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Preface

This volume contains the papers presented at SIROCCO 2016, the 23rd International
Colloquium on Structural Information and Communication Complexity, held during
July 19–21, 2016, in Helsinki, Finland.

This year we received 50 submissions in response to the call for papers. Each
submission was reviewed by at least three reviewers; we had a total of 18 Program
Committee members and 57 external reviewers. The Program Committee decided to
accept 25 papers: 24 normal papers and one survey-track paper. Fabian Kuhn, Yannic
Maus, and Sebastian Daum received the SIROCCO 2016 Best Paper Award for their
work “Rumor Spreading with Bounded In-Degree.” Selected papers will also be invited
to a special issue of the Theoretical Computer Science journal.

In addition to the 25 contributed talks, the conference program included a keynote
lecture by Yoram Moses, invited talks by Keren Censor-Hillel, Adrian Kosowski,
Danupon Nanongkai, and Thomas Sauerwald, and the award lecture by Masafumi
(Mark) Yamashita, the recipient of the 2016 SIROCCO Prize for Innovation in Dis-
tributed Computing.

I would like to thank all authors for their high-quality submissions and all speakers
for their excellent talks. I am grateful to the Program Committee and all external
reviewers for their efforts in putting together a great conference program, to the Steering
Committee chaired by Andrzej Pelc for their help and support, and to everyone who was
involved in the local organization for making it possible to have SIROCCO 2016 in
sunny Helsinki.

Finally, I would like to thank our sponsors for their support: the Federation of
Finnish Learned Societies, Helsinki Institute for Information Technology HIIT, and
Helsinki Doctoral Education Network in Information and Communications Technology
(HICT) provided financial support, Springer not only helped with the publication
of these proceedings but also sponsored the best paper award, Aalto University pro-
vided administrative support and helped with the conference venue, and EasyChair
kindly provided a free platform for managing paper submissions and the production of
this volume.

September 2016 Jukka Suomela
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Laudatio

It is a pleasure to award the 2016 SIROCCO Prize for Innovation in distributed
computing to Masafumi (Mark) Yamashita. Mark has presented many original ideas
and important results that have enriched the theoretical computer science community
and the distributed computing community, such as his seminal work “Computing on
Anonymous Networks” (with T. Kameda), which introduced the notion of “view” and
has inspired all the subsequent investigations on computability in anonymous
networks, as well as his work on coteries, on self-stabilization, and on polling games,
among others.

The prize is awarded for his lifetime achievements, but especially for introducing the
computational universe of autonomous mobile robots to the algorithmic community and
to the distributed community in particular. This has opened a new and exciting research
area that has now become an accepted mainstream topic in theoretical computer science
(papers on “mobile robots” now appear in all major theory conferences and journals)
and clearly in distributed computing. The fascinating new area of research it opened is
now under investigation by many groups worldwide.

The introduction of this area to the theory community was actually made in his
SIROCCO paper [1]. The full version was then published in the SIAM Journal on
Computing [2]. (This paper currently has more than 500 citations.)

The paper deals with the problem of coordination among autonomous robots
moving on a plane. This and subsequent papers on this topic provided the first
indications about which tasks can be accomplished using multiple deterministic,
autonomous, and identical robots in a collaborative manner. The formal model for
mobile robots introduced in the paper (called the Suzuki–Yamashita or SYM model)
provides a nice abstraction that makes it easy to analyze algorithms but still captures
many of the difficulties of coordination between the robots. Many of the recent results on
distributed robotics are based on either this model or extensions of it. The paper
provided the characterization (in terms of geometric pattern formation) of all tasks that
can be performed by such teams of deterministic robots and provided some fundamental
impossibility results including the impossibility of gathering two oblivious robots.
A more recent work [3] extends the characterization to the model where robots are
memory-less, thus showing the exact difference between oblivious robots and robots
having memory.

The 2015 Award Committee1:
Thomas Moscibroda (Microsoft)
Guy Even (Tel Aviv University)
Magnús Halldórsson (Reykjavik University)
Shay Kutten (Technion) – Chair
Andrzej Pelc (Université du Québec en Outaouais)

1 We wish to thank the nominators for the nomination and for contributing greatly to this text.



Selected Publications Related to Masafumi (Mark) Yamashita’s Contribution:

1. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots. In: Proceedings
of the 3rd International Colloquium on Structural Information and Communication
Complexity, Siena, Italy, 6–8 June, pp. 313–330 (1996)

2. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots. SIAM J. Comput.
28(4), 1347–1363 (1999)

3. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theor. Comput. Sci. 411(26–28), 2433–2453 (2010)

4. Dumitrescu, A., Suzuki, I., Yamashita, M.: Motion planning for metamorphic
systems: feasibility, decidability, and distributed reconfiguration. IEEE Trans.
Robot. 20(3), 409–418 (2004)

5. Souissi, S., Defago, X., Yamashita, M.: Using eventually consistent compasses to
gather memory-less mobile robots with limited visibility. ACM Trans. Auton.
Adapt. Syst. 4(1), #9 (2009)

6. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: Forming sequences of geometric
patterns with oblivious mobile robots. Distrib. Comput. 28(2), 131–145 (2015)

7. Fujinaga, N., Yamauchi, Y., Ono, H., Shuji, K., Yamashita, M.: Pattern formation
by oblivious asynchronous mobile robots. SIAM J. Comput. 44(3), 740–785 (2015)
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Towards a Theory of Formal
Distributed Systems

(SIROCCO Prize Lecture)

Masafumi Yamashita

Department of Informatics, Kyushu University, Fukuoka, Japan
mak@inf.kyushu-u.ac.jp

In the title, the word towards means incomplete, immature or not ready for presenting,
and the word formal means unrealistic, imaginary or useless. Please keep them in mind.

One might find similarity between two phenomena, seabirds competing for good
nesting places in a small island and cars looking (or fighting) for parking space.
Regardless of whether conscious or unconscious, they are solving a conflict resolution
problem, which is a well-known problem in distributed computing (in computer sci-
ence). This suggests us there are many (artificial or natural) systems that are in the face
of solving distributed problems.

Lamport and Lynch [1] claimed “although one usually speak of a distributed
system, it is more accurate to speak of a distributed view of a system,” after defining the
word distributed to mean spread across space. This claim seems to imply that every
system is a distributed system at least from the view of atoms or molecules, and may be
in the face of solving a distributed problem, when we concentrate on the distributed
view, like seabirds and cars in the example above.

An abstract distributed view, which we call a formal distributed system (FDS),
describes how system elements interact logically. Our final goal is to understand a
variety of FDSs and compare them in terms of the solvability of distributed problems.

We first propose a candidate for the model of FDS in such a way that it can describe
a wide variety of FDSs, and explain that many of the models of distributed systems
(including ones suitable to describe biological systems) can be described as FDSs.
Compared with other distributed system models, FDSs have two features: First, the
system elements are modeled by points in d-dimensional space, where d can be greater
than 3. Second incomputable functions can be taken as transition functions (corre-
sponding to distributed algorithms).

We next explain some of our ongoing works in three research areas, localization,
symmetry breaking and self-organization. In localization, we discuss the simplest
problem of locating a single element with limited visibility to the center of a line
segment. In symmetry breaking, we observe how elements in 3D space can eliminate
some symmetries. Finally in self-organization, we examine why natural systems appear
to have richer autonomous properties than artificial systems, despite that the latter
would have stronger interaction mechanisms, e.g., unique identifiers, memory, syn-
chrony, and so on.



Reference

1. Lamport, L., Lynch, N.: Distributed computing: models and methods, In: van Leeuwen, J. (ed.)
Handbook of Theoretical Computer Science. Formal Models and Semantics, Chap. 18, vol. B,
pp. 1157–1199. MIT Press/Elsevier (1990)

XII M. Yamashita



A Principled Way of Designing Efficient
Distributed Protocols

(Keynote Lecture)

Yoram Moses

Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
moses@ee.technion.ac.il

The focus of this invited talk is a demonstration of how knowledge-based reasoning can be
used to design an efficient protocol in a stepwise manner. TheKnowledge of Preconditions
principle, denoted by (KoP), can be formulated as a theorem that applies in all the various
distributed systems models [2]. Intuitively, it states that if some condition u is a necessary
condition for process i to perform action α, then, under every protocol that satisfies this
constraint, process i must know u when it performs α. We denote i knowing something
by ‘Ki’.KoP thus states that if u is a necessary condition for i performing α, then Kiu is
also a necessary condition for i performing α. Thus, for example, a process the enters the
critical section (CS) in a mutual exclusion protocol must know that the CS is empty when
it enters. Similarly, if an ATM must only provide cash to a customer that has a sufficient
positive balance, then the ATM must know that the customer has such a balance.

The talk illustrates the design of an unbeatable protocol for Consensus based on the
KoP, along the lines of [1]. Based on the Validity property in the specification. In
Consensus, a process can decide 0 only if some initial value is 0. The KoP immediately
implies that following every correct protocol for Consensus, a process must know of an
initial value of 0 when it decides 0. We consider binary Consensus, in which values are
0 or 1. We seek the optimal rule for deciding 1 in a protocol in which deciding on 0 is
favored, by having every process that knows of a 0 decide 0. The Agreement property
of Consensus implies that a process cannot decide 1 at a point when other processes
decide 0. It follows by KoP that a process that decides 1 must know that nobody is
deciding 0. In particular, it must know that no active process knows of a 0. A com-
binatorial analysis of when a process knows that nobody knows of a 0 is performed,
yielding a natural condition that can be easily computed. The outcome is an elegant and
efficient protocol that strictly dominates all known protocols for Consensus in the
synchronous crash-failure model, which cannot be strictly dominated.

A video of a similar invited talk given in February 2016 appears in IHP talk.

https://www.youtube.com/watch?v=2kFepX_okzE&feature=youtu.be&list=PL9kd4mpdvWcAXmqX4IYC4ttABKEZGxRqz#t=0s


References

1. Castañeda, A., Gonczarowski, Y.A., Moses, Y.: Unbeatable consensus. In: Kuhn, F. (ed.)
DISC 2014. LNCS, vol. 8784, pp. 91–106. Springer, Heidelberg (2014). Full version
available on arXiv

2. Moses,Y.: Relating knowledge and coordinated action: the knowledge of preconditions
principle. In: Proceedings of the 15th Conference on Theoretical Aspects of Rationality and
Knowledge, pp. 207–216 (2015)
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The Landscape of Lower Bounds
for the Congest Model

Keren Censor-Hillel

Technion, Department of Computer Science, Haifa, Israel
ckeren@cs.technion.ac.il

Introduction. We address the classic Congest model of distributed computing [8], in
which n nodes of a network communicate in synchronous rounds, during each of which
they send messages of O(log n) bits on the available links. We focus on solving global
graph problems, which require Ω(D) rounds of communication even in the LOCAL
model in which messages can be of unbounded size. While in the LOCAL model
D rounds suffice for solving these problems by gathering all information at a single
node and solving the problem on its local processor, the Congest model imposes
additional bandwidth restrictions, making such problems harder. Below we discuss
some known lower bounds for global problems in Congest, glimpse into some new
results, and discuss open questions.

Computing the Diameter. One of the lead examples of a global graph problem is that of
computing the diameter. In the Congest model, the diameter can be computed in
O(n) rounds [7, 9], and a beautiful lower bound of Xðn= log nÞ, which we describe
next, is known even for small values of D [5, 7].

In a nutshell, the lower bound is obtained through a reduction from the wellknown
2-party communication complexity problem of set-disjointness, in which Alice and
Bob receive input vectors �x;�y of length k, respectively, and need to output whether
there is an index 1 ≤ i ≤ k for which xi = yi = 1. The reduction is obtained by
constructing a graph of n nodes, with two sets of nodes that are connected by a
complete matching and some additional edges within each set. Alice and Bob are each
responsible for one of the two sets, in terms of simulating the distributed algorithm for
the nodes within that set. Any message that needs to be sent within a set is simulated
locally, and communication is only needed for messages that cross the cut between the
two sets.

The crux is that Alice and Bob add edges within their sets according to their input
vectors, where a 0 input for index i corresponds to adding the corresponding edge. This
is done in a way that promises that the diameter of the resulting graph determines the
answer to the set-disjointness problem. The parameters are taken such that k = Θ(n2),
and since set-disjointness is known to require Ω(k) bits of communication, and the size
of the cut between the two sets of nodes is of size Θ(n) and the message size is of log
n bits, the end result is a lower bound of Xðn= log nÞ rounds.

Keren Censor-Hillel—Supported in part by the Israel Science Foundation (grant 1696/14).



Recently, Abboud et al. [1] introduce a new construction that allows obtaining a
similar near-linear lower bound for computing the diameter. The main technical con-
tribution is a bit-gadget, which allows the cut between the sets of Alice and Bob to be
of size only Θ(log n) and allows taking k = Θ(n), giving a lower bound of Xðn= log2 nÞ.
While this is worse than the previously mentioned bound by a logarithmic factor, the
strength of the bit-gadget is in reducing the size of the cut and having a sparse con-
struction, which then allows improving the state-of-the-art for additional problems: It
gives the first near-linear lower bounds for a ð3=2� �Þ-approximation for the diameter,
for computing or approximating the radius, for approximating all eccentricities, and for
verifying certain types of spanners. These can also be made to work for constant degree
graphs.

Constructing a Minimum Spanning Tree (MST). To exemplify another type of lower
bounds for Congest that uses set-disjointness albeit in a different manner, consider the
problem of finding an MST.

We next describe the key idea of the Xð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n=log n
p þ DÞ-round lower bound of [11].

This bound is given for the problem of subgraph connectivity, which can be easily be
shown to reduce to finding an MST. A base graph is given and some of its edges are
marked to be in the subgraph H, according to the inputs of Alice and Bob. It is shown
that H is connected iff the inputs are not disjoint. To simulate the required distributed
algorithm, Alice and Bob need to exchange information on certain edges of the graph
in a dynamic way. That is, there is no static partition of the nodes between the 2 players
which makes the complexity depend on the size of the cut, but rather the assignment
of the nodes to be simulated changes from round to round and is not a partition. Thus,
while the cut between Alice and Bob’s nodes in each round is large, the used cut is
O(log n), and choosing k ¼ Oðn1=2Þ gives almost the claimed lower bound (for ease of
description, this is a slightly weakened simplification of the lower bound). In our
context, the interesting thing here is that although this is also a reduction from set-
disjointness, the framework is entirely different from the distance computation lower
bounds.

Constructing Additive Spanners. Recently, another type of Congest lower bounds has
been introduced, for constructing additive spanners. Previous work obtains various
spanners in the Congest model [2, 3, 10], and a lower bound of Ω(D) is given in [10].

A +β-pairwise spanner of G is a subgraph S for which, given P�V , for every
u; v 2 P, it holds that dSðu; vÞ� dGðu; vÞ þ b. In addition to algorithms for purely
additive spanners, [4] give lower bounds, of which we describe the X p=n log nð Þ lower
bound for constructing (+2)-pairwise spanners with Pj j ¼ p. Consider here p ¼ n3=2.
Define the (p, m)-partial-complement problem as follows. Alice receives a set x of
p elements in 1; . . .;mf g and Bob needs to output a set y of m / 2 elements in
1; . . .;mf g n x. First, it is proven that (p, m)-partial-complement requires Ω(p) bits of

communication. Then, a distributed algorithm for constructing a +2-spanner is simulated
on the graph that consists of an Erdös graph with girth 6 and Θ(n3/2) edges that is
simulated by Bob, whose nodes are connected by a complete matching to an equal size
independent set of nodes that are simulated by Alice. The only unknown is the set P,
given only to Alice. To decide on an edge of the graph to be omitted from the constructed

XVIII K. Censor-Hillel



spanner, Bob must know that the corresponding pair on Alice’s side is not in P,
otherwise its removal increases the distance between these nodes from 3 to 7, violating
the +2 stretch requirement. Since Bob must remove Θ(n3/2) edges, this implies solving
the (p, m)-partial-complement problem, hence requires X p=n log nð Þ rounds. This gives
a lower bound of a new flavor, where the graph is known to both players, and the
uncertainty only comes from the unknown set of pairs.

Discussion. There are many additional lower bounds that are not described here.
Many specific questions are still open in the above various settings and problems.

One example is that, while our lower bounds for distance computations apply to sparse
graphs, they are far from being planar. It is known that an MST can be computed in
O(D log D) rounds in planar graphs [6], which raises the question of whether distance
computations can be performed faster than the general lower bound as well. Specifi-
cally, can the diameter of planar graphs be computed in o(n/polylog n) rounds?
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What Makes a Distributed Problem
Truly Local?

Adrian Kosowski

Inria and IRIF, CNRS — Université Paris Diderot, 75013 Paris, France
adrian.kosowski@inria.fr

Abstract. In this talk we attempt to identify the characteristics of a task of
distributed network computing, which make it easy (or hard) to solve by means
of fast local algorithms. We look at specific combinatorial tasks within the LOCAL

model of distributed computation, and rephrase some recent algorithmic results
in a framework of constraint satisfaction. Finally, we discuss the issue of effi-
cient computability for relaxed variants of the LOCAL model, involving the
so-called non-signaling property.

In distributed network computing, autonomous computational entities are represented
by the nodes of an undirected system graph, and exchange information by sending
messages along its edges. A major line of research in this area concerns the notion of
locality, and asks how much information about its neighborhood a node needs to
collect in order to solve a given computational task. In particular, in the seminal LOCAL
model [19], the complexity of a distributed algorithm is measured in term of number of
rounds, where in each round all nodes synchronously exchange data along network
links, and subsequently perform individual computations. A t-round algorithm is thus
one in which every node exchanges data with nodes at distance at most t (i.e., at most
t hops away) from it.

Arguably, the most important class of local computational tasks concerns symmetry
breaking, and several forms of such tasks have been considered, including the con-
struction of proper graph colorings [3–9, 11, 15, 17, 18, 22], of maximal independent
sets (MIS) [1, 4, 5, 14, 16, 18], as well as edge-based variants of these problems (cf.
e.g. [21]). In this talk we address the following question: What makes some
symmetry-breaking problems in the LOCAL model easier than others?

We note that the LOCAL model has two flavors, involving the design of deterministic
and randomized algorithms, which are clearly distinct [8]. When considering ran-
domized algorithms, for n-node graphs of maximum degree Δ, a hardness separation
between the randomized complexities of the specific problems of MIS and (Δ + 1)-
coloring has recently been observed [11, 14]. No analogous separation is as yet known
when considering deterministic solutions to these problems. We look at some partial
evidence in this direction, making use of the recently introduced framework of conflict
coloring representations [9] for local combinatorial problems. A conflict coloring
representation captures a distributed task through a set of local constraints on edges

This talk includes results of joint work with: P. Fraigniaud, C. Gavoille, M. Heinrich, and
M. Markiewicz.



of the system graph, thus constituting a special case of the much broader class of
constraint satisfaction problems (CSP) with binary constraints. Whereas all local tasks
are amenable to a conflict coloring formulation, one may introduce a natural constraint
density parameter, which turns out to be inherently smaller for some problems than for
others. For example, for the natural representation of the (Δ + 1)-coloring task, the
constraint density is 1/(Δ + 1), while for any accurate representation of MIS, the
constraint density is at least 1/2. We discuss implications of how low constraint density
(notably, much smaller than 1/Δ) may be helpful when finding solutions to a distributed
task, especially when applying the so-called shattering method [20] in a randomized
setting, and more directly, when designing faster deterministic algorithms through a
direct attack on the conflict coloring representation of the task [9].

We close this talk with a discussion of relaxed variants of the LOCAL model, inspired
by the physical concept of non-signaling. In a computational framework, the
non-signaling property can be stated as the following necessary (but not sufficient)
property of the LOCAL model: for any t > 0, given two subsets of nodes S1 and S2 of the
system graph, such that the distance between the nearest nodes of S1 and S2 is greater
than t, in any t-round LOCAL algorithm, the outputs of nodes from S1 must be (proba-
bilistically) independent of the inputs of nodes from S2. We point out that for a number
of symmetry breaking tasks in the LOCAL model, the currently best known asymptotic
lower bounds can be deduced solely by exploiting the non-signaling property. This is
the case for problems such as MIS [10, 14] or 2-coloring of the ring [10]. On the other
hand, such an implication is not true for, e.g., the Ω(log* n) lower bound on the number
of rounds required to 3-color the ring [15] — this lower bound follows from different
(stronger) properties of the LOCAL model [12, 13]. This leads us to look at the converse
question: How to identify conditions under which non-signaling solutions to a dis-
tributed task can be converted into an algorithm in the LOCAL model? We note some
progress in this respect for quantum analogues of the LOCAL model [2].
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Problems, A Survey
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Abstract. In this article, we focus on the time complexity of computing dis-
tances and shortest paths on distributed networks (the CONGEST model). We
survey previous key results and techniques, and discuss where previous tech-
niques fail and where major new ideas are needed. This article is based on the
invited talk given at SIROCCO 2016. The slides used for the talk are available at
the webpage of SIROCCO 2016 (http://sirocco2016.hiit.fi/programme/#invited).

Keywords: Shortest paths � Graph algorithms � Distributed algorithms

Our focus is on solving the single-source shortest paths problem on undirected
weighted distributed networks. The network is modeled by the CONGEST model, and
the goal is for every node to know its distance to a given source node. The algorithm
should run with the least number of rounds possible (known as time complexity). (See,
e.g., [8] for detailed descriptions.) Through a series of studies (e.g. [1, 3, 4, 8, 10, 11,
12, 14]), we now know that

1. any distributed algorithm with polynomial approximation ratio needs ~Xð ffiffiffi

n
p þ DÞ

rounds [3]1, and
2. there is a deterministic ð1þ �Þ-approximation algorithm that takes ~Oð�Oð1Þð ffiffiffi

n
p þ

DÞÞ rounds [1, 8].
Here, n and D are the number of nodes and the network diameter, respectively, and

~X and ~O hide logOð1Þn factors. The above results imply that we already know the best
number of rounds an approximation algorithm can achieve, modulo some lower-order
terms. The case of exact algorithm is, however, widely open. The best exact algorithm
we know of takes OðnÞ rounds, due to the distributed version of the Bellman-Ford
algorithm. Beating this bound is the first open problem we highlight:

Open problem 1: Is there an algorithm that can solve the single-source shortest paths
(or simply compute the distance between two given nodes) exactly in time that is
sublinear in n, i.e. in ~Oðn1��Þ rounds for some constant �[ 0?

Note that whether we can solve graph problems exactly in sublinear time (in n) is
interesting for many graph problems (e.g. the minimum cut problem [6, 13]).

1 This lower bound holds for randomized algorithms and, in fact, even for quantum algorithms [5].
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An equally interesting question is whether we can solve the all-pairs shortest paths
problem exactly in linear-time (in n). We already know that we can get a ð1þ �Þ-
approximate solution in such running time.

One challenge in answering the above open problems is to avoid computing k-source
h-hop distances. The h-hop distance between nodes u and v, denoted by disthðu; vÞ, is the
(weighted) length of the shortest path among paths between u and v containing at most h
edges. In the k-source h-hop distances problem, we are given k source nodes s1; s2; . . .; sk
and want to make every node u knows its distance to every source node si. An ~Oðk þ nÞ
distributed algorithm for solving this problem was presented in [12] and was an
important subroutine in subsequent algorithms (e.g. [1, 8]). The drawback of this sub-
routine is that it only provides ð1þ �Þ-approximate distances. Unfortunately, obtaining
exact distances within the same running time is impossible, as Lenzen and Patt-Shamir
[11] showed that such algorithm requires ~XðkhÞ rounds.

Another open problem (raised before in [12]) is the directed case (referred to as the
asymmetric case in [12]). This is when we think of each edge ðu; vÞ as two directed
edges, one from u to v and the other from v to u, and the weight of the two edges might
be different. (Note that the directions and edge weight do not affect the communication
between u and v.) Obviously, the lower bound of ~Xð ffiffiffi

n
p þ DÞ [3] for the undirected

case also holds for this case. Using the techniques in [12], we can get a ð1þ �Þ-
approximation ~Xð ffiffiffiffiffiffi

nD
p þ DÞ-time algorithm. If we do not care about the approxima-

tion ratio, and simply want to know whether there is a directed path from the source to
each node (this problem is called single-source reachability), then the running time can
be slightly improved to ~Xð ffiffiffi

n
p

D1=4 þ DÞ [7]
Open problem 2: Is there an algorithm that can solve the directed single-source
shortest paths (or just reachability) with any approximation ratio in ~Oð ffiffiffi

n
p þ DÞ

rounds?

The main challenge in answering this open problem is to avoid the use of sparse
spanner and related structures. A spanner is a subgraph that approximately preserves
the distance between every pairs of nodes. Spanner and other relevant structures, such
as emulator and hopset were used previously as the main tools to obtain tight upper
bounds for the undirected case (see, e.g., [1, 8]). Unfortunately, similar structures do
not exist on directed graphs. A sparse spanner, for example, do not exist for a complete
bipartite graph with edges directed from left to right; removing any edge ðu; vÞ from
such graph will cause the distance from u to v to increase from one to infinity.

The last open problem we highlight is on congested cliques, i.e. when the network
is fully-connected. For approximately solving the single-source shortest paths problem,
we already have a satisfying algorithm with polylogarithmic time and ð1þ �Þ-
approximation ratio [1, 8]. The best ð1þ �Þ-approximation algorithm for all-pairs
shortest paths take ~Oðn0:15715Þ time [2]. For exact solutions, both single-source and all-
pairs shortest paths have the best known running time of ~Oðn1=3Þ [2].
Open problem 3: Can we improve the running time of [2] for solving single-source
shortest paths exactly and all-pairs shortest paths ð1þ �Þ-approximately on congested
cliques?
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The above problem is interesting because of its connection to algebraic techniques. Its
answer might lead us to understand these techniques better. See [2, 9] for algebraic
tools developed so far on congested cliques.
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A Survey on Smoothing Networks

Thomas Sauerwald

Computer Laboratory, University of Cambridge, USA

Abstract. In this talk we will consider smoothing networks (a.k.a. balancing
networks) that accept an arbitrary stream of tokens on input and routes them to
output wires. Pairs of wires can be connected by balancers that direct arriving
tokens alternately to its two outputs. We first discuss some classical results and
relate smoothing networks to their siblings, including sorting and counting
networks. Then we will present some results on randomised smoothing net-
works, where balancers are initialised randomly. Finally, we will explore
stronger notions of smoothing networks including a model where an adversary
can specify the input and the initialisation of all balancers.
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How Many Cooks Spoil the Soup?

Othon Michail1,2(B) and Paul G. Spirakis1,2

1 Department of Computer Science, University of Liverpool, Liverpool, UK
{Othon.Michail,P.Spirakis}@liverpool.ac.uk

2 Computer Technology Institute and Press “Diophantus” (CTI), Patras, Greece

Abstract. In this work, we study the following basic question: “How
much parallelism does a distributed task permit?” Our definition of par-
allelism (or symmetry) here is not in terms of speed, but in terms of
identical roles that processes have at the same time in the execution.
We initiate this study in population protocols, a very simple model that
not only allows for a straightforward definition of what a role is, but
also encloses the challenge of isolating the properties that are due to
the protocol from those that are due to the adversary scheduler, who
controls the interactions between the processes. We (i) give a partial
characterization of the set of predicates on input assignments that can
be stably computed with maximum symmetry, i.e., Θ(Nmin), where Nmin

is the minimum multiplicity of a state in the initial configuration, and
(ii) we turn our attention to the remaining predicates and prove a strong
impossibility result for the parity predicate: the inherent symmetry of
any protocol that stably computes it is upper bounded by a constant that
depends on the size of the protocol.

1 Introduction

George Washington said “My observation on every employment in life is, that,
wherever and whenever one person is found adequate to the discharge of a duty
by close application thereto, it is worse executed by two persons, and scarcely
done at all if three or more are employed therein”. The goal of the present paper
is to investigate whether the analogue of this observation in simple distributed
systems is true. In particular, we ask whether a task that can be solved when a
single process has a crucial duty is still solvable when that (and any other) duty
is assigned to more than one process. Moreover, we are interested in quantifying
the degree of parallelism (also called symmetry in this paper) that a task is
susceptible of.

Leader election is a task of outstanding importance for distributed algo-
rithms. One of the oldest [Ang80] and probably still one of the most commonly
used approaches [Lyn96,AW04,AAD+06,KLO10] for solving a distributed task
in a given setting, is to execute a distributed algorithm that manages to elect

Supported in part by the School of EEE/CS of the University of Liverpool, NeST
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4 O. Michail and P.G. Spirakis

a unique leader (or coordinator) in that setting and then compose this (either
sequentially or in parallel) with a second algorithm that can solve the task by
assuming the existence of a unique leader. Actually, it is quite typical, that the
tasks of electing a leader and successfully setting up the composition enclose the
difficulty of solving many other higher-level tasks in the given setting.

Due to its usefulness in solving other distributed tasks, the leader election
problem has been extensively studied, in a great variety of distributed settings
[Lyn96,AW04,FSW14,AG15]. Still, there is an important point that is much less
understood, concerning whether an election step is necessary for a given task
and to what extent it can be avoided. Even if a task T can be solved in a given
setting by first passing through a configuration with a unique leader, it is still
valuable to know whether there is a correct algorithm for T that avoids this. In
particular, such an algorithm succeeds without the need to ever have less than
k processes in a given “role”, and we are also interested in how large k can be
without sacrificing solvability.

Depending on the application, there are several ways of defining what the
“role” of a process at a given time in the execution is. In the typical approach
of electing a unique leader, a process has the leader role if a leader variable in
its local memory is set to true and it does not have it otherwise. In other cases,
the role of a process could be defined as its complete local history. In such cases,
we would consider that two processes have the same role after t steps iff both
have the same local history after each one of them has completed t local steps. It
could also be defined in terms of the external interface of a process, for example,
by the messages that the process transmits, or it could even correspond to the
branch of the program that the process executes. In this paper, as we shall see,
we will define the role of a process at a given time in the execution, as the entire
content of its local memory. So, in this paper, two processes u and v will be
regarded to have the same role at a given time t iff, at that time, the local state
of u is equal to the local state of v.

Understanding the parallelism that a distributed task allows, is of fundamen-
tal importance for the following reasons. First of all, usually, the more parallelism
a task allows, the more efficiently it can be solved. Moreover, the less symmetry
a solution for a given problem has to achieve in order to succeed, the more vul-
nerable it is to faults. For an extreme example, if a distributed algorithm elects
in every execution a unique leader in order to solve a problem, then a single
crash failure (of the leader) can be fatal.

1.1 Our Approach

We have chosen to initiate the study of the above problem in a very minimal
distributed setting, namely in Population Protocols of Angluin et al. [AAD+06]
(see Sect. 1.2 for more details and references). One reason that makes population
protocols convenient for the problem under consideration, is that the role of a
process at a given step in the execution can be defined in a straightforward
way as the state of the process at the beginning of that step. So, for example,
if we are interested in an execution of a protocol that stabilizes to the correct
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answer without ever electing a unique leader, what we actually require is an
execution that, up to stability, never goes through a configuration in which a
state q is the state of a single node, which implies that, in every configuration
of the execution, every state q is either absent or the state of at least two nodes.
Then, it is straightforward to generalize this to any symmetry requirement k, by
requiring that, in every configuration, every state q is either absent or the state
of at least k nodes.

What is not straightforward in this model (and in any model with adver-
sarially determined events), is how to isolate the symmetry that is only due to
the protocol. For if we require the above condition on executions to be satisfied
for every execution of a protocol, then most protocols will fail trivially, because
of the power of the adversary scheduler. In particular, there is almost always a
way for the scheduler to force the protocol to break symmetry maximally, for
example, to make it reach a configuration in which some state is the state of
a single node, even when the protocol does not have an inherent mechanism of
electing a unique state. Moreover, though for computability questions it is suffi-
cient to assume that the scheduler selects in every step a single pair of nodes to
interact with each other, this type of a scheduler is problematic for estimating
the symmetry of protocols. The reason is that even fundamentally parallel oper-
ations, necessarily pass through a highly-symmetry-breaking step. For example,
consider the rule (a, a) → (b, b) and assume that an even number of nodes are
initially in state a. The goal is here for the protocol to convert all as to bs. If
the scheduler could pick a perfect matching between the as, then in one step
all as would be converted to bs, and additionally the protocol would never pass
trough a configuration in which a state is the state of fewer than n nodes. Now,
observe that the sequential scheduler can only pick a single pair of nodes in
each step, so in the very first step it yields a configuration in which state b is
the state of only 2 nodes. Of course, there are turnarounds to this, for example
by taking into account only equal-interaction configurations, consisting of the
states of the processes after all processes have participated in an equal number
of interactions, still we shall follow an alternative approach that simplifies the
arguments and the analysis.

In particular, we will consider schedulers that can be maximally parallel.
Such a scheduler, selects in every step a matching (of any possible size) of the
complete interaction graph, so, in one extreme, it is still allowed to select only
one interaction but, in the other extreme, it may also select a perfect matching
in a single step. Observe that this scheduler is different both from the sequential
scheduler traditionally used in the area of population protocols and from the
fully parallel scheduler which assumes that Θ(n) interactions occur in parallel
in every step. Actually, several recent papers assume a fully parallel scheduler
implicitly, by defining the model in terms of the sequential scheduler and then
performing their analysis in terms of parallel time, defined as the sequential time
divided by n.
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Finally, in order to isolate the inherent symmetry, i.e., the symmetry that
is only due to the protocol, we shall focus on those schedules1 that achieve as
high symmetry as possible for the given protocol. Such schedules may look into
the protocol and exploit its structure so that the chosen interactions maximize
parallelism. It is crucial to notice that this restriction does by no means affect
correctness. Our protocols are still, as usual, required to stabilize to the cor-
rect answer in any fair execution (and, actually, in this paper against a more
generic scheduler than the one traditionally assumed). The above restriction is
only a convention for estimating the inherent symmetry of a protocol designed
to operate in an adversarial setting. On the other hand, one does not expect
this measure of inherent symmetry to be achieved by the majority of execu-
tions. If, instead, one is interested in some measure of the observed symmetry,
then it would make more sense to study an expected observed symmetry under
some probabilistic assumption for the scheduler. We leave this as an interesting
direction for future research (see Sect. 5 for more details on this).

For a given initial configuration, we shall estimate the symmetry breaking
performed by the protocol not in any possible execution but an execution in
which the scheduler tries to maximize the symmetry. In particular, we shall
define the symmetry of a protocol on a given initial configuration c0 as the
maximum symmetry achieved over all possible executions on c0. So, in order to
lower bound by k the symmetry of a protocol on a given c0, it will be sufficient
to present a schedule in which the protocol stabilizes without ever “electing”
fewer than k nodes. On the other hand, to establish an upper bound of h on
symmetry, we will have to show that in every schedule (on the given c0) the
protocol “elects” at most h nodes. Then we may define the symmetry of the
protocol on a set of initial configurations as the minimum of its symmetries
over those initial configurations. The symmetry of a protocol (as a whole) shall
be defined as a function of some parameter of the initial configuration and is
deferred to Sect. 2.

Observation 1. The above definition leads to very strong impossibility results,
as these upper bounds are also upper bounds on the observed symmetry. In par-
ticular, if we establish that the symmetry of a protocol A is at most h then, it is
clear that under any scheduler the symmetry of A is at most h.

Section 2 brings together all definitions and basic facts that are used through-
out the paper. In Sect. 3, we give a set of positive results. The main result here
is a partial characterization, showing that a wide subclass of semilinear pred-
icates is computed with symmetry Θ(Nmin), which is asymptotically optimal.
Then, in Sect. 4, we study some basic predicates that seem to require much
symmetry breaking. In particular, we study the majority and the parity predi-
cates. For majority we establish a constant symmetry, while for parity we prove
a strong impossibility result, stating that the symmetry of any protocol that
stably computes it, is upper bounded by an integer depending only on the size
of the protocol (i.e., a constant, compared to the size of the system). The latter
1 By “schedule” we mean an “execution” throughout.
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implies that there exist predicates which can only be computed by protocols
that perform some sort of leader-election (not necessarily a unique leader but at
most a constant number of nodes in a distinguished leader role). In Sect. 5, we
give further research directions that are opened by our work. All omitted details
and proofs can be found in the full version.

1.2 Further Related Work

In contrast to static systems with unique identifiers (IDs) and dynamic systems,
the role of symmetry in static anonymous systems has been deeply investigated
[Ang80,YK96,Kra97,FMS98]. Similarity as a way to compare and contrast dif-
ferent models of concurrent programming has been defined and studied in [JS85].
One (restricted) type of symmetry that has been recently studied in systems with
IDs is the existence of homonyms, i.e., processes that are initially assigned the
same ID [DGFG+11]. Moreover, there are several standard models of distributed
computing that do not suffer from a necessity to break symmetry globally (e.g.,
to elect a leader) like Shared Memory with Atomic Snapshots [AAD+93,AW04],
Quorums [Ske82,MRWW01], and the LOCAL model [Pel00,Suo13].

Population Protocols were originally motivated by highly dynamic networks
of simple sensor nodes that cannot control their mobility. The first papers focused
on the computational capabilities of the model which have now been almost com-
pletely characterized. In particular, if the interaction network is complete (as is
also the case in the present paper), i.e., one in which every pair of processes
may interact, then the computational power of the model is equal to the class of
the semilinear predicates (and the same holds for several variations) [AAER07].
Interestingly, the generic protocol of [AAD+06] that computes all semilinear
predicates, elects a unique leader in every execution and the same is true for
the construction in [CDS14]. Moreover, according to [AG15], all known generic
constructions of semilinear predicates “fundamentally rely on the election of
a single initial leader node, which coordinates phases of computation”. Semi-
linearity of population protocols persists up to o(log log n) local space but not
more than this [CMN+11]. If additionally the connections between processes can
hold a state from a finite domain, then the computational power dramatically
increases to the commutative subclass of NSPACE(n2) [MCS11a]. The for-
mal equivalence of population protocols to chemical reaction networks (CRNs),
which model chemistry in a well-mixed solution, has been recently demonstrated
[Dot14]. Moreover, the recently proposed Network Constructors extension of
population protocols [MS16] is capable of constructing arbitrarily complex sta-
ble networks. Czyzowicz et al. [CGK+15] have recently studied the relation of
population protocols to antagonism of species, with dynamics modeled by dis-
crete Lotka-Volterra equations. Finally, in [CCDS14], the authors highlighted
the importance of executions that necessarily pass through a “bottleneck” tran-
sition (meaning a transition between two states that have only constant counts
in the population, which requires Ω(n2) expected number of steps to occur), by
proving that protocols that avoid such transitions can only compute existence
predicates. To the best of our knowledge, our type of approach, of computing
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predicates stably without ever electing a unique leader, has not been followed
before in this area (according to [AG15], “[DH15] proposes a leader-less frame-
work for population computation”, but this should not be confused with what
we do in this paper, as it only concerns the achievement of dropping the require-
ment for a pre-elected unique leader that was assumed in all previous results
for that problem). For introductory texts to population protocols, the interested
reader is encouraged to consult [AR09,MCS11b].

2 Preliminaries

A population protocol (PP) is a 6-tuple (X,Y,Q, I,O, δ), where X, Y , and Q are
all finite sets and X is the input alphabet, Y is the output alphabet, Q is the set
of states, I : X → Q is the input function, O : Q → Y is the output function, and
δ : Q × Q → Q × Q is the transition function.

If δ(a, b) = (a′, b′), we call (a, b) → (a′, b′) a transition. A transition
(a, b) → (a′, b′) is called effective if x �= x′ for at least one x ∈ {a, b} and
ineffective otherwise. When we present the transition function of a protocol we
only present the effective transitions. The system consists of a population V
of n distributed processes (also called nodes). In the generic case, there is an
underlying interaction graph G = (V,E) specifying the permissible interactions
between the nodes. Interactions in this model are always pairwise. In this work,
G is a complete directed interaction graph.

Let Q be the set of states of a population protocol A. A configuration c of
A on n nodes is an element of IN|Q|

≥0 , such that, for all q ∈ Q, c[q] is equal to
the number of nodes that are in state q in configuration c and it holds that∑

q∈Q c[q] = n. For example, if Q = {q0, q1, q2, q3} and c = (7, 12, 52, 0), then, in
c, 7 nodes of the 7 + 12 + 52 + 0 = 71 in total, are in state q0, 12 nodes in state
q1, and 52 nodes in state q2.

Execution of the protocol proceeds in discrete steps and it is determined by
an adversary scheduler who is allowed to be parallel, meaning that, in every step,
it may select one or more pairwise interactions (up to a maximum matching) to
occur at the same time. This is an important difference from classical population
protocols where the scheduler could only select a single interaction per step. More
formally, in every step, a non-empty matching (u1, v1), (u2, v2), . . . , (uk, vk) from
E is selected by the scheduler and, for all 1 ≤ i ≤ k, the nodes ui, vi interact
with each other and update their states according to the transition function δ.
A fairness condition is imposed on the adversary to ensure the protocol makes
progress. An infinite execution is fair if for every pair of configurations c and c′

such that c → c′ (i.e., c can go in one step to c′), if c occurs infinitely often in
the execution then so does c′.

In population protocols, we are typically interested in computing predicates
on the inputs, e.g., Na ≥ 5, being true whenever there are at least 5 as in the
input.2 Moreover, computations are stabilizing and not terminating, meaning
2 We shall use throughout the paper Ni to denote the number of nodes with

input/state i.
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that it suffices for the nodes to eventually converge to the correct output. We
say that a protocol stably computes a predicate if, on any population size, any
input assignment, and any fair execution on these, all nodes eventually stabilize
their outputs to the value of the predicate on that input assignment.

We define the symmetry s(c) of a configuration c as the minimum multi-
plicity of a state that is present in c (unless otherwise stated, in what fol-
lows by “symmetry” we shall always mean “inherent symmetry”). That is,
s(c) = minq∈Q : c[q]≥1{c[q]}. For example, if c = (0, 4, 12, 0, 52) then s(c) = 4, if
c = (1, . . .) then s(c) = 1, which is the minimum possible value for symmetry,
and if c = (n, 0, 0, . . . , 0) then s(c) = n which is the maximum possible value for
symmetry. So, the range of the symmetry of a configuration is {1, 2, . . . , n}.

Let C0(A) be the set of all initial configurations for a given protocol A. Given
an initial configuration c0 ∈ C0(A), denote by Γ (c0) the set of all fair executions
of A that begin from c0, each execution being truncated to its prefix up to
stability.3

Given any initial configuration c0 and any execution α ∈ Γ (c0), define
the symmetry breaking of A on α as the difference between the symmetry
of the initial configuration of α and the minimum symmetry of a configura-
tion of α, that is, the maximum drop in symmetry during the execution. For-
mally, b(A, α) = s(c0) − minc∈α{s(c)}. Also define the symmetry of A on α as
s(A, α) = minc∈α{s(c)}. Of course, it holds that s(A, α) = s(c0) − b(A, α).
Moreover, observe that, for all α ∈ Γ (c0), 0 ≤ b(A, α) ≤ s(c0) − 1 and
1 ≤ s(A, α) ≤ s(c0). In several cases we shall denote s(c0) by Nmin.

The symmetry breaking of a protocol A on an initial configuration c0 can
now be defined as b(A, c0) = minα∈Γ (c0){b(A, α)} and:

Definition 1. We define the symmetry of A on c0 as s(A, c0) =
maxα∈Γ (c0){s(A, α)}.
Remark 1. To estimate the inherent symmetry with which a protocol computes
a predicate on a c0, we execute the protocol against an imaginary scheduler who
is a symmetry maximizer.

Now, given the set C(Nmin) of all initial configurations c0 such that
s(c0) = Nmin, we define the symmetry breaking of a protocol A on C(Nmin)
as b(A, Nmin) = maxc0∈C(Nmin){b(A, c0)} and:

Definition 2. We define the symmetry of A on C(Nmin) as s(A, Nmin) =
minc0∈C(Nmin){s(A, c0)}.
Observe again that s(A, Nmin) = Nmin −b(A, Nmin) and that 0 ≤ b(A, Nmin) ≤
Nmin − 1 and 1 ≤ s(A, Nmin) ≤ Nmin.

3 In this work, we only require protocols to preserve their symmetry up to stability.
This means that a protocol is allowed to break symmetry arbitrarily after stability,
e.g., even elect a unique leader, without having to pay for it. We leave as an inter-
esting open problem the comparison of this convention to the apparently harder
requirement of maintaining symmetry forever.
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This means that, in order to establish that a protocol A is at least g(Nmin)
symmetric asymptotically (e.g., for g(Nmin) = Θ(log Nmin)), we have to show
that for every sufficiently large Nmin, the symmetry breaking of A on C(Nmin)
is at most Nmin − g(Nmin), that is, to show that for all initial configurations
c0 ∈ C(Nmin) there exists an execution on c0 that drops the initial symmetry
by at most Nmin − g(Nmin), e.g., by at most Nmin − log Nmin for g(Nmin) =
log Nmin, or that does not break symmetry at all in case g(Nmin) = Nmin. On
the other hand, to establish that the symmetry is at most g(Nmin), e.g., at most
1 which is the minimum possible value, one has to show a symmetry breaking
of at least Nmin − g(Nmin) on infinitely many Nmins.

3 Predicates of High Symmetry

In this section, we try to identify predicates that can be stably computed with
much symmetry. We first give an indicative example, then we generalize to arrive
at a partial characterization of the predicates that can be computed with max-
imum symmetry, and, finally, we highlight the role of output-stable states in
symmetric computations.

3.1 An Example: Count-to-x

Protocol. Count-to-x: X = {0, 1}, Q = {q0, q1, q2, . . . , qx}, I(σ) = qσ, for all
σ ∈ X, O(qx) = 1 and O(q) = 0, for all q ∈ Q\{qx}, and δ: (qi, qj) → (qi+j , q0),
if i + j < x, (qi, qj) → (qx, qx), otherwise.

Proposition 1. The symmetry of Protocol Count-to-x, for any x = O(1), is at
least (2/3)�Nmin/x� − (x − 1)/3, when x ≥ 2, and Nmin, when x = 1; i.e., it is
Θ(Nmin) for any x = O(1).

Proof. The scheduler4 partitions the q1s, let them be N1(0) initially and denoted
just N1 in the sequel, into �N1/x� groups of x q1s each, possibly leaving an
incomplete group of r ≤ x − 1 q1s residue. Then, in each complete group, it
performs a sequential gathering of x − 3 other q1s to one of the nodes, which
will go through the states q1, q2, . . . , qx−1. The same gathering is performed in
parallel to all groups, so every state that exists in one group will also exist in
every other group, thus, its cardinality never drops below �N1/x�. In the end, at
step t, there are many q0s, Nx−1(t) = �N1/x�, and N1(t) = �N1/x� + r, where
0 ≤ r ≤ x − 1 is the residue of q1s. That is, in all configurations so far, the
symmetry has not dropped below �N1/x�.

Now, we cannot pick, as a symmetry maximizing choice of the scheduler, a
perfect bipartite matching between the q1s and the qx−1s converting them all
to the alarm state qx, because this could possibly leave the symmetry-breaking
residue of q1s. What we can do instead, is to match in one step as many as

4 Always meaning the imaginary symmetry-maximizing scheduler when lower-
bounding the symmetry.
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we can so that, after the corresponding transitions, Nx(t′) ≥ N1(t′) is satisfied.
In particular, if we match y of the (q1, qx−1) pairs we will obtain Nx(t′) = 2y,
Nx−1(t′) = �N1/x� − y, and N1(t′) = �N1/x� − y + r and what we want is

2y ≥ �N1/x� − y + r ⇒ 3y ≥ �N1/x� + r ⇒ y ≥ �N1/x� + r

3
,

which means that if we match approximately 1/3 of the (q1, qx−1) pairs then we
will have as many qx as we need in order to eliminate all q1s in one step and all
remaining qx−1s in another step.

The minimum symmetry in the whole course of this schedule is

Nx−1(t′) = �N1/x� − y = �N1/x� − �N1/x� + r

3

=
2
3
�N1/x� − r

3
≥ 2

3
�N1/x� − x − 1

3
.

So, we have shown that if there are no q0s in the initial configuration, then
the symmetry breaking of the protocol on the schedule defined above is at most
Nmin − ((2/3)�N1/x�− (x−1)/3) = Nmin − ((2/3)�Nmin/x�− (x−1)/3). Next,
we consider the case in which there are some q0s in the initial configuration.
Observe that in this protocol the q0s can only increase, so their minimum car-
dinality is precisely their initial cardinality N0. Consequently, in case N0 ≥ 1
and N1 ≥ 1, and if Nmin = min{N0, N1}, the symmetry breaking of the sched-
ule defined above is Nmin − min{N0, Nx−1(t′)}. If, for some initial configura-
tion, N0 ≥ Nx−1(t′) then the symmetry breaking is Nmin − Nx−1(t′) ≤ Nmin −
((2/3)�N1/x�−(x−1)/3). This gives again Nmin −((2/3)�Nmin/x�−(x−1)/3),
when N1 ≤ N0, and less than Nmin − ((2/3)�Nmin/x� − (x − 1)/3), when
N1 > N0 = Nmin. If instead, N0 < Nx−1(t′) < N1, then, in this case, the
symmetry breaking is Nmin − min{N0, Nx−1(t′)} = N0 − N0 = 0. Finally, if
N0 = n, then the symmetry breaking is 0. We conclude that for every ini-
tial configuration, the symmetry breaking of the above schedule is at most
Nmin − Nx−1(t′) ≤ Nmin − ((2/3)�Nmin/x� − (x − 1)/3), for all x ≥ 2, and
0, for x = 1. Therefore, the symmetry of the Count-to-x protocol is at least
(2/3)�Nmin/x� + (x − 1)/3 = Θ(Nmin), for x ≥ 2, and Nmin, for x = 1. 
�

3.2 A General Positive Result

Theorem 1. Any predicate of the form
∑

i∈[k] aiNi ≥ c, for integer constants
k ≥ 1, ai ≥ 1, and c ≥ 0, can be computed with symmetry more than
�Nmin/(c/

∑
j∈L aj + 2)� − 2 = Θ(Nmin).

Proof. We begin by giving a parameterized protocol (Protocol 1) that stably
computes any such predicate, and then we shall prove that the symmetry of this
protocol is the desired one.

Take now any initial configuration C0 on n nodes and let L ⊆ [k] be the
set of indices of the initial states that are present in C0. Let also qmin be the
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Protocol 1. Positive-Linear-Combination

Q = {q0, q1, q2, . . . , qc}
I(σi) = qai , for all σi ∈ X
O(qc) = 1 and O(q) = 0, for all q ∈ Q\{qc}
δ:

(qi, qj) → (qi+j , q0), if i + j < c

→ (qc, qc), otherwise

state with minimum cardinality, Nmin, in C0. Construct �Nmin/x� groups, by
adding to each group x = c/∑

j∈L aj� copies of each initial state. Observe that
each group has total sum

∑
j∈L ajx = x

∑
j∈L aj = c/∑

j∈L aj�(
∑

j∈L aj) ≥ c.
Moreover, state qmin has a residue rmin of at most x and every other state qi

has a residue ri ≥ rmin. Finally, keep y = (Nmin + rmin)/(x + 1)� − 1 from
those groups and drop the other �Nmin/x� − y groups making their nodes part
of the residue, which results in new residue values r′

j = x(�Nmin/x� − y) + rj ,
for all j ∈ L. It is not hard to show that y ≤ r′

j , for all j ∈ L.
We now present a schedule that achieves the desired symmetry. The schedule

consists of two phases, the gathering phase and the dissemination phase. In the
dissemination phase, the schedule picks a node of the same state from every group
and starts aggregating to that node the sum of its group sequentially, performing
the same in parallel in all groups. It does this until the alarm state qc first
appears. When this occurs, the dissemination phase begins. In the dissemination
phase, the schedule picks one after the other all states that have not yet been
converted to qc. For each such state qi, it picks a qc which infects one after the
other (sequentially) the qis, until Nc(t) ≥ Ni(t) is satisfied for the first time.
Then, in a single step that matches each qi to a qc, it converts all remaining qis
to qc.

We now analyze the symmetry breaking of the protocol in this schedule.
Clearly, the initial symmetry is Nmin. As long as a state appears in the groups,
its cardinality is at least y, because it must appear in each one of them. When a
state qi first becomes eliminated from the groups, its cardinality is equal to its
residue r′

i. Thus, so far, the minimum cardinality of a state is

min{y,min
j∈L

r′
j} = y =

⌈
Nmin + rmin

x + 1

⌉

− 1 >

⌊
Nmin

c/
∑

j∈L aj + 2

⌋

− 2.

It follows that the maximum symmetry breaking so far is less than Nmin −⌊
Nmin

c/
∑

j∈L aj+2

⌋
+ 2.

Finally, we must also take into account the dissemination phase. In this phase,
the qcs are 2y initially and can only increase, by infecting other states, until they
become n and the cardinalities of all other states decrease until they all become
0. Take any state qi �= qc with cardinality Ni(t) when the dissemination phase
begins. What the schedule does is to decrement Ni(t), until Nc(t′) ≥ Ni(t′) is
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first satisfied, and then to eliminate all occurrences of qi in one step. Due to
the fact that Ni is decremented by one in each step resulting in a corresponding
increase by one of Nc, when Nc(t′) ≥ Ni(t′) is first satisfied, it holds that Ni(t′) ≥
Nc(t′) − 1 ≥ Nc(t) − 1 ≥ 2y − 1 ≥ y for all y ≥ 1, which implies that the lower
bound of y on the minimum cardinality, established for the gathering phase, is
not violated during the dissemination phase.

We conclude that the symmetry of the protocol in the above schedule is more
than �Nmin/(c/

∑
j∈L aj + 2)� − 2. 
�

3.3 Output-Stable States

Informally, a state q ∈ Q is called output-stable if its appearance in an execution
guarantees that the output value O(q) must be the output value of the execution.
More formally, if q is output-stable and C is a configuration containing q, then
the set of outputs of C ′ must contain O(q), for all C ′ such that C � C ′, where
‘�’ means reaches in one or more steps. Moreover, if all executions under con-
sideration stabilize to an agreement, meaning that eventually all nodes stabilize
to the same output, then the above implies that if an execution ever reaches a
configuration containing q then the output of that execution is necessarily O(q).

A state q is called reachable if there is an initial configuration C0 and an
execution on C0 that can produce q. We can also define reachability just in
terms of the protocol, under the assumption that if Q0 ⊆ Q is the set of initial
states, then any possible combination of cardinalities of states from Q0 can be
part of an initial configuration. A production tree for a state q ∈ Q, is a directed
binary in-tree with its nodes labeled from Q such that its root has label q, if
a is the label of an internal node (the root inclusive) and b, c are the labels of
its children, then the protocol has a rule of the form {b, c} → {a, ·} (that is,
a rule producing a by an interaction between a b and a c in any direction)5,
and any leaf is labeled from Q0. Observe now that if a path from a leaf to the
root repeats a state a, then we can always replace the subtree of the highest
appearance of a by the subtree of the lowest appearance of a on the path and
still have a production tree for q. This implies that if q has a production tree,
then q also has a production tree of depth at most |Q|, that is, a production
tree having at most 2|Q|−1 leaves, which is a constant number, when compared
to the population size n, that only depends on the protocol. Now, we can call a
state q reachable (by a protocol A) if there is a production tree for it. These are
summarized in the following proposition.

Proposition 2. Let A be a protocol, C0 be any (sufficiently large) initial con-
figuration of A, and q ∈ Q any state that is reachable from C0. Then there is
an initial configuration C ′

0 which is a sub-configuration of C0 of size n′ ≤ 2|Q|−1

such that q is reachable from C ′
0.

Proposition 2 is crucial for proving negative results, and will be invoked in Sect. 4.
5 Whenever we use an unordered pair in a rule, like {b, c}, we mean that the property

under consideration concerns both (b, c) and (c, b).
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Proposition 3. Let p be a predicate. There is no protocol that stably computes
p (all nodes eventually agreeing on the output in every fair execution), having
both a reachable output-stable state with output 0 and a reachable output-stable
state with output 1.

An output-stable state q is called disseminating if {x, q} → (q, q), for all
x ∈ Q.

Proposition 4. Let A be a protocol with at least one reachable output-stable
state, that stably computes a predicate p and let Qs ⊆ Q be the set of reachable
output-stable states of A. Then there is a protocol A′ with a reachable dissemi-
nating state that stably computes p.

Theorem 2. Let A be a protocol with a reachable disseminating state q and
let Cd

0 be the subset of its initial configurations that may produce q. Then the
symmetry of A on Cd

0 is Θ(Nmin).

Theorem 2 emphasizes the fact that disseminating states can be exploited for
maximum symmetry. We have omitted its proof, because it is similar to the
proofs of Proposition 1 and Theorem 1. This lower bound on symmetry imme-
diately applies to single-signed linear combinations (where passing a threshold
can safely result in the appearance of a disseminating state, because there are no
opposite-signed numbers to inverse the process), thus, it can be used as an alter-
native way of arriving at Theorem 1. On the other hand, the next proposition
shows that this lower bound does not apply to linear combinations containing
mixed signs, because protocols for them cannot have output-stable states.

Proposition 5. Let p be a predicate of the form
∑

i∈[k] aiNi ≥ c, for integer
constants k ≥ 1, ai, and c ≥ 0 such that at least two ais have opposite signs.
Then there is no protocol, having a reachable output-stable state, that stably
computes p.

4 Harder Predicates

In this section, we study the symmetry of predicates that, in contrast to single-
signed linear combinations, do not allow for output-stable states. In particular,
we focus on linear combinations containing mixed signs, like the majority pred-
icate, and also on modulo predicates like the parity predicate. Recall that these
predicates are not captured by the lower bound on symmetry of Theorem 2.

4.1 Bounds for Mixed Coefficients

We begin with a proposition stating that the majority predicate (also can be
generalized to any predicate with mixed signs) can be computed with sym-
metry that depends on the difference of the state-cardinalities in the initial
configuration.
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Proposition 6. The majority predicate Na − Nb > 0 can be computed with
symmetry min{Nmin, |Na − Nb|}, where Nmin = min{Na, Nb}.
Remark 2. A result similar to Proposition 6 can be proved for any predicate∑

i∈[k] aiNi − ∑
j∈[h] bjN

′
j > c, for integer constants k, h, ai, bj ≥ 1 and c ≥ 0.

Still, as we prove in the following theorem, it is possible to do better in the
worst case, and achieve any desired constant symmetry.

Theorem 3. For every constant k ≥ 1, the majority predicate Na −Nb > 0 can
be computed with symmetry k.

4.2 Predicates that Cannot be Computed with High Symmetry

We now prove a strong impossibility result, establishing that there are predicates
that cannot be stably computed with much symmetry. The result concerns the
parity predicate, defined as n mod 2 = 1. In particular, all nodes obtain the same
input, e.g., 1, and, thus, all begin from the same state, e.g., q1. So, in this case,
Nmin = n in every initial configuration, and we can here estimate symmetry as
a function of n. The parity predicate is true iff the number of nodes is odd. So,
whenever n is odd, we want all nodes to eventually stabilize their outputs to 1
and, whenever it is even, to 0. If symmetry is not a constraint, then there is a
simple protocol that solves the problem [AAD+06]. Unfortunately, not only that
particular strategy, but any possible strategy for the problem, cannot achieve
symmetry more than a constant that depends on the size of the protocol, as we
shall now prove.

Theorem 4. Let A be a protocol with set of states Q, that solves the parity
predicate. Then the symmetry of A is less than 2|Q|−1.

Proof. For the sake of contradiction, assume A solves parity with symmetry
f(n) ≥ 2|Q|−1. Take any initial configuration Cn for any sufficiently large odd
n (e.g., n ≥ f(n) or n ≥ |Q| · f(n), or even larger if required by the protocol).
By definition of symmetry, there is an execution α on Cn that reaches stability
without ever dropping the minimum cardinality of an existing state below f(n).
Call Cstable the first output-stable configuration of α. As n is odd, Cstable must
satisfy that all nodes are in states giving output 1 and that no execution on
Cstable can produce a state with output 0. Moreover, due to the facts that A has
symmetry f(n) and that α is an execution that achieves this symmetry, it must
hold that every q ∈ Q that appears in Cstable has multiplicity Cstable[q] ≥ f(n).

Consider now the initial configuration C2n, i.e., the unique initial configu-
ration on 2n nodes. Observe that now the number of nodes is even, thus, the
parity predicate evaluates to false and any fair execution of A must stabilize to
output 0. Partition C2n into two equal parts, each of size n. Observe that each of
the two parts is equal to Cn. Consider now the following possible finite prefix β
of a fair execution on C2n. The scheduler simulates in each of the two parts the
previous execution α up to the point that it reaches the configuration Cstable.
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So, the prefix β takes C2n to a configuration denoted by 2Cstable and consisting
precisely of two copies of Cstable. Observe that 2Cstable and Cstable consist of
the same states with the only difference being that their multiplicity in 2Cstable

is twice their multiplicity in Cstable. A crucial difference between Cstable and
2Cstable is that the former is output-stable while the latter is not. In particular,
any fair execution of A on 2Cstable must produce a state q0 with output 0. But,
by Proposition 2, q0 must also be reachable from a sub-configuration Csmall of
2Cstable of size at most 2|Q|−1. So, there is an execution γ restricted on Csmall

that produces q0.
Observe now that Csmall is also a sub-configuration of Cstable. The reason

in that (i) every state in Csmall is also a state that exists in 2Cstable and, thus,
also a state that exists in Cstable and (ii) the multiplicity of every state in Csmall

is restricted by the size of Csmall, which is at most 2|Q|−1, and every state in
Cstable has multiplicity at least f(n) ≥ 2|Q|−1, that is, Cstable has sufficient
capacity for every state in Csmall. But this implies that if γ is executed on the
sub-configuration of Cstable corresponding to Csmall, then it must produce q0,
which contradicts the fact that Cstable is output-stable with output 1. Therefore,
we conclude that A cannot have symmetry at least f(n) ≥ 2|Q|−1. 
�
Remark 3. Theorem 4 constrains the symmetry of any correct protocol for parity
to be upper bounded by a constant that depends on the size of the protocol.
Still, it does not exclude the possibility that parity is solvable with symmetry k,
for any constant k ≥ 1. The reason is that, for any constant k ≥ 1, there might
be a protocol with |Q| > k that solves parity and achieves symmetry k, because
k < 2|Q|−1, which is the upper bound on symmetry proved by the theorem. On
the other hand, the 2|Q|−1 upper bound of Theorem 4 excludes any protocol that
would solve parity with symmetry depending on Nmin.

5 Further Research

In this work, we managed to obtain a first partial characterization of the pred-
icates with symmetry Θ(Nmin) and to exhibit a predicate (parity) that resists
any non-constant symmetry. The obvious next goal is to arrive at an exact char-
acterization of the allowable symmetry of all semilinear predicates.

Some preliminary results of ours, indicate that constant symmetry for parity
can be achieved if the initial configuration has a sufficient number of auxiliary
nodes in a distinct state q0. It seems interesting to study how is symmetry
affected by auxiliary nodes and whether they can be totally avoided.

Another very challenging direction for further research, concerns networked
systems (either static or dynamic) in which the nodes have memory and possibly
also unique IDs. Even though the IDs provide an a priori maximum symmetry
breaking, still, solving a task and avoiding the process of “electing” one of the
nodes may be highly non-trivial. But in this case, defining the role of a process as
its complete local state is inadequate. There are other plausible ways of defining
the role of a process, but which one is best-tailored for such systems is still
unclear and needs further investigation.
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Finally, recall that in this work we focused on the inherent symmetry of a
protocol as opposed to its observed symmetry. One way to study the observed
symmetry would be to consider random parallel schedulers, like the one that
selects in every step a maximum matching uniformly at random from all such
matchings. Then we may ask “What is the average symmetry achieved by a pro-
tocol under such a scheduler?”. In some preliminary experimental results of ours,
the expected observed symmetry of the Count-to-5 protocol (i) if counted until
the alert state q5 becomes an absolute majority in the population, seems to grow
faster than

√
n and (ii) if counted up to stability, seems to grow as fast as log n

(see the full paper for more details).

Acknowledgements. We would like to thank Dimitrios Amaxilatis for setting up and
running experiments for the evaluation of the observed symmetry.
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Abstract. Like distributed systems, biological multicellular processes
are subject to dynamic changes and a biological system will not pass the
survival-of-the-fittest test unless it exhibits certain features that enable
fast recovery from these changes. In most cases, the types of dynamic
changes a biological process may experience and its desired recovery fea-
tures differ from those traditionally studied in the distributed computing
literature. In particular, a question seldomly asked in the context of dis-
tributed digital systems and that is crucial in the context of biological
cellular networks, is whether the system can keep the changing compo-
nents confined so that only nodes in their vicinity may be affected by the
changes, but nodes sufficiently far away from any changing component
remain unaffected.

Based on this notion of confinement, we propose a new metric for mea-
suring the dynamic changes recovery performance in distributed network
algorithms operating under the Stone Age model (Emek and Watten-
hofer, PODC 2013), where the class of dynamic topology changes we con-
sider includes inserting/deleting an edge, deleting a node together with
its incident edges, and inserting a new isolated node. Our main tech-
nical contribution is a distributed algorithm for maximal independent
set (MIS) in synchronous networks subject to these topology changes
that performs well in terms of the aforementioned new metric. Specif-
ically, our algorithm guarantees that nodes which do not experience a
topology change in their immediate vicinity are not affected and that all
surviving nodes (including the affected ones) perform O((C + 1) log2 n)
computationally-meaningful steps, where C is the number of topology
changes; in other words, each surviving node performs O(log2 n) steps
when amortized over the number of topology changes. This is accompa-
nied by a simple example demonstrating that the linear dependency on
C cannot be avoided.

1 Introduction

The biological form of close-range (juxtacrine) message passing relies on desig-
nated messenger molecules that bind to crossmembrane receptors in neighboring
cells; this binding action triggers a signaling cascade that eventually affects gene
expression, thus modifying the neighboring cells’ states. This mechanism should
feel familiar to members of the distributed computing community as it resem-
bles the message passing schemes of distributed digital systems. In contrast to
c© Springer International Publishing AG 2016
J. Suomela (Ed.): SIROCCO 2016, LNCS 9988, pp. 19–34, 2016.
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nodes in distributed digital systems, however, biological cells are not believed
to be Turing complete, rather each biological cell is pretty limited in computa-
tion as well as communication. In attempt to cope with these differences, Emek
and Wattenhofer [13] introduced the Stone Age model of distributed comput-
ing (a.k.a. networked finite state machines), where each node in the network is
a very weak computational unit with limited communication capabilities and
showed that several fundamental distributed computing problems can be solved
efficiently under this model.

An important topic left outside the scope of [13] is that of dynamic topology
changes. Just like distributed digital systems, biological systems may experience
local changes and the ability of the system to recover from these changes is cru-
cial to its survival. However, the desired recovery features in biological cellular
networks typically differ from those traditionally studied in the distributed com-
puting literature. In particular, a major issue in the context of biological cellular
networks, that is rarely addressed in the study of distributed digital systems, is
that of confining the topology changes: while nodes in the immediate vicinity
of a topology change are doomed to be affected by it (hopefully, to a bounded
extent), isolating the nodes sufficiently far away from any topology change so
that their operation remains unaffected, is often critical. Indeed, a biological mul-
ticellular system with limited energy resources cannot afford every cell division
(or death) to have far reaching effects on the cellular network.

In this paper, we make a step towards bringing the models from computer
science closer to biology by extending the Stone Age model to accommodate four
types of dynamic topology changes: (1) deleting an existing edge; (2) inserting
a new edge; (3) deleting an existing node together with its incident edges; and
(4) inserting a new isolated node. We also introduce a new method for mea-
suring the performance of a network in recovering from these types of topology
changes that takes into account the aforementioned confinement property. This
new method measures the number of “computationally-meaningful” steps made
by the individual nodes, which are essentially all steps in which the node partic-
ipates (in the weakest possible sense) in the global computational process. An
algorithm is said to be effectively confining if (i) the runtime of the nodes that
are not adjacent to any topology change is logO(1) n; and (ii) the global runtime
(including all surviving nodes) is (C + 1) logO(1) n, where C is the number of
topology changes throughout the execution. In other words, the global runtime
is logO(1) n when amortized over the number of changes.

Following that, we turn our attention to the extensively studied maximal
independent set (MIS) problem and design a randomized effectively confining
algorithm for it under the Stone Age model extended to dynamic topology
changes. This is achieved by carefully augmenting the MIS algorithm introduced
in [13] with new components, tailored to ensure fast recovery from topology
changes. Being a first step in the study of recovery from dynamic changes under
the Stone Age model, our algorithm assumes a synchronous environment and
it remains an open question whether this assumption can be lifted. Neverthe-
less, this assumption is justified by the findings of Fisher et al. [14] that model
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cellular networks as being subject to a bounded asynchrony scheduler, which is
equivalent to a synchronous environment from an algorithmic perspective.

Paper’s Organization. An extension of the Stone Age model of [13] to dynamic
topology changes is presented in Sect. 2 together with our new method for evalu-
ating the recovery performance of distributed algorithms. In Sect. 3, we describe
the details of our MIS algorithm. Then, in Sect. 4.1, we show that each node not
affected by a topology change will reach an output state in O(log2 n) rounds. In
Sects. 4.2 and 4.3, we finish the analysis of our MIS algorithm by establishing an
O((C + 1) log2 n) upper bound on the global runtime. The runtime of the new
MIS algorithm is shown to be near-optimal in Sect. 5 by proving that the global
runtime of any algorithm is Ω(C). In the full version of the paper, we show that
the runtime of any node u can be further bounded by O((Cu + 1) log2 n), where
Cu is the number of topology changes that occur within O(log n) hops from u.

Related work. The standard model for a network of communicating devices is
the message passing model [28,35]. There are several variants of this model,
where the power of the network has been weakened. Perhaps the best-known
variant of the message passing model is the congest model, where the message
size is limited to size logarithmic in the size of the input graph [35]. A step to
weaken the model further is to consider interference of messages, i.e., a node
only hears a message if it receives a single message per round — cf. the radio
network model [9]. In the beeping model [11,15], the communication capabilities
are reduced further by only allowing to send beeps that do not carry information,
where a listening node cannot distinguish between a single beep and multiple
beeps transmitted by its neighbors.

The models mentioned above focus on limiting the communication but not
the computation, i.e., the nodes are assumed to be strong enough to perform
unlimited (local) Turing computations in each round. Networks of nodes weaker
than Turing machines have been extensively studied in the context of cellular
automata [16,33,41]. While the cellular automata model typically considers the
deployment of finite state machines in highly regular graph structures such as the
grid, the question of modeling cellular automata in arbitrary graphs was tackled
by Marr and Hütt in [31], where a node changes its binary state according
to the densities of its neighboring states. Another extensively studied model
for distributed computing in a network of finite state machines is population
protocols [4] (see also [5,32]), where the nodes communicate through a series of
pairwise rendezvous. Refer to [13] for a comprehensive account of the similarities
and differences between the Stone Age model and the models of cellular automata
and population protocols.

Distributed computing in dynamic networks has been extensively studied [6,
19,23,26,40]. A classic result by Awerbuch and Sipser states that under the
message passing model, any algorithm designed to run in a static network can
be transformed into an algorithm that runs in a dynamic network with only
a constant multiplicative runtime overhead [7]. However, the transformation of
Awerbuch and Sipser requires storing the whole execution history and sending
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it around the network, which is not possible under the Stone Age model. Some
dynamic network papers rely on the assumption that the topology changes are
spaced in time so that the system has an opportunity to recover before another
change occurs [20,21,30]. The current paper does not make this assumption.

The maximal independent set (MIS) problem has a long history in the con-
text of distributed algorithms [3,10,28,29,34,39]. Arguably the most significant
breakthrough in the study of message passing MIS algorithms was the O(log n)
algorithm of Luby [29] (developed independently also by Alon et al. [3]). Later,
Barenboim et al. [8] showed an upper bound of 2O(√

log log n) in the case of poly-
logarithmic maximum degree and an O(log Δ+

√
log n) bound for general graphs.

For growth bounded graphs, it was shown by Schneider et al. [36] that MIS can
be computed in O(log∗ n) time. In a recent work, Ghaffari studied the local com-
plexity of computing an MIS, where the time complexity is measured from the
perspective of a single node, instead of the whole network [17]. In a similar spirit,
we provide, in addition to a global runtime bound, a runtime analysis from the
perspective of a single node in the full version of the paper.

In the radio networks realm, with f channels, an MIS can be computed in
Θ(log2 n/f) + Õ(log n) time [12], where Õ hides factors polynomial in log log n.
The MIS problem was extensively studied also under the beeping model [1,2,37].
Afek et al. [1] proved that if the nodes are provided with an upper bound on
n or if they are given a common sense of time, then the MIS problem can be
solved in O(logO(1) n) time. This was improved to O(log n) by Scott et al. [37]
assuming that the nodes can detect sender collision.

On the negative side, the seminal work of Linial [28] provides a runtime
lower bound of Ω(log∗ n) for computing an MIS in an n-node ring under the
message passing model [28]. Kuhn et al. [22] established a stronger lower bound

for general graphs stating that it takes Ω
(√

log n
log log n

)
+ Ω

(
log Δ

log log Δ

)
rounds

to compute an MIS, where Δ is the maximum degree of the input graph. For
uniform algorithms in radio networks (and therefore, also for the beeping model)
with asynchronous wake up schedule, there exists a lower bound of Ω(

√
n/ log n)

communication rounds [1].
Containing faults within a small radius of the faulty node has been studied

in the context of self-stabilization [18]. An elegant MIS algorithm was developed
under the assumption that the activation times of the nodes are controlled by
a central daemon who activates the nodes one at a time [27,38]. In contrast,
we follow the common assumption that all nodes are activated simultaneously
in each round. In the self-stabilization realm, the performance of an algorithm
is typically measured as a function of some network parameter, such as the
size of the network or the maximum degree, whereas in the current paper, the
performance depends also on the number of failures.

With respect to the performance evaluation, perhaps the works closest to
ours are by Kutten and Peleg [24,25], where the concepts of mending algorithms
and tight fault locality are introduced. The idea behind a fault local mending
algorithm is to be able to recover a legal state of the network after a fault occurs,
measuring the performance in terms of the number of faults. The term tight
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fault locality reflects the property that an algorithm running in time O(T (n))
without faults is able to mend the network in time O(T (F )), where F denotes
the number of faults. The algorithm of Kutten and Peleg recovers an MIS in
time O(log F ), but they use techniques that require nodes to count beyond
constant numbers, which is not possible in the Stone Age model. Furthermore,
they consider transient faults, whereas we consider permanent changes in the
network topology.

2 Model

Consider some network represented by an undirected graph G = (V,E), where
the nodes in V correspond to the network’s computational units and the edges
represent bidirectional communication channels. Adopting the (static) Stone Age
model of [13], each node v ∈ V runs an algorithm captured by the 8-tuple Π =
〈Q, q0, qyes, qno, Σ, σ0, b, δ〉, where Q is a fixed set of states; q0 ∈ Q is the initial
state in which all nodes reside when they wake up for the first time; qyes and
qno are the output states, where the former (resp., latter) represents membership
(resp., non-membership) in the output MIS; Σ is a fixed communication alphabet ;
σ0 ∈ Σ is the initial letter ; b ∈ Z>0 is a bounding parameter ; and δ : Q ×
{0, 1, . . . , b}|Σ| → 2Q×(Σ∪{ε}) is the transition function. For convenience, we
sometimes denote a state transition from q to q′ by (q → q′) and omit the rules
associated with this transition from the notation.

Node v communicates with its neighbors by transmitting messages that con-
sist of a single letter σ ∈ Σ such that the same letter σ is sent to all neighbors.
It is assumed that v holds a port φu(v) for each neighbor u of v in which the last
message (a letter in Σ) received from u is stored. Transmitting the designated
empty symbol ε corresponds to the case where u does not transmit any message.
In other words, when node u transmits the ε letter, the letters in ports φu(v),
for all neighbors v of u, remain unchanged. In the beginning of the execution,
all ports contain the initial letter σ0.

The execution of the algorithm proceeds in discrete synchronous rounds
indexed by the positive integers. In each round r ∈ Z>0, node v is in some
state q ∈ Q. Let �(σ) be the number of appearances of the letter σ ∈ Σ in v’s
ports in round r and let 〈min{�(σ), b}〉σ∈Σ be a Σ-indexed vector whose σ-entry
is set to the minimum between �(σ) and the bounding parameter b. Then the
state q′ in which v resides in round r + 1 and the message σ′ that v sends in
round r (appears in the corresponding ports of v’s neighbors in round r + 1
unless σ′ = ε) are chosen uniformly at random among the pairs in

δ (q, 〈min{�(σ), b}〉σ∈Σ) ⊆ Q × (Σ ∪ {ε}) .

This means that v tosses an unbiased die (with |δ(q, 〈min{�(σ), b}〉σ∈Σ)| faces)
when deciding on q′ and σ′.

To ensure well-defined state transitions, we require that |δ(q, x)| ≥ 1 for all
q ∈ Q and x ∈ {0, 1, . . . , b}|Σ| and say that a state transition is deterministic if
|δ(q, x)| = 1.
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Topology changes. In contrast to the model presented in [13], our network model
supports dynamic topology changes that belong to the following four classes:

1. Edge deletion: Remove a selected edge e = {u, v} from the current graph. The
corresponding ports φu(v) and φv(u) are removed and the messages stored in
them are erased.

2. Edge insertion: Add an edge connecting nodes u, v ∈ V to the current graph.
New ports φu(v) and φv(u) are introduced storing the initial letter σ0 ∈ Σ.

3. Node deletion: Remove a selected node v ∈ V from the current graph with all
its incident edges. The corresponding ports φv(u) of all v’s neighbors u are
eliminated and the messages stored in them are erased.

4. Node insertion: Add a new isolated (i.e., with no neighbors) node to the
current graph. Initially, the node resides in the initial state q0.

We assume that the schedule of these topology changes is controlled by an obliv-
ious adversary. Formally, the strategy of the adversary associates a (possibly
empty) set of topology changes with each round r ∈ Z>0 of the execution so
that the total number of changes throughout the execution, denoted by C, is
finite. This strategy may depend on the algorithm Π, but not on the random
choices made during the execution.

To be precise, each round is divided into 4 successive steps as follows:
(i) messages arrive at their destination ports; (ii) topology changes occur;
(iii) the transition function is applied; and (iv) messages are transmitted. In
particular, a message transmitted by node v in round r will not be read by node
u in round r+1 if edge {u, v} is inserted or deleted in round r+1. It is convenient
to define the adversarial graph sequence G = G1, G2, . . . so that G1 is the initial
graph and Gr+1 is the graph obtained from Gr by applying to it the topology
changes scheduled for round r. By definition, G is fully determined by the initial
graph and the adversarial policy (and vice versa). The requirement that C is
finite implies, in particular, that G admits an infinite suffix of identical graphs.
Let n be the largest number of nodes that co-existed in the same round, i.e.,
n = maxr |V (Gr)|, where V (Gr) is the node set of Gr.

Correctness. We say that node u resides in state q in round r if the state of
u is q at the beginning of round r. The algorithm is said to be in an output
configuration in round r if every node u ∈ Gr resides in an output state (qyes

or qno). The output configuration is said to be correct if the states of the nodes
(treated as their output) correspond to a valid MIS of the current graph Gr.
An algorithm Π is said to be correct if the following conditions are satisfied for
every adversarial graph sequence: (C1) If Π is in a non-output configuration
in round r, then it will move to an output configuration in some (finite) round
r′ > r w.p. 1.1 (C2) If Π is in an output configuration in round r, then this
output configuration is correct (with respect to Gr). (C3) If Π is in an output
configuration in round r and Gr+1 = Gr, then Π remains in the same output
configuration in round r + 1.
1 Throughout, we use w.p. to abbreviate “with probability” and w.h.p. to abbreviate

“with high probability”, i.e., with probability n−c for any constant c.
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Restrictions on the Output States. Under the model of [13], the nodes are not
allowed to change their output once they have entered an output state. On the
other hand, this model allows for multiple output states that correspond to the
same problem output (“yes” and “no” in the MIS case). In other words, it is
required that the output states that correspond to each problem output form a
sink of the transition function. Since our model accommodates dynamic topol-
ogy changes which might turn a correct output configuration into an incorrect
one, we lift this restriction: our model allows transitions from an output state to
a non-output state, thus providing the algorithm designer with the possibility
to escape output configurations that become incorrect. Nevertheless, to prevent
nodes in an output state from taking any meaningful part in the computa-
tion process, we introduce the following new (with respect to [13]) restrictions:
(1) each possible output is represented by a unique output state; (2) a transi-
tion from an output state to itself is never accompanied by a letter transmission
(i.e., it transmits ε); (3) all transitions originating from an output state must
be deterministic; and (4) a transition from an output state must lead either to
itself or to a non-output state.

Runtime. Fix some adversarial graph sequence G = G1, G2, . . . and let η be an
execution of a correct algorithm Π on G (determined by the random choices of
Π). Round r in η is said to be silent if Π is in a correct output configuration and
no topology change occurs in round r. The global runtime of η is the number of
non-silent rounds. Node v is said to be active in round r of η if it resides in a
non-output state, i.e., some state in Q − {qyes, qno}. The (local) runtime of v in
η is the number of rounds in which v is active.

Let Nr(v) be the (inclusive) neighborhood of v and let Er(v) be the edges
incident to v in Gr. Node v is said to be affected under G if either v or one of
its neighbors experienced an edge insertion/deletion, that is, there exists some
round r and some node u ∈ Nr(v) such that Er(u) is not identical to Er+1(u).
Algorithm Π is said to be effectively confining if the following conditions are
satisfied for every adversarial graph sequence G: (1) the expected maximum
local runtime of the non-affected nodes is logO(1) n; and (2) the expected global
runtime is (C +1) · logO(1) n, namely, logO(1) n when amortized over the number
of topology changes. Notice that the bound on the global runtime directly implies
the same bound on the local runtime of any affected node.

3 An MIS Algorithm

Our main goal is to design an algorithm under the Stone Age model for the max-
imal independent set (MIS) problem that is able to tolerate topology changes.
For a graph G = (V,E), a set of nodes I ⊆ V is independent if for all u, v ∈ I,
{u, v} /∈ E. An independent set I is maximal if there is no other set I ′ ⊆ V such
that I ⊂ I ′ and I ′ is independent.

Following the terminology introduced in the model section, we show that
our algorithm is effectively confining. In Sect. 5, we provide a straightforward
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lower bound example that shows that under our model, our solution is within
a polylogarithmic factor from optimal. In other words, the linear dependency
on the number of changes is inevitable. Throughout, the bounding parameter of
our algorithm is 1. This indicates that a node is able to distinguish between the
cases of having a single appearance of a letter σ in some of its ports and not
having any appearances of σ in any of its ports.

The basic idea behind our algorithm is that we first use techniques from [13]
to come up with an MIS quickly and then we fix any errors that the topol-
ogy changes might induce. In other words, our goal is to first come up with a
proportional MIS, where the likelihood of a node to join the MIS is inversely
proportional to the number of neighbors the node has that have not yet decided
their output. We partition the state set of our algorithm into two components.
One of the components contains the input state and is responsible for computing
the proportional MIS. Once a node has reached an output state or detects that it
has been affected by a topology change, it transitions to the second component,
which is responsible for fixing the errors, and never enters an active state of
the first component. One of the reasons behind dividing our algorithm into two
seemingly similar components is that the first component has stronger runtime
guarantees, but requires that the nodes start in a “nice” configuration, whereas
the second component does not have this requirement while providing weaker
runtime bounds.

3.1 The Proportional Component

The component that computes the proportional MIS, called Proportional, fol-
lows closely the design from [13]. The goal of the rest of the section is to introduce
a slightly modified version of their algorithm that allows the non-affected nodes
to ignore affected nodes while constructing the initial MIS.

Proportional consists of states Q = {S,D1,D2, U0, U1, U2,W,L}, where
Qa = Q − {W,L} are referred to as active states and qyes = W and qno = L
as passive states. We set S as the initial state. The communication alphabet is
identical to the set of states; the algorithm is designed so that node v transmits
letter q in round r whenever it resides in state q in round r + 1, i.e., state q was
returned by the application of the transition function in round r.

Let us denote a state transition between states q and q′ by q → q′ omitting
the rules associated with this transition. To ease our notation and to make our
illustrations more readable, we say that each state transition q → q′ is delayed
by a set D = D(q → q′) ⊆ Q of delaying states. For q → q′ the set of delaying
states corresponds to the states in Q−{q} from which there is a state transition
to q. Transition q → q′ being delayed by state q′′ indicates that node v does not
execute transition q → q′ as long as there is at least one letter in its ports that
corresponds to the state q′′. We say that node v in state q is delayed if there is a
neighbor w of v that resides in a state that delays at least one of the transitions
from q, i.e., node v cannot execute some transition because of node w.

The main idea of Proportional is that each node v iteratively competes
against its neighbors and the winner of a competition enters the MIS. Every
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competition, for an active node v and its active neighbors, begins by the nodes
entering state U0. During each round every node in state Uj , j ∈ {0, 1, 2}, assum-
ing that it is not delayed, tosses a fair coin and proceeds to Uj+1 mod 3 if the coin
shows heads and to D2 otherwise. Notice that a competition does not necessarily
start in the same round for two neighboring nodes. The circular delaying logic
of the U -states ensure that node v is always at most one coin toss ahead of its
neighbors. If node v observes that it is the only node in its neighborhood in a
U -state, it enters state W , which corresponds to joining the MIS. In the case
where, due to unfortunate coin tosses, v moves to state D2 along with all of its
neighbors, node v restarts the process by entering state D1.

We call a maximal contiguous sequence of rounds v spends in state q ∈ Qa

a q-turn and a maximal contiguous sequence of turns starting from a D1-turn
and not including another D1-turn a tournament. We index the tournaments
and the turns within the tournament by positive integers. The correctness of
Proportional in the case of no topology changes follows the same line of argu-
ments as in [13].

We note that dynamically adding edges between nodes in states U0, U1, and
U2 could potentially cause a deadlock. To avoid this, we add a state transition,
that is not delayed by any state, from each state Q − {S,L} to state D′ (that is
part of the fixing component explained in Sect. 3.2) under the condition that a
node reads the initial letter S in at least one of its ports. In other words, node v
enters state D′ if an incident edge is added in any round r > 1. Refer to Fig. 1
for a detailed, though somewhat cluttered, illustration. If node v transitions to
state D′ due to this condition being met or if v is deleted while being in an
active state, we say that v is excluded from the execution of Proportional.

3.2 The Greedy Component

Now we extend Proportional to fix the MIS in the case that a topology change
leaves the network in an illegal state. This extension of Proportional is referred
to as the greedy component and denoted by Greedy.

Intuition spotlight: The basic idea is that nodes in states L and W verify
locally that the configuration corresponds to a legal state of the network. If
a node detects that the local configuration does not correspond to an MIS
anymore, it revokes its output and tries again to join the MIS according
to a slightly modified competition logic. The crucial difference is that we
design Greedy without the circular delay logic. The reason behind the design
is twofold: First, we cannot afford long chains of nodes being delayed. Second,
since a dynamic change is only allowed to affect its 1-hop neighborhood, we
cannot maintain the local synchrony similarly to Proportional.

More precisely, the state set of the algorithm is extended by Q2 = {U ′,D′},
where states U ′ or D′ are referred to as active. To detect an invalid configura-
tion, we add the following state transitions from the output states W and L:
a transition from state L to state D′ in case that a node v resides in state L
and does not have any letters W in its ports and a transition from state W to
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Fig. 1. The transition function of our MIS algorithm. The dashed lines correspond
to the transitions that exclude nodes from the execution of Proportional. A state
transition q → q′ is delayed by state q′′ if there is a transition indicated by a dashed
edge or a thin edge from state q′′ to q. A bold edge from q to q′ implies that q′ → q′′

is not delayed by q. As an example, the state transition from D′ to U ′ is not delayed
by state L and conversely, the state transition from D′ to U ′ is delayed by state D1.
Similarly to the other state machine illustrations, the lower case letters in the transition
rules correspond to the number of appearances of the corresponding letter and the rules
associated with the delays are omitted for clarity. If a node v is in state q and none
of the conditions associated with the transitions from q are satisfied (e.g., v is in state
D′, has a neighbor in state U ′, and no neighbors in state W ), then v remains in state
q. These self-loops are omitted from the picture for clarity.

state D′ in case v resides in state W and reads a letter W in its ports. Finally,
to prevent nodes in the active states of Proportional and Greedy from entering
state W at the same time and thus, inducing an incorrect output configuration,
we add a transition from W and U ′ to D′ in case v reads the initial letter S.

The logic of the new states U ′ and D′ is the following: node v in state D′

goes into state U ′ if it does not read the letter U ′ in its ports. Then u and
its neighbors that transitioned from D′ to U ′ during the same round compete
against each other: In every round, v tosses a fair coin and goes back to state D′

if the coin shows tails. We emphasize that nodes in state U ′ are not delayed by
nodes in state D′. Then, if v remains the only node in its neighborhood in state
U ′, it declares itself as a winner and moves to state W . Conversely, if a neighbor
of v wins, v goes into state L.
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Observation 1 (Proof deferred to the full version). A non-affected node is never
in an active state of Greedy.

4 Analysis

The authors of [13] analyze an algorithm very similar to the one induced by
Proportional, showing that its runtime (on a static graph) is O(log2 n) in
expectation and w.h.p. In their analysis, they prove that with a positive constant
probability, the number of edges decreases exponentially from one tournament
to the next.

Intuition spotlight: The dynamic nature of the graph G prevents us from
analyzing the execution of Proportional in the same manner. To overcome
this obstacle, we introduce an auxiliary execution E of Proportional that
turns out to be much easier to analyze, yet serves as a good approximation
for the real execution.

Consider some execution η of Proportional on G and recall that η is deter-
mined by the adversarial graph sequence G and by the coin tosses of the nodes.
We associate with η the auxiliary execution E = E(η) obtained from η by copy-
ing the same coin tosses (for each node) and modifying the adversarial policy by
applying to it the following two rules for i = 1, 2, . . . : (i) If node u is excluded dur-
ing tournament i under η, then, instead, we delete node u immediately following
its last U -turn under E(η). (ii) If node u becomes passive during tournament i
under η and it would have remained active throughout tournament i under E(η),
then we also delete node u immediately following its last U -turn under E(η).

Let Vη(i) and V (i) be the sets of nodes for which tournament i exists under η
and E(η), respectively. Let Xv(i) and Y v(i) denote the number of U -turns of node
v in tournament i under η and E(η), respectively; to ensure that Xv(i) and Y v(i)
are well defined, we set Xv(i) = 0 if v /∈ Vη(i) and Y v(i) = 0 if v /∈ V (i), i.e., if
tournament i does not exist for v under η and E(η), respectively. Let Γη(v, i) and
Γ (v, i) denote the (exclusive) neighborhood of v at the beginning of tournament
i under η and E(η), respectively. Observe that by definition, Γη(v, i) ⊆ Vη(i) and
Γ (v, i) ⊆ V (i). We say that node v wins in tournament i under η if Xv(i) >
Xw(i) for all w ∈ Γη(v, i) and if v is not excluded in tournament i; likewise,
we say that node v wins in tournament i under E(η) if Y v(i) > Y w(i) for all
w ∈ Γ (v, i) and if v is not deleted in tournament i. The following lemma plays a
key role in showing that the number of tournaments in E(η) is at least as large
as that in η.

Lemma 2 (Proof deferred to the full version). If v ∈ V (i) wins in tournament
i under E(η), then v wins in tournament i under η.

4.1 Runtime of Proportional

Next, we analyze the number of tournaments in E(η). Once we have a bound
on the number of tournaments executed in E(η), it is fairly easy to obtain the
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same bound for η. Similarly as before, the set of nodes for which tournament
i exists according to E(η) is denoted by V (i). Furthermore, let Γ (v, i) be the
set of neighbors of v for which tournament i exists in E(η) and let E(i) =⋃

v∈V (i){{v, w} | w ∈ Γ (v, i)} and G(i) = (V (i), E(i)). Notice that G(i) is
defined for the sake of the analysis and the topology of the underlying graph
does not necessarily correspond to Gi in any round round i, where Gi is the ith
element in the adversarial graph sequence.

According to the design of Proportional, no node that once enters a passive
state can enter an active state of Proportional. Furthermore, if any edge is
added adjacent to node v after v has transitioned out of state S, node v will
not participate in any tournament after the addition. Therefore, we get that
V (i + 1) ⊆ V (i) and E(i + 1) ⊆ E(i) for any i. The following lemma plays a
crucial role in the runtime analysis of Proportional.

Lemma 3 (Proof deferred to the full version). There are two constant 0 < p, � <
1 such that |E(i + 1)| ≤ �|E(i)| with probability p.

Theorem 4 (Proof deferred to the full version). In expectation and w.h.p., any
node participates in O(log n) tournaments before becoming passive.

The last step of the analysis of Proportional is to bound the number of
rounds that any node v spends in an active state. Let VMAX(v) denote the
maximal connected component of nodes in active states of Proportional that
contains node v. Consider the following modification of Proportional: before
starting tournament i+1, node v waits for every other node in VMAX(v) to finish
tournament i or to become excluded. Notice that any node that gets inserted
into the graph after node v has exited state S will not be part of VMAX(v). We
do not claim that we know how to implement such a modification, but clearly
the modified process is not faster than the original one.

The length of tournament i is determined by maxv{Xv(i)}. Given that the
random variables Xv(i) are independent and follow the Geom(1/2) distribution,
we get that maxv{Xv(i)} ∈ O(log n) with high probability and in expectation.
Combining with Observation 1, we get the following corollaries.

Corollary 5. Let tv ≥ 1 be the round in which node v is inserted into the graph,
where tv = 1 if v ∈ G1. If v is not deleted, it enters either state W or L by time
tv + O(log2 n) w.h.p. and in expectation.

Corollary 6. The maximum runtime of any non-affected node is O(log2 n) in
expectation and w.h.p.

4.2 The Quality of an MIS

Before we go to the analysis of Greedy, we want to point out that even though
an invalid configuration can be detected locally, a single topology change can
have an influence in an arbitrary subgraph.

We begin the analysis of Greedy by taking a closer look at the properties
of non-affected nodes in the passive states and show that if a node has a high
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degree, it is either unlikely for this node to be in the MIS or that the neighbors
of this node have more than one MIS node in their neighborhoods. Let i be the
index of the tournament in which node v enters state W . We say that node v
covers node w ∈ Γ (v, i) ∪ {v} if w entered state L in tournament i.

Definition 7. The quality q(v) of node v is given by q(v) = |{w ∈ Γ (v, i)∪{v} |
v covers w}|. The quality q(B) of any set of nodes B is defined as

∑
v∈B q(v).

Lemma 8 (Proof deferred to the full version). E[q(v)] ∈ O(log n) for any
node v.

The quality of a node v gives an upper bound on the number of nodes in the
neighborhood of v that are only covered by v. Let v be a node in state L. If t
is the first round such that there are no nodes adjacent to v in state W , we say
that v is released at time t. Similarly, we say that node v in state W is released
if an adjacent edge is added. Every node can only be released once, i.e., node v
counts as released even if it eventually again has a neighboring node in state W
or if it enters state W .

Lemma 9 (Proof deferred to the full version). Let H be the set of nodes that
are eventually released. Then E[|H|] ∈ O(C log n).

4.3 Fixing the MIS

We call a maximal contiguous sequence of rounds in which node v resides in
state U ′ a greedy tournament. Unlike with Proportional, we index these greedy
tournaments by the time this particular tournament starts. In other words, if
node v resides in state D′ in round t − 1 and in state U ′ in round t, we index
this tournament by t. We denote the random variable that counts the number of
transitions from U ′ to itself in greedy tournament t by node v by Xv(t). Notice
that Xv(t) obeys Geom(1/2) unless v is deleted or an adjacent edge is added
during greedy tournament t. We say that a greedy tournament t is active if there
is at least one node v in state U ′ of greedy tournament t.

Observation 10 (Proof deferred to the full version). There are at most O(log n)
rounds in which greedy tournament t is active in expectation and w.h.p.

Lemma 11 (Proof deferred to the full version). The total expected number of
greedy tournaments is O(C log n).

Observation 12 (Proof deferred to the full version). Let k be the total number
of greedy tournaments. There are at most 2k + 2C non-silent rounds without
either (i) at least one node in an active state of Proportional or (ii) an active
greedy tournament.

Next we show that our MIS algorithm, that consists of Proportional and
Greedy, fulfills the correctness properties given in the model section. Then, we
establish that our MIS algorithm is indeed effectively confining.
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Lemma 13 (Proof deferred to the full version). Our MIS algorithm is correct.

Theorem 14 (Proof deferred to the full version). The global runtime of our
MIS algorithm is O((C + 1) log2 n) in expectation.

5 Lower Bound

The runtime of our algorithm might seem rather slow at the first glance, since
it is linear in the number of topology changes. In this section, we show that
one cannot get rid of the linear dependency, i.e., there are graphs where the
runtime of any algorithm grows at least linearly with the number of changes. In
particular, we construct a graph where the runtime of any algorithm is Ω(C).

Let G� be a graph that consists of n nodes and n = 3�. The graph consists
of � components Bi, where Bi is a 3-clique for each 1 ≤ i ≤ �. In addition, let
u1, . . . , u� be a set of nodes such that ui ∈ Bi for every i.

Theorem 15. There exists a graph G and an schedule of updates such that the
runtime of any algorithm on G is Ω(C) in expectation and w.h.p.

Proof. Consider graph G� and the following adversarial strategy. In round 2i −
1 ≥ 1, the adversary deletes node ui, i.e., one of the nodes in component Bi. Our
goal is to show that at least a constant fraction of the first 2C rounds are non-
silent for any C ≤ n/3. Consider round 2i and component Bi. Since the nodes
in component Bi form a clique, their views are identical. Therefore, according to
any algorithm that computes an MIS, their probability to join the MIS is equal,
i.e., 1/3. Thus, the probability that the nodes in Bi − {ui} are not in the MIS
in any round 2j ≤ 2i is at least 1/3.

Let Xi then be the indicator random variable, where Xi = 0 if round i is
silent and 1 otherwise and let X =

∑∞
i Xi be the random variable that counts

the number of non-silent rounds. Since any round 1 ≤ 2i ≤ 2C is non-silent with
at least probability 1/3, we get that E[X] ≥ (1/3)C. Now by applying a Chernoff
bound, we get that P [X < 1/2E[X]] = P [X < (1/2) · (1/3)C] ≤ 2−C/12. Since
C = n/3, we get that P [X < 1/2E[X]] ∈ O(n−k) for any constant k and thus,
the claim follows.
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Abstract. A fundamental question in the setting of anonymous graphs
concerns the ability of nodes to spontaneously break symmetries, based
on their local perception of the network. In contrast to previous work,
which focuses on symmetry breaking under arbitrary port labelings, in
this paper, we study the following design question: Given an anonymous
graph G without port labels, how to assign labels to the ports of G, in
interval form at each vertex, so that symmetry breaking can be achieved
using a message-passing protocol requiring as few rounds of synchronous
communication as possible?

More formally, for an integer l > 0, the truncated view Vl(v) of a node
v of a port-labeled graph is defined as a tree encoding labels encoun-
tered along all walks in the network which originate from node v and
have length at most l, and we ask about an assignment of labels to the
ports of G so that the views Vl(v) are distinct for all nodes v ∈ V , with
the goal being to minimize l.

We present such efficient port labelings for any graph G, and we
exhibit examples of graphs showing that the derived bounds are asymp-
totically optimal in general. More precisely, our results imply the follow-
ing statements.
1. For any graph G with n nodes and diameter D, a uniformly random

port labeling achieves l = O(min(D, log n)), w.h.p.
2. For any graph G with n nodes and diameter D, it is possi-

ble to construct in polynomial time a labeling that satisfies l =
O(min(D, logn)).

3. For any integers n ≥ 2 and D ≤ log2 n − log2 log2 n, there exists a
graph G with n nodes and diameter D which satisfies l ≥ 1

2
D − 5

2
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1 Introduction

Consider a network G in which nodes have no identifiers but ports at each node
of degree d are uniquely labeled with the integers from 1 to d (in any order). A
view from a node v in such a network is a rooted infinite tree defined recursively.
This tree is composed of the views from all the neighbors of v connected to the
root (corresponding to node v) using the edges with the same port labels as the
edges connecting v to their children in graph G.

The concept of a view is useful for many applications as it allows for identi-
fication of the network topology and for breaking of symmetries between nodes.
For example, the topological knowledge which can be gathered by a node of an
anonymous graph running a deterministic algorithm, in a setup defined iden-
tically (uniformly) over nodes, corresponds to its view. More precisely, in an
anonymous communication network, in k rounds, each node can learn up to k
levels of its view. An important question for such applications is to determine
the smallest possible integer l (also called the level of symmetry of G) such that
for all the different views, their subtrees truncated at depth l are also differ-
ent. As observed in [16] in the context of leader election in the LOCAL model,
learning l levels of all the views is sufficient and necessary to determine whether
leader election in the LOCAL model is feasible, hence l determines the number
of communication rounds to elect a leader.

Another example of applications concerns walker-based models of compu-
tation. The information gathered by a walker traversing an anonymous graph,
which does not have the ability to write to its environment, is simply a subtree of
the view from its starting vertex. Hence, for example, rendezvous of deterministic
walkers is only possible if they start from positions with different views.

A lot of the related work so far has considered the question of bounding
the largest possible level of symmetry (taken over all labelings). By contrast, in
this work, we would like to focus on the best case labelings, i.e., those having
the smallest possible level of symmetry. Moreover, we also look at the case of
uniformly random labelings to verify whether the average case is closer to the
best or the worst case.

1.1 Overview of Results

For a graph G with labeling λ, we define the level of symmetry l(G,λ) as the
smallest integer l such that views from any two nodes, truncated at depth l, are
different. If there exists a pair of nodes whose infinite views are equal, we say
that the level of symmetry is infinite. For an unlabeled graph G, we refer to its
level of symmetry as l(G) = minλ l(G,λ), where the minimum is taken over all
port labelings λ of G. We show the following results:
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We first show that, for any graph G with n nodes and diameter D, the level
of symmetry in the best case is O(min(D, log n)) by proposing an algorithm
that labels any graph in such a way that the resulting labeled graph has level of
symmetry O(min(D, log n)). Secondly, we show that a uniformly random labeling
λ achieves level of symmetry l(G,λ) = O(min(D, log n)), w.h.p. Thirdly, we
exhibit examples of graphs showing that these bounds are asymptotically tight
in general.

1.2 Related Work

The notion of view was introduced and first studied by Yamashita and Kameda
in [29] in the context of distributed message passing algorithms. Yamashita and
Kameda proved that if views of two nodes truncated to depth n2 are identical,
then their infinite views are identical [29], where n is the number of nodes of
the network. The bound has been improved to n − 1 by Norris [24]. Although
this bound is asymptotically tight [1,24], it is far from being accurate for many
networks. Hence, one may ask for bounds expressed as a function of different
graph invariants. Fraigniaud and Pelc proved in [15] that if two nodes have the
same views to depth n̂− 1 then their views are the same, where n̂ is the number
of nodes having different views (or equivalently, n̂ is the size of the quotient
graph [29]). For some works on view computation see, e.g., [2,26]. Recently,
Hendrickx [20] proved (for simple graphs with symmetric port labeling) an upper
bound of O(D log(n/D)) on the depth to which views need to be checked in order
to be distinguished, where D is the diameter of the network, leaving the tightness
of this bound as an open problem. A complementary bound of Ω(D log(n/D))
was shown in [9], and independently in [16] for the special case when D = O(1).

View-based approaches have been successfully used when designing algo-
rithms for various network problems, for example in leader election [4,7,
11,12,16,27,30]. In anonymous, port-labeled networks, the time to elect a
leader or to declare the election infeasible is equal to Θ(D + l) [16] hence is
Θ(D log(n/D)) [9,20] for the worst-case port labeling. Our results show that
for the best- and random-case labeling the time of leader election reduces to
O(min(D, log n)).

View-based approaches have also been used for map construction [3,10,12],
rendezvous [6,8,19], and other tasks [14,28].

The result of Norris [24] is indeed more general as it works also for directed
graphs and shows that in directed graphs the level of symmetry is at most n−1.
We may also consider the problem of distinguishing the views of two nodes from
different graphs. We are interested in whether the isomorphism of two views
truncated to a certain depth implies the isomorphism of the infinite views. Krebs
and Verbitsky [23] showed that it is possible to construct two directed graphs,
both with at most n nodes, such that the truncated views of two nodes from
different graphs are isomorphic up to depth (2 − o(1))n.

In port-labeled graphs, the problem of setting the port labels to allow for
quick exploration by a simple agent is well-studied. In most of the existing results,
the considered agent is performing a so-called basic walk which consists in taking
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the port number x + 1 after entering a node via port number x (where x + 1 is
taken modulo the degree of the node). It turns out that it is possible to find a
port labeling such that an agent following the basic walk will explore the given
graph in a number of rounds linear in n [5,13,17,18,21,22]. The question whether
a port labeling allowing the basic walk to visit all the vertices can be assigned
by a mobile agent making only local changes was posed in [13]. Steinová [25]
answered affirmatively by exhibiting an agent with O(log n) bits of memory and
one droppable pebble that assigns such a labeling.

1.3 Preliminaries and Notation

In this work, we consider anonymous port labeled (simple and undirected) net-
works G = (V,E) (the terms graph and network are used interchangeably
throughout) in which the nodes do not have identifiers and each edge {u, v}
has two integers assigned to its endpoints, called the port numbers at u and v,
respectively. The port numbers are assigned in such a way that for each node v
they are pairwise different and they form a consecutive set of integers {1, . . . , d},
where d is the number of neighbors of v in G.

The number of neighbors of v in G is called the degree of v and is denoted by
degG(v). The maximum degree of G (taken over all nodes v) is denoted by Δ(G).
The diameter of G, denoted by D, is the maximum (taken over all pairs of nodes
u and v) length of a shortest path between u and v in G. For a node v ∈ V ,
we write (G, v) to denote the rooted graph G with root v. For any V ′ ⊆ V , we
denote by G[V ′] the subgraph of G induced by V ′ and by G[U ]\G[U ′] graph
G[U ] without the edges that belong to G[U ′]. The set of nodes at distance at
most l from a node v ∈ V is denoted by Nl(v), with N(v) = N1(v). A rooted
subgraph Bl(v) of all nodes and edges reachable from v in a walk of at most
l steps, Bl(v) = (G[Nl(v)]\G[Nl(v)\Nl−1(v)], v), will be called the radius-l ball
around v. We recall the definition of a view [29]. Let G be a graph, v be a node of
G and let λ be a port labeling for G. Given any l ≥ 0, the (truncated) view up to
level l, Vl(v), is defined as follows. V0(v) is a tree consisting of a single node x0.
Then, Vl+1(v) is the port-labeled tree rooted at x0 and constructed as follows.
For every node vi, i ∈ {1, . . . ,degG(v)}, adjacent to v in G there is a child xi of
x0 in Vl+1(v) such that the port number at x0 corresponding to edge {x0, xi}
equals λ(v, vi), and the port number at xi corresponding to edge {x0, xi} equals
λ(vi, v). For each i ∈ {1, . . . ,degG(v)} the node xi is the root of the truncated
view Vl(vi). The view from v in G is the infinite port-labeled rooted tree V(v)
such that Vl(v) is its truncation to level l, for each l ≥ 0.

We will denote by C(G) the number of distinct labelings of a graph G. Notice
that for each node v, its labeling can be defined independently of the other nodes
in degG(v)! different ways, hence if the nodes of the graph were distinguishable
then the number of distinct labelings would be equal to

∏
v∈V degG(v)!. In our

setting, nodes have no identifiers hence C(G) ≤ ∏
v∈V degG(v)!.



