
How Many Cooks Spoil the Soup?

Othon Michail1,2(B) and Paul G. Spirakis1,2

1 Department of Computer Science, University of Liverpool, Liverpool, UK
{Othon.Michail,P.Spirakis}@liverpool.ac.uk

2 Computer Technology Institute and Press “Diophantus” (CTI), Patras, Greece

Abstract. In this work, we study the following basic question: “How
much parallelism does a distributed task permit?” Our definition of par-
allelism (or symmetry) here is not in terms of speed, but in terms of
identical roles that processes have at the same time in the execution.
We initiate this study in population protocols, a very simple model that
not only allows for a straightforward definition of what a role is, but
also encloses the challenge of isolating the properties that are due to
the protocol from those that are due to the adversary scheduler, who
controls the interactions between the processes. We (i) give a partial
characterization of the set of predicates on input assignments that can
be stably computed with maximum symmetry, i.e., Θ(Nmin), where Nmin

is the minimum multiplicity of a state in the initial configuration, and
(ii) we turn our attention to the remaining predicates and prove a strong
impossibility result for the parity predicate: the inherent symmetry of
any protocol that stably computes it is upper bounded by a constant that
depends on the size of the protocol.

1 Introduction

George Washington said “My observation on every employment in life is, that,
wherever and whenever one person is found adequate to the discharge of a duty
by close application thereto, it is worse executed by two persons, and scarcely
done at all if three or more are employed therein”. The goal of the present paper
is to investigate whether the analogue of this observation in simple distributed
systems is true. In particular, we ask whether a task that can be solved when a
single process has a crucial duty is still solvable when that (and any other) duty
is assigned to more than one process. Moreover, we are interested in quantifying
the degree of parallelism (also called symmetry in this paper) that a task is
susceptible of.

Leader election is a task of outstanding importance for distributed algo-
rithms. One of the oldest [Ang80] and probably still one of the most commonly
used approaches [Lyn96,AW04,AAD+06,KLO10] for solving a distributed task
in a given setting, is to execute a distributed algorithm that manages to elect

Supported in part by the School of EEE/CS of the University of Liverpool, NeST
initiative, and the EU IP FET-Proactive project MULTIPLEX under contract no
317532. The full version can be found at: https://arxiv.org/abs/1604.07187.

c© Springer International Publishing AG 2016
J. Suomela (Ed.): SIROCCO 2016, LNCS 9988, pp. 3–18, 2016.
DOI: 10.1007/978-3-319-48314-6 1

https://arxiv.org/abs/1604.07187

4 O. Michail and P.G. Spirakis

a unique leader (or coordinator) in that setting and then compose this (either
sequentially or in parallel) with a second algorithm that can solve the task by
assuming the existence of a unique leader. Actually, it is quite typical, that the
tasks of electing a leader and successfully setting up the composition enclose the
difficulty of solving many other higher-level tasks in the given setting.

Due to its usefulness in solving other distributed tasks, the leader election
problem has been extensively studied, in a great variety of distributed settings
[Lyn96,AW04,FSW14,AG15]. Still, there is an important point that is much less
understood, concerning whether an election step is necessary for a given task
and to what extent it can be avoided. Even if a task T can be solved in a given
setting by first passing through a configuration with a unique leader, it is still
valuable to know whether there is a correct algorithm for T that avoids this. In
particular, such an algorithm succeeds without the need to ever have less than
k processes in a given “role”, and we are also interested in how large k can be
without sacrificing solvability.

Depending on the application, there are several ways of defining what the
“role” of a process at a given time in the execution is. In the typical approach
of electing a unique leader, a process has the leader role if a leader variable in
its local memory is set to true and it does not have it otherwise. In other cases,
the role of a process could be defined as its complete local history. In such cases,
we would consider that two processes have the same role after t steps iff both
have the same local history after each one of them has completed t local steps. It
could also be defined in terms of the external interface of a process, for example,
by the messages that the process transmits, or it could even correspond to the
branch of the program that the process executes. In this paper, as we shall see,
we will define the role of a process at a given time in the execution, as the entire
content of its local memory. So, in this paper, two processes u and v will be
regarded to have the same role at a given time t iff, at that time, the local state
of u is equal to the local state of v.

Understanding the parallelism that a distributed task allows, is of fundamen-
tal importance for the following reasons. First of all, usually, the more parallelism
a task allows, the more efficiently it can be solved. Moreover, the less symmetry
a solution for a given problem has to achieve in order to succeed, the more vul-
nerable it is to faults. For an extreme example, if a distributed algorithm elects
in every execution a unique leader in order to solve a problem, then a single
crash failure (of the leader) can be fatal.

1.1 Our Approach

We have chosen to initiate the study of the above problem in a very minimal
distributed setting, namely in Population Protocols of Angluin et al. [AAD+06]
(see Sect. 1.2 for more details and references). One reason that makes population
protocols convenient for the problem under consideration, is that the role of a
process at a given step in the execution can be defined in a straightforward
way as the state of the process at the beginning of that step. So, for example,
if we are interested in an execution of a protocol that stabilizes to the correct

How Many Cooks Spoil the Soup? 5

answer without ever electing a unique leader, what we actually require is an
execution that, up to stability, never goes through a configuration in which a
state q is the state of a single node, which implies that, in every configuration
of the execution, every state q is either absent or the state of at least two nodes.
Then, it is straightforward to generalize this to any symmetry requirement k, by
requiring that, in every configuration, every state q is either absent or the state
of at least k nodes.

