynomial
time, which is used for our reduction. Figure 2 illustrates our construction. For
each set in S and each element in U , we introduce two binary trees in G, and
then describe how to connect these trees. For each S ∈ S, add to G a binary tree
BS with |S| leaves L(BS) = {bS,u1 , . . . , bS,u|S|}, one for each element ui ∈ S.
Add another binary tree B′

S with |S| leaves L(B′
S) = {b′

S,u1
, . . . , b′

S,u|S|}, again
one for each element ui ∈ S. Then, add an edge between r(BS) and r(B′

S).
The thresholds are t(b) = 1 for every b ∈ V (BS) ∪ L(B′

S), and t(b′) = 2 for
every internal node b′ of V (B′

S), that is for every b′ ∈ V (B′
S) \L(B′

S). Note that
L(B′

S) ∼ V (B′
S) ∼ V (BS).

Then for each element u ∈ U , add a binary tree Cu with |S(u)| leaves, where
S(u) = {S ∈ S : u ∈ S} consists of the sets containing u. Denote L(Cu) =
{cu,S1 , . . . , cu,S|S(u)|}, each leaf corresponding to a set Si of S(u). Next, add yet
another binary tree C ′

u with |S(u)| leaves {c′
u,S1

, . . . , c′
u,S|S(u)|}, again one for each

Si ∈ S(u). Add an edge between r(Cu) and r(C ′
u). Every node c ∈ V (Cu)∪V (C ′

u)
has t(c) = 1.

We now define a gadget called a heavy link. Let x, y be two non-adjacent
nodes with t(x) = t(y) = 1. Adding an x − y heavy link consists of adding
two nodes z1, z2 that are neighbors of x, then adding another node z3 that is a
neighbor of z1, z2 and y. We set the thresholds t(z1) = t(z2) = 1 and t(z3) = 2.
Note that the heavy link makes x ∼ y but not necessarily y ∼ x (thus adding
an x− y heavy link is different from adding a y −x heavy link). Also notice that
this operation increases the degree of x by 2 and of y by 1, and that z1, z2 and
z3 have degree bounded by 3.

To finish the construction, for every set S ∈ S and each element u ∈ S, add
a bS,u − cu,S heavy link, and a c′

u,S − b′
S,u heavy link. Denote by HS the set

of nodes added to G by incorporating the heavy links to the BS leaves, and by
H ′

u the set of heavy link nodes added to the C ′
u leaves. It is not hard to see

that G can be constructed in polynomial time. Note that for each S ∈ S, the
nodes of BS are equivalent, in the sense that if one is activated, then they all
get activated. The same holds for the nodes of Cu and C ′

u, for every u ∈ U . We
will use their roots as representatives, meaning that we will implicitly use the
fact that r(BS) ∼ V (BS) and r(Cu) ∼ V (Cu).

Lemma 1. Let S be an instance of Set-Cover over universe U , with |S| = n and
|U| = m, and let G = (V,E, t) be the Min-Links instance constructed as above.
Then all of the following conditions are met:

1. |V | ≤ mc for some constant c;
2. each node of G has at most 3 neighbors;
3. t(v) ≤ 2 for every node v of G.



346 M. Lafond et al.

Fig. 2. The construction of G from S consisting of S1 = {u1, u2, u3} and S2 = {u1, u3}.
White nodes have threshold 1, whereas black nodes have threshold 2.

Proof. For 1, there are 2n + 2m binary trees in G, which together contain at
most � = 2n · m + 2m · n = 4nm leaves. Thus the binary trees contain less than
2� nodes in total. The heavy links account for at most 3� nodes in total, and
so |V | ≤ 5� ≤ 20nm ≤ mc for some c (because n ≤ mk). To see that 1 holds,
i.e. that the maximum degree is 3, observe that G consists of binary trees to
which we add at most neighbor per root (r(BS) with r(B′

S), and r(Cu) with
r(C ′

u)), plus at most two neighbors per leaf (the heavy links). In the case that a
node is both a root and a leaf (e.g. BSi

is a single node because Si has only one
element), three neighbors are added to it, but it has zero neighbors initially. As
for 1, it is easy to see that t(v) ≤ 2 for every node v ∈ V created. �

We now show that both S and its corresponding instance G have the same
optimality value.

Lemma 2. MSC(S) = ML(G).