Setting Ports in an Anonymous Network 39

Lemma 1. The following bound holds for all l > 1 and all connected graphs G
with more than 2 nodes:

C(Bl(v)) ≤ C(G[Nl(v)]) ≤ (Δ(G[Nl−1(v)]))2|E(G[Nl−1(v)])|

≤ 22|E(Bl(v))| log2 Δ(Bl(v)). (1)

Proof. From the definitions of Nl(v) and Bl(v) we have, for any l, that Bl−1(v)
is a subgraph of G[Nl−1(v)], and G[Nl−1(v)] is a subgraph of Bl(v). This shows
the first and the last inequalities of (1).

Denote H = G[Nl−1(v)]. We have C(H) ≤ ∏
v∈H degH(v)!. The middle

inequality of (1) can be shown using the fact that k! ≤ kk, for all k > 0.

2 Lower Bounds

We start by providing a lower bound based on the following observation. Consider
a graph G with labeling λ. If, for some integer l > 0 and for a pair of distinct
nodes u, v ∈ V , their views truncated to depth l are distinct, but their radius-l
balls are isomorphic (i.e., Vl(u) �= Vl(v) and Bl(u) ≡ Bl(v)), then the labeling
λ around nodes u and v, restricted to their radius-l balls, must be distinct, i.e.,
λ[Bl(u)] �= λ[Bl(v)]. It follows that if the number of isomorphic radius-l balls
around nodes of G exceeds the number of possible labelings of such balls, we
must have l(G) > l. (Here, isomorphism of rooted graphs (H1, v1) and (H2, v2)
is understood as an isomorphism between H1 and H2 which maps v1 into v2.)

Lemma 2. Given a graph G and l > 0, let S ⊆ V be a subset of vertices such
that all radius-l balls around nodes from S are isomorphic to some rooted graph
B, Bl(v) ≡ B. Then, C(B) < |S| =⇒ l(G) > l. 	


The above lemma immediately implies the following two corollaries, the first
of which applies inequality (1).

Corollary 1. Given a connected graph G and l > 0, let S ⊆ V be a subset of
vertices such that all radius-l balls around nodes from S are isomorphic to some
rooted graph B, Bl(v) ≡ B. Then, |E(B)| log2 Δ(B) < 1

2 log2 |S| =⇒ l(G) ≥ l. 	

Corollary 2. When G is a line or a ring, we have l(G) ≥ 1

2 log2 n − 2. 	

Proposition 1. For any integers n ≥ 2 and D ≤ log2 n − log2 log2 n, there
exists a graph G with n nodes and diameter D which satisfies l(G) ≥ 1

2D − 5
2 .

Proof. Assume that D is even. If D < 6 then the claim is trivial hence we assume
that D ≥ 6. It can be easily verified that for D ≤ log2 n − log2 log2 n and n ≥ 2
we have � n−1

D−2� ≥ 4. We construct a wheel graph G from a cycle with n−1 nodes
and a node v connected to x = � n−1

D−2� almost-equidistant nodes s1, s2, . . . , sx on
the cycle (see Fig. 1 for an example). We choose nodes s1, s2, . . . , sx along the
cycle in such a way that the distance between two consecutive nodes si and si+1

(and between sx and s1) on the cycle is either D−1 or D−2. Let ci be a middle
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Fig. 1. Illustration of wheel graph for n = 34 and D = 6.

node of each such path and let cx be a middle node on the path between sx

and s1 (if the path has D − 1 edges then there are two middle nodes). Distance
between any two (not consecutive) ci and cj is exactly D, because the shortest
path goes via v and such not consecutive middle nodes exist because x ≥ 4.
Observe that the diameter of the graph is exactly D, because distance from v
to any node is at most D/2. View from each ci up to depth D/2 − 2 is a path
with D − 3 nodes. There are 2D−4 possible labellings of such paths because at
each vertex, different from ci, we can either put port 1 towards ci or away from
ci. Observe that

2D−4 ≤ 1
16

2log2 n−log2 log2 n =
n

16 log2 n
<

⌊
n − 1
D − 2

⌋

.

Hence, by the pigeonhole principle, for at least two different nodes ci, cj their
respective views up to depth D/2 − 2 are equal. Now observe that the view
from the central node v is unique already at depth 1 hence by [20, Lemma 4],
views from any pair of nodes is unique up do depth D + 1. This shows that
l(G) ≥ D/2 − 2.

If D is odd we construct the wheel graph on n− 1 nodes and diameter D − 1
and attach an extra node w to one of the middle nodes c. The construction of the
wheel graph is possible because � n−2

D−3� ≥ 4 holds true under our assumptions.

We disregard the subpath to which we attach node w hence we obtain
⌊

n−2
D−3

⌋
−1

paths of length D − 4. Similarly as in the previous case we have 2D−5 possible
labelings of the paths and

2D−5 ≤ 1
32

2log2 n−log2 log2 n =
n

32 lg n
<

⌊
n − 2
D − 3

⌋

− 1.



Setting Ports in an Anonymous Network 41

Hence for odd D we obtain that l(G) ≥ (D − 1)/2 − 2.

3 Upper Bounds

In this section we want to propose algorithms for labeling of general graphs that
will guarantee that all views up to certain depths will be distinct.

We will start by describing a simple procedure Greedy for labeling the ports
of the graph. We start with a non-empty set X of nodes such that for any pair
of nodes u, v ∈ X, if there is an edge between u and v then it has already been
labeled (i.e., both ends of the edge have been labeled). Procedure Greedy labels
all the remaining edges.

Procedure Greedy: We pick any node v /∈ X and adjacent to some node from X.
We label all the edges between v and the nodes from X (in any order) by choosing
the smallest available label at both endpoints of such edges and we add v to X.
Repeat until all edges are labeled.

Let us also define two invariants. We will show that procedure Greedy main-
tains those invariants.

Invariants (∗): If at some step vertex x ∈ X has α neighbors in X then it has
port labels from 1 to α used to label the edges to these neighbors. The second
invariant states that each x ∈ X has at least one neighbor in X.

Lemma 3. If set X satisfies invariants (∗) then procedure Greedy used with X
as the initial set, labels all the remaining edges without using label pair (1, 1) on
any newly labeled edge.

Proof. Since graph G is connected then by repeating procedure Greedy we label
all the edges of the graph.

In a single step we pick a vertex y not in X, but adjacent to some vertices
from X, we label all the edges connecting y to vertices from X using the first
available port numbers hence the invariant is maintained. From the invariant,
port pair (1, 1) will not be used on any edge labeled by the procedure Greedy.

Theorem 1. For any graph G of diameter D, we have l(G) ≤ D+1. Moreover,
a labeling λ such that l(G,λ) ≤ D + 1 can be constructed in polynomial time.

Proof. We want to first show a procedure assigning labels in any graph in such
a way that there always exists a node with a unique view up to depth 1. The
rest follows from [20, Lemma 4] because then each view up do depth D + 1 is
unique.

Take any graph G with at least 2 edges. If G has a leaf (i.e., a node with
degree 1) we assign label 1 to both endpoints of its unique incident edge. In this
case we define set X to initially contain both endpoints of the edge.

On the other hand if G has no leaf then it has a cycle. We take this cycle
(call it C) and label both endpoints of its edges with port numbers 1 and 2 as
in Fig. 2. We fix an arbitrary node v from cycle C and label its outgoing edges
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Fig. 2. Labeling of cycle C.

with label pairs (1, 1) and (2, 2). All other edges of cycle C get labeled with label
pairs (1, 2). If there are other edges in G between the nodes of the cycle their
labels are chosen by simply taking the first available label. In this case set X is
defined to initially contain all nodes of the cycle. Observe that in both cases all
edges with both endpoints in X have already been labeled.

The remaining labels are chosen by repeating procedure Greedy.
Since invariants (∗) are satisfied at the beginning of the procedure then pro-

cedure Greedy will not put port numbers (1, 1) on any newly labeled edge.
Now observe that in the first case the view from the leaf is unique and in the

second case the view from v is unique already at depth 1.

For a given orientation G of the edges of G, we denote by indegG(v)
(outdegG(v)) the number of oriented edges entering (leaving) a vertex v. We
also denote by N l(v) ⊆ Nl(v) the subset of nodes reachable from v by following
an outward-oriented path of at most l edges, starting from node v. Likewise, the
radius-l out-ball of v is defined as Bl(v) = (G[N l(v)]\G[N l(v)\N l−1(v)], v).

Lemma 4. Let λ be a port labeling of G chosen uniformly at random. Then, for
any pair of distinct nodes u, v ∈ V and any orientation G of G, we have under
labeling λ:

Pr[Vl(u) = Vl(v)] ≤
⎛

⎝
∏

w∈N l(v)

(
(indegBl(v)

(w) − 1)! degG(w)
)
⎞

⎠

−1/2

.

Proof. We consider a process in which the labels of all ports at all nodes in λ are
treated as initially covered cards with numbers written on their backs. Each node
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of degree d hands out a perfectly shuffled set of d cards with numbers {1, . . . , d}
written on their backs to the d ports adjacent to it. We consider a process in
which we sequentially consider edges of G (in some, possibly adaptive order), and
in each time step uncover the cards at both ports of both endpoints of the edge.
By pt(w) we denote the indegree of w with respect to covered incoming edges of
G, only, at the start of the t-th time step (initially, p1(w) = indegBl(v)

(w)). By

qt(w) we denote a variable defined as qt(w) = degG(w)
indegBl(v)(w) if all edges adjacent to

w are covered at time t, and qt(w) = 1 otherwise. For any pair of nodes u, v and
integer i we define a subgraph VPMu(Bi(v)) as a “view preserving mapping” of
Bi(v). We build VPMu(Bi(v)) in the following way. We take all directed paths of
length i starting at v. For each such path we search for isomorphic with respect
to λ path starting from u. Whenever such a path exists, we add its edges to
VPMu(Bi(v)). If for some path P from v there is no isomorphic path from u
then we will say that the path corresponding to P is empty (in this case we
immediately distinguish views of u and v at depth i). We denote by St the event
that after t steps of the process the views from u and v are equal.

The process proceeds in l stages, and we assume that at the beginning of
the i-th stage, i = (1, 2, . . . , l), all edges from Bi(v) ∪ VPMu(Bi(v)) have been
uncovered. In the i-th stage of the process, we sequentially consider edges con-
necting node pairs {wi−1, wi}, where wi−1 ∈ N i−1(v), wi ∈ N i(v), such that
the edge {wi−1, wi} ∈ E(G) is oriented from wi−1 towards wi in E(G).

By the definition of our process, some shortest oriented path P = (v =
w0, w1, . . . , wi−1, wi), with wj ∈ N j(v)\N j−1(v), has already been uncovered
save for its last edge {wi−1, wi}, and so has the unoriented path P ′ originat-
ing at u and isomorphic to the unoriented version of P . If edge {wi−1, wi} is
still uncovered, we uncover it together with its (possibly uncovered) counterpart
{w′

i−1, w
′
i} in path P . (Remark that if wi = w′

i, then we have an immediate dis-
tinction of the two considered views.) We observe that if two edges are uncovered
in the current step t, then we have:

Pr[St] ≤ 1
max{pt(wi)qt(wi), pt(w′

i)qt(w′
i)}

Pr[St−1]

with pt+1(wi) = pt(wi) − 1, pt+1(w′
i) = pt(w′

i) − 1, and pt+1(x) = pt(x) for all
other nodes x; we also set qt+1(wi) = qt+1(w′

i) = 1 and qt+1(x) = qt(x) for all
other nodes x. However, if edge {w′

i−1, w
′
i} was already previously uncovered,

then we have:
Pr[St] ≤ 1

pt(wi)qt(wi)
Pr[St−1]

with pt+1(wi) = pt(wi) − 1, and pt+1(x) = pt(x) for all other nodes x; we also
set qt+1(wi) = 1 and qt+1(x) = qt(x) for all other nodes x. Denoting Πt =∏

w∈Bl(v)
(pt(w)!qt(w)), we notice that in both cases the following inequality

holds:

Pr[St] ≤
√

Πt+1

Πt
Pr[St−1]



44 R. Klasing et al.

By combining the above inequalities over all l phases of the process, in the final
step m of the process we have Πm = 1 and we eventually obtain:

Pr[Vl(u) = Vl(v)] = Pr[Sl] ≤ Π
−1/2
1 ,

which, taking into account the definition of Π1, p1, and q1, is exactly the claim
of the lemma.

Choosing as G a BFS-out-orientation from vertex v (with edges within BFS
levels arbitrarily oriented), we have N l(v) = Nl(v), and we obtain the following
corollary that follows directly from Lemma 4.

Corollary 3. Let λ be a port labeling of G chosen uniformly at random. Then,
for any pair of distinct nodes u, v ∈ V , we have under labeling λ:

Pr[Vl(u) = Vl(v)] ≤
∏

w∈Nl(v)

(degG(w))−1/2.

We use the above to show the following theorem.

Theorem 2. There exists an absolute constant c such that, for any graph G
with n nodes and diameter D, a uniformly random labeling λ satisfies l(G,λ) ≤
cmin{D, log2 n}, w.h.p.1

Proof. Let us call any node with degree at least 2 a non-leaf. In our proof we
will consider two cases. First assume that in G there are at least 6 log2 n non-
leaves. Let l = min{6 log2 n+1,D}. For any v, in Bl(v) there are at least 6 log2 n
non-leaves. Hence by Corollary 3, for any u, v we have Pr[Vl(u) = Vl(v)] ≤ n−3.
By taking a union bound over all pairs of vertices we get that with probability
at least n−1 all pairs of vertices are distinguished within radius l.

Now, consider the case where in G there are less than 6 log2 n non-leaves.
Then the diameter of G is at most 6 log2 n + 1. We will first compute the prob-
ability that all pairs of non-leaves can be distinguished within radius D. Let us
fix any pair of different non-leaves u, v and compute the probability that, under
random labeling, their views are equal up do depth D. We will, similarly as in the
proof of Lemma 4 expose the port labels sequentially. If degG u �= degG v then u
and v are distinguished within radius 1. Among non-leaves there exists a node u′

(possibly equal to u, but different from v) with degree at least n/(6 log2 n) − 1.
Take the shortest path P from u to u′. At every edge of P expose the port label
of the port closer to u (the other port remains covered). Consider a path P ′ that
has the same port numbers on the exposed ports but it starts at v. If the views
of u and v are to be equal, P ′ must lead to another vertex with degree at least
n/(6 log2 n) − 1, call it v′. If u′ = v′, the views are already distinguished by the
properties of the port labeling. Otherwise observe that the last ports on paths
P and P ′ have to be equal, and since there are at least n/(6 log2 n) − 1 possi-
bilities, then it is equal with probability at most 6 log2 n/(n − 6 log2 n). Hence

1 With high probability means here with probability at least 1 − O(polylogn/n).
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Pr[Vl(u) = Vl(v)] ≤ 6 log2 n/(n − 6 log2 n). By taking the union bound over all
non-leaves we get that with probability at least 1 − 108 log32 n/(n − 6 log2 n) all
pairs of non-leaves are distinguished within radius D. This finishes the proof
because the leaves can be distinguished using their unique neighbor (which is a
non-leaf).

We remark that for a graph constructed from two equal stars connected with
an edge, the probability that the centers are indistinguishable (to any depth) is
4/(n − 2). Hence the probability in our bound can be improved by at most a
polylogarithmic factor.

The labelings given by Theorem 2 are non-constructive. By Theorem 1, we
know how to constructively obtain a labeling λ satisfying l(G,λ) = O(D). We
now show how to constructively obtain l(G,λ) = O(log n). As a warmup exercise,
we first perform the construction for the case when G is a path.

Proposition 2. When G is a path, it is possible to construct in polynomial time
a labeling λ such that l(G,λ) = O(log n).

Proof. Encode the sequence of integers 1 ∗ 2 ∗ . . . ∗ on the ports of the path in
binary, using a bit coding convention: 0 = aa, 1 = ab, ∗ = abbabbba. Here, a
means an edge with identical port labels at its endpoints, and b an edge with
different ones.

We want to show that under such a labeling, within radius l = 2 log2 n + 12,
each node has a unique view. We can see the view from a node as a string of
a and b. Observe that if the view has depth l, then it contains at least two
complete sequences ∗. Moreover, this sequence ∗ is the only place in the string
that contains at least 2 consecutive b-s hence it can be identified. Since, sequence
∗ is not a palindrome, then it allows to determine the orientation of the string.
The substring between the two sequences ∗ can then be correctly decoded as a
number. From the value of the number and the position of the node with respect
to the first node encoding this number, we can uniquely determine the position
of the node on the path. Hence the view up to depth l distinguishes all the nodes
of the path.

Using the result for paths we can construct for any graph a labeling that yields
logarithmic level of symmetry.

Proposition 3. For any graph G, it is possible to construct in polynomial time
a labeling λ such that l(G,λ) = O(log n).

Proof. If D = O(log n), then the statement follows from Theorem 1. We assume
here that D ≥ 4 (log2 n + 1).

Let x = 2�log2 n�+15 and let S be a set of vertices in G that form a maximal
independent set in G2x. Such a set can be constructed in polynomial time. For
any vertex v we can then find a vertex s ∈ S that is at distance at most 2x to v.
Moreover any two vertices s, s′ ∈ S are at distance more than 2x. Each s ∈ S can
be seen a cluster center and the ball of radius 2x around s is its cluster. Note,
that our clusters are not necessarily disjoint but each cluster center belongs to
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exactly one cluster and balls of radius x from each cluster center are disjoint.
Hence, for each s ∈ S we can assign a simple path Ps (starting in s) of length
x in such a way that for any s, s′ ∈ S, their paths Ps and Ps′ are disjoint. For
each s, we will label ports along path Ps using only port labels 1 and 2. We pick
an arbitrary order s1, s2, . . . , sk of the cluster centers. For each si, we write its
identifier i on the path Psi

using port labels 1 and 2 using the same coding as
in the proof of Proposition 2. On Psi

we write ∗i∗, where ∗ = abbabbba and i is
encoded in binary where 0 = aa and 1 = bb. Here a means an edge with identical
port endpoints, and b an edge with different ones. We label the path in such a
way that the first a of each encoding is always a pair (1, 1) (the encoding defines
the remaining labels). If the encoding ends with pair (2, 2), we label one more
edge with port pair (1, 1). The length of the whole encoding is then at most
2�log2 n� + 15 hence the length of the path is sufficient. Let P̄si

be the subpath
of Psi

containing exactly the edges used to encode the identifier ∗i∗ (possibly
together with the additional edge).

The remaining edges are labeled as follows. We start with a set X of all the
nodes whose at least one adjacent edge has been labeled. First we label all edges
connecting two vertices from X, by picking the smallest available port number at
both endpoints. We will not use port 1 because it has been used along the paths.
Now all the remaining edges are labeled using procedure Greedy. Observe that
now set X satisfies invariants (∗) hence by using procedure Greedy, we can label
the remaining edges without putting port pair (1, 1) on any newly labeled edge.

Now we want to show that under such labeling, all nodes have distinct views
up to depth 3x. To show that all the views are distinct, for any node v we will find
a tag i.e. a labeled path in the view of v that will not appear in the view of any
other node. In the view up to depth 3x, vertex v has at least one cluster center
s ∈ S and its whole path P̄s. In labeled ball B3x(v) we identify the set P of all
paths induced by edges for which both endpoints were labeled using only ports 1
and 2. We keep in P only those paths which start and end with an edge labeled
with (1, 1) and remove the other paths. By the construction of our labeling, edge
labeled with (1, 1) can only appear on a path P̄s of some cluster center s.

Now we remove from P all the paths that have more than x edges. Finally we
remove from P the paths that are subpaths of other paths from P. Each of the
remaining paths A ∈ P is exactly P̄s for some cluster center s. Path A cannot
contain more than one P̄ path because the length of A is at most x and the
distance between the cluster centers is more than 2x. Path A contains at least
one P̄ because A starts and ends with an edge labeled with (1, 1) and A is not
a subpath of any P̄ path.

From each A ∈ P we can decode the identifier of the corresponding cluster
center since ∗ is not a palindrome and hence we can deduce the direction of
the path. If we obtained multiple identifiers of cluster centers for some starting
vertex v, we simply pick the smallest one, call it si. The tag of v will then be the
shortest path from v to si concatenated with P̄si

(if there are multiple shortest
paths, we choose the one lexicographically smallest under the chosen labeling).
We conclude the proof by observing that if for v, u their tags contain the same
P̄si

then, by the properties of the port labeling, their paths to si have to be
different.
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4 Conclusion

In this paper, we have considered the problem of assigning labels to the ports
of a graph G so that the views Vl(v) are distinct for all nodes v ∈ V , and such
that l is minimized. We have shown that, for any graph G with n nodes and
diameter D, a uniformly random labeling achieves l = O(min(D, log n)), w.h.p.,
and that it is possible to construct in polynomial time a labeling that satisfies
l = O(min(D, log n)). In addition, we exhibited examples of graphs showing that
these bounds are asymptotically tight in general.

An interesting direction of future work would be an analogue of the result of
Steinová [25] in our setting. The goal is to propose a mechanism for the assign-
ment (or reassignment) of the port labels by a mobile walker which starts in a
graph with initially empty (or arbitrary) port labels, with the goal of obtaining
a port labeling with small (best-case) level of symmetry. E.g., one could con-
sider the implementation of the algorithm from Theorem 1 using a deterministic
walker.

Acknowlegdements. The authors would like to thank Philippe Duchon and David
Ilcinkas for proposing the problem, and for some initial discussions.
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Abstract. The fooling pairs method is one of the standard methods
for proving lower bounds for deterministic two-player communication
complexity. We study fooling pairs in the context of randomized com-
munication complexity. We show that every fooling pair induces far away
distributions on transcripts of private-coin protocols. We use the above to
conclude that the private-coin randomized ε-error communication com-
plexity of a function f with a fooling set S is at least order log log |S|

ε
.

This relationship was earlier known to hold only for constant values of ε.
The bound we prove is tight, for example, for the equality and greater-
than functions.

As an application, we exhibit the following dichotomy: for every
boolean function f and integer n, the (1/3)-error public-coin random-
ized communication complexity of the function

∨n
i=1 f(xi, yi) is either at

most c or at least n/c, where c > 0 is a universal constant.

1 Introduction

Communication complexity provides a mathematical framework for studying
communication between two or more parties. It was introduced by Yao [12]
and has found numerous applications since. We focus on the two-player case,
and provide a brief introduction to it. For more details see the textbook by
Kushilevitz and Nisan [8].

In this model, there are two players called Alice and Bob. The players wish
to compute a function f : X × Y → Z, where Alice knows x ∈ X and Bob
knows y ∈ Y. To achieve this goal, they need to communicate. The communi-
cation complexity of f measures the minimum number of bits the players must
exchange in order to compute f . The communication is done according to a pre-
determined protocol. Protocols may be deterministic or use randomness that is
either public (known to both players) or private (randomness held by one player
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is not known to the other). In the case of deterministic protocols, we denote
by D(f) the minimum communication required to compute f correctly on all
inputs. In the case of randomized protocols, we allow the protocol to err with
a small probability. We denote by Rε(f) and Rpri

ε (f) the minimum communica-
tion required to compute f correctly with public and private-coin protocols with
a probability of error at most ε on all inputs. We refer to Sect. 2.1 for formal
definitions.

A fundamental problem in this context is proving lower bounds on the com-
munication complexity of a given function f . Lower bounds methods for deter-
ministic communication complexity are based on the fact that any protocol for
f defines a partition of X × Y to f -monochromatic rectangles1. Thus, a lower
bound on the size of a minimal partition of this kind readily translates to a lower
bound on the communication complexity of f . Three basic bounds of this type
are based on rectangle size, fooling sets, and matrix rank (see [8]). Both matrix
rank and rectangle size lower bounds have natural and well-known analogues in
the randomized setting: the approximate rank lower bound [7,9] and the dis-
crepancy lower bound [8] respectively. In this paper we show that fooling sets
also have natural counterparts in the randomized setting.

Although public-coin protocols are more general than private-coin ones, New-
man [10] proved that for boolean functions every public-coin protocol can be
efficiently simulated by a private-coin protocol: If f : X × Y → {0, 1} then for
every 0 < ε < 1/2,

R2ε(f) ≤ Rpri
2ε(f) = O

(

Rε(f) + log
log(|X ||Y|)

ε

)

.

The additive logarithmic factor on the right-hand-side is often too small to mat-
ter, but it does make a difference in the bounds we prove below.

1.1 Fooling Pairs and Sets

Fooling sets are a well-known tool for proving lower bounds for D(f). A pair
(x, y), (x′, y′) ∈ X × Y is called a fooling pair for f : X × Y → Z if

– f(x, y) = f(x′, y′), and
– either f(x′, y) �= f(x, y) or f(x, y′) �= f(x, y).

Observe that if (x, y) and (x′, y′) are a fooling pair then x �= x′ and y �= y′.
When Z = {0, 1} we distinguish between 0-fooling pairs (for which f(x, y) =
f(x′, y′) = 0) and 1-fooling pairs (for which f(x, y) = f(x′, y′) = 1).

It is easy to see that if (x, y) and (x′, y′) form a fooling pair then there is no f -
monochromatic rectangle that contains both of them. An immediate conclusion
is the following:

1 R ⊆ X × Y is an f -monochromatic rectangle if R = A × B for some A ⊆ X , B ⊆ Y
and f is constant over R.
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Lemma 1 ([8]). Let f : X × Y → Z be a function, let (x, y) and (x′, y′) be a
fooling pair for f and let π be a deterministic protocol for f . Then

π(x, y) �= π(x′, y′).

A subset S ⊆ X × Y is a fooling set if every p �= p′ in S form a fooling pair.
Lemma 1 implies the following basic lower bound for deterministic communica-
tion complexity.

Theorem 1 ([8]). Let f : X × Y → Z be a function and let S be a fooling set
for f . Then

D(f) ≥ log2(|S|).
The same properties do not hold for randomized protocols, but one could

expect their natural variants to hold. Let π be an ε-error private-coin protocol
for f , and let (x, y), (x′, y′) be a fooling pair for f . Then, one can expect that
the probabilistic analogue of π(x) �= π(x′) holds, i.e. |Π(x, y) − Π(x′, y′)| is
large, where |Π(x, y) − Π(x′, y′)| denotes the statistical distance between the
two distributions on transcripts.

Such a statement was previously only known for a specific type of fooling pair
(that we call the AND fooling pair in Sect. 1.2) and was implicit in [2], where it
is used as part of a lower bound proof for the randomized communication com-
plexity of the disjointness function. Here, we prove that it holds for an arbitrary
fooling pair.

Lemma 2 (Analogue of Lemma 1). Let f : X × Y → Z be a function, let
(x, y) and (x′, y′) be a fooling pair for f , and let π be an ε-error private-coin
protocol for f . Then

|Π(x, y) − Π(x′, y′)| ≥ 1 − 2
√

ε.

Lemma 2 is not only an analogue of Lemma 1 but is actually a generalization
of it. Indeed, plugging ε = 0 in Lemma 2 implies Lemma 1. Moreover, it implies
that the bound from Theorem1 holds also in the 0-error private-coin randomized
case.

We use the above to prove an analogue of Theorem1 as well.

Theorem 2 (Analogue of Theorem 1). Let f : X × Y → Z be a function
and let S be a fooling set for f . Let 1/|S| ≤ ε < 1/3. Then,

Rpri
ε (f) = Ω

(

log
log |S|

ε

)

.

The lower bound provided by the theorem above seems exponentially weaker
than the one in Theorem 1, but it is tight. The equality function EQ over n-bit
strings has a large fooling set of size 2n, but it is well-known (see [8]) that

Rpri
ε (EQ) = O

(
log

n

ε

)
.



52 S. Moran et al.

Theorem 2 therefore provides a tight lower bound on Rpri
ε (EQ) in terms of both

n and ε. It also provides a tight lower bound for the greater-than function.
Moreover, Theorem 2 is a generalization of Theorem 1 and basically implies it by
choosing ε = 1/|S|.

The proof of the lower bound uses a general lower bound on the rank of
perturbed identity matrices by Alon [1]. Interestingly, although not every fooling
set comes from an identity matrix (e.g. in the greater-than function), there is
always some perturbed identity matrix in the background (the one used in the
proof of Theorem 2).

We remark that for any constant 0 < ε < 1/3, a version of Theorem 2 has
been known for a long time. In particular, H̊astad and Wigderson [5] give a proof
of the following result2 which appears in [12] without proof: for every function
f with a fooling set S and for every 0 < ε < 1/3,

Rpri
ε (f) = Ω (log log |S|) . (1)

The right-hand side above does not depend on ε. The same lower bound as
in (1) also directly follows from Theorem 1 and from the following general result
[8]: for every function f and for every 0 ≤ ε < 1/2,

Rpri
ε (f) = Ω(log D(f)).

1.2 Two Types of Fooling Pairs

Let (x, y), (x′, y′) be a fooling pair for a boolean function f . There are two types
of fooling pairs:

– The AND-type for which f(x′, y) �= f(x, y′).
– The XOR-type for which f(x′, y) = f(x, y′).

A partial proof of Lemma2 is implicit in [2]. The case considered in [2]
corresponds to a 0-fooling pair of the AND-type. Let π be a private-coin ε-error
protocol for f that is the AND of two bits. In this case, by definition it must hold
that Π(0, 0) is statistically far away from Π(1, 1). The cut-and-paste property
(see Corollary 1) implies that the same holds for Π(0, 1) and Π(1, 0), yielding
Lemma 2 for the 0-fooling pair of the AND-type – (0, 1), (1, 0).

The case of a pair of the XOR-type was not analyzed before. If π is a private-
coin ε-error protocol for XOR of two bits, then it does not immediately follow
that Π(0, 0) is far away from Π(1, 1), nor that Π(0, 1) is far away from Π(1, 0).
Lemma 2 implies that in fact both are true, but the argument can not use the
cut-and-paste property. Our argument actually gives a better quantitative result
for the XOR function as compared to the AND function.

The importance of the special case of Lemma 2 from [2] is related to proving
a lower bound on the randomized communication complexity of the disjointness

2 In fact, the theorem in [5,12] is more general than the one stated here. We state the
theorem in this form since it fits well the focus of this text.
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function DISJ defined over {0, 1}n × {0, 1}n: DISJ(x, y) = 1 if for all i ∈ [n] it
holds that xi ∧yi = 0. They reproved that R1/3(DISJ) ≥ Ω(n). This lower bound
is extremely important and useful in many contexts, and was first proved in [6].

On a high level, the proof of [2] can be summarized as follows. Let π be a
private-coin protocol with (1/3)-error for DISJ. We want to show that CC(π) =
Ω(n). The argument has two different parts: The first part of the argument
essentially relates the internal information cost (as was later defined in [3])
of computing one copy of the AND function with the communication of the
protocol π for DISJ. This is a direct-sum-esque result. More concretely, if μ is a
distribution on {0, 1}2 such that μ(1, 1) = 0 then

ICμ(AND) ≤ CC(π)
n

,

where ICμ(AND) is the infimum over all (1/3)-error private-coin protocols τ for
AND of the internal information cost of τ . The second part of the argument
shows that if μ is uniform on the set {(0, 0), (0, 1), (1, 0)} then ICμ(AND) > 0.
The challenge in proving the second part stems from the fact that μ is supported
on the zeros of AND, so it is trivial to compute AND on inputs from μ. However,
the protocols τ in the definition of ICμ(AND) are guaranteed to succeed for every
x, y and not only on the support of μ. The authors of [2] use the cut-and-paste
property (see Corollary 1 below) to argue that indeed ICμ(AND) > 0.

Here we observe that these arguments can be cast into a more general fooling-
pair based method. For example, consider the following function on a pair of
n-tuples of elements:

fk(x, y) =
n∨

i=1

EQk(xi, yi),

where k is a positive integer and EQk : [k] × [k] → {0, 1} denotes the equality
function on elements of the set [k].

The direct-sum reduction of [2] also works for the function f3 and since EQ3

contains a 0-fooling pair of the AND-type, we can straightaway conclude that
the (1/3)-error randomized communication complexity and internal information
cost of f3 are Ω(n). However, for the seemingly similar function f2, the direct
sum reduction described above does not work (and all the fooling pairs are of
the XOR-type). In fact, the (1/3)-error public-coin randomized communication
complexity and internal information cost of f2 are O(1), since f2 can be reduced
to equality on n-bit strings.

The following theorem shows that this example is part of a general dichotomy.
For example, there is no function f for which the randomized communication
complexity of

∨n
i=1 f(xi, yi) is Θ(

√
n), when n tends to infinity.

Theorem 3. There is a constant c > 0 so that for every boolean function f and
integer n, the following holds:

1. If f contains a 0-fooling pair of the AND-type then the (1/3)-error public-coin
randomized communication complexity of

∨n
i=1 f(xi, yi) is at least n/c.
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2. Else, the (1/3)-error public-coin randomized communication complexity of∨n
i=1 f(xi, yi) is at most c.

A dual statement applies to the n-fold AND of f :

Theorem 4 (Dual of Theorem 3). There is a constant c > 0 so that for every
boolean function f and integer n, the following holds:

1. If f contains a 1-fooling pair of the AND-type then the (1/3)-error public-coin
randomized communication complexity of

∧n
i=1 f(xi, yi) is at least n/c.

2. Else, the (1/3)-error public-coin randomized communication complexity of∧n
i=1 f(xi, yi) is at most c.

We provide a proof of Theorem3. Theorem 4 can be derived by a simi-
lar argument, or alternatively by a reduction to Theorem3 using the relation∧n

i=1 f(xi, yi) = ¬∨n
i=1 ¬f(xi, yi), which transforms 1-fooling pairs to 0-fooling

pairs.

Proof (Proof of Theorem 3). To prove the first item, note that the sub-matrix
correponding to the 0-fooling pair of the AND-type can be mapped to the AND
function and then taking the n-fold copy of it corresponds to computing the
negation of the disjointness function on n bits. Applying the lower bound of [2]
then proves that randomized communication complexity must be Ω(n).

For the second item, assume f does not contain any 0-fooling pair of the
AND-type. Note that this implies that

∨n
i=1 f(xi, yi) also does not contain any

0-fooling pair of the AND-type. Indeed, more generally, if f1 and f2 do not
contain 0-fooling pairs of the AND-type then f1(x1, y1)∨f2(x2, y2) also does not
contain such pairs.

So, it suffices to show that any function g that does not contain 0-fooling
pairs of the AND type has public-coin randomized communication complexity
O(1). For any such g, the communication matrix of g does not contain a 2 × 2
sub-matrix with exactly three zeros. Without loss of generality, assume that the
communication matrix contains no repeated rows or columns. We claim that
this matrix contains at most one zero in each row and column. This will finish
the proof since by permuting the rows and columns, we get the negation of the
identity matrix with possibly one additional column of all ones or one additional
row of all ones. Therefore, a simple variant of the O(1) public-coin protocol for
the equality function will compute g.

To see why there is at most one zero in each row and column, assume towards
contradiction that it has two zeros in some row i, say in the first and second
columns. Now, since the first and second columns differ, there must be some
other row k on which they disagree. This means that the sub-matrix formed by
rows i and k and columns 1 and 2 contains exactly three zeros, contradicting
our assumption.
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2 Preliminaries

2.1 Communication Complexity

A private-coin communication protocol for computing a function f : X ×Y → Z
is a binary tree with the following generic structure. Each node in the protocol
is owned either by Alice or by Bob. For every x ∈ X , each internal node v owned
by Alice is associated with a distribution Pv,x on the children of v. Similarly, for
every y ∈ Y, each internal node v owned by Bob is associated with a distribution
Pv,y on the children of v. The leaves of the protocol are labeled by Z.

On input x, y, a protocol π is executed as follows.

1. Set v to be the root node of the protocol-tree defined above.
2. If v is a leaf, then the protocol outputs the label of the leaf. Otherwise, if

Alice owns the node v, she samples a child according to the distribution Pv,x

and sends a bit to Bob indicating which child was sampled. The case when
Bob owns the node is analogous.

3. Set v to be the sampled node and return to the previous step.

A protocol is deterministic if for every internal node v, the distribution Pv,x

or Pv,y has support of size one. A public-coin protocol is a distribution over
private-coin protocols defined as follows: Alice and Bob first sample a shared
random r to choose a protocol πr, and they execute a private protocol πr as
above.

For an input (x, y), we denote by π(x, y) the sequence of messages exchanged
between the parties. We call π(x, y) the transcript of the protocol π on input
(x, y). Another way to think of π(x, y) is as a leaf in the protocol-tree. We
denote by L(π(x, y)) the label of the leaf π(x, y) in the tree. The communication
complexity of a protocol π, denoted by CC(π) is the depth of the protocol-tree
of π. For a private-coin protocol π, we denote by Π(x, y) the distribution of the
transcript of π(x, y).

For a function f , the deterministic communication complexity of f , denoted
by D(f), is the minimum of CC(π) over all deterministic protocols π such that
L(π(x, y)) = f(x, y) for every x, y. For ε > 0, we denote by Rε(f) the minimum
of CC(π) over all public-coin protocols π such that for every (x, y), it holds that
P[L(π(x, y)) �= f(x, y)] ≤ ε where the probability is taken over all coin flips in
the protocol π. We call Rε(f) the ε-error public-coin randomized communica-
tion complexity of f . Analogously we define Rpri

ε (f) as the ε-error private-coin
randomized communication complexity.

2.2 Rectangle Property

In the case of deterministic protocols, the set of inputs reaching a particular
leaf forms a rectangle (a product set inside X × Y). In the case of private-coin
randomized protocols, the following holds (see for example Lemma 6.7 in [2]).
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Lemma 3 (Rectangle property for private-coin protocols). Let π be a
private-coin protocol over inputs from X × Y, and let L denote the set of leaves
of π. There exist functions α : L × X → [0, 1], β : L × Y → [0, 1] such that for
every (x, y) ∈ X × Y and every 
 ∈ L,

P[π(x, y) reaches 
] = α(
, x) · β(
, y).

Here too the lemma is in fact a generalization of what happens in the deter-
ministic case where α, β take values in {0, 1} rather than in [0, 1].

The next proposition immediately follows from the definitions.

Proposition 5. Let f : X × Y → Z be a function and let (x, y) and (x′, y′) be
such that f(x, y) �= f(x′, y′). Then, for any ε-error private-coin protocol π for f ,

|Π(x, y) − Π(x′, y′)| ≥ 1 − 2ε.

2.3 Hellinger Distance and Cut-and-paste Property

The Hellinger distance between two distributions p, q over a finite set U is defined
as

h(p, q) =
√

1 −
∑

u∈U

√
p(u)q(u).

Lemma 3 implies the following property of private-coin protocols that is more
commonly known as the cut-and-paste property [4,11].

Corollary 1 (Cut-and-paste property). Let (x, y) and (x′, y′) be inputs to
a randomized private-coin protocol π. Then

h(Π(x, y),Π(x′, y′)) = h(Π(x′, y),Π(x, y′)).

We also use the following relationship between Statistical and Hellinger Dis-
tances.

Proposition 6 (Statistical and Hellinger Distances). Let p and q be dis-
tributions. Then,

h2(p, q) ≤ |p − q| ≤
√

h2(p, q)(2 − h2(p, q)).

In particular, if |p − q| ≥ 1 − ε for 0 ≤ ε ≤ 1. Then, h2(p, q) ≥ 1 − √
2ε.

2.4 A Geometric Claim

We use the following technical claim that has a geometric flavor. For two vectors
a,b ∈ R

m, we denote by 〈a,b〉 the standard inner product between a,b. Denote
by R+ the set of non-negative real numbers.
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Claim 1. Let ε1, ε2, δ1, δ2 > 0 and let a,b, c,d ∈ R
m
+ be vectors such that

〈a,b〉 ≥ 1 − ε1, 〈c,d〉 ≥ 1 − ε2,

〈a, c〉 ≤ δ1, 〈b,d〉 ≤ δ2.

Then, ∑

i∈[m]

|a(i)b(i) − c(i)d(i)| ≥ 2 − (ε1 + ε2 + δ1 + δ2).

Proof.
∑

i∈[m]

|a(i)b(i) − c(i)d(i)|

≥
∑

i∈[m]

(√
a(i)b(i) −

√
c(i)d(i)

)2

(∀t, s ≥ 0 |t − s| ≥ (√
t − √

s
)2

)

= 〈a,b〉 + 〈c,d〉 −
∑

i∈[m]

2
√

a(i)b(i)c(i)d(i)

= 〈a,b〉 + 〈c,d〉 −
∑

i∈[m]

2
√

a(i)c(i) · b(i)d(i)

≥ 〈a,b〉 + 〈c,d〉 −
∑

i∈[m]

(a(i)c(i) + b(i)d(i)) (AM-GM inequality)

= 〈a,b〉 + 〈c,d〉 − (〈a, c〉 + 〈b,d〉)
≥ 2 − (ε1 + ε2 + δ1 + δ2). ��

3 Fooling Pairs and Sets

3.1 Fooling Pairs Induce Far Away Distributions

Proof (Proof of Lemma2). Let the fooling pair be (x, y) and (x′, y′) and assume
without loss of generality that f(x, y) = f(x′, y′) = 1. We distinguish between
the following two cases.

(a) f(x′, y) �= f(x, y′).
(b) f(x′, y) = f(x, y′) = z where z �= 1.

In the first case, Proposition 5 implies that |Π(x′, y) − Π(x, y′)| ≥ 1 − 2ε.
Proposition 1 implies that h(Π(x, y),Π(x′, y′)) = h(Π(x′, y),Π(x, y′)). Proposi-
tion 6 thus implies that |Π(x, y) − Π(x′, y′)| ≥ 1 − 2

√
ε.

Let us now consider the second case. Let L be the set of all leaves of π and
let L1 denote those leaves which are labeled by 1. For x ∈ X , y ∈ Y, define the
vectors ax ∈ R

L1
+ as ax(
) = α(
, x), and the vectors by ∈ R

L1
+ as by(
) = β(
, y)

where α and β are the functions from Lemma 3. Since f(x, y) = 1 and π is an
ε-error protocol for f ,

〈ax,by〉 =
∑

�∈L1

α(
, x) · β(
, y) = P[L(π(x, y)) = 1] ≥ 1 − ε.
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Similarly, we have 〈ax′ ,by′〉 ≥ 1 − ε, 〈ax,by′〉 ≤ ε and 〈ax′ ,by〉 ≤ ε. Observe

2|Π(x, y) − Π(x′, y′)| ≥
∑

�∈L1

|ax(
)by(
) − ax′(
)by′(
)|.

Applying Claim 1 with the vectors ax,by,ax′ ,by′ yields that |Π(x, y) −
Π(x′, y′)| ≥ 1 − 2ε.

3.2 A Lower Bound Based on Fooling Sets

The following result of Alon [1] on the rank of perturbed identity matrices is a
key ingredient.

Lemma 4. Let 1
2
√

m
≤ ε < 1

4 . Let M be an m×m matrix such that |M(i, j)| ≤ ε

for all i �= j in [m] and |M(i, i)| ≥ 1
2 for all i ∈ [m]. Then,

rank(M) = Ω

(
log m

ε2 log(1ε )

)

.

Proof (Proof of Theorem2). Let L denote the set of leaves of π. Let A ∈ R
S×L

be the matrix defined by

A(x,y),� =
√

P[π(x, y) = 
].

Let
M = AAT

where AT is A transposed. First,

M(x,y),(x,y) = 1.

Second, if (x, y) �= (x′, y′) in S then by Lemma 2 we know |Π(x, y)−Π(x′, y′)| ≥
1 − 2

√
ε so by Proposition 6

h2(Π(x, y),Π(x′, y′)) ≥ 1 − 2ε1/4

which implies

M(x,y),(x′,y′) = 1 − h2(Π(x, y),Π(x′, y′)) ≤ 2ε1/4.

Lemma 4 implies that3 the rank of M is at least Ω

(
log |S|√

ε log
(

1
ε1/4

)

)

=

Ω

((
log |S|

ε

)1/4
)

. On the other hand,

2CC(π) ≥ |L| ≥ rank(M).
3 We may assume that say ε < 2−12 by repeating the given randomized protocol a

constant number of times.
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Abstract. In simultaneous number-in-hand multi-party communication
protocols, we have k players, who each receive a private input, and wish
to compute a joint function of their inputs. The players simultaneously
each send a single message to a referee, who then outputs the value of
the function. The cost of the protocol is the total number of bits sent to
the referee.

For two players, it is known that giving the players a public (shared)
random string is much more useful than private randomness: public-coin
protocols can be unboundedly better than deterministic protocols, while
private-coin protocols can only give a quadratic improvement on deter-
ministic protocols.

We extend the two-player gap to multiple players, and show that the
private-coin communication complexity of a k-player function f is at
least Ω(

√
D(f)) for any k ≥ 2. Perhaps surprisingly, this bound is tight:

although one might expect the gap between private-coin and determin-
istic protocols to grow with the number of players, we show that the
All-Equality function, where each player receives n bits of input and the
players must determine if their inputs are all the same, can be solved
by a private-coin protocol with Õ(

√
nk + k) bits. Since All-Equality has

deterministic complexity Θ(nk), this shows that sometimes the gap scales
only as the square root of the number of players, and consequently the
number of bits each player needs to send actually decreases as the num-
ber of players increases. We also consider the Exists-Equality function,
where we ask whether there is a pair of players that received the same
input, and prove a nearly-tight bound of Θ̃(k

√
n) for it.

1 Introduction

In his seminal ’79 paper introducing the notion of two-party communication
complexity [18], Yao also briefly considered communication between more than
two players, and pointed out “one situation that deserves special attention”:
two players receive private inputs, and send randomized messages to a third
player, who then produces the output. Yao asked what is the communication
complexity of the Equality function (called “the identification function” in [18])
in this model: in the Equality function Eqn, the two players receive vectors
{0, 1}n, and the goal is to determine whether x = y.

c© Springer International Publishing AG 2016
J. Suomela (Ed.): SIROCCO 2016, LNCS 9988, pp. 60–74, 2016.
DOI: 10.1007/978-3-319-48314-6 5
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Yao showed in [18] that Eqn requires Ω(n) bits for determistic communi-
cation protocols, even if the players can communicate back-and-forth. Using a
shared random string, the complexity reduces to O(1), and using private ran-
domness, but more than a single round, the complexity is Θ(log n). In modern
nomenclature, the model described above is called the 2-player simultaneous
model, and the third player (who announces the output) is called the referee.
Yao’s question is then: what is the communication complexity of Eqn using
private randomness in the simultaneous model of communication complexity?

Some seventeen years later, Yao’s question was answered: Newman and
Sezegy showed in [16] that Eqn requires Θ(

√
n) bits to compute in the model

above, if the players are allowed only private randomness. (Using shared random-
ness the complexity reduces to O(1), even for simultaneous protocols.) Moreover,
Babai and Kimmel showed in [3] that for any function f , if the deterministic
simultaneous complexity of f is D(f), then the private-coin simultaneous com-
munication complexity of f is Ω(

√
D(f)), so in this sense private randomness

is of only limited use for simultaneous protocols.
In this paper we study multi-player simultaneous communication complex-

ity1, and ask: how useful are private random coins for more than two players?
Intuitively, one might expect that as the number of players grows, the utility
of private randomness should decrease. We first extend the Ω(

√
D(f)) lower

bound of [3] to the multi-player setting, and show that for any k-player function
f , the private-coin simultaneous communication complexity of f is Ω(

√
D(f)).

We then show, perhaps contrary to expectation, that the extended lower bound
is still tight in some cases.

To see why this may be surprising, consider the function AllEqk,n, which
generalizes Eqn to k players: each player i receives a vector xi ∈ {0, 1}n, and
the goal is to determine whether all players received the same input. It is easy
to see that the deterministic communication complexity of AllEqk,n is Ω(nk)
(not just for simultanoues protocols), and each player must send n bits to the
referee in the worst case. From the lower bound above, we obtain a lower bound
of Ω(

√
nk) for the private-coin simultaneous complexity of AllEqk,n. It is easy

to see that Ω(k) is also a lower bound, as each player must send at least one bit,
so together we have a lower bound of Ω(

√
nk + k). If this lower bound is tight,

then the average player only needs to send O(
√

n/k + 1) bits to the referee in
the worst-case, so in some sense we even gain from having more players, and
indeed, if k = Ω(n), then the per-player cost of AllEqk,n with private coins is
constant, just as it would be with shared coins.

Nevertheless, our lower bound is nearly tight, and we are able to give a
simultaneous private-coin protocol for AllEqk,n where each players sends only
O(

√
n/k + log(k)) bits to the referee, for a total of O(

√
nk + k log min {k, n})

bits. This matches the lower bound of Ω(
√

nk) when k = O(n/ log2 n). We also

1 We consider the number-in-hand model, where each player receives a private input,
rather than the perhaps more familiar number-on-forehead model, where each player
can see the input of all the other players but not its own.
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show that AllEqk,n requires Ω(k log n) bits, so in fact our upper bound for
AllEq is tight.

We then turn our attention to a harder class of k-player problems: those
obtained by taking a 2-player function f and asking “do there exist two play-
ers on whose inputs f returns 1?”. An example for this class is the function
ExistsEqk,n, which asks whether there exist two players that received the same
input. We show that ExistsEqk,n requires Θ̃(k

√
n) bits for private-coin simul-

taneous protocols, and moreover, any function in the class above has private-coin
simultaneous complexity Õ(kR(f)), where R(f) is the private-coin simultaneous
complexity of f (with constant error).

1.1 Related Work

As we mention above, two-player simultaneous communication complexity was
first considered by Yao in [18], and has received considerable attention since.
The Equality problem was studied in [3,7,16], and another optimal simultane-
ous protocol is given in [2], using error-correcting codes. In [12], a connection
is established between simultaneous and one-round communication complexity
and the VC-dimension. [8,11] consider the question of simultaneously solving
multiple copies of Equality and other functions, and in particular, [8] shows that
solving m copies of Equality requires Ω(m

√
n) bits for private-coin simultaneous

2-player protocols.
Multi-player communication complexity has also been extensively studied,

but typically in the number-on-forehead model, where each player can see the
inputs of all the other players but not its own. This model was introduced in [9];
sufficiently strong lower bounds on protocols in this model, even under restricted
(but not simultaneous) communication patterns, would lead to new circuit lower
bounds. Simultaneous communication complexity for number-on-forehead is con-
sidered in [4].

In contrast, in this paper we consider the number-in-hand model, where each
player knows only its own input. This model is related to distributed computing
and streaming (see, e.g., [17], which gives a lower bound for a promise version
of Set Disjointness in our model).

An interesting “middle case” between the number-in-hand and number-on-
forehead models is considered in [1,5,6]: there the input to the players is an
undirected graph, and each player represents a node in the graph and receives
the edges adjacent to this node as its input. This means that each edge is known
to two players. This gives the players surprising power; for example, in [1] it is
shown that graph connectivity can be decided in a total of O(n log3 n) bits using
public randomness. The power of private randomness in this model remains a
fascinating open question and is part of the motivation for our work.

The functions AllEq and ExistsEq considered in this paper were also
studed in, e.g., [10], but not in the context of simultaneous communication;
the goal there is to quantify the communication cost of the network topology on
communication complexity, in a setting where not all players can talk directly
with each other.
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2 Preliminaries

Notation. For a vector x of length n, we let x−i denote the vector of length n−1
obtained by dropping the i-th coordinate of x (where i ∈ [n]).

Simultaneous Protocols. Fix input domains X1, . . . ,Xk of sizes m1, . . . ,mk

(respectively). A private-coin k-player simultaneous communication protocol Π
on X1 × . . . × Xk is a tuple of functions (π1, . . . , πk, O), where each πi maps the
inputs Xi of player i to a distribution on a finite set of messages Mi ⊆ {0, 1}∗,
and O is the referee’s output function, mapping each tuple of messages in
M1 × . . . × Mk to a distribution on outputs {0, 1}.

We say that Π computes a function f : X1 × . . . × Xk → {0, 1} with error ε
if for each (x1, . . . , xk) ∈ X1 × . . . × Xk we have:

Pr
{mi∼πi(xi)}i∈[k]

[O(m1, . . . ,mk) �= f(x1, . . . , xk)] ≤ ε.

A deterministic protocol is defined as above, except that instead of distri-
butions on messages, the protocol maps each player’s input to a deterministic
message, and the referee’s output is also a deterministic function of the messages
it receives from the players.

Communication Complexity. The communication complexity of a protocol Π
(randomized or deterministic), denoted by CC(Π), is defined as the maximum
total number of bits sent by the players to the referee in any execution of the
protocol on any input.2

For a function f , the deterministic communication complexity of f is defined
as

D(f) = min
Π

CC(Π),

where the minimum is taken over all deterministic protocols that compute f with
no errors. The private-coin ε-error communication complexity of f is defined as

Rε(f) = min
Π:Π computes f with error ε

CC(Π).

Individual Communication Complexity of a Player. We let CCi(Π) denote
the maximum number of bits sent by player i to the referee in any execu-
tion. For general communication protocols, it could be that the players never
simultaneously reach their worst-case message sizes — that is, we could have
CC(Π) <

∑k
i=1 CCi(Π). However, with simultaneous protocols this cannot

happen:

2 Another reasonable definition for randomized protocols is to take the maximum over
all inputs of the expected total number of bits sent. For two players this is asymp-
totically equivalent to the definition above [13]. For k > 2 players, the expectation
may be smaller than the maximum by a factor of log(k).
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Observation 1. For any private-coin (or deterministic) simultaneous protocol
Π we have CC(Π) =

∑k
i=1 CCi(Π).

Proof. For each i ∈ [k], let xi be some input on which player i sends CCi(Π) bits
with non-zero probability. Then on joint input (x1, . . . , xk), there is a non-zero
probability that each player i sends CCi(Π) bits, for a total of

∑k
i=1 CCi(Π)

bits. Therefore CC(Π) ≥ ∑k
i=1 CCi(Π). The inequality in the other direction is

immediate, as there cannot be an execution of the protocol in which more than∑k
i=1 CCi(Π) bits are sent.

In the sequel we assume for simplicity that all players always send the same
number of bits, that is, each player has a fixed message size. By the observation
above, this does not change the communication complexity.

Maximal Message Complexity of a Protocol. The maximal message complexity of
a protocol Π is the maximum individual communication complexity over all play-
ers. The deterministic maximum message complexity is D∞ = min

Π
maxi CCi(Π),

and the private-coin ε-error maximal message complexity of f is defined as

R∞
ε = min

Π computes f with error ε
max

i
CCi(Π)

Problem Statements. The two main problems we consider in this paper are:

– AllEqk,n(x1, . . . , xk) = 1 iff x1 = . . . = xk, where x1, . . . , xk ∈ {0, 1}n;
– ExistsEqk,n(x1, . . . , xk) = 1 iff for some i �= j we have xi = xj , where

x1, . . . , xk ∈ {0, 1}n.

We often omit the subscript when the number of players and the input size
are clear from the context.

3 Lower Bound

In this section we extend the lower bound from [3] to multiple players, and show
that for any k-player function f and constant error probability ε ∈ (0, 1/2) we
have Rε(f) = Ω(

√
D(f)).

When proving two-party communication complexity lower bounds, it is help-
ful to view the function being computed as a matrix, where the rows are indexed
by Alice’s input, the columns are indexed by Bob’s input, and each cell contains
the value of the function on the corresponding pair of inputs. The natural exten-
sion to k players is a “k-dimensional matrix” (or tensor) where the i-th dimension
is indexed by the inputs to the i-th player, and the cells again contain the val-
ues of the function on that input combination. For conciseness we refer to this
representation as a “matrix” even for k > 2 players.

In [3] it is observed that the deterministic simultaneous communication com-
plexity of a function is exactly the sum of the logarithms of the number of unique
rows and the number of unique columns in the matrix (rounded up to an integer).
We generalize the notion of “rows and columns” to multiple players as follows.
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Definition 1 (Slice). Fix a k-dimensional matrix M ∈ {0, 1}m1×...×mk For
a player i and an input (i.e., index) xi ∈ [mi], we define the (i, xi)-th slice
of M to be the projection of M onto a (k − 1)-dimensional matrix M |(i,xi) ∈
{0, 1}m1×...×mi−1×mi+1×...×mk obtained by fixing player i’s input to xi. That is,
for each x ∈ X1 × . . . × Xk we have M |(i,xi)(x−i) = M(x).

Note that for k = 2 and a 2-dimensional matrix M , the (1, x)-th slice of M is
simply the row indexed by x, and the (2, y)-th slice is the column indexed by y.

We assume that the matrices we deal with have no redundant slices: there
does not exist a pair (i, xi), (i, x′

i) (where xi �= x′
i) such that M |(i,xi) = M |(i,x′

i)
.

If there are redundant slices, we simply remove them; they correspond to inputs
to player i on which the function value is the same, for any combination of
inputs to the other players. Such inputs are “different in name only” and we
can eliminate the redundancy without changing the communication complexity
of the function being computed.

Let dimi(M) denote the length of M in the i-th direction: this is the number
of possible inputs to player i, after redundant slices are removed (i.e., the number
of unique slices for player i in M). We rely upon the following observation, which
generalizes the corresponding observation for two players from [3]:

Observation 2. Let f : X1 × . . . × Xk → {0, 1} be a k-player function, and
let Mf be the matrix representing f . Then in any deterministic protocol for f ,
each player i sends at least log dimi(Mf ) bits in the worst case, and D(f) =
∑k

i=1	log dimi(Mf )
.
Proof. Suppose for the sake of contradiction that there is a deterministic protocol
Π for f where some player i that always sends fewer than 	log dimi(Mf )
 bits
in Π. For this player there exist two slices (i.e., inputs to player i) M |(i,xi) and
M |(i,x′

i)
, with xi �= x′

i, on which the player sends the same message. Because
we assumed that there are no redundant slices, there exists an input x−i to the
other players such that M |(i,xi)(x−i) �= M |(i,x′

i)
(x−i). But all players send the

same messages to the referee on inputs (xi, x−i) and (x′
i, x−i), which means that

on one of the two inputs the output of the referee is incorrect.
This shows that each player i must send at least 	log dimi(Mf )
 bits in the

worst-case. This number of bits from each player is also sufficient to compute f ,
as the players can simply send the referee their input (after removing redundant
slices, the number of remaining inputs is the number of unique slices). Therefore
by Observation 1, D(f) =

∑k
i=1	log dimi(Mf )
.

In [3], Babai and Kimmel prove the following for two players:

Lemma 1 ([3]). For any 2-player private-coin protocol Π with constant error
ε < 1/2,

CC1(Π) · CC2(Π) ≥ Ω(log dim1(Mf ) + log dim2(Mf )).
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Using this property of 2-player protocols, we can show:

Lemma 2. Let Π be a k-player private-coin protocol for f : X1 × . . . × Xk →
{0, 1} with constant error ε ∈ (0, 1/2). Then for each i ∈ [k]:

CCi(Π) ·
⎛

⎝
∑

j �=i

CCj(Π)

⎞

⎠ = Ω(log dimi(Mf )).

Proof. Fix a player i ∈ [k]. The k-player protocol Π induces a 2-player protocol
Π ′, where Alice plays the role of player i, and Bob plays the role of all the other
players. We have CC1(Π ′) = CCi(Π) and CC2(Π ′) =

∑
j �=i CCj(Π) (recall that

we assume the message size of each player is fixed).
The 2-player function computed by Π ′ is still f , but now we view it as a

2-player function, represented by a 2-dimensional matrix M ′
f with rows indexed

by Xi and columns indexed by X1 × . . . × Xi−1 × Xi+1 × . . . × Xk. Note that
dim1(M ′

f ) ≥ dimi(Mf ): if Mf |(i,xi) and Mf |(i,x′
i)

are slices of Mf that are not
equal, then the corresponding rows of M ′

f , indexed by xi and x′
i, differ as well.

Thus, by Lemma 1,

CCi(Π) ·
⎛

⎝
∑

j �=i

CCj(Π)

⎞

⎠ = CC1(Π ′) · CC2(Π ′)

= Ω(log dim1(M ′
f )) = Ω(log dimi(Mf )).

We can now show:

Theorem 1. For any k-player function f and constant error ε < 1/2 we have
Rε(f) = Ω(

√
D(f)).

Proof. Let Π be an ε-error private-coin simultaneous protocol for f . By the
lemma, for each i ∈ [k] we have

CCi(Π) ·
⎛

⎝
n∑

j=1

CCj(Π)

⎞

⎠

≥ CCi(Π) ·
⎛

⎝
∑

j �=i

CCj(Π))

⎞

⎠ = Ω (log dimi(Mf )) .

Summing across all players, we obtain
(

n∑

i=1

CCi(Π)

)

·
⎛

⎝
n∑

j=1

CCj(Π)

⎞

⎠ = Ω

(
n∑

i=1

log dimi(Mf )

)

,

that is, by Observations 1 and 2,

CC(Π)2 = Ω (D(f)) .

The theorem follows.
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From the theorem above we see that the average player must send
Ω(

√
D(f)/k) bits. But what is the relationship between the maximum num-

ber of bits sent by any player in a private-coin protocol and a deterministic
protocol for f? This question is mainly of interest for non-symmetric functions,
since for symmetric functions all players must send the same number of bits in
the worst-case.

Theorem 2. For any k-player function f and constant error ε, we have
R∞

ε (f) = Ω(
√

D∞(f)/k).

Proof. Recall that by Observation 2, D∞(f) = maxi log dimi(Mf ). Let i be a
player maximizing log dimi(Mf ). As we showed in the proof of Theorem 1, for
this player we have in any private-coin simultaneous protocol Π:

CCi(Π) ·
⎛

⎝
n∑

j=1

CCj(Π)

⎞

⎠ = Ω (log dimi(Mf )) = Ω(D∞(f)).

Now let � be the player with the maximum communication complexity in Π,
that is, CCj(Π) ≤ CC�(Π) for each j ∈ [k]. We then have

CCi(Π) ·
⎛

⎝
n∑

j=1

CCj(Π)

⎞

⎠ ≤ CC�(Π) · (k − 1)CC�(Π) < kCC2
�(Π).

Combining the two, we obtain CC�(Π) = Ω
(√

D∞(f)/k
)
, which proves the

theorem.

Lower Bound of Ω(k logn) for AllEqk,n

We next show that in the specific case of AllEq, each player needs to send at
least Ω(log n) bits, yielding a lower bound of Ω(k log n). This improves on the
lower bound of Theorem 1 when k = Ω(n/polylog(n)), and will show that the
protocol in the next section is optimal.

Theorem 3. For any constant ε < 1/2, Rε(AllEqk,n) = Ω(k log n).

Proof. Fix a player i ∈ [k]. To show that player i must send Ω(log n) bits, we
reduce from Eqn, but this time our reduction constructs a one-way protocol,
where Alice, taking the role of player i, sends a message to Bob, representing all
the other players and the referee; and Bob then outputs the answer. It is known
that Eqn requires Ω(log n) bits of communication for private-coind protocols —
this is true even with unrestricted back-and-forth communication between the
two players [13]. The lower bound follows.

Let Π be a simultaneous private-coin protocol for AllEqk,n. We construct a
one-way protocol for Eqn as follows: on input (x, y), Alice sends Bob the message
that player i would send on input x in Π. Bob computes the messages each player
j �= i would send on input y, and then computes the output of the referee; this is
the output of the one-way protocol. Clearly, AllEqk,n(x, y, . . . , y) = Eqn(x, y),
so the one-way protocol succeeds whenever Π succeeds.
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The lower bounds above use a series of 2-player reductions; they do not
seem to exploit the full “hardness” of having k players with their own individual
private randomness. This makes it more surprising that the lower bounds are
tight, as we show in the next section.

4 Tight Upper Bound for AllEQ

In this section, we show that the lower bound proven in Sect. 3 is tight for
AllEqk,n. This is done by showing a protocol with maximal message of size
O(

√
n
k + log (min(n, k))) bits per player, and O(

√
nk + k log (min(n, k))) bits of

communication overall.

Theorem 4. There exists a private-coin one sided error randomized simul-
taneous protocol for AllEqk,n with maximal message of size O(

√
n
k +

log (min(n, k))) = O(
√

D∞(AllEqk,n)

k + log (min(n, k))) bits per player.

Corollary 1. There exists a private-coin one sided error randomized simul-
taneous protocol for AllEqn,k of cost O(

√
nk + k log (min(n, k))) =

O(
√

D(AllEqk,n) + k log (min(n, k))).

We note that the deterministic communication complexity of AllEqn,k is
Θ(nk), and hence also D∞(AllEqk,n) = Θ(n). This follows immediately from
Observation 2.

Our randomized private-coin protocol is as follows.

Error-Correcting Codes. In the first step of the protocol, each player encodes its
input using a predetermined error correcting code, and uses the encoded string
as the new input. We review the definition of an error correcting code. In the
definition below, n and k are the standard notation for error correcting codes,
which we keep for the sake of consistency with the literature in coding; they are
unrelated to the parameters n, k of the communication complexity problem and
will be used in this context in the following definition only.

Definition 2. ([14]). M ⊆ {0, 1}n is called an [n, k, d]-code if it contains 2k

elements (that is, |M | = 2k) and dH(x, y) ≥ d for every two distinct x, y, where
dH is the Hamming distance. For a [n, k, d] code, let δ = d

n denote the relative
distance of the code.

An [n, k, d]-code maps each of 2k inputs to a code word of n bits, such that any
two distinct inputs map to code words that have large relative distance. We use
a simple error-correcting code (see [14]), which was also used in [2]:

Lemma 3 ([14], Theorem 17.303). For each m ≥ 1 there is a [3m,m, m
2 ]-

code.
3 The theorem in [14] gives a general construction for any distance up to 1/2; here we

use distance 1/6.
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The relative distance of the code in Lemma 3 is δ = (1/2)m
3m = 1

6 .
When the players use the code from Lemma 3 to encode their inputs, each

player’s input grows by a constant factor (3), while the relative Hamming dis-
tance of any two differing inputs becomes at least δ. Let N = 3n denote the
length of the encoded inputs, and let x̄i denote the encoding of player i’s input xi.

Partitioning into Blocks. After computing the encoding of their inputs, each
player splits its encoded input into blocks of L = 	N

k 
 bits each, except possibly
the last block, which may be shorter. For simplicity we assume here that all
blocks have the same length, that is, L divides n. Let b = N/L be the resulting
number of blocks; we note that b ≤ min(3n, k). Let Bi(�) ∈ {0, 1}L denote the
�-th block of player i.

Because any two differing inputs have encodings that are far in Hamming
distance, we can show that two players with different inputs will also disagree
on many blocks:

Lemma 4. For any two players i, j such that xi �= xj, we have
|{� ∈ [b] | Bi(�) �= Bj(�)}| ≥ δb.

Proof. Assume by contradiction that |{� ∈ [b]|Bi(�) �= Bj(�)}| < δb.
Let Δ = {s ∈ [N ] | x̄i(s) �= x̄j(s)} be the set of coordinates on which players

i, j disagree. By the properties of the error correcting code, |Δ| ≥ δN .
Now partition Δ into disjoint sets Δ1, . . . ,Δb, where each Δ� contains the

locations inside block � on which the encoded inputs disagree. Each Δ� contains
between 0 and N/b coordinates, as the size of each block is L = N/b. By our
assumption, there are fewer than δb blocks that contain any differences, so the
number of non-empty sets Δ� is smaller than δb. It follows that |Δ| < δb·(N/b) =
δN , which contradicts the relative distance of the code.

Comparing Blocks. Our goal now is to try to find two players that disagree on
some block. We know that if there are two players with different inputs, then
they will disagree on many different blocks, so choosing a random block will
expose the difference with good probability. In order to compare the blocks, we
use an optimal 2-player private-coin simultaneous protocol for Eq:

Theorem 5 ([3] Theorem 1.5). There exists a private-coin one-sided error
simultaneous protocol for the two player function EQm of cost Θ(

√
m). If the

inputs are equal, the protocol always outputs “Equal”. If the inputs are not equal,
then the protocol outputs “Equal” with probability < 1/3.

Remark 1. We refer here to the symmetric variant of the equality protocol in
Remark 3.3 of [3], in which both Alice and Bob use the same algorithm to
compute their outputs.

We proceed as follows. Each player i chooses a block � ∈ [b] at random.
The player applies Alice’s algorithm from [3]’s 2-player equality protocol on the
chosen block Bi(�), and sends the output to the referee, along with the index
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� of the block. In this process each player sends O(
√

n
k + log (min(n, k))) bits,

because the length of a block is L = O(n/k), and b ≤ min(3n, k).
The referee receives the player’s outputs o1, ..., ok, and for each pair that

chose the same block index, it simulates [3]’s 2-player equality referee. If for all
such pairs the output is 1 then the referee also outputs 1, otherwise it outputs
0. Let us denote by Ref(o1, . . . , ok) the referee’s output function.

Analysis of the Error Probability. Note that if all inputs are equal, then our
protocol always outputs 1: the EqL protocol from [3] has one-sided error, so
in this case it will output 1 for any pair of blocks compared. On the other
hand, if there exist two different inputs, we will only detect this if (a) the two
corresponding players choose a block on which their encoded inputs differ, and
(b) the EqL protocol from [3] succeeds and outputs 0. We show that this does
happen with good probability:

Lemma 5. If AllEq(x1, ..., xk) = 0, then the protocol outputs 0 with probability
at least 2

3δ(1 − e− 1
2 ).

Proof. Since there are at least two distinct input strings, there exists an input
string received by at most half the players. Let i be a player with such a string,
and let j′

1, ..., j
′
k
2

be k
2 players that disagree with player i’s input.

Let At be the event that player j′
t chose the same block index as player i.

Then

Pr [Ref(o1, ..., ok) = 0] ≥ Pr

⎡

⎣Ref(o1, ..., ok) = 0
∣
∣
∣

k/2⋃

t=1

At

⎤

⎦ · Pr

⎡

⎣
k/2⋃

t=1

At

⎤

⎦ .

We bound each of these two factors individually.
Since all At’s are independent, and for a fixed t we have Pr[At] = 1

b then

Pr

⎡

⎣
k/2⋃

t=1

At

⎤

⎦ = 1 −
(

1 − 1
b

)k/2

≥ 1 −
(

1 − 1
k

)k/2

≥ 1 −
(
e−1/k

)k/2

= 1 − e−1/2.

Next, let us condition on the fact that some specific Ar occurred. Given that
at least one of the At’s occurred, let Ar be such an event, that is, player r chose
the same block as player i.

Clearly, conditioning on Ar does not change the probability of each block
being selected, because the blocks are chosen uniformly and independently: that
is, for each i, r ∈ [k] and � ∈ [b],

Pr [player i chose block � | Ar] =
1
b
.

Therefore, by Lemma 4, given the event Ar, players i and r disagree on the
block they sent with probability at least (δb)/b = δ. Whenever i and r send a
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block they disagree on, the protocol from [3] outputs 0 with probability 2/3. So
overall,

Pr

⎡

⎣Ref(o1, ..., ok) = 0
∣
∣
∣

k
2⋃

t=1

At

⎤

⎦ ≥ 2
3
δ.

Combining the two yields Pr[Ref(o1, ..., ok) = 0] ≥ 2
3δ(1 − e− 1

2 ).

Proof (Proof of Theorem 4). By Lemma 5, if AllEq(x1, ..., xk) = 0 the algo-
rithm errs with constant probability. If AllEq(x1, ..., xk) = 1 then since
∀i,p,p′Bp(i) = B′

p(i), and the fact that [3]’s protocol is a one-sided error pro-
tocol, the global protocol will always output 1, which is the correct value. Since
this is a one-sided error protocol with constant error probability, this protocol
can be amplified by repeating the protocol in parallel a constant number of
times, so that the error probability becomes an arbitrarily small constant, and
the communication is only increased by a constant factor.

5 On EXISTSEQ

The upper bound of Sect. 4 reduces the AllEq problem to a collection of
2-player Eq problems, which can then be solved efficiently using known pro-
tocols (e.g., from [3]). This works because asking whether all inputs are equal,
and finding any pair of inputs that are not equal is sufficient to conclude that
the answer is “no”. What is the situation for the ExistsEq problem, where we
ask whether there exists a pair of inputs that are equal? Intuitively the approach
above should not help, and indeed, the complexity of ExistsEq is higher:

Theorem 6. If k ≤ 2n−1, then Rε(ExistsEqk,n) = Ω(k
√

n) for any constant
ε < 1/2.

Proof. We show that each player i must send Ω(
√

n) bits in the worst case,
and the bound then follows by Observation 1. The proof is by reduction from
2-player Eqn−1 (we assume that n ≥ 2).

Let Π be a private-coin simultaneous protocol for ExistsEqk,n with error
ε < 1/2. Consider player 1 (the proof for the other players is similar). Assign to
each player i ∈ {3, . . . , k} a unique label bi ∈ {0, 1}n−1 (this is possible because
k ≤ 2n−1.

We construct a 2-player simultaneous protocol Π ′ for Eqn−1 with error ε <

1/2 as follows: on inputs (x, y) ∈ {0, 1}n−1, Alice plays the role of player 1 in
Π, feeding it the input 1x (that is, the n-bit vector obtained by prepending ‘1’
to x); Bob plays the role of player 2 with input 1y; and the referee in Π ′ plays
the role of all the other players and the referee in Π, feeding each player i the
input 0bi, where bi is the unique label assigned to player i.
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After receiving messages from Alice and Bob, and sampling the messages
players 3, . . . , k would send in Π when given the inputs described above, the
referee computes the output of Π and that is also the output of Π ′.

Because we prefixed the true inputs x, y with 1, and players 3, . . . , k received
inputs beginning with 0, we have ExistsEq(1x, 1y, 0b3, . . . , 0bk) = Eq(x, y).
Therefore Π ′ succeeds whenever Π does, and in particular it has error at most
ε. By the lower bound of [3], then, player 1 must send Ω(

√
n) bits in the worst

case.

We note that if k ≥ 2n then ExistsEq is trivial, as there must always exist
two players with the same input. (The depencence of k on n in Theorem 6 can
be improved to k ≤ (1 − o(1)) · 2n by assigning inputs to player 3, . . . , k more
cleverly.)

The lower bound above is tight up to O(log k), and indeed we can state
something more general: for any 2-player function f : X ×Y → {0, 1}, let ∃kf be
the k-player function that outputs 1 on input (x1, . . . , xk) iff for some i, j ∈ [k]
we have f(xi, xj) = 1.

Lemma 6. For any 2-player function f and k ≥ 2 we have Rk2ε(∃kf) = O(k ·
Rε(f)).

Proof. Let Π = (ΠA,ΠB , O) be a 2-player private-coin simultaneous protocol
for f with communication complexity Rε(f).

We construct a protocol Π ′ for ∃kf as follows: on input (x1, . . . , xk), each
player i samples two messages, M i

A ∼ ΠA(xi) and M i
B ∼ ΠB(xi), and sends

them to the referee. The referee samples outputs Zi,j ∼ O(M i
A,M j

B) for each
(i, j) ∈ [k]2 (i �= j) and outputs “1” iff for some pair Zi,j = 1.

If ∃kf(x1, . . . , xk) = 1, then there exist i, j such that f(xi, xj) = 1, and for
this pair of players we have Pr [Zi,j = 0] ≤ ε. Therefore the referee outputs “1”
except with probability ε.

On the other hand, if ∃kf(x1, . . . , xk) = 0, then for every pair i, j of players
we have f(xi, xj) = 0, so Pr [Zi,j = 1] ≤ ε. By union bound, in this case the
probability that the referee outputs “1” is bounded by

(
k
2

)
ε < k2ε.

To handle the increased error of the protocol for ∃kf , we can use a protocol for
f that has error O(1/k2); this is achieved by taking a constant-error protocol for
f , executing it O(log k) independent times, and taking the majority output [13].
We obtain the following:

Theorem 7. For any 2-player function f , k ≥ 2, and constant ε < 1/2 we have
Rε(∃kf) = O(k log k · Rε(f)).

Corollary 2. For ExistsEq we have Rε(ExistsEq) = O(k log k
√

n), matching
our lower bound up to a logarithmic factor.



Public vs. Private Randomness 73

6 Conclusion

In this paper we extended the classical results of Babai and Kimmel [3] to the
multi-player setting, and gave a tight bound for the gap between private-coin and
deterministic communication complexity in the simultaneous setting. We showed
that contrary to our initial expectations, the gap does not grow larger with the
number of players, and indeed the per-player gap can shrink as the number of
players grows. We also addressed a class of functions defined by taking a two-
party function and asking whether there are two players whose inputs cause it
to output 1.

Our work leaves open the interesting question of simultaneous lower bounds
for the model considered in [1,5,6], where each player represents a node in a
graph and is given the edges adjacent to that node. Our techniques do not apply
to this scenario because of the sharing of edges between players. Indeed, the
connectivity problem for this model (see [15]) cannot be addressed by reductions
from two-player communication complexity, because it is easy for two players:
we can simply have Alice and Bob compute spanning forests for their part of
the input and send them to each other, at a total cost of O(n log n). Thus,
further multi-party techniques need to be developed to address the hardness of
connectivity.
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Abstract. We present a uniform approach to derive message-time
tradeoffs and message lower bounds for synchronous distributed com-
putations using results from communication complexity theory.

Since the models used in the classical theory of communication com-
plexity are inherently asynchronous, lower bounds do not directly apply
in a synchronous setting. To address this issue, we show a general
result called Synchronous Simulation Theorem (SST) which allows to
obtain message lower bounds for synchronous distributed computations
by leveraging lower bounds on communication complexity. The SST is a
by-product of a new efficient synchronizer for complete networks, called
σ, which has simulation overheads that are only logarithmic in the num-
ber of synchronous rounds with respect to both time and message com-
plexity in the CONGEST model. The σ synchronizer is particularly effi-
cient in simulating synchronous algorithms that employ silence. In par-
ticular, a curious property of this synchronizer, which sets it apart from
its predecessors, is that it is time-compressing, and hence in some cases
it may result in a simulation that is faster than the original execution.

While the SST gives near-optimal message lower bounds up to large
values of the number of allowed synchronous rounds r (usually polynomial
in the size of the network), it fails to provide meaningful bounds when a
very large number of rounds is allowed. To complement the bounds pro-
vided by the SST, we then derive message lower bounds for the synchro-
nous message-passing model that are unconditional, that is, independent
of r, via direct reductions from multi-party communication complexity.

We apply our approach to show (almost) tight message-time trade-
offs and message lower bounds for several fundamental problems in the
synchronous message-passing model of distributed computation. These
include sorting, matrix multiplication, and many graph problems. All
these lower bounds hold for any distributed algorithms, including ran-
domized Monte Carlo algorithms.
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1 Introduction

Message complexity, which refers to the total number of messages exchanged
during the execution of a distributed algorithm, is one of the two fundamental
complexity measures used to evaluate the performance of algorithms in distrib-
uted computing [29]. Even when time complexity is the primary consideration,
message complexity is significant. In fact, in practice the performance of the
underlying communication subsystem is influenced by the load on the message
queues at the various sites, especially when many distributed algorithms run
simultaneously. Consequently, as discussed e.g. in [13], optimizing the message
(as well as the time) complexity in some models for distributed computing has
direct consequences on the time complexity in other models. Moreover, message
complexity has also a considerable impact on the auxiliary resources used by an
algorithm, such as energy. This is especially crucial in contexts, such as wireless
sensor networks, where processors are powered by batteries with limited capac-
ity. Besides, from a physical standpoint, it can be argued that energy leads to
more stringent constraints than time does since, according to a popular quote
by Peter M. Kogge, “You can hide the latency, but you can’t hide the energy.”

Investigating the message complexity of distributed computations is therefore
a fundamental task. In particular, proving lower bounds on the message com-
plexity for various problems has been a major focus in the theory of distributed
computing for decades (see, e.g., [24,29,32,34]). Tight message lower bounds for
several fundamental problems such as leader election [20,21], broadcast [4,20],
spanning tree [17,20,24,34], minimum spanning tree [13,18,20,24,28,34], and
graph connectivity [13], have been derived in various models for distributed
computing.

One of the most important distinctions among message passing systems is
whether the mode of communication is synchronous or asynchronous. In this
paper we focus on proving lower bounds on the message complexity of distrib-
uted algorithms in the synchronous communication setting. Many of the message
lower bounds mentioned above (e.g., [4,13,17,18,20]) use ad hoc (typically com-
binatorial) arguments, which usually apply only to the problem at hand. In this
paper, on the other hand, the approach is to use communication complexity [19]
as a uniform tool to derive message lower bounds for a variety of problems in
the synchronous setting.

Communication complexity, originally introduced by Yao [38], is a subfield
of complexity theory with numerous applications in several, and very different,
branches of computer science (see, e.g., [19] for a comprehensive treatment). In
the basic two-party model, there are two distinct parties, usually referred to as
Alice and Bob, each of whom holds an n-bit input, say x and y. Neither knows
the other’s input, and they wish to collaboratively compute a function f(x, y) by
following an agreed-upon protocol. The cost of this protocol is the number of bits
communicated by the two players for the worst-case choice of inputs x and y. It
is important to notice that this simple model is inherently asynchronous, since it
does not provide the two parties with a common clock. Synchronicity, however,
makes the model subtly different, in a way highlighted by the following simple
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example (see, e.g., [33]). If endowed with a common clock, the two parties could
agree upon a protocol in which time-coding is used to convey information: for
instance, an n-bit message can be sent from one party to the other by encoding
it with a single bit sent in one of 2n possible synchronous rounds (keeping silent
throughout all the other rounds). Hence, in a synchronous setting, any problem
can be solved (deterministically) with communication complexity of one bit. This
is a big difference compared to the classical (asynchronous) model! Likewise, as
observed in [13], k bits of communication suffice to solve any problem in a
complete network of k parties that initially agree upon a leader (e.g., the node
with smallest ID) to whom they each send the bit that encodes their input.
However, the low message complexity comes at the price of a high number of
synchronous rounds, which has to be at least exponential in the size of the input
that has to be encoded, as a single bit within time t can encode at most log t bits
of information. The above observation raises many intriguing questions: (1) If
one allows only a small number of rounds (e.g., polynomial in n) can such a low
message complexity be achieved? (2) More generally, how can one show message
lower bounds in the synchronous distributed computing model vis-a-vis the time
(round) complexity? This paper tries to answer these questions in a general and
comprehensive way.

Our approach is based on the design of a new and efficient synchronizer
that can efficiently simulate synchronous algorithms that use (a lot of) silence,
unlike previous synchronizers. Recall that a synchronizer ν transforms an algo-
rithm S designed for a synchronous system into an algorithm A = ν(S) that
can be executed on an asynchronous system. The goal is to keep TA and CA,
the time and communication complexities of the resulting asynchronous algo-
rithm A, respectively, close to TS and CS , the corresponding complexities of
the original synchronous algorithm S. The synchronizers appearing in the liter-
ature follow a methodology (described, e.g., in [29]) which resulted in bounding
the complexities TA and CA of the asynchronous algorithm A for every input
instance I as

TA(I) ≤ Tinit(ν) + ΨT (ν) · TS(I),
CA(I) ≤ Cinit(ν) + CS(I) + ΨC(ν) · TS(I),

where ΨT (ν) (resp., ΨC(ν)) is the time (resp., communication) overhead coeffi-
cient of the synchronizer ν, and Tinit(ν) (resp., Cinit(ν)) is the time (resp., com-
munication) initialization cost. In particular, the early synchronizers, historically
named α [3], β [3], γ [3], and δ [31] (see also [29]), handled each synchronous
round separately, and incurred a communication overhead of at least O(k) bits
per synchronous round, where k is the number of processors in the system. The
synchronizer μ of [5] remedies this limitation by taking a more global approach,
and its time and communication overheads ΨT (μ) and ΨC(μ) are both O(log3 k),
which is at most a polylogarithmic factor away from optimal under the described
methodology.

Note, however, that the dependency of the asynchronous communica-
tion complexity CA(I) on the synchronous time complexity TS(I) might be
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problematic in situations where the synchronous algorithm takes advantage
of synchronicity in order to exploit silence, and uses time-coding for convey-
ing information while transmitting fewer messages (e.g., see [13,14]). Such an
algorithm, typically having low communication complexity but high time com-
plexity, translates into an asynchronous algorithm with high time and communi-
cation complexities. Hence, we may prefer a simulation methodology that results
in a communication dependency of the form CA(I) ≤ Cinit(ν) + ΨC(ν) · CS(I),
and where ΨC(ν) is at most polylogarithmic in the number of rounds TS of the
synchronous algorithm.

1.1 Our Contributions

We present a uniform approach to derive message lower bounds for synchronous
distributed computations by leveraging results from the theory of communi-
cation complexity. In this sense, this can be seen a companion paper of [6],
which leverages the connection between communication complexity and distrib-
uted computing to prove lower bounds on the time complexity of synchronous
distributed computations.

A New and Efficient Synchronizer. Our approach, developed in Sect. 3, is based
on the design of a new and efficient synchronizer for complete networks, which we
call synchronizer σ,1 and which is of independent interest. The new attractive fea-
ture of synchronizer σ, compared to existing ones, is that it is time-compressing.
To define this property, let us denote by T c

S the number of communicative (or
active) synchronous rounds, in which at least one node of the network sends
a message. Analogously, let T q

S denote the number of quiet (or inactive) syn-
chronous rounds, in which all processors are silent. Clearly, TS = T c

S + T q
S .

Synchronizer σ compresses the execution time of the simulation by essentially
discarding the inactive rounds, and remaining only with the active ones. This is
in sharp contrast to all previous synchronizers, whereby every single round of the
synchronous execution is simulated in the asynchronous network. A somewhat
surprising consequence of this feature is that synchronizer σ may in certain sit-
uations result in a simulation algorithm whose execution time is faster than the
original synchronous algorithm. Specifically, TA can be strictly smaller than TS

when the number of synchronous rounds in which no node communicates is suf-
ficiently high. (In fact, we observe that time compression may occur even when
simulating the original synchronous algorithm on another synchronous network,
in which case the resulting simulation algorithm may yield faster, albeit more
communication-intensive, synchronous executions.)

Table 1 compares the complexities of various synchronizers when used for
complete networks.

Synchronous Simulation Theorem. As a by-product of synchronizer σ, we show a
general theorem, the Synchronous Simulation Theorem (SST), which shows how

1 We use σ as it is the first letter in the Greek word which means “silence”.
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Table 1. Comparison among different synchronizers for k-node complete networks. The
message size is assumed to be O(log k) bits, and CA is expressed in number of messages.
(Note that on a complete network, synchronizers γ [3] and δ [31] are out-performed by
β, hence their complexities are omitted from this table.)

Synchronizer Time complexity TA Message complexity CA

α [3] O(TS) O(k2) + O(CS) + O(TS k2)

β [3] O(k) + O(TS) O(k log k) + O(CS) + O(TS k)

μ [5] O(k log k) + O(TS log3 k) O(k log k) + O(CS) + O(TS log3 k)

σ [this paper] O(k) + O(T c
S logk TS) O(k log k) + O(CS logk TS)

message lower bounds for synchronous distributed computations can be derived
by leveraging communication complexity results obtained in the asynchronous
model. More precisely, the SST provides a tradeoff between the message complex-
ity of the synchronous computation and the maximum number of synchronous
rounds TS allowed to the computation. This tradeoff reveals that message lower
bounds in the synchronous model are worse by at most logarithmic factors (in
TS and k, where TS is the number of rounds taken in the synchronous model,
and k is the network size) compared to the corresponding lower bounds in the
asynchronous model.

Applications: Message-Time Tradeoffs. In Sect. 4 we apply the SST to obtain
message-time tradeoffs for several fundamental problems. These lower bounds
assume that the underlying communication network is complete, which is the
case in many computational models [15,23]; however, the same lower bounds
clearly apply also when the network topology is arbitrary. The corresponding
bounds on communication complexity are tight up to polylogarithmic factors (in
the input size n of the problem and network size k) when the number of rounds
is at most polynomial in the input size. This is because a naive algorithm that
sends all the bits to a leader via the time encoding approach of [14, Theorem 3.1]
is optimal up to polylogarithmic factors. We next summarize our lower bound
results for various problems for a precise statement of these results. All the
lower bounds in this paper hold even for randomized protocols that can return
the wrong answer with a small constant probability.

Our lower bounds assume that the underlying topology is complete and the
input is partitioned (in an adversarial way) among the k nodes. We assume
that at most TS rounds of synchronous computation are allowed. (We will inter-
changeably denote the number of rounds with TS and r.) For sorting, where
each of the k nodes have n ≥ 1 input numbers, we show a message lower bound2

of Ω̃(nk/ log r). This result immediately implies that Lenzen’s O(1)-round sort-
ing algorithm for the Congested Clique model [22] has also optimal (to within
log factors) message complexity. For the Boolean matrix multiplication of two

2 Throughout this paper, the notation Ω̃ hides polylogarithmic factors in k and n, i.e.,
Ω̃(f(n, k)) denotes Ω(f(n, k)/(polylog n polylog k)).
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Boolean n × n matrices we show a lower bound of Ω(n2/ log rk). For graph
problems, there is an important distinction that influences the lower bounds:
whether the input graph is initially partitioned across the nodes in an edge-
partitioning fashion or in vertex-partitioning fashion. In the former, the edges
of the graph are arbitrarily distributed across the k parties, while in the latter
each vertex of the graph is initially held by one party, together with the set of its
incident edges. In the edge-partitioning setting, using the results of [37] in con-
junction with the SST yields non-trivial lower bounds of Ω̃(kn/ log rk), where n
is the number of vertices of the input graph, for several graph problems such as
graph connectivity, testing cycle-freeness, and testing bipartiteness. For testing
triangle-freeness and diameter the respective bounds are Ω̃(km) and Ω̃(m). (In
the vertex-partitioning setting, on the other hand, many graph problems such as
graph connectivity can be solved with O(npolylog n) message complexity [37].)

Unconditional Lower Bounds. While the SST gives essentially tight lower bounds
up to very large values of TS (e.g., polynomial in n), they become trivial for
larger values of TS (in particular, when TS is exponential in n). To complement
the bounds provided by the SST, in Sect. 5 we derive message lower bounds in
the synchronous message-passing model which are unconditional, that is, inde-
pendent of time. These lower bounds are established via direct reductions from
multi-party communication complexity. They are of the form Ω̃(k), and this is
almost tight since every problem can be solved with O(k) bits of communication
by letting each party encode its input in just one bit via time encoding. We point
out that the unconditional lower bounds cannot be shown by reductions from
2-party case, as typically done for many reductions for these problems. A case
in point are the reductions to establish the lower bounds for connectivity and
diameter in the vertex-partitioning model. To show unconditional lower bounds
for connectivity and diameter we define a new multi-party problem called input-
distributed disjointness (ID-DISJ) (see Sect. 5) and establish a lower bound for
it. We note that, unlike in the asynchronous setting, reduction from a 2-party
setting will not yield the desired lower bound of Ω(k) in the synchronous setting
(since 2-party problems can be solved trivially, exploiting clocks, using only one
bit, as observed earlier).

1.2 Further Related Work

The first paper that showed how to leverage lower bounds on communication
complexity in a synchronous distributed setting is [30], which proves a near-tight
lower bound on the time complexity of distributed minimum spanning tree con-
struction in the CONGEST model [29]. Elkin [9] extended this result to approx-
imation algorithms. The same technique was then used to prove a tight lower
bound for minimum spanning tree verification [16]. Later, Das Sarma et al. [6]
explored the connection between the theory of communication complexity and
distributed computing further by presenting time lower bounds for a long list
of problems, including inapproximability results. For further work on time lower
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bounds via communication complexity see, e.g., [8,11,15,25,27], as well as [26]
and references therein.

Researchers also investigated how to leverage results in communication com-
plexity to establish lower bounds on the message complexity of distributed com-
putations. Tiwari [35] shows communication complexity lower bounds for deter-
ministic computations over networks with some specific topologies. Woodruff and
Zhang [37] study the message complexity of several graph and statistical prob-
lems in complete networks. Their lower bounds are derived through a common
approach that reduces those problem from a new meta-problem whose commu-
nication complexity is established. However, the models considered in these two
papers are inherently asynchronous, hence their lower bounds do not hold if a
common clock is additionally assumed.

Hegeman et al. [13] study the message complexity of connectivity and
MST in the (synchronous) congested clique. However, their lower bounds are
derived using ad hoc arguments. To the best of our knowledge, the first connec-
tion between the classical communication complexity theory and the message
complexity in a synchronous setting has been established by Impagliazzo and
Williams [14]. They show almost tight bounds for the case with two parties for
deterministic algorithms, by efficiently simulating a synchronous protocol in an
asynchronous model (like we do). Ellen et al. [10] claim a simulation result for
k ≥ 2 parties. Their results are similar to our synchronous simulation theorem.
However, their simulation does not consider time, whereas ours is time-efficient
as well.

2 Preliminaries: Models, Assumptions, and Notation

The message-passing model is one of the fundamental models in the theory of
distributed computing, and many variations of it have been studied. We are given
a complete network of k nodes, which can be viewed as a complete undirected
simple graph where nodes correspond to the processors of the network and edges
represent bidirectional communication channels. Each node initially holds some
portion of the input instance I, and this portion is known only to itself and not
to the other nodes. Each node can communicate directly with any other node
by exchanging messages. Nodes wake up spontaneously at arbitrary times. The
goal is to jointly solve some given problem Π on input instance I.

Nodes have a unique identifier of O(log k) bits. Before the computation starts,
each node knows its own identifier but not the identifiers of any other node. Each
link incident to a node has a unique representation in that node. All messages
received at a node are stamped with the identification of the link through which
they arrived. By the number of its incident edges, every node knows the value
of k before the computation starts. All the local computation performed by the
processors of the network happens instantaneously, and each processor has an
unbounded amount of local memory. It is also assumed that both the computing
entities and the communication links are fault-free.

A key distinction among message-passing systems is whether the mode of
communication is synchronous or asynchronous. In the synchronous mode of
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communication, a global clock is connected to all the nodes of the network. The
time interval between two consecutive pulses of the clock is called a round. The
computation proceeds in rounds, as follows. At the beginning of each synchronous
round, each node sends (possibly different) messages to its neighbors. Each node
then receives all the messages sent to it in that round, and performs some local
computation, which will determine what messages to send in the next round. In
the asynchronous mode of communication, there is no global clock. Messages over
a link incur finite but arbitrary delays (see, e.g., [12]). This can be modeled as
each node of the network having a queue where to place outgoing messages, with
an adversarial global scheduler responsible of dequeuing messages, which are then
instantly delivered to their respective recipients. Communication complexity, the
subfield of complexity theory introduced by Yao [38], studies the asynchronous
message-passing model.

We now formally define the complexity measure studied in this paper. Most
of these definitions can be found in [19]. The communication complexity of a
computation is the total number of bits exchanged across all the links of the
network during the computation (or, equivalently, the total number of bits sent
by all parties). The communication complexity of a distributed algorithm A is the
maximum number of bits exchanged during the execution of A over all possible
inputs of a particular size. The communication complexity of a problem Π is the
minimum communication complexity of any algorithm that solves Π. Message
complexity refers to the total number of messages exchanged, where the message
size is bounded by some value B of bits.

In this paper we are interested in lower bounds for Monte Carlo distributed
algorithms. A Monte Carlo algorithm is a randomized algorithm whose output
may be incorrect with some probability. Formally, algorithm A solves a problem
Π with ε-error if, for every input I, A outputs Π(I) with probability at least
1 − ε, where the probability is taken only over the random strings of the play-
ers. The communication complexity of an ε-error randomized protocol/algorithm
A on input I is the maximum number of bits exchanged for any choice of the
random strings of the parties. The communication complexity of an ε-error ran-
domized protocol/algorithm A is the maximum, over all possible inputs I, of the
communication complexity of A of input I. The randomized ε-error communica-
tion complexity of a problemΠ is the minimum communication complexity of any
ε-error randomized protocol that solves Π. In a model with k ≥ 2 parties, this is
denoted with Rk,ε(Π). The same quantity can be defined likewise for a synchro-
nous model, in which case it is denoted with SRk,ε(Π). Throughout the paper
we assume ε to be a small constant and therefore, for notational convenience,
we will drop the ε in the notation defined heretofore.

We say that a randomized distributed algorithm uses a public coin if all
parties have access to a common random string. In this paper we are interested
in lower bounds for public-coin randomized distributed algorithms. Clearly, lower
bounds of this kind also hold for private-coin algorithms, in which parties do
not share a common random string.
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We now define a second complexity measure for a distributed computation,
the time complexity. In the synchronous mode of communication, it is defined
as the (worst-case) number of synchronous rounds that it comprises. It is addi-
tionally referred to as round complexity. Following [6], we define the randomized
ε-error r-round randomized communication complexity of a problem Π in a syn-
chronous model to be the minimum communication complexity of any protocol
that solves Π with error probability ε when it runs in at most r rounds. We
denote this quantity with SRk,ε,r(Π). A lower bound on SRk,ε,r(Π) holds also
for Las Vegas randomized algorithms as well as for deterministic algorithms. In
the asynchronous case, the time complexity of a computation is the (worst-case)
number of time units that it comprises, assuming that each message incurs a
delay of at most one time unit [29, Definition 2.2.2]. Thus, in arguing about
time complexity, a message is allowed to traverse an edge in any fraction of
the time unit. This assumption is used only for the purpose of time complexity
analysis, and does not imply that there is a bound on the message transmission
delay in asynchronous networks.

Throughout this paper, we shall use interchangeably node, party, or processor
to refer to elements of the network, while we will use vertex to refer to a node
of the input graph when the problem Π is specified on a graph.

3 Efficient Network Synchronization and the Synchronous
Simulation Theorem

3.1 The Simulation

We present synchronizer σ, an efficient (deterministic) simulation of a synchro-
nous algorithm S designed for a complete network of k nodes in the correspond-
ing asynchronous counterpart. The main ideas underlying the simulation are the
exploitation of inactive nodes and inactive rounds, via the use of the concept of
tentative time, in conjunction with the use of acknowledgments as a method to
avoid congestion and thus reduce the time overhead in networks whose links have
limited bandwidth. It is required that all the possible communication sequences
between any two nodes of the network are self-determining, i.e., no one is a prefix
of another.

One of the k nodes is designated to be a coordinator, denoted with C, which
organizes and synchronizes the operations of all the processors. The coordinator
is determined before the actual simulation begins, and this can be done by
executing a leader election algorithm for asynchronous complete networks, such
as the one in [1]. (The coordinator should not be confused with the notion of
coordinator in the variant of the message-passing model introduced in [7]. In
the latter, (1) the coordinator is an additional party, which has no input at the
beginning of the computation, and which must hold the result of the computation
at the end of the computation, and (2) nodes of the network are not allowed to
communicate directly among themselves, and therefore they can communicate
only with the coordinator.) After its election, the coordinator sends to each node
a message START(1) instructing them to start the simulation of round 1.
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At any given time each node v maintains a tentative time estimate TT(v),
representing the next synchronous round on which v plans to send a message to
one (or more) of its neighbors. This estimate may change at a later point, i.e., v
may send out messages earlier than time TT(v), for example in case v receives
a message from one of its neighbors, prompting it to act. However, assuming no
such event happens, v will send its next message on round TT(v). (In case v
currently has no plans to send any messages in the future, it sets its estimate to
TT(v) = ∞.) The coordinator C maintains k local variables, which store, at any
given time, the tentative times of all the nodes of the network.

We now describe the execution of phase t of the simulation, which simulates
the actions of the processors in round t of the execution ξS of algorithm S in
the synchronous network. Its starting point is when the coordinator realizes that
the current phase, simulating some round t′ < t, is completed, in the sense that
all messages that were supposed to be sent and received by processors on round
t′ of ξS were sent and received in the simulation on the asynchronous network.
The phase proceeds as follows.

(1) The coordinator C determines the minimum value of TT(v) over all
processors v, and sets t to that value. (In the first phase, the coordinator sets
t = 1 directly.) If t = ∞ then the simulation is completed and it is possible
to halt. If t′ + 1 < t, then the synchronous rounds t′ + 1, . . . , t − 1 are inactive
rounds, that is, in which all processors are silent. Thus, the system conceptually
skips all rounds t′ + 1, . . . , t − 1, and goes straight to simulating round t. Since
only the coordinator can detect the halting condition, it is also responsible for
informing the remaining k−1 nodes by sending, in one time unit, k−1 additional
HALT messages to each of them.

(2) The coordinator (locally) determines the set of active nodes, defined as
the set of nodes whose tentative time is t, that is,

A(t) = {v | TT(v) = t},

and sends to each of them a message START(t) instructing them to start round
t. (In the first phase, all nodes are viewed as active, i.e., A(1) = V ).

(3) Upon the receipt of this message, each active node v sends all the messages
it is required by the synchronous algorithm to send on round t, to the appropriate
subset N (v, t) of its neighbors. This subset of neighbors is hereafter referred to
as v’s clan on round t, and we refer to v itself as the clan leader. We stress that
these messages are sent directly to their destination; they must not be routed
from v to its clan via the coordinator, as this might cause congestion on the
links from the coordinator to the members of N (v, t).

(4) Each neighbor w ∈ N (v, t) receiving such a message immediately sends
back an acknowledgement directly to v.

Note that receiving a message from v may cause w to want to change its
tentative time TT(w). However, w must wait for now with determining the new
value of TT(w), for the following reason. Note that w may belong to more than
one clan. Let Aw(t) ⊆ A(t) denote the set of active nodes which are required
to send a message to w on round t (namely, the clan leaders to whose clans w
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belongs). At this time, w does not know the set Aw(t), and therefore it cannot
be certain that no additional messages have been sent to it from other neighbors
on round t. Such messages might cause additional changes in TT(w).

(5) Once an active node v has received acknowledgments from each of its
clan members w ∈ N (v, t), v sends a message SAFE(v, t) to the coordinator C.

(6) Once the coordinator C has received messages SAFE(v, t) from all the
active nodes in A(t), it knows that all the original messages of round t have
reached their destinations. What remains is to require all the nodes that were
involved in the above activities (namely, all clan members and leaders) to recal-
culate their tentative time estimate. Subsequently, the coordinator C sends out
a message ReCalcT to all the active nodes of A(t) (which are the only ones C
knows about directly), and each v ∈ A(t) forwards this message to its entire
clan, namely, its N (v, t) neighbors, as well.

(7) Every clan leader or member x ∈ A(t)∪⋃
v∈A(t) N (v, t) now recalculates

its new tentative time estimate TT(x), and sends it directly to the coordinator
C. (These messages must not be forwarded from the clan members to the coor-
dinator via their clan leaders, as this might cause congestion on the links from
the clan leaders to the coordinator.) The coordinator immediately replies each
such message by sending an acknowledgement directly back to x.

(8) Once a (non-active) clan member w has received such an acknowledge-
ment, it sends all its clan leaders in Aw(t) a message DoneReCalcT. (Note that
at this stage, w already knows the set Aw(t) of its clan leaders—it is precisely
the set of nodes from which it received messages in step (3).)

(9) Once an active node v has received an acknowledgement from C as well
as messages DoneReCalcT from every member w ∈ N (v, t) of its clan, it sends
the coordinator C a message DoneReCalcT, representing itself along with all its
clan.

(10) Once the coordinator C has received an acknowledgement from every
active node, it knows that the simulation of round t is completed.

3.2 Analysis of Complexity

Theorem 1. Synchronizer σ is a synchronizer for complete networks such that

TA = O

(

k log k +
(

1 +
log TS

B

)

T c
S

)

, (1)

CA = O
(
k log2 k + CS log TS

)
, (2)

where T c
S is the number of synchronous rounds in which at least one node of the

network sends a message, k is the number of nodes of the network, and B is the
message size of the network, in which at most one message can cross each edge
at each time unit.

Proof. For any bit sent in the synchronous execution ξS , the simulation uses
�log2 TS	 additional bits to encode the values of the tentative times, and a
constant number of bits for the acknowledgments and for the special messages
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START(t), SAFE(v, t), ReCalcT, and DoneReCalcT. Observe, finally, that no con-
gestion is created by the simulation, meaning that in each synchronous round
being simulated each node sends and receives at most O(1 + �log2 TS	) bits in
addition to any bit sent and received in the synchronous execution ξS .

The O(k log k) and O(k log2 k) additive factors in the first and second equa-
tion are, respectively, the time and message complexity of the asynchronous
leader election algorithm in [1] run in the initialization phase. This algorithm
exchanges a total of O(k log k) messages of size O(log k) bits each, and takes
O(k) time. 
�

3.3 Message Lower Bound for Synchronous Distributed
Computations

Theorem 2 (Synchronous Simulation Theorem (SST)). Let SCCD
k,r(Π)

be the r-round communication complexity of problem Π in the synchronous
message-passing complete network model with k nodes, where D is the initial
distribution of the input bits among the nodes. Let CCD′

k′ (Π) be the communi-
cation complexity of problem Π in the asynchronous message-passing complete
network model with k′ ≤ k nodes where, given some partition of the nodes of a
complete network of size k into sets S1, S2, . . . , Sk′ , D′ is the initial distribution
of the input bits whereby, for each i ∈ {1, 2, . . . , k′}, node i holds all the input
bits held by nodes in Si under the distribution D. Then,

SCCD
k,r(Π) = Ω

(
CCD′

k′ (Π) − k log2 k

1 + log r + �(k − k′)/k	 log k

)

.

Proof. We leverage the communication complexity bound of the σ synchronizer
result to prove a lower bound on SCCD

k,r(Π), synchronous communication com-
plexity, by relating it to CCD′

k′ (Π), the communication complexity in the asyn-
chronous setting. More precisely, we can use the σ synchronizer to simulate any
synchronous algorithm for the problem Π to obtain an asynchronous algorithm
for Π whose message complexity satisfies Eq. (2) of Theorem 1. We first consider
the case when k′ = k. Rearranging Eq. (2), and by substituting TS with r, CA

with CCD
k (Π), and CS with SCCD

k (Π), and by setting B = 1 (since (S)CC is
expressed in number of bits), we obtain the claimed lower bound on SCCD

k,r(Π).
Next we consider k′ < k. In this case, we need to do a minor modification to

the σ synchronizer. Since we assume that messages do not contain the ID of the
receiver and of the sender, when the network carrying the simulation has fewer
nodes than the network to be simulated the ID of both source and the destination
of any message has to be appended to the latter. This is the sole alteration
needed for the simulation to handle this case. This entails �(k − k′)/k	 · 2�log k	
additional bits to be added to each message. In this case, the communication
complexity of the σ synchronizer is increased by a factor of O(�(k−k′)/k	 log k).
This gives the claimed result. 
�

Clearly, a corresponding lower bound on the total number of messages follows
by dividing the communication complexity by the message size B. Observe that
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CC and SCC can be either both deterministic or both randomized. In the latter
case, such quantities can be plugged in Theorem 2 according to the definition of
ε-error r-round protocols given in Sect. 2.

4 Message-Time Tradeoffs for Synchronous Distributed
Computations

We now apply the Synchronous Simulation Theorem to get lower bounds on the
communication complexity of some fundamental problems in the synchronous
message-passing model.

4.1 Sorting

In this section we give a lower bound to the communication complexity of
comparison-based sorting algorithms. At the beginning each of the k parties
holds n elements of O(log n) bits each. At the end, the i-th party must hold the
(i−1)k+1, (i−1)k+2, . . . , i ·k-th order statistics. We have the following result.

Theorem 3. The randomized r-round ε-error communication complexity
of sorting in the synchronous message-passing model with k parties is
Ω(nk/ log k log r).

4.2 Matrix Multiplication

We now show a synchronous message lower bound for Boolean matrix multipli-
cation, that is, the problem of multiplying two n × n matrices over the semiring
({0, 1},∧,∨).

In [36, Theorem 4] it is shown the following: Suppose Alice holds a Boolean
m×n matrix A, Bob holds a Boolean n×m matrix B, and the Boolean product
of these matrices has at most z nonzeroes. Then the randomized communication
complexity of matrix multiplication is Ω̃(

√
z · n). To apply Theorem 2 we then

just have to consider an initial partition of the 2mn input elements among k
parties such that there exists a cut in the network that divides the elements of
A from those of B. Given such a partition, we immediately obtain the following.

Theorem 4. The randomized r-round ε-error communication complexity of
Boolean matrix multiplication in the synchronous message-passing model with
k parties is Ω(

√
z · n/ log rk).

