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Abstract 

In this paper, it is shown that yielding and void evolution in a porous metallic material is strongly 
influenced by the particularities of the plastic flow of the matrix. This is demonstrated by 
comparing the effective response of porous solids for which the matrix is described by Tresca 
and von Mises yield criterion, respectively. The effective response of the porous solid is 
calculated analytically using rigorous limit analysis theorems and upscaling techniques. Analysis 
is conducted for both tensile and compressive axisymmetric loading scenarios and spherical void 
geometry. For the first time it is demonstrated that if the matrix plastic response is governed by 
Tresca yield criterion, the overall response is softer, the combined effects of pressure and the 
third-invariant on yielding being much stronger than in a porous solid with von Mises matrix. 
Furthermore, the rate of void growth or collapse is much faster in a porous solid with Tresca 
matrix. 

Introduction 

It is generally accepted that ductile fail ure in metals is due to the nucleation, growth, and 
coalescence of voids [I]. Voids evolve due to the plastic deformation of the surrounding solid 
materiaL Thus, it is essential to understand the influence of the yield criterion used to describe 
the plastic flow of the matrix (void-free material) on the response of the porous solid .. However, 
within the last decade most of the efforts have been devoted to the description of the effects of 
void geometry on the dilatational response and much less attention has been paid to 
understanding the role played by the plastic flow of the matrix. Indeed, in most of the available 
models for ductile damage, the matrix is described by the von Mises yield criterion (e.g. Gurson 
[3] and its various extensions such as Tvergaard and Needleman [4], Cazacu et al [5] etc.). Very 
recently, using rigorous limit-analysis theorems and upscaling techniques Cazacu et al [6] have 
derived an yield criterion for a porous solid for which the matrix's plastic behavior is governed 
by Tresca's yield criterion. 
The aim of this paper is to investigate how the particularities of the plastic flow of the matrix 
affect the mechanical response of porous solids containing randomly distributed spherical voids. 
Specifically, we compare the effective response of porous solids for which the plastic behavior 
of the matrix is described by Tresca and von Mises yield criterion, respectively. To this end, we 
calculate for axisymmetric loading conditions the respective micro-plastic (local) dissipation. It 
is important to note that we do not adopt any of the approximations that are generally made (e.g. 
Gurson, [3]) in evaluating the respective local plastic dissipations. Thus, for the first time it is 
possible to account for the specificities of the plastic flow in the fully dense material on the yield 
criterion of the porous solid (Section 2). It is demonstrated that the combined effects of pressure 
and the third-invariant of the stress deviator on yielding are much more pronounced in a porous 
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solid with matrix obeying Tresca criterion than in a porous solid with matrix governed by the 
von Mises criterion. Furthermore, for the first time the effects of the plastic flow of the matrix on 
void evolution are analyzed. For axisymmetric loadings corresponding to positive triaxialities, it 
is shown that in a porous solid with Tresca matrix the rate of void growth is much faster than in a 
porous solid with von Mises matrix. For example, for a triaxiality T= 2, the rate of void growth is 
twice as fast as that predicted by Gurson's [3] criterion. For negative triaxialities, the rate of void 
collapse is also sensitive to the plastic flow of the matrix, Gurson's [3] criterion predicting the 
slowest rate. However, for negative triaxialities the differences in void evolution are less 
pronounced than in the case of axisymmetric loadings at fixed positive triaxialities. 

I nfluence of the yield criterion of the matrix on the mechanical response of a porous solid 
containing spherical voids 

Beginning with the pioneering work of Rice and Tracey [7]andGurson [3], kinematic 
homogenization in conjunction with Hill-Mandel lemma [8] has proven to be a rigorous 
upscaling method for deriving the macroscopic plastic potential of porous metallic materials. For 
example, using this approach, Gurson [3] developed one of the most widely used criteria for 
porous solids. Its expression is: 

