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Abstract

The interaction between edge dislocations and γ′ precipitates as in nickel-based super-
alloys is studied by coupling a phase field model and a 2D continuum dislocation dy-
namic model. Various stresses, which serve as communicator between dislocations and
precipitates, are calculated by an eigenstrain method for both the γ/γ′ misfit and the
dislocations. Our simulations show how edge dislocations tend to move to and pile up
at specific γ/γ′ interfaces. The growth of γ′ is inhibited at the interface where disloca-
tions are piling up, due to the reduction of elastic energy. The potential of our coupled
model for simultaneous microstructure patterning and mechanical property prediction is
discussed.

Introduction

Single crystal nickel-based superalloys have been widely used in e.g. turbine blades which
operate under extreme conditions: temperatures are very high and are additionally ac-
companied by strong, sustaining centrifugal forces. One of the common approaches to
assess the service performance and to understand the underlying mechanism is based on
creep tests. Because in-situ observations of the (dislocation or γ′) microstructure cannot
easily be conducted, creep experiments usually have to be interrupted at specific repre-
sentative stages at which then microstructural information can be conveniently obtained
ex-situ. Additionally, creep tests are very time-consuming. Despite these two cumber-
some aspects, a large amount of information about the deformation behavior and the
microstructure of γ/γ′ and dislocations have been gained in the past decades [1].
The above mentioned shortcomings strongly motivated the development of modeling and
simulation methods for nickel-based superalloys. Phenomenological continuum models
for elasto-plastic material behavior have been proposed within the framework of internal
variables [2, 3]. Using e.g. the average dislocation density or the γ′ size as internal
variables one can well fit simulations results to experimental results, which makes these
models useful as computational tools for roughly estimating service life and mechanical
behavior. However, there is no general consensus regarding the choice of internal vari-
ables and detailed microstructural effects as e.g. the interaction between dislocations and
precipitates are not directly accounted for in these models. However, it is well accepted
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that dislocation associated interactions are one of the key underlying mechanisms dur-
ing creep deformation: recent molecular dynamic (MD) and discrete dislocation dynamic
(DDD) simulations revealed a number of details of the dislocation-precipitate interaction
at the γ/γ′ interface [4, 5]. For simplicity, in these simulations the γ/γ′ microstructure
is usually assumed to be static in time. Additionally, dislocation associated creep is a
multi-time scale problem because the time-scale on which the γ/γ′ evolution takes place
is much larger than that of the dislocation flow, which makes the treatment very com-
plicated and computationally expensive from a numerical point of view. However, the
problem of multiple length scales becomes much simpler if mesoscale models are used for
both the γ/γ′ evolution and the plasticity. Pioneering work has been done by coupling
phase field models (PFM) for the evolution of the phase microstructure with constitu-
tive plasticity models. E.g. Finel and co-workers [6] coupled a PFM to a viscoplasticity
model and successfully reproduced rafting patterns, although their model does not con-
tain any information about dislocation microstructure. Wang and co-workers [7] coupled
the Kim-Kim-Suzuki (KKS) model to a strain gradient-based plasticity/phase field model
and obtained rafting patterns together with information about dislocations. Strain gra-
dient plasticity methods in general, however, only account for geometrically necessary
dislocations (GNDs) and cannot represent the flow of dislocations.
In the present work, we show an alternative approach for coupling a PFM and a con-
tinuum model of dislocation dynamics: our PFM has one composition field and is used
to describe the evolution of the γ/γ′ phase microstructure, while a 2D continuum dislo-
cation dynamics (CDD) model is used to represent fluxes of positive and negative edge
dislocations (from which GNDs and SSDs – statistically stored dislocations – could be
computed) [8, 9]. We focus especially on the interaction mechanism between the γ′

precipitate and dislocations.

Model formulation

The following mathematical conventions and symbols are used: non-bold letters denote
scalar or scalar fields, bold letters denote vectors or higher order tensors, non-italics stand
for constants or superscript, italics for variables. ∇ and ∇2 are the spatial gradient
operator and the Laplace operator, respectively. The inner product and the double
contraction are written as e.g. a · b and A : B, respectively.