4.3 Statistical and Graph Problems

The generality of the SSTs allows us to directly apply any previous result derived
for the asynchronous message-passing model. As an example, of particular inter-
est are the results of Woodruff and Zhang [37], who present lower bounds on the
communication complexity of a number of fundamental statistical and graph
problems in the (asynchronous) message-passing model with k parties, all con-
nected to each other. We shall seamlessly apply the SST for complete networks
to all of their results, obtaining the following.
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Theorem 5. The randomized r-round ε-error communication complexity of
graph connectivity, testing cycle-freeness, testing bipartiteness, testing triangle-
freeness, and diameter of graphs with n nodes in the synchronous message-
passing model with k parties, where the input graph is encoded in edges (u, v)
which are initially (adversarially) distributed among the parties, is Ω̃(nk/ log rk).

5 Unconditional Message Lower Bounds for Synchronous
Distributed Computations

The bounds resulting from the application of the synchronous simulation the-
orem of Sect. 3 become vanishing as r increases, independently of the problem
Π at hand. Hence it is natural to ask whether there are problems that can be
solved by exchanging, e.g., only a constant number of bits when a very large
number of rounds is allowed. In this section we discuss problems for which this
cannot happen.

Specifically, we show that Ω̃(k) bits is an unconditional lower bound for
several important problems in a synchronous complete network of k nodes. The
key idea to prove unconditional Ω̃(k) bounds via communication complexity is
to resort to multiparty communication complexity (rather than just to classical
2-party communication complexity), where by a simple and direct information-
theoretic argument (i.e., without reducing from the asynchronous setting, as in
Sect. 3) we can show that many problems in such a setting satisfy an Ω(k)-bit
lower bound, no matter how many synchronous rounds are allowed.

5.1 Graph Problems in the Vertex-Partitioning Model

To show unconditional lower bounds for graph problems in the vertex-
partitioning model, we use a reduction from a new multiparty problem, called
input-distributed disjointness (ID-DISJ) defined as follows. For the rest of this
section, we assume k = n and thus each party is assigned one vertex (and all its
incident edges).

Definition 1. Given n parties, each holding one input bit, partitioned in two
distinct subsets S1 = {1, 2, . . . , n/2} and S2 = {n/2 + 1, n/2 + 2, . . . , n} of n/2
parties each, the input-distributed disjointness function ID-DISJ(n) is 0 if there
is some index i ∈ [n/2] such that both the input bits held by parties i and i+n/2
are 1, and 1 otherwise.

Notice that this problem is, roughly speaking, “in between” the classical 2-
party set disjointness and the n-party set disjointness: as in the latter, there are
n distinct parties, and as in the former, the input can be seen as two vectors of
(n/2) bits. We have the following result.

Theorem 6. The randomized ε-error communication complexity of ID-DISJ(n)
in the synchronous message-passing model is Ω(n).
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We now leverage the preceding result to prove lower bounds on the commu-
nication complexity of graph connectivity and graph diameter.

Theorem 7. The randomized ε-error communication complexity of graph con-
nectivity in the synchronous message-passing model, with vertex-partitioning, is
Ω(n).

Theorem 8. The randomized ε-error communication complexity of computing
the diameter in the synchronous message-passing model, with vertex-partitioning,
is Ω(n/ log n).
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Abstract. Fault-tolerant consensus has been studied extensively in the
literature, because it is one of the important distributed primitives and
has wide applications in practice. This paper surveys important works on
fault-tolerant consensus in message-passing networks, and the focus is on
results from the past decade. Particularly, we categorize the results into
two groups: new problem formulations and practical applications. In the
first part, we discuss new ways to define the consensus problem, which
include larger input domains, enriched correctness properties, different
network models, etc. In the second part, we focus on real-world systems
that use Paxos or Raft to reach consensus, and Byzantine Fault-Tolerant
(BFT) systems. We also discuss Bitcoin, which can be related to solving
Byzantine consensus in anonymous systems, and compare Bitcoin with
BFT systems and Byzantine consensus algorithms.

Keywords: Consensus · Paxos · Bitcoin · BFT · Byzantine · Crash

1 Introduction

Fault-tolerant consensus has received significant attentions over the past three
decades [14,50] since the seminal work by Lamport, Shostak, and Pease [43,67]
– some important results include solving consensus in an optimal way and iden-
tifying bounds on time and communication complexity under different models –
please refer to [14,50,70] for these fundamental results. In this paper, we survey
recent efforts on fault-tolerant consensus in message-passing networks, with the
focus on results from the past decade. References [18,26,69] presented early sur-
veys on the topic. To complement theses prior surveys, our paper focus on the
following two directions:

– Exploration of new problem formulations: Lots of different consensus prob-
lems have been proposed in the past ten years in order to solve more com-
plicated tasks and accommodate different system and network requirements.
New problem formulations include enriched correctness properties, different
fault models, different communication networks, and different input/output
domains. For this part, we focus on the comparison of recently proposed prob-
lem formulations and relevant techniques.
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– Exploration of practical applications: Consensus has been applied in many
practical systems. Here, we focus on three types of applications: (i) crash-
tolerant consensus algorithms (mainly Paxos [40] and Raft [63]) and their
applications in real-world systems, (ii) Practical Byzantine Fault-Tolerance
(PBFT) [20] and subsequent works on improving PBFT, and (iii) Bitcoin
[2] and its comparison with Byzantine consensus algorithms and Byzantine
Fault-Tolerance (BFT) systems.

For lack of space, discussions on some results are omitted here. Further details
can be found in [77].

Classic Problem Formulations of Fault-tolerant Consensus. We consider the con-
sensus problem in a point-to-point message-passing network, which is modeled
as an undirected graph. Without specifically mentioning, the communication
network is assumed to be complete in this survey, i.e., each pair of nodes can
communicate with each other directly. In the fault-tolerant consensus problem
[14,50], each node is given an input, and after a finite amount of time, each
fault-free node should produce an output – consensus algorithms should sat-
isfy the termination property. Additionally, the algorithms should also satisfy
appropriate validity and agreement conditions. There are three main categories
of consensus problems regarding different agreement properties:

– Exact [40,67]: fault-free nodes have to agree on exactly the same output.
– Approximate [30,32]: fault-free nodes have to agree on “roughly” the same

output – the difference between outputs at any pair of fault-free nodes is
bounded by a given constant ε (ε > 0) of each other.

– k-set [22,68]: the number of distinct outputs at fault-free nodes is ≤ k.

Validity property is also required for consensus algorithms to produce mean-
ingful output(s), since the property defines the acceptable relationship between
inputs and output(s). Some popular validity properties include: (i) strong valid-
ity : output must be an input at some fault-free node, (ii) weak validity : if all
fault-free nodes have the same input v, then v is the output, and (iii) validity
(for approximate consensus): output must be bounded by the inputs at fault-
free nodes. A consensus algorithm is said to be correct if it satisfies termination,
agreement and validity properties given that enough number of nodes are fault-
free throughout the execution of the algorithm. In this paper, we focus on three
types of node failures – Byzantine, crash, and omission faults.

The other key component of the consensus problem formulation is system
synchrony, i.e., a model specifying the relative speed of nodes and the network
delay. There are also three main categories [14,16,31,50]:

– Synchronous: each node proceeds in a lock-step fashion, and there is a known
upper bound on the network delay.
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– Partially synchronous: there exists a partially synchronous period from time to
time. In such a period, fault-free nodes and the network stabilize and behave
(more) synchronously.1

– Asynchronous: no known bound exists on nodes’ processing speed or the net-
work delay.

2 Exploration of New Problem Formulations

In the past decade, researchers proposed many new consensus problems to han-
dle more complicated tasks and/or environments. We categorize these efforts
into four groups: (i) input/output domain, (ii) communication network and syn-
chrony assumptions, (iii) link fault models, and (iv) enriched correctness prop-
erties, such as early-stopping and one-step properties. In this survey, we focus
on the discussion of works on different input/output domain and communication
networks. Please refer to [77] for works in other groups. In this section, we assume
that the system consists of n nodes, and up to f of them may crash or become
Byzantine faulty. Byzantine faulty nodes may have an arbitrary behavior.

2.1 Input/Output Domain

Multi-valued Consensus. In the original exact Byzantine consensus problem
[43,67], both input and output are binary values. Later, references [51,80]
proposed the multi-valued version in which input may take more than two
real values. Recently, multi-valued consensus received renewed attentions and
researchers proposed algorithms that achieve asymptotically optimal communi-
cation complexity (number of bits transmitted) in both synchronous and asyn-
chronous systems. Perhaps a bit surprisingly, for L-bit inputs, these algorithms
achieve asymptotic communication complexity of O(nL) bits when L is large
enough.

In synchronous systems, Fitzi and Hirt proposed a Byzantine multi-valued
algorithm with small error probability [35]. Their algorithm is based on the
reduction technique and has the following steps: (i) hash the inputs to much
smaller values using universal hash function, (ii) apply (classic) Byzantine con-
sensus algorithm using these hash values as inputs, and (iii) achieve consensus
by obtaining the input value from nodes that have the same hash values (if there
is enough number of such nodes) [35]. Later, Liang and Vaidya combined a dif-
ferent reduction technique (that divides an input into a large number of small
values) with novel coding technique to construct an error-free algorithm in syn-
chronous systems [47]. One key contribution is to introduce a lightweight fault
detection (or fault diagnosis) mechanism using coding [47]. Their coding-based
fault diagnosis is efficient for large inputs because the inputs are divided into
batches of small values, and in each batch, either consensus (on the small value
1 Note that there are also other definitions of partial synchrony. We choose to present

this particular definition, since many BFT systems only satisfy liveness under this
particular definition. Please refer to [12,31] for more models on partial synchrony.
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of this batch) can be achieved with small communication complexity or some
faulty nodes will be identified. Once all faulty nodes are identified, then consen-
sus on the remaining batches becomes trivial. Since number of faulty nodes is
bounded, consensus on most batches can be achieved with small communication
complexity [47].

Subsequently, variants of reduction technique were applied to solve consen-
sus problems with large inputs in asynchronous systems. References [65,66] pro-
vided multi-valued algorithms with small error probability. Afterwards, Patra
improved the results and proposed an error-free algorithm [64]. These algorithms
terminate with overwhelming probability; however, the expected time complex-
ity is large because these algorithms first divide inputs to small batches and
achieve consensus on each batch using variants of fault diagnosis mechanisms.

Typically, to achieve optimal communication complexity, the number of
batches is in the same order of L. Consequently, the number of messages is
large, since by assumption, L is a large value (compared with n). Instead of
achieving optimal bit complexity, Mostéfaoui and Raynal focused on a different
goal – minimizing number of messages in asynchronous systems [56,58]. Their
algorithm relies on two new all-to-all communication abstractions, which have
an O(n2) message complexity (i.e., O(n2L) bits) and a constant time complexity.
The first communication abstraction allows the fault-free to reduce the number
of input values to a small constant c, which ranges from 3 to 6 depending on
the bound on the number of faulty nodes. The second abstraction allows each
fault-free node to obtain a set of inputs such that, if the set at a fault-free node
contains a single value, then this value belongs to the set at any other fault-free
nodes. The algorithm in [56,58] consists of four phases: (i) nodes exchange input
values in the first three phases with the first phase based on the first communi-
cation abstraction, and the two subsequent phases based on the second, and (ii)
nodes use binary consensus in the final phase to determine whether it is safe to
agree on the value learned from phase 3.

Multi-valued consensus has also been studied under the crash fault model.
Mostéfaoui et al. proposed multi-valued consensus algorithms in both synchro-
nous and asynchronous systems [9]. Later, Zhang and Chen proposed a more
efficient multi-valued consensus algorithm in asynchronous systems [90].

High-Dimensional Input/Output. In the Byzantine vector consensus (or multi-
dimensional consensus) [52,82], each node is given a d-dimensional vector of
reals as its input (d ≥ 1), and the output is also a d-dimensional vector. In com-
plete networks, the recent papers by Mendes and Herlihy [52] and Vaidya and
Garg [82] addressed approximate vector consensus in the presence of Byzantine
faults. These papers yielded lower bounds on the number of nodes, and algo-
rithms with optimal resilience in asynchronous [52,82] as well as synchronous
systems [82]. The algorithms in [52,82] are generalizations of the optimal itera-
tive approximate Byzantine consensus for scalar inputs in asynchronous systems
[11]. The algorithms in [52,82] require sub-routines for geometric computation
in the d-dimensional space to obtain each node’s local state in each iteration,
whereas, a simple average operation suffices when d = 1 (i.e., classic approximate



96 L. Tseng

consensus) [11]. These two papers [52] and [82] independently addressed the same
problem, and developed different algorithms – mainly on different geometric
computation techniques – which also resulted in different proofs.

Subsequent work by Vaidya [81] explored the approximate vector consensus
problem in incomplete directed graphs. Later, Tseng and Vaidya [78] proposed
the convex hull consensus problem, in which fault-free nodes have to agree on
“largest possible” polytope in the d-dimensional space that may not necessarily
equal to a d-dimensional vector (a single point). The asynchronous algorithm in
[78] bears some similarity to the ones in [11,52,82]; however, Tseng and Vaidya
used a different communication abstraction to achieve the “largest possible”
polytope. Moreover, Tseng and Vaidya introduced a new proof technique to
show the correctness of iterative consensus algorithms when the output is a
polytope [78].

2.2 Communication Network

The fault-tolerant consensus problem has been studied extensively in complete
networks (e.g., [14,30,40,50,67]) and in undirected networks (e.g., [29,33]). In
these works, any pair of nodes can communicate with each other reliably either
directly or via at least 2f + 1 node-disjoint paths (for Byzantine faults) or f + 1
node-disjoint paths (for crash faults). Recently, researchers revisited the assump-
tions on the communication network and enriched the problem space in four main
directions: directed graphs, dynamic graphs, unknown/anonymous networks and
partial synchrony. Here, we focus on the works on directed graphs. Please find
the discussion on the later three directions in [77].

Directed Graphs. Researchers started to explore various consensus problems in
arbitrary directed graphs, i.e., two pairs of nodes may not share a bi-directional
communication channel, and not every pair of nodes may be able to communicate
with each other directly or indirectly. Significant efforts have also been devoted
on iterative algorithms in incomplete graphs. In iterative algorithms, (i) nodes
proceed in iterations; (ii) the computation of new state at each node is based only
on local information, i.e., nodes own state and states from neighboring nodes;
and (iii) after each iteration of the algorithm, the state of each fault-free node
must remain in the convex hull of the states of the fault-free nodes at the end
of the previous iteration. Vaidya et al. [83] proved tight conditions for achiev-
ing approximate Byzantine consensus in synchronous and asynchronous systems
using iterative algorithms. The tight condition for achieving approximate crash-
tolerant consensus using iterative algorithms in asynchronous systems was also
proved in [76].

A more restricted fault model – called “malicious” fault model – in which the
faulty nodes are restricted to sending identical messages to their neighbors has
also been explored extensively, e.g., [44–46,89]. LeBlanc and Koutsoukos [45]
addressed a continuous time version of the consensus problem with malicious
faults in complete graphs. LeBlanc et al. [44] have obtained tight necessary and
sufficient conditions for tolerating up to f faults in the network.
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The aforementioned approximate algorithms (e.g., [44,74,83]) are general-
izations of the iterative approximate consensus algorithm in complete network
[30,32]. However, to accommodate directed links, the proofs are more involved.
Particularly, for the sufficiency part, one has to prove that all fault-free nodes
must be able to receive a non-trivial amount of a state at some fault-free node in
finite number of iterations. The necessity proofs in the work on directed graphs
(e.g., [44,83]) are generalizations of the indistinguishability proof [13,33]. The
main contributions are to identify how faulty nodes can block the information
flow so that (i) fault-free nodes can be divided into several groups, and (ii) there
exists certain faulty behaviors for up to f nodes such that different groups of
fault-free nodes have to agree on different outputs.

There were also works on using general algorithms to achieve consensus –
an algorithm is general if nodes are allowed to have topology knowledge and
the ability to route messages (send and receive messages using multiple node-
disjoint paths). Furthermore, unlike iterative algorithms (e.g., [11,30]), the state
maintained at each node in general algorithms is not constrained to a single
value. Tseng and Vaidya [79] proved tight necessary and sufficient conditions
on the underlying communication graphs for achieving (i) exact crash-tolerant
consensus in synchronous systems, (ii) approximate crash-tolerant consensus in
asynchronous systems, and (iii) exact Byzantine consensus in synchronous sys-
tems using general algorithms. The tight condition for achieving approximate
Byzantine consensus in asynchronous systems remains open. Lili and Vaidya [74]
proved tight conditions for achieving approximate Byzantine consensus using
general algorithms.

The exact consensus algorithms in [79] require that some “common informa-
tion” has to be propagated to all fault-free nodes even if some nodes may fail.
Generally speaking, the algorithms in [79] proceed in phases such that in each
phase, a group of nodes try to send information to the remaining nodes. The
algorithms are designed to maintain validity at all time. Additionally, if no fail-
ure occurs in a phase, then agreement can be achieved, because some “common
information” are guaranteed to be received by all nodes that have not failed
yet. The algorithm in [74] can be viewed as an extension of the iterative algo-
rithm that tolerates Byzantine faults in directed networks [83], and it utilized
the routing information and network knowledge to tolerate more failures than
the algorithm in [83] does.

3 Exploration of Practical Applications

Fault-tolerant consensus has been adopted in many practical systems. We start
with real-world systems that are designed to tolerate crash node faults, par-
ticularly, those based on two families of algorithms – Paxos [40] and Raft [63].
Then, we discuss efforts on designing BFT (Byzantine Fault-Tolerance) systems.
Finally, we compare Bitcoin-related work [60] with BFT systems and Byzantine
consensus. In [77], we also discuss systems tolerating “arbitrary state corruption
faults”.
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3.1 Paxos and Raft

Here, we discus exact consensus algorithms developed for asynchronous systems.
Consensus algorithm needs to satisfy validity, agreement and termination as dis-
cussed in Sect. 1. However, it is impossible to achieve exact consensus in asyn-
chronous systems [34]. Hence, the termination property is relaxed – progress
(or liveness) is only ensured when there exist some time periods that enough
messages are received within time.

Paxos [40–42,54] is the well-known family of consensus protocols tolerat-
ing crash node faults in asynchronous systems. Since Paxos was first proposed
by Lamport [40,41], variants of Paxos were developed and implemented in real-
world systems, such as Chubby lock service used in many Google systems [17,25],
and membership management in Windows Azure [19].2 Yahoo! also developed
ZaB [71], a protocol achieving atomic broadcast in network equipped with
FIFO channels, and used ZaB to build the widely-adopted coordination service,
ZooKeeper [38]. ZooKeeper is later used in many practical storage systems, like
HBase [4] and Salus [86]. Recently, many novel mechanisms have been proposed
to improve the performance of Paxos, including quorum lease [55], diskless Paxos
[75], even load balancing [54], and time bubbling (for handling nondeterminis-
tic network input timing) [28]. While the original Paxos [40,41] is theoretically
elegant, practitioners have found it hard to implement Paxos in practice [21].
One difficulty mentioned in [21] is that membership/configuration management
is non-trivial in practice, especially, when Multi-Paxos, and disk corruptions
are considered. (Multi-Paxos is a generalization of Paxos which is designed to
optimize the performance when there are multiple inputs to be agree upon [21].)

In 2014, Ongaro and Ousterhout from Stanford proposed a new consensus
algorithm – Raft [63]. Their main motivation was to simplify the design of consen-
sus algorithm so that it is easier to understand and verify the design and imple-
mentation. One interesting (social) experiment by Ongaro and Ousterhout was
mentioned in [63]: “In an informal survey of attendees at NSDI 2012, we found
few people who were comfortable with Paxos, even among seasoned researchers”.
To simplify the conceptual design, Raft integrates the consensus-solving element
deeply with leader election protocol and membership/configuration management
protocol [63]. After their publication, Raft has quickly gained popularity, and
been used in practical key-value store systems such as etcd [3] and RethinkDB
[7]. Please refer to their website [6] for a list of papers and implementations.

3.2 Byzantine Fault Tolerance (BFT)

Generally speaking, Byzantine Fault-Tolerance (BFT) systems implement deter-
ministic state machines over different machines (or replicas) to tolerate Byzan-
tine node failures. In other words, BFT systems realize the State Machine Repli-
cation systems [72] that tolerate Byzantine faults. The main challenge is to design

2 We would like to thank the anonymous reviewer who pointed out that Windows
Azure also uses ZooKeepr to manage virtual machines [1].
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a system such that it behaves like a centralized server to the clients in the pres-
ence of Byzantine faults. More precisely, the system is given requests from the
clients, and the goals of a BFT system are: (i) the fault-free replicas agree on the
total order of the requests, and then the replicas execute the requests following
the agreed order (safety); and (ii) clients learn the responses to their requests
eventually (liveness). Usually, safety is guaranteed at all time, and liveness is
guaranteed only in the grace periods, i.e., when messages are delivered in time.

Since Castro and Liskov published their seminal work PBFT (Practical
Byzantine Fault-Tolerance) [20], significant efforts have been devoted to improv-
ing BFT systems. There were mainly two directions of the improvements:
(i) reducing the overhead like communication costs, or replication costs, and
(ii) providing higher throughput or lower latency (in the form of round com-
plexity). Below, we focus on different techniques for improving the performance.
Please refer to [77] for the discussions on other works in this area, including
hardening existing crash-fault-tolerant systems, hardware-based BFTs, BFTs
with relaxed properties, BFT storage systems, and BFTs over intercloud.

Improving Performance. Castro and Liskov’s work on Practical Byzantine Fault-
Tolerance (PBFT) showed for the first time that BFT system is useful in practice
[20]. PBFT requires 3f + 1 replicas, where f is the upper bound on the num-
ber of Byzantine nodes in the system. Subsequently, Quorum-based solutions
Q/U [10] and HQ [27] have been proposed, which only require one round of
communication in contention-free case by allowing clients directly interact with
all the replicas to agree on an execution order. Contention-free case means the
time when all the following conditions hold: (i) no replica fails, (ii) the network
has stable performance, and (iii) there is no contention on the proposed input
value. The quorum-based solutions reduce latency (number of rounds) in some
cases, but was shown to be more expensive in other cases [39]. Hence, Zyzzyva
[39] focuses on increasing performance in failure-free case (when no replica fails)
by allowing speculative operations that increase throughput significantly and
adopting a novel roll-back mechanism to recover operations when failures are
detected. Zyzzyva requires 3f + 1 replicas; however, a single crash failure would
significantly reduce the performance by forcing Zyzzyva to run in the slow mode
– where no speculative operation can be executed [39]. Thus, Kotla et al. also
introduced Zyzzyva5, which can be executed in the fast mode even if there are
crash failures, but Zyzzyva5 requires 5f + 1 replicas [39]. Subsequently, Scrooge
[73] reduces the replication cost to 4f by requiring the participation from clients
which help detect replicas’ misbehaviors. Moreover, Scrooge runs in the fast
mode even if there are crashed nodes.

Clement et al. observed that a single Byzantine replica or client can signif-
icantly impact the performance of HQ, PBFT, Q/U and Zyzzyva [24]. Thus,
they proposed a new system Aardvark, which provides good performance when
Byzantine failures happen by sacrificing the performance in the failure-free case
[24]. Later, Clement et al. also demonstrated how to combine Zyzzyva and
Aardvark so that the new system, Zyzzyvark, not only tolerates faulty clients,
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but also enjoys fast performance in the failure-free case due to the integration
of speculative operations [23].

The aforementioned BFT systems are designed to optimize performance for
certain circumstances, e.g., HQ for contention-free case and Zyzzyva for failure-
free case. Guerraoui et al. proposed a new type of BFT systems that can be
constructed to have optimized performance under difference circumstances [37].
Their tunable design is useful, since it allows the system administrators to
explore the performance tradeoff space. Their systems are based on three core
concepts: (i) abortable requests, (ii) composition of (abortable) BFT instances,
and (iii) dynamic switching among BFT instances. The tunable parameter spec-
ifies the progress condition under which a BFT instance should not abort. Some
example conditions include contention, system synchrony or node failures. In
[37], Guerraoui et al. showed how to construct new BFT systems with different
parameters; particularly, they proposed (i) AZyzzyva which composes Zyzzyva
and PBFT together to have more stable performance than Zyzzyva does and
faster failure-free performance than PBFT’s performance, and (ii) Aliph which
has three components: PBFT, Quorum-based protocol optimized for contention-
free case, and Chain-based protocol optimized for high-contention case without
failures and asynchrony [37].

For computation-heavy workload, Yin et al. proposed a novel idea that sep-
arates agreement protocol from executions of clients’ requests [88]. This sepa-
ration mechanism reduces the replication cost to 2f + 1. Note that the system
still requires 3f + 1 replicas to achieve agreement on the order of the clients’
requests, but the executions of requests, and data storage only occur at 2f + 1
replicas. Later, Wood et al. built a system, ZZ, which reduces the replication
cost to f + 1 using virtualization technique [87]. The idea behind ZZ is that
f +1 active replicas are sufficient for fault detection, and when fault is detected,
their virtualization technique allows ZZ to replace the faulty replica by waking
up fresh replica and retrieving current system state with small overhead [87].

3.3 Bitcoin

Bitcoin is a digital currency system proposed by Satoshi Nakamoto [60] and
later gained popularity due to its characteristics of anonymity and decentralized
design [2]. Since Bitcoin is based on cryptography tools (Proof-of-Work mech-
anism), it can be viewed as a cryptocurrency. Even though Bitcoin has large
latencies (on the order of an hour), and the theoretical peak throughput is up to
7 transactions per second [85], Bitcoin is still one of the most popular cryptocur-
rencies. Here, we briefly discuss the core mechanism of Bitcoin and compare it
with Byzantine consensus and BFT systems.

Bitcoin Mechanism. The core of Bitcoin is called Blockchain, which is a peer-
to-peer ledger system, and acts as a virtually centralized ledger that keeps track
of all bitcoin transactions. A set of bitcoin transactions are recorded in blocks.
Owners of bitcoins can generate new transactions by broadcasting signed blocks
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to the Bitcoin network.3 Then, a procedure called mining confirms the trans-
actions and includes the transactions to the Blockchain (the centralized ledger
system). Essentially, mining is a randomized distributed consensus component
that confirms pending transactions by including them in the Blockchain. To
include a transaction block, a miner needs to solve a “proof-of-work” (POW)
or “cryptographic puzzle”. The main incentive mechanism for Bitcoin partici-
pants to maintain the Blockchain and to confirm new transactions is to reward
the participants (or the miners) some bitcoins – the first miner that solves the
puzzle receives a certain amount of bitcoins. The main reason that the mining
procedure can be related to consensus is because each miner maintains the chain
of blocks (Blockchain) at local storage, and the global state is consistent at all
miners eventually – all fault-free miners will have the same Blockchain eventu-
ally [60]. That is, fault-free Bitcoin participants need to agree on the total order
of the transactions.

One important feature of the cryptocurrency system is to prevent the double-
spending attacks, i.e., spending the same unit of money twice. In Bitcoin, the
consistent global state – the order of transactions – can be used to prevent
double-spending attacks. Since the attackers have no ability to reorganize the
order of blocks (i.e., modify the Blockchain, the ledger system), the money recipi-
ent can simply check whether the money has already been spent in the Blockchain
and reject the money if it has already been used.4 In [60], Satoshi Nakamoto pre-
sented a simple analysis that showed with high probability, Bitcoin’s participants
maintain a total order of the transactions if adversary’s computation power is
less than 1/3 of the total computation power in the Bitcoin network. As a result,
no double-spending attack is possible with high probability if adversary’s com-
putation power is bounded. However, the models under consideration were not
well-defined and the analysis was not rigorous in [60]. Thus, significant efforts
have been devoted to formally proving the correctness of Bitcoin mechanism
or improving the design and performance. Please refer to a nice textbook [61]
for a thorough discussion. Below, we focus on the comparison of Bitcoin and
Byzantine consensus/BFT systems.

Comparison with Byzantine Consensus. There are several differences between
the problem formulation of Byzantine consensus (as described in Sect. 1) and
the assumptions of Bitcoin [36,53,60]. For example, in Bitcoin: (i) the number
of participants is dynamic; (ii) participants are anonymous, and the participants
cannot authenticate each other; (iii) as a result of (ii), participants have no
way to identify the source of a received message; and (iv) the Bitcoin network

3 Here, we follow the convention: (i) Bitcoin network includes all the anonymous partic-
ipants in the Bitcoin system and the network that supports the anonymous commu-
nication; and (ii) throughout the discussion, “Bitcoin” refers to the system/network,
whereas, “bitcoin” refers to the basic unit of the cryptocurrency.

4 One technical issue here is that the Blockchain has the “eventually consistent” fea-
ture. The exact mechanism to handle the issue is beyond the scope of this survey.
Please refer to a nice textbook [61] for some mechanisms.
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is synchronized enough, and there is a notion of a “round”, i.e., the network
communication delay is negligible compared to computation time.

It was first suggested by Nakamoto that Bitcoin’s POW-based mechanism can
be used to solve Byzantine consensus [8,59]. However, the discussion was quite
informal [59]. To the best of our knowledge, Miller and LaViola were the first to
formalize the suggestion and proposed a POW-based model to achieve Byzantine
consensus when majority of participants are fault-free. However, the validity is
only ensured with non-negligible probability (but not with over-whelming prob-
ability). Subsequently, Garay et al. [36] extracted and analyzed the core mecha-
nism of Bitcoin [36], namely Bitcoin Backbone. They first identified and formal-
ized two properties of Bitcoin Backbone: (i) common prefix property: fault-free
participants will possess a large common prefix of the Blockchain, and (ii) chain-
quality property: enough blocks in the Blockchain are contributed by fault-free
participants. Then, they presented a simple POW-based Byzantine consensus
algorithm which is a variation of Nakamoto’s suggestion [59], but satisfy agree-
ment and validity assuming that the adversary’s computation power (puzzle-
solving power) is bounded by 1/3. Their algorithm can also be used to solve
Byzantine consensus with strong validity [62]. Finally, they proposed a more
complicated consensus protocol, which was proved to be secure assuming high
network synchrony and that the adversary’s computation power is strictly less
than 1/2. In [36], Garay et al. focused on how to use Bitcoin-inspired mechanism
to solve Byzantine consensus.

Comparison with BFT Systems. Conceptually, BFT and Bitcoin have similar
goals: (i) BFT : clients’ requests are executed in a total order distributively; and
(ii) Bitcoin: a total order of blocks are maintained by participants distributively.
Therefore, it is interesting to compare BFT with Bitcoin as well. Below, we
address fundamental differences between the two.

– Environment: As discussed above, assumptions for BFT are similar to the ones
for Byzantine consensus, which are very different from the ones for Bitcoin.
One major difference is the anonymous node identity. In BFT, the system
environment is well-controlled, and replicas’ IDs are maintained and man-
aged by the system administrators. In contrast, Bitcoin is a decentralized
system where all the participants are anonymous. As a result, BFT systems
can use many well-studied tools from the literature, e.g., atomic broadcast,
and quorum-based mechanism, whereas, Bitcoin-related systems usually rely
on POW (proof-of-work) or variants of cryptographic tools.

– Features: In [85], Marko Vukolic mentioned that the features of BFT and
Bitcoin are at two opposite ends of the scalability/performance spectrum due
to different application goals. Generally speaking, BFT systems offer good
performance (low latency and high throughput) for small number of replicas
(≤ 20 replicas), whereas, Bitcoin scales well (≥ 1000 participants), but the
latency is prohibitively high and throughput is limited.

– Incentive: In BFT system, every fault-free replica/client is programmed to fol-
low the algorithm specification. However, in Bitcoin, participants may choose
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not to spend their computation power on solving puzzles; thus, there is a
mechanism in Bitcoin to reward the mining process [60].

– Correctness property: As addressed in Sect. 3.2, BFT systems satisfy safety
in asynchronous network and satisfy liveness when network is synchronous
enough (in grace period). As shown in [36,60], Bitcoin requires network syn-
chronous enough for ensuring correctness (when network delay is negligible
compared to computation time).

– Applications: Bitcoin or Blockchain-based systems inspire lots of exciting
applications beyond cryptocurrency, e.g., smart contract, identity/ownership
management, digital access/contents, etc. In contrasts, applications for BFT
systems are more traditional in the sense that there already exist those appli-
cations (that tolerate only crash faults), and BFTs help improve the fault-
tolerance level.

In [85], Marko Vukolic proposed an interesting research direction on finding
the synergies between Bitcoin and BFT systems, since both systems have their
limitations and advantages. On one hand, the poor performance of POW-based
mechanism limits the applicability of Blockchain in other domains like smart
contract application [15,85]. On the other hand, BFT systems are not widely
adopted in practice due to their poorer scalability and lack of killer applications
[48,84]. SCP is a recent system that utilizes hybrid POW/BFT architecture [49].
However, further exploration of the synergy between Bitcoin and BFT systems
is an interesting research direction.

4 Summary and Future Directions

Conclusion. Fault-tolerant consensus is a rich topic. This paper is only managed
to sample a subset of recent results. To augment previous surveys/textbooks on
the same topic, e.g., [14,18,26,50,69], we survey prior works from two angles:
(i) new consensus problem formulations, and (ii) practical applications. For the
second part, we focus on the Paxos- and Raft-based systems, and BFT systems.
We also discuss Bitcoin which has close relationship with Byzantine consensus
and BFT systems.

Future Directions. The future research directions below focus on one theme:
bridging the gap between theory and practice. As discussed in the first part of the
paper, researchers have explored wide variety of different (theoretical) problem
formulations; however, there is no consolidated or unified framework. As a result,
it is often hard to compare different algorithms and models, and it is also diffi-
cult for practitioners to decide which algorithms are most appropriate to solve
their problems. Thus, making these results more coherent and more practical
(e.g., giving rule-of-thumbs for picking algorithms) would be an important and
interesting task.

In the second part, we discuss the efforts of applying fault-tolerant consen-
sus in real-world systems. Unfortunately, the difficulty in implementing or even
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understanding the consensus algorithms prevents wider applications of consen-
sus algorithms. Therefore, simplifying the conceptual design and verifying the
implementation is also a key task. Raft [63] is one good example of how simplified
design and explanation could help gain popularity and practicability. Another
major task is to understand and analyze more thoroughly the real-world dis-
tributed systems. As suggested in [36,85], BFT systems and Bitcoin are not yet
well-understood. The models presented in [36,53] and other works mentioned in
[85] were only the first step toward this goal. Only after enough research and
understanding, could we improve the state-of-art mechanisms. For example, as
mentioned in [61], Bitcoin’s core mechanism depends on the incentive mecha-
nism to reward miners; however, not much work has analyzed Bitcoin from the
perspective of game theory.
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Abstract. Adaptive renaming can be viewed as a coordination task
involving a set of asynchronous agents, each aiming at grabbing a sin-
gle resource out of a set of resources Similarly, musical chairs is also
defined as a coordination task involving a set of asynchronous agents,
each aiming at picking one of a set of available resources, where every
agent comes with an a priori preference for some resource. We foresee
instances in which some combinations of resources are allowed, while
others are disallowed.

We model these constraints as an undirected graph whose nodes rep-
resent the resources, and an edge between two resources indicates that
these two resources cannot be used simultaneously. In other words, the
sets of resources that are allowed are those which form independent sets.

We assume that each agent comes with an a priori preference for
some resource. If an agent’s preference is not in conflict with the pref-
erences of the other agents, then this preference can be grabbed by the
agent. Otherwise, the agents must coordinate to resolve their conflicts,
and potentially choose non preferred resources. We investigate the fol-
lowing problem: given a graph, what is the maximum number of agents
that can be accommodated subject to non-altruistic behaviors of early
arriving agents?

Just for cyclic constraints, the problem is surprisingly difficult. Indeed,
we show that, intriguingly, the natural algorithm inspired from optimal
solutions to adaptive renaming or musical chairs is sub-optimal for cycles,
but proven to be at most 1 to the optimal. The main message of this paper
is that finding optimal solutions to the coordination with constraints and
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preferences task requires to design “dynamic” algorithms, that is, algo-
rithms of a completely different nature than the “static” algorithms used
for, e.g., renaming.

1 Introduction

1.1 Context and Objective

In distributed computing, several tasks have their adaptive versions in which
the quality of the solution must depend only on the number of processes that
participate in a given execution, and not on the total number of processes that
could be involved in this task. A typical example of an adaptive task is adaptive
renaming [4]. In renaming, each process is aiming at acquiring a name taken from
a small range of integers [1, r], under the constraint that all acquired names must
be pairwise distinct. The quality of a renaming algorithm is judged based on the
range r of names, the smaller the better. In adaptive renaming, r must depend
only on the number k of participating processes. In the asynchronous setting
with crash-prone processes and read/write registers, the optimal value for the
range is known to be r = 2k − 1 [5,13].

Interestingly, adaptive renaming can also be viewed as a task by interpreting
the integers 1, . . . , r as a total order on the names, where name i is preferred
to name j whenever i < j. Hence, adaptive renaming can be viewed as an
abstraction of the problem in which asynchronous agents are competing for
resources totally ordered by their desirability. In other words, adaptive renaming
is an abstraction of a problem of coordination between agents under preferences.
Coordination between agents under preferences has been recently investigated
in [2,3] where the musical chairs game has been formally defined and solved.
In this game, a set of players (modeling the agents) must coordinate so that
each player eventually picks one of the available chairs (modeling the resources).
Each player initially comes with an a priori preference for one chair. In absence
of conflict with other players, the player can pick the desired chair, otherwise the
conflicting players must coordinate so that they pick different chairs. It is proved
that the smallest number r of chairs for which musical chairs with k players has
a solution is r = 2k − 1.

We foresee that neither adaptive renaming nor musical chairs fully capture
typical scenarios of agents competing for resources. Indeed, both tasks only cap-
ture scenarios in which the constraint is that no two agents can acquire the same
resource. In practice, resources may not be independent, and the literature on
scheduling, partitioning, resource allocation, etc. (see, e.g., [6,7,11,15,16]) pro-
vide several examples of problems in which resources are inter-dependent, caus-
ing some resource a not being allowed to be used simultaneously with resource b.
That is, using one resource disables others. In this paper, we consider the case in
which constraints are modeled as an indirected graph whose nodes are resources,
and every edge {a, b} indicates that resources a and b cannot be both simultane-
ously acquired, i.e., acquiring a node disables all its neighbors. In other words,
the sets of resources that are allowed are those which form independent sets in
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the graphs. In this framework, renaming as well as musical chairs correspond
to the case where the graph of constraints is a stable one (i.e., a graph with no
edges). We thus address an extension of renaming and musical chairs, targeting
an abstraction of a problem of coordination between agents under constraints.

Our objective is to understand the power and limitation of coordination
between agents competing for interdependent resources. We are focussing on a
scenario inspired from musical chairs in which a resource is a priori assigned to
each agent, and the agents have to coordinate between them so that to eventually
acquire pairwise non conflicting resources. In particular, if the initial assignment
forms an independent set, then the agents do not have to do anything. Alter-
natively, if they are initially assigned conflicting resources, then they have to
spread out and coordinate themselves so that they eventually acquire a set of
resources that form an independent set. In other words, each agent comes with
an a priori preference for some resource—these preferences for the resources do
not need to be different. If an agent’s preference is not in conflict with the pref-
erence of another agent, then it can grab its preference. Otherwise, this agent
must choose another resource.

The coordination task between agents under preferences and constraints is
thus defined as follows. Given an n-node graph G = (V,E) modeling the con-
straints between the resources, an input is a multiset M of k elements in V
representing the preferences of k processes p1, . . . , pk modeling the k agents.
Outputs are independent sets I = {u1, . . . , uk} in G, of size k representing the
fact that process pi acquires ui, for i = 1, . . . , k. The literature on renaming [5]
and musical chair [3] taught us that, in an asynchronous system in which the
processes are subject to crash failures, the task is not solvable for k larger than
some bound, even for the stable graph G (the value of the bound on k for the
stable graph is roughly half the number of nodes of the graph). We are interested
in the impact of the constraints on this bound. That is, given a graph G, we are
interested in the largest k for which the coordination with constraints and prefer-
ences task in G is solvable for every preference multiset M of size at most k. We
focus on asynchronous systems in which an arbitrarily large number of processes
are subject to crash failures. Each process has its own private registers, and the
processes communicate via read/write accesses to a shared memory.

1.2 Our Results

We first focus on the problem for the n-node path Pn because it enables to prove a
lower bound on the size of Hamiltonian graphs for which the coordination with
constraints and preferences task is solvable. Interestingly, this lower bound is
almost twice as large as the 2k − 1 bound without constraints resulting from
renaming or musical chairs. Specifically, we establish the following:

Theorem 1. Let k be a positive integer. The smallest integer n for which
the coordination with constraints and preferences task in Pn is solvable for k
processes satisfies n = 4k − 3. As a consequence, if the coordination with con-
straints and preferences task in an n-node Hamiltonian graph G is solvable for
k processes then n ≥ 4k − 3.
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The lower bound on n is based on a reduction to impossibility results for
musical chairs, i.e., renaming with initial preferences. The upper bound on n
comes from a wait-free algorithm, inspired from an optimal adaptive renaming
algorithm, whose main lines are: (1) fix a maximum independent set I in Pn,
(2) index the vertices of I from 1 to 2k − 1, and (3) run an optimal (adaptive)
renaming algorithm on these indexes.

From this preliminary result on Pn, one may think that solving the coordi-
nation with constraints and preferences task in a graph G boils down to classical
renaming once a maximum independent set in G is fixed. We show that this is
not the case. In fact, even for an instance as simple as the n-node ring Cn, the
problem becomes highly non trivial.

Theorem 2. Let k be a positive integer. The smallest n for which the coordi-
nation with constraints and preferences task in Cn is solvable for k processes
satisfies 4k − 3 ≤ n ≤ 4k − 2.

The lower bound is a consequence of Theorem 1 since Cn is Hamiltonian. A
quite intriguing fact is that the wait-free algorithm derived from an adaptation
of an optimal algorithm for classical renaming run on a maximum independent
set of Cn does not match the lower bound, and is off by an additive factor +1.
In fact, we prove that the true answer is probably the lower bound 4k−3, which
is shown to be tight for k = 2 and 3 agents, using ad hoc algorithms that are
radically different from renaming algorithm.

We believe that the difference of 1 between the lower and upper bounds for
Cn is certainly not anecdotal, but is the witness of a profound phenomenon that
is not yet understood, with potential impact on classical renaming and musical
chairs. The main outcome of this paper is probably the observation that “static”
algorithms, i.e., algorithms based on fixed precomputed positions in the graph of
constraints, might be sub-optimal by allocating less resources than the optimal.
Our optimal ad hoc algorithms for coordinating two or three processes in the ring
are not static, and the set of allocated resources output by these algorithms can
form any independent set. The design of optimal “dynamic” (i.e., non static)
algorithms for solving the coordination with constraints and preferences task
appears to be a challenge, even in the specific case of the cycle Cn.

The enormous difficulty for asynchronous crash-prone processes to coordinate
under constraints and preferences, even in graphs with arbitrarily large indepen-
dent sets, is also illustrated by the case of the complete bipartite graph Kx,y

with n = x + y nodes. We show that, although Kx,y has very large independent
sets (of size at least min{x, y}), processes cannot coordinate at all in this graph.

Theorem 3. Let x, y be positive integers. Coordination with constraints and
preferences in the complete bipartite graph Kx,y is unsolvable for more than one
process.

Finally, on the positive side, given any graph G, we can design an static
algorithm alg solving the coordination with constraints and preferences task in
G. alg is based on the novel notion of k-admissible independent sets, which may
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have its interest on its own: given G = (V,E), an independent set I of G is k-
admissible if for every W ⊆ V of size at most k−1, we have |I\N [W ]| ≥ |I∩W |+1
where N [W ] denotes the set of nodes at distance at most 1 from a node in W .
We prove that among static algorithms, alg is optimal, which completely closes
the problem for static algorithms.

Theorem 4. Let G be a graph, and k be a positive integer. Let I be a k-
admissible independent set in G. Then, alg instantiated with I solves the coor-
dination with constraints and preferences task in G with k processes. Moreover,
if G has no (k + 1)-admissible independent set, then no static algorithms can
solve the coordination with constraints and preferences task in G with more than
k processes.

1.3 Related Work

Since its introduction, the renaming problem has been extensively studied (see
for example [5,10,19]). It was initially introduced as a non-adaptive problem in
which processes just need to pick distinct output names in the space [1, . . . ,M ],
where M is on function only on the total number of processes that might par-
ticipate [4]. Several algorithms were proposed (e.g. [4,9,14]), and, as far as we
know, all those initial algorithms are adaptive. Then the adaptive version of
renaming was coined. The study of lower bounds for renaming have inspired
new developments in topology techniques (see [17] for a detailed description).
As explained above, the variant of renaming that is closest to this paper is the
adaptive renaming version. This is the version we use to solve the coordination
with constraints and preferences task on a graph with no edges.

Musical chairs [2,3] is a coordination problem on a stable graph in which each
process starts with a initial vertex (chair) and processes are required to decide
distinct vertices (chairs). The problem is studied in a model where the only
communication between processes is an indication when two processes propose
the same vertex. It has been shown that k processes can solve the problem only if
the stable graph has at least 2k −1 vertices. It has been also shown that musical
chairs and adaptive renaming are equivalent problems.

Interestingly, the coordination with constraints and preferences is also related
to mobile computing [12], where mobile entities (modeling physical robots,
software agents, insects, etc.) must cooperate in order to solve tasks such as
rendezvous, gathering, exploration, patrolling, etc. In particular, in the asynchro-
nous look-compute-move model of mobile computation, the “look” operation is
very similar to a “snapshot” operation in shared memory, and the “move” oper-
ation is very similar to the “write” operation. The major differences between the
wait-free model of distributed computation and the look-compute-move model
of mobile computation are (1) the presence of failures in the former, and (2) the
fact that agents are moving in an anonymous graph in the latter.
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2 Model and Examples

2.1 Computational Model

We consider the standard asynchronous wait-free read/write model with k
processes, p1, . . . , pk [5,19]. Processes are asynchronous, communicate by writing
and reading from a reliable shared memory, and any set of processes may crash.
We assume, without loss of generality, that processes can read the whole shared
memory in a single atomic snapshot [1].

Problems in the wait-free model are usually defined as tasks, where processes
get input values, and decide after a bounded number of operations on output
values, such that the decided values represent a valid configuration associated
to the initial values of the execution for this task.

Without loss of generality, we can assume that algorithms solving tasks are
in normal form, that is, are of the form of a loop consisting of (1) writing to
the shared memory the local state of the process, (2) taking a snapshot, and
(3) performing some local computation. The loop is executed until the process
returns an output (i.e., decides).

2.2 Coordination with Constraints and Preferences (CCP)

The task coordination with constraints and preferences (or CCP for short) is
instantiated by a fixed n-node graph G = (V,E). The graph is modeling the
constraints. It is supposed to be simple, i.e., without loops and multiple edges,
but does not need to be connected. Each process pi gets as input one vertex
u ∈ V , called its initial private preference, and must eventually decide on a
vertex v ∈ V . It is required that the decided vertices form an independent set of
G, that is, no two processes decide the same vertex, and no two decided vertices
belong to the same edge. It is also required that if the initial preferences form an
independent set, then each process must decide its initial preference (enforcing
the fact that processes cannot discard their preferences).

We are interested in computing, for every n-node graph G, the largest k
such that CCP in G is wait-free solvable for k processes. Note that an algorithm
solving CCP in G is given the full description of G a priori. Hence, there are
no issues such as, e.g., breaking symmetry between nodes of G, even if G is
vertex-transitive. (In particular, the nodes of G might be given labels from 1 to
n, a priori, in a specific order which may facilitate the task for the processes).

2.3 Examples and Basic Observations

CCP is trivially solvable for one process in every graph, by selecting its ini-
tial preference as output vertex. Also, CCP is trivially not solvable in G for k
processes if k exceeds the size of a maximum independent set. In fact, CCP is
not solvable in G for k processes if k exceeds the size of the smallest maximal
independent set. Indeed, let I = {u1, . . . , u�} be a smallest maximal indepen-
dent set in G, and assume that � processes p1, . . . , p� are given preferences in
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I (ui to pi for i = 1, . . . , �). In a wait-free execution in which only those �
processes participate, they must decide I. If another process p�+1 “wakes up”
after the � processes have decided, there is no more room for p�+1 to acquire a
vertex, because I is maximal. This holds even if there exists another independent
set I ′ larger than I, since the first � processes have already terminated.

The following result is a direct consequence of [3] as Musical Chairs is exactly
our problem on the stable graph.

Proposition 1. Let k be a positive integer. The smallest integer n for which the
coordination with constraints and preferences task in the n-node stable graph is
solvable for k processes satisfies n = 2k − 1.

Also, we have the following observation.

Proposition 2. Let G = (V,E) be a graph, and G′ = (V,E′) with E′ ⊆ E be
a subgraph of G. If the coordination with constraints and preferences task is
solvable for k processes in G, then it is solvable for k processes in G′.

As a consequence of the above two propositions, we get a general lower bound
on the size of graphs in which the coordination with constraints and preferences
task is solvable for k processes.

Corollary 1. Let G be an n-node graph. If the coordination with constraints
and preferences task in G is solvable for k processes then 2k − 1 ≤ n.

3 The Case of Cyclic Constraints

Our first results concern simple non-trivial sets of constraints, namely the cases
of the n-node paths and cycles, respectively denoted Pn and Cn. The case of the
path is entirely solved by the following results, which establish Theorem1:

Proposition 3. Let k be a positive integer. The smallest integer n for which
the coordination with constraints and preferences task in the n-node path is
solvable for k processes satisfies n = 4k − 3.

Proof. Let us assume, for the purpose of contradiction, that there is an algorithm
A solving CCP in the n-node path for k processes with n = 4k − 4. Such a path
has a maximum matching M of size 2k − 2. A guarantees that, for every edge
of M , at most one process acquires an extremity of that edge. A can be used as
a subroutine to solve CCP on a stable graph of size 2k − 2, as we show below.

We assume that the n-path is oriented from left to right and hence for each
edge in M there is a left vertex and a right vertex (thus, in the path, not two left
(right) vertices are adjacent). Also, each vertex v of the stable graph of size 2k−2
is mapped to a unique edge f(v) in M . To solve CCP on the stable graph, each
process pi with initial preference v, invokes A with the left vertex of f(v) and
decides f−1(e), where e is the edge in M containing the vertex that A outputs
to pi The resulting algorithm A solves CCP on the stable graph of size 2k − 2
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because if processes start with distinct vertices, then all of them invoke A with
left vertices and hence, each process decide its initial preference. If processes
start with conflicting initial preferences, then A outputs vertices that belong to
distinct edges in M . This is a contradiction with Proposition 1 because M is of
size 2k − 2.

We now describe an algorithm solving CCP in the n-node path for k processes
with n = 4k − 3. The algorithm is based on a maximum independent set I
of size 2k − 1 in P4k−3. That is, the nodes of P4k−3 are labeled off line as
(v1, v2, v3, . . . , v4k−3), and we define I = {v1, v3, v5, . . . , v4k−3}. Essentially, the
algorithm runs the textbook renaming algorithm of [5] on I, adapted to handle
initial preferences. Indeed, selecting a node w /∈ I may block two positions in
I (the two neighboring nodes of w). Nevertheless, there is still enough room to
perform renaming, and hence to solve CCP. Indeed, let N [w] be the closed neigh-
borhood of w in Pn, i.e., the at most three nodes at distance at most 1 from w,
and, for a set of nodes W , let N [W ] = ∪w∈W N [w]. In classical renaming, if W
is the multiset of currently chosen names, there remain at least 2k −1−|W | ≥ k
available names to choose from. In the path, if W is the multiset of currently
chosen nodes, there are only |I\N [W ]| available nodes in I to choose from, and
this number of available nodes can be less than k. However, the crucial observa-
tion is that |I\N [W ]|| > |I ∩ W | in the path P4k−3, for any set of nodes W of
size at most k − 1. Hence, there are more free nodes in I than occupied nodes
in I, and thus the idea is to perform the ranking of the renaming algorithm only
on processes sitting on the occupied nodes of I. Since |I\N [W ]|| > |I ∩ W |, this
ranking is valid, that is, systematically provides a position in I\N [W ]. Termi-
nation follows from classical arguments by assuming, by way of contradiction,
that some processes do not terminate, and then by considering the process p
with lowest ID that does not terminate. Eventually, the rank r of p will remain
forever the same, and no other processes that do not terminate will conflict with
the rth node in the subset of nodes in I that are not conflicting with terminated
processes. At this point, process p terminates. �	

As a consequence of this result combined with Proposition 2, we get a general
lower bound on the size of Hamiltonian graphs in which the coordination with
constraints and preferences task is solvable for k processes. Interestingly, this
bound is roughly twice as big as the bound for arbitrary graphs (cf. Corollary 1).

Corollary 2. Let G be an n-node Hamiltonian graph. If the coordination with
constraints and preferences task in G is solvable for k processes then 4k −3 ≤ n.

The case of Pn has attracted our interest for it enables deriving bounds for
Hamiltonian graphs. The case of the cycle Cn may seem to behave quite similarly
as Pn. Surprisingly, this is not the case, as the wraparound constraint yields
an interesting phenomenon, namely “static” solutions inspired from renaming
algorithms such as the ones for the stable graph and the path are not anymore
optimal in term of number of processes, and are off by an additive factor +1 from
the optimal. More precisely, we show the following, which establishes Theorem 2:
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Proposition 4. Let k be a positive integer. The smallest integer n for which
the coordination with constraints and preferences task in Cn is solvable for k
processes satisfies 4k − 3 ≤ n ≤ 4k − 2.

Proof. The lower bound follows directly from Corollary 2. The upper bound is
directly derived from the algorithm in the proof of Proposition 3 by fixing a
maximum independent set of size 2k − 1 in the cycle C4k−2. The correctness of
the algorithm follows from the same arguments as for the path P4k−3. �	

Interestingly, the lower bound 4k − 3 is most probably the right answer, and
not the upper bound 4k − 2. At least, this is the case for small numbers of
processes:

Proposition 5. The smallest integer n for which the coordination with con-
straints and preferences task in Cn is solvable for k processes satisfies n = 4k−3
for k = 2 and k = 3.

Proof. The nodes of C4k−3 are sequentially labeled offline as v1, v2, . . . , v4k−3.
This labeling induces a clockwise direction (increasing labels) and a counter-
clockwise direction.

The algorithm for two processes in C5 is depicted on Fig. 1, which represents
the snapshot of a process, and the action to take (represented as arrows) based
on this snapshot when 2 processes participate. There are three cases, depending
on whether the two processes are currently occupying nodes at distance 0, 1,
or 2. (Of course, if the snapshot reveals that the process is alone, then it decides
the node that it currently occupies, i.e., its preferred node). If the snapshot
reveals that the two processes occupy the same node, then the action depends
on the ID: going clockwise for the process with smallest ID, and counterclockwise
otherwise. If the snapshot reveals that the two processes occupy two neighboring
nodes, then the action is: going away from the other node. Finally, if the snapshot
reveals that the two processes occupy two nodes at distance 2, then the action
is to decide the currently occupied node. One can check that this asynchronous
algorithm terminates, and wait-free solves CCP.

A similar algorithm for three processes in C9 can be derived. Due to lack of
space, this algorithm is deferred to the full version of the paper. �	

From these two cases, we conjecture that the smallest cycle Cn enabling
to solve CCP is n = 4k − 3, for all k ≥ 2. If this is correct, it means that
optimality requires processes to coordinate in a more complex way than they
do for renaming, in order to spread out optimally in the graph of constraints,
and eventually occupy a large number of nodes. The independent set they will
eventually agree on cannot be decided a priori, but the processes must agree
on line in order to eventually decide an independent set that fits their initial
preferences, the constraints and the uncertainty resulting for asynchrony and
failures.
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Fig. 1. CCP algorithm for two processes in C5: rules when two processes are executing

4 A Generic Algorithm

The algorithms inspired by the original algorithm of [5] used in the proofs of
Theorems 1 and 2 to establish the upper bounds on the smallest integer n for
which the coordination with constraints and preferences task in the n-node path
and in the n-node cycle are static in the sense that they are aiming at deciding
within a fixed independent set. More precisely:

Definition 1. Let G be a graph, and I be an independent set in G. An algorithm
A solving the coordination with constraints and preferences task in G is static
with respect to I if, for every execution of A, and for every process p, if p does
not decide its initial input, then it decides a vertex in I.

To establish Theorem 4, we present a generic static algorithm to solve CCP
on every graph G = (V,E), and prove that this algorithm is the best possible
static algorithm in the sense that it maximizes the number k of processes for
which CCP is solvable in G. The generic algorithm is instantiated with an a
priori ordered independent set I. That is, I = {w1, . . . , w|I|}, and this ordering
of the nodes in I is know a priori to every process. The processes proceed in a
sequence of (asynchronous) rounds. At each round, every process pi proposes a
current vertex denoted curi (the first proposal is the input ui of processes pi).
Then, pi checks whether there is a conflict with other proposals. In absence of
conflict, pi decides its current proposal curi. If there is a conflict, pi computes a
new proposal in I, and repeats. Hence, in particular, if a process sees no conflict
in its initial proposal, then it stays there. Otherwise it will try a new proposal
in I. The new proposal of pi is computed within the “free space” that is defined
as the maximal subset of I such that there is no conflict with other processes’
proposals.

Algorithm 1 is the pseudocode of the generic algorithm. The algorithm uses
a shared array view, accessed with write and snapshot operations, where each
entry is initially ⊥. For convenience, it is easier to consider the array view as a
multiset of nodes. The local variable curi stores the current proposal of process
pi. For a set W ⊆ V , we denote by N [W ] the closed neighborhood of W , that is,
for w ∈ V , N [w] = {w} ∪ {v ∈ V : {v, w} ∈ E}, and N [W ] = ∪w∈W N [w].
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Algorithm 1. G = (V,E) is a graph, and I is an ordered independent set in G.
Code for pi.
function IndependentSet(ui ∈ V : initial preference of pi)
1: curi ← ui

2: loop
3: write(curi)
4: snapshot memory to get view = {curj1 , . . . , curjr} � multiset of r elements, for some r

5: view′ ← view\{curi} � remove one occurrence of curi from view
6: if view′ ∩ N [curi] = ∅ then � check for conflicts
7: return curi � no conflict ⇒ decide curi

8: else � conflict detected ⇒ compute a new position
9: free ← I\N [view′] � rule out conflicting vertices from I
10: � ← |{s : curjs ∈ I and js < i}| + 1 � ranking on the currently occupied vertices of I

11: curi ← �th element in free � try the �th free node for the next round
12: end if
13: end loop

Note that if the initial preferences of participating processes are distinct
and form an independent set, then Algorithm1 guarantees that each process
decides on its initial preference. Note also that if two processes decide on vertices
v1, v2, then v1 �= v2 and {v1, v2} �∈ E. However, for Algorithm1 to function
appropriately, we use it for a specific kind of independent sets, namely admissible
independent sets, defined hereafter (see Fig. 2 for an illustration):

Definition 2. Let k be a positive integer, and G = (V,E) be a graph. An
independent set I of G is k-admissible if for every W ⊆ V of size at most k − 1,
we have |I\N [W ]| ≥ |I ∩ W | + 1.

Notice that any k-admissible independent set I satisfies |I| ≥ 2k − 1 (instan-
tiate Definition 2 with W ⊆ I of size k − 1). To establish Theorem 4, we first
prove the following result.

Proposition 6. Let G be a graph, and k be a positive integer. Let I be a k-
admissible independent set in G. Then, Algorithm 1 instantiated with I solves
the coordination with constraints and preferences task in G with k processes.

Proof. We have seen that the safety conditions (i.e., respect of the preferences,
and take decisions on an independent set) are satisfied. It just remains to show
that the algorithm is valid (i.e., whenever a process detects a conflict on Line 6,
it is able to compute a new consistent preference), and terminate. We first show
validity.

Claim. For any process that is about to execute Line 11, |free| ≥ �.

Consider a process pi that is about to execute Line 11. Such a process pi

must have detected a conflict Line 6. Let view be the snapshot of pi associated
with this conflict, and W = view′. When pi is about to execute Line 11, we
have free = I\N [W ]. As there are at most k participating processes, it follows
that |W | < k. Since I is k-admissible, we have |I\N [W ]| ≥ |W ∩ I| + 1, which
implies |free| ≥ |W ∩ I| + 1. Moreover, pi’s ranking computed in line 10 is at
most |W ∩I|+1 because W does not contain pi’s preference, i.e., one ignores the
nodes not in I when ranking. Hence |free| ≥ �, and thus the algorithm is valid.
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Claim. Algorithm 1 terminates.

Assume, for the sake of contradiction, that there is a run α in which some
processes take an infinite number of steps without deciding a vertex. In this
execution, let P be the set of all processes taking infinitely many steps, and let
p ∈ P be the process with minimum ID in P . Consider a suffix α′ of α in which
(1) all processes that do not run forever have stopped, and (2) all processes in P
have already tried once to get a vertex in I, namely, they have executed Line 11
at least once. Note that such a suffix exists because every process that takes an
infinite number of steps in α will see an infinite number of conflicts, and thus
will eventually always execute Line 3 with its current vertex in I.

In α′, the rank of p is fixed because, from there on, the set of processes that
occupy vertices in I is fixed. Let r be the rank of p among the processes of α′

with proposals in I, and let good be the set of vertices in I that do not conflict
with preferences of stopped processes in α′. Eventually, there are no processes
in P that are proposing one of the first r − 1 elements of good. Indeed, the rank
of every process in P is at least r, and when a process q ∈ P takes a snapshot,
the set free that it computes satisfies free ⊆ good. Thus, q proposes the x-th
element in free, where x ≥ r. Hence, this element cannot be one of the first r −1
elements in good.

It follows that, in α′, as soon as all running processes have seen each other,
and have written at least twice, when these processes compute free, the first r
elements are all elements of good, and only p will try to get the r-th element in
free. When it does, it detects no conflict. Thus p can terminate the algorithm
on Line 3, which yields to a contradiction. �	

I \ N [W ]
I ∩ W

I

W

N [W ]

Fig. 2. To be k-admissible, I must satisfy |I\N [W ]| ≥ |I ∩ W | + 1 for every W of size
≤ k − 1.

We now show the second part of Theorem4, that is, Algorithm1 is optimal
on the number of processes, among static CCP algorithms. This is established
thanks to the following result.

Proposition 7. Let G be a graph, k be a positive integer, and assume that G
has no (k + 1)-admissible independent set. Then, no static algorithm can solve
the coordination with constraints and preferences task in G with more than k
processes.
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The proof is based on the following claim, which is an interesting consequence
of the Wait-free Computability Theorem of [18].

Claim. If there is a k-process CCP algorithm for G, then there exists a k-process
CCP algorithm for G in which whenever a process sees only itself in its first
snapshot, it immediately decides.

Proof (Sketch). The Asynchronous Computability Theorem ACT [18] states that
a task is wait-free read/write solvable if and only if there is a chromatic sub-
division of the input complex of the task (the simplicial complex represents all
possible input configurations) with a coloring that agrees with the specification
of the task.

Assume there is a k-process CCP algorithm for G, then let S be such a
chromatic subdivision. Herlihy and Shavit proved that any chromatic subdivision
can be approximated by an M -th standard chromatic subdivision [18], for some
big enough M . This M -th standard chromatic subdivision is crucial because
it directly implies a wait-free read/write protocol that solves the task that the
coloring of S respects.

Now, the particular algorithms in the claim change the class of subdivisions
we are dealing with. These subdivisions are very similar to the M -th standard
chromatic subdivision with the difference that that after the 1-st standard chro-
matic subdivision, the corners of the subdivision are not changed, while the rest
of the simplexes are subdivided in the same way. Let us call these subdivisions
M -solo chromatic subdivisions. Considering this class of subdivisions, in which
the diameter of these subdivisions shrinks as M grows, we can observe that, for a
big enough M , say MS , the MS-solo chromatic subdivision approximates S. As
explained above, this MS-solo chromatic subdivision implies an algorithm that
solves CCP for k processes for G in which whenever a process sees only itself in
its first snapshot, it immediately decides. �	
Proof (Proposition 7). For contradiction, assume there is a static CCP algorithm
A on G for k+1 processes, with respect to a non (k+1)-admissible independent
set I. By the claim above, we can assume that if a process sees only itself in its
first snapshot, then it decides its initial value (recall that A can be assumed to
be in normal form). Since I is not (k + 1)-admissible, there exists a set W ⊆ V
with at most k vertices such that |I\N [W ]| < |W ∩ I| + 1.

Claim. W ∩ I �= ∅.

Proof. To prove the claim, suppose by contradiction that W ∩ I is empty. It
follows that |W ∩ I| + 1 = 1, and thus |I\N [W ]| = 0, i.e., I\N [W ] is empty as
well. Thus, I ∩ N [W ] = I. Now, let us consider an execution α of A in which
processes p1, . . . , p|W | start with preferences for distinct vertices in W , and just
write their input in shared memory, i.e., they only perform one write operation
in shared memory. Then, consider any extension β of α in which a process q
starts with a preference to a vertex in I, runs alone (the pi’s from α do not take
steps), and decides. Note that such a process exists since |W | ≤ k and A is for
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k + 1 processes. Since A is static with respect to I, q decides a vertex v ∈ I. Let
v′ ∈ W that is adjacent to v, whose existence is guaranteed by I ∩ N [W ] = I,
and let q′ be the process in α with input v′. Let α′ be a reordering of α in which
q′ executes solo, decides, then all other processes in α do their write operation.
q′ sees only itself in its first snapshot, and will thus decide its input. As q cannot
distinguish α from α′, β is also a valid extension of α′. In α′β, process q decides
v. This is a contradiction, since q′ decides v′ in this execution, which is in conflict
with v. Thus, W ∩ I �= ∅, which completes the proof of the claim.

Let ρ = |W ∩ I|. As proved above, ρ > 0. We have |I\N [W ]| < |W ∩ I|+1 =
ρ + 1, and thus |(I\N [W ]) ∪ (W ∩ I)| < 2ρ − 1. Let us consider an execution α
of A in which processes p1, . . . , p|W\I| start with preferences for distinct vertices
in W\I, and they just write their input in the shared memory. Using the same
indistinguishability argument as in the proof of the claim above, we can show
that that there is no extension of α in which a process q /∈ {p1, . . . , p|W\I|}
decides a vertex in I ∩ N [W ]. Thus, in every extension of α, such a process
q decides its initial preference vertex, or a vertex in (I\N [W ]) ∪ (W ∩ I). Let
us then consider processes q1, . . . , qρ+1, all distinct from p1, . . . , p|W\I| (note
that these processes exist because |W | ≤ k). In every extension of α in which
q1, . . . , qρ+1 start with preferences in (I\N [W ]) ∪ (W ∩ I), and these processes
decide, they necessarily decide vertices in (I\N [W ])∪ (W ∩I). This implies that
|(I\N [W ]) ∪ (W ∩ I)| ≥ ρ + 1.

Now, from A and execution α, we construct a p-process algorithm A′ that
solves CCP in the stable graph with too few vertices as follows. In A′, the shared
memory has the state in α, and each process qi, 1 ≤ i ≤ ρ + 1, follows the same
code as in A. To see that A′ is correct, note that (1) if processes start with
distinct vertices of (I\N [W ]) ∪ (W ∩ I), then each process decides its input,
since A is correct, and (2) if processes start with inputs in conflict, then they
decide distinct vertices in (I\N [W ]) ∪ (W ∩ I), as shown before. Now, A′ solves
CCP for ρ+1 processes over the stable graph with vertex set (I\N [W ])∪(W ∩I)
(and no edges), which is impossible since this set has at most 2ρ−2 vertices, and,
by Proposition 1, CCP is unsolvable for so few vertices. Therefore, assuming the
existence of A yields a contradiction, which completes the proof. �	

The following is an interesting consequence of Proposition 7 to the case of
CCP in cycles.

Corollary 3. If A is a wait-free algorithm solving the coordination with con-
straints and preferences task in C4k−3 for k processes then A cannot be static.

A natural guess is that CCP can be solved in G for a number of processes
that grows with the size of the smallest maximal independent set in G. Having
this in mind, Theorem 4 may appear to be rather weak. Indeed, for instance, in
complete bipartite graphs Kx,y = (X ∪ Y,X × Y ), with x = |X|, and y = |Y |,
there are no 2-admissible independent sets. Thus our static algorithm, although
optimal among static algorithms, cannot do better than solving CCP in Kx,y for
just one process! The truth is that our algorithm is not to be blamed. Indeed,
the intuition that the number of processes that can be accommodated should
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grow with the size of the smallest maximal independent set is wrong, and any
algorithm, not just static ones, cannot do better that solving CCP in Kx,y for a
single process only, as shown below (which establishes Theorem 3).

Proposition 8. Let x, y be positive integers. Coordination with constraints and
preferences in Kx,y is unsolvable for more than one process.

Proof. Recall that, in the s-set agreement task, each process proposes a value,
and each correct process decides a proposed value so that the number of distinct
decisions is at most s. We show that if algorithm A solves CCP in Kx,y for k
processes (hence either x or y is at least k), then there is an algorithm B that
solves k

2 �-set agreement for k processes – yet, it is known that s-set agreement
on k processes is unsolvable for any 1 ≤ s ≤ k − 1 and k ≥ 2 (see [8,18,
20]), a contradiction. In Kx,y = (X ∪ Y,X × Y ), X and Y are the unique two
maximal independent sets. We say that processes p1, . . . , p	 k

2 
 belong to X, and
the remaining processes, p	 k

2 
+1, . . . , pk, belong to Y , in the following sense: to the
processes p1, . . . , p	 k

2 
, we assign pairwise distinct vertices vi ∈ X as preferences,
i = 1, . . . , k

2 �, and to the processes p	 k
2 
+1, . . . , pk, we assign pairwise distinct

vertices vi ∈ Y as preferences, i = k
2 � + 1, . . . , k. We use algorithm A solving

CCP on this instance for construction an algorithm B solving k
2 �-set agreement.

A process pi that belongs to X first announces its preference (considered as
its proposal), and then invokes A using vi ∈ X as its input. If pi gets assigned to
a vertex of X in A, then it decides vi in B, otherwise it decides any vertex vj ∈ Y
with j ∈ {k

2 � + 1, . . . , k}. A process pi that belongs to Y proceeds similarly.
That is, if pi gets assigned to a vertex of Y in A, then it decides its preference
vi in B, otherwise it decides any vertex vj ∈ X with j ∈ {1, . . . , k

2 �}. Since A
is correct, and since there are no independent sets in Kx,y that include vertices
of both X and Y simultaneously, it follows that if a process gets assigned to a
vertex of X (resp., Y ) in A, then every other process gets assigned to a vertex of
X (resp., Y ) as well. Therefore, in every execution of B, processes either decide
the preferences of the processes that belongs to X, or the preferences of the
processes that belongs to Y , hence at most k

2 � proposals are decided in B. �	

5 Conclusion

We have considered a generalization of renaming in graphs, in which deciding
a node forbids others to use neighboring nodes. We proved a lower bound for
Hamiltonian graphs, and provided optimal algorithms for 2 processes on a penta-
gon, and 3 processes on a nonagon. For the case where processes agree beforehand
on a given maximal independent set, we designed optimal static algorithms for
solving this problem. Static algorithms are however sub-optimal, as illustrated
in the case of the rings. The design of optimal dynamic algorithms for solving
the coordination with preferences and constraints tasks in graphs remains an
open problem, even for rings.
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Abstract. We consider the problem of implementing general shared-
memory objects on top of write-once bits, which can be changed from
0 to 1 but not back again. In a sequential setting, write-once mem-
ory (WOM) codes have been developed that allow simulating memory
that support multiple writes, even of large values, setting an average of
1 + o(1) write-once bits per write. We show that similar space efficien-
cies can be obtained in a concurrent setting, though at the cost of high
time complexity and fixed bound on the number of write operations.
As an alternative, we give an implementation that permits unboundedly
many writes and has much better amortized time complexity, but at the
cost of unbounded space complexity. Whether one can obtain both low
time complexity and low space complexity in the same implementation
remains open.

1 Introduction

Write-once memory (WOM) is a storage medium with memory elements, called
cells, that can only increase their value. These media can be represented as a
collection of binary cells, each of which initially represents a bit value 0 that can
be irreversibly overwritten with a bit value 1. WOM codes, first introduced by
Rivest and Shamir [33], enable to record data multiple times without violating
the asymmetry writing constraint in a WOM. The goal in the design of a WOM
code is to maximize the total number of bits that can be written to the memory
in t writes, while preserving the property that cells can only increase their level.

These codes were first motivated by storage media such as punch cards and
optical storage. However, in the last decade, a wide study of these codes re-
emerged due to their connection to Flash memories. Flash memories contain
floating gate cells which are electrically charged with electrons to represent the
cell level. While it is fast and simple to increase a cell level, reducing its level
requires a long and cumbersome operation of first erasing its entire containing
block and only then programming relevant cells. Applying a WOM code enables
additional writes before having to physically erase the entire block.

This paper provides the first study of concurrency in write-once shared mem-
ory. We investigate concurrent write-once memory from a theoretical viewpoint,
which, in particular, means that we consider the memory impossible to erase
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(as opposed to considering it to be expensive). We show that any problem that
can be solved in a standard shared-memory model can be solved in a write-once
memory model, at the cost of some overhead. Our goal is to provide an analysis
of this cost, both in terms of step complexity and space complexity.

Motivation: In addition to our interest in WOM as a computing model, our
study is motivated by two observations. First, WOM is not subject to the ABA
problem, in which memory can change back and forth going unnoticed, which
is proven to be hard to overcome [1].

The second reason is that several known concurrent algorithms are already
implemented using write-once bits. In other words, for some specific problems,
the overhead of using WOM can be reduced compared to the general case. Exam-
ples of such implementations are the sifters constructed by Alistarh and Asp-
nes [2] and by Giakkoupis and Woelfel [17], and some variants of the conflict
detectors of Aspnes and Ellen [5].1 A max register [3] is another example of
an object that can be implemented using write-once bits (see overview in Sect. 3).
Interestingly, the covering arguments used to prove lower bounds on max reg-
isters [3] imply that no historyless primitive can give a better implementation
than write-once bits.

Yet these specific solutions do not immediately give a general implementation
of arbitrary shared-memory objects, and the question arises whether the space
efficiencies obtained by WOM codes in a sequential setting can transfer to a
concurrent setting as well.

The challenge: To give a flavor of the challenge in adopting known WOM codes
to concurrent use, we explain a simple example in Table 1, introduced by Rivest
and Shamir [33], which enables the recording of two bits of information in three
cells twice. It is possible to verify that after the first 2-bit data vector is encoded
into a 3-bit codeword, if the second 2-bit data vector is different from the first,
the 3-bit codeword into which it is encoded does not change any code bit 1 into
a code bit 0, ensuring that it can be recorded in the write-once medium.

Table 1. A WOM code example

Data bits First write Second write

00 000 111

10 100 011

01 010 101

11 001 110

1 This does not include the Θ(log m/ log log m)-step m-valued conflict detector that
appears in [5], but does include a simpler Θ(log m)-step conflict detector in which a
write of a value whose bits are xk−1, . . . , x0 is done by setting to 1 the corresponding
bits A[i][xi] in a k × 2 array A.
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Suppose now that the above code is used in a concurrent WOM system, and
that two processes p1 and p2 invoke write operations with input data bits 10 and
01, respectively. This means that p1 needs to write 100 into the memory, and p2
needs to write 010 to it. In other words, p1 needs to set the first of the three bits
to 1, while p2 needs to set the second. Consider a schedule in which p1, p2 set
their respective bit in some order, and afterwards another process p3 reads the
shared memory. The bits that it sees are 110, but these correspond to the input
11, which was never written into the memory, violating the specification of the
memory.

The difficulty above is amplified by the fact that since more than a single
process is writing and reading the content of the memory, it is not known what
the value of t is, that is, how many writes have occurred so far. This is needed
in the above example for both writing and reading.

We emphasize that there is a significant amount of fundamental simulations
of different types of registers in the literature of distributed computing (see,
e.g., [7, Chapter 10] and [21, Chapter 4]). The above WOM example satisfies the
definition of a single-writer-multi-reader (SWMR) safe register [28,29],
in which a read that is not concurrent with a write returns a correct value.
Known simulations can use this object to construct multi-writer-multi-reader
(MWMR) atomic registers. However, these simulations do not comply with
the restrictions that arise from WOM, and hence different solutions must be
sought.

1.1 Our Contribution

We first show that with one additional bit that indicates to read operations that
a write operation has been completed, we can easily implement a write-once
m-bit register. Then, we show how to support t writes, still for a single writer,
within a space complexity of 2m + t bits. This appears in the full version. After
these toy examples, our goal is to get closer to the t(1 + o(1))-space WOM code
constructions for the non-concurrent setting. Carefully adapting the tabular code
of [33] to our concurrent setting, allows us to obtain a SWMR m-bit register that
supports t writes, with the following properties.

Theorem 1. There is an algorithm that implements an n-process SWMR m-bit
register supporting up to t writes, using space complexity of (1 + o(1))t when
t = ω(m2m), and with amortized step complexity O(n2m) for a write and O(2m)
for a read.

We then extend our tabular construction to support multiple writers, with
the aid of a reduction from MWMR registers to SWMR registers due to [24],
and with incorporating safe-agreement objects [10] in order to efficiently share
space. Our result is summarized as follows.

Theorem 2. There is an algorithm that implements an n-process MWMR
m-bit register that supports up to t writes, using space complexity of (2 + o(1))t
when t = ω((m + log n)n62m), and with amortized step complexity O(n22m) for
both write and read operations.
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The drawback of the above implementation is its large step complexity. At
the cost of increased space complexity, we show (most details appear in the
full version) how to build a WOM code on top of a max register, which allows
drastically reduced step complexities, as stated next. Here, a unique timestamp
t is guaranteed to be associated by the algorithm with each write operation.

Theorem 3. There is an algorithm that implements an n-process MWMR reg-
ister of m bits with unbounded space, where the amortized step complexity of a
write operation that gets associated with a timestamp t is O(log t + m + log n)
and the step complexity of a read operation that reads a value associated with a
timestamp t is O(log t + m + log n).

Whether it is possible to obtain both low time complexity and low space
complexity in the same implementation remains an intriguing open question.

1.2 Additional Related Work

In their pioneering work, Rivest and Shamir also reported on more WOM code
constructions, including tabular WOM codes and linear WOM codes. Since then,
several more constructions were studied in the 1980’s and 1990’s [13,15,18], and
more interest to these codes was given in the past seven years; see e.g. [9,11,12,
14,34,35,37–40].

The capacity of a WOM was also rigorously investigated. The maximum sum-
rate as well as the capacity regions were studied in [19,33,36] with extensions to
the non-binary case in [16]. The implementation of WOM codes in several appli-
cations such flash memories and phase-change memories was recently explored
in [26,30,31,41,42]. These works were motivated by the system implementation
on WOM codes in these memories, while taking into account the hardware and
architecture limitations when implementing these codes into the system.

Write-once memory should not be confused with sticky registers as defined
by Plotkin [32], which in some recent systems literature (e.g. [8]) have been
described as registers with write-once semantics. Sticky registers initially hold
a default “empty” value, and any write after the first has no effect. Such registers
are equivalent to consensus objects, and thus significantly more powerful than
standard shared memory. In contrast, write-once memory as considered here and
in the WOM code literature is weaker than standard shared memory.

1.3 Model

We use a standard asynchronous shared memory system, restricted by the
assumption that registers hold only a single bit and write operations can only
write 1. We assume that all registers are initially 0, as any register initialized
to 1 conveys no information and can safely be omitted. Asynchrony is modeled
by interleaving according to a schedule chosen by an adversary. As we consider
only deterministic algorithms, it is reasonable to assume that the adversary has
unrestricted knowledge of the state of the system at all times, and can choose the
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schedule to make things as difficult for the algorithm as possible. The compu-
tational power of the adversary is unlimited; indeed, the adversary is essentially
just a personification of the universal quantifier applied to schedules.

When implementing an object, our goal is linearizability [22]; given an
execution of S of the implemented object, there should exist a sequential execu-
tion S′ of the same object with the same operations, such that whenever some
operation π finishes in S before another operation π′ starts, π precedes π′ in S′.

Time complexity: We use the standard notion of step complexity. The worst-
case individual step complexity of an operation is the maximum number of
steps (read or write operations applied to a write-once bit) carried out by the
process executing the operation between when it starts and finishes. The total
step complexity of a collection of operations is the maximum number of steps
taken by all processes in any execution involving these operations.

We say that an operation π has amortized step complexity C(π) if, in
any execution, the total step complexity is bounded by the sum of the amortized
step complexities of all operations in the execution. Note that the amortized step
complexity of an operation is not uniquely determined, and there may be more
than one way to trade off the amortized step complexities of operations.

Space complexity and storage: The straightforward measure of space complex-
ity for write-once memory is the number of objects (in our case, write-once bits)
that can be accessed during the execution of an algorithm or implementation.
In traditional shared-memory models, this quantity is fixed throughout the exe-
cution of the algorithm.

However, for one of our implementations, we will assume that the space is
unbounded, in order to exemplify its property of obtaining good step complexity
despite supporting an unbounded number of writes. A simple argument (see
also Sect. 4) shows that infinite space is inherent for supporting an unbounded
number of writes in a write-once medium.

2 Registers Based on the Tabular WOM Code

Here we give a family of register implementations based on the tabular WOM
code of Rivest et al. [33]. These allow up to t writes of m-bit values. For the single-
writer case (see Sect. 2.2), the construction requires only (1 + o(1))t write-once
bits provided t = ω(m2m), for an average of 1+o(1) bits per write. For the multi-
writer case (Sect. 2.3), it requires (2+o(2))t bits under the same conditions on t.
In both cases the amortized time complexity of each operation is polynomial in n
and 2m, even for very large tables. An alternative implementation that sacrifices
space for speed will be given later in Sect. 3.

2.1 The Tabular WOM Code

The tabular WOM code represents 2m distinct values as an array of k rows of
m+� bits each, where k and � are parameters selected to maximize the efficiency
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of the code. Each row A[i] consists of an m-bit increment field A[i].increment,
interpreted as an element of Z2m , together with an �-bit unary counter A[i].count.
A row is unused if all bits in the counter are 0, and full if all are 1. A row that
is neither unused nor full is active. The value stored in the array is given by

(
k∑

i=1

A[i].increment.A[i].count

)

mod 2m. (1)

To change the current value in A from x to y, the writer first checks for a
used, non-full row that already has an increment value equal to (y −x) mod 2m,
and if so increments the counter in that row by one by writing an additional 1 bit.
If there is no such row, the writer selects an unused row, writes (y − x) mod 2m

to its increment field, and sets the count to 1 by writing a single one bit to
the counter field. This process continues until the writer can no longer find an
unused row when trying to write an increment that cannot be stored otherwise.

We would like to get the space needed for t write operations as close to t
as possible. There are two sources of space overhead that prevent this in the
tabular WOM code. The first is that each increment field adds m bits that must
be amortized over the � write operations handled by that row; this gives 1+o(1)
overhead provided � = ω(m). The second is that up to 2m − 1 rows may be
only partially used (if more than this are unused, we have rows available for all
possible increments and can perform any new write operation). This overhead
also becomes 1+o(1) provided k = ω(2m). Setting both � = ω(m) and k = ω(2m)
gives t = ω(m2m) and a space complexity of (1 + o(1))t.

2.2 Single-Writer Implementation

The tabular WOM code has the useful property that as long as the writer writes
A[i].increment in a new row before setting any of the bits in A[i].count, the
value stored in A changes atomically at the moment that the writer sets a bit
in A[i].count. This means that with a single writer, no special effort is needed
to ensure linearizability, and we can treat the linearization point of a write
operation as the moment it sets a bit in some count row.

On the other side, a read operation needs to obtain an atomic snapshot of
the entire array to be able to compute the sum of the entries as given in (1).
This can be done in a straightforward way using a double-collect snapshot, with
some further optimizations possible by taking advantage of predicting which bits
could be written next. Note that even with a snapshot, it is possible that a reader
may observe an incomplete write of A[i].increment for some i. However, this can
only occur if the corresponding A[i].count is still 0. So a read operation always
returns the sum of the increments of all writes that linearize before it, giving
correctness.

For t = ω(m2m), the average time complexity of a write is 1 + o(1), though
the cost of a specific write may range from 1 to 1 + m, depending on whether it
needs to set an increment field.
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For read operations the cost may be much higher. Unlike the writer, a reader
may need to read the same bit more than once to see if it has changed. Indeed,
a naive implementation of the double-collect snapshot would force a reader to
read all k (m + �) bits at least twice during any read operation, and again for
each write that occurs during the read. We can reduce the amortized cost by
observing that the reader never needs to re-read a bit that is already 1, and by
enforcing that the writer use new rows and write count bits in a specified order.
This means that each new write might write to at most 2m distinct locations
in the count fields: one for each active row, plus at most one bit at the start of
an unused row if the active rows do not span all 2m possible increments. This
reduces the cost imposed on each reader by a new write to at most 2m + m
operations (2m count bits plus at most one increment field). If we multiply this
by n potential readers, this raises the amortized cost of a write to O(n2m) bit
operations, which is large but still independent of the table size. Shifting costs
to the writers in this way still leaves the reader with an amortized cost of O(2m)
to re-read zero bits to confirm that no new writes have occurred.

Pseudocode for an implementation that applies these optimizations is given
in Algorithm 1. The above discussion essentially proves the following.

Theorem 1. There is an algorithm that implements an n-process SWMR m-bit
register supporting up to t writes, using space complexity of (1 + o(1))t when
t = ω(m2m), and with amortized step complexity O(n2m) for a write and O(2m)
for a read.

2.3 Multi-writer Extension

We can extend the single-writer construction to multiple writers using a con-
struction of Israeli and Shaham [25, Sect. 4]. This construction implements a
multi-writer multi-reader (MWMR) register from n single-writer multi-reader
(SWMR) registers, one for each writer. Each MWMR write operation requires
O(n) SWMR read operations and 2 SWMR write operations. MWMR read oper-
ations require only O(n) SWMR read operations. Each SWMR register must be
large enough to store the contents of the MWMR register, plus an addition
6 lg n + O(1) bits for pointers used to determine the linearization order.

By implementing each SWMR register as in the preceding section, for suffi-
ciently large t, each writer process can carry out up to t writes at an amortized
space complexity of 2 + o(1) bits per write. However, both the bound on t to
obtain this space complexity and the time complexity of both read and write
operations becomes quite large: t must be ω((m+log n)n62m) and the amortized
cost of both read and write operations rises to O(n22m). Whether one can retain
low per-write space complexity while getting low time complexity in a MWMR
setting remains open.

A further annoyance is that the low amortized space complexity applies only
when each writer individually uses up its allotment of t = ω((m + log n)n62m)
writes. While this might be a reasonable assumption for some applications, in
the worst case we can imagine a single writer using up its allotment while the
other writers do nothing, giving a per-write space complexity of Θ(n).
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shared data: Array A[0..r − 1] of rows, where each row A[i] has fields
A[i].increment of m write-once bits and A[i].count[0..� − 1] of �
write-once bits;

local data: Array next[0..2m − 1] where each entry holds either ⊥ or an
〈index, position〉 where index is an index into A and position is an
index into A[index].count;

current, equal to the most recently computed value of the register;
Array MyA[0..r − 1] of rows, where each row MyA[i] has fields MyA[i].increment
of m write-once bits and MyA[i].count[0..� − 1] of � write-once bits;

1 procedure write(v)
2 Let i = v − current (mod 2m);
3 if next[i] = ⊥ then
4 next[i] ← 〈r, 0〉 where r is a newly-allocated row;
5 A[next[i].index].increment ← i;

6 A[next[i].index].count[next[i].position] ← 1;
7 if next[i].position = � − 1 then
8 next[i] ← ⊥;
9 else

10 next[i].position = next[i].position + 1;

11 current ← v;

12 procedure read()
13 repeat
14 foreach i such that MyA[i].count is not all 0 or all 1 do
15 copy(MyA[i].count,A[i].count);

16 Let i be the smallest index such that MyA[i].count is all 0;
17 if A[i].count[0] �= 0 then
18 MyA[i].increment ← A[i].increment;
19 copy(MyA[i].count,A[i].count);

20 until MyA is unchanged throughout an iteration;

21 return
∑r−1

i=0

(
MyA[i].increment ·∑�−1

j=0 MyA[i].count[j]
)

(mod 2m) ;

// Helper procedure for read

// Copies bits to X from Y assuming Y contains no 0 to the left of

a 1
22 procedure copy(X, Y )
23 Let j be the smallest index such that X[j] = 0;
24 while j < � ∧ Y [j] = 1 do
25 X[j] ← 1;
26 j ← j + 1;

Algorithm 1. Single-writer register implemented using a tabular WOM code
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2.4 Allocating Table Rows from a Common Pool

We solve this problem by allocating table rows from a common pool. In this
section we describe a simple storage allocator, based on the safe-agreement
objects of Borowsky et al. [10]. Our storage allocator guarantees that all but
n − 1 rows in a k-row array are assigned to some writer.

A safe-agreement object provides a weak version of consensus that guar-
antees agreement and validity but not termination. Any process that accesses a
safe-agreement object is guaranteed to obtain the id of a unique winner among
the users of the object, provided no process halts during a special unsafe seg-
ment of its execution; if some process does halt, the object never returns. This
means that, if we assign a safe-agreement object to control ownership of each of
the k rows in our pool, at most n − 1 rows will never be allocated, assuming at
least one process continues to run.

// proposei(v)
1 A[i] ← 001;
2 if snapshot(A) contains 101 for some j �= i then

// Back off

3 A[i] ← 011;

4 else
// Advance

5 A[i] ← 101;

// safei

6 repeat
7 s ← snapshot(A);
8 until s[j] does not equal 001 for any j;

// agreei

9 return the smallest index j with s[j] = 101;

Algorithm 2. Safe agreement (adapted from [10])

Algorithm 2 shows how to implement a safe-agreement object using WOM.
The mechanism is essentially the same as in the original Borowksy et al. algo-
rithm, except that we encode the values 0 as 000 when it represents the initial
value and 011 when it represents the result of a back-off, the value 1 as 001, and
the value 2 as 101. The intuition is that a process first advances to level 1 (001),
then backs off if it detects another process already at level 2 (101). If a snapshot
includes no processes at level 1, it is safe for any process that sees that snapshot
to agree on the smallest process at level 2, because any later process will back
off before reaching level 2. Termination is also guaranteed as long as no process
stays at level 1 forever.

To implement the storage allocator, we add a safe-agreement object to each
row; this increases the size of each row by 3n bits. We also include a �lg n�-
bit field to allow a reader to quickly identify the owner of a row. Despite these
additions, we still get 1+o(1) amortized bits per write by making � = ω(m+n).
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To allocate a new row, a writer interleaves attempts to win the safe-agreement
objects for the next n rows for which it has not yet determined a winner. At
least one of these safe-agreement objects will eventually return a value. If this
is the id of the writer, it can claim the row by writing its id to the id field and
proceed as in the single-writer construction. If not, it continues to attempt to
acquire a row from the set obtained by throwing in the next row that it has not
previously attempted to acquire. In either case the writer eventually acquires a
row or reaches a state where all but n − 1 rows have been allocated.

The reader’s task is largely unchanged from the basic MWMR construction:
for each of the n SWMR registers, there are at most 2m active rows it must
check for updates, plus up to n additional rows it must check for new activity.
This again gives an amortized cost from the readers of O(n2m) steps per write
operation. In addition, each write operation may impose a cost of O(n) bit
operations from extra collects in the snapshot on each other writer, for a total of
O(n2) bit operations, for each row it attempts to allocate. This gives a total cost
over all writes of O(kn3) for an amortized cost of O(n3/�) = O(n2) per write.
So the total amortized cost per write is O(n(n + 2m)). This gives:

Theorem 2. There is an algorithm that implements an n-process MWMR m-
bit register that supports up to t writes, using space complexity of (2 + o(1))t
when t = ω((m+log n)n62m), and with amortized step complexity O(n22m) for
both write and read operations.

3 An Unrestricted MWMR Implemention Based on Max
Registers

The tabular WOM code constructions have two deficiencies: they have huge time
complexity, and they are limited-use, permitting only a fixed maximum number
t of write operations. In this section, we give a different construction (using
unbounded space) that implements a wait-free m-bit MWMR register on top of
a max register [3]. A max register provides WriteMax and ReadMax operations,
where ReadMax returns the largest value written by any preceding WriteMax.

There are several known constructions of max registers [3,4,20], each of which
has different goals. The basic structure we use here follows the tree implementa-
tion of [3], described in Sect. 3.1 for completeness. In Sect. 3.2 we construct our
full MWMR m-bit register and prove its properties.

3.1 Tree-Based Max Register

The standard tree-based max register is any binary tree whose leaves correspond
to the possible values of the max register. Each node represents a single-bit
register that can hold a value in {0, 1}. The aim is to have the current value
of the tree be the rightmost leaf that is set to 1. To implement this, a ReadMax
operation travels down the tree starting from the root node, going to the left child
of a node if it reads 0 and going to the right child if it reads 1. A WriteMax(v)
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starts from the leaf that corresponds to the value v, and travels up the tree to
the root, setting to 1 all bits to which it arrives from the right. An important
technicality is that in order to make the above linearizable, before a WriteMax
makes any change to a left subtree of a node, it checks that the bit at this node is
0. This allows, for example, implementing a b-bounded max register (supporting
values in values in {0, ..., b − 1}) using a balanced binary tree of depth O(log b).

However, we can also use an unbalanced binary tree with the property that
each leaf v is at depth O(log v). Since the step complexity of any operation is
proportional to the depth of the leaf it writes or returns, the latter gives an
implementation with a step complexity of O(log v). This implementation also
has the nice property that it can be extended to support an unbounded number
of values. This is done by having a leaf at depth O(n) point to a multi-writer
snapshot object. This way the step complexity does not increase with the value v
beyond limit, but is rather bounded by O(min{log v, n}), since there are linear-
time implementations of snapshot objects [6,23]. The problem with having the
step complexity increase beyond limit is not only a complexity problem—it is
also a computational problem in the sense that the implementation is not wait-
free if we keep the tree infinite, since a ReadMax operation can always be pushed
farther down to the right side of the tree by a new WriteMax operation with a
larger value.

Using WOM, the tree-based max register implementation has the nice prop-
erty that only single-bit registers are used and their value can only be changed
from 0 to 1. However, we cannot use the snapshot object that truncates the
tree at depth O(n), because its known implementations do not translate into
the write-once model. Another approach that avoids the usage of the snapshot
object is the randomized helping mechanism used in [4]. But this also does not
translate to WOM, and hence we seek a different helping solution.

3.2 Adding the Helping Mechanism

For the sake of presentation, we start with describing an attempt for building
a standard register out of a tree-based max register. This most basic approach
only gives a non-blocking SWMR register. Then, we add a helping mechanism to
obtain wait-freedom. This still only works for the case of a single-writer-single-
reader (SWSR) implementation. We then explain the challenges in extending this
to the multi-writer-multi-reader (MWMR) case. We keep the descriptions of the
non-blocking and wait-free SWMR registers informal for clarity, and leave the
pseudocode and formal proof for the presentation of our full MWMR construc-
tion with a more involved helping mechanism for all processes. Due to lack of
space, the wait-free SWSR and MWMR registers are deferred to the full version.

A Non-blocking SWSR Write-Once Register. Suppose we have a single
writing process pW , and a single reading process pR. We first describe an imple-
mentation of a SWSR register that is non-blocking but not wait-free, in order
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to give intuition for our framework.2 We maintain an infinite unbalanced tree-
based unbounded max register Max, and associate an m-bit register value(t) with
each leaf t. The values of Max represent timestamps and value(t) represents the
value written in the t-th operation, as follows. On its t-th write operation, pW
writes its input value into value(t) and then executes a WriteMax(t) operation on
Max. Upon its read operation, pR performs ReadMax on Max and then reads and
returns value(t), where t is the timestamp returned from the ReadMax operation.
The problem with this implementation is that operations of pR are not wait-free
because ReadMax may never return if pW keeps invoking WriteMax operations
and thus constantly pushes pR down the rightmost infinite path of the tree.

Wait-Free SWSR and MWMR Registers. To make this implementation
wait-free, we employ the following simple helping mechanism, which consists of
an infinite array of bits HelpReq and an infinite array HelpData where each loca-
tion has a 1-bit flag field and an unbounded register TS. When pR starts its read
operation, it first starts performing a ReadMax operation up to the first time at
which it either returns the last value t it saw in previous invocations of read (or
0 if this is its first), or it discovers that a larger value was written. If t has not
changed then pR returns the same value value(t) that it returned for its previous
read operation. Otherwise, pR writes 1 into HelpReq[k], where k is an integer that
increases by 1 every time that pR accesses HelpReq. Then, pR alternates between
taking another step in its ReadMax operation and reading HelpData[k].flag. The
operation completes either when pR reads 1 from HelpData[k].flag, in which case
it reads t′ from HelpData[k].TS and returns value(t′), or when the ReadMax oper-
ation finishes and returns t′, in which case pR reads and returns value(t′).

When pW performs its t-th write operation, it firsts writes its input v to
value(t) and then executes a WriteMax(t) operation on Max. Then, it checks
whether pR needs help by reading HelpReq[k], where k is greater by 1 compared
with the last index at which pW accessed HelpReq, and 0 if this is its first access.
If HelpReq[k] is 1 then pW writes t into HelpData[k].TS and 1 into HelpData[k].flag
and returns.

The correctness of this SWSR implementation is deferred to the full version,
which also contains our full MWMR register implementation and the proof of
the following main result.

Theorem 3. There is an algorithm that implements an n-process MWMR
register of m bits with unbounded space, where the amortized step complexity
of a write operation that gets associated with a timestamp t is O(log t+m+log n)
and the step complexity of a read operation that reads a value associated with
a timestamp t is O(log t + m + log n).

2 For the purpose of obtaining only a non-blocking SWSR write-once register, it is
sufficient to construct an infinite array of m-bit locations to which the writer writes
in increasing order and the reader searches for the last written location. However,
we use here a max-register based implementation in order to build upon it when
constructing our following wait-free SWSR and MWMR implementations.
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4 Lower Bounds

For any implementation of a standard register from write-once memory, it is
trivial to see that we must use an infinite amount of space in order to support
an unbounded number of write operations. This holds even without concurrency,
because a finite number of bits can encode a finite number of values, and because
we cannot reset a 1 bit to 0. In this section, we provide two additional, non-trivial,
lower bounds.

The first is an Ω(log t) lower bound on the worst-case cost of a read operation
in an execution with t write operations, even when implementing a one-bit
register. This is an immediate consequence of Kraft’s inequality [27]. Consider
a family of executions Ξ0, Ξ1, . . . Ξt, in which a single writer process alternates
between writing a 0 value and a 1 value, with i writes in Ξi. In each execution,
following these writes is a second reader process p that executes read.

Assume that the reader is deterministic. Let xi be the sequence of bits read
by p in Ξi. Observe that the xi form a prefix-free code (where no codeword is
a prefix of another), because the reader chooses to stop deterministically based
on the bits it has read so far. Observe further that because write-once bits can
never switch from 1 to 0, the xi can only increase in lexicographic order: in
particular this means they are all distinct. Kraft’s inequality [27] then gives that∑t

i=0 2−|xi| ≤ 1, implying that at least one (and indeed most) of the xi have
length Ω(log t).

By treating a randomized reader as a mixture of deterministic readers, the
same result applies to the expected worst-case cost of a read. Note that this
holds even with an oblivious adversary, because the argument depends only on
the information-theoretic properties of the possible sequences of bits observed
by a reader, and not on any interaction between the reader and the schedule.

The previous lower bound assumes that the reader performs only one read
operation. A reader that performs multiple reads may be able to save work by
avoiding re-reading bits that it already knows to be 1. However, we can still show
a second lower bound that is a trade-off between the number of bits written by
a write operation that writes an m-bit value and the number of bits a read
operation op has to look at to get new value, even if it observed the contents of
memory immediately before the write.

Suppose that the read operation accesses at most r bits, and the write
operation sets at most k bits. As in the previous bound we can consider each
possible sequences of bits x0, . . . x2m−1 read by the reader, where xi gives the
sequence corresponding to the value i. Each such sequence is distinct, has length
at most r and contains at most k ones, so we have

∑k
i=1

(
r
i

)
= 2m. For k = 1,

this bound is reached (up to constants) by the construction of Sect. 2. It is an
interesting question whether the trade-off can be realized in general for larger k.

5 Discussion

The present work initiates the study of write-once memory in a concurrent
setting. Our results demonstrate that it is in principle possible to implement
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operations for standard, rewritable shared-memory using write-once memory
with low space overhead and polynomial amortized time complexity. Several
open questions remain:

1. Is it possible to combine low space overhead with low time overhead?
2. To what extent could a small amount of rewritable shared memory allow more

efficiency in use of write-once shared memory?
3. What can one say about stronger write-once primitives, such as (non-

resettable) test-and-set bits, either as a target or a base object for imple-
mentations?
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Abstract. It is common practice to use the epithet “highly concurrent”
referring to data structures that are supposed to perform well in concur-
rent environments. But how do we measure the concurrency of a data
structure in the first place? In this paper, we propose a way to do this,
which allowed us to formalize the notion of a concurrency-optimal imple-
mentation.

The concurrency of a program is defined here as the program’s abil-
ity to accept concurrent schedules, i.e., interleavings of steps of its
sequential implementation. To make the definition sound, we introduce
a novel correctness criterion, LS-linearizability, that, in addition to clas-
sical linearizability, requires the interleavings of memory accesses to be
locally indistinguishable from sequential executions. An implementation
is then concurrency-optimal if it accepts all LS-linearizable schedules. We
explore the concurrency properties of search data structures which can be
represented in the form of directed acyclic graphs exporting insert, delete
and search operations. We prove, for the first time, that pessimistic (e.g.,
based on conservative locking) and optimistic serializable (e.g., based
on serializable transactional memory) implementations of search data-
structures are incomparable in terms of concurrency. Thus, neither of
these two implementation classes is concurrency-optimal, hence raising
the question of the existence of concurrency-optimal programs.

Keywords: Concurrency · Search data structures · Lower bounds

1 Introduction

In the concurrency literature, it is not unusual to meet expressions like “highly
concurrent data structures”, used as a positive characteristics of their perfor-
mance. Leaving aside the relation between performance and concurrency, the
first question we should answer is what is the concurrency of a data structure in
the first place. How do we measure it?

At a high level, concurrency is the ability to serve multiple requests in par-
allel. A data structure designed for the conventional sequential settings, when
used as is in a concurrent environment, while being intuitively very concurrent,
may face different kinds of inconsistencies caused by races on the shared data.
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To avoid these races, a variety of synchronization techniques have been devel-
oped [9]. Conventional pessimistic synchronization protects shared data with
locks before reading or modifying them. Optimistic synchronization, achieved
using transactional memory (TM) or conditional instructions such as CAS or
LL/SC, optimistically executes memory accesses with a risk of aborting them
in the future. A programmer typically uses these synchronization techniques to
“wrap” fragments of a sequential implementation of the desired data structure,
in order to preserve a correctness criterion. Therefore, intuitively, concurrency
of a data structure is its ability to allow multiple processes to concurrently make
progress, i.e., to advance in their sequential operations on the shared data.

It is however difficult to tell in advance which of the techniques will pro-
vide more concurrency, i.e., which one would allow the resulting programs to
process more executions of concurrent operations without data conflicts. Imple-
mentations based on TMs [20,28], which execute concurrent accesses specula-
tively, may seem more concurrent than lock-based counterparts whose concurrent
accesses are blocking. But TMs conventionally impose serializability [26] or even
stronger properties [15] on operations encapsulated within transactions. This
may prohibit certain concurrent scenarios allowed by a large class of dynamic
data structures [10].

In this paper, we reason formally about the “amount of concurrency” one
can obtain by turning a sequential program into a concurrent one. To enable
fair comparison of different synchronization techniques, we (1) define what it
means for a concurrent program to be correct regardless of the type of synchro-
nization it uses and (2) define a metric of concurrency. These definitions allow
us to compare concurrency properties offered by serializable optimistic and pes-
simistic synchronization techniques, whose popular examples are, respectively,
transactions and conservative locking.

Correctness. Our novel consistency criterion, called locally-serializable lineariz-
ability, is an intersection of linearizability and a new local serializability criterion.

Suppose that we want to design a concurrent implementation of a data type
T (e.g., integer set), given its sequential implementation S (e.g., based on a
sorted linked list). A concurrent implementation of T is locally serializable with
respect to S if it ensures that the local execution of reads and writes of each
operation is, in precise sense, equivalent to some execution of S. This condition
is weaker than serializability since it does not require the existence of a single
sequential execution that is consistent with all local executions. It is however
sufficient to guarantee that executions do not observe an inconsistent transient
state that could lead to fatal arithmetic errors, e.g., division-by-zero.

In addition, for the implementation of T to “make sense” globally, every
concurrent execution should be linearizable [3,23]: the invocation and responses
of high-level operations observed in the execution should constitute a correct
sequential history of T . The combination of local serializability and linearizabil-
ity gives a correctness criterion that we call LS-linearizability, where LS stands
for “locally serializable”. We show that LS-linearizability, just like linearizabil-
ity, is compositional [21,23]: a composition of LS-linearizable implementations is
also LS-linearizable.
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Concurrency metric. We measure the amount of concurrency provided by an
LS-linearizable implementation as the set of schedules it accepts. To this end,
we define a concurrency metric inspired by the analysis of parallelism in database
concurrency control [18,32] and transactional memory [11]. More specifically, we
assume an external scheduler that defines which processes execute which steps of
the corresponding sequential program in a dynamic and unpredictable fashion.
This allows us to define concurrency provided by an implementation as the set of
schedules (interleavings of reads and writes of concurrent sequential operations)
it accepts (is able to effectively process).

Our concurrency metric is platform-independent and allows for measuring
relative concurrency of LS-linearizable implementations using arbitrary synchro-
nization techniques. The combination of our correctness and concurrency defini-
tions provides a framework to compare the concurrency one can get by choosing
a particular synchronization technique for a specific data type.

Measuring concurrency: pessimism vs. serializable optimism. We explore the
concurrency properties of a large class of search concurrent data structures.
Search data structures maintain data in the form of a rooted directed acyclic
graph (DAG), where each node is a 〈key, value〉 pair, and export operations
insert(key, value), delete(key), and find(key) with the natural sequential seman-
tics. The class includes many popular data structures, such as linked lists,
skiplists, and search trees, implementing various abstractions like sets, multi-
sets and dictionaries.

In this paper, we compare the concurrency properties of two classes of search-
structure implementations: pessimistic and serializable optimistic. Pessimistic
implementations capture what can be achieved using classic conservative locks
like mutexes, spinlocks, reader-writer locks. In contrast, optimistic implemen-
tations, however proceed speculatively and may roll back in the case of con-
flicts. Additionally, serializable optimistic techniques, e.g., relying on conven-
tional TMs, like TinySTM [8] or NOrec [5] allow for transforming any sequential
implementation of a data type to a LS-linearizable concurrent one.

Main contributions. The main result of this paper is that synchronization tech-
niques based on pessimism and serializable optimism, are not concurrency-
optimal: we show that no one of their respective set of accepted concurrent
schedules include the other.

On the one hand, we prove that there exist simple schedules that are not
accepted by any pessimistic implementation, but accepted by a serializable opti-
mistic implementation. Our proof technique, which is interesting in its own right,
is based on the following intuitions: a pessimistic implementation has to pro-
ceed irrevocably and over-conservatively reject a potentially acceptable sched-
ule, simply because it may result in a data conflict leading the data structure to
an inconsistent state. However, an optimistic implementation of a search data
structure may (partially or completely) restart an operation depending on the
current schedule. This way even schedules that potentially lead to conflicts may
be optimistically accepted.
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On the other hand, we show that pessimistic implementations can be designed
to exploit the semantics of the data type. In particular, they can allow opera-
tions updating disjoint sets of data items to proceed independently and pre-
serving linearizability of the resulting history, even though the execution is not
serializable. In such scenarios, pessimistic implementations carefully adjusted to
the data types we implement can supersede the “semantic-oblivious” optimistic
serializable implementations. Thus, neither pessimistic nor serializable optimistic
implementations are concurrency-optimal.