( L, J2 (3 Lm J 2 <D= - +2/cosh - -1-/ =0, 
0") 20"1 

(I) 

where / is the porosity, Le is the von Mises effective stress, Lm is the mean stress, and GT is the 
tensile yield stress of the fully-dense material. In this paper, we will also use this approach to 
study how the particularities of the plastic flow of the matrix affect the effective response of the 
porous solids both in terms of yielding and void evolution. Specifically, we compare the 
response of porous solids for which the plastic behavior of the matrix is described by Tresca and 
von Mises yield criterion, respectively. In either case, the porous solid is supposed to contain 
randomly distributed spherical voids, hence a representative volume element (RYE) is a hollow 

sphere of inner radius, a, and outer radius, b = a /-1/3. The analysis is done using the 
incompressible and isotropic local velocity field v, proposed by Rice and Tracey [7], which is 
consistent with boundary conditions of uniform strain rate, i.e .. 

v = b: Dme, +[D:I (el !Siel +e2 !Sie2 )+ D'JJ (eJ !Si eJJ x, (2) 
r 

Tn Eq. (2), (el, e2, e3) are the unit vectors of a Cartesian coordinate system, D is the imposed 
macroscopic strain rate tensor, which is supposed to be constant and axisymmetric; D'is the 
deviator of D while om = tr D / 3. If the plastic behavior of the matrix is governed by the Von 
Mises criterion, the plastic dissipation corresponding to the local strain rate field 

d = ('Vv + 'VvT ) /2 is: 

11:( dt"" = O"T~r2-;-( d-:-+-d-:I-+-d-:rr-')-/-3 = O"T ~4 D~, (b / r)" +4D:~+ 2D: 1Dm (b / r)J (1 +3cos2S), (3) 

while in the case when the matrix obeys Tresca's criterion, the local plastic dissipation is 

11:(df'csca =O"T(ldI l+ldnl+ldmI)/2. (4) 

where d l , d lI , dill are the principal values of the strain rate tensor d, GT is the uniaxial yield in 

tension of the matrix, and r and S are spherical coordinates. Because Tresca's yield criterion 
depends on both invariants of the local stress deviator, the corresponding plastic dissipation 
depends on both the sign and ordering of the principal values of d. Thus, unlike in the case when 
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plastic tlow is governed by the von Mises criterion, the expression of the local plastic dissipation 
in terms of the invariants of the imposed strain rate tensor D is not unique. For example, if 
Dm 20 and D:! 20 : 

n(d)T""" = aT [~~D~, (b/r)" +D;~+ 2D~lDm (b/r/ +%~D~ (b/r)" +2D~lDm (b/r)3 cos(2e)+D;~ ] 

(5) 
(for the expressions of the local plastic dissipation corresponding to all other loading cases, see 
Cazacu et aI., 20l3b). Comparison between Eq.(3) and Eq.(5) shows the strong differences 
between the plastic dissipation associated with the von Mises and Tresca criterion, respectively. 
As already mentioned, in the literature it is usually assumed that coupling between shear and 
mean stress etfects can be neglected (see [4,7]). For example, in his analysis Gurson considered 

that in the expression of n(dt"" (see Eq. (4» the "cross-term" DmD:! can be neglected and 

proposed the following truncated form of the local plastic dissipation: 

n(dt''' ~ (71~4 D~,(bl r)" +4D;; 

Let analyze the implications of adopting the same simplifYing hypothesis when estimating the 
plastic dissipation associated with Tresca's yield criterion. It can be easily seen that if we use the 
same approximation, Eq. (5) reduces to: 

n( d)"""" ~ (7T~4 D~ (b I r)" +4D;; (6) 

It is thus clearly demonstrated that neglecting the cross-term DlllD;j amounts to erasing the 

specificities of the plastic tlow of the matrix, the resulting effective yield criterion for the porous 
solid being the same i.e. Gurson [3] (Eq. (1». In other words, the approximation leads to the 
same etfective yield criterion for the porous solid irrespective of the plastic behavior of the 
matrix i.e. whether the response is described by Tresca criterion, which incorporates dependence 
on both the second and third invariant of the deviator of the local stress, or by von Mises which 
describes only the influence of the second invariant. The macroscopic plastic potential of the 
porous solid can be further obtained by integrating over the RVE the local plastic dissipation 
[Ill Very recently, Cazacu et al. [5-6] has shown that in the case when the plastic behavior in 
the matrix is described by von Mises or Tresca criteria the respective integrals can be calculated 
analytically. In this paper, for the tirst time the void evolution predicted by both criteria is 
investigated. For sake of conciseness only the expression of the yield criterion for Tresca matrix 

obtained using Eq.(5) of n(df'cSC"is brietly recalled. Let denote by u=2lDmllDc the 

macroscopic strain-rate triaxiality, 1; the effective (macroscopic) stress at yielding and 