Phase field model

We consider a Ni-Al binary system with no distinction of γ′ variants. A simple phase
field model with normalized composition field c is sufficient in this case:

c =
c′ − ceγ
ceγ′ − ceγ

(1)

where c′ is the real composition, ceγ and ceγ′ are the equilibrium compositions of γ and
γ′, respectively. Therefore, c = 0 denotes the γ phase and c = 1 stands for the γ′ phase.
The total energy of the system is given in functional form:

F =

∫
V

(fbulk + f grad + f el) dV (2)
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with the energy densities

fbulk = f0c
2(1− c2), f grad =

λ

2
| ∇c |2, f el =

1

2
σel : εel (3)

where f0 is the energy density scale determined by the bulk energy density barrier, λ
is the gradient energy density coefficient determined by fitting the calculated interface
energy to the experimentally obtained interface energy. The sum of bulk energy and
gradient energy gives the calculated interface energy (or chemical energy). The stress
σel and strain εel are obtained from solving the mechanical equilibrium equation. We
assume that mechanical equilibrium is always reached instantaneously and that body
forces from e.g. gravitation etc can be neglected. With this the governing equations are
given as

∇ · σel = 0, σel = C : εel, εel = ε− (βεmis + εdis) (4)

where εel is obtained in a small strain context from the additive decomposition of the
total strain ε into the elastic and inelastic contributions. The latter can consist of eigen-
strains caused by the γ/γ′ misfit εmis (which is a diagonal tensor), or from dislocations
eigenstrains εdis (which is an off-diagonal tensor). The interface interpolation function β
and stiffness tensor C are given as:

β = c3(10− 15c+ 6c2), C =
1

2
(Cγ′ +Cγ) + (β − 1

2
)(Cγ′ −Cγ), (5)

where Cγ′ and Cγ are the stiffness tensors of the γ′ and γ phase, respectively. The
interface interpolation function β(c) is responsible for the elastic inhomogeneity (with
β(c)|c=0 = 0 and β(c)|c=1 = 1). Furthermore, the derivatives β′(c)|c=0,c=1 = 0 and
β′′(c)|c=0,c=1 = 0 imply that γ and γ′ are equilibrium phases from the point of view of
elastic energy.
Finally, we assume that the evolution of the γ/γ′ phase microstructure is governed by
the Allen-Cahn equation:

∂c

∂t
= Mc∇2 δF

δc
, (6)

where Mc governs the interface mobility.

Continuum dislocation dynamics for edge dislocations

We use a continuum dislocation dynamic model for edge dislocations, which is able to
distinguish between positive and negative edge dislocation density, ρ+ and ρ−. The total
density ρ = ρ+ + ρ− and excess density κ = ρ+ − ρ− are derived from that and may
change in time. The more commonly used GND and SSD densities can be determined
by ρGND = |κ| and ρSSD = ρ− ρGND, respectively.
The initial density distribution is constructed by superposition of m bundles of disloca-
tions. Each bundle of dislocations is assumed to have the shape of a Gaussian normal
distribution with standard deviation σ. Using x′

i as the local coordinate of the ith dis-
location bundle in glide direction (cf. Fig.1) the density is given by

ρ(+or−)(x′
i) =

N

hσ
√
2
exp

(
− x′

i
2

√
2σ

)
, (7)
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where N is the number of discrete dislocations, and h is the height of slip lamella (i.e.
averaging height for converting discrete dislocations into a density, see [8]). The initial

Figure 1: Schematic of the slip system geometry. Each density distribution is located at
coordinate (xi, yi), which has Gaussian shape in x direction and is constant along the y
direction within the averaging height h.

plastic slip distribution s depends on the Burgers vector b and the motion history (i.e.
from which direction initial dislocations have moved into the domain), given by

s(x′
i) =

{
sign(b)b

∫ +∞
x′
i

κ(x̃) dx̃ if ρ(+or−) moved along positive x′
i direction

sign(b)b
∫ x′

i

−∞ κ(x̃) dx̃ if ρ(+or−) moved along negative x′
i direction

(8)

where b is the magnitude of the Burgers vector, sign(b) gives the direction of b in this
1D setting. The resulting initial conditions of dislocation density and plastic slip s are
simply the sum of all local fields.
The resulting stress and strain can be obtained by linking the plastic slip to a shear
eigenstrain by

εdis = sM with M =
1

2b
(b⊗ n+ b⊗ n). (9)

For simplicity, we assume that neither annihilation nor multiplication take place (which
in reality is of course only a rough approximation). The evolution equations for ρ+, ρ−

and s are given by

∂ρ+

∂t
= −∂x(vρ

+),
∂ρ−

∂t
= ∂x(vρ

−),
∂s

∂t
= ρvb. (10)

Assuming a linear relationship between stresses and dislocation velocity v, we can write
the dislocation velocity law as

v =

{
b
B
(τ l + τb − τy) if |τ l + τb| > τy,

0 else
(11)

where B is the drag coefficient. τ l is long-range shear stress field resulting from external
loading, heterogeneous plastic strain and the γ/γ′ misfit. After solving (4), τ l is obtained
as the shear component of σel. τb is the back stress and τy is the yield stress [10] given
by

τb = −DGb
∂xκ

ρ
, τ y =

αbG
√
ρ

1− β
(12)
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where G is the shear modulus, D ∈ [0.6, 1] and α ∈ [0.2, 0.4] are two non-dimensional
parameters. The factor 1/(1 − β) in τy reflects the experimental observation that dis-
locations hardly move into γ′: τy → ∞ inside the precipitate results in zero velocity,
while outside the precipitate τ y is just the commonly used Taylor-type yield stress, with
a smooth transition in between.

