
Sparsifying Congested Cliques
and Core-Periphery Networks

Alkida Balliu1,2, Pierre Fraigniaud1(B), Zvi Lotker3, and Dennis Olivetti1,2

1 CNRS, University Paris Diderot, Paris, France
Pierre.Fraigniaud@liafa.univ-paris-diderot.fr

2 Gran Sasso Science Institute, L’Aquila, Italy
3 Ben Gurion University, Beersheba, Israel

Abstract. The core-periphery network architecture proposed by Avin
et al. [ICALP 2014] was shown to support fast computation for many dis-
tributed algorithms, while being much sparser than the congested clique.
For being efficient, the core-periphery architecture is however bounded
to satisfy three axioms, among which is the capability of the core to
emulate the clique, i.e., to implement the all-to-all communication pat-
tern, in O(1) rounds in the CONGEST model. In this paper, we show that
implementing all-to-all communication in k rounds can be done in n-node
networks with roughly n2/k edges, and this bound is tight. Hence, sparsi-
fying the core beyond just saving a fraction of the edges requires to relax
the constraint on the time to simulate the congested clique. We show
that, for p � √

log n/n, a random graph in Gn,p can, w.h.p., perform
the all-to-all communication pattern in O(min{ 1

p2
, np}) rounds. Finally,

we show that if the core can emulate the congested clique in t rounds,
then there exists a distributed MST construction algorithm performing
in O(t log n) rounds. Hence, for t = O(1), our (deterministic) algorithm
improves the best known (randomized) algorithm for constructing MST
in core-periphery networks by a factor Θ(log n).

1 Introduction

1.1 Context and Objectives

Inspired by social networks and complex systems, Avin, Borokhovicha, Lotker,
and Peleg [1] proposed a novel network architecture for parallel and distributed
computing, called core-periphery. Interestingly, the core-periphery architecture
is not described explicitly (e.g., via the description of a specific graph family),
but rather implicitly via three so-called axioms. Specifically, a core-periphery
network G = (V,E) has its node set partitioned into a core C and a periphery P ,
and the three properties to be satisfied are then the following:

P. Fraigniaud—Additional supports from ANR project DISPLEXITY, and Inria
project GANG.
Z. Lotker—Additional supports from Foundation des Sciences Mathématiques de
Paris (FSMP).

c© Springer International Publishing AG 2016
J. Suomela (Ed.): SIROCCO 2016, LNCS 9988, pp. 307–322, 2016.
DOI: 10.1007/978-3-319-48314-6 20

308 A. Balliu et al.

1. Core boundary: For every node v ∈ C, degC(v) � degP (v), where, for
S ⊆ V and v ∈ V , degS(v) denotes the number of neighbors of v in S.

2. Clique emulation: The core can emulate the clique in a constant number
of rounds in the CONGEST model. That is, there is a communication protocol
running in a constant number of rounds in the CONGEST model such that,
assuming that each node v ∈ C has a message Mv,w on O(log n) bits for every
w ∈ C, then, after O(1) rounds, every w ∈ C has received all messages Mv,w,
for all v ∈ C. In other words, the all-to-all communication pattern can be
implemented in a constant number of rounds.

3. Periphery-core convergecast: There is a communication protocol running
in a constant number of rounds in the CONGEST model such that, assuming
that each node v ∈ P has a message Mv on O(log n) bits, then, after O(1)
rounds, for every v ∈ P , at least one node in the core has received Mv.

Figure 1 provides an example of a core-periphery network, i.e., a graph sat-
isfying the three axioms. It was proved in [1] that these three axioms alone
enable to design efficient distributed algorithms in the CONGEST model for
classical problems such as matrix multiplication and MST construction. Most of
the proposed algorithms are optimal in a sense that there is an asymptotically
matching lower bound on the number of rounds under the three axiomatic con-
straints. Moreover, it is shown that if only two out of three axioms were satisfied,
then the round complexity of all the considered problems would increase quite
significantly—typically, from O(1) to O(poly(n)) in n-node networks. There was
an exception though: while the best known lower bound in [1] for MST con-
struction is Ω(1), the proposed (randomized) MST construction algorithm runs
in O(log2 n) rounds. (If only two out of three axioms were satisfied, then MST
construction would require at least Ω̃(n

1
4) rounds).

The core-periphery model provides an attractive alternative to the congested
clique model [19]. Indeed, the latter assumes a complete network interconnecting
the nodes, i.e., for every two (distinct) nodes u and v, there is an edge {u, v}
connecting these nodes. The n-node congested clique has therefore

(
n
2

)
edges,

and every node has degree n − 1. Instead, assuming a core with, e.g., O(
√

n)
nodes, even connecting all nodes in the core as a clique would only result in O(n)
edges in the core, a number that is much more manageable in practice. On the
other hand, it was proved in [1] that Ω(

√
n) nodes is the limit of how small can

be the core, and that the core C must be dense, with Θ(|C|2) edges.
In this paper, our objective is twofold. First, we are aiming at establishing

tradeoffs between the number of edges, and the capability of emulating the clique.
More precisely, we consider the all-to-all communication pattern:

– Input: Every node v has a message Mv,w, for every node w �= v;
– Output: Every node w has received the message Mv,w, for every node v �= w.

In the CONGEST model, assuming all messages are on O(log n) bits, all-to-all can
be performed in just a single round in the clique. Our first objective is to study
the tradeoff between number of edges, and number of rounds for performing
all-to-all in the CONGEST model.

Sparsifying Congested Cliques and Core-Periphery Networks 309

Fig. 1. Example of a core-periphery network, where the core (gray nodes) is a clique,
and the periphery (white nodes) is a sparse graph.

