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Abstract 

 
Copper concentrates with high arsenic contents must be pretreated before conventional smelting 
to prevent environmental pollution with arsenic compounds. In this work, experimental results 
concerning the selective removal of arsenic and antimony from copper concentrates are 
presented. The process consists of an alkaline digestion using concentrated NaHS-NaOH 
solutions to transform the arsenic and antimony sulfides into soluble compounds. A water 
leaching follows the digestion to dissolve the arsenic and antimony, leaving clean copper sulfide 
solid residues. The laboratory scale tests were carried out using a copper–arsenic concentrate 
with 15.05% As and 1.42% Sb. The results showed that the most important digestion variables 
were temperature and concentrations of NaHS and NaOH. Over 97% of arsenic and 92% of 
antimony could be removed in 10 min of digestion using 8.9 M NaOH and 100% excess of 
NaHS at 80 °C.  The subsequent water leaching was performed at 80°C for 20 min.  
 

Introduction 
 
The presence of arsenic minerals in copper concentrates complicates their treatment by the 
conventional smelting-converting process. The sulfides and oxides of arsenic are highly volatile. 
Thus, in the pyrometallurgical treatment of copper concentrates with high arsenic content, there 
is a risk of producing arsenic emissions to the atmosphere. Therefore, the smelters impose heavy 
penalties on copper concentrates that contain more than 0.5% arsenic [1]. The arsenic in copper 
concentrates is usually present as enargite (Cu3AsS4) and also tennantite (Cu12As4S13). Antimony 
is also a common impurity that can affect the quality of the final copper product. In copper 
concentrates the antimony is usually associated with the arsenic in tennantite where antimony 
can replace the arsenic up to the composition of tetrahedrite (Cu12Sb4S13). Due to the presence of 
large amount of enargite and tennantite in some copper ores, the concentration plants cannot 
produce clean copper concentrates without losing a significant amount of copper. Thus, the 
concentrates must be pretreated to lower their arsenic content before smelting. The conventional 
method to reduce the content of arsenic and other deleterious impurities in copper concentrates is 
roasting, where the arsenic is removed by volatilization as either sulfide or oxide. Although 
roasting is very effective for arsenic elimination, the removal of other impurities which are also 
present in the concentrates such as antimony and bismuth is less effective. In addition, roasting 
plants may also have problems to comply with the increasingly stringent norms that restrict the 
arsenic emissions to the atmosphere. Therefore, there is a growing interest in the copper industry 
for alternative processes to remove arsenic and antimony from copper concentrates.  
 
In this work, a process for selective dissolution of arsenic and antimony from a copper 
concentrate containing enargite and tennantite is discussed. The process includes an alkaline 
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sulfide digestion with a concentrated solution of NaHS-NaOH followed by leaching of the 
digested pulp with water.  
 
Unlike conventional leaching, the digestion is carried out using a pulp with a high solid 
concentration; therefore, the soluble arsenic and antimony compounds formed by reaction with 
NaHS and NaOH will precipitate at least partially. In the subsequent water leaching the 
precipitated arsenic and antimony will be dissolved and separated from the solids by filtration. 
The ongoing authors’ research on the digestion of copper concentrates containing enargite with 
Na2S-NaOH has established that the alkaline digestion, followed by water leaching, is an 
efficient method for fast removal of arsenic, leaving essentially all the copper in the solid 
residues as copper sulfide [2]. 
 
In the present paper the behavior of a complex copper concentrate containing arsenic and 
antimony using NaHS-NaOH is discussed. 
 
Chemistry of the alkaline sulfide leaching  
 
The direct leaching of enargite with Na2S-NaOH solutions have been studied by several 
researchers and the following reaction has been proposed [3, 4, 5]:  
 

2Cu3AsS4+ 3Na2S � 3Cu2S s + Na3AsS4                                        (1) 
 

For tennantite and tetrahedrite the proposed reactions are [6, 7]: 
 

Cu12As4S13 (s) + 6Na2S → 5Cu2S s + 2CuS s + 4Na3AsS3            (2)

Cu12Sb4S13 + 6Na2S  → 5Cu2S(s)+ 2CuS(s) + 4Na3SbS3           (3) 

When NaHS is used as the source of sulfide, the following neutralization reaction occurs in the 
solution: 
 

NaHS + NaOH = Na2S + H2O             (4) 
 
On adding reaction (4) to reactions (1) through (3) the following overall reactions can be written 
when enargite [8], tennantite and tetrahedrite are reacted with NaHS-NaOH solutions: 
 

2Cu3AsS4 (s)+ 3NaHS + 3NaOH→ 3Cu2S(s)+ 2Na3AsS4 + 3H2O           (5) 

Cu12As4S13 s + 6NaHS + 6NaOH → 5Cu2S s + 2CuS s + 4Na3AsS3+ 6H2O          (6)

Cu12Sb4S13 s +6NaHS + 6NaOH → 5Cu2S(s)+2CuS(s) + 4Na3SbS3 + 6H2O               (7) 

As seen in these overall reactions, the stoichiometric amounts of NaHS and NaOH required to 
dissolve all of the arsenic or antimony from these minerals are equal to 1.5 moles per mole of As 
or Sb.   
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These overall reactions (5) through (7) will be assumed to occur in the digestion step of the 
process studied here.  
 
 

Experimental Work 
 
Materials 
 
The concentrate used in this research was prepared by manual selection from a primary sample 
of natural crystals of arsenic rich minerals. The selected crystals were crushed, ground, and 
classified into narrow size fractions using a U.S. sieve series. The size fraction -150+106 μm was 
used in the experimental work.  The chemical analysis of this size fraction indicated 37.4% Cu, 
15.05% As, 1.42% Sb, 9.69% Fe and 35.0% S.  
 
The X-ray diffraction analysis of the concentrate is presented in Figure 1, which showed that the 
main minerals present were enargite, tennantite and pyrite.  

 
Figure 1. X-ray diffraction spectrum of the concentrate size fraction -150 + 106 μm. 

 
A few individual particles of the concentrate were also analyzed by energy dispersive 
spectrometry (EDS). All the particles analyzed showed the presence of antimony ranging from 1 
to 3.2%. In some of the particles, presumably tennantite, the presence of iron was also detected 
in concentrations ranging from 5 to 7.5%.   
 
The chemical reagents used to prepare the digestion solution were NaHS�xH2O from Sigma 
Aldrich and NaOH from Merck. 
 
Experimental Procedure 
 
The alkaline digestion experiments were carried out with 4 g of the concentrate sample -150 + 
106 μm prepared as described earlier. A small volume of freshly prepared solution (usually 4 or 
5 ml) containing the desired amounts of NaHS and NaOH was preheated over a hot plate in a 
100 ml steel crucible until it reached the temperature selected for the test. The alkaline digestion 
was then started by adding the solid preheated sample. During digestion the pulp was vigorously 
mixed using a paddled stir rod for the predetermined time. Once the digestion period ended, the 
pulp was immediately poured into a glass reactor containing preheated water, to carry out the 
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water leaching. In all the tests the leaching was performed using 500 ml of water at the constant 
temperature of 80 °C and 385 rpm.  The leaching time was usually 20 min. The reason for using 
a large volume of water (500 ml) in the leaching step was to prevent further reaction between the 
remaining enargite-tennantite minerals and the unreacted NaHS. The leaching reactor was a 2-
liter glass round bottom flask with mechanical agitation system.  After the water leaching, the 
solids were filtered, washed and finally dried at 80 °C for chemical analysis.  
 

Results 
 
The experimental work included the study of the main digestion variables: temperature, NaHS 
and NaOH concentrations and time. Regarding the water leaching, time was the only variable 
studied. 
 
Effect of the Digestion Temperature 
 
Experiments were carried out at digestion temperatures in the range of 60 to 90 °C, using 4 ml of 
a solution with NaHS and NaOH concentrations of 3.3 M and 5.8 M, respectively. The digestion 
time was 6 min. The water leaching time was 20 min for all the experiments.  The removal of 
arsenic and antimony obtained at the various temperatures are shown in Figure 2. 
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Figure 2. Effect of digestion temperature on arsenic and antimony removal. Digestion  

conditions: 4 g of solid, 4 ml of solution NaHS 4.8 M and NaOH 5.7 M, 6 min. 
 
As seen in this figure, the digestion temperature has a significant effect on the extent of arsenic 
and antimony removal from the concentrate. We can also see that the removal of arsenic is 
higher than the removal of antimony at all the temperatures. An X-ray diffraction analysis was 
also carried out of a sample digested for 6 min at 80 °C using a solution with a NaHS 
concentration of 3.3 M and NaOH 5.8 M.  The X- ray spectrum obtained is presented in Figure 3.  
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Figure 3. X-ray diffraction spectrum of the residues obtained in digestion for 6 min at 80 °C, 

using 4 ml of a solution 3.3 M in NaHS and 5.8 M in NaOH, followed by water leaching. 
 
As seen in this figure the main diffraction lines observed in this partially digested sample 
correspond to tennantite, pyrite and digenite (Cu1.8S). The enargite lines are absent indicating 
that this mineral reacted faster than tennantite. This result also suggests that the fraction of the 
antimony present in tennantite is larger than the antimony in enargite, which would explain the 
lower antimony removal observed in all the experimental conditions tested.  The formation of 
digenite as the copper sulfide product is in agreement with the results obtained in an earlier study 
on the alkaline digestion and water leaching of enargite [9]. 
 
Effect of the concentration of the reagents 

 
Previous investigations on the alkaline sulfide leaching of enargite and also tetrahedrite have 
shown that the concentration of both, the sulfide salt and the hydroxide, have a significant effect 
on the extent of arsenic and antimony removal [5, 8, 10, 11]. The results of experiments 
performed with concentrations of NaHS in the range of 3.3 to 8.0 M and NaOH concentrations in 
the range of 5.7 to 10.5 M are summarized in Table I. The third and fourth columns in this table 
indicate the excess NaHS and excess NaOH used in the digestion. These values were calculated 
considering a stoichiometric requirement of NaHS and NaOH of 1.5 moles per mole of arsenic 
plus antimony in the concentrate, according to reactions (5) through (7). As seen in the table, a 
larger excess of NaOH than NaHS was used in all the experiments, in order to allow for the 
neutralization of the HS- to S2- according to reaction (4) plus an extra amount to maintain a 
highly alkaline digestion solution. All the digestion experiments were carried out at 80 °C, using 
4 ml of solution and digestion times of 6 min.  
 

Table I. Effect of reagents concentration in the digestion on arsenic and antimony removal. 
Concentrations Reagent excess Removal after 6 min 

NaHS, M NaOH, M NaHS, % NaOH, % As, % Sb, % 
3.3 5.8 0 79 72.28 59.48 
4.8 5.7 50 79 79.30 70.57 
6.4 8.9 100 179 95.82 92.17 
8.0 10.5 150 229 95.47 92.09 

 
As seen in this table, the use of a high concentration of NaHS and NaOH in the digestion step is 
necessary for an efficient removal of arsenic and antimony from the concentrate. 
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Effect of digestion time 
 
The effect of digestion time was studied at the temperature of 80 °C using 4 ml of solution and 
for two levels of reagents concentration. The results are shown in Figure 4. 
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Figure 4. Effect of digestion time on arsenic and antimony removal.  

Digestion conditions: 4 ml of solution and 80 °C.  
 
It can be observed in this figure that for NaHS concentration of 6.4 M, and NaOH concentration 
of 8.9 M the rate of reaction was so fast that in two minutes of digestion the removal of arsenic 
and antimony from the concentrate was about 93% and 90%, respectively. As seen in Table I, the 
NaHS excess was 50% when the concentration was 4.8 M and 100% excess when the 
concentration was 6.4 M. The corresponding NaOH excesses were 79% for 5.7 M and 179 % for 
8.9 M. From these data the advantage of using a small volume of solution in the digestion is 
apparent. This means that in a small volume we can have high concentrations of NaHS and 
NaOH, with the resulting high levels of arsenic and antimony removal without using large 
amounts of reagents. 
 
Effect of the leaching time 
 
The purpose of the water leaching step of the process studied here was to dissolve the digestion 
products: thioarsenate, thioarsenite or thioantimonite that precipitated during the digestion. Thus 
the water leaching separates the dissolved arsenic and antimony from the solid copper sulfides 
that constitute the main part of the solid residue. For the determination of the arsenic and 
antimony dissolved in the digestion, 500 ml of water was used in the leaching to prevent further 
reaction of the minerals through a large dilution of the pulp. However, in a practical application 
of the process the leaching could be carried out with a small liquid/solid ratio. In addition, since 
the arsenic and antimony that precipitated in the digestion are very soluble compounds, the 
dissolution in water should be a very rapid process and thus the leaching time could be shorter 
than 20 min.  To verify this possibility, experiments were carried out under identical digestion 
conditions and leaching times in the range of 10 min to 40 min. The arsenic and antimony 
removal obtained are presented in Figure 5.  
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Figure 5. Effect of leaching time on arsenic and antimony removal from the concentrate. 