Proof. First observe that for a given set S ∈ S,
⋃

u∈S

r(Cu) ∼ L(B′
S) ∼ V (B′

S) ∼ V (BS)

which implies that
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⋃

u∈U
r(Cu) ∼

⋃

S∈S
V (B′

S) ∼
⋃

S∈S
V (BS)

and it follows that
⋃

u∈U r(Cu) ∼ V .
To see that MSC(S) ≥ ML(G), if S ′ ⊆ S is a minimum set cover, then giving

links to V ′ =
⋃

S∈S′ r(BS) suffices to activate G since V ′ ∼ ⋃
u∈U r(Cu) ∼ V .

Thus MSC(S) ≥ ML(G).
It remains to show that MSC(S) ≤ ML(G). Let B = {r(BS) : S ∈ S}. Let

V ′ ⊆ V be the set of endpoints of E(Ŝ) for an optimal pervading link set Ŝ such
that |V ′ ∩ B| is maximized among all possible choices. We divide this section of
the proof into two claims.

Claim. V ′ ⊆ B.

Proof. First observe that we may assume that if x ∈ V ′ \ B, then there is no
set S such that r(BS) ∼ x (for otherwise, we can replace x by r(BS) in V ′,
contradicting our choice of V ′). But no such x can exist. If x ∈ V (Cu) for some
u, then r(BS) ∼ x for any set S containing u. If x belongs to a bS,u − cu,S heavy
link, then r(BS) ∼ x. If x belongs to a c′

u,S −b′
S,u heavy link, then again r(BS) ∼

r(Cu) ∼ x. Finally if x ∈ V (B′
S), then r(BS) ∼ ⋃

u∈S r(Cu) ∼ L(B′
S) ∼ x. We

conclude that V ′ has only nodes from B. �

Claim. S ′ = {S ∈ S : r(BS) ∈ V ′} is a set cover.

Proof. Suppose the claim is false, and let w ∈ U be an element not covered by
S ′. Recall that S(w) = {S1, . . . , S|S(w)|} is the collection of sets containing w.
Let Si ∈ S(w). Then in B′

Si
, there is a leaf b′

Si,w
. Let PSi

be the set of nodes
lying on the unique b′

Si,w
− r(B′

Si
) shortest path in B′

Si
(inclusively). Define W

as the node set that contains the Cw and C ′
w nodes along with the heavy link

nodes appended to L(C ′
w), plus for each Si ∈ S(w), the PSi

nodes and the BSi

nodes with the heavy link nodes appended to L(BSi
). Formally,

W = V (Cw) ∪ V (C ′
w) ∪ H ′

w ∪
⎛

⎝
⋃

Si∈S(w)

(V (BSi
) ∪ HSi

∪ PSi
)

⎞

⎠

We show that no node of W gets activated by V ′, contradicting the assertion
that Ŝ is a pervading link set. Suppose instead that some W nodes do get
activated. Let z be the first node of W activated by the propagation process
(or if multiple nodes of W get simultaneously activated first, pick z arbitrarily
among them). Then, since V ′ ∩ W = ∅, z must have t(z) neighbors outside of
W that were activated and influenced it. Observe that the only nodes of W that
have neighbors outside of W belong to either HSi

or PSi
for some Si ∈ S(w).

If z ∈ HSi
, then the only heavy link node with neighbors outside of W is the

threshold 2 node. But then, z has only one neighbor outside W (namely a cu,Si

node for some u), which is not enough to activate z. Thus z /∈ HSi
. If z ∈ PSi

,
then z �= b′

Si,w
since b′

Si,w
receives no influence from outside of W : it has two

neighbors, one is in PSi
and the other is in the b′

Si,w
− c′

w,Si
heavy link, both
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of which are in W . If instead z is an interior node of the PSi
path, then z has

two neighbors in W (by the definition of a path). But t(z) = 2 and z has only
three neighbors, i.e. only one outside of W , and so z cannot be activated only
by influence from outside W . The last possible case is z = r(B′

Si
). But again,

z has two neighbors in W : one is in PSi
and the other is r(BSi

), and the same
argument applies. We conclude that z, and hence w, cannot exist, and that S′

is a set cover. �
Since V ′ yields a set cover S of size ML(G), we deduce that MSC(S) ≤

ML(G). �
We can now state the main result of this section.

