
Content Based Image Retrieval with Hadoop

Heba Gaber(&), Mohammed Marey, Safaa E. Amin,
and Mohamed F. Tolba

Computer and Information Sciences, Ain Shams University, Cairo, Egypt
eng.heba.gaber@gmail.com, mohammedmarey@hotmail.com,

safaa_amin007@htomail.com, fahmytolba@gmail.com

Abstract. Hadoop has become a widely used open source framework for large
scale data processing. MapReduce is the core component of Hadoop. It is this
programming paradigm that allows for massive scalability across hundreds or
thousands of servers in a Hadoop cluster. It allows processing of extremely large
video files or image files on data nodes. This can be used for implementing
Content Based Image Retrieval (CBIR) algorithms on Hadoop to compare and
match query images to the previously stored terabytes of an image descriptors
databases. This work presents the implementation for one of the well-known
CBIR algorithms called Scale Invariant Feature Transformation (SIFT) for
image features extraction and matching using Hadoop platform. It gives focus
on utilizing the parallelization capabilities of Hadoop MapReduce to enhance
the CBIR performance and decrease data input\output operations through
leveraging Partitioners and Combiners. Additionally, image processing and
computer vision tools such as Hadoop Image Processing (HIPI) and Open
Computer Vision (OpenCV) are integration is shown.

Keywords: Hadoop � HIPI � OpenCV � Big data � Crowd sourcing �
MapReduce � Combiners � Partitioners

1 Introduction

CBIR Systems are used for searching and retrieving query images from large databases
based on the image content, which is derived from images themselves by using computer
vision techniques. SIFT is one of the most important CBIR techniques that depends on
extracting distinctive invariant features from images that can be used to perform reliable
matching between different views of an object or scene. For large scale images or large
numbers of images stored in the database, SIFT feature extraction is a computationally
intensive problem, as it takes a long time to extract and match them to the extracted SIFT
features. Therefore, there exists a need for an efficient platform to handle image
descriptor features extraction and processing that may reach Terabytes of data in size.

In this work Hadoop is used as a reliable, scalable, distributed computing platform.
It is an open source project from the Apache Software Foundation [14, 15] and its core
consists of MapReduce programming model implementation. Hadoop enables the
execution of applications on thousands of nodes and petabytes of unstructured or
semi-structured data which have been impossible to process efficiently (cost and time)
so far.

© Springer International Publishing AG 2017
A.E. Hassanien et al. (eds.), Proceedings of the International Conference
on Advanced Intelligent Systems and Informatics 2016, Advances in Intelligent
Systems and Computing 533, DOI 10.1007/978-3-319-48308-5_25



This paper presents the implementation of the SIFT descriptor extraction and
matching using Hadoop MapReduce, integrated with HIPI and OpenCV libraries for
SIFT features extraction and matching. Moreover, we show how to enhance the
matching performance by leveraging parallelization mechanisms for MapReduce Par-
titioners and Combiners.

The paper is organized as follows: Sect. 2 discusses the related work, Sect. 3
presents CBIR with SIFT algorithm, Sect. 4 presents Hadoop MapReduce, Combiners
and Partitioners. Section 5 discusses the integration of HIPI and OpenCV computer
vision libraries utilized in the proposed system. Section 6 explains implementing CBIR
with SIFT for image processing on Hadoop and how to enhance its performance,
Sect. 7 concludes the presented work and shows our future research direction.

2 Related Work

Recently, using Hadoop for image processing has been receiving attention, there exists
some recent implementations for many domains like biomedical, social media, surveil-
lance, satellite and geographical images processing applications summarized in Table 1.

In [1] a machine learning tool “HaarFilter” is implemented detecting human faces
by using the Haar Cascading technique. It was implemented using HIPI and OpenCV
on Hadoop platform. Compressing social media images where HIPI is used as image
processing tool as shown in [2]. Providing image processing as a service published to
the public and implemented on Hadoop platform using integration for OpenCV library
is presented in [3]. In [4] feature extraction using Hadoop and SIFT is shown.

Image processing with Hadoop for health care in India using HIPI that allows is
presented in [5]. Using HIPI and Avro for processing surveillance images is shown in
[6]. In [7], analyzing terabytes of microscopic medical images on Hadoop using
Tera-soft library is demonstrated. Processing satellite and geospatial huge images
databases on Hadoop is shown in [8, 9].

