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Abstract. In this article, we develop a direct adaptive control scheme
based on Dynamic Recurrent Neural Network (DRNN) for a process
control benchmark. The DRNN is represented in a general nonlinear
state space form for producing the control action that force the system
output to a desired trajectory. The control algorithm can be implemented
without a priori knowledge of the controlled system. Indeed, the weights
of the DRNN controller are adjusted on-line using the truncated Back
Propagation Through Time (BPTT) method. Unlike the approaches in
the literature, the learning signal of the network weights is generated by
a control error estimator stage in the developed controller. Finally, the
developed controller is applied to a laboratory flow control system with
two experimental scenarios.
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1 Introduction

During the past decades, Neural Networks (NNs) have been become attractive
paradigms in the modeling and control of nonlinear processes. In literature, the
structure of NNs is classified as feed forward and recurrent. The feed forward
structure uses static discrete-time models that capture the dynamics of the real
process through the use of tapped-delay lines in the model inputs and outputs.
The feed forward neural networks have been developed in the direct inverse
control [1,2], the internal model-based control(IMC) [3–5] and predictive con-
trol [6–11]. They have introduced improved modeling performance than linear
models and as a result they are able to achieve better control performance of non-
linear systems. However, the feed forward neural networks suffer from number
of drawbacks. In the identification of complex dynamic systems, the feed for-
ward networks are unable to identify time dependent nonlinear dynamics with

c© Springer International Publishing AG 2017
A.E. Hassanien et al. (eds.), Proceedings of the International Conference
on Advanced Intelligent Systems and Informatics 2016, Advances in Intelligent
Systems and Computing 533, DOI 10.1007/978-3-319-48308-5 27



278 M.A. Hussien et al.

high accuracy [12]. Besides, these networks suffer from large number of neurons,
number of required delays and the weight updates do not use the internal neural
network information.

To address these issues, the second structure of NNs, the dynamic recurrent
NNs (DRNNs) have been introduced for the identification and control of non-
linear systems such as [13–17]. The advantage of the dynamic recurrent neural
networks (DNN) is threefold with respect to static networks [18]. First, the
DRNN has self-loops and backward connections to memorize past information,
hence it can capture the dynamic of the system. Second, the number of the
network parameters is considerably lower. It is only necessary to identify the
dimension of the state space, since the number of inputs and outputs is specified
by their counterparts in the real process. Third, they can be represented in the
state-space form, which is more suitable to most control schemes [19].

Motivated by the aforementioned review, this work develops a direct adap-
tive control scheme using the dynamic recurrent neural network for a practical
system. In this scheme, DRNN is designed to represent the control action the
make the system output to track a desired action. The network structure is
implemented without any information about the controlled system. In the on-
line stage, the network parameters are adjusted by using the truncated BPTT
algorithm. Likewise to [20], a control error estimator is introduced to the control
algorithm to estimate the learning error needed for the DRNN weights adapta-
tion. The bounded input bounded output stability of the DRNN controller is
discussed. Finally, the control algorithm is applied in the control of a process
control laboratory system which is a real-life installation. In the real process, the
problem of control is much more harder to achieve in the presence of noise and
disturbances. The obtained results of the process control system depicted that
the DRNN controller can be apply to the real life system with acceptable perfor-
mance despite the external disturbance. Moreover, as the process works in the
real-time, the computation complexity is also an important issue, because there
are hard time constraints imposed on the control algorithm. The work shows
that software implementation of the developed control method is possible, and
the methods can be practically used in real industrial process with the sampling
time equal to 0.22 s.

The rest of the paper is structured as follows. In Sect. 2, the description
of the DRNN in the state space form is briefly provided. Section 3 develops
the proposed direct adaptive control scheme based on the DRNN model. The
benchmark system description and the control results are given in Sect. 4. Finally,
Sect. 5 provides a concluding summary of this work.

2 Dynamic Recurrent Neural Network

In this section, we describe the structure of the DRNN which is investigated as
a direct controller in this article. Let’s consider a fully recurrent neural network
with n neurons and m inputs as depicted in Fig. 1. Define y(k) ∈ �, x(k) =
[x1(k), x2(k), .., xn(k)]T ∈ �n and u(k) = [u1(k), u2(k), ..., um(k)]T ∈ �m the
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Fig. 1. The DRNN structure (where Z−1 denotes to the back shift operator)

network output, the hidden neuron outputs, and the external inputs at time step
k respectively; wx ∈ �n×n is the matrix of the weights of the feedback connection
of the hidden neurons; wu ∈ �n×m is the matrix of the weight connections
between the external input and the hidden neurons. The equation of the DRNN
model at time step k in the form of the state space equations is described by:

x(k) = F (wxx(k − 1) + wuu(k))

y(k) = CT x(k) (1)

where F (.) stands for the vector valued activation function of the hidden neu-
rons and C ∈ �n is the vector of the output connection weights. Typically, the
hyperbolic tangent activation function is selected giving well modeling results.
In this work, the output weight vector is given as C = [1, 0, ..., 0]T .

