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Abstract. Fuzzy formal concept analysis (FFCA) is a generalized form
of traditional formal concept analysis (FCA) that exploits fuzzy set
theory to process uncertain data efficiently. Generally, most real world
applications incorporate uncertain data at least for some extent. Conse-
quently, they need reliable approaches to discover potentially useful non-
trivial knowledge. Commonly, FFCA aims mainly to reach such knowl-
edge in form of fuzzy formal concepts. It is used widely in data analy-
sis tasks, association rule discovery and extraction of essential ontology
components. This paper proposes two enhanced algorithms for extract-
ing fuzzy formal concepts based on fuzzy sets of objects and crisp sets
of attributes. Such kind of FFCA best suits Ontology construction and
association rule mining tasks. Commonly, extracting fuzzy concepts is
considered the most time consuming process in FCA and FFCA. So, the
proposed enhanced algorithms aim mainly to reduce the complexity and
extraction time of fuzzy formal concepts’ extraction process. The first
enhanced algorithm best fits in case of the existence of symmetric cor-
related attributes. On the other hand, the second enhanced algorithm
generally reduces the complexity as a result of reducing total number of
generated fuzzy concepts. It works extremely better when the number of
distinct intents of objects is relatively smaller. The results of testing the
proposed enhanced algorithms show their added value.

Keywords: Fixpoint · Formal concept · Fuzzy concept · Formal con-
cept analysis · Fuzzy formal concept analysis · Conceptual scaling and
knowledge extraction

1 Introduction

Generally, formal concept analysis (FCA) is a branch of lattice theory that has
been developed since 1980-ies [10]. It is a field of applied mathematics based on
concepts and concept hierarchies [5,6]. In consequence, FCA has been exploited
by various kinds of applications such as linguistics, information retrieval [1], eco-
nomics and much more [7]. Commonly, classical FCA analyzes data in form of
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binary formal context that describes binary relationship among a set of objects
and a set of attributes. Such context is based on traditional crisp set theory
where an element either belongs fully to a set (take a membership value 1) or
does not belong at all (take a membership value 0). FCA is used to generate set
of formal concepts, also called fixpoints [10,13]. Afterward, it builds the corre-
sponding conceptual hierarchy known as formal concept lattice. Concept lattice
represents the sub-concept/super-concept relationship (order relations) among
the set of generated formal concepts. For association rule mining, FCA can effi-
ciently produce attribute implications that help in extracting hidden association
rules. Commonly, classical FCA provides only crisp scaling method to deal with
multi-valued context that is not appropriate for human reasoning. The prob-
lem of crisp scaling is that it mainly depends on dividing attribute domain
into several intervals. And hence, suffers from the problem of crisp boundaries.
So it is hard to decide the boundaries between scaled attributes’ intervals [6].
This problem can be perfectly tackled using the fuzzification process for scaling
multi-valued attributes to fuzzy sets. Consequently, FFCA faces the limitations
of classical FCA. Fuzzy set theory and fuzzy logic are able to handle imprecise
data such that an element can belong to a set to some extent with a membership
value in the range of [0, 1] [8,9]. FFCA can be widely utilized in fuzzy association
rules’ generation as it can be used to generate fuzzy rules base [27].

This paper contributes to the family of FFCA algorithms. It proposes two
efficient enhanced algorithms for extracting fuzzy formal concepts from a fuzzy
context. It is well known that extracting set of all formal concepts from large
contexts is a time consuming problem whose counting number problem is #P -
complete [14]. But fortunately, if the relation (I ) between object set(X ) and
attribute set(Y ) is considerably small, one can get set of all formal concepts in
a reasonable time even if |X| and |Y |are large [15].

The rest of this paper is organized as follows: Sect. 2 presents the foundations
of formal concept analysis. Fuzzy formal concept analysis is addressed in Sect. 3.
Section 4 introduces some related works. The proposed algorithms to extract
fuzzy formal concepts are presented in Sect. 5. Consequently, Sect. 6 addresses
some experiments for testing and evaluating the proposed algorithms. Finally,
the conclusion is presented in Sect. 7.

