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Abstract 

By means of atomistic simulations, we demonstrate that a dislocation core exhibits intermittent quasistatic 
restructuring during incremental shear within the same Peierls valley. This can be regarded as a stick-slip transition, 
which is also reproduced for a one-dimensional Frenkel-Kontorova (FK) chain. However, on a sub-Burgers vector 
scale of length, it is very difficult to assign a sense of unidirectional motion of dislocation within the same Peierls 
valley and the conventional techniques of describing the dislocation core position lacks the essential resolution. In 
this scenario, we have applied the technique of principal component (PCA) analysis in an ilmovative way to 
establish the correspondence between a real physical system and its ideal one-dimensional modeL Our analysis show 
that the projections of the atomic trajectories on the principle directions further corroborate the efficacy of the one
dimensional FK chain in revealing the complex three-dimensional structure ofthe dislocation core. 

Introduction 

Dislocations are studied owing to their fundamental importance in deciding the mechanical 
properties of crystalline solids during plastic deformation. A dislocation can move under a shear 
load, but its motion suffers from several drag forces. The repetitive discrete atomic structure 
causes its energy to oscillate periodically with a period of Burgers vector as the dislocation 
glides through it This creates an energy barrier, formally referred to as the Peierls barrier [1] at 
absolute zero temperature against the motion of the dislocation. Again, the strain field of a 
dislocation increases inversely with the distance from the center of the dislocation [1]. 
Subsequently, the core of a dislocation remains under such a large strain that the theory of linear 
elasticity fails in this region and nonlinear effects come into play. Tn his earlier work, Peierls [2] 
first attempted to resolve this issue of nonlinearity by combining the known solution of 
dislocation's elastic field and assuming the sinusoidal nonlinearity with lattice misfit to land up 
with an expression of the displacement field. Later on, analytical treatments are attempted [3] to 
perform summation of misfit energies followed by other modifications. It has been assumed that 
the dislocation core remained unaltered as it moved from one lattice site to the adjacent one. 
Though, a number of studies could provide conceptual understanding of dislocation motion, the 
actual mechanism of crossover of a dislocation core from a Peierls valley to the adjacent one 
under an applied shear load remains obscure at the sub-Burgers vector length scale. 

Here we study the atomistic simulations of forcing a dislocation core out of its Peierls 
valley to obtain the atomic trajectories at sub-Burgers vector resolution. Simulations clearly 
show that a dislocation core exhibits intermittent relaxation bursts during incremental shear 
within the same Peierls valley. Thus, our analyses reveal that the core atoms undergo a peculiar 
stick-slip transition that has not been explored so far. Moreover, the technique of principal 
component analysis (PCA) [4] has been used in an innovative way to demonstrate that a specific 

257 



directionality can be associated with the structural rearrangement of dislocation core under the 
applied shear load. 

Simulation procedure 

We have performed molecular static simulations to compute the Peierls stress [2] at absolute zero 
temperature in four metals; molybdenum (Mo), iron (Fe), aluminium (AI) and copper (Cu) [5]. 
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Figure 1. Typical simulation cell of (a) Mo with the edge dislocation. The crystal directions are 
indicated. The drastic drop in the potential energy profile is marked by the upper arrow to show 
the moment of crossover of the dislocation to the adjacent Peierls valley for (b) Mo and (c) AI. 
Simulation data between two arrows have been analyzed in each case. 

The bcc metals Mo and Fe are simulated using the moditied Finnis·Sinclair interatomic potential 
[6. 7]. while the glue potential [8] and an embedded atom model [9] are employed for AI and Cu. 
respectively. The simulation scheme adopted here is similar to that reported in the earlier 
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measurements [10, II]. An edge dislocation is introduced in a slab of tinite thickness. Periodic 
boundary conditions are imposed along the directions of dislocation line and Burgers vector. For 

bcc systems the x, y and z dimensions of the simulation cell are 90.Sa(III;/2, 40a(I01), and 