Our comparative analysis of concurrency properties of pessimistic and seri-
alizable optimistic implementation suggests that combining the advantages of
pessimism, namely its semantics awareness, and the advantages of optimism,
namely its ability to restart operations in case of conflicts, enables implementa-
tions that are strictly better-suited for exploiting concurrency than any of these
two techniques taken individually. To the best of our knowledge, this is the first
formal analysis of the relative abilities of different synchronization techniques
to exploit concurrency in dynamic data structures and lays the foundation for
designing concurrent data structures that are concurrency-optimal.

Roadmap. We define the class of concurrent implementations we consider in
Sect. 2. In Sect. 3, we define the correctness criterion and our concurrency metric.
Section 4 defines the class of data structures for which our concurrency lower
bounds apply. In Sect. 5, we analyse the concurrency provided by pessimistic
and serializabile optimistic synchronization techniques to search data structures.
We discuss the related work in Sect. 6 and conclude in Sect. 7. Full proofs are
delegated to the accompanying tech report [12].

2 Preliminaries

Sequential types and implementations. An type τ is a tuple (Φ, Γ,Q, q0, δ) where
Φ is a set of operations, Γ is a set of responses, Q is a set of states, q0 ∈ Q
is an initial state and δ ⊆ Q × Φ × Q × Γ is a sequential specification that
determines, for each state and each operation, the set of possible resulting states
and produced responses [2].

Any type τ = (Φ, Γ,Q, q0, δ) is associated with a sequential implementa-
tion IS. The implementation encodes states in Q using a collection of elements
X1,X2, . . . and, for each operation of τ , specifies a sequential read-write algo-
rithm. Therefore, in the implementation IS, an operation performs a sequence
of reads and writes on X1,X2, . . . and returns a response r ∈ Γ . The implemen-
tation guarantees that, when executed sequentially, starting from the state of
X1,X2, . . . encoding q0, the operations eventually return responses satisfying δ.

Concurrent implementations. We consider an asynchronous shared-memory sys-
tem in which a set of processes communicate by applying primitives on shared
base objects [19].

We tackle the problem of turning the sequential algorithm IS of type τ into
a concurrent one, shared by n processes p1, . . . , pn (n ∈ N). The idea is that the
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concurrent algorithm essentially follows IS, but to ensure correct operation under
concurrency, it replaces read and write operations on X1,X2, . . . in operations
of IS with their base-object implementations.

Throughout this paper, we use the term operation to refer to high-level oper-
ations of the type. Reads and writes implemented by a concurrent algorithm are
referred simply as reads and writes. Operations on base objects are referred to
as primitives.

We also consider concurrent implementation that execute portions of sequen-
tial code speculatively, and restart their operations when conflicts are encoun-
tered. To account for such implementations, we assume that an implemented
read or write may abort by returning a special response ⊥. In this case, we say
that the corresponding (high-level) operation is aborted.

Therefore, our model applies to all concurrent algorithms in which a high-
level operation can be seen as a sequence of reads and writes on elements
X1,X2, . . . (representing the state of the data structure), with the option of
aborting the current operation and restarting it after. Many existing concurrent
data structure implementations comply with this model as we illustrate below.

Executions and histories. An execution of a concurrent implementation is a
sequence of invocations and responses of high-level operations of type τ , invoca-
tions and responses of read and write operations, and invocations and responses
of base-object primitives. We assume that executions are well-formed : no process
invokes a new read or write, or high-level operation before the previous read or
write, or a high-level operation, resp., returns, or takes steps outside its opera-
tion’s interval.

Let α|pi denote the subsequence of an execution α restricted to the events
of process pi. Executions α and α′ are equivalent if for every process pi, α|pi =
α′|pi. An operation π precedes another operation π′ in an execution α, denoted
π →α π′, if the response of π occurs before the invocation of π′. Two operations
are concurrent if neither precedes the other. An execution is sequential if it has
no concurrent operations. A sequential execution α is legal if for every object
X, every read of X in α returns the latest written value of X. An operation is
complete in α if the invocation event is followed by a matching (non-⊥) response
or aborted; otherwise, it is incomplete in α. Execution α is complete if every
operation is complete in α.

The history exported by an execution α is the subsequence of α reduced to
the invocations and responses of operations, reads and writes, except for the
reads and writes that return ⊥ (the abort response).

High-level histories and linearizability. A high-level history H̃ of an execution α
is the subsequence of α consisting of all invocations and responses of non-aborted
operations. A complete high-level history H̃ is linearizable with respect to an
object type τ if there exists a sequential high-level history S equivalent to H such
that (1) →H̃⊆→S and (2) S is consistent with the sequential specification of type
τ . Now a high-level history H̃ is linearizable if it can be completed (by adding
matching responses to a subset of incomplete operations in H̃ and removing the
rest) to a linearizable high-level history [3,23].
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Optimistic and pessimistic implementations. Note that in our model an imple-
mentations may, under certain conditions, abort an operation: some read or write
return ⊥, in which case the corresponding operation also returns ⊥. Popular
classes of such optimistic implementations are those based on “lazy synchro-
nization” [17,21] (with the ability of returning ⊥ and re-invoking an operation)
or transactional memory (TM ) [5,28].

In the subclass of pessimistic implementations, no execution includes opera-
tions that return ⊥. Pessimistic implementations are typically lock-based or based
on pessimistic TMs [1]. A lock provides exclusive (resp., shared) access to an ele-
ment X through synchronization primitives lock(X) (resp., lock-shared(X)), and
unlock(X) (resp., unlock-shared(X)). A process releases the lock it holds by invok-
ing unlock(X) or unlock-shared(X). When lock(X) invoked by a process pi returns,
we say that pi holds a lock on X (until pi returns from the subsequent lock(X)).
When lock-shared(X) invoked by pi returns, we say that pi holds a shared lock on
X (until pi returns from the subsequent lock-shared(X)). At any moment, at most
one process may hold a lock on an element X. Note that two processes can hold a
shared lock on X at a time. We assume that locks are starvation-free: if no process
holds a lock on X forever, then every lock(X) eventually returns. Given a sequen-
tial implementation of a data type, a corresponding lock-based concurrent one is
derived by inserting the synchronization primitives (lock and unlock) to protect
read and write accesses to the shared data.

3 Correctness and Concurrency Metric

In this section, we define the correctness criterion of locally serializable lineariz-
ability (LS-linearizability) and introduce the framework for comparing the rela-
tive abilities of different synchronization technique in exploiting concurrency.

3.1 Locally Serializable Linearizability

Let H be a history and let π be a high-level operation in H. Then H|π denotes
the subsequence of H consisting of the events of π, except for the last aborted
read or write, if any. Let IS be a sequential implementation of an object of type
τ and ΣIS, the set of histories of IS.

Definition 1 (LS-linearizability). A history H is locally serializable with
respect to IS if for every high-level operation π in H, there exists S ∈ ΣIS such
that H|π = S|π.

A history H is LS-linearizable with respect to (IS, τ) (we also write H is
(IS, τ)-LSL) if: (1) H is locally serializable with respect to IS and (2) the corre-
sponding high-level history H̃ is linearizable with respect to τ .

Observe that local serializability stipulates that the execution is seen as a sequen-
tial one by every operation. Two different operations (even when invoked by
the same process) are not required to witness mutually consistent sequential
executions.
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R(r) R(X1) R(X3) R(X4) R(X5)

R(r) W (X1)

R(r) R(X1) W (X4)

find(5) true

insert(2) true

insert(5) true

Fig. 1. A concurrency scenario for a set, initially {1, 3, 4}, where value i is stored at
node Xi: insert(2) and insert(5) can proceed concurrently with find(5). The history is
LS-linearizable but not serializable; yet accepted by HOH-find. (Not all read-write on
nodes is presented here.)

A concurrent implementation I is LS-linearizable with respect to (IS, τ) (we
also write I is (IS, τ)-LSL) if every history exported by I is (IS, τ)-LSL. Through-
out this paper, when we refer to a concurrent implementation of (IS, τ), we
assume that it is LS-linearizable with respect to (IS, τ).

We show in [12] that just as linearizability, LS-linearizability is composi-
tional [21,23]: a composition of LSL implementations is also LSL. However,
LS-linearizability is not non-blocking [21,23]: local serializability may prevent
an operation in a finite LS-linearizable history from having a completion, e.g.,
because, it might read an inconsistent system state caused by a concurrent
incomplete operation.

LS-linearizability and other consistency criteria. LS-linearizability is a two-level
consistency criterion which makes it suitable to compare concurrent implementa-
tions of a sequential data structure, regardless of synchronization techniques they
use. It is quite distinct from related criteria designed for database and software
transactions, such as serializability [26,31] and multilevel serializability [30,31].

For example, serializability [26] prevents sequences of reads and writes from
conflicting in a cyclic way, establishing a global order of transactions. Reasoning
only at the level of reads and writes may be overly conservative: higher-level
operations may commute even if their reads and writes conflict [29]. Consider
an execution of a concurrent list-based set depicted in Fig. 1. We assume here
that the set initial state is {1, 3, 4}. Operation find(5) is concurrent, first with
operation insert(2) and then with operation insert(5). The history is not serializ-
able: insert(5) sees the effect of insert(2) because R(X1) by insert(5) returns the
value of X1 that is updated by insert(2) and thus should be serialized after it.
Operation find(5) misses element 2 in the linked list and must read the value
of X4 that is updated by insert(5) to perform the read of X5, i.e., the element
created by insert(5). This history is, however, LSL since each of the three local
histories is consistent with some sequential history of LL.

Multilevel serializability [30,31] was proposed to reason in terms of multiple
semantic levels in the same execution. LS-linearizability, being defined for two
levels only, does not require a global serialization of low-level operations as 2-level
serializability does. LS-linearizability simply requires each process to observe a
local serialization, which can be different from one process to another. Also,
to make it more suitable for concurrency analysis of a concrete data structure,
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instead of semantic-based commutativity [29], we use the sequential specification
of the high-level behavior of the object [23].

Linearizability [3,23] only accounts for high-level behavior of a data structure,
so it does not imply LS-linearizability. For example, Herlihy’s universal construc-
tion [19] provides a linearizable implementation for any given object type, but
does not guarantee that each execution locally appears sequential with respect
to any sequential implementation of the type. Local serializability, by itself, does
not require any synchronization between processes and can be trivially imple-
mented without communication among the processes. Therefore, the two parts
of LS-linearizability indeed complement each other.

3.2 Concurrency Metric

To characterize the ability of a concurrent implementation to process arbitrary
interleavings of sequential code, we introduce the notion of a schedule. Intu-
itively, a schedule describes the order in which complete high-level operations,
and sequential reads and writes are invoked by the user. More precisely, a sched-
ule is an equivalence class of complete histories that agree on the order of invo-
cation and response events of reads, writes and high-level operations, but not
necessarily on the responses of read operations or of high-level operations. Thus,
a schedule can be treated as a history, where responses of read and high-level
operations are not specified.

We say that an implementation I accepts a schedule σ if it exports a history H
such that complete(H) exhibits the order of σ, where complete(H) is the subse-
quence of H that consists of the events of the complete operations that returned
a matching response. We then say that the execution (or history) exports σ. A
schedule σ is (IS, τ)-LSL if there exists an (IS, τ)-LSL history exporting σ.

An (IS, τ)-LSL implementation is therefore concurrency-optimal if it accepts
all (IS, τ)-LSL schedules.

4 Search Data Structures

In this section, we introduce a class D of dictionary-search data structures (or
simply search structures), inspired by the study of dynamic databases undertaken
by Chaudhri and Hadzilacos [4].

Data representation. At a high level, a search structure is a dictionary that
maintains data in a directed acyclic graph (DAG) with a designated root node
(or element). The vertices (or nodes) of the graph are key-value pairs and edges
specify the traversal function, i.e, paths that should be taken by the dictionary
operations in order to find the nodes that are going to determine the effect of
the operation. Keys are natural numbers, values are taken from a set V and the
outgoing edges of each node are locally labelled. By a light abuse of notation
we say that G find both nodes and edges. Key values of nodes in a DAG G are
related by a partial order ≺G that additionally defines a property PG specifying
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if there is an outgoing edge from node with key k to a node with key k′ (we say
that G respects PG).

If G contains a node a with key k, the k-relevant set of G, denoted Vk(G),
is a plus all nodes b, such that G contains (b, a) or (a, b). If G contains no nodes
with key k, Vk(G) consists of all nodes a of G with the smallest k ≺G k′ plus all
nodes b, such that (b, a) is in G. The k-relevant graph of G, denoted Rk(G), is
the subgraph of G that consists of all paths from the root to the nodes in Vk(G).

Sequential specification. Every data structure in D exports a sequential specifi-
cation with the following operations: (i) insert(k, v) checks whether a node with
key k is already present and, if so, returns false, otherwise it creates a node with
key k and value v, links it to the graph (making it reachable from the root) and
returns true; (ii) delete(k) checks whether a node with key k is already present
and, if so, unlinks the node from the graph (making it unreachable from the
root) and returns true, otherwise it returns false; (iii) find(k) returns the pointer
to the node with key k or false if no such node is found.

Traversals. For each operation op ∈ {insert(k, v), delete(k), find(k)}k∈N,v∈V ,
each search structure is parameterized by a (possibly randomized) traverse func-
tion τop. Given the last visited node a and the DAG of already visited nodes Gop,
the traverse function τop returns a new node b to be visited, i.e., accessed to get
its key and the list of descendants, or ∅ to indicate that the search is complete.

Find, insert and delete operations. Intuitively, the traverse function is used by
the operation op to explore the search structure and, when the function returns
∅, the sub-DAG Gop explored so far contains enough information for operation
op to complete.

If op = find(k), Gop either contains a node with key k or ensures that the
whole graph does not contain k. As we discuss below, in sorted search structures,
such as sorted linked-lists or skiplists, we can stop as soon as all outgoing edges
in Gop belong to nodes with keys k′ ≥ k. Indeed, the remaining nodes can
only contain keys greater than k, so Gop contains enough information for op to
complete.

An operation op = insert(k, v), is characterized by an insert function μ(k,v)

that, given a DAG G and a new node 〈k, v〉 /∈ G, returns the set of edges from
nodes of G to 〈k, v〉 and from 〈k, v〉 to nodes of G so that the resulting graph is
a DAG containing 〈k, v〉 and respects PG.

An operation op = delete(k), is characterized by a delete function νk that,
given a DAG G, gives the set of edges to be removed and a set of edges to be
added in G so that the resulting graph is a DAG that respects PG.

Sequential implementations. We make the following natural assumptions on the
sequential implementation of a search structure: (i) Traverse-update: Every oper-
ation op starts with the read-only traverse phase followed with a write-only
update phase. The traverse phase of an operation op with parameter k completes
at the latest when for the visited nodes Gop contains the k-relevant graph. The



152 V. Gramoli et al.

update phase of a find(k) operation is empty; (ii) Proper traversals and updates:
For all DAGs Gop and nodes a ∈ Gop, the traverse function τop(a,Gop) returns
b such that (a, b) ∈ G. The update phase of an insert(k) or delete(k) operation
modifies outgoing edges of k-relevant nodes; (iii) Non-triviality : There exist a
key k and a state G such that (1) G contains no node with key k, (2) If G′ is
the state resulting after applying insert(k, v) to G, then there is exactly one edge
(a, b) in G′ such that b has key k, and (3) the shortest path in G′ from the root
to a is of length at least 2.

The non-triviality property says that in some cases the read-phase may detect
the presence of a given key only at the last step of a traverse-phase. Moreover,
it excludes the pathological DAGs in which all the nodes are always reachable
in one hop from the root. Moreover, the traverse-update property and the fact
that keys are natural numbers implies that every traverse phase eventually ter-
minates. Indeed, there can be only finitely many vertices pointing to a node with
a given key, thus, eventually a traverse operation explores enough nodes to be
sure that no node with a given key can be found.

Examples of search data structures. A sorted linked list maintains a single path,
starting at the root sentinel node and ending at a tail sentinel node, and any
traversal with parameter k simply follows the path until a node with key k′ ≥ k
is located. The traverse function for all operations follows the only path possible
in the graph until the two relevant nodes are located.

A skiplist [27] of n nodes is organized as a series of O(log n) sorted linked
lists, each specifying shortcuts of certain length. The bottom-level list contains
all the nodes, each of the higher-level lists contains a sublist of the lower-level
list. A traversal starts with the top-level list having the longest “hops” and goes
to lower lists with smaller hops as the node with smallest key k′ ≥ k get closer.

A binary search tree represents data items in the form of a binary tree. Every
node in the tree stores a key-value pair, and the left descendant of a non-leaf
node with key k roots a subtree storing all nodes with keys less than k, while
the right descendant roots a subtree storing all nodes with keys greater than
k. Note that, for simplicity, we do not consider rebalancing operations used by
balanced trees for maintaining the desired bounds on the traverse complexity.
Though crucial in practice, the rebalancing operations are not important for our
comparative analysis of concurrency properties of synchronization techniques.

Non-serializable concurrency. There is a straightforward LSL implementation
of any data structure in D in which updates (inserts and deletes) acquire a lock
on the root node and are thus sequential. Moreover, they take exclusive locks on
the set of nodes they are about to modify (k-relevant sets for operations with
parameter k).

A find operation uses hand-over-hand shared locking [29]: at each moment
of time, the operation holds shared locks on all outgoing edges for the currently
visited node a. To visit a new node b (recall that b must be a descendant of a),
it acquires shared locks on the new node’s descendants and then releases the
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shared lock on a. Note that just before a find(k) operation returns the result, it
holds shared locks on the k-relevant set.

This way updates always take place sequentially, in the order of their acqui-
sitions of the root lock. A find(k) operation is linearized at any point of its
execution when it holds shared locks on the k-relevant set. Concurrent oper-
ations that do not contend on the same locks can be arbitrarily ordered in a
linearization.

The fact that the operations acquire (starvation-free) locks in the order they
traverse the directed acyclic graph implies:

Theorem 1. HOH-find is a starvation-free LSL implementation of a search
structure.

As we show in Sect. 5, the implementation is however not (safe-strict) serializable.

5 Pessimism vs. Serializable Optimism

In this section, we show that, with respect to search structures, pessimistic lock-
ing and optimistic synchronization providing safe-strict serializability are incom-
parable, once we focus on LS-linearizable implementations.

5.1 Classes P and SM
A synchronization technique is a set of concurrent implementations. We define
below a specific optimistic synchronization technique and then a specific pes-
simistic one.

SM: serializable optimistic. Let α denote the execution of a concurrent
implementation and ops(α), the set of operations each of which performs at
least one event in α. Let αk denote the prefix of α up to the last event of opera-
tion πk. Let Cseq(α) denote the set of subsequences of α that consist of all the
events of operations that are complete in α. We say that α is strictly serializ-
able if there exists a legal sequential execution α′ equivalent to a sequence in
σ ∈ Cseq(α) such that →σ⊆→α′ .

This paper focuses on optimistic implementations that are strictly serializ-
able and whose operations (even aborted or incomplete) observes correct (serial)
behavior. More precisely, an execution α is safe-strict serializable if (1) α is
strictly serializable, and (2) for each operation πk, there exists a legal sequential
execution α′ = π0 · · · πi · πk and σ ∈ Cseq(αk) such that {π0, · · · , πi} ⊆ ops(σ)
and ∀πm ∈ ops(α′) : α′|m = αk|m.

Safe-strict serializability captures nicely both local serializability and lin-
earizability. If we transform a sequential implementation IS of a type τ into
a safe-strict serializable concurrent one, we obtain an LSL implementation of
(IS, τ). Thus, the following lemma is immediate.

Lemma 1. Let I be a safe-strict serializable implementation of (IS, τ). Then, I
is LS-linearizable with respect to (IS, τ).
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R(r) R(X1)

R(r) R(X1) R(X2)

insert(1) false

insert(2) false

{1,2,3}

(a) σ

R(r) R(X1) W (r)

R(r) R(X1) W (r)

insert(1) true

insert(2) true

{3}

(b) σ′

Fig. 2. (a) a history of integer set (implemented as linked list or binary search tree)
exporting schedule σ, with initial state {1, 2, 3} (r denotes the root node); (b) a history
exporting a problematic schedule σ′, with initial state {3}, which should be accepted
by any I ∈ P if it accepts σ

Indeed, we make sure that completed operations witness the same execution of
IS, and every operation that returned ⊥ is consistent with some execution of
IS based on previously completed operations. Formally, SM denotes the set of
optimistic, safe-strict serializable LSL implementations.

P: deadlock-free pessimistic. Assuming that no process stops taking steps of its
algorithm in the middle of a high-level operation, at least one of the concurrent
operations return a matching response [22]. Note that P includes implementa-
tions that are not necessarily safe-strict serializable.

5.2 Suboptimality of Pessimistic Implementations

We show now that for any search structure, there exists a schedule that is rejected
by any pessimistic implementation, but accepted by certain optimistic strictly
serializable ones. To prove this claim, we derive a safe-strict serializable schedule
that cannot be accepted by any implementation in P using the non-triviality
property of search structures. It turns out that we can schedule the traverse
phases of two insert(k) operations in parallel until they are about to check if
a node with key k is in the set or not. If it is, both operations may safely
return false (schedule σ). However, if the node is not in the set, in a pessimistic
implementation, both operations would have to modify outgoing edges of the
same node a and, if we want to provide local serializability, both return true,
violating linearizability (schedule σ′).

In contrast, an optimistic implementation may simply abort one of the two
operations in case of such a conflict, by accepting the (correct) schedule σ and
rejecting the (incorrect) schedule σ′.

Proof Intuition. We first provide an intuition of our results in the context of
the integer set implemented as a sorted linked list or binary search tree. The
set type is a special case of the dictionary which stores a set of integer values,
initially empty, and exports operations insert(v), remove(v), find(v); v ∈ Z. The
update operations, insert(v) and remove(v), return a boolean response, true if
and only if v is absent (for insert(v)) or present (for remove(v)) in the set. After
insert(v) is complete, v is present in the set, and after remove(v) is complete, v
is absent in the set. The find(v) operation returns a boolean, true if and only if
v is present in the set.
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An example of schedules σ and σ′ of the set is given in Fig. 2. We show
that the schedule σ depicted in Fig. 2(a) is not accepted by any implementation
in P. Suppose the contrary and let σ be exported by an execution α. Here α
starts with three sequential insert operations with parameters 1, 2, and 3. The
resulting “state” of the set is {1, 2, 3}, where value i ∈ {1, 2, 3} is stored in node
Xi. Suppose, by contradiction, that some I ∈ P accepts σ. We show that I
then accepts the schedule σ′ depicted in Fig. 2(b), which starts with a sequential
execution of insert(3) storing value 3 in node X1. We can further extend σ′ with
a complete find(1) (by deadlock-freedom of P) that will return false (the node
inserted to the list by insert(1) is lost)—a contradiction since I is linearizable
with respect to set.

Theorem 2. Any abstraction in D has a strictly serializable schedule that is
not accepted by any implementation in P, but accepted by an implementation in
SM.

5.3 Suboptimality of Serializable Optimism

We show below that for any search structure, there exists a schedule that is
rejected by any serializable implementation but accepted by a certain pessimistic
one (HOH-find, to be concrete).

Proof Intuition. We first illustrate the proof in the context of the integer set.
Consider a schedule σ0 of a concurrent set implementation depicted in Fig. 1. We
assume here that the set initial state is {1, 3, 4}. Operation find(5) is concurrent,
first with operation insert(2) and then with operation insert(5). The history is
not serializable: insert(5) sees the effect of insert(2) because R(X1) by insert(5)
returns the value of X1 that is updated by insert(2) and thus should be serialized
after it. But find(5) misses node with value 2 in the set, but must read the value
of X4 that is updated by insert(5) to perform the read of X5, i.e., the node
created by insert(5). Thus, σ0 is not (safe-strict) serializable. This history though
is LSL since each of the three local histories is consistent with some sequential
history of the integer set. However, there exists an execution of our HOH-find
implementation that exports σ0 since there is no read-write conflict on any two
consecutive nodes accessed.

To extend the above idea to any search structure, we use the non-triviality
property of data structures in D. There exist a state G′ in which there is exactly
one edge (a, b) in G′ such that b has key k. We schedule a opf = find(k) operation
concurrently with two consecutive delete operations: the first one, opd1, deletes
one of the nodes explored by opf before it reaches a (such a node exists by the
non-triviality property), and the second one, opd2 deletes the node with key k in
G′. We make sure that opf is not affected by opd1 (observes an update to some
node c in the graph) but is affected by opd2 (does not observe b in the graph).
The resulting schedule is not strictly serialializable (though linearizable). But
our HOH-find implementation in P will accept it.

Theorem 3. For any abstraction in D ∈ D, there exists an implementation in
P that accepts a non-strictly serializable schedule.
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Since any strictly serializable optimistic implementation only produces strictly
serializable executions, from Theorem 3 we deduce that there is a schedule
accepted by a pessimistic algorithm that no strictly serializable optimistic one
can accept. Therefore, Theorems 2 and 3 imply that, when applied to search
structures and in terms of concurrency, the strictly serializable optimistic app-
roach is incomparable with pessimistic locking. As a corollary, none of these two
techniques can be concurrency-optimal.

6 Related Work

Sets of accepted schedules are commonly used as a metric of concurrency pro-
vided by a shared memory implementation. For static database transactions,
Kung and Papadimitriou [25] acknowledge that this metric may have “practical
significance, if the schedulers in question have relatively small scheduling times
as compared with waiting and execution times”. Herlihy [18] implicitly considers
a synchronization technique as highly concurrent, namely optimal, if no other
technique accepts more schedules. By contrast, we focus here on a dynamic model
where the scheduler cannot use the prior knowledge of all the shared addresses
to be accessed.

Gramoli et al. [11] defined a concurrency metric, the input acceptance, as the
ability of a TM to commit classes of input patterns of memory accesses without
violating conflict-serializability. Guerraoui et al. [14] defined the notion of per-
missiveness as the ability for a TM to abort a transaction only if committing it
would violate consistency. In contrast with these definitions, our framework for
analyzing concurrency is independent of the synchronization technique. David
et al. [6] consider that the closer the throughput of a concurrent algorithm is to
that of its (inconsistent) sequential variant, the more concurrent the algorithm.
In contrast, the formalism proposed in our paper allows for relating concurrency
properties of various correct concurrent algorithms.

Our definition of search data structures is based on the paper by Chaudhri
and Hadzilacos [4] who studied them in the context of dynamic databases. Safe-
strict serializable implementations (SM) require that every transaction (even
aborted and incomplete) observes “correct” serial behavior. It is weaker than
popular TM correctness conditions like opacity [15] and its relaxations like
TMS1 [7] and VWC [24]. Unlike TMS1, we do not require the local serial exe-
cutions to always respect the real-time order among transactions.

7 Concluding Remarks

In this paper, we presented a formalism for reasoning about the relative power of
optimistic and pessimistic synchronization techniques in exploiting concurrency
in search structures. We expect our formalism to have practical impact as the
search structures are among the most commonly used concurrent data struc-
tures, including trees, linked lists, skip lists that implement various abstractions
ranging from key-value stores to sets and multi-sets.



In the Search for Optimal Concurrency 157

Our results on the relative concurrency of P and SM imply that none of these
synchronization techniques might enable an optimally-concurrent algorithm. Of
course, we do not claim that our concurrency metric necessarily captures effi-
ciency, as it does not account for other factors, like cache sizes, cache coher-
ence protocols, or computational costs of validating a schedule, which may also
affect performance on multi-core architectures. In [13] we already described a
concurrency-optimal implementation of the linked-list set abstraction that com-
bines the advantages of P, namely the semantics awareness, with the advantages
of SM, namely the ability to restart operations in case of conflicts. We recently
observed empirically that this optimality can result in higher performance than
state-of-the-art algorithms [16,17]. Therefore, our findings motivate the search
for concurrency-optimal algorithms.
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Abstract. Aguilera, Gafni and Lamport introduced the signaling prob-
lem in [3]. In this problem, two processes numbered 0 and 1 can call
two procedures: update and Fscan. A parameter of the problem is a two-
variable function F (x0, x1). Each process pi can assign values to variable
xi by calling update(v) with some data value v, and compute the value:
F (x0, x1) by executing an Fscan procedure. The problem is interesting
when the domain of F is infinite and the range of F is finite. In this case,
some “access restrictions” are imposed that limit the size of the registers
that the Fscan procedure can access.

Aguilera et al. provided a non-blocking solution and asked whether a
wait-free solution exists. A positive answer can be found in [5]. The nat-
ural generalization of the two-process signaling problem to an arbitrary
number of processes turns out to yield an interesting generalization of
the fundamental snapshot problem, which we call the F -snapshot prob-
lem. In this problem n processes can write values to an n-segment array
(each process to its own segment), and can read and obtain the value
of an n-variable function F on the array of segments. In case that the
range of F is finite, it is required that only bounded registers are accessed
when the processes apply the function F to the array, although the data
values written to the segments may be taken from an infinite set. We pro-
vide here an affirmative answer to the question of Aguilera et al. for an
arbitrary number of processes. Our solution employs only single-writer
atomic registers, and its time complexity is O(n logn).

1 Introduction

In this paper we introduce a solution to the F -snapshot problem, which is a
generalization of the well-studied snapshot problem (introduced independently
by Afek et al. [1], by Anderson [6] and by Aspnes and Herlihy [7]). The snapshot
object involves n asynchronous processes that share an array of n segments.
Each process pi can write values to the i-th segment by invoking an update
procedure with a value taken from some range of values: Vals, and can scan
the entire array by invoking an instantaneous scan procedure. For any function
F : Valsn → D (where D is any set and Valsn is the set of n-tuples of members of
Vals) the F -snapshot variant differs from the snapshot problem in that the Fscan
operation has to return the value F (v0, . . . , vn−1) of the instantaneous segment
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values v0, . . . , vn−1. That is in comparison to the standard scan operation, which
returns the vector of values that the segments store at an instantaneous moment.

The F -snapshot problem is interesting only if we impose an additional
requirement, without which it can be trivially implemented by applying the
function F (assumed to be computable) to the values returned by the standard
scan operation. This additional requirement, for the case n = 2, was suggested
by Aguilera, Gafni and Lamport [3] (see also [2]) in what they called there the
signaling problem. Thus, our F -snapshot problem is a generalization of both the
standard snapshot problem and the signaling problem (generalizing this problem
from the n = 2 case to the general case of arbitrary n).

In the signaling problem, the set Vals is possibly infinite and the range of F ,
D is finite (and small). It is required that an Fscan operation uses only bounded
registers. That is, registers that can store only finitely many different values (the
update operations may access unbounded registers). The signaling problem was
formulated just for two processes in [3], and a wait-free solution for this problem
was left there as an open problem. Thus, solving the general F -snapshot sets
quite a challenge. A wait-free solution to the signaling problem is given in [5],
and here we present a wait free solution to the general F -snapshot problem.

In [3], the signaling problem is justified for efficiency reasons. We consider a
case in which the processes write values to their segments taken from an infinite
range, but they are interested in some restricted data regarding these values
(for example, which process invoked the largest value, how many different values
there are etc.). An F -snapshot implementation may be more efficient in these
cases than a snapshot implementation, since it is not necessary to scan the entire
array for extracting the required information, and it suffices to read only bounded
registers. Efficiency is mostly guaranteed when the Fscan operations are likely
to be invoked much more frequently than the update procedures.

Moreover, the authors of [3] showed that a signaling algorithm can be used to
solve the mailbox problem which is the main problem that [3] deals with. With a
similar approach, a signaling algorithm can be also used to implement a solution
to the N -buffer problem [22] (see also [5] for further discussion). At the mailbox
problem, a processor and a device communicate through an interrupt controller
and it is required that the processor will know if there are some unhandled
requests, only by reading bounded registers. At the N -buffer problem, a producer
sends messages to a consumer, through a message buffer of size N , and they need
to check if the buffer is empty, full or neither-empty-nor-full by reading bounded
registers.

In the same way, a solution to the F -snapshot problem can be used to imple-
ment a generalized mailbox algorithm, in which there are several devices, and the
processor can check which devices are waiting for its response by reading only
bounded registers. Similarly, an F -snapshot algorithm can be used to implement
a generalized N -buffer in which there are possibly many producers and many
consumers1.

1 Assuming that the queue of messages supports enqueue and dequeue operations by
several processes.
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Now we describe the F -snapshot problem formally. Let P = {p0, . . . , pn−1}
be a set of n-asynchronous processes that communicate through shared registers
and let F : Valsn −→ D be an n-variable computable function from a (possibly
infinite) domain Vals, into D = Rng(F ). The problem is to implement two
procedures:

1. update(v) - invoked with an element v ∈ Vals. This procedure writes v to the
i-th segment of an n-array A, when invoked by pi.

2. Fscan - returns a value d ∈ D. This procedure returns F (A[0], . . . , A[n − 1]),
in contrast to a scan procedure which returns the values stored at the entire
array: (A[0], . . . , A[n − 1]).

The implementation needs to satisfy the following requirements:

1. All procedures are wait free. That is, each procedure eventually returns, if
the executing process keep taking steps.

2. If D is finite, then only bounded registers are accessed during Fscan opera-
tions.

3. Only single-writer multi-reader atomic registers are employed.

The reader may note that as the domain of F could be infinite, the update
procedure must access also unbounded registers.

For correctness of F -snapshot implementations, we adapt the well known
Linearizability condition, formulated by Herlihy and Wing [15]. Roughly speak-
ing, an F -snapshot algorithm is correct if for any of its executions the following
hold: Each procedure execution can be identified with a unique moment dur-
ing its actual execution (named the linearization point), such that the resulting
sequential execution belongs to a set of correct sequential executions, the sequen-
tial specification of the object. The sequential specification of the F -snapshot
object includes all executions of the atomic implementation, presented in Fig. 1.
The code uses an array A[0 . . . n − 1].

Fig. 1. F -snapshot atomic implementation

In this paper, we present a solution to the F -snapshot problem. Each oper-
ation in our algorithm consists of O(n log n) actions addressed to the shared
registers. The rest of the paper is organized as follows: Preliminaries are given
in Sect. 2. In Sect. 3 we present our algorithm and explain the ideas behind it.
Correctness proof is given in Sect. 4, and Sect. 5 concludes.
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Related Work

As been explained, the F -snapshot problem generalizes the signaling problem,
from the case that there only two processes to an arbitrary number of processes.
In [3], Aguilera et al. presented the signaling problem and gave a non-blocking
solution. A wait free algorithm is given in [5].

Jayanti presented the f -array object which assumes n processes that write
values to m multi-writer registers, v1, . . . , vm and compute an m-variable func-
tion f on the values that the registers store [20]. However, while in this paper
we seek for a linearizable implementation for the F -snapshot object from single-
writer registers in which the Fscan operation accesses bounded registers, the
scope of [20] is different. Jayanti presents in [20] an implementation for the f -
array object from registers and an LL/SC object. The motivation of [20] is to
improve complexity measures, when assumptions on the function f implies that
it is not necessary to scan the entire array for the computation of f .

2 Preliminaries

2.1 The Model of Computation

The model of computation in this paper is standard. We assume n asynchronous
processes p1, . . . , pn that communicate through shared single-writer registers.
Thus, each registers is “owned” by a unique process. At an individual step, a
process may write to one of its single-writer registers and perform an inter-
nal computation, or read a register and perform an internal computation that
depends on the value it read.

An F -snapshot implementation provides each process with a code for the
update and Fscan procedures. At an execution, each process executes update
and Fscan operations in some arbitrary order, and the update operations are
invoked with arbitrary data values from the set Vals. Formally, an execution τ
is a finite or infinite sequence of atomic actions (also named low-level events)
that the processes perform while executing update and Fscan operations. As the
processes are asynchronous, for each process pi, there is no bound on the number
of steps taken by other processes in-between two consecutive actions performed
by pi. In particular, a process may crash and take no additional steps at an
execution.

At an execution τ , each atomic action is a part of a unique Fscan or update
procedure execution, executed by some process. A set of actions that corresponds
to a procedure execution is named an operation, or an high-level event. An high-
level event may be complete if the executing process executed all the procedure
instructions and returned, or pending otherwise.

The low-level events at an execution are linearly ordered by the precedence
relation <. The precedence relation < is naturally extended over high-level
events: We write A < B if A is complete and for every a ∈ A and b ∈ B,
a < b. Similarly, we relate high-level events with low-level events. For a low-level
event e and high-level event A, we write e < A if e < a for every a ∈ A and we
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write A < e if A is complete and a < e for every a ∈ A. Incomparable events are
said to be concurrent.

2.2 Linearizability

An execution is linearizable if the high-level events can be identified with instan-
taneous moments during their executions so that this identification yields a cor-
rect sequential execution. More precisely, it is required to find such linearization
points for all complete high-level events, where pending operations may be omit-
ted or artificially completed.

In some cases the linearization points can be identified with an execution
of some fixed instruction. When no such fixed linearization points exist, it is
convenient to define the linearizability criterion in an equivalent manner. We
say that an execution τ is linearizable, if there is a linear ordering (H,≺) such
that

1. H includes all complete high-level events and some pending high-level events.
2. ≺ extends < over H.
3. (H,≺) belongs to the sequential specification. Namely, ≺ is a precedence

relation over H obtained by some execution of the algorithm in Fig. 1.

An implementation is linearizable if all its executions are linearizable.
As an Fscan operation needs to return a value obtained by applying F on the

values that the segments store, it is required to assume some initial value for each
segment. For convenience, we assume that at the beginning of each execution,
each process executes an initial update event invoked with an initial data value.
These events write initial values to the registers and variables and they precede
all other high-level events.

3 The F -Snapshot Algorithm

First we explain the main ideas behind the algorithm. The reader may want to
consider our explanations, while examining the code of the algorithm and its
local procedures in Fig. 3.

The crucial obstacle for solving the problem is that an Fscan procedure can-
not access unbounded registers, but it is required to apply the function F on
values that are stored in unbounded registers. To overcome this issue, we apply
the function F on the values that the segments store, during an execution of an
update operation. When process pi performs an update operation invoked with
a data value val, it writes val into a snapshot object V (line 4), scans this snap-
shot object (line 5), applies the function F on the view it obtained and stores
the outcome in a local variable ans (line 6). Then, before it returns, the process
writes the outcome it obtained into a snapshot object named Flags (line 19).
A process executing an Fscan operation, scans the snapshot object Flags and it
needs to choose the most up-to-date value among the values suggested by the
processes. We need to provide the Flags object with an additional information,
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so that the executing process could decide correctly which value to return. How-
ever, this additional information needs to be taken from a finite range due to
the problem limitations.

As a first attempt, one may suggest to use bounded concurrent timestamps
(see [10–12]). Bounded timestamps are used traditionally to label writes, but
here we actually need to label scans. Namely, we need to know in what order
the scans of the snapshot object V occurred. If we will try instead, for example,
to use timestamps to label writes to Flags, then a process executing an Fscan
operation can mistakenly rely on the order between the labeling operations and
not on the order between the scan events addressed to the snapshot object V .
Similarly, labeling the writes to V will not work either by the same reason. We
see that the approach of using bounded timestamps, at least in its simplest form,
will not succeed.

3.1 The Classify Mechanism

For determining the ordering between scan events addressed to V , we adapt the
common technique of counting update events [8,9,18]. When a process performs
an update operation, it increases a counter (line 2) and writes this counter to
V together with the data value with which the update operation was invoked
(line 3). When process pi scans V (line 5), it sums these counters to obtain
a natural number that reflects how recent its view is (line 12). This approach
resembles the snapshot algorithm presented by Israeli, Shaham and Shirazi [18].
They used this technique to implement a snapshot algorithm in which the time
complexity of the scan procedure is O(n). In their construction, while executing
a scan operation, the executing process returns the view of the process that
presents the latest activity, reflected by the largest sum.

Since an Fscan operation cannot access unbounded registers, we cannot adopt
the discussed approach as it was used in [18]. In our algorithm, the reading of
these natural numbers is done within the update operation. The process writes
the sum it obtained into a snapshot object named ViewSum (lines 13, 15),
and scans ViewSum to compare its view with the views obtained by the other
processes. Afterward, it classifies all other processes into two categories: winners
- the processes that possess a later view, reflected by a largest sum, and losers -
processes with outdated view. This is done by calling the local classify procedure,
when processes id’s are used for breaking symmetry. These sets of winners and
losers are stored at the segment Flags[i] (lines 18, 19).

3.2 The Coloring Mechanism

When process pk executes an Fscan operation, it scans the Flags array and it
tries to extract the most up-to-date view, referring to the fields Flags[i].winner
and Flags[i].losers for i = 0, . . . , n − 1. For any pair of processes pi and pj ,
pk may want to know which process’s view is more recent. The problem is that
the processes may provide contradicting information. As an example, the process
may find that j ∈ Flags[i].winners (which means that pi thinks that pj ’s view is
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more up-to-date than its view), but it is possible that also i ∈ Flags[j].winners.
Namely, it is possible that both pi and pj think that the other process knows
better.

The coloring mechanism ensures that the problem described above can occur
only in some “typical” executions (with which our next mechanism deals). The
update events by each process alternate between 3 possible colors: 0, 1 or 2
(line 3). Each process holds a three-field variable, in correspondence to the three
colors, named myview. After a process sums the counters it sees (lines 5, 12), it
writes the sum it obtained into myview[color] (line 13) and deletes data obtained
in its second-previous update operation (line 14) to erase confusing information.
Then, it writes the value that myview stores into ViewSum (line 15). Now, when
process pi scans ViewSum, in each segment ViewSum[j], it finds two integers.
These are the sums that pj computed in its two previous update events. When pi
executes its local classify procedure, it also specifies the color it saw. For example,
it writes (j, c) to winners for c ∈ {0, 1, 2}, if it reads from ViewSum[j][c] a
number larger than the sum it obtained in line 9 (when id’s are taken into
account for breaking symmetry). Each process pi writes the values of its local sets
winners and losers to Flags[i], together with the color of the update operation
it is executing.

Coming back to our example, assume that process pk executes an Fscan
operation and it finds that (j, c) ∈ Flags[i].winners. Then, it understands that
pi saw in ViewSum[j][c] an integer larger than the number it obtained. However,
if it sees that Flags[j].color �= c, it just disregards pi’s information.

3.3 Adding Bounded Timestamps

The coloring mechanism does not prevent entirely the possibility that processes
will provide contradicting information. Assume for example, that while execut-
ing an Fscan operation, pk finds that Flags[i].color = ci, Flags[j].color = cj ,
(j, cj) ∈ Flags[i].winners and (i, ci) ∈ Flags[j].winners. Thus, both pi and
pj claim that the other process is more up-to-date. When such a situation
occurs, one of the processes provides reliable information. This is the process
that scanned ViewSum later before updating Flags.

When such a situation occurs, the processes use bounded timestamps to
inform which process is trustworthy. We use a simple timestamping system
in which the timestamps are vertices of a nine-vertices directed graph G =
(VG, EG). An illustration and a detailed explanation can be found in Chap. 2 of
[14], or in [17]. The graph G consists of three cycles, each cycle includes three
vertices. In addition, there is an edge from each vertex at the i-th cycle to each
vertex at the i − 1 (mod 3) cycle. Formally, VG = {(i, j) : i, j ∈ {0, 1, 2}}, and
there is an edge from v = (i1, j1) to u = (i2, j2) if i1 = i2 and j1 = j2 + 1
(mod 3), or i1 = i2 + 1 (mod 3). The vertices of G are named timestamps, and
if (v, u) ∈ E we say that v dominates u and we write u <ts v. Intuitively, v
dominates u means that the timestamp v represents a later moment than the
timestamp u.
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We note that there are no cycles of length two in G. In addition, for any two
timestamps v, u, we can find a timestamp w that dominates both v and u. We
take a function next : VG × VG −→ VG that satisfies this property. That is, for
any timestamps v, u: v <ts next(v, u) and u <ts next(v, u).

Any process pi holds n pairs of timestamps. Each pair consists of a new
timestamp and an old timestamp. These pairs are stored in a snapshot object
named V TS. When pi executes an update operation it scans V TS (line 7).
Then, against each process pj it chooses a timestamp that dominates the pair
of timestamps it read from V TS[j][i], using the function next. pi stores the
timestamp it obtained as its new timestamp, keeps its former new timestamp
available as its old timestamp and updates V TS (consider lines 8–10 and the
local procedure newts). Finally, pi stores its n-vector of pairs of timestamps in
Flags[i] while updating the Flags object (lines 18, 19).

Now, we consider again the situation in which process pk executes an Fscan
operation, and finds that two processes pi and pj , provide contradicting infor-
mation as described earlier. In this case, the scanner checks the timestamps that
the processes present. The process that its new timestamp dominates the other
process’s new timestamp is the reliable one. More precisely, the scanner consid-
ers the timestamps Flags[i].vts[j].new and Flags[j].vts[i].new. The information
provided by the process with the later timestamp is the correct information.
These timestamps are used only when processes provide contradicting informa-
tion. In other cases the timestamps do not necessarily reflect the right ordering
between the processes’ views.

3.4 The Code

In this subsection we present our F -snapshot algorithm. The algorithm uses four
snapshot objects in addition to local variables. The type of the variables and the
type of the snapshot objects segment’s are specified at Fig. 2.

Note that there are two fixed values used for initialization, x0 ∈ Vals
and v0 ∈ VG. Segments of V store pairs from N × Vals. For such a pair,
v = (m, val), we write m = v.counter and val = v.val. Each entry V TS[i]
stores an n-tuple of pairs of timestamps. If V TS[i][j] = (c, d) we write
c = V TS[i][j].old and d = V TS[i][j].new. Each segment of the Flags snap-
shot object is of type flag that consists of five fields: flag.color ∈ {0, 1, 2},
flag.vts ∈ (VG × VG)n, flag.winners, flag.losers are sets that store ele-
ments from {0, . . . , n − 1} × {0, 1, 2}, flag.ans ∈ D. The initial value of
Flags[i] is flag0,i where flag0,i.color = 0, flag0,i.vts = ((v0, v0), . . . , (v0, v0)),
flag0,i.winners = {(j, 0) : i < j}, flag0,i.losers = {(j, 0) : i > j} and
flag0,i.ans = F (x0, x0, . . . , x0).

Our snapshot implementation uses four local procedures, classify, newflag,
newts and find max. The implementation for process pi, together with the code
for the local procedures is presented in Fig. 3. In the next subsection we present
the find max local procedure.
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Fig. 2. Snapshot objects and local variables

3.5 The Procedure find max

This procedure is invoked during an execution of an Fscan event S, and it returns
the id of the most up-to-date process. Thus, the process that executes S returns
the value flgi.ans in case that find max returns i.

The find max procedure of an Fscan operation S gets n flags as arguments:
flags(S) := (flg0, . . . , f lgn−1). The procedure returns a maximal element in
relation <S⊆ {0, . . . , n − 1} × {0, . . . , n − 1} that we define here. Relation <S is
defined by reference to flags(S) in Definition 2.

Definition 1. Let pi and pj be two processes and write: flgi.color = ci and
flgj .color = cj. We say that pi and pj are in conflict in S, if one of the following
occurs:

1. (j, cj) ∈ flgi.winners and (i, ci) ∈ flgj .winners.
2. (j, cj) ∈ flgi.losers and (i, ci) ∈ flgj .losers.

Definition 1 is important since, as we shall prove, for each two processes pi,
pj and an Fscan event S, the flag of one of these processes determines correctly
the ordering between pi and pj . That is, if pi is the reliable process and if (for
example) (j, cj) ∈ flgi.winners and the color in pj ’s flag is cj , than pj is indeed
more up-to-date than pi (more precisely, the ans field of pj ’s flag is more up-
to-date) as indicated by pi’s flag. The problem is that we do not know which
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Fig. 3. F-snapshot implementation

process provides correct information among any pair of processes. However, this
problem does not arise when the processes are not in conflict. When processes
provide contradicting information we use the processes’ timestamps to find the
trustworthy process.

Definition 2. Let pi and pj be two processes and write: flgi.color = ci,
flgj .color = cj. i <S j if one of the following occurs:

1. pi and pj are not in conflict in S and (i, ci) ∈ flgj .losers.
2. pi and pj are not in conflict in S and (j, cj) ∈ flgi.winners.
3. pi and pj are in conflict in S, flgi.vts[j].new <ts flgj .vts[i].new and (i, ci) ∈

flgj .losers.
4. pi and pj are in conflict in S, flgj .vts[i].new <ts flgi.vts[j].new and (j, cj) ∈

flgi.winners.

An element i ∈ {0, . . . , n − 1} is maximal in <S if there is no j �= i such that
i <S j. The procedure find max(flg0, . . . , f lgn−1) (line 3) returns a maximal
element in <S (we shall prove that such a maximal element exists in any Fscan
event). This procedure accesses only local variables and we omit the technical
but easy implementation of this procedure.
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4 Correctness

Fixing an execution τ of our algorithm, we need to show that the precedence
relation defined over the high-level events in τ , < can be extended into a linear
ordering, ≺ that belongs to the sequential specification of the F -snapshot object.
In our proof, we assume that τ is finite, that all the operations in τ are complete,
and that every operation addressed to one of the snapshot objects is atomic. It
is suffices to assume that τ is finite since linearizability of deterministic objects
is a safety property, as Guerraoui and Ruppert proved [13]. It is suffices to
assume that all operations are complete since the implementation is wait-free.
Indeed, if there are any pending operation we can just let the processes take
several additional steps and to complete these operations. Of course, it suffices to
show that the resulting execution is linearizable. Finally, by taking a linearizable
implementation for the snapshot objects, we may assume that all operations
addressed to these object are atomic, since we can identify the executions of
these operations with their linearization points. Further discussion about using
linearizable implementation can be found in [4,15].

As explained in Subsect. 2.2, we assume n initial update events by the
processes, where the initial update event by process pj is denoted Ij . These
initial high-level events write initial values to the variables and the snapshot
objects, and they precede all other events.

Our algorithm employs several snapshot objects. Thus, for preventing confu-
sion, we use the notation A.update and A.scan to denote invocations of update
and scan procedures addressed to object A. We write: update and Fscan to denote
high-level events in τ . Note that an A.update(x) invocation by pi writes x to the
i-th segment of A.

If e is an A.update event, val(e) is the value with which e is invoked, and
if e is an A.scan operation, val(e) is the vector of values that e returns. If e is
an A.scan operation and j a process id, μj(e) is the last pj-A.update operation
that precedes e. Hence, val(e)[j] = val(μj(e)) in this case. For an A.update
(respectively, A.scan) event e, [e] is the update (respectively, Fscan) operation
that includes e.

For an operation X and a snapshot-object A, X includes at most one
A.update (respectively, A.scan) event. If such an event exists, it is denoted
A.update(X) (respectively, A.scan(X)). Similarly, if r is a local variable, X
includes at most one write to r. If X includes a write to r, r(X) is the value
written to r in X. In particular, if I is an initial update operation that includes
a write to r, r(I) is the initial value of r.

For an Fscan operation S, βj(S) is the pj-update operation that wrote to
Flags the value read in S. That is, βj(S) = [μj(Flags.scan(S))].

Recall that < is the precedence relation defined over high and low level events
in τ (see Sect. 2). For two pairs of integers (a, b), (x, y) we write (a, b) <lex (x, y)
if (a, b) precedes (x, y) lexicographically. We write x ≤ y (respectively, x ≤lex,
x � y, x ≤S y) to denote that x < y (respectively, x <lex y, x ≺ y, x <S y) or
x = y.
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Before defining a total order ≺ over the high-level events in τ , we prove
few technical lemmas. We fix an Fscan operation S. For process pi, we write
mi = viewsum(βi(S)), ci = color(βi(S)), flgi = flg(βi(S)) and ei =
ViewSum.update(βi(S)) (line 15).

Lemma 1. Assume that βj(S) �= Ij and write e = ViewSum.scan(βj(S)) (line
16). If ei < ej, then one of the following holds:

1. μi(e) = ei or,
2. μi(e) = e′ > ei and there is no pi-update event between βi(S) = [ei] and [e′].

Proof. Since ei < ej and since (by the code) ej < e, we see that ei < e and hence,
ei ≤ μi(e). Thus, we need to show that there is at most one V iewSum.update
event by pi between ei and e.

Assume for a contradiction that e′ and e′′ are two ViewSum.update events
by pi such that ei < e′ < e′′ < e. Each ViewSum.update event belongs to a
unique update event so there are two different pi-update operations U ′ = [e′] and
U ′′ = [e′′]. Recall that [ei] = βi(S) and observe that βi(S) < U ′ < e′′ < e.

Now, the event Flags.scan(S) occurs after e, so the value read in this event
from Flags[i] is the value written to Flags[i] in U ′ or in a later event. We
have: βi(S) < U ′ ≤ [μi(Flags.update(S))] in contradiction to the definition
of βi(S). 	


The following two lemmas follows, and their proof is left as an exercise for
the reader.

Lemma 2. Assume that βj(S) �= Ij. If ei < ej, then pj reads mi from
ViewSum[i][ci] at the event ViewSum.scan(βj(S)) (line 16) and in addition:

1. If (mi, i) <lex (mj , j), then (i, ci) ∈ losers(βj(S)).
2. If (mj , j) <lex (mi, i), then (i, ci) ∈ winners(βj(S)).

Lemma 3. Assume that pi and pj are not in conflict in S (the definition is
given in Subsect. 3.5). Then, (mi, i) <lex (mj , j) ⇐⇒ i <S j.

Our next goal is to prove the same for the case that the processes are in
conflict. If the processes are in conflict, we know by Lemma 2 that the process
that wrote later to ViewSum provides reliable information. Recall that in this
case, <S is determined according to the flag of the process that presents a later
timestamp. We need to show that the process with the later timestamp is also
the process that wrote later to V iewSum.

Lemma 4. Assume that ei < ej and let tsi and tsj the timestamps written to
Flags[i].vts[j].new and to Flags[j].vts[i].new in βi(S) and in βj(S) respectively.
If pi and pj are in conflict in S, then tsi <ts tsj.

Proof. First, note that βj(S) �= Ij . Indeed, if βj(S) = Ij , then also βi(S) = Ii
(since ei < ej) which implies that the processes are not in conflict.
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For the rest of the proof we assume that also βi(S) �= Ii. If βi(S) =
Ii, then similar (and simpler) arguments can be applied. Write si =
ViewSum.scan(βi(S)). By Lemma 2, pj reads mi from ViewSum[i][ci] in βj(S),
but since pi and pj are in conflict in S, we conclude that pi reads some m �= mj

from ViewSum[j][cj ] in si. Hence,

μj(si) �= ej . (1)

Since ei < ej and (by the code) ei < si, either ei < si < ej or ei < ej < si.
We claim that the former occurs and si < ej . Assume otherwise, and use Eq. 1 to
conclude that ej < μj(si). Note that there can be at most one ViewSum.update
event by pj that follows ej and precedes si, since otherwise we would have
βi(S) < μi(Flags.scan(S)) which is impossible. Hence, si reads from ViewSum[j]
the value of this event. However, by the code of the update procedure, the update
operation by pj that follows βj(S) also writes mj to ViewSum[j][cj ]. Thus, if
ej < si, then pi reads mj from ViewSum[j][cj ] in si, in contradiction to the
assumption that the processes are in conflict. We conclude that ei < si < ej .

Now we claim that there is a pj-ViewSum.update event between si and ej .
Indeed, assume not and let e′ be the last ViewSum.update event by pj that
precedes ej . By our assumption we have μj(si) = e′. e′ ∈ U ′, the pj-update
event that precedes βj(S) and hence, color(U ′) = cj − 1 (mod 3). Therefore,
val(e′)[cj ] = null. We conclude that pi reads null from ViewSum[j][cj ] in si and
this contradicts the fact that pi and pj are in conflict.

We see that there is a ViewSum.update event by pj between si and ej . Let
e′
j denotes this event. Hence, si < e′

j < ej . Write [e′
j ] = U ′, and note that

U ′ < βj(S). Therefore, e′
j < βj(S).

Now, write ti = V TS.update(βi(S)) (line 11 in the code) and write
val(ti)[j] = (x, y). Observe that since ti ∈ βi(S), (x, y) is also the value of
flgi.vts[j]. Write sj = V TS.scan(βj(S)) (line 7) and note that since e′

j < βj(S),
e′
j < sj . By the code and by our conclusions we have, ti < si < e′

j < sj .
Therefore, μi(sj) ≥ ti. However, there could be most one V TS.update event by
pi between ti and sj (by definition of βi(S)). Furthermore, if there is such an
event, it writes to V TS[i][j]: (y, z) for some vertex z ∈ VG (consider the newts
code). Let (a, b) denotes the value of V TS[j][i] before the execution of βj(S).

Case 1. μi(sj) = ti and hence pj reads in sj from V TS[i][j]: (x, y). Thus, pj
writes in βj(S) to Flags[j].vts[i] : newts((x, y), (a, b)) = (b, next(x, y)). Since
(next(x, y), y) ∈ EG, flgi.vts[j].new <ts flgj .vts[i].new as required.

Case 2. μi(sj) > ti and hence pj reads in sj from V TS[i][j]: (y, z). In this case,
pj writes in βj(S) to Flags[j].vts[i] : newts((y, z), (a, b)) = (b, next(y, z)).
Since also (next(y, z), y) ∈ EG, flgi.vts[j].new <ts flgj .vts[i].new. We see
that the lemma holds in this case as well. 	

The previous lemma shows that if two processes are in conflict and their

flags provide contradicting information, the flag.vts fields determine correctly
which among the two processes is the reliable one. The conclusion is that relation
<S determines correctly which process presents the most up-to-date view in its
flag.ans field.
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Lemma 5. Let pi and pj be two processes. Then, (mi, i) <lex (mj , j) ⇐⇒ i <S

j. In particular, <S admits a maximal element.

Proof. First assume that (mi, i) <lex (mj , j). If pi and pj are not in conflict,
then this is the case of Lemma 3. If pi and pj are in conflict, assume w.l.o.g.
that ei < ej and note that βj(S) �= Ij . By Lemma 2, (i, ci) ∈ flgj .losers. By the
previous lemma flgi.vts[j].new <ts flgj .vts[i].new thus i <S j.

Now, for the other direction, we leave for the reader to verify that <S is an
a-symmetric total order over {0, 1, . . . , n − 1}, and to conclude that if i <S j,
then (mi, i) <lex (mj , j). 	


Before showing that τ is linearizable, we add few notations. For a non-initial
update event U , αj(U) is the pj-update operation that wrote to V (line 4) the
value read form V in U (line 5). Namely, αj(U) = [μj(V.scan(U))]. If U is the
initial update operation, αj(U) = Ij . Assume that S is an Fscan event in which
winner(S) = k (the find max procedure execution in S returns k) and write
Uk = βk(S). Then, we define αj(S) = αj(Uk). The next lemma follows and its
strait-forward proof is left for the reader.

Lemma 6. – if U is a pi-update event, then αi(U) = U .
– If U < U ′ are two update operations and i a process id, then αi(U) ≤ αi(U ′).
– Let U,U ′ be two update operations by pj and pk respectively. If

(viewsum(U), j) <lex (viewsum(U ′), k), then for each process id i, αi(U) ≤
αi(U ′).

– Let S be an Fscan event, and for each process id i, assume that αi(S) is
invoked with value vali. Then, S returns F (val0, . . . , valn−1).

Now we are ready to show that τ is a linearizable by defining a linear ordering
≺ over the high-level events in τ . First, we define ≺ over the update events. For
two update events U,U ′, we set U ≺ U ′ if V.scan(U) < V.scan(U ′). Now we lin-
earize also Fscan operations by choosing for each Fscan operation an update oper-
ation to linearized after it. For an Fscan S, we linearize S after the ≺-maximal
update event among {α0(S), . . . , αn−1(S)}. Finally, if we linearized several Fscan
events (say, S1, . . . , Sl) immediately after the same update event, we extend ≺
over these events in some arbitrary way that extends < over S1, . . . , Sl.

It is easy to verify that ≺ is a linear ordering. To complete our proof, the
next two lemmas show that ≺ extends <, and that ≺ belongs to the sequential
specification of the F -snapshot object.

Lemma 7. ≺ extends <.

Proof. Assume that A < B are two operations in τ . We need to show that
A ≺ B. The claim is obvious when both are update operations, and it is left to
deal with all other cases.

First, assume that A = U is an update operation, say by pi and B = S
is an Fscan operation. For each process pj , write Uj = βj(S). Note that since
U < S, U ≤ Ui. Assume that the winner(S) = k thus i ≤S k. By Lemma 5,
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(viewsum(Ui), i) ≤lex (viewsum(Uk), k). Therefore, by Lemma 6 we conclude:
U ≤ Ui = αi(Ui) ≤ αi(Uk) = αi(S). Recall that S was linearized after αi(S)
thus, since ≺ extends < over update events, U � Ui � (αi(S)) ≺ S.

Now we deal with the case that A = S is an Fscan operation and B = U is
an update operation. For showing that S ≺ U , we prove that for each process id
j, αj(S) ≺ U . Assume that winner(S) = k, and write U ′

k = βk(S). For process
pj , write Uj = αj(S) = αj(U ′

k). If U ′
k = Ik, then Uj = Ij and then it is clear

that Uj ≺ U as required. Otherwise, write ej = V.update(Uj), s = V.scan(U ′
k)

and e = V.update(U). Note that ej = μj(s) thus ej < s. Since s ∈ U ′
k = βk(S),

¬(S < s). But since S < U , we conclude that s < e. As a result, ej < s < e
which implies that Uj ≺ U as required.

Finally, assume that A = S and B = S′ are two Fscan events. It suffices to
show that for each process id i, αi(S) ≤ αi(S). Assume that winner(S) = j,
and write Uj = βj(S). Then, αi(S) = αi(Uj). Write winner(S′) = k, and
U ′
k = βk(S′). Hence, αi(S′) = αi(U ′

k). Since S < S′, βj(S) ≤ βj(S′). Thus, by
Lemmas 5 and 6,

(viewsum(Uj), j) ≤lex (viewsum(βj(S′)), j) ≤lex (viewsum(U ′
k, k)).

Therefore, by Lemma 6, αi(S) = αi(Uj) ≤ αi(U ′
k) = αi(S′) as required. 	


Lemma 8. Let S be an Fscan operation. For each process id i, let Ui be the
maximal pi-update operation that precedes S in ≺, and assumes that Ui is invoked
with value vali. Then, S returns F (val(val0), . . . , val(valn−1)).

Proof. By Lemma 6, it suffices to show that for each process id i, αi(S) = Ui.
Since S was linearized after the events α0(S), . . . , αn−1(S), clearly αi(S) � Ui.
We need to show that Ui � αi(S).

Toward a contradiction, assume that αi(S) ≺ Ui ≺ S. We conclude that there
is some process pj such that αi(S) ≺ Ui ≺ αj(S) since otherwise, S would have
been linearized before Ui. Note that αj(S) �= Ij . Assume that winner(S) = k
and write U ′

k = βk(S). Thus, αj(S) = αj(U ′
k). Since αj(S) is not the initial

pj-event, also U ′
k �= Ik. As a result, we get:

V.update(αi(S)) < V.update(Ui) < V.update(αj(S)) < V.scan(U ′
k)

in contradiction to αi(S) = [μi(V.scan(U ′
k))]. 	


5 Conclusions

We present the F -snapshot problem which generalizes the signaling problem
introduced in [3], from the two-process case to an arbitrary number of processes.
We described a wait-free F -snapshot algorithm that employs only single-writer
registers, and proved its correctness. Our algorithm uses four snapshot objects.
For efficiency, we can use the snapshot implementation by Attiya and Rachman
[9] for these objects. Thus, the time complexity of our algorithm is O(n log n).
Since the Flags object is accessed during Fscan operations, it is required to
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use the bounded version of the algorithm in [9] (described in Sect. 4.4). As the
F -snapshot problem generalizes the snapshot problem, where F is chosen to
be the identity function, the F -snapshot problem inherits the linear time lower
bound of the snapshot problem. The O(n) lower bound holds for the Fscan
procedure [21] and also for the update procedure [19].

It is known that the snapshot object can be implemented with time com-
plexity O(n) when multi-writer registers are allowed as Inoue, Masuzawa, Chen
and Tokura proved [16]. Inoue et al. present an algorithm that solves the lat-
tice agreement problem. Then, the reduction by Attiya, Herlihy and Rachman
[8] provides a linear snapshot implementation with multi-writer registers. How-
ever, this reduction requires unbounded registers (and even unbounded mem-
ory). Hence, the F -snapshot limitations forbid using this implementation for the
Flags snapshot object in our algorithm. Therefore, the question if there is a
linear F -snapshot implementation using multi-writer registers is not answered
here, although there is a linear snapshot implementation that uses multi-writer
registers.

The main idea behind our algorithm is, in some sense, orthogonal to the
classical bounded timestamps problem. In a time-stamp system, the processes
label their writes to an array of data values. These labels provide a linear-ordering
that extends the actual partial-ordering between the writes to the array. In our
algorithm, we use bounded data to label the ordering between scan events and
not between write events. We are not aware of a formulation of this abstract
problem. This is a possible direction for further research, influenced by ideas
behind our algorithm.

By the essence of the F -snapshot problem, an interesting complexity mea-
sure is the size of the bounded registers that are accessed during an Fscan
operation (named “flags”). For convenience, we assume that the range of F ,
D = {0, . . . , |D|−1} and we note that Ω(log |D|) is a trivial lower bound for the
size of each flag. In our algorithm, each register writes to the snapshot object
Flags a data value of type flag. This data type consists of several fields when
the largest are the sets: winners and losers that require O(n) bits, and the field
ans stores elements from D thus can be assumed to be consist of log |D| bits.
However, the Flags implementation require additional fields when the largest
one stores a view: n-tuple of values of type flag. Therefore, the size of each flag
in our algorithm is O(n2 + n log |D|). We believe that this can be significantly
improved.

In our algorithm, the Fscan procedure accesses only bounded registers due to
the problem constrains and the update procedure accesses unbounded registers
(otherwise the problem is unsolvable). The segments of the snapshot object V
store elements from Vals (which might be infinite), and counters that infinitely
grow. Hence, if the function F has a finite domain, the update procedure will
still access unbounded registers. Thus, in those cases, it is better to use some
other implementation such as the bounded version of the algorithm in [9]. An
interesting question that arises is whether there is an F -snapshot algorithm that
satisfies both properties:
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1. If F has a finite range, then the Fscan procedure accesses only bounded reg-
isters.

2. If F has a finite domain, then only bounded registers are accessed.
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Abstract. An immediate snapshot object is a high level communica-
tion object, built on top of a read/write distributed system in which all
except one processes may crash. It allows each process to write a value
and obtains a set of pairs (process id, value) such that, despite process
crashes and asynchrony, the sets obtained by the processes satisfy note-
worthy inclusion properties.

Considering an n-process model in which up to t processes are allowed
to crash (t-crash system model), this paper is on the construction of
t-resilient immediate snapshot objects. In the t-crash system model, a
process can obtain values from at least (n − t) processes, and, conse-
quently, t-immediate snapshot is assumed to have the properties of the
basic (n − 1)-resilient immediate snapshot plus the additional property
stating that each process obtains values from at least (n − t) processes.
The main result of the paper is the following. While there is a (determin-
istic) (n−1)-resilient algorithm implementing the basic (n−1)-immediate
snapshot in an (n−1)-crash read/write system, there is no t-resilient algo-
rithm in a t-crash read/write model when t ∈ [1 . . . (n − 2)]. This means
that, when t < n − 1, the notion of t-resilience is inoperative when one
has to implement t-immediate snapshot for these values of t: the model
assumption “at most t < n − 1 processes may crash” does not pro-
vide us with additional computational power allowing for the design of
a genuine t-resilient algorithm (genuine meaning that such an algorithm
would work in the t-crash model, but not in the (t+1)-crash model). To
show these results, the paper relies on well-known distributed computing
agreement problems such as consensus and k-set agreement.

Keywords: Asynchronous system · Atomic read/write register · Con-
sensus · Distributed computability · Immediate snapshot · Impossibil-
ity · Iterated model · k-Set Agreement · Linearizability · Process crash
failure · Snapshot object · t-Resilience · Wait-freedom

1 Introduction

Immediate Snapshot Object and Iterated Immediate Snapshot Model. The imme-
diate snapshot (IS) communication object was first introduced in [6,33], and
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then further investigated as an “object” in [5]. The associated iterated immedi-
ate snapshot (IIS) model was introduced in [7,20]. This distributed computing
model consists of n asynchronous processes, among which any subset of up to
(n−1) processes may crash1, which execute a sequence of asynchronous rounds.
One and only one immediate snapshot (IS) object is associated with each round,
which allows the processes to communicate during this round. More precisely,
for any x > 0, a process accesses the x-th immediate snapshot only when it
executes the x-th round, and it accesses it only once.

From an abstract point of view, an IS object IMSP , can be seen as an initially
empty set, which can then contain at most n pairs (one per process), each made
up of a process index and a value. This object provides the processes with a single
operation denoted write snapshot(), that each process may invoke only once. The
invocation IMSP .write snapshot(v) by a process pi adds the pair 〈i, v〉 to IMSP
and returns a set of pairs belonging to IMSP such that the sets returned to the
processes that invoke write snapshot() satisfy specific inclusion properties. It is
important to notice that, in the IIS model, the processes access the sequence of
IS objects one after the other, in the same order, and asynchronously.

The noteworthy feature of the IIS model is the following. It has been shown by
Borowsky and Gafni in [7], that this model is equivalent to the usual read/write
wait-free model ((n − 1)-crash model) for task solvability with the wait-freedom
progress condition (any non-faulty process obtains a result). Its advantage lies
in the fact that its runs are more structured and easier to analyze than the
runs in the basic read/write shared memory model [27]. It is also the basis
of the combinatorial topology approach for distributed computing (e.g., [17]).
Hence, IS objects constitute the algorithmic foundation of distributed iterated
computing models.

It has been shown in [30] that trying to enrich the IIS model with (non trivial)
failure detectors is inoperative. This means that, for example, enriching IIS with
the failure detector Ω (which is the weakest failure detector that allows consensus
to be solved in the basic read/write communication model [10,24]) does not allow
to solve consensus in such an enriched IIS model. However, it has been shown
in [29] that it is possible to capture the power of a failure detector (and other
partially synchronous systems) in the IIS model by appropriately restricting its
set of runs, giving rise to the Iterated Restricted Immediate Snapshot (IRIS)
model. This approach has been further investigated in [32].

The IIS model has many interesting features among which the following
two are noteworthy. The first is on the foundation side of distributed comput-
ing, namely IIS established a strong connection linking distributed computing
and algebraic topology (see [6,17,19,21,33]). The second one lies on the algo-

1 From a terminology point of view, we say t-failure model (in the present case t-crash
model) if the model allows up to t processes to fail. We keep the term t-resilience
for algorithms. The (n − 1)-crash model is also called wait-free model [16]. Sev-
eral progress conditions have been associated with (n-1)-resilient algorithms: wait-
freedom [16], non-blocking [22], or obstruction-freedom [18]. (See a unified presenta-
tion in Chap. 5 of [31].).
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rithmic and programming side, namely IIS allows for a recursive formulation
of algorithms solving distributed computing problems. This direction, initiated
in [5,15], has also been investigated in [28,31].

Another line of research is investigated in [14]. This paper considers models of
distributed computations defined as subsets of the runs of the iterated immediate
snapshot model. In such a context, it uses topological techniques to identify the
tasks that are solvable in such a model.

t-Crash Model and t-Resilient Algorithms. The previous basic read/write model
and IIS model consider that all but one process may crash. Differently, a t-crash
model assumes that at most t processes may crash, i.e., by assumption, at least
(n − t) of them never crash. As already said, an algorithm designed for such a
model is said to be t-resilient.

One of the most fundamental results of distributed computing is the impossi-
bility to design a 1-resilient consensus algorithm in the 1-crash n-process model,
be the communication medium an asynchronous message-passing system [13] or
a read/write shared memory [25]. Differently, other problems, such as renam-
ing (introduced in the context of t-resilient message-passing systems where
t < n/2 [3]), can be solved by (n − 1)-resilient algorithms in the (n − 1)crash
read/write shared memory model (such renaming algorithms are described in
several textbooks, e.g. [4,31,34]).

Contribution of the Paper. When considering the t-crash n-process model where
t < n − 1, and assuming that each correct process writes a value, a process
may wait for values written by (n − t) processes without risking being blocked
forever. This naturally leads to the notion of a t-crash n-process iterated model,
generalizing the IIS model to any value of t. To this end the paper intro-
duces the notion of a k-immediate snapshot object, which generalizes the basic
(n − 1)-immediate snapshot object. More precisely, when considering a
t-immediate snapshot object in a t-crash n-process model, an invocation of
write snapshot() by a process returns a set including at least (n − t) pairs (while
it would return a set of x pairs with 1 ≤ x ≤ n if the object was an IS object).
Hence, a t-immediate snapshot object allows processes to obtain as much infor-
mation as possible from the other processes while guaranteeing progress.

The obvious question is then the implementability of a t-immediate snap-
shot object in the t-crash n-process model. This question is answered in this
paper, which shows that it is impossible to implement a t-IS object in a t-crash
n-process model when 0 < t < n−1. More precisely we prove that implementing
a t-IS object is equivalent2 to implementing consensus when t < n/2 and enables
to implement (2t − n + 2)-set agreement when n/2 ≤ t < n − 1.

At first glance, this impossibility result may seem surprising. An IS object is
a snapshot object (a) whose operations write() and snapshot() are glued together
in a single operation write snapshot(), and (b) satisfying an additional property
linking the sets of pairs returned by concurrent invocations (called Immediacy

2 A is equivalent to B if A can be (computationally) reduced to B and reciprocally.
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property, Sect. 2.2). Then, as already indicated, a t-IS object is an IS object such
that the sets returned by write snapshot() contain at least (n − t) pairs (Output
size property, Sect. 2.4). The same Output size property on the sets returned by
a snapshot object can be trivially implemented in a t-crash n-process model. Let
us call t-snapshot such a constrained snapshot object. Hence, while a t-snapshot
object can be implemented in the t-crash n-process model, a t-IS object cannot
when 0 < t < n − 1.

Roadmap. As previously indicated, the paper is on the computability power of
t-IS objects in the t-crash computing model, for t < n − 1. Made up of Sect. 7
sections, it has the following content.

– Section 2 introduces the basic crash-prone read/write system model, immedi-
ate snapshot, a k-set agreement, and k-immediate snapshot (k-IS). It also
proves a theorem which captures the additional computational power of
k-immediate snapshot with respect to the basic (n − 1)-immediate snapshot.

– Assuming a majority of processes never crash, i.e. a t-crash read/write model
in which t < n/2, Sect. 3 shows that it is impossible to implement t-immediate
snapshot in such a model. The proof is a reduction of the consensus problem
to t-immediate snapshot.

– Assuming t ≤ n − 1, Sect. 4 presents a reduction of t-immediate snapshot to
consensus in a t-crash read/write model. When combined with the result of
Sect. 3, this shows that t-immediate snapshot and consensus have the same
computational power in any t-crash model where t < n/2.

– Assuming a t-crash read/write model in which n/2 ≤ t < n − 1, Sect. 5 shows
that it is impossible to implement t-immediate snapshot in such a model. The
proof is a reduction of the (2t − n + 2)-set agreement problem to t-immediate
snapshot.

– By a simulation argument, Sect. 6 shows that consensus is not solvable with
t-immediate snapshot when n/2 ≤ t < n proving that the computational
power of t-immediate snapshot when 0 < t < n/2 is strictly stronger than the
computational power of t-immediate snapshot when n/2 ≤ t < n.

Finally, Sect. 7 concludes the paper.

2 Immediate Snapshot, k-Set Agreement, and
k-Immediate Snapshot

2.1 Basic Read/Write System Model

Processes. The computing model is composed of a set of n ≥ 3 sequential
processes denoted p1, ..., pn. Each process is asynchronous which means that it
proceeds at its own speed, which can be arbitrary and remains always unknown
to the other processes.

A process may halt prematurely (crash failure), but executes correctly its
local algorithm until it possibly crashes. The model parameter t denotes the
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maximal number of processes that may crash in a run. A process that crashes
in a run is said to be faulty. Otherwise, it is correct or non-faulty. Let us notice
that, as a faulty process behaves correctly until it crashes, no process knows if it
is correct or faulty. Moreover, due to process asynchrony, no process can know
if another process crashed or is only very slow.

It is assumed that (a) 0 < t < n (at least one process may crash and at
least one process does not crash), and (b) any process, until it possibly crashes,
executes the algorithm assigned to it.

Communication Layer. The processes cooperate by reading and writing Single-
Writer Multi-Reader (SWMR) atomic read/write registers [23]. This means that
the shared memory can be seen as a set of arrays A[1 . . . n] where, while A[i] can
be read by all processes, it can be written only by pi.

Notation. The previous model is denoted CARWn,t[∅] (which stands for “Crash
Asynchronous Read/Write with n processes, among which up to t may crash”).
A model constrained by a predicate on t (e.g. t < x) is denoted CARWn,t[t < x].
Hence, as we assume at least one process does not crash, CARWn,t[t < n] is a
synonym of CARWn,t[∅], which (as always indicated) is called wait-free model.
When considering t-crash models, CARWn,t[t ≤ α] is less constrained than
CARWn,t[t < α − 1].

Shared objects are denoted with capital letters. The local variables of a
process pi are denoted with lower case letters, sometimes suffixed by the process
index i.

2.2 One-Shot Immediate Snapshot Object

The immediate snapshot (IS) object was informally presented in the introduc-
tion. It can be seen as a variant of the snapshot object introduced in [1,2].
While a snapshot object provides the processes with two operations (write() and
snapshot()) which can be invoked separately by a process (usually write() before
snapshot()), a immediate snapshot provides the processes with a single operation
write snapshot(). One-shot means that a process may invoke write snapshot() at
most once.

Definition. An IS object IMSP is a set, initially empty, that will contain pairs
made up of a process index and a value. Let us consider a process pi that invokes
IMSP .write snapshot(v). This invocation adds the pair 〈i, v〉 to IMSP (contri-
bution of pi to IMSP), and returns to pi a set, called view and denoted viewi,
such that the sets returned to the processes collectively satisfy the following
properties.

– Termination. The invocation of write snapshot() by a correct process termi-
nates.

– Self-inclusion. ∀ i : 〈i, v〉 ∈ viewi.
– Validity. ∀ i : (〈j, v〉 ∈ viewi) ⇒ pj invoked write snapshot(v).
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– Containment. ∀ i, j : (viewi ⊆ viewj) ∨ (viewj ⊆ viewi).
– Immediacy. ∀ i, j : (〈i, v〉 ∈ viewj) ⇒ (viewi ⊆ viewj).

It is relatively easy to show that the Immediacy property can be re-stated as
follows: ∀ i, j :

(
(〈i,−〉 ∈ viewj) ∧ (〈j,−〉 ∈ viewi)

) ⇒ (viewi = viewj).

Implementation. Implementations of an IS object in CARWn,t[0 < t < n] (clas-
sical read/write wait-free model) are described in [5,15,28,31]. While both a
one-shot snapshot object and an IS object satisfy the Self-inclusion, Validity
and Containment properties, only an IS object satisfies the Immediacy property.
This additional property creates an important difference, from which follows
that, while a snapshot object is atomic (operations on a snapshot object can
be linearized [22]), an IS object is not atomic (its operations cannot always be
linearized). However, an IS object is set-linearizable (set-linearizability allows
several operations to be linearized at the same point of the time line [9,26]).

The Iterated Immediate Snapshot (IIS) Model. In this model (introduced in [7]),
the shared memory is composed of a (possibly infinite) sequence of IS objects:
IMSP [1], IMSP [2], ... These objects are accessed sequentially and asynchro-
nously by the processes according to the following round-based pattern executed
by each process pi. The variable ri is local to pi; it denotes its current round
number.

ri ← 0; �si ← initial local state of pi (including its input, if any);
repeat forever % asynchronous IS-based rounds

ri ← ri + 1;
viewi ← IMSP [ri].write snapshot(�si);
computation of a new local state �si (which contains viewi)

end repeat.

As indicated in the Introduction, when considering distributed tasks (as for-
mally defined in [8,21]), the IIS model and CARWn,t[0 < t < n] have the same
computational power [7].

2.3 k-Set Agreement

k-Set agreement was introduced by S. Chaudhuri [11] to investigate the relation
linking the number of different values that can be decided in an agreement
problem, and the maximal number of faulty processes. It generalizes consensus
which corresponds to the case k = 1.

A k-set agreement object is a one-shot object that provides the processes
with a single operation denoted proposek(). This operation allows the invoking
process pi to propose a value it passes as an input parameter (called proposed
value), and obtain a value (called decided value). The object is defined by the
following set of properties.
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– Termination. The invocation of proposek() by a correct process terminates.
– Validity. A decided value is a proposed value.
– Agreement. No more than k different values are decided.

It is shown in [6,21,33] that the problem is impossible to solve in
CARWn,t[k ≤ t].

2.4 k-Immediate Snapshot

A k-immediate snapshot object (denoted k-IS) is an immediate snapshot object
with the following additional property.

– Output size. The set view obtained by a process is such that |view| ≥ n − k.

Theorem 1. A k-IS object cannot be implemented in CARWn,t[k < t].

Proof. To satisfy the output size property, the view obtained by a process pi must
contain pairs from (n−k) different processes. If t processes crash (e.g. initially),
a process can obtain at most (n − t) pairs. If t > k, we have n − t < n − k.
It follows that, after it has obtained pairs from (n − t) processes, a process can
remain blocked forever waiting for the (t − k) missing pairs. ��
Considering the system model CARWn,t[0 < t < n − 1], the next theorem
characterizes the power of a t-IS object in term of the Containment property.

Theorem 2. Considering the system model CARWn,t[0 < t < n − 1], and a
t-IS object, let us assume that all correct processes invoke write snapshot(). No
process obtains a view with less than (n − t) pairs. Moreover, if the size of the
smallest view obtained by a process is � (� ≥ n − t), there is a set S of processes
such that |S| = � ≥ n − t and each process of S obtains the smallest view or
crashes during its invocation of write snapshot().

Proof. It follows from the Output size property of the t-IS object that no view
contains less than (n − t) pairs. Let view be the smallest view returned by
a process, and let � = |view|. We have � ≥ n − t. Moreover, due to (a) the
Immediacy property (namely (〈i,−〉 ∈ view) ⇒ (viewi ⊆ view)) and (b) the
minimality of view, it follows that viewi = view. As this is true for each process
whose pair participates in view, and � = |view|, it follows that there is a set
S of processes such that |S| = � ≥ n − t and each of its processes obtains
the view view, or crashed during its invocation of write snapshot(). Due to the
Containment property, the others processes crash or obtain views which strictly
include view. ��

3 t-Immediate Snapshot Is Impossible in
CARWn,t[0 < t < N/2]

This section shows that it is impossible to implement a t-IS object when 0 < t <
n/2.
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From t-IS to Consensus in CARWn,t[0 < t < n/2]. Algorithm 1 reduces con-
sensus to t-IS in the system model CARWn,t[0 < t < n/2]. As at most t < n/2
process may crash, at least n−t > n/2t processes invoke the consensus operation
propose1().

operation propose1(v) is
(1) viewi ← IMSP .write snapshot(v); V IEW [i] ← viewi;
(2) wait(|{ j such that V IEW [j] �= ⊥}| = t + 1);
(3) let view be the smallest of the previous (t + 1) views;
(4) return(smallest proposed value in view)
end operation.

Algorithm 1: Solving consensus in CARWn,t[0 < t < n/2, t-IS] (code for pi)

In addition to a t-IS object denoted IMSP , the processes access an array
VIEW [1 . . . n] of SWMR atomic registers, initialized to [⊥, · · · ,⊥]. The aim of
VIEW [i] is to store the view obtained by pi from the t-IS object IMSP .

When it calls propose1(v), a process pi invokes first the t-IS object, in which
it deposits the pair 〈i, v〉, and obtains a view from it, that it writes in VIEW [i]
to make it publicly known (line 1). Then, it waits (line 2) until it sees the views
of at least (t+1) processes (as n− t ≥ t+1, pi cannot block forever and at least
one of these views is from a correct process). Process pi extracts then of these
views the one with the smallest cardinality (line 3), and finally returns proposed
value contained in this smallest view (line 4).

Theorem 3. Algorithm 1 reduces consensus to t-IS in CARWn,t[0 < t < n/2].

Proof. Let us first prove the consensus Termination property. As n−t ≥ t+1, and
there are at least (n − t) correct processes, it follows that at least (n − t) entries
of VIEW [1 . . . n] are eventually different from ⊥. Hence, no correct process can
remain blocked forever at line 2, which proves consensus Termination.

Let us now consider the consensus Agreement property. It follows from The-
orem 2 that there is a set of at least � ≥ n − t processes, that obtained the same
view min view (or crashed before returning from write snapshot()), and this
view is the smallest view obtained by a process and its size is |min view| = �.
As � ≥ n − t and (n − t) + (t + 1) > n, it follows from the waiting predicate
of line 2, that, any process that executes line 3, obtains a copy of min view,
and consequently we have view = min view at line 3. It follows that no two
processes can decide different values.

Finally, the consensus Validity property follows from the fact that any pair
contained in a view is composed of a process index and the value proposed by
the corresponding process. ��
Corollary 1. Implementing a t-IS object in CARWn,t[0 < t < n/2] is
impossible.
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Proof. The proof is an immediate consequence of Lemma 3, and the fact that
consensus cannot be solved in CARWn,t[0 < t < n/2] [25]. ��

4 From Consensus to t-IS in CARWn,t[0 < t ≤ N − 1]

Algorithm 2 describes a reduction of t-IS to consensus in CARWn,t[0 < t ≤ n−1].
This algorithm uses two shared data structures. The first is an array REG [1 . . . n]
of SWMR atomic registers (where REG [i] is associated with pi). The second is
an array of (t + 1) consensus objects denoted CONS [(n − t) . . . n].

operation write snapshot(vi) is
(1) REG[i] ← vi; viewi ← ∅; deci ← ∅; � ← −1; launch the tasks T1 and T2.

(2) task T1 is
(3) repeat � ← � + 1;
(4) wait

(∃ a set auxi: (deci ⊂ auxi) ∧ (|auxi| = n − t + �)
∧ (auxi ⊆ {〈j,REG[j]〉 such that REG[j] �= ⊥}));

(5) deci ← CONS [n − t + �].propose1(auxi);
(6) if (〈i, vi〉 ∈ deci) ∧ (viewi = ∅) then viewi ← deci end if
(7) until (� = t) end repeat
(8) end task T1.

(9) task T2 is wait(viewi �= ∅); return(viewi) end task T2.
end operation.

Algorithm 2: Implementing t-IS in CARWn,t[0 < t < n,CONS] (code for pi)

The invocation of write snapshot(vi) by a process pi deposits vi in REG [i],
and launches two underlying tasks T1 and T2. The task T2 is a simple waiting
task, which will return a view to the calling process pi. The return() statement at
line 9 terminates the write snapshot() operation invoked by pi. The termination
of T2 does not kill the task T1 which may continue executing.

Task T1 (lines 2–8) has two aims: provide pi with a view viewi (line 6),
and prevent processes from deadlocking, thereby allowing them to terminate. It
consists in a loop that is executed (t + 1) times. The aim of the �-th iteration
(starting at � = 0) is to allow processes to obtain a view including (n − t + �)
pairs. More precisely, we have the following.

– When it enters the �-th iteration, a process pi first waits until it obtains a set
of pairs, denoted auxi, which (a) contains (n − t + �) pairs, (b) contains the
set of pairs deci decided during the previous iteration, and (c) contains only
pairs extracted from the array REG [1 . . . n]. This is captured by the predicate
of line 4.

– Then, pi proposes the set auxi to the consensus object CONS [n − t + �]
associated with the current iteration step (line 5). The set decided is stored
in deci.
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– Finally, if its pair 〈i, vi〉 belongs to deci and pi has not yet decided (i.e., no set
has yet been assigned to viewi), it does it by writing deci in viewi. Let us notice
that this ensures the Self-inclusion property of the t-IS object. Moreover, a
process decides no more than once.
Whether a process decides or not during the current iteration step, it sys-
tematically proceeds to the next iteration step. Hence, a process that obtains
its view during an iteration step x can help other processes to obtain a view
during later iteration steps y > x.

Theorem 4. Algorithm2 reduces t-IS to consensus in CARWn,t[0 < t ≤ n−1].

Proof. The Self-inclusion property follows directly from the predicate 〈i, vi〉 ∈
deci used before assigning deci to viewi at line 6.

The Validity property follows from (a) the fact that a process pi assigns the
value it wants to deposit in the t-IS object in REG [i], (b) this atomic variable is
written at most once (line 1), and (c) the predicate REG [j] �= ⊥ is used at line
4 to extract values from REG [1 . . . n].

The Output size property follows from the predicate of line 4, which requires
that any set auxi (and consequently any set deci output by a consensus object)
contains at least (n − t) pairs.

To prove the Immediacy property, let us consider any two processes pi and pj
such that 〈j, vj〉 ∈ viewi and 〈i, vi〉 ∈ viewj . Let decx[�] denote the local variable
decx after px assigned it a value at line 5 during iteration step �.

Let �i be the iteration step at which pi assigns deci to viewi (due to the
predicate viewi = ∅ used at line 5, such an assignment is done only once). It
follows from the first predicate of line 6, that 〈i, vi〉 ∈ deci[�i] = viewi (oth-
erwise, viewi would not be assigned deci); �j , decj , and viewj being defined
similarly, we also have 〈j, vj〉 ∈ decj [�j ] = viewj . As by assumption we have
〈j, vj〉 ∈ viewi and 〈i, vi〉 ∈ viewj , we also have {〈i, vi〉, 〈j, vj〉} ⊆ deci[�i] = viewi

and {〈i, vi〉, 〈j, vj〉} ⊆ decj [�j ] = viewj . Due to the Agreement property of the
consensus objects, we have deci[�i] = decj [�i], and deci[�j ] = decj [�j ].

Let us assume that �i < �j . This is not possible because, on the one side,
〈j, vj〉 ∈ deci[�i] = decj [�i], and, on the other side, �j is the only iteration step
at which we have 〈j, vj〉 ∈ decj ∧ viewj = ∅ (and consequently viewj is assigned
the value in decj [�j ]). For the same reason, we cannot have �i > �j . It follows
that �i = �j . Hence, as deci[�i] = decj [�i], pi and pj obtain the very same view
(and this occurs during the same iteration step).

As far as the Containment property is concerned, we have the following.
Considering the iteration number �, let us first observe that, due to the predicate
|auxi| = n − t + � (line 4), the set output by CONS [n − t + �] contains n − t + �
pairs. Hence, the sequence of consensus outputs sets whose size is increased by
1 at each instance. Let us now observe that, due to the predicate deci ⊂ auxi

(line 4), the set output by CONS [n− t+ �+1] is a superset of the set output by
the previous consensus instance CONS [n− t+ �]. It follows that the sequence of
pairs output by the consensus instances is such that each set of pairs includes
the previous set plus one new element, from which the Containment property
follows.
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As far as the Termination property is concerned, let p be the number of
processes that have deposited a value in REG [1 . . . n]. We have n − t ≤ p ≤ n.
It follows from the predicate in the wait statement (line 4), that no process can
block forever at this line for � ∈ [0 . . . p−n+t]. As there are at least (n−t) correct
processes, and none of them can be blocked forever at line 4, it follows that each
of them invokes CONS [n− t+ �].propose1() (line 5), for each � ∈ [0 . . . p−n+ t].
Hence, the only reason for a correct process not to obtain a view (and terminate),
is to never execute the assignment viewi ← deci at line 7.

The sequence of consensus instances outputs a sequence of sets of pairs whose
successive sizes are (n − t), (n − t + 1), ..., p, which means that the identity of
every of the p processes that wrote in REG [1 . . . n] appears at least once in
the sequence of consensus outputs. Hence, for each correct process pi, there is
a consensus instance whose output dec is such that, while viewi = ∅, we have
〈i, vi〉 ∈ dec, which concludes the proof of the Termination property. ��
Corollary 2. Consensus and t-IS are equivalent in CARWn,t[0 < t < n/2].

Proof. The proof follows from Theorem 3 (Algorithm 1) and Theorem 4 (Algo-
rithm2). ��

5 t-Immediate Snapshot Is Impossible in
CARWn,t[n/2 ≤ T < n − 1]

This section shows that it is impossible to implement a t-IS object in the system
model CARWn,t[n/2 ≤ t < n − 1]. To this end, it presents a reduction of k-
set agreement (in short k-SA) to t-IS for k = 2t − n + 2 (e.g., a reduction of
(n − 2)-SA agreement to (n − 2)-IS in CARWn,t[t = n − 2]).

From t-IS to (2t-k+2)-set Agreement in CARWn,t[n/2 ≤ t < n − 1, t − IS].
Algorithm 3 reduces (2t − n + 2)-set agreement to t-IS in CARWn,t[n/2 ≤ t <
n − 1]. As at most t process may crash, at least (n − t) processes invoke the
k-SA operation proposek(). This algorithm is very close to Algorithm1. Its main
difference lies in the replacement of (t + 1) by (n − t) at line 2.

operation propose2t−n+2(v) is
(1) viewi ← IMSP .write snapshot(v); VIEW [i] ← viewi;
(2) wait(|{ j such that VIEW [j] �= ⊥}| = n − t);
(3) let view be the smallest of the previous (n − t) views;
(4) return(smallest proposed value in view)
end operation.

Algorithm 3: Solving (2t−n+2)-set agreement in CARWn,t[n/2 ≤ t < n−1, t-IS]
(code for pi)
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Theorem 5. Algorithm3 reduces (2t − n + 2)-set agreement to t-IS in
CARWn,t[n/2 ≤ t < n − 1].

Proof. Let k = 2t − n + 2.
Let us first consider the k-SA Termination property. There are at least (n−t)

correct processes, and each of them first invokes IMSP .write snapshot() and then
writes the view it obtained in the shared array VIEW (line 1). Hence, at least
(n− t) entries of VIEW are eventually different from ⊥, from which follows that
no process can block forever at line 2.

Let us now consider the k-SA Validity property. It follows from the Contain-
ment property of the t-IS object that any set of views deposited in VIEW is
not empty. Therefore, the view selected by a process at line 3 is not empty. As a
view can only contain pairs, each including a proposed value (line 1), the k-SA
Validity property follows.

Let us finally consider the k-SA Agreement property. Let us first observe that,
due to the t-IS Containment property and Theorem2, at most n−(n−t)+1 = t+1
different views can be written in the array VIEW [1 . . . n]. Let V (1) the smallest
of these views (which contains � ≥ n − t pairs), V (2) the second smallest, etc.,
until V (t + 1) the greatest one. There are two cases according to the (n − t)
non-⊥ views obtained by a process pi at line 2. Let us remind that, as n ≤ 2t,
we have n − t ≤ t.

– Case 1. The view V (1) belongs to the (n − t) views obtained by pi. In this
case, pi selects V (1) at line 3 and decides at line 4 the smallest proposed value
contained in V (1).

– Case 2. The view V (1) does not belong to the (n − t) views obtained by
pi. Hence, the (n − t) views obtained by any process of Case 2 belong to
{V (2), · · · , V (t + 1)}.
It follows that the m = (n − t) − 1 biggest views in {V (2), · · · , V (t + 1)} will
never be selected be the processes that are in Case 2, and consequently the
set of these processes obtain at most t − m = t − ((n − t) − 1) = 2t − n + 1
different smallest views. Hence, these processes may decide at most 2t − n + 1
different values at line 4.

When combining the two cases, at most k = 2t − n + 2 different values can be
decided, which concludes the proof of the theorem. ��
Corollary 3. Implementing a t-IS object in CARWn,t[n/2 ≤ t < n − 1] is
impossible.

Proof. As t ≤ n−2, we have 2t−n+2 ≤ t. The proof is an immediate consequence
of Theorem 5, and the fact that (2t − n + 2)-set agreement cannot be solved in
CARWn,t[n/2 ≤ t < n − 1] [5,21,33]. ��

6 t-Immediate Snapshot and Consensus in
CARWn,t[n/2 ≤ T < n − 1]

Theorem 6. There is no t-resilient consensus algorithm using t-immediate
snapshot in CARWn,t[n/2 ≤ t < n − 1].
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Table 1. Summary of results presented in the paper

1 ≤ t < n/2 n/2 ≤ t < n − 1

t-IS implements t-CONS (Theorem3) t-IS implements (2t − n+ 2)-SA (Theorem5)

t-IS does not implement t-CONS (Theorem6)

t-CONS implements t-IS (Theorem4) t-CONS implements t-IS (Theorem4)

The proof the theorem is by contradiction. It assume that there is a t-
resilient consensus algorithm A for a set of processes {p1, · · · , pn}, which uses a
t-immediate snapshot object in a system where n = 2t (the cases for the other
values of t can easily be reduced to this case).

The contradiction is obtained by simulating A with two processes Q0 and
Q1, such that Q0 and Q1 solve consensus despite the possible crash of one of
them. As there is no wait-free consensus algorithm for 2 processes, it follows that
such a consensus algorithm A based on t-immediate snapshot objects does not
exist. The proof can be found in [12].

7 Conclusion

This paper addressed the design of t-tolerant algorithms building a t-immediate
snapshot (t-IS) object. Such an object in an immediate snapshot object (defined
by Termination, Self-inclusion, Containment, and Immediacy properties), in a
t-crash asynchronous system. Hence, it is required that each set returned to
a process contains at least (n − t) pairs. Immediate snapshot corresponds to
(n − 1)-immediate snapshot.

The paper has shown that, while it is possible to build an (n − 1)-IS object
in the asynchronous read/write (n − 1)-crash model, it is impossible to build a
t-IS object in an asynchronous read/write t-crash model when 0 < t < n − 1. It
follows that the notion of an IIS distributed model seems inoperative for these
values of t. The results of the paper are summarized in Table 1 where t-CONS
denotes the consensus in the presence of up to t process crashes, and SA stands
for “Set Agreement”.

Interestingly, this study shows that there are two contrasting impossibility
results in asynchronous read/write t-crash n-process systems, each one lying at
an end of the t-resilience spectrum. Consensus is impossible as soon as t > 0,
while t-immediate snapshot is impossible as soon as t < n − 1.

As a final remark, some computability problems remain open. As an example,
is it possible to implement a t-IS object from (2t − n + 2)-Set agreement?
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Abstract. Two mobile robots are initially placed at the same point on
an infinite line. Each robot may move on the line in either direction not
exceeding its maximal speed. The robots need to find a stationary target
placed at an unknown location on the line. The search is completed when
both robots arrive at the target point. The target is discovered at the
moment when either robot arrives at its position. The robot knowing
the placement of the target may communicate it to the other robot. We
look for the algorithm with the shortest possible search time (i.e. the
worst-case time at which both robots meet at the target) measured as a
function of the target distance from the origin (i.e. the time required to
travel directly from the starting point to the target at unit velocity).

We consider two standard models of communication between the
robots, namely wireless communication and communication by meeting.
In the case of communication by meeting, a robot learns about the target
while sharing the same location with the robot possessing this knowledge.
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We propose here an optimal search strategy for two robots including the
respective lower bound argument, for the full spectrum of their maxi-
mal speeds. This extends the main result of Chrobak et al. (SOFSEM
2015) referring to the exact complexity of the problem for the case when
the speed of the slower robot is at least one third of the faster one. In
addition, we consider also the wireless communication model, in which
a message sent by one robot is instantly received by the other robot,
regardless of their current positions on the line. In this model, we design
an optimal strategy whenever the faster robot is at most 6 times faster
than the slower one.

1 Introduction

Searching is a well-studied problem in which mobile robots need to find a specific
target placed at some a priori unknown location. In some cases, a team of robots
is involved, trying to coordinate their efforts in order to minimize the time. The
complexity of the multi-robot searching is usually defined as the time when the
first searcher arrives at the target position whose location is controlled by an
adversary.

In distributed computing, one of the central problems is rendezvous when
two mobile robots collaborate in order to meet in the smallest possible time.
The efficiency of the rendezvous strategy is expressed as the time when the last
involved robot reaches the meeting point, and the meeting point is arbitrary,
i.e., the robots may choose the most convenient one.

In the linear search problem studied in the present paper, a pair of robots
has to meet at an unknown fixed target point of the environment and the time
complexity of the process is determined by the arrival of the second robot. More
specifically we consider two mobile robots placed at the origin of an infinite line.
Each robot has its maximal speed that it cannot exceed while moving in either
direction along the line. There is a stationary target, placed at an unknown point
of the line, that a robot discovers when arriving at its placement. The robot which
possesses the knowledge of the target position may communicate it to the other
robot. We consider two communication models of the robots: communication
by meeting when the robots can exchange information only while being located
at the same position, and wireless communication when the robot finding the
target may instantaneously inform the other robot of its position. We want to
schedule the movement of both robots so that eventually each of them arrives at
the target location. The cost of the schedule is the first time when both robots
are present at the target position. We express it as a function of the distance
between the target and the origin.

1.1 Related Work

Numerous papers have been written on the searching problem, studying diverse
models involving stationary or mobile targets, graph or geometric terrain, known
or unknown environment, one or many searchers, etc. (cf. [1,3,17,21]). Depend-
ing on the setting, the problem is known under the name of treasure hunting,
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pursuit-evasion, cops and robbers, fugitive search games, etc. Sometimes the
searching robot is not looking for an individual target point, attempting rather
to evacuate being lost in an unknown environment or determine its position
within a known map (e.g. [12,15]). Several of these research papers offer excit-
ing challenges of combinatorial or algorithmic nature (see [17]). In most papers
studying algorithmic issues, the objective is either to determine the feasibility of
the search, (i.e., whether the search will succeed under all adversarial choices) or
to minimize its cost represented by the search time, assuming some given speeds
of searchers (and perhaps evaders).

Most of the time searching is considered for a single robot. As one robot usu-
ally cannot map the graph being explored (unless e.g., leaving pebbles at some
nodes; see [8]), the second searcher makes the task feasible (cf. [9]). However,
optimization of the search by the use of multiple robots often involves coordi-
nation issues, where the searchers need to communicate in order to synchronize
their efforts and adequately split the entire task into portions assigned to indi-
vidual robots (cf. [11,14,16,18]). As this objective is often not easy to achieve,
some multi-robot search problems turn out to be NP-hard (e.g., see [18]).

Several papers on searching consider online algorithms (cf. [19]), where the
information about the environment is acquired as the search progresses. The
performance of an online algorithm is measured by its competitive ratio, i.e., the
worst-case ratio of its cost with respect to the offline cost, which is the search time
of the optimal algorithm with full a priori knowledge of the environment and the
target placement. Many search problems, especially for geometric environments,
are analyzed from this perspective, in particular when the cost of the offline
solution is just the distance to the target; see [3,11,16,19].

The linear search problem for a single robot was introduced by Beck [6]
and Bellman [7]. They proposed an optimal on-line algorithm with search time
9d, where d is the distance from the origin to the target. This question was
extended to the cow-path problem in [2], in which the searcher has more than two
directions to follow, to searching in the plane [3], and numerous other variations.
Bose et al. [10] recently studied a variant of these problems where upper and
lower bounds on the distance to the target are given. On a line, without this
information the time 9d cannot be improved even if the search is performed by
a team of same-speed robots communicating by meeting if all robots have to
reach the target [11]; see also [4]. Surprisingly, time 9d can still be achieved by
distinct-speed robots if the slowest robot is at most 3 times slower than the
fastest one.

The rendezvous problem has been central to distributed computing for many
years. It was studied in various settings (cf. [22]), but even for environments as
simple as a line or a ring, optimal solutions are not always known. Feasibility
of the rendezvous problem is often determined by a symmetry breaking process,
which must prevent the robots from falling into an infinite pattern avoiding the
meeting. Searching and rendezvous may be viewed as problems with opposite
objectives. Searching is a game between a searcher, who tries to find the target
as fast as possible and the adversary, who knows the searching strategy and
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attempts to maximize the search time by its choice of the environment para-
meters, target placement (or its escape route), etc. Hence in searching, the two
players have contradictory goals. In rendezvous the two players collaborate, try-
ing to quickly find one another (see [1]). Contrary to the searching problem, the
rendezvous destination is not given in advance but it may be decided by the
robots.

Equivalent to our setting are evacuation problems, where a collection of
mobile robots need to find an unknown exit in the environment and the exit must
be reached by all involved robots. In previous research usually robots travelling
at the same speed were considered (cf. [11,12]). For other problems considering
robots with distinct speeds (e.g., the patrolling problem studied in [13,20]), only
partial results were obtained. Optimal patrolling using more than two robots on
a ring [13], or more than three robots on a segment [20], is unknown in general
and all intuitive solutions have been proved sub-optimal for some configurations
of the speeds of the robots. Another example is the long-standing lonely run-
ner conjecture [23], concerning k entities moving with constant speeds around a
circular track of unit-length. If the speeds are pairwise different, the conjecture
states that at some moment all runners are located equidistantly on the cycle.
The conjecture is open in general, having been verified for up to 7 runners [5].

1.2 Our Results

In this paper, we consider the linear search problem for two robots equipped
with distinct maximal speeds. For the convenience of presentation we scale their
speeds so that the speed of the faster robot is 1 and the slower one is 0 < v ≤ 1.

In the model with communication by meeting, we propose an optimal strategy
for any value of v. And in particular our strategy works in time 1+3v

v−v2 d, for any
v ≤ 1

3 for the target being placed at unknown distance d from the origin. The
remaining part of the spectrum has been covered in [11] where the authors
provide: an implicit (in the limit) argument for the lower bound 9d when the
robots share the maximal speed 1; and they show that this bound can be met
from above when the slower robot’s maximal speed is at least 1

3 .
In the model with wireless communication, we design a strategy achieving

search time 2+v+
√

v2+8v
2v d. We show that this is optimal for any v ≥ 1

6 . Note that
for v >

√
17−4 ≈ 0.123 our strategy for wireless communication outperforms the

optimal strategy for communication by meeting, which shows that the feature of
wireless communication is useful. On the other hand, one can observe that this
feature becomes less significant as v decreases. For v = 1, the optimal algorithm
for wireless communication is 3 times faster than the optimal algorithm for
communication by meeting whereas for v = 1

6 , it is only 1.08 times faster.

2 Preliminaries

For any algorithm A, we denote by t(A, p) the search time of algorithm A if the
target is located at point p. We define τ(A) = lim sup|p|→∞

t(A,p)
|p| as the main
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efficiency measure of the algorithms. Whereas all the lower bounds we derive
hold for the efficiency measure τ(A), all the algorithms A we design actually
satisfy the stronger property t(A, p) ≤ τ(A)|p| for every point p ∈ R (sometimes
by making infinitesimal moves as the time approaches 0). In consequence, our
bounds are in particular directly adaptable to a setting where the target place-
ment must lie at a distance at least x from the origin, where x is a fixed constant,
and one measures performance of the algorithms using sup{ t(A,p)

|p| : |p| > x}.
Having fixed an algorithm A for a set R of robots, each robot Γ ∈ R follows

a fixed trajectory while it is unaware of the location of the target. We use Γ (t) to
denote the position of robot Γ at time t provided that the target location is not
known to the robot. Our lower bounds rely on the analysis of the progress speeds
lim supt→∞

|Γ (t)|
t . The largest of these values over Γ ∈ R is called the overall

progress speed. For each point p, the time T (p) = min{t : ∃Γ∈RΓ (t) = p} is called
the discovery time of p (it is the first moment when any robot visits p) and φ(p)
denotes the set of robots which visit p at time T (p). To simplify notation, we will
not make explicit the dependence of Γ (t), T (p), and φ(p) on the algorithm A.
Our results are primarily designed for a set R of two of robots, denoted R and r.
Their speed limits are 1 and v (v ≤ 1), respectively.

3 Communication by Meeting

In this model, once a robot finds the target, it must walk to meet the other
robot, and then the robots travel to the target. Naturally, the schedule consists
of three phases: exploration phase while the target is unknown, pursuit phase
where the informed robot chases after the other one in order to tell it about the
target, and target phase when both robots walk to the target location. Recall
that for robots with equal speeds, one of the possible optimal solutions consists
in both robots following together a cow-path trajectory [4,11], thus the pursuit
and target phases may be nonexistent.