2 Formal Concept Analysis

This section introduces FCA basic notions, more details are found in [2,5,6,
10]. Commonly, formal concept analysis aims to discover underlying clusters
of objects and attributes within a dataset [16]. It accepts data inputs in the
form of object-attribute values known as formal context. A formal context is a
representation of a binary relation I between objects G and their attributes M .
It can be represented as cross table of object rows, and column attributes (or
vice versa). The intersected cell between each object g and attribute m has cross
symbol only if (g,m) ∈ I (donated as gIm). Given A ⊆ G and B ⊆ M , the
derivation of A and B is given by (1) and (2):
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A ↑:= {m ∈ M | (gIm) ∀g ∈ A}. (1)

where A ↑ represents common attributes in M shared by all objects of A.

B ↓:= {g ∈ G | (gIm) ∀m ∈ B}. (2)

where B ↓ represents all objects that share all attributes of B.
Alternatively, A ↑ and B ↓ can be donated as A′ and B′ respectively.

Definition 1. (A, B) is a formal concept of the context (G, M, I) iff A ⊆ G,
B ⊆ M , A′ = B and B′ = A. Where A and B are concept extent and intent
respectively.

Let (A1, B1) and (A2, B2) be formal concepts, then (A1, B1) is ≤
(A2, B2) if A1 ⊆ A2 and B2 ⊆ B1. The set of all concepts partially ordered
by this relation is called concept lattice.

Traditional FCA can only deal with binary context but usually the values of a
dataset attribute are within a specified domain of values which may be a range of
values. In such case, a many-valued context should be handled. Rationally, to use
FCA in such situation, conceptual scaling can be used to transform such context
into binary one which unfortunately leads to the crisp boundaries problem.

Definition 2. A many-valued context (G,M, V, I) is composed of G objects, M
attributes, V attribute values and a ternary-relation I ⊆ G×M ×V . An element
of I, (g,m,w) ∈ I indicates that the attribute m has the value w for the object g.

3 Fuzzy Formal Concept Analysis

Generally, there are multiple points of view for FFCA and hence multiple basic
definitions’ sets. This section introduces some basic notions and definitions of
FFCA [12,17]. In a fuzzy formal context k(G,M, I = ϕ(G × M)), I is a fuzzy
set on domain of G × M such that each relation (g,m) ∈ I has a membership
value μ(g,m) in [0, 1]. A confidence threshold is an interval of [α1, α2] where 0
≤ α1 ≤ α2 ≤1 and is applied to fuzzy context k(G,M, I) to eliminate relation
(g,m) if its membership value μ(g,m) is out of confidence threshold interval.

Definition 3. A fuzzy formal concept of a fuzzy context k(G,M, I) is a pair
(Af = ϕ(A), B) where A ⊆ G is a fuzzy concept extent, B ⊆ M is a fuzzy
concept intent and A ↑= B and B ↓= A. There are multiple definitions for A ↑
and B ↓. The first definition is given by (3) and (4) [11,18,19].

A ↑ :={b ∈ B | ∀a ∈ A : μI(a, b) ≥ μA(a)}. (3)

where A ↑ is the derivation of object set A and represents the concept intent.

B ↓ :={a/μA(a) |μA(a) = minb∈B(μI(a, b)}. (4)

where B ↓ is the derivation of attribute set B and represents the concept extent.
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Another definition that uses an α threshold is presented in [2,17]. This defi-
nition is given by (5) and (6).

A ↑ :={m ∈ M | ∀g ∈ A : α1 ≤ μI ≤ α2}. (5)

B ↓ :={g ∈ G | ∀m ∈ B : α1 ≤ μI(g,m) ≤ α2}. (6)

where A ↑=B represents the fuzzy concept intent and B ↓=A represents the
fuzzy concept extent.

4 Related Works

Generally, most algorithms related to fuzzy concepts’ extraction fall under one
of the following categories: crisply generated fuzzy concepts, fuzzy concepts with
fuzzy extents/crisp intents, fuzzy concepts with crisp extents/fuzzy intents and
fuzzy concepts with fuzzy extents/fuzzy intents. Most algorithms that generate
fuzzy concepts take the benefit of utilizing current existing FCA algorithms to
generate fuzzy concepts. These algorithms mainly transform the fuzzy context
into an isomorphic crisp one [23]. Such transformation process varies from one
approach to another. Some examples of the algorithms that follow this category
can be found in [6,12,20].

