
Optimize BpNN Using New Breeder Genetic
Algorithm

Maytham Alabbas1, Sardar Jaf2(&), and Abdul-Hussein M. Abdullah3

1 Department of Computer Science, College of CS and IT,
University of Basrah, Basrah, Iraq

ma@alumni.manchester.ac.uk
2 School of Engineering and Computing Sciences,

Durham University, Durham, UK
sardar.jaf@durham.ac.uk

3 Department of Computer Science, College of Science,
University of Basrah, Basrah, Iraq
abdo60_2004@yahoo.com

Abstract. In this paper, the ability of genetic algorithms in designing artificial
neural network (ANN) is investigated. The multi-layer network (MLN) is taken
into account as the ANN structure to be optimized. The idea presented here is to
use the genetic algorithms to yield contemporaneously the optimization of: (1) the
design of NN architecture in terms of number of hidden layers and of number of
neurons in each layer; and (2) the choice of the best parameters (learning rate,
momentum term, activation functions, and order of training patterns) for the
effective solution of the actual problem to be faced. The back-propagation
(BP) algorithm, which is one of the best-known training methods for ANNs, is
used. To verify the efficiency of the current scheme, a new version of the breeder
genetic algorithm (NBGA) is proposed and used for the automatic synthesis of
NN. Finally, several problems of the experiment were taken and the results show
that the back-propagation neural network (BpNN) classifier improved the current
scheme has higher accuracy of classification and greater gradient of convergence
than other classifiers, which have been proposed in the literature.

Keywords: Breeder genetic algorithm � Back-propagation network � Artificial
neural network � Multi-layer neural network

1 Introduction

The back-propagation (BP) algorithm, despite having proved useful in a number of
problems, still presents a certain range of difficulties as a network structure, conver-
gence, calculation time, and teaching method.

There is neither theoretical result nor even a satisfactory empirical rule suggesting
how a network should be dimensioned to solve a particular problem. Should the
network use one hidden layer or more? How many neurons should there be on the
hidden layer? What is the relationship between the number of training examples and the
number of classes to separate these examples into? What should be the overall size of
the network?

© Springer International Publishing AG 2017
A.E. Hassanien et al. (eds.), Proceedings of the International Conference
on Advanced Intelligent Systems and Informatics 2016, Advances in Intelligent
Systems and Computing 533, DOI 10.1007/978-3-319-48308-5_36



Several researchers used guesswork or trial and error to determine the number of
layers, number of neurons in each layer, and the connection neurons for a certain
problem. Also, many of the network parameters (learning factor, momentum factor…
etc.) were determined empirically. This approach needs a long time to obtain good
results, so genetic algorithms are used for solving these difficulties.

The rest of this paper is organized as follows: Sect. 2 will describe the breeder
genetic algorithm and a brief explanation of the neural network will be given in Sect. 3.
Section 4 explains the current scheme and in Sect. 5 results of our experiments are
compared with those obtained by other researchers’ results for the same problems
through computer simulations. Finally, Sect. 6 presents the conclusion of this paper.

2 Breeder Genetic Algorithm

The breeder genetic algorithm (BGA) was designed by Heinz Mühlenbein in Germany
at the beginning of the 1990s. It lies somehow in between the genetic algorithms
(GA) and evolution strategies (ESs), in the sense that they borrow from each of them
some basic ideas. The basic scheme for BGA is illustrated in Fig. 1 [1].

3 Back-Propagation Neural Network

Neural Networks (NNs) are algorithms for optimization and learning based loosely on
concepts inspired by researches conducted on the nature of the brain [2]. An NN is
simply a set of interconnected individual computation elements called neurons. In the

Procedure BGA;
Begin

t=0;
Initialize randomly P(t) with N individuals;
While (termination criterion not fulfilled) do

Evaluate goodness of each individual;
Save the best individual in the new population;
Select the best T% individuals;
For I= 1 to N-1 do

Select randomly two elements within the best T% in  P(t);
Recombine them so as to obtain one offspring;
Perform mutation on the offspring;
Insert it in P'(t);

End For;
P(t+1)=P'(t);
t=t+1;
Update variable for termination;

End while;
End;

Fig. 1. Breeder genetic algorithm (BGA).

374 M. Alabbas et al.



case of the multi-layer neural networks (MLNs), the neurons are arranged in a series of
layers. A layer is usually a group of neurons, each of which is connected to all neurons
in the adjacent layer [3].

The back-propagation neural network (BpNN) is MLN. During the learning phase;
input patterns are presented to the network in some sequence. Each training pattern is
propagated forward layer by layer until an output pattern is computed. The computed
output is then compared to the desired one and an error value is determined. The errors
are used as input to feedback connections from which the adjustment is made to the
synaptic weights layer by layer in a backward direction. The backward linkages are
used only for the learning phase, whereas the forward connections are used for both the
learning and the operational phases [4].

4 The Current Approach

The basic idea is to provide an automatic technique to define the most appropriate NN
structure for a given problem. The optimization of MLN, which must be trained to
solve a problem, is characterized by the need to determine: the architecture (the number
of hidden layers (NHL) and number of neurons (HNi) for each layer i), the activation
function (Lfi) to be used for each layer i, the momentum term (a), the initial temperature
(t0), the initial learning term (η0), the bias cell (b), and the order of training patterns that
are being presented during training (PatOrd). Choosing a suitable initial value for these
parameters is a fundamental decision faced by all NN’s users, but it is a problem.
Often, the choice of these parameters can have a significant impact on the effectiveness
of the NN. The choice needs to be tuned for efficiency.

New breeder genetic algorithm (NBGA) has been used to determine the appropriate
set of parameters listed above. NBGA is an updated version of BGA (see Fig. 2) which
is characterized by the following properties compared with BGA:

1. Its ability to determine the population size depending on the value of T, which
represents the best individuals which are selected.

2. It has an efficient selection method, which prevents the repetition of the selected
parents, and this implies to increase the diversity of the population.

3. It is capable of extending the population size by the Eq. 1. to move the best
k individuals to the next generation instead of the best individual only.

N ¼ TðT � 1Þ
2

þ k; 1� k� T ; ð1Þ

4. Its ability to manipulate chromosomes with different length, which ensures solving
different problems.

• Encoding

The NN is defined by “genetic encoding” in which the genotype is the encoding of
the different characteristics of MLN and the phenotype is the MLN itself.

Optimize BpNN Using New Breeder Genetic Algorithm 375



The NBGA considered the chromosome structure C = {G1,…,G8} as reported in
Fig. 3.

The loci are defined within the following subsets:
X12 {1, …, 4}
X22 (0, 1)
X32 {0 = without bias, 1 = with bias}
X42 {1, .., M}, where M: maximum number of neurons.
X52 {1 � f1, 2 � f2, 3 � f3, 4 � f4}, where:

Fig. 2. New breeder genetic algorithm (NBGA).

Fig. 3. The hierarchical chromosome representing an NN.

376 M. Alabbas et al.



Sigmoid function (f1):

f1ðxÞ ¼ 1
1þ e�kx

; k[ 0 ð2Þ

Tanh function (f2):

f2 xð Þ ¼ ebx � e�bx

ebx þ e�bx ð3Þ

Hyperbolic Tanh function (f3):

f3 xð Þ ¼ 1� e�bx

1þ e�bx
ð4Þ

Semi-linear function (f4):

f4 xð Þ ¼
1 if x[ 1
x if � 1� x� 1
�1 ifx\� 1

8
<

:
ð5Þ

X6 = the set {1, .., p} in permutation form, where p: number of training patterns.

• The fitness function

To evaluate the goodness of an individual, the network is trained with a fixed
number of patterns and then evaluated according to Eq. 6 to determine parameters. The
following function is used:

f ¼ k1Eþ k2
ep

epmx
þ k3

XNHL

i¼1

HNi

M
ð6Þ

Where,
E: (Mean Square Error) the error result from BpNN,
ep: current epoch,
epmx: maximum epochs,
NHL: number of hidden layers,
HNi: number of neurons in hidden layer i,
M: maximum neuron,
k1, k2, k3 2 (0, 1) and k1 + k2 + k3 = 1.

• Crossover

The uniform crossover (UX) [5] is used on the genes (NHL, a, η0, t0) because of its
ability to yield an offspring more different from his parents and this implies to popu-
lation variety. Depending on the value of NHL, which is inherited from the offspring,
the UX used for NH and Lf genes in the case where NHL of parents is different. There
are two cases, as shown in Fig. 4.

Optimize BpNN Using New Breeder Genetic Algorithm 377



For the last part (PatOrd), multi-cycle crossover (MCX) is used because of its
capability to prevent the repetition of a certain value for more than one gene. MCX is
an updated version of cycle crossover (CX) [6] that builds offspring from ordered
individuals by identifying cycles between two parents. To form the offspring, the cycles
are copied from the respective parents. The basic scheme for MCX is explained in
Fig. 5.

A chromosome structure (genotype) for instance can look like the chromosome in
Fig. 6.

• Mutation

A certain value is added (or deleted) from the genes (a, η0, t0) in certain probability
in order to keep their values in the range (0, 1). If one of these values exceeds the range,
the operations repeated until it becomes at the proper value. In addition, the mutation

Fig. 4. UX for different chromosome length.

Procedure MCX(P1,P2);
Begin

i=1;
j=2;

C1 & C2 are empty chromosomes
While (child chromosome has empty position) do

x=random position from empty positions in the child
While (C1(x) is empty) do

C1(x) = Pi(x)
C2(x) = Pj(x)
x = the position of the gene Pj(x) in Pi(x)

End while;
Swap(i,j)

End while;
Return C1&C2;

Fig. 5. Multi-cycle crossover (MCX).

378 M. Alabbas et al.



operator 1 m [5] is used for the genes (Lf, HN) because each of (Lf, HN) has minimum
and maximum value. For the part (PatOrd), the mutation operator 2 m [5] is used to
prevent presenting training pattern more than once to the network. The gene (NHL) is
left unchanged, because any change on this gene will change the value of Lf and HN.

5 Results

In order to check the effectiveness of the current technique, the following problems
were chosen because they allow us to compare our results with the previously pub-
lished results. The tables below show the strength of the current scheme compared with
the previous works. The following parameters were selected for each test:

• Maximum number of hidden neurons (M) = 5,
• Number of maximum learning trails (epmx) = 500,
• Number of genetic trails = 2000,
• Accepted error = 0.025,
• A number of best chromosomes move to the new population (k) = 1.

5.1 Artificial Problem

• Bit parity Problem

Input cell = 6, output cell = 1, T = 7, number of patterns = 64. The result is shown
in Table 1.

PatOrdLf3Lf2Lf1HN2HN1bt0η0αNHL
41321314400.70.90.52

Fig. 6. A chromosome structure (genotype) for the current technique.

Table 1. The result of the current scheme compared with other works for 6 bit-Parity problem

Method Purpose Pop. size No. of Gen.
Trails

Structure (#
connections)

No. of
Learning Trail

Error

Yu [7] Train Not
Reported

Not
Reported

6-8-5-1 (49) 4000 0.075

Najim [8] Design 100 300 6-7-1 (39) 4000 0.526
Al-Fadhly
[9]

Design 25 215 6-7-1 (49) 319 0.053

Current
Scheme

Train
Design

22 250 6-6-1 (49) 1823 0.023

Optimize BpNN Using New Breeder Genetic Algorithm 379



The parameters are: a = 0.6, η0 = 0.429, t0 = 0.29, b = 1. Activation function:
Tanh, Sigmoid. Pattern order: 1, 2, 3, 55, 51, 26, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
6, 32, 20, 21, 22, 23, 24, 25, 18, 27, 38, 29, 30, 31, 19, 48, 34, 35, 36, 37, 28, 39, 40,
45, 42, 43, 44, 41, 46, 47, 33, 49, 50, 5, 52, 53, 58, 4, 56, 57, 54, 59, 61, 62, 63, 64.

5.2 Realistic Problem

The artificial problem presented in Sect. 5.1 is not large enough to challenge the
effectiveness of the current scheme. A number of realistic problems that consist of a
real world data are used for this purpose in this section. The results of two of these
problems are stated below.

• Breast Cancer

Diagnosis of breast cancer: try to classify a tumor as either benign or malignant
based on cell descriptions gathered by microscope examination. Input attributes are for
instance the clump thickness, the uniformity of cell size and cell shape, the amount of
marginal adhesion, and the frequency of bare nuclei.1

Input cell = 9, output cell = 2, T = 10, number of patterns = 350. The result is
illustrated in Table 2.

• Iris Plants

This problem is a common benchmark problem in pattern recognition and classi-
fication studies. This dataset contains 150 instances of four attributes (sepal length,
sepal width, pental length, pental width) from each of three classes (setosa, versicolor,
virinica). The first class is separated from others clearly, while the other two classes
overlap slightly. This dataset is publically available from the UCI Repository of
Machine Learning Databases and Domain Theories.2

Table 2. The result of the current scheme compared with other works for Breast Cancer
problem.

Method Training
set

Testing
set

Structure Learning
percentage

Generalization
percentage

Prechelt [10] 350 349 9-4-2-2 Not Reported 94.25 %
Engelbrecht
[11]

450 170 9-8-2 97.6 % 95.7 %

Khaudeyer
[12]

250 433 9-18-2 100 % 96.3 %

Current
Scheme

350 349 9-6-2 100 % 96 %

1 This dataset is publically available at ftp://ftp.ira.uka.de/pub/neuron/proben1.tar.gz.
2 This dataset is publically available at http://ftp.ics.uci.edu/pub/machine-learning-databases/iris/.

380 M. Alabbas et al.

ftp://ftp.ira.uka.de/pub/neuron/proben1.tar.gz
http://ftp.ics.uci.edu/pub/machine-learning-databases/iris/


Input cell = 4, output cell = 3, T = 10, number of patterns = 150 (50 instances in
each of three classes). The result is shown in Table 3.

As it can be seen from the tables above, the current scheme results have been
compared with the results of other methods in the literature that provided to solve the
same problems. These results show that the current scheme is very efficient and takes
less time to solve the problems.

6 Conclusions and Future Work

In this paper, a new improved version of breeder genetic algorithm (BGA), which is
called new breeder genetic algorithm (NBGA), was introduced. NBGA was used in
designing MLN network to yield contemporaneously the optimization of the design of
a neural network architecture in terms of the number of hidden layers and number of
neurons in each layer, and the choice of the best parameters (learning rate, momentum
term, activation functions order of training patterns, and the order of training patterns)
for the effective solution of the actual problem to be addressed. The BpNN algorithm
was used as a classifier. NBGA added new useful characteristics to BGA to increase the
diversity of the population and manipulate the chromosomes with different length,
which ensures solving different problems.

The current scheme was tested and the results were compared with previously
published results on solving the same problems. The experimental results presented in
this paper have demonstrated the effectiveness of NBGA for BpNN optimization. They
have also proved the strength of NBGA in terms of solution quality and speed of
conversion.

Based on the findings in this work, two further research tasks have been identified:
(i) GA-based ANN model, construction and optimization, is computation intensive and
could take quite a long time to process. In order to improve the performance of the
presented scheme in terms of execution efficiency, we will work on a low-cost
general-purpose graphics-processing unit (GPGPU), specifically, the NVIDIA graphics
card, to adopt the ANN model training and validation; and (ii) integrate the artificial
bee colony (ABC) algorithm [15] with NBGA algorithm. First, the ABC will be
applied to derive an optimal set of initial weights from enhancing the accuracy of
ANNs. Then, these weights will be used as the starting points for the NBGA evolution
procedure.

Table 3. The result of the current scheme compared with other works for Iris Plants problem.

Method Training
set

Testing
set

Structure Learning
percentage

Generalization
percentage

Swain [13] 75 75 4-3-1 Not Reported 96.66 %
Weihong
[14]

90 60 4-25-3 100 % 96.67 %

Current
Scheme

75 75 4-7-3 100 % 97.1 %

Optimize BpNN Using New Breeder Genetic Algorithm 381



References

1. Stoica, F., Boitor, C.: Using the breeder genetic algorithm to optimize a multiple regression
analysis model used in prediction of the mesiodistal width of unerupted teeth. Int. J. Comput.
Commun. Control 9, 62–70 (2014)

2. Heaton, J.: Deep Learning and Neural Networks. CreateSpace Independent Publishing
Platform (2015)

3. Souza, A., Soares, F.: Neural Network Programming with Java. Packt Publishing Ltd. (2016)
4. Rashid, T.: Make Your Own Neural Network. CreateSpace Independent Publishing Platform

(2016)
5. Jacobson, L., Kanber, B.: Genetic Algorithms in Java Basics. Springer, New York (2015)
6. Simon, D.: Evolutionary Optimization Algorithms. Wiley, Berlin (2013)
7. Yu, X.-H., Chen, G.-A.: Efficient backpropagation learning using optimal learning rate and

momentum. Neural Netw. 10, 517–527 (1997)
8. Najim, S., Al-Sharibini, M.: Enhancement neural networks design by general genetic

algorithm. Basrah J. Sci. 1, 46–54 (2003)
9. Al-Fadhly, A.: A study of a neuro-genetic system performance. Department of Computer

Science, Ph.D. thesis, University of Basrah (2004)
10. Prechelt, L.: Proben1: a set of neural network benchmark problems and benchmarking rules

(1994)
11. Engelbrecht, A., Cloete, I.: Selective learning using sensitivity analysis. In: The 1998 IEEE

International Joint Conference on Neural Networks, Proceedings of the 1998 IEEE World
Congress on Computational Intelligence, Anchorage, Alaska, USA, vol. 2, pp. 1150–1155.
IEEE (1998)

12. Khaudeyer, R.: Hybrid approaches: neuro-fuzzy and geno-neuro-fuzzy hybrid system for
solving some classification and functions approximation problems. Department of Computer
Science, Ph.D. thesis, University of Basrah (2003)

13. Swain, M., Kumar Dash, S., Dash, S., Mohapatra, A.: An approach for IRIS plant
classification using neural network. Int. J. Soft Comput. (IJSC) 3, 79–89 (2012)

14. Weihong, Z., Shunqing, X.: Optimization of BP neural network classifier using genetic
algorithm. Intell. Comput. Evol. Comput. AISC 180, 599–605 (2013)

15. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial
bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42, 21–57 (2014)

382 M. Alabbas et al.


	Optimize BpNN Using New Breeder Genetic Algorithm
	Abstract
	1 Introduction
	2 Breeder Genetic Algorithm
	3 Back-Propagation Neural Network
	4 The Current Approach
	5 Results
	5.1 Artificial Problem
	5.2 Realistic Problem

	6 Conclusions and Future Work
	References