Digestion conditions: 5 ml of solution 5.4 M in NaHS and 7.4 M in NaOH, 8 min. 
  
As seen in Figure 5, the extents of arsenic and antimony removal from the concentrate were not 
affected by the leaching time in the range of 10 to 40 min. Therefore, 10 min of leaching are 
sufficient to efficiently solubilize all the arsenic and antimony that precipitated during the 
digestion step.  
 

Conclusions 
 
- The digestion with NaHS-NaOH followed by water leaching is an efficient method for rapid 

removal of arsenic and antimony from an enargite-tetrahedrite concentrate, containing 
15.05% As and 1.42% Sb.  

- The copper in the concentrate remains in the solid phase as digenite.  
- The variables that affect the arsenic and antimony removal are the digestion temperature, the 

concentrations of NaHS and NaOH, and the digestion time. 
- At a digestion temperature of 80 °C, over 97% of the arsenic and 92% of the antimony could 

be removed in 10 min of digestion using a digestion solution with a NaOH concentration of 
8.9 M and NaHS 6.5M (corresponding to 100% excess of NaHS over the theoretical 
stoichiometric requirement). 

- A leaching with water at 80 °C for 10 min is sufficient to ensure complete dissolution of all 
the arsenic and antimony compounds that precipitated during the digestion. 
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Abstract 

Electrodeposition of cobalt from cobalt tetrafluoroborate (Co(BF4)2) was investigated using 1-
butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) ionic liquid. The experiments were 
conducted at 353 K. Chronoamperometry experiments confirm that the electrodeposition of 
cobalt on tungsten electrode proceeds via three-dimensional instantaneous nucleation with 
diffusion-controlled growth process. The average diffusion coefficient of Co(II) was found to be 
7.5 × 10-8 cm2s-1 at 353 K, which is in good agreement with the estimated value from cyclic 
voltammetry. The electrochemical deposit was characterized using SEM-EDS and XRD methods. 
The SEM image shows formation of a dense and compact deposit at - 0.75 V. The EDS and 
XRD analysis confirm that the obtained deposit is pure cobalt metal. 

Keywords: Cobalt tetrafluoroborate, Electroreduction, BMIMBF4 ionic liquid 

Introduction 

Cobalt and its alloys are very important functional materials due to their magnetic properties, 
and resistance to corrosion. Electrodeposition of Co is relatively difficult from the aqueous 
solutions due to hydrogen evolution. In recent years, ionic liquids (ILs) have received greater
attention as a novel media for the electrodeposition of metals and alloys. Ionic liquids have 
several advantages over conventional aqueous solutions as electrolytes. They are non-flammable,
display high thermal stability with negligible vapor pressure and are good solvents for numerous 
salts and polymers. Their wider electrochemical window and relatively high conductivities 
allowed the electrodeposition of less noble metals, semiconductors and alloys, which otherwise 
are very difficult to deposit in aqueous electrolytes that possess limited electrochemical windows 
and poor thermal stabilities [1-7]. 

Among the various air-stable room temperature ionic liquids (RTILs), 1-butyl-3-
methylimidazolium tetrafluoroborate (BMIMBF4) ionic liquid have been extensively studied and 
used for electrochemical applications like electrodeposition and batteries. At ambient 
temperatures, dissolution of commonly occurring cobalt salt (CoCl2) in BMIMBF4 is very 
difficult because of the poor coordination capability of BF4

- anions. Therefore, specific cobalt 
salts need to be synthesized for desired electrochemical applications. Sun et al. [8-12] found that 
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when excess of EMICl is present in the IL melt, free chloride ions are produced and forms a 
complex with the metal ions or metal chlorides in order to facilitate the dissolution of salt species 
in the melt. Intermetallic alloys like on Pd-Ag, Pd-In, Pd-Cu, Sb-In and Gd-Te were studied in in 
BMIM-Cl-BF4 systems [8-12].   

Electrodeposition of cobalt and cobalt alloys have been primarily focused on using 
chloroaluminate-based ILs because of their adjustable Lewis acidity or basicity of the ILs. The 
chronoamperometric transient behavior showed that pure cobalt deposition proceeded via 3D 
progressive nucleation with diffusion controlled growth [13-15]. An et al. [16] studied the 
electrodeposition behavior of cobalt in ZnCl2-EMIC-CoCl2 system and their results showed that 
the electrodeposition of cobalt metal proceeds through diffusion-controlled growth process. 
Hsieh et al. [17] investigated the speciation and coordination of cobalt-chloride-based ionic 
liquid, containing different mole percentages of CoCl2 in EMIC melts. The coordination number 
and the mean Co-Cl bond length decreases with the increase in concentration of CoCl2 salt in the 
IL. The results showed that various Co(II) chloride compounds such as CoCl4

2-, Co2Cl5
-, and 

Co3Cl7- are formed for different molar ratio of CoCl2 and EMIC in the melt. Tulodziecki et al.
[18] studied the importance of double layer structure formation on electrochemical deposition of 
Co from ILs containing soluble Co(II)-based precursors. The authors provided an insight on the 
mechanism of Co2+ reduction that taking place on the electrode surface at elevated temperature.
In another study, Tulodziecki et al. [19] revealed the electrodeposition behavior of zinc-cobalt 
(Zn-Co) alloy in deep eutectic solvent system i.e., choline chloride/urea (1:2 molar ratio) 
containing 0.11 M ZnCl2 and 0.01 M CoCl2. The CV results showed preferential reduction of Co 
and no anomalous codeposition of Zn-Co alloy occurred using this solvent. Chronoamperometric 
(CA) investigations combined with field emission scanning electron microscopy (FE-SEM) 
indicated that the electrodeposition of Zn-Co alloys followed the mechanism of instantaneous 
nucleation. Recently, our research group have studied the electrodeposition of Co from eutectic 
mixture of urea and choline chloride [20].

In the present study, chronoamperometry technique was used to study the nucleation 
behavior of cobalt(II) ions in BMIMBF4 ionic liquid. The electrodeposits were characterized 
using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray 
diffraction (XRD) methods. 

Experimental Method 

The 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) ionic liquid of ≥98% 
(Sigma Aldrich) was used as received without any further purification or drying. Prior to the 
starting of the experiments, anhydrous Co(BF4)2 was obtained from the dehydration of 
Co(BF4)2·6H2O (96%, Alfa Aesar) under vacuum at 393 K for more than 24 h. The electrolyte 
solution was obtained by dissolving the stoichiometric amount of Co(BF4)2 in BMIMBF4 IL 
under dry Ar atmosphere and with a constant stirring until the dissolution of Co(BF4)2 is
complete at 353 K. 

The tungsten wire (0.11 cm2, 99.95%, Alfa Aesar) was used as the working electrode, while 
platinum wire (>99.997%, Alfa Aesar) and silver wire (99.9%, Alfa Aesar) were used as counter 
and quasi-reference electrodes respectively. The tungsten wire was polished successively with 
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increasingly finer grades of emery paper and then rinsed well for several times with ethanol and 
distilled water and then dried in air. All the electrochemical experiments were performed using 
EG&G PARC model 273A Potentiostat/Galvanostat under an Ar atmosphere. Electrochemical 
experiments were performed using a three-electrode cell system [20]. 

Electrodeposition experiments were carried out on copper foil (0.25 cm2, Alfa Aesar) as 
cathode electrode. The as-deposited sample was washed using anhydrous ethanol to remove any 
salt contaminants that adhere to the cathode surface. A high resolution scanning electron 
microscope (SEM, JEOL 7000, Japan) was used to investigate the surface morphology and 
energy dispersive spectroscope (EDS), attached to the SEM, for determining the elemental 
composition of the electrodeposits. The X-ray diffraction (XRD, Philips APD 3720, Netherlands) 
was used to record the phase and structure of the electrodeposits.  

Results and Discussion 

Cyclic Voltammetry

Figure 1 shows the overlay of the CVs of tungsten electrode in BMIMBF4 containing 0.20 M
of Co(BF4)2 at different temperatures (333 to 363 K). As shown in Figure 1, the cathodic peak 
current increases significantly with the increase in temperature. Also, the cathodic peak potential 
and the reduction onset potential of Co(II) shifts positively with the increase in temperature. It 
may be due to higher mobility of ions at higher temperature.  
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Figure 1. Cyclic voltammograms of tungsten electrode in BMIMBF4 containing 0.20 M of 
Co(BF4)2 at different temperatures of 333, 343, 353 and 363 K respectively. 

Chronoamperometry 

In order to investigate the nucleation and growth mechanism, chronoamperometric 
measurements were carried out by stepping the potential of the working electrode from a value 
where no reduction of cobalt occurs to those sufficiently negative potentials that induces the 
reduction process. This technique have been extensively investigated for understanding the 
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electrodeposition mechanism of metals by comparing the obtained experimental data with 
theoretical models [21, 22]. Typical current-time transient curves for the experiments at different 
voltages (-0.60 to -0.72 V) are shown in Figure 2. The curves are characterized by (a) initial 
sharp current peaks at the onset potentials due to the double layer charging, (b) a subsequent rise 
in the current due to the formation and growth of cobalt nuclei on the electrode surface and after 
passing through the maximum (tmax, Imax) point, (c) the current decreases as a function of time
(t-1/2) to a constant value, thus indicating a diffusion controlled process given by Cottrell equation 
[23]: 

 I = nFAD1/2C(πt)-1/2 [1]

where I is the current passing through electrolyte in A, n is the number of transferred electrons, F
is the Faraday constant, 96485 Cmol-1, A is the electrode area in cm2, C is the bulk concentration 
in molcm-3, t is the time in s and D is the diffusion coefficient of electroactive species in cm2s-1. 
As shown in Figure 3, the plot of I vs. t-1/2 gives a straight line. From Eq. [1] and using the slopes 
of the straight lines of I vs. t-1/2, the diffusion coefficient of Co(II) ions in BMIMBF4 lies 
between 11.0 × 10-8 cm2s-1 and 4.5 × 10-8 cm2s-1 and the values are listed in Table I. The average 
value of diffusion coefficient of Co(II) ions is calculated to be 7.5 × 10-8 cm2s-1,which is in good 
agreement with the estimated value (7.6 × 10-8 cm2s-1) obtained from the cyclic voltammetry.  
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Figure 2. Current-time transients of chronoamperometric experiments for BMIMBF4 containing 
0.20 M of Co(BF4)2 on tungsten electrode at 353 K.

Table I. Diffusion coefficient of Co(II) at different potentials.
Potential (V) D (cm2s-1)

-0.64 11.0 × 10-8

-0.66 9.4 × 10-8

-0.68 6.1 × 10-8

-0.70 6.7 × 10-8

-0.72 4.5 × 10-8

Average 7.5 × 10-8
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Figure 3. Variation of current (I) with time (t-1/2) for the decreasing portion of current-time 
transients in Figure 2 during the electrodeposition of cobalt on tungsten electrode at 353 K. 

The equation, based on 3D nucleation and growth process is controlled by diffusion of the 
electroactive species (Co (II) ions) in the electrolyte has two limiting cases i.e., instantaneous 
and progressive nucleation. To identify which of these two mechanisms govern the  
electrodeposition of cobalt, it is important to compare the dimensionless experimental current–
time transients with the dimensionless transients of 3D instantaneous (Eq. [2]) and progressive 
(Eq. [3]) nucleation processes [21, 22]: 
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The experimental and calculated plots are shown in Figure 4. Compared to the calculated 
data, the experimental data plots can be explained better by an instantaneous nucleation rather 
than progressive nucleation process. This suggests that the initial stage of the cobalt deposition 
on a tungsten electrode follows instantaneous nucleation under diffusion controlled growth of 
cobalt nuclei. 
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Figure 4. Comparison of the experimental dimensionless current-time transients with the 
calculated 3D nucleation process for the chronoamperometric electrodeposition of cobalt on
tungsten electrode at (a) -0.64 V, (b) -0.66 V, (c) -0.68 V and (d) -0.70 V. All the experiments 
are conducted using BMIMBF4 containing 0.20 M of Co(BF4)2 at 353 K.

Electrodeposition and characterization of cobalt 

Figure 5. SEM micrograph of the cobalt deposit obtained from BMIMBF4 containing 0.20 M of 
Co(BF4)2 on copper cathode electrode substrate at -0.75 V and at 353 K.
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Electrodeposition of cobalt on a copper (0.5 cm2) cathode electrode was performed in
BMIMBF4 containing 0.20 M of Co(BF4)2 at 353 K and by applying a constant potential of -0.75
V between the electrodes. After electrolysis, the deposited Co sample was rinsed thoroughly with
ethanol, completely dried and then examined using SEM, EDS and XRD techniques.