Commonly, it is noted that the count of crisply generated fuzzy concepts is
considerably less than the count of all fuzzy concepts (with fuzzy extents/fuzzy
intents). Although transforming fuzzy context into binary one allows to use
existing crisp algorithms, there is still an extra cost involved due to: (1) extra
processing for transforming the context to crisp one and the subsequent con-
cepts’ conversion to fuzzy ones as well as (2) expanding the context results in
increasing objects’ number and hence significant increase in computation [12].
The algorithm presented in [6] transforms fuzzy context to corresponding crisp
one by setting maximum membership value per linguistic variable to 1 and oth-
ers to 0. Then it uses any traditional algorithm to get whole crisp intents set.
Finally it fetches the corresponding fuzzy objects by getting intent↓ from the
original fuzzy context. Approach presented in [12] transforms the fuzzy context
into corresponding binary one by pair each object in fuzzy context with each non-
zero membership value μI(Oi, bj) and creates a new crisp object Oi/μI(Oi, bj).
Then it uses any traditional concept generation algorithm to generate all possi-
ble formal concepts. Finally, it converts the crisp objects back to fuzzy ones and
removes redundant objects by selecting the largest membership value.

Additionally, some other algorithms that generate fuzzy concepts with fuzzy
intents/fuzzy extents can be found in Bělohlàvek’s methods presented in [21,
22,24,25]. Bělohlàvek’s methods are based on the fact that the relation between
fuzzy subsets is strongly linked to the implication notion. In consequence, one
can formulate FFCA in terms of fuzzy algebras. In short, this approach describes
the complete lattice L as following: L = 〈L,∨,∧,⊗,→, 0, 1〉 where 〈L,∨,∧, 0, 1〉
is a complete lattice, 〈L,⊗, 1〉 is an abelian monoid, →,⊗ are operations that
form an adjoint pair (meaning, a⊗b ≤ c ⇔ a ≤ b∧c). The set of all fuzzy sets in
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universe X is denoted by LX where A : X → L is a mapping that assigns every
x ∈ X a truth value A(x)∈ L. In this approach, the number of generated fuzzy
concepts depends mainly on the number of distinct membership values produced
by the used implication function (Lukasiewicz/Gödel implications). Such kind
of algorithms perfectly generates all possible fuzzy concepts but it generates
inordinately large number of concepts so it consumes larger amount of time and
hence is of limited practical use. Consequently, recent algorithms are proposed
to reduce number of generated fuzzy concepts such as [3,4].

It can be noted that the algorithms designed to extract fuzzy concepts with
crisp intent/fuzzy extent or fuzzy intent/crisp extent, usually produce relatively
smaller number of fuzzy concepts in a reasonable time compared with full fuzzy
concepts. These algorithms mainly reduce the complexity. Yet, they suffer from
ignoring one fuzzy side of the concept (intent or extent). Some examples of such
algorithms are presented in [2,6,12].

5 The Proposed Algorithms to Extract Fuzzy Formal
Concepts

In this section, two algorithms are proposed to extract fuzzy formal concepts in
terms of fuzzy extents and crisp intents. Both algorithms take a raw input context
and a threshold interval as inputs and filter the input context with conditions on
the membership values while processing. Consequently, they don’t waste time
to convert the entire context to the filtered one as a separate process that has
complexity of O (N×M) where N and M are the counts of rows and columns
respectively. In both proposed algorithms, the set operations performed on the
extents are fuzzy set operations introduced by Zadeh [8] while the set operations
performed on intents are traditional set operations.