Theorem 1. The decision version of Min-Links is NP-complete, even when
restricted to instances with maximum degree 3 and maximum threshold 2. More-
over, there exists a constant ε > 0 such that the optimization version of Min-
Links, under the same restrictions, is NP-hard to approximate within a ε ln n
factor, where n is the number of nodes of the given graph.

Proof. NP -completeness follows directly from Lemma 2, and observing that
Min-Links is in NP , as it is easy to check that a given set V ′ is a pervading
link set (because propagation must finish in a polynomial number of steps). As
for the inapproximability result, let S be an instance of set cover over universe
U , |S| = n and |U| = m, and let n′ be the number of nodes of G constructed
from S as described above, with n′ ≤ mc (c is the constant from Lemma 1).
Dinur and Steurer showed that it is NP-hard to approximate set cover within
a d ln m factor for any 0 < d < 1 [10]. For our purposes, fix 0 < d < 1, and
suppose that some approximation algorithm A always finds a pervading link set
of size at most APP ≤ d

c ln(n′) · ML(G). Because ML(G) = MSC(S), we have
APP ≥ MSC(S), and in the other direction,

APP ≤ d

c
ln(n′) · ML(G) ≤ d

c
ln(mc) · ML(G) = d ln(m) · MSC(S)

and hence A can approximate Set-Cover to within a factor d ln(m) using the
aforementioned reduction. Therefore, for ε = d

c , it is hard to approximate the
Min-Links problem within a ε ln(n′) factor. �

4 Trees

In contrast to the NP-completeness of the Min-Links problem shown in the pre-
vious section, we now show that there is a linear time algorithm to solve the
problem in trees. We start with a necessary and sufficient condition for a tree T
to have a valid pervading link set.

Proposition 1. Let T be a tree and let v be a leaf in T . Let T ′ = T − {v} and
T ′′ be the same as T ′ except that the threshold of w, the neighbor of v in T , is
reduced by 1. Then T has a pervading link set if and only if (a) either t(v) = 1
and T ′′ has a pervading link set or (b) t(v) = 2 and T ′ has a pervading link set.
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We now prove a critical lemma that shows that for any node in the tree,
there is an optimal solution that gives a link to that node.

Lemma 3. Let T be a tree with n nodes that has a pervading link set, and let v
be a node in T . Then there exists an optimal solution for Min-Links(T ) in which
v gets a link.

Proof. We prove the lemma by induction on the number of nodes n in the tree.
Clearly it is true if n = 1. Suppose n > 1, and let S be an optimal pervading
link set for T . If v gets a link, we are done. If not, v must have a neighbor w
that is activated before v, and that contributes to the activation of v. Let T1

and T2 be the two trees created by removing the edge between v and w, with
T1 containing w, and let S1 (respectively S2) be the links of S with an endpoint
in T1 (respectively T2). Since T is a tree, and v is activated after w by S, none
of the links in S2 can contribute to the activation of nodes in T1. It follows that
S1 is a pervading link set for T1, and in fact is optimal, as a smaller solution
for T1 could be combined with S2 to yield a better solution for T , contradicting
the optimality of S. By the inductive hypothesis, there is an optimal solution
S′ for T1 that gives a link to w. Note that |S′| = |S1|, and S′ ∪ S2 must also be
an optimal solution for T . But clearly S′′ = S′ ∪ S2 ∪ {(μ, v)} − {(μ,w)} also
activates the entire tree T , and since |S′′| = |S|, we conclude that S′′ is an
optimal solution for T , that gives a link to v, as needed to complete the proof
by induction. �

The above lemma suggests a simple way to break up the Min-Links problem
for a tree into subproblems that can be solved independently, which yields a
linear-time greedy algorithm.

Theorem 2. The Min-Links problem can be solved for trees in linear time.

Proof. Given a tree T , let v be an arbitrary leaf in the tree. By Lemma 3, there
is an optimal solution, say S, to the Min-Links problem for T that gives v a link.
Suppose t(v) = 2, then the link to v is not enough to activate v, and therefore
v’s neighbor w must activate v. Also, v’s activation cannot help in activating any
other nodes in T . Thus S−{(μ, v)} must be an optimal solution to T ′ = T −{v}.
Suppose instead that t(v) = 1. Then the link given to v activates it immediately.
Consider the induced subgraph of T containing only nodes of threshold 1, and
let C be the connected component (subtree) containing v in this subgraph. Then
clearly v ∼ C. Since S is optimal, S cannot contain any node in C except for
v. Construct T ′ by removing C from T , and subtracting 1 from the threshold
of any node x who is a neighbor of a node in C. Observe that any such node x
can be a neighbor of exactly one node in C, since T is a tree. Then S − {(μ, v)}
must be an optimal solution to T ′; if instead there is a smaller-sized solution to
T ′, we can add (μ, v) to that solution to obtain a smaller solution for T than S,
contradicting the optimality of S.