Our second objective is to revisit one of the main problems left open in [1],
namely the complexity of MST construction in the core-periphery model.

1.2 Our Results

We show that, in the CONGEST model, implementing all-to-all communication
in k rounds can be done in n-node networks with roughly n2/k edges, and this
bound is essentially tight because every node must have degree at least (n−1)/k
to receive n − 1 messages in at most k rounds. Hence, sparsifying the clique
beyond just saving a fraction of the edges requires to relax the constraint on the
time to simulate that clique.

Our first main result is about the ability of random graphs to emulate the
clique. Let α =

√
3e/(e − 2) where e is the basis of the natural logarithm. We

show that, for p ≥ α
√

ln n/n, a random graph in Gn,p can, w.h.p., perform
all-to-all in O(min{ 1

p2 , np}) rounds.
Our second main result is the design of a fast deterministic MST construction

algorithm for core-periphery networks under the CONGEST model. Specifically,
we show that if the core can emulate the clique in t rounds, then there exists a
distributed MST construction algorithm performing in O(t log n) rounds. Hence,
for t = O(1), our deterministic algorithm performs in O(log n) rounds, improving
the randomized algorithm in [1] by a factor Θ(log n).

1.3 Related Work

The congested clique model has been widely studied in the literature. Lenzen [18]
investigated the routing and sorting problems in the context of congested clique.
He showed a deterministic algorithm that, if each node is the sender and receiver
of at most n messages, allows to route all the messages in O(1) rounds in a
clique of size n using messages of size O(log n). He also showed an algorithm
that allows to sort n2 keys in constant time. Drucker et al. [5] proved that
the congested clique is powerful enough to emulate certain classes of bounded
depth circuits, which shows how difficult finding lower bounds for the congested

310 A. Balliu et al.

clique is. In the case where each node can only broadcast, [5] gives upper and
lower bounds for the problem of detecting some types of subgraphs. Hegeman
et al. [15] investigated the metric facility location problem providing a O(1)
approximation algorithm that runs in expected O(log log log n) rounds. They also
showed how to compute a 3-ruling set in the congested clique. In [14] it is shown
that, under some restrictions, fast algorithms for the congested clique model
can be translated into fast algorithms in the MapReduce framework. Censor-
Hillel et al. [3] showed that matrix multiplication on congested clique can be
computed in O(n1−2/ω) rounds, where ω < 2.3728639 is the exponent of matrix
multiplication. Also, they showed how to use matrix multiplication to solve a
variety of graph related problems. In [19], Lotker et al. provided a deterministic
MST construction algorithm that runs in O(log log n) rounds in the congested
clique. Then, Hegeman et al. [13] showed that in this context randomization
can help, giving a randomized algorithm that requires O(log log log n) rounds.
Recently, this complexity was even reduced further to O(log∗ n) in [12].

In general, the MST construction problem has been widely studied. In the
distributed asynchronous context, the most famous algorithm is the one of
Gallager, Humblet and Spira [10] that runs in O(n log n). In the synchronous
setting, the first sublinear algorithm was given by Garay et al. in [11] that runs
in O(D+n

ln 3
ln 6 log∗ n), where D is the diameter of the graph. This complexity was

later improved to O(D +
√

n log∗ n) in [16]. Then, Peleg et al. [23] showed that
this complexity is near optimal, giving a Ω(

√
n

log n) lower bound. This bound was

later improved by Sarma et al. [24] to Ω(
√

n
log n) and then by Ookawa et al. [22]

to Ω(
√

n). All these lower bounds hold for graphs with diameter Ω(log n). For
constant diameter graphs, there is a bound Ω̃(n1/3) rounds for diameter 4, a
bound Ω̃(n1/4) rounds for diameter 3, and a bound O(log n) rounds for diam-
eter 2 (see [20]). Finally, Elkin [6] showed that if termination detection is not
required, the diameter of the graph is not a lower bound, and that there exists an
algorithm that requires Õ(μ +

√
n) rounds, where μ is the so-called MST-radius

of the graph.
Feige et al. [7] studied the broadcast problem in random graphs, where a

single node has a message that has to be received by all the nodes of the graph.
They show that rumor spreading (which propagates the message to a randomly
chosen neighbor at each step) is an efficient way to solve the broadcast problem
for random graphs. Censor-Hillel et al. [4] studied the broadcast problem in the
context where every node is the source of a message and it is limited to send the
same message to each neighbor at each round. They give an efficient algorithm
that solves the problem, also in case of failures.

Finally, it is worth mentioning that a problem related to our results, that
is finding disjoint paths between pairs of nodes, has been largely investigated
in expander graphs, which are sparse graphs that guarantee strong connectivity
properties [2,8,9,17].

Sparsifying Congested Cliques and Core-Periphery Networks 311

2 Deterministic Construction of Sparse Clique Emulators

In this section we provide a deterministic construction yielding a perfect tradeoff
between number of edges and number of rounds in clique emulation.

Theorem 1. Let n ≥ 1, and k ≥ 3. There is an n-node graph with at most
� k−2
(k−1)2 n2	 edges that can emulate the n-node clique in k rounds. Also, there is

an n-node graph with at most 1
3n2 edges that can emulate the n-node clique in 2

rounds.

Proof. First, we show that there is an n-node graph with at most 1
3n2 edges

that can emulate the n-node clique in 2 rounds. For this purpose, recall that
the so-called Johnson graph J(n, r) has vertex set composed of all the r-element
subsets of the set {1, . . . , n}, and two vertices are adjacent iff they meet in a
(r − 1)-element set.

Fact 1. There exists an independent set I of size at least � 1
n

(
n
3

)	 in the Johnson
graph J(n, 3).