Results and discussion

The anisotropy of γ/γ′ is around 3, which gives a cubic morphology of γ′. Slip planes
are oriented 450 to the γ/γ′ interfaces. To make the numeric implementation easier, the
whole sample is rotated by 450. After rotation, the slip system is parallel to the x-axis
(see Fig.1) and the γ′ shape becomes rhombic. We use periodic boundary conditions and
only one representative γ′ precipitate at the domain center. Without external loading and
plasticity, the precipitate will keep growing in symmetrically rhombic shape until both γ
and γ′ are at equilibrium composition. To study the dislocation-precipitate interaction
and the influence of external loading, we set up different dislocation initial conditions as
described in the following two systems.

System 1

We prescribe a column of positive edge dislocations at the left side of the precipitate, as
shown in Fig.2 (a) and (d). The morphology of the precipitate can be seen from the con-
tour of the interfaces, because the driving force Mc∇2 δF

δc
for the γ/γ′ evolution vanishes

inside pure γ and pure γ′. At the intermediate time step, positive edges dislocations
move towards the right direction and pile up at the lower-left interface, while negative
edge dislocations move to the left, as shown in Fig.2 (e). The reason is that τ l resulting
from the γ/γ′ misfit is positive near the lower-left interface, whereas it is negative near
the upper-right interface. Because of the dislocation pile-up, the eigenstrains (and thus
the local stresses) resulting from the γ/γ′ misfit are neutralized to some extend, there-
fore reducing the elastic energy density and the driving force for the γ′ growth at the
lower-left interface. The morphology symmetry is broken and the favorable growing di-
rection shifts towards the upper-left direction, as shown in Fig.2 (b). At the quasi-steady
state, dislocations are still pinned at the lower-left interface due to the infinite τy inside
the precipitate, which now has an obvious elongation in diagonal direction, as shown in
Fig.2 (c) and (f). A similar preferential dislocation pile-up and precipitate growth also
would happen at the other interfaces as a result of dislocation-precipitate interaction
(not shown in the present paper).

System 2

As a more realistic system, we define a random dislocation distribution as initial condi-
tion (see Fig.3 (a) and (d)). 10 simulations are done, each with and without external
stress, and in a post-processing step we averaged over the dislocation density and com-
position field for visualization purposes. Creep tests are usually done in 〈01〉 direction,
which results in a shear stress in 〈11〉 direction. Since only the shear stress is the driving
force for the motion of dislocations, this is applied as external shear stress in the rotated
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Figure 2: γ′ growth driving force (upper row) and excess dislocation density (lower row):
(a) and (d) initial condition, (b) and (e) intermediate step, (c) and (f) stationary state.

system. It can be seen that without external stress, the morphology of γ′ is basically
rhombic and symmetric (see Fig.3 (b) and (e)). The reason is that the dislocation influ-
ence on the γ′ morphology is essentially determined by the relative dislocation density
piling up at each interface and random initial dislocation distributions results in roughly
equal amount of dislocation density piling at each interface. However, when there is
an additional external loading, dislocations accumulate on average at the lower-left and
upper-right interfaces (see Fig.3 (c) and (f)). Dislocation accumulations in the horizontal
interfaces, which correspond to the lower-left and upper-right interfaces in the present
rotated system, is widely observed in 〈10〉 direction creep tests. Due to the accumula-
tion, the γ′ coarsens in the diagonal direction (rafts), which is also widely observed in
experiments and is a natural outcome of our model.
Existing MD or DDD simulations for nickel-based superalloys focus more on disloca-

tion evolution, mesoscale PFM simulations more on γ/γ′ patterning, while macroscale
constitutive models concentrate on mechanical properties. Only few simulations can
simultaneously deal with these three aspects. The present PFM-CDD coupled model
already can handle dislocation glide and the γ/γ′ evolution. Future work will extend
the present simple model towards representing e.g. dislocation climb, annihilation and
sources. Together with a CDD formulation that also is able to represent dislocations
as curved and connected lines [11] this extended model could then reveal creep mecha-
nisms that are of material scientific relevance and that may well predict the mechanical
stress-strain behavior under creep conditions without any ad-hoc assumptions.
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Figure 3: Excess density (top) and normalized composition (bottom) for ensemble av-
erages of 10 systems with random initial dislocation distributions. From left to right:
initial condition, stationary state without and with external stress.
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