Table 1. Image processing with Hadoop platform

Ref Tools Application

[1] OpenCV,
HIPI

Machine learning for face detection using Hadoop

[2] HIPI Compress social media images
[3] OpenCV Provide image processing tools as a service
[4] Custom

Development
Feature extraction (target tracking, traffic management and accident
discovery) using Hadoop and SIFT

[5] HIPI Image processing with Hadoop for application of heath care
applications in India

[6] HIPI, Avro HIPI and Avro for processing surveillance images
[7] Tera-soft Analyzing terabytes of microscopic medical images
[8] Custom Satellite image processing
[9] Custom Processing 100 M Geographical images on Hadoop Geographical files

processing

258 H. Gaber et al.



3 CBIR with SIFT

CBIR with SIFT can be implemented as illustrated in Fig. 1 using four main com-
ponents (1) Image collection, (2) Image features extraction, which mainly affects the
quality of searching, (3) Features Indexing and (4) Searching using Query images,
which mainly affects the efficiency.

SIFT algorithm can be implemented effectively for content based image retrieval
based on Region of Interest (ROI). The SIFT feature is invariant to rotation, image
scaling and transformation and partially invariant to illumination changes and affine
transformation. The main advantage of using SIFT is that it describes the same features
on different spatial scales.

SIFT is based on convolving an image with a Gaussian kernel for several values of
the variance r and then taking the difference between adjacent convolved images. If
Dðx; y; rÞ denotes such differences, then the method is based on finding the extrema of
this function with respect to all the three variables. Such maxima are candidates for key
points that, after additional analysis, are used to characterize objects in an image. SIFT
calculate result descriptor is shown in Fig. 2 [10]. DoG D x; y; rð Þ provides a good
approximation for the Laplacian-of-Gaussian. It can efficiently be computed by sub-
tracting adjacent scale levels of a Gaussian pyramid.

Fig. 1. CBIR with SIFT Architecture

Fig. 2. SIFT Descriptor Generation [10]

Content Based Image Retrieval with Hadoop 259



SIFT feature extraction is composed of four important phases:

• Phase 1- Scale-space Extrema Detection: potential interest points are identified by
searching the overall scales and image locations in the image matrix. The scale
space of an image is defined as a function L x; y; krð Þ and produced from the
convolution of a variable scale Gaussian G x; y; krð Þ, with an input image, Iðx; yÞ

L x; y; krð Þ ¼ G x; y; krð Þ � I x; yð Þ ð1Þ

D x; y; rð Þ ¼ L x; y; krð Þ � L x; y; rð Þð Þ � I x; yð Þ ð2Þ

• Phase 2 Keypoint localization: A detailed model is created to determine location
and scale of all interest points detected in phase1. After that, key points are selected
based on their stability and their resistance to distortion.

• Phase 3- Orientation assignment: For each key point identified in phase 2, the
direction of gradient is computed around it. One or more orientations are assigned to
each key point based on local image gradient directions.

• Phase 4: Keypoint descriptor: In this phase, the local image gradients are measured
in the region around each key point. This gradient is then transformed into a
representation that allows for significant levels of local shape distortion and change
in illumination.

One of the most featured implementations for CBIR is vision based Navigation,
based on a Visual Information System (NAVVIS) project for indoor navigation for the
Technical University of Munich (TumIndoor). The navigation application uses images
that are captured by a smart phone as visual fingerprints of the environment. The
captured images are matched to the previously recorded geotagged reference database
with CBIR techniques. TumIndoor introduces an extensive benchmark dataset for
visual indoor localization, available to the research community for downloading, thus
any experimental results can be compared with the published results [10, 11]. Some
other feature extraction and matching techniques exist such as; Speed-Up Robust
Features (SURF) [12] and Binary Robust Independent Elementary Features (BRIEF)
[13]. SIFT’s accuracy holds up against more modern algorithms yet it’s computa-
tionally expensive.

4 Hadoop, Map-Reduce, Combiners and Partitioners

The two main components of Hadoop are: Hadoop Distributed File System (HDFS)
and MapReduce. MapReduce paradigm is composed of three phases. (1) The Mapper:
Each Map task operates on a single HDFS block and runs on the node where the block
is stored. (2) Shuffle and Sort: Sorts and consolidates intermediate data from all
mappers, after the Map tasks are completed and before the starting of the Reduce tasks.
(3) The Reducer: Operates on shuffled/sorted intermediate data (Mapping output) to
produce the final output.