To establish this fact, for every k, 0 ≤ k < n, let us consider the set

Ik = {{x, y, z} ∈ V (J(n, 3)) | x + y + z ≡ k (mod n)}

Every set Ik is an independent set. Indeed, if two triples {x, y, z} and {x, y, z′}
are both in Ik, then x+y+z ≡ k (mod n) and x+y+z′ ≡ k (mod n). Therefore,
z ≡ z′ (mod n), which implies z = z′, because z, z′ ∈ {1, . . . , n}. Observe that
{I0, . . . , In−1} is a partition of V (J(n, 3)). Therefore, one of them has size at
least � 1

n

(
n
3

)	, which establishes Fact 1.
Let I as in Fact 1. Note that for any {a, b, c} ∈ I, none of the edges

{a, b}, {a, c}, {b, c} are appearing in any other triples of I. Thus, the edge {a, b}
of the complete graph can be emulated by the path {a, c}, {b, c} without con-
gestion resulting from the emulation of another edge {a′, b′}. Moreover, the edge
{a, b} itself does not belong to any path used to emulate other edges. It follows
that one can remove |I| edges from Kn, one from each triple in the independent
set I, and all removed edges can be emulated by edge-disjoint paths of length 2.

Fig. 2. (Left) Emulation of removed edge {a, b} (m(x, y) denotes the message from x
to y). (Right) Emulating K9 with K3,6. The plain red path (b0,1, a0, b0,2) is used at the
1st round for exchanging messages between b0,1 and b0,2, and, at the 2nd round, it is
used for sending messages from b0,1 to b1,2, and from b0,2 to b1,1.

312 A. Balliu et al.

Figure 2(left) shows how to emulate the six communications x → y for every
ordered pair (x, y), x ∈ {a, b, c}, y ∈ {a, b, c}, x �= y, in just 2 rounds. It follows
that there is an n-node graph with at most n2

3 edges that can emulate the n-node
clique in 2 rounds.

We now move on with the general case, that is, we show that there is an
n-node graph with at most �n2(k−2)

(k−1)2 	 edges that can emulate the n-node clique
in k rounds.

Fact 2. All-to-all communication between the nodes of the same part of the com-
plete bipartite graph Kr,r can be performed in 2 rounds.

Indeed, let A and B be the two parts of Kr,r, where the nodes in A and B
are labeled a0, . . . , ar−1 and b0, . . . , br−1, respectively. Let us consider ai ∈ A,
and its message for node aj ∈ A. This message is routed via node bk ∈ B where
i + j + k ≡ 0 (mod r). This guarantees that each edge is used at most once in
each direction, at each round. Indeed, sender ai chooses different intermediate
nodes to route messages to the different receivers aj , j �= i. Similarly, for the
same receiver j, different senders ai, i �= j, choose different intermediate nodes.
This proves Fact 2.

By performing the above routing scheme in parallel, we directly get the fol-
lowing:

Fact 3. Let A and B be the two parts of the complete bipartite graph Kr,kr, and
let us partition the nodes of B into k groups B0, . . . , Bk−1 of r nodes each. The
k all-to-all communication patterns between the nodes of Bi can be performed
in parallel for all i ∈ {0, . . . , k − 1}, in 2 rounds, also in parallel to all-to-all
communication between the nodes of A.

We have now all the ingredients to establish the general case of Theorem1.
Let k ≥ 1, and let Kr,kr be the n-node complete bipartite graph with r = n

k+1

nodes in the first part A, and kr = nk
k+1 nodes in the other part B. Note that

Kr,kr has kr2 = n2k
(k+1)2 edges. We show how to perform all-to-all in Kr,kr in

k+2 rounds. We divide the kr nodes of B into k groups B0, . . . , Bk−1 of r nodes
each. For i ∈ {0, . . . , k − 1}, we set Bi = {bi,j , 0 ≤ j ≤ r − 1}—cf. Fig. 2(right).
We describe a routing scheme that allows the kr nodes of B to perform all-
to-all, by relaying their messages using the r nodes of A. Routing is achieved
by repeating k times the all to all routing protocol in Fact 3, where, at each
phase s = 1, . . . , k, nodes of Bi perform the communications with the nodes in
Bj+s mod k. Importantly, the above routing scheme does not require 2k rounds
but only k+1 rounds, because the kr nodes in B do not have to wait for receiving
relayed messages in order to start sending new messages, and the phases can be
pipelined. One more round is used to route the direct communication between
every node in A and every node in B. Interestingly, during the k + 1 rounds
needed to perform all-to-all communications between the nodes in B, the edges
are always used in both directions, except for the first and last round. We can
use these two rounds to let the nodes in A perform their own all-to-all among

Sparsifying Congested Cliques and Core-Periphery Networks 313

them using the same routing pattern as in Fact 2. In total, in the n2k
(k+1)2 -edge

graph Kr,kr, all-to-all is performed in k + 2 rounds.
�
We complete the section by showing that the bounds in Theorem 1 provide an
essentially optimal tradeoff between the number of rounds k performed in the
emulation, and the number of edges m of the emulator. A trivial lower bound
1
2

n(n−1)
k can be obtained by noticing that every node must have degree at least

n−1
k for receiving n − 1 messages in k rounds. The following theorem improves

this trivial bound by a factor 2, and matches with the bound in Theorem1.

Property 1. Let n ≥ 1, k ∈ {1, . . . , n − 1}, and let G be an n-node graph that
can emulate the n-node clique in k rounds. Then G has at least n(n−1)

k+1 edges.