J~= tr(L,)3 13 the third-invariant of the stress deviator, 1;'. The parametric representation of the 

yield surface ofthe porous solid with Tresca matrix is: 

(a) For stress states such thatL lll 20 and J~ :s; 0: 

(al) For u<f. 
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I a =-+ In ---1- f I 16uM +611f + f' +911' (..{,; +fJj 
1 12u 24 "M fJ-..{,; 

1 611+16u3 ',+1+9u2 1n ( ..{,;+lj+ilJ fJ-..{,; J (7a) 
24 uL ll- ..{,; 3 l fJ (1 - ..{,;) 

I a, - _~( 5(J -1) + 3 u' - 211f + f' In ( ..{,; +fJj _ 3 (u' - 211 + 1) lJ ..{,; + 1 jJ 
1- sl 2 M lfJ-..{,; 2 ..{,; ll-..{,; 

(a2) Forf< 11 < I: 

Lm=l-f + 1 16uM +6uf + f '+9u'IJ..{,;+fJj 
a l 12u 24 uM l..{,;-fJ 

1 611+16u 3 ,'2+ 1+ 9U'ln( ..{,;+lj+ilJ ..{,;-fJ J (7b) 
24 11' ll-..{,; 3 l fJ(I-..{,;) 

~=-~(S(J -1)+ 3u2 -2fu+ f'ln(..{,;+fJj 3 u'-2u+I IJ I+..{,;jl 
aT Sl 2 M ..{,;-fJ 2 ..{,; ll-..{,;) 

a3) For 11:2: 1: 

Lm=l-f + I 16uM+6uf+f2+9u' In(..{,;+fJj 
aT 12u 24 uM ..{,;-fJ 

I 6u+16u3 ,',+1+9u' In( ..{,; +lj+iIJ ..{,; -fJ J (7c) 
24 u' l"{'; -1 3 l fJ ( ..{,; - 1 ) 

~=_~(5(J_l)+3U'-2fit+f'IJ ..{,;+fJj 311'-2U+l 1n (I+..{,;jl 
at Sl 2 M l"{'; - fJ 2 ..{,; l"{'; -I ) 

(b) For stress states such that Lm :2: 0 and J~ :2: 0: 
(bi) For 1I<:,f: 

Lm 1- f I (9u' -6fil+ f') (2Mj I (9u' -6u+l) (2..{,;j 2 [ u+1 J -=-+ arctan -- , arctan - +-In f--
aT 12u 24 uM f - u 24 u' 2 1- u 3 u + f 

- = -- - + arctan -- arctan -L, IlS(f 1) 3u'+2uf+f' (2Mj 3u'+2u+l (2..{,;jj 
a l 82M f -u 2..{,; l-u 

b) For f<1I<1 

---+ arCSIn -- - n -Lm _1+ f I 9u2 -6uf + f' ,(2M] 161 (2) 2 
aT 12u 24 uM u+ f 

(7d) 

1 (911 2-611+1) (2..{,;j 2 ((lI+ f )(U+l)J 
1 ' arctan - +-In -'-------'---'--'---------'-

24 lr - 1-11 3 f 
(7e) 