The first proposed Algorithm 1 computes the extent membership value of
each concept using the minimum function as described previously in (4). In
consequence, it extracts intents using (3). It is based mainly on the attribute
set and works more efficiently in case of existence of redundant attributes (more
symmetric correlated attributes), otherwise it becomes much closer to the recent
fuzzy CbO algorithm [12].
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Algorithm 1. Attribute set based fuzzy concept extraction algorithm
Input: A fuzzy formal context k:= (G, M, I =ϕ(G × M)) and a confidence
threshold T=[t1, t2].
Result: Set of fuzzy formal concepts C
initialize C←− φ;
for each attribute i ∈ I do

initialize Cnew ←− φ;
Get i′ // each element in i′ is a fuzzy extent(Ok, Minµ(Ok, i));
Set New ←− 0;
if i′ /∈ C.extent then

C ←− C ∪ ((i′, μi′), i
′′);

for j=0 to (C.size − New) do
Inters ←− cj .extent ∩ i′;
if Inters /∈ C.extent then

C ←− C ∪ (inters, inters′);
New++;

end

end

end

end
if M /∈ C.intents then

C←− C ∪ {M ′, M};
end
if G /∈ C.extents then

C←− C ∪ {G, G′}
end

On the other hand, the second proposed Algorithm 2 depends mainly on
distinct intents per objects. So, it works more efficiently in case of the counts
of distinct intents per objects are relatively small. Generally, the performed
experiments show that Algorithm 2 reaches a great reduction in complexity
when compared with some existing algorithms specially with large data sets. This
backs to its dependency on the unique set of extents with maximal set of intents
and ignorance of the subsets of intents with same extent set. Accordingly, despite
of ignoring some concepts, it extremely enhances the overall performance (a trade
off between precision and complexity). Consequently, the proposed Algorithm 2
reduces the total number of generated fuzzy concepts as a result of using (5) and
(6) with lower cost than that obtained in [2,17].
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Algorithm 2. Fuzzy concept extraction algorithm respecting the distinct
intents of the object set
Input: A fuzzy formal context k:= (G, M, I =ϕ(G × M)) and a confidence
threshold T=[t1, t2].
Result: Set of fuzzy formal concepts C
initialize C←− {M ′, M};
for each object g ∈ G do

Set NewPerObject ←− 0;
Get g′;
if g′ /∈ C.intent then

C ←− C ∪ ((g′′, μI), g
′);

NewPerObject + +;
for j=0 to (C.size − NewPerObject) do

Inters←− cj .Intent ∩ g′;
if Inters /∈ C.intent then

C ←− C ∪ ((Inters′, μI), Inters);
NewPerObject + +;

end

end

end

end
if G /∈ C.extents then

C←− C ∪ {G, G′}
end

6 Experiments and Evaluation

In this section, some experiments are conducted over a data set titled “countries
investment confidence marks” available in [26]. A transformed subset of this
dataset is also used in [6,20]. As a preparation phase, the original data set is
fuzziffied respecting a set of predefined linguistic terms. The original dataset has
43 countries (objects) and 15 confidence criteria (attributes). All 15 confidence
criteria take a value in the range [0, 4] such that 0 means less confidence mark
(maximum risk) and 4 means minimum risk. The fuzzification process of the
values of such attributes are done by applying three linguistic terms low, medium
and high using the membership functions illustrated in Fig. 1. These membership
functions are also used in [6]. Accordingly, the total count of attributes became
45 attributes as a result of the fuzzification process.

A snapshot of a subset of the original dataset (10 objects, 3 attributes) is
presented in Table 1. As noted, attribute symbols are used for simplification
such that: A, B and C denote political stability, general attitude towards the
investors, and nationalization respectively. The corresponding fuzziffied context
of the original dataset is presented in Table 2 using the linguistic terms defined
in Fig. 1.

The proposed algorithms have been compared with fuzzy CbO algorithm [12].
Table 3 shows the result of comparison between proposed Algorithm 2 and fuzzy
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Fig. 1. Membership functions of linguistic terms {low, medium and high} defined over
the linguistic variable marks