Proof. Let m be the number of edges of G. There are
(
n
2

)
pairs of nodes in Kn,

communicating n(n−1) messages in total. In G, only m pairs of nodes are directly
connected. All the other

(
n
2

) − m pairs of nodes are not directly connected, and
they are at least at distance 2 in G. Thus, the number of messages generated to
route the messages corresponding to these pairs of nodes is at least 4(

(
n
2

) − m).
The total number of messages to be transferred is thus at least 2m+4(

(
n
2

)−m).
Since one communication round in G can route at most 2m messages, it follows

that any routing protocol requires at least
2m+4(n2)−4m

2m = n(n−1)
m − 1 rounds of

communication. Thus, k ≥ n(n−1)
m − 1, which implies m ≥ n(n−1)

k+1 .
�

3 Randomized Construction of Sparse Clique Emulators

In this section, we consider clique emulation by Erdős-Rényi random graphs
Gn,p. Our main result is the following.

Theorem 2. Let c ≥ 0, n ≥ 1, α =
√

(3 + c)e/(e − 2) where e is the base of
the natural logarithm, and p ≥ α

√
ln n/n. For G ∈ Gn,p,

Pr[G can emulate Kn in O(min{ 1
p2 , np}) rounds] ≥ 1 − O(1

n1+c)

where the big-O notations hide the dependency in c.

Proof. Let G ∈ Gn,p. The proof works as follows. For each missing edge in G
between two nodes u and v, we route the messages between these nodes via an
intermediate node w, i.e., along a path (u,w, v) of length 2. The intermediate
node is picked at random among all nodes w such that {u,w} ∈ E(G), and
{w, v} ∈ E(G). To analyze the load of the edges, we have to overcome two
problems. First, the load of an edge is not necessarily independent from the
load of another edge. Second, we are interested in the maximum, taken over all
edges, of the load of the edges. As a consequence, an analysis based only on the
expectation of the load of each edge may not yield accurate results. Instead, we
base our analysis on a double application of a balls-into-bins protocol.

314 A. Balliu et al.

We aim at constructing a path for routing the messages between every pair
of nodes that are not directly connected in G. As said before, the alternative
paths used to replace missing edges are of length 2, and the probability expressed
in the statement of the theorem reflects the probability that such paths exist,
without too much congestion. More specifically, let us consider a missing edge
{i, j} in G. Let Si,j be the set of common neighbors to i and j in G. The message
from i to j is aimed at being routed via some intermediate node k ∈ Si,j . The
first question to address is thus: how large is Si,j? To answer this question, let
Ei,j be the event “there are at least np2

e different paths of length 2 between i
and j”, and let E =

⋂
{i,j}/∈E(G) Ei,j .

Fact 4. Let αc =
√

(c + 3)e/(e − 2), and p ≥ αc

√
ln n/n. Then

Pr[E] ≥ 1 − 1
nc+1

.

To establish this fact, let Xi,j,k be the Bernoulli random variable, for {i, j} /∈
E(G), such that Xi,j,k = 1 iff k ∈ Si,j , i.e., {i, k} ∈ E(G) and {k, j} ∈ E(G).
Then let Xi,j =

∑n
k=1 Xi,j,k. We have Pr[Xi,j,k = 1] = p2, and, for a fixed pair

i, j, the variables Xi,j,k, k = 1, . . . , n, are mutually independent. Thus, using
Chernoff bounds, we get:

Pr[Xi,j ≤ np2

e
] ≤ e(

2
e−1)np2

.

By union bound, it follows that

Pr[
⋃

{i,j}/∈E(G)

Ei,j] ≤ n2e(
2
e −1)np2 ≤ 1

nc+1

as desired, where the last inequality holds because p ≥ αc

√
ln n/n.

In addition to Fact 4, we will also use the following known result:

Lemma 1 ([21]). Let X1, . . . , Xn be a sequence of random variables in an arbi-
trary domain, and let Y1, . . . , Yn be a sequence of binary random variables, with
the property that Yi is a function of the variables X1, . . . , Xi−1. If, for every
i = 1, . . . , n, we have Pr[Yi = 1|X1, . . . , Xi−1] ≤ q then Pr[

∑n
i=1 Yi ≥ k] ≤

Pr[B(n, q) ≥ k] where B(n, q) denotes the binomial distribution of parameters n
and q.

Our path construction algorithm for every missing edge {i, j} /∈ E(G) is
sequential, and proceeds as follows. For every {i, j} /∈ E(G), the path from i to
j is not necessarily the same as the path from j to i. We process all ordered pairs
of nodes (i, j) in n phases, where Phase i, i = 1, . . . , n, constructs all paths (i, j)
for {i, j} /∈ E(G), in increasing order of j. Assume already fixed a set of paths,
corresponding to previously considered sender-receiver pairs, and consider now
the pair (i, j) (of course corresponding to the missing edge {i, j} /∈ E(G)). The

Sparsifying Congested Cliques and Core-Periphery Networks 315

previously constructed paths induce some load on each edge of G, corresponding
to the number of paths using that edge. The choice of the path for (i, j) depends
on this load, and is inspired from the power of two choices in balls-and-bins
protocols. Precisely, for suitable parameters d and r, node i repeats r times the
following: pick d incident edges {i, k} uniformly at random, and select the least
loaded one. Once this is done, node j picks the least loaded edge among the r
edges selected by i.

Let Ii,j be the node selected to route the message from sender i to receiver j.
Messages from i to j will be routed along the path Pi,j = (i, Ii,j , j). For h ≥ 0,
let bi,h(j) be the number of edges {i, k} of load at least h after deciding the
intermediate nodes Ii,1, . . . , Ii,j of the first j receivers for sender i. We define the
following quantities:

x =
⌈

e5+c

p2

⌉
and β =

np2

e5+c
.