3.1 The Upper Bound

A robot following a standard cow-path trajectory visits, in order of increasing k,
the points pk := (−2)k, k ∈ Z, on alternating sides of the origin, travelling at full
speed between consecutive points pk.1 In this strategy, the robot discovers new
locations after it passes pk on the way from pk+1 to pk+2. This happens from
1 Note that the sequence (pk)k∈Z is understood as prescribing infinitesimally small

moves for the robot in the two directions around the origin at the beginning of
the execution (when time is in the neighborhood of 0, i.e., at the beginning of the
execution, the robot visits points pk for k in the neighborhood of −∞, hence it
makes infinitesimal moves). Algorithm A∗, described below, has similar behavior.
In order to avoid this, we could start the sequence pk from any finite k (instead
of −∞). This would result in small constant additive terms appearing throughout
the calculations, but the asymptotic behavior of the algorithm and in particular the
efficiency measure τ(A) would be unaffected.
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Fig. 1. Illustration of algorithm A∗ before target detection (left), and when the target
has been located (right). The horizontal axis represents the line searched and the
vertical axis represents the time. The empty circle denotes the target discovery. Double
and single solid lines represent the trajectories of the faster and the slower robot,
respectively. Dashed lines correspond to the overall progress speed and dotted lines to
the search time.

time tk := |pk|+2
∑k+1

j=−∞ |pj | = 9·2k = 9|pk| to t′k+2 := |pk+2|+2
∑k+1

j=−∞ |pj | =
12 · 2k = 3|pk+2|. Consequently, the search time is bounded from above by 9|p|.

As observed by Chrobak et al. [11], this strategy generalizes to a collection of
two robots with speed limits 1 and 1

3 . Both robots follow the cow-path trajectory
at their maximal speed, which means that they meet in pk at time tk = 3t′k.
When the faster robot R discovers the target at a point p between pk and pk+2,
it pursues the slower robot r and brings it to the target, which turns out to be
feasible within time 9|p|; see Fig. 1.

Algorithm A∗ [for two robots with communication by meeting]

1. Until the target is located, both robots visit, in order of increasing k, the
points pk = (−c)k for all k ∈ Z, where c = 1+ṽ

2ṽ and ṽ = min(v, 1
3 ). Robot R

moves with speed 1 between consecutive points, and robot r with speed ṽ.
2. When R finds the target, it moves with speed 1 to meet and notify r.
3. After the meeting, robots move together to the target at speed ṽ.

We extend this strategy to allow v < 1
3 as the speed limit of the slower robot r.

We insist on the two robots meeting in points pk at times tk for adjusted values
pk and tk. The smaller speed v of r allows R to travel further before going back
to pk. More formally, we increase the ratio |pk+1|/|pk| and instead of taking
pk = (−2)k, we set pk = (−c)k for some c > 2. We still make both robots visit
consecutive points pk at their full speeds, and we choose c so that they meet
in pk while r is there for the first time and R for the second time. A condition
inductively forcing the meeting at pk to be followed by a meeting in pk+1 can
be expressed as 1

v |pk+1 − pk| = tk+1 − tk = |pk+1 − pk+2| + |pk+2 − pk|, i.e.,
1
v (c + 1) = 2c2 + c − 1. This gives c = 1+v

2v , which we use for our algorithm A∗.
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The following theorem bounds the search time by robots using this strategy.

Theorem 1. For the algorithm A∗ and every point p ∈ R, we have:

t(A∗, p) = 1+3v
v−v2 |p| if v ≤ 1

3 , (1)

t(A∗, p) = 9|p| if 1
3 < v ≤ 1. (2)

Proof. First, let us show (1). Let us choose k so that the target p is located
between pk and pk+2. The meeting time in pk is

tk = 1
v

(

|pk| + 2
∑

j≤k−1

|pj |
)

≤ 1
v
ck

(

1 +
2

c − 1

)

=
1
v
ck c + 1

c − 1
= ck 1 + 3v

v − v2
.

Suppose that |p−pk| = δ. After meeting r in pk, robot R needs time δ to discover
the target. At that time, the distance between the robots is δ(1 + v) since they
were going in opposite directions with their maximal speeds until time tk + δ.
Then, the faster robot pursues the slower one. With the speed difference of 1−v

this takes δ(1+v)
1−v units of time. Next, the robots go back to the target at speed

v which requires time δ(1+v)
v−v2 , i.e., 1

v times more than the pursuit. In total, the
time between tk and the moment when both robots reach the target is

δ +
δ(1 + v)
1 − v

+
δ(1 + v)
v − v2

= δ
v − v2 + v + v2 + 1 + v

v − v2
= δ

1 + 3v
v − v2

.

Since tk = |pk| 1+3v
v−v2 , the total search time is t(A, p) = (|pk| + δ) 1+3v

v−v2 = |p| 1+3v
v−v2 ,

as claimed.
To show (2), we simply observe that, for v = 1

3 , we have 1+3v
v−v2 = 9. Note that

for v > 1
3 , the searcher moving at velocity 1

3 could increase its speed to v, but
no additional gain in efficiency is possible (see the lower bounds in [4,11] and in
Sect. 3.2). �	

3.2 The Lower Bound

We show that the strategy from Sect. 3.1 is optimal, achieving the best possible
bound on the search time. In fact, some results of this section are presented in
order to work for collections R of any number of robots. Consequently, in this
section v denotes the slowest maximal speed among all the robots in R, and r
denotes some robot with maximal speed v. We also define τ∗ = 1+3v

v−v2 and, for

any fixed algorithm A, the overall progress speed w = maxΓ∈R lim supt→∞
|Γ (t)|

t .
Note that the functions Γ and w depend on A, but we do not make this relation
explicit in our notation.

Before we proceed with the actual lower bound, let us prove a lemma relating
the search time and the overall progress speed for any collection R of robots.

Lemma 2. For any algorithm A and any collection R of robots with speeds not
exceeding 1, we have τ(A) ≥ 1+3w

w−w2 , when w ∈ (0, 1). If w = 0 or w = 1, then
τ(A) cannot be bounded from above by any finite number.
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Fig. 2. Illustration of notions used in the proof of Lemma 2. Rays starting from the
origin as well as thick lines representing constraints are all annotated with the corre-
sponding speeds. Here, robot Γ , while in p at time t, must know that the target is not
in q, or it must be able to reach q before the deadline.

Proof. We proceed with a proof by contradiction. That is, we suppose that τ(A)
can be bounded from above if w ∈ {0, 1}, and that τ(A) < 1+3w

w−w2 if w ∈ (0, 1). In
both cases, the assumption implies the existence of a finite τ̄ such that τ(A) < τ̄
and (w − w2) τ̄ < 1 + 3w. The former condition yields that there exists d0 such
that t(A, p) < τ̄ |p| for |p| ≥ d0. We will obtain a contradiction with respect to
the latter condition.

Let us fix ε > 0. Note that there exists t0 such that |Γ (t)|
t ≤ w + ε for every

t ≥ t0 and every robot Γ ∈ R. Also, there exists a robot Γ and arbitrarily large
time values t such that |Γ (t)|

t ≥ w − ε. We fix such a robot Γ and time t, which
satisfies t ≥ (τ̄ − 1)max(d0, t0).

Let p = Γ (t) and dp = |p|. Also, consider a point q at distance dq = t+dp

τ̄−1
from the origin on the opposite side of p; see Fig. 2. Note that dq ≥ d0, so
t(A, q) < τ̄dq.

Suppose that robot Γ at time t cannot exclude the possibility that the target
is located at q. Then, it must be able to reach q by the deadline, at t(A, q) < τ̄dq,
starting at time t from point p. The robot cannot exceed the speed limit of 1,
so we conclude τ̄ dq − t > dp + dq. However, the distance dq is defined so that
τ̄ dq − t = dp + dq, a contradiction.

Consequently, robot Γ must already know at time t that the target is not
at point q. Since robots can only communicate by meeting and their speeds are
limited by 1, this information needs dq + dp time to travel from q to p. In other
words, some robot Γ ′ must have visited q at time t′ ≤ t − dp − dq.

On the other hand, the speed limit of Γ ′ is at most 1, so we have t′ ≥ dq ≥ t0.
Hence, we can use a stronger bound using progress speed: dq = Γ ′(t′) ≤ t′(w+ε).
Consequently, we obtain dq ≤ (w+ε)(t−dp−dq). Plugging in the definition of dq,
after some term rearrangements, we get (1+w+ε)(t+dp) ≤ (t−dp)(w+ε)(τ̄ −1).
Equivalently, dp ≤ t (w+ε)(τ̄−2)−1

(w+ε)τ̄+1 . However, recall that time t was chosen so that
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dp ≥ (w−ε)t. Therefore, w−ε ≤ (w+ε)(τ̄−2)−1
(w+ε)τ̄+1 . As ε > 0 can be chosen arbitrarily

close to 0, we conclude that w ≤ w(τ̄−2)−1
wτ̄+1 , that is (w − w2)τ̄ ≥ 1 + 3w. This

contradicts the definition of τ̄ . �	
The following immediate corollary gives an alternative proof of the optimality

of A∗ for v ≥ 1
3 . (Recall the lower bound of 9 in [11]; see also [4].)

Corollary 3. For any algorithm A and any collection R of robots with speeds
not exceeding 1, we have τ(A) ≥ 9.

Proof. It suffices to observe that 1+3w
w−w2 ≥ 9 for any w ∈ (0, 1). �	

We continue the analysis assuming that v < 1
3 and w ∈ (0, 1). We provide a

series of lemmas, each imposing certain constraints on hypothetical algorithms
A satisfying τ(A) < τ∗. Eventually, we deduce that some of these constraints
exclude each other. Due to space restrictions, in this version of the paper some
proofs are only sketched, with rigorous arguments deferred to the full version.

Lemma 4. If v < 1
3 and τ(A) < τ∗, then w < 1−v

1+3v .

Proof. Suppose that w ≥ 1−v
1+3v . Note that w ≥ 1−v

1+3v >
1− 1

3
1+1 = 1

3 (because v < 1
3 )

and the function f(x) = 1+3x
x−x2 is increasing on ( 13 , 1). Thus 1+3v

v−v2 = f( 1−v
1+3v ) ≤

f(w) = 1+3w
w−w2 . Consequently, Lemma 2 implies τ(A) ≥ f(w) ≥ 1+3v

v−v2 = τ∗. �	

Lemma 5. If v < 1
3 and τ(A) < τ∗, then lim supt→∞

|r(t)|
t < vwτ∗−wv−v−w

vwτ∗+1 .

Fig. 3. Illustration of notions used in the proof of Lemma 5. The slowest robot r, while
in p at time t, must know that the target is not in q or it must be able to reach q before
the deadline.
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Proof (sketch). We choose an arbitrarily large time t. Let p = r(t) and dp =
|p|. We also consider a point q at distance dq = vt+dp

vτ̄−1 from the origin on the
opposite side of p. Here, τ̄ is an arbitrary value such that τ(A) < τ̄ < τ∗ and
1
v < τ̄ < τ∗ = 1

v + 4
1−v . We may assume t(A, q) < τ̄dq if t is sufficiently large.

The distance dq is defined so that 1
v (dq +dp)+t = τ̄ dq. Hence, it is impossible

for the slower robot r to reach point q before τ̄ dq > t(A, q), starting from p at
time t. Consequently r already knows at time t that the target is not located
at q. Hence, some robot must have visited q at time t′ ≤ t − dp − dq, where
the inequality is due to the fact that information cannot travel faster than at
speed 1. On the other hand, the progress speed w gives an upper bound on dq

t′

as t′ approaches infinity. We combine these two inequalities to bound dp

t from
above and derive the claimed result. �	
Corollary 6. If v < 1

3 and τ(A) < τ∗, then lim supt→∞
|r(t)|

t < 1
τ∗ . In particu-

lar, the set {p : r ∈ φ(p)} of points discovered by r is bounded.

Proof (sketch). By Lemma 4, we may assume w < 1−v
1+3v . Upon substituting this

inequality into the upper bound of Lemma5, this implies vwτ∗−wv−v−w
vwτ∗+1 < 1

τ∗ .
Thus, the slowest robot visits sufficienly far points only after the deadline. To
arrive at some location earlier, it must be notified by some other robot about
the target location. �	

While Lemmas 4 and 5 and Corollary 6 hold for arbitrary collections of robots,
this is not the case for the following lemma.

Fig. 4. Illustration of notions used in the proof of Lemma 7. The faster robot R, having
discovered at time t the target located at p, must be able to catch the slower robot r
and bring it to the target before the deadline.

Lemma 7. If v < 1
3 and τ(A) < τ∗, then lim supt→∞

|r(t)|
t ≥ vW+v+W−vWτ∗

vWτ∗+1

where W = w−w2

1+3w .
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Proof (sketch). By Corollary 6, we may assume that the faster robot discovers
all sufficiently far locations. Thus, its own progress speed is equal to the overall
progress speed w. Moreover, the trajectory of R can be interpreted as a search
algorithm for a collection R = {R} consisting of the faster robot R only. The
search time of this algorithm is T (p), and therefore Lemma 2 lets us conclude
that lim sup|p|→∞

T (p)
|p| ≥ 1+3w

w−w2 = 1
W .

We choose a sufficiently far point p such that T (p)
|p| is arbitrarily close to 1

W

and set dp = |p|. By Corollary 6, we may assume that the slower robot does not
reach p on its own before the deadline. Thus, once the faster robot discovers the
target located at p, its optimal strategy is to pursue the slower robot (moving
at speed 1) and then bring it to the target (moving at speed v). We define t′

and q = r(t′) as the time and location where R catches r. The search deadline
is earlier than τ∗dp, which lets us derive a lower bound on |q|

t′ and consequently
bound the progress speed of the slower robot from below. �	
Lemma 8. If v < 1

3 and τ(A) < τ∗, then w ≥ 1−v
1+3v .

Proof (sketch). We obtain vwτ∗−wv−v−w
vwτ∗+1 > vW+v+W−vWτ∗

vWτ∗+1 using Lemmas 5
and 7. Since τ∗ and W are defined using v and w only, this is an inequality
on these two variables. It yields w ≥ 1−v

1+3v after elementary calculations. �	
Lemmas 4 and 8 give conflicting constraints for any algorithm A such that

τ(A) < τ∗, which implies the following theorem.

Theorem 9. For any line search algorithm A, if v < 1
3 , then τ(A) ≥ τ∗.

4 Wireless Communication

In this model, we have only the exploration phase and the target phase. We show
that, for robots travelling at speeds with low relative difference (i.e., if v ≥ 1

6 ),
in order to achieve the optimal search time, both robots need to participate in
the exploration.

4.1 The Upper Bound

The optimal strategy for two robots travelling at the same speed [4] is very
simple: Both robots explore in opposite directions at full speeds. When a robot
learns that the other robot has found the target, it changes its direction towards
the target.

Let us analyze the performance of this strategy for robots with distinct
speeds. The total search time is a sum of three terms: the time for a robot
to discover the target, the time for the other robot to go back to the origin and
the time for that robot to reach the target. We consider two cases. First, suppose
that the faster robot R discovers the target at distance d from the origin. Then
the total search time is d + d + 1

v d = (2 + 1
v )d. On the other hand, if the slower

robot r discovers the target, the search time is worse: 1
v d + 1

v d + d = ( 2
v + 1)d.
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Fig. 5. Illustration of algorithm B∗ before target discovery (left), when the target is
discovered by r (middle), and by R (right). The horizontal axis represents the line
searched and the vertical axis represents the time. The empty circle denotes the target
discovery. Double and single solid lines represent the trajectories of the faster and the
slower robot, respectively. Dashed lines correspond to the progress speeds of the two
robots and dotted lines to the search time.

Intuitively, the faster robot explores too fast and it thus spends too much
time going back to the origin. Hence, we limit the exploration speed of R to
v′ < 1. When it already knows the target, the faster robot is still allowed to use
its full speed equal to 1. Now, the total search times are 1

v′ d+ 1
v′ d+ 1

v d = ( 2
v′ + 1

v )d
and 1

v d+ v′
v d+d = 1+v′+v

v d, respectively. We choose v′ to minimize the maximal
of these two quantities. As they are, respectively, a decreasing and an increasing
function of v′, for the optimal value v′ these terms are equal to each other, i.e.,
v′ satisfies 1+v′+v

v = 2
v′ + 1

v or, equivalently, v′2 + v′v = 2v.

Algorithm B∗ [for two robots with wireless communication]

1. Until the target is discovered, the two robots move in opposite directions.
Robot r moves with its maximal speed v and robot R with speed v′ =
1
2 (

√
v2 + 8v − v).

2. When either robot finds the target, it notifies the other one using wireless
communication and the other robot moves to the target using its maximal
speed.

The following fact, with a simple yet technical proof deferred to the full
version of the paper, gives the right values of v′ and of the search time τ∗. This
lets us complete the description of the algorithm B∗ (see Fig. 5), whose analysis
follows immediately from the discussion above.

Fact 10. For any speed v ∈ (0, 1], define τ∗ = 2+v+
√

v2+8v
2v and v′ =

√
v2+8v−v

2 .

(a) τ∗ = 1+v+v′
v , (b) τ∗ = 1

v + 2
v′ , and (c) v′2 + v′v = 2v.

Moreover, if v ≥ 1
6 , then 3v ≥ v′ ≥ 1

2 .

Theorem 11. For the algorithm B∗ we have t(B∗, p) = τ∗|p| for every p ∈ R.
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Fig. 6. Illustration of notions used in the proof of Lemma 12. The faster robot R, while
in p at time t, must know that the target is not in q or it must be able to reach q before
the deadline. For the former, either the slower robot r must have visited q prior to t,
or R must have visited q on its own and traveled all the way to p.

4.2 The Lower Bound

By Theorem 11, for all points p we have t(B∗, p) = τ∗|p| and thus τ(B∗) = τ∗.
We will show that for v ≥ 1

6 no algorithm B admits a smaller value of τ(B). As
in Sect. 3.2, we impose some constraints on the hypothetical algorithms, two of
which are going to be inconsistent. Due to space restrictions, here we present
proof sketches only; full arguments are deferred to the full version.

Lemma 12. If v ≥ 1
6 and τ(B) < τ∗, then lim supt→∞

|R(t)|
t ≤ v′.

Proof (sketch). For a proof by contradiction we suppose that the progress speed
of R exceeds v′. Then, we may choose arbitrarily large time t such that |R(t)|

t > v′.
Let p = R(t) and dp = |p|. We also consider a point q at distance dq = tv from
the origin on the opposite side of p; see Fig. 6. If the time t is chosen sufficiently
large, we may assume that t(B, q) < τ∗dq.

The distance dq is defined so that the robot R is unable to reach q prior to
the deadline starting from p at time t. Thus, some robot must visit point q at
time t′ < t. The speed restriction for the slower robot is too strong for it to arrive
at q early enough. Therefore, it must be the faster robot R which discovers q.
Consequently, t′ must be small enough for R to travel from q to p during time
t − t′. On the other hand, the progress speed gives a lower bound on t′ as t
approaches infinity. We combine these two bounds to derive a contradiction. �	
Lemma 13. If v ≥ 1

6 and τ(B) < τ∗, then the set {p : r ∈ φ(p)} of points
discovered by the slower robot r is bounded.

Proof (sketch). For a proof by contradiction, we suppose that there are arbitrar-
ily far points discovered by robot r. We choose such a point p at distance dp = |p|
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Fig. 7. Illustration of notions used in the proof of Lemma 13. The slower robot r, while
discovering p at time t, must know that the target is not in q or it must be able to
reach q before the deadline. For the former, the robot discovering q at t′ prior to t,
must be able to reach p before the deadline.

from the origin. We also consider a point q at distance dq = 2dp

τ̄v−1 from the origin
on the opposite side of p. Let τ̄ be an arbitrary value such that τ(B) < τ̄ < τ∗

and 1
v < τ̄ < τ∗ = 1

v + 2
v′ . We may assume t(B, p) < τ̄dp and t(B, q) < τ̄dq if p

is chosen sufficiently far.
We analyze the discovery times t = T (p) and t′ = T (q), and distinguish two

cases depending on which is smaller. If t ≤ t′, then robot r, while in p at time t,
must be able to reach q before the deadline. The distance dq is defined so that
it is unable to do so if t ≥ dp

v , and the latter inequality easily follows from the
speed limit of the slower robot r.

On the other hand, if t′ ≤ t, then the robot which visits q at time t′ must be
able to reach p before τ̄ dp. This gives an upper bound on t′ ≤ τ̄ dq − dq − dp due
to the speed limits. Combined with the bound of Lemma12 on the progress
speed, this yields a contradiction if the initial point p is chosen sufficiently
far. �	
Lemma 14. If v ≥ 1

6 and τ(B) < τ∗, then the set {p : r ∈ φ(p)} is unbounded.

Proof (sketch). For a proof by contradiction, we suppose that the set is bounded.
Then, the faster robot cannot go to infinity in one direction only, and it must
pass the origin at arbitrarily large moments of time. Let us fix a sufficiently large
t such that R(t) = 0. Consider two points pl and pr at distance d = tv

τ̄v−1−v on
each side of the origin. Let τ̄ be an arbitrary value such that τ(B) < τ̄ < τ∗ and
1 + 1

v < τ̄ < τ∗ = 1 + 1
v + v′

v . If t is chosen large enough, we may assume that
t(B, pl) < τ̄d and t(B, pr) < τ̄d and that both points must be discovered by R.

Since R(t) = 0, points pl and pr can only be discovered no later than at time
t−d or no sooner than at time t+d. The distance d is defined so that the slower
robot r starting from any position at time t + d is either unable to reach pl or
unable to reach pr. Hence, one of these points must be discovered (by R) at time
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Fig. 8. Illustration of notions used in the proof of Lemma 14. The slower robot r at
time t+d must either be able to reach both p� and pr before the deadline, or the faster
robot R must have visited one of these points prior to time t + d, which actually could
only happen prior to time t − d.

t′ ≤ t − d. For sufficiently large t, this contradicts the bound of Lemma12 on
the progress speed. �	

When combined, Lemmas 13 and 14 exclude any algorithm with τ(B) < τ∗.

Theorem 15. For any line search algorithm B, if 1
6 ≤ v ≤ 1, then τ(B) ≥ τ∗.

5 Conclusions and Open Questions

Clearly, any search strategy for the communication by meeting model may also
be used in the wireless communication model. The bound of 1+3v

v−v2 obtained

in Sect. 3.1 outperforms 2+v+
√

v2+8v
2v from Sect. 4.1 for small values of v. More

precisely, an interested reader may observe that for v ≤ √
17−4 ≈ 0.123 we have

1+3v
v−v2 ≤ 2+v+

√
v2+8v

2v . This immediately shows that our strategy from Sect. 4.1 is
not optimal in general. We conjecture that for v ≤ √

17 − 4 some variation of
the strategy from Sect. 3.1, when the faster robot is the only one responsible for
exploration, will be optimal also for the wireless communication model. (Note
that for general target points, it is not possible to improve the performance
of the algorithm from Sect. 3.1 for wireless communication just by making the
slower robot change direction immediately once the target is discovered by the
faster robot.) As both strategies are fundamentally different, it would also be
interesting to see what happens for the speeds

√
17 − 4 < v < 1

6 .
The above fact may be viewed from another, perhaps more interesting per-

spective. Two unit-speed robots perform linear search in 9d time when communi-
cating by meeting and in 3d time for the less restrictive wireless communication.
Is it true that, for significantly different robot speeds, the wireless communica-
tion model loses its advantage over the communication by meeting model, and
the linear search takes the same time in both models?
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Another possible area of research is to extend the considerations to a larger
collection of distinct-speed robots for both communication models.
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Abstract. Two mobile agents, starting at arbitrary, possibly differ-
ent times from arbitrary locations in the plane, have to meet. Agents
are modeled as discs of diameter 1, and meeting occurs when these
discs touch. Agents have different labels which are integers from the
set {0, . . . , L− 1}. Each agent knows L and knows its own label, but not
the label of the other agent. Agents are equipped with compasses and
have synchronized clocks. They make a series of moves. Each move spec-
ifies the direction and the duration of moving. This includes a null move
which consists in staying inert for some time, or forever. In a non-null
move agents travel at the same constant speed, normalized to 1.

Agents have sensors enabling them to estimate the distance from the
other agent, but not the direction towards it. We consider two models of
estimation. In both models an agent reads its sensor at the moment of its
appearance in the plane and then at the end of each move. This reading
(together with the previous ones) determines the decision concerning the
next move. In both models the reading of the sensor tells the agent if the
other agent is already present. Moreover, in the monotone model, each
agent can find out, for any two readings in moments t1 and t2, whether
the distance from the other agent at time t1was smaller, equal or larger
than at time t2. In the weaker binary model, each agent can find out,
at any reading, whether it is at distance less than ρ or at distance at
least ρ from the other agent, for some real ρ > 1 unknown to them. Such
distance estimation mechanism can be implemented, e.g., using chemi-
cal sensors. Each agent emits some chemical substance (scent), and the
sensor of the other agent detects it, i.e., sniffs. The intensity of the scent
decreases with the distance. In the monotone model it is assumed that
the sensor is ideally accurate and can measure any change of intensity. In
the binary model it is only assumed that the sensor can detect the scent
below some distance (without being able to measure intensity) above
which the scent is too weak to be detected.

We show the impact of the two ways of sensing on the time of meet-
ing, measured from the start of the later agent. For the monotone model
we show an algorithm achieving meeting in time O(D), where D is the
initial distance between the agents. This complexity is optimal. For the
binary model we show that, if agents start at distance smaller than ρ
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(i.e., when they sense each other initially) then meeting can be guaran-
teed within time O(ρ log L), and that this time cannot be improved in
general. Finally we observe that, if agents start at distance αρ, for some
constant α > 1 in the binary model, then sniffing does not help, i.e., the
worst-case optimal meeting time is of the same order of magnitude as
without any sniffing ability.

Keywords: Algorithm · Rendezvous · Mobile agent · Synchronous ·
Deterministic · Plane · Distance

1 Introduction

The background and the problem. Two mobile agents, starting at arbi-
trary, possibly different times from arbitrary locations in the plane, have to
meet. Agents are modeled as discs of diameter 1, and meeting occurs when
these discs touch (i.e., the centers of the agents get at distance 1). This way
of formulating the meeting problem in the plane is equivalent to the problem
of approach [11], where agents are modeled as points moving in the plane, and
the approach is defined as these points getting at distance at most 1 from each
other. This is one of the versions of the well-known rendezvous problem in which
two or more agents have to meet in some environment. This problem has been
studied in many variations: in the plane and in networks, in the synchronous
vs. asynchronous setting, and using deterministic vs. randomized algorithms. In
applications, mobile agents may be rescuers trying to find a lost tourist in the
mountains, animals trying to find a mate, or mobile robots that have to meet in
order to compare previously collected data.

We are interested in deterministic algorithms for the task of meeting. If agents
were anonymous (identical), then, if started simultaneously, they would trace
identical trajectories and hence could never meet. In order to break the symme-
try, we assume that agents have different labels which are integers from the set
{0, . . . , L − 1}. Each agent knows L and knows its own label which it can use as
a parameter in the algorithm that they both execute, but it does not know the
label of the other agent.

Agents are equipped with compasses showing the cardinal directions, and
have synchronized clocks. The adversary places each agent at some point of the
plane at possibly different times. The clock of the agent starts at the moment
of its appearance in the plane. Each agent makes a series of moves. A move
specifies the direction and the duration of moving. This includes a null move
which consists in staying inert for some time, or forever. In a non-null move
agents travel at the same constant speed, normalized to 1.

We assume that agents have sensors enabling them to estimate the distance
from the other agent (defined as the distance between centers of discs), but not
the direction towards it. We consider two models of estimation. In both models
an agent reads its sensor at the moment of its appearance in the plane and
then at the end of each move. This reading (together with the previous ones)
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determines the decision concerning the next move. In both models the reading
of the sensor tells the agent if the other agent is already present. Moreover, in
the monotone model each agent can find out, for any two readings in moments
t1 and t2, whether the distance from the other agent at time t1 was smaller,
equal or larger than at time t2. In the weaker binary model each agent can find
out, at any reading, whether it is at distance less than ρ or at distance at least
ρ from the other agent, for some real ρ > 1 unknown to them. (We assume that
ρ > 1 because agents are always at distance larger than 1 before touching, hence
ρ ≤ 1 would be useless for sensing.) Such distance estimation mechanism can
be implemented, e.g., using chemical sensors. Each agent emits some chemical
substance (scent), and the sensor of the other agent detects it, i.e., sniffs. If at
some time the agent is still alone in the plane, the reading of its sensor is 0.
Otherwise, the reading of the sensor is positive in the monotone model, and in
the binary model it is 1 if the distance between the agents is less than ρ and
0 if it is at least ρ. The intensity of the scent decreases with the distance. In
the monotone model it is assumed that the sensor is ideally accurate: it can
measure any change of scent intensity and hence can compare distances at any
two readings. (The name monotone comes from the fact that the intensity of
the scent accurately sensed by the agent is a strictly decreasing function of the
distance. We do not assume anything else about this function: an agent cannot
learn, e.g., the value of its distance to the other agent.) In the binary model
it is only assumed that the sensor can detect the scent below some distance
(without being able to measure its intensity) above which the scent is to weak
to be detected.

Note that the monotone model is similar to the model of distance-aware
agents from [9]. The differences are the environment (networks in the case of [9]
vs. the plane with the use of compasses in our case) and sensing after each round
in [9] vs. sensing at times decided by the agent in our case. These differences are
important and will lead to a more efficient algorithm in our setting.

Our results. We show the impact of the two ways of sensing on the time of
meeting, measured from the start of the later agent. For the monotone model
we show an algorithm achieving meeting in time O(D), where D is the initial
distance between the agents. This complexity is optimal. For the binary model
we show that, if agents start at distance smaller than ρ (i.e., when they sense
each other initially) then meeting can be guaranteed within time O(ρ log L), and
that this time cannot be improved in general. Indeed we show that, for some
initial distance less than ρ, and for some labels of the agents, time Ω(ρ log L) is
needed to meet in the binary model. Finally we observe that if agents start at
distance αρ, for some constant α > 1 in the binary model, then sniffing does not
help, i.e., the worst-case optimal meeting time is of the same order of magnitude
as without any sniffing ability.

Our results show a separation between the two models of sensing accuracy.
Suppose that agents start at distance ρ/3. Then in the monotone model the
optimal meeting time is Θ(ρ), while in the binary model it is Θ(ρ log L).

Due to lack of space, several proofs are omitted.
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Related work. The large literature on rendezvous can be classified according
to the mode in which agents move (deterministic or randomized) and the envi-
ronment where they move (a network modeled as a graph or a terrain in the
plane). An extensive survey of randomized rendezvous in various scenarios can
be found in [1], cf. also [2,16].

Deterministic rendezvous in networks was surveyed in [19]. In this setting
a lot of effort has been dedicated to the study of the feasibility of rendezvous,
and to the time required to achieve this task, when feasible, under the synchro-
nous scenario. For instance, deterministic rendezvous with agents equipped with
tokens used to mark nodes was considered, e.g., in [17]. Time of determinis-
tic rendezvous of agents equipped with unique labels was discussed in [10,20].
Memory required by the agents to achieve deterministic rendezvous was studied
in [3,15] for trees and in [8] for general graphs. Fault-tolerant rendezvous was
studied, e.g., in [5]. In [18] the authors studied tradeoffs between the time of ren-
dezvous and the total number of edge traversals by both agents until the meeting.
In [9] the authors considered distance-aware agents operating in networks. As
mentioned above, this is a model similar to our monotone model. They showed
a rendezvous algorithm polynomial in local parameters of the problem (initial
distance between agents, maximum degree and length of the shorter label). They
also established a lower bound for this time which exceeds Θ(D). This shows a
separation between our setting and theirs.

Other works were devoted to asynchronous rendezvous in networks, cf. e.g.,
[4,12], when the agent chooses the edge which it decides to traverse but the
adversary controls the speed. Under this assumption rendezvous in a node cannot
be guaranteed even in very simple graphs, and hence the rendezvous requirement
is relaxed to permit the agents to meet inside an edge.

Rendezvous of two or more agents in the plane was mainly considered in
two settings. In one of them, cf. e.g., [6,7,13,14], agents can see the positions
of other agents, and make the decisions based on these observations, usually
in an asynchronous way. Another scenario does not allow agents to make any
observations. In [11] the authors proposed an algorithm for the asynchronous
version of the problem of approach in the plane (equivalent to our meeting), with
cost polynomial in the initial distance and in the length of the smaller label. The
results from [4] are for asynchronous rendezvous in the grid but imply solutions
for the approach problem in the plane as well. They use a strong assumption of
knowledge of initial positions of the agents in some global system of coordinates,
but achieve approach at cost O(D2polylog(D)), where D is the initial distance.

2 Terminology and Preliminaries

The direction North – South is called the vertical direction, and the direction
East – West is called the horizontal direction. We say that agent a is North of
agent b, if the horizontal line containing the center of agent a is North of the hor-
izontal line containing the center of agent b. The three other expressions (“South
of”, “East of” and “West of”) have analogous meaning. We say that agent a is at
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distance x from b in the vertical direction, if the horizontal lines containing the
centers of the agents are at distance x. The distance in the horizontal direction
is defined similarly.

Let (a1 . . . am) be the binary representation of the label � of an agent. The
transformed label T (�) is obtained by padding the string (a1 . . . am) by a prefix
of λ−m zeroes, where λ = �log L�. Hence every transformed label has length λ.
Notice that if the labels are different, then there exists an index for which the
corresponding bits of their transformed labels differ (this is not necessarily the
case for the binary representations of the original labels, since one of them might
be a prefix of the other). Moreover, if �1 < �2, then T (�1) is lexicographically
smaller than T (�2).

3 The Monotone Model

In this section we present an algorithm that accomplishes the meeting in the
monotone model in time O(D), where D is the initial distance between the
agents. This is of course optimal, as time (D − 1)/2 is a lower bound, because
the speed of the agents is 1.

There are two elementary instructions in the monotone model: read(C) and
move(card, x). The instruction read(C) results in reading the current value of
the scent intensity sensor into the variable C. Recall that the value of the sen-
sor is 0 if the agent is alone in the plane, and it is some positive real other-
wise. The instruction move(card, x), where card is one of the cardinal directions
(N,E, S,W ) and x is a positive real, results in moving the agent in the direction
card during time x. Since the speed of the agent is 1, this means that the agent
travels distance x in direction card.

At a high level, the idea of the algorithm is the following. In the beginning
the agent reads its sensor. If its value is 0, this means that the other agent is not
yet in the plane, which enables the agent to break symmetry. The agent stays
inert forever and will be eventually found by the other agent. The other agent
must realize that the first agent is inert and find it by first getting at distance
at most 1 in the vertical direction and then getting at distance at most 1 in the
horizontal direction, which results in meeting.

If the initial readings of sensors of both agents are positive, this means that
both of them are placed in the plane simultaneously. In this case, the only way
to break symmetry is using the (transformed) labels of the agents, which are
different by assumption. The agents must realize that they are in this more diffi-
cult situation, and then approach, first in the vertical and then in the horizontal
direction. This is done by moving North and South for the vertical approach
(and East and West for the horizontal approach) according to the bits of the
transformed label of the agent. At the first bit where their transformed labels
differ, the symmetry between the agents will be broken, they will realize it by
reading their sensors, and then accomplish the approach. In order to keep the
time O(D) (and not O(D + log L)) the moves of the agents corresponding to
consecutive bits shrink by a factor of 2 at each consecutive bit.
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We now proceed to a detailed description of the algorithm. We will use the
following elementary procedures. The first of them compares the previous reading
of the sensor with the current one, and assigns the result of the comparison to
the variable compare.

Procedure Test

P ← C
read(C)
if P < C then compare ← larger
if P = C then compare ← equal
if P > C then compare ← smaller

The aim of the next procedure is to approach the other agent either in the
vertical or in the horizontal direction by walking in steps of prescribed length x.
It is used when the agent already realized that the other agent is North (resp.
South) of it, or it is East (resp. West) of it. We formulate the procedure for the
parameter card which can be equal to N , E, S, or W .

Procedure GetCloser (card, x)

while compare = smaller do
move(card, x); Test

Our next procedure is called in the case when agents appear simultaneously
in the plane, and its aim is to break symmetry between them in this case. This
is done by having the value of the variable compare in Procedure Test become
different from equal. This occurs when agents process the bit of their transformed
labels in which they differ. Note the two attempts at getting the value of the
variable compare different from equal. This is necessary in the special case when
transformed labels of the agents differ in only one bit, say with index j, the
distance in the vertical direction between the agents is 1

2j , and the agent whose
jth bit is 1 is South of the agent whose jth bit is 0. In this special case, a
single attempt at breaking symmetry would go unnoticed: agents would switch
positions in the vertical direction and the value of variable compare would remain
equal. The procedure is executed by an agent with label �.
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Procedure Dance

T (�) ← (c1 . . . cλ)
i ← 1
while compare = equal do

if ci = 1 then
move(N, 1

2i ); Test
if compare = equal then

move(N, 1
2i ); Test

else
move(S, 1

2i ); Test
if compare = equal then

move(S, 1
2i ); Test

i ← i + 1

We now describe two main procedures of our algorithm which will be called
one after another. The aim of the first of them is to get the agents at distance at
most 1 in the vertical direction and the aim of the second is to get the agents at
distance at most 1 in the horizontal direction. In Procedure VerticalApproach,
the later agent, or both agents if they start simultaneously, first realize which of
these two cases occurs. This is done as follows. The agent, call it a, moves North
by 1. If it decreased the distance from the other agent, it learns that the other
agent is inert, and then approaches it by steps of length 1/2, getting at distance
at most 1 in the vertical direction. If it increased the distance, it also learns that
the other agent is inert, goes back (i.e. South by 1), and then approaches the
other agent by steps of length 1/2, getting at distance at most 1 in the vertical
direction. If the distance did not change, the situation is still unclear: the start
may have been simultaneous and the other agent also moved North by 1, or the
other agent may be inert and was at vertical distance 1/2 North before the move
of agent a. Agent a clarifies this by moving North by 1 again. Agent a could not
decrease its distance from b after this move. If it increased the distance, it goes
back and approaches agent b as before. On the other hand, if the distance did not
change again, agent a learns that it is in the simultaneous start situation. It then
performs Procedure Dance, at the end of which the value of the variable compare
is different from equal. The j-th bit whose processing caused this change is the
first bit where the transformed labels of the agents differ. This breaks symmetry.
There are two cases. If, at the end of Dance, compare = smaller, then the agent
whose j-th bit is 1 was South of the other agent before the last move. The agents
backtrack by a distance of 1

2j and then approach each other: the agent whose
j-th bit is 1 going North, and the agent whose j-th bit is 0 going South. If, at
the end of Dance, compare = larger, then the agent whose j-th bit is 1 is North
of the other agent after the last move. Now there is no need of backtracking: the
agents simply approach each other: the agent whose j-th bit is 1 going South,
and the agent whose j-th bit is 0 going North. In both cases, the steps during
approach (Procedure GetCloser) are now of length 1/4 instead of 1/2, because
agents perform approach simultaneously.
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Procedure VerticalApproach

sim ← false; move(N, 1); Test
if compare = smaller then GetCloser (N, 1

2 )
else

if compare = larger then
move(S, 1); GetCloser (S, 1

2 )
else

move(N, 1); Test
if compare = larger then

move(S, 1); GetCloser (S, 1
2 )

else (*compare = equal*)
sim ← true; Dance; j ← i − 1
if compare = smaller then

if cj = 1 then
move(S, 1

2j ); GetCloser (N, 1
4 )

else
move(N, 1

2j ); GetCloser (S, 1
4 )

else (* compare = larger *)
if cj = 1 then

GetCloser (S, 1
4 )

else
GetCloser (N, 1

4 )

The following Procedure HorizontalApproach will be called after Procedure
VerticalApproach, and uses global variables sim and j whose values are set in
the above procedure. Procedure HorizontalApproach is simpler because, when
it is called, the agent has two important pieces of information. First, it already
knows that its vertical distance from the other agent is at most 1, and hence
agents cannot pass each other horizontally without meeting. Second, the agent
knows if the start was simultaneous, or if the other agent started first and hence
is inert. This information is coded in the boolean variable sim, which is set to
true in Procedure VerticalApproach if and only if the start was simultaneous.
Moreover, if the start was simultaneous, the agent knows already the first bit
in which its transformed label differs from that of the other agent: the index
of this bit is j. Hence, if sim = false, the agent approaches the other (inert)
agent similarly as before, and if sim = true, then agents approach each other
horizontally by going either East or West, depending on the value of the jth bit
of their transformed label, until meeting.
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Procedure HorizontalApproach

if sim = false then
move(E, 1)
Test
if compare = smaller then GetCloser (E, 1)
else

move(W, 1)
GetCloser (W, 1)

else
if cj = 1 then

move(E, 1)
Test
if compare = smaller then GetCloser (E, 1)
else

move(W, 1)
GetCloser (W, 1)

else
move(W, 1)
Test
if compare = smaller then GetCloser (W, 1)
else

move(E, 1)
GetCloser (E, 1)

Now our main algorithm for the monotone model can be formulated suc-
cinctly as follows. It is executed by an agent with label � (that intervenes in
Procedure Dance), with the understanding that when agents touch (i.e., get at
distance 1), the algorithm is interrupted, as meeting is then accomplished. We
will prove that this will always occur by the end of the execution of the algorithm.

Algorithm MeetingWithPreciseSensor

read(C)
if C = 0 then stay inert forever
else

VerticalApproach
HorizontalApproach

Theorem 1. The meeting of two agents that are arbitrarily placed in the plane
and execute Algorithm MeetingWithPreciseSensor in the monotone model,
occurs by the end of the execution of this algorithm. If agents are at initial
distance D, then the meeting occurs in time O(D) after the appearance of the
later agent.
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4 The Binary Model

In this section we present an algorithm that accomplishes the meeting in the
binary model in time O(ρ log L), assuming that agents are initially at distance
smaller than ρ, i.e., that they can initially sense each other, when both agents
are already in the plane. We also show a matching lower bound on the time of
the meeting, for some initial positions at distance smaller than ρ and for some
labels of the agents.

There are two elementary instructions in the binary model: check(C) and
move(card, x). The instruction check(C) results in reading a single bit into the
variable C. This bit is 1, if the other agent is at distance less than ρ, and it is
0 otherwise (i.e., if the other agent is either still absent from the plane, or if it
is at distance at least ρ). The instruction move(card, x), where card is one of
the cardinal directions (N,E, S,W ) and x is a positive real, is identical as in the
monotone model: it results in moving in the direction card during time x.

At a high level, the idea of the algorithm is the following. In the beginning
the agent reads its sensor. If its value is 0, this means that the other agent is not
yet in the plane, which enables the agent to break symmetry as in the monotone
model. The agent stays inert forever and will be eventually found by the other
agent. As explained below, this will be done in a much different way than in the
monotone model, as sensing of the other agent is less precise.

If the initial readings of sensors of both agents are 1, this means that both of
them are placed in the plane simultaneously. In this case, they break symmetry
using their transformed labels, which are different by assumption. Initially, an
agent has no way of deciding if it was placed in the plane later, or if both agents
were placed in the plane simultaneously. Hence, when the bit initially read in
check(C) is 1, the agent performs actions that will enable it to lose contact with
the other agent (i.e., to get the reading 0 in check(C)), regardless of which of
these situations occurs. Losing contact will always happen when one agent moves
and the other stays. This will enable the agents to break symmetry: the agent
during whose move the contact was lost will find the other agent that becomes
inert (in the case of non-simultaneous start, the agent that will perform the
finding is the later agent, and the earlier agent is inert from the start). Once
symmetry is broken, the moving agent accomplishes the meeting using the binary
readings of its sensor and geometric properties of the plane.

We now give a detailed description of the algorithm. The aim of the first
procedure is losing contact between the agents, i.e., having both of them (in the
case of simultaneous start), or the later agent (in the case of non-simultaneous
start) get the reading 0 in check(C)). This is done by going North or staying
inert, for increasing periods of time, according to the bits of the transformed
label: when the bit is 1, the agent moves, when it is 0, it stays inert. It will be
proved that agents eventually get at distance at least ρ, which they will realize
by reading their sensors. Losing contact occurs when one agent moves North and
the other agent is inert. This happens when agents, in the case of simultaneous
start (or only the later agent, otherwise) process the jth bit of their transformed
label. When contact is lost, the agent during whose move this occurred, i.e., the
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agent for which cj = 1, goes back South, this time by small steps, until contact
is regained (the reading of C is 1 again). This is done to determine the point
when contact has been lost, with sufficient precision. The procedure is executed
by an agent with label �, and called when the value of C is 1.

Procedure LoseContact (C)

T (�) ← (c1 . . . cλ)
d ← 1
leading ← false
while C = 1 do

i ← 1
while (C = 1 and i < λ) do

if ci = 1 then move(N, d)
else stay inert for time d
i ← i + 1
check(C)

d ← 2d
j ← i − 1
if cj = 1 then

leading ← true
while C = 0 do

move(S, 1
2 )

check(C)

The second procedure is based on the following observation (cf. Fig. 1).
Consider two points in the plane, X and A, where A is North of X (in the

sense defined in Sect. 2). Suppose that the distance between A and X is ρ. Let
p be the vertical line containing point A, and let B be the other point of line p
at distance ρ from X. (This includes the case when A and B coincide). Let Z
be the midpoint of the segment AB. Then Z is on the same horizontal line as
X because the triangle XAB is isoceles.

The above observation can be used to construct the next procedure, called
after executing Procedure LoseContact, when (the center of) one of the agents,
call it a, approximates a point A North of the inert agent, with center X, such
that the distance between A and X is ρ. Agent a starts the procedure with
the reading 1 of its sensor. It goes South with steps of length 1/2 (counted
in the counter t), until the reading of its sensor becomes 0. At this time its
center approximates the other point B at distance ρ from X, on the vertical line
along which it travelled. Then the agent goes back (i.e., North) on this vertical
line, at distance �t/2� · 1

2 . Upon completing this move it reaches a point which
approximates the midpoint Z of the segment AB. Now it goes horizontally, trying
directions East and West in increasing leaps whose lengths double at each time,
until meeting the inert agent. Since steps used by the agent, when it moved
vertically, were sufficiently small, the approximations are good enough for the
meeting to eventually occur.
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Fig. 1. Geometric setting for procedure TriangleSearch

Procedure TriangleSearch (C)

if leading = true then
t ← 0
while C = 1 do

move(S, 1
2 ); check(C); t ← t + 1

move(N, �t/2� · 1
2 )

d ← 1
repeat until meeting

move(E, d); move(W, 2d); move(E, d)
d ← 2d

Now our main algorithm for the binary model can be formulated succinctly
as follows. It is executed by an agent with label � (that intervenes in Procedure
LoseContact), with the understanding that when agents touch (i.e., get at dis-
tance 1), the algorithm is interrupted, as meeting is then accomplished. We will
prove that this will always occur by the end of the execution of the algorithm.
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Algorithm MeetingWithBinarySensor

check(C)
if C = 0 then stay inert forever
else

LoseContact (C)
TriangleSearch (C)

Theorem 2. The meeting of two agents that are placed in the plane at an initial
distance less than ρ and execute Algorithm MeetingWithBinarySensor in the
binary model, occurs by the end of the execution of this algorithm. The meeting
occurs in time O(ρ log L) after the appearance of the later agent.

Our last result shows that the time complexity of the above Algorithm
MeetingWithBinarySensor cannot be improved in general, in the binary model.

Theorem 3. There is no deterministic algorithm for the binary model, guaran-
teeing meeting of any two agents starting at distance less than ρ in the plane,
and working in time o(ρ log L).

Proof. Consider a deterministic algorithm A for the binary model. Assume that
ρ > 30. Define a tiling of the plane into pairwise disjoint squares of size ρ/5.
Each tile includes its North and East edges. For a fixed tile 0, enumerate the 8
neighboring tiles by numbers 1, . . . , 8, starting with the tile North of tile 0 and
going clockwise. Let A and B be two tiles on the same horizontal line, separated
by one tile. Call such tiles conjugate. Place one agent in any point of A, the other
agent in any point of B, and start them simultaneously at time 0.

Suppose that algorithm A works in time at most cρλ, where λ = �log L� and
c < 1

24 log 9 is a constant. Divide the time into consecutive segments of length
ρ/6. If the agent is in some tile at the beginning of a time segment, then at the
end of this segment it is either in the same or in one of the neighboring tiles. The
behavior pattern of an agent is the sequence (a1, . . . , ak) with terms 0, 1, . . . , 8,
defined as follows. If at the beginning of the ith segment the agent is in some tile
0, then ai = j if and only if the agent is in tile j at the end of the segment. Since
the algorithm works in time at most cρλ, the length of the behavior pattern is
at most k = �6cλ�. Since c < 1

24 log 9 , we have k < log L
log 9 , for sufficiently large L,

and hence 9k < L.
As long as the agents are at distance less than ρ, and hence the reading of

their sensors is always 1, the actions of each agent depend only on its label.
Agents start in conjugate tiles. Consequently they start at distance at most√

10ρ
5 . Since time segments are of length ρ/6, the distance between the agents

during the first time segment is always at most
√
10ρ
5 + 2ρ

6 < ρ. Hence the actions
of each agent during the first time segment depend only on its label. There is
a number in the set {0, 1, . . . , 8}, such that for a set S1 of at least L/9 labels,
if agents with distinct labels from this set start respectively in conjugate tiles
that are given number 0, then the tile numbers in which agents finish the first
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segment are the same. Hence agents with such labels finish the first time segment
in conjugate tiles as well. Consequently, the distance between the agents during
the second time segment is always at most

√
10ρ
5 + 2ρ

6 < ρ. Hence the behavior
of each agent during the second time segment depends only on its label. There
exists a set S2 ⊆ S1 of size at least |S1|/9, such that agents with labels in this
set finish the second time segment in conjugate tiles as well.

Since 9k < L, by induction on the index of the time segment, there are at
least two labels such that agents starting in tiles A and B with these labels have
the same behavior pattern. Assign these labels to agents starting in tiles A and
B. It follows that these agents are in conjugate tiles at the end of each time
segment. Since time segments are of length ρ/6, we show that agents are always
at distance at least ρ

5 − ρ
6 . Indeed, suppose that during a time segment agents

get at distance smaller than ρ
5 − ρ

6 . This could occur only when both agents
are inside the tile separating them at the beginning of the segment. However,
during this time segment, each agent can penetrate this separating tile only at
distance at most ρ/12, because at the end of the segment they have to be again
separated by this tile. Since at the beginning of the time segment agents were
at distance at least ρ

5 , this distance could not decrease by more than ρ
6 during

the time segment, which results in the distance at least ρ
5 − ρ

6 = ρ
30 > 1 at all

times. Hence agents cannot meet. This contradiction implies that the time of
the algorithm must be larger than cρ log L, for sufficiently large ρ and L, which
concludes the proof.

We conclude this section with the observation that if the agents start at
distance αρ, for some constant α > 1, in the binary model, then sniffing does
not help.

Proposition 1. If the agents start at distance αρ, for some constant α > 1, in
the binary model, then the worst-case optimal meeting time is of the same order
of magnitude as without any sniffing ability.

5 Conclusion

We provided optimal algorithms for the task of meeting of two agents equipped
with sniffing sensors, in two models of accuracy of these sensors. In the monotone
model it is assumed that sensors are perfectly accurate, i.e., they can notice
any change of distance between the agents, although they cannot measure the
distance itself, nor recognize the direction in which the other agent is located.
In the binary model, the sensor can only tell the agent if the other agent is close
or far, for some threshold of closeness. We showed a separation between the two
models: while in the monotone model meeting is guaranteed in time proportional
to the initial distance between the agents, in the binary model we showed that
optimal meeting time is Θ(ρ log L), where ρ is the sensing threshold and L is the
size of the label space.

In both models we assume that both agents travel at the same speed 1, and
this assumption is heavily used in our algorithms and their analysis. It is an
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interesting open problem how our results would change if agents moved in an
asynchronous way, or at least were allowed the same degree of asynchrony as in
[11], i.e., each agent moved at a constant speed, but possibly different from the
other agent.
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Abstract. We consider the problem of efficient evacuation using mul-
tiple exits. We formulate this problem as a discrete problem on graphs
where mobile agents located in distinct nodes of a given graph must
quickly reach one of multiple possible exit nodes, while avoiding conges-
tion and bottlenecks. Each node of the graph has the capacity of holding
at most one agent at each time step. Thus, the agents must choose their
movements strategy based on locations of other agents in the graph,
in order to minimize the total time needed for evacuation. We consider
two scenarios: (i) the centralized (or offline) setting where the agents have
full knowledge of initial positions of other agents, and (ii) the distributed
(or online) setting where the agents do not have prior knowledge of the
location of other agents but they can communicate locally with nearby
agents and they must modify their strategy in an online fashion while
they move and obtain more information. In the former case we present
an offline polynomial time solution to compute the optimal strategy for
evacuation of all agents. In the online case, we present a constant com-
petitive algorithm when agents can communicate at distance two in the
graph. We also show that when the agents are heterogeneous and each
agent has access to only a subgraph of the original graph then computing
the optimal strategy is NP-hard even with full global knowledge. This
result holds even if there are only two types of agents.

Keywords: Discrete evacuation · Distributed algorithm · Mobile
agents · Network flow

1 Introduction

Coordinated action of multiple autonomous agents is a subject of study in many
contexts. Frequently, the communication capabilities of agents are limited, and
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the exchange of information between agents is only possible when they are
located close to each other, which creates challenges for coordination problems.
We consider here the evacuation problem which requires multiple mobile enti-
ties to reach designated safe area, in a coordinated manner. This can correspond
to evacuating a building with a crowd of people inside, who are required to leave
the building through emergency exits due to flood, fire, bomb attack, gas leak or
other dangers. One could also imagine other scenarios, e.g., a swarm of mobile
robots that are required to gather in selected places (exits in the context of evac-
uation terminology).

In practical situations it can be desired to calculate the evacuation strategy
‘on the fly’ – just in the time, when the evacuation process is about to start.
In fact it is possible to compute a customized solution adapted to the current sit-
uation, depending on the number of agents and their locations. Centralized com-
putation of the evacuation strategy has an important drawback as the security
of the system relies strongly on the central computing unit and the communica-
tion between central unit and agents. Hence, for the safety reasons, a distributed
approach could be a better solution. Indeed, recently some attention has been
paid to the study of non-centralized evacuation control systems for example
assuming a usage of handheld devices (like smartphones) by evacuees [16].

In this paper we try to answer the question of how the lack of knowledge about
the positions of other agents may influence the quality of a solution, e.g., by cre-
ating bottlenecks when too many agents try to go to the same exit. We compare
the distributed (online) solutions to the problem with centralized (offline) solu-
tions. Another important issue for evacuation is when the mobile agents have
intrinsic characteristics preventing some of them from visiting some areas of the
environment. For example, disabled people might not be able to go through
steep stairs inside a building. To address such situations we consider a reach-
ability function defined for each of the agents separately and investigate the
coordinated evacuation of such heterogenous agents.

1.1 Related Work

Evacuation models can be classified as macro- and microscopic [13], where macro-
scopic models are based on optimization approaches of dynamic network flows
and do not consider individual characteristics of evacuees while microscopic mod-
els are based on simulations in which physical abilities of evacuees are considered.

Indeed, the evacuation problem has been widely described as an application
of flows over time (dynamic flows) in time expanded graphs [10,11] (see the PhD
thesis by Jan-Philipp Kappmeier [15] for the recent survey and the plethora
of literature references).

Graphs based models are the first choice in the street network modelling [14]
but also such environments like buildings [2,4] or caves [3] can be modelled by
graphs. In this case, additional properties of graphs can be considered to reflect
properties of the real network such as the transit times, connection capacities,
node capacities etc. The motivation for the graph model considered in this paper
is lattice based, discretization graph where the Euclidean space is divided into
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small cells in the shape of squares or hexagons. Such an approach has been
mostly considered for the sake of microscopic simulations [15].

Another type of investigations has been done in the context of distributed
algorithms for collaborative agents. Chrobak et al. [5] investigate evacuation
from the line and Czyżowicz et al. [6,7] study the problem of evacuation through
an unknown exit from a disc shaped continuous space. The goal in these papers
is to minimize the time when the last agent reaches an exit, which is in contrast
to a collaborative search problem studied earlier [1], where the goal is to find
an exit by the first robot as fast as possible. Many of these results attempt to pro-
vide the best algorithms in terms of evacuation time, compared to the obvious
optimal solution when the exit is known to the agents. In the above investiga-
tions, the number of agents is small and the issue of congestion or collisions does
not appear at all.

1.2 Our Results

In this paper, we consider the evacuation problem in the (discrete) graph model
where the agents start from distinct nodes and they know the environment (i.e.,
the graph and the designated exits) but may not know the initial position of other
agents. We first consider the centralized or offline version of our problem which
we formulate in Sect. 2 while in Sect. 3 we present polynomial time algorithms for
computing the evacuation strategy in general graphs using the time expansion
technique. Section 4 gives a formal statement of the distributed version of the
problem when the agents can only communicate locally and thus the strategy
must be computed in online fashion. As a first step towards a distributed solu-
tion, we consider tree networks and we present and analyze distributed strategies
for evacuation from tree networks in Sect. 5. In particular, in Sect. 5.1 we prove
that there does not exist any distributed algorithm for evacuating agents in less
than 2 times the offline optimal topt steps even in tree networks (Theorem 2).
On the other hand, in Sect. 5.3 we give a distributed algorithm for trees proving
its correctness and bounding the evacuation time by 72 · topt steps (Theorem 4).
Finally, in Sect. 6, we consider the evacuation of heterogenous agents having
additional restrictions, namely every agent has access to a predefined subset
of edges in the graph (see the similar concept applied to rendezvous problem
in [9]). We show that computing the optimal evacuation strategy is NP-hard
in this case even if there are only two types of agents and even if the evacuation
time is a small constant.

2 Problem Formulation

In this section we formulate the discrete evacuation problem for the offline set-
ting. Additional assumptions required in the distributed setting will be given in
Sect. 4. In a basic version of the problem we are given a simple graph G = (V,E)
with node set V , edge set E, and size n = |V (G)|, and the set A of k agents
initially placed on preselected nodes of the graph G, called homebases such that
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no two agents occupy the same homebase. In what follows the set of all home-
bases is denoted by H. We also distinguish a subset X of nodes called exits.
Time is divided into steps of unit duration. In each step the following actions
are performed by each agent:

(A1) an agent either changes its location from the currently occupied node v to
one of its neighbors, or remains at v,

(A2) an agent that occupies some node in X, evacuates from the graph.

An agent that evacuates is removed from the graph. If in some step an agent
is not evacuated, then we say that the agent is present in the graph. The node
occupied by an agent i at the end of action (A1) in step s is denoted by νi(s),
while νi(0) denotes the initial position (the homebase) of the agent. A sequence
(ν1, . . . , νk) of the above functions is called an evacuation strategy if for each
agent i ∈ A there is a step si such that νi(si) ∈ X, and for each pair of distinct
agents i, j ∈ A in each step s ∈ {1, . . . ,min{si, sj}} it holds νi(s) �= νj(s).
The length of an evacuation strategy is defined as max{s1, . . . , sk}. Note that
according to (A1) we allow any pair of agents i, j located in neighbouring nodes
to move in a single step s in such a way that νi(s) = νj(s − 1) provided that
νj(s − 1) �= νj(s). The decision version of discrete evacuation problem Evac is
defined as follows:

Problem Evac

Input: a graph G, an integer l, a set X of exits and a set H of homebases
keeping k agents.

Question: does there exist an evacuation strategy of length at most l?

3 The Complexity of Evac

In this section we argue that there exists a polynomial-time algorithm for the
problem Evac. The solution is obtained using classical results for the maximum
flow problem. More precisely, for an input (G, l,X,H) of Evac we construct
an evacuation digraph Q = (U,A) for which there exists a flow of size k if and
only if the answer to Evac is yes.

Construction 1. Let V = {v1, . . . , vn} be the set of nodes of a given graph G
and let Q0, Q1, . . . , Ql be disjoint digraphs such that for each digraph Qj =
(V in

j ∪ V out
j , Aj) with V in

j = {vin
j,1, . . . , v

in
j,n} and V out

j = {vout
j,1 , . . . , voutj,n }, the arc

set Aj is defined as follows Aj = {(vin
j,p, v

out
j,p )

∣
∣ p ∈ {1, . . . , n}}. The node set U

of digraph Q consists of the nodes of all digraphs Qj and the two additional
nodes s and t. More formally U = {s, t} ∪ ⋃

j∈{0,...,l}(V
in
j ∪ V out

j ). To obtain
the arc set A of Q we take all arcs of digraphs Q0, Q1, . . . , Ql, and for each
j ∈ {0, . . . , l−1} between the nodes of Qj and Qj+1 we add the arcs: (vout

j,p , vin
j+1,p)

for each p ∈ {1, . . . , n}, and (vout
j,p , vin

j+1,q) if for the corresponding nodes vp, vq

of the graph G it holds {vp, vq} ∈ E(G). We also add to A the following arcs:
(s, vin0,p) if the corresponding vertex vp of G belongs to H, and (vout

j,p , t) whenever
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vp belongs to X and j ∈ {0, . . . , l}. Less formally, we add arcs outgoing from s
to the nodes in V in

0 corresponding to all homebases of agents, and we add arcs
incoming to t from all nodes in V out

0 ∪ · · · ∪ V out
l corresponding to the exits. All

arcs in Q are assumed to have unit capacities. Clearly, for every (G, l,X,H) the
corresponding evacuation digraph can be constructed in polynomial time. ��
Lemma 1. There exists an s-t flow of size k in evacuation digraph Q if and
only if the answer to Evac is yes for the input (G, l,X,H).

Proof. Suppose that we have an s-t flow of size k in the digraph Q. Clearly, such
a flow is made of k s-t paths that have only their endpoints in common. Each
such a path P encodes the moves of a corresponding agent in an evacuation
strategy. Indeed, for each j ∈ {0, . . . , l − 1}, the path P contains exactly one
node vout

j,p in V out
j and exactly one node vin

j+1,q in V in
j+1, and (u, v) ∈ A. Then,

the evacuation strategy dictated by P moves the corresponding agent from vp

to vq in G in step j + 1. Since the internal nodes of the paths that constitute
the flow have no internal nodes in common, the evacuation strategy obtained
in this way is guaranteed to have no ‘collisions’ between agents. Also, since the
only arcs incoming to t are outgoing from nodes in V out

j that correspond to
the exit set X, it is ensured that each agent reaches an exit within the time
limit l. ��

Since the maximum flow problem is polynomial [8] we have the following.

Theorem 1. There exists a polynomial-time algorithm for solving the problem
Evac. ��

4 Distributed Evacuation Model

We now consider the distributed version of the evacuation problem where each
agent must autonomously compute its strategy to move based on local informa-
tion and communication with the agents it encounters. As before the model is
synchronous and during each time step, each agent first communicates with other
agents and performs local computations to decide on the action to be performed
in this step; then the agent performs the action (i.e. it moves, stays or exits).
Recall that the two possible actions are (A1) and (A2) defined in Sect. 2. Since
each node can hold at most one agent at a given time, the actions selected by
the agents in each time step must satisfy this restriction. However it is possible
for two agents in adjacent nodes to swap their positions in a given step (there
are no capacity restrictions on edges of the graph in our model).

Our next assumption is that each agent knows in advance the network and
its own homebase. This includes the knowledge of the location of all exits. The
nodes of the network have unique identifiers (thus the agents also have unique
identifiers as each agent may ‘inherit’ the identifier of its homebase). Each agent
has the information necessary for navigating in the graph i.e. the agent knows
which edge to follow to reach the node selected for its next location. However the
locations and the number of other agents are initially unknown to the agents.
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The communication model is as follows. Each agent can directly communi-
cate with any other agent that is within a distance of at most 2 in the graph.
Note that the exchange of messages within distance of two (not just one) is
a necessary assumption that follows from the necessity of avoiding collisions
between agents. Otherwise two agents at distance two, being unaware of each
other may decide to move to the same node. We assume that communication
is instantaneous (or it takes negligible time compared to the duration of a time
step). Thus, at the beginning of each step, any two agents can exchange any
number of messages if the distance between them is not larger than 2. Agents
can use message passing to communicate indirectly with other agents via inter-
mediate agents. For example, see Fig. 1 where the agents form two ‘groups’ of
communicating agents such that within each group any two agents i1 and ij can
communicate either directly (if they are within the distance of two) or indirectly
if i1 and ij are at distance greater than two but there exist agents i2, . . . , ij−1

such that for each p ∈ {1, . . . , j − 1} the agents ip and ip+1 are at distance at
most 2. In this example, agents i1 and i4 can communicate by passing messages
through agents i2 and i3. Since we do not impose any restrictions on the amount
of messages exchanged between any two agents at the beginning of each step,
we may assume without loss of generality that each agent begins each step by
identifying positions of all agents with whom it may communicate directly or
indirectly. This can be achieved by performing a broadcast algorithm by the
agents and since this part is straightforward, we omit the details and assume
also in our algorithms that each step begins with collecting information about
all agents that can be reached directly or indirectly by an agent in that step.

5 Evacuation in Tree Networks

In this section we investigate evacuation from tree networks in the distributed
setting as formulated above. The performance measure we use for a distributed
algorithm is the competitive ratio, defined as the worst case ratio of the evacua-
tion time achieved by the algorithm over topt the optimal evacuation time in the

Fig. 1. Example graph with two groups of communicating agents. Black nodes contains
agents and white nodes are unoccupied.
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offline setting for the same instance (we consider the worst case scenario over
all tree networks and all possible locations of homebases). We start by showing
a lower bound on the competitive ratio of any distributed strategy, in Sect. 5.1.
Then, in Sect. 5.2, we introduce some notations used in Sect. 5.3 which provides
a distributed evacuation algorithm for trees.

5.1 A Lower Bound

Theorem 2. The competitive ratio of any distributed evacuation algorithm is
at least 2 even for trees.

Proof. Given two integers k, p ≥ 1, let us consider a tree with 3kp + 1 nodes:
a node v0 and 3kp nodes vi,j , where i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , 3p}. There
are k + 1 exits, X = {v0, v1,3p, v2,3p, . . . , vk,3p}. Node v0 is adjacent to k nodes:
v1,1, v2,1, . . . , vk,1 and for every i ∈ {1, 2, . . . , k} and j ∈ {1, . . . , 3p − 1} there is
an edge {vi,j , vi,j+1}. There are k agents a1, . . . , ak, where νai

(0) = vi,p.
Informally speaking, there are k paths of length 3p joined by an exit node

v0, with k agents, one in each path, placed p steps away from the exit v0 and
2p steps from the other exit vi,3p at the end of the path. We take k = 4p. Note
that the optimum evacuation time for this instance is topt = 2p.

Let A be any distributed algorithm for Evac. Let us consider the step 2p−2
of the execution of A. There are two cases:

(i) There exists i ∈ {1, 2, . . . , k} such that there is an agent a on the path
connecting vi,p+1 and vi,3p−2. Clearly a = ai. Note that the agent ai was unable
to reach the node vi,1 adjacent to the exit v0 and thus this agent performed
no communication with another agent within the first 2p − 2 steps. If so, let
us consider a different instance of the problem in which the graph is the same
as in the former one but there exists only one agent, namely ai with the same
homebase vi,p. Thus, the input to the algorithm executed by the agent ai is the
same as in the previous scenario. Therefore, due to the lack of communication
as argued above, the behaviour of the agent ai is exactly the same in the latter
scenario as in the former one. Thus, the agent ai will not evacuate before step
2p. The evacuation time in the latter scenario with single agent present is clearly
p and hence in this case the competitive ratio is 2.

(ii) In the second case, every agent ai is somewhere on the path vi,1, vi,p or
already evacuated during the first 2p − 2 steps. If ai evacuated, then clearly the
exit it used is v0. We consider two additional subcases. In the first subcase, all
agents evacuate through v0. Since k = 4p and topt = 2p, the competitive ratio is
2 as required. In the second subcase, some agent ai evacuates through the exit
vi,3p. But then, ai needs to traverse the path connecting νai

(2p − 2) and vi,3p

in steps that follow the step 2p − 2. This path contains the path of length 2p
connecting vi,p with vi,3p. Thus, ai does not evacuate within the first (2p−2)+2p
steps. Therefore, in the second subcase the competitive ratio we obtain is 4p−2

2p
which can be made arbitrarily close to 2 by taking p large enough. ��
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5.2 Additional Notations

The distance between a pair of nodes u and v denoted by d(u, v) is the length
of the path (i.e., the number of edges) connecting these nodes. By the distance
between two agents i and j in step s we mean the distance between the nodes
in which the agents are located at the end of step s, i.e., d(νs(i), νs(j)).

The exit associated with node v is the exit x ∈ X with the smallest identifier
among the exits at minimum distance from v. By the primary exit of agent i,
denoted by pe(i), we mean the exit associated with νi(0), the homebase of the
agent. Clearly, there may be many agents having the same node as the primary
exit but for each agent the primary exit is unique. Also note that since the
primary exit depends only on the homebase of the agent, it remains the same
even if agent changes its position during evacuation. As we will see later, in the
early stage of our algorithm each agent attempts to evacuate through its primary
exit. This leads to the formation of groups of agents having the same primary
exits and allows for computation of group rather than individual strategies. We
address this issue in more detail during analysis of our algorithm.

For the description of the algorithm we also need a specific partition
V = (Vx1 , . . . , Vxη

) of the node set of a given tree T with the set of exits
X = {x1, . . . , xη}. Namely, for each exit x ∈ X the set Vx of V is defined
as a set consisting of all nodes having x as the associated exit. Naturally,⋃

x∈X Vx = V (T ) and since primary exits are uniquely determined, for any pair
of distinct exits xp, xq it holds Vxp

∩ Vxq
= ∅. It is also not hard to see that for

each x ∈ X the subgraph induced by Vx is connected. Let Tx denote the tree
induced by Vx.

At the beginning of its computation each agent roots the tree T at the node
with the smallest identifier. This ensures that all agents select the same root.
Without loss of generality assume that agents rooted T in node vr that belongs
to the tree Txr

which corresponds to exit xr (see in Fig. 2(a) where r = 2).
According to the above assumption we construct a tree T̃ with the node set X,
root xr, and edge between each pair of nodes xp, xq for which T contains an
edge {v, u} such that v ∈ Vxp

and u ∈ Vxq
, p, q ∈ {1, . . . , η} (see Fig. 2(b) with

x1, x4 corresponding to v, u in Fig. 2(a)). Following “away from the root” natural
orientation of the edges of T̃ one can easily relate subtrees Tx of T . Namely, for
any two exits xp, xq we say that Txp

is a child of Txq
if xq is the parent of xp

under the above orientation of T̃ .
The moves of agents in the early stage of our algorithm result in grouping

the agents at exits. To address this more accurately let x ∈ X and let s be
a step. A group of agents at x in step s, denoted by Gx,s is a maximal set of
agents for which νi(s) ∈ V (Tx) and each node of the path connecting νi(s) and
x is occupied by an agent form Gx,s. We say that an agent i joins the group Gx,s

in step s if i /∈ Gx,s−1 but i ∈ Gx,s. An agent i joins exit x in step s if in step s
it joins the group Gx,s (we allow that the group is empty before step s).

Finally, let Ax denote the set of agents with their homebases in Vx, i.e.,
Ax = {i ∈ A ∣

∣ pe(i) = x}. Note that Ax is not necessarily a group at x.
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Fig. 2. Tree T with exits x1, . . . , x6, subtrees Tx1 , . . . , Tx6 , and the corresponding
tree T̃ .

5.3 The Algorithm

Our algorithmic result obtained in this section is achieved in two steps. First,
we give an evacuation algorithm that receives as an input an upper bound B
on the optimum time required for the evacuation topt and we prove that this
algorithm has a constant competitive ratio. Then, we provide our main procedure
that uses the ‘doubling technique’ (the first algorithm mentioned above is called
several times with exponentially increasing values on possible upper bounds) to
disregard the assumption that an upper bound on evacuation time is known. As
we prove, the competitive ratio of the second algorithm increases by a constant
with respect to the first one. Both algorithms are formulated for an executing
agent i.

Our first algorithm called BoundedDTE (Bounded Distributed Tree Evacua-
tion). We start with an informal description providing the key ideas. The algo-
rithm can be seen as having two phases. In the first phase, the agents located
in the subtree composed of nodes in Vx want to communicate with each other
to establish the best strategy for them. This strategy that they aim to establish
ignores possible agents located outside of Vx. However, the homebases in Vx are
possibly spread in such a way that the communication between the agents is not
possible initially. Thus, all agents have to meet and they do so by going to x
and forming a group at x. It can be estimated when all agents joined the group
at x thanks to the fact that an upper bound B on topt is given as an input.
Once all agents joined the group (we point out that at this point some agents
possibly evacuated through x) they compute a strategy in which some of the
agents remain to evacuate through x while some agents will follow to exit x′

such that Tx′ is a child of Tx. Then the second phase starts in which each agent
goes to the assigned exit.

In the pseudocode we will use the phrase if possible to indicate that the
executing agent i verifies if the specified move can be performed. In particular,
if the agent i wants to move to a node u, then communication with all agents
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located at u and its neighbors is required. This communication is needed to
determine all agents that want to move to u in this given round and if there is
more than one such an agent, then the agents decide which one (as there can
be no more than one) will perform the move. In our algorithm such ties can be
resolved arbitrarily.

Procedure 1. BoundedDTE(T,B) for agent i

Input: the underlying tree T , the time bound B.
1: for k = 1 to B do
2: If possible, then move to the adjacent node that is closer to pe(i).
3: end for
4: Compute the optimum evacuation strategy for the group Gpe(i),B taking into

account pe(i) and exits in child trees of Tpe(i). Let secondary exit, se(i), be the
exit for agent i computed in this strategy.

5: for k = 1 to 8 · B do
6: If possible, then move to the adjacent node that is closer to se(i).
7: end for

Theorem 3. If B is an upper bound on the evacuation time topt, then Proce-
dure BoundedDTE evacuates agent i in 9 · B steps.1

We now proceed to the description of our main algorithm DTE (Distributed
Tree Evacuation) in which we disregard the previous assumption that an upper
bound on topt is known to agents, and again we start with an informal descrip-
tion. The algorithm, as indicated earlier, proceeds by guessing the possible upper
bounds B on topt. For each choice of B, DTE makes a call to BoundedDTE with
input B. If the value of B is indeed at least topt, then all agents will success-
fully evacuate. Otherwise, the agents who still did not evacuate reverse their
movements to return to their homebases.

Theorem 4. Procedure DTE evacuates all agents in Θ(topt) steps.

Proof. Once the variable B achieves value B′ which is larger than topt (topt <
B′ ≤ 2 · topt) then Procedure DTE eventually evacuates all remaining agents. Let
us estimate t2, the number of steps required for the execution of Procedure DTE:

t2 ≤ 18 · (2 + 4 + · · · + B′) ≤ 36 · B′ ≤ 72 · topt.

Now it is required to justify that agents are able to realize the described
strategy. The analysis is very similar to that of Procedure DTE but there are two
possibilities of additional traffic jams that must be considered.

1 Due to the space constraint, proofs of Theorems 3 and 6 have been omitted. They
can be found in the appendix of the pre-proceedings version of the paper, available
online at the conference site: http://sirocco2016.hiit.fi.

http://sirocco2016.hiit.fi
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Procedure 2. DTE(T ) for agent i

Input: the underlying tree T .

1: B ← 1
2: while true do
3: B ← 2 · B
4: if d(νi(0), pe(i)) > B then
5: stay immobilized for next 18 · B steps.
6: else
7: Apply Procedure BoundedDTE for 9 · B steps or until the evacuation of i.
8: reverse 9·B steps made according to Procedure BoundedDTE reaching its home-

base.
9: end if

10: end while

First, it can happen that agents from the group Gpe(i),B executing statements
described in lines: 7, 8 of Procedure DTE encounter immobilized agents from the
rest of Ape(i). In this case a swap of agents will be applied. Suppose that traveling
agent a at node u is about to swap with immobilized agent j at node v at the
path uvw. Then, a swaps with j and they move: a moves from v to w and j moves
from u back to v. Observe here also, that during the reverse phase (line 8) of
Procedure DTE immobilized agents are still immobilized in the same place, thus
making the reverse phase possible.

An interaction in between agents from Gpe(i),B and agents from the parent
subtree of Tpe(i) is covered by the correctness proof of Procedure DTE. ��

6 Generalizations of Evac

In this section we introduce the problem RestEvac, a generalization of Evac
in which the moves of agents are restricted so that each agent has access to
a preselected subset of edges.

6.1 Evacuation with Restricted Access to Edges

We start by defining an evacuation strategy in this scenario. All restrictions of
Evac carry over, except that additionally for each agent i ∈ A, a set Ri ⊆ E(G)
of permitted edges is given as a part of the input, while action (A1) defined in
Sect. 2 is replaced by:

(RA1) each agent either changes its location from the currently occupied node v
to one of its neighbors u provided that {u, v} ∈ Ri, or the agent remains
at v.

A sequence of functions (ν1, . . . , νk) that satisfy (RA1) and (A2) is
calledrestricted evacuation strategy. The decision version of our new problem,
called RestEvac can be defined as follows:
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Problem RestEvac

Input: a graph G, an integer l, a set X of exits, a set H of homebases keeping
k agents, and sets R1, . . . , Rk specifying permitted edges.

Question: does there exist a restricted evacuation strategy of length at most l?

6.2 The Complexity of RestEvac – Restricted Length

We now show that the RestEvac problem is NP-hard by reducing the NP-
complete 3-dimensional matching problem, denoted by 3DM, to RestEvac.
We first recall the former problem. The input to 3DM consists of three pairwise
disjoint m-element sets A,B,C and a set of triples M ⊆ A×B ×C. The answer
to 3DM is yes if and only if there exists M ′ ⊆ M such that |M ′| = m and for
every two distinct triples (a, b, c) and (a′, b′, c′) in M ′ it holds a �= a′, b �= b′ and
c �= c′.

Theorem 5. The problem RestEvac is NP-complete even if the input para-
meter l equals 2.

Proof. We describe our reduction by constructing the input to RestEvac. Sup-
pose that (A,B,C,m,M) is the input to 3DM. For any triple (a, b, c) ∈ M define
for brevity ξ((a, b, c)) = {{a, b}, {b, c}}. Let G be defined as follows:

G =

(

A ∪ B ∪ C,
⋃

Z∈M

ξ(Z)

)

.

Set l = 2, X = C, k = m and let the k agents be initially placed on the nodes
in A, i.e., set H = A. For each agent i ∈ A having its homebase ai ∈ A, let

Ri =
⋃

Z∈N

ξ(Z), where N = M ∩ ({ai} × B × C) .

This completes the construction and it remains to prove its correctness. We argue
that the answer to 3DM is yes if and only if the answer to RestEvac is yes.

First, suppose that the answer to 3DM is yes and let M ′ ⊆ M be the corre-
sponding solution. We construct a restricted evacuation strategy (ν1, . . . , νk) as
follows. For each i ∈ A there exists (ai, bi, ci) ∈ M ′ and we define:

νi(0) = ai, νi(1) = bi, νi(2) = ci.

It follows from the construction of the input to 3DM and from the definition of
X that νi(0) �= νj(0) for i �= j. Since M ′ is a solution to 3DM, we obtain that
νi(s) �= νj(s) for i �= j and s ∈ {1, 2}. Consider an edge e = {νi(s), νi(s + 1)}
traversed by agent i in step s ∈ {0, 1}. We have that e ∈ ξ((ai, bi, ci)) and hence
e ∈ Ri. Finally, νi(2) ∈ X by construction for each i ∈ A, which proves that
(ν1, . . . , νk) is indeed a restricted evacuation strategy of length 2.

Next, suppose that the answer to RestEvac is yes and let (ν1, . . . , νk) be
a restricted evacuation strategy of length 2. Since the homebases of agents are
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in A and X = C, we have that for each agent i ∈ A it holds νi(0) ∈ A,
νi(1) ∈ B and νi(2) ∈ C. Define M ′ = {(νi(0), νi(1), νi(2))

∣
∣ i ∈ A}. We have

that {νi(0), νi(1)} ∈ Ri and {νi(1), νi(2)} ∈ Ri, which for each agent i ∈ A
implies (νi(0), νi(1), νi(2)) ∈ M . Thus M ′ is a solution to 3DM. ��

6.3 The Complexity of RestEvac – Two Types of Agents

We prove that RestEvac is computationally hard even if there are only two
types of agents, i.e., when there exist two subsets E1, E2 ⊆ E(G) of permitted
edges such that for each agent i ∈ A it holds Ri ∈ {E1, E2}. Our proof is
by a reduction from the problem (3, 4)-SAT, in which a logical formula F =
C1∧C2∧· · ·∧Cm over variables x1, . . . ,xp is a part of the input, where each clause
Ci is a disjunction of exactly three literals and each variable occurs at most four
times in the logical formula. The question in (3, 4)-SAT is whether there exists
a Boolean assignment to variables that satisfies F . The problem (3, 4)-SAT is
known to be NP-complete [17]. The main result of this section is that RestEvac
is computationally hard even for fixed length evacuation strategies and only two
types of agents whose respective sets of permitted edges are disjoint.

Theorem 6. The problem RestEvac is NP-complete even if the input parame-
ter l equals 5 and for each agent i ∈ A it holds Ri ∈ {E1, E2}, where E1∩E2 = ∅.

7 Conclusions and Open Problems

The goal of this work was to introduce a natural distributed model for the
discrete evacuation problem and to analyze its basic properties by looking at its
complexity and solvability in the mobile agent setting. One assumption that we
made in this model, which greatly affects the algorithmic approach, is that local
computations of agents and passing of messages take negligible time with respect
to the movements of agents. However, one can consider scenarios in which the
amount of communication performed in each synchronous step is somewhat more
restricted. For example, one could analyze the number of messages exchanged
by agents besides the evacuation time.

Another research direction could lead towards dropping the assumption that
the network is known to agents. In such scenario, an algorithmic approach should
adopt some concepts from the well studied exploration problems for unknown
networks. As an intermediate scenario, one could consider providing the agents
only partial information about the network by performing, e.g., a quantitative
analysis of the amount of input information (we refer here to the advice com-
plexity introduced in [12]).

In terms of the competitive ratio achievable by any online algorithm, we
studied tree networks, and it is interesting to see how this parameter would
behave in other network topologies. For example, are there networks in which
the competitive ratio is not constant, e.g., a function of the number of agents or
some other input parameter? Another open question worth investigating is what
happens when the agents cannot communicate but have only local visibility.
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Abstract. An oblivious mobile robot is a stateless computational entity
located in a spatial universe, capable of moving in that universe. When
activated, the robot observes the universe and the location of the other
robots, chooses a destination, and moves there. The computation of the
destination is made by executing an algorithm, the same for all robots,
whose sole input is the current observation. No memory of all these
actions is retained after the move. When the spatial universe is a graph,
distributed computations by oblivious mobile robots have been inten-
sively studied focusing on the conditions for feasibility of basic problems
(e.g., gathering, exploration) in specific classes of graphs under different
schedulers. In this paper, we embark on a different, more general, type
of investigation.

With their movements from vertices to neighboring vertices, the
robots make the system transition from one configuration to another.
Thus the execution of an algorithm from a given configuration defines
in a natural way the computation of a discrete function by the system.
Our research interest is to understand which functions are computed by
which systems. In this paper we focus on identifying sets of systems that
are universal, in the sense that they can collectively compute all finite
functions. We are able to identify several such classes of fully synchronous
systems. In particular, among other results, we prove the universality of
the set of all graphs with at least one robot, of any set of graphs with
at least two robots whose quotient graphs contain arbitrarily long paths,
and of any set of graphs with at least three robots and arbitrarily large
finite girths. We then focus on the minimum size that a network must
have for the robots to be able to compute all functions on a given finite
set. We are able to approximate the minimum size of such a network
up to a factor that tends to 2 as n goes to infinity.

The main technique we use in our investigation is the simulation
between algorithms, which in turn defines domination between systems.
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If a system dominates another system, then it can compute at least as
many functions. The other ingredient is constituted by path and ring net-
works, of which we give a thorough analysis. Indeed, in terms of implicit
function computations, they are revealed to be fundamental topologies
with important properties. Understanding these properties enables us to
extend our results to larger classes of graphs, via simulation.

1 Introduction

Consider a network, represented as a finite graph G, where the vertices are unla-
beled, and edge labels are possibly not unique. In G operate k oblivious mobile
robots (or simply “robots”), that is, indistinguishable computational entities with
no memory, located at the vertices of the network, and capable of moving from
vertex to neighboring vertex of G. Robots are activated by an adversarial sched-
uler S. Whenever activated, a robot observes the location of the other robots
in the graph (the current configuration); it computes a destination (a neighbor-
ing vertex or the current location); and it moves there. The computation of the
destination is made by executing an algorithm, the same for all robots, whose
sole input is the current configuration. The current activity terminates after the
move, and no memory of the computation is retained; in other words, the entities
are stateless. The overall system is represented by the triplet (G, k, S). Notice
that, even if the algorithm A the robots execute is deterministic, its executions
may still be non-deterministic. Indeed, since the network’s port numbers may
not be unique, it may be impossible for an algorithm to unambiguously indicate
where each robot has to move. This model, introduced by Klasing, Markou, and
Pelc [23] as an extension of the model of oblivious robots in continuous spaces
(e.g., [14]), has been extensively employed and investigated, focusing on basic
problems in specific classes of graphs under different schedulers: gathering and
scattering (e.g., [4–7,10,17,18,20,22,23,26,27]), and exploration and traversal
(e.g., [1–3,8,9,11–13,24,25]). Note that, with the exception of [3], the literature
assumes unlabelled edges. In this paper, we consider both labelled and unlabelled
edges, and focus on the fully synchronous scheduler F , which simply activates
every robot at every turn. We then embark on a different, more general, type of
investigation.

Consider the system (G, k,F). Whenever the robots move in the graph
according to algorithm A, the system transitions from the current configura-
tion to a (possibly) different one. The obliviousness of the robots implies that
always the same (or equivalent) transition occurs from the same given config-
uration. Consider now the configuration graph where there is a directed edge
from one configuration to another if some algorithm dictates such a transition.
Then the execution of A in (G, k,F) from a given configuration is just a walk
in this graph from that configuration. The execution can be viewed in a natural
way as the computation of a discrete function f by the system, where f maps a
configuration C into the configuration f(C) reached by executing (one step of)
A from C, defining a subgraph of the configuration graph, called function graph.
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The concept of function computation and function graph are formally defined in
Sect. 2.

We seek to understand which functions are computed by which systems.
Knowing the structure of such functions gives us information on the robots’
behavior as they execute an algorithm, and what tasks the robots can and can-
not perform in a network. For instance, if an algorithm computes a function
whose graph has no cycles, it means that the robots will eventually be station-
ary regardless of their initial position; if the function has a unique fixed point,
it means that the algorithm solves a pattern formation problem. On the other
hand, if the function’s graph has only cycles of length p > 1 (possibly with some
“branches” attached), the robots are collectively implementing a self-stabilizing
clock of period p. If such graphs can be embedded in the configuration graph,
then we know that such algorithms exist, and that the corresponding problems
are solvable in the system.

In this paper we focus on identifying sets of systems that are universal, in the
sense that they compute all finite functions. In Sect. 4, we identify several classes
of universal fully synchronous systems. In particular, among other results, we
prove that

Theorem. The following families of systems are universal:

(a) {(G, 1,F) | G is an unlabeled network},
(b) {(Gn, 2,F) | the quotient graph of Gn contains a sub-path of length at

least n},
(c) {(Gn, 3,F) | the girth of Gn is at least n and finite}.

In Sect. 5, we focus on computing discrete functions using the smallest pos-
sible networks, perhaps at the cost of employing a large numbers of robots. In
particular, for a given finite set X, we study the minimum size that a network
must have for the robots to be able to compute all functions from X to X. We
are able to approximate the minimum size of such a network up to a factor that
tends to 2 as n goes to infinity.

The main tool we use in our investigation is the simulation between algo-
rithms, which in turn defines domination between systems. If system Ψ domi-
nates system Ψ ′, then Ψ computes at least all the functions computed by Ψ ′.
The other tool is constituted by the path and ring graphs (Sect. 3). These are
the main ingredients of all our stronger results, because rings and paths are fun-
damental topologies with important properties that can be extended to other
graphs via simulation.

Full proofs can be found in the extended version of this paper [15].

2 Definitions

In this section we introduce the models of mobile robots that we are going
to study. Informally, we consider networks with port numbers, which are rep-
resented as graphs where each vertex has a label on each outgoing edge.
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Port numbers are not required to be unique, which allows us to model anonymous
networks with unlabeled edges, as well.

On a network we may place any number of robots, which are indistinguishable
mobile entities with no memory. At all times, each robot must be located at a
vertex of the network, and any number of robots may occupy the same vertex.
All robots follow the same algorithm, which takes as input the network and the
robots’ positions, and tells each robot to which adjacent vertex it has to move
next (or it may tell it to stay still). Time is discretized, and we assume that
robots can move to adjacent vertices instantaneously.

Even if algorithms are deterministic, their executions may still be non-
deterministic. This is partly because the network’s port numbers may not be
unique, and therefore it may be impossible for an algorithm to unambigu-
ously indicate where each robot has to move. Another potential source of non-
determinism is the scheduler, which is an adversary that decides which robots
are going to be activated next. In this paper we will focus on the fully synchro-
nous scheduler, which simply activates every robot at every turn. We will also
briefly discuss the semi-synchronous scheduler in Sect. 6.

Labeled Graphs. A labeled graph is a triplet G = (V,E, �), where (V,E) is an
undirected graph called the base graph, and � is a function that maps each
ordered pair (u, v), such that {u, v} ∈ E, to a non-negative integer called label.
A labeled graph is also referred to as a network. A network is unlabeled if all its
labels are equal.

An automorphism of a labeled graph G = (V,E, �) is a permutation α of
V preserving adjacencies and labels, i.e., for all u, v ∈ V , if {u, v} ∈ E, then
{α(u), α(v)} ∈ E and �(u, v) = �(α(u), α(v)). If there exists an automorphism
that maps a vertex u to a vertex v, then u and v are equivalent vertices in G.
The quotient graph G∗ is the labeled graph G obtained by identifying equivalent
vertices, and preserving adjacencies and labels.

Configuration Spaces. Let Nn = {0, 1, · · · , n − 1}, for every n ≥ 1. An arrange-
ment of k robots on a network G = (V,E, �) is a mapping from Nk to V . An
arrangement specifies the locations of k distinguishable robots on a network
whose vertices are all distinguishable. However, we ultimately intend to model
identical robots, which cannot distinguish between equivalent vertices of the
network, unless such vertices are occupied by different amounts of robots. The
following definition serves this purpose: two arrangements a1, a2 : Nk → V , are
equivalent if there exist an automorphism α : V → V and a permutation π of Nk

such that α ◦ a1 = a2 ◦ π.
The configuration space C(G, k), where G is a network and k is a positive inte-

ger, is the quotient of the set of arrangements of k robots on G under the above
equivalence relation between arrangements. The elements of the configuration
space are called configurations.

Say that an arrangement a is equivalent to itself under an automorphism α
and a permutation π, as defined above. Then, whenever α(v) = v′ and π(r) = r′,
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we say that v and v′ are equivalent vertices in a, and r and r′ are equivalent robots
in a.

A class of indistinguishable vertices U (respectively, a class of indistinguish-
able robots R) of a configuration C ∈ C(G, k) is a mapping from each arrange-
ment a ∈ C to an equivalence class of vertices Ua (respectively, an equivalence
class of robots Ra) of a such that, for all a1, a2 ∈ C and all automorphisms
α and permutations π under which a1 and a2 are equivalent, α(Ua1) = Ua2

(respectively, π(Ra1) = Ra2).

Configuration Graphs. While the configuration space contains all the configu-
rations that are distinguishable, either by the base graph’s topology, or by the
labels, or by the robots’ positions, the configuration graph specifies which con-
figurations can reach which other configurations “in one step”. Of course, this
depends on a notion of algorithm, and on a notion of scheduler.

An algorithm for k robots on a network G is a function that maps a pair
(C,U) into a set U ′, where C ∈ C(G, k) (describing the network’s configura-
tion at the moment the algorithm is executed), and U and U ′ are classes of
indistinguishable vertices of C (indicating the executing robot’s location and
its destination, respectively) such that, for every arrangement a ∈ C and every
vertex u ∈ U(a), there exists a vertex u′ ∈ U ′(a) such that either u = u′ or u′ is
adjacent to u. According to this definition, a robot can only specify its destina-
tion as a class of indistinguishable vertices, representing either a null movement
or a movement to some adjacent vertex.

An execution for k robots in a network G is a sequence of configurations of
C(G, k). A scheduler for k robots in a network G is a binary relation between
algorithms and executions. The possible executions of an algorithm under some
scheduler are the executions that correspond to the algorithm under the relation
specified by such a scheduler. A system of oblivious mobile robots is a triplet
Ψ = (G, k, S), where G is a labeled graph, k ≥ 1, and S is a scheduler for k
robots in G.

The configuration graph G(Ψ) = (C(G, k), E(Ψ)), where Ψ = (G, k, S) is a
system of oblivious mobile robots, is a directed graph on the configuration space
C(G, k), where (C,C ′) ∈ E(G, k) if there is an algorithm A and a possible exe-
cution E = (Ci)i≥0 of A under S, such that there exists an index i satisfying
C = Ci and C ′ = Ci+1.

The deterministic configuration graph G′(Ψ) = (C(G, k), E ′(Ψ)), where Ψ =
(G, k, S) is a system of oblivious mobile robots, is a directed graph on the con-
figuration space C(G, k), where (C,C ′) ∈ E ′(G, k) if there is an algorithm A such
that, for all possible executions E = (Ci)i≥0 of A under S, and for every index
i satisfying C = Ci, we have C ′ = Ci+1.

Intuitively, G′(Ψ) is a subgraph of G(Ψ) whose edges represent moves that can
be deterministically done by the robots, i.e., on which all the scheduler’s choices
yield the same result. If G(Ψ) = G′(Ψ), then Ψ is said to be a deterministic
system.
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Fully Synchronous Scheduler. Given an algorithm A for k robots on a network,
we say that a configuration C ′ yields from a configuration C under algorithm
A if, for every arrangement a ∈ C there is an arrangement a′ ∈ C ′ such that,
for every r ∈ Nk, either a(r) = a′(r) or a(r) is adjacent to a′(r) and, if U is the
class of indistinguishable vertices of C such that a(r) ∈ U(a), then a′(r) ∈ U ′(a),
where U ′ = A(C,U). The fully synchronous scheduler F is defined as follows:
(A,E = (Ci)i≥0) ∈ F if, for every i ≥ 0, Ci+1 yields from Ci. In the rest of the
paper, we will write F(G, k) instead of (G, k,F).

In other words, the fully synchronous scheduler lets every robot move at every
turn to the destination it computes. However, if a robot’s destination consists of
several indistinguishable vertices, the scheduler may arbitrarily decide to move
the robot to any of those vertices, provided that it can be reached in at most
one hop. All these choices are made by the scheduler at each turn and for each
robot, independently.

Simulating Algorithms. To define the concept of simulation, we preliminarily
define a relation on executions. Given an execution E = (Ci)i≥0 for k robots on
a network G, an execution E′ = (C ′

i)i≥0 for k′ robots on a network G′, and a
surjective partial function ϕ : C(G, k) → C(G′, k′), we say that E is compliant
with E′ under ϕ if either ϕ is undefined on C0, or there exists a weakly increasing
surjective function σ : N → N such that, for every i ∈ N, ϕ is defined on Ci, and
ϕ(Ci) = C ′

σ(i).
An algorithm A under system Ψ simulates an algorithm A′ under system Ψ ′

if there is a surjective partial function ϕ : C(G, k) → C(G′, k′) such that each
execution of A under Ψ is compliant under ϕ with at least one execution of A′

under Ψ ′.
In this definition, ϕ “interprets” some configurations of the simulating sys-

tem Ψ as configurations of the simulated system Ψ ′, in such a way that every
configuration of Ψ ′ is represented by at least one configuration of Ψ . Moreover,
the definition of compliance ensures that the simulating algorithm A makes con-
figurations transition in a way that agrees with A′ under ϕ.

Computing Functions. We define the implicit computation of a function as the
simulation of a system consisting in a single robot on a network whose shape is
given by the function itself.

The network induced by a function f : X → X is defined as Γf = (X, f, �),
where � : (u, v) �→ v. Hence the base graph of Γf has edges of the form (x, f(x)),
and the labeling � makes all vertices of Γf distinguishable from each other. The
algorithm Af associated to the function f is the algorithm for one robot on Γf

that always makes the robot move from any vertex x ∈ X to the vertex f(x).
We say that an algorithm A computes a function f : X → X under system

Ψ if it simulates the algorithm Af under F(Γf , 1).
What this definition intuitively means is that each element of X is represented

by a set of robot configurations; an algorithm computes f if any execution from a
configuration representing x ∈ X eventually yields a configuration representing
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f(x) without passing through configurations that represent other elements of X
(or that represent no element of X).

If an algorithm under system Ψ computes a function f (respectively, simulates
an algorithm A′), then we say that Ψ computes f (respectively, simulates A′).
Moreover, a system Ψ dominates Ψ ′ if every algorithm under Ψ ′ is simulated by
some algorithm under Ψ .

We use the notation X � Y to indicate all the concepts defined above: X
may be a function computed by an algorithm Y (under some system), or it can
be an algorithm simulated by Y , or a system dominated by a system Y , etc.

3 Basic Results

Proposition 1. The relation � is transitive. �	
Corollary 1. If a system Ψ dominates a system Ψ ′, then all functions computed
by Ψ ′ are also computed by Ψ .

Proof. Suppose that Ψ ′ � Ψ . Then, for any function f such that f � Ψ ′, the
transitivity of � implies that f � Ψ . �	

3.1 General Graphs

Proposition 2. For every network G, the system F(G, 1) is deterministic, and
its configuration graph is isomorphic to the graph obtained from the quotient
graph G∗ by replacing each unoriented edge {u, v} with the two oriented edges
(u, v) and (v, u), and adding a self-loop (v, v) to each vertex v. �	

A fundamental question is whether adding robots to a network allows to com-
pute more functions. We can at least prove that adding robots does not reduce
the set of computable functions, provided that the network is not pathologically
small.

Theorem 1. For all networks G with at least three vertices and all k ≥ 1,
F(G, k + 1) 
� F(G, k).

Proof. It suffices to show that |C(G, k+1)| > |C(G, k)|. For each configuration in
C(G, k), choose a vertex that contains the largest number of robots, and add one
robot to it. This way we obtain |C(G, k)| distinct configurations of C(G, k + 1).
We can generate yet another configuration by placing �(k + 1)/2� robots on
a vertex, �(k + 1)/2� robots on another vertex, and the remainder on a third
vertex. �	

We can also show that a single robot does not compute more functions than
k ≥ 1 robots, in any network G.

Theorem 2. For all networks G and all k ≥ 1, F(G, 1) � F(G, k).
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Proof. In the simulation we use only the configurations of F(G, k) in which all
robots lie in equivalent vertices of G. Then each robot pretends to be the only
robot in the network, and makes the move that the unique robot of F(G, 1) would
make. This is a well-defined simulation even if F(G, k) is not deterministic, due
to Proposition 2. �	

We can extend this idea to show that F(G, k) � F(G, 2k), provided that
F(G, 2k) is deterministic.

Theorem 3. F(G, k) � F(G, k′), provided that F(G, k′) is deterministic and
k′ ≥ 2k.

Proof. The configurations of F(G, k′) that we use in our simulation are only
those in which there is a (unique) vertex v occupied by at least k′ −k+1 robots.
Each of these configurations is mapped to the configuration of F(G, k) that is
obtained by removing k′ − k robots from v. This mapping is surjective. The
simulation can be carried out because F(G, k′) is deterministic, and therefore
robots occupying the same vertex can never be separated, implying that there
is always going to be a vertex with at least k′ − k + 1 robots. �	

Finally, we conjecture that adding robots increases a system’s computational
capabilities.

Conjecture 1. For all networks G and all k ≥ 1, F(G, k) � F(G, k + 1).

3.2 Path Graphs

The first special type of network we consider is the one whose base graph consists
of a single path. This fundamental configuration will turn out to be of great
importance in Sects. 4 and 5, when studying universal classes of systems. In
terms of labeling, we focus on two extreme cases: a labeling that gives a consistent
orientation to the whole network (i.e., each vertex in the path has port labels
indicating which neighbor is on the “left” and which one is on the “right”), and
the anonymous unlabeled network. In the first case we have an oriented path,
and in the second case we have an unoriented path. By

−→P k
n and P k

n we denote,
respectively, the oriented and the unoriented path with n vertices and k robots,
under the fully synchronous scheduler.

Oriented Paths. Let us study the configuration graph of
−→P k

n . Since the path
has an orientation, no two vertices are equivalent. Therefore, by Proposition 2,
G

(−→P 1
n

)
consists of a path of length n with bidirectional edges and a self-loop

on each vertex. In general, the configuration space of
−→P k

n is in bijection with the
set of weakly increasing k-tuples of integers in Nn. Hence, for a fixed k, the size
of the configuration space is

(
n + k − 1

k

)

∼ nk

k!
.
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If these k-tuples are thought of as points of R
k, they constitute the set of

lattice points in the k-dimensional simplex whose k + 1 vertices have the form
(0, 0, · · · , 0, 1, 1, · · · , 1). This simplex has k + 1 facets, two of which correspond
to configurations in which the first or the last vertex of the network is occupied
by a robot, while the other k − 1 facets correspond to configurations in which
exactly k − 1 vertices are occupied (i.e., exactly two robots share a vertex).

The edges of the configuration graph (that are not self-loops) connect bidi-
rectionally all pairs of points whose Chebyshev distance is at most 1, with the
exception of the points that lie on the aforementioned k −1 facets. Indeed, since
no algorithm can separate two robots that occupy the same vertex, it follows
that those facets (as well as all their intersections) can never be left once they
are reached. Figure 1(a) shows the configuration graph of

−→P 2
5 .

Property 1. For all n ≥ 1, G
(−→P 2

2n

)
contains an n × n grid with bidirectional

edges and self-loops.

Since an oriented path gives the robots a sense of direction, an algorithm
can unambiguously indicate to which neighbor each robot is supposed to move.
Therefore G

(−→P k
n

)
= G′

(−→P k
n

)
.

Property 2. For all n, k ≥ 1, the system
−→P k

n is deterministic.

Unoriented Paths. Let us study the configuration graph of P k
n. Since the network

in this system is unlabeled, if two vertices are symmetric with respect to the
center of the path, they are equivalent. So, the configuration space is in bijection
with the set of weakly increasing k-tuples of integers in Nn, where each k-tuple
(a1, · · · , ak) is identified with its “symmetric” one, (n − ak − 1, · · · , n − a1 − 1).
Elementary computations reveal that, if k is fixed, these k-tuples are

1
2

·
(

n + k − 1
k

)

+ O
(
n�k/2�

)
∼ nk

2 · k!
.

Geometrically, the configuration space of P k
n can be represented as the set of

lattice points in a truncated k-dimensional simplex, which is obtained by cutting
the simplex of

−→P k
n roughly in half, along a suitable hyperplane. Figures 1(b)

and (c) show the configuration graphs of P 2
5 and P 2

6 .
If n is even, we have G (P k

n

)
= G′ (P k

n

)
, because each robot has a unique

closest endpoint of the path, which it can use to specify unambiguously in which
direction it intends to move. However, if n > 1 is odd and k ≥ 2, the two graphs
differ. Indeed, if the configuration is symmetric and the central vertex is occupied
by more than one robot, then it is impossible to guarantee that all the central
robots will move in the same direction: the adversary will decide how many of
these robots go left, and how many go right. For instance, G′ (P 2

5

)
differs from

G (P 2
5

)
in that the vertex in (2, 2) has no outgoing edges in G′ (P 2

5

)
, because

these correspond to non-deterministic moves.

Property 3. For all n, k ≥ 1, the system P k
2n is deterministic.



Universal Systems of Oblivious Mobile Robots 251

Fig. 1. Configuration graphs of some oriented and unoriented paths and rings. Dashed
arrows represent non-deterministic moves. For clarity, self-loops have been omitted
from all vertices.

3.3 Ring Graphs

Now we consider ring networks, which are networks whose base graph is a single
cycle. This is another fundamental class of networks, which will have a great
importance in Sects. 4 and 5. Like a path, a ring can be oriented if its labeling
gives a consistent sense of direction to the robots in the network (i.e., each
vertex has port labels indicating which neighbor lies in the “clockwise” direction,
and which one lies in the “counterclockwise” direction), and unoriented if the
network is unlabeled. Therefore we have the two systems

−→Rk
n and Rk

n, denoting,
respectively, the oriented and the unoriented ring with n vertices and k robots,
under the fully synchronous scheduler.

Oriented Rings. Let us study the structure of G
(−→Rk

n

)
. Note that, in a ring

network, all vertices are equivalent. Therefore, by Proposition 2, G
(−→R1

n

)
consists

of a single vertex with a self-loop.
In the case of k = 2 robots, a configuration is uniquely identified by the

distance d of the two robots on the ring, which may be any integer between
0 and �n/2�. If d = 0, the robots are bound to remain on the same vertex.
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If d = n/2 (hence n is even), the robots are located on indistinguishable vertices,
and they are bound to remain on indistinguishable vertices. In all other cases, it
is possible to distinguish the two robots and move them independently, thanks
to the orientation of the ring. Therefore, if 0 < d < n/2, an algorithm may move
the two robots independently in any direction, thus adding any integer between
−2 and +2 to d (subject to the 0 ≤ d ≤ �n/2� constraint). Figures 1(d) and (e)
show the configuration graphs of

−→R2
14 and

−→R2
15.

In general, the configuration space of
−→Rk

n is in bijection with the set of binary
necklaces of length n and density k, i.e., the binary strings having k zeros and
n − k ones, taken modulo rotations. To count them, the Pólya enumeration
theorem can be applied, as in [16]. If k is fixed, the configuration space has size

1
n + k

·
∑

d| gcd(k,n)

φ(d) ·
(

(n + k)/d

k/d

)

∼ nk−1

k!
,

where φ is Euler’s totient function. Since the ring is oriented, G
(−→Rk

n

)
=

G′
(−→Rk

n

)
.

Property 4. For all n, k ≥ 1, the system
−→Rk

n is deterministic.

Unoriented Rings. The structure of G (Rk
n

)
is similar to that of G

(−→Rk
n

)
, except

that now two configurations are indistinguishable also if they are “reflections”
of each other. The case k = 1 is again trivial and yields a single configuration,
but the case k = 2 is more interesting. As before, a configuration of R2

n is
identified by an integer d with 0 ≤ d ≤ �n/2�, but the two robots are now
indistinguishable, and therefore they must always make symmetric moves. Hence
d may only change by −2 or +2; the only exception is when n is odd and
d = �n/2�, which can change to d = �n/2� − 1 (as well as to d = �n/2� − 2),
and vice versa. So, if n is odd, G (R2

n

)
is isomorphic to G

(−→P 1
�n/2	

)
. If n is even,

G (R2
n

)
consists of two connected components: the one corresponding to even

d’s is isomorphic to G
(−→P 1

�(n+2)/4	
)
, and the one corresponding to odd d′s is

isomorphic to G
(−→P 1

�(n+2)/4�
)
. Figures 1(f), (g), and (h) show the configuration

graphs of R2
14, R2

15, and R2
16.

Property 5. For all n, k ≥ 1, G (Rk
n

)
consists of either a single path or two

disjoint paths.

In general, instead of representing the configurations of Rk
n with necklaces

as before, we use bracelets of length n and density k, i.e., binary strings having
k zeros and n − k ones, taken modulo rotations and reflections. The size of the
configuration space can be computed again with the Pólya enumeration theorem,
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this time using the dihedral group instead of the cyclic group. For fixed k, its
size is

1
2(n + k)

·
∑

d| gcd(k,n)

φ(d) ·
(

(n + k)/d

k/d

)

+ O
(
n�k/2�

)
∼ nk−1

2 · k!
.