What is not straightforward in this model (and in any model with adver-
sarially determined events), is how to isolate the symmetry that is only due to
the protocol. For if we require the above condition on executions to be satisfied
for every execution of a protocol, then most protocols will fail trivially, because
of the power of the adversary scheduler. In particular, there is almost always a
way for the scheduler to force the protocol to break symmetry maximally, for
example, to make it reach a configuration in which some state is the state of
a single node, even when the protocol does not have an inherent mechanism of
electing a unique state. Moreover, though for computability questions it is suffi-
cient to assume that the scheduler selects in every step a single pair of nodes to
interact with each other, this type of a scheduler is problematic for estimating
the symmetry of protocols. The reason is that even fundamentally parallel oper-
ations, necessarily pass through a highly-symmetry-breaking step. For example,
consider the rule (a, a) → (b, b) and assume that an even number of nodes are
initially in state a. The goal is here for the protocol to convert all as to bs. If
the scheduler could pick a perfect matching between the as, then in one step
all as would be converted to bs, and additionally the protocol would never pass
trough a configuration in which a state is the state of fewer than n nodes. Now,
observe that the sequential scheduler can only pick a single pair of nodes in
each step, so in the very first step it yields a configuration in which state b is
the state of only 2 nodes. Of course, there are turnarounds to this, for example
by taking into account only equal-interaction configurations, consisting of the
states of the processes after all processes have participated in an equal number
of interactions, still we shall follow an alternative approach that simplifies the
arguments and the analysis.

In particular, we will consider schedulers that can be maximally parallel.
Such a scheduler, selects in every step a matching (of any possible size) of the
complete interaction graph, so, in one extreme, it is still allowed to select only
one interaction but, in the other extreme, it may also select a perfect matching
in a single step. Observe that this scheduler is different both from the sequential
scheduler traditionally used in the area of population protocols and from the
fully parallel scheduler which assumes that Θ(n) interactions occur in parallel
in every step. Actually, several recent papers assume a fully parallel scheduler
implicitly, by defining the model in terms of the sequential scheduler and then
performing their analysis in terms of parallel time, defined as the sequential time
divided by n.

6 O. Michail and P.G. Spirakis

Finally, in order to isolate the inherent symmetry, i.e., the symmetry that
is only due to the protocol, we shall focus on those schedules1 that achieve as
high symmetry as possible for the given protocol. Such schedules may look into
the protocol and exploit its structure so that the chosen interactions maximize
parallelism. It is crucial to notice that this restriction does by no means affect
correctness. Our protocols are still, as usual, required to stabilize to the cor-
rect answer in any fair execution (and, actually, in this paper against a more
generic scheduler than the one traditionally assumed). The above restriction is
only a convention for estimating the inherent symmetry of a protocol designed
to operate in an adversarial setting. On the other hand, one does not expect
this measure of inherent symmetry to be achieved by the majority of execu-
tions. If, instead, one is interested in some measure of the observed symmetry,
then it would make more sense to study an expected observed symmetry under
some probabilistic assumption for the scheduler. We leave this as an interesting
direction for future research (see Sect. 5 for more details on this).

For a given initial configuration, we shall estimate the symmetry breaking
performed by the protocol not in any possible execution but an execution in
which the scheduler tries to maximize the symmetry. In particular, we shall
define the symmetry of a protocol on a given initial configuration c0 as the
maximum symmetry achieved over all possible executions on c0. So, in order to
lower bound by k the symmetry of a protocol on a given c0, it will be sufficient
to present a schedule in which the protocol stabilizes without ever “electing”
fewer than k nodes. On the other hand, to establish an upper bound of h on
symmetry, we will have to show that in every schedule (on the given c0) the
protocol “elects” at most h nodes. Then we may define the symmetry of the
protocol on a set of initial configurations as the minimum of its symmetries
over those initial configurations. The symmetry of a protocol (as a whole) shall
be defined as a function of some parameter of the initial configuration and is
deferred to Sect. 2.

Observation 1. The above definition leads to very strong impossibility results,
as these upper bounds are also upper bounds on the observed symmetry. In par-
ticular, if we establish that the symmetry of a protocol A is at most h then, it is
clear that under any scheduler the symmetry of A is at most h.

Section 2 brings together all definitions and basic facts that are used through-
out the paper. In Sect. 3, we give a set of positive results. The main result here
is a partial characterization, showing that a wide subclass of semilinear pred-
icates is computed with symmetry Θ(Nmin), which is asymptotically optimal.
Then, in Sect. 4, we study some basic predicates that seem to require much
symmetry breaking. In particular, we study the majority and the parity predi-
cates. For majority we establish a constant symmetry, while for parity we prove
a strong impossibility result, stating that the symmetry of any protocol that
stably computes it, is upper bounded by an integer depending only on the size
of the protocol (i.e., a constant, compared to the size of the system). The latter
1 By “schedule” we mean an “execution” throughout.

How Many Cooks Spoil the Soup? 7

implies that there exist predicates which can only be computed by protocols
that perform some sort of leader-election (not necessarily a unique leader but at
most a constant number of nodes in a distinguished leader role). In Sect. 5, we
give further research directions that are opened by our work. All omitted details
and proofs can be found in the full version.

1.2 Further Related Work

In contrast to static systems with unique identifiers (IDs) and dynamic systems,
the role of symmetry in static anonymous systems has been deeply investigated
[Ang80,YK96,Kra97,FMS98]. Similarity as a way to compare and contrast dif-
ferent models of concurrent programming has been defined and studied in [JS85].
One (restricted) type of symmetry that has been recently studied in systems with
IDs is the existence of homonyms, i.e., processes that are initially assigned the
same ID [DGFG+11]. Moreover, there are several standard models of distributed
computing that do not suffer from a necessity to break symmetry globally (e.g.,
to elect a leader) like Shared Memory with Atomic Snapshots [AAD+93,AW04],
Quorums [Ske82,MRWW01], and the LOCAL model [Pel00,Suo13].