Since bi,x(n) ≤ n/x, it follows from the above that bi,x(n) ≤ β. Now, let

�(j) = |{j′ ≤ j : Ii,j′ = Ii,j}|.
We define the random variables Zi,j where

Zi,j =
{

1 if �(j) ≥ x + 1
0 otherwise.

Hence Zi,j = 1 is the bad event that the edge between node i and the interme-
diate node Ii,j used to route from i to j is heavily loaded by i. Conditioned on
the fact that E holds (cf. Fact 4), we get that

Pr[Zi,j = 1] ≤ r

(
β

np2/e

)d

.

We let q be the right hand side of the above equation. Let us now consider
Zi =

∑n
j=1 Zi,j . Observe that Zi,j is a function of Ii,1, . . . , Ii,j−1. Therefore, by

Lemma 1 we get that

Pr[Zi ≥ k] ≤ Pr[B(n, q) ≥ k].

So, in particular, Pr[Zi ≥ 1] ≤ Pr[B(n, q) ≥ 1]. We now set d = lnn, and r ≤ n
(a suitable r will be specified thereafter). Thanks to this choice of d and r, we
have q ≤ 1

n3+c , and therefore

Pr[Zi ≥ 1] ≤ Pr[B(n,
1

n3+c
) ≥ 1] ≤ E[B(n,

1
n3+c

)] ≤ 1
n2+c

.

Let Z =
∑n

i=1 Zi. By union bound, we get Pr[Z ≥ 1] ≤ 1
n1+c .

Using a similar analysis, from the perspective of the receiver, and defining
the corresponding random variables Z ′

i,j capturing the load of the edges incident
to a receiver j, and Z ′

j =
∑n

i=1 Z ′
i,j , we get

Pr[Z ′
j ≥ 1] ≤ Pr[B(n, q′) ≥ 1]

316 A. Balliu et al.

where

q′ =

(

1 −
(

1 − eβ

np2

)d
)r

.

We get q′ ≤ 1
n3+c by setting d = lnn and r = (c + 3) nε lnn for ε =

− ln(1 − 1
e4+c). By this setting of d and r, we get that

Pr[Z ′
j ≥ 1] ≤ Pr[B(n,

1
n3+c

) ≥ 1] ≤ E[B(n,
1

n3+c
)] ≤ 1

n2+c
.

Let Z ′ =
∑n

j=1 Z ′
j . By union bound, we get Pr[Z ′ ≥ 1] ≤ 1

n1+c .
Therefore, altogether, we get that

Pr[Z = 0 and Z ′ = 0 | E] · Pr[E] ≥ (1 − 1
n1+c

)3 ≥ 1 − 3
n1+c

.

In other words, w.h.p., the load of all edges is no more than x = O(1/p2). On
the other hand, with a similar argument as for proving that the degree is large,
we have that, w.h.p., the degree of all nodes is at most enp, and therefore the
load of an edge does not exceed enp.
�

4 MST Construction in Core-Periphery Networks

In [1], a randomized algorithm for Minimum Spanning Tree (MST) construction
is presented. It runs in O(log2 n) rounds with high probability. We improve this
result by describing a deterministic algorithm for MST construction that runs
in just O(log n) rounds. Recall that, for the MST construction task, every node
is given as input the weight w(e) of each of its incident edges e. These weights
are supposed to be of values polynomial in the size n of the network, and thus
each weight can be stored on O(log n) bits. The output of every node is a set of
incident edges, such that the collection of all outputs forms an MST of the net-
work. Without loss of generality, all weights are supposed to be different (since,
otherwise, it is sufficient to add to each edge the identities of the extremities of
that edge).

Theorem 3. The MST construction task can be solved in O(log n) rounds in
core-periphery networks under the CONGEST model.

Proof. As usually in the distributed setting, the general idea of the algorithm is
based on the sequential Bor̊uvka’s algorithm for MST construction, consisting in
merging subtrees called fragments. Recall that, in Bor̊uvka’s algorithm, there are
initially n fragments, where each node alone forms a fragment. Each fragment
has an ID. Initially, the identity of each fragment is the ID of the single node
in the fragment. Then the algorithm proceeds in at most �log2 n	 phases. At
each phase, each fragment F computes the edge eF of minimum weight incident
to fragment F , and adds it to the MST. Fragments connected by such an edge

Sparsifying Congested Cliques and Core-Periphery Networks 317

merge, and a new phase begins. This procedure is repeated until there is only
one fragment, which is the desired MST.

We first present a (deterministic) distributed algorithm running in O(log2 n)
rounds in core-periphery networks. This algorithm is composed of at most
�log2 n	 phases, where each phase requires O(log n) rounds. Then, we show how
to actually perform each phase in O(1) rounds, obtaining the desired O(log n)-
round algorithm. Recall that a core-periphery network satisfies the three axioms
listed in Sect. 1 where C and P denote the sets of nodes in the core and in the
periphery, respectively.

The algorithm starts by an initialization phase, where each node in the
periphery looks for a node in the core, which will be its representative. By
Axiom 3 all nodes in the periphery can concurrently send messages to the core
so that each message will be received by at least one node in the core after
O(1) rounds. So, each node in the periphery sends a request for a representa-
tive by sending its own ID to the core. Every node in the periphery then waits
for an acknowledgment from nodes in the core that accepted its request. These
acknowledgements follow the same route as the corresponding requests, back-
ward. Hence, all acknowledgments are also received after O(1) rounds. Every
node takes as representative the core node whose acknowledgment reaches that
node first. If a node receives several acknowledgments simultaneously, then it
selects the one with the smallest ID. By Axiom 1, each node in the core can be
the representative of at most O(|C|) nodes in the periphery because its degree is
at most O(|C|), and thus it can receive at most O(|C|) messages in O(1) rounds.
Every node in the core is its own representative.