The above argument justifies the correctness of the following simple greedy
algorithm. Initialize S = ∅. Take a leaf v in the tree. If t(v) > 2 then there is no
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solution by Observation 1. If t(v) = 2, then put the link (μ, v) in S, remove v
from the tree, and recursively solve the remaining tree. If t(v) = 1, then give a
link to v, remove the subtree of T that is connected to v consisting only of nodes
of degree 1, reduce the thresholds of all neighbors of the nodes in this subtree by
1, and recursively solve the resulting trees. It is easy to see that the algorithm
can be implemented in linear time. �

For the network in Fig. 1, assuming that leaves in the tree are always
processed in alphabetical order, the greedy algorithm given in Theorem 2 first
picks node b and adds a link to it. We then remove nodes b and a, and reduce the
threshold of d by 1. Next we pick c, give it a link, remove it from the tree, and
decrement t(f) to 2. The next leaf that is picked and given a link is d; since d’s
threshold now is 1, we remove d and e from the tree, and reduce f ’s threshold
to 1. Proceeding in this way, we arrive at the link set shown.

We now give an exact bound on ML(T ), the number of links required to
activate the entire tree T :

Theorem 3. Let T be a tree that has a pervading link set. Then ML(T ) =
1 +

∑
v∈T (t(v) − 1)

Proof. We give a proof by induction on the number of nodes n in the tree. Clearly
if the tree consists of a single node x, there is a solution if and only if t(x) = 1,
and the number of links needed is 1 which is equal to 1 +

∑
v∈V (t(v) − 1) as

needed. Now consider a tree T with n > 1 nodes and let x be a leaf in the tree.
Then by Lemma 3, there is an optimal solution S in which x gets a link. By
Observation 1, there is a solution only if t(x) = 1 or t(x) = 2. Let T ′ = T − {x}
(all nodes keep the same thresholds as in T ) and let T ′′ be the tree derived from
T by removing x and reducing the threshold of w, the neighbor of x in T by 1.

First we consider the case when t(x) = 2. Then giving x a link is not sufficient
to activate it. By the usual cut-and-paste argument, S − {(μ, x)} must be an
optimal solution for tree T ′.

ML(T ) = 1 + ML(T ′)

= t(x) − 1 + (1 +
∑

v∈T ′
(t(v) − 1)) by the inductive hypothesis

= 1 +
∑

v∈T

(t(v) − 1)

Next we consider the case when t(x) = 1, and t(w) > 1. Then x is immedi-
ately activated by the link it receives in S, and the link given to x effectively
reduces the threshold of w. Therefore, S − {(μ, x)} must be an optimal solution
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for the tree T ′′ in which the threshold of w is t(w) − 1. It follows that

ML(T ) = 1 + ML(T ′′)

= 1 + (1 +
∑

v∈T ′′
(t(v) − 1)) by the inductive hypothesis

= 2 + (t(w) − 2) +
∑

v∈T ′′−{w}
(t(v) − 1)

= 1 +
∑

v∈T

(t(v) − 1)

Finally suppose t(x) = t(w) = 1. Then it is impossible that S contains w, as
this would contradict the optimality of S. Therefore, we can move the link from
node v to node w, to get a new optimal pervading link set S′ for T . Furthermore,
S′ must also be an optimal pervading link set for T ′. It follows that

ML(T ) = ML(T ′)

= t(x) − 1 + (1 +
∑

v∈T ′
(t(v) − 1)) by the inductive hypothesis

= 1 +
∑

v∈T

(t(v) − 1)

�

We remark that in contrast to the intuition for the optimal target set problem,
where we would choose nodes of high degree or threshold to be in the target set,
in the Min-Links problem, our algorithm gives links to leaves initially, though
eventually nodes that were internal nodes in the tree may also receive links.
That is, the best nodes to befriend might be the nodes with a single connection
to other nodes in the tree!