The SEM micrograph of the electrodeposited cobalt obtained from BMIMBF4 ionic liquid 
containing 0.20 M of Co(BF4)2 is shown in Figure 5. The cobalt deposit obtained by constant 
potential electrolysis consists of flat and compact surface with the small cauliflower like
structures. EDS spectrum of the Co deposit is shown in Figure 6. The electrodeposit contain pure 
cobalt with no trace of other impurities such as trapped B and F atoms from the ionic liquid.
Figure 7 shows that the XRD pattern of as-deposited Co metal. Except the peak due to the Cu 
substrate, all other peaks in the XRD spectrum are related to Co metal. No presence of cobalt 
oxide peak in the XRD spectrum indicates that the electrodeposit contain pure cobalt metal.  

Figure 6. EDS spectrum of the cobalt electrodeposit obtained from BMIMBF4 containing 0.20 M
of Co(BF4)2 on copper at -0.75 V and at 353 K.
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Figure 7. XRD spectrum of the cobalt electrodeposit obtained from BMIMBF4 containing 0.20 
M of Co(BF4)2 on copper at -0.75 V and at 353 K
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Conclusions 

The cyclic voltammetry and chronoamperometry experiments were conducted to reduce
Co(BF4)2 in BMIMBF4 ionic liquid containing 0.20 M of Co(BF4)2 at 353 K. 
Chronoamperometric experiments shows that the electrodeposition of cobalt is a 3D progressive
nucleation process under diffusion control. From Cottrell equation, the average diffusion 
coefficient of Co(II) ions in the melt was calculated to be 7.5 × 10-8 cm2s-1 at 353 K, which is in 
good agreement with the estimated value (7.6 × 10-8 cm2s-1) from cyclic voltammetry. A dense 
and compact electrodeposit of cobalt was obtained under the experimental conditions. EDS and 
XRD results show that the electrodeposit is mainly composed of cobalt metal.
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Extracting alumina from coal fly ash (CFA) is of great interest for both environmental protection 
and recycling valuable alumina content. In this study, ultrasonic aided leaching process as an 
effective method was investigated to enhance extracting Al2O3 from CFA via concentrated 
sulfuric acid sintering. The influence of ultrasonic power and processing time were tested under 
the conditions as the same as those without ultrasound. It is found that the alumina extraction 
rate can reach 90.5 % with ultrasound assistance, while the ultrasonic treatment can reduce 
almost 15 ~ 30 min in leaching time and 5 ~ 10 oC in leaching temperature than those without 
ultrasonic operation at the same Al2O3 extraction rate. In addition, the ultrasonic can reduce 
calcium content by 6 ~ 8 % dissolved into the leaching liquid. SEM analysis also shows that the 
residue particle size with ultrasound is smaller than that without ultrasonic treatment.  
 

 
Extracting alumina from coal fly ash (CFA) is of great interest for both environmental protection 
and recycling valuable alumina content. There are two major methods which are currently 
applied for extracting alumina from CFA, alkali-sintering and acid leaching [1]. In the alkali-
sintering process, the alumina extraction rate is high (>90 %), but the operating temperature must 
be ensured to be more than 1000 oC) with large volume of solid residues [2]. By contrast, the 
acid-leaching process needs lower energy consumption and produces less residues, but its Al2O3 
extraction rate is lower (82 ~ 85 %) [3].  
 
There are a number of publications available on improving Al2O3 extraction rate in the acid-
leaching process for treating coal fly ash. Nayak [4] used different concentrations of dilute 
sulfuric acid to leach coal fly ash, where Al2O3 extraction rate reached 85 %. MU [1] mixed coal 
fly ash together with concentrated sulfuric acid (98 %) before sintering, and finally could obtain 
87.64 % Al2O3. Most of the leaching temperatures were kept in the range of 80 ~ 90 oC [3, 5, 6]. 
As known from the open literature, the raising leaching temperature and the increasing 
concentration of sulfuric acid were the major common methods to increase Al2O3 extraction rate 
from CFA, but those could face technical constrains in possible increased chemical corrosion in 
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equipment lining materials. Therefore, further research is needed to look for other technical 
means and better understanding of processing parameters.  
 
Ultrasonic can be a powerful tool for enhancing the leaching process [7, 8]. Nakui [4] used 
ultrasonic treatment to accelerate hydrazine degradation which increased from 1 mol L-1·min-1 
to 3.5 mol L-1·min-1 under ultrasonic – an increase by 250 %. Bese [9] observed the effect of 
ultrasonic treatment on the dissolution of copper from copper converter slag by acid leaching, 
and the ultrasound enhanced the dissolution of Fe and other metallic. Belviso [10] also found that 
the ultrasonic treatment facilitated the formation of zeolites at a lower-temperature (25 oC) than 
did no sonication (40 or 60 oC).  
 
In this work, the concentrated sulfuric acid sintering combined with ultrasonic aided leaching 
process was applied to enhance extracting Al2O3 from CFA. The leaching behaviors of Al3+ and 
other metallic (Fe3+ / Fe2+ and Ca2+) were also investigated. The technical data obtained will 
facilitate further improvements in the recycling efficiency and product purity control in the acid-
sintering process of extracting alumina from CFA.   
 

 
Materials and Chemicals 
 
Table I is the chemical compositions of coal fly ash collected from a thermal power plant in 
Inner Mongolia, China. The specimens used for chemical analysis of the composition were taken 
from a mixture of CFA in order to get a good reprehensive result for the raw materials. The 
composition dada presented here was applied to the process design. Major parts of CFA were 
SiO2, Al2O3, Fe2O3 and CaO, which were taken into account for the leaching tests, while the 
other small amounts of components were not considered. The particle sizes of about 60 % CFA 
raw material were -150 meshes.  
 

Table I. Chemical Compositions of Coal Fly Ash. 

Composition Content/wt % Composition Content/wt % 

SiO2 54.55 TiO2 1.44 

Al2O3 33.54 K2O 0.98 

Fe2O3   3.59 MgO 0.82 

CaO 

P2O5 

  3.80 

  0.28 

SO3 

Na2O 

0.28 

0.31 

 
Figure 1 is XRD pattern of coal fly ash as raw material for performing alumina extraction. The 
main crystalline phase in coal fly ash is mullite and quartz. In the leaching experiments, H2SO4 
(GR) was used as leaching agent and reactant. The pure water used was produced in our own 
laboratory.  
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Figure 1. XRD spectrum of coal fly ash as raw material 

 
 
Leaching Process and Analysis 
 
The coal fly ash which was first ground for 3 h, then sintered with H2SO4 (80 %) at 1: 1.5 mass 
ratio for 1 h at 290 oC. The sintered mass was mixed with pure water to make aqueous solution in 
a container placed in a heating water tank, and the liquid-solid ratio was kept 12: 1, while the 
liquid was treated with ultrasonic unit (Ningbo Scientz biotechnology CO.). Ultrasonic operation 
was conducted with an alternative interval between 2 s-on and 3 s-off for varying period of time 
and temperature. After that, all leaching tests took place in the heating water tank for a fixed 
period of 30 min and at the end the liquid was filtrated to separate solid residues.  
 
Al3+, Ca2+, Fe3+ and Fe2+ in the liquid were determined by titration analysis method. The 
chemical compositions of leaching residues were measured by X-ray fluorescence analyzer 
(Shimadzu Corp.). The crystalline phases were measured by Rigaku X-ray diffraction analyzer 
(RigakuD: MAX-RB12KW, scanning from 10o to 100o, the rate was 0.02o per second, Cu (40kV, 
40mA)). And the leaching residue was examined using analytical scanning electron microscope 
(JSM-6510A, JEOL CO., Ltd.).  

 
Leaching Behavior of Al3+  
 
Temperature, ultrasonic treatment time and power were studied as variables in the leaching 
process, in where the reaction in leaching process may be described as follows:  
 
                                                     Al2(SO4)3 2Al3+ + 3SO4

2-                                                               (1) 
 
Al extraction rate, r, can be calculated by equation (2):   
 

2 3

50
2 100%54%

102

VC
r

W Al O wt
                                      (2) 
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where C, V and W are Al concentrations in leaching solution measured by ICP, the volume of 
filtrate in a leaching test and the mass of raw CFA used, respectively.  
 
Figure 2 shows Al extraction rate against varying ultrasonic power applied in the pre-treatment 
before the leaching process. It is obvious that the ultrasonic pre-treatment to the aqueous solution 
can enhance the reaction (1) to release Al3+ into the solution, while 30 ~ 50 % of power input to 
the ultrasonic unit is proved sufficient to produce such an effect under this testing condition. 
Therefore, more experiments only using a fixed 35 % power input (333 W) were performed in 
the later part of work.  
 
For comparison, the effects of varying ultrasonic pre-treatment time and temperature on Al 
extraction rate are presented in Figure 3. In general, the prolonged time in ultrasonic pre-
treatment can improve the Al extraction rate more or less. While the higher operating 
temperatures may add even more assistance to this action, for instances, Al extraction rate can 
reach 88 ~ 91 % in a temperature range of 80 oC to 90 oC. At the same time, as the temperature 
rises to higher than 80 oC, Al extraction rate is already up to about 85 % within a period of just 
about 10 min, which means a time-saving or production rate increase for the process.  
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Figure 2. Al extraction rate vs. ultrasonic power at leaching temperature of 85 oC 
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Figure 3. Al extraction rate vs. the time of ultrasonic pre-treatment with various temperatures at 
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ultrasonic treatment with 35 % (333W) power input of ultrasonic unit 
 
 

Leaching Behaviors of Fe3+and Fe2+  
 
Understanding of leaching behaviors of Fe3+ and Fe2+ will be useful for better control of these 
impurities. The possible reactions can be as follows:  
 

  FeSO4  Fe2+ + SO4
2-                                                                                          (3) 

 
                                          Fe2(SO4)3  2Fe3+ + 3SO4

2-                                                                                (4) 
 
Figure 5 shows that higher temperatures make both Fe3+ and Fe2+ being dissolved more into the 
liquid in the process of leaching, while the longer time of ultrasonic treatment makes more Fe2+ 
entered into liquid at various temperatures. More Fe3+ and Fe2+ are leached from sintered coal fly 
ash with ultrasonic treatment than those without it.  
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Figure 5. (a) TFe (Fe3+ and Fe2+) and (b) Fe2+ contents vs. ultrasonic time at different leaching 

temperatures with 35 % (333W) power input of ultrasonic unit 
 
It is known that ·OH radical that is strong oxidable will be produced under ultrasonic treatment 
in aqueous solutions [7, 8, 11]. This means that during leaching process in aqueous solution, the 
reactions (5) to (7) may take place:  
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OH + OH  H2O2                                                                             (5) 

 
OH +Fe2+  OH- + Fe3+                                                                            (6)  

 
H2O2 + Fe2+  OH- + OH +Fe3+                                                          (7) 

 
As Anbar reported [10] where H2O2 yield was 4.2×10-6 mol L-1 min-1 in water, the concentration 
of H2O2 could be estimated as 2.52×10-4 mol L-1 after 60 min ultrasonic treatment in aqueous 
solution. This implies that H2O2 concentration from the reaction (5) could also exist in our 
leaching solution to make the reaction (6) and reaction (7) occurred, and thus may result in an 
increase of Fe3+ content. For example, as Fe2+ increased from about 0.05 g L-1 to 0.10 g L-1 after 
30 min of ultrasonic treatment at 80 oC, TFe (Fe3+ and Fe2+) did from 0.48 g L-1 to 0.53 g L-1 at 
the same time. However, such an effect could be limited as·OH radical and H2O2 amount may be 
far less than the ferrous ions in the leaching solution.   
 
Leaching Behavior of Ca2+  
 
In Figure 6, ultrasonic treatment hinders Ca2+ into the liquid. In the leaching solution, the 
reaction (8) and equation (9) may be present as follows:   
 

CaSO4  Ca2+ + SO4
2-     Ksp (298K) = 4.93×10-5                    (8) 

 
                                        J = {C(Ca2+)}·{C(SO4

2-)}= 2.8 ×10-5 <  Ksp                            (9)      

 
where J is for the product of C(Ca2+) and C(SO4

2-) in the dissolution of calcium sulfate, and Ksp  
is solubility product of reaction (8) that is relative stable with changing temperature. The 
ultrasonic treatment may lead to an increase in J value, which may result in some precipitation of 
CaSO4 and hence reduce Ca2+ content in the leaching solution. However, this interesting point 
needs further investigation to explore its details and reaction mechanism. 
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It should be pointed out that Fe3+, Fe2+ and Ca2+ are impurities that have to be removed from the 
liquid solution. Appropriate control of the balance between Al and these impurities would be 
very important for process economy and product quality. Through adjusting the time of 
ultrasonic treatments in the pre-leaching or the leaching process, for instances, a large amount of 
Al3+ could be obtained with a small or almost no increase of Fe3+, Fe2+ contents and reduced 
Ca2+content in the leaching solution.  
 