We assume that the nodes in the core are sorted according to their IDs
(this operation can be done in O(1) rounds using all-to-all and Axiom 2). For
every node in the core, we denote by succ(u) and pred(u) the successor and the
predecessor of u in this order, respectively.

We heavily used the protocols in [18]. Note that the routing protocol in [18]
requires that each node is the source and destination of at most n messages.
However, it can be trivially adapted to be applied with O(n) messages, still
requiring O(1) rounds. Similarly, the sorting protocol in [18] requires that each
node receives at most n keys, but, again, it can be trivially modified for allowing
each node to receive O(n) keys, still requiring O(1) rounds.

We now explain how every phase of Bor̊uvka’s algorithm is performed.

1. Every node sends the ID of its fragment to all its neighbors.
2. Let r(v) ∈ C and id(F) be the representative and the ID of the fragment

F of node v, respectively. We denote by eF (v) the edge of minimum weight
incident to v and connecting v to a node not in its fragment F . Each node v
in the periphery sends (eF (v), w(eF (v)), id(F), id(F ′)) to r(v), where the tail
of eF (v) belongs to F , and its head belongs to fragment F ′ �= F . Observe
that each node in the core receives O(|C|) such messages.

3. Every node in the core, upon reception of 4-tuple (eF (v), w(eF (v)),
id(F), id(F ′)) from the nodes that it represents (including itself), selects the

318 A. Balliu et al.

ones with minimum weight for each fragment F . We denote by S1 the set of
the selected edges by all nodes in the core. Note that |S1| = O(|C|2).

4. The algorithm assigns a leader to each fragment. The leaders are core nodes
chosen in such a way that the fragments are equally distributed among leaders.
Let

x = �|S1|/|C|	.

Note that x = O(|C|). Given a fragment F , its leader is

�(F) = 1 +
⌊ |{(u, v) ∈ S1 : id(Fu) < id(F)}|

x

⌋

where Fu is the fragment of u. Note that 1 ≤ �(F) ≤ |C|. For each fragment F ,
all edges incident to F in S1 are sent to �(F) by its representative holding such
edges—we shall explain hereafter how this is implemented in core-periphery
networks. In this way each leader can select the edge eF of minimum weight
incident to fragment F . Let S2 be the set of all edges eF , where F is a
fragment.

5. The algorithm then aims at merging the fragments. We call merge tree a tree
whose nodes are fragments F , and whose edges are the edges eF connecting
these fragments. Note that, in a merge tree, there are two adjacent fragments
F and F ′ connected by two possibly distinct edges eF and eF ′ . The fragment
with smallest ID that is extremity of such an edge is the root of the merge
tree. The algorithm proceeds so that each leader �(F) of a fragment F in the
merge tree becomes aware of the root of the tree. The ID of this root will
become the ID of the fragment resulting from merging all the fragments in
the merge tree. It is possible to find the root of a tree of height h in O(log h)
steps using pointer jumping—we shall explain hereafter how this is precisely
implemented in core-periphery networks.

6. By the previous step, for every fragment F , its leader �(F) knows the ID of
the merge tree it belongs to. Moreover, for each edge (u, v) that was received
by a leader from the representative r(u) in step 4, the leader saved id(r(u)).
This allows leaders to notify the right representatives of the ID of the root of
the merge tree.

7. Finally, the ID of every merged fragment is sent to every node v of the periph-
ery from its representative r(v) in the core.

It remains to explain how steps 4 and 5 are actually performed.

Step 4 in More Details. First, observe that the parameter x = �|S1|/|C|	 can be
computed at each node of the core, as performing all-to-all communication in
the core allows each core node to compute |S1|. Now, we show how to distribute
the fragments among the leaders such that leader �(F) becomes aware of the
edges eF (v) ∈ S1 incident to F .

The edges (u, v) ∈ S1 are sorted according to the ID of the fragment Fu its
tail belongs to, and are then split into groups of x edges. Again, this operation

Sparsifying Congested Cliques and Core-Periphery Networks 319

can be done in O(1) rounds using the sorting protocol in [18] because x = O(|C|).
The kth group is assigned to the kth node of the core.

Let us consider a core node u, and let F(u) be the set of fragments F such
that �(F) = u. Let us denote by idmax(u) (resp., idmin(u)) the maximum ID
(resp., minimum ID) of the fragments F ∈ F(u). Having sorted the set S1

guaranties that the leader u receives all the edges assigned to it, except perhaps
some edges starting from fragment idmax(u) that could have been delivered to
succ(u). However, there are at most x − 1 such edges, since the representatives
kept at most one edge per fragment. So, every core node u can send idmax(u) to
succ(u), in order to let that node know that the leader of the fragment with ID
equal to idmax(u) should be u, and not succ(u). Since each node u has then at
most x−1 messages to transmit to pred(u), we can transmit these messages using
the routing protocol in [18]. Now each leader u has all the outgoing edges of each
fragment F with �(F) = u. Thus, u can compute eF for each of these fragments.
Finally, each node u in the core broadcasts the pair (idmin(u), idmax(u)) in the
core so that every node in C learns the leader of each fragment.

Note that, while sorting and routing, every node keeps track of the ID of the
representative nodes which originally received every edge that is manipulated by
that node (this is needed in step 6).