The Combiner phase in MapReduce can enhance the cluster performance by
reducing results on a single Mapper’s output before sending the data to the reducer.

260 H. Gaber et al.



A Combiner, also known as a semi-reducer, which is an optional class that operates by
(1) accepting the inputs from the Map class as key value pairs, (2) summarizing the
map output records with the same key, (3) passing its output as new key-value pairs to
the original Reducer class.

The Cluster performance can also be enhanced through partitioning (indexing) the
keys using custom or default Partitioner, where each partition is passed to a single
reducer. A Partitioner partitions the key value pairs of intermediate Map outputs. It
partitions the data using a user defined condition, which works like a hash function.
The total number of partitions is the same as the number of Reducer tasks for the job.

In Fig. 3 using Hadoop MapReduce Paradigm by integrating HIPI and OpenCV
libraries for extracting SIFT features is presented, the first step is collecting image
data-base into a HIB bundle, afterwards OpenCV is used for extracting image data,
pre-processing (grayscale conversion) and feature extraction afterwards. In this work
we show how processing data in combiner and Partitioner phase and changing the
number of processing units can effectively enhance the overall performance and reduce
the input/output operations of the system.

5 Integrating Computer Vision Libraries

For image processing on a Hadoop platform, HIPI was introduced. HIPI [15] is an image
processing library designed to be used with the Apache Hadoop Map-Reduce parallel
programming framework. HIPI facilitates efficient and high throughput image pro-
cessing with Map-Reduce style parallel programs typically executed on a cluster. It
provides a solution for how to store a large collection of images on the HDFS and make
them available for an efficient distributed processing. HIPI is developed and maintained
by a growing number of developers around the world.

Fig. 3. Map-Reduce Paradigm

Content Based Image Retrieval with Hadoop 261



The primary input object to a HIPI program is a HIPI Image Bundle (HIB) which is
a collection of images represented as a single file on the HDFS [16], the first processing
stage of a HIPI program is a culling step that allows filtering the images in a HIB, based
on a variety of user defined conditions like spatial resolution or criteria related to the
image metadata.

Further processing can be done using OpenCV [17] for feature extraction. We
selected the widely used OpenCV library as the base image processing library integrated
with the proposed platform. OpenCV is an open source library written in C++ and it also
has Java and Python interfaces supporting Windows, Linux, Mac OS, iOS and Android.
OpenCV is optimized and parallelized for multi-cores and accelerators using the Open
Computer Library (OpenCL). OpenCV was installed on the Hadoop cluster to enable
image processing capability with Map-Reduce parallel programming model.

In the presented work integrating HIPI and OpenCV was introduced, the images
folder will be uploaded to the HDFS as a HIB bundle using HIPI, afterwards in the
feature extraction job, OpenCV library is used to get SIFT features from the HIB. The
result of the feature extraction job will be saved on Hadoop. Another job for matching
query image to the descriptors database was implemented to find the matched image.

6 SIFT Based CBIR Implementation on Hadoop

The proposed approach mainly depends on CBIR techniques using SIFT to match
query images with image databases. In this implementation the Technical University of
Munich (TumIndoor) dataset used for the Indoor navigation application is selected to
test the proposed approach. The database used in our implementation is constructed of
9,437 images for one floor, total size of the images is 1,395,864,371 bytes.

The first step of the implementation was uploading images on HDFS and bundling
images utilizing HIPI. The size of the constructed HIB bundle using HIBI is
1,503,238,553 bytes. The total size of the generated descriptors is 8,877,244,416 bytes.
Afterwards a database of image SIFT descriptors is constructed with Map-Reduce job
using OpenCV library. Moreover data input/output operations reduce through using
Combiner intermediate layer, data was processed on the Combiner phase which
enhanced the overall systems performance.

For matching query images with the descriptor database, another matching job is
implemented. The matching job extracts the descriptors of the query image and mat-
ches them to the descriptors database by using OpenCV library. The matching job’s
runtime performance was tested with different numbers of reducers and was enhanced
through grouping the descriptors based on the descriptors’ number of rows in-stead of
using the image name as the mapper output key.