Leaching Residues  
 
Figure 7 presents SEM micrographs of the leaching residues, where the uniform, fine particles 
are found with ultrasonic treatment. The smaller particles may be due to a faster precipitation 
process occurring with ultrasonic treatment that can enhance the kinetic process of mass 
transportation in liquid solution.  
 

          
Figure 7. SEM micrographs of leaching residues: (a) without ultrasonic treatment and (b) with 

ultrasonic treatment 
 
 

  
1.� Ultrasonic aided leaching process as an effective method can enhance extracting Al2O3 from 

CFA via concentrated sulfuric acid sintering. With ultrasound assistance, the alumina 
extraction rate can reach 90.5 %, while both leaching time and leaching temperature can 
reduce 15 ~ 30 min and 5 ~ 10 oC, respectively, for the same rate of Al2O3 extraction.  
 

2.� Fe3+ and Fe2+ contents in leaching solutions increase with ultrasonic treatment, while Ca2+ 
content can decrease at the same time.  
 

3.� The particle size of leaching residue with ultrasonic treatment is smaller than that without 
ultrasonic treatment.  
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Abstract 
 
In the present research, commercially pure Sn and Zn, and Sn-Zn alloys (Sn-1wt.%Zn, Sn-
2wt.%Zn, Sn-4wt.%Zn, Sn-8wt.%Zn and Sn-8.9wt.%Zn, weight percent) were obtained by a 
horizontal directional solidification process with two opposite senses and heat extraction.  
The solidification process was realized using a horizontal furnace with two heat extraction 
systems at both ends. The temperature was measured using eight K-type thermocouples and an 
electronic recorder of temperature data. The resulting structures were analyzed using optical 
microscopy. From the solidification process the thermal and metallographic parameters were 
determined in all samples. The presence of defects in the solidified pieces was observed. Internal 
defects pretended to be dependent not only on the composition of the alloys under consideration 
but also on the size of the structures formed, also, on the velocities and accelerations of 
interphases, and on the variation of thermal gradients. A model of the phenomenon from the first 
principles is presented.  
 

Introduction 
 
Zinc and tin metals are widely used in different branches of industry as coatings in order to 
protect steel against corrosion [1, 2]. Under normal conditions, the steel has an anodic behavior 
with respect to tin, zinc while facing the steel acts as a cathode. The disadvantage that presents in 
the tin-coating or hot dip by electro-galvanizing is porosity, which allows the corrosion to 
dissipate through the pores over time so that it promotes the corrosion of steel. However, zinc 
acts as a sacrificial anode, which itself is consumed during the process, and the oxidation of the 
steel is inevitable after a certain amount of zinc has been consumed.  
In order to reduce the porosity of tin coatings, alloys of both metals was used as electrodeposited 
alloys can have of finer grains than pure metals deposited under comparable conditions, and less 
porosity is expected in finer grains. Furthermore, in addition to alloying metals, properties of 
electrochemical coatings are modified, which provides a means of adjusting the reactivity of the 
cover [5-7]. 
In the present research, commercially pure Sn and Zn and Sn-Zn alloys (Sn-1wt.%Zn, Sn-
2wt.%Zn, Sn-4wt.%Zn, Sn-8wt.%Zn and Sn-8.9wt.%Zn, weight percent) were obtained by a 
horizontally directional solidification process with two opposite senses and heat extraction.  
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The solidification process was realized using a horizontal furnace with two heat extraction 
systems at both ends. The temperature was measured using eight K-type thermocouples and an 
electronic recorder of temperature data. The resulting structures were analyzed using optical 
microscopy. From the solidification process the thermal and metallographic parameters were 
determined in all samples. The presence of defects in the solidified pieces was observed. Internal 
defects pretended to be dependent not only on the composition of the alloys under consideration 
but also on the size of the structures formed, also, on the velocities and accelerations of 
interphases, and on the variation of thermal gradients. A model of the phenomenon from the first 
principles is presented. 
 

Experimental Procedure 
 
Samples of Zn-Sn alloys were prepared by directional solidification. The Zn and Sn pure 
elements were merged into graphite molds in a muffle furnace, and then unidirectionally 
solidified in clay mold in the horizontal furnace with heat extraction in two opposite directions 
(see Figure 1). Next, the samples were grinded with SiC abrasive paper of different grain size, 
from # 60 to # 1500. To observe the macrostructure, the samples were subjected to a chemical 
attack which consisted of exposing them to a solution of 36.5% HCl at room temperature 
between 5 to 30 seconds. This allowed defining zones of different structures along the sample: a 
columnar zone of large and elongated grains and the equiaxed zone with smaller grains. 
 

 
Figure 1. Schematization showing equipment, the production process, a sample and a 

macrostructure obtained. 
 

Results and Discussion 
 
From the collected temperature data, thermal parameters such as, the local solidification time in 
the positions of each thermocouple, temperature gradients and cooling rates, were determined.  
Plotting the data of temperature versus time (Figures 2 (a) to (e) for each alloy, the presence of 
three zones on the graph was observed: 1st - a period of cooling of the melt (temperature 
overheating and the liquidus temperature). the 2nd - solidification period (between the liquidus 
temperature and the eutectic temperature) and 3 - a period of cooling of the solid (below the 
eutectic temperature).  
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During the solidification period, it could be noted that the average value of eutectic temperature 
equaled to 198.5ºC. Table 1 shows the local solidification time in the positions of each 
thermocouple for all Sn-Zn alloys tested. 

 

Table 1. Local solidification times. Sn-Zn alloys. 
 

Local solidification time, tSL [s] = tS - tL

 Sn-1wt.%Zn Sn-2wt.%Zn Sn-4wt.%Zn Sn-8wt.%Zn Sn-8.9wt.%Zn 
T1 1650 1580 1710 1690 1440 
T2 1570 1450 1620 1610 1330 
T3 1570 1460 1610 1550 1270 
T4 1500 1460 1570 1520 1240 
T5 1580 1430 1550 1520 1280 
T6 1600 1450 1610 1570 1320 
T7 1570 1580 1670 1650 1400 
T8 1630 1690 1700 1730 1650 

TAverage 1583.8 1512.5 1630.0 1605.0 1366.3 
 

In macrographs obtained, Figures 2 (f) - (o) the presence of fully equiaxed grains for the case of 
solidification of alloys Sn-1wt.%Zn, Sn-2wt.%Zn, Sn-4wt.%Zn and Sn-8.9wt.%Zn was 
observed, indicating a low heat removal from the ends of the samples. In contrast, in the case of 
Sn-8wt.%Zn, completely columnar structure was obtained (high heat removal from the ends of 
the sample). The average size of the equiaxed grains as measured by the ASTM E112 standard is 
presented in Table 2. In general, the larger grain size was obtained at the center of the samples. 
 

Table 2.  Grain sizes of equiaxed grains measures in the samples. 
 

Alloy Grain size, [mm] 
(Right end) 

Grain size, [mm] 
(Left end) 

Grain size, [mm] 
(Center) 

Sn-1wt.%Zn 2.1 2.4 3.9 
Sn-2wt.%Zn 2.5 3.0 3.2 
Sn-4wt.%Zn 3.7 4.1 4,5 

Sn-8,9wt.%Zn 3.9 3.3 5.2 
 

In Figures 2 (p) - (t) we can observe the position of the liquid interphase, [L/(L + S)] and solid 
interphase, [(S + L)/S] in the samples vs. time. We can observe that although each pair of 
interphases of the same type is represented by a single line, each line corresponds to two 
interphases of the same type, since each interphase can not be in two points in the space at the 
same instant. 

T1 T2
T3 T4

T5 T6
T7 T8

 
(a) Equiaxed structure

 
 

(f)
 
 
 

 
(g)

 

L/((S+L)

(S+L)/S

(p)
Sn-1wt.%Zn 
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T1 T2 T3 T4

T5 T6 T7 T8

 
(b) Equiaxed structure 

 

 
(h)

(i)
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(q)
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(c) Equiaxed structure 

 

 
 

(j)
 
 
 

(k)
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(d) Columnar structure 
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(m)
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(S+L)/S
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(e) Equiaxed structure

(o)

(p)

L/((S+L)

(S+L)/S

(t)
 

Figure 2. (a) - (e) cooling curves. (f) - (o) Macrostructures of the samples obtained. (p) - (t) 
Position of the interphases versus time. Sn-Zn alloys (Sn-1wt.%Zn, 2wt.%Sn-Zn, Sn-4wt.%Zn, 

Sn-8wt.%Zn and Sn-8.9wt.% Zn). 
 
 
 

Sn-2wt.%Zn 

Sn-4wt.%Zn 

Sn-8wt.%Zn 

Sn-8.9wt.%Zn 
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(e) 

 
(j) 

 
(o) 

 
Figure 3. (a) - (e) Temperature gradients with time. (f) - (j) Cooling rates versus time from the 

ends of the sample. (k) - (o) Sn-Zn alloys (Sn-1wt.%Zn, Sn-2wt.%Zn, Sn-4wt.%Zn,  
Sn-8wt.%Zn, Sn-8.9wt.%Zn). 

 

Sn-1wt.%Zn 

Sn-2wt.%Zn 

Sn-4wt.%Zn 
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The moment of collision of two interphases of the same type is characterized by the maximum 
moment in the considered position, or the farthest corners as point "C", see Figures 3 (k) to (o). 
Thus, the curves in Figure 2 (p) to (t) represented four interphases but only two curves are 
shown. Each curve corresponds to a pair of oppositely interphases advancing and collides at 
some point inside the sample (green arrows). Note that the collision points of the interphases or 
furthermost points of the different curves "C" does not match all in the same position of the 
samples, which is meaning that the maximum of the curves position vs. time (x vs. t) do not 
coincide for different pairs of related interphases.  
Figures 3 (a) - (e) shows the temperature gradients as function of time for Sn-Zn alloys, at two 
positions of the samples (one at each end). It is noted that in the case of the samples with 
equiaxed structures, the temperature gradients from the beginning have low values (< 5 °C/cm) 
and no minimum and critical gradients so that a transition occurs in the structure identified by 
growth grains. Similar behavior profile of the temperature gradients was obtained in the case of 
the sample with completely columnar structure (Sn-8wt.% Zn). 
After obtaining the temperature versus time data for the alloy concerned, as indicated in Figures 
2 (a) - (e), the cooling rates were determined in the liquid, mushy and solid alloys taking the 
values of the derivative of temperature with respect to time for each position of thermocouple, 
considered as difference quotients centered, as shown in Figures 3 (f) - (j). From changes in the 
derivatives of the cooling rates, the approximate moments of the onset and the of solidification in 
the sensing volume for each thermocouple (instant of liquid interphase, [L/(L+S)], or instant of 
each solid interphase, [(S+L)/S], passes through the position where the thermocouple is located]) 
were determined. As each sample cools predominantly from both ends, it is possible to determine 
a pair of interphases for each type of interphase ([L/(L+S)] or [(S+L)/S]), that is, two liquid and 
two solid interphases. Each pair of interphases of the same kind was moving in the longitudinal 
direction but having opposite directions of movement. In order to determine the moment of 
collision of the interphases that allow determining the existence of the completely liquid phase in 
the cylinder, the end of growth of the first solid that forms and solidification to the 
experimentally determined data was adjusted by polynomial functions of different levels with 
correlation coefficients close to one.  
Since the position vs. time is not a function from the mathematical perspective, fit polynomials 
were determined for the time vs. position functions. While each polynomial corresponds to a pair 
of interphases, the only way to determine which points correspond to which interphase (right or 
left) is establishing the maximum of each polynomials, and taking all those points that are right 
the maximum corresponds to the interphase right and all points that are to the left of the peak 
corresponding to the left interphase. After determining what experimental points correspond to 
which interphase, independent polynomials were used to fit each set of points allocated to 
appropriate interphase. From certain functions x vs. t, data points from each of the interphases 
can be identified as belonging to the given interphase (right or left) moving in each of the 
directions. The end points were not considered in the settings, because the most extreme 
thermocouples T1 and T8 are only representative of one half volumes in question, but serve as 
points of comparison with extrapolated from the determined function values. The derivative of 
these functions corresponds to the inverse of the velocity of interphases, treated as a single curve. 
In the graphs of Figure 3 (k) - (o) the calculated values of V-1 from the time of polynomials 
constructed according to the position (expressed as a function of time) are shown. Positive values 
of V-1 represent interphases moving from left to right, and negative values of V-1 are interphases 
that move from right to left. The maximum time in each graph corresponds to the instant of 
collision of two oppositely advancing interphases.  
This collision of interphases leaves to the formation of voids, pores and internal defects on the 
samples (areas marked with a green circle on macrographs of Figures 2 (f) -. (n)). 
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Conclusions 
 
Experiments of horizontal solidification were performed with two directions of heat extraction 
coincident with the longitudinal axis of Sn-Zn alloys, determining the major parameters, namely: 
a) the moment of start and end of the solidification at each position considered, b) the local 
solidification time, c) cooling rates, d) the temperature gradient, e) the advancing average liquid 
velocities in opposite directions interphases f) the value of the speed when the solidification 
fronts collide they move in opposite directions in the samples.  
The liquid interphases collide in samples in a different position than are the solid interphases.  
With the temperature gradients obtained, no transition from the columnar to equiaxed grains was 
observed during the horizontal solidification. 
The results are consistent with those obtained before in Zn-Al and Zn-Sn alloys [8, 11-13]. 
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Abstract 
With the development of quench technology, there is a trend of using gas quench to 
replace liquid quench for less distortion and residual stress. The fundamental difference 
between the liquid and gas quench is the heat transfer coefficient, not only the values but 
also the shape of the curve as a function of temperature. The equivalent heat transfer 
coefficient for the liquid and gas quench is analyzed by simulations and experiments. 
Even it may result in the same hardness in the liquid and gas quench, the steel 
microstructure may be different because of the different cooling processes, and therefore 
other steel properties, such as toughness, may be different. The cooling process, 
microstructures and properties such as hardness and toughness should be examined when 
designing the liquid or gas quench processes. 
 