~=-~(lOU-5(J + 1)+ 3 (11' +2'%r + f') arcsiJ_2M_uf_j 
at sl 2 "uf lu+f 

3 -"-.(11_2 _+ 2;=U_+-,--I) arctan (_2..{,;_u jJ 
2..{,; ll-lI 
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c)Foru::>l: 

jLm /-1 1 9u2 -6u/ + /2 . [2Nj 1 9u2 -6u+1 . [2.../uJ 21 [u+ / J -=--+ arcsm -- - arcsm -- +- n ---
aT 12u 24 uN u+/24 uJ2 11+1 3 /(u+l) 

lLe Il 3 (u2 +2u/+/2
) . [2Nj 3(U2 +2u+l) . [2.../uJJ (7f) 

-=-- 5(1- /)+ arCSin -- - arCSin --
aT 8 2 N 11+/ 2.../u 11+1 

It is worth noting that the local plastic dissipation 1! (d frcsca is an even function of the local 

strain rate tensor d. Thus, the effective plastic potential of the porous solid with Tresca matrix is 
an even function ofD and the yield surface is an even function of the stress tensor, I. It follows 
that: 

(7g) 

Lm Lml ~ ~I 
aT = - aT J~ ::> 0, Im ::> 0 ' aT = aT Jf ::> 0, Im ::> 0 

This criterion will be designated in the following as porous Tresca. As an example, in Fig. I are 

shown the yield curves according to the porous Tresca criterion (Eq. (7)) corresponding to J~ ::> 0 

and Ji <;0, respectively, and the Gurson yield surface (Eq. (I)) corresponding to the same 

porosity,j= 0.04. In contrast with Gurson's criterion, the yield locus depends on the signs of the 

mean stress and Ji. For stress states with tensile mean stress, Lm::> Othe response is softer for 

Ii ::> 0 than for J ~ <; 0, while the reverse holds true for L", <: o. It is worth noting that the yield 

surface of the porous material is smooth although its matrix is governed by Tresca yield criterion 
(i.e. the presence of voids "smooth out" the comers of Tresca's criterion). Because no 
approximations were made when calculating the local plastic dissipation, the yield criterion of 

the porous solid has a very specific dependence on the signs of the mean stress and Ji .To better 

assess this effect, the porous Tresca yield surface (Eq.(7)), the yield surface for porous solids 
with von Mises matrix proposed by Cazacu et al [5] along with Gurson's [3] yield surface 
corresponding to the same porosity (f= 0.04) are represented in the plane (II -I3, I m), where II 
denotes the axial stress and I3 the lateral stress, the mean stress being I",= (I I + 2I3)/3 (see 
Fig. I (b)). It is clearly seen the strong influence of the particularities of the plastic flow of the 
matrix on yielding of the porous solid. In particular, the third-invariant effects on yielding are 
much stronger for a porous solid with matrix obeying Tresca criterion than for a porous solid 
with matrix obeying von Mises criterion. Furthermore, for stress triaxialities T=Lm/Lc different 
from zero or infinity, the response of the porous Tresca material (Eq. (7)) is softer than that of a 
porous solid with Von Mises matrix according to Cazacu et al. [5] criterion. Note that Gurson [3] 
is an upper bound for both criteria, the difference in yielding between the porous Tresca and 
Gurson's [3] being very strong. This very strong influence of the plastic flow of the matrix on 

yielding of the porous solid can be easily explained by comparing 1!( d)TreSCa (Eq.(5)), 1!( d)MtSCS 

(Eq.(3)) and the truncated expression of 1!(dtises used by Gurson [3] (same as Eq. (7)). 

Obviously, all criteria coincide for T = 0 (i.e. purely deviatoric loadings) when the yield limit is 
given by Le = IL1 - L31 = ar(l- f) or for T = 00 (i.e. purely hydrostatic loadings) when the yield 

limit is Lm = ±(20"T/3)lnj. Note also that the curvature of the yield surface of a porous solid 
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depends strongly on the criterion that governs the plastic behavior of the matrix. This implies a 
marked difference in void evolution that will be further examined in the next section. 

'i.JcrT ,--------------------, 

-l'orou~ fre~c3 J3<O ~ Porous Tres("a J3>O - - Gw·~on (1977) 

0.4 

-25 

(a) (b) 
Figure I. Yield surface ofthe porous solid according to the porous Tresca criterion (Eq. (7» for 

axisymmetric stress states for which J~ :0; 0 and J~ :2: 0, respectively, in comparison with 

Gurson's [3] for the same porosity (j= 0.04): (a) (I"L 111 ) plane, (b) (I\-LJ, I 111 ) plane. 