The implementation performed on Cloudera virtual machine [18] where Java Eclipse
and Hadoop were already installed and HIPI and OpenCV is configured. The current
machine consists of 4 processors and 10 GB RAM. By adding more memory, processors
and additional physical nodes the run-time performance of the system will increase and
the processing time is expected to decrease. The algorithm is tested with different
parameters on the same environment by changing the number of reducers and adding
Combiners and Partitioners on different phases of computation.We noticed that grouping
the data under 100 reducers distributed based on the number of the rows in each descriptor

262 H. Gaber et al.



matrix enhanced the performance more than using very large number of reducers (1000)
or small number of reducers (50). This can’t be taken for granted as the optimal number of
reducers and the partitioning parameter shall depend on the input data size and the
variation of the size of the generated descriptors. We also show the impact of adding
Combiners and the Partitioners after grouping the data under a 100 reducer.

Hadoop offers Job Tracker, an UI tool to determine the status and statistics of all
jobs. Using the job tracker UI, we can view the Counters that have been created and
investigate the execution results. Table 2 shows the results of the comparison between
different execution parameters in terms of mapping time, reduced shuffling processing
time, and numbers of read and write operations and overall performance of processing
the same dataset. Examples for those Counters are:

1. File-number of bytes read: is the number of bytes read by local file systems and it
denotes the total bytes read by reducers. They also occur during the shuffle phase
when the reducers spill intermediate results to their local disks while sorting.

2. File-number of bytes written: consists of two parts. The first part comes from
mappers. The second part comes from reducers. In the shuffle phase, all the reducers
will fetch intermediate data from mappers and merge and spill to reducer-side disks.
All the bytes that reducers write to disk will also be included in this counter.

3. HDFS-number of bytes read: Denotes the bytes read by mappers from HDFS when
the job starts. This data includes not only the content of source file but also metadata
about splits.

4. HDFS-number of read operations: Denotes the bytes written to HDFS. It’s the
number of bytes of the final output. Since HDFS and local file systems are different
file systems, so the data from the two file systems will never overlap. From this

Table 2. HDFS and File execution KPIs

Environment
Configuration/Counter

FILE:
Number of
(GB) read

FILE:
Number of
(GB) Written

HDFS:
Number of
bytes read

HDFS:
Number of
read
operations

1000 reducer 16.56 24.46 28.4 12,650
100 reducers 16.14 24.36 28.4 9,950
50 reducer 16.12 24.35 28.4 9,800
100 reducer and classifier
num-rows

16.14 24.36 12.8 2,631

Partitioner and 100 reducer
with classifier num-rows
%100

16.14 24.36 12.8 2,631

Partitioner, combiner and
100 reducers classifier
num-rows %100

0.0036 0.018 19.17 5,618

Partitioner, combiner and
100 reducers classified
by num-rows

0.0036 0.018 21.05 6,499

Content Based Image Retrieval with Hadoop 263



implementation, the least file system access was achieved through using Partitioners
and Combiners so that data is accessed after data grouping in the Map Phase.

The other performance KPIs are related to the time and the memory consumed in
each phase in the Map-Reduce. Total time spent by all maps (5), All reducers (6), All
map tasks (7), All reduce tasks (8) in milliseconds, total megabyte seconds taken by all
map tasks (9), All reduce tasks (10). It was noticed the least mapping time was
achieved through partitioning the data with descriptor metadata element ex: “Number
of rows in the SIFT descriptor matrix” and without using Partitioners or Combiner
layers, this can be explained as the data won’t be re-copied after the mapping phase. On
the opposite side the least reduce time was achieved through adding Combiners and
Partitioners and getting reduced input/output through the intermediate layer before
Shuffle and Sort process.

Comparing the two approaches the second approach is more efficient since map-
ping time can be enhanced through adding more slots to the system and distribute
processing on them, yet the reduce phase is considered a critical phase as it will be
responsible to process all the Mappers output to get the final results and sometimes
considered a bottleneck phase.

Also, we noticed enhanced performance counters by using Partitioners and Com-
biners for example (11) GC (Global Cash) time elapsed, (12) Processing time (CPU
time spent), (13) Data snapshot physical and (14) Virtual memory and the (15) Total
heap usage.