Sa(121), where a is the lattice constant [refer Fig. lea)]. For fcc copper and aluminium, 

simulation cell dimensions are kept as 90. Sa (10 I; I 2 x 20a (I I I) /2 x Sa (12 I). During 

relaxation process, we obtain a compact narrow core structure in bcc Mo and Fe, while the 
dislocation in Al and Cu dissociates into partials [1], as commonly observed for fcc systems. 
Next, the shear strain in the system is gradually increased in small steps by tilting the vertical 
boundary of the simulation cell. As a result, the elastic potential energy of the system increases. 
After each strain step, the system is relaxed to the minimum energy structure using the conjugate 
gradient method [10] keeping the top and bottom surfaces fixed during the relaxation. The 
structural potential energy is recorded for each and every individual atom at every relaxation 
step. As soon as the internal shear load exceeds the Peierls stress for a given system, the 
dislocation crosses over to the next Peierls valley giving rise to a sudden drop in the total 
potential energy protile [refer Figs. I(b) and (c)]. Trajectories of all the atoms are calculated at a 
time step ofO.2S fs and the simulation output up to the crossover points are analyzed. To identify 
the dislocation core, centro symmetric deviation parameter (CSD) [10] windows are chosen 
accordingly for all four metals studied here. For bcc Mo and Fe, we have used the CSD window 
of range 1.4-10 N, while the ranges 3-20 N and 3-16 N are used here for Al and Cu, 
respectively. 

Results and discussions 

During relaxation process, the atomic structure tends to attain minimum potential energy 
configuration. Naturally, the core atoms execute significant relaxation due to free atomic 
movements and larger mistits near the core whereas the linear region around the core shows 
negligible relaxation. To quantify the displacement of core atoms, we have measured the 
differential displacement as follows. If the core of the dislocation contains ncore number of atoms, 
one can designate the core by specifying a set of ncorc vectors {rJ } (j = 1,2 ..... n"",J. Then the 
differential displacement at the ntll step of strain with respect to the previous step can be 

expressed as ~h(n)-rJ(n-I)12. Clearly, rj(n)""rJ(n-l) corresponds to small displacement 
J=l 

and one will observe very small structural changes with respect to the previous step. After 
evaluating differential displacements for all the systems we found occurrence of distinct 
relaxation bursts. Figure 2(a) and 2(b) show, for example, the obtained profiles for Mo and AI. 
Instead of showing a continuous response to the incremental shear strain, the dislocation core 
atoms show stick-slip type of behavior between two successive relaxation bursts. It is to be 
mentioned that for fcc systems, the differential displacements are separately calculated for the 
core atoms as well as for atoms in the stacking fault regions. Interestingly, both the core atoms 
and stacking fault region atoms show similar relaxation bursts for Al and Cu. 

Thus, our molecular static simulation results reveal that the modality of dislocation core 
movement resembles with stick-slip process, which is often observed in variety of physical 
systems and surface friction measurements [12-1S]. But, all earlier studies have reported the 
occurrence of stick-slip dynamics at macroscopic length scales and time. This study reports a 
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unique stick-slip process at a much finer length scale for dislocation core, which can be regarded 
as the quasistatic counterpart of the stick-slip dynamics. Events like bursts and stick slip are in 
general associated with non-linear systems. Therefore we tried to understand these findings in 
light of the celebrated Frenkel-Kontorova model [16], which was first envisaged to represent 
dislocation core as a kink in the chain. The FK model contains linear chain of particles connected 
by Hookean springs in its simplest form and placed over a substrate potential. Under fixed 
boundary conditions we studied the relaxation behavior of this one dimensional chain in detail 
and could reproduce similar relaxation bursts characterized by intermittent peaks in the 
differential displacement profile for the FK chain. The detail results are reported elsewhere [17]. 
As this simple one dimensional FK chain essentially represents dislocation structure in a crystal, 
one important point is to be noted here. Each time the chain is pulled in a forward direction, the 
obtained relaxation bursts in the dislocation core also effectively moves forward and one can 
ascertain a sense of directionality. In atomistic simulations, the position of the dislocation core is 

I-Mol 
0.006 

1\ 0.000 

0.00000 

d\ II 1\1)\ 

0.00004 

Shear strain 

(a) (b) 

~.LJLA\ 
0.00008 0.00000 0.00002 0.00004 0.00006 

Shear strain 

Figure 2: Distinct relaxation bursts are visible in the differential displacement of core atoms for 
(a) Mo and (b) Al 

identified as the center of mass position of all the core atoms. The motion of a dislocation is 
governed by resolved shear stress, drag forces, lattice friction etc., as we have already 
mentioned, but the motion can only be perceived when the dislocation line glides over many 
lattice spacing's i.e. several Burgers vector. In that case, several drastic drops are noticed in the 
potential energy curve from simulation output, which conclusively prove that the dislocation has 
really moved to the forward direction. But, within sub-Burgers vector resolution, it is unlike to 
perceive a sense of 'moving dislocation' using the conventional technique of describing the core 
position in atomistic simulations. We now face an essential question. Is it possible to apply any 
dimensionality reduction analysis to the simulation data which can represent the entire core 
structure having single dimension? To seek answer, the technique of PCA [4] has been applied 
here in an innovative way. We have shown that the high-dimensional data could be compressed 
using PCA to give its projection on a hyper surface ofreduced effective dimensionality. 