Step 5 in More Details. We show how to perform the first step of pointer jumping.
Recall that, for every fragment F , the leader �(F) knows eF . This latter edge
is the one leading toward the root of the merge tree. Assume that eF = (u, v),
with u ∈ F and v ∈ F ′. The objective for the leader �(F) is to learn to which
fragment F ′′ is pointing the edge eF ′ = (u′, v′) with u ∈ F ′ and v′ ∈ F ′′. In
other words, if p denotes the parent relation in a merge tree, the leader �(F) of
fragment F wants to learn the ID of p(p(F)). The bad news is that �(F) cannot
directly ask id(p(p(F))) to �(p(F)) because this could create a bottleneck at
�(p(F)). Nevertheless this issue can be overcame as follows.

First, the edges in S2 are sorted according to the IDs of the fragment of their
heads, and grouped into groups whose heads belong to the same fragment. In this
way, only one request is sent for each group (to the leader of the corresponding
fragment). Since x = �|S1|/|C|	, we have x = O(|C|), and thus the number of
requests that each leader has to make is at most O(|C|).

Second, every leader does not receive more than O(|C|) requests. Indeed, let
qu,v be the number of different fragments for which a node u in the core has
to send a request to leader v. Let Fi1 , Fi2 , . . . , Fiqu,v

be these fragments, with
�(Fi1) = �(Fi2) = · · · = �(Fiqu,v

) = v, and i1 < i2 < · · · < iqu,v
. Recall that the

edges in S2 are sorted according to the IDs of the fragment of their heads. Thus, if
qu,v > 1 then the fragments Fi2 , . . . , Fiqu,v

do not appear in any list of fragments
assigned to nodes with identity smaller than id(u). Therefore, leader v receives at
least

∑
u∈C(qu,v − 1) requests for different fragments. On the other hand, every

core node v is the leader of at most x fragments. Therefore
∑

u∈C(qu,v − 1) ≤ x.
Hence the number of requests received by v is

∑
u∈C qu,v = O(|C|).

These two facts, allow the routing protocol in [18] to be used, for sending
the requests to the leaders, and for receiving back their answers. Once this is

320 A. Balliu et al.

done, every node u sends id(p(p(F))) to �(F), for every F ∈ F(u) in a constant
number of rounds, again using [18]. It follows that every leader u can learn the
ID of p(p(F)) for every F ∈ F(u) in a constant number of rounds.

Time Analysis. The initialization phase can be performed in O(1) rounds thanks
to Axiom 3. Step 1 trivially requires O(1) rounds. Step 2 also requires O(1)
rounds thanks to Axiom 3. Step 3 is executed locally by each node, thus it
does not require communication. Step 4 can be executed in O(1) rounds using
the sorting protocol in [18] because x = O(|C|). Step 6 can also be performed
in O(1) rounds using the routing protocol in [18] because each leader handles
O(|C|) edges (for which it has to send a fragment ID), and each representative
has to receive O(|C|) messages (one for each edge it has to receive a new fragment
ID). The last step is the inverse of step 2, and thus can still be executed in O(1)
rounds. Step 5 however requires O(log n) rounds because the merge tree might
be of height Ω(nε) for some ε > 0. Since the number of phases is also O(log n),
the total number of rounds of this algorithm is O(log2 n).

A Faster Algorithm. Now, we describe how to modify the above algorithm so
that it uses only O(1) rounds for each phase, hence O(log n) rounds in total.
Since the only step that requires a non constant number of rounds is Step 5, we
show how to perform that step in O(1) rounds.

The idea is to use a technique introduced first in [20], and also used in Avin
et al. [1], called amortized pointer jumping. The reduction of long chains of
pointers is deferred to later phases of Bor̊uvka’s algorithm, and only a constant
number of pointer jumps are performed at each phase. This technique exploits
the fact that, if a chain is long, it must contain many fragments. As a conse-
quence, when pointer jumping completes, the resulting fragment is quite large,
and other nodes involved in small fragments may continue building the MST in
parallel, without waiting for large fragments to be constructed.

We show how to do a constant number of pointer jumping steps, then freezing
the procedure, and resuming it later in the next phase of Bor̊uvka’s algorithm.
At each step of pointer jumping, every leader u can know, for every F ∈ F(u), if
the root of the merge tree has been reached. Suppose that the root has not been
reached by u after a constant number of pointer jumping (i.e., the leader does not
know yet the new ID of the merged fragment), and that u is currently pointing at
fragment F ′. In the following, node u adds a flag in its messages, which specifies
that the fragment has not been resolved yet, and that it stopped at F ′. This flag
will be propagated to all nodes that proposed edges that start from unresolved
fragments. At the next phase of Bor̊uvka’s algorithm, these nodes will propose
again the same edges, by specifying also F ′. Fragment F ′ will be used as if it
was the destination fragment of the edge. In this way, for every fragment F in
a merge tree whose merging has not yet been performed, the same edge eF as
before will be chosen, and other steps of pointer jumping will be performed. This
insures that nodes belonging to fragments in such merge trees do not propose
new edges, thus emulating a full execution of pointer jumping.

Sparsifying Congested Cliques and Core-Periphery Networks 321

After having reduced the number of rounds for performing step 5 from
O(log n) to O(1), amortized, we get that the resulting algorithm just requires
O(log n) rounds to construct a MST.
�

5 Conclusion

We have shown how to emulate the clique by a random graph in Gn,p in time
O(min{ 1

p2 , np}) rounds, w.h.p. Hence, on dense random graphs (i.e., p = Ω(1)),
our simulation performs in just a multiplicative constant factor away from the
optimal, and, on sparse graphs (i.e., p � √

log n/n), it performs just a log n
factor away from optimal. However, in general, whenever p � 1

3√n
, it performs

in O(1
p2) rounds, which is a factor O(1p) away from the trivial lower bound Ω(1p).