Table 1. Countries investment confidence marks

Country A B C

Canada 3.7 2.7 3.5

USA 3.7 3.8 4

Mexico 2.9 2.2 2

Argentinia 1.1 1.7 1.7

Brazil 2.8 2.8 2.6

Chile 0.3 0 0

Colombia 2 2 1.7

Peru 1.6 1.2 1.1

Venezuela 2.5 2.1 2.1

Table 2. Fuzzified countries investment confidence marks

Country Alow Amod Ahigh Blow Bmod Bhigh Clow Cmod Chigh

Canada 0 0 1 0 0.3 0.71 0 0 1

USA 0 0 1 0 0 1 0 0 1

Mexico 0 0.1 0.91 0 0.8 0.21 0 1 0

Argentinia 0.9 0.11 0 0.3 0.71 0 0.3 0.71 0

Brazil 0 0.21 0.8 0 0.21 0.8 0 0.41 0.6

Chile 1 0 0 1 0 0 1 0 0

Colombia 0 1 0 0 1 0 0.3 0.71 0

Peru 0.4 0.61 0 0.8 0.21 0 0.9 0.11 0

Venezuela 0 0.5 0.5 0 0.91 0.1 0 0.91 0.1

Australia 0 0 1 0 0.3 0.71 0 0 1
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Table 3. Comparison between proposed Algorithm 2 and fuzzy CbO respecting thresh-
old interval vs number of iterations

Threshold Fuzzy CbO Proposed Algorithm 2

[0, 1] 1,593,142 296,435

[0.3, 1] 227,114 69,913

[0.4, 1] 125,928 38,370

[0.5, 1] 71,573 26,056

[0.6, 1] 34,668 14,531

[0.7, 1] 17,357 9294

[0.8, 1] 10,161 6650

Table 4. Comparison between proposed Algorithm 1 and fuzzy CbO with regard to
attribute redundancy rate vs number of iterations

Attribute redundancy rate % Proposed Algorithm 1 Fuzzy CbO

0% 964 967

20% 967 1930

40% 970 2893

60% 973 3856

80% 976 4819

100% 979 5782

Table 5. Comparison between proposed Algorithm 2 and fuzzy CbO respecting thresh-
old interval vs number of iterations

Objects’ No. Fuzzy CbO Proposed Algorithm 1 Proposed Algorithm 2

10 10,241 8,446 239

20 57,796 52,739 2,876

30 132,382 125,954 16,204

43 227,072 227,069 69,913

CbO in terms of the number of performed iterations for different threshold inter-
vals. On the other hand, the proposed Algorithm 1 doesn’t show a big enhance-
ment over fuzzy CbO with respect to different threshold intervals. However, it
shows a big enhancement when tested over different percentages of attributes
redundancy (symmetric correlation). The results are illustrated in Table 4. Also
a test is performed with threshold interval [0.3, 1] on different object counts (10,
20, 30 and 43) and the test results are illustrated in Table 5 and shown in Figs. 2
and 3.

The experiments of the first proposed Algorithm 1 vs fuzzy CbO show that
the first algorithm works extremely better in case of existence of symmetric
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(a) No. of objects vs No. of iterations (b) Attribute redundancy rate vs No. of
iterations

Fig. 2. Experiments of fuzzy CbO vs proposed Algorithm 1

(a) No. of objects vs No. of iterations (b) Threshold vs No. of iterations

Fig. 3. Experiments of fuzzy CbO vs proposed Algorithm 2

correlated attributes. In contrary, it becomes more closer to fuzzy CbO when no
symmetric correlations exist between the dataset attributes. On the other hand,
the second proposed algorithm is more efficient than both of first proposed one
and fuzzy CbO. This is due to reducing the number of generated concepts such
that it only persists the largest unique intents and omits other subsets of this
largest intent with same extents (with tiny difference in membership values).

7 Conclusion

Generally, FFCA represents one important and challenging field of the data min-
ing research area. Many researches have been introduced to enhance such field.
Yet, there is still a need for more efficient approaches in order to enhance the
whole process output and accelerate related processes. Commonly, the process
of extracting fuzzy formal concepts is the most complex process in FFCA. In
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this paper, two proposed algorithms have been introduced to reduce the com-
plexity associated with this process. The first proposed algorithm generates the
same concepts as fuzzy CbO but with a reduction in complexity and hence the
execution time. It works better in case of the existence of symmetric correlated
attributes. On the other hand, the second proposed algorithm generates less
number of fuzzy concepts due to elimination of the very closed concepts extents.
It works more efficiently when the number of distinct intents of objects is rel-
atively smaller. It is not affected by any redundant object intent as it works
mainly on the distinct set of intents. The experiments show the added value of
the proposed algorithms.
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