Effect ofthe plastic flow ofthe matrix on void evolution 

The influence of the yield criterion describing the plastic flow of the matrix on void evolution in 
the porous solid is investigated by comparing the predictions of the porous Tresca criterion, and 
that of Cazacu et al. [5] and Gurson's [3] (matrix modeled by von Mises yield criterion). Fig.2 
show the predicted void evolution as a function ofthe effective macroscopic equivalent strain, Ee 

for axisymmetric loadings at fixed triaxiality, T=2 corresponding to LI :2: I3 (i.e. Ji :0; 0) and LI 

:0; I3 (i.e. J~ :2:0), respectively. The initial porosity is fo = 0.0013. Irrespective of the sign of the 

third-invariant, the rate of void growth is much faster in a porous solid with Tresca matrix than in 
a porous solid with von Mises matrix. Furthermore, because Gurson's [3] criterion is an upper 
bound for both criteria, it predicts the slowest void growth. The differences in the rate of void 

growth are signiticant. For example, for g :2: 0 at a macroscopic equivalent plastic strain Ec = 

0.15, Gurson [3] predicts that the porosity f= 0.01, Cazacu et al. (2013) predicts that f= 0.013 
while according to the porous Tresca criterion (Eq. (7» f =0.02. These results also show that 
neglecting the coupling between shear and mean stress in the expression of the local plastic 
dissipation amounts not only to erasing the particularities of the plastic flow of the matrix (see 
Eq. (7» but also to a drastic underestimation of the rate of void growth. The same conclusions 

can be drawn by analyzing the predicted void evolution for T=2 and J~ :0; 0 (Fig. 2b). Since both 

Cazacu et al. [5] and the porous Tresca criterion involve a very specific dependence on the signs 

of the mean stress and the third-stress invariant, J~, void evolution depends on the sign of J~ . 
Indeed, comparison between the results presented in Fig2(a) and Fig. 2(b) shows that these 
criteria predict an influence ofthe third invariant of the stress deviator on void growth, the rate of 

void growth being faster for Ji :2: 0 (Fig. 2a) than for Ji :0; 0 (Fig. 2b). According to both criteria, 

at an equivalent plastic strain Ec= 0.15, the void volume fraction is almost 8% higher for J~ :2: 0 
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than for Ji <; O. Obviously, since Gurson's [3] does not account for couplings between mean 

stress and shear stresses it cannot capture the influence of the sign of Ji on void growth. 
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Figure 2. Comparison between the evolution ofthe void volume fraction with equivalent strain 
E, for fixed stress triaxiality T = 2 predicted by Gurson's [3], Cazacu et al. [S], and the porous 

Tresca criterion (Eq.(7»; initial porosity, fo = 0.0013 : (a) loadings such that Lj =L2 <; LJ (i.e. 
Ji ::> 0) and (b) loadings such that L I =L2::> L3 (i.e. Jf:<: 0). 

Figure 3 shows the evolution ofthe void volume fraction as a function of the effective equivalent 
strain, Eo for axisymmetric loadings and negative stress triaxiality, T = -2, the initial porosity 
being set to fo=O.OS. Due to the fact that the mean stress, L m , is negative (compression) void 
collapse occurs. Note that the rate of void collapse is much faster in a porous solid with Tresca 
matrix than in a porous solid with von Mises matrix. Furthermore, as demonstrated previously, 
Gurson's [3] criterion is an upper bound for both criteria and as such predicts the slowest rate of 
void collapse. For example, at Ee = O.IS, the void volume fraction according to the porous 
Tresca criterion, Cazacu et al. [S], and Gurson [3] are: f= 0.0062, f= 0.0087, and f= 0.0099, 
respectively. It is very interesting to note that the influence of the plastic flow of the matrix is 
stronger on void growth than on void collapse. 