In control system applications, the NNs can be used in the controllers in
either indirect or direct control schemes. In the former scheme, NN is designed
to model the system dynamics. In such a way, the neural network model can
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be implicitly used to compute the control action that satisfies the controller’s
design specifications. In the direct scheme, NN is employed to produce the control
action that force the system states to its target states. In the following section,
a proposed direct adaptive control scheme based on the DRNN will be given.

3 Direct Adaptive Control Scheme Based on DRNN

Consider a single-input single output discrete system defined by:

yp(k) = f(yp(k − 1), yp(k − 2), ..., yp(k − n), u(k), u(k − 1), ..., u(k − m)) (2)

where u, yp denote to the input and the output, respectively, k is the discrete
time index, n,m > 0, and f :∈ �n+m → �. The main objective of this work is to
design a direct adaptive DRNN controller such that the plant output described
in Eq. (2) tracks a specified reference output yd such that the function f(.) is
unknown. Consider a DRNN can be designed to produce the control action u(k)
such that the system output yp match a desired output yd. The internal network
states x(k) and the output are:

x(k) = Fu(wxx(k − 1) + weE(k))
u(k) = x1(k) (3)

where e(k) = yd(k) − yp(k) is the tracking error, E(k) = [e(k), e(k − 1), ..., e(k −
m)]T , x(k) = [x1(k), x2(k), ..., xn(k)]T , and Fu is the vector of a symmetric tanch
activation function of the DRNN controller.

3.1 Weights Update

In this subsection, we present the adaptation law of the DRNN controller weights
in the proposed scheme. The learning law of the DRNN network weights wx

and we is derived through the minimization of a suitable cost function. Despite
the training of the static neural networks, the cost function for training the
DRNN is a time varying error. The back-propagation through time (BPTT)
algorithm is the basic method for the dynamic recurrent neural networks learning
[18,21]. In fact, the stander algorithm of the BPTT is more theoretical than
practical interest because it makes use of potentially unbounded history storage.
Therefore, more practical extension methods to the BPTT have been developed
such as the truncated BPTT methods for the on-line training phase [18]. Define
the following error for the DRNN controller:

eu(k) = ud(k) − u(k) (4)

where ud(k) is the desired control action the make the system output yp(k)
to track a desired signal yd(k). Then, the cost function of the DRNN can be
given by:

Eu(k) =
1
2
e2u(k) (5)



DRNN Based Direct Adaptive Control 281

In order to describe the details of the on-line training of the DNNN controller
using the truncated BPTT method, merge E(k) and x(k) to form a vector Z(k) ∈
�n+m as Z(k) = [e(k), e(k − 1), ..., e(k − m), x1(k), x2(k), ..., xn(k)]T . Also, all
the weights of the network we and wx can be collected into a single matrix
W ∈ �n×(n+m). Thus, for l = 1, 2, ..., n and i = 1, 2, ..., n + m, the network
equations becomes:

Sl(k) =
n+m∑

i=1

wlizi(k)

xl(k) = fu(Sl(k))
u(k) = x1(k) (6)

where wli represents the connection weight to the lth state unit (i.e., xl(k)) from
the ith unit of of the input (i.e., zi(k)), and fu(.) is the tanch function. The
learning law of the network weights W can be derived through the minimization
of the cost function defined in (5) using the truncated BPTT method. Then, the
on-line updating rule of any particular weight wli of the DRNN controller can
be calculated by

Δwli = −η

t∑

k−h+1

∂Eu(k)
∂wli(t)

(7)

where η is the learning rate, h is the past history considered in the calculation
and must be fixed and chosen longer for better. We can calculate the term ∂Eu(k)

∂wli(t)
as:

∂Eu(k)
∂wli(t)

=
∂Eu(k)
∂Sl(t)

∂Sl(k)
∂wli(t)

=
∂Eu(k)
∂Sl(t)

zi(t − 1) (8)

where
∂Eu(k)
∂Sl(t)

=
∂Eu(k)
∂xl(t)

f́u(Sl(t)) (9)

and
∂Eu(k)
∂xl(t)

=

{
−eu(t) if t = k,∑n

j=1
∂Eu(k)
∂Sl(t)

wli if t < k.
(10)

Define δl(t) as

δl(t) =

{
−eu(t)f́u(Sl(t)) if t = k,

f́u(Sl(t))
∑n

i=1 δl(t + 1)wli if t < k.
(11)

Finally, the on line adaptation rule for the DRNN controller is

wli(new) = wli(old) + η

t∑

k−h+1

δl(t)zi(t) (12)

Due to the desired control action ud(k) is not available, the learning error defined
in (4) cannot be obtained. Then, an estimated control error expressed by êu can
be introduced in the adaptive law of the DRNN controller (11) and (12) as in
the following subsection.
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3.2 Learning Error Estimator

In [20], a simple method was proposed to estimate the learning error êu such
that it can be estimated directly as:

êu(k) = kee(k) + kcΔe(k) (13)

where e(k) = yd(k) − yp(k) is the tracking error, Δe(k) is the change of this
error, ke and kc are positive small values. Finally we can write:

êu(k) = Geu(k) (14)

where G is a positive scaling factor that will be included in the learning rate η.
Consequently, the adaptive laws (11) and (12) of the controller’s weights can be
rewritten as:

δl(t) =

{
−êu(t)f́u(Sl(t)) if t = k,

f́u(Sl(t))
∑n

i=1 δl(t + 1)wli if t < k.
(15)

wli(new) = wli(old) + η
t∑

k−h+1

δl(t)zi(t) (16)

3.3 Convergence Analysis

Here, we discuss the bounded input bounded output (BIBO) stability of the
DRNN controller. To investigate the BIBO stability of the DRNN controller,
consider the network states has the following linear form:

x(k) = wxx(k − 1) + weE(k) (17)

Let λmax as the largest absolute eigenvalue of wx and according to the linear
system theory, if |λmax| < 1, the linear system defined in (17) will be bounded.
For different eigen values of wx, the linear system (17) has different transient
properties. Thus, for the DRNN defined in (3) with the tanch activation function,
we have

‖tanch(wxx(k − 1) + weE(k))‖ ≤ ‖wxx(k − 1) + weE(k)‖ (18)

Therefore, the DRNN defined in (17) with the tanch activation function and the
condition that the largest absolute eigenvalue of wx is smaller than 1, we can
say that the DRNN output is bounded for all inputs.

To summarize, Fig. 2 describes the overall diagram of the proposed direct
adaptive control scheme based on the DRNN.
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4 Experimental Results

4.1 Benchmark System

The considered benchmark system is the Process Control System (PCS) devel-
oped at Research Laboratory in Industrial Electronics and Control Engineering
Department, Faculty of Electronic Engineering, Menoufia University, Egypt. The
system consists of two water tanks and one pump as illustrated in Fig. 3. In turn,
the PCS configuration diagram is shown in Fig. 4. The pump allows to move the
water from the lower tank to the upper one through the valve V1 or from the
lower tank to itself through the valve V2. Under the influence of gravity, the
water is automatically transfered from the upper tank to the lower one through
V3 to ensure a water supply. In the upper tank, an ultrasonic sensor is installed
to measure the water level. A pressure sensor is used to measure the pressure
in the pipes. There is also a flow sensor to measure the water flow after pump.
Different water loops can be implemented by a set of different types of valves
(solenoid and proportional ones). Moreover, a heater installed in the lower tank
and a temperature sensor to measure the temperature when water circulates
through the pipes. The specifications of the process parts are shown in Table 1.

Fig. 2. The proposed control structure
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Fig. 3. The laboratory installation actual view

Fig. 4. PCS configuration diagram

4.2 Control Results

The benchmark system allows for many different configurations. It can be con-
figured as different simple of SISO (Single Input Single Output) systems based
on the variable to be controlled. In this work, the flow control is selected where
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Table 1. The specifications of the process components

The component Specifications

Pump Pressure 2.8 bar : Flow 12 L/min

Flow sensor Flow range : [2 16] L/min

Pressure sensor Pressure range : [0 10] bar

Ultrasonic sensor Sensing range : [60 300] mm

Solenoid valves (V1,V2,V3) Operating pressure range is 7 bar

Proportional valve Operating : [0 8] bar
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Fig. 5. The flow rate of the PCS using the proposed direct adaptive control scheme
(experimental task 1)