Introduction 
Gas quench is becoming popular to replace water or oil quench [1] for medium and high 
hardenability steels, such as 4140, 4340. It has many advantages such as less distortion, 
less stress, safer and environmental friendly [2]. With gas quench process, mechanical 
and physical properties can be significantly improved and obtain near shape of metal 
components [2]. 
However, the uniformity of gas quench process is an issue compared with liquid quench. 
According to the work of Jing Wang [3], Elkatatny [2] Bowang Xiao [4] and Cosentino 
[5], the gas pressure and velocity changes dramatically in the furnace. Current studies on 
gas quench are focused on the gas flow in the furnace.  
Considering the complex of gas pressure and velocity, the gas quench heat transfer 
coefficient (HTC) is noted, since the HTC has direct influence on cooling curves [6]. In 
this paper, the equivalent HTC concept is proposed for liquid and gas quench. After 
verifying the gas quench model based on Dante [7] by experiment, the gas quench model 
will be used to get equivalent HTC for liquid and gas quench. The steel thermal 
properties influence and hardness comparison are also discussed in the paper. 
 

Equivalent HTC between Liquid Quench and Gas Quench 
HTC is the only difference between liquid quench and gas quench, since the chemical 
reaction with the surface of the steel is ignored in this paper.  
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Figure 1. HTC of different quench media (experiment) 

Figure 1 is the HTC of different quench media. Liquid quench exhibits three 
characteristic quenching processes, film boiling, bubble boiling and convection [8]. For 
gas quench, the single-phase heat transfer process means that the cooling rate is more 
uniform [6].  
In heat treatment, core microstructures and properties are important, because the core 
cooling rate is the lowest and may form undesired microstructures such as upper bainite 
and ferrite. The equivalent HTC between liquid and gas quench is defined as the HTC, 
which has the same cooling curves at the core of the sample. After two different quench 
processes, if the cooling curves of the core are the same, these two quench HTCs are 
considered as the equivalent HTC. 
 

Gas Quench Model Verification 
The gas quench model sketch is represented in Figure 2. The cylinder sample with 25mm 
diameter and 100mm length is used. The gas flow is assumed to be the same at the free 
end of the sample and the sample sides, since the slenderness ratio is large. Gas flow is 
assumed as laminar flow. In this condition, the gas pressure and velocity are steady 
during gas quench process. 
 

 
Figure 2. Gas quench model sketch 
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The experiments are done with the help of Praxair and the gas quench simulation model 
(based on Abaqus and Dante) is developed with the help of Dante. The steel is 4140 in 
the experiment. 
 

 
Figure 3. 4140 cooling profile comparison between experiment and simulation 

In Figure 3, the cooling curves under different gas quench condition are measured by 
thermocouple and simulated by gas quench model. The simulation results match the 
experimental result and it demonstrates the accuracy of gas quench model. To improve 
the accuracy, the ambient temperature, transfer time from the heating furnace to the 
quenching chamber and the time required to reach the desired pressure and gas flow 
speed should be considered. 
 

Equivalent HTC Prediction based on Gas Quench Model 
The verified gas quench model is used to simulate the gas quench process and predict the 
equivalent HTC. Oil quench and gas quench are compared in this paper. The HTC of oil 
quench is from Figure 1. 
 

 
Figure 4. 4140 cooling profile comparison (simulation) 
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Figure 4 (simulation) is the cooling profile comparison between oil quench and gas 
quench. The cooling profiles of different gas quench HTCs are simulated to match the 
cooling profile of oil quench. For gas quench HTC 1000 W/m2C (constant from 20C to 
1000C) and HTC 1200 W/m2C (constant from 20C to 1000C), the cooling rates from 
850C to 200C is lower than oil quench. In order to increase the cooling rates from 850C 
to 200C, the gas quench HTC 2000 W/m2C is used. The cooling curves for HTC 2000 
W/m2C (constant from 20C to 1000C) matches the oil quench from 850C to 300C. From 
300C to 20C, the cooling rates for gas quench 2000 W/m2C is higher than oil quench. No 
gas quench with constant HTC can become the equivalent HTC compared to oil quench. 
One of the advantages of gas quench is great process flexibility that allows to vary 
cooling rates by adjusting gas pressure and velocity. Gas quench with varying HTCs are 
considered to find the equivalent HTC compared to oil quench. 
The HTC shown in Figure 5 (simulation) is the equivalent HTC for oil quench. From 
1000C to 300C, the HTC is 2000 W/m2C. From 300C to 180C, the HTC is 1200 W/m2C. 
From 180C to 100C, the HTC is 500 W/m2C. From 100C to 20C, the HTC is 100W/m2C. 
At each stage, the gas quench HTC is the constant. Figure 6 (simulation) are the cooling 
profiles of oil quench and equivalent gas quench at the core of the sample. Gas quench 
with varying HTCs is the equivalent HTC compared to liquid quench. 
 

Figure 5. 4140: equivalent gas quench HTC 
compared to oil quench (simulation) 

Figure 6. 4140 cooling profile comparison 
(simulation) 

Simulation based on Jominy test is finished to extent the concept of the equivalent HTC. 
The sketch is shown in Figure 7. The Jominy bar is 25mm diameter and 100mm length. 
Boundary conditions 2,3 and 4 are air-cooling and boundary condition 1 is oil quench or 
equivalent gas quench in Figure 5. The temperature profile and the hardenability (along 
the black line in Figure 7) are compared to verify the equivalency of oil quench and gas 
quench. 
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Figure 7. Jominy quench model sketch 

 

Figure 8. 4140 Jominy test: cooling profile 
comparison (simulation) 

Figure 9. 4140 Jominy test comparison (simulation) 

In Figure 8 (simulation), the cooling profiles along the Jominy bar for oil quench and the 
equivalent gas quench are compared. At 0mm, 10mm, 20mm and 50mm position from 
the quenched end, the cooling profiles are considered to be the same for oil quench and 
the equivalent gas quench. In Figure 9 (simulation), the hardenability of 4140 under oil 
quench and the equivalent gas quench is simulated. Two hardenability curves match 
perfectly, which demonstrates that the two quench processes generate the same 
microstructures and properties.  
The concept of equivalent HTC should be redefined. After two different quench 
processes, if the cooling curves, microstructures and properties of all the workpiece are 
the same, these two quench HTCs are considered as the equivalent HTC. 
52100 equivalent gas quench process is simulated as well. The equivalent gas quench 
HTC is the same as 4140’s (in Figure 5). The cooling profile comparison and Jominy 
hardenability for 52100 are in Figure 10 (simulation) and Figure 11 (simulation). 
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Figure 10. 52100 Jominy test: cooling profile 
comparison (simulation) 

Figure 11. 52100 Jominy test comparison 
(simulation) 

 
Same Hardness, Different Microstructures 

After gas quench, the workpiece may have the same hardness compared with liquid 
quench. However, the cooling curves are not the same and it leads to different 
microstructures. 
 

Figure 12. 4140 cooling curve comparison between 
water and gas quench (simulation) 

Figure 13. Microstructure comparison between 
water quench and gas quench (simulation) 

In Figure 12 (simulation), the black line is from 50mm distance from the quenched end 
under water quench condition. The red line is from 5mm distance from the quenched end 
under HTC500 W/m2C gas quench condition. These two positions have the same 
hardness, 35.2 HRC with different cooling curves. The microstructure analysis is shown 
in Figure 13 (simulation). The percentage of lower bainite of water quench is higher than 
gas quench, while the percentage of upper bainite of water quench is lower than gas 
quench. Generally, the mechanical properties of lower bainite are better than upper 
bainite, such as strength, toughness and ductility [9]. 
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Summary and Conclusions 
The concept of equivalent HTC, which is the fundamental difference between liquid and 
gas quench, is proposed. After two different quench processes, if the cooling curves of 
the core are the same, these two quench HTCs are considered as the equivalent HTC. The 
equivalent HTC prediction is made based on the verified gas quench model. When 
compared with oil quench and gas quench, no gas quench with constant HTC can be the 
equivalent HTC. With the great process flexibility to vary cooling rates, gas quench with 
varying HTCs are considered to find the equivalent HTC.  
After finding the equivalent gas quench HTC, Jominy test is simulated to compare the 
cooling curves and hardness for the entire workpiece. The concept of equivalent HTC is 
redefined. After two different quench processes, if the cooling curves, microstructures 
and properties of all the workpiece are the same, these two quench HTCs are considered 
as the equivalent HTC. 
Even it may result in the same hardness in the liquid and gas quench, the steel 
microstructure may be different because of the different cooling processes, and therefore 
other steel properties, such as toughness, may be different.  
The cooling process, microstructures and properties such as hardness and toughness 
should be examined when designing the liquid or gas quench processes. 
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Abstract 

Sodium silicate solutions for producing silica have been ultrasound treated to enhance the 
precipitation process in laboratory scale. Higher precipitation rate was found with ultrasound 
treated solutions than those without ultrasound. The obtained SiO2 powder products were 
characterized using XRD, SEM, BET and laser particle size analyzer. The particle size
distribution and the specific surface area of the powder products varied with the power input 
level and the processing time of the ultrasonic treatment. The results indicate that the efficiency 
of the precipitation process can be improved optimally when the ultrasound is conducted into the 
solutions before the nucleation stage.  

Introduction 

Silica is one of the most complex and most abundant families of materials, existing both as 
several minerals and being produced synthetically. Applications range is from structural 
materials to microelectronics to components used in the food industry. There are two main 
processes as gas phase method and liquid phase method currently used for producing silica [1, 2].
In this work, the liquid phase method was adopted to recovery silica and the effect of the 
ultrasound on the silica products were investigated. 

Precipitation process is important for both product quality and productivity in silica production.
In recently years, many research focus on increasing the silica precipitation rate and improving 
its quality. Mu et al [3] investigated the optimum precipitation conditions including reaction 
temperature, reaction time, molecular ratio of SiO2/Na2O, and stirring speed, which result in the 
SiO2 extraction rate over 93%. However, the SiO2 products have the too big particle size which 
lead to the small specific surface area. Liu et al [4] studied the SiO2 higee precipitation method to 
generate silica powder with average particle size 15-20nm, but this method is difficult to 
industrialize because of great cost and continuous manufacturing. 

In order to obtain the high quality SiO2 by an economical approach, the ultrasound irritation is 
involved into the precipitation process [5]. The effects of ultrasound are related to ultrasound 
power level and frequency [6, 7], Na2SiO3 concentration and SiO2/Na2O molecular ratio of 
solution, reaction temperature and the seed crystal amount [8].  

The aim of this work is to find out the appropriate ultrasound power level and operation time,
which positively affect the precipitation process as well as obtaining high quality silica product. 
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In this paper, the results on ultrasound aided precipitation process of sodium silicate solution are 
presented, and the precipitation silica product is also characterized. 
 

Experimental 
 
Materials and Chemicals 
 
The sodium silicate solution with constant SiO2/Na2O molecule ratio 3.37, SiO2 27.82% and 
Na2O 8.51%  was purchased from chemical reagent company in Beijing, whose SiO2/Na2O 
molecule ratio and Na2SiO3 concentration was changed  by adding sodium hydroxide(CR, 
Sinopharm Chemical Reagent Co., Ltd) and deionized water (Lab homemade). CO2 gas (99.5%) 
used to conduct carbonation precipitation process was provided by University of Science and 
Technology Beijing.  
 