0.05 

J3<O - - Gurson (1977) 

004 - Cazacu et al. (2013a) 

-Porous Tl'esca 

0.01 

005 0.1 015 0.2 025 
Eqlli\ulenlpiaslicslrainJ:e 

Figure 3. Comparison between the void volume fraction evolution with equivalent strain E, for 

axisymmetric stress states such that Ji <; 0 and stress triaxiality T = -2 according to Gurson's [3], 

Cazacu et al. [S], and the porous Tresca criterion (Eq.(7»; initial porosity, fo = O.OS. 
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Summary and Conclusions 

Tn this paper, it was shown that the plastic tlow of the matrix has a strong intluence on yielding 
and void evolution of porous solids containing randomly distributed spherical voids. This was 
demonstrated by comparing the etfective response of porous solids for which the matrix is 
described by Tresca and von Mises yield criterion. For the tirst time, analysis was conducted for 
both tensile and compressive axisymmetric loading scenarios. The main findings are: 

• While in the literature it is assumed that coupling between shear and mean stress effects 
can be neglected (see Gurson, [3]) we demonstrated that this approximation leads to the 
same etfective yield criterion for the porous solid irrespective of the plastic behavior of 
the matrix i.e. whether the response is described by Tresca criterion, which incorporates 
dependence on both the second and third invariant of the deviator of the local stress, or 
by von Mises which describes only the intluence ofthe second invariant. 

• F or stress triaxialities different from zero or infinity, the response of the porous Tresca 
material (Eq. (7» is softer than that of a porous solid with Von Mises matrix. Tn 
particular, the difference in yielding between the porous Tresca and Gurson's [3] is very 
strong (see Fig. I). 

• Third-invariant effects on yielding are much stronger in a porous solid with matrix 
obeying Tresca criterion than in a porous solid with matrix obeying von Mises criterion 
(see also Fig.2). 

• For axisymmetric loadings corresponding to positive stress triaxialities, it was shown that 
the rate of void growth is much faster in a porous solid with Tresca matrix than in a 
porous solid with von Mises matrix. For example, for a triaxiality T= 2, the rate of void 
growth is twice as fast than that predicted by Gurson's [3] criterion. 

• For negative triaxialities, the rate of void collapse is also sensitive to the plastic tlow of 
the matrix, Gurson's [3] criterion predicting the slowest rate. However, the differences in 
void evolution are less pronounced than for positive triaxialities. 

References 
[I] McClintock, F.A., "A criterion for ductile fracture by the growth of holes," 1. Appl. Mech. 
Trans. ASME, 35 (1968), 363-371. 
[2] Kwon, D., Asaro, RJ., "A study of void nucleation, growth, and coalescence in spheroidized 
1518 steel." Metallurgical Transactions A 21 (1990), 117-134. 
[3] Gurson, A. L., "Continuum theory of ductile rupture by void nucleation and growth. Part 1: 
Yield criteria and flow rules for porous ductile media," J Engng. MatI. Tech. Trans. ASME, 
Series H, 99 (1977), 2-15. 
[4] Tvergaard, V. and Needleman, A., "Analysis ofthe cup-cone fracture in a round tensile bar.," 
Acta Metall, 32 (1984), 157-69. 
[5] Cazacu, 0., Revil-Baudard, B., Lebensohn, R. A., Garajeu, M., "New analytic criterion 
describing the combined etfect of pressure and third invariant on yielding of porous solids with 
von Mises matrix," J. Appl. Mech., (2013), (doi: 10.1115/1.4024074). 
[6] Cazacu, 0., Revil-Baudard, B., Chandola N., Kondo, D., "Analytical criterion for porous 
solids with Tresca matrix accounting tor combined effects of the mean stress and third-invariant 
ofthe stress deviator," (2013) (submitted). 
[7] Rice, JR., Tracey, D.M., "On the ductile enlargement of voids in triaxial stress tields," J 
Mech. Phys. Solids, 17 (1969), 201-217. 
[8] Mandel, J. Plasticite classique et viscoplasticite (tnt. Centre Mech Sci., Courses and lectures, 
97, Udine 1971, Springer, Wien, New York, 1972) 

580 