The PCA technique is conventionally used to determine the variances and covariances of 
a multidimensional time series data which is arranged in a matrix form. In these simulations, the 
multidimensional data is obtained as a function of variation in shear strain, instead of a time 
series. The matrix is then diagonalized and one can obtain a new coordinate system where the 
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variances are optimized. The variances are maximum along the basis vector in this new 
coordinate system and it is the most significant direction representing the entire 
multidimensional data set as a new set of single dimension. As mentioned earlier, the coordinates 
of core atoms are recorded in this study at each step of incremental shear strain and this strain 
series data is arranged as a n, x 3n,."" matrix, where n, denotes the number of strain steps and 

ncorc is the number of atoms present in the core. The rows of these matrices consist of the x, y 
and z components of coordinates of ncorc atoms. The data set was considered up to the point 
when the dislocation remains within the same lattice site [refer Figs. l(b) and l(c)]. Next each of 

HI 
1 I-"-Mol 0.9 - I-·-Fel 

0.8 '" " '" .;;1 ] 
~ 0.6 S 0.6 
c '" ., 'ill 
.0 .., 
'" '" 0.4 .~ 
$ l OJ 1 112 0 

~ (a) 
z 

(b) 
n.!) .. ."., 0.0 ~.-.~.-""~."'-.-II-.---.-""'-""-"'" 

0 5 10 15 '2Q 0 4 12 16 
Corrf!lO!1€'1! 

1.0 1.0 • F--Al l - I---cul 
., 0.8 

E G.S 
.;;1 

~ w 
Ii 0.6 ~ lUi 
.0 g, ., '$ 

II '" '" 0.4 g flA 

~ W g 
~ !l.2 z 112 

(c) (d) 

0.0 --,. .................. -........ -....... !l.e .... -..... "' ....... -.-.-........... -.-.-....... 
0 4 13 12 16 2Q 4 

Compooen! 

Figure 3: Normalized eigenvalues obtained from the PCA of the coordinate data of dislocation 
cores in (a) Mo, (b) Fe, (c) Al and (d) Cu. Only a few values are shown here as the eigenvalues 
drastically drop for less prominent components. 

the 3ncore columns is separately mean centered and a symmetric covariance matrix is formed 
using this mean-deviation matrix. Diagonalization of the covariance matrix gives the eigenvalues 
and the corresponding eigenvectors. Total number of eigenvalues will be 3ncorc in this case. The 
largest value corresponds to the principal direction and the variance is maximum along this 
direction. Our dataset yields few hundred eigenvalues for each of the four metals, but 
surprisingly the normalized principal eigenvalues are almost in excess of 90%. We find that 
remaining eigenvalues drop drastically for less signiticant components [refer Figs. 3(a)-(d)]. This 
implies a sharp directionality of dislocation core restructuring even at sub-Burgers vector 
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resolution along with a high compressibility intrinsic to these sets of multidimensional data. 
Figure 4 shows the projections of the original data on the principal directions for the largest 
eigenvalues for Mo, Fe, Al and Cu, where the stair-case like feature is common to all. The 
obtained quasiplateaus in each of these plots in Fig. 4 represent the stick states, whereas the 
sudden jumps correspond to the slip states. Irrespective of the magnitude of the stacking fault 
energy, the partial dislocations along with the stacking fault region exhibit relaxation bursts 
simultaneously in both Al and Cu. PCA results show that the projected profile always causes a 
translation of the dislocation core in the same direction, even at such a fme length scale, thereby 
offering a ground for comparison with the one dimensional FK model. 
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Figure 4: Obtained principal projections for (a) Mo, (b) Fe, (c) Al and (b) Cu showing staircase 
like profiles. 

Conclusions 

To conclude, we have shown that at sub-Burgers vector resolution, intermittent relaxation bursts 
occur in the quasistatic simulation of dislocation core. Similar features are observed for the 
simple one-dimensional FK chain. The tool of principle component analysis has been used in a 
new way to extract the effective dimensionality of the atomistic data of the dislocation core 
atoms. One can think of associating the sense of 'unidirectional motion' of the dislocation within 
the same Peierls valley. Though PCA is a well known versatile technique and has been 
successfully used in different discipline of science, its applicability to study dislocation physics 
has not been explored so far. The projections of the atomic trajectories on the principle directions 
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further confirm that simple FK chain in one dimension is capable to reveal the complex structure 
of the dislocation core in 3-dimension, however, the direct link of stick-slip phenomenon in 
realistic systems invites further research. 
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