Analysis Methods 
 
The electronic scales (BS 124S, Sartorius, 0-120 g, Germany) was used to measure the weight of 
experimental materials and product. The scanning electron microscope (JSM-6510A, JEOL, 
Japan) analyze morphology of silica powder product. X-ray diffraction analyzer (RigakuD: 
MAX-RB12KW, Scanning range 10-100o, Scanning rate 0.02o/sec, Cu (40kV, 40mA), RIGAKU, 
Japan) was used to estimate crystallographic phase characteristics of product. The particle size 
was measured by laser particle size analyzer (LMS-30, range 0.1-1000 μm, Seishin, Japan). The 
specific surface area of SiO2 product was measured by BET (QuadraSorb SI, Quantachrome, ). 
 
Experimental Process 
 
300 mL sodium silicate solution with different SiO2/Na2O molecule ratio and Na2SiO3 
concentration in every experiment was added into a beaker in water bath with a certain stirring 
speed. The ultrasound apparatus is made from Ningbo Scientz biotechnology Co., Ltd.. 
Ultrasonic operation was conducted with the constant interval of 2 s-on and 3 s-off for various 
irritation time and solution temperature. The carbon dioxide gas was added into solution by tube 
for the precipitation process at different temperatures and stirring speed. The pH of the solution 
was monitored by pH meter every 5 minutes. The carbonation precipitation process was 
terminated when the pH of the reaction mixture reach to a predetermined value, then the mixture 
was subjected to filtrate to separate the silicic acid precipitation from the solution, which was 
calcinated to obtain silica at 120 oC for 24 h. The silica powder was washed several times by 
deionized water and dried to determine the content and other physical property. 
 

Results and Discussion 
 
Orthogonal Experiment  
 
The orthogonal experiment of carbonation precipitation were investigated, which include 6 
parameters as Na2SiO3 concentration, molecule ratio of SiO2/Na2O, CO2 flow rate, temperature, 
stirring speed and solution pH and each parameter has 5 levels as shown in Table I. The result 
analysis of orthogonal experiment is presented in Table II, which indicates that the optimal 
operation conditions are Na2SiO3 concentration 110g/L, molecule ratio of SiO2/Na2O 3, CO2 
flow rate 500 mL/min, temperature 60 oC, stirring speed 500 rpm and solution pH 7.5. The effect 
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of every conditions on SiO2 precipitation rate in order of decreasing are Na2SiO3 concentration, 
solution pH, stirring speed, CO2 flow rate, molecule ratio of SiO2/Na2O and temperature. 
 

Table I. Factor and Level of the Orthogonal Experiment 

Level Concentration 
/g·L-1 

Molar 
ratio 

Flow rate 
/ml·min-1 

Temperature  
°C 

Stirring 
speed /rpm pH 

1 10 1 50 25 0 9 

2 20 1.5 100 40 100 8.5 

3 40 2 200 60 200 8 

4 70 2.5 500 80 500 7.8 

5 110 3 1000 90 1000 7.5 
 

Table II. Visual Analysis of Orthogonal Experiment 
Average 1 0.458 0.649 0.753 0.679 0.591 0.493 
Average 2 0.706 0.612 0.56 0.702 0.641 0.594 
Average 3 0.778 0.724 0.633 0.814 0.761 0.803 
Average 4 0.813 0.792 0.839 0.743 0.875 0.85 
Average 5 0.867 0.846 0.838 0.685 0.754 0.877 

Range 0.409 0.234 0.279 0.135 0.284 0.384 
 
Precipitation Rate and Efficiency under Ultrasound treatment 
 
The carbonation process was composed of precipitation process and pre precipitation process. 
The different mode of the ultrasound treatment made different effect on the precipitation rate and 
time. Therefore, carbonation process was ultrasound treated pre precipitation process, under 
precipitation process and the whole carbonation process.   
 

Table III. Precipitation Rate and Precipitation Time with Varying Ultrasound Mode 

Processing mode  Precipitation rate /% Precipitation time / min 

Without ultrasound 89.34 280 

Precipitation with ultrasound 93.33 265 

Pre precipitation with ultrasound 89.00 160 

Whole process with ultrasound 83.31 295 

 
In Table III, higher precipitation rate was found with ultrasound treated solutions than that 
without ultrasound. The precipitation time was reduced to 160 min, and the efficiency was 
apparently improved. 
 
In Figure 1, four curves of pH are given as a function of precipitation time with the ultrasound 
mode was different under the optimal experimental conditions. 
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Figure 1. Effects of the ultrasound on the pH values with ultrasound power of 285 W 

 
The possible reactions can be described as follows:  

 
CO2 + H2O → CO3

2- + 2H+ 
 

H+ + OH- → H2O 
 

2H+ + SiO3
2- → H2SiO3 

 
The value of pH will change with processing of these reactions involving H+. At the first 20 
minutes, the values of pH were the same in the four curves, where the reactions can be (1) and 
(2); the ultrasound had no effect on these reactions. And then the reaction (3) was occurred and 
the curves were different because of the different ultrasound mode. And eventually, all of the 
values of pH reached a constant value abut 7.5. By comparison, when the reaction mixture was 
ultrasound treated pre precipitation, the precipitation time can reduce about 50 minutes, and the 
efficiency was improved. 
  
The fact that the ultrasound can improve the precipitation rate means a potential of increasing 
industrial productivity of SiO2. With implementation of this technology, the process of 
precipitation could be shortened with savings in terms of operation costs.  
 
Effects of Ultrasound on SiO2 Product 
 
After the carbonation process, the residual liquid was removed by filtration with water pump. 
The product was obtained after further treatments by washing with water, and drying in oven. In 
the drying process, the SiO2 appeared: 
 

H2SiO3 → SiO2 + H2O 
 
The crystalline phases of the product with different ultrasound mode were measured by X-ray 
diffraction analyzer. In Figure 2, four curves were overlapped. The result shows that the 
ultrasound has no effect on the structures and the crystal phase of the SiO2 products. 
 

(1) 
 
(2) 
 
(3) 

 
 

(4) 
 
 

170112



10 20 30 40 50 60 70 80 90 100

0

1000

2000

3000

4000

5000

6000

A

B

C

D
In

te
ns

ity
(c

ps
)

2�(o)

A: without ultrasound
B: under precipitation
C: pre precipitation
D: whole process

 
    Figure 2. XRD pattern of SiO2 products with ultrasound power of 285W at 60 °C 

 
Figure 3 is the SEM microphotographs of silica from sodium silicate solution with and without 
ultrasound, respectively, which both had the identical conditions for sodium silicate solution and 
precipitation parameters. It is obvious that there are more tiny nuclei on the surface of seeds with 
ultrasound (b, c, d) than those without ultrasound (a). It means that ultrasound can promote 
secondary nucleation during the precipitation process. 
 

      
(a) Without ultrasound                      (c) Pre precipitation 

     
     (b) Under precipitation                    (d) Whole process 

Figure 3. SEM microphotographs of SiO2 products with ultrasound power of 285W at 60 °C 
 

With continuous agitation, the newly formed nuclei could get off the particle surface and enter 
into the sodium silicate solutions, so that they become secondary nuclei in the solution. The 
secondary nuclei may act as seeds for further carbonation of the solution and thus increase the 
precipitation rate. 
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Figure 4 shows the curves of particle size distribution of the products. Compared with the blank 
experiment, the volume fraction of the particle size from 100 μm to 350 μm with ultrasound pre 
precipitation was bigger. Because of the ultrasound treatment, the nucleation ratio of the SiO2 
increased. And the agitation of the ultrasound had an effect on the growth of crystals. On the 
other hand, the particle size of the product with ultrasound under precipitation was smaller. The 
largest fraction of the particle under this investigation was one with about 62 μm in size. The 
agitation of the ultrasound made the particle size smaller. However, the mixture solidified in the 
carbonation process with ultrasound treatment during whole process, and the ultrasound had no 
effect on the process. The particle size was even bigger than that without ultrasound. 
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Figure  4. Particle size distribution of SiO2 products with ultrasound power of 285 W at 60 °C 

 
Table IV. Average Particle Size and Specific Surface Area of Different Ultrasound Mode 

Processing mode Average particle size / μm Specific surface area /(m2/g) 

Without ultrasound 47.059 171.606 

Precipitation with 
ultrasound 32.873 157.084 

Pre precipitation with 
ultrasound 31.738 172.039 

Whole process with 
ultrasound 47.939 203.035 

 
In Table IV, smaller average particle size was found when the process was ultrasound treated 
under precipitation and pre precipitation than that without ultrasound. When the carbonation 
process was ultrasound treated in whole process, the particle size was even bigger than that 
without ultrasound. Table II further demonstrate that particle size distribution of SiO2 can vary 
with ultrasound mode. On the other hand, higher specific surface area was found when the 
process was ultrasound treated pre precipitation and in whole process than that without 
ultrasound. The main effect factors of ultrasonic for the higher specific surface area was related 
to the action of ultrasonic cavitation. Ultrasound inhibited the growth and coalescence of crystals. 
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To get the optimal ultrasound mode, the precipitation rate, the efficiency, the particle size and the 
specific surface area should be considered. Therefore, the optimal ultrasound mode was that the 
carbonation process was ultrasound treated pre precipitation.  
 
Optimal Ultrasound Conditions 
 
The conditions for the ultrasound, such as ultrasound power and treatment time, were of great 
importance to the carbonation process. The experiment parameters were designed and the 
resulting data were shown in Table V. 
 

Table V. Experiment for the Optimal Ultrasound Conditions 
Ultrasound 
power / W 

Treatment time / 
min 

Precipitation 
rate / % 

Average particle 
size / μm 

Specific surface 
area /(m2/g) 

142.5 5 91.14 40.301 190.240 
142.5 10 88.76 32.511 181.836 
142.5 15 91.06 39.944 179.245 
285 5 92.66 35.486 203.212 
285 10 90.93 40.510 210.859 
285 15 89.00 42.211 172.039 

427.5 5 95.63 33.993 214.017 
427.5 10 92.93 48.094 188.496 
427.5 15 90.11 46.458 197.890 

 
The optional conditions of the ultrasound could be found through comparing the precipitation 
rate, average particle size and the specific surface area of the product. When the ultrasound 
power was 427.5 W and the treatment time was 5 min, the smallest average particle size was 
33.993 μm, the highest precipitation rate was 95.63%, and the highest specific surface area of the 
product was 214.07  m2/g. 
 
Figure 5 illustrates patterns of particle size distribution against precipitation time and ultrasound 
power. The reaction mixture under the optimal conditions was ultrasound treated pre 
precipitation process. The ultrasound power and the treatment time were different. 
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   (a) Ultrasound input power of 427.5 W                                  (b) Treatment time of 5 min 
Figure 5. Particle size distribution of the products with ultrasound pre precipitation at 60 °C 
 
Figure 5 further demonstrate that particle size distribution of SiO2 can vary with ultrasound 
power level and treatment time. The largest fraction of the particle with ultrasound is smaller in 
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size than that without ultrasound. The optional ultrasound power was 427.5W and the optional 
treatment time was 5 minutes.  
 

Conclusions 
 
1. Precipitation rate is improved in the process with ultrasound, and the highest precipitation 

rate is 95.63%, which means a potential of increasing industrial productivity of SiO2 and 
savings in terms of operation costs.  
 

2. More tiny secondary nuclei were found on the surface of silica with ultrasound, and the 
major part of the particle smaller in size and the specific surface area increases with 
ultrasound; the optional ultrasound conditions are with ultrasound of input power of 427.5 W 
and the treatment time of 5 min.  
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⁰

Steel C Mn P S Si Cu Ni Cr  V Mo Co Ti Al Nb

DP 600 0,0675 0,9203 0,0354 0,0062 0,2507 0,0433 0,0471 0,658 0,0019 0,0035 0,0071 0,0041 0,0459 0,0007

Table 1 - Chemical compositions of the investigated dual phase steel ( wt. %).
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F6 Temperature
 ͦ C

Air Cooling 
Start 

Temperature
 ͦ C

Air Cooling 
Duration 

Time
s

2nd Cooling 
Start 

Temperature
 ͦ C

Coiling 
Temperature

 ͦ C
MVF [%] YS [Mpa] TS [Mpa] Elognation %

880 600 5,5 5,5 165 17,3 456 634 25,3
880 650 5,5 5,5 15 436 624 26,8
880 680 5,5 5,5 200 12 412 620 27,7
880 690 5,5 5,5 10 392 563 28,7
880 710 5,5 5,5 252 7,8 381 554 28,8
880 720 5,5 5,5 4,5 362 542 29

Table 3. Effect of coiling temperature on mechanical properties 
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Abstract 

Al-Si alloy, a precursor of solar grade silicon, was prepared by direct electrolysis in cryolite 
molten salt at 950 oC using high purity silica as material, liquid aluminum as the cathode and 
high purity graphite as the anode. The electrochemical behavior of Si(IV) ion was investigated 
using cyclic voltammetry method. The electrolysis products were characterized by XRD, 
SEM/EDS and ICP. The results indicate that the reduction process of Si(IV) on tungsten 
electrode is a two-step process and there is about 0.6 V gap between the two steps. The contents 
of boron and phosphorus in the aluminum-silicon alloy are 3 ppmw and 8 ppmw, which will 
make the directional solidification purification effectively and reduce the cost of preparation 
solar grade silicon from metallurgical grade silicon. 