An intriguing question is whether the n-node clique can be simulated by Gn,p in
just O(1p) rounds.

Our deterministic MST algorithm for core-periphery networks performs in
O(log n) rounds, improving the previously known (randomized) algorithm by a
factor Θ(log n). Recent advances in the congested clique model demonstrate that
ultra fast MST algorithms exist for this later model, namely, a recent O(log∗ n)-
round randomized algorithm [12], and a O(log log n)-round deterministic algo-
rithm [19]. Another intriguing question is whether such ultra fast algorithms
exist for core-periphery networks.

References

1. Avin, C., Borokhovich, M., Lotker, Z., Peleg, D.: Distributed computing on core-
periphery networks: axiom-based design. In: Esparza, J., Fraigniaud, P., Husfeldt,
T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 399–410. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-43951-7 34

2. Broder, A.Z., Frieze, A.M., Upfal, E.: Existence and construction of edge-disjoint
paths on expander graphs. SIAM J. Comput. 23(5), 976–989 (1994)

3. Censor-Hillel, K., Kaski, P., Korhonen, J.H., Lenzen, C., Paz, A., Suomela, J.:
Algebraic methods in the congested clique. In: ACM Symposium on Principles of
Distributed Computing (PODC), pp. 143–152 (2015)

4. Censor-Hillel, K., Toukan, T.: On fast and robust information spreading in the
vertex-congest model. In: Scheideler, C. (ed.) Structural Information and Commu-
nication Complexity. LNCS, vol. 9439, pp. 270–284. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-25258-2 19

5. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model.
In: ACM Symposium on Principles of Distributed Computing (PODC), pp. 367–
376 (2014)

6. Elkin, M.: A faster distributed protocol for constructing a minimum spanning tree.
In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 359–368 (2004)

7. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks.
Random Struct. Algorithms 1(4), 447–460 (1990)

8. Frieze, A.M.: Disjoint paths in expander graphs via random walks: a short survey.
In: Luby, M., Rolim, J.D.P., Serna, M. (eds.) RANDOM 1998. LNCS, vol. 1518,
pp. 1–14. Springer, Heidelberg (1998). doi:10.1007/3-540-49543-6 1

http://dx.doi.org/10.1007/978-3-662-43951-7_34
http://dx.doi.org/10.1007/978-3-319-25258-2_19
http://dx.doi.org/10.1007/3-540-49543-6_1

322 A. Balliu et al.

9. Frieze, A.M.: Edge-disjoint paths in expander graphs. In: 11th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pp. 717–725 (2000)

10. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-
weight spanning trees. ACM Trans. Program. Lang. Syst. 5(1), 66–77 (1983)

11. Garay, J.A., Kutten, S., Peleg, D.: A sublinear time distributed algorithm for
minimum-weight spanning trees. SIAM J. Comput. 27(1), 302–316 (1998)

12. Ghaffari, M., Parter, M.: MST in log-star rounds of congested clique. In: 35th ACM
Symposium on Principles of Distributed Computing (PODC) (2016)

13. Hegeman, J.W., Pandurangan, G., Pemmaraju, S.V., Sardeshmukh, V.B.,
Scquizzato, M.: Toward optimal bounds in the congested clique: graph connectivity
and MST. In ACM Symposium on Principles of Distributed Computing (PODC),
pp. 91–100 (2015)

14. Hegeman, J.W., Pemmaraju, S.V.: Lessons from the congested clique applied to
MapReduce. Theor. Comput. Sci. 608, 268–281 (2015)

15. Hegeman, J.W., Pemmaraju, S.V., Sardeshmukh, V.B.: Near-constant-time distrib-
uted algorithms on a congested clique. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol.
8784, pp. 514–530. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45174-8 35

16. Kutten, S., Peleg, D.: Fast distributed construction of small k-dominating sets and
applications. J. Algorithms 28(1), 40–66 (1998)

17. Leighton, T., Rao, S., Srinivasan, A.: Multicommodity flow and circuit switching.
In: 31st Hawaii International Conference on System Sciences, pp. 459–465 (1998)

18. Christoph Lenzen. Optimal deterministic routing and sorting on the congested
clique. In ACM Symposium on Principles of Distributed Computing (PODC), pp.
42–50, (2013)

19. Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: Minimum-weight spanning tree
construction in O(log log n) communication rounds. SIAM J. Comput. 35(1), 120–
131 (2005)

20. Lotker, Z., Patt-Shamir, B., Peleg, D.: Distributed MST for constant diame-
ter graphs. In: 20th ACM Symposium on Principles of Distributed Computing
(PODC), pp. 63–71 (2001)

21. Mitzenmacher, M., Upfal, E.: Probability and Computing - Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

22. Ookawa, H., Izumi, T.: Filling logarithmic gaps in distributed complexity for global
problems. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J.,
Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 377–388. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46078-8 31

23. Peleg, D., Rubinovich, V.: A near-tight lower bound on the time complexity of
distributed minimum-weight spanning tree construction. SIAM J. Comput. 30(5),
1427–1442 (2000)

24. Sarma, A.D., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. In: 43rd ACM Symposium on Theory of Computing (STOC), pp.
363–372 (2011)

http://dx.doi.org/10.1007/978-3-662-45174-8_35
http://dx.doi.org/10.1007/978-3-662-46078-8_31

	Sparsifying Congested Cliques and Core-Periphery Networks
	1 Introduction
	1.1 Context and Objectives
	1.2 Our Results
	1.3 Related Work

	2 Deterministic Construction of Sparse Clique Emulators
	3 Randomized Construction of Sparse Clique Emulators
	4 MST Construction in Core-Periphery Networks
	5 Conclusion
	References