Population Protocols were originally motivated by highly dynamic networks
of simple sensor nodes that cannot control their mobility. The first papers focused
on the computational capabilities of the model which have now been almost com-
pletely characterized. In particular, if the interaction network is complete (as is
also the case in the present paper), i.e., one in which every pair of processes
may interact, then the computational power of the model is equal to the class of
the semilinear predicates (and the same holds for several variations) [AAER07].
Interestingly, the generic protocol of [AAD+06] that computes all semilinear
predicates, elects a unique leader in every execution and the same is true for
the construction in [CDS14]. Moreover, according to [AG15], all known generic
constructions of semilinear predicates “fundamentally rely on the election of
a single initial leader node, which coordinates phases of computation”. Semi-
linearity of population protocols persists up to o(log log n) local space but not
more than this [CMN+11]. If additionally the connections between processes can
hold a state from a finite domain, then the computational power dramatically
increases to the commutative subclass of NSPACE(n2) [MCS11a]. The for-
mal equivalence of population protocols to chemical reaction networks (CRNs),
which model chemistry in a well-mixed solution, has been recently demonstrated
[Dot14]. Moreover, the recently proposed Network Constructors extension of
population protocols [MS16] is capable of constructing arbitrarily complex sta-
ble networks. Czyzowicz et al. [CGK+15] have recently studied the relation of
population protocols to antagonism of species, with dynamics modeled by dis-
crete Lotka-Volterra equations. Finally, in [CCDS14], the authors highlighted
the importance of executions that necessarily pass through a “bottleneck” tran-
sition (meaning a transition between two states that have only constant counts
in the population, which requires Ω(n2) expected number of steps to occur), by
proving that protocols that avoid such transitions can only compute existence
predicates. To the best of our knowledge, our type of approach, of computing

8 O. Michail and P.G. Spirakis

predicates stably without ever electing a unique leader, has not been followed
before in this area (according to [AG15], “[DH15] proposes a leader-less frame-
work for population computation”, but this should not be confused with what
we do in this paper, as it only concerns the achievement of dropping the require-
ment for a pre-elected unique leader that was assumed in all previous results
for that problem). For introductory texts to population protocols, the interested
reader is encouraged to consult [AR09,MCS11b].

2 Preliminaries

A population protocol (PP) is a 6-tuple (X,Y,Q, I,O, δ), where X, Y , and Q are
all finite sets and X is the input alphabet, Y is the output alphabet, Q is the set
of states, I : X → Q is the input function, O : Q → Y is the output function, and
δ : Q × Q → Q × Q is the transition function.

If δ(a, b) = (a′, b′), we call (a, b) → (a′, b′) a transition. A transition
(a, b) → (a′, b′) is called effective if x �= x′ for at least one x ∈ {a, b} and
ineffective otherwise. When we present the transition function of a protocol we
only present the effective transitions. The system consists of a population V
of n distributed processes (also called nodes). In the generic case, there is an
underlying interaction graph G = (V,E) specifying the permissible interactions
between the nodes. Interactions in this model are always pairwise. In this work,
G is a complete directed interaction graph.

Let Q be the set of states of a population protocol A. A configuration c of
A on n nodes is an element of IN|Q|

≥0 , such that, for all q ∈ Q, c[q] is equal to
the number of nodes that are in state q in configuration c and it holds that∑

q∈Q c[q] = n. For example, if Q = {q0, q1, q2, q3} and c = (7, 12, 52, 0), then, in
c, 7 nodes of the 7 + 12 + 52 + 0 = 71 in total, are in state q0, 12 nodes in state
q1, and 52 nodes in state q2.

Execution of the protocol proceeds in discrete steps and it is determined by
an adversary scheduler who is allowed to be parallel, meaning that, in every step,
it may select one or more pairwise interactions (up to a maximum matching) to
occur at the same time. This is an important difference from classical population
protocols where the scheduler could only select a single interaction per step. More
formally, in every step, a non-empty matching (u1, v1), (u2, v2), . . . , (uk, vk) from
E is selected by the scheduler and, for all 1 ≤ i ≤ k, the nodes ui, vi interact
with each other and update their states according to the transition function δ.
A fairness condition is imposed on the adversary to ensure the protocol makes
progress. An infinite execution is fair if for every pair of configurations c and c′

such that c → c′ (i.e., c can go in one step to c′), if c occurs infinitely often in
the execution then so does c′.

In population protocols, we are typically interested in computing predicates
on the inputs, e.g., Na ≥ 5, being true whenever there are at least 5 as in the
input.2 Moreover, computations are stabilizing and not terminating, meaning
2 We shall use throughout the paper Ni to denote the number of nodes with

input/state i.

How Many Cooks Spoil the Soup? 9

that it suffices for the nodes to eventually converge to the correct output. We
say that a protocol stably computes a predicate if, on any population size, any
input assignment, and any fair execution on these, all nodes eventually stabilize
their outputs to the value of the predicate on that input assignment.

We define the symmetry s(c) of a configuration c as the minimum multi-
plicity of a state that is present in c (unless otherwise stated, in what fol-
lows by “symmetry” we shall always mean “inherent symmetry”). That is,
s(c) = minq∈Q : c[q]≥1{c[q]}. For example, if c = (0, 4, 12, 0, 52) then s(c) = 4, if
c = (1, . . .) then s(c) = 1, which is the minimum possible value for symmetry,
and if c = (n, 0, 0, . . . , 0) then s(c) = n which is the maximum possible value for
symmetry. So, the range of the symmetry of a configuration is {1, 2, . . . , n}.