Introduction 

Solar energy as a renewable energy, with inexhaustible potential, and without pollution, attracts 
more and more attentions over the world. Using the photoelectric converter in order to convert 
solar energy into electrical energy is so far the most common use of the solar cell.[1, 2] At present, 
more than 95% of the solar cells are using silicon as substrate. In the past few decades, demands 
for photo-voltaic (PV) cells have significantly increased.[3, 4] In photo-voltaic industry, Si 
materials have been widely employed for the fabrication of commercial solar cells for decades. 
Most of Si raw materials used for solar cells are high-cost solar grade (SOG), which act as 
barriers for the cost reduction of cell fabrication. Therefore, up to date, various methods of the 
production of solar grade silicon have been proposed.[5]

The production technologies of solar grade silicon mostly include Simens process, silane process 
and metallurgical process.[6] Directional solidification is a usual metallurgical route to remove 
impurities from metallurgical grade (MG) Si,[7] this approach is very effective to remove metallic 
impurities such as Cu, Al and Fe due to their small segregation coefficients (ratio of the impurity 
content in solid Si to that in liquid Si), but, this method is useless for the impurity with large 
segregation coefficients, such as phosphorus and boron (kP=0.35, kB=0.8).[8, 9]

In recent years, the development of an electrochemical reduction technique using molten salt has 
been proposed, particularly for the production of metal from its oxide.[10] Molten salt electrolysis 
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as new production processes for SOG-Si, which allows reduction of the economic cost and 
energy consumption, and probably has a sufficient productivity.[11] In these investigations, 
SiO2

[12-14] or K2SiF6
[15] dissolved in molten salt electrolyte, like LiF-NaF-KF, LiF-KF, or NaF-

AlF3
[16], was used in order to obtained elemental Si. One of the most serious problems of these 

attempts, however, was the fact that Si was electrodeposited in the solid form[10]. This makes it 
difficult to separate the Si deposit from the molten salt, since the conductive properties of silicon 
is poor.  

The objective of this paper is to present a molten salt electrolysis for the production of Al-Si 
alloy as a precursor of solar grade silicon with the low boron and phosphorus contamination.

Experimental 
Silica (SiO2≥99.99%, mass fraction) was used as raw material. NaF salt was dried before 
experiments under vacuum at 473 for 24 hours to remove moisture. Anhydrous AlF3 was 
prepared by AlF3•3H2O using dehydration techniques under the conditions of vacuum at 1050 oC.
NaF-AlF3-Al2O3 salt mixture was used as the electrolyte. Each experiment about 200 g of salt
were brought into high purity graphite crucibles inside the medium-frequency induction furnace 
under argon atmosphere and at a constant temperature of 950 oC. The anode was prepared by 
connecting a 15 cm height and 20 cm diameter high purity cylindrical graphite to a stainless steel 
rod. This assembly was covered with quartz to prevent short-circuiting of electrodes and 
undesired interactions with the gases formed inside the cell vessel. Pure liquid aluminum was 
used as the cathode. A schematic diagram of the experimental apparatus was shown in Figure 1.

Figure 1. A schematic diagram of the experimental apparatus 
1-anode rod; 2-corundum tube; 3-electric furnace; 4-iron crucible; 5-graphitecrucible; 6-
corundum crucible; 7-electrolyte; 8-aluminum liquid; 9-graphite anode; 10-cathode rod. 

In the cyclic voltammetry experiment, the electrochemical measurement equipment is 
AUTOLAB PGSTAT30 electrochemical workstation by a computer using the research software 
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GPES. The schematic view of the measurement cell was shown in Figure 2. Electrochemical 
measurements were performed were performed under Ar atmosphere. Tungsten wire (diameter 1 
mm) was chosen as working electrode, the counter electrode was the graphite crucible (diameter, 
100 mm; height, 105 mm), and the reference electrode was a platinum wire (diameter 0.5 mm). 

Figure 2. Schematic view of electrochemical experiment set-up 
1-Ar gas; 2-gas conduit; 3-cooling-jacket; 4-reference electrode; 5-stainless steel crucible; 6-
thermocouple; 7-Corundum tube; 8-work electrode; 9-graphite crucible; 10-Silicon carbide 

heating element furnace. 

Scanning Electron Microscope (SEM, SUPERSCAN SSX-550, acceleration voltage was 15 kV) 
was used to observe the morphology of the products, and the composition of the sample was 
determined by an energy-dispersive X-ray spectrometer (EDS). The phase of the reduction 
products was identified by X-ray diffraction (XRD, X’pert Pro, PANalytical Co.) using Cu Kα 
radiation in the range of 10° to 90° (2θ) with a step of 5°/min. The boron and phosphorous 
content in the products were analyzed by inductive coupled plasma-atomic emission 
spectrometry (ICP-AES). 

Results and Discussion 

Cyclic Voltammetry  

Cyclic voltammograms was carried out on tungsten electrode in the NaF-AlF3 (the molar ratio 
are NaF/AlF3=2.2 : 1)-Al2O3 (1.5 wt.%)-SiO2 (3.0 wt.%) melts at 950 oC. Before adding SiO2, a 
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blank measurement was performed, as shown in Figure 3. The scan potential starts from 0 V to 
−2 V with a scan rate 10 mV/s, and the second inflexion potential is −2 V. There are two oxide 
current peaks (Pa1 and Pa2) and two reduction current peak (Pc1 and Pc2) on the whole cyclic 
voltammogram. The cathodic current arising at about −1.4 V is due to Al formation the current 
peak of Pa2 and Pc2 corresponds to oxidation of the deposited aluminum and the reduction of Al3+

ions, respectively. Pa1 and Pc1 are the redox current peak of Na.

-2.0 -1.5 -1.0 -0.5 0.0

-0.8

-0.4

0.0

0.4

0.8

Pc1

Pc2

Pa2

Pa1

Figure 3. Cyclic voltammogram at the tungsten electrode in the NaF-AlF3-Al2O3 (1.5 wt.%) 
molten salt at 950 oC, electrode area 0.316 cm2, scan rate: 10 mVs−1.
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Figure 4. Cyclic voltammogram at the tungsten electrode in the NaF-AlF3-Al2O3 (1.5 wt.%)-SiO2
(3.0 wt.%) molten salt at 950 oC, electrode area 0.316 cm2, scan rate: 10 mVs‒1. 

Figure 4 is a typical cyclic voltammogram at tungsten electrode in NaF-AlF3-Al2O3 (1.5 wt.%)-
SiO2 (3.0 wt.%) molten salt. The scan potential section is from 0 V to 2 V, and the open circuit 
potential is −0.3 V before scanning. The deposition of silicon takes place at potential more 
positive than aluminum deposition. Figure 3 shows that the reduction potential of Al is begin at 
−1.4 V, therefore, the reduction current peak of Pc3 corresponds to the reduction of silicon ions. 
It is noted that before the reduction current peak of Pc3, there is a small reduction peak Pc4 at the 
potential of −0.55 V, and the oxidation peak Pa4 is corresponding to the reduction peak Pc4 in the 
cyclic voltammogram. The reduction peak Pc4 can be attributed to reduction of silicon step 
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reaction: Si(IV) + 2e− = Si(II), the product is soluble Si(II) ions. Therefore, the reduction peak 
Pc3 at the potential of −1.15 V corresponding to reaction is: Si(II) + 2e– = Si. JIA Ming and LAI 
Yan-Qing[17] also pointed out that the reduction process of Si(IV) is a two-step.

Potentiostatic electrolysis 

Al-Si alloys were prepared by potentiostatic electrolysis from the NaF and AlF3 (molar ratio=2.2 : 
1) containing 1.5 wt% of Al2O3 and 3 wt% of SiO2 melts at 950 oC under Ar atmosphere. Al2O3
was added to stabilize Si(IV) species and to increase the solubility of SiO2. The anode was high 
purity graphite. A liquid Al of 99.9 wt% purity was used as the starting material for the cathode, 
which could absorb electrodeposited Si up to 45 wt% at the experimental temperature. 
Electrolysis was carried out by potentiostatic electrolysis at −1.2 V for 6 hours, which 
corresponds to a current density of around 0.5 A/cm2. After electrolysis, Al-Si alloys were held 
for 30 min under the melts at the working temperature for sufficient interdiffusion and shaping 
up. Then, the mixture was gradually cooled down to the room temperature, spherical bulk alloys 
can be obtained. 

Characterization of the Al-Si alloy 

Figure 5 shows the complicated XRD patterns of Al-Si alloys obtained by potentiostatic 
electrolysis. EDX analysis confirmed that atomic composition was Al : Si =87.23 : 12.77 in the 
alloy layer. The XRD pattern of the sample confirms the formation of Al3.21Si0.47 phase. From the 
analyses of the electrolyzed samples, the formation reactions of the Al-Si alloys and the 
corresponding equilibrium potentials will be summarized. 
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C
ou

nt
s (

A
. U

.)

Diffraction Angle/(2�)

Al3.21Si0.47

Figure 5. X-ray diffraction analysis of the Al-Si alloy obtained by potentiostatic electrolysis at 
−1.2 V in the Na3AlF6 (CR=2.2)-Al2O3 melts for 6 h at 950 oC.

The electrolysis products obtained were analyzed by SEM and EDX as shown in Figure 6. Figure 
6(a) shows an SEM image of the cross-section of the Al-Si alloy which was obtained by 
potentiostatic electrolysis at −1.2 V. A red dashed circle region in Figure 6(a) was enlarged and 
shown in Figure 6(b). It can be seen that the cross-section existed three distinct layers. The EDX 
analysis performed simultaneously with SEM observation demonstrates that the white area 
consists of Al, Si, and Fe. Iron might be derived from the stainless steel anode rod. The black 
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area in the middle is composed of Si crystals. It is well known that during the cooling down of 
Al-Si melt, the supersaturated Si is inclined to segregate. 
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Figure 6. (a) SEM images of the cross-sectional of Al-Si alloy, (b) Enlarged SEM images of a Si 
product embedded in the Al-Si alloy in (a), a red dashed circle, (c) EDS energy spectrum of point 

P1, (d) EDS energy spectrum of point P2, (e) EDS energy spectrum of point P3. 

The mixture of Al-Si alloy and precipitated Si was dipped in a diluted HCl solution, Al and Fe 
can be easily removed by diluted HCl solution leaching. After acid leaching and deionized water 
cleaning, the flake-like Si crystals were obtained. The impurity contents of final Si products were 
determined by an ICP-mass, as shown in Table 1. It can be seen that the B and P impurities is 
very low in the Si products. The level of iron and nickel was found to increase slightly during the 
electrolysis due to brought by the oxidization of anode rod.  

Table 1 Impurity contents of the Si products (ppmw) 
Impurities Si products

B 3.0
P 8.0
Al 1800
Fe 420
Ni 123
C 120
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Conclusion 

In this article, preparation of Al-Si alloy using high purity silica as material by electrolysis 
reduction was investigated. According to the cyclic voltammogram of molten NaF-AlF3-Al2O3-
SiO2, the reduction process of Si(IV) on tungsten electrode is two-step mechanism involving an 
intermediate product Si(II). The first reduction peak at the potential of −0.55 V corresponds to 
the formation of Si(II), and the second reduction peak at −1.15 V corresponds to the formation of 
Si(IV). The product of Al-Si alloy was leached by diluted HCl solution, which make the silicon 
purity reaches 99.8 at.%. The content of impurity boron and phosphorus in the silicon are 3.0 
ppmw and 8.0 ppmw, respectively, which has already reached the quality requirement of SOG-Si. 
It is easy to remove the impurities of Al, Fe, and Ni in Al-Si alloy by directional solidification to 
produce solar grade silicon. 
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Abstract

The Dy-Nd-Pr-Ni alloy sample was prepared by cathodic potentiostatic electrolysis at 0.65 V (vs.
Li+/Li) for 1 h using a Ni plate in a molten LiCl-KCl-DyCl3-NdCl3-PrCl3 system at 723 K. The
highest mass ratio (Dy/Nd+Pr) in the alloy sample was observed to be 50 at 0.65 V. Anodic
potentiostatic electrolysis at 2.20 V for 12 h was conducted using the Nd-Fe-B magnet electrode
in a molten LiCl-KCl system. All elements were almost dissolved from the magnet, and the
original form of the magnet disintegrated. After anodic potentiostatic electrolysis at 2.20 V,
cathodic potentiostatic electrolysis was conducted at 1.00 V for 5 h using a Mo plate in order to
remove the dissolved Fe from the bath. Finally, cathodic potentiostatic electrolysis was conducted
at 0.65 V for 12 h using a Ni plate. The mass ratio of Dy/Nd in the alloy sample was determined
to be about 18.