5 Cycles

In this section, we give a solution for the Min-Links problem on cycles. Let
Cn = (V,E, t) be a cycle with n nodes, V = {0, 1, ..., n − 1}, E = {((i, i +
1) mod n) | 1 ≤ i ≤ n}, and t : t(v) → Z+. We define Pi,j (i �= j) to be the
sub-path of Cn consisting of all nodes in {i, . . . , j} in the clockwise direction. We
may use the [i, j] notation to denote the vertices of Pi,j . By consecutive vertices
of threshold 3, we mean two vertices i, j such that the only two vertices in Pi,j

with threshold 3 are i and j.

Proposition 2. A cycle has a pervading link set if and only there is at least
one node of threshold 1, every node is of threshold at most 3, and between any
two consecutive nodes of threshold 3, there is at least one node of threshold 1.
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We note that a similar condition can be stated for paths, with the additional
restriction that there must be a node of threshold 1 before (after) the first (last
resp.) node of threshold 3.

We give a linear time algorithm for finding a minimum-sized link set for
problem Min-Links(Cn). Essentially we reduce the problem to finding an optimal
solution for an appropriate path.

Theorem 4. The Min-Links problem for a cycle Cn can be solved in time Θ(n).

Proof. By Observation 1, there is no solution if there is a node with threshold
4 or more. If there exists a node i such that t(i) = 3, then clearly i must get a
link, and both of its neighbors must be activated before it. That is, i can play no
role in activating any node in Pi+1,i−1. Therefore, S = {(μ, i)}∪S′ is an optimal
solution to Cn where S′ is an optimal solution to Pi+1,i−1. In this case, S′ can
be found in linear time using the tree algorithm of Theorem 2. If there is no
node with threshold 3, a single node with threshold 2, and the remaining nodes
all have threshold 1, then by giving a link to any of the nodes with threshold 1,
we can activate the entire cycle.

It remains only to consider the case when there are no nodes of threshold 3,
at least two nodes of threshold 2, and at least one node of threshold 1. Fix an
arbitrary node i of threshold 1 in Cn. We define c(i) and cc(i) to be the first
node with threshold 2 in i’s clockwise direction and counter clockwise direction
respectively, c(i) �= cc(i) (see Fig. 3). We also define Pc(i),cc(i) be the path from
c(i) to cc(i) where t(c(i)) = t(cc(i)) = 2; and P ′

c(i),cc(i) to be the same path as
Pc(i),cc(i) except that we set t(c(i)) = t(cc(i)) = 1.

We first claim that there exists an optimal solution that gives a link to i. To
see this, let S be an optimal solution that does not give a link to node i. Since
all nodes in Cn are activated by S, there must exist some node j ∈ [cc(i), c(i)]
that gets a link. If t(j) = 1, we can take the link given to j and give it instead
to node i. Otherwise there exists j ∈ {c(i), cc(i)} such that it gets a link and is
activated before i, and eventually activates i. Again we can move the link from
node j to node i, which clearly has the same effect of giving a link to node j.
Therefore, we have a new solution of the same size as S that gives a link to
node i.

Consider therefore an optimal solution S that gives a link to the node i. It
is not hard to see that that S − {(μ, i)} must be an optimal solution to Min-
Links(P ′

c(i),cc(i)), since activating i activates [cc(i) + 1, c(i) − 1] and lowers the
threshold of cc(i) and c(i). Again, since the Min-Links problem for a path can be
solved in Θ(n) according to Theorem 2, we can construct an optimal solution
for a cycle in Θ(n) time as well. �

We give an exact bound on the number of links required to fully activate a
cycle.

Theorem 5. Given a cycle Cn = (V,E, t) which has a pervading link set,
ML(Cn) =

∑n
i=1(t(i) − 1)
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Fig. 3. A cycle with no threshold 3 vertices, illustrating the main components of the
proof.

Proof. If there is a node i of threshold 3, then ML(Cn) = 1 + ML(Pi+1,i−1).
Since by Theorem 3, ML(Pi+1,i−1) = 1 +

∑
j �=i(t(j) − 1), we have ML(Cn) =

1 + (1 +
∑

j �=i(t(j) − 1)) = (t(i) − 1) +
∑

j �=i(t(j) − 1) =
∑n

j=1(t(j) − 1) as
needed. If there is no node of threshold 3 and a single node of threshold 2, then
ML(Cn) = 1 =