Let C0(A) be the set of all initial configurations for a given protocol A. Given
an initial configuration c0 ∈ C0(A), denote by Γ (c0) the set of all fair executions
of A that begin from c0, each execution being truncated to its prefix up to
stability.3

Given any initial configuration c0 and any execution α ∈ Γ (c0), define
the symmetry breaking of A on α as the difference between the symmetry
of the initial configuration of α and the minimum symmetry of a configura-
tion of α, that is, the maximum drop in symmetry during the execution. For-
mally, b(A, α) = s(c0) − minc∈α{s(c)}. Also define the symmetry of A on α as
s(A, α) = minc∈α{s(c)}. Of course, it holds that s(A, α) = s(c0) − b(A, α).
Moreover, observe that, for all α ∈ Γ (c0), 0 ≤ b(A, α) ≤ s(c0) − 1 and
1 ≤ s(A, α) ≤ s(c0). In several cases we shall denote s(c0) by Nmin.

The symmetry breaking of a protocol A on an initial configuration c0 can
now be defined as b(A, c0) = minα∈Γ (c0){b(A, α)} and:

Definition 1. We define the symmetry of A on c0 as s(A, c0) =
maxα∈Γ (c0){s(A, α)}.
Remark 1. To estimate the inherent symmetry with which a protocol computes
a predicate on a c0, we execute the protocol against an imaginary scheduler who
is a symmetry maximizer.

Now, given the set C(Nmin) of all initial configurations c0 such that
s(c0) = Nmin, we define the symmetry breaking of a protocol A on C(Nmin)
as b(A, Nmin) = maxc0∈C(Nmin){b(A, c0)} and:

Definition 2. We define the symmetry of A on C(Nmin) as s(A, Nmin) =
minc0∈C(Nmin){s(A, c0)}.
Observe again that s(A, Nmin) = Nmin −b(A, Nmin) and that 0 ≤ b(A, Nmin) ≤
Nmin − 1 and 1 ≤ s(A, Nmin) ≤ Nmin.

3 In this work, we only require protocols to preserve their symmetry up to stability.
This means that a protocol is allowed to break symmetry arbitrarily after stability,
e.g., even elect a unique leader, without having to pay for it. We leave as an inter-
esting open problem the comparison of this convention to the apparently harder
requirement of maintaining symmetry forever.

10 O. Michail and P.G. Spirakis

This means that, in order to establish that a protocol A is at least g(Nmin)
symmetric asymptotically (e.g., for g(Nmin) = Θ(log Nmin)), we have to show
that for every sufficiently large Nmin, the symmetry breaking of A on C(Nmin)
is at most Nmin − g(Nmin), that is, to show that for all initial configurations
c0 ∈ C(Nmin) there exists an execution on c0 that drops the initial symmetry
by at most Nmin − g(Nmin), e.g., by at most Nmin − log Nmin for g(Nmin) =
log Nmin, or that does not break symmetry at all in case g(Nmin) = Nmin. On
the other hand, to establish that the symmetry is at most g(Nmin), e.g., at most
1 which is the minimum possible value, one has to show a symmetry breaking
of at least Nmin − g(Nmin) on infinitely many Nmins.

3 Predicates of High Symmetry

In this section, we try to identify predicates that can be stably computed with
much symmetry. We first give an indicative example, then we generalize to arrive
at a partial characterization of the predicates that can be computed with max-
imum symmetry, and, finally, we highlight the role of output-stable states in
symmetric computations.

3.1 An Example: Count-to-x

Protocol. Count-to-x: X = {0, 1}, Q = {q0, q1, q2, . . . , qx}, I(σ) = qσ, for all
σ ∈ X, O(qx) = 1 and O(q) = 0, for all q ∈ Q\{qx}, and δ: (qi, qj) → (qi+j , q0),
if i + j < x, (qi, qj) → (qx, qx), otherwise.

Proposition 1. The symmetry of Protocol Count-to-x, for any x = O(1), is at
least (2/3)�Nmin/x� − (x − 1)/3, when x ≥ 2, and Nmin, when x = 1; i.e., it is
Θ(Nmin) for any x = O(1).

Proof. The scheduler4 partitions the q1s, let them be N1(0) initially and denoted
just N1 in the sequel, into �N1/x� groups of x q1s each, possibly leaving an
incomplete group of r ≤ x − 1 q1s residue. Then, in each complete group, it
performs a sequential gathering of x − 3 other q1s to one of the nodes, which
will go through the states q1, q2, . . . , qx−1. The same gathering is performed in
parallel to all groups, so every state that exists in one group will also exist in
every other group, thus, its cardinality never drops below �N1/x�. In the end, at
step t, there are many q0s, Nx−1(t) = �N1/x�, and N1(t) = �N1/x� + r, where
0 ≤ r ≤ x − 1 is the residue of q1s. That is, in all configurations so far, the
symmetry has not dropped below �N1/x�.

Now, we cannot pick, as a symmetry maximizing choice of the scheduler, a
perfect bipartite matching between the q1s and the qx−1s converting them all
to the alarm state qx, because this could possibly leave the symmetry-breaking
residue of q1s. What we can do instead, is to match in one step as many as

4 Always meaning the imaginary symmetry-maximizing scheduler when lower-
bounding the symmetry.

How Many Cooks Spoil the Soup? 11

we can so that, after the corresponding transitions, Nx(t′) ≥ N1(t′) is satisfied.
In particular, if we match y of the (q1, qx−1) pairs we will obtain Nx(t′) = 2y,
Nx−1(t′) = �N1/x� − y, and N1(t′) = �N1/x� − y + r and what we want is

2y ≥ �N1/x� − y + r ⇒ 3y ≥ �N1/x� + r ⇒ y ≥ �N1/x� + r

3
,

which means that if we match approximately 1/3 of the (q1, qx−1) pairs then we
will have as many qx as we need in order to eliminate all q1s in one step and all
remaining qx−1s in another step.

The minimum symmetry in the whole course of this schedule is

Nx−1(t′) = �N1/x� − y = �N1/x� − �N1/x� + r

3

=
2
3
�N1/x� − r

3
≥ 2

3
�N1/x� − x − 1

3
.