Introduction

The use of rare earth (RE)-iron group (IG) alloys has increased significantly in a number of
industrial fields over the past few decades. In particular, the demand for Dy-added Nd-Fe-B
magnets is rapidly increasing because these magnets are indispensable for high-performance
motors in electric vehicles (EVs) and hybrid electric vehicles (HEVs). These magnets need to
possess sufficient thermal stability for use in such motors in high-temperature environments. The
addition of Dy is necessary to improve the thermal stability of Nd-Fe-B magnets. However, there
is the concern about a shortage of RE metals in general, and Dy, in particular, of the RE resources.
Thus a worldwide need is being increasingly felt to augment the primary production of Nd and Dy
by combining a suitable recycling method in order to reclaim these metals from their recyclable
resources. In this context, it is worthwhile to mention that large Nd-Fe-B magnets are the only
secondary resource materials as far as Dy is concerned. That is why, it is necessary to develop an
inexpensive and environmentally friendly recovery/separation process for the recovery of Nd and
Dy from a variety of scrap/waste magnets.

We are proposing a new separation and recovery process for the recovery of Nd and Dy from
the RE scraps using molten salt and an alloy diaphragm concept in a molten salt system (Figure 1)
[1-3]. This process is based on our previously discovered phenomena, i.e., “electrochemical
implantation” and “electrochemical displantation” [4-6]. RE containing scrap is used as the anode.
A RE-transition metal (TM) alloy is used as the diaphragm, which functions as a bipolar electrode.
During electrolysis, all the RE metals in the anode are dissolved in the molten salt as RE ions. One
or several specific RE ions are selectively reduced to form RE-TM alloys on the alloy diaphragm
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according to their formation potentials and/or alloying rates. Subsequently, the RE atoms
chemically diffuse through the alloy diaphragm and are re-dissolved into the molten salt as RE
ions in the cathode compartment. The re-dissolved RE ions are finally deposited on either Mo or
Fe cathode as REmetals. The RE ions remaining in the anode compartment can be electrodeposited
by employing a second cathode leaving behind the impurities as anode mud/residue.

This new process was first applied to chloride melts, and the separation of Dy from Nd was
investigated using Ni and Cu cathodes in molten LiCl-KCl-DyCl3-NdCl3 systems [7-9]. The
highest mass ratio of Dy/Nd in Dy-Nd-Ni alloy sample was found to be 72 by ICP-AES.
The present study was the electrochemical formation of RE-Ni (RE=Dy, Nd, Pr) alloys using Ni
electrodes in a molten LiCl-KCl-RECl3 (0.50 mol% added) at 723 K. Furthermore, the anodic
dissolution of RE (Dy, Nd, etc) using Nd-Fe-B magnet electrodes and electrowinning of Dy using
Ni electrodes were carried out in a molten LiCl-KCl system at 723 K.

Experimental

Anhydrous Reagent (AR) grade eutectic LiCl-KCl salt (58.5 mol% LiCl-41.5 mol% KCl)
was placed in a recrystallized alumina crucible, which, in turn, was vacuum-treated for more than
24h at 473K, in order to remove moisture, prior to melting. Both the mixing of the electrolyte
constituents and electrochemical measurements were carried out under dry argon atmosphere. 0.5
mol% DyCl3, NdCl3 and PrCl3 (99.9% pure, Kojundo Chemical Laboratory Co. Ltd.) was added
to the eutectic salt to prepare the electrolyte. A chromel-alumel thermocouple was used to measure
the temperature. A three electrode set up consisting of Nd-Fe-B plate (dimensions: 20mm long, 10
mm wide and 1.5mm thick, composition, mass%: 5Dy+20Nd+5.9Pr+65Fe+1B)/Ni wire (99%
pure, 5mm long, 1mm dia.) WE, Mo/Ni plate type (99% pure, 20 mm long, 10 mm wide, 0.2 mm
thick) CE and Ag-(1mol%) AgCl RE was used for the electrochemical measurements. The
potential of the RE was calibrated against the in situ Li+/Li electrode, prepared by depositing Li
metal on a Mo wire (during the electrochemical measurements). Potentiostatic electrolysis was
performed at 723K to prepare the electrodeposited samples. The samples were characterized and
evaluated by SEM-EDS, and ICP-AES instruments.

Figure 1. Schematic drawing of the process for separation and recovery of rare earth metals.
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Results and Discussion

Electrochemical Formation of RE-Ni (RE-Dy, Nd and Pr) Alloys

Figure 2 compares the cyclic voltammograms of DyCl3, NdCl3 and PrCl3. Appearance of a
relatively larger cathodic current (the peak current being at ~0.40 V) at 0.70 V (with a
corresponding anodic peak during the reverse scan) indicated the selective removal of Dy (from
Nd and Pr). In contrast, both Nd and Pr exhibited cathode current responses at 0.60 V. Besides,
the appearance of smaller cathodic current peaks at ~0.65 V were probably due to the occurrence
of Nd(III)/Nd(II) and Pr(III)/Pr(II) reactions. The CV suggests that the application of a voltage in
the range 0.60-0.70 V can potentially remove Dy from the mixture of Nd and Pr.

Based on the CV response (Figure 2), we have already reported the possibility of separation
of Dy from Nd, using a Ni electrode, from the LiCl-KCl-DyCl3-NdCl3 electrolyte system [8]. In
the present studies, the specific focus was on the possibility of removal of Dy from Pr and Nd from
Pr. Further experiments were carried out, at 0.55-0.70 V for 1 h using Ni plate-type cathode, to
examine the extent of removal of Dy from the mixture of Dy, Nd and Pr. Figure 3 shows the Dy/Pr
mass ratio in the electrodeposited alloy samples, measured by ICP-AES. The highest value for the
ratio was observed to be formed at an operating voltage of 0.70 V. When the studies were extended
to examine the separation efficiency between Nd and Pr, it was observed that no separation could
be possible as the mass ratio stayed unity at all operating voltages (Figure 4). Experiments aimed
at separating Dy from a mixture of Nd and Pr revealed that a highest separation quotient
(Dy/Nd+Pr) of 50 could be achieved at an operating voltage of 0.65V (Figure 5).

These results indicated the possibility of separating Dy from Nd and Pr by controlling
electrolysis potential in a molten LiCl-KCl-DyCl3-NdCl3-PrCl3 system.

Figure 2. Cyclic voltammograms with Ni electrodes in a molten LiCl-KCl-DyCl3/ NdCl3/PrCl3
(0.50 mol% added) at 723 K. Scan rate: 0.05 V s-1. Surface area: 0.16 cm2.
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Recovery of Dy under Potentiostatic Electrolysis Condition

A combination of anodic dissolution (at 2.20 V for 12 h) and cathodic deposition (at 1.00 V
for 5 h) was carried out to deposit the dissolved Fe (from the electrolyte) onto a Mo plate prior to

Figure 3. Potential dependences of the amounts of deposited Dy and Pr, and of the mass ratio
of Dy/Pr, in a molten LiCl-KCl-DyCl3(0.50 mol% addd)-PrCl3(0.50 mol% added) at 723 K.
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Figure 4. Potential dependences of the
amounts of deposited Nd and Pr, and of the
mass ratio of Nd/Pr, in a molten LiCl-KCl-
NdCl3(0.50 mol% addd)-PrCl3(0.50 mol%
added) at 723 K.
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Figure 5. Potential dependences of the
amounts of deposited Dy, Nd and Pr,
and of the mass ratio of Dy/Nd+Pr, in
a molten LiCl-KCl-DyCl3(0.50 mol%
addd)-NdCl3(0.50 mol% addd)-
PrCl3(0.50 mol% added)at 723 K.

18290290



the separation of Dy from the RE mixtures. Fe, from the Nd-Fe-B magnet, quickly dissolved in
the electrolyte upon anodic polarization. The Fe removal was followed up by another potentiostatic
experiment, at 0.65 V for 4 and 12 h (Figures 6 and 7 respectively), to remove Dy from the
electrolyte and form of Dy-Ni alloy in situ at the Ni plate. The EDS measurements showed the
Dy/Nd ratio to be 11 (after 4 h of electrolysis, Figure 6) and 18 (after 12h of electrolysis, Figure
7). As predicted, Pr was observed to be present in both the (Dy-Nd) alloy deposits. These results
further confirmed that the separation of Dy, from a mixture of Dy, Nd and Pr, can be achieved
under a set of optimum operating conditions.

In order to recover residual Nd and Pr from the electrolyte (after the removal of Dy), further
electrolysis was carried out at 0.65 V for 4 h and 12 h respectively. Figure 8 shows the cross-
sectional SEM image of the sample obtained at 0.60 V and 1.5 h. The mass ratio of Dy:Nd:Pr in
the alloy was determined to be 11:8.4:1. This analysis clearly indicated that quantitative recovery
of Dy could not be achieved even after carrying out electrolysis at 0.65 V for the duration of 16 h.
A mass ratio of Dy:Nd:Pr as 1.9:4.7:1.0 indicated that it was possible to deposit Nd and Pr onto
nickel cathode at an operating voltage of 0.55 V and an electrolysis duration of 3 h (Fig re 9).

Figure 6. Cross-sectional SEM image of the sample prepared by cathodic
potentiostatic electrolysis using a Ni electrode at 0.65 V for 4 h in a molten
LiCl-KCl system at 723 K.

Figure 7. Cross-sectional SEM image of the sample prepared by cathodic
potentiostatic electrolysis using a Ni electrode at 0.65 V for 12 h in a molten
LiCl-KCl system at 723 K.
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Anodic Dissolution Behavior of the Nd-Fe-B Magnet

The Nd-Fe-B magnet was wrapped in a nickel wire and then subjected to anodic dissolution
at 1.70-2.20 V for 12 h. Figure 10 shows the cross-sectional SEM image of the sample retrieved
after dissolution at 1.70 V. The EDS analysis showed a variation in the dissolution pattern. It was
observed that the Nd, present in the outer layer underwent preferential dissolution leaving the Nd
present in the inner layer untouched. This might have happened because of the large cracks, found
between inner and outer layer, generated during the electrochemical dissolution process. When the
anodic dissolution was carried out at a comparatively higher voltage (2.20 V), all the three
elements underwent complete dissolution and there was hardly any magnet sample left in the
nickel wire.

Figure 8. Cross-sectional SEM image of the sample prepared by cathodic
potentiostatic electrolysis using a Ni electrode at 0.60 V for 1.5 h in a
molten LiCl-KCl system at 723 K.

Figure 9. Cross-sectional SEM image of the sample prepared by cathodic
potentiostatic electrolysis using a Ni electrode at 0.55 V for 3 h in a
molten LiCl-KCl system at 723 K.
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Conclusions

The electrochemical formation of RE-Ni (RE=Dy, Nd, Pr) alloys using Ni electrodes was
investigated in a molten LiCl-KCl-RECl3 (0.50 mol%) at 723 K. Furthermore, the anodic
dissolution of RE (Dy, Nd, etc) using Nd-Fe-B magnet electrodes and electrowinning of Dy using
Ni electrodes were carried out in a molten LiCl-KCl system at 723 K. The results could be
summarized as follows:

1. The alloy sample was prepared by potentiostatic electrolysis at 0.65 V for 1 h using a Ni
cathode in a molten LiCl-KCl-DyCl3-NdCl3-PrCl3 system. The highest mass ratio of
Dy/Nd+Pr in the alloy sample measured by ICP-AES was determined to be 50 at 0.65 V.

2. Anodic potentiostatic electrolysis at 1.70 V and 2.20 V for 12 h were conducted using Nd-
Fe-B magnet electrodes wrapped Ni wires. It was found that RE in the outer layer was
selectively dissolved but RE in the inner layer remained undissolved from the EDX analysis
of the cross-section of the sample obtained at 1.70 V. The sample obtained at 2.20 V was
almost dissolved, and the original form of the magnet disintegrated.

3. After anodic potentiostatic electrolysis at 2.20 V for 12 h using the Nd-Fe-B magnet and
cathodic potentiostatic electrolysis at 1.00 V for 5 h using a Mo plate, cathodic potentiostatic
electrolysis was conducted at 0.65 V for 12 h using a Ni plate. From the EDX analysis of
formed alloy, the mass ratio of Dy/Nd in the alloy sample was about 18.
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