With unoriented rings, the deterministic configuration graph is slightly dif-
ferent. If d = 0 or d = n/2, the adversary may choose to keep d unvaried, by
making both robots always move in the same direction. Therefore, the configu-
rations corresponding to d = 0 and d = n/2 have no outgoing edges in G′ (Rk

n

)
.

Other than that, the two graphs are the same.

3.4 Domination Relations Between Paths and Rings

Next we describe how different systems of paths and rings dominate each other.

Theorem 4. For all n, k ≥ 1 and k′ ≥ 2k,
−→P k

n � −→P k′
n , P k

2n � P k′
2n, and−→Rk

n � −→Rk′
n .

Proof. By Properties 2, 3, and 4, the systems
−→P k′

n , P k′
2n, and

−→Rk′
n are determin-

istic. Thus all relations follow from Theorem 3. �	
Theorem 5. For all n, k ≥ 1,

−→P k
n � P k

2n.

Proof. We place the k robots of P k
2n on the first n vertices of the path, leaving

the other half empty. This gives an implicit orientation to the path, and now the
simulation is trivial. �	
Theorem 6. For all n ≥ 1 and k ≥ 2,

−→P k
n � −→Rk+1

2n .

Proof. We use only the configurations of
−→Rk+1

2n having a vertex occupied by a
single robot, followed in clockwise order by n−1 empty vertices. The simulation
is performed by the other k robots on the remaining n vertices, which are always
unambiguously identified because k ≥ 2. �	
Theorem 7. For all n ≥ 1 and k ≥ 2, P k

n � Rk+1
3n−1.

Proof. We use only the configurations of Rk+1
3n−1 having a vertex occupied by

one robot, surrounded on both sides by sequences of n − 1 empty vertices. The
simulation is performed by the other k robots on the remaining n vertices, which
are always unambiguously identified because k ≥ 2. �	

4 Universality

A system Ψ is universal for Nn if it computes every function on Nn. In this
case, we write Nn � Ψ . Note that this extension of the relation � preserves its
transitivity. A set of systems Υ is universal if, for every n ≥ 1 and every function
f : Nn → Nn, there is a system Ψ ∈ Υ that computes f .
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Theorem 8. {F(G, 1) | G is an unlabeled network} is universal.

Proof. Given a function f : Nn → Nn, take the complete graph Kn and attach
i dangling vertices to its i-th vertex, for all 0 ≤ i < n. To compute f , instruct
the robot to move from the vertex with i dangling vertices to the one with f(i)
dangling vertices (which is always distinguishable). �	

However, complete graphs are very demanding networks. If no vertex in the
network has more than two neighbors, universality requires more robots: two for
paths and oriented rings, and three for unoriented rings.

Theorem 9.
{−→P 1

n | n ≥ 1
}
,

{P 1
n | n ≥ 1

}
,

{−→R1
n | n ≥ 1

}
, and

{R2
n | n ≥ 1

}

are not universal. �	
Next we show that two robots are indeed sufficient to compute every function

on arbitrarily long oriented and unoriented paths and oriented rings, and that
three robots are sufficient for unoriented rings. First we introduce a definition:
an algorithm is sequential if it never instructs two robots to move at the same
time.

Lemma 1. For all n ≥ 1, Nn � −→P 2
2n. The algorithms used in the computations

are sequential. �	

Theorem 10.
{−→P 2

n | n ≥ 1
}
,

{P 2
n | n ≥ 1

}
,

{−→R2
n | n ≥ 1

}
, and

{R3
n | n ≥ 1

}

are universal. �	
We can generalize this result in two directions. First, to systems of two robots

on networks whose quotient graphs contain arbitrarily long paths.

Theorem 11. {F(Gn, 2) | G∗
n contains a sub-path of length at least n} is uni-

versal.

Proof. We prove that
−→P 2

n � F(Gn, 2), and the universality follows from
Lemma 1. By assumption, the robots can agree on an oriented path P of length n
in G∗

n, since all its vertices are distinguishable, due to the definition of quotient
graph. Then, a robot located at some vertex of Gn is interpreted as lying on
the corresponding vertex of G∗

n and follows whatever algorithm it is simulating,
remaining on vertices of Gn corresponding to P ; this way, the two robots can
simulate

−→P 2
n on Gn. �	

Theorem 10 can also be generalized to systems of three robots on networks
with arbitrarily long girths (the girth of a graph being the length of its shortest
cycle, or infinity if there are no cycles).

Theorem 12. {F(Gn, 3) | the girth of Gn is at least n and finite} is univer-
sal. �	

Our conjecture is that the above results characterize the universal classes of
systems with at least three robots on unlabeled networks.



Universal Systems of Oblivious Mobile Robots 255

Conjecture 2. The set {F(Gi, k) | i ≥ 0}, where k ≥ 3 and every Gi is an unla-
beled network, is universal if and only if either the quotient graphs G∗

i have
unboundedly long sub-paths, or the graphs Gi have unboundedly long shortest
cycles.

5 Optimizing Network Sizes

In this section, our goal is to compute all the functions on Nn under the fully
synchronous scheduler, using the smallest possible network, and perhaps a large
number of robots. We are able to approximate the minimum size of such a
network up to a factor that tends to 2 as n goes to infinity, using very short
oriented paths. Nonetheless, thanks to the simulation tools developed in Sect. 3.4,
we could as well use unoriented paths or rings, again achieving the optimum size
up to factors that tend to small constants.

Lemma 2. For all n, k ≥ 1,
−→P k

n! � −→P kn(n−1)/2
kn .

Proof. We divide the base graph of
−→P kn(n−1)/2

kn into k sub-paths of length n.
In every sub-path, we place a different amount of robots on each vertex, from
0 to n − 1 robots. The possible placements of such robots within a sub-path
correspond to the n! permutations of n distinct objects. It is well known that
the set of permutations can be ordered in such a way that each permutation is
obtained from the previous one by swapping only two adjacent objects [19]. If
we let the i-th permutation under this ordering encode the i-th vertex of

−→P k
n!,

we can simulate a move of i-th robot of
−→P k

n! by simply swapping the robots
occupying two adjacent vertices of the i-th sub-path of

−→P kn(n−1)/2
kn . �	

Theorem 13. For all n ≥ 1, Nn � −→P m(m−1)
2m , with (m − 1)! < 2n ≤ m!.

Proof. Immediate from Lemma 1, Lemma 2 with k = 2, and the transitivity
of �. �	

This tells us that, on a network with |V | vertices, all the functions on a set
of size 2(|V |/2)! can be computed, provided that enough robots are available.
We can also show that, on the same network, it is impossible to compute all
functions on a set of size |V |! + 1.

Theorem 14. For all networks G = (V,E, �) and all n, k ≥ 1, if Nn � F(G, k),
then |V |! ≥ n.

Proof. Let A be an algorithm that computes the cycle function λn =
{(i, i + 1) | i ∈ Nn−1} ∪ {(n − 1, 0)} under F(G, k), according to the surjective
partial function by ϕ : C(G, k) → Nn. For any execution E = (Ci)i≥0 of A
such that C0 ∈ ϕ−1(0), the sequence (ϕ(Ci))i≥0 must span the whole range
Nn infinitely often. Moreover, since C(G, k) is finite, there is a configuration C
that occurs infinitely many times in E. Hence there are two such occurrences,
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say Cj = Cj′ = C, between which E spans at least d ≥ n different configu-
rations. During this fragment of the execution, no two separate sets of robots
may end up on the same vertex at the same time, or they become impossi-
ble to separate deterministically, contradicting the fact that C must be reached
again. In particular, the number of vertices that are occupied by some robots
remains the same, q. It follows that d cannot be larger than |V |!/(|V |−q)!. Thus
n ≤ d ≤ |V |!/(|V | − q)! ≤ |V |!, as desired. �	

6 Further Work

In addition to the fully synchronous scheduler, also a semi-synchronous and an
asynchronous one can be defined. Both schedulers may activate any subset of the
robots at each turn, keeping the others quiescent. The asynchronous scheduler
may even delay the robots, making them move based on obsolete observations
of the network.

Our universality results can be extended to both these schedulers, by observ-
ing that all the algorithms we used in our simulations are sequential. We can
also prove a weaker version of Theorem 13 for these schedulers: Nn � −→P m

2m,
with m = O(log n); we have a matching lower bound for both schedulers, as
well. These results indicate that the semi-synchronous and asynchronous sched-
ulers, albeit not drastically reducing the robots’ computing powers, make them
somewhat less efficient.

We leave two open problems: Conjectures 1 and 2.
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Abstract. We consider the problem of collectively delivering some mes-
sage from a specified source to a designated target location in a graph,
using multiple mobile agents. Each agent has a limited energy which
constrains the distance it can move. Hence multiple agents need to col-
laborate to move the message, each agent handing over the message to
the next agent to carry it forward. Given the positions of the agents in
the graph and their respective budgets, the problem of finding a feasi-
ble movement schedule for the agents can be challenging. We consider
two variants of the problem: in non-returning delivery, the agents can
stop anywhere; whereas in returning delivery, each agent needs to return
to its starting location, a variant which has not been studied before.
We first provide a polynomial-time algorithm for returning delivery on
trees, which is in contrast to the known (weak) NP-hardness of the non-
returning version. In addition, we give resource-augmented algorithms for
returning delivery in general graphs. Finally, we give tight lower bounds
on the required resource augmentation for both variants of the problem.
In this sense, our results close the gap left by previous research.

1 Introduction

We consider a team of mobile robots which are assigned a task that they need
to perform collaboratively. Even simple tasks such as collecting information and
delivering it to a target location can become challenging when it involves the
cooperation of several agents. The difficulty of collaboration can be due to several
limitations of the agents, such as limited communication, restricted vision or the
lack of persistent memory, and this has been the subject of extensive research
(see [19] for a recent survey). When considering agents that move physically
(such as mobile robots or automated vehicles), a major limitation of the agents
are their energy resources, which restricts the travel distance of the agent. This
is particularly true for small battery operated robots or drones, for which the
c© Springer International Publishing AG 2016
J. Suomela (Ed.): SIROCCO 2016, LNCS 9988, pp. 258–274, 2016.
DOI: 10.1007/978-3-319-48314-6 17
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energy limitation is the real bottleneck. We consider a set of mobile agents where
each agent i has a budget Bi on the distance it can move, as in [2,9]. We model
their environment as an undirected edge-weighted graph G, with each agent
starting on some vertex of G and traveling along edges of G, until it runs out of
energy and stops forever. In this model, the agents are obliged to collaborate as
no single agent can usually perform the required task on its own.

The problem we consider is that of moving some information from a given
source location to a target location in the graph G using a subset of the agents.
Although the problem sounds simple, finding a valid schedule for the agents to
deliver the message, is computationally hard even if we are given full information
on the graph and the location of the agents. Given a graph G with designated
source and target vertices, and k agents with given starting locations and energy
budgets, the decision problem of whether the agents can collectively deliver a
single message from the source to the target node in G is called BudgetedDe-
livery. Chalopin et al. [9,10] showed that non-Returning BudgetedDelivery
is weakly NP-hard on paths and strongly NP-hard on general graphs.

Unlike previous papers, we also consider a version of the problem where each
agent needs to return to its starting location after completing its task. This is a
natural assumption, e.g. for robots that need to return to their docking station
for maintenance or recharging. We call this variant Returning BudgetedDeliv-
ery. Surprisingly, this variant of the problem is easier to solve when the graph is
a tree (unlike the original version of the problem), but we show it to be strongly
NP-hard even for planar graphs. We present a polynomial time algorithm for
solving Returning BudgetedDelivery on trees.

For arbitrary graphs, we are interested in resource-augmented algorithms.
Since finding a feasible schedule for BudgetedDelivery is computationally
hard when the agents have just enough energy to make delivery possible, we
consider augmenting the energy of each robot by a constant factor γ, to enable
a polynomial-time solution to the problem. Given an instance of Budgeted-
Delivery and some γ > 1, we have a γ-resource-augmented algorithm, if the
algorithm, running in polynomial time, either (correctly) answers that there is
no feasible schedule, or finds a feasible schedule for the modified instance with
augmented budgets B̂i = γ · Bi for each agent i.

Our Model. We consider an undirected edge-weighted graph G = (V,E) with
n = |V | vertices and m = |E| edges. The weight w(e) of an edge e ∈ E defines the
energy required to cross the edge in either direction. We have k mobile agents
which are initially placed on arbitrary nodes p1, . . . , pk of G, called starting
positions. Each agent i has an initially assigned budget Bi ∈ R≥0 and can move
along the edges of the graph, for a total distance of at most Bi (if an agent travels
only on a part of an edge, its travelled distance is downscaled proportionally to
the part travelled). The agents are required to move a message from a given
source node s to a target node t. An agent can pick up the message from its
current location, carry it to another location (a vertex or a point inside an
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edge), and drop it there. Agents have global knowledge of the graph and may
communicate freely.

Given a graph G with vertices s �= t ∈ V (G) and the starting nodes and
budgets for the k agents, we define BudgetedDelivery as the decision problem
of whether the agents can collectively deliver the message without exceeding
their individual budgets. In Returning BudgetedDelivery each agent needs
to return to its respective starting position before using up its energy budget; in
the non-returning version we do not place such a restriction on the agents and
an agent may terminate at any location in the graph.

A solution to BudgetedDelivery is given in the form of a schedule which
prescribes for each agent whether it moves and if so, the two locations in which
it has to pick up and drop off the message. A schedule is feasible if the message
can be delivered from s to t.

Related Work. Delivery problems in the graph have been usually studied for
a single agent moving in the graph. For example, the well known Travelling
salesman problem (TSP) or and the Chinese postman problem (CPP) require
an agent to deliver packets to multiple destinations located in the nodes of the
graph or the edges of the graph. The optimization problem of minimizing the
total distance traveled is known to be NP-hard [3] for TSP, but can be solved
in polynomial time for the CPP [18].

When the graph is not known in advance, the problem of exploring a graph
by a single agent has been studied with the objective of minimizing the number
of edges traversed (see e.g. [1,23]). Exploration by a team of two agents that
can communicate at a distance, has been studied by Bender and Slonim [6] for
digraphs without node identifiers. The model of energy-constrained robot was
introduced by Betke et al. [7] for single agent exploration of grid graphs. Later
Awerbuch et al. [4] studied the same problem for general graphs. In both these
papers, the agent could return to its starting node to refuel and between two
visits to the starting node, the agent could traverse at most B edges. Duncan
et al. [15] studied a similar model where the agent is tied with a rope of length
B to the starting location and they optimized the exploration time, giving an
O(m) time algorithm.

For energy-constrained agents without the option of refuelling, multiple
agents may be needed to explore even graphs of restricted diameter. Given a
graph G and k agents starting from the same location, each having an energy
constraint of B, deciding whether G can be explored by the agents is NP-hard,
even if graph G is a tree [20]. Dynia et al. studied the online version of the prob-
lem [16,17]. They presented algorithms for exploration of trees by k agents when
the energy of each agent is augmented by a constant factor over the minimum
energy B required per agent in the offline solution. Das et al. [12] presented
online algorithms that optimize the number of agents used for tree exploration
when each agent has a fixed energy bound B. On the other hand, Dereniowski
et al. [14] gave an optimal time algorithm for exploring general graphs using a
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large number of agents. Ortolf et al. [22] showed bounds on the competitive ratio
of online exploration of grid graphs with obstacles, using k agents.

When multiple agents start from arbitrary locations in a graph, optimizing
the total energy consumption of the agents is computationally hard for several
formation problems which require the agents to place themselves in desired con-
figurations (e.g. connected or independent configurations) in a graph. Demaine
et al. [13] studied such optimization problems and provided approximation algo-
rithms and inapproximability results. Similar problems have been studied for
agents moving in the visibility graphs of simple polygons and optimizing either
the total energy consumed or the maximum energy consumed per agent can be
hard to approximate even in this setting, as shown by Bilo et al. [8].

Anaya et al. [2] studied centralized and distributed algorithms for the infor-
mation exchange by energy-constrained agents, in particular the problem of
transferring information from one agent to all others (Broadcast) and from all
agents to one agent (Convergecast). For both problems, they provided hardness
results for trees and approximation algorithms for arbitrary graphs. The bud-
geted delivery problem was studied by Chalopin et al. [9] who presented hardness
results for general graphs as well as resource-augmented algorithms. For the sim-
pler case of lines, [10] proved that the problem is weakly NP-hard and presented
a quasi-pseudo-polynomial time algorithm. Czyzowicz et al. [11] recently showed
that the problems of budgeted delivery, broadcast and convergecast remain NP-
hard for general graphs even if the agents are allowed to exchange energy when
they meet.

Our Contribution. This is the first paper to study the Returning version of
BudgetedDelivery. We first show that this problem can be solved in O(n +
k log k) time for lines and trees (Sect. 2). This is in sharp contrast to the non-
Returning version which was shown to be weakly NP-hard [10] even on lines.
In Sect. 4, we prove that Returning BudgetedDelivery is NP-hard even for
planar graphs. For arbitrary graphs with arbitrary values of agent budgets, we
present a 2-resource-augmented algorithm and we prove that this is the best
possible, as there exists no (2− ε)-resource-augmented algorithm unless P = NP
(Sect. 5). We show that this bound can be broken when the agents have the same
energy budget and we present a (2−2/k)-resource-augmented algorithm for this
case.

For the non-Returning version of the BudgetedDelivery, we close the gaps
left open by previous research [9,10]. In particular we prove that this variant of
the problem is also strongly NP-hard on planar graphs, while it was known to be
strongly NP-hard for general graphs and weakly NP-hard on trees. We also show
tightness of the 3-resource-augmented algorithm for the problem, presented in
[9]. Finally, in Sect. 6, we investigate the source of hardness for BudgetedDe-
livery and show that the problem becomes easy when the order in which the
agents pick up the message is known in advance.
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2 Returning BudgetedDelivery on the Tree

We study the Returning BudgetedDelivery on a tree and show that it can be
solved in polynomial time. We immediately observe that this problem is reducible
to the Returning BudgetedDelivery on a path: There is a unique s-t path on
a tree and we can move each agent from her starting position to the nearest node
on this s-t path while subtracting from her budget twice the distance traveled.
The path problem now has an equivalent geometric representation on the line:
the source node s, the target node t, and the starting positions of the agents pi

are coordinates of the real line. We assume s < t, i.e., the message needs to be
delivered from left to right.

Without loss of generality, we consider schedules in which every agent i that
moves uses all its budget Bi. Because every agent needs to return to its starting
position, an agent i can carry the message on any interval of size Bi/2 that
contains the starting position pi. For every agent i, let li = pi − Bi/2 denote
the leftmost point where she can pick a message, and let ri = pi + Bi/2 be
the rightmost point to where she can deliver the message. The Returning Bud-
getedDelivery on a line now becomes the following covering problem: Can we
choose, for every i, an interval Ii of size Bi/2 that lies completely within the
region [li, ri] such that the segment [s, t] is covered by the chosen intervals, i.e.,
such that [s, t] ⊆ ∪iIi?

The following greedy algorithm solves the covering problem. The algorithm
works iteratively in rounds r = 1, 2, . . .. We initially set s1 = s. We stop the
algorithm whenever sr ≥ t, and return true. In round r, we pick i∗ having the
smallest ri∗ among all agents i with li ≤ sr < ri, and set sr+1 = min{ri∗ , sr +
Bi∗/2} and Ii∗ = (sr+1 − Bi∗/2, sr+1), and continue with the next round r + 1.
If we cannot choose i∗, we stop the algorithm and return false.

Theorem 1. There is an O(n + k log k)-time algorithm for Returning Bud-
getedDelivery on a tree.

Proof. The reduction from a tree to a path takes O(n) time using breadth-first
search from s and the algorithm greedy can be implemented in time O(k log k)
using a priority queue.

For the correctness, we now show that greedy returns a solution to the cov-
ering problem if and only if there exists one. Greedy can be seen as advancing
the cover of [s, t] from left to right by adding intervals Ii. Whenever it decides
upon Ii, it will set sr to the respective endpoint of Ii, and never ever consider i
again or change the placement of Ii within the boundaries [li, ri]. Thus, whenever
sr ≥ t, the intervals Ii form a cover of [s, t].

We now show that if a cover exists, greedy finds one. Observe first that a
cover can be given by a subset of the agents {i1, . . . , it}, t ≤ k, and by their
ordering (i1, i2, . . .), according to the right endpoints of their intervals Iij

, since
we can reconstruct a covering by always placing the respective interval Iij

at the
rightmost possible position.

Suppose, for contradiction, that greedy fails. Let (i∗1, i
∗
2, . . .) be a minimal

cover of [s, t] that agrees with the greedy schedule (i1, i2, . . .) in the maximum
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Fig. 1. Changing the order of agents i∗j+1 and i∗j+δ in the schedule.

number of first agents i1, . . . , ij . Hence, j + 1 is the first position such that
i∗j+1 �= ij+1. The left endpoints of I∗

j+1 and Ij+1 correspond to sr+1 in our
algorithm. If agent ij+1 does not appear in the solution (i∗1, i

∗
2, . . .), adding ij+1

to that solution and deleting some of the subsequent ones results in a minimal
cover that agrees on the first j +1 agents, a contradiction. If agent ij+1 appears
in the solution (i∗1, i

∗
2, . . .), say, as agent i∗j+δ, then we modify this cover by

swapping i∗j+1 with i∗j+δ. We claim that the new solution still covers [s, t]. This
follows immediately by observing that greedy chose ij+1 to have smallest ri

among all agents that can extend the covering beyond sr+1. Since every agent i
covers at least half of its region [li, ri], we know that i∗j+1 and i∗j+δ together cover
the region [sr+1, ri∗

j+δ
], and therefore by minimality i∗j+δ = i∗j+2. Finally, if we

change the order of the two agents, they will still cover the region [sr+1, ri∗
j+δ

]
(see Fig. 1). �	

3 Resource Augmentation Algorithms

We now look at general graphs G = (V,E). As we will see in the next section,
BudgetedDelivery is NP-hard, hence we augment the budget of each agent by
a factor γ > 1 to allow for polynomial-time solutions. For non-returning agents,
a min {3, 1 + max Bi

Bj
}-resource-augmented algorithm was given by Chalopin

et al. [9]. We first provide a 2-resource-augmented algorithm for returning Bud-
getedDelivery. This is tight as there is no polynomial-time (2 − ε)-resource-
augmented algorithm, unless P = NP (Sect. 5). If, however, the budgets of the
agents are similar, we can go below the 2-barrier: In this case, we present a
(1 + k−2

k max Bi

Bj
)-resource-augmented algorithm. Throughout this section, we

assume that there is no feasible schedule with a single agent, which we can
easily verify.

Preliminaries. We denote by d(u, v) the distance of two points u, v ∈ G.
Assume an agent i with budget Bi starts in u and moves first to v. Which
locations in the graph (vertices and positions on the edges) are then still reach-
able by i so that he has sufficent energy left to move back to u? We define
the ellipsoid E(u, v,Bi) = {p ∈ G | d(u, v) + d(v, p) + d(p, u) ≤ Bi} and the ball
B(u, Bi

2 ) = E(u, u,Bi). It is easy to see that E(u, v,Bi) can be (i) computed
in polynomial time by running Dijkstra’s shortest path algorithm from both u
and v and (ii) represented in linear space: We store all vertices p ∈ V with
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Fig. 2. (left) Feasible schedule. (right)
(
1 + 5

7
max

Bj

Bi

)
-resource-augmented schedule.

p ∈ E(u, v,Bi), and for each edge (p, q) ∈ E with p ∈ E(u, v,Bi), q /∈ E(u, v,Bi)
we store the furthest point of (p, q) still reachable by i.

Theorem 2. There is a polynomial-time 2-resource-augmented algorithm for
Returning BudgetedDelivery.

Proof. Denote by pi the starting position of agent i. We consider the balls Bi :=
B(pi,

Bi

2 ) around all agents, as well as the balls B(s, 0) and B(t, 0) of radius 0
around s and t. We compute the intersection graph GI of the balls, which can
be done in polynomial time. If there is a feasible schedule, then there must be
a path from B(s, 0) to B(t, 0) in GI (for example the path given by the balls
around the agents in the feasible schedule).

If there is no path from B(s, 0) to B(t, 0), then the algorithm outputs that
there is no feasible schedule with non-augmented budgets. Otherwise we can get
a 2-resource-augmentation as follows: Pick a shortest path from B(s, 0) to B(t, 0)
in GI and denote by � ≤ k the number of agents on this path, labeled without
loss of generality 1, 2, . . . , �. For each edge on the shortest path, we specify a
handover point hi ∈ Bi ∩Bi+1 in G (where we set h0 = s and h� = t). Then each
agent i, i = 1, . . . , � walks from its starting position pi to the handover point hi−1

to pick up the message, goes on to the handover point hi to drop the message
there, and returns home to pi. Since hi−1, hi ∈ B(pi,

Bi

2 ), the budget needed by
agent i to do so is at most d(pi, hi−1)+d(hi−1, hi)+d(hi, pi) ≤ Bi

2 +2 · Bi

2 + Bi

2 =
2Bi. �	
Theorem 3. There is a polynomial-time (1 + k−2

k max Bj

Bi
)-resource-augmented

algorithm for Returning BudgetedDelivery.

Proof. We first “guess” the first agent a and the last agent b of the feasible sched-
ule (by trying all

(
k
2

)
pairs). In contrast to Theorem 2, we can in this way get a

2-resource-augmented solution in which a and b only need their original budgets.
Intuitively, we can evenly redistribute the remaining part of B̂a and B̂b among
all k agents, such that for each agent i we have B̂i ≤ Bi + k−2

k max Bj . Without
loss of generality, we assume that agent a walks from its starting position on a
shortest path to s to pick up the message, and that agent b walks home directly
after dropping the message at t. Hence consider the ellipsoids Ba := E(pa, s, Ba)
and Bb := E(pb, s, Bb) as well as the balls Bi := B(pi,

Bi

2 ) around the starting
positions of all other agents and compute their intersection graph GI .
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Fig. 3. (left) A plane embedding of a 3CNF F which is satisfied by (v1, v2, v3, v4) =
(true, false, false, true). (right) Its transformation to the corresponding delivery graph.

We denote by i = 1, . . . , � the agents on a shortest path from Ba to Bb in GI

(if any), where a = 1, b = � ≤ k and we specify the following points: h0 = s,
hi ∈ Bi ∩ Bi+1, and h� = t. If the agents handover the message at the locations
hi, we get a 2-resource-augmentation where the agents 1 and � use only their
original budget. Instead we let them help their neighbours 2 and �− 1 by �−2

� B2

and �−2
� B�−1, respectively. Those agents further propagate the surplus towards

the agent(s) in the middle, see Fig. 2 (right). We achieve a resource augmentation
of 1 + l−2

l max Bj

Bi
≤ 1 + k−2

k max Bj

Bi
. Details are given in the full version of the

paper [5]. �	

4 Hardness for Planar Graphs

In this section, we show that BudgetedDelivery in a planar graph is strongly
NP-hard, both for the Returning version and the non-Returning version. Both
proofs are based on the same reduction from Planar3SAT.

Planar 3SAT. Let F be a conjunctive normal form 3CNF with a set of vari-
ables V = {v1, . . . , vx} and a set of clauses C = {c1, . . . , cy}. Each clause is a
disjunction of at most three literals �(vi) ∨ �(vj) ∨ �(vk), where �(vi) ∈ {vi, vi}.
We can represent F by a graph H(F ) = (B ∪ V,A1 ∪ A2) which we build
as follows: We start with a bipartite graph with the node set N consisting
of all clauses and all variables and an edge set A1 which contains an edge
between each clause c and variable v if and only if v or v is contained in c,
A1 = {{ci, vj} | vj ∈ ci or vj ∈ ci}. To this graph we add a cycle A2 consisting of
edges between all pairs of consecutive variables, A2 = {{vj , vj+1} | 1 ≤ j < x}∪
{vx, v1} . We call F planar if there is a plane embedding of H(F ) which at each
variable node has all paths representing positive literals on one side of the cycle
A2 and all paths representing negative literals on the other side of A2. The
decision problem Planar3SAT of finding whether a given planar 3CNF F is
satisfiable or not is NP-complete, a result due to Lichtenstein [21]. We assume
without loss of generality that every clause contains at most one literal per vari-
able. For an example of such an embedding, see Fig. 3 (left).
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Building the Delivery Graph. We first describe how to turn a plane embed-
ding of a planar 3CNF graph H(F ) into a delivery graph G(F ), see Fig. 3. Only
later we will define edge weights, the agents’ starting positions and their energy
budgets. We will focus on Returning BudgetedDelivery; the only difference
for non-returning agents lie in their budgets, we provide adapted values for non-
returning agents in footnotes.

We transform the graph in four sequential steps: First we dissolve the edge
{vx, v1} and replace it by an edge {vx, vx+1}. Secondly, denote by degH(F ),A1

(v)
the total number of positive literal edges and negative literal edges adjacent to
v. Then we can “disconnect” and “reconnect” each variable node vi (1 ≤ i ≤ n)
from all of its adjacent clause nodes as follows: We delete all edges {{vi, c}} ⊆ A1

and split {vi, vi+1} into two paths pi,true and pi,false, on which we place a total of
degA1

(v) internal literal nodes li,c: If vi is contained in a clause c – and thus we
previously deleted {vi, c} – we place li,c on pi,false and “reconnect” the variable
by adding an edge between li,c and the clause node c. Else if v is contained in
c we proceed similarly (putting the node li,c on pi,true instead). As a third step,
depending on the number of literals of each clause c, we may modify its node:
If c contains only a single literal, we delete the c node. If c contains two literals
�(vi), �(vj), we rename the node to ci,j . If c is a disjunction of three literals
�(vi), �(vj), �(vk), we split it into two nodes ci,j (connected to li,c, lj,c) and cj,k

(connected to lj,c, lk,c). Finally, we place the message on the first variable node
s := v1 and set its destination to t := vx+1.

We remark that all four steps can be implemented such that the resulting
delivery graph G(F ) is still planar, as illustrated in Fig. 3 (in each path tuple
(pi,true, pi,false) the order of the internal nodes follows the original circular order
of adjacent edges of vi, and for each clause c = �(vi) ∨ �(vj) ∨ �(vk) the nodes
ci,j and cj,k are placed close to each other).

Reduction Idea. We show that the message can’t be delivered via any of the
clause nodes. Thus the message has to be routed in each path pair (pi,true, pi,false)
through exactly one of the two paths. If the message is routed via the path pi,true,
we interpret this as setting vi = true and hence we can read from the message
trajectory a satisfiable assignment for F .

Agent Placement and Budgets. We will use greek letters for weights (namely
ζ and δ) when the weights depend on each other or on the input. We place three
kinds of agents on G:

1. Variable agents: x agents which are assigned to the variable nodes v1, . . . , vx.
These agents will have to decide whether the message is delivered via pi,true

or via pi,false, thus setting the corresponding variable to true or to false. We
give all of them a budget of 2ζ.1

1 In the nonreturning version we want agents to have the same “range”, hence we set
their budget to ζ.
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Fig. 4. (left) Two examples of δ-tubes for both versions of BudgetedDelivery. (right)
Agent placement and edge weights on G(F ); agents are depicted by squares.

2. Clause agents: One agent per created clause node, e.g. a clause c containing
three literals gets two agents, one in each of the two clause nodes. We think
of these agents as follows: If in c = �(vi) ∨ �(vj) ∨ �(vk) the literal �(vj) is
false, then clause c needs to send one of its agents down to the corresponding
path node lj,c to help transporting the message over the adjacent “gap” of
size ζ (depicted blue in Figs. 3 (right), 4). A 3CNF F will be satisfiable, if
and only if no clause needs to spend more agents than are actually assigned
to it respectively its node(s) in G(F ). We give all clause agents a budget of
2 · (1 + ζ).2

3. Separating agents: These will be placed in-between the agents defined above,
to ensure that the variable and clause agents actually need to solve the task
intended for them (they should not be able to deviate and help out somewhere
else – not even their own kind). The separating agents will be placed in pairs
inside δ-tubes, which we define next.

Remark 1. Strictly speaking, a reduction without variable agents works as well.
In terms of clarity, we like to think of variable agents as the ones setting the
variables to true or false.

δ-Tubes. We call a line segment a δ-tube if it satisfies the following four prop-
erties: (i) It has a length of δ. (ii) It contains exactly two agents which both
have budget at most δ. (iii) Neither agent has enough energy to leave the line
segment on the left or on the right by more than a distance of δ

3 . (iv) The agents
can collectively transport a message through the line segment from left to right.

δ-tubes exist for both BudgetedDelivery versions, examples are given in
Fig. 4 (left). The reader may think of these examples, whenever we talk about
δ-tubes.

Edge Weights. We define edge weights on our graph G(F ) as follows: All
edges between clause nodes and internal path nodes get weight 1 (in particular
this means that if a clause agent walks to the path, it has a remaining range
of ζ). Each path consists of alternating pieces of length ζ and of δ-tubes. We

2 In the nonreturning version we assign a budget of (1 + ζ) to clause agents.
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choose δ := 4ζ
3 > ζ. This means that neither variable nor clause agents can

cross a δ-tube (because their budget is not sufficiently large). Furthermore the
distance any separating agent can move outside of its residential tube is at most
δ
3 = 4ζ

9 < ζ
2 . In particular separating agents are not able to collectively transport

the message over a ζ-segment, since from both sides they are not able to reach
the middle of the segment to handover the message. At last we set ζ := 1

8 .

Lemma 1 (Returning BudgetedDelivery). A planar 3CNF F is satisfiable
if and only if it is possible to deliver a message from s to t in the corresponding
delivery graph G(F ), such that all agents are still able to return to their starting
points in the end.

Proof (Sketch). “⇒” The schedule is straightforward: Each variable agent
chooses, according to the assignment to vi, the true-path pi,true or the false-
path pi,false. Separating agents and clause agents help wherever they are needed.

“⇐” One can show that the message cannot be delivered via any clause node.
Hence we set vi = true if and only if the message moves through pi,true. Now,
each clause must have one satisfied literal, otherwise its agents could not have
helped to bridge all ζ-segments.

We refer to the full version of the paper for further details:
[5, Appendix A]. �	

The same arguments work for non-Returning BudgetedDelivery as well.
Recall that a delivery graph G(F ) created from a planar 3CNF F is planar. Fur-
thermore the size of G(F ), as well as the number of agents we use, is polynomial
in the number of clauses and variables. The agents’ budgets and the edge weights
are polynomial in ζ, δ and thus constant. Thus Lemma 1 shows NP-hardness of
BudgetedDelivery on planar graphs. Finally, note that hardness also holds
for a uniform budget B: One can simply add an edge of length (B − Bi)/2 to
the starting location of each agent i and relocate i to the end of this edge.3

Theorem 4 (Hardness of BudgetedDelivery). Both versions of Bud-
getedDelivery are strongly NP-hard on planar graphs, even for uniform bud-
gets.

5 Hardness of Resource Augmentation

Main Ideas. We show that for all ε > 0, there is no polynomial-time (2 − ε)-
resource-augmented algorithm for Returning BudgetedDelivery, unless P =
NP. The same holds for (3 − ε)-resource-augmentation for the non-Returning
version. Intuitively, an algorithm which finds out how to deliver the message
with resource-augmented agents will at the same time solve 3SAT. We start by
taking the reduction from Planar3SAT from Sect. 4. However, in addition to
the previous delivery graph construction G(F ), we need to replace the δ-tubes
and ζ-segments in order to take care of three potential pitfalls. We illustrate the
modification into the new graph G′(F ) in Fig. 6:
3 We relocate a non-returning agent by adding an edge of length (B − Bi).
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Fig. 5. L-δ-chains consist of blocks of 6 tubes of exponentially increasing and decreasing
size.

1. In a resource-augmented setting, δ-tubes are no longer able to separate the
clause and variable agents: These agents might be able to cross the δ-tube, or
the separating agents residing inside the δ-tube can help out in the ζ-segments
(there is no value for δ to prevent both). We will tackle this issue below by
replacing δ-tubes by a chain of logarithmically many tubes with exponentially
increasing and decreasing δ-values.

2. In the reduction for the original decision version of BudgetedDelivery,
a clause c with three literals gave rise to two clause nodes ci,j , cj,k that
were adjacent to the same path node lj,c. Hence the agent on ci,j , now with
resource-augmented budget, could pick up the message at lj,c and bring it
close to the second resource-augmented agent stationed at cj,k. This agent
then might transport the message via its own clause node to the distant
literal node lk,c. To avoid this, we replace every ζ-segment adjacent to such a
“doubly” reachable path node lj,c by two small parallel arcs. Both arcs contain
exactly one ζ-segment, reachable from only one clause node (the message can
then go over either arc), as well as a chain of tubes to provide the necessary
separation.

3. A single clause agent stationed at ci,j might retrieve the message from the first
literal node li,c, walk back to its origin and then on to the second literal lj,c,
thus transporting the message over a clause node. This can always be done
by 2-resource-augmented agents; however for (2 − ε)-resource-augmentation
we can prevent this by carefully tuning the weights of the ζ-segments, e.g.
such that (2 − ε) · (1 + ζ) � 2.4

We now give a more formal description of the ideas mentioned above. Recall that
a δ-tube had length δ and contained two agents with budget at most δ each. If
these agents are now γ-resource-augmented, γ < 3, they can move strictly less
than 3δ to the right or to the left of the δ-tube. In the following we want to
uncouple the length of the line segment from the range the agents have left to
move on the outside of the line segment.

L-δ-Chains. We call a line segment an L-δ-chain if it satisfies the following three
properties: (i) Its length is at least L (a constant). (ii) No γ-resource-augmented
agent (1 ≤ γ < 3) contained in the chain has enough energy to leave the line
segment by 3δ or more. (iii) The agents contained in the chain can collectively

4 Non-returning clause agents can do this if they are 3-resource-augmented; and we can
prevent it for (3−ε)-resource-augmentation by setting ζ such that (3−ε)·(1+ζ) � 3
(in fact the value of ζ will be the same as for returning BudgetedDelivery, but
we will use different bounds in the proof).
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Fig. 6. (top-to-bottom) We replace δ-tubes in G(F ) by L-δ-chains in G′(F ).
(left-to-right) We replace each ζ-segment connected to two clause agents by two parallel
arcs.

transport a message through the line segment from left to right (already with
their original budget).

We can create L-δ-chains for both BudgetedDelivery versions simply by
using the respective δ-tubes as a blackbox: We start our line segment by adding a
block of six δ-tubes next to each other, followed by a block of six 2δ-tubes, a block
of six 4δ-tubes and so on until we get a block of length at least 6·2�log L/δ� ·δ > L.
The same way we continue to add blocks of six tubes with lengths decreasing
by powers of 2, see Fig. 5. Obviously properties (i) and (iii) are satisfied. To see
(ii), note that any agent contained in the first or last block of δ-tubes cannot
leave its tube (and thus the L-δ-chain) by 3δ or more. On the other hand, none
of the inner blocks’ agents is able to even cross the preceeding or the following
block of six tubes, since their total length is larger than its budget.

Arc Replacement of ζ-Segments. Next we decouple any pair of clause agents
(stationed at nodes ci,j , cj,k) that can directly go to the same literal node lj,c
(so as not to allow them to transport the message via clause node with their
augmented budgets, depicted in red in Fig. 6 (left)). We replace the adjacent
ζ-segment by two small arcs which represent alternative ways over which the
message can be transported. Each arc consists of one L-δ-chain and of one
ζ-segment, see Fig. 6.

The inner arc begins with the ζ-segment – whose beginning lij,c can be
reached through an edge of length 1 by the first clause agent (stationed at ci,j) –
and ends with the L-δ-chain. The outer arc first has the L-δ-chain and then the
ζ-segment. The node in between these two parts, denoted by lkj,c, is connected
via an edge of length 1 to the second clause agent’s starting position cj,k.

We conclude the replacement with three remarks: Firstly, it is easy to see
that the described operation respects the planarity of the graph. Secondly, we
are able to give values for L and δ in the next subparagraph such that a single
clause agent is still both necessary and (together with agents inside the newly
created adjacent L-δ-chain) sufficient to transport a message over one of the
parallel arcs from left to right. Finally, the clause agent starting at ci,j is no
longer able to meet the clause agent starting at cj,k.

Budgets and Edge Weights. Recall that our agents have the following bud-
gets: separating agents have a budget according to their position in the L-δ-chain,
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variable agents a budget of 2ζ and clause agents a budget of 2(1+ζ).5 Now these
budgets are γ-resource-augmented, with γ < 3. We would like to prevent clause
and variable agents from crossing L-δ-chains or even meeting inside of them,
hence we set L := 9, which shall exceed the augmented budget of every agent by
a factor of more than 2. Furthermore we don’t want separating agents to help
out too much outside of their residential chain, hence we set δ := ζ

9 . A resource-
augmented separating agent can thus walk only as far as 3δ = ζ

3 to the outside
of the tube. In particular, separating agents cannot transport the message over
a ζ-segment.

Next we choose ζ such that an augmented clause agent stationed at a clause
node ci,j is not able to transport the message from li,c to lj,c, not even in collab-
oration with the separating agents that can reach the two literal nodes. We set
ζ := ε

6−ε . The edges {ci,j , li,c} , {ci,j , lj,c} have length 1. In each edge, separat-
ing agents can help by at most 3δ = ζ

3 , leaving at least a distance of 1− ζ
3 for the

clause agent to cover. First note that for 0 < ε < 1, we have ζ = ε
6−ε < ε

5 < 2ε
3

and (6− ε) > 3(2− ε). Hence a γ-resource-augmented clause agent has a budget
of only γ · 2(1+ ζ) = 2(2− ε)(1+ ζ) = 2(2− ε+ (2−ε)ε

6−ε ) < 2(2− 2ε
3 ) < 2(2− ζ) <

4 · (1− ζ
3 ), and thus cannot transport the message via its clause node and return

home in the end.6

Lemma 2 (Resource-augmented Returning BudgetedDelivery). A pla-
nar 3CNF F is satisfiable if and only if it is possible to deliver a message with
(2−ε)-resource-augmented agents from s to t in the corresponding delivery graph
G′(F ), such that the agents are still able to reach their starting point in the end.

Proof (Sketch) We follow the ideas of the proof of Lemma 1, and use the modi-
fications to the graph structure and the weights presented in this section.

Details can be found in [5, Appendix B]. �	
The same arguments work for non-Returning BudgetedDelivery as well,

if we replace the inequalities for returning (2 − ε)-resource-augmented agents
with the corresponding inequalities for non-returning (3−ε)-resource-augmented
agents, given in (see Footnote 6).

Compare the new delivery graph G′(F ) with the original graph G(F ). The
only topological changes we introduced with our replacements were the parallel
arcs replacing the ζ-segments reachable by two clause nodes. We have already
seen that this change respected the planarity of the delivery graph. Relevant
changes to the edge weights and agent numbers, on the other hand, were added

5 In the nonreturning version, variable agents have a budget of ζ and clause agents a
budget of 1 + ζ.

6 For non-returning agents we use (for ε < 2) the inequalities: ζ = ε
6−ε

< ε
4

< ε
2

and
(6 − ε) > 2(3 − ε). Hence a non-returning γ-resource-augmented clause agent has a

budget of γ(1 + ζ) = (3 − ε)(1 + ζ) = 3 − ε + (3−ε)ε
6−ε

< 3 − ε
2

< 3 − ζ = 3 · (1 − ζ
3
),

and thus cannot transport the message via its clause node.
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by replacing δ-tubes with L-δ-chains: Each chain consists of blocks of six δ-
tubes of exponentially increasing size, hence we need a logarithmic number of
tubes per chain, namely O (

log L
δ

)
many. We have fixed the values of L and δ to

L = 9 and δ = ζ
9 . With ζ−1 = 9

ε −1 ∈ Θ(ε−1) we get O (
log L

δ

)
= O(log(ζ−1)) =

O(log(ε−1)) many agents per chain. The number of chains is clearly polynomially
bounded by the number of variables and clauses and the edge weights depend
on ε only as well. Hence we conclude:

Theorem 5 (Inexistence of better resource augmentation for Bud-
geted Delivery). There is no polynomial-time (2−ε)-resource-augmented algo-
rithm for returning BudgetedDelivery and no (3 − ε)-resource-augmented
algorithm for nonreturning BudgetedDelivery, unless P = NP.

6 Conclusions

We gave a polynomial time algorithm for the returning variant of the problem
on trees, as well as a best-possible resource-augmented algorithm for general
graphs. On the other hand, we have shown that BudgetedDelivery is NP-
hard, even on planar graphs and even if we allow resource augmentation. Our
bounds on the required resource augmentation are tight and complement the
previously known algorithm [9] for the non-returning case.

Our results show that BudgetedDelivery becomes hard when transition-
ing from trees to planar graphs. It is natural to investigate other causes for
hardness. Chalopin et al. [9] gave a polynomial algorithm for the non-Returning
version under the assumptions that (i) the order in which the agents move is fixed
and (ii) the message can only be handed over at vertices. Using a dynamic pro-
gram, we are able to drop assumption (ii), allowing handovers within edges [5].
Our result holds for both versions of BudgetedDelivery.

Theorem 6. BudgetedDelivery is solvable in time O(k(n+m)(n log n+m))
if the agents are restricted to a fixed order in which they move.

Corollary 1. For a constant number of agents k, BudgetedDelivery is solv-
able in time poly(n,m) by brute forcing the order of the agents.

An interesting open problem is to understand collaborative delivery of mul-
tiple messages at once. For example, the complexity of the problem on paths
remains open. In this setting, it may be resonable to constrain the number of
agents, the number of messages, or the ability of transporting multiple messages
at once, in order to allow for efficient algorithms. Also, in general graphs, the
problem may not become easy if the order in which agents move is fixed.
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5. Bärtschi, A., Chalopin, J., Das, S., Disser, Y., Geissmann, B., Graf, D., Labourel,
A., Mihalák, M.: Collaborative Delivery with Energy-Constrained Mobile Robots,
arXiv preprint. https://arxiv.org/abs/1606.05538 (2016)

6. Bender, M.A., Slonim, D.K.: The power of team exploration: two robots can learn
unlabeled directed graphs. In: 35th Symposium on Foundations of Computer Sci-
ence, FOCS 1994, pp. 75–85 (1994)

7. Betke, M., Rivest, R.L., Singh, M.: Piecemeal learning of an unknown environment.
Mach. Learn. 18(2), 231–254 (1995)

8. Biló, D., Disser, Y., Gualá, L., Mihal’ák, M., Proietti, G., Widmayer, P.: Polygon-
constrained motion planning problems. In: Flocchini, P., Gao, J., Kranakis, E., der
Heide, F.M. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 67–82. Springer,
Heidelberg (2014)

9. Chalopin, J., Das, S., Mihalák, M., Penna, P., Widmayer, P.: Data delivery by
energy-constrained mobile agents. In: Flocchini, P., Gao, J., Kranakis, E., der
Heide, F.M. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 111–122. Springer,
Heidelberg (2014)

10. Chalopin, J., Jacob, R., Mihalák, M., Widmayer, P.: Data delivery by energy-
constrained mobile agents on a line. In: Esparza, J., Fraigniaud, P., Husfeldt,
T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 423–434.
Springer, Heidelberg (2014)

11. Czyzowicz, J., Diks, K., Moussi, J., Rytter, W.: Communication problems for
mobile agents exchanging energy. In: 23rd International Colloquium on Structural
Information and Communication Complexity SIROCCO 2016 (2016)

12. Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration by energy-
constrained mobile robots. In: 22th International Colloquium on Structural Infor-
mation and Communication Complexity SIROCCO 2015, pp. 357–369 (2015)

13. Demaine, E.D., Hajiaghayi, M., Mahini, H., Sayedi-Roshkhar, A.S., Oveisgharan,
S., Zadimoghaddam, M.: Minimizing movement. ACM Trans. Algorithms 5(3),
1–30 (2009)

14. Dereniowski, D., Disser, Y., Kosowski, A., Pajkak, D., Uznański, P.: Fast collabo-
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Abstract. A set of mobile agents is deployed in the nodes of an edge-
weighted network. Agents originally possess amounts of energy, possibly
different for all agents. The agents travel in the network spending energy
proportional to the distance traversed. Some nodes of the network may
keep information which is acquired by the agents visiting them. The
meeting agents may exchange currently possessed information, as well
as any amount of energy. We consider communication problems when
the information initially held by some network nodes have to be commu-
nicated to some other nodes and/or agents. The paper deals with two
communication problems: data delivery and convergecast. These prob-
lems are posed for a centralized scheduler which has full knowledge of the
instance. It is already known that, without energy exchange, both prob-
lems are NP-complete even if the network is a line. In this paper we show
that, if the agents are allowed to exchange energy, both problems have
linear-time solutions on trees. On the other hand for general undirected
and directed graphs we show that these problems are NP-complete.

1 Introduction

A set of n agents is placed at nodes of an edge-weighted graph G. An edge
weight represents its length, i.e., the distance between its endpoints along the
edge. Initially, each agent has an amount of energy (possibly distinct for different
agents).

Agents walk in a continuous way along the network edges using amount of
energy proportional to the distance travelled. An agent may stop at any point
of a network edge (i.e. at any distance from the edge endpoints, up to the edge
weight). Initially, at the nodes of the graph is stored the information (different
for each node), which may be collected by agents visiting such nodes. Each agent
has memory in which it can store all collected information.

When two agents meet, one of them can transfer a portion of currently pos-
sessed energy to another one. Moreover, two meeting agents exchange their cur-
rently possessed information, so that after the meeting both agents keep in their
memories the union of the information previously held by each of them.
c© Springer International Publishing AG 2016
J. Suomela (Ed.): SIROCCO 2016, LNCS 9988, pp. 275–288, 2016.
DOI: 10.1007/978-3-319-48314-6 18
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We consider two problems:

1. Data delivery problem: Given two nodes s, t of G, is it possible to transfer
the initial packet of information placed at node s to node t?

2. Convergecast problem: Is it possible to transfer the initial information of
all nodes to the same node?

We will look for schedules of agent movements which will not only result in
completing the desired task, but also attempt to maximize the unused energy.
We call such schedules optimal. We conservatively suppose that, whenever two
agents meet, they automatically exchange the entire information they hold. This
information exchange procedure is never explicitly mentioned in our algorithms,
supposing, by default, that it always takes place when a meeting occurs.

1.1 Our Results

We show that both communication have linear time algorithms on trees. On
the other hand, for general undirected and directed graphs we show that these
problems are NP-complete.

1.2 Related Work

Recent development in the network industry triggered the research interest in
mobile agents computing. Several applications involve physical mobile devices
like robots, motor vehicles or various wireless gadgets. Mobile agents are some-
times interpreted as software agents, i.e., programs migrating from host to host
in a network, performing some specific tasks. Examples of agents also include
living beings: humans (e.g. soldiers or disaster relief personnel) or animals. Most
studied problems for mobile agents involve some sort of environment search or
exploration (cf. [3,8,10–12]). In the case of a team of collaborating mobile agents,
the challenge is to balance the workload among the agents in order to minimize
the exploration time. However this task is often hard (cf. [13]), even in the case
of two agents in a tree, [6]. The tree exploration by energy-constrained mobile
robots has been considered in [10].

The task of convergecast is important when agents possess partial informa-
tion about the network (e.g. when individual agents hold measurements per-
formed by sensors located at their positions) and the aggregate information is
needed to make some global decision based on all measurements. The converge-
cast problem is often considered as a version of the data aggregation question
(e.g. [16,17]) and it has been investigated in the context of wireless and sensor
networks, where the energy consumption is an important issue (cf. [4,15]).

The power awareness question has been studied in different contexts. Energy
management of (not necessarily mobile) computational devices has been studied
in [2]. To reduce energy consumption of computer systems the methods proposed
include power-down strategies (see [2,5,14]) or speed scaling (cf. [18]). Most of
research on energy efficiency considers optimization of overall power used. When
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the power assignments are made by the individual system components, similar
to our setting, the optimization problem involved has a flavor of load balancing
(cf. [7]).

The problem of communication by energy-constrained mobile agents has been
investigated in [1]. The agents of [1] all have the same initial energy and they
perform efficient convergecast and broadcast in line networks. However the same
problem for tree networks is proven to be strongly NP -complete in [1].

The closely related problem of data delivery, when the information has to
be transmitted between two given network nodes by a set of energy constrained
agents has been studied in [9]. This problem is proven to be NP -complete in [9]
already for line networks, if the initial energy values may be distinct for different
agents. However, in the setting studied in [1,9], the agents do not exchange
energy. In the present paper we show that the situation is quite different if the
agents are allowed to transfer energy between one another.

2 The Line Environment

In this section we start with a line environment and suppose that we are given
a collection of agents {1, 2, . . . , n} on the line. Each agent i is initially placed at
position ai on the line and has initial energy ei.

2.1 Data Delivery on the Line

We start with the delivery problem from point s to t. Assume that ai < aj

for i < j and s < t. Indeed, in this case w.l.o.g. we may replace many agents
starting at the same point may by a single agent holding the sum of their energy
amounts.

The problem can be immediately reduced to the situation s ≤ a1, an ≤ t.
Otherwise, the agents on the left-hand side of s (starting from the leftmost
one) walk left-to-right collecting energy of the encountered other agents. If some
energy can be brought this way to s, we obtain an extra agent which will start at
s. Symmetrically, the agents on the right-hand side of t act in order to possibly
bring the maximal amount of energy to point t. It is easy to see that this is
the best use of agents placed outside the interval [s, t]. Consequently, we may
assume s ≤ a1, an ≤ t.

Our first algorithm is only a decision version. Its main purpose is to show
how certain useful table can be computed; all subsequent algorithms are based
on computing similar type of tables.

Consider the partial delivery problem Di, in which agents larger than i are
removed, together with their energy, and the goal is to deliver the packet from
point a1 to point ai. We say that the problem Di is solvable iff such a delivery
is possible.

We define the following table
−→
Δ :

– If Di is not solvable then
−→
Δi = −δ, where δ is the minimal energy which

needs to be added to ei (to the energy of i-th agent) to make Di solvable.
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– If Di is solvable then
−→
Δi is the maximal unused energy which can remain in

point ai after delivering the packet from a1 to ai. Note that it is possible that−→
Δi > ei since during delivery the unused energy of some other agents can be
moved to point ai.

Assume that points s and t are the starting points s = a0 and t = an+1

of virtual dummy agents 0 and n + 1, respectively, each having zero energy.
Therefore, we may assume that the original positions of the agents are s = a0 ≤
a1 < a2 < a3 < . . . < an ≤ t = an+1.

We have the following decision algorithm.

ALGORITHM Delivery-Test-on-the-Line ;
1. A := e0 = 0; a0 := s; an+1 := t; en+1 := 0;

2. for i = 1 to n + 1 do

3. d := ai − ai−1;

4. if A ≥ d then A := A − d

5. else if A ≥ 0 then A := −2(d − A)

6. else A := A − 2d;

7. A := A + ei;
−→
Δi := A;

8. return (A ≥ 0) ;

Example 1. Assume

[a0, a1, . . . , a4] = [0, 10, 20, 30, 40, 50], [e0, e1, . . . e4] = [0, 24, 10, 40, 0].

Then (assuming, by convention,
−→
Δ0 = 0, see also Fig. 1) we have

−→
Δ = [0, 4, −2, 18, 8].

Remark. The values of
−→
Δi are not needed to solve the decision-only version.

However they will be useful in creating the delivery schedule and also in the
convergecast problem.

Lemma 2. The algorithm Delivery-Test-on-the-Line correctly computes
the table

−→
Δ (thus it solves the decision version of the delivery problem) in linear

time.

Proof. We prove by induction on i, that the value of
−→
Δi is correctly computed

in line 7 of the algorithm.
Suppose first the case i = 1. In the case a0 = a1, as A = e0 = 0, in lines

4 and 7 we compute the value of A =
−→
Δ1 = e1, which is correct as agent 1

does not need to use any energy to pick up the packet at point a0. Otherwise,
if a0 < a1 we have A = 0 and A < d, so lines 5 and 7 are executed, in which
case we have A =

−→
Δ1 = e1 − 2d. As agent 1 needs to cover distance d in both

directions to bring the packet to point a1 this is correct, independently whether
the computed value negative or not.

Suppose now, by inductive hypothesis, that the algorithm computed correctly
A =

−→
Δi−1 in the previous iteration. There are three cases:
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Case 1 (line 4 of the algorithm). The instance Di−1 was solvable and after
moving the packet from a1 to ai−1 the maximal remaining energy was

−→
Δi−1.

As in this case we have
−→
Δi−1 = A ≥ d, the energy

−→
Δi−1 is sufficient to move

the packet from ai−1 to ai. Consequently, we spent d energy to travers the
distance d in one direction and we have

−→
Δi =

−→
Δi−1 − d + ei as correctly

computed in lines 4 and 7.

Case 2 (line 5). The instance Di−1 was still solvable but after moving the
packet from a1 to ai−1 the remaining energy

−→
Δi−1 is not sufficient to reach

ai without help from agents to the right of ai−1. Then the (i − 1)-st agent
moves only one-way by distance

−→
Δi−1. The remaining distance d − −→

Δi−1 to
point ai should be covered both-ways from ai. Hence we need to use the
amount of 2(d − −→

Δi−1) energy, which is expressed by statement 5. The value
of

−→
Δi is computed correctly independently whether the addition of ei makes

it positive or not.

Case 3 (line 6). In this case the instance Di−1 was not solvable, i.e. the agents
1, 2, . . . , i − 1 could not deliver the packet to point ai−1. Consequently, the
interval [ai−1, ai] has to be traversed entirely in both direction and we obtain−→
Δi =

−→
Δi−1 − 2d + ei, which is correctly computed in lines 6 and 7.

The cases correspond to the statements in the algorithm, and show its correct-
ness. This completes the proof.

Once the values of
−→
Δi are computed, the schedule describing the behaviour of

each agent is implicitly obvious, but we give it below for reference. Note that
the action of each agent ai is started once the process involving lower-numbered
agents has been completed. We are not interested in this paper in finding the
shortest time to complete the schedule (allowing agents to work in parallel).

ALGORITHM Delivery-Schedule-on-the-Line;

{ Delivering packet from s to t }
pos := s;

for i = 1 to n do

if
−→
Δi ≥ 0 and pos < ai then

1. The i-th agent walks left collecting energy of all encountered
agents until arriving at the packet position. It picks up the packet.

2. The i-th agent walks right collecting energy of all encountered
agents until exhausting its energy or reaching t.

3. The i-th agent leaves the packet at the actual position pos.

Delivery is successful iff pos = t;

Figure 1 illustrates the execution of the above algorithm for Example 1.
We conclude with the following theorem.
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Fig. 1. Schedule of agent movements for ai’s and energies given in Example 1.

Theorem 3. In linear time we can decide if the information of any agent can
be delivered to any other agent and, if it is possible, we find the centralized
scheduling algorithm which performs such a delivery.

2.2 Convergecast on the Line

The convergecast consists in communication in which the union of initial infor-
mation of all nodes arrives to the same node. In some other papers (e.g. [1]),
the convergecast problem consists in determining whether the union of the entire
information may be transferred to the same agent. However, for energy exchang-
ing agents, this is not a problem: if convergecast is possible then any agent may
be its target, as agents may swap freely when meeting.

We present below the algorithm finding if convergecast is possible. We will
use algorithm Delivery-Test-on-the-Line to compute the values of

−→
Δi as

defined before, assuming that s = a1 and t = an. Similarly we denote by
←−
Δi

the values of the energy potential at point ai that the symmetric algorithm
would compute while transferring the packet initially situated at the point an

towards the target position at ai. Therefore,
←−
Δi equals the deficit or the surplus

of energy during the transfer of information initially held by agent n to agent i
using agents i, i + 1, · · · , n.

ALGORITHM Convergecast-on-the-Line;

1. For all i = 1, 2, · · · , n compute the values of
−→
Δi and

←−
Δi representing the

energy potentials at ai, for deliveries from a1 to ai and an to ai, respectively

2. for i = 1 to n do

3. if
−→
Δi ≥ 0 ∧ ←−

Δi+1 ≥ 0 ∧ −→
Δi +

←−
Δi+1 − (ai+1 − ai) ≥ 0 then

4. return Convergecast possible;

5. return Convergecast not possible;

We have the following theorem.

Theorem 4. Algorithm Convergecast-on-the-Line in O(n) time solves the
convergecast problem.

Proof. The convergecast is possible if and only if the information of agent a1

and the information of agent an may be transferred to the same point of the
line. This is equivalent to the existence of a pair of agents i and i + 1, such
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that transferring the information from point a1 to ai using agents 1, 2 · · · , i
results in a surplus of energy brought to point ai, as well as that transferring
the information from point an to ai+1 using agents n, n− 1 · · · , i+1 results in a
surplus of energy brought to point ai+1. Moreover, the sum of these two surpluses
of energy must be sufficient to complete a walk along the entire segment [ai, ai+1]
permitting agents i and i + 1 to meet. This is exactly what is verified at line 3
of algorithm Convergecast-on-the-Line.

An interested reader may observe, that the condition of the if clause from line
3 may be simplified to

−→
Δi+

←−
Δi+1−(ai+1−ai) ≥ 0 as in such case the convergecast

is also possible although the convergecast point may not be inside the interval
[ai, ai+1]. However, the current condition at line 3 permits to identify all points of
the environment to which the union of all node information may be transported.
We call such points convergecast points. Indeed, if

−→
Δi +

←−
Δi+1 − (ai+1 − ai) = 0,

then there exists a unique convergecast point inside the interval [ai, ai+1]. The
surplus of energy permits to deliver the convergecast information to an interval
of the line larger than a single point. We have the following Corollary.

Corollary 5. If the condition in line 3 of algorithm Convergecast-on-the-
Line is true, then the set of convergecast points of the line equals [ai+1 −←−
Δi+1, ai +

−→
Δi].

3 The Tree Environment

3.1 Data Delivery in the Tree

The technique developed for delivery in lines can be extended easily to delivery
in undirected trees. In this case, the agents are placed at the nodes of the tree.
Observe that from the original tree we can remove subtrees which do not contain
s, t or any agents. Consequently, we obtain a connected tree whose every leaf
either contains s or t or an initial position of some agent.

The delivery problem for a tree is easily reducible to the case of a line.

Theorem 6. We can solve delivery problem and construct delivery-scenario on
the tree in linear time.

Proof. Consider the path π in the tree T connecting s with t. Suppose we remove
from T all edges of path π. The tree splits into several subtrees anchored at nodes
of π. For each such subtree we direct all edges towards the root, which is a node
of π. The agents initially present at the leaves of such trees are walking up along
the directed paths towards their roots accumulating energies at intermediate
nodes. To avoid having two agents walking along the same edge it is sufficient to
move agents present at leaves only and remove every such edge after the move
is made. Agents having energy use it during their walk bringing the remainder
to the intermediate nodes. Agents with zero energy are moved freely bringing
no energy. The process terminates when the subtree is reduced to a single root
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belonging to path pi. This way we optimize the energy that can be brought to
path pi. The problem of the delivery on the tree is now reduced to the delivery
on the line π. Consequently, all steps of this construction may be computed in
linear time. This completes the proof.

3.2 Convergecast on the Tree

In this section we extend to the case of trees the basic ideas developed for the
problem of convergecast for the line environment. The tables

←−
Δ and

−→
Δ for lines

were computed locally, looking only at neighboring nodes. Simiarly, the values
of the corresponding table

−→
Δ for a node in a tree is computed looking at the

neighbors of this node. However, as the flow of the information passing through
node v can be made in dv directions, where dv is the degree of v, for each node
v we will compute dv different values of Δ. For this purpose, though the input
tree is undirected, we will consider direction of edges. For each undirected edge
(u, v) we consider two directed edges u → v, v → u. We define the subtree Tv→u

as the connected component containing v and resulting by removing from T the
edge (v, u), see Fig. 2. Observe that at the moment of convergecast, there are two
agents meeting at a point of some edge, that we call convergecast point, where
these agents start possessing the initial information of all nodes.

Fig. 2. Testing if there is a convergecast point on the undirected edge (u, v) is reduced to
computation of the costs Δu→v and Δv→u of moving all packets in the trees T2 = Tu→v

and T1 = Tv→u.

In order to compute all needed values of Δ, for each directed edge u → v
of the tree we define Δu→v as the energy potential of moving all packets from
the subtree Tu→v to its root u without interacting with any node outside Tu→v.
More exactly, if Δu→v ≥ 0, then it represents the maximal amount of energy
that can be delivered to u, together with all data packets originated at the nodes
of Tu→v. Observe that, if Tu→v initially does not contain any agents, then Δu→v

equals twice the sum of weights of all edges of Tu→v. Indeed, in such case, the
delivery must be performed by an agent starting at u and performing the DFS
traversal of Tu→v. If Tu→v initially contains some agents, the value of Δu→v is
smaller, but always equal at least the sum of weights of its edges. If Δu→v < 0
then −Δu→v is the minimal amount of energy that we need to deliver to u by



Communication Problems for Mobile Agents Exchanging Energy 283

some agent, initially outside Tu→v, so that this agent can bring to node u all data
packets from the nodes of Tu→v. In both cases, will be used all agents initially
present inside Tu→v as well as their entire energy.

In order to correctly compute the values of Δ we define an order in which
the consecutive directed edges of T will be treated by our algorithm. We denote
x → y ≺ y → z, when x �= z, meaning that, for consecutive edges, an edge ending
at a node precedes (according to relation ≺) an edge starting at this node.

Observation 1. The relation ≺ in a tree is a partial order and it can be extended
to a linear order X in O(n) time.

We propose the following algorithm.

ALGORITHM Convergecast-on-the-Tree(T );

1. Compute a linear order X of directed edges of T according to relation ≺.

2. for each directed edge u → v taken in order X do

3. Compute Δu→v;

4. for each undirected edge (u, v) of T do

5. if (Δu→v ≥ 0) ∧ (Δv→u ≥ 0) ∧ (Δu→v + Δv→u ≥ weight(u, v))

6. then return Convergecast is possible

7. return Convergecast is not possible

The values of Δu→v are computed by the following procedure.

PROCEDURE Compute Δu→v;

1. Δu→v := eu; {initial energy of node u}
2. for each undirected edge x → u, such that x �= v do

3. if Δx→u ≥ weight(x, u)

4. then Δu→v := Δu→v + Δx→u − weight(x, u)

5. else if Δx→u > 0

6. then Δu→v := Δu→v + 2 ∗ (Δx→u − weight(x, u))

7. else Δu→v := Δu→v + Δx→u − 2 ∗ weight(x, u)

We have the following theorem:

Theorem 7. Algorithm Convergecast-on-the-Tree in linear time solves
the convergecast problem for trees.

Proof. We show first the following claim:

Claim:, The for loop from line 2 of the algorithm correctly computes the value
of Δu→v for every directed edge u → v.

The proof of the claim goes by induction on the consecutive iterations of the
for loop from line 2. Consider the first directed edge u → v of X. As the tree
Tu→v is then composed of a single node, we obtain correctly Δu→v = eu, i.e. the
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initial energy of node u. The claim is also true for any other edge u → v, treated
later by the for loop of line 2, such that u is a terminal node.

Consider now the case when the for loop from line 2 takes an edge u → v for
a non-terminal node u. Let v1, v2, · · · , vp be all nodes adjacent to u, such that
vi �= v, for i = 1, · · · , p. Note that, at that moment, the values of Δvi→u for all
i = 1, · · · , p have been already computed. Observe that, bringing packets from
all vi �= v, i = 1, · · · , p to u needs to be done across the respective edges vi → u,
sometimes bringing the unused energy to u and other times using some energy
from Δu→v to traverse twice edge (vi, u), or its portion, by an agent coming
from u.

Take any vi and suppose first that Δvi→u ≥ weight(vi, u). Then by inductive
assumption, the agents present at Tvi→u can perform the convergecast to vi
bringing there the amount of Δvi→u extra energy. This energy is sufficient to
transfer all packets of Tvi→u through edge (vi, u) and the remaining amount
of Δvi→u − weight(vi, u) energy is accumulated at Δu→v, which is correctly
computed at line 4 of procedure Compute Δu→v.

Suppose now, that Δvi→u ≤ 0. In order to bring all packets of Tvi→u to u, an
agent present at u must traverse the edge u → vi, bring the packets to node using
−Δvi→u extra energy and then traverse the edge (u, vi) in the opposite direction
vi → u. For this purpose is needed the extra energy of −Δx→u+2∗weight(x, u),
which is correctly suppressed from Δu→v at line 7 of the procedure.

Consider now the remaining case when 0 < Δvi→u < weight(vi, u). In this
case, all packets of Tvi→u are brought to node vi by some agent initially present
within Tvi→u, but this agent does not have enough energy to traverse edge vi → u
by itself. Such agent will use its entire energy of Δvi→u to traverse a portion
of edge vi → u and some other agent need to come from u and to traverse the
other portion in both directions in order to transfer the packets to u. The energy
needed by the second agent equals 2∗(weight(vi, u)−Δvi→u), which is correctly
suppressed from Δu→v at line 6 of the procedure. This completes the proof of
the claim.

To complete the proof, consider the moment when in an optimal convergecast
algorithm one agent obtains the union of the initial information of all nodes of
the network. This happens while two agents meet on some edge (u, v), one of
them carrying the union of information from the subtree Tu→v, and the other
one - from the subtree Tv→u. These agents need to have enough positive energy
to meet within the edge (u, v). This is equivalent to the condition tested in line
5 of the algorithm.

The condition from line 5 of algorithm Convergecast-on-the-Tree per-
mits to decide only if the convergecast is possible. However, similarly to the line
case, an interested reader may observe that one can easily identify the set of all
convergecast points. For this purpose we define the set of Du,v(d) containing a
subset of points from the edges of T . Consider a point p and the simple path
Π(u, p) of T joining p with u. We define p /∈ Du,v(d) if the path Π(u, p) goes in
the direction of edge (u, v) and its length exceeds d, i.e. |Π(u, p)| > d. All other
points of T belong to Du,v(d). We have the following corollary.
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Corollary 8. If the condition in line 5 of algorithm Convergecast-on-
the-Tree is true, then the set of all convergecast points of the tree equals
Du,v(Δu→v) ∩ Dv,u(Δv→u).

4 NP-Completeness for digraphs and graphs

We use the following NP-complete problem:

Integer Set Partition (ISP): Given set X = {x1, x2, . . . , xn} of positive inte-
ger values verify whether X can be partitioned into two subsets with equal total
sums of values.

We have the following theorem.

Theorem 9. The delivery and convergecast problems are NP-complete for gen-
eral directed graphs.

Proof. Denote E =
∑n

i=1 xi. Given an instance of the ISP problem, we construct
the following graph GX (see Fig. 3). The set of n+3 nodes of GX consists of three
nodes s, t, a and the set of nodes V = {v1, v2, . . . , vn}. Each node vi contains a
single agent i having an initial energy e = xi, for i = 1, 2, . . . , n. The weights
of edges outgoing from nodes of V are w(vi → s) = xi/3 and w(vi → a) = 0
for i = 1, 2, . . . , n. Moreover we have w(s → a) = E/3 and w(a → t) = E/2.
Consider a delivery from s to t. W.l.o.g. we can suppose that this is done by
some agent i, which must traverse the path vi → s → a → t. As no agent can
do it using only its own energy (otherwise xi ≥ 5E/6 and the ISP trivially has
no solution), some other agents of the collection must walk to s and some other
ones must go directly to a, in order to deliver to agent i additional energy needed
to complete its path vi → s → a → t.

Assume that X1, X2 are the sets of agents which directly move to s and a,
respectively. Let

α =
∑

i∈X1

xi, β =
∑

i∈X2

xi

Hence the energy delivered to s, unused by the agents X1 incoming to s, is 2
3α.

As this energy must be sufficient to traverse at least edge s → a, we have

2
3
α ≥ E/3 (1)

Consider now the maximal energy, which may be available to agent i at point a.
It is equal to the sum of energy β, which is brought to point a by agents X2, and
the energy unused by agent i, ending its traversal of edge s → a, which equals
2α/3 − E/3. As the sum of these energies must suffice to traverse edge a → t of
weight E/2 and α + β = E we have

E

2
≤ β +

2
3
α − E/3 =

1
3
α +

2
3
β =

E

3
+

1
3
β (2)
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Fig. 3. Delivery from s to t is possible iff the set of weights xi can be partitioned into
two sub-sets of the same sum.

From (1) we have α ≥ E/2 and (2) leads to β ≥ E/2, which implies α = β = E/2.
Consequently, the delivery from s to t in graph GX is possible if and only

if the given instance of the integer partition problem is solvable. This implies
NP -completeness of the delivery problem.

As t is the only node having paths incoming from all other nodes, the con-
vergecast for GX implies the delivery from s to t, hence the convergecast problem
is also NP -complete.

Theorem 10. The delivery and convergecast problems are NP-complete for gen-
eral undirected graphs.

Proof. Consider graph HX - an undirected version of the graph from the previous
proof (see Fig. 4). Increase the energy of every agent by E, i.e. agent i, initially
placed at node vi, now has energy E + xi, for i = 1, 2, . . . , n. Moreover increase
by E the weight of each edge, which is incident to node vi, i.e. w(s, vi) = E+xi/3
and w(vi, a) = E, for i = 1, 2, . . . , n.

Delivery. Consider delivery from s to t. Observe that no edge incident to vi, for
i = 1, 2, . . . , n, can be used twice. Indeed, in order to transfer energies between
agents they have to meet moving from their initial positions. However, at the
moment of such meeting the sum of the remaining energies is smaller than E,
which does not permit to traverse any edge incident to xi for the second time.
Clearly traversing directed edges a → s and t → a is also useless, hence the
delivery from s to t in graph HX is equivalent to the respective delivery in GX .

Convergecast. If we consider t as the convergast node, the conergecast problem
is equivalent to the delivery from s to t, which implies its NP -completeness.
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Fig. 4. The undirected version of the graph from Fig. 3. The weights of nodes vi and
lengths of edges incident to these nodes are increased by E.

5 Final Remarks

It is somewhat remarkable that, without energy exchange, even the simplest
problem of data delivery is NP-complete in the simplest environment of the line,
while, as we have shown in this paper, considered communication problems with
energy exchange are solvable in linear time even for tree networks. On the other
hand, it is not surprising that energy exchange in general graphs does not help
and the problems are NP-complete.

There remain interesting open problems using energy-exchanging mobile
agents for other communication protocols, like broadcast or gossiping. Observe
that, in the case of data delivery and convergecast, each point of the tree is
traversed at least once and at most twice (once in each direction) in the optimal
solutions. However, in the case of broadcast, i.e. when the information of one
node must be delivered to all other nodes of the tree, some tree edges need to
be traversed by several agents. E.g., this is the case of weighted star with many
agents starting at the same leaf. The problem of gossiping is even more involved.

An interested reader may try to extend the proposed solutions to the case
when the data delivery needs to be performed from a given subset of nodes into
another subset. Further possible extension is to realize one-to-one delivery using
a configuration of energy-exchanging agents, i.e. when each of n source nodes
must deliver to a specific target.
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Abstract. In broadcasting, one node of a network has a message that
must be learned by all other nodes. We study deterministic algorithms for
this fundamental communication task in a very weak model of wireless
communication. The only signals sent by nodes are beeps. Moreover, they
are delivered to neighbors of the beeping node in an asynchronous way:
the time between sending and reception is finite but unpredictable. We
first observe that under this scenario, no communication is possible, if
beeps are all of the same strength. Hence we study broadcasting in the
bivalent beeping model, where every beep can be either soft or loud. At
the receiving end, if exactly one soft beep is received by a node in a
round, it is heard as soft. Any other combination of beeps received in a
round is heard as a loud beep. The cost of a broadcasting algorithm is
the total number of beeps sent by all nodes.

We consider four levels of knowledge that nodes may have about the
network: anonymity (no knowledge whatsoever), ad-hoc (all nodes have
distinct labels and every node knows only its own label), neighborhood
awareness (every node knows its label and labels of all neighbors), and
full knowledge (every node knows the entire labeled map of the network
and the identity of the source). We first show that in the anonymous
case, broadcasting is impossible even for very simple networks. For each
of the other three knowledge levels we provide upper and lower bounds
on the minimum cost of a broadcasting algorithm. Our results show
separations between all these scenarios. Perhaps surprisingly, the jump
in broadcasting cost between the ad-hoc and neighborhood awareness
levels is much larger than between the neighborhood awareness and full
knowledge levels, although in the two former levels knowledge of nodes
is local, and in the latter it is global.

Keywords: Algorithm · Asynchronous · Broadcasting · Deterministic ·
Graph · Network · Beep

1 Introduction

The background and the problem. Broadcasting is a fundamental communi-
cation task in networks. One node of a network, called the source, has a message
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that must be learned by all other nodes. We study deterministic algorithms for
this well-researched task in a very weak model of wireless communication. The
only signals sent by nodes are beeps. Moreover, they are delivered to neighbors of
the beeping node in an asynchronous way: the time between sending and recep-
tion is finite but unpredictable. Our aim is to study how the combination of two
weaknesses of the communication model, very simple and short messages on the
one hand, and the asynchronous way of delivery on the other hand, influences
efficiency of communication. Each of these two model weaknesses separately has
been studied before. Synchronous broadcasting and gossiping with beeps was
studied in [7]. Asynchronous broadcasting in the radio model, where large mes-
sages can be sent in a round, was investigated in [3,4,20]. To the best of our
knowledge, the combination of the two model weaknesses, i.e., very short mes-
sages and asynchronous delivery, has never been studied before.

We first observe that under this very harsh scenario, no communication is
possible, if beeps are all of the same strength (see Sect. 2). Hence we study
broadcasting in the asynchronous bivalent beeping model, where every beep can
be either soft or loud, as this is, arguably, the weakest model under which asyn-
chronous wireless broadcasting can be performed. At the receiving end, if exactly
one soft beep is received by a node in a round, it is heard as soft. Any other
combination of beeps received in a round is heard as a loud beep. The cost of
a broadcasting algorithm is the total number of beeps sent by all nodes. This
measures (the order of magnitude of) the energy consumption by the network, as
the energy used to send a loud beep can be considered to be a constant multiple
of that used to send a soft beep.

The model. Communication proceeds in rounds. In each round, a node can
either listen, i.e., stay silent, or send a soft beep, or send a loud beep. For any
beep sent by any node, an omniscient asynchronous adversary chooses a non-
negative integer t, and delivers it to all neighbors of the sending node t rounds
later. The delivery delay at all neighbors is the same for a given beep, but may
be different for different beeps of the same node and for beeps of different nodes.
The only rule that the adversary has to obey regarding delivery of different
beeps sent by the same node, is that they must be delivered in the same order
as they were sent, and cannot be collapsed in delivery, i.e. two beeps cannot be
delivered as one beep. This type of asynchronous adversary was called the node
adversary in [4] and the strong adversary in [3]. The motivation is similar as
in [3,4]. Nodes execute the broadcasting protocol concurrently with other tasks.
Beeps to be sent by a node are prepared for transmission (stored), and then each
beep (soft or loud) is transmitted in order. The (unknown) delay between these
actions is decided by the adversary. In our terminology, storing for transmission
corresponds to sending and actual transmission corresponds to simultaneous
delivery to all neighbors. We assume that, at short distances between nodes, the
travel time of the beep is negligible. The delay between storing and transmitting
(in our terminology, between sending and delivery) depends on how busy the
node is with other concurrently performed computational tasks.
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At the receiving end, a node can hear something only if it is silent in the
delivery round. If exactly one soft beep is delivered to a node in a round, it
is heard as soft. Any other combination of beeps delivered to a node from its
neighbors in a round (a single strong beep, or more than one beep of any kind) is
heard as a loud beep. This way of modeling reception corresponds to a threshold
in the listening device: the strength of a single soft beep is below the threshold,
and the strength of a loud beep, or the combined strength of more than one beep
is above the threshold. The cost of a broadcasting algorithm is the total number
of beeps sent by all nodes.

The network is modeled as an n-node simple connected undirected graph,
referred to as graph. We use terms “network” and “graph” interchangeably. We
consider four levels of knowledge that nodes may have about the network:
1. anonymous networks: nodes do not have any labels and know nothing about
the network;
2. ad-hoc networks: all nodes have distinct labels and every node knows only its
own label;
3. neighborhood-aware networks: all nodes have distinct labels, and every node
knows its label and labels of all neighbors;
4. full-knowledge networks: all nodes have distinct labels, every node knows the
entire labeled map of the network and the identity of the source.

The messages to be broadcast are from some set of size M , called the message
space. Without loss of generality, let the message space be the set of integers
{0, . . . , M − 1}. Except for the anonymous networks, all nodes have different
labels from the set of integers {0, . . . , L − 1}, called the label space.

Our results. Our aim is to study how different levels of knowledge about the
network influence feasibility and cost of broadcasting in the asynchronous biva-
lent beeping model. We first show that, in the anonymous case, broadcasting is
impossible even for very simple networks. For each of the other three knowledge
levels, broadcasting is feasible, and we provide upper and lower bounds on the
minimum cost of a broadcasting algorithm, in terms of the sizes of the network,
of the message space and of the label space. Showing an upper bound UB on
the cost of broadcasting at a given knowledge level means showing an algorithm
which accomplishes broadcasting at this cost, for any network with this knowl-
edge level, and any message to be broadcast. Showing a lower bound LB means
that, for any algorithm of lower cost, there is some network at this knowledge
level, and some message for which the algorithm fails.

For ad-hoc networks we give an algorithm of cost 2O(L+M)21. Since this
cost is very large, it is natural to ask if there are broadcasting algorithms of
cost polynomial in L and M . The answer turns out to be negative: indeed, we
prove a lower bound of Ω(2L) on the cost of any broadcasting algorithm in ad-
hoc networks. For neighborhood-aware networks we prove an upper bound of
O(n log M + e log L), where n is the number of nodes and e is the number of

1 If one of the parameters, L or M , is known to the nodes, this complexity can be
decreased to 2O(LM) (see Sect. 4).
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edges, and a lower bound of Ω(n log M + n log log L). Finally, for full-knowledge
networks, we provide matching upper and lower bounds of Θ(n log M).

Note that the above bounds show separations, in terms of broadcasting
cost, between all the knowledge levels, in the case often appearing in appli-
cations, when the message space is some predetermined dictionary independent
of the network, i.e., its size M is O(1). Indeed, since L ≥ n, the lower bound
Ω(2L) for ad-hoc networks exceed the (worst-case) upper bound O(n2 log L) for
known-neighborhood networks, and the lower bound Ω(n log log L) for known-
neighborhood networks exceed the tight bound Θ(n) for full-knowledge networks.

It is interesting to compare the sizes of the two broadcasting cost jumps: the
jump between ad-hoc and known-neighborhood networks, and the jump between
known-neighborhood and full-knowledge networks. We illustrate it for the com-
monly assumed case, when the size L of the label space is polynomial in the size
n of the network (and the size of the message space is O(1), as before). The first
jump is at least from Ω(2n) to O(n2 log n), i.e., exponential in n. The second
jump is at most from O(n2 log n) to Θ(n), i.e., polynomial in n. This may seem
slightly counterintuitive, because both in ad-hoc and in known-neighborhood
networks, information available to nodes is local, while in full-knowledge net-
works it is global. So at first glance it would seem that the larger jump should
occur between known-neighborhood and full-knowledge networks.

Related work. Broadcasting has been studied in various models for over four
decades. Early work focused on the telephone model, where in each round com-
munication proceeds between pairs of nodes forming a matching. Deterministic
broadcasting in this model has been studied, e.g., in [21]. In [8] the authors
studied randomized broadcasting. In the telephone model, studies focused on
the time of the communication task and on the number of messages it uses.
Early literature on communication in the telephone and related models is sur-
veyed in [10,13]. In [2] the authors studied tradeoffs between the radius within
which nodes know the network and broadcasting efficiency in the message pass-
ing model. Fault-tolerant aspects of broadcasting and gossiping are surveyed
in [19].

More recently, broadcasting has been studied in the radio model. While radio
networks are used to model wireless communication, similarly as the beeping
model, in radio networks nodes send entire messages of some bounded, or even
unbounded size in a single round, which makes communication drastically dif-
ferent from that in the beeping model. The focus in the literature on radio
networks was usually on the time of communication. Deterministic broadcasting
in the radio model was studied, e.g., in [5,16], and randomized broadcasting was
studied in [17]. The book [15] is devoted to algorithmic aspects of communication
in radio networks.

In all the above papers, radio communication was supposed synchronous, i.e.,
the message was delivered in the same round in which it was sent. Asynchronous
broadcasting in radio networks was studied in [3,4,20]. It is important to stress
a significant difference between the radio and the beeping models, in the context
of asynchrony. Since in the radio model large messages can be sent and delivered
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in a single round, asynchrony cannot alter a message, it can only destroy it,
by creating unwanted interference. In the beeping model, however, beeps from
various senders can be simultaneously delivered by the adversary, thus altering
the intended numbers and types of beeps, creating “new” messages.

The beeping model has been introduced in [6] for vertex coloring, and used in
[1] to solve the MIS problem, and in [22] to construct a minimum connected dom-
inating set. Randomized leader election in the radio and in the beeping model
was studied in [11]. Deterministic leader election in the beeping model was inves-
tigated in [9]. In [14], the authors studied the tasks of global synchronization and
consensus using beeps, in the presence of faults. In [12], the authors studied the
quantity of computational resources needed to solve problems in complete net-
works using beeps. In [18], various distributed problems were investigated under
several variations of the beeping model from [6], and randomized emulations
between these models were shown. The time of synchronous broadcasting and
gossiping with beeps was studied in [7].

2 Preliminaries

The following observation shows that asynchronous broadcasting with beeps of
uniform strength is impossible even in very simple graphs. This is the reason
why we use the bivalent beeping model.

Proposition 1. Asynchronous broadcasting using beeps of uniform strength is
impossible even in the two-node graph.

In the rest of the paper we use the asynchronous bivalent beeping model,
described in the introduction.

3 Anonymous Networks

In this section we show that, if nodes do not have labels, then broadcasting is
impossible, even for very simple graphs, and even when nodes know the topology
of the network.

Proposition 2. Broadcasting for anonymous networks is impossible even in the
cycle of size 4.

Proof. Consider the anonymous cycle of size 4, and consider a hypothetical
broadcasting algorithm A. For convenience, we label nodes a, b, c, d, in clock-
wise order. This is for the negative argument only: nodes do not have access to
these labels. Suppose that node a is the source. Notice that, in any execution of
algorithm A, nodes b and d send exactly the same beeps in the same rounds, as
in each round they have the same history: indeed, they receive the same beeps
in the same rounds, they are identical, and execute the same deterministic algo-
rithm. Let m1 and m2 be two different messages that have to be broadcast by
the source. Consider two executions of the algorithm A: execution E1, in which
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the source broadcasts message m1, and execution E2, in which the source broad-
casts message m2. Let s1 be the sequence of beeps (soft or loud) sent by b and d
in execution E1 and let s2 be the sequence of beeps sent by b and d in execution
E2. Let k1 be the length of s1, and let k2 be the length of s2, where k1 ≤ k2,
without loss of generality. In both executions, the adversary delivers consecutive
beeps from b and from d in the same rounds. As a result, node c hears only
loud beeps: k1 of them in execution E1, and k2 of them in execution E2. The
choice of the rounds of delivery of bits from b and d is as follows. In execution
E1 these are consecutive rounds r, r+1, . . . , r+k1 −1, starting from some round
r. Suppose that s is the round in which node c correctly outputs message m1.
Then, in execution E2, the adversary delivers the first k1 beeps from b and d
in rounds r, r + 1, . . . , r + k1 − 1, and the remaining k2 − k1 beeps in rounds
t + 1, . . . , t + k2 − k1, where t = max(s, , r + k1 − 1). In round s, node c has
the same history in executions E1 and E2: it heard a loud beep in the same
rounds, in both these executions. Hence, in execution E2, it incorrectly outputs
the message m1 in round s. ��

4 Ad-hoc Networks

In this section we show that providing nodes with distinct labels makes broad-
casting possible in arbitrary graphs, even if nodes do not have any initial knowl-
edge about the network, except their own label. Let N denote the set of non-
negative integers. Consider the function ϕ : N × N −→ N given by the for-
mula ϕ(x, y) = x + (x + y)(x + y + 1)/2. This is a bijection with the property
ϕ(x, y) ∈ O((x + y)2). Intuitively, this is the “snake function” arranging all
couples of non-negative integers into one infinite sequence.

The following algorithm is executed by an active node with label �. In the
beginning, all nodes are active. The part Receive is executed by any node other
than the source. Its result is outputting the source message. This part is skipped
by the source, as it knows the message. The part Send is executed by the source
at the beginning of the algorithm, and it is executed by every other node upon
outputting the source message in the part Receive. After executing the part Send,
the node becomes non-active.

Algorithm Ad-hoc

Part 1. Receive
Wait until the number of soft beeps received is at least 1/2 of the number of
loud beeps received.
Let t be the number of loud beeps received, and let z be the largest integer such
that 8z ≤ t.
Compute the unique couple of non-negative integers (x, y), such that ϕ(x, y) = z.
Output y as the source message.

Part 2. Send
Compute ϕ(�, y), where y is the source message.
Send 8ϕ(�,y) loud beeps, followed by 8ϕ(�,y) soft beeps. �
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The following result shows that Algorithm Ad-hoc is correct, and estimates
its cost.

Theorem 1. Upon completion of Algorithm Ad-hoc in an arbitrary graph,
every node correctly outputs the source message. The cost of the algorithm is
2O((L+M)2).

Proof. The proof of correctness is split into two parts. We first show that no
node outputs the source message incorrectly, and then we prove that every node
outputs the source message in finite time. Let m be the source message. The
first part of the proof is by contradiction. Suppose that some node outputs the
source message incorrectly, let r be the first round when this happens, and let
u be a node with label �, incorrectly outputting the source message in round r.
Let u1, . . . , uk be the nodes adjacent to u whose at least one beep is delivered by
round r, ordered in increasing order of their labels �1, . . . , �k. Since u outputs the
source message in round r, the set of nodes {u1, . . . , uk} is non-empty. Moreover,
all nodes u1, . . . , uk must have outputted the source message before round r
(because they already sent some beeps by round r), and hence they outputted
it correctly. Let 1 ≤ i ≤ k be the largest integer j, such that at least one soft
beep of node uj was delivered by round r.

Suppose that t was the number of loud beeps heard by u by the round r.
Since u outputted the source message incorrectly, the largest integer z′, such
that 8z′ ≤ t, cannot be equal to z = ϕ(�i,m). (If it were, node u would correctly
compute the source message m because ϕ is a bijection.) The integer z′ cannot
be smaller than z because node u heard at least 8z loud beeps sent by node ui.
Hence z′ ≥ z + 1. This implies that node u must have heard at least 8z+1 loud
beeps by round r. How many soft beeps could it hear by round r? All these beeps
could come only from nodes u1, . . . , ui. The total number of soft beeps sent by
these nodes is

∑i
j=1 8ϕ(�j ,m). Since ϕ(�1,m) < ϕ(�2,m) < · · · < ϕ(�i,m), we

have
∑i

j=1 8ϕ(�j ,m) < 8
7 ·8ϕ(�i,m) = 8

7 ·8z. On the other hand, the number of soft
beeps heard by node u by round r must be at least 1/2 of the number of loud
beeps it heard by round r. This implies 8

7 ·8z ≥ 1
2 ·8z+1, which is a contradiction.

This completes the first part of the proof.
We now prove that every node outputs the source message in finite time.

This part of the proof is also by contradiction. Suppose that some node never
outputs the source message. Since the source itself knows the source message,
and the graph is connected, there must exist adjacent nodes u and v, such that
u outputs the source message in finite time and v does not. Let v1, . . . , vs be the
nodes adjacent to v that ever send at least one beep, ordered in increasing order of
their labels λ1, . . . , λs. The set of nodes {v1, . . . , vs} is non-empty. We show that,
at some point, the number of soft beeps heard by v is at least 1/2 of the number
of loud beeps heard by v. Indeed, assume that this did not happen before all
beeps of all nodes v1, . . . , vs are delivered. The number of all beeps sent by nodes
v1, . . . , vs−1 is 2 · ∑s−1

j=1 8ϕ(λj ,m). Since ϕ(λ1,m) < ϕ(λ2,m) < · · · < ϕ(λs,m),
we have 2 · ∑s−1

j=1 8ϕ(λj ,m) < 2
7 · 8ϕ(λs,m). In the worst case, these beeps can be

delivered by the adversary simultaneously with the same number (fewer than
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2
7 · 8ϕ(λs,m)) of soft beeps sent by node vs, thus producing loud beeps heard by
node v. This would decrease the number of soft beeps heard by v and increase
the number of loud beeps heard by this node, but the change cannot be too
big. Indeed, this gives fewer than 9

7 · 8ϕ(λs,m) loud beeps heard by v. On the
other hand, node v hears at least 5

7 · 4ϕ(λs,m) soft beeps sent by vs and left
intact (not delivered simultaneously with other beeps) by the adversary. Hence
the number of soft beeps heard by node v is at least 1/2 of the number of loud
beeps heard by it. It follows that node v outputs the source message, contrary
to our assumption.

This completes the proof of correctness of Algorithm Ad-hoc. We now esti-
mate its cost. A node with label � sends 2 · 8ϕ(�,m) beeps, where m is the source
message. Hence the cost of Algorithm Ad-hoc in an n-node network is at most
2n · 8ϕ(L,M). Since ϕ(L,M) ∈ O((L + M)2), and ϕ(L,M) ≥ L ≥ n, this gives
the cost 2O((L+M)2). ��
Remark. Notice that, if nodes know one of the parameters, either L or M , then
the bijection ϕ can be replaced by a more efficient one-to-one function from the
product {0, . . . , L−1}×{0, . . . ,M −1} to non-negative integers. For example, if
L is known, then this function can be ψ(�,m) = mL+�, and if M is known, then
this function can be ψ′(�,m) = �M + m. The values of these functions are in
O(LM), and hence, if we substitute one of them for ϕ, the cost of the algorithm
becomes 2O(LM).

As we have seen above, the cost of Algorithm Ad-hoc is very large: even with
knowledge of L or M , it is exponential in the product of these parameters. Hence,
it is natural to ask if there are broadcasting algorithms, for ad-hoc networks, with
cost polynomial in L and M . Our next result shows that the answer is negative.
Before proving it we recall a notion and a fact from [3].

A set S of positive integers is dominated if, for any finite subset T of S, there
exists t ∈ T such that t is larger than the sum of all t′ 	= t in T .

Lemma 1. Let S be a finite dominated set and let k be its size. Then there
exists x ∈ S such that x ≥ 2k−1.

Theorem 2. For arbitrary integers L ≥ 4, there exist L-node ad-hoc networks,
for which the cost of every broadcasting algorithm is Ω(2L).

Proof. Let A be any broadcasting algorithm. For any set S ⊆ {1, . . . , L − 2}, of
size at least 2, the graph GS is defined as follows. GS has |S| + 2 nodes with
labels from the set S ∪ {0, L − 1}. Each of the nodes with labels in S is adjacent
to each of the nodes with labels 0 and L − 1, and there are no other edges in
the graph. The node with label 0 is the source, and the node with label L − 1 is
called the sink.

We will consider executions of algorithm A in graphs GS , in which the adver-
sary obeys the following rules concerning the delivery of beeps sent by the source
and the sink:

1. All beeps sent by the source after it heard some beep, are delivered after
the round when the sink outputs the source message.
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2. All beeps sent by the sink are delivered after the round in which the sink
outputs the source message.

Since the considered networks are ad-hoc, i.e., a priori, every node knows only
its own label, and the adversary obeys the above rules, the number of beeps sent
by a node with a given label � ∈ {1, . . . , L − 2} by the round in which the
sink outputs the source message, depends only on this label and on the source
message, and not on the graph GS in which the algorithm is executed. Indeed,
the history of a node with label � ∈ {1, . . . , L − 2}, by the round in which the
sink outputs the source message, is the same in all graphs GS , for a given source
message m.

Consider the execution of algorithm A in the graph G{1,...,L−2}, for a fixed
source message m. Let B(�), for � ∈ {1, . . . , L−2}, be the number of beeps of both
kinds, that the node with label � sends by the round in which the sink outputs the
source message. If the set of integers I = {B(�) : � ∈ {1, . . . , L−2}} is dominated,
then by Lemma 1, some integer in this set is at least 2L−3, and we are done.
Otherwise, there exists a subset T ⊆ {1, . . . , L−2}, with the following property.
If t ∈ T is such that B(t) ≥ B(t′), for all t′ ∈ T\{t}, then B(t) ≤ ∑

t′∈T\{t} B(t′).
Consider the execution E of algorithm A in the graph GT , for the same source
message m. As observed above, the number of beeps of both kinds, that the node
with label � sends in this execution by the round in which the sink outputs the
source message, is B(�). The adversary delivers beeps sent by nodes with labels
from T , in consecutive rounds, delivering simultaneously a beep sent by the node
with label t with one or more beeps sent by nodes with labels t′ ∈ T\{t}, in such
a way that in no round a single beep is delivered. This is possible due to the
inequality B(t) ≤ ∑

t′∈T\{t} B(t′). Hence the sink hears only loud beeps.
Now, consider a different source message m′. The same argument as above

shows that, if the cost of the algorithm A on the graph G{1,...,L−2} is smaller
than 2L−3, then there exists some set T ′ ⊆ {1, . . . , L − 2}, such that, in the
execution E′ of the algorithm A on the graph GT ′ , with the source message m′,
the sink hears only loud beeps.

Suppose that, by the time it outputs the source message, the sink hears k
loud beeps in the execution E and hears k′ loud beeps in the execution E′.
Without loss of generality, assume that k ≤ k′. The choice of rounds of delivery
of these beeps by the adversary is the following.

In execution E, these are consecutive rounds r, r + 1, . . . , r + k − 1, starting
from some round r. Suppose that s is the round in which the sink correctly
outputs message m. Then, in execution E′, the adversary first delivers beeps in
rounds r, r + 1, . . . , r + k − 1, and the remaining k′ − k rounds of beep delivery
are z + 1, . . . , z + k′ − k, where z = max(s, , r + k − 1). In round s, the sink
has the same history in executions E and E′: it heard only loud beeps, and this
happened in the same rounds, in both these executions. Hence, in execution E′,
it incorrectly outputs the message m in round s.

The obtained contradiction comes from assuming that the cost of algorithm
A on the graph G{1,...,L−2} is smaller than 2L−3, for all source messages. This
completes the proof. ��
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5 Neighborhood-Aware Networks

In this section we assume that all nodes have distinct labels, and that each of
them knows its own label and the labels of all its neighbors. This seemingly small
increase of knowledge, compared to ad-hoc networks (the knowledge of every
node is still local) turns out to decrease the cost of broadcasting in a dramatic
way. In order to guarantee a low cost of broadcasting, we have to encode messages
by sequences of beeps very efficiently. The algorithm uses messages of two types:
non-negative integers and triples of non-negative integers. These messages have
to be encoded by strings of beeps of length logarithmic in the values of these
integers, in such a way that the recipient knows when the string starts and
ends, and can unambiguously decode the message from the string. However, as
opposed to Algorithm Ad-hoc in which nodes sent exponentially many beeps,
such efficient encoding is very vulnerable to possible actions of the adversary
that can arbitrarily interleave delivered beeps coming from different neighbors
of a node. In order to avoid this, we design our algorithm in such a way that
beeps encoding a message sent by some node are delivered before any other
node starts sending its own beeps. In this way, the danger of interleaving beeps
is avoided.

Before presenting the algorithm, we define the encoding of integers and of
their triples, announced above. We denote a loud beep by l, a soft beep by s,
and we use the symbol · for the concatenation of sequences of beeps. Let k be a
non-negative integer, and let (c1, . . . , cr) be its binary representation. Denote by
S(k) the sequence of 2r beeps resulting from (c1, . . . , cr) by replacing every bit
ci = 0 by (ls) and by replacing every bit cj = 1 by (sl). The code of an integer
k, denoted by [k], is the sequence (ll) · S(k) · (ll). The code of a triple (a, b, c) of
integers, denoted by [a, b, c], is the sequence (ll) · S(a) · (ss) · S(b) · (ss) · S(c) ·
(ll). Note that a sequence of 2 loud beeps marks the beginning and end of a
message, and all messages contain an even number of beeps, logarithmic in the
integers transmitted. A node at the receiving end can determine the beginning
of the message as a sequence σ of 2 consecutive loud beeps, and the end of
the message as the first sequence σ′ of 2 consecutive loud beeps starting after
the end of σ at an odd position, where the first bit of the sequence σ is at
position 1. In order to decode the content of the message (ll) · α · (ll), with the
beginning and end already correctly identified, a node looks for separators (ss)
starting at odd positions of α. There are either 0 or 2 such separators. In the first
case, the transmitted message was an integer, and the node decodes its binary
representation by replacing each couple (ls) by 0 and each couple (sl) by 1. In
the second case, the node can unambiguously represent α as α1 ·(ss)·α2 ·(ss)·α3,
where each αi has even length, and decode α1, α2, α3 as above.

Using the above encoding, we are now able to describe our broadcasting
algorithm. At a high level, it is organized as a depth-first traversal of the graph,
starting from the source. We will use the instructions “send [a]” and “send
[a, b, c]” that are procedures sending the above described sequences of beeps, in
consecutive rounds. A message [a], where a ∈ {0, 1, . . . M − 1}, is always the
source message to be broadcast. There are two kinds of messages of type “triple
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of integers”: For a, b ∈ {0, 1, . . . L−1}, a message of the form [a, b, 0] corresponds
to a forward DFS edge traversal from the node with label a to a node with label b,
and a message of the form [a, b, 1] corresponds to a backward DFS edge traversal
from the node with label a to a node with label b.

The algorithm is executed by a node with label �. The actions of the node
alternate between executing “send” instructions and listening. The algorithm
is organized in such a way that the following disjointness property is satisfied.
Consider a node u executing some send instruction I(u). Let σ(u) be the segment
of consecutive rounds between the sending of the first beep of instruction I(u)
and the delivery of the last bit of this instruction. Then, for any two nodes u and
v, executing any send instructions I(u) and I(v), the segments of rounds σ(u)
and σ(v) are disjoint. This property permits to identify circulating messages as
distinct “packets”, and use them to implement a DFS traversal.

When the node listens, it watches for the beginning and end of a message
formed by the delivered beeps. When it detects a complete message, it reacts to
it in one of two ways: it either keeps listening and watches for another complete
message, or it reacts by executing some “send” instruction. More specifically,
the actions of the node with label �, other than the source, are as follows. After
getting the source message and the first forward DFS message [a, �, 0], addressed
to it and coming from a node with label a, the node with label � starts spreading
the message to all its neighbors with labels ai, except that with label a, by
sending the decoded source message [m] and sending forward DFS messages
[�, ai, 0] addressed to them, in increasing order of labels. In order to transit from
one neighbor to the next, the node � waits for a backward message [ai, �, 1],
addressed to it. In the meantime, node � refuses all subsequent forward DFS
messages [b, �, 0] , for b 	= a, addressed to it, responding by a backward DFS
message [�, b, 1]. The actions of the source are similar.

The pseudocode of the algorithm follows.

Algorithm Neighborhood-aware

if the executing node is the source, and the source message is m then
message ← m
let (a1, a2, . . . , as) be labels of all the neighbors of the node,
in increasing order
Spread(a1, . . . , as)
whenever a message [b, �, 0], for some integer b, is decoded then

send [�, b, 1]
else

when a message [m] is decoded for the first time, then
message ← m
output message as the source message

when a message [a, �, 0] is decoded for the first time, then
let (a1, a2, . . . , as) be labels of all the neighbors of the node,
except a, in increasing order
Spread(a1, . . . , as)
send [�, a, 1]
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whenever a message [b, �, 0], for some b 	= a, is decoded then
send [�, b, 1] �

The procedure Spread, used by the algorithm and executed by a node with
label �, is described as follows.

Procedure Spread(a1, . . . , as)

send [message]
i ← 1
while i ≤ s do

send [�, ai, 0]
when the message [ai, �, 1] is decoded then

i ← i + 1 �
Theorem 3. Upon completion of Algorithm Neighborhood-aware in an arbi-
trary n-node graph with e edges, every node correctly decodes the source message.
The cost of the algorithm is O(n log M + e log L).

Proof. In view of the disjointness property, all messages are correctly decoded by
their addressees. Since the control messages [a, b, 0] and [a, b, 1] travel in a DFS
fashion, and each message [a, b, 0] is preceded by the source message [m], all nodes
get the source message and decode it correctly. This proves the correctness of the
algorithm. To estimate its cost, note that each node sends the source message
[m] once, and, for any pair of adjacent nodes a and b, two control messages
among [a, b, 0], [a, b, 1], [b, a, 0], [b, a, 1] are sent. Since the source message [m]
consists of O(log M) beeps, and each control message consists of O(log L) beeps,
the total cost of the algorithm is O(n log M + e log L). ��

In order to prove our lower bound on the cost of broadcasting algorithms in
neighborhood-aware networks, we need the following two lemmas.

Lemma 2. Every broadcasting algorithm has cost Ω(log M) in the two-node
graph.

Lemma 3. Every broadcasting algorithm has cost Ω(log log L) in some cycle of
size 4.

Proof. Consider a broadcasting algorithm A working for all neighborhood-aware
cycles of size 4. Suppose that the cost of algorithm A in all such cycles is at most
1
2 log log L. Consider a cycle of size 4, and call its nodes a, b, c, d, in clockwise
order. Suppose that node a is the source. Let 0 be the label of node a, and let
L−1 be the label of node c. The adversary delivers all beeps possibly sent by node
c, only after this node outputs the source message. Hence, before the decision
by node c, nodes b and d hear only beeps from the source a. The adversary
delivers all beeps sent by node a in consecutive rounds. Since node a can send at
most 1

2 log log L beeps, the set X of possible sequences of beeps heard by nodes
b and d has size at most

√
log L. Let N = {0, 1, . . . , � 1

2 log log L�}. Since each
of the nodes b and d can send at most 1

2 log log L beeps, the number of beeps
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sent by each of these nodes must be an integer from the set N . For any label
� ∈ {1, . . . , L − 2}, let Φ� : X −→ N be the function defined as follows: Φ�(x) is
the number of beeps sent by the node b or d, if it has label �, and if it obtained
the sequence x of beeps. There are |N ||X| < L−2 such functions, for sufficiently
large L. Hence there exist labels �1 	= �2 from the set {1, . . . , L − 2}, for which
Φ�1 = Φ�2 . Assign these labels to the nodes b and d. In the obtained cycle C,
nodes b and d send the same number of beeps, regardless of the sequence of
beeps obtained from a. In particular, this will happen in two executions, E1 and
E2, of algorithm A on the cycle C, where execution E1 corresponds to source
message m1, and execution E2 corresponds to source message m2, for m1 	= m2.

In both executions, the adversary delivers consecutive beeps from b and from
d in the same rounds. As a result, node c hears only loud beeps: k1 of them
in execution E1, and k2 of them in execution E2. Without loss of generality,
suppose that k1 ≤ k2. The choice of the rounds of delivery of bits from b and d
is as follows. In execution E1 these are consecutive rounds r, r+1, . . . , r+k1 −1,
starting from some round r. Suppose that s is the round in which node c correctly
outputs message m1. Then, in execution E2, the adversary delivers the first k1
beeps from b and d in rounds r, r + 1, . . . , r + k1 − 1, and the remaining k2 − k1
beeps in rounds t + 1, . . . , t + k2 − k1, where t = max(s, , r + k1 − 1). In round
s, node c has the same history in executions E1 and E2: it heard a loud beep in
the same rounds, in both these executions. Hence, in execution E2, it incorrectly
outputs the message m1. ��

The following result gives a lower bound on the cost of any broadcasting
algorithm in neighborhood-aware networks.

Theorem 4. For arbitrarily large integers n, there exist n-node neighborhood-
aware networks for which every broadcasting algorithm has cost Ω(n log M +
n log log L).