So, we have shown that if there are no q0s in the initial configuration, then
the symmetry breaking of the protocol on the schedule defined above is at most
Nmin − ((2/3)�N1/x�− (x−1)/3) = Nmin − ((2/3)�Nmin/x�− (x−1)/3). Next,
we consider the case in which there are some q0s in the initial configuration.
Observe that in this protocol the q0s can only increase, so their minimum car-
dinality is precisely their initial cardinality N0. Consequently, in case N0 ≥ 1
and N1 ≥ 1, and if Nmin = min{N0, N1}, the symmetry breaking of the sched-
ule defined above is Nmin − min{N0, Nx−1(t′)}. If, for some initial configura-
tion, N0 ≥ Nx−1(t′) then the symmetry breaking is Nmin − Nx−1(t′) ≤ Nmin −
((2/3)�N1/x�−(x−1)/3). This gives again Nmin −((2/3)�Nmin/x�−(x−1)/3),
when N1 ≤ N0, and less than Nmin − ((2/3)�Nmin/x� − (x − 1)/3), when
N1 > N0 = Nmin. If instead, N0 < Nx−1(t′) < N1, then, in this case, the
symmetry breaking is Nmin − min{N0, Nx−1(t′)} = N0 − N0 = 0. Finally, if
N0 = n, then the symmetry breaking is 0. We conclude that for every ini-
tial configuration, the symmetry breaking of the above schedule is at most
Nmin − Nx−1(t′) ≤ Nmin − ((2/3)�Nmin/x� − (x − 1)/3), for all x ≥ 2, and
0, for x = 1. Therefore, the symmetry of the Count-to-x protocol is at least
(2/3)�Nmin/x� + (x − 1)/3 = Θ(Nmin), for x ≥ 2, and Nmin, for x = 1.
�

3.2 A General Positive Result

Theorem 1. Any predicate of the form
∑

i∈[k] aiNi ≥ c, for integer constants
k ≥ 1, ai ≥ 1, and c ≥ 0, can be computed with symmetry more than
�Nmin/(c/

∑
j∈L aj + 2)� − 2 = Θ(Nmin).

Proof. We begin by giving a parameterized protocol (Protocol 1) that stably
computes any such predicate, and then we shall prove that the symmetry of this
protocol is the desired one.

Take now any initial configuration C0 on n nodes and let L ⊆ [k] be the
set of indices of the initial states that are present in C0. Let also qmin be the

12 O. Michail and P.G. Spirakis

Protocol 1. Positive-Linear-Combination

Q = {q0, q1, q2, . . . , qc}
I(σi) = qai , for all σi ∈ X
O(qc) = 1 and O(q) = 0, for all q ∈ Q\{qc}
δ:

(qi, qj) → (qi+j , q0), if i + j < c

→ (qc, qc), otherwise

state with minimum cardinality, Nmin, in C0. Construct �Nmin/x� groups, by
adding to each group x = c/∑

j∈L aj� copies of each initial state. Observe that
each group has total sum

∑
j∈L ajx = x

∑
j∈L aj = c/∑

j∈L aj�(
∑

j∈L aj) ≥ c.
Moreover, state qmin has a residue rmin of at most x and every other state qi

has a residue ri ≥ rmin. Finally, keep y = (Nmin + rmin)/(x + 1)� − 1 from
those groups and drop the other �Nmin/x� − y groups making their nodes part
of the residue, which results in new residue values r′

j = x(�Nmin/x� − y) + rj ,
for all j ∈ L. It is not hard to show that y ≤ r′

j , for all j ∈ L.
We now present a schedule that achieves the desired symmetry. The schedule

consists of two phases, the gathering phase and the dissemination phase. In the
dissemination phase, the schedule picks a node of the same state from every group
and starts aggregating to that node the sum of its group sequentially, performing
the same in parallel in all groups. It does this until the alarm state qc first
appears. When this occurs, the dissemination phase begins. In the dissemination
phase, the schedule picks one after the other all states that have not yet been
converted to qc. For each such state qi, it picks a qc which infects one after the
other (sequentially) the qis, until Nc(t) ≥ Ni(t) is satisfied for the first time.
Then, in a single step that matches each qi to a qc, it converts all remaining qis
to qc.

We now analyze the symmetry breaking of the protocol in this schedule.
Clearly, the initial symmetry is Nmin. As long as a state appears in the groups,
its cardinality is at least y, because it must appear in each one of them. When a
state qi first becomes eliminated from the groups, its cardinality is equal to its
residue r′

i. Thus, so far, the minimum cardinality of a state is

min{y,min
j∈L

r′
j} = y =

⌈
Nmin + rmin

x + 1

⌉

− 1 >

⌊
Nmin

c/
∑

j∈L aj + 2

⌋

− 2.

It follows that the maximum symmetry breaking so far is less than Nmin −⌊
Nmin

c/
∑

j∈L aj+2

⌋
+ 2.

Finally, we must also take into account the dissemination phase. In this phase,
the qcs are 2y initially and can only increase, by infecting other states, until they
become n and the cardinalities of all other states decrease until they all become
0. Take any state qi �= qc with cardinality Ni(t) when the dissemination phase
begins. What the schedule does is to decrement Ni(t), until Nc(t′) ≥ Ni(t′) is

How Many Cooks Spoil the Soup? 13

first satisfied, and then to eliminate all occurrences of qi in one step. Due to
the fact that Ni is decremented by one in each step resulting in a corresponding
increase by one of Nc, when Nc(t′) ≥ Ni(t′) is first satisfied, it holds that Ni(t′) ≥
Nc(t′) − 1 ≥ Nc(t) − 1 ≥ 2y − 1 ≥ y for all y ≥ 1, which implies that the lower
bound of y on the minimum cardinality, established for the gathering phase, is
not violated during the dissemination phase.

We conclude that the symmetry of the protocol in the above schedule is more
than �Nmin/(c/

∑
j∈L aj + 2)� − 2.
�

3.3 Output-Stable States

Informally, a state q ∈ Q is called output-stable if its appearance in an execution
guarantees that the output value O(q) must be the output value of the execution.
More formally, if q is output-stable and C is a configuration containing q, then
the set of outputs of C ′ must contain O(q), for all C ′ such that C � C ′, where
‘�’ means reaches in one or more steps. Moreover, if all executions under con-
sideration stabilize to an agreement, meaning that eventually all nodes stabilize
to the same output, then the above implies that if an execution ever reaches a
configuration containing q then the output of that execution is necessarily O(q).

A state q is called reachable if there is an initial configuration C0 and an
execution on C0 that can produce q. We can also define reachability just in
terms of the protocol, under the assumption that if Q0 ⊆ Q is the set of initial
states, then any possible combination of cardinalities of states from Q0 can be
part of an initial configuration. A production tree for a state q ∈ Q, is a directed
binary in-tree with its nodes labeled from Q such that its root has label q, if
a is the label of an internal node (the root inclusive) and b, c are the labels of
its children, then the protocol has a rule of the form {b, c} → {a, ·} (that is,
a rule producing a by an interaction between a b and a c in any direction)5,
and any leaf is labeled from Q0. Observe now that if a path from a leaf to the
root repeats a state a, then we can always replace the subtree of the highest
appearance of a by the subtree of the lowest appearance of a on the path and
still have a production tree for q. This implies that if q has a production tree,
then q also has a production tree of depth at most |Q|, that is, a production
tree having at most 2|Q|−1 leaves, which is a constant number, when compared
to the population size n, that only depends on the protocol. Now, we can call a
state q reachable (by a protocol A) if there is a production tree for it. These are
summarized in the following proposition.

Proposition 2. Let A be a protocol, C0 be any (sufficiently large) initial con-
figuration of A, and q ∈ Q any state that is reachable from C0. Then there is
an initial configuration C ′

0 which is a sub-configuration of C0 of size n′ ≤ 2|Q|−1

such that q is reachable from C ′
0.

Proposition 2 is crucial for proving negative results, and will be invoked in Sect. 4.
5 Whenever we use an unordered pair in a rule, like {b, c}, we mean that the property

under consideration concerns both (b, c) and (c, b).

14 O. Michail and P.G. Spirakis

Proposition 3. Let p be a predicate. There is no protocol that stably computes
p (all nodes eventually agreeing on the output in every fair execution), having
both a reachable output-stable state with output 0 and a reachable output-stable
state with output 1.

An output-stable state q is called disseminating if {x, q} → (q, q), for all
x ∈ Q.

Proposition 4. Let A be a protocol with at least one reachable output-stable
state, that stably computes a predicate p and let Qs ⊆ Q be the set of reachable
output-stable states of A. Then there is a protocol A′ with a reachable dissemi-
nating state that stably computes p.

Theorem 2. Let A be a protocol with a reachable disseminating state q and
let Cd

0 be the subset of its initial configurations that may produce q. Then the
symmetry of A on Cd

0 is Θ(Nmin).

Theorem 2 emphasizes the fact that disseminating states can be exploited for
maximum symmetry. We have omitted its proof, because it is similar to the
proofs of Proposition 1 and Theorem 1. This lower bound on symmetry imme-
diately applies to single-signed linear combinations (where passing a threshold
can safely result in the appearance of a disseminating state, because there are no
opposite-signed numbers to inverse the process), thus, it can be used as an alter-
native way of arriving at Theorem 1. On the other hand, the next proposition
shows that this lower bound does not apply to linear combinations containing
mixed signs, because protocols for them cannot have output-stable states.

Proposition 5. Let p be a predicate of the form
∑

i∈[k] aiNi ≥ c, for integer
constants k ≥ 1, ai, and c ≥ 0 such that at least two ais have opposite signs.
Then there is no protocol, having a reachable output-stable state, that stably
computes p.

4 Harder Predicates

In this section, we study the symmetry of predicates that, in contrast to single-
signed linear combinations, do not allow for output-stable states. In particular,
we focus on linear combinations containing mixed signs, like the majority pred-
icate, and also on modulo predicates like the parity predicate. Recall that these
predicates are not captured by the lower bound on symmetry of Theorem 2.

4.1 Bounds for Mixed Coefficients

We begin with a proposition stating that the majority predicate (also can be
generalized to any predicate with mixed signs) can be computed with sym-
metry that depends on the difference of the state-cardinalities in the initial
configuration.

How Many Cooks Spoil the Soup? 15

Proposition 6. The majority predicate Na − Nb > 0 can be computed with
symmetry min{Nmin, |Na − Nb|}, where Nmin = min{Na, Nb}.
Remark 2. A result similar to Proposition 6 can be proved for any predicate∑

i∈[k] aiNi − ∑
j∈[h] bjN

′
j > c, for integer constants k, h, ai, bj ≥ 1 and c ≥ 0.

Still, as we prove in the following theorem, it is possible to do better in the
worst case, and achieve any desired constant symmetry.

Theorem 3. For every constant k ≥ 1, the majority predicate Na −Nb > 0 can
be computed with symmetry k.

4.2 Predicates that Cannot be Computed with High Symmetry

We now prove a strong impossibility result, establishing that there are predicates
that cannot be stably computed with much symmetry. The result concerns the
parity predicate, defined as n mod 2 = 1. In particular, all nodes obtain the same
input, e.g., 1, and, thus, all begin from the same state, e.g., q1. So, in this case,
Nmin = n in every initial configuration, and we can here estimate symmetry as
a function of n. The parity predicate is true iff the number of nodes is odd. So,
whenever n is odd, we want all nodes to eventually stabilize their outputs to 1
and, whenever it is even, to 0. If symmetry is not a constraint, then there is a
simple protocol that solves the problem [AAD+06]. Unfortunately, not only that
particular strategy, but any possible strategy for the problem, cannot achieve
symmetry more than a constant that depends on the size of the protocol, as we
shall now prove.

Theorem 4. Let A be a protocol with set of states Q, that solves the parity
predicate. Then the symmetry of A is less than 2|Q|−1.

Proof. For the sake of contradiction, assume A solves parity with symmetry
f(n) ≥ 2|Q|−1. Take any initial configuration Cn for any sufficiently large odd
n (e.g., n ≥ f(n) or n ≥ |Q| · f(n), or even larger if required by the protocol).
By definition of symmetry, there is an execution α on Cn that reaches stability
without ever dropping the minimum cardinality of an existing state below f(n).
Call Cstable the first output-stable configuration of α. As n is odd, Cstable must
satisfy that all nodes are in states giving output 1 and that no execution on
Cstable can produce a state with output 0. Moreover, due to the facts that A has
symmetry f(n) and that α is an execution that achieves this symmetry, it must
hold that every q ∈ Q that appears in Cstable has multiplicity Cstable[q] ≥ f(n).

Consider now the initial configuration C2n, i.e., the unique initial configu-
ration on 2n nodes. Observe that now the number of nodes is even, thus, the
parity predicate evaluates to false and any fair execution of A must stabilize to
output 0. Partition C2n into two equal parts, each of size n. Observe that each of
the two parts is equal to Cn. Consider now the following possible finite prefix β
of a fair execution on C2n. The scheduler simulates in each of the two parts the
previous execution α up to the point that it reaches the configuration Cstable.

16 O. Michail and P.G. Spirakis

So, the prefix β takes C2n to a configuration denoted by 2Cstable and consisting
precisely of two copies of Cstable. Observe that 2Cstable and Cstable consist of
the same states with the only difference being that their multiplicity in 2Cstable

is twice their multiplicity in Cstable. A crucial difference between Cstable and
2Cstable is that the former is output-stable while the latter is not. In particular,
any fair execution of A on 2Cstable must produce a state q0 with output 0. But,
by Proposition 2, q0 must also be reachable from a sub-configuration Csmall of
2Cstable of size at most 2|Q|−1. So, there is an execution γ restricted on Csmall

that produces q0.
Observe now that Csmall is also a sub-configuration of Cstable. The reason

in that (i) every state in Csmall is also a state that exists in 2Cstable and, thus,
also a state that exists in Cstable and (ii) the multiplicity of every state in Csmall

is restricted by the size of Csmall, which is at most 2|Q|−1, and every state in
Cstable has multiplicity at least f(n) ≥ 2|Q|−1, that is, Cstable has sufficient
capacity for every state in Csmall. But this implies that if γ is executed on the
sub-configuration of Cstable corresponding to Csmall, then it must produce q0,
which contradicts the fact that Cstable is output-stable with output 1. Therefore,
we conclude that A cannot have symmetry at least f(n) ≥ 2|Q|−1.
�
Remark 3. Theorem 4 constrains the symmetry of any correct protocol for parity
to be upper bounded by a constant that depends on the size of the protocol.
Still, it does not exclude the possibility that parity is solvable with symmetry k,
for any constant k ≥ 1. The reason is that, for any constant k ≥ 1, there might
be a protocol with |Q| > k that solves parity and achieves symmetry k, because
k < 2|Q|−1, which is the upper bound on symmetry proved by the theorem. On
the other hand, the 2|Q|−1 upper bound of Theorem 4 excludes any protocol that
would solve parity with symmetry depending on Nmin.

5 Further Research

In this work, we managed to obtain a first partial characterization of the pred-
icates with symmetry Θ(Nmin) and to exhibit a predicate (parity) that resists
any non-constant symmetry. The obvious next goal is to arrive at an exact char-
acterization of the allowable symmetry of all semilinear predicates.

Some preliminary results of ours, indicate that constant symmetry for parity
can be achieved if the initial configuration has a sufficient number of auxiliary
nodes in a distinct state q0. It seems interesting to study how is symmetry
affected by auxiliary nodes and whether they can be totally avoided.

Another very challenging direction for further research, concerns networked
systems (either static or dynamic) in which the nodes have memory and possibly
also unique IDs. Even though the IDs provide an a priori maximum symmetry
breaking, still, solving a task and avoiding the process of “electing” one of the
nodes may be highly non-trivial. But in this case, defining the role of a process as
its complete local state is inadequate. There are other plausible ways of defining
the role of a process, but which one is best-tailored for such systems is still
unclear and needs further investigation.

How Many Cooks Spoil the Soup? 17

Finally, recall that in this work we focused on the inherent symmetry of a
protocol as opposed to its observed symmetry. One way to study the observed
symmetry would be to consider random parallel schedulers, like the one that
selects in every step a maximum matching uniformly at random from all such
matchings. Then we may ask “What is the average symmetry achieved by a pro-
tocol under such a scheduler?”. In some preliminary experimental results of ours,
the expected observed symmetry of the Count-to-5 protocol (i) if counted until
the alert state q5 becomes an absolute majority in the population, seems to grow
faster than

√
n and (ii) if counted up to stability, seems to grow as fast as log n

(see the full paper for more details).

Acknowledgements. We would like to thank Dimitrios Amaxilatis for setting up and
running experiments for the evaluation of the observed symmetry.

References

[AAD+93] Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic
snapshots of shared memory. J. ACM (JACM) 40(4), 873–890 (1993)

[AAD+06] Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computa-
tion in networks of passively mobile finite-state sensors. Distrib. Comput.
18(4), 235–253 (2006)

[AAER07] Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational
power of population protocols. Distrib. Comput. 20(4), 279–304 (2007)

[AG15] Alistarh, D., Gelashvili, R.: Polylogarithmic-time leader election in popu-
lation protocols. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speck-
mann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 479–491. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-47666-6 38

[Ang80] Angluin, D.: Local and global properties in networks of processors. In:
Proceedings of the 12th Annual ACM Symposium on Theory of Comput-
ing (STOC), pp. 82–93. ACM (1980)

[AR09] Aspnes, J., Ruppert, E.: An introduction to population protocols. In:
Garbinato, B., Miranda, H., Rodrigues, L. (eds.) Middleware for Net-
work Eccentric and Mobile Applications, pp. 97–120. Springer, Heidelberg
(2009)

[AW04] Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations,
and Advanced Topics, vol. 19. Wiley-Interscience, Hoboken (2004)

[CCDS14] Chen, H.-L., Cummings, R., Doty, D., Soloveichik, D.: Speed faults in
computation by chemical reaction networks. In: Kuhn, F. (ed.) DISC 2014.
LNCS, vol. 8784, pp. 16–30. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45174-8 2

[CDS14] Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computa-
tion with chemical reaction networks. Nat. Comput. 13(4), 517–534 (2014)

[CGK+15] Czyzowicz, J., Ga̧sieniec, L., Kosowski, A., Kranakis, E., Spirakis,
P.G., Uznański, P.: On convergence and threshold properties of discrete
Lotka-Volterra population protocols. In: Halldórsson, M.M., Iwama, K.,
Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp.
393–405. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47672-7 32

http://dx.doi.org/10.1007/978-3-662-47666-6_38
http://dx.doi.org/10.1007/978-3-662-45174-8_2
http://dx.doi.org/10.1007/978-3-662-45174-8_2
http://dx.doi.org/10.1007/978-3-662-47672-7_32

18 O. Michail and P.G. Spirakis

[CMN+11] Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis,
P.G.: Passively mobile communicating machines that use restricted space.
Theoret. Comput. Sci. 412(46), 6469–6483 (2011)

[DGFG+11] Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kermarrec, A.-M.,
Ruppert, E., Tran-The, H.: Byzantine agreement with homonyms. In:
Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (PODC), pp. 21–30. ACM (2011)

[DH15] Doty, D., Hajiaghayi, M.: Leaderless deterministic chemical reaction net-
works. Nat. Comput. 14(2), 213–223 (2015)

[Dot14] Doty, D.: Timing in chemical reaction networks. In: Proceedings of the
25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 772–784 (2014)

[FMS98] Flocchini, P., Mans, B., Santoro, N.: Sense of direction: definitions, prop-
erties, and classes. Networks 32(3), 165–180 (1998)

[FSW14] Förster, K.-T., Seidel, J., Wattenhofer, R.: Deterministic leader elec-
tion in multi-hop beeping networks. In: Kuhn, F. (ed.) DISC 2014.
LNCS, vol. 8784, pp. 212–226. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45174-8 15

[JS85] Johnson, R.E., Schneider, F.B.: Symmetry and similarity in distributed
systems. In: Proceedings of the 4th Annual ACM Symposium on Princi-
ples of Distributed Computing (PODC), pp. 13–22. ACM (1985)

[KLO10] Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic
networks. In: Proceedings of the 42nd ACM Symposium on Theory of
Computing (STOC), pp. 513–522. ACM (2010)

[Kra97] Kranakis, E.: Symmetry, computability in anonymous networks: a brief
survey. In: Proceedings of the 3rd International Conference on Structural
Information and Communication Complexity, pp. 1–16 (1997)

[Lyn96] Lynch, N.A.: Distributed Algorithms, 1st edn. Morgan Kaufmann,
Burlington (1996)

[MCS11a] Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population pro-
tocols. Theoret. Comput. Sci. 412(22), 2434–2450 (2011)

[MCS11b] Michail, O., Chatzigiannakis, I., Spirakis, P. G.: New models for popu-
lation protocols. In: Lynch, N.A. (ed.) Synthesis Lectures on Distributed
Computing Theory. Morgan & Claypool (2011)

[MRWW01] Malkhi, D., Reiter, M.K., Wool, A., Wright, R.N.: Probabilistic quorum
systems. Inf. Comput. 170(2), 184–206 (2001)

[MS16] Michail, O., Spirakis, P.G.: Simple and efficient local codes for distributed
stable network construction. Distrib. Comput. 29(3), 207–237 (2016)

[Pel00] Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Soci-
ety for Industrial and Applied Mathematics, Philadelphia (2000). SIAM
monographs on discrete mathematics and applications

[Ske82] Skeen, D.: A quorum-based commit protocol. Technical report, Cornell
University (1982)

[Suo13] Suomela, J.: Survey of local algorithms. ACM Comput. Surv. (CSUR)
45(2), 24 (2013)

[YK96] Yamashita, M., Kameda, T.: Computing on anonymous networks. I. Char-
acterizing the solvable cases. IEEE Trans. Parallel, Distrib. Syst. 7(1),
69–89 (1996)

http://dx.doi.org/10.1007/978-3-662-45174-8_15
http://dx.doi.org/10.1007/978-3-662-45174-8_15

	How Many Cooks Spoil the Soup?
	1 Introduction
	1.1 Our Approach
	1.2 Further Related Work

	2 Preliminaries
	3 Predicates of High Symmetry
	3.1 An Example: Count-to-x
	3.2 A General Positive Result
	3.3 Output-Stable States

	4 Harder Predicates
	4.1 Bounds for Mixed Coefficients
	4.2 Predicates that Cannot be Computed with High Symmetry

	5 Further Research
	References