∑n
j=1(t(j)−1). Finally, if there is no node of threshold 3, and at

least two nodes of threshold 2, and at least one of threshold 1, then ML(Cn) =
1 + ML(P ′

cc(i),c(i)) where i is a node of threshold 1. Since the thresholds of c(i)
and cc(i) have been reduced by 1 each in P ′

cc(i),c(i), by Theorem 3, we have
ML(P ′

cc(i),c(i)) = −1 +
∑

j∈[cc(i),c(i)](t(j) − 1). Therefore ML(Cn) = 1 − 1 +
∑

j∈[cc(i),c(i)](t(j) − 1) =
∑n

i=1(t(i) − 1). �

6 Cliques

In this section, we give an algorithm to solve the Min-Links problem on cliques.
Let Kn = (V,E, t) be a clique with n nodes, V = {1, 2, ..., n} and E = {(i, j) :
1 ≤ i < j ≤ n} and t : t(v) → Z+. We first show a necessary and sufficient
condition for the Min-Links problem to have a feasible solution:

Proposition 3. Let Kn be a clique with t(i) ≤ t(i + 1), for all 1 ≤ i < n. Then
Kn has a pervading link set if and only if t(i) ≤ i for all 1 ≤ i ≤ n.

Proof. If t(i) ≤ i for all 1 ≤ i ≤ n, it is easy to see that there exists a solution
S by giving a link to every node i; we claim that node i is activated in or before
round i. Since t(1) ≤ 1, node 1 is activated in round 1. Inductively, node 1 to i−1
are already activated in round i − 1, the effective threshold of node i has been
reduced to ≤ 1. Node i receives a link, therefore, node i must be activated in the
ith round, if it is not already activated. Conversely, suppose there exist nodes j
such that t(j) > j and there exists a solution S to the Min-Links problem; let p
be the smallest such node with t(p) > p. In order to activate any node q ≥ p,
at least p nodes have to be activated before q, since t(q) ≥ t(p) > p. However,
there are only p − 1 nodes that can be activated before any such node q ≥ p.
Thus no node q with q ≥ p can be activated, a contradiction. �

We now give a greedy algorithm to solve the Min-Links problem on a clique.
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Theorem 6. The Min-Links problem for a clique Kn can be solved in time Θ(n).

Proof. First sort the nodes in order of threshold. By Observation 1, there is no
solution if any node has a threshold > n, therefore, we can use counting sort and
complete the sorting in Θ(n) time. Clearly, the condition given in Proposition 3
can easily be checked in linear time. We now give the following greedy linear
time algorithm for a clique which has a feasible solution: give a link to node 1,
and let j be the maximum value such that t(i) < i whenever 2 ≤ i < j. Remove
all nodes in {1, . . . , j − 1}, decrement by j − 1 the thresholds of all nodes ≥ j,
and solve the resulting graph recursively. It is easy to see that this algorithm
can be implemented in linear time, in an iterative fashion as follows: we examine
the nodes in order. When we process node i, if t(i) < i, we simply increment i
and continue; if t(i) = i, we give a link to node i. We now show that the link set
produced by this greedy algorithm is optimal.

First we show that there must be an optimal solution that contains the node
1. Consider an optimal solution S and let i be the smallest index of a node that
receives a link in S. If i = 1, then we are done. If not, since there must always
be a node with threshold 1 that receives a link, it must be that t(i) = 1. But
then we can move the link from i to 1, to create a new solution S′ which will
activate node i in the next step. Since |S′| = |S| and I(Kn, S) = I(Kn, S′), S′

is an optimal solution to the Min-Links problem that contains the node 1. Thus,
we can assume that the optimal solution S contains the node 1.

Next we claim that S − {1} is an optimal solution to the clique C ′ which is
the induced sub-graph on the nodes {j, j + 1, . . . , n} where j > 1 is the smallest
index with t(j) = j, and with thresholds of all nodes reduced by j − 1. Suppose
there is a smaller solution S′ to C ′. We claim that S′ ∪ {1} activates all nodes
in the clique Kn. Since for any node 1 < k < j, we have t(k) < k, it can be seen
inductively that the link given to node 1 suffices to activate node k. Thus, all
nodes in {1, 2, . . . j − 1} are activated. Furthermore, the thresholds of all nodes
in {j, j + 1, . . . , n} are effectively reduced by j − 1. Thus using the links in S′

suffices to activate them. Finally, since |S′| < |S|−1, S′∪{1} is a smaller solution
than S to the clique Kn, contradicting the optimality of S for Kn. We conclude
that the greedy algorithm described above produces a minimum sized solution
to the Min-Links problem. �

The following tight bound on the minimum number of links to activate an
entire clique is immediate:

Theorem 7. Given a clique Kn which has a feasible solution, ML(Kn) = |{j |
t(j) = j}|

The greedy algorithm from Theorem 6 can be extended to complete multi-
partite graphs:

Theorem 8. The Min-Links problem for a complete multi-partite graph G can
be solved in time O(|E(G)|).
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7 Discussion

In this paper, we introduced and studied the Min-Links problem: given a social
network G where every node v has a threshold t(v) to be activated, which
minimum-sized set of nodes should an already activated external influencer μ
befriend, so as to influence the entire network? We showed that the problem is
NP-complete, in fact it is hard to approximate to within an ε ln n factor (for
some constant 0 < ε < 1) even for graphs with maximum degree 3, and with
maximum threshold 2. In contrast, we show linear time algorithms for the prob-
lem for trees, cycles, cliques, and complete k-partite graphs, and give an exact
bound (as a function of the thresholds) on the number of links needed for such
graphs. This leaves open the question of a polynomial time algorithm for graphs
of bounded treewidth, as well as the best possible approximation algorithm for
general graphs. It would be interesting to generalize these algorithms to find the
minimum number of links required to influence a specified fraction of the nodes.
Other directions include studying the multiple influencer case, and the case with
non-uniform weights on the edges. Clearly, the problem remains NP-complete in
general, but the complexity for special classes of graphs remains open. Another
interesting question is that of maximizing the number of activated nodes, given
a fixed budget of k links.
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CiE 2013. LNCS, vol. 7921, pp. 65–77. Springer, Heidelberg (2013)

8. Demaine, E.D., Hajiaghayi, M.T., Mahini, H., Malec, D.L., Raghavan, S., Sawant,
A., Zadimoghadam, M.: How to influence people with partial incentives. In: Pro-
ceedings of the 23rd International Conference on World Wide Web, WWW 2014,
pp. 937–948 (2014)



356 M. Lafond et al.

9. Dinh, T., Zhang, H., Nguyen, D., Thai, M.: Cost-effective viral marketing for time-
critical campaigns in large-scale social networks. IEEE ACM Trans. Netw. PP(99),
1 (2014)

10. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings
of the 46th Annual ACM Symposium on Theory of Computing, pp. 624–633. ACM
(2014)

11. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceed-
ings of the 7th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD 2001, pp. 57–66 (2001)

12. Fazli, M.A., Ghodsi, M., Habibi, J., Jalaly Khalilabadi, P., Mirrokni, V.,
Sadeghabad, S.S.: On the non-progressive spread of influence through social net-
works. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 315–326.
Springer, Heidelberg (2012)

13. Gargano, L., Hell, P., Peters, J., Vaccaro, U.: Influence diffusion in social net-
works under time window constraints. In: Moscibroda, T., Rescigno, A.A. (eds.)
SIROCCO 2013. LNCS, vol. 8179, pp. 141–152. Springer, Heidelberg (2013)

14. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: a complex systems look
at the underlying process of word-of-mouth. Mark. Lett. 12, 211–223 (2001)

15. Goyal, A., Bonchi, F., Lakshmanan, L., Venkatasubramanian, S.: On minimizing
budget and time in influence propagation over social networks. Soc. Netw. Anal.
Min. 3, 179–192 (2013)

16. Goyal, A., Bonchi, F., Lakshmanan, L.: A data-based approach to social influence
maximization. Proc. VLDB Endow. 5, 73–84 (2011)

17. Goyal, A., Lu, W., Lakshmanan, L.: Celf++: optimizing the greedy algorithm for
influence maximization in social networks. In: Proceedings of the 20th International
Conference Companion on World Wide Web, WWW 2011, pp. 47–48 (2011)

18. He, J., Ji, S., Beyah, R., Cai, Z.: Minimum-sized influential node set selection for
social networks under the independent cascade model. In: Proceedings of the 15th
ACM International Symposium on Mobile Ad Hoc Networking and Computing,
MobiHoc 2014, pp. 93–102 (2014)

19. Dreyer Jr., P., Roberts, F.: Irreversible -threshold processes: graph-theoretical
threshold models of the spread of disease and of opinion. Discrete Appl. Math.
157(7), 1615–1627 (2009)
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