7 Conclusion and Future Steps

In this work we implemented CBIR based on SIFT for features extraction and matching
of query images to huge image descriptors on Hadoop. SIFT is very intensive and
requires very high processing and storage power. In this work Hadoop MapReduce is
used as a Big Data platform for processing and storage of the image descriptors data.
HIPI is integrated in the system and used to upload and filter data to HDFS as HIB
bundle. This work also shows integrating HIPI and OpenCV computer vision libraries
with Hadoop to accelerate features extraction and matching. The Feature extraction job
was implemented to generate image descriptors database based on SIFT features.
Another job was implemented to match query images to the database. We have shown
how to use Map-Reduce Combiners and Partitioners for enhancing performance and
reduce the input/output operations. The proposed approach seeks to maximize the full
potential of cloud computing as well as ubiquitous sensing, a viable way to achieve this
was to have a combined framework with a cloud at the center.

We have demonstrated the practicality of our approach by extracting SIFT features
from TumIndoor images, confirming that the Map-Reduce based approach can accel-
erate the feature extraction process effectively through a Map-Reduce paradigm for a
database of about 8 GB in size. Our next step is to enhance the matching with the SIFT
descriptors through categorizing the data as visual words and involving machine
learning techniques to classify the bag of visual words.

264 H. Gaber et al.



References

1. Nausheen, K.M., Ram, M.S. Haarfilter: a machine learning tool for image processing in
Hadoop. Int. J. Technol. Res. Eng. 3 (2015)

2. Barapatre, M.H., Nirgun, M.V., Jagtap, M.H., Ginde, M.S.: Image processing using
mapreduce with performance analysis. Int. J. Emerg. Technol. Innovative Eng. I(4) (2015)

3. Yan, Y., Huang, L.: Large scale image processing research cloud. In: Cloud Computing,
pp. 88–93 (2014)

4. Cheng, E.: Efficient feature extraction from a wide area motion imagery by MapReduce in
Hadoop. In: SPIE Defense + Security. International Society for Optics and Photonics (2014)

5. Augustine, D.P.: Leveraging big data analytics and hadoop in developing India’s healthcare
services. Int. J. Comput. Appl. 89(16), 44–50 (2014)

6. Gawde, A.U., Shah, M., Ukaye, I., Nanavati, M.: Object detection in hadoop using HIPI. Int.
J. Adv. Res. Eng. Technol. (2013)

7. Bajcsy, P.: Terabyte-sized image computations on Hadoop cluster platforms. In: IEEE
International Conference on Big Data, pp. 729–737. IEEE (2013)

8. Han, W., Kang, Y., Chen, Y., Zhang, X.: A MapReduce approach for SIFT feature
extraction. In: International Conference on Cloud Computing and Big Data, pp. 465–469
(2013)

9. Moise, D., Shestakov, D., Thor, G., Amsaleg, L.: Indexing and searching 100 M images
with Map-Reduce. In: ACM International Conference on Multimedia Retrieval, pp. 17–24
(2013)

10. Huitl, R., Schroth, G., Hilsenbeck, S., Schweiger, F., Steinbach, E.: TUMindoor: An
extensive image and point cloud dataset for visual indoor localization and mapping. In: 19th
IEEE International Conference on Image Processing (ICIP) Orlando, FL, pp. 1773–1776.
IEEE (2012)

11. Schroth, G.: Mobile Visual Location Recognition. Ph.D. Thesis. Munich: Technische
Universität München, July 2013

12. Panchal, P.M., Panchal, S.R., Shah, S.K.: A Comparison of SIFT and SURF. Int.
J. Innovative Res. Comput. Commun. Eng. 1(2), 323–327 (2013). ISSN: 2320–9798

13. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent
elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS,
vol. 6314, pp. 778–792. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_56

14. http://hadoop.apache.org
15. White, T.: Hadoop: The Definitive Guide, 2nd edn. O’Reilly Media, Sebastopol (2011)
16. http://hipi.cs.virginia.edu/
17. http://opencv.org/
18. http://www.cloudera.com/

Content Based Image Retrieval with Hadoop 265

http://dx.doi.org/10.1007/978-3-642-15561-1_56
http://hadoop.apache.org
http://hipi.cs.virginia.edu/
http://opencv.org/
http://www.cloudera.com/

	Content Based Image Retrieval with Hadoop
	Abstract
	1 Introduction
	2 Related Work
	3 CBIR with SIFT
	4 Hadoop, Map-Reduce, Combiners and Partitioners
	5 Integrating Computer Vision Libraries
	6 SIFT Based CBIR Implementation on Hadoop
	7 Conclusion and Future Steps
	References