Proof. For any positive integer k, consider the graph Gk defined as follows. Let
Pk be a simple path of length k, with extremities a and b. Consider pairwise
disjoint copies C1, . . . , Ck of the cycle of size 4, whose all nodes are distinct from
nodes of the path. Let ai, bi, ci, di be the nodes of the ith copy in clockwise order.
Join the node a1 to the node b by an edge, and for every 1 ≤ i < k, join the node
ci to the node ai+1 by an edge. The obtained graph has n ∈ Θ(k) nodes. We
now assign the labels to nodes of Gk as follows. Nodes bi and di in cycles Ci, for
i = 1, . . . , k, are assigned distinct labels by induction. For any i, we consider the
set of all labels that were not used previously and find among them two labels
�1 	= �2 for which Φ�1 = Φ�2 , where Φ�, for any label �, was defined in the proof
of Lemma 3. This can be done similarly as in the quoted proof, because the
number of still available labels is Θ(L). Finally, nodes of the path and all nodes
ai and ci are assigned consecutive distinct labels among the remaining labels.

Let the node a be the source, and consider any broadcasting algorithm on
graph Gk. By Lemma 2, each node of the path, other than b, has to trans-
mit Ω(log M) beeps, for otherwise the next node cannot get the message. By
Lemma 3, the total cost of the algorithm in each subgraph Ci, for i < k,
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must be Ω(log log L), for otherwise the nodes of the next copy cannot get
the message. (Note that edges of the path Pk and edges joining consecutive
copies of the cycle, are bridges in Gk.) Hence the total cost of the algorithm is
Ω(k log M + k log log L) = Ω(n log M + n log log L). ��

6 Full-Knowledge Networks

In this section we consider broadcasting in networks whose nodes have the entire
labeled map of the network, and know the identity of the source. With this com-
plete knowledge, all nodes can agree on the same spanning tree T of the network,
rooted at the source. (All trees rooted at the source can be canonically coded
by binary strings, and the tree T can be chosen as that with lexicographically
smallest code.) Let S be a DFS traversal of the tree T in which children of
every node are explored in increasing order of their labels. The Eulerian tour
of the tree T corresponding to this traversal can be represented as a sequence
(a1, . . . , a2(n−1)) of length 2(n− 1) of node labels with repetitions, where ai cor-
responds to the ith edge traversal in the tour, from the node with label ai to
the node with label ai+1.

The only message circulating in the network is the message [m], where m is
the source message, and [m] is the encoding of this integer, described in Sect. 5.
The instruction send [m] is the procedure of sending beeps of the encoding [m]
in consecutive rounds. Similarly as in Algorithm Neighborhood-aware, the dis-
jointness property is satisfied, and hence each message can be correctly decoded
by adjacent nodes. The idea of the algorithm is the following. Every node knows
to which terms of the sequence (a1, . . . , a2(n−1)) its label corresponds. It sends
the message [m] when the turn of such a term of the sequence comes. (Many
nodes send messages many times.) In order to know when this happens, the
node computes how many previous messages it should get before from all adja-
cent nodes, and when this number of messages is received, it proceeds with the
execution of the send [m] instruction corresponding to the given term of the
sequence.

The algorithm is executed by a node with label �, when the source message
is m. The pseudocode of the algorithm follows.

Algorithm Full-knowledge

if the executing node is not the source then
when a message [m] is decoded for the first time, then

output message as the source message
identify all positions of label � in the sequence (a1, . . . , a2(n−1))
let i1, . . . , ir be these positions
let x1 be the number of indices 1 ≤ j < a1, corresponding to labels aj of nodes
adjacent to the node with label �
for 1 < i ≤ r, let xi be the number of indices ai−1 < j < ai, corresponding to
labels aj of nodes adjacent to the node with label �
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for 1 < i ≤ r, let yi =
∑i

t=1 xt

for k = 1 to r do
when a total of yk messages [m] is received then send [m] �

Theorem 5. Upon completion of Algorithm Full-knowledge in an arbitrary
n-node graph, every node correctly outputs the source message. The cost of the
algorithm is O(n log M).

Proof. The correctness of the algorithm follows from the fact that nodes send
messages whenever their turn comes in the sequence (a1, . . . , a2(n−1)) that cor-
responds to an Eulerian tour of a spanning tree T , and from the disjointness
property guaranteeing that the source message is always correctly decoded. The
total number of messages sent is 2(n − 1). Since each message corresponds to
O(log M) bits, the total cost of the algorithm is O(n log M). ��

The following proposition shows that the cost of Algorithm Full-knowledge
is optimal in full-knowledge networks.

Proposition 3. For arbitrary integers n ≥ 2 there exist n-node graphs for which
the cost of any broadcasting algorithm is Ω(n log M).

Proof. Consider the simple path Pn with n nodes, one of whose extremities is
the source. Note that Lemma 2 holds for full-knowledge networks as well. By
Lemma 2, each node of the path, other than the last node, has to transmit
Ω(log M) beeps, for otherwise the next node cannot get the message correctly.
Hence the cost of any broadcasting algorithm is Ω(n log M). ��

7 Conclusion

We considered the cost of asynchronous broadcasting in networks with four dif-
ferent levels of knowledge: anonymous, ad-hoc, neighborhood-aware, and full-
knowledge. We proved that broadcasting in anonymous networks is impossible,
and we showed upper and lower bounds on the cost of broadcasting for the other
three levels of knowledge. Our results show cost separations between all of them.
While the bounds for full-knowledge networks are asymptotically tight, the other
bounds are not, and designing optimal-cost broadcasting algorithms for ad-hoc
and for neighborhood-aware networks is a natural open problem.
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Abstract. The core-periphery network architecture proposed by Avin
et al. [ICALP 2014] was shown to support fast computation for many dis-
tributed algorithms, while being much sparser than the congested clique.
For being efficient, the core-periphery architecture is however bounded
to satisfy three axioms, among which is the capability of the core to
emulate the clique, i.e., to implement the all-to-all communication pat-
tern, in O(1) rounds in the CONGEST model. In this paper, we show that
implementing all-to-all communication in k rounds can be done in n-node
networks with roughly n2/k edges, and this bound is tight. Hence, sparsi-
fying the core beyond just saving a fraction of the edges requires to relax
the constraint on the time to simulate the congested clique. We show
that, for p � √

log n/n, a random graph in Gn,p can, w.h.p., perform
the all-to-all communication pattern in O(min{ 1

p2
, np}) rounds. Finally,

we show that if the core can emulate the congested clique in t rounds,
then there exists a distributed MST construction algorithm performing
in O(t log n) rounds. Hence, for t = O(1), our (deterministic) algorithm
improves the best known (randomized) algorithm for constructing MST
in core-periphery networks by a factor Θ(log n).

1 Introduction

1.1 Context and Objectives

Inspired by social networks and complex systems, Avin, Borokhovicha, Lotker,
and Peleg [1] proposed a novel network architecture for parallel and distributed
computing, called core-periphery. Interestingly, the core-periphery architecture
is not described explicitly (e.g., via the description of a specific graph family),
but rather implicitly via three so-called axioms. Specifically, a core-periphery
network G = (V,E) has its node set partitioned into a core C and a periphery P ,
and the three properties to be satisfied are then the following:
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1. Core boundary: For every node v ∈ C, degC(v) � degP (v), where, for
S ⊆ V and v ∈ V , degS(v) denotes the number of neighbors of v in S.

2. Clique emulation: The core can emulate the clique in a constant number
of rounds in the CONGEST model. That is, there is a communication protocol
running in a constant number of rounds in the CONGEST model such that,
assuming that each node v ∈ C has a message Mv,w on O(log n) bits for every
w ∈ C, then, after O(1) rounds, every w ∈ C has received all messages Mv,w,
for all v ∈ C. In other words, the all-to-all communication pattern can be
implemented in a constant number of rounds.

3. Periphery-core convergecast: There is a communication protocol running
in a constant number of rounds in the CONGEST model such that, assuming
that each node v ∈ P has a message Mv on O(log n) bits, then, after O(1)
rounds, for every v ∈ P , at least one node in the core has received Mv.

Figure 1 provides an example of a core-periphery network, i.e., a graph sat-
isfying the three axioms. It was proved in [1] that these three axioms alone
enable to design efficient distributed algorithms in the CONGEST model for
classical problems such as matrix multiplication and MST construction. Most of
the proposed algorithms are optimal in a sense that there is an asymptotically
matching lower bound on the number of rounds under the three axiomatic con-
straints. Moreover, it is shown that if only two out of three axioms were satisfied,
then the round complexity of all the considered problems would increase quite
significantly—typically, from O(1) to O(poly(n)) in n-node networks. There was
an exception though: while the best known lower bound in [1] for MST con-
struction is Ω(1), the proposed (randomized) MST construction algorithm runs
in O(log2 n) rounds. (If only two out of three axioms were satisfied, then MST
construction would require at least Ω̃(n

1
4 ) rounds).

The core-periphery model provides an attractive alternative to the congested
clique model [19]. Indeed, the latter assumes a complete network interconnecting
the nodes, i.e., for every two (distinct) nodes u and v, there is an edge {u, v}
connecting these nodes. The n-node congested clique has therefore

(
n
2

)
edges,

and every node has degree n − 1. Instead, assuming a core with, e.g., O(
√

n)
nodes, even connecting all nodes in the core as a clique would only result in O(n)
edges in the core, a number that is much more manageable in practice. On the
other hand, it was proved in [1] that Ω(

√
n) nodes is the limit of how small can

be the core, and that the core C must be dense, with Θ(|C|2) edges.
In this paper, our objective is twofold. First, we are aiming at establishing

tradeoffs between the number of edges, and the capability of emulating the clique.
More precisely, we consider the all-to-all communication pattern:

– Input: Every node v has a message Mv,w, for every node w �= v;
– Output: Every node w has received the message Mv,w, for every node v �= w.

In the CONGEST model, assuming all messages are on O(log n) bits, all-to-all can
be performed in just a single round in the clique. Our first objective is to study
the tradeoff between number of edges, and number of rounds for performing
all-to-all in the CONGEST model.
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Fig. 1. Example of a core-periphery network, where the core (gray nodes) is a clique,
and the periphery (white nodes) is a sparse graph.

Our second objective is to revisit one of the main problems left open in [1],
namely the complexity of MST construction in the core-periphery model.

1.2 Our Results

We show that, in the CONGEST model, implementing all-to-all communication
in k rounds can be done in n-node networks with roughly n2/k edges, and this
bound is essentially tight because every node must have degree at least (n−1)/k
to receive n − 1 messages in at most k rounds. Hence, sparsifying the clique
beyond just saving a fraction of the edges requires to relax the constraint on the
time to simulate that clique.

Our first main result is about the ability of random graphs to emulate the
clique. Let α =

√
3e/(e − 2) where e is the basis of the natural logarithm. We

show that, for p ≥ α
√

ln n/n, a random graph in Gn,p can, w.h.p., perform
all-to-all in O(min{ 1

p2 , np}) rounds.
Our second main result is the design of a fast deterministic MST construction

algorithm for core-periphery networks under the CONGEST model. Specifically,
we show that if the core can emulate the clique in t rounds, then there exists a
distributed MST construction algorithm performing in O(t log n) rounds. Hence,
for t = O(1), our deterministic algorithm performs in O(log n) rounds, improving
the randomized algorithm in [1] by a factor Θ(log n).

1.3 Related Work

The congested clique model has been widely studied in the literature. Lenzen [18]
investigated the routing and sorting problems in the context of congested clique.
He showed a deterministic algorithm that, if each node is the sender and receiver
of at most n messages, allows to route all the messages in O(1) rounds in a
clique of size n using messages of size O(log n). He also showed an algorithm
that allows to sort n2 keys in constant time. Drucker et al. [5] proved that
the congested clique is powerful enough to emulate certain classes of bounded
depth circuits, which shows how difficult finding lower bounds for the congested
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clique is. In the case where each node can only broadcast, [5] gives upper and
lower bounds for the problem of detecting some types of subgraphs. Hegeman
et al. [15] investigated the metric facility location problem providing a O(1)
approximation algorithm that runs in expected O(log log log n) rounds. They also
showed how to compute a 3-ruling set in the congested clique. In [14] it is shown
that, under some restrictions, fast algorithms for the congested clique model
can be translated into fast algorithms in the MapReduce framework. Censor-
Hillel et al. [3] showed that matrix multiplication on congested clique can be
computed in O(n1−2/ω) rounds, where ω < 2.3728639 is the exponent of matrix
multiplication. Also, they showed how to use matrix multiplication to solve a
variety of graph related problems. In [19], Lotker et al. provided a deterministic
MST construction algorithm that runs in O(log log n) rounds in the congested
clique. Then, Hegeman et al. [13] showed that in this context randomization
can help, giving a randomized algorithm that requires O(log log log n) rounds.
Recently, this complexity was even reduced further to O(log∗ n) in [12].

In general, the MST construction problem has been widely studied. In the
distributed asynchronous context, the most famous algorithm is the one of
Gallager, Humblet and Spira [10] that runs in O(n log n). In the synchronous
setting, the first sublinear algorithm was given by Garay et al. in [11] that runs
in O(D+n

ln 3
ln 6 log∗ n), where D is the diameter of the graph. This complexity was

later improved to O(D +
√

n log∗ n) in [16]. Then, Peleg et al. [23] showed that
this complexity is near optimal, giving a Ω(

√
n

log n ) lower bound. This bound was

later improved by Sarma et al. [24] to Ω(
√

n
log n ) and then by Ookawa et al. [22]

to Ω(
√

n). All these lower bounds hold for graphs with diameter Ω(log n). For
constant diameter graphs, there is a bound Ω̃(n1/3) rounds for diameter 4, a
bound Ω̃(n1/4) rounds for diameter 3, and a bound O(log n) rounds for diam-
eter 2 (see [20]). Finally, Elkin [6] showed that if termination detection is not
required, the diameter of the graph is not a lower bound, and that there exists an
algorithm that requires Õ(μ +

√
n) rounds, where μ is the so-called MST-radius

of the graph.
Feige et al. [7] studied the broadcast problem in random graphs, where a

single node has a message that has to be received by all the nodes of the graph.
They show that rumor spreading (which propagates the message to a randomly
chosen neighbor at each step) is an efficient way to solve the broadcast problem
for random graphs. Censor-Hillel et al. [4] studied the broadcast problem in the
context where every node is the source of a message and it is limited to send the
same message to each neighbor at each round. They give an efficient algorithm
that solves the problem, also in case of failures.

Finally, it is worth mentioning that a problem related to our results, that
is finding disjoint paths between pairs of nodes, has been largely investigated
in expander graphs, which are sparse graphs that guarantee strong connectivity
properties [2,8,9,17].
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2 Deterministic Construction of Sparse Clique Emulators

In this section we provide a deterministic construction yielding a perfect tradeoff
between number of edges and number of rounds in clique emulation.

Theorem 1. Let n ≥ 1, and k ≥ 3. There is an n-node graph with at most
� k−2
(k−1)2 n2	 edges that can emulate the n-node clique in k rounds. Also, there is

an n-node graph with at most 1
3n2 edges that can emulate the n-node clique in 2

rounds.

Proof. First, we show that there is an n-node graph with at most 1
3n2 edges

that can emulate the n-node clique in 2 rounds. For this purpose, recall that
the so-called Johnson graph J(n, r) has vertex set composed of all the r-element
subsets of the set {1, . . . , n}, and two vertices are adjacent iff they meet in a
(r − 1)-element set.

Fact 1. There exists an independent set I of size at least � 1
n

(
n
3

)	 in the Johnson
graph J(n, 3).

To establish this fact, for every k, 0 ≤ k < n, let us consider the set

Ik = {{x, y, z} ∈ V (J(n, 3)) | x + y + z ≡ k (mod n)}

Every set Ik is an independent set. Indeed, if two triples {x, y, z} and {x, y, z′}
are both in Ik, then x+y+z ≡ k (mod n) and x+y+z′ ≡ k (mod n). Therefore,
z ≡ z′ (mod n), which implies z = z′, because z, z′ ∈ {1, . . . , n}. Observe that
{I0, . . . , In−1} is a partition of V (J(n, 3)). Therefore, one of them has size at
least � 1

n

(
n
3

)	, which establishes Fact 1.
Let I as in Fact 1. Note that for any {a, b, c} ∈ I, none of the edges

{a, b}, {a, c}, {b, c} are appearing in any other triples of I. Thus, the edge {a, b}
of the complete graph can be emulated by the path {a, c}, {b, c} without con-
gestion resulting from the emulation of another edge {a′, b′}. Moreover, the edge
{a, b} itself does not belong to any path used to emulate other edges. It follows
that one can remove |I| edges from Kn, one from each triple in the independent
set I, and all removed edges can be emulated by edge-disjoint paths of length 2.

Fig. 2. (Left) Emulation of removed edge {a, b} (m(x, y) denotes the message from x
to y). (Right) Emulating K9 with K3,6. The plain red path (b0,1, a0, b0,2) is used at the
1st round for exchanging messages between b0,1 and b0,2, and, at the 2nd round, it is
used for sending messages from b0,1 to b1,2, and from b0,2 to b1,1.
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Figure 2(left) shows how to emulate the six communications x → y for every
ordered pair (x, y), x ∈ {a, b, c}, y ∈ {a, b, c}, x �= y, in just 2 rounds. It follows
that there is an n-node graph with at most n2

3 edges that can emulate the n-node
clique in 2 rounds.

We now move on with the general case, that is, we show that there is an
n-node graph with at most �n2(k−2)

(k−1)2 	 edges that can emulate the n-node clique
in k rounds.

Fact 2. All-to-all communication between the nodes of the same part of the com-
plete bipartite graph Kr,r can be performed in 2 rounds.

Indeed, let A and B be the two parts of Kr,r, where the nodes in A and B
are labeled a0, . . . , ar−1 and b0, . . . , br−1, respectively. Let us consider ai ∈ A,
and its message for node aj ∈ A. This message is routed via node bk ∈ B where
i + j + k ≡ 0 (mod r). This guarantees that each edge is used at most once in
each direction, at each round. Indeed, sender ai chooses different intermediate
nodes to route messages to the different receivers aj , j �= i. Similarly, for the
same receiver j, different senders ai, i �= j, choose different intermediate nodes.
This proves Fact 2.

By performing the above routing scheme in parallel, we directly get the fol-
lowing:

Fact 3. Let A and B be the two parts of the complete bipartite graph Kr,kr, and
let us partition the nodes of B into k groups B0, . . . , Bk−1 of r nodes each. The
k all-to-all communication patterns between the nodes of Bi can be performed
in parallel for all i ∈ {0, . . . , k − 1}, in 2 rounds, also in parallel to all-to-all
communication between the nodes of A.

We have now all the ingredients to establish the general case of Theorem1.
Let k ≥ 1, and let Kr,kr be the n-node complete bipartite graph with r = n

k+1

nodes in the first part A, and kr = nk
k+1 nodes in the other part B. Note that

Kr,kr has kr2 = n2k
(k+1)2 edges. We show how to perform all-to-all in Kr,kr in

k+2 rounds. We divide the kr nodes of B into k groups B0, . . . , Bk−1 of r nodes
each. For i ∈ {0, . . . , k − 1}, we set Bi = {bi,j , 0 ≤ j ≤ r − 1}—cf. Fig. 2(right).
We describe a routing scheme that allows the kr nodes of B to perform all-
to-all, by relaying their messages using the r nodes of A. Routing is achieved
by repeating k times the all to all routing protocol in Fact 3, where, at each
phase s = 1, . . . , k, nodes of Bi perform the communications with the nodes in
Bj+s mod k. Importantly, the above routing scheme does not require 2k rounds
but only k+1 rounds, because the kr nodes in B do not have to wait for receiving
relayed messages in order to start sending new messages, and the phases can be
pipelined. One more round is used to route the direct communication between
every node in A and every node in B. Interestingly, during the k + 1 rounds
needed to perform all-to-all communications between the nodes in B, the edges
are always used in both directions, except for the first and last round. We can
use these two rounds to let the nodes in A perform their own all-to-all among
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them using the same routing pattern as in Fact 2. In total, in the n2k
(k+1)2 -edge

graph Kr,kr, all-to-all is performed in k + 2 rounds. �
We complete the section by showing that the bounds in Theorem 1 provide an
essentially optimal tradeoff between the number of rounds k performed in the
emulation, and the number of edges m of the emulator. A trivial lower bound
1
2

n(n−1)
k can be obtained by noticing that every node must have degree at least

n−1
k for receiving n − 1 messages in k rounds. The following theorem improves

this trivial bound by a factor 2, and matches with the bound in Theorem1.

Property 1. Let n ≥ 1, k ∈ {1, . . . , n − 1}, and let G be an n-node graph that
can emulate the n-node clique in k rounds. Then G has at least n(n−1)

k+1 edges.

Proof. Let m be the number of edges of G. There are
(
n
2

)
pairs of nodes in Kn,

communicating n(n−1) messages in total. In G, only m pairs of nodes are directly
connected. All the other

(
n
2

) − m pairs of nodes are not directly connected, and
they are at least at distance 2 in G. Thus, the number of messages generated to
route the messages corresponding to these pairs of nodes is at least 4(

(
n
2

) − m).
The total number of messages to be transferred is thus at least 2m+4(

(
n
2

)−m).
Since one communication round in G can route at most 2m messages, it follows

that any routing protocol requires at least
2m+4(n2)−4m

2m = n(n−1)
m − 1 rounds of

communication. Thus, k ≥ n(n−1)
m − 1, which implies m ≥ n(n−1)

k+1 . �

3 Randomized Construction of Sparse Clique Emulators

In this section, we consider clique emulation by Erdős-Rényi random graphs
Gn,p. Our main result is the following.

Theorem 2. Let c ≥ 0, n ≥ 1, α =
√

(3 + c)e/(e − 2) where e is the base of
the natural logarithm, and p ≥ α

√
ln n/n. For G ∈ Gn,p,

Pr[G can emulate Kn in O(min{ 1
p2 , np}) rounds] ≥ 1 − O( 1

n1+c )

where the big-O notations hide the dependency in c.

Proof. Let G ∈ Gn,p. The proof works as follows. For each missing edge in G
between two nodes u and v, we route the messages between these nodes via an
intermediate node w, i.e., along a path (u,w, v) of length 2. The intermediate
node is picked at random among all nodes w such that {u,w} ∈ E(G), and
{w, v} ∈ E(G). To analyze the load of the edges, we have to overcome two
problems. First, the load of an edge is not necessarily independent from the
load of another edge. Second, we are interested in the maximum, taken over all
edges, of the load of the edges. As a consequence, an analysis based only on the
expectation of the load of each edge may not yield accurate results. Instead, we
base our analysis on a double application of a balls-into-bins protocol.
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We aim at constructing a path for routing the messages between every pair
of nodes that are not directly connected in G. As said before, the alternative
paths used to replace missing edges are of length 2, and the probability expressed
in the statement of the theorem reflects the probability that such paths exist,
without too much congestion. More specifically, let us consider a missing edge
{i, j} in G. Let Si,j be the set of common neighbors to i and j in G. The message
from i to j is aimed at being routed via some intermediate node k ∈ Si,j . The
first question to address is thus: how large is Si,j? To answer this question, let
Ei,j be the event “there are at least np2

e different paths of length 2 between i
and j”, and let E =

⋂
{i,j}/∈E(G) Ei,j .

Fact 4. Let αc =
√

(c + 3)e/(e − 2), and p ≥ αc

√
ln n/n. Then

Pr[E ] ≥ 1 − 1
nc+1

.

To establish this fact, let Xi,j,k be the Bernoulli random variable, for {i, j} /∈
E(G), such that Xi,j,k = 1 iff k ∈ Si,j , i.e., {i, k} ∈ E(G) and {k, j} ∈ E(G).
Then let Xi,j =

∑n
k=1 Xi,j,k. We have Pr[Xi,j,k = 1] = p2, and, for a fixed pair

i, j, the variables Xi,j,k, k = 1, . . . , n, are mutually independent. Thus, using
Chernoff bounds, we get:

Pr[Xi,j ≤ np2

e
] ≤ e(

2
e−1)np2

.

By union bound, it follows that

Pr[
⋃

{i,j}/∈E(G)

Ei,j ] ≤ n2e(
2
e −1)np2 ≤ 1

nc+1

as desired, where the last inequality holds because p ≥ αc

√
ln n/n.

In addition to Fact 4, we will also use the following known result:

Lemma 1 ([21]). Let X1, . . . , Xn be a sequence of random variables in an arbi-
trary domain, and let Y1, . . . , Yn be a sequence of binary random variables, with
the property that Yi is a function of the variables X1, . . . , Xi−1. If, for every
i = 1, . . . , n, we have Pr[Yi = 1|X1, . . . , Xi−1] ≤ q then Pr[

∑n
i=1 Yi ≥ k] ≤

Pr[B(n, q) ≥ k] where B(n, q) denotes the binomial distribution of parameters n
and q.

Our path construction algorithm for every missing edge {i, j} /∈ E(G) is
sequential, and proceeds as follows. For every {i, j} /∈ E(G), the path from i to
j is not necessarily the same as the path from j to i. We process all ordered pairs
of nodes (i, j) in n phases, where Phase i, i = 1, . . . , n, constructs all paths (i, j)
for {i, j} /∈ E(G), in increasing order of j. Assume already fixed a set of paths,
corresponding to previously considered sender-receiver pairs, and consider now
the pair (i, j) (of course corresponding to the missing edge {i, j} /∈ E(G)). The
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previously constructed paths induce some load on each edge of G, corresponding
to the number of paths using that edge. The choice of the path for (i, j) depends
on this load, and is inspired from the power of two choices in balls-and-bins
protocols. Precisely, for suitable parameters d and r, node i repeats r times the
following: pick d incident edges {i, k} uniformly at random, and select the least
loaded one. Once this is done, node j picks the least loaded edge among the r
edges selected by i.

Let Ii,j be the node selected to route the message from sender i to receiver j.
Messages from i to j will be routed along the path Pi,j = (i, Ii,j , j). For h ≥ 0,
let bi,h(j) be the number of edges {i, k} of load at least h after deciding the
intermediate nodes Ii,1, . . . , Ii,j of the first j receivers for sender i. We define the
following quantities:

x =
⌈

e5+c

p2

⌉

and β =
np2

e5+c
.

Since bi,x(n) ≤ n/x, it follows from the above that bi,x(n) ≤ β. Now, let

�(j) = |{j′ ≤ j : Ii,j′ = Ii,j}|.
We define the random variables Zi,j where

Zi,j =
{

1 if �(j) ≥ x + 1
0 otherwise.

Hence Zi,j = 1 is the bad event that the edge between node i and the interme-
diate node Ii,j used to route from i to j is heavily loaded by i. Conditioned on
the fact that E holds (cf. Fact 4), we get that

Pr[Zi,j = 1] ≤ r

(
β

np2/e

)d

.

We let q be the right hand side of the above equation. Let us now consider
Zi =

∑n
j=1 Zi,j . Observe that Zi,j is a function of Ii,1, . . . , Ii,j−1. Therefore, by

Lemma 1 we get that

Pr[Zi ≥ k] ≤ Pr[B(n, q) ≥ k].

So, in particular, Pr[Zi ≥ 1] ≤ Pr[B(n, q) ≥ 1]. We now set d = lnn, and r ≤ n
(a suitable r will be specified thereafter). Thanks to this choice of d and r, we
have q ≤ 1

n3+c , and therefore

Pr[Zi ≥ 1] ≤ Pr[B(n,
1

n3+c
) ≥ 1] ≤ E[B(n,

1
n3+c

)] ≤ 1
n2+c

.

Let Z =
∑n

i=1 Zi. By union bound, we get Pr[Z ≥ 1] ≤ 1
n1+c .

Using a similar analysis, from the perspective of the receiver, and defining
the corresponding random variables Z ′

i,j capturing the load of the edges incident
to a receiver j, and Z ′

j =
∑n

i=1 Z ′
i,j , we get

Pr[Z ′
j ≥ 1] ≤ Pr[B(n, q′) ≥ 1]
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where

q′ =

(

1 −
(

1 − eβ

np2

)d
)r

.

We get q′ ≤ 1
n3+c by setting d = lnn and r = (c + 3) nε lnn for ε =

− ln(1 − 1
e4+c ). By this setting of d and r, we get that

Pr[Z ′
j ≥ 1] ≤ Pr[B(n,

1
n3+c

) ≥ 1] ≤ E[B(n,
1

n3+c
)] ≤ 1

n2+c
.

Let Z ′ =
∑n

j=1 Z ′
j . By union bound, we get Pr[Z ′ ≥ 1] ≤ 1

n1+c .
Therefore, altogether, we get that

Pr[Z = 0 and Z ′ = 0 | E ] · Pr[E ] ≥ (1 − 1
n1+c

)3 ≥ 1 − 3
n1+c

.

In other words, w.h.p., the load of all edges is no more than x = O(1/p2). On
the other hand, with a similar argument as for proving that the degree is large,
we have that, w.h.p., the degree of all nodes is at most enp, and therefore the
load of an edge does not exceed enp. �

4 MST Construction in Core-Periphery Networks

In [1], a randomized algorithm for Minimum Spanning Tree (MST) construction
is presented. It runs in O(log2 n) rounds with high probability. We improve this
result by describing a deterministic algorithm for MST construction that runs
in just O(log n) rounds. Recall that, for the MST construction task, every node
is given as input the weight w(e) of each of its incident edges e. These weights
are supposed to be of values polynomial in the size n of the network, and thus
each weight can be stored on O(log n) bits. The output of every node is a set of
incident edges, such that the collection of all outputs forms an MST of the net-
work. Without loss of generality, all weights are supposed to be different (since,
otherwise, it is sufficient to add to each edge the identities of the extremities of
that edge).

Theorem 3. The MST construction task can be solved in O(log n) rounds in
core-periphery networks under the CONGEST model.

Proof. As usually in the distributed setting, the general idea of the algorithm is
based on the sequential Bor̊uvka’s algorithm for MST construction, consisting in
merging subtrees called fragments. Recall that, in Bor̊uvka’s algorithm, there are
initially n fragments, where each node alone forms a fragment. Each fragment
has an ID. Initially, the identity of each fragment is the ID of the single node
in the fragment. Then the algorithm proceeds in at most �log2 n	 phases. At
each phase, each fragment F computes the edge eF of minimum weight incident
to fragment F , and adds it to the MST. Fragments connected by such an edge
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merge, and a new phase begins. This procedure is repeated until there is only
one fragment, which is the desired MST.

We first present a (deterministic) distributed algorithm running in O(log2 n)
rounds in core-periphery networks. This algorithm is composed of at most
�log2 n	 phases, where each phase requires O(log n) rounds. Then, we show how
to actually perform each phase in O(1) rounds, obtaining the desired O(log n)-
round algorithm. Recall that a core-periphery network satisfies the three axioms
listed in Sect. 1 where C and P denote the sets of nodes in the core and in the
periphery, respectively.

The algorithm starts by an initialization phase, where each node in the
periphery looks for a node in the core, which will be its representative. By
Axiom 3 all nodes in the periphery can concurrently send messages to the core
so that each message will be received by at least one node in the core after
O(1) rounds. So, each node in the periphery sends a request for a representa-
tive by sending its own ID to the core. Every node in the periphery then waits
for an acknowledgment from nodes in the core that accepted its request. These
acknowledgements follow the same route as the corresponding requests, back-
ward. Hence, all acknowledgments are also received after O(1) rounds. Every
node takes as representative the core node whose acknowledgment reaches that
node first. If a node receives several acknowledgments simultaneously, then it
selects the one with the smallest ID. By Axiom 1, each node in the core can be
the representative of at most O(|C|) nodes in the periphery because its degree is
at most O(|C|), and thus it can receive at most O(|C|) messages in O(1) rounds.
Every node in the core is its own representative.

We assume that the nodes in the core are sorted according to their IDs
(this operation can be done in O(1) rounds using all-to-all and Axiom 2). For
every node in the core, we denote by succ(u) and pred(u) the successor and the
predecessor of u in this order, respectively.

We heavily used the protocols in [18]. Note that the routing protocol in [18]
requires that each node is the source and destination of at most n messages.
However, it can be trivially adapted to be applied with O(n) messages, still
requiring O(1) rounds. Similarly, the sorting protocol in [18] requires that each
node receives at most n keys, but, again, it can be trivially modified for allowing
each node to receive O(n) keys, still requiring O(1) rounds.

We now explain how every phase of Bor̊uvka’s algorithm is performed.

1. Every node sends the ID of its fragment to all its neighbors.
2. Let r(v) ∈ C and id(F ) be the representative and the ID of the fragment

F of node v, respectively. We denote by eF (v) the edge of minimum weight
incident to v and connecting v to a node not in its fragment F . Each node v
in the periphery sends (eF (v), w(eF (v)), id(F ), id(F ′)) to r(v), where the tail
of eF (v) belongs to F , and its head belongs to fragment F ′ �= F . Observe
that each node in the core receives O(|C|) such messages.

3. Every node in the core, upon reception of 4-tuple (eF (v), w(eF (v)),
id(F ), id(F ′)) from the nodes that it represents (including itself), selects the
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ones with minimum weight for each fragment F . We denote by S1 the set of
the selected edges by all nodes in the core. Note that |S1| = O(|C|2).

4. The algorithm assigns a leader to each fragment. The leaders are core nodes
chosen in such a way that the fragments are equally distributed among leaders.
Let

x = �|S1|/|C|	.

Note that x = O(|C|). Given a fragment F , its leader is

�(F ) = 1 +
⌊ |{(u, v) ∈ S1 : id(Fu) < id(F )}|

x

⌋

where Fu is the fragment of u. Note that 1 ≤ �(F ) ≤ |C|. For each fragment F ,
all edges incident to F in S1 are sent to �(F ) by its representative holding such
edges—we shall explain hereafter how this is implemented in core-periphery
networks. In this way each leader can select the edge eF of minimum weight
incident to fragment F . Let S2 be the set of all edges eF , where F is a
fragment.

5. The algorithm then aims at merging the fragments. We call merge tree a tree
whose nodes are fragments F , and whose edges are the edges eF connecting
these fragments. Note that, in a merge tree, there are two adjacent fragments
F and F ′ connected by two possibly distinct edges eF and eF ′ . The fragment
with smallest ID that is extremity of such an edge is the root of the merge
tree. The algorithm proceeds so that each leader �(F ) of a fragment F in the
merge tree becomes aware of the root of the tree. The ID of this root will
become the ID of the fragment resulting from merging all the fragments in
the merge tree. It is possible to find the root of a tree of height h in O(log h)
steps using pointer jumping—we shall explain hereafter how this is precisely
implemented in core-periphery networks.

6. By the previous step, for every fragment F , its leader �(F ) knows the ID of
the merge tree it belongs to. Moreover, for each edge (u, v) that was received
by a leader from the representative r(u) in step 4, the leader saved id(r(u)).
This allows leaders to notify the right representatives of the ID of the root of
the merge tree.

7. Finally, the ID of every merged fragment is sent to every node v of the periph-
ery from its representative r(v) in the core.

It remains to explain how steps 4 and 5 are actually performed.

Step 4 in More Details. First, observe that the parameter x = �|S1|/|C|	 can be
computed at each node of the core, as performing all-to-all communication in
the core allows each core node to compute |S1|. Now, we show how to distribute
the fragments among the leaders such that leader �(F ) becomes aware of the
edges eF (v) ∈ S1 incident to F .

The edges (u, v) ∈ S1 are sorted according to the ID of the fragment Fu its
tail belongs to, and are then split into groups of x edges. Again, this operation
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can be done in O(1) rounds using the sorting protocol in [18] because x = O(|C|).
The kth group is assigned to the kth node of the core.

Let us consider a core node u, and let F(u) be the set of fragments F such
that �(F ) = u. Let us denote by idmax(u) (resp., idmin(u)) the maximum ID
(resp., minimum ID) of the fragments F ∈ F(u). Having sorted the set S1

guaranties that the leader u receives all the edges assigned to it, except perhaps
some edges starting from fragment idmax(u) that could have been delivered to
succ(u). However, there are at most x − 1 such edges, since the representatives
kept at most one edge per fragment. So, every core node u can send idmax(u) to
succ(u), in order to let that node know that the leader of the fragment with ID
equal to idmax(u) should be u, and not succ(u). Since each node u has then at
most x−1 messages to transmit to pred(u), we can transmit these messages using
the routing protocol in [18]. Now each leader u has all the outgoing edges of each
fragment F with �(F ) = u. Thus, u can compute eF for each of these fragments.
Finally, each node u in the core broadcasts the pair (idmin(u), idmax(u)) in the
core so that every node in C learns the leader of each fragment.

Note that, while sorting and routing, every node keeps track of the ID of the
representative nodes which originally received every edge that is manipulated by
that node (this is needed in step 6).

Step 5 in More Details. We show how to perform the first step of pointer jumping.
Recall that, for every fragment F , the leader �(F ) knows eF . This latter edge
is the one leading toward the root of the merge tree. Assume that eF = (u, v),
with u ∈ F and v ∈ F ′. The objective for the leader �(F ) is to learn to which
fragment F ′′ is pointing the edge eF ′ = (u′, v′) with u ∈ F ′ and v′ ∈ F ′′. In
other words, if p denotes the parent relation in a merge tree, the leader �(F ) of
fragment F wants to learn the ID of p(p(F )). The bad news is that �(F ) cannot
directly ask id(p(p(F ))) to �(p(F )) because this could create a bottleneck at
�(p(F )). Nevertheless this issue can be overcame as follows.

First, the edges in S2 are sorted according to the IDs of the fragment of their
heads, and grouped into groups whose heads belong to the same fragment. In this
way, only one request is sent for each group (to the leader of the corresponding
fragment). Since x = �|S1|/|C|	, we have x = O(|C|), and thus the number of
requests that each leader has to make is at most O(|C|).

Second, every leader does not receive more than O(|C|) requests. Indeed, let
qu,v be the number of different fragments for which a node u in the core has
to send a request to leader v. Let Fi1 , Fi2 , . . . , Fiqu,v

be these fragments, with
�(Fi1) = �(Fi2) = · · · = �(Fiqu,v

) = v, and i1 < i2 < · · · < iqu,v
. Recall that the

edges in S2 are sorted according to the IDs of the fragment of their heads. Thus, if
qu,v > 1 then the fragments Fi2 , . . . , Fiqu,v

do not appear in any list of fragments
assigned to nodes with identity smaller than id(u). Therefore, leader v receives at
least

∑
u∈C(qu,v − 1) requests for different fragments. On the other hand, every

core node v is the leader of at most x fragments. Therefore
∑

u∈C(qu,v − 1) ≤ x.
Hence the number of requests received by v is

∑
u∈C qu,v = O(|C|).

These two facts, allow the routing protocol in [18] to be used, for sending
the requests to the leaders, and for receiving back their answers. Once this is
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done, every node u sends id(p(p(F ))) to �(F ), for every F ∈ F(u) in a constant
number of rounds, again using [18]. It follows that every leader u can learn the
ID of p(p(F )) for every F ∈ F(u) in a constant number of rounds.

Time Analysis. The initialization phase can be performed in O(1) rounds thanks
to Axiom 3. Step 1 trivially requires O(1) rounds. Step 2 also requires O(1)
rounds thanks to Axiom 3. Step 3 is executed locally by each node, thus it
does not require communication. Step 4 can be executed in O(1) rounds using
the sorting protocol in [18] because x = O(|C|). Step 6 can also be performed
in O(1) rounds using the routing protocol in [18] because each leader handles
O(|C|) edges (for which it has to send a fragment ID), and each representative
has to receive O(|C|) messages (one for each edge it has to receive a new fragment
ID). The last step is the inverse of step 2, and thus can still be executed in O(1)
rounds. Step 5 however requires O(log n) rounds because the merge tree might
be of height Ω(nε) for some ε > 0. Since the number of phases is also O(log n),
the total number of rounds of this algorithm is O(log2 n).

A Faster Algorithm. Now, we describe how to modify the above algorithm so
that it uses only O(1) rounds for each phase, hence O(log n) rounds in total.
Since the only step that requires a non constant number of rounds is Step 5, we
show how to perform that step in O(1) rounds.

The idea is to use a technique introduced first in [20], and also used in Avin
et al. [1], called amortized pointer jumping. The reduction of long chains of
pointers is deferred to later phases of Bor̊uvka’s algorithm, and only a constant
number of pointer jumps are performed at each phase. This technique exploits
the fact that, if a chain is long, it must contain many fragments. As a conse-
quence, when pointer jumping completes, the resulting fragment is quite large,
and other nodes involved in small fragments may continue building the MST in
parallel, without waiting for large fragments to be constructed.

We show how to do a constant number of pointer jumping steps, then freezing
the procedure, and resuming it later in the next phase of Bor̊uvka’s algorithm.
At each step of pointer jumping, every leader u can know, for every F ∈ F(u), if
the root of the merge tree has been reached. Suppose that the root has not been
reached by u after a constant number of pointer jumping (i.e., the leader does not
know yet the new ID of the merged fragment), and that u is currently pointing at
fragment F ′. In the following, node u adds a flag in its messages, which specifies
that the fragment has not been resolved yet, and that it stopped at F ′. This flag
will be propagated to all nodes that proposed edges that start from unresolved
fragments. At the next phase of Bor̊uvka’s algorithm, these nodes will propose
again the same edges, by specifying also F ′. Fragment F ′ will be used as if it
was the destination fragment of the edge. In this way, for every fragment F in
a merge tree whose merging has not yet been performed, the same edge eF as
before will be chosen, and other steps of pointer jumping will be performed. This
insures that nodes belonging to fragments in such merge trees do not propose
new edges, thus emulating a full execution of pointer jumping.
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After having reduced the number of rounds for performing step 5 from
O(log n) to O(1), amortized, we get that the resulting algorithm just requires
O(log n) rounds to construct a MST. �

5 Conclusion

We have shown how to emulate the clique by a random graph in Gn,p in time
O(min{ 1

p2 , np}) rounds, w.h.p. Hence, on dense random graphs (i.e., p = Ω(1)),
our simulation performs in just a multiplicative constant factor away from the
optimal, and, on sparse graphs (i.e., p � √

log n/n), it performs just a log n
factor away from optimal. However, in general, whenever p � 1

3√n
, it performs

in O( 1
p2 ) rounds, which is a factor O( 1p ) away from the trivial lower bound Ω( 1p ).

An intriguing question is whether the n-node clique can be simulated by Gn,p in
just O( 1p ) rounds.

Our deterministic MST algorithm for core-periphery networks performs in
O(log n) rounds, improving the previously known (randomized) algorithm by a
factor Θ(log n). Recent advances in the congested clique model demonstrate that
ultra fast MST algorithms exist for this later model, namely, a recent O(log∗ n)-
round randomized algorithm [12], and a O(log log n)-round deterministic algo-
rithm [19]. Another intriguing question is whether such ultra fast algorithms
exist for core-periphery networks.
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Abstract. In the gossip-based model of communication for disseminat-
ing information in a network, in each time unit, every node u can contact
a single random neighbor v but can possibly be contacted by many nodes.
In the present paper, we consider a restricted model where at each node
only one incoming call can be answered in one time unit. We study the
implied weaker version of the well-studied pull protocol, which we call
restricted pull.

We prove an exponential separation of the rumor spreading time
between two variants of the protocol (the answered call among a set
of calls is chosen adversarial or uniformly at random). Further, we show
that if the answered call is chosen randomly, the slowdown of restricted
pull versus the classic pull protocol can w.h.p. be upper bounded by
O(Δ/δ · log n), where Δ and δ are the largest and smallest degree of the
network.

Keywords: Rumor spreading · Gossiping · Pull · Push · Stochastic
dominance · Coupling

1 Introduction

Gossip-based communication models have received a lot of attention as a sim-
ple, fault-tolerant, and in particular also scalable way to communicate and dis-
seminate information in large networks. The classic application of gossip-based
network protocols is the spreading of information in the network, specifically the
problem of broadcasting a single piece of information to all nodes of a network,
in this context also often known as rumor spreading, e.g., [2–7]. Gossip-based
protocols have for example also been proposed for applications such as main-
taining consistency in a distributed database [2], for data aggregation problems
[8–10], or even to run arbitrary distributed computations [11].

The best studied gossip strategy is the random phone call model, which was
first considered in [4]. We are given a network graph G = (V,E) where initially
a source node s ∈ V knows some piece of information (rumor) and the objective
is to disseminate the rumor to all nodes of G. Typically, time is divided into
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synchronized rounds, where in each round, every node can contact a random
neighbor and if u contacts v, an interaction between u and v is initiated for
the current round. For spreading a rumor, two basic modes of operation are
distinguished. Nodes that already know the rumor can PUSH the information
to the randomly chosen neighbor [4] or nodes that do not yet know the rumor
can PULL the information from the randomly chosen neighbor [2]. In much of
the classic work, the network G is assumed to be a complete graph. In that case,
it is not hard to see that PUSH and PULL both succeed in O(log n) rounds
and that the total number of interactions of each node can also be bounded by
O(log n). In [7], it is shown that when combining PUSH and PULL (in the
following referred to as PUSH-PULL), the average number of interactions per
node is only Θ(log log n).

Mostly in recent years, PUSH, PULL, and PUSH-PULL have also been
studied for more general network topologies, e.g., [3,5,6,12–15], with [5,6] and
[14,15] studying the time complexity as a function of the graph’s conductance
and vertex expansion, respectively. E.g., in [6], it is shown that with high prob-
ability (w.h.p.), the running time of PUSH-PULL can be upper bounded by
O((log n)/φ(G)), where n is the number of nodes and φ(G) is the conductance
of the network graph G.

While in gossip protocols, each node can initiate at most one interaction
with some neighbor, even if each node contacts a uniformly random neighbor,
the number of interactions a node needs to participate in each round can be quite
large. In complete graphs and more generally in regular graphs, the total number
of interactions per node and round can easily be upper bounded by O(log n).
However in general topologies a single node might be contacted by up to Θ(n)
neighboring nodes. As an extreme case, consider a star network where a single
center node is connected to n − 1 leaf nodes. Even if the rumor initially starts
at a leaf node, PUSH-PULL manages to disseminate the rumor to all nodes in
only 2 rounds. Clearly, in these 2 rounds, the center node has to interact with
all n−1 leaf nodes. In fact, all recent papers which study the time complexity of
the random PUSH-PULL protocol critically rely on the fact that a node can be
contacted by many nodes in a single round, e.g., [6]. In some cases, this behavior
might limit the implementability and thus the applicability of the proven results
for this gossip protocol. In order to obtain scalable systems, ideally, we would
like to not only limit the number of interactions each node initiates, but also the
number of interactions each node participates in.

In the present paper, we therefore study a weaker variant of the described
random gossip algorithms. In each round, every node can still initiate a connec-
tion to one uniformly random neighbor. However, if a single node receives several
connection requests, only one of these connections is actually established. When
disseminating a rumor by using the PUSH protocol, this restriction does not
limit the progress of the algorithm. In a given round, a node v learns the rumor
if and only if at least one PUSH request arrives at v. However, when using the
PULL protocol, the restriction can have a drastic effect. If a node v receives
several PULL requests from several nodes that still need to learn the rumor,
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only one of these nodes can actually learn the rumor in the current round. In our
paper, we therefore concentrate on the PULL protocol and we define RPULL
(restricted PULL) as the described weak variant of the PULL algorithm: In
each RPULL round, every node that still needs to learn the rumor contacts
a random neighbor. At every node that knows the rumor, one of the incoming
requests (if there are any) is selected and the rumor is sent to the correspond-
ing neighbor. By PUSH-RPULL we denote the combination of RPULL with
a simultaneous execution of the classic PUSH protocol.

Contributions. We first consider two versions of the RPULL protocol which
differ in the way how one of the incoming requests is selected. Assume that
in a given round some informed node v receives RPULL requests from a set
of neighbors Rv. In the adversarial RPULL protocol, an (adaptive) adversary
picks some node u ∈ Rv which will then learn the rumor. In the random RPULL
protocol, we assume that a uniformly random node u ∈ Rv learns the rumor
(chosen independently for different nodes and rounds). While the choice of which
neighbor a node (actively) contacts with a request is under the control of the
protocol, it is not necessarily clear how one of the incoming requests in Rv is
chosen. If the node can only answer one request per time unit and the requests
do not arrive at exactly the same time, the first request might be served and
all others dropped. Or even if requests arrive at the same time, it might be the
underlying network infrastructure or operating system which picks one request
and drops the others. If it is reasonable to assume that the incoming requests
are served probabilistically and independently, we believe that random RPULL
provides a good model. Otherwise, the adversarial assumption allows to study
the worst-case behavior.

As a first result, we prove that the running times of the two RPULL variants
are essentially the same on trees. Secondly, we show that there are instances
for which there is an exponential gap between the running times of the two
RPULL variants. We give an instance where for every source node the ran-
dom RPULL protocol informs all nodes of the network in polylogarithmic time,
w.h.p., whereas, for every source, the adversarial RPULL algorithm requires
time Ω(

√
n) to even succeed with a constant probability.

In the second part of the paper, we have a closer look at the performance of
the random RPULL protocol. Consider a graph G and let δ and Δ denote the
smallest and largest degree of G. In each round, in expectation, each informed
node receives at most Δ/δ requests. Hence, if an uninformed node u sends an
RPULL request to an informed node, u should receive the rumor with proba-
bility at least Ω(δ/Δ). Consequently, intuitively, the slowdown of using random
RPULL instead of the usual PULL protocol should not be more than Õ(Δ/δ).1

We prove that this intuition is correct. For every given instance, we show that if
the PULL algorithm informs all nodes in T rounds with probability p, for the
same instance, the random RPULL algorithm manages to reach all nodes in time

1 Here Õ hides log(n) factors.
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O
(T · Δ

δ · log n
)

with probability (1 − o(1))p.2 While the statement might seem
very intuitive, its formal proof turns out quite involved. Formally, we prove a
stronger statement and show that a single round of the PULL protocol is w.h.p.
stochastically dominated by O

(
Δ
δ ·log n

)
rounds of random RPULL in the follow-

ing sense. We give a coupling between the random processes defined by PULL
and random RPULL such that for every start configuration, w.h.p., the set of
nodes informed after O

(
Δ
δ · log n

)
rounds of random RPULL is a superset of the

set of nodes informed in a single PULL round. The same holds for simulating
one round of PUSH-PULL with PUSH-RPULL. A similar coupling between
rumor spreading algorithms has been done in [16] where the authors couple
log(n) rounds of asynchronous- with one round of synchronous PUSH-PULL.
A coupling between PULL and RPULL in the classic sense, i.e., a coupling
which does relinquish the w.h.p. term does not exist. We also show that for
such a round-by-round analysis, our bound is tight. That is, there are config-
urations where Ω

(
Δ
δ log n

)
random RPULL rounds are needed to dominate a

single PULL round with high probability.

Notation and Preliminaries. Let G = (V,E) be the n-node network graph. For a
node u ∈ V , we use N(u) to denote the set of neighbors of u and d(u) := |N(u)|
to denote its degree. Given a set of nodes S ⊆ V , we define NS(u) := N(u) ∩ S
to be the set of u’s neighbors in S and dS(u) := |NS(u)| for the number of
neighbors of u in S. The smallest and largest degrees of G are denoted by δ and
Δ, respectively. For a set V ′ ⊆ V we denote with G[V ′] the graph induced by
V ′. To indicate a disjoint union of two sets, i.e., A∪B with A∩B = ∅, we write
A ·∪B. For a set of natural numbers {1, . . . , k} we only write [k].

When analyzing the progress of an algorithm ALG, the set SALG
t denotes the

set of informed nodes after t rounds and UALG
t the set of uninformed nodes. When

the algorithm is clear from the context we simply write St and Ut, furthermore
we denote S = S0 and U = U0 for the initial configuration. Missing proofs
appear in [1].

2 Separation of Adversarial and Random RPULL

We want to show that the adversarial RPULL can be exponentially slower than
the randomized RPULL on general graphs. To show this, we first establish
results on the run time of both algorithms on trees. These results might also be
of independent interest.

In a tree network let pv,u = (v = v0, v1, v2, . . . , vq = u) denote the unique
path from v to u, though we use that notation also for the set of nodes on that
path, i.e., pv,u = {v, v1, v2, . . . , vq−1, u}. For a path p, let Mp :=

∑
w∈p d(w) be

the sum of all degrees on the path.
The next lemma shows that on a tree any form of RPULL is asymptotically

as fast as PULL plus an additive term in the order of the degree of the node
that initially has the rumor.
2 Actually, Δ

δ
can be replaced by max{u,v}∈E d(u)/d(v) in all parts of the paper, where

d(u) and d(v) denote the degrees of the nodes.
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Lemma 1. Let G be a tree network with S0 = {r} and let u be a node in U0.
Furthermore, let τ be the first round in which u ∈ Sτ holds, i.e., the number of
rounds until u gets informed.

(1) E[τ ] = Θ(Mpr,u
− d(r)) for PULL,

(2) E[τ ] = Ω(Mpr,u
− d(r)) for every type of RPULL,

(3) E[τ ] = O(Mpr,u
) for adversarial RPULL.

Proof (Lemma 1). (1) We root the tree at the only informed node, r. Note that
nodes are not aware of their own parent/child relationships. Consider some time
t at which a node r′ on the path pr,u is in St\St−1, i.e., it just got informed. Thus
its child u′ ∈ pr,u on the path is not yet informed, i.e., u′ ∈ Ut. In any round
t′ ≥ t, in which u′ is not informed yet, it requests its parent with probability
1/d(u′). Thus each uninformed node u′ ∈ pr,u\ {r} on the path needs Θ(d(u′))
rounds in expectation before it can get informed. Linearity of expectation proves
the claim for PULL.

(2) follows from the fact that RPULL is at most as fast as PULL.
(3) For adversarial RPULL divide all rounds t′ ≥ t in which u′ is not yet

informed into two types: First rounds in which at least one sibling of u′, i.e., the
nodes in N(r′)\{u′}, requests from r′ and secondly rounds in which no sibling of
u′ requests from r′. The first type of rounds is upper bounded by d(r′) because
every neighbor of r′ stops requesting after receiving the rumor. In expectation u′

gets the rumor after d(u′) rounds of type two; thus in expectation u′ is informed
within O(d(r′)+d(u′)) rounds. Applying this recursively to all uninformed nodes
on the path pr,u, we get the claimed result via linearity of expectation.

Lemma 2. Let G be a tree network with S0 = {r}. Then in both random and
adversarial RPULL it takes O

(
maxpath p Mp + Δ log n

)
rounds to fully inform

all nodes in V , w.h.p..

Proof (Sketch). Let u be a uninformed with informed parent v. In each round v
either informs one child other than u or u has a probability of 1/d(u) to get the
rumor. In expectation for each predecessor-successor pair (v, u) on a path p the
time for u to get informed is at most d(v)+d(u). A Chernoff bound for geometric
random variables [1, Lemma B.1] provides the time bound of O(Mp + Δ log n)
for that path and a union bound over all paths concludes the proof.

Lemma 2 shows that random RPULL and adversarial RPULL are essentially
the same on trees. This does not hold for general graphs.

Lemma 3. There is a graph G = (V,E) of size Θ(n) with a node rα ∈ V ,
d(rα) ≤ 3, such that:

– For S0 = {rα}, w.c.p., the run-time of adversarial RPULL is in Ω(
√

n).
– For any non-empty S0 ⊂ V , w.h.p., the run-time of randomized RPULL is

in O(log2 n).
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Proof (sketch). See Fig. 1 for a visualization of the graph defined here. We first
introduce a special graph type that we call a k-leaf-connected tree (k-LCT). In
simple words, a k-LCT is a binary tree with k leaves, but with its k leaves being
fully interconnected, i.e., forming a clique. Propagation of the rumor from one
node to all nodes of a k-LCT, happens in O(log k). This also holds true if we
embed this k-LCT into a larger graph, as long as the degrees do not grow much
in this manner. As long as the k-LCT is uninformed most requests of the leaves
will target other leaf nodes, hence it is unlikely for a k-LCT to acquire the rumor
through its leaves.

We construct G as follows: We let Dα and Dζ be two n-LCTs, and we
have m l-LCTs that we denote with D1,D2, . . . , Dm, where l :=

√
n and

m := c
√

n for some c > 1. Their corresponding roots and leaf sets are denoted as
rα, rζ , r1, r2, . . . rm and Lα, Lζ , L1, L2, . . . Lm respectively, and with lX,1, lX,2, . . .
we enumerate the leaves of leaf set LX . Let Cα = {c1, . . . cm} be an arbitrary
m-sized subset of Dα\Lα and add the following edges:

– Between r and Dζ : Add one edge from r to rζ

– Between r and Dα: For each j ∈ [m log n]: add edge {r, lα,j}
– Between r and D1, . . . , Dm: For each i ∈ [m], j ∈ [log n]: add edge {r, li,j}
– Between D1, . . . , Dm and Dζ : For each i ∈ [m] add edge {ri, lζ,i}
– Between D1, . . . , Dm and Cα: For each i ∈ [m] add edge {li,l, ci}.

The graph is built such that information propagation from Dζ to the rest of the
graph is quick, but not the other way round. In the random RPULL model,
wherever the rumor starts, it reaches r quickly and from there rζ manages to
pull in polylogarithmic time. Then the rumor quickly propagates through Dζ ,
and from Lζ to all LCTs D1, . . . , Dm and afterwards to Dα.

In the adversarial RPULL model, as long as the rumor starts outside Dζ ,
the rumor can quickly spread to r, Dα and a few of the Dis (i.e., the LCTs
D1, . . . , Dm). But we let the adversary always prioritize a request at node r
from a node in one of the Dis over a request from rζ to prevent that rζ gets
the rumor. We can show that the number of informed Dis grows slowly and
hence such requests exist w.h.p. as long as no node in Dζ is informed. Also, with
only few Dis informed, due to their high degrees, leaf nodes in Lζ are unlikely
to request from a Di containing the rumor, and hence the progress of rumor
propagation is stalled.

Theorem 1. There is a graph G = (V,E) of size Θ(n), such that for any S0 =
{s} ⊂ V :

– In expectation, the run-time of adversarial RPULL is in Ω(
√

n).
– W.h.p., the run-time of randomized RPULL is in O(log2 n).

Proof. Let G′ and G′′ be duplicates of the graph G from Lemma 3, r′
α and r′′

α

being the respective duplicates of rα. We set G := G′ ∪ G′′ and add the edge
{r′

α, r′′
α}. Without loss of generality let s ∈ V ′.



Rumor Spreading with Bounded In-Degree 329

Fig. 1. The graph in Lemma 3. Grey areas indicate fully connected parts of the graph.

In the random version, the rumor propagates through all of G′ in O(log2 n)
rounds. Due to its low degree, r′′

α gets the rumor from r′
α within O(log n) time

after G′ is informed and again, in O(log2 n) rounds G′′ is informed completely.
In the adversarial version, G′′ can only learn the rumor from G′ through edge

{r′
α, r′′

α}. But once r′′
α knows the rumor, we can apply Lemma 3 again to prove

that now progress is stalled.

3 Comparison of PULL and Random RPULL

In this section we compare the two algorithms PULL and random RPULL on
general graphs, i.e., we analyze how many rounds of random RPULL are enough
to cover the progress of one round of PULL. More precisely, we show that w.h.p.
the set of nodes informed after O

(
Δ
δ · log n

)
rounds of random RPULL is a

superset of the set of nodes informed in a single PULL round. We manage to do
so by coupling both algorithms. At the end of the section we head out to prove
that this bound is tight. Whenever we talk about RPULL in this section we
mean random RPULL.
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3.1 Dominance and Couplings

We begin with two examples of insufficient definitions of domination between
two rumor spreading algorithms. Showing for two algorithms A and A′ that
P

(
u ∈ SA) ≥ P

(
u ∈ SA′)

holds for all u ∈ U is not enough to obtain a natural
dominance definition of A over A′, since due to dependencies for a set M with
|M | > 1 it might still be true that P

(
M ⊆ SA)

< P
(
M ⊆ SA′)

.
Showing that P

(
M ⊆ SA) ≥ P

(
M ⊆ SA′)

(*) holds for all M ⊆ U is not
enough either. Assume the following example: Let U = {a, b, c} be the set of
uninformed nodes. Assume that under A the probability that the set of newly
informed nodes equals {a, b, c}, {a}, {b} or {c} is 1/8+ε each and the probability
that it equals one of the sets {a, b}, {a, c}, {b, c} or ∅ is 1/8 − ε each. Under A′

we inform any of those sets with probability 1/8. A direct computation for all
M ⊆ {a, b, c}, e.g., for M = {a}, P({a} ⊆ SA′

) = 1/2 and P({a} ⊆ SA) =
P(SA = {a}) + P(SA = {a, b}) + P(SA = {a, c}) + P(SA = {a, b, c}) = 1/2,
shows that inequality (*) is fulfilled for any M ⊆ U , but the probability of the
event “at least 2 nodes are informed” is by 2ε smaller for A than for A′. In the
following we introduce the classical method to relate stochastic processes, i.e.,
the notion of (first order) stochastic dominance. However, we show that (proper)
stochastic dominance between RPULL and PULL does not exist and thus we
weaken the notion afterwards.

Stochastic Dominance and Coupling. Let (S,�S) be a finite distributive
lattice and let X1 and X2 be random variables with distributions P1 and P2

which take values in S. A function f : S → R is called increasing if A �S B
implies f(A) ≤ f(B).

Definition 1 (Stochastic Dominance). We say that X2 stochastically dom-
inates X1 if E(f(X2)) ≥ E(f(X1)) holds for every increasing function f : S →
R, where E(·) denotes the expected value.

Alternative to Definition 1, one can show that one process stochastically domi-
nates a second process by defining a monotone coupling (cf. Theorem2).

Definition 2 ((Monotone) Coupling). A coupling of two random processes
X1 and X2, taking values in S with distributions P1 and P2, is a joint distri-
bution P̂ of a random process (X̂1, X̂2) taking values in S × S, such that its
marginals equal the distributions of X1 and X2, respectively, i.e.,

∑

B∈S
P̂

(
(X̂1, X̂2) = (A,B)

)
= P1(X1 = A) ∀A ∈ S and

∑

A∈S
P̂

(
(X̂1, X̂2) = (A,B)

)
= P2(X2 = B) ∀B ∈ S.

A coupling P̂ is called monotone (written X1 ≤ X2) if also the following holds:

∀A,B ∈ S with P̂
(
(X̂1, X̂2) = (A,B)

)
> 0 it follows that A �S B. (1)
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Note that the choice of a coupling between two processes is generally not
unique. The following theorem, Strassen’s Theorem [17,18], shows an equivalence
between stochastic dominance and the notion of monotone couplings.

Theorem 2 (Strassen [17,18]). The following are equivalent:

1. X2 stochastically dominates X1,
2. There exists a monotone coupling between X1 and X2 such that X1 ≤ X2,
3. P (X2 ∈ F ) ≥ P (X1 ∈ F ) holds for every monotone set F ⊆ S.3

Stochastic dominance/monotone couplings are the commonly known method
to relate stochastic processes and we would like to show that O(Δ

δ log n) rounds
of random RPULL stochastically dominate one round of PULL. This, however,
is not possible as one can easily construct a graph in which some node u is
informed with probability 1 in one round of PULL, but with probability less
than 1 in O(Δ

δ log n) rounds of RPULL.4 Therefore we introduce the notion of
highly probable monotone couplings and – in analogy to the equivalencies from
Strassen’s Theorem – also the notion of highly probable stochastical dominance.

Definition 3. A coupling P̂ of random processes X1 and X2 is called
monotone w.h.p. (w.r.t. to n) (written X1 ≤w.h.p X2) if for some c > 1 it
satisfies

∑

A ��B

P̂
(
(X̂1, X̂2) = (A,B)

)
≤ 1

nc
. (2)

We say X2 stochastically dominates X1 w.h.p. (w.r.t. n), if there exists a cou-
pling between X1 and X2 that is monotone with high probability (X1 ≤w.h.p X2).

In this paper we will set S = 2U to be the power set of U , where U ⊆ V is
the set of uninformed nodes, �S equals the subset relation on U and X2 and X1

will be the respective random variables describing which nodes get informed in
RPULL and PULL. In general, the parameter n in Definition 3 can be freely
chosen; in our setting n will be the number of nodes of the communication
network. With this choice of parameters a monotone coupling (w.h.p. w.r.t. n)
is the desired relation of PULL and RPULL.

3.2 W.h.p. Monotone Coupling Between PULL and RPULL

Theorem 3. W.h.p., for any set of informed nodes S ⊆ V , T = O
(

Δ
δ log n

)

rounds of random RPULL stochastically dominate a single round of PULL.

Corollary 1. If in a graph G with initially informed nodes S ⊆ V the PULL
algorithm informs all nodes in T rounds with probability p, then the random
RPULL algorithm informs all nodes in time O

(T · Δ
δ · log n

)
with probability

(1 − o(1))p.
3 A set F ⊆ S is called monotone if A ∈ F and A �S B implies B ∈ F .
4 Figure 2 can be used to verify this.
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By PUSH−RPULL we denote the combination of RPULL with a simultaneous
execution of the classic PUSH protocol. The restriction of a single node to
answer only a limited number of requests does not limit the progress of the
PUSH algorithm when disseminating a rumor.

Corollary 2. W.h.p., for any set of informed nodes S ⊆ V , O
(

Δ
δ log n

)
rounds

of PUSH−RPULL stochastically dominate a single round of PUSH−PULL.

To reduce dependencies between nodes which request from the same neighbor we
introduce a new algorithm VPULL (virtual pull). VPULL is only introduced
for the sake of analysis; difficulties that arise in an actual implementation of
VPULL are not relevant. The proof of Theorem3 is split into two parts such
that it follows from the transitivity of the stochastical dominance relation:

Lemma 4: W.h.p., T rounds of RPULL stoch. dominate VPULL,
Lemma 6: VPULL stochastically dominates one round of PULL.

By RPULLT we denote the (randomized) process RPULL which runs for T
rounds, by VPULL we denote one execution of VPULL and by PULL1 we
denote the process PULL which runs for one round only. The random vari-
ables SRPULL

T , SVPULL and SPULL
1 denote the respective sets of nodes that are

informed after the corresponding number of rounds. The processes RPULLT ,
VPULL and PULL1 are not completely characterized by the random variables
SRPULL

T , SVPULL and SPULL
1 – one has to include information about all requests

and messages, that are sent by all nodes, to fully describe the random processes.
Nevertheless, to show the desired result, it is sufficient to find a monotone cou-
pling where condition (1) and (2), respectively, are fulfilled with regard to the
subset relation of the set valued random variables SRPULL

T , SVPULL and SPULL
1 .

Definition of VPULL. Let us define weakly connected nodes u ∈ U as nodes
for which dS(u)/d(u) ≤ 1/2 and strongly connected otherwise. To introduce the
process VPULL we need the following parameters, which we fix later.

K = Θ

(
Δ

δ
+ log n

)

, T ′ = O

(
Δ

δ
log n

)

and T = Θ(T ′), T � T ′

An execution of VPULL consists of two phases. In the first phase nodes send
tokens instead of the actual rumor and w.h.p. nodes who have received a token in
the first phase are informed in the second phase. In an execution of VPULL we
let Xv(t) be the number of tokens which node v has sent up to round t. In a round
t denote with Rv(t) the set of nodes requesting from some informed node v ∈ S
and with rv(t) = |Rv(t)| its cardinality. Rv, rv and Xv are random variables
which describe certain properties of an execution of VPULL, where large values
of Xv or rv indicate the unlikely case in which the (strict) monotonicity of a
tentative coupling between VPULL and RPULLT might break.

Definition 4 (Good, Bad Execution). An execution of VPULL is called a
bad execution if for some v ∈ V or 1 ≤ t ≤ T it holds that Xv(t) > K or
rv(t) > K, otherwise it is called a good execution.



Rumor Spreading with Bounded In-Degree 333

Here, we describe VPULL informally (for a formal defintion cf. Algorithm1).
An execution of VPULL is split into two phases – the first phase consists of
T rounds and the second phase of one round. In the first phase an uninformed
node requests the rumor uniformly at random from one of its neighbors and
an informed node v decides with probability rv

T ′ whether to send out a token
– in which case it selects, uniformly at random, one of its incoming requests
as destination for the token. Nodes that get a token in those T rounds, stop
requesting from neighbors, but are still unable to forward any information in
consecutive rounds. In the second phase the limit to the number of requests that
can be served by an informed node is stripped away. Then, in case of a bad
execution (the first phase determines whether an execution is good or bad), all
actions from the first phase are discarded and all uninformed nodes perform one
round of PULL. In case of a good execution, all uninformed strongly connected
nodes perform one round of PULL and afterwards all nodes holding a token are
being informed. If we assume that tokens are as valuable as the information itself,
in each of the T rounds of the first phase, VPULL differs from RPULL only in
the fact that the selected incoming connection is established with probability rv

T ′
whereas it is established deterministically in RPULL. For an uninformed node
u ∈ U , that chooses to request a neighbor v ∈ S, this normalizes the probability
to get a token to 1/T ′, independent of the amount of other requesting nodes.
Except for the second phase this algorithm is clearly dominated by RPULL.

W.h.p. Monotone Coupling Between RPULL and VPULL. First, we
generate a monotone coupling between T rounds of RPULL and the first phase
of VPULL as follows: For each round in the first phase both processes use the
same randomness to decide on the outgoing calls of uninformed nodes (if in a
round t > 1 a node is uninformed in VPULL but not in RPULL the process
VPULL uses additional randomness; the contrary cannot happen). VPULL uses
additional randomness to decide whether a node, which is contacted, sends out
any message at all, confer line 13 from Algorithm 1. This simultaneous execution
of both algorithms gives rise to a coupling of the first phase of VPULL and
RPULLT . Clearly, a node that is provided with a token in VPULL in any
round is then also informed in RPULL, i.e., the coupling is monotone.

Lemma 4. RPULLT stochastically dominates VPULL with high probability.

Proof. Under the assumption that tokens are as valuable as the information itself
we constructed a monotone coupling of the first phase of VPULL and SRPULL

T .
Then, it is sufficient to prove that in the second phase of VPULL, w.h.p., no node
is informed, that has not been informed in the T rounds of RPULL: If neither
ever any value rv nor any Xv exceeded K, then only strongly connected nodes
simulate one round of PULL in the second phase of the VPULL algorithm.
We claim that, w.h.p., each strongly connected node has been informed in the
first T rounds of RPULL: A strongly connected node u ∈ U requests from an
informed node v ∈ S with probability at least 1/2. In any given round due to
Markov inequality with probability at least 1/2 no more than 2Δ/δ nodes u′ ∈ U
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connect to v. The probability for u to get informed under RPULL is thus at
least δ

8Δ . Choosing T = O
(

Δ
δ log n

)
big enough and a union bound gives us that,

w.h.p., all strongly connected nodes are informed in process RPULLT .

Algorithm 1. One execution of VPULL ((T + 1)-rounds)
Input: K – threshold for bad execution; T ′ – parameter to normalize probabilities
States: informed; uninformed
Oracle knowledge: dS(v) for every node v; BE :=

∨
v∈V BEv

Vars.: Rv set of nodes request. from v in the corresp. round (rv := |Rv|)
BEv boolean indicator for bad execution caused at node v
tokenReceivedv indicates whether a node will be informed after T rounds

1: BEv ← false; tokenReceivedv ← false
2: for T rounds do
3: switch statev do
4: case uninformed

5: if tokenReceivedv = false then
6: send request for rumor uniformly at random
7: if msg = token then
8: tokenReceivedv ← true

9: case informed

10: if rv > K or Xv > K then // bad execution has been detected
locally

11: BEv ← true
12: else
13: with probability rv/T ′ do
14: send token to uniformly at random chosen node in Rv �= ∅
15: Xv ← Xv + 1

// Round T + 1:
16: request (BE, dS(v)) from global oracle
17: if BE = true then // bad execution has been detected globally
18: execute one round of PULL // executed locally
19: else
20: if dS(v)/d(v) > 1/2 then // node is strongly connected
21: execute one round of PULL // executed locally
22: else if tokenReceivedv = true then
23: statev ← informed // node learns rumor

W.h.p., rv ≤ K in VPULLT for all v. For a fixed informed node v, in
expectation, no more than Δ

δ nodes can request from v. Using a Chernoff bound
for a single round and a single node, P

(
rv ≥ κ

(
Δ
δ + log n

)) ≤ n−Θ(κ) holds.
With a union bound over all nodes and all rounds and κ large enough we obtain
that, w.h.p., rv never exceeds κK ′ and therefore neither K. A union bound over
all nodes concludes the proof.
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W.h.p., Xv ≤ K in VPULLT for all v. For a fixed v, note that, w.h.p.,
in a single round no more than κK ′ nodes request from v, and therefore, Xv

is increased at most with probability κK ′/T ′ in any round. Over T rounds, in
expectation, no more than κK ′ T

T ′ increments of Xv happen, and again a Chernoff
bound gives us that Xv does not exceed 2κK ′ T

T ′ with high probability. Choosing
cT,T ′ = 2κ T

T ′ and a union bound over all nodes concludes the proof.

Stochastic Dominance Between VPULL and PULL. In a single round
of PULL a node u ∈ U is informed with probability dS(u)

d(u) , independently from
which other nodes are informed. For one execution of VPULL we can show that
a node u is also informed at least with probability dS(u)

d(u) , independently from
which other nodes get informed (Lemma 5). Afterwards, we prove that Lemma 5
is sufficient to deduce the stochastic dominance of one execution of VPULL over
PULL1. For u ∈ U and random process X, let CX

u be the set of all conditions
of the type v ∈ X or v /∈ X where v �= u.

Lemma 5. In VPULL a node u ∈ U is informed at least with probability dS(u)
d(u) ,

independently from which other nodes are informed, i.e., for all sets of conditions
I ⊆ CVPULL

u and J ⊆ CPULL
u with P(I),P(J) > 0 the following holds

P
(
u ∈ SVPULL

T+1

∣
∣ I

) ≥ dS(u)
d(u)

= P
(
u ∈ SPULL

1

)
= P

(
u ∈ SPULL

1

∣
∣ J

)
. (3)

Proof. If u ∈ U is strongly connected, the result holds because VPULL executes
one round of PULL for u in either way. In a bad execution, VPULL executes
one round of PULL for any uninformed node and the claim holds trivially. Thus
assume that u is weakly connected and we are in a good execution. Let s = dS(u)
and NS(u) = {v1, . . . , vs} be the neighbors of u in S. We call a node v ∈ NS(u)
busy w.r.t. u in round t if it informs some node other than u. Let yt be the
number of busy nodes in round t w.r.t. u. In a good execution (which we denote
by G), any node in NS(u) can inform at most K nodes and hence there is the
following constraint on the sum of all yt’s

T∑

t=1

yt ≤ s · K. (4)

We can ignore conditions in I corresponding to nodes which do not have a com-
mon neighbor with NS(u)∪{u} as u can only get the rumor directly through S.
The only negative effect on the probability that u gets informed by the conditions
in I can be captured by the number of busy nodes w.r.t. u. Since the number of
nodes which are informed per node in a good execution is small compared with
T , there are sufficiently many rounds with sufficiently many non-busy nodes to
inform u. More precisely, if u requests from a non-busy node it is informed at
least with probability 1

T ′ . Thus, the probability that u, conditioned on I ∧ G
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with P(I ∧ G) > 0, is not informed is smaller or equal to (with c = T/T ′)

T∏

t=1

(

1 − s − yt

d(u) · T ′

)

≤
(

1 − s
(
1 − K

T

)

d(u) · T ′

)T

≤ e−c(1−K
T ) s

d(u) ≤ 1 − dS(u)
d(u)

.

The first inequality holds because under constraint (4) the expression on the left
hand side is maximized for yt = s·K

T . The last inequality holds due to s
d(u) ≤ 1/2,

c(1 − K/T ) ≥ 2 and the fact that e−2x ≤ 1 − x for any x ∈ [0, 1/2].

Lemma 5 is sufficient to show stochastic domination of VPULL over PULL1.
For a formal proof one can either directly construct a monotone coupling between
the random variables or use the following theorem by Holley [19].

Theorem 4 (Holley Inequality, [19]). Let (S, <) be a distributive lattice
and let μ1, μ2 be measures on this lattice. The Holley criterion is satisfied if

μ1(A ∩ B)μ2(A ∪ B) ≥ μ1(A)μ2(B) holds for all A,B ∈ S. (5)

If the Holley criterion is satisfied for μ1 and μ2 then
∑

A∈S
μ1(A)f(A) ≥

∑

A∈S
μ2(A)f(A) holds for all increasing functions f : S → R.

Lemma 6. One execution of VPULL stochastically dominates PULL1.

Proof. Let U be the uninformed nodes u with 0 < dS(u) < d(u) and consider
the distributive lattice (S,�S) = (2U ,⊆). Every uninformed node u which is not
contained in this set U has either no connection to S at all, i.e., it is not informed
in either process, or dS(u) = d(u) holds, i.e., it is informed with probability one
in either process because also VPULL executes one round of PULL for it. Hence
it is sufficient to show stochastic domination of SVPULL over SPULL

1 restricted
to this set U . This choice of U provides 0 < P(SPULL

1 = A),P(SVPULL =
A) < 1 for all A ∈ S and we define the strictly positive measures μ1(F ) :=
P

(
SVPULL ∈ F

)
and μ2(F ) := P

(
SPULL
1 ∈ F

)
for F ⊆ 2U . In [1, Claim xyz]

we show that Lemma 5 implies the Holley criterion. Then Lemma 6 follows with
Theorem 4 and the definition of the expected value of a function f : S → R.

Proof (Theorem3). The theorem follows with Lemmas 4 and 6.

3.3 The Round-by-Round Analysis is Tight

Lemma 7. The time bound T = O(Δ
δ log n) from Theorem3 is tight.

Proof. We construct a graph G for which at least T = Ω(Δ
δ log n) rounds of

RPULL are necessary to guarantee that a node a ∈ G is informed w.h.p. whereas
a is informed with probability 1 in PULL (cf. Fig. 2).

We partition the set V into V = A ·∪B ·∪T1,1 ·∪ . . . ·∪Tk2,k2 , where k = n1/5,
A = {a1, . . . , ak2}, B = {b1, . . . , bk2}. A and B form a complete bipartite graph
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Fig. 2. Illustrating the graph in the proof of Lemma 7.

with edges running between A and B. For each j ∈ [k2], node bi is connected to
one node ti,j ∈ Ti,j . Each Ti,j forms a complete graph of size k. In this graph,
δ = k−1 (acquired in Ti,j) and Δ = 2k2 (nodes in B), and therefore Δ/δ ∈ Θ(k).
The total size of the graph is |V | = n + o(n). Initially, we let S0 = B.

Within one round of PULL, all nodes of A are informed with probability
1. Now, consider the same graph after m ≤ k2/2 rounds of RPULL and let us
assume that some node a ∈ A is still uninformed. It requests in this round from
some node bi. Let Xi be the number of requests at bi. Within m rounds, each node
bi managed to inform at most m of its neighbors from NBi := {ti,1, . . . , ti,m}.
Since m ≤ k2/2, at least half of all nodes in NBi are still uninformed and thus,
since they have degree k, E[Xi] ≥ k/2. Applying Chernoff, we get that w.h.p.,
Xi ≥ k/4. In this scenario for a the probability to be chosen over one of its
competitors is at most 4/k, regardless of m, and therefore, P(a ∈ SRPULL

m ) ≤(
1 − 4

k

)m. For this to fall below 1/n, m has to be in Θ
(

Δ
δ log n

)
.

4 Conclusions

Lemma 7 and Theorem 3 show that to simulate one round of PULL, Θ
(

Δ
δ log n

)

rounds of RPULL are required. However, in case one wants stochastical domi-
nance (w.h.p.) over T > 1 rounds of PULL, the lower bound proof of Lemma7
does not hold. We believe that for T = Ω(log n), on any graph G and any set of
initially informed nodes S ⊆ V , O

(T (
Δ
δ +log n

))
or maybe even O

(T (
Δ
δ

)
+log n

)

rounds of RPULL suffice to stochastically dominate T rounds of PULL. That
proving this assumption might be a challenging task is underlined by a similar
conjecture in [16], in which the authors do a coupling of synchronous and asyn-
chronous PUSH-PULL. They obtain a similar multiplicative O(log n) factor
and also conjecture that it can be improved to an additive O(log n) term.

A possible alternative restriction of the PUSH-PULL protocol could be given
by the following algorithm. In each round, every node requests from an outgoing
neighbor chosen uniformly at random. At each node, one of the incoming requests
is chosen (e.g., uniformly at random) and a connection to the requesting node
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is established. Finally, over all established links between an informed and an
uniformed node, the uninformed node learns the rumor. Note that unlike in the
restricted PUSH-PULL variant described in our paper, here, also two informed
nodes or two uninformed nodes could be paired. Such a PUSH-PULL variant
can be analyzed in an analogous way to our analysis of the RPULL protocol
and it can be shown that O

(
Δ
δ log n

)
rounds of this algorithm stochastically

dominate a single round of the regular PUSH-PULL protocol.
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Abstract. Alice wants to join a new social network, and influence its
members to adopt a new product or idea. Each person v in the network
has a certain threshold t(v) for activation, i.e. adoption of the prod-
uct or idea. If v has at least t(v) activated neighbors, then v will also
become activated. If Alice wants to activate the entire social network,
whom should she befriend? We study the problem of finding the mini-
mum number of links that Alice should form to people in the network, in
order to activate the entire social network. This Minimum Links Prob-
lem has applications in viral marketing and the study of epidemics. We
show that the solution can be quite different from the related and widely
studied Target Set Selection problem. We prove that the Minimum Links
problem is NP-complete, in fact it is hard to approximate to within an
ε ln n factor for some constant ε, even for graphs with degree 3 and with
threshold at most 2. In contrast, we give linear time algorithms to solve
the problem for trees, cycles, and cliques, and give precise bounds on the
number of links needed.

1 Introduction

The increasing popularity and proliferation of large online social networks,
together with the availability of enormous amounts of data about customer bases,
has contributed to the rise of viral marketing as an effective strategy in promot-
ing new products or ideas. This strategy relies on the insight that once a certain
fraction of a social network adopts a product, a larger cascade of further adop-
tions is predictable due to the word-of-mouth network effect [3,14,22]. Inspired
by social networks and viral marketing, Domingos and Richardson [11,27] were
the first to raise the following important algorithmic problem in the context of
social network analysis: If a company can turn a subset of customers in a given
network into early adopters, and the goal is to trigger a large cascade of further
adoptions, which set of customers should they target?

We use the well-known threshold model to study the influence diffusion
process in social networks from an algorithmic perspective. The social network
is modelled by a node-weighted graph G = (V,E, t) with V (G) representing
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DOI: 10.1007/978-3-319-48314-6 22



Whom to Befriend to Influence People 341

individuals in the social network, E(G) denoting the social connections, and t
an integer-valued threshold function. Starting with a target set, that is, a subset
S ⊆ V of nodes in the graph, that are activated by some external incentive, influ-
ence propagates deterministically in discrete time steps, and activates nodes. For
any unactivated node v, if the number of its activated neighbors at time step
t − 1 is at least t(v), then node v will be activated in step t. A node once acti-
vated stays activated. It is easy to see that if S is non-empty, then the process
terminates after at most |V | − 1 steps. We call the set of nodes that are acti-
vated when the process terminates as the activated set. The problem proposed
by Domingo and Richardson [11,27] can now be formulated as follows: Given a
social network G = (V,E, t), and an integer k, find a subset S ⊆ V of size k
so that the resulting activated set is as large as possible. In the context of viral
marketing, the parameter k corresponds to the budget, and S is a target set that
maximizes the size of the activated set. One question of interest is to find the
cheapest way to activate the entire network, when possible. The optimization
problem that results has been called the Target Set Selection Problem, and has
been widely studied (see for eg. [1,4,25]): the goal is to find a minimum-sized set
S ⊆ V that activates the entire network (if such a set exists). In a certain sense,
the elements of this minimum target set S are the most influential people in the
network; if they are activated, the entire network will eventually be activated.

There are, however, two hidden flaws in the formulation of the target set
problem. First, the nodes in the target set are assumed to be activated imme-
diately by external incentives, regardless of their own thresholds of activation.
This is not a realistic assumption; in the context of viral marketing, it is possi-
ble, perhaps even likely, that highly influential nodes have high thresholds, and
cannot be activated by external incentives alone. Secondly, there is no possibility
of giving partial external incentives; indeed the target set is activated only by
external incentives, and the remaining nodes only by the internal network effect.

In this paper, we address the flaws mentioned above. We study a related
but different problem. Suppose Alice wants to join a new social network, whom
should she befriend if her goal is to influence the entire social network? In other
words, to whom should Alice create links, so that she can activate the entire
network? If Alice creates a link to a node v, the threshold of v is only effectively
reduced by one, and so v in turn is activated only if its threshold is one. We call
our problem the Minimum Links problem (Min-Links).

The Min-Links problem provides a new way to model a viral marketing strat-
egy, which addresses the flaws described in the target set problem formulation.
Indeed, Alice can represent the external initiator of a viral marketing strategy.
The links added from the external node correspond to the external incentive
given to the endpoints of these links. The nodes that are the endpoints of these
new links may not be immediately completely activated, but their thresholds
are effectively reduced; this corresponds to their receiving partial incentives.
One way of seeing this is that every individual to whom we link is given a $10
coupon; for some people this may be enough for them to buy the product, for
others, it reduces their resistance to buying it. Individuals with high thresholds
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cannot be activated only by external incentives. The Min-Links problem also has
important applications in epidemiology or the spread of epidemics: in the spread
of a new disease, where an infected person arrives from outside a community, the
Min-Links problem corresponds to identifying the smallest set of people such that
if the infected external person has contact with this set, the entire community
could potentially be infected.

Observe that the solution to the Min-Links problem can be quite different
from the solution to the Target Set Selection problem for a given network. For
example, consider a star network, where the leaves all have threshold 1, while
the central node has degree n− 1 and has threshold n. The optimal target set is
the central node, while the only solution to the Min-Links problem is to create
links to all nodes in the network. Thus, a solution to the Min-Links problem can
be arbitrarily larger than one to the Target Set Selection problem for the same
social network. However, any solution to the Min-Links problem is clearly also a
feasible solution to the Target Set Selection problem.

1.1 Our Results

We prove that the Min-Links problem is NP-hard, and is in fact, hard to approxi-
mate to within an ε log n factor for some ε < 1. In light of the hardness results, we
study the complexity of the problem for social networks that can be represented
as trees, cycles, and cliques. In each case, we give a necessary and sufficient
condition for the feasibility of the Min-Links problem, based on the structural
properties and an observation of the threshold function. We then give O(|V |)
algorithms to solve the Min-Links problem for all the studied graph topologies.
Finally, we give exact bounds on the number of links needed to activate the entire
network for all the above specific topologies, as a function of the threshold values.

1.2 Related Work

The problem of identifying the most influential nodes in a social network has
received a tremendous amount of attention [2,5,12,15–18,23]. The algorithmic
question of choosing the target set of size k that activates the most number
of nodes in the context of viral marketing was first posed by Domingos and
Richardson [11]. Kempe et al. [20] started the study of this problem as a dis-
crete optimization problem, and studied it in both the probabilistic independent
cascade model and the threshold model of the influence diffusion process. They
showed the NP-hardness of the problem in both models, and showed that a nat-
ural greedy strategy has a (1−1/e−ε)-approximation guarantee in both models;
these results were generalized to a more general cascade model in [21].

In the Target Set Selection problem, the size of the target set is not specified
in advance, but the goal is to activate the entire network. Chen [4] showed that
it is hard to approximate the optimal Target Set to within a polylogarithmic
factor, even when all nodes have majority thresholds, or have constant degrees
and thresholds two. A polynomial-time algorithm for trees was given in the
same paper. Ben-Zwi et al. [1] generalized the result on trees to show that target
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set selection can be solved in nO(w) time where w is the treewidth of the input
graph. The effect of parameters such as diameter, vertex cover number etc. of the
input graph on the complexity of the problem are studied in [25]. The Minimum
Target Set has also been studied from the point of view of the spread of disease
or epidemics. For eg., in [19], the case when all nodes have a threshold k is
studied; the authors showed that the problem is NP-complete for fixed k ≥ 3.

Influence diffusion under time window constraints were studied in [13]. Max-
imizing the number of nodes activated within a specified number of rounds has
also been studied [9,24]. The problem of dynamos or dynamic monopolies in
graphs (eg. [26]) is essentially the target set problem restricted to the case when
every node’s threshold is half its degree.

The paper closest to our work is [8], in which Demaine et al. introduce a
model to partially incentivize nodes to maximize the spread of influence. Our
work differs from theirs in several ways. First, they study the maximization of
influence given a fixed budget, while we study in a sense the budget (number
of links) needed to activate the entire network. Second, they consider thresholds
chosen uniformly at random, while we study arbitrary thresholds. Finally, they
allow arbitrary fractional influence to be applied externally on any node, while
in our model, every node that receives a link has its threshold reduced by the
same amount.

2 Notation and Preliminaries

Given a social network represented by an undirected graph G = (V,E, t), we
introduce a set of external nodes U that are assumed to be already activated. We
assume that all edges have unit weight; this is generally called the uniform weight
assumption, and has previously been considered in many papers [4,6,7,13]. A
link set for (G,U) is a set S of links between nodes in U and nodes in V , i.e.
S ⊆ {(u, v) | u ∈ U ; v ∈ V }. For a link set S, we define E(S) = {v ∈ V |
∃(u, v) ∈ S}, that is, E(S) is the set of V -endpoints of links in S. For a node v,
define r(v) to be the number of links in S for which v is an endpoint. Since the
set of external nodes U is already activated, observe that adding the link set S
to G is equivalent to reducing the threshold of the node v by r(v). In the viral
marketing scenario, the link set S represents giving v a partial incentive of r(v).

Given a link set S for a graph G, we define I(G,S) to be the set of nodes
in G that are eventually activated as a result of adding the link set S, that is,
by reducing the threshold of each node v ∈ E(S) by min{r(v), t(v)}, and then
running the influence diffusion process. See Fig. 1 for an illustration. Observe
that in the target set formulation, this is the same as the set of nodes activated
by using U as the target set in the graph G′, the graph obtained from G by
adding the set U to the vertex set and the set S to the set of edges.

A link set S such that I(G,S) = V , that is, S activates the entire network,
is called a pervading link set. A pervading link set of minimum size is called an
optimal pervading link set.
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Fig. 1. Node μ is the external influencer and is assumed to be activated. Links in the
link set are shown with dashed edges. The given link set activates the entire network
and is an optimal pervading link set.

Definition 1. Minimum Links (Min-Links) problem: Given a social network
G = (V,E, t), where t is the threshold function on V , and a set of external nodes
U , find an optimal pervading link set for (G,U).

In this paper, we consider the case of a single influencer, that is, U = {μ}.
In this case, a link given to a vertex v reduces its threshold by 1. Since μ must
be an endpoint of each edge in the link set S, each such edge can be uniquely
specified by a vertex in V . We therefore generally omit mention of μ in the rest
of the paper. For each node v ∈ E(S), we say we give v a link, or that v receives
a link. If activating X ⊆ V activates, directly or indirectly, the set of vertices Y ,
we write X ∼ Y (note that there may be vertices outside Y that X activates).
We write x ∼ Y instead of {x} ∼ Y . The minimum cardinality of a link set for
a Min-Links instance G is denoted ML(G).

Observe that for some graphs, a pervading link set may not exist; for exam-
ple, consider a singleton node of threshold greater than 1. The existence of a
feasible solution can be verified in O(E) time by giving a link to every node in
V , and simulating the influence diffusion process. The following simple obser-
vation stating two conditions under which no pervading link set exists, is used
throughout the paper:

Observation 1. A graph G does not have a pervading link set if it has a node
v such that t(v) > degree(v) + 1, or if there is no node with threshold 1.

3 NP-hardness

In this section, we prove that the Min-Links problem is NP-hard; in fact, it is
almost as hard as Set-Cover to approximate, even if G has degree bounded by
3 and thresholds bounded by 2. Given a collection of n sets S = {S1, . . . , Sn}
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whose union is the universe U of cardinality m, with n ≤ mk for some constant
k, the Set-Cover problem is to find a minimum set cover, that is, a sub-collection
of minimum cardinality S ′ ⊆ S such that

⋃
S∈S′ S = U . The cardinality of S ′ is

denoted MSC(S). We shall make use of rooted binary trees. For such a tree T ,
denote the root by r(T ), and the set of leaves by L(T ).

Constructing G from S: Given a Set-Cover instance S, we describe the
construction of a corresponding Min-Links instance G = (V,E, t) in polynomial
time, which is used for our reduction. Figure 2 illustrates our construction. For
each set in S and each element in U , we introduce two binary trees in G, and
then describe how to connect these trees. For each S ∈ S, add to G a binary tree
BS with |S| leaves L(BS) = {bS,u1 , . . . , bS,u|S|}, one for each element ui ∈ S.
Add another binary tree B′

S with |S| leaves L(B′
S) = {b′

S,u1
, . . . , b′

S,u|S|}, again
one for each element ui ∈ S. Then, add an edge between r(BS) and r(B′

S).
The thresholds are t(b) = 1 for every b ∈ V (BS) ∪ L(B′

S), and t(b′) = 2 for
every internal node b′ of V (B′

S), that is for every b′ ∈ V (B′
S) \L(B′

S). Note that
L(B′

S) ∼ V (B′
S) ∼ V (BS).

Then for each element u ∈ U , add a binary tree Cu with |S(u)| leaves, where
S(u) = {S ∈ S : u ∈ S} consists of the sets containing u. Denote L(Cu) =
{cu,S1 , . . . , cu,S|S(u)|}, each leaf corresponding to a set Si of S(u). Next, add yet
another binary tree C ′

u with |S(u)| leaves {c′
u,S1

, . . . , c′
u,S|S(u)|}, again one for each

Si ∈ S(u). Add an edge between r(Cu) and r(C ′
u). Every node c ∈ V (Cu)∪V (C ′

u)
has t(c) = 1.

We now define a gadget called a heavy link. Let x, y be two non-adjacent
nodes with t(x) = t(y) = 1. Adding an x − y heavy link consists of adding
two nodes z1, z2 that are neighbors of x, then adding another node z3 that is a
neighbor of z1, z2 and y. We set the thresholds t(z1) = t(z2) = 1 and t(z3) = 2.
Note that the heavy link makes x ∼ y but not necessarily y ∼ x (thus adding
an x− y heavy link is different from adding a y −x heavy link). Also notice that
this operation increases the degree of x by 2 and of y by 1, and that z1, z2 and
z3 have degree bounded by 3.

To finish the construction, for every set S ∈ S and each element u ∈ S, add
a bS,u − cu,S heavy link, and a c′

u,S − b′
S,u heavy link. Denote by HS the set

of nodes added to G by incorporating the heavy links to the BS leaves, and by
H ′

u the set of heavy link nodes added to the C ′
u leaves. It is not hard to see

that G can be constructed in polynomial time. Note that for each S ∈ S, the
nodes of BS are equivalent, in the sense that if one is activated, then they all
get activated. The same holds for the nodes of Cu and C ′

u, for every u ∈ U . We
will use their roots as representatives, meaning that we will implicitly use the
fact that r(BS) ∼ V (BS) and r(Cu) ∼ V (Cu).

Lemma 1. Let S be an instance of Set-Cover over universe U , with |S| = n and
|U| = m, and let G = (V,E, t) be the Min-Links instance constructed as above.
Then all of the following conditions are met:

1. |V | ≤ mc for some constant c;
2. each node of G has at most 3 neighbors;
3. t(v) ≤ 2 for every node v of G.
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Fig. 2. The construction of G from S consisting of S1 = {u1, u2, u3} and S2 = {u1, u3}.
White nodes have threshold 1, whereas black nodes have threshold 2.

Proof. For 1, there are 2n + 2m binary trees in G, which together contain at
most � = 2n · m + 2m · n = 4nm leaves. Thus the binary trees contain less than
2� nodes in total. The heavy links account for at most 3� nodes in total, and
so |V | ≤ 5� ≤ 20nm ≤ mc for some c (because n ≤ mk). To see that 1 holds,
i.e. that the maximum degree is 3, observe that G consists of binary trees to
which we add at most neighbor per root (r(BS) with r(B′

S), and r(Cu) with
r(C ′

u)), plus at most two neighbors per leaf (the heavy links). In the case that a
node is both a root and a leaf (e.g. BSi

is a single node because Si has only one
element), three neighbors are added to it, but it has zero neighbors initially. As
for 1, it is easy to see that t(v) ≤ 2 for every node v ∈ V created. �

We now show that both S and its corresponding instance G have the same
optimality value.

Lemma 2. MSC(S) = ML(G).

Proof. First observe that for a given set S ∈ S,
⋃

u∈S

r(Cu) ∼ L(B′
S) ∼ V (B′

S) ∼ V (BS)

which implies that
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⋃

u∈U
r(Cu) ∼

⋃

S∈S
V (B′

S) ∼
⋃

S∈S
V (BS)

and it follows that
⋃

u∈U r(Cu) ∼ V .
To see that MSC(S) ≥ ML(G), if S ′ ⊆ S is a minimum set cover, then giving

links to V ′ =
⋃

S∈S′ r(BS) suffices to activate G since V ′ ∼ ⋃
u∈U r(Cu) ∼ V .

Thus MSC(S) ≥ ML(G).
It remains to show that MSC(S) ≤ ML(G). Let B = {r(BS) : S ∈ S}. Let

V ′ ⊆ V be the set of endpoints of E(Ŝ) for an optimal pervading link set Ŝ such
that |V ′ ∩ B| is maximized among all possible choices. We divide this section of
the proof into two claims.

Claim. V ′ ⊆ B.

Proof. First observe that we may assume that if x ∈ V ′ \ B, then there is no
set S such that r(BS) ∼ x (for otherwise, we can replace x by r(BS) in V ′,
contradicting our choice of V ′). But no such x can exist. If x ∈ V (Cu) for some
u, then r(BS) ∼ x for any set S containing u. If x belongs to a bS,u − cu,S heavy
link, then r(BS) ∼ x. If x belongs to a c′

u,S −b′
S,u heavy link, then again r(BS) ∼

r(Cu) ∼ x. Finally if x ∈ V (B′
S), then r(BS) ∼ ⋃

u∈S r(Cu) ∼ L(B′
S) ∼ x. We

conclude that V ′ has only nodes from B. �

Claim. S ′ = {S ∈ S : r(BS) ∈ V ′} is a set cover.

Proof. Suppose the claim is false, and let w ∈ U be an element not covered by
S ′. Recall that S(w) = {S1, . . . , S|S(w)|} is the collection of sets containing w.
Let Si ∈ S(w). Then in B′

Si
, there is a leaf b′

Si,w
. Let PSi

be the set of nodes
lying on the unique b′

Si,w
− r(B′

Si
) shortest path in B′

Si
(inclusively). Define W

as the node set that contains the Cw and C ′
w nodes along with the heavy link

nodes appended to L(C ′
w), plus for each Si ∈ S(w), the PSi

nodes and the BSi

nodes with the heavy link nodes appended to L(BSi
). Formally,

W = V (Cw) ∪ V (C ′
w) ∪ H ′

w ∪
⎛

⎝
⋃

Si∈S(w)

(V (BSi
) ∪ HSi

∪ PSi
)

⎞

⎠

We show that no node of W gets activated by V ′, contradicting the assertion
that Ŝ is a pervading link set. Suppose instead that some W nodes do get
activated. Let z be the first node of W activated by the propagation process
(or if multiple nodes of W get simultaneously activated first, pick z arbitrarily
among them). Then, since V ′ ∩ W = ∅, z must have t(z) neighbors outside of
W that were activated and influenced it. Observe that the only nodes of W that
have neighbors outside of W belong to either HSi

or PSi
for some Si ∈ S(w).

If z ∈ HSi
, then the only heavy link node with neighbors outside of W is the

threshold 2 node. But then, z has only one neighbor outside W (namely a cu,Si

node for some u), which is not enough to activate z. Thus z /∈ HSi
. If z ∈ PSi

,
then z �= b′

Si,w
since b′

Si,w
receives no influence from outside of W : it has two

neighbors, one is in PSi
and the other is in the b′

Si,w
− c′

w,Si
heavy link, both
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of which are in W . If instead z is an interior node of the PSi
path, then z has

two neighbors in W (by the definition of a path). But t(z) = 2 and z has only
three neighbors, i.e. only one outside of W , and so z cannot be activated only
by influence from outside W . The last possible case is z = r(B′

Si
). But again,

z has two neighbors in W : one is in PSi
and the other is r(BSi

), and the same
argument applies. We conclude that z, and hence w, cannot exist, and that S′

is a set cover. �
Since V ′ yields a set cover S of size ML(G), we deduce that MSC(S) ≤

ML(G). �
We can now state the main result of this section.

Theorem 1. The decision version of Min-Links is NP-complete, even when
restricted to instances with maximum degree 3 and maximum threshold 2. More-
over, there exists a constant ε > 0 such that the optimization version of Min-
Links, under the same restrictions, is NP-hard to approximate within a ε ln n
factor, where n is the number of nodes of the given graph.

Proof. NP -completeness follows directly from Lemma 2, and observing that
Min-Links is in NP , as it is easy to check that a given set V ′ is a pervading
link set (because propagation must finish in a polynomial number of steps). As
for the inapproximability result, let S be an instance of set cover over universe
U , |S| = n and |U| = m, and let n′ be the number of nodes of G constructed
from S as described above, with n′ ≤ mc (c is the constant from Lemma 1).
Dinur and Steurer showed that it is NP-hard to approximate set cover within
a d ln m factor for any 0 < d < 1 [10]. For our purposes, fix 0 < d < 1, and
suppose that some approximation algorithm A always finds a pervading link set
of size at most APP ≤ d

c ln(n′) · ML(G). Because ML(G) = MSC(S), we have
APP ≥ MSC(S), and in the other direction,

APP ≤ d

c
ln(n′) · ML(G) ≤ d

c
ln(mc) · ML(G) = d ln(m) · MSC(S)

and hence A can approximate Set-Cover to within a factor d ln(m) using the
aforementioned reduction. Therefore, for ε = d

c , it is hard to approximate the
Min-Links problem within a ε ln(n′) factor. �

4 Trees

In contrast to the NP-completeness of the Min-Links problem shown in the pre-
vious section, we now show that there is a linear time algorithm to solve the
problem in trees. We start with a necessary and sufficient condition for a tree T
to have a valid pervading link set.

Proposition 1. Let T be a tree and let v be a leaf in T . Let T ′ = T − {v} and
T ′′ be the same as T ′ except that the threshold of w, the neighbor of v in T , is
reduced by 1. Then T has a pervading link set if and only if (a) either t(v) = 1
and T ′′ has a pervading link set or (b) t(v) = 2 and T ′ has a pervading link set.
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We now prove a critical lemma that shows that for any node in the tree,
there is an optimal solution that gives a link to that node.

Lemma 3. Let T be a tree with n nodes that has a pervading link set, and let v
be a node in T . Then there exists an optimal solution for Min-Links(T ) in which
v gets a link.

Proof. We prove the lemma by induction on the number of nodes n in the tree.
Clearly it is true if n = 1. Suppose n > 1, and let S be an optimal pervading
link set for T . If v gets a link, we are done. If not, v must have a neighbor w
that is activated before v, and that contributes to the activation of v. Let T1

and T2 be the two trees created by removing the edge between v and w, with
T1 containing w, and let S1 (respectively S2) be the links of S with an endpoint
in T1 (respectively T2). Since T is a tree, and v is activated after w by S, none
of the links in S2 can contribute to the activation of nodes in T1. It follows that
S1 is a pervading link set for T1, and in fact is optimal, as a smaller solution
for T1 could be combined with S2 to yield a better solution for T , contradicting
the optimality of S. By the inductive hypothesis, there is an optimal solution
S′ for T1 that gives a link to w. Note that |S′| = |S1|, and S′ ∪ S2 must also be
an optimal solution for T . But clearly S′′ = S′ ∪ S2 ∪ {(μ, v)} − {(μ,w)} also
activates the entire tree T , and since |S′′| = |S|, we conclude that S′′ is an
optimal solution for T , that gives a link to v, as needed to complete the proof
by induction. �

The above lemma suggests a simple way to break up the Min-Links problem
for a tree into subproblems that can be solved independently, which yields a
linear-time greedy algorithm.

Theorem 2. The Min-Links problem can be solved for trees in linear time.

Proof. Given a tree T , let v be an arbitrary leaf in the tree. By Lemma 3, there
is an optimal solution, say S, to the Min-Links problem for T that gives v a link.
Suppose t(v) = 2, then the link to v is not enough to activate v, and therefore
v’s neighbor w must activate v. Also, v’s activation cannot help in activating any
other nodes in T . Thus S−{(μ, v)} must be an optimal solution to T ′ = T −{v}.
Suppose instead that t(v) = 1. Then the link given to v activates it immediately.
Consider the induced subgraph of T containing only nodes of threshold 1, and
let C be the connected component (subtree) containing v in this subgraph. Then
clearly v ∼ C. Since S is optimal, S cannot contain any node in C except for
v. Construct T ′ by removing C from T , and subtracting 1 from the threshold
of any node x who is a neighbor of a node in C. Observe that any such node x
can be a neighbor of exactly one node in C, since T is a tree. Then S − {(μ, v)}
must be an optimal solution to T ′; if instead there is a smaller-sized solution to
T ′, we can add (μ, v) to that solution to obtain a smaller solution for T than S,
contradicting the optimality of S.

The above argument justifies the correctness of the following simple greedy
algorithm. Initialize S = ∅. Take a leaf v in the tree. If t(v) > 2 then there is no
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solution by Observation 1. If t(v) = 2, then put the link (μ, v) in S, remove v
from the tree, and recursively solve the remaining tree. If t(v) = 1, then give a
link to v, remove the subtree of T that is connected to v consisting only of nodes
of degree 1, reduce the thresholds of all neighbors of the nodes in this subtree by
1, and recursively solve the resulting trees. It is easy to see that the algorithm
can be implemented in linear time. �

For the network in Fig. 1, assuming that leaves in the tree are always
processed in alphabetical order, the greedy algorithm given in Theorem 2 first
picks node b and adds a link to it. We then remove nodes b and a, and reduce the
threshold of d by 1. Next we pick c, give it a link, remove it from the tree, and
decrement t(f) to 2. The next leaf that is picked and given a link is d; since d’s
threshold now is 1, we remove d and e from the tree, and reduce f ’s threshold
to 1. Proceeding in this way, we arrive at the link set shown.

We now give an exact bound on ML(T ), the number of links required to
activate the entire tree T :

Theorem 3. Let T be a tree that has a pervading link set. Then ML(T ) =
1 +

∑
v∈T (t(v) − 1)

Proof. We give a proof by induction on the number of nodes n in the tree. Clearly
if the tree consists of a single node x, there is a solution if and only if t(x) = 1,
and the number of links needed is 1 which is equal to 1 +

∑
v∈V (t(v) − 1) as

needed. Now consider a tree T with n > 1 nodes and let x be a leaf in the tree.
Then by Lemma 3, there is an optimal solution S in which x gets a link. By
Observation 1, there is a solution only if t(x) = 1 or t(x) = 2. Let T ′ = T − {x}
(all nodes keep the same thresholds as in T ) and let T ′′ be the tree derived from
T by removing x and reducing the threshold of w, the neighbor of x in T by 1.

First we consider the case when t(x) = 2. Then giving x a link is not sufficient
to activate it. By the usual cut-and-paste argument, S − {(μ, x)} must be an
optimal solution for tree T ′.