the flow sensor signal is the input of the control system and the control effort
is applied to the motor pump. When the pump is running, it realizes two tasks,
speeding up the flow of water to the upper tank and also makes the water cir-
culation in the outer loop. Herein, the controller aims to maintain a constant
flow of water from the lower tank to the upper tank regardless of the water
amount in the tanks. In the closed loop system, the process control system is
interfaced with a personal computer (PC) through a data acquisition card (NI-
CDAQ-9171) which receives the input values (0 to 9V) from the computer and
transmits it to the system with sampling period of 0.22 s. An amplifier is used
to convert the sampled-input signal from the data acquisition card to variable
DC voltage from 0 to 24 V and fed it to the motor pump. Thus, PC (Processor
Intel core i3, CPU 3.06 GHz, Ram 2.00 GB, operating System 32 bit Windows 7)
that runs Lab view program code is adopted as the controller. During the exper-
iments, the valves V1 and V3 were permanently opened to continuously create
connection between the two tanks, and the valve V2 was permanently closed.
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Fig. 6. Change of the control signal applied to the amplifier of the motor pump (exper-
imental task 1)

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

Samples

F
lo

w
 R

at
e 

(L
it

er
/m

in
)

Fig. 7. The flow rate of the PCS using the proposed direct adaptive control scheme
(experimental task 2)

Table 2. Comparison of RMSE index for the proposed controller, conventional PI and
fuzzy PI controllers

Controller Experimental task (1) Experimental
task (2)

The proposed adaptive DRNN controller 0.2649 0.2652

PI controller 0.6288 0.5490

Fuzzy PI controller 0.3085 0.2738
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Fig. 8. Change of the control signal applied to the amplifier of the motor pump (exper-
imental task 2)

In order to apply the proposed direct control scheme to the flow control sys-
tem, several parameters should be selected priori such as the network parameter
structure (i.e., n and m), the initial values of the network weights (i.e., we and
wx), and the parameters of the control error estimator parameters (i.e., Ke and
Kc). In this study, we have employed DRNN controller with n = 3, and m = 1.
When we have increased both n and m values, no further improvements in the
control performance have been observed. Actually, the initial values of DRNN
controller weights are of no importance as they are tuned on line and they even-
tually converge to their suitable values. Thus, we and wx were initialized at
small random values. Also, the two parameters ke and kc were selected as small
positive values to avoid the output oscillation and overshoots (i.e., ke = 0.5 and
kc = 0.35).

Two experimental tasks were achieved to investigate the performance of the
developed controller. In the first one, we have investigated the controller perfor-
mance with the set point changes which was assumed as:

yd(k) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3 if k < 100,

5 if 100 ≤< k < 200,

6 if 200 ≤< k < 300,

5 if 300 ≤< k < 400,

3 if k ≥< 400.

(19)

where k is the sampling instant. Figure 5 illustrates the change of flow rate
according to the desired flow defined in (19). The obtained result of the pro-
posed controller showed that it can achieve acceptable tracking performance with
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set-point changes. Moreover, the control effort applied to the amplifier of the
motor pump is smooth as depicted in Fig. 6.

During the last experiment, the controller performance was tested when the
flow process control system was corrupted by external disturbance. An external
disturbance, 30% of the set-point, was added to the system and the set point was
set to 4 liter/min. Figures 7 and 8 show the obtained flow rate and the control
signal for the second experimental task, respectively. Despite the presence of the
external disturbance, the results of this task ensure that the controller algorithm
can follow the set-point accurately with a very small steady state error and
smooth control effort.

Moreover, the performance of the proposed DRNN adaptive controller can
be verified using the following Root Mean Squared Error (RMSE) performance
index:

RMSE

√√√√ 1
N

k=N∑

k=1

(yd(k) − yp(k))2 (20)

where N is the number of samples, yd and yp are the desired and the actual flow
rate, respectively. For the comparison reason, a conventional PI and a fuzzy PI
controllers are tested in the same platform for the two experimental tasks. Table 2
provides comparative results of the proposed controller and both PI and fuzzy
PI controllers. These comparative results reavel that the overall performance of
the proposed DRNN controller for the two experimental scenarios is better to
the classical PI and the fuzzy PI controllers. The aforementioned experimental
results show that the efficancy of the direct adaptive DRNN controller method
in controlling a real time application.

5 Conclusion

In this paper, a direct adaptive control using a dynamic recurrent neural network
for a real time application is developed. The developed control scheme design
has the following features: (1) The configuration parameters of the DRNN con-
troller used in the controller method is considerably lower. Thus, the proposed
scheme is more suitable for real time implementation. (2) The DRNN controller
is implemented without a priori knowledge of the controlled and the off line train-
ing of the network is not required. The experimental results illustrated that the
developed DRNN controller method can perform good tracking. Furthermore, a
successful control and a desired performance can be obtained in the presence of
external disturbances.
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