ML(T ) = 1 + ML(T ′)

= t(x) − 1 + (1 +
∑

v∈T ′
(t(v) − 1)) by the inductive hypothesis

= 1 +
∑

v∈T

(t(v) − 1)

Next we consider the case when t(x) = 1, and t(w) > 1. Then x is immedi-
ately activated by the link it receives in S, and the link given to x effectively
reduces the threshold of w. Therefore, S − {(μ, x)} must be an optimal solution
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for the tree T ′′ in which the threshold of w is t(w) − 1. It follows that

ML(T ) = 1 + ML(T ′′)

= 1 + (1 +
∑

v∈T ′′
(t(v) − 1)) by the inductive hypothesis

= 2 + (t(w) − 2) +
∑

v∈T ′′−{w}
(t(v) − 1)

= 1 +
∑

v∈T

(t(v) − 1)

Finally suppose t(x) = t(w) = 1. Then it is impossible that S contains w, as
this would contradict the optimality of S. Therefore, we can move the link from
node v to node w, to get a new optimal pervading link set S′ for T . Furthermore,
S′ must also be an optimal pervading link set for T ′. It follows that

ML(T ) = ML(T ′)

= t(x) − 1 + (1 +
∑

v∈T ′
(t(v) − 1)) by the inductive hypothesis

= 1 +
∑

v∈T

(t(v) − 1)

�

We remark that in contrast to the intuition for the optimal target set problem,
where we would choose nodes of high degree or threshold to be in the target set,
in the Min-Links problem, our algorithm gives links to leaves initially, though
eventually nodes that were internal nodes in the tree may also receive links.
That is, the best nodes to befriend might be the nodes with a single connection
to other nodes in the tree!

5 Cycles

In this section, we give a solution for the Min-Links problem on cycles. Let
Cn = (V,E, t) be a cycle with n nodes, V = {0, 1, ..., n − 1}, E = {((i, i +
1) mod n) | 1 ≤ i ≤ n}, and t : t(v) → Z+. We define Pi,j (i �= j) to be the
sub-path of Cn consisting of all nodes in {i, . . . , j} in the clockwise direction. We
may use the [i, j] notation to denote the vertices of Pi,j . By consecutive vertices
of threshold 3, we mean two vertices i, j such that the only two vertices in Pi,j

with threshold 3 are i and j.

Proposition 2. A cycle has a pervading link set if and only there is at least
one node of threshold 1, every node is of threshold at most 3, and between any
two consecutive nodes of threshold 3, there is at least one node of threshold 1.
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We note that a similar condition can be stated for paths, with the additional
restriction that there must be a node of threshold 1 before (after) the first (last
resp.) node of threshold 3.

We give a linear time algorithm for finding a minimum-sized link set for
problem Min-Links(Cn). Essentially we reduce the problem to finding an optimal
solution for an appropriate path.

Theorem 4. The Min-Links problem for a cycle Cn can be solved in time Θ(n).

Proof. By Observation 1, there is no solution if there is a node with threshold
4 or more. If there exists a node i such that t(i) = 3, then clearly i must get a
link, and both of its neighbors must be activated before it. That is, i can play no
role in activating any node in Pi+1,i−1. Therefore, S = {(μ, i)}∪S′ is an optimal
solution to Cn where S′ is an optimal solution to Pi+1,i−1. In this case, S′ can
be found in linear time using the tree algorithm of Theorem 2. If there is no
node with threshold 3, a single node with threshold 2, and the remaining nodes
all have threshold 1, then by giving a link to any of the nodes with threshold 1,
we can activate the entire cycle.

It remains only to consider the case when there are no nodes of threshold 3,
at least two nodes of threshold 2, and at least one node of threshold 1. Fix an
arbitrary node i of threshold 1 in Cn. We define c(i) and cc(i) to be the first
node with threshold 2 in i’s clockwise direction and counter clockwise direction
respectively, c(i) �= cc(i) (see Fig. 3). We also define Pc(i),cc(i) be the path from
c(i) to cc(i) where t(c(i)) = t(cc(i)) = 2; and P ′

c(i),cc(i) to be the same path as
Pc(i),cc(i) except that we set t(c(i)) = t(cc(i)) = 1.

We first claim that there exists an optimal solution that gives a link to i. To
see this, let S be an optimal solution that does not give a link to node i. Since
all nodes in Cn are activated by S, there must exist some node j ∈ [cc(i), c(i)]
that gets a link. If t(j) = 1, we can take the link given to j and give it instead
to node i. Otherwise there exists j ∈ {c(i), cc(i)} such that it gets a link and is
activated before i, and eventually activates i. Again we can move the link from
node j to node i, which clearly has the same effect of giving a link to node j.
Therefore, we have a new solution of the same size as S that gives a link to
node i.

Consider therefore an optimal solution S that gives a link to the node i. It
is not hard to see that that S − {(μ, i)} must be an optimal solution to Min-
Links(P ′

c(i),cc(i)), since activating i activates [cc(i) + 1, c(i) − 1] and lowers the
threshold of cc(i) and c(i). Again, since the Min-Links problem for a path can be
solved in Θ(n) according to Theorem 2, we can construct an optimal solution
for a cycle in Θ(n) time as well. �

We give an exact bound on the number of links required to fully activate a
cycle.

Theorem 5. Given a cycle Cn = (V,E, t) which has a pervading link set,
ML(Cn) =

∑n
i=1(t(i) − 1)
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Fig. 3. A cycle with no threshold 3 vertices, illustrating the main components of the
proof.

Proof. If there is a node i of threshold 3, then ML(Cn) = 1 + ML(Pi+1,i−1).
Since by Theorem 3, ML(Pi+1,i−1) = 1 +

∑
j �=i(t(j) − 1), we have ML(Cn) =

1 + (1 +
∑

j �=i(t(j) − 1)) = (t(i) − 1) +
∑

j �=i(t(j) − 1) =
∑n

j=1(t(j) − 1) as
needed. If there is no node of threshold 3 and a single node of threshold 2, then
ML(Cn) = 1 =

∑n
j=1(t(j)−1). Finally, if there is no node of threshold 3, and at

least two nodes of threshold 2, and at least one of threshold 1, then ML(Cn) =
1 + ML(P ′

cc(i),c(i)) where i is a node of threshold 1. Since the thresholds of c(i)
and cc(i) have been reduced by 1 each in P ′

cc(i),c(i), by Theorem 3, we have
ML(P ′

cc(i),c(i)) = −1 +
∑

j∈[cc(i),c(i)](t(j) − 1). Therefore ML(Cn) = 1 − 1 +
∑

j∈[cc(i),c(i)](t(j) − 1) =
∑n

i=1(t(i) − 1). �

6 Cliques

In this section, we give an algorithm to solve the Min-Links problem on cliques.
Let Kn = (V,E, t) be a clique with n nodes, V = {1, 2, ..., n} and E = {(i, j) :
1 ≤ i < j ≤ n} and t : t(v) → Z+. We first show a necessary and sufficient
condition for the Min-Links problem to have a feasible solution:

Proposition 3. Let Kn be a clique with t(i) ≤ t(i + 1), for all 1 ≤ i < n. Then
Kn has a pervading link set if and only if t(i) ≤ i for all 1 ≤ i ≤ n.

Proof. If t(i) ≤ i for all 1 ≤ i ≤ n, it is easy to see that there exists a solution
S by giving a link to every node i; we claim that node i is activated in or before
round i. Since t(1) ≤ 1, node 1 is activated in round 1. Inductively, node 1 to i−1
are already activated in round i − 1, the effective threshold of node i has been
reduced to ≤ 1. Node i receives a link, therefore, node i must be activated in the
ith round, if it is not already activated. Conversely, suppose there exist nodes j
such that t(j) > j and there exists a solution S to the Min-Links problem; let p
be the smallest such node with t(p) > p. In order to activate any node q ≥ p,
at least p nodes have to be activated before q, since t(q) ≥ t(p) > p. However,
there are only p − 1 nodes that can be activated before any such node q ≥ p.
Thus no node q with q ≥ p can be activated, a contradiction. �

We now give a greedy algorithm to solve the Min-Links problem on a clique.
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Theorem 6. The Min-Links problem for a clique Kn can be solved in time Θ(n).

Proof. First sort the nodes in order of threshold. By Observation 1, there is no
solution if any node has a threshold > n, therefore, we can use counting sort and
complete the sorting in Θ(n) time. Clearly, the condition given in Proposition 3
can easily be checked in linear time. We now give the following greedy linear
time algorithm for a clique which has a feasible solution: give a link to node 1,
and let j be the maximum value such that t(i) < i whenever 2 ≤ i < j. Remove
all nodes in {1, . . . , j − 1}, decrement by j − 1 the thresholds of all nodes ≥ j,
and solve the resulting graph recursively. It is easy to see that this algorithm
can be implemented in linear time, in an iterative fashion as follows: we examine
the nodes in order. When we process node i, if t(i) < i, we simply increment i
and continue; if t(i) = i, we give a link to node i. We now show that the link set
produced by this greedy algorithm is optimal.

First we show that there must be an optimal solution that contains the node
1. Consider an optimal solution S and let i be the smallest index of a node that
receives a link in S. If i = 1, then we are done. If not, since there must always
be a node with threshold 1 that receives a link, it must be that t(i) = 1. But
then we can move the link from i to 1, to create a new solution S′ which will
activate node i in the next step. Since |S′| = |S| and I(Kn, S) = I(Kn, S′), S′

is an optimal solution to the Min-Links problem that contains the node 1. Thus,
we can assume that the optimal solution S contains the node 1.

Next we claim that S − {1} is an optimal solution to the clique C ′ which is
the induced sub-graph on the nodes {j, j + 1, . . . , n} where j > 1 is the smallest
index with t(j) = j, and with thresholds of all nodes reduced by j − 1. Suppose
there is a smaller solution S′ to C ′. We claim that S′ ∪ {1} activates all nodes
in the clique Kn. Since for any node 1 < k < j, we have t(k) < k, it can be seen
inductively that the link given to node 1 suffices to activate node k. Thus, all
nodes in {1, 2, . . . j − 1} are activated. Furthermore, the thresholds of all nodes
in {j, j + 1, . . . , n} are effectively reduced by j − 1. Thus using the links in S′

suffices to activate them. Finally, since |S′| < |S|−1, S′∪{1} is a smaller solution
than S to the clique Kn, contradicting the optimality of S for Kn. We conclude
that the greedy algorithm described above produces a minimum sized solution
to the Min-Links problem. �

The following tight bound on the minimum number of links to activate an
entire clique is immediate:

Theorem 7. Given a clique Kn which has a feasible solution, ML(Kn) = |{j |
t(j) = j}|

The greedy algorithm from Theorem 6 can be extended to complete multi-
partite graphs:

Theorem 8. The Min-Links problem for a complete multi-partite graph G can
be solved in time O(|E(G)|).
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7 Discussion

In this paper, we introduced and studied the Min-Links problem: given a social
network G where every node v has a threshold t(v) to be activated, which
minimum-sized set of nodes should an already activated external influencer μ
befriend, so as to influence the entire network? We showed that the problem is
NP-complete, in fact it is hard to approximate to within an ε ln n factor (for
some constant 0 < ε < 1) even for graphs with maximum degree 3, and with
maximum threshold 2. In contrast, we show linear time algorithms for the prob-
lem for trees, cycles, cliques, and complete k-partite graphs, and give an exact
bound (as a function of the thresholds) on the number of links needed for such
graphs. This leaves open the question of a polynomial time algorithm for graphs
of bounded treewidth, as well as the best possible approximation algorithm for
general graphs. It would be interesting to generalize these algorithms to find the
minimum number of links required to influence a specified fraction of the nodes.
Other directions include studying the multiple influencer case, and the case with
non-uniform weights on the edges. Clearly, the problem remains NP-complete in
general, but the complexity for special classes of graphs remains open. Another
interesting question is that of maximizing the number of activated nodes, given
a fixed budget of k links.
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Abstract. In a single-hop radio network, nodes can communicate with
each other by broadcasting to a shared wireless channel. In each time slot,
all nodes receive feedback from the channel depending on the number of
transmitters. In the Beeping Model, each node learns whether zero or at
least one node have transmitted. In such a model, a procedure estimating
the size of the network can be used for efficiently solving the problems of
leader election or conflict resolution. We introduce a time-efficient uni-
form algorithm for size estimation of single-hop networks. With proba-
bility at least 1 − 1/f our solution returns (1 + ε)-approximation of the
network size n within O (log log n + log f/ε2

)
time slots. We prove that

the algorithm is asymptotically time-optimal for any constant ε > 0.

1 Introduction

The number of nodes in the network is a parameter that is necessary to effec-
tively perform many fundamental protocols and is useful for network analysis,
gathering statistics etc. However, in modern applications of communication net-
works we often cannot assume that the size of the network or even its constant-
factor approximation in known. Hence, the problem of designing an algorithm
to precisely and efficiently estimate the number of nodes in radio networks is an
important challenge. This is particularly clear in the context of networks with
strictly limited communication channel, wherein one needs a precise estimation
of the number of nodes in order to avoid collisions of transmissions caused by
several nodes broadcasting at the same time. As a consequence, the most effi-
cient algorithms for classic problems in radio networks, like leader election, use
the size approximation as a subroutine.

In our paper we consider the problem of size estimation in a communication
model that is weaker than the classic Multiple Access Channel, namely in the
Beeping Model.
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We consider a wireless network of n devices (nodes). The size n of the network
is unknown to the nodes. The nodes have no identifiers or serial numbers that
could be used to distinguish them. The aim is to estimate the network’s size n by
performing random transmissions and using the feedback of the communication
channel. The main result of this paper is an asymptotically optimal (with respect
to the time of execution) algorithm that returns a (1 + ε)-approximation of the
number of nodes in the network with controllable error probability. As the second
result we show the matching lower bound.

1.1 Model

We study a single-hop radio network of n nodes with the Beeping Model as
a communication model [1,9]. The transmission of each node reaches all other
nodes. That is, the network can be represented as a complete graph. We assume
that the nodes are identical and indistinguishable and perform the same proto-
col. However, each node can independently sample any number of random bits.
Randomization can be used freely, but the final result of the protocol needs to be
deterministically computed based on the knowledge available to all the nodes.
We ensure in this way that all the nodes upon completing the procedure obtain
the same result, which could also be determined by a passive observer listening
to the communication channel.

We assume that the time is discrete, i.e., it is divided into slots. We also
assume that the nodes are synchronized as if they had access to a global clock.
In every slot, each node independently decides whether to transmit to the chan-
nel or not. The nodes share a common communication channel and in every slot
the channel can be in one of the two following states: NULL, when no node
is transmitting and BEEP, if at least one node is transmitting (i.e., the chan-
nel is busy). All nodes receive the state of the channel immediately after each
communication round.

The Beeping Model can be contrasted with the classical model of Radio
Networks with Collision Detection where the channel can be in three states
depending on whether zero, one, or more than one, node is transmitting. The
third state is called “collision”.

The result of any size estimation protocol is a random variable, an estimator
n̂ of true number of nodes n. We are interested in the probability of getting an
approximation that differs from the true value by at most a constant multiplica-
tive factor.

Definition 1. For any ε > 0, we say that protocol P (1 + ε)-approximates the
number of nodes with probability at least 1 − 1/f , if for any n it returns n̂ such
that P (n̂/(1 + ε) ≤ n < (1 + ε)n̂) ≥ 1 − 1/f.

The time complexity of protocol is expressed as a function of three variables
n, f and ε.
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1.2 Related Work

There are many papers devoted to size approximation in radio networks. Most
of them work in the model of Radio Networks with Collision Detection. In [2]
Bordim et al. presented a size approximation protocol for the network of the
(unknown) size n with execution time O (

(log n)2
)

that finds an approximation
n̂ of the real number of nodes such that n/(16 log n) < n̂ < 2n/log n with
probability at least 1 − O (

n−1.83
)
. The authors assume communication model

with collision detection and aim at saving energy of the network. Greenberg
et al. [13] proposed a size approximation algorithm working in time log n +
O (1) producing an estimate of n with mean approximately 0.914n and standard
deviation of 0.630n. Greenberg et al. [13] also showed that a size approximation
algorithm can be used to efficiently schedule transmissions such that each node
succeeds to transmit.

Some papers presented other, more complex protocols that use elaborated
size-approximation algorithms as a sub-procedure (e.g. [20]). In [19] Nakano and
Olariu presented an energy-efficient initialization algorithm which needs to know
the number of nodes n or its fair approximation to work properly. In paper [24]
Willard showed an algorithm for a selection problem that needs O(log log n) steps
on average with a respective lower bound. This result has been used extensively
for many other papers about fast leader election and size approximation in the
context of radio networks.

An energy-efficient size estimation algorithm is proposed in Jurdziński
et al. [15] for a model without collision detection. The algorithm uses
O (

log2+α n
)

time slots with nodes being awake for at most O ((log log n)α) slots
for any α > 0. The algorithm is a c-approximation for some constant c (with
respect to n). In [3] authors present approximation of the size of the network
in a similar model. Their protocol designed for collision detection model works
in O(log n log log n) steps and returns a 2-approximation. The second protocol
for no-collision detection settings needs O(log2 n) steps for a 3-approximation.
Moreover, the authors of [3] take into account energy of nodes necessary for
completing the protocol. All the results aforementioned in this paragraph hold
with high probability.

The problem of size estimation has been extensively studied in the context of
computer databases [5,10–12,23]. In that case, one is interested in estimating the
cardinality (the number of distinct elements) of some multiset. Many protocols
for size estimation have been proposed for radio networks [7,8,16]. In many
cases (including [13]) the proposed solutions provide asymptotically unbiased
estimator E (n̂) = n(1 + o (1)) that is not well concentrated, i.e. (Var (n̂) =
Ω(n2)). In such case one can have P (|n̂ − n| ≥ c · n) = Θ(1). Thus one cannot
expect obtaining c-approximation with high probability. Moreover, in contrast
to most of the previous work, we use a controllable parameter of algorithm’s
success f . This can be particularly important for small n.

Independently, the problem of estimation of cardinality of a set emerged
in the research devoted to RFID (Radio Frequency IDentification) technolo-
gies. There are many significant papers including [14,17,18,21,22,25] presenting



Approximating the Size of a Radio Network in Beeping Model 361

different methods for various settings offering also some extra features. The
result closest to our contribution is included in [6] where authors present a pro-
tocol for the model wherein both RFID and a single distinguished device called
the reader in each round can transmit O(1) bits. Using recent communication
complexity result [4] they prove that every Monte Carlo counting protocol with
relative error ε ∈ [1/

√
n, 0.5] and probability of failure smaller than 0.2 needs

Ω( 1
ε2 log 1/ε +log log n) execution time. For the same range of ε they demonstrated

how to construct a protocol with O( 1
ε2 + log log n) running-time. The model of

a single-hop radio network considered in our paper and models of RFID sys-
tems are seemingly completely different. It turns, however, that the results from
[6] can be almost instantly applied to the settings investigated in our paper at
least for some ranges of parameters. On the other hand their results holds with
constant probability while we demand probability of failure limited by 1/f . As
authors of [6] suggested repeating the basic algorithm and choosing the median
to obtain arbitrary small probability of failure. Nevertheless, such approach leads
to Θ(log f) multiplicative factor overhead.

1.3 Our Results

In Sect. 1.1 we recall our model and introduce some new definitions. In Sect. 2 we
present a time-efficient uniform algorithm for computing a (1+ε)-approximation
of the size of the network with probability 1−1/f (where f is a parameter of the
protocol) and provide its analysis. Our protocol requires O (

log log n + log f/ε2
)

time slots.
In Sect. 3 we give a lower bound for the number of slots that are necessary to

get a linear size estimation. For n nodes and any f ≥ 2 we show that Ω(log log n+
log f/ε) slots are required to get a (1+ε)-approximation with probability greater
than 1 − 1/f in the beeping model.

2 Size Estimation Algorithm

In this section we present an algorithm for (1 + ε)-approximation of network
size. The algorithm works in time O (

log log n + log f/ε2
)

with probability at
least 1 − 1/f . With probability at most 1/f the algorithm may return a wrong
estimate or work for a larger number of steps (or both). First in Subsect. 2.1 we
present a procedure for 64-approximation and later in Subsect. 2.2 we show how
to improve it to (1 + ε)-approximation, for any ε > 0. An important feature of
our algorithm is its uniformity:

Definition 2. A randomized distributed algorithm A is called uniform if, and
only if, in round i every node that has not yet transmitted successfully, transmits
independently with probability pi (the same for all nodes).

For k active nodes the probability that exactly j nodes transmit in the i-
th round is

(
k
j

)
(pi)j(1 − pi)k−j . Note that pi may depend on the state of the
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Fig. 1. The pseudocode of a 64-approximation algorithm.

communication channel in previous rounds. In general, pi can be even chosen
randomly from some distribution during the execution of the protocol (finally,
all nodes have to use, however, the same value pi). Due to their simplicity and
robustness, uniform algorithms are commonly used [20,24,25].

2.1 64-Approximation

Phase 1 in the Algorithm is based on Leader Election Protocol by Nakano and
Olariu [20]. Similarly, Phase 2 is a modification of a subprocedure used in [20].
Both phases make use of Broadcast function to determine (with a certain prob-
ability) if the current estimation of the network size is too high or too low.
Intuitively, in Phase 1 nodes try to bound from above the network size by dou-
bling the estimate until the status of the channel suggests that it is too high. In
each round of Phase 2 nodes adjust the estimate by factor 8 according to the
status of the channel. We should note here that the closer the estimate is to the
real network size, the more probable it is that the decision based on an output of
call to Broadcast is incorrect. Because of this, after Phase 2 we return the most
common estimate. The following lemmas provide bounds on time complexity
and accuracy of the returned estimator.

Lemma 1 (Nakano, Olariu [20]). With probability exceeding 1 − 1
2f Phase1

takes at most O (loglog n+logf) rounds after which the returned value, u, satis-
fies the double inequality

n

ln(4(�log log(4nf)� + 1)f)
≤ 2u ≤ 4(�log log(4nf)� + 1)fn. (1)
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Let us introduce the following notation (we assume that n ≥ 2). Parameters
p
(N)
α , p

(B)
α will denote probabilities of NULL and BEEP conditioned that the

broadcast probability in the current round is min{ 1
αn , 1}. If α · n > 1, then

p(N)
α = P (NULL | 2u = α · n) =

(

1 − 1
α · n

)n

,

p(B)
α = P (BEEP | 2u = α · n) = 1 −

(

1 − 1
α · n

)n

,

where 1/2u is the probability of transmission for each node and n is the real
number of nodes. Otherwise, with αn ≤ 1 we set p

(N)
α = 0 and p

(B)
α = 1. For

any fixed α we can bound the values of p
(N)
α , p

(B)
α using basic inequalities. The

following Proposition can be easily verified.

Proposition 1. For n ≥ 25 we have:

1. p
(N)
1/8 ≤ 0.06,

2. p
(B)
8 ≤ 0.12,

3. p
(B)
1/64 ≥ 0.99,

4. p
(N)
64 ≥ 0.98.

In the following Lemma we analyze Phase2 and show that Algorithm 1 is a
64-approximation.

Lemma 2. If n ≥ 25, then Algorithm 1 with probability at least 1− 1/f returns
value n̂ = 2u such that n/64 ≤ n̂ ≤ 64 · n in time O (log log n + log f).

Proof. Assume that u, after Phase1 satisfies the double inequality from
Lemma 1. We want to show that, conditioned on such an event, the approx-
imation returned by Algorithm 1 is a 64-approximation with probability at least
1− 1

2f . Thus we need to analyze Phase2. The phase can be seen as a biased ran-
dom walk of length L on a line, where points on the line correspond to the values
of the estimator 2u and transition probabilities equal p

(N)
α and p

(B)
α (see Fig. 2).

Fig. 2. An illustration of transition probabilities in Phase2.

Consider a sequence U = {. . . , u−2, u−1, u0, u1, u2, . . . }, such that 2u0 ≤ n < 2u1

and ui+1 = ui + 3 for all i ∈ Z. Let P = {u−1, u0, u1, u2}. Let us call a
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– good step – a step that starts and ends inside P,
– improving step – a step that start outside P moving towards P (a NULL or

BEEP such that the estimator after the step is better),
– bad step – a step that is leaving P or the one that starts outside set P moving

further from P.

We want to show that the state with the maximum number of visits will be
a state from set P, and thus the returned estimator will be a 64-approximation.
Observe that during a good step an estimate from set P is added to set M.

Denote by G,B, I the number of good, bad and improving steps during L
steps of Phase2. By Lemma 1 the probability of a bad step is at most 0.12.
Clearly, steps are dependent, however all the bounds for each step hold inde-
pendently from other steps. Thus we can limit B by the sum of stochastically
independent 0–1 random variables and apply a Chernoff bound to get:

P (B ≥ 1.5 · 0.12 · L) ≤ e1/12·0.12L ≤ 1
2f

.

Assume that B < 0.12L. Recall that d is the initial distance to set P. Thus
G ≤ B + d. Since in a step (either good, bad or improving), the walk traverses
an edge between two different states, the maximum number of visits to one state
outside set P is at most

⌈
B

2

⌉

+
⌈

I

2

⌉

≤ B + d

2
+

B

2
+ 2 = B +

d

2
+ 2 ≤ 0.18L +

d

2
+ 2.

The total number of steps inside P is at least L − I − B ≤ L − (0.18L +
d/2 + 2) = 0.82L − d/2 − 2. Since P contains exactly four steps, there exists a
step with at least 0.2L − d/6 − 2/3 visits. Since the maximum number of visits
to a state outside P is at most 0.18L + d

2 + 2, we need to show that

0.2L − d/8 − 1/4 ≥ 0.18L +
d

2
+ 2,

which is equivalent to
4L ≥ 125d + 450.

We know from the definition of the algorithm that

L = 100 log(2f) + 125d/4 + 13 = 100 log f + 125d/4 + 113 > 125d/4 + 450/4.

Thus the state with the maximum number of visits is a state from set P which
corresponds to a 64-approximation of the correct value of n. Now, by Lemma 1
with probability at least 1− 1

2f , the total time of Phase1 is O (log log n) and the
value of u after the phase satisfies the double inequality (1). Conditioned on this
event, with probability at least 1 − 1

2f Phase2 returns a 64-approximation. The
time of Phase2 is always O (log f + log log log n). Thus overall our algorithm
returns u such that 2u is a 64-approximation of n in time O (log log n + log f)
with probability at least 1 − 1

f .



Approximating the Size of a Radio Network in Beeping Model 365

2.2 (1 + ε)-Approximation

We now describe how to enhance the algorithm from the previous section with
an additional phase to obtain a (1 + ε)-factor approximation for any ε > 0.
Intuitively, the procedure Vote checks whether the current estimate n̂ is too big
or too small. We let the nodes transmit with probability 1/n̂ for a fixed number
of rounds. If our estimate is too small, a lot of nodes will transmit and there
will not be enough silent rounds and thus we increase our estimate by a factor
of (1 + ε). Similarly, if our estimate is too large, too many rounds will be silent
and thus we decrease our estimate by a factor of (1 + ε).

Let c = 1 + ε, and denote pl = e−c and ph = e−1/c.

Fig. 3. The pseudocode of c-approximation algorithm.

We have:

P (NULL|n̂ ≥ cn) ≥
(

1 − 1
cn

)n

≥ e−1/c

(

1 − 1
cn

)

≥ ph/2, (2)

P (NULL|n̂ ≤ n/c) ≤
(
1 − c

n

)n

≤ e−c = pl. (3)

Thus ph/2 upper bounds the probability of NULL in a round under the condition
that approximation n̂ is c times too high. On the other hand pl lowerbounds the
probability of NULL in a round conditioned that n̂ is c times too low.
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Denote δ = ph−pl

ph+pl
, and observe that for such δ we have

ph/2 (1 − δ) = pl (1 + δ) . (4)

Moreover since ph −pl = e−1/c −e−c > 0, then δ > 0. Observe also that δ < 1/2.
In the following lemmas we bound the probability that procedure Vote

returns OVERESTIMATED and UNDERESTIMATED, assuming that estima-
tor n̂ deviates from n by factor c. We note that in all calls to Vote in the
algorithm the inequality c < 3 holds.

Lemma 3. If n̂ < n/c, then procedure Vote(n̂, c, f) returns UNDERESTI-
MATED with probability at least 1 − 1

f .

Proof. By (3), the probability that no node transmits is upperbounded by pl.
Let Xi denote the random variable that is 0 if at least one node transmits and
1 otherwise. Thus, if we let the nodes transmit � times, we obtain as expected
value for X =

∑�
i=1 Xi, E [X] ≤ � · pl. Chernoff bound yields:

P (X ≥ (1 + δ) pll) = P

(

X ≥ (1 + δ)
(

1 +
pll − E[X]

E[X]

)

E [X]
)

≤ e− ((1+δ)pll−E[X])2

E[X] .

We know that E[X] ≤ pll hence ((1 + δ)pll − E[X])2 ≥ (δpll)2. Since � ≥
3
δ2 e3 log f , then δ2pll ≥ log f hence ((1 + δ)pll − E[X])2 ≥ E[X] log f and
P (X ≥ (1 + δ) pll) ≤ 1

f . Thus, with probability at least 1 − 1/f , variable nulls

in procedure Vote satisfies nulls < (1 + δ) · pl · �. Thus Vote returns UNDER-
ESTIMATED with probability at least 1 − 1/f .

Lemma 4. If n̂ > cn, then procedure Vote(n̂, c, f) returns OVERESTIMATED
with probability at least 1 − 1

f .

Proof. By (2), the probability that no node transmits is lowerbounded by ph/2.
Let Xi denote the random variable that is 0 if at least one node transmits and
1 otherwise. Thus, if we let the nodes transmit � times, we obtain as expected
value for X =

∑�
i=1 Xi, E [X] ≥ � · ph/2. Chernoff bound yields:

P (X ≤ (1 + δ) pll) = P (X ≤ (1 − δ) phl/2) ≤ P (X ≤ (1 − δ) E[X])

≤ e− δ2
2 E[X] ≤ 1

f
.

This holds for � ≥ 3
δ2 e3 log f , since ph > e−1. Thus with probability at least

1 − 1/f , variable nulls does not satisfy the condition after if, thus Vote returns
OVERESTIMATED with probability at least 1 − 1/f .

Lemma 5. If n̂ is a 64-approximation of the number of nodes n, then procedure
Phase3(n̂, f) returns a 2-approximation of n with probability at least 1 − 1/f
using O (log f) slots.
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Proof. We call an execution of Vote(n̂,
√

2, 14f) successful if it:

– returns OVERESTIMATED when n̂ ≥ √
2n,

– returns UNDERESTIMATED when n̂ ≤ n/
√

2.

Procedure Phase3 makes at most 14 calls to Vote and by Lemmas 3 and 4 each
call is successful with probability at least 1 − 1/(14f). Therefore the probability
that all calls are successful is at least 1 − 1/f .

We want to argue that if all calls to procedure Vote are successful, then we
obtain 2-approximation. If n̂ ≥ √

2n, then the first call to Vote returns OVERES-
TIMATED and we start decreasing the estimate. After at most log√

2 64+1 = 13
iterations, the value n̂ satisfies n̂ ≤ n/

√
2 and Vote returns UNDERESTI-

MATED. The returned estimator is a 2-approximation of n because we divide
the estimator by

√
2 until it is at most n/

√
2 for the first time. We make similar

argument if the initial estimate is too small, i.e., n̂ ≤ n/
√

2. If the initial estimate
is correct, then after making at most 2 increases we will obtain an estimate that
is at least

√
2 times too big, thus the third call to Vote returns OVERESTI-

MATED and we finish the procedure. Using the same argument as above we can
show that the returned estimator is a 2-approximation. Similarly, if the initial
value is correct, we make at most 2 decreases.

Each call to Vote(n̂,
√

2, 14f) requires O (log f) slots.

Lemma 6. If n̂ is a c-approximation of the number of nodes then procedure
Refine(n̂, c, f) returns c3/4-approximation with probability at least 1−1/f using
O (

log f/ε2
)
slots.

Proof. Observe that if n̂ is already a c1/2-approximation, then regardless of the
output of Vote we obtain a c3/4-approximation.

On the other hand if cn ≥ n̂ ≥ c1/2n, then by Lemma 4, with probability at
least 1 − 1/f , procedure Vote returns OVERESTIMATED and we decrease the
estimate by factor of c1/4. Finally if n/c ≤ n̂ ≤ c−1/2n, then with probability at
least 1 − 1/f , by Lemma 3 Vote returns UNDERESTIMATED and we increase
the estimate by factor of c1/4.

To bound the time complexity of procedure Refine we need to bound the
number of steps of procedure Vote. With c = 1 + ε and ε > 0 we have

δ1+ε =
e− 1

1+ε − e−(1+ε)

e− 1
1+ε + e−(1+ε)

=
e−1

e−1

e
ε

1+ε − e−ε

e
ε

1+ε + e−ε
≥ e

ε
1+ε − e− ε

1+ε

e
ε

1+ε + e− ε
1+ε

= tanh
(

ε

1 + ε

)

.

Therefore

δ−2 ≤ coth2

(
ε

1 + ε

)

= 1 +
1

sinh2
(

ε
1+ε

) ≤ 1
ε2

+
2
ε

+ 2,

where the last inequality is the result of sinh(x) ≥ x for x ≥ 0. Hence δ−2
ε =

O(ε−2) as ε → 0. We call procedure Vote with c1/2 = (1 + ε)1/2 ≥ 1 + ε/4
for ε < 1. Hence the complexity of a single execution of procedure Vote is
O(ε−2 log f).
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Theorem 1. For any positive ε > 0 algorithm SizeApprox2(f, 1 + ε) returns a
(1 + ε)-approximation of number of nodes with probability at least 1 − 1/f using
O

(
log f
ε2 + log log n

)
slots.

Proof. With probability at least 1 − 1/(4f) call to SizeApprox1 returns 64-
approximation, which we turn into 2-approximation with probability at least
1 − 1/(4f) by calling Phase3. Next, we refine the approximation using t =
�log4/3 log1+ε 2� iterations. The probability of failure of the i-th iteration is at
most 1/(2i+1f), for 1 ≤ i ≤ t. Therefore, by union bound, the probability of
failure of the SizeApprox2 is at most

1
4f

+
1
4f

+
1
2f

·
t∑

i=1

2−i ≤ 1
f

.

Assuming that none of the Vote calls failed we compute the quality of the
resulting estimate. We can show by induction using Lemma 6 that after i-th
iteration of the loop in algorithm SizeApprox2, the current estimate n̂ is a (1 +
ε)(4/3)i−1

-approximation. Hence after t iterations we get a (1+ε)-approximation.
By Lemma 6 the number of slots used by t iterations is

t∑

i=1

O
(

log(2i+1f)
ε2(4/3)2i

)

≤
∞∑

i=1

O
(

log(2i+1f)
ε2(4/3)2i

)

= O
(

log f

ε2

)

,

where the last inequality is justified by the fact that the O (·) notation from
Lemma 6 holds uniformly (i.e., the hidden constant is independent from f , i
and ε).

Adding the slots used by SizeApprox1 and Phase3 we get the final time
complexity.

3 Lower Bound

In this section we show that any (not necessarily uniform) size estimation algo-
rithm returning a (1+ε)-approximation of the number of nodes with probability
at least 1 − 1/f works in time Ω(log log n + log f

ε ).
We start the analysis of beeping model by showing how the execution by

different number of nodes relates to each other. Namely, we prove that (in prob-
ability) history of the channel state observed in case of n and m nodes per-
forming any randomized protocol are similar for n close to m. We subscript
symbol P with n to denote probability conditioned on the number of nodes run-
ning some algorithm, Pn(A) = P(A | |N | = n) for any event A. For a vector
h ∈ {NULL,BEEP}t we write P (h) to denote the probability that during the
first t slots of the execution of algorithm the global history of channel is h.

Lemma 7. Let A be any randomized algorithm for a single-hop radio network
with beeping communication model. For a global history of channel state, h ∈
{NULL,BEEP}∗ and m ≥ n ≥ 1, there is Pm(h) ≥ (Pn(h))m/n.
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Proof. We proceed with a coupling argument. Let S = {s1, . . . , snm} be a set
consisting of nm nodes. Even though the nodes are indistinguishable, for the
purpose of analysis we can identify them by the random sources they use. That
is, we assume that node si has access to an infinite sequence of random bits Xi =
X

(1)
i ,X

(2)
i , . . .. Clearly, if Xi = Xj , then nodes si and sj behave identically

during an execution of any algorithm (of course P (Xi = Xj) = 0 for i 	= j).
We partition S in two different ways – into n independent networks N1, . . . ,
Nn with m nodes each (called big networks) and m independent networks N ′

1,
. . . , N ′

m with n nodes each (called small networks). We require that for each
big network Ni there exists at least one small network N ′

j such that N ′
j ⊆ Ni.

We assume that all networks are independent from each other, i.e., there are no
interferences of communication channels. In these two settings, however, each
node from S belongs to exactly one big and one small network and in both cases
uses the same random source for making its decisions. Our goal is to compare
the execution of algorithm A performed by the same nodes grouped into big and
small networks.

Let H1, . . . , Hn and H ′
1, . . . , H ′

m denote global histories of channel states
during the executions of algorithm A by big and small networks, respectively.
We are going to show by induction on h’s length that if h is a prefix of channel
histories of all small networks, H ′

1, . . . , H ′
m, then it is also a prefix of channels

histories of all big networks, H1, . . . , Hn. The base case of empty string h = ε
holds trivially. Therefore, let us assume that the statement is true for all global
histories of length t ≥ 0 and that h = h1, h2, . . . , ht, ht+1 is a prefix of channel
histories of small networks. By induction, h1, h2, . . . , ht is a prefix of each H1,
. . . , Hn. At the beginning of the (t + 1)-st slot each node decides whether to
transmit or not based on its random source, local history and the global history
h1, h2, . . . , ht. However, in this case the local history is redundant as it can be
reconstructed from Xi and the global history. Therefore, if in the (t + 1)st slot
the resulting channel states of each small network are ht+1 = NULL,

H
′(t+1)
1 = . . . = H ′(t+1)

m = NULL,

then all nodes decided not to transmit and

H
(t+1)
1 = . . . = H(t+1)

n = NULL.

Otherwise, if
H

′(t+1)
1 = . . . = H ′(t+1)

m = BEEP,

then in every small network there is at least one node that decided to transmit
during the (t + 1)st slot. For each big network Ni there is some small network
N ′

j ⊆ Ni, hence H
′(t+1)
j = BEEP implies H

(t+1)
i = BEEP. Therefore, h is a

prefix of H1, . . . , Hn. Finally, all networks are independent, thus

(Pn(h))m = P (H ′
1 starts with h ∧ . . . ∧ H ′

m starts with h)
≤ P (H1 starts with h ∧ . . . ∧ Hn starts with h)
= (Pm(h))n.
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Lemma 8. For any non-empty finite set of global histories of channel state
H ⊆ {NULL,BEEP}∗ and m > n ≥ 1 there is

Pm(H) ≥ (Pn(H))m/n

|H|m/n−1
.

Proof. By Lemma 7 we get

Pm(H) =
∑

h∈H

Pm(h) ≥
∑

h∈H

(Pn(h))m/n.

Using Hölder inequality

n∑

i=1

|xiyi| ≤
( n∑

i=1

|xi|p
)1/p

·
( n∑

i=1

|yi|q
)1/q

with p = m/n and q = m/(m − n) we obtain

∑

h∈H

(Pn(h))p =
1

|H|p/q

(
∑

h∈H

1q

)p/q

·
∑

h∈H

(Pn(h))p ≥ 1
|H|p/q

(
∑

h∈H

Pn(h)

)p

=
(Pn(H))m/n

|H|m/n−1
.

As we stated in Sect. 1.1, in any algorithm A the decision whether to stop
the execution after the current slot and what estimation to return is based only
on the global history of channel state. For any history h ∈ {NULL,BEEP}∗

that causes nodes to finish the execution of A we denote by A(h) the estimated
network size returned by A.

Theorem 2. Let A be a size estimation algorithm for a single-hop radio network
assuming the beeping communication model. If for any network size n algorithm
A returns (1 + ε)-approximation with probability at least 1 − 1/f and within at
most Tn time slots (Tn non-decreasing), then

Tn ≥ max
{

lg f + (1 + ε)2 lg(1 − 1/f)
(1 + ε)2 + 1/n − 1

, lg lg(1 + 2εn + ε2n) − lg lg(1 + ε) − 1
}

.

Proof. For k ∈ N+ let be a set of all global histories of length at most Tk for
which the value returned by algorithm A is a (1+ε)-approximation of k. Clearly,
Pk(Hk) ≥ 1 − 1/f . Let m = �(1 + ε)2n + 1, so that m/(1 + ε) > (1 + ε)n and
thus Hn ∩ Hm = ∅. This way,

Pm(Hn) ≤ 1 − Pm(Hm) ≤ 1/f.

On the other hand by Lemma 8 there is

Pm(Hn) ≥ (Pn(Hn))m/n

|Hn|m/n−1
≥ (1 − 1/f)m/n

|Hn|m/n−1
.
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Therefore,

|Hn| ≥
(
f(1 − 1/f)m/n

) 1
m/n−1

.

We know that set Hn contains words of length at most Tn and no word is a
prefix of another, so |Hn| ≤ 2Tn . Finally, we get

Tn ≥ log2 |Hn| ≥ log2 f + m
n log2(1 − 1/f)

m/n − 1
≥ log2 f + (1 + ε)2 log2(1 − 1/f)

(1 + ε)2 + 1/n − 1
.

Now, let a1 = 1 and

ai = �(1 + ε)2ai−1 + 1 ≤ (1 + ε)2ai−1 + 1 ≤ (1 + ε)2i − 1
(1 + ε)2 − 1

.

All sets Hai
must be non-empty and pairwise disjoint. Because Tn is non-

decreasing, we have ∣
∣
∣
∣

⋃
·

i : ai≤n

Hai

∣
∣
∣
∣ ≤ 2Tn .

For

i ≤ log2(((1 + ε)2 − 1)n + 1)
2 log2(1 + ε)

there is ai ≤ n. Therefore,

Tn ≥ log2 log2(1 + 2εn + ε2n) − log2 log2(1 + ε) − 1.

Remark 1. For ε → 0 and f ≥ 2 we get

Tn = Ω

(
log f

2ε + 1/n
+ log log n

)

.

For a constant ε (independent of n and f) there is

Tn = Ω(log f + log log n).

4 Final Remarks

We presented an algorithm for (1 + ε)-approximation of the size of a single-hop
radio network with Beeping Model that needs O (

log log n + log f/ε2
)

time slots,
wherein n is the real number of nodes and 1/f is the probability of failure. We
also proved the matching lower bound for a constant ε. In some subprocedures
we used quite big constants for the sake of technical simplicity of the analysis.
As a future work we leave improving all those parameters. We believe that they
can be significantly lowered to make the protocol practical for real-life scenarios
already for moderate n.
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15. Jurdziński, T., Kuty�lowski, M., Zatopianski, J.: Energy-efficient size approximation
of radio networks with no collision detection. In: Ibarra, O.H., Zhang, L. (eds.)
COCOON 2002. LNCS, vol. 2387, pp. 279–289. Springer, Heidelberg (2002)

16. Kabarowski, J., Kuty�lowski, M., Rutkowski, W.: Adversary immune size approx-
imation of single-hop radio networks. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.)
TAMC 2006. LNCS, vol. 3959, pp. 148–158. Springer, Heidelberg (2006)

17. Kodialam, M.S., Nandagopal, T.: Fast and reliable estimation schemes in RFID
systems. In: Gerla, M., Petrioli, C., Ramjee, R. (eds.) Proceedings of the 12th
Annual International Conference on Mobile Computing and Networking, MOBI-
COM 2006, Los Angeles, CA, USA, 23–29 September 2006, pp. 322–333. ACM
(2006). http://doi.acm.org/10.1145/1161089.1161126

18. Kodialam, M.S., Nandagopal, T., Lau, W.C.: Anonymous tracking using RFID
tags. In: 26th IEEE International Conference on Computer Communications, Joint
Conference of the IEEE Computer and Communications Societies, INFOCOM
2007, Anchorage, Alaska, USA, 6–12 May 2007, pp. 1217–1225. IEEE (2007).
http://dx.doi.org/10.1109/INFCOM.2007.145

19. Nakano, K., Olariu, S.: Energy-efficient initialization protocols for single-hop radio
networks with no collision detection. IEEE Trans. Parallel Distrib. Syst. 11(8),
851–863 (2000)

20. Nakano, K., Olariu, S.: Uniform leader election protocols for radio net-
works. IEEE Trans. Parallel Distrib. Syst. 13(5), 516–526 (2002). http://doi.
ieeecomputersociety.org/10.1109/TPDS.2002.1003864

21. Qian, C., Ngan, H., Liu, Y., Ni, L.M.: Cardinality estimation for large-scale
RFID systems. IEEE Trans. Parallel Distrib. Syst. 22(9), 1441–1454 (2011).
http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.36

22. Shahzad, M., Liu, A.X.: Every bit counts: fast and scalable RFID estima-
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Abstract. We consider the task of embedding multiple service requests
in Software-Defined Networks (SDNs), i.e. computing (combined) map-
pings of network functions on physical nodes and finding routes to con-
nect the mapped network functions. A single service request may either
be fully embedded or be rejected. The objective is to maximize the sum
of benefits of the served requests, while the solution must abide node
and edge capacities.

We follow the framework suggested by Even et al. [5] for the specifica-
tion of the network functions and routing of requests via processing-and-
routing graphs (PR-graphs): a request is represented as a directed acyclic
graph with the nodes representing network functions. Additionally, a
unique source and a unique sink node are given for each request, such
that any source-sink path represents a feasible chain of network functions
to realize the service. This allows for example to choose between different
realizations of the same network function. Requests are attributed with
a global demand (e.g. specified in terms of bandwidth) and a benefit.

Our main result is a randomized approximation algorithm for path
computation and function placement with the following guarantee. Let
m denote the number of links in the substrate network, ε denote a para-
meter such that 0 < ε < 1, and opt∗ denote the maximum benefit that
can be attained by a fractional solution (one in which requests may be
partly served and flow may be split along multiple paths). Let cmin denote
the minimum edge capacity, let dmax denote the maximum demand, and
let bmax denote the maximum benefit of a request. Let Δmax denote
an upper bound on the number of processing stages a request under-
goes. If cmin/(Δmax · dmax) = Ω((log m)/ε2), then with probability at
least 1 − 1

m
− exp(−Ω(ε2 · opt∗/(bmax · dmax))), the algorithm computes

a (1 − ε)-approximate solution.

1 Introduction

Software Defined Networks (SDNs) and Network Function Virtualization (NFV)
have been reinventing key issues in networking [8]. The key characteristics of
these developments are: (i) separation between the data plane and the control
c© Springer International Publishing AG 2016
J. Suomela (Ed.): SIROCCO 2016, LNCS 9988, pp. 374–390, 2016.
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plane, (ii) specification of the network control from a global view, (iii) intro-
duction of network abstractions that provide a simple networking model, and
(iv) programmability and virtualization of network components.

In this paper we focus on an algorithmic problem that an orchestrator needs
to solve in an SDN+ NFV setting, namely jointly optimizing the path computa-
tion and function placement (PCFP) [5]: In modern networks, networking is not
limited to forwarding packets from sources to destinations. Requests can come
in the form of flows (i.e., streams of packets from a source node to a destina-
tion node with a specified packet rate) that must undergo processing stages on
their way to their destination. Examples of processing steps include: compres-
sion, encryption, firewall validation, deep packet inspection, etc. The crystal ball
of SDN+ NFV is the introduction of abstractions that allow one to specify, per
request, requirements such as processing stages, valid locations for each process-
ing stage, and allowable sets of links along which packets can be sent between
processing stages. An important application for such goals is supporting security
requirements that stipulate that unencrypted packets do not traverse untrusted
links or reach untrusted nodes.

From an algorithmic point of view, the path computation and function place-
ment problem combines two different optimization problems. Path computation
alone (i.e., the case of pure packet forwarding without processing of packets)
is an integral path packing problem. Function mapping alone (i.e., the case in
which packets only need to be processed but not routed) is a load balancing
problem.

To give a feeling of the problem, consider a special case of requests for
streams, each of which needs to undergo the same sequence of k processing stages
denoted by w1, w2, . . . , wk. This means that service of a request from si to ti is
realized by a concatenation of k + 1 paths: si

p0� v1
p1� v2

p2� · · · pk−1� vk
pk� ti,

where processing stage wi takes place in node vi. Note that the nodes v1, . . . , vk

need not be distinct and the concatenated path p0 ◦ p1 ◦ · · · ◦ pk need not be
simple. A collection of allocations that serve a set of requests not only incurs
a forwarding load on the network elements, it also incurs a computational load
on the nodes. The computational load is induced by the need to perform the
respective processing stages for the requests.

Previous works. The opportunities introduced by the SDN/NFV paradigm,
in terms of novel services which can be deployed quickly and on-demand, has
inspired much research over the last years [3,4,12,13,18]. The main focus of these
works is usually on the system aspects, while less attention has been given to
the algorithmic challenges. Moreover, the existing papers which do deal with the
algorithmic challenges, often resort to heuristics or non-polynomial algorithms.
For example, in the seminal work on service chaining [18] as well as in [10,17,19],
mixed-integer programming is employed (and heuristics are sketched), Hartert
et al. [13] use constrained programming, and others propose fast heuristics with-
out approximation guarantees [1,2], or ignore important aspects of the prob-
lem such as link capacity constraints [9]. The online version is studied in [5]
in which also a new standby/accept service model is introduced, and in [9].
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More generally, the problem of combined path computation and function place-
ment is closely related to the virtual network embedding problem, for which
many exponential-time and heuristic algorithms have been developed over the
last years [7]. Indeed, only recently a first approximation scheme based on ran-
domized rounding for the virtual network embedding problem was proposed
in [16]. While the model is more general by allowing for cyclic request graphs,
the proposed algorithms might violate node and edge capacities by a logarithmic
factor and is only applicable on a limited class of request graphs.

Our starting point is the model of SDN requests presented in [5]. In this
model, each request is represented by a special graph, called a processing-and-
route graph (pr-graph, in short). The pr-graph represents both the routing
requirement and the processing requirements that the packets of the stream must
undergo. We also build on the technique of graph products for representing valid
realizations of requests [5].

Raghavan [14] initiated the study of randomized rounding techniques for
multi-commodity flows, where the LP has two types of constraints: capacity
constraints and demand constraints. The joint capacity constraints are common
to all the flows, while the demand constraints are per request. Raghavan proves
that randomized rounding succeeds with high probability if the ratio of the
minimum capacity to maximum demand is logarithmic.

Contribution and Techniques. To the best of our knowledge, we present
the first polynomial-time algorithm which comes with provable approximation
guarantees for the PCFP-problem, under reasonable assumptions (i.e., logarith-
mic capacity-to-demand ratio, few processing stages per request, and sufficiently
large optimal benefit). We begin by formulating a fractional relaxation of the
problem. The fractional relaxation consists of a set of fractional single com-
modity flows, each over a different product graph. Each flow is fractional in
the sense that it may serve only part of a request and may split the flow among
multiple paths. We emphasize that the fractional flows do not constitute a multi-
commodity flow because they are over different graphs. The fractional problem
is a general packing LP [14]. Namely, the LP can be formulated in the form
max{bT ·x | A ·x ≤ c,x ≥ 0}, where all the components of the vectors b, c and
the matrix A are nonnegative. However, this LP does not satisfy the logarith-
mic ratio required in Raghavan’s analysis of general packing problems (due to
demand constraints).

Although randomized rounding is very well known and appears in many
textbooks and papers, the version for the general packing problem appears only
in half a page in the thesis by Raghavan [14, p. 41]. A special case with unit
demands and unit benefits appears in [11]. One of the contributions of this
paper is a full description of the analysis of randomized rounding for the case of
multiple-commodity flows over different graphs with joint capacity constraints.
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2 Modeling Requests in SDN

We model SDN/NFV requests as process-and-route graphs (pr-graphs) [5]. The
model is quite general, and allows each request to have multiple sources and des-
tinations, varying bandwidth demands based on processing stages, task specific
capacities, prohibited locations of processing, and prohibited links for routing
between processing stages, etc. We overview a simplified version of this model
to concisely define the problem of path computation and function placement
(PCFP).

2.1 The Substrate Network

The substrate network is a fixed network of servers and communication links.
The network is represented by a graph N = (V,E), where V is the set of nodes
and E is the set of edges. Nodes and edges have capacities. The capacity of an
edge e is denoted by c(e), and the capacity of a node v ∈ V is denoted by c(v).
Let cmin denote the minimum capacity. We note that the network is static and
undirected (namely each edge represents a bidirectional communication link),
but may contain parallel edges.

2.2 Requests and pr-Graphs

Each request is specified by a tuple ri = (Gi, di, bi, Ui, si, ti), where the compo-
nents are as follows:

1. Gi = (Xi, Yi) is a directed (acyclic) graph called the process-and-route graph
(pr-graph). There is a single source (respectively, sink) that corresponds to
the source (resp. destination) of the request. We denote the source and sink
nodes in Gi by si and ti, respectively. The other vertices correspond to services
or processing stages of a request. The edges of the pr-graph are directed
and indicate precedence relations between pr-vertices. Any si-ti path in Gi

represents a valid realization of request i.
2. The demand of ri is di and its benefit is bi. By scaling, we may assume that

mini bi = 1.
3. Ui : Xi ∪Yi → 2V ∪ 2E where (1) Ui(x) ⊆ V denotes a set of “allowed” nodes

in the substrate N that can perform service x, and (2) Ui(y) ⊆ E denotes the
set of “allowed” edges of the substrate N along which the routing segment
that corresponds to y may be routed.

Note that in the above definition the function Ui(x) returns a set of substrate
locations on which the function x ∈ Xi can be executed. This allows to model
network function types: If a substrate node v ∈ V represents a specific hardware
appliance (e.g. a firewall), then this node can only host this specific type of
network function. Hence, if a virtualized network function x ∈ Xi has the same
type as v ∈ V , we include v in Ui(x) and exclude v from Ui(x) otherwise.

Given this understanding of the restriction function Ui, pr-graphs allow to
model the selection of specific implementations of network functions. Assume
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e.g. that a request i is given that shall connect v ∈ V to u ∈ V such that
the traffic passes through a firewall. The substrate network may offer two types
of firewall implementations: a hardware-based (as hardware appliance) and a
software-based (as virtual machine). Using the definition of pr-graphs, the selec-
tion of either of the choices can be modeled by setting Xi = {si, xhw, xsw, ti}
and Yi = {(si, xhw), (si, xsw), (xhw, ti), (xsw, ti)} and restricting Ui(xhw) to all
the hardware firewalls and Ui(xsw) to the set of all nodes that may host software
firewalls. As any si-ti path in Gi represents a valid realization of request i, a
mapping of request i must select any of the options to realize the request (cf.
[17] for a general discussion on decomposition opportunities).

We denote the maximum demand by any request as dmax and the maximum
benefit of any request as bmax.

2.3 The Product Network

In [5] the concept of product graphs was introduced and we shortly revisit the
definition. For each request ri, the product network pn(N, ri) is defined as follows.
The node set of pn(N, ri), denoted Vi, is defined as Vi � ∪y∈Yi

(V × {y}). We
refer to the subset V × {y} as the y-layer in the product graph. Note that there
is a layer for every edge y in the pr-graph. The edge set of pn(N, ri), denoted
Ei, consists of two types of edges Ei = Ei,1 ∪ Ei,2 defined as follows.

1. Routing edges connect vertices in the same layer.

Ei,1 =
{(

(u, y), (v, y)
) | y ∈ Yi, (u, v) ∈ Ui(y)

}
.

2. Directed processing edges connect two copies of the same network vertex in
different layers.

Ei,2 = {((v, y), (v, y′)) | y, y′ ∈ Yi with y = (·, x), y′ = (x, ·) and v ∈ Ui(x)}.

To simplify the description of valid realizations, we add a super source ŝi

and a super sink t̂i to the respective product networks. The super source ŝi is
connected to all vertices (v, y) such that v ∈ Ui(si) and y emanates from si.
Similarly, there is an edge to the super sink t̂i from all vertices (v, y) such that
v ∈ Ui(ti) and y enters ti.
Remarks. The following remarks may help clarify the definition of the product
network.

1. Consider an edge y = (x1, x2) of a request. The y-layer in the product graph
contains a copy of the substrate to compute a route from the vertex that
performs the x1 processing to the vertex that performs the x2 processing.

2. Consider two edges y1 = (x1, x2) and y2 = (x2, x3) in the pr-graph. The only
processing edges between the y1-layer and the y2-layer are edges of the form
(v, y1) → (v, y2), where v ∈ Ui(x2).

3. If we coalesce each layer of the pr-graph to a single vertex, then the resulting
graph is the line graph of the pr-graph.
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2.4 Valid Realizations of SDN Requests

We use product graphs to define valid realizations of SDN requests. Consider
a path p̃i in the product graph pn(N, ri) that starts in the super source ŝi and
ends in the super sink ŝi. Such a path p̃i represents the routing of request ri

from its origin to its destination and the processing stages that it undergoes.
The processing edges along p̃i represent nodes in which processing stages of ri

take place. The routing edges within each layer represent paths along which the
request is routed between processing stages. (The edges incident to the super
source and super sink are not important).

Definition 1. A path p̃ in the product network pn(N, ri) that starts in the super
source and ends in the super sink is a valid realization of request ri.

2.5 The Path Computation and Function Placement Problem
(PCFP)

Modeling SDN requests by product graphs helps in reducing SDN requests to
path requests. The translation of paths in the product graph back to paths in
the substrate network is called projection. This translation involves a loss due
to multiple occurrences of the same substrate resource along a path in the prod-
uct graph. We define projection and multiplicity before we present the formal
definition of the PCFP-problem.

Projection of paths. Let p̃i denote a path in the product graph pn(N, ri) from
the super source to the super sink. The projection of p̃i to a path pi = π(p̃i)
in the substrate network N is simply the projection onto routing edges of p̃i.
Namely, each routing edge ((u, y), (v, y)) in p̃i is projected to the edge (u, v) in
the substrate. Hence, when projecting a path, we ignore the processing edges
and the edges incident to the super source and super sink. Note that p = π(p̃i)
may not be a simple path even if p̃i is simple.

Notation. The multiplicity of an edge or a vertex z in a path p is the num-
ber of times z appears in the path. We denote the multiplicity of z in p by
multiplicity(z, p).

Capacity Constraints. Let P̃ = {p̃i}i∈I′ denote a set of valid realizations
for a subset of requests {ri}i∈I′ with I ′ ⊆ I. The set P̃ satisfies the capacity
constraints if

∑

i∈I

di · multiplicity(e, π(p̃i)) ≤ c(e), for every edge e ∈ E

∑

i∈I

di · multiplicity(v, π(p̃i)) ≤ c(v), for every vertex v ∈ V

Definition of the PCFP-problem. The input in the PCFP-problem consists
of (1) a substrate network N = (V,E) with vertex and edge capacities, and (2) a
set of requests {ri}i∈I . The goal is to compute valid realizations P̃ = {p̃i}i∈I′
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for a subset I ′ ⊆ I such that: (1) P̃ satisfies the capacity constraints, and (2)
the benefit

∑
i∈I′ bi is maximum. We refer to the requests ri such that i ∈ I ′ as

the accepted requests; requests ri such that i ∈ I \ I ′ are referred to as rejected
requests.

3 The Approximation Algorithm for PCFP

The approximation algorithm for the PCFP-problem is described in this section.
It is a variation of Raghavan’s randomized rounding algorithm for general pack-
ing problems [14, Theorem 4.7, p. 41] (in which the approximation ratio is
1
e −

√
2 lnn

ε·e·opt∗ provided that cmin
dmax

≥ lnn
ε ).

3.1 Fractional Relaxation of the PCFP-problem

We now define the fractional relaxation of the PCFP-problem. Instead of assign-
ing a valid realization p̃i per accepted request ri, we assign a fractional single
commodity flow f̃i in the product graph pn(N, ri). The source of the flow f̃i is
the super source ŝi. Similarly, the destination of f̃i is the super sink t̂i. The
demand of f̃i is di. Hence the demand constraint is |f̃i| ≤ di.

The capacity constraints are accumulated across all requests’ flows. Formally,
∑

i,y

f̃i((u, y), (v, y)) ≤ c(u, v)

∑

i,y,y′
f̃i((v, y), (v, y′)) ≤ c(v).

Hence, the cumulative load on the copies of substrate edge (u, v) ∈ E in the
respective pr-graphs is upper bounded by the original edge capacity c(u, v). Sim-
ilarly, as the usage of processing edges ((v, y), (v, y′)) in the pr-graphs denotes
the processing on substrate node v, the cumulative load is bounded by c(v).

The objective function of the LP relaxation is to maximize
∑

i bi · |f̃i|/di.
We emphasize that this fractional relaxation is not a classic multi-commodity

flow. The reason is that each flow f̃i is defined over a different product graph.
However, the fractional relaxation is a general packing LP.

3.2 The Algorithm

The algorithm uses a parameter 1 > ε > 0. The algorithm proceeds as follows.

1. Divide all the capacities by (1 + ε). Namely, c̃(e) = c(e)/(1 + ε) and c̃(v) =
c(v)/(1 + ε).

2. Compute a maximum benefit fractional PCFP solution {f̃i}i.
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3. Apply the randomized rounding procedure independently to each flow f̃i over
the product network pn(N, ri) (See Appendix B for a description of the proce-
dure.) Let p̃i denote the path in pn(N, ri) (if any) that is assigned to request
ri by the randomized rounding procedure. Let fi denote a flow of amount di

along the projection π(p̃i). Note that each fi is an unsplittable all-or-nothing
flow. The projection of pi might not be a simple path in the substrate, hence
the flow fi(e) along the edge e can be a multiple of the demand di.

3.3 Analysis of the Algorithm

Definition 2. The diameter of Gi is the length of a longest path in Gi from the
source si to the destination ti. We denote the diameter of Gi by Δ(Gi).

The diameter of Gi is well defined because Gi is acyclic for every request ri. In
all applications we are aware of, the diameter Δ(Gi) is bounded by a constant
(i.e., e.g. less than 10).

Notation. Let Δmax � maxi∈I Δ(Gi) denote the maximum diameter of a
request. Let cmin denote the minimum edge capacity, and let dmax denote the
maximum demand. Let opt∗ denote the maximum benefit achievable by a frac-
tional PCFP solution (with respect to the original capacities c(e) and c(v)). Let
alg denote the solution computed by the algorithm. Let B(S) denote the benefit
of a solution S. Define β(ε) � (1 + ε) ln(1 + ε) − ε.

Our goal is to prove the following theorem.1

Theorem 1. Assume that cmin
Δmax·dmax

≥ 4.2+ ε
ε2 · (1 + ε) · ln |E| and ε ∈ (0, 1).

Then,

Pr [algdoes not satisfy the capacity constraints] ≤ 1

|E| (1)

Pr

[
B(alg) <

1 − ε

1 + ε
· B(opt∗)

]
≤ e−β(−ε)·B(opt∗)/((1+ ε)·bmax·dmax). (2)

We remark in asymptotic terms, the theorem states that if cmin
Δmax·dmax

=

Ω( log |E|
ε2 ), then alg satisfies the capacity constraints with probability 1 −

O(1/|E|) and attains a benefit of (1 − O(ε)) · B(opt∗) with probability 1 −
exp(−Ω(ε2) · B(opt∗)/(bmax · dmax)).

Proof. The proof is based on the fact that randomized rounding is applied to
each flow f̃i independently. Thus the congestion of an edge in alg is the sum
of independent random variables. The same holds for the B(alg). The proof
proceeds by applying Chernoff bounds.
1 We believe there is a typo in the analogous theorem for integral MCFs with unit

demands and unit benefits in [11, Theorem 11.2, p. 452] and that a factor of ε−2 is
missing in their lower bound on the capacities.
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Proof of Eq. 1. For the sake of simplicity we assume that there are no vertex
capacities (i.e., c(v) = ∞). The proof is based on the Chernoff bound in Theorem
2. To apply the bound, fix a substrate edge e ∈ E, where e = (u, v). Recall
that the randomized rounding procedure decides which requests are supplied. A
supplied request ri is assigned a path p̃i in the product network pn(N, ri). The
path p̃i is the support of a single commodity flow f ′

i with flow amount |f ′
i | = di.

The projection of f ′
i to the substrate network is denoted by fi and its support

is the projected path π(p̃i). The multiplicity of every edge in π(p̃i) is at most
Δmax. Hence, for every edge e, fi(e) is a multiple of di between 0 and Δmax · di.

Define the random variables Xi and the upper bounds μi on their expectation
as follows (recall that e = (u, v)).

Xi � fi(e)
Δmax · dmax

μi � c̃(e)
Δmax · dmax

·
∑

y f̃i((u, y), (v, y))
∑

j,y f̃j((u, y), (v, y))

The conditions of Theorem 2 are satisfied for the following reasons. The random
variables Xi are independent and 0 ≤ Xi ≤ 1 because fi(e) ∈ {0, di, . . . ,Δmax ·
di}. Also, by Claim C (see Page 14) and linearity of expectation,

E [Xi] =

∑
y f̃i((u, y), (v, y))
Δmax · dmax

.

Since
∑

j,y f̃j((u, y), (v, y)) ≤ c̃(e), it follows that E [Xi] ≤ μi. Finally, μ �∑
i∈I μi = c̃(e)/(Δmax · dmax).
Let alg(e) denote the load incurred on the edge e by alg. Namely alg(e) �∑

i∈I fi(e). Note that alg(e) ≥ (1 + ε) · c̃(e) iff

∑

i∈I

Xi ≥ (1 + ε) · c̃(e)
Δmax · dmax

= (1 + ε) · μ.

From Theorem 2 we conclude that:

Pr [alg(e) ≥ (1 + ε) · c̃(e)] = Pr

[
∑

i∈I

Xi ≥ (1 + ε) · μ

]

≤ e−β(ε)·μ

= e−β(ε)·c̃(e)/(Δmax·dmax)

By scaling of capacities, we have c(e) = (1 + ε) · c̃(e). By Fact 4, β(ε) ≥ 2ε2

4.2+ ε .

By the assumption c̃(e)
Δmaxdmax

≥ 4.2+ ε
ε2 · ln |E|. We conclude that

Pr [alg(e) ≥ c(e)] ≤ 1
|E|2 .
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Equation 1 follows by applying a union bound over all the edges.

Proof of Eq. 2. The proof is based on the Chernoff bound stated in Theorem
3. To apply the bound, let

Xi � bi · |fi|
bmax · dmax

μi � bi · |f̃i|
bmax · dmax

.

The conditions of Theorem 3 are satisfied for the following reasons. Since
bi ≤ bmax and |fi| ≤ dmax, it follows that 0 ≤ Xi ≤ 1. Note that

∑
i Xi =

B(alg)/(bmax · dmax). By Corollary 1, E [Xi] = μi. By linearity,
∑

i bi · |f̃i| =
opt∗/(1 + ε) and μ �

∑
i μi = B(opt∗)

(1+ ε)bmax·dmax
. Hence,

Pr
[

B(alg) <
1 − ε

1 + ε
· B(opt∗)

]

= Pr

[
∑

i

Xi < (1 − ε) · μ

]

≤ e−β(−ε)·μ

≤ e−β(−ε)·B(opt∗)/((1+ ε)bmax·dmax),

and the theorem holds. 
�

3.4 Unit Benefits

In the case of unit benefits (i.e., all the benefits equal one and hence bmax = 1),
Theorem 1 gives a fully polynomial randomized approximation scheme.

Corollary 1. Suppose that bmax = 1. Under the premises of Theorem 1, with
probability 1−O(1/Poly(|E|), the algorithm returns an all-or-nothing unsplittable
multi-commodity flow whose benefit is at least 1−O(ε) times the optimal benefit.

Proof. If B(opt∗) > cmin, then the large capacities assumption implies that
B(opt∗)/(dmax·bmax) ≥ cmin/dmax ≥ ε−2·ln |E|. This implies that that B(alg) ≥
(1 − O(ε)) · B(opt∗) with probability at least 1 − 1/poly(|E|). By adding the
probabilities of the two possible failures (i.e., violation of capacities and small
benefit) and taking into account the prescaling of capacities, we obtain that with
probability at least 1 − O(1/poly(|E|)), randomized rounding returns an all-or-
nothing unsplittable multi-commodity flow whose benefit is at least 1 − O(ε)
times the optimal benefit. 
�

4 Discussion

Theorem 1 provides an upper bound for the probability that alg is not feasible
and that B(alg) is far from B(opt∗). These bounds imply that our algorithm can
be viewed as a version of an asymptotic PTAS in the following sense. Suppose
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that the parameters bmax and dmax are not a function of |E|. As the benefit of
the optimal solution opt∗ increases, the probability that B(alg) ≥ (1 − O(ε)) ·
B(opt∗) increases. On the other hand, we need the capacity-to-demand ratio to
be logarithmic, namely, cmin ≥ Ω((Δmax · dmax · ln |E|)/ε2). We believe that the
capacity-to-demand ratio is indeed large in realistic networks.

Acknowledgment. This research was supported by the EU project UNIFY FP7-IP-
619609 as well as by the German BMBF Software Campus grant 01IS1205. Stefan
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A Multi-commodity Flows

Consider a directed graph G = (V,E). Assume that edges have non-negative
capacities c(e). For a vertex u ∈ V , let out(u) denote the outward neighbors,
namely the set {y ∈ V | (u, y) ∈ E}. Similarly, in(u) � {x ∈ V | (x, u) ∈ E}.
Consider two vertices s and t in V (called the source and destination vertices,
respectively). A flow from s to t is a function f : E → R

≥0 that satisfies the
following conditions:

(i) Capacity constraints: for every edge (u, v) ∈ E, 0 ≤ f(u, v) ≤ c(u, v).
(ii) Flow conservation: for every vertex u ∈ V \ {s, t}

∑

x∈in(u)

f(x, u) =
∑

y∈out(u)

f(u, y).

The amount of flow delivered by the flow f is defined by

|f | �
∑

y∈out(s)

f(s, y) −
∑

x∈in(s)

f(x, s).

Consider a set ordered pairs of vertices {(si, ti)}i∈I . An element i ∈ I is
called a commodity as it denotes a request to deliver flow from si to ti. Let
F � {fi}i∈I denote a set of flows, where each flow fi is a flow from the source
vertex si to the destination vertex ti. We abuse notation, and let F denote the
sum of the flows, namely F (e) �

∑
i∈I fi(e), for every edge e. Such a sequence is

a multi-commodity flow if, in addition it satisfies cumulative capacity constraints
defined by:

for every edge (u, v) ∈ E : F (u, v) ≤ c(u, v).

Demands are used to limit the amount of flow per commodity. Formally, let
{di}i∈I denote a sequence of positive real numbers. We say that di is the demand
of flow fi if we impose the constraint that |fi| ≤ di. Namely, one can deliver at
most di amount of flow for commodity i.

The maximum benefit optimization problem associated with multi-commodity
flow is formulated as follows. The input consists of a (directed) graph G =
(V,E), edge capacities c(e), a sequence source-destination pairs for commodities
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{(si, ti)}i∈I . Each commodity has a nonnegative demand di and benefit bi. The
goal is to find a multi-commodity flow that maximizes the objective

∑
(u,v)∈E bi ·

|fi|. We often refer to this objective as the benefit of the multi-commodity flow.
When the demands are identical and the benefits are identical, the maximum
benefit problem reduces to a maximum throughput problem.

A multi-commodity flow is all-or-nothing if |fi| ∈ {0, di}, for every commod-
ity i ∈ I. A multi-commodity flow is unsplittable if the support of each flow
is a simple path. (The support of a flow fi is the set of edges (u, v) such that
fi(u, v) > 0.) We often emphasize the fact that a multi-commodity flow is not
all-or-nothing or not unsplittable by saying that it fractional.

B Randomized Rounding Procedure

In this section we overview the randomized rounding procedure. The presentation
is based on [11]. Given an instance F = {fi}i∈I of a fractional multi-commodity
flow with demands and benefits, we are interested in finding an all-or-nothing
unsplittable multi-commodity flow F ′ = {f ′

i}i∈I such that the benefit of F ′ is
as close to the benefit of F as possible.

Observation 1. As flows along cycles are easy to eliminate, we assume that
the support of every flow fi ∈ F is acyclic.

We employ a randomized procedure, called randomized rounding, to obtain
F ′ from F . We emphasize that all the random variables used in the procedure
are independent. The procedure is divided into two parts. First, we flip random
independent coins to decide which commodities are supplied. Next, we perform
a random walk along the support of the supplied commodities. Each such walk
is a simple path along which the supplied commodity is delivered. We describe
the two parts in detail below.

Deciding which commodities are supplied. For each commodity, we first
decide if |f ′

i | = di or |f ′
i | = 0. This decision is made by tossing a biased coin

biti ∈ {0, 1} such that

Pr [biti = 1] � |fi|
di

.

If biti = 1, then we decide that |f ′
i | = di (i.e., commodity i is fully supplied).

Otherwise, if biti = 0, then we decide that |f ′
i | = 0 (i.e., commodity i is not

supplied at all).

Assigning paths to the supplied commodities. For each commodity i that
we decided to fully supply (i.e., biti = 1), we assign a simple path Pi from its
source si to its destination ti by following a random walk along the support of fi.
At each node, the random walk proceeds by rolling a dice. The probabilities of
the sides of the dice are proportional to the flow amounts. A detailed description
of the computation of the path Pi is given in Algorithm 1.
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Algorithm 1. Algorithm for assigning a path Pi to flow fi.
1: Pi ← {si}.
2: u ← si

3: while u �= ti do � did not reach ti yet
4: v ← choose-next-vertex(u).
5: Append v to Pi

6: u ← v
7: end while
8: return (Pi).
9: procedure choose-next-vertex(u, fi) � Assume that u is in the support of fi

10: Define a dice C(u, fi) with |out(u)| sides. The side corresponding to an edge
(u, v) has probability fi(u, v)/(

∑
(u,v′)∈out(u) fi(u, v′)).

11: Let v denote the outcome of a random roll of the dice C(u, fi).
12: return (v)
13: end procedure

Definition of F ′. Each flow f ′
i ∈ F ′ is defined as follows. If biti = 0, then f ′

i is
identically zero. If biti = 1, then f ′

i is defined by

f ′
i(u, v) �

{
di if (u, v) ∈ Pi,

0 otherwise.

Hence, F ′ is an all-or-nothing unsplittable flow, as required.

C Analysis of Randomized Rounding - Expected Flow
per Edge

The presentation in this section is based on [11].

Claim. For every commodity i and every edge (u, v) ∈ E:

Pr [(u, v) ∈ Pi] =
fi(u, v)

di
,

E [f ′
i(u, v)] = fi(u, v).

Proof. Since

E [f ′
i(u, v)] = di · Pr [(u, v) ∈ Pi] ,

it suffices to prove the first part.
An edge (u, v) can belong to the path Pi only if fi(u, v) > 0. We now focus

on edges in the support of fi. By Observation 1, the support is acyclic, hence we
can sort the support in topological ordering. The claim is proved by induction
on the position of an edge in this topological ordering.
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The induction basis, for edges (si, y) ∈ out(si), is proved as follows. Since
the support of fi is acyclic, it follows that fi(x, si) = 0 for every (x, si) ∈ in(si).
Hence |fi| =

∑
y∈out(si,fi)

fi(si, y). Hence,

Pr [(si, y) ∈ Pi] = Pr [biti = 1] · Pr [dice C(si, fi) selects (si, y) | biti = 1]

=
|fi|
di

· fi(si, y)
∑

y∈out(si,fi)
fi(si, y)

=
fi(si, y)

di
,

and the induction basis follows.
The induction step, for an edge (u, v) in the support of fi such that u �= si,

is proved as follows. Vertex u is in Pi if and only if Pi contains an edge whose
head is u. We apply the induction hypothesis to these incoming edges, and use
flow conservation to obtain

Pr [u ∈ Pi] = Pr

⎡

⎣
⋃

x∈in(u)

(x, u) ∈ Pi

⎤

⎦

=
1
di

·
∑

x∈in(u)

fi(x, u)

=
1
di

·
⎛

⎝
∑

y∈out(u)

fi(u, y)

⎞

⎠ .

Now,

Pr [(u, v) ∈ Pi] = Pr [u ∈ Pi] · Pr [dice C(u, fi) selects (u, v) | u ∈ Pi]

=
1
di

·
⎛

⎝
∑

y∈out(u)

fi(u, y)

⎞

⎠ · fi(u, v)
∑

y∈out(u) fi(u, y)

=
fi(u, v)

di
,

and the claim follows. 
�
By linearity of expectation, we obtain the following corollary.

Corollary 1. E [|f ′
i |] = |fi|.

D Chernoff Bounds

In this section we present material from Raghavan [15] and Young [20] about
the Chernoff bounds used in the analysis of randomized rounding.

Fact 1. ex ≥ 1 + x and x ≥ ln(1 + x) for x > −1.
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Fact 2. (1 + α)x ≤ 1 + α · x, for 0 ≤ x ≤ 1 and α ≥ −1.

Fact 3 (Markov Inequality). For a non-negative random variable X and α > 0,
Pr [X ≥ α] ≤ E[X]

α .

Definition 3. The function β : (−1,∞) → R is defined by β(ε) � (1+ ε) ln(1+
ε) − ε.

Fact 4. For ε such that −1 < ε < 1 we have β(−ε) ≥ ε2

2 ≥ β(ε) ≥ 2ε2

4.2+ ε .
Hence, β(−ε) = Ω(ε2) and β(ε) = Θ(ε2).

Theorem 2 (Chernoff Bound). Let {Xi}i denote a sequence of independent
random variables attaining values in [0, 1]. Assume that E [Xi] ≤ μi. Let X �∑

i Xi and μ �
∑

i μi. Then, for ε > 0,

Pr [X ≥ (1 + ε) · μ] ≤ e−β(ε)·μ.

Proof. Let A denote the event that X ≥ (1 + ε) · μ. Let f(x) � (1 + ε)x. Let B
denote the event that

f(X)
f((1 + ε) · μ)

≥ 1.

Because f(x) > 0 and f(x) is monotonously increasing, it follows that Pr [A] =
Pr [B]. By Markov’s Inequality,

Pr [B] ≤ E [f(X)]
f((1 + ε) · μ)

.

Since X =
∑

i Xi is the sum of independent random variables,

E [f(X)] =
∏

i

E
[
(1 + ε)Xi

]

≤
∏

i

E [1 + ε · Xi] (by Fact 2)

≤
∏

i

(1 + ε · μi)

≤
∏

i

eε·μi (by Fact 1)

= eε·μ

We conclude that

Pr [A] ≤ eε·μ

f((1 + ε) · μ)

= e−β(ε)·μ,

and the theorem follows. 
�
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Using the same tools, the following theorem can be obtained for bounding
the probability of the event that X is much smaller than μ (see [6] for the proof).

Theorem 3 (Chernoff Bound). Under the same premises as in Theorem 2
except that E [Xi] ≥ μi, it holds that, for 1 > ε ≥ 0,

Pr [X ≤ (1 − ε) · μ] ≤ e−β(−ε)·μ.
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Abstract. The software-defined networking paradigm introduces inter-
esting opportunities to operate networks in a more flexible yet formally
verifiable manner. Despite the logically centralized control, however,
a Software-Defined Network (SDN) is still a distributed system, with
inherent delays between the switches and the controller. Especially the
problem of changing network configurations in a consistent manner, also
known as the consistent network update problem, has received much
attention over the last years. This paper revisits the problem of how to
update an SDN in a transiently consistent, loop-free manner. First, we
rigorously prove that computing a maximum (“greedy”) loop-free net-
work update is generally NP-hard; this result has implications for the
classic maximum acyclic subgraph problem (the dual feedback arc set
problem) as well. Second, we show that for special problem instances,
fast and good approximation algorithms exist.

1 Introduction

By outsourcing and consolidating the control over multiple data-plane elements
to a centralized software program, Software-Defined Networks (SDNs) introduce
flexibilities and optimization opportunities. However, while a logically central-
ized control is appealing, an SDN still needs to be regarded as a distributed
system, posing non-trivial challenges [3,9,16–19]. In particular, the communica-
tion channel between switches and controller exhibits non-negligible and varying
delays [10,19], which may introduce inconsistencies during network updates.

Over the last years, the problem of how to consistently update routes in
a (software-defined) network has received much attention, both in the systems
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as well as in the theory community [9,15,17,19,21]. While in the seminal work by
Reitblatt et al. [19], protocols providing strong, per-packet consistency guaran-
tees were presented (using some kind of 2-phase commit technique), it was later
observed that weaker (“relaxed”), but transiently consistent guarantees can be
implemented more efficiently. In particular, Mahajan and Wattenhofer [17] pro-
posed a first algorithm to update routes in a network in a transiently loop-free
manner. Their approach is appealing as it does not require packet tagging (which
comes with overheads in terms of header space and also introduces challenges in
the presence of middleboxes [20] or multiple controllers [3]) or additional TCAM
entries [3,19] (which is problematic given the fast growth of forwarding tables
both in the Internet as well as in the virtualized datacenters [2]). Moreover, the
relaxed notion of consistency also allows (parts of the) paths to become available
sooner [17].

Concretely, to update a network in a transiently loop-free manner, an algo-
rithm can proceed in rounds [15,17]: in each round, a “safe subset” of (so-called
OpenFlow) switches is updated, such that, independently of the times and order
in which the updates of this round take effect, the network is always consistent.
The scheme can be implemented as follows: After the switches of round t have
confirmed the successful update (e.g., using acknowledgements [12]), the next
subset of switches for round t + 1 is scheduled.

It is easy to see that a simple update schedule always exists: we can update
switches one-by-one, proceeding from the destination toward the source of a
route. In practice, however, it is desirable that updates are fast and new routes
become available quickly: Ideally, in order to be able to use as many new links as
possible, one aims to maximize the number of concurrently updated switches [17].
We will refer to this approach as the greedy approach.

This paper revisits the problem of updating a maximum number of switches
in a transiently loop-free manner. In particular, we consider the two different
notions of loop-freedom introduced in [15]: strong loop-freedom and relaxed loop-
freedom. The first variant guarantees loop-freedom in a very strict, topological
sense: no single packet will ever loop. The second variant is less strict, and allows
for a small bounded number of packets to loop during the update; however, at
no point in time should newly arriving packets be pushed into a loop. It is known
that by relaxing loop-freedom, in principle many more switches can be updated
simultaneously.

Our Contributions. We rigorously prove that computing the maximum set of
switches which can be updated simultaneously, without introducing a loop, is
NP-hard, both regarding strong and relaxed loop-freedom. This result may be
somewhat surprising, given the very simple graph induced by our network update
problem. The result also has implications for the classic Maximum Acyclic Sub-
graph Problem (MASP), a.k.a. the dual Feedback Arc Set Problem (dFASP):
The problem of computing a maximum set of switches which can be updated
simultaneously, corresponds to the dFASP, on special graphs essentially describ-
ing two routes (the old and the new one). Our NP-hardness result shows that
MASP/dFASP is hard even on such graphs. On the positive side, we identify
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network update problems which allow for optimal or almost optimal (with a
provable approximation factor less than 2) polynomial-time algorithms, e.g.,
problem instances where the number of leaves is bounded or problem instances
with bounded underlying undirected tree-width.

Organization. The remainder of this paper is organized as follows. Section 2
introduces preliminaries and presents our formal model. In Sect. 3, we prove
that computing greedy updates is NP-hard, both for strong and for relaxed
loop-freedom. Section 4 describes polynomial-time (approximation) algorithms.
After reviewing related work in Sect. 5, we conclude and discuss future work in
Sect. 6. Some technical details and longer discussions appear in the arXiv Report
1605.03158.

2 Model

We are given a network and two policies resp. routes π1 (the old policy)
and π2 (the new policy). Both π1 and π2 are simple directed paths (digraphs).
Initially, packets are forwarded (using the old rules, henceforth also called old
edges) along π1, and eventually they should be forwarded according to the new
rules of π2. Packets should never be delayed or dropped at a switch, henceforth
also called node: whenever a packet arrives at a node, a matching forwarding
rule should be present. Without loss of generality, we assume that π1 and π2

lead from a source s to a destination d.
We assume that the network is managed by a controller which sends out

forwarding rule updates to the nodes. As the individual node updates occur in
an asynchronous manner, we require the controller to send out simultaneous
updates only to a “safe” subset of nodes. Only after these updates have been
confirmed (acked), the next subset is updated.

We observe that nodes appearing only in one or none of the two paths are
trivially updateable, therefore we focus on the network G induced by the nodes V
which are part of both policies π1 and π2, i.e., V = {v : v ∈ π1 ∧ v ∈ π2}. We
can represent the policies as π1 = (s = v1, v2, . . . , v� = d) and π2 = (s =
v1, π(v2), . . . , π(v�−1), v� = d), for some permutation π : V \{s, d} → V \{s, d}
and some number �. In fact, we can represent policies in an even more compact
way: we are actually only concerned about the nodes U ⊆ V which need to
be updated. Let, for each node v ∈ V , out1(v) (resp. in1(v)) denote the out-
going (resp. incoming) edge according to policy π1, and out2(v) (resp. in2(v))
denote the outgoing (resp. incoming) edge according to policy π2. Moreover, let
us extend these definitions for entire node sets S, i.e., outi(S) =

⋃
v∈S outi(v), for

i ∈ {1, 2}, and analogously, for ini. We define s to be the first node (say, on π1)
with out1(v) �= out2(v), and d to be the last node with in1(v) �= in2(v). We are
interested in the set of to-be-updated nodes U = {v ∈ V : out1(v) �= out2(v)},
and define n = |U |. Given this reduction, in the following, we will assume that V
only consists of interesting nodes (U = V ).

We require that paths be loop-free [17], and distinguish between Strong Loop-
Freedom (SLF) and Relaxed Loop-Freedom (RLF) [15].

https://arxiv.org/abs/1605.03158v1
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Strong Loop-Freedom. We want to find an update schedule U1, U2, . . . , Uk, i.e.,
a sequence of subsets Ut ⊆ U where the subsets form a partition of U (i.e., U =
U1 ∪ U2 ∪ . . . ∪ Uk), with the property that for any round t, given that the
updates Ut′ for t′ < t have been made, all updates Ut can be performed “asyn-
chronously”, that is, in an arbitrary order without violating loop-freedom. Thus,
consistent paths will be maintained for any subset of updated nodes, indepen-
dently of how long individual updates may take.

More formally, let U<t =
⋃

i=1,...,t−1 Ui denote the set of nodes which have
already been updated before round t, and let U≤t, U>t etc. be defined analo-
gously. Since updates during round t occur asynchronously, an arbitrary subset
of nodes X ⊆ Ut may already have been updated while the nodes X = Ut\X
still use the old rules, resulting in a temporary forwarding graph Gt(U,X,Et)
over nodes U , where Et = out1(U>t ∪ X) ∪ out2(U<t ∪ X). We require that
the update schedule U1, U2, . . . , Uk fulfills the property that for all t and for
any X ⊆ Ut, Gt(U,X,Et) is loop-free.

In the following we will call an edge (u, v) of the new policy π2 forward, if v
is closer (with respect to π1) to the destination, resp. backward, if u is closer to
the destination. It is also convenient to name nodes after their outgoing edges
w.r.t. policy π2 (e.g., forward or backward); similarly, it is sometimes convenient
to say that we update an edge when we update the corresponding node.

While the initial network configuration consists of two paths, in later rounds,
the already updated edges may no longer form a line from left to right, but rather
an arbitrary directed tree, with tree edges directed towards the destination d.
We will use the terms forward and backward also in the context of the tree: they
are defined with respect to the direction of the tree root. However, there also
emerges a third kind of edges: horizontal edges in-between two different branches
of the tree.

Relaxed Loop-Freedom. Relaxed Loop-Freedom (RLF) is motivated by the
practical observation that transient loops are not very harmful if they do not
occur between the source s and the destination d. If relaxed loop-freedom is
preserved, only a bounded number of packets can loop: we will never push new
packets into a loop “at line rate”. In other words, even if switches acknowledge
new updates late (or never), new packets will not enter loops. Concretely, and
similar to the definition of SLF, we require the update schedule to fulfill the
property that for all rounds t and for any subset X, the temporary forwarding
graph Gt(U,X,E′

t) is loop-free. The difference is that we only care about the
subset E′

t of Et consisting of edges reachable from the source s.

The Greedy Approach. Our objective is to update simultaneously as many
nodes (or equivalently, edges) as possible: an objective initially studied in [17],
which may also be seen as a greedy approach to minimize the number of rounds1.
Note that in the first round, computing a maximum update set is trivial: All
forward edges can be updated simultaneously, as they will never introduce a

1 It is known however that in the worst case, a greedy approach can lead to an unnec-
essarily large number of rounds [15].
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cycle, but no backward edge can be updated in the first round, as it can always
induce a cycle; horizontal edges do not exist in the first round. Also observe that
since all nodes lie on the path from source to destination, this holds for both
strong and relaxed loop-freedom. However, as we will show in this paper, already
in the second round, a computationally hard problem can arise.

3 Being Greedy is Hard

Interestingly, although the underlying graphs are very simple, and originate from
just two (legal) paths, we now prove that the loop-free network update problem
is NP-hard.

Theorem 1. The greedy network update problem, the problem of selecting a
maximum set of nodes which can be updated simultaneously, is NP-hard.

Our reduction is from the NP-hard Minimum Hitting Set problem. This proof
is similar for both consistency models: strong and relaxed loop-freedom, and we
can present the two variants together. The inputs to the hitting set problem are:

1. A universe of m elements E = {ε1, ε2, . . . , εm}.
2. A set S = {S1, S2, S3, . . . , Sk} of k subsets Si ⊆ E .

The objective is to find a subset E ′ ⊆ E of minimal size, such that each set Si

includes at least one element from E ′: ∀Si ∈ S : Si ∩ E ′ �= ∅. In the following, we
will assume that elements are unique and can be ordered ε1 < ε2 . . . < εm. The
idea of the reduction is to create, in polynomial time, a legal network update
instance where the problem of choosing a maximum set of nodes which can be
updated concurrently is equivalent to choosing a minimum hitting set. While in
the initial network configuration, essentially describing two paths from s to d,
a maximum update set can be chosen in polynomial time (simply update all
forwarding edges but no backward edges), we show in the following that already
in the second round, the problem can be computationally hard.

More concretely, based on a hitting set instance, we aim to construct a net-
work update instance of the following form, see Fig. 1. For each element ε ∈ E ,
we create a pair of branches εin and εout, i.e., 2m branches in total. To model the
relaxed loop-free case, in addition to the E branches, we add a source-destination
branch, from s to d, depicted on the right in the figure. We will introduce the
following to-be-updated new edges:

1. Set Edges (SEs): The first type of edges models sets. Let us refer to
the (ordered) elements in a given set Si by ε

(i)
1 < ε

(i)
2 < ε

(i)
3 . . .. For each

set Si ∈ S, we now create m + 1 edges from each ε
(i)
j to ε

(i)
j+1, in a modulo

fashion. That is, we also introduce m + 1 edges from the last element to the
first element of the set. These edges start at the out branch of the smaller
index and end at the in branch of the larger index. There are no requirements
on how the edges of different sets are placed with respect to each other, as
long as they are not mixed. Moreover, only one instance of multiple equivalent
SEs arising in multiple sets must be kept.
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Fig. 1. Example: Construction of network update instance given a hitting set instance
with E = {1, 2, 3, . . . , m} and S = {{1, 2, 3}, {1, m}}. Each element ε ∈ E is rep-
resented by a pair of branches, one called outgoing (out) and one incoming (in).
Moreover, we add a branch representing the s − d path on the very right. The black
branches represent already installed rules (either old or updated in the first round), and
new rules (dashed) are situated between the branches. There are three types of to-be-
updated, dashed edges: one type represents the sets (loosely and densely dashed grey),
one type represents element selector edges (between in and out branch, loosely dashed
black), and one type is required to connect the s − d path to the elements (densely
dashed grey). We prove that such a scenario can be reached after one update round
where all (and only) forward edges are updated. Top-left: Each loosely dashed grey
edge represents m+1 edges, and is used to describe the set {1, 2, 3}:(1, 2), (2, 3), (3, 1).
Top-right: Each densely dashed grey edge represents m + 1 edges and is used for
the set {1, m}: (1, m), (m, 1). Bottom-left: The loosely dashed black edges are single
edges and are the element selector edges, representing the decision if an element is part
of E ′ or not. Bottom-right: Each densely dashed edge visualizes m · (m + 1) edges
from the s-branch to the incoming branches of every ε ∈ E .

2. Anti-selector Edges (AEs): These m edges constitute the decision problem
of whether an element should be included in the minimum hitting set. AEs
are created as follows: From the top of each in branch we create a single edge
to the bottom of the corresponding out branch. That is, we ensure that an
update of the edge from εin

i to εout
i is equivalent to εi �∈ E ′, or, equivalently,

every εi ∈ E ′ will not be included in the update set.
3. Relaxed Edges (WEs): These edges are only needed for the relaxed loop-

free case. They connect the s-d branch to the other branches in such a way that
no loops are missed. In other words, the edges aim to emulate a strong loop-
free scenario by introducing artificial sources at the bottom of each branch.
To achieve this, we create a certain number of edges from the s-branch to
the bottom of every in branch. The precise amount will be explained at the
detailed construction part of creating parallel edges. See Fig. 1 bottom-left for
an example.
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The rationale is as follows. If no Anti-selector Edges (AEs) are updated, all
Relaxed Edges (WEs) as well as all Set Edges (SEs) can be updated simultane-
ously, without introducing a loop. However, since there are in total exactly m
AEs but each set of SEs are m + 1 edges (hence they will all be updated), we
can conclude that the problem boils down to selecting a maximum number of
element AEs which do not introduce a loop. The set of non-updated AEs con-
stitutes the selected sets, the hitting set: There must be at least one element for
which there is an AE, preventing the loop. By maximizing the number of chosen
AEs (maximum update set) we minimize the hitting set.

Let us consider an example: In Fig. 1 bottom-right, if for a set Si every AE
of εi ∈ Si is updated, a cycle is created: updating edges εin

1 and εin
m results in a

cycle with the m + 1 edges from εout
1 and εout

m . Note that the resulting network
update instance is of polynomial size (and can also be derived in polynomial
time). In the remainder of the proof, we show that the described network update
instance is indeed legal, e.g., we have a single path from source to destination,
and this instance can actually be obtained after one update round.

3.1 Concepts and Gadgets

Before we describe the details of the construction, we first make some funda-
mental observations regarding greedy updates.

Introducing Forwarding Edges and Branches: First, a delayer concept is
required to establish forwarding edges for the second round. Observe that every
forwarding edge (a, b), with a < b, is always updated by a greedy algorithm in the
first round. A delayer is used to construct a forward edge (a, b), with a < b, that
is created in the second round. A delayer for edge (a, b) consists of two edges:
an edge pointing backwards to a′ from a with a′ < a, plus an edge pointing from
there to b. The forward edge (a′, b) will be updated in the first round, which
yields an edge (a, b) due to merging (see Fig. 2).

Fig. 2. Delayer concept: A forwarding edge (a, a′b) can be created in round 2 using a
helper node a′.

We next describe how to create the in and out branches as well as the s branch
pointing to the destination d (recall Fig. 1). This can be achieved as follows: From
a node close to the source s, we create a path of forward edges which ends at
the destination. Each of these forward edges will be updated in the first round,
and hence merged with its respective successor, which will be the destination
for the very last forward edge. The nodes belonging to these forward edges will
be called branching nodes. Every node in-between two branching nodes will be
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Fig. 3. Creating branches after a greedy update of forward edges.

part of a new branch pointing to the destination. See Fig. 3 for an example. The
rightmost node before the branching node on the line will also be the topmost
node on the branch after the first round update (as long as it has an outgoing
backward edge, hence not being updated in the first round). We will use the
terms right and high (rightmost-topmost) and left-low for the first and second
round interchangeably.

Introducing Special Segments: In our construction, we split the line (old
path) into disjoint segments which will become independent branches at the
beginning of the second round. In addition to these segments, there will be two
special segments, one at the beginning and one at the end. The first will not
even become an independent branch at the beginning of the second round, but
is merely used to realize the delayer edges. Behind the very last segment (εin

1 )
and just before d, there is a second special segment, which we call relaxed : it is
needed to create the branch with the source s at the bottom and its connections
to the other εin

i branches.
In our construction, SEs come in groups of m + 1 edges. These edges must

eventually be part of a legal network update path, and must be connected in
a loop-free manner. In other words, to create the desired problem instance, we
need to find a way to connect two branches b1 and b2 with m+1 edges, such that
there is a single complete path from s to d. Furthermore, these edges should not
form a loop.

In the arXiv Report 1605.03158, we describe how parallel edges can be con-
structed.

3.2 Connecting the Pieces

Given these gadgets, we are able to complete the construction of our problem
instance.

Realizing the Delayer: The first created segment, temp, serves for edges that
are created using the delayer concept. This is due to our construction: every
node that will be created in this interval in our construction will be a forward
node and therefore updated in the first greedy round. The temp segment will be
located right after the source s on the line.

Realizing the Branches: We create two segments for each ε ∈ E , one out and
one in, and sort them in descending global order (and depict them from left to
right) w.r.t. ε ∈ E , with the out segment closer to s than the in segment for
each ε, i.e. εout

m , εin
m , . . . , εout

2 , εin
2 , εout

1 , εin
1 (Fig. 4).

https://arxiv.org/abs/1605.03158v1
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Fig. 4. Illustration of how to split the old line into segments according to the amount
of needed branches in the second round.

Connecting the Path: We will now create the new path from the source s to
the destination d through all the different segments. This path requires additional
edges. We will ensure that these edges can always be updated and hence do not
violate the selector properties. Moreover, we ensure that they do not introduce a
loop. In order to create a branch with s at the bottom (to ensure that the proof
will also hold for relaxed loop-freedom), we start our path from the source s
to a node relaxed − bot on the very left part of the relaxed segment. From
here we need to create the m · (m + 1) connections to every other εin

i branch,
more precisely to the very left of the top part of this branch εin

i−t: the relaxed
Edges (WEs). Starting from relaxed − bot, we create the m · (m + 1) zigzag
edges (described in detail in the technical report only) to the εin

1 segment. Once
this is done, we repeat this process for the remaining εin

i connecting them in the
same order blockwise, as they are ordered on the line. See Fig. 5.

Fig. 5. Creating the branch with the source at the bottom and m · (m+1) connections
to each εini segment of the line, as shown in Sect. 3.1. The m · (m+1) connections are
visualized as a single edge in the first round to enhance visibility.

At the beginning of the second round, we will now have a branch with the
source s at the bottom and m+1 edges to each of the εin

i branches. The next step
is to connect the out branches with the in branches (the Set Edges). For each
set Sj ∈ S and each pair εi, εl ∈ Sj with no ε′ ∈ Sj , εi < ε′ < εl, we create m+1
edges from εout

i to εin
l , more precisely to the top part εin

l−t somewhere above the
WEs. Each pair εi, εl only needs to connect once with the m + 1 edges, even
if it occurs in several different sets of S. The last element εi of a set Sj will
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additionally need to be connected to the first element of the set (the modulo
edges).

After the m + 1 connections to εin
m , the path returns at the right most (or

highest in the (s, d)-branch) node in the relaxed segment. From here we create
a backward edge to the left part of εout

1 . Here, we create m + 1 connections to
every εin

i , which is the next larger element in any of the sets. An example is
shown in Fig. 6.

Fig. 6. Connecting the εout1 branch with the branches εin2 , εin3 , εinm . This scenario would
be created for the sets: {1, 2, . . .},{1, 3, . . .}, {1, m}. The densely dashed black edges
show the outgoing edges from εout1 . The loosely dashed black edges are the backward
edges from the top part of a branch εini to its bottom part (εini−t to εini−b). The densely
dashed grey edges are the way back from εini to εout1 and are needed to complete the
path.

To complete the m + 1 connections for every pair, we proceed as follows:
we connect the εout

1 branch to all required in-branches, then add the edge from
εout
1 to the εout

2 branch, then add the edges from the εout
2 branch to all required

in-branches, etc. Generally, we interleave adding the edges from the εout
i branch

to all required in-branches and then add the i-out to (i + 1)-out edge. Until the
path arrives at the end of the last out branch, εout

m :

– Step A - Create the m+1 set specific edges: Here we create m+1 connections
to every successor in the respective sets (at most once per pair). If this element
is the largest element in a set, it needs to be connected to the in part of the
smallest element of this set again. Here the delayer concept needs to be used
for the modulo edges.
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– Step B - Connecting the out branches: In order to create the next m + 1
connections from the next out segment εout

i+1, we need to connect it from our
current out segment εout

i . The edge therefore needs to point to the rightmost
part of εout

i+1. Since this edge is always a backward edge in the first round (we
start closer to the destination and move backward towards the source), it will
turn out to be an edge which points to the very top of εout

i+1 at the beginning
of the second round. This assures that there are no loops created, since the
only way is going directly towards the destination. From here we create an
edge pointing to the very left side of εout

i+1 (evolving to a backward rule from
top to bottom of the branch in the second round, hence not being part of the
update set in the first nor the second round).

Fig. 7. Connecting the in and out branches of every εi, shown in densely dashed black.
The edges shown in densely dashed grey are needed to keep the path complete and the
backward edges in loosely dashed black are needed to ensure that only the destination
can be reached from that point in the second round.

To finish the construction, we need to add the anti-selector edges (AEs), and
connect the in and out branches of every single εi with each other. The goal
is to create, for each given i, an edge from the top of each εin

i to the bottom
of each εout

i . This way, if this edge is included in the update, a loop may be
formed: as every incoming edge to εin

i arrives below the AEs start point and every
outgoing edge on εout

i is above AE’s destination. The decision to not include one
of these edges is equivalent to εi ∈ E ′ in the minimum hitting set problem. In
order to keep the path connected we will also need to include edges from εout

i

to εin
i+1, compare Fig. 7. These edges will point to the top of εin

i+1 and therefore
do not create loops, since the only way is going directly to the destination. From
here we create another backward edge to its left neighbor such that there is
no possible other way than traversing towards d from this point. Without this
backward edge loops may be created, since it introduces connections between
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branches which are not both in a set Si of the hitting set problem. Therefore,
an update of one of the additional connector edges will never lead to a loop, and
the edges can all be included in the update set of the round 2.

The construction of these edges is straightforward. From the end of the cur-
rent path which is located on the εout

m segment, we create a delayed edge (over
temp) to the very right part of the εin

1 segment. From here we construct the
path as described with a short backward edge to its left neighbor and then to
the very left part of the εout

i segment and again to the very right part of the εin
i+1

segment afterwards, until we arrive at the very left part of the εout
m segment.

It remains to create the segments and branches for the second round.
From εout

m , we create a backward edge to the temp part. From here we use
the branching concept and connect all horizontal nodes in-between the single
parts that we created on the line (see Fig. 8).

Fig. 8. Connecting the segments with forward edges. This creates a single branch from
the destination for every segment due to the merging. The edge shown in loosely dashed
grey is connecting this step with the step before.

In summary, we ensured that already after a single greedy first update round,
we end up in a situation where choosing the maximum set of updateable nodes
is equivalent to choosing the minimum hitting set.

4 Polynomial-Time Algorithms

While the computational hardness is disappointing, we can show that there exist
several interesting specialized and approximate algorithms.

Optimal Algorithms. There are settings where an optimal solution can be
computed quickly. For instance, it is easy to see that in the first round, in a con-
figuration with two paths, updating all forward edges is optimal: Forward edges
never introduce any loop, and at the same time we know that backward edges
can never be updated in the first round, as any backward edge alone (i.e., taking
effect in the first round), will immediately introduce a loop. In the following, we
first present an optimal algorithm for SLF, for trees with only two leaves. We
will then extend this algorithm to RLF. In the our arXiv report we will also show
that optimal solutions can be computed efficiently if the underlying undirected
graph is of bounded tree-width.

Lemma 1. A maximum SLF update set can be computed in polynomial-time in
trees with two leaves.
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Proof. Recall that there are three types of new edges in the graph (see also
Fig. 9): forward edges (F ), backward edges (B) and horizontal edges (H),
hence E = H∪B∪F . Moreover, recall that forward edges can always be updated
while backward edges can never be updated in SLF. Thus, the problem boils down
to selecting a maximum subset of H, pointing from one branch to the other. If
there is a simple loop C ∈ G such that HC = E(C)∩H �= ∅, then |HC | = 2 and
we say that the two edges e1, e2 ∈ HC cross each other, written e1 × e2.

We observe that the different edge types can be computed efficiently. For
illustration, suppose the policy graph G = (V,E) (the union of old and new
policy edges) is given as a straight line drawing Π in the 2-dimensional Euclidean
plane, such that the old edges of the 2-branch tree form two disjoint segments
which meet at the root of the tree (the destination), and such that each node
is mapped to a unique location. Given the graph, such a drawing (including
crossings) in the plane can be computed efficiently. Also note that there could
be other edges which intersect w.r.t. the drawing Π, but those are not important
for us.

Now create an auxiliary graph G′ = (V ′, E′) where V ′ = {ve | e ∈ H},
E′ = {(ve1 , ve2) | e1, e2 ∈ H : e1 × e2}. The graph G′ is bipartite, and therefore
finding a minimum vertex cover V C ∈ V (G) is equivalent to finding maximum
matching, which can be done in polynomial time. Let H ′ = {e | e ∈ H : ve ∈
V C}, then the set H ′ is a minimum size subset of H which is not updateable.
Therefore the set H\H ′ is the maximum size subset of H which we can update in
a SLF manner (the complement of H ′ is a maximum independent set in G′ and
therefore, by the definition of the collision graph G′, a maximum updateable set).

We conclude the proof by observing that all these algorithmic steps can be
computed in polynomial time.

Fig. 9. Concept of horizontal edges shown in loosely dashed grey. Both horizontal
edges (v2, v4) and (v5, v1) are crossing each other. The backward edge (v4, v3) is shown
in loosely dashed black and the forward edges in densely dashed grey. Note that s does
not necessarily have to be a leaf.

Lemma 2. A maximum RLF update set can be computed in polynomial-time in
trees with two leaves.

For more details, see our technical report.
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5 Related Work

In their seminal work, Reitblatt et al. [19] initiated the study of network
updates providing strong, per-packet consistency guarantees, and the authors
also presented a 2-phase commit protocol. This protocol also forms the basis
of the distributed control plane implementation in [3]. Mahajan and Watten-
hofer [17] started investigating a hierarchy of transient consistency properties—
in particular also (strong) loop-freedom but for example also bandwidth-aware
updates [1]—for destination-based routing policies. The measurement studies
in [10] and [13] provide empirical evidence for the non-negligible time and high
variance of switch updates, further motivating their and our work. In their
paper, Mahajan and Wattenhofer proposed an algorithm to “greedily” select
a maximum number of edges which can be used early during the policy instal-
lation process. This study was recently refined in [7,8], a parallel work to ours,
where the authors also establish a hardness result for destination based rout-
ing (single- and multi-destination). Our work builds upon [17] and complements
the results in [7,8]: We consider the scheduling complexity of updating arbi-
trary routes which are not necessarily destination-based. Interestingly, our results
(using a different reduction) show that even with the requirement that the ini-
tial and the final routes are simple paths, the problem is NP-hard. Moreover,
our results hold for both the strong SLF and the relaxed RLF loop-free prob-
lem variants introduced in [15]. The SLF can be seen as a special variant of
the Dual Feedback Arc Set Problem (FASP) resp. Maximum Acyclic Subgraph
Problem (MASP): important classic problems in approximation theory [11]. In
particular, it is known that dual-FASP/MASP can be 1/2 + ε approximated on
general graphs (for arbitrary small ε). The results presented in this paper also
imply that better approximation algorithms and even optimal polynomial-time
algorithms exist for special graph families, namely graph families describing net-
work update problems; this may be of independent interest. The RLF variant is
a new optimization problem, and to the best of our knowledge, existing bounds
are not applicable to this problem. We should note that FASP is in FPT [4], and
the hitting set problem is W[2]-hard [6]. In our hardness construction we actu-
ally find a reduction from hitting set to FASP for particular graph classes. But
the reduction is not parameter preserving, so the W-hierarchy does not collapse.
Finally, our model is orthogonal to the network update problems aiming at min-
imizing the number of interactions with the controller (the so-called rounds),
which we have recently studied for single [15] and multiple [5] policies, also
including additional properties, beyond loop-freedom, such as waypointing [14].
The two objectives conflict [15], a good approximation for the number of update
edges yields a bad approximation for the number of rounds, and vice versa.

6 Open Problems

An interesting open question regards whether SLF and RLF can be approximated
well or even solved optimally in polynomial time, in graphs of bounded tree
width. See our accompanying arXiv report for a longer